Emerging Memories
Poised to Explode
The Long & Winding Road
to Persistent Memories

Live Webcast
December 11 2018
11.00PST
Today’s Bearded Presenters

Alex McDonald
SNIA SSSI Co Chair
NetApp

Tom Coughlin
Coughlin Associates

Jim Handy
Objective Analysis
SNIA Legal Notice

- The material contained in this presentation is copyrighted by the SNIA unless otherwise noted.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
SNIA-At-A-Glance

170
industry leading organizations

3,500
active contributing members

50,000
IT end users & storage pros worldwide

Learn more: snia.org/technical

@SNIA
About the SNIA SSSI

- The SNIA Solid State Storage Initiative (SSSI)
 - Dedicated to fostering the acceptance and growth of Solid State Storage
 - Provides education, performs market outreach, and influences & promotes standards.

- Technical Work Groups (TWGs) and Special Interest Groups (SIGs)

- More information at https://www.snia.org/forums/sssi
About Your Presenters

❖ Coughlin Associates
 • Technical and Market Analysis
 • Consulting
 • Reports, Conferences and Newsletter

❖ Objective Analysis
 • Profound analysts
 • Reports & services
 • Custom consulting
Persistent Memory Types
Market Drivers
Support Requirements
Outlook
Outline

- Persistent Memory Types
- Market Drivers
- Support Requirements
- Outlook
Persistent Memory Types

- PCM/XPoint
- MRAM
- ReRAM
- FRAM
- Others
3D XPoint: A Long Time Coming
3D XPoint Must Cost Less than DRAM Otherwise People will Just Buy DRAM
What is a Crosspoint?

- Small die area
- Stackable
- The ideal memory!

https://TheMemoryGuy.com/emerging-memories-today-understanding-bit-selectors/
PCM Set/Reset Mechanism

Reset Pulse: Causes Volume to Become Amorphous

Set Pulse: Crystallizes Volume

Source: Objective Analysis
NOR-Compatible PCM

- Shipped by both Samsung & Numonyx (Micron)
 - Both obsoleted it
- Well-understood materials
- Single current flow direction
 - Selector device is uncomplicated
- Today’s markets:
 - Largely experimental & university projects
Intel Incurring XPoint Losses

Source: Objective Analysis
3D XPoint Report

- The Why, How, and When of 3D XPoint Memory
 - Why Intel wants it
 - How it fits into the memory hierarchy
 - Impact on DRAM
 - When will it sell in volume
- Forecasts by application
 - NVMe SSD
 - DIMM format
- Available for online purchase:
 - https://Objective-Analysis.com/reports/#NVDIMM
Toggle MRAM

- Offshoot of HDD head design
 - Magnetic tunnel junction: “MTJ”
- Magnetism determines tunnel barrier resistance
- Before STT there were scaling issues

“Reset”

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>N</td>
</tr>
</tbody>
</table>

Magnets aligned = Low resistance: “0”

“Free”

“Fixed”

“Set”

<table>
<thead>
<tr>
<th>N</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>N</td>
</tr>
</tbody>
</table>

Magnets unaligned = High resistance. “1”
STT MRAM

- Solves scaling issues
- Being adopted in foundries
 - For embedded memories: SoCs
- Discrete memories will come later

Perpendicular Magnetic Tunnel Junction (pMTJ)

- Low Resistance or “0”
 - Parallel Magnetic Polarization
 - Free Layer
 - Tunnel Barrier
 - Reference Layer

- High Resistance or “1”
 - Anti-Parallel Magnetic Polarization
MRAM Status

- Once considered a DRAM replacement
- Only one chip supplier: Everspin
 - Over 70 million units shipped
 - Converting from toggle bit to STT
 - Partnership with Global Foundries for 300 mm wafers
 - GF to engage embedded market
- Others trying to get in
 - Avalanche, Samsung, Spin Transfer, TDK, Toshiba, TSMC, UMC
- Today’s markets: Space, high-uptime systems
Ferroelectrics: FRAM

Source: Objective Analysis
FRAM Status

Ramtron (Now Cypress)
- Partnered with Fujitsu for high-volume applications
- PZT – Lead Zirconium Titanate.

Other renditions:
- Thinfilm, organic FRAMs
- Symetrix

New HfO$_2$ approach from NamLab, Dresden
- Uses well-understood materials (Hafnium Oxide)

Today’s markets:
- RFID, other low write current applications

© 2018 Storage Networking Industry Association. All Rights Reserved.
ReRAM

What it is depends on who you ask

- PCM
- Memristor
- CMOx
- CBRAM
- Carbon nanotubes
What IS a ReRAM?

- Any memory with a resistive bit
All Have Something In Common

- Small single-element cell
 - Some use diode select mechanism
 - Promise to scale past DRAM & NAND flash
- Nonvolatile
- Write in place
 - No “Block Erase”
 - More symmetrical read/write speeds
- New materials
New Persistent Memory Report

- Coughlin Associates/Objective Analysis
- Examines the PM Ecosystem
 - Technologies (PCM, ReRAM, MRAM, FRAM, +)
 - Companies
 - Markets
 - Support requirements
- Forecasts PM consumption
 - Embedded PM
 - Stand-alone PM
- Available for online purchase
 - https://TomCoughlin.com/tech-papers/
Outline

- Persistent Memory Types
- Market Drivers
- Support Requirements
- Outlook
Market Drivers

- PM vs. RAM
- PM in SoCs
- The economies of scale
The Vision: Replace Existing Technologies

Source: Objective Analysis
What Dictates Memory Cost?

- Cost per megabyte depends on:
 - Wafer cost
 - Megabytes per wafer
 - Yield

- Megabytes per wafer driven by bit size
 - Shrinking bits allow cost reductions
 - Manufacturers shrink processes to drive this

This is Moore’s Law in Action!
The Same is True of All Memory Technologies

There can be no price advantage without comparable scale
Outline

- Persistent Memory Types
- Market Drivers
- Support Requirements
- Outlook
Support Requirements

- **Hardware support**
 - Supporting early development
 - Ongoing requirements

- **Software support**
 - O/S support
 - Application program support
Hardware: Early Development

- NVDIMM-N
 - DRAM with flash backup
- BIOS changes
- New signals to DIMM
 - Indicates power fail
NVDIMM Report

- Explains the NVDIMM markets
 - NVDIMM-N
 - NVDIMM-P
- Vendor profiles
- Support requirements
- Market forecast
- Available for online purchase
 - https://Objective-Analysis.com/reports/#NVDIMM
Ongoing Hardware Requirements

- Nonuniform Memory Architecture: “NUMA”
- MMU Redesign
- Faster context switches needed
 - Use polling for now
- Updated DDR bus
 - Support for non-deterministic access times
SNIA’s Persistent Memory Programming Model

https://www.SNIA.org/PM
PM is useless if its advantage is untapped
 - Persistence is unknown by most software

This change will take some time
Outline

- Persistent Memory Types
- Market Drivers
- Support Requirements
- Outlook
Outlook

- Nothing works in a vacuum
 - PM is a part of the greater memory ecosystem
 - The memory market swings wildly
- Foundry processes will have a huge impact
3D NAND Layers will Continue to Increase

String Stacking

- 2013: 24 Layers
- 2014: 32 Layers
- 2015: 48 Layers
- 2016: 64 Layers
- 2017: 96 Layers
- 2018: 128 Layers
- 2019: 192 Layers
- 2020: 256 Layers
- 2021: 384 Layers
- 2022: 512 Layers

© 2018 Storage Networking Industry Association. All Rights Reserved.
Commodity Price Cycle

- Manufacturers Over Invest
- Prices Collapse
- Manufacturers Under Invest
- Prices Stabilize
- Shortage
- Oversupply

Source: Objective Analysis
What Drives the Current Cycle?

- 2018 price collapse
 - Supply-driven overcapacity
 - Largest-ever price-cost gap
- Prices collapse to cost in early 2019
 - Will hug cost curve until next shortage
 - China’s market entry will extend the oversupply
Impact to PM?

- Persistent memory competes against established technologies
 - Example: 3D XPoint must be cheaper than DRAM
- A DRAM collapse will create an XPoint collapse
 - Even though XPoint is sole-sourced!
Timeline for Change

Logic

NAND

DRAM

Source: Objective Analysis, 2018
Emerging NVM market could exceed $6B by 2023!

Emerging Memories: Poised to Explode
Coughlin Associates/Objective Analysis
Resources

Emerging Memories: Poised to Explode

Profiting from the NVDIMM Market
- https://Objective-Analysis.com/reports/#NVDIMM

A Close Look at the Micron/Intel 3D XPoint Memory
- https://Objective-Analysis.com/reports/#NVDIMM

The Memory Guy blog
- https://TheMemoryGuy.com

SNIA SSSI
- https://www.snia.org/forums/sssi
After This Webcast

➤ Please rate this webcast and provide us with feedback
➤ This webcast and a PDF of the slides will be posted to the SNIA SSSI website and available on-demand at https://www.snia.org/forums/sssi/knowledge/education
➤ A full Q&A from this webcast, including answers to questions we couldn't get to today, will be posted to the SNIA SSSI blog: http://sniassssiblog.org/
➤ Follow us on Twitter @SNIASolidState
Thank You!