

Strategies and New Technology for Long Term Preservation of Big Data

Presenter: Sam Fineberg, HP Storage

Co-Authors: Simona Rabinovici-Cohen, IBM Research – Haifa Roger Cummings, Antesignanus Mary Baker, HP Labs

- □ Introduction
- What makes digital preservation of big data so hard?
- SNIA Long Term Retention technology for big data
 - Self-contained Information Retention Format (SIRF)
- SIRF serializations for cloud and tape
- SIRF status and summary

Big Data.....

- Really is BIG.....
 - 2.5 quintillion (10¹⁸) bytes of new data created per day in 2012 (source IBM)
- And the move to the "Internet of Things" is only going to increase this volume
 - 19.8 Billion connected devices by 2020 (source McKinsey)
 - □ Only 4.2 billion smartphones and tablets, 3.4 billion PCs
- Data analytics is improving all the time
 - Therefore historical information has significant value
 - □ Apply new techniques and algorithms to gain new insights
 - Need to ensure ALL necessary information is captured to extract full value
- If storing big data is difficult today, how do we preserve it?
 - Over the short term? Over the long term?

SNIA Survey from 2007

Top External Factors Driving Long-Term Retention Requirements:

Legal Risk, Compliance Regulations, Business Risk, Security Risk

What does Long-Term Mean? Retention of 20 years or more is required by 70% of responses.

The Need for Digital Preservation of Big Data

- Domains that have Big Data require preservation
- Regulatory compliance and legal issues
 - Sarbanes-Oxley, HIPAA, FRCP, intellectual property litigation
- Emerging web services and applications
 - Email, photo sharing, web site archives, social networks, blogs
- Many other fixed-content repositories
 - Scientific data, intelligence, libraries, movies, music

- Introduction
- What makes digital preservation of big data so hard?
- SNIA Long Term Retention technology for big data
 - Self-contained Information Retention Format (SIRF)
- SIRF serializations for cloud and tape
- SIRF status and summary

What makes digital preservation so hard?

Data volume

- Digital content is generated at a much faster rate than analog
- "Big Data" (volume, velocity, variety)makes this even harder

Technology issues

- Media obsolescence
- Media degradation/failure
- Format obsolescence
- Loss of context/metadata

Human issues

- Large-scale disaster
- Human error
- Economic faults
- □ Attack
- Organizational faults

Large scale & long time periods → Even improbable events will have an effect

Real Life Example Problem

Goals of Digital Preservation

- Digital assets stored now should remain
 - Accessible
 - Undamaged
 - Usable
- For as long as desired beyond the lifetime of
 - Any particular storage system
 - Any particular storage technology
- And at an affordable cost

Preservation Practices must vary by time

- Can't predict what will change only know it will
- This means processes are key
 - Must be evolvable
 - □ Current processes get us to the next step
 - ☐ At that point we will likely need new processes to take over
 - Must not destroy what we are trying to protect
 - Standards make evolution easier
- A good archive is almost always in motion
 - Digital preservation is not a static activity!

Practices must vary by context

- What do we preserve?
 - Raw data? Analytical results? Context? etc.
 - Depends on customer needs and economics
 - Can we afford to keep the raw data?
 - □ Is it ever practical to re-analyze?
 - Can't always predict the eventual use
 - □ What insights will the data provide in 1 year, 5 years, 20 years, etc?
 - Trade off, based on predicted "business value"
- Many possible preservation techniques and strategies, which could vary over time

- Introduction
- What makes digital preservation of big data so hard?
- SNIA Long Term Retention technology for big data
 - Self-contained Information Retention Format (SIRF)
- SIRF serializations for cloud and tape
- SIRF status and summary

SIRF: Self-contained Information Retention Format

Being developed by SNIA Long Term Retention (LTR) TWG

Photo courtesy Oregon State Archives

An Analogy

- Standard physical archival box
 - Archivists gather together a group of related items and place them in a physical box container
 - The box is labeled with information about its content e.g., name and reference number, date, contents description, destroy date
- SIRF is the digital equivalent
 - Logical container for a set of (digital)
 preservation objects and a catalog
 - The SIRF catalog contains metadata related to the entire contents of the container as well as to the individual objects
 - SIRF standardizes the information in the catalog

SIRF Properties

- SIRF is a logical data format of a storage container appropriate for long term storage of digital information
 - A storage container may comprise a logical or physical storage area considered as a unit.
 - Examples: a file system, a <u>tape</u>, a block device, a stream device, an object store, <u>a data bucket in cloud storage</u>
- Required Properties
 - Self-describing can be interpreted by different systems
 - Self-contained all data needed for the interpretation is in the container
 - Extensible so it can meet future needs

SIRF Components

A SIRF container includes:

- Magic object: identifies
 SIRF container and its
 version
- Preservation objects that are immutable
- Catalog that is
 - Updatable
 - Contains metadata to make container and preservation objects portable into the future without external functions

- □ Introduction
- What makes digital preservation of big data so hard?
- SNIA Long Term Retention technology for big data
 - Self-contained Information Retention Format (SIRF)
- SIRF serializations for cloud and tape
- SIRF status and summary

SIRF Serializations

- The TWG has developed serializations for CDMI and LTFS
 - specifies how a CDMI container or LTFS Tape also becomes SIRF-compliant
 - XML and JSON schemas for the SIRF catalog
- A SIRF-compliant CDMI container or LTFS Tape enables a future CDMI/LTFS client to "understand" containers created by today's CDMI/LTFS client
 - The properties of the future client is unknown to us today
 - "understand" means identify the preservation objects in the container, the packaging format of each object, its fixities values, etc. (as defined in the SIRF catalog)

SIRF Serialization for CDMI: Interface

- CDMI API can be used to access the various preservation objects and the catalog object in a SIRF-compliant CDMI container
- Example
 - Assume we have a cloud container named "PatientContainer" that is SIRF-compliant
 - the container has a catalog object
 - each encounter is a preservation object
 - each image is a preservation object

We can read the various preservation objects and the catalog object via CDMI REST API as follows:

GET <root URI>/ PatientContainer>/sirfCatalog

GET <root URI>/<PatientContainer>/encounterJan2001

GET <root URI>/<PatientContainer>/chestImage

SIRF Serialization for CDMI

SIRF Serialization for LTFS

- The index partition of the tape is 2 wraps which is 37.5 GB in LTO-5 and probably larger in LTO-6.
 - The tape index partition is large enough to hold the LTFS index, the SIRF catalog, and even additional information e.g. thumbnails of images

SIRF Serialization for LTFS: General

- A LTFS Tape can also be a SIRF Container when:
 - The SIRF magic object is mapped to extended attributes of the "LTFS index" root directory
 - The magic object includes, for example, specification ID and version,
 SIRF level, reference to SIRF catalog
 - The SIRF catalog resides in the index partition and formatted in XML
 - A SIRF preservation object (PO) that is a simple object (contains one element) is mapped to a LTFS file
 - A SIRF PO that is a composite object (contains several elements) is mapped to:
 - a set of LTFS files (one for each element) and a manifest file that its content includes the IDs and fixities of the element data objects

- Introduction
- What makes digital preservation of big data so hard?
- SNIA Long Term Retention technology for big data
 - Self-contained Information Retention Format (SIRF)
- SIRF serializations for cloud and tape
- SIRF status and summary

SIRF Status

- More information is available at snia.org/ltr
- A SIRF draft is in development, and will be available for public review soon
- A reference implementation of SIRF is in development by the TWG

Summary

- Long Term Retention is hard
 - Volume, Velocity and Variety make it even harder
 - Need to retain not only information of immediate interest but ALL other information needed to make it fully usable in future
- □ SIRF Helps, providing a "digital box" for data and metadata
 - Includes self describing metadata to help "understand" the contents of the container in the future
- No single technology will be usable over the timespans mandated by current digital preservation needs
 - SNIA CDMI and LTFS technologies are among best current choices
 Are good for perhaps 10-20 years
 - SIRF provides a vehicle for collecting all of the information that will be needed to transition to new technologies in the future