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CEPH MOTIVATING PRINCIPLES

● All components must scale horizontally

● There can be no single point of failure

● The solution must be hardware agnostic

● Should use commodity hardware

● Self-manage whenever possible

● Open source
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ARCHITECTURAL COMPONENTS

RGW
A web services 

gateway for object 
storage, compatible 

with S3 and Swift

LIBRADOS
A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
A software-based, reliable, autonomous, distributed object store comprised of
self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
A reliable, fully-
distributed block 
device with cloud 

platform integration

CEPHFS
A distributed file 

system with POSIX 
semantics and scale-

out metadata 
management

APP HOST/VM CLIENT
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MULTI-SITE OBJECT STORAGE
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RADOSGW MAKES RADOS 
WEBBY

RADOSGW:
 REST-based object storage proxy
 Uses RADOS to store objects

● Stripes large RESTful objects across 
many RADOS objects

 API supports buckets, accounts
 Usage accounting for billing
 Compatible with S3 and Swift applications
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STORING VIRTUAL DISKS

M M

RADOS CLUSTER

HYPERVISOR
LIBRBD

VM



13

KERNEL MODULE
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KRBD
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RBD FEATURES

● Stripe images across entire cluster (pool)

● Read-only snapshots

● Copy-on-write clones

● Broad integration

– Qemu

– Linux kernel

– iSCSI (STGT, LIO)

– OpenStack, CloudStack, Nebula, Ganeti, Proxmox

● Incremental backup (relative to snapshots)
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SEPARATE METADATA SERVER 
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SCALABLE METADATA SERVERS

METADATA SERVER
 Manages metadata for a POSIX-compliant 

shared filesystem
 Directory hierarchy
 File metadata (owner, timestamps, 

mode, etc.)
 Clients stripe file data in RADOS

 MDS not in data path
 MDS stores metadata in RADOS

 Key/value objects
 Dynamic cluster scales to 10s or 100s
 Only required for shared filesystem



RADOS
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RADOS

● Flat object namespace within each pool

● Rich object API (librados)

– Bytes, attributes, key/value data

– Partial overwrite of existing data

– Single-object compound operations

– RADOS classes (stored procedures)

● Strong consistency (CP system)

● Infrastructure aware, dynamic topology

● Hash-based placement (CRUSH)

● Direct client to server data path
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RADOS CLUSTER
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RADOS COMPONENTS

OSDs:
 10s to 1000s in a cluster
 One per disk (or one per SSD, RAID 

group…)
 Serve stored objects to clients
 Intelligently peer for replication & recovery

Monitors:
 Maintain cluster membership and state
 Provide consensus for distributed decision-

making
 Small, odd number (e.g., 5)
 Not part of data path

M



23

OBJECT STORAGE DAEMONS
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WHERE DO OBJECTS LIVE?
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A METADATA SERVER?
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CALCULATED PLACEMENT
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CRUSH IS A QUICK CALCULATION
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CRUSH AVOIDS FAILED DEVICES
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CRUSH: DECLUSTERED PLACEMENT
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31
● Each PG independently maps to a 

pseudorandom set of OSDs

● PGs that map to the same OSD 
generally have replicas that do not

● When an OSD fails, each PG it stored 
will generally be re-replicated by a 
different OSD

– Highly parallel recovery
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CRUSH: DYNAMIC DATA PLACEMENT

CRUSH:
 Pseudo-random placement algorithm

 Fast calculation, no lookup
 Repeatable, deterministic

 Statistically uniform distribution
 Stable mapping

 Limited data migration on change
 Rule-based configuration

 Infrastructure topology aware
 Adjustable replication
 Weighting
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DATA IS ORGANIZED INTO POOLS

CLUSTER

OBJECTS

10

01

01

10

10

01 11

01

1001

0110 10 01

11

01

POOLS
(CONTAINING PGs)

10

01

11

01

10

01

01

10

01

10

10

01

11

01

10

01

10 01 10 11

01

11

01

10

10

01

01

01

10

10

01

01

POOL
A

POOL
B

POOL 
C

POOL
DOBJECTS

OBJECTS

OBJECTS



TIERED STORAGE
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TWO WAYS TO CACHE

● Within each OSD

– Combine SSD and HDD for each OSD

– Make localized promote/demote decisions

– Leverage existing tools

● dm-cache, bcache, FlashCache
● Variety of caching controllers

– We can help with hints

● Cache on separate devices/nodes

– Different hardware for different tiers

● Slow nodes for cold data
● High performance nodes for hot data

– Add, remove, scale each tier independently

● Unlikely to choose right ratios at procurement time
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TIERED STORAGE

APPLICATION

CACHE POOL (REPLICATED)

BACKING POOL (ERASURE CODED)

CEPH STORAGE CLUSTER
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RADOS TIERING PRINCIPLES

● Each tier is a RADOS pool

– May be replicated or erasure coded

● Tiers are durable

– e.g., replicate across SSDs in multiple hosts

● Each tier has its own CRUSH policy

– e.g., map to SSDs devices/hosts only

● librados clients adapt to tiering topology

– Transparently direct requests accordingly

● e.g., to cache

– No changes to RBD, RGW, CephFS, etc.



38

WRITE INTO CACHE POOL

CEPH CLIENT

CACHE POOL (SSD): WRITEBACK

BACKING POOL (HDD)

CEPH STORAGE CLUSTER

WRITE ACK
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WRITE INTO CACHE POOL

CEPH CLIENT

CACHE POOL (SSD): WRITEBACK

BACKING POOL (HDD)

CEPH STORAGE CLUSTER

WRITE ACK

PROMOTE
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READ (CACHE HIT)

CEPH CLIENT

CACHE POOL (SSD): WRITEBACK

BACKING POOL (HDD)

CEPH STORAGE CLUSTER

READ READ REPLY
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READ (CACHE MISS)

CEPH CLIENT

CACHE POOL (SSD): WRITEBACK

BACKING POOL (HDD)

CEPH STORAGE CLUSTER

READ READ REPLYREDIRECT READ
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READ (CACHE MISS)
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ESTIMATING TEMPERATURE

● Each PG constructs in-memory bloom filters

– Insert records on both read and write

– Each filter covers configurable period (e.g., 1 hour)

– Tunable false positive probability (e.g., 5%)

– Maintain most recent N filters on disk

● Estimate temperature

– Has object been accessed in any of the last N periods?

– ...in how many of them?

– Informs flush/evict decision

● Estimate “recency”

– How many periods since the object hasn't been accessed?

– Informs read miss behavior: promote vs redirect
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AGENT: FLUSH COLD DATA

CEPH CLIENT

CACHE POOL (SSD): WRITEBACK

BACKING POOL (HDD)

CEPH STORAGE CLUSTER

FLUSH ACK
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TIERING AGENT

● Each PG has an internal tiering agent

– Manages PG based on administrator defined policy

● Flush dirty objects

– When pool reaches target dirty ratio

– Tries to select cold objects

– Marks objects clean when they have been written back 
to the base pool

● Evict clean objects

– Greater “effort” as pool/PG size approaches target size
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READ ONLY CACHE TIER

CEPH CLIENT

CACHE POOL (SSD): READ ONLY

BACKING POOL (REPLICATED)

CEPH STORAGE CLUSTER

READ READ REPLY

PROMOTE

WRITE ACK



ERASURE CODING
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ERASURE CODING

OBJECT

REPLICATED POOL

CEPH STORAGE CLUSTER

ERASURE CODED POOL

CEPH STORAGE CLUSTER

COPY COPY

OBJECT

31 2 X Y

COPY
4

Full copies of stored objects
 Very high durability
 3x (200% overhead)
 Quicker recovery

One copy plus parity
 Cost-effective durability
 1.5x (50% overhead)
 Expensive recovery
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ERASURE CODING SHARDS
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ERASURE CODING SHARDS
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● Variable stripe size

● Zero-fill shards (logically) in partial tail stripe
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EC READ
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EC READ
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EC READ

CEPH STORAGE CLUSTER
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EC WRITE
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EC WRITE
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EC WRITE
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EC WRITE: DEGRADED
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EC WRITE: PARTIAL FAILURE
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EC WRITE: PARTIAL FAILURE
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EC RESTRICTIONS

● Overwrite in place will not work in general

● Log and 2PC would increase complexity, latency

● We chose to restrict allowed operations

– create

– append (on stripe boundary)

– remove (keep previous generation of object for some time)

● These operations can all easily be rolled back locally

– create → delete

– append → truncate

– remove → roll back to previous generation

● Object attrs preserved in existing PG logs (they are small)

● Key/value data is not allowed on EC pools
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EC WRITE: PARTIAL FAILURE
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EC WRITE: PARTIAL FAILURE
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EC RESTRICTIONS

● This is a small subset of allowed librados operations

– Notably cannot (over)write any extent

● Coincidentally, these operations are also inefficient for 
erasure codes

– Generally require read/modify/write of affected stripe(s)

● Some applications can consume EC directly

– RGW (no object data update in place)

● Others can combine EC with a cache tier (RBD, CephFS)

– Replication for warm/hot data

– Erasure coding for cold data

– Tiering agent skips objects with key/value data
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WHICH ERASURE CODE?

● The EC algorithm and implementation are pluggable

– jerasure (free, open, and very fast)

– ISA-L (Intel library; optimized for modern Intel procs)

– LRC (local recovery code – layers over existing plugins)

● Parameterized

– Pick k or m, stripe size

● OSD handles data path, placement, rollback, etc.

● Plugin handles

– Encode and decode

– Given these available shards, which ones should I fetch to 
satisfy a read?

– Given these available shards and these missing shards, which 
ones should I fetch to recover?
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COST OF RECOVERY

1 TB OSD
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COST OF RECOVERY

1 TB OSD
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COST OF RECOVERY (REPLICATION)

1 TB OSD

1 TB
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COST OF RECOVERY (REPLICATION)

1 TB OSD
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COST OF RECOVERY (REPLICATION)

1 TB OSD

1 TB
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COST OF RECOVERY (EC)
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LOCAL RECOVERY CODE (LRC)
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BIG THANKS TO

● Ceph

– Loic Dachary (CloudWatt, FSF France, Red Hat)

– Andreas Peters (CERN)

– Sam Just (Inktank / Red Hat)

– David Zafman (Inktank / Red Hat)

● jerasure

– Jim Plank (University of Tennessee)

– Kevin Greenan (Box)



ROADMAP
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WHAT'S NEXT

● Erasure coding

– Allow (optimistic) client reads directly from shards

– ARM optimizations for jerasure

● Cache pools

– Better agent decisions (when to flush or evict)

– Supporting different performance profiles

● e.g., slow / “cheap” flash can read just as fast

– Complex topologies

● Multiple readonly cache tiers in multiple sites

● Tiering

– Support “redirects” to cold tier below base pool

– Dynamic spin-down
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OTHER ONGOING WORK

● Performance optimization (SanDisk, Mellanox)

● Alternative OSD backends

– leveldb, rocksdb, LMDB

– hybrid key/value and file system

● Messenger (network layer) improvements

– RDMA support (libxio – Mellanox)

– Event-driven TCP implementation (UnitedStack)

● Multi-datacenter RADOS replication

● CephFS

– Online consistency checking

– Performance, robustness



THANK YOU!

Sage Weil
CEPH PRINCIPAL 
ARCHITECT

sage@redhat.com

@liewegas
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