
Scalable FileChangeNotify

SDC 2014
Santa Clara

Volker Lendecke

Samba Team / SerNet

2014-09-17



SerNet

I SLA based support for more than 650 customers
I firewalls, VPN, certificates, audits
I based on open standards wherever possible

I Support for many OS: Linux, Cisco IOS, Windows etc.

I Compliant with BSI Grundschutz and ISO 27001 and other
international regulations

I SerNet and Samba
I technological leadership of SerNet worldwide

I SerNet distributes up-to-date Samba packages

I samba eXPerience
I The international Samba conference

vl FileChangeNotify (2 / 15)



What is FileChangeNotify?

I MSDN on ”Obtaining Directory Change Notifications”:
I An application can monitor the contents of a directory and its

subdirectories by using change notifications.

I Client queries a directory handle for changes
I Filters are sent for just specific events:

I ”I’m only interested in new and deleted files”
I ”Please tell me when a file size changes”
I . . .

I API parameter bWatchSubtree:
I If this parameter is TRUE, the function monitors the directory tree

rooted at the specified directory.

vl FileChangeNotify (3 / 15)



[MS-FSA] specification

I 3.1.1.1 Attributes per Volume (i.e. filesystem)
I ChangeNotifyList: A list of zero or more ChangeNotifyEntries

describing outstanding change notify requests for the volume.

I 3.1.4.1 Algorithm for Reporting a Change Notification for a Directory
I For each ChangeNotifyEntry in Volume.ChangeNotifyList:
I Do something like apply filters, send notifies

I ”3.1.4.1,” mentioned at least 12 times in [MS-FSA]

I For every metadata operation the spec makes us walk a large array

I What happens if you have 10.000 clients with 10 notifies each?

I How can we maintain the ChangeNotifyList in a cluster?

vl FileChangeNotify (4 / 15)



FileChangeNotify on the wire

I Client opens a directory
I Client sends a CHANGE NOTIFY request

I FileID references the open directory handle
I CompletionFilter shows which changes the client wants to see
I This creates the ”ChangeNotifyEntry”

I When changes happen, server replies to the CHANGE NOTIFY request

I Until client sends a fresh CHANGE NOTIFY request, server has to queue
changes

I If the queue overflows, server can reply with ”Something changed,
but I don’t know what”

I The ChangeNotifyEntry is only removed when closing the directory

vl FileChangeNotify (5 / 15)



FileChangeNotify in Samba

I Three implementations
I It seems that Samba often requires a few rounds to get things right
I Anyone remember the Samba 2.0 oplock implementation? :-)

I Samba 3.0
I No global ChangeNotifyList equivalent
I Timeout-based polling of directories per smbd

I Tridge’s Samba4 implementation
I Tridge figured out how much more of the protocol
I Messaging-based notification
I Ported to Samba 3.2

I Samba 4.0 notify index.tdb
I Starts to make notify possible in a cluster

vl FileChangeNotify (6 / 15)



Samba 3.0

I Contents of the directory are hashed

I Periodically hash check notify is called

I Recalculates the hash
I Upon changes, Samba returns STATUS NOTIFY ENUM DIR

I Samba did not return exactly what changed

I High load due to polling in every smbd

I Updates can lag

I No recursive notifies

vl FileChangeNotify (7 / 15)



Samba 3.2

I During the NTVFS effort, Tridge figured out the ChangeNotifyList

I PIDL came around, complex data structures could be marshalled
I Tridge implemented the ChangeNotifyList as a hierarchical array of

arrays
I ”This function is called a lot, and needs to be very fast. The unusual

data structure and traversal is designed to be fast in the average case,
even for large numbers of notifies”

I notify.tdb stores the ChangeNotifyList a.k.a. notify array in one record
I Every smbd has a copy, updated on every change

I tdb seqnum was invented for this
I This does not scale to thousands of smbds and notifies

I Problems in a cluster
I No real tdb seqnum
I One large record bounced back and forth like mad

vl FileChangeNotify (8 / 15)



Samba 4.0

I The Samba 3.2-3.6 implementation has one tdb record for the
complete ChangeNotifyList

I Every change pushes one huge record to every node and smbd

I Goal: Reduce write load on the central notify database

I Every notify event is path-based and needs to look at all the parents’
ChangeNotifyEntry records

I Split up the notify array into records indexed by path
I notify.tdb now has many path-indexed records
I Every record holds a number of ChangeNotifyEntry records
I A change notify event walks the path, looking for recursive entries

I Typically a lot of contention on just a few directories
I Share root directories are very popular to look at

vl FileChangeNotify (9 / 15)



Samba 4.0 clustered

I Write load on individual tdb records still high
I High n:m messaging load across nodes

I Notify events inform many smbds, possibly many on the same node

I Split up notify.tdb into a cluster-wide notify index.tdb and a
node-local notify.tdb

I Both tdbs indexed by path
I ChangeNotifyEntry records local in notify.tdb

I notify index.tdb holds just node numbers
I Every node records itself with the path if any notify.tdb record exists
I Just one single entry per node in notify index.tdb

I Notify events are sent to a remote proxy process
I Proxy multi-casts notify events from its notify.tdb

I notify index.tdb deletion is deferred
I Write load on notify index.tdb is significantly reduced

I Next bottleneck: read access on entry for ”/” in notify index.tdb

vl FileChangeNotify (10 / 15)



FileChangeNotify NextGeneration

I ”This function is called a lot . . . ”
I This function (notify trigger) is now O(n) in the number of path

components
I For a 10-level deep file create, tdb parse record is called 10 times
I tdb is fast, but it does cost, in particular with fcntl locks being one

systemwide spinlock

I Notify events must be as cheap as possible
I FileChangeNotify is asynchronous
I Why not delegate notify trigger to some other process?

I Until a few months ago, Samba internal messaging was heavy-weight
I tdb-based with SIGUSR1 as the async notification
I With unix datagram messaging, sending a message is a single syscall

vl FileChangeNotify (11 / 15)



Notifyd design

I Keep the ChangeNotifyList in one daemon

I Smbd adds and removes ChangeNotifyEntries by messages to notifyd

I Notify events are another type of message

I All recursive filtering is done by notifyd

I notifyd in a cluster distributes the local ChangeNotifyList

vl FileChangeNotify (12 / 15)



But what about delayed messages?

I A delayed ChangeNotifyEntry creation will lose notifies
I The event (e.g. mkdir) happens before the Entry is created

I Every message carries a timestamp
I We could save notify events for a while
I When should we drop them?

I Calculate a hash of the path name
I Maintain an array of timestamps indexed by that hash
I When an Entry comes in, check the timestamp
I If it’s later, just reply with overflow

I All that can happen is false positives

vl FileChangeNotify (13 / 15)



Prereq / Benefits

I One message per metadata modification
I Fast messaging between smbds
I Unix domain datagram messages do roughly 150k/sec
I Cluster inside one host possible for higher demands

I Less load on inotify
I One notify listener instead of every smbd

I Clusterwide file change notify
I GPFS does not provide clusterwide inotify
I inotify works locally, notifyd tells others

I External event sources (Ganesha?)
I A single unix dgram per event
I Extremely simple protocol

vl FileChangeNotify (14 / 15)



Questions?

vl@samba.org / vl@sernet.de

vl FileChangeNotify (15 / 15)


