
ERASURE CODING AND CACHE TIERING

SAGE WEIL - SDC 2014.09.16



ARCHITECTURE



3

CEPH MOTIVATING PRINCIPLES

● All components must scale horizontally

● There can be no single point of failure

● The solution must be hardware agnostic

● Should use commodity hardware

● Self-manage whenever possible

● Open source



4

ARCHITECTURAL COMPONENTS

RGW
A web services 

gateway for object 
storage, compatible 

with S3 and Swift

LIBRADOS
A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
A software-based, reliable, autonomous, distributed object store comprised of
self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
A reliable, fully-
distributed block 
device with cloud 

platform integration

CEPHFS
A distributed file 

system with POSIX 
semantics and scale-

out metadata 
management

APP HOST/VM CLIENT



ROBUST SERVICES BUILT ON RADOS



6

ARCHITECTURAL COMPONENTS

RGW
A web services 

gateway for object 
storage, compatible 

with S3 and Swift

LIBRADOS
A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
A software-based, reliable, autonomous, distributed object store comprised of
self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
A reliable, fully-
distributed block 
device with cloud 

platform integration

CEPHFS
A distributed file 

system with POSIX 
semantics and scale-

out metadata 
management

APP HOST/VM CLIENT



7

THE RADOS GATEWAY

M M

M

RADOS CLUSTER

RADOSGW
LIBRADOS

socket

RADOSGW
LIBRADOS

APPLICATION APPLICATION

REST



8

MULTI-SITE OBJECT STORAGE

WEB 
APPLICATION

APP 
SERVER

CEPH OBJECT 
GATEWAY

(RGW)

CEPH STORAGE 
CLUSTER

(US-EAST)

WEB 
APPLICATION

APP 
SERVER

CEPH OBJECT 
GATEWAY

(RGW)

CEPH STORAGE 
CLUSTER

(EU-WEST)



10

RADOSGW MAKES RADOS 
WEBBY

RADOSGW:
 REST-based object storage proxy
 Uses RADOS to store objects

● Stripes large RESTful objects across 
many RADOS objects

 API supports buckets, accounts
 Usage accounting for billing
 Compatible with S3 and Swift applications



11

ARCHITECTURAL COMPONENTS

RGW
A web services 

gateway for object 
storage, compatible 

with S3 and Swift

LIBRADOS
A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
A software-based, reliable, autonomous, distributed object store comprised of
self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
A reliable, fully-
distributed block 
device with cloud 

platform integration

CEPHFS
A distributed file 

system with POSIX 
semantics and scale-

out metadata 
management

APP HOST/VM CLIENT



12

STORING VIRTUAL DISKS

M M

RADOS CLUSTER

HYPERVISOR
LIBRBD

VM



13

KERNEL MODULE

M M

RADOS CLUSTER

LINUX HOST
KRBD



14

RBD FEATURES

● Stripe images across entire cluster (pool)

● Read-only snapshots

● Copy-on-write clones

● Broad integration

– Qemu

– Linux kernel

– iSCSI (STGT, LIO)

– OpenStack, CloudStack, Nebula, Ganeti, Proxmox

● Incremental backup (relative to snapshots)



15

ARCHITECTURAL COMPONENTS

RGW
A web services 

gateway for object 
storage, compatible 

with S3 and Swift

LIBRADOS
A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
A software-based, reliable, autonomous, distributed object store comprised of
self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
A reliable, fully-
distributed block 
device with cloud 

platform integration

CEPHFS
A distributed file 

system with POSIX 
semantics and scale-

out metadata 
management

APP HOST/VM CLIENT



16

SEPARATE METADATA SERVER 

LINUX HOST

M M

M

RADOS CLUSTER

KERNEL MODULE

datametadata 01
10



17

SCALABLE METADATA SERVERS

METADATA SERVER
 Manages metadata for a POSIX-compliant 

shared filesystem
 Directory hierarchy
 File metadata (owner, timestamps, 

mode, etc.)
 Clients stripe file data in RADOS

 MDS not in data path
 MDS stores metadata in RADOS

 Key/value objects
 Dynamic cluster scales to 10s or 100s
 Only required for shared filesystem



RADOS



19

ARCHITECTURAL COMPONENTS

RGW
A web services 

gateway for object 
storage, compatible 

with S3 and Swift

LIBRADOS
A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
A software-based, reliable, autonomous, distributed object store comprised of
self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
A reliable, fully-
distributed block 
device with cloud 

platform integration

CEPHFS
A distributed file 

system with POSIX 
semantics and scale-

out metadata 
management

APP HOST/VM CLIENT



20

RADOS

● Flat object namespace within each pool

● Rich object API (librados)

– Bytes, attributes, key/value data

– Partial overwrite of existing data

– Single-object compound operations

– RADOS classes (stored procedures)

● Strong consistency (CP system)

● Infrastructure aware, dynamic topology

● Hash-based placement (CRUSH)

● Direct client to server data path



21

RADOS CLUSTER

APPLICATION

M M

M M

M

RADOS CLUSTER



22

RADOS COMPONENTS

OSDs:
 10s to 1000s in a cluster
 One per disk (or one per SSD, RAID 

group…)
 Serve stored objects to clients
 Intelligently peer for replication & recovery

Monitors:
 Maintain cluster membership and state
 Provide consensus for distributed decision-

making
 Small, odd number (e.g., 5)
 Not part of data path

M



23

OBJECT STORAGE DAEMONS

FS

DISK

OSD

DISK

OSD

FS

DISK

OSD

FS

DISK

OSD

FS

xfs
btrfs
ext4

M

M

M



DATA PLACEMENT



25

WHERE DO OBJECTS LIVE?

??
APPLICATION

M

M

M

OBJECT



26

A METADATA SERVER?

1

APPLICATION

M

M

M

2



27

CALCULATED PLACEMENT

FAPPLICATION

M

M

M
A-G

H-N

O-T

U-Z



28

CRUSH

CLUSTER

OBJECTS

10

01

01

10

10

01

11

01

10

01

01

10

10

01 11

01

1001

0110 10 01

11

01

PLACEMENT GROUPS
(PGs)



29

CRUSH IS A QUICK CALCULATION

RADOS CLUSTER

OBJECT

10

01

01

10

10

01 11

01

1001

0110 10 01

11

01



30

CRUSH AVOIDS FAILED DEVICES

RADOS CLUSTER

OBJECT

10

01

01

10

10

01 11

01

1001

0110 10 01

11

01

10



31

CRUSH: DECLUSTERED PLACEMENT

RADOS CLUSTER

10

01

01

10

10

01 11

01

1001

0110 10 01

11

01

31
● Each PG independently maps to a 

pseudorandom set of OSDs

● PGs that map to the same OSD 
generally have replicas that do not

● When an OSD fails, each PG it stored 
will generally be re-replicated by a 
different OSD

– Highly parallel recovery



32

CRUSH: DYNAMIC DATA PLACEMENT

CRUSH:
 Pseudo-random placement algorithm

 Fast calculation, no lookup
 Repeatable, deterministic

 Statistically uniform distribution
 Stable mapping

 Limited data migration on change
 Rule-based configuration

 Infrastructure topology aware
 Adjustable replication
 Weighting



33

DATA IS ORGANIZED INTO POOLS

CLUSTER

OBJECTS

10

01

01

10

10

01 11

01

1001

0110 10 01

11

01

POOLS
(CONTAINING PGs)

10

01

11

01

10

01

01

10

01

10

10

01

11

01

10

01

10 01 10 11

01

11

01

10

10

01

01

01

10

10

01

01

POOL
A

POOL
B

POOL 
C

POOL
DOBJECTS

OBJECTS

OBJECTS



TIERED STORAGE



35

TWO WAYS TO CACHE

● Within each OSD

– Combine SSD and HDD for each OSD

– Make localized promote/demote decisions

– Leverage existing tools

● dm-cache, bcache, FlashCache
● Variety of caching controllers

– We can help with hints

● Cache on separate devices/nodes

– Different hardware for different tiers

● Slow nodes for cold data
● High performance nodes for hot data

– Add, remove, scale each tier independently

● Unlikely to choose right ratios at procurement time



36

TIERED STORAGE

APPLICATION

CACHE POOL (REPLICATED)

BACKING POOL (ERASURE CODED)

CEPH STORAGE CLUSTER



37

RADOS TIERING PRINCIPLES

● Each tier is a RADOS pool

– May be replicated or erasure coded

● Tiers are durable

– e.g., replicate across SSDs in multiple hosts

● Each tier has its own CRUSH policy

– e.g., map to SSDs devices/hosts only

● librados clients adapt to tiering topology

– Transparently direct requests accordingly

● e.g., to cache

– No changes to RBD, RGW, CephFS, etc.



38

WRITE INTO CACHE POOL

CEPH CLIENT

CACHE POOL (SSD): WRITEBACK

BACKING POOL (HDD)

CEPH STORAGE CLUSTER

WRITE ACK



39

WRITE INTO CACHE POOL

CEPH CLIENT

CACHE POOL (SSD): WRITEBACK

BACKING POOL (HDD)

CEPH STORAGE CLUSTER

WRITE ACK

PROMOTE



40

READ (CACHE HIT)

CEPH CLIENT

CACHE POOL (SSD): WRITEBACK

BACKING POOL (HDD)

CEPH STORAGE CLUSTER

READ READ REPLY



41

READ (CACHE MISS)

CEPH CLIENT

CACHE POOL (SSD): WRITEBACK

BACKING POOL (HDD)

CEPH STORAGE CLUSTER

READ READ REPLYREDIRECT READ



42

READ (CACHE MISS)

CEPH CLIENT

CACHE POOL (SSD): WRITEBACK

BACKING POOL (HDD)

CEPH STORAGE CLUSTER

READ

PROMOTE

READ REPLY



43

ESTIMATING TEMPERATURE

● Each PG constructs in-memory bloom filters

– Insert records on both read and write

– Each filter covers configurable period (e.g., 1 hour)

– Tunable false positive probability (e.g., 5%)

– Maintain most recent N filters on disk

● Estimate temperature

– Has object been accessed in any of the last N periods?

– ...in how many of them?

– Informs flush/evict decision

● Estimate “recency”

– How many periods since the object hasn't been accessed?

– Informs read miss behavior: promote vs redirect



44

AGENT: FLUSH COLD DATA

CEPH CLIENT

CACHE POOL (SSD): WRITEBACK

BACKING POOL (HDD)

CEPH STORAGE CLUSTER

FLUSH ACK



45

TIERING AGENT

● Each PG has an internal tiering agent

– Manages PG based on administrator defined policy

● Flush dirty objects

– When pool reaches target dirty ratio

– Tries to select cold objects

– Marks objects clean when they have been written back 
to the base pool

● Evict clean objects

– Greater “effort” as pool/PG size approaches target size



46

READ ONLY CACHE TIER

CEPH CLIENT

CACHE POOL (SSD): READ ONLY

BACKING POOL (REPLICATED)

CEPH STORAGE CLUSTER

READ READ REPLY

PROMOTE

WRITE ACK



ERASURE CODING



48

ERASURE CODING

OBJECT

REPLICATED POOL

CEPH STORAGE CLUSTER

ERASURE CODED POOL

CEPH STORAGE CLUSTER

COPY COPY

OBJECT

31 2 X Y

COPY
4

Full copies of stored objects
 Very high durability
 3x (200% overhead)
 Quicker recovery

One copy plus parity
 Cost-effective durability
 1.5x (50% overhead)
 Expensive recovery



49

ERASURE CODING SHARDS

CEPH STORAGE CLUSTER

OBJECT

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL



50

ERASURE CODING SHARDS

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

9

15

19

A

B

C

D

E

A'

B'

C'

D'

E'

● Variable stripe size

● Zero-fill shards (logically) in partial tail stripe



51

PRIMARY

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL



52

EC READ

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

CEPH CLIENT

READ



53

EC READ

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

CEPH CLIENT

READ

READS



54

EC READ

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

CEPH CLIENT

READ REPLY



55

EC WRITE

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

CEPH CLIENT

WRITE



56

EC WRITE

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

CEPH CLIENT

WRITE

WRITES



57

EC WRITE

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

CEPH CLIENT

WRITE ACK



58

EC WRITE: DEGRADED

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

CEPH CLIENT

WRITE

WRITES



59

EC WRITE: PARTIAL FAILURE

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

CEPH CLIENT

WRITE

WRITES



60

EC WRITE: PARTIAL FAILURE

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

CEPH CLIENT

B B BA A A



61

EC RESTRICTIONS

● Overwrite in place will not work in general

● Log and 2PC would increase complexity, latency

● We chose to restrict allowed operations

– create

– append (on stripe boundary)

– remove (keep previous generation of object for some time)

● These operations can all easily be rolled back locally

– create → delete

– append → truncate

– remove → roll back to previous generation

● Object attrs preserved in existing PG logs (they are small)

● Key/value data is not allowed on EC pools



62

EC WRITE: PARTIAL FAILURE

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

CEPH CLIENT

B B BA A A



63

EC WRITE: PARTIAL FAILURE

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

CEPH CLIENT

A A AA A A



64

EC RESTRICTIONS

● This is a small subset of allowed librados operations

– Notably cannot (over)write any extent

● Coincidentally, these operations are also inefficient for 
erasure codes

– Generally require read/modify/write of affected stripe(s)

● Some applications can consume EC directly

– RGW (no object data update in place)

● Others can combine EC with a cache tier (RBD, CephFS)

– Replication for warm/hot data

– Erasure coding for cold data

– Tiering agent skips objects with key/value data



65

WHICH ERASURE CODE?

● The EC algorithm and implementation are pluggable

– jerasure (free, open, and very fast)

– ISA-L (Intel library; optimized for modern Intel procs)

– LRC (local recovery code – layers over existing plugins)

● Parameterized

– Pick k or m, stripe size

● OSD handles data path, placement, rollback, etc.

● Plugin handles

– Encode and decode

– Given these available shards, which ones should I fetch to 
satisfy a read?

– Given these available shards and these missing shards, which 
ones should I fetch to recover?



66

COST OF RECOVERY

1 TB OSD



67

COST OF RECOVERY

1 TB OSD



68

COST OF RECOVERY (REPLICATION)

1 TB OSD

1 TB



69

COST OF RECOVERY (REPLICATION)

1 TB OSD

.01 TB

.01 TB

.01 TB

.01 TB

...

...

.01 TB .01 TB



70

COST OF RECOVERY (REPLICATION)

1 TB OSD

1 TB



71

COST OF RECOVERY (EC)

1 TB OSD

1 TB

1 TB

1 TB

1 TB



72

LOCAL RECOVERY CODE (LRC)

CEPH STORAGE CLUSTER

Y

OSD

3

OSD

2

OSD

1

OSD

4

OSD

X

OSD

ERASURE CODED POOL

A

OSD

C

OSD

B

OSD

OBJECT



73

BIG THANKS TO

● Ceph

– Loic Dachary (CloudWatt, FSF France, Red Hat)

– Andreas Peters (CERN)

– Sam Just (Inktank / Red Hat)

– David Zafman (Inktank / Red Hat)

● jerasure

– Jim Plank (University of Tennessee)

– Kevin Greenan (Box)



ROADMAP



75

WHAT'S NEXT

● Erasure coding

– Allow (optimistic) client reads directly from shards

– ARM optimizations for jerasure

● Cache pools

– Better agent decisions (when to flush or evict)

– Supporting different performance profiles

● e.g., slow / “cheap” flash can read just as fast

– Complex topologies

● Multiple readonly cache tiers in multiple sites

● Tiering

– Support “redirects” to cold tier below base pool

– Dynamic spin-down



76

OTHER ONGOING WORK

● Performance optimization (SanDisk, Mellanox)

● Alternative OSD backends

– leveldb, rocksdb, LMDB

– hybrid key/value and file system

● Messenger (network layer) improvements

– RDMA support (libxio – Mellanox)

– Event-driven TCP implementation (UnitedStack)

● Multi-datacenter RADOS replication

● CephFS

– Online consistency checking

– Performance, robustness



THANK YOU!

Sage Weil
CEPH PRINCIPAL 
ARCHITECT

sage@redhat.com

@liewegas


	INTRODUCTION TO CEPH
	ARCHITECTURE
	Slide 3
	ARCHITECTURAL COMPONENTS
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	ARCHITECTURAL COMPONENTS
	Slide 20
	RADOS CLUSTER
	RADOS COMPONENTS
	OBJECT STORAGE DAEMONS
	Slide 24
	WHERE DO OBJECTS LIVE?
	A METADATA SERVER?
	CALCULATED PLACEMENT
	EVEN BETTER: CRUSH!
	CRUSH IS A QUICK CALCULATION
	Slide 30
	Slide 31
	CRUSH: DYNAMIC DATA PLACEMENT
	DATA IS ORGANIZED INTO POOLS
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	FEATURES
	Slide 75
	Slide 76
	Slide 77

