Next Generation iSCSI
Enterprise Grade Data Integrity
and Performance

Wael Noureddine
Chelsio Communications
Outline

- iSCSI Overview
- iSCSI HBA Update
- Benchmarks and roadmap
 - Performance
 - Virtualization
- Data integrity protection
iSCSI Timeline

- RFC 3720 in 2004
 - Latest RFC 7143 in April 2014
- Designed for Ethernet-based storage area networks
 - Data protection
 - Performance
 - Latency
 - Flow control
- Leading Ethernet based SAN technology
 - In-boxed initiators
 - Plug-and-play
- Closely tracks Ethernet speeds
 - Increasingly high bandwidth

- 10GbE, IEEE 802.3ae 2002
 - First 10Gbps hardware iSCSI in 2004 (Chelsio)
- 40/100GbE, IEEE 802.3ba 2010
 - First 40Gbps hardware iSCSI in 2013 (Chelsio)
 - First 100Gbps hardware iSCSI expected in 2016
- 400GbE, IEEE P802.3bs
 - Task Force formed March 2014
iSCSI Trends

- **iSCSI growth**
 - FC in secular decline
 - FCoE struggles with limitations

- **Ethernet flexibility**
 - iSCSI for both front and back end networks

- **Convergence**
 - Block-level and file-level access in one device using a single Ethernet controller
 - Converged adapters with RDMA over Ethernet and iSCSI consolidate front and back end storage fabrics

- **Hardware offloaded 40Gbps iSCSI**
 - Aligns with migration from spindles to NVRAM
 - Unlocks potential of new low latency, high speed SSDs

- **Virtualization**
 - Native iSCSI initiator support in all major OS/hypervisors
 - Simplifies storage virtualization
iSCSI Trends

Source: Crehan Research - 2Q14 CREHAN Quarterly Market Share Tables
iSCSI Overview

- High performance
 - Zero copy DMA on both ends
 - Hardware TCP/IP offload
 - Hardware iSCSI processing

- Data protection
 - CRC-32 for header
 - CRC-32 for payload
 - No overhead with hardware offload

- Scalable TCP/IP foundation
 - IP routability to datacenter, WAN and Cloud scales
 - Reliability/robustness even over wireless links
 - Congestion and flow control
 - Leverages all infrastructure
Chelsio T5 Ethernet Controller ASIC

- Single processor pipelined cut-through architecture
- Up to 1M connections
- Concurrent multi-protocol operation
- Full TCP/IPv4 | IPv6 offload in 4CLK @500MHz
T5 Storage Protocol Support

- SMB
- NFS
- SMB Direct
- NVMe
- iSCSI
- FCoE
- RPC
- NDK
- iSER
- T10-DIX
- Network Driver
- RDMA Driver
- iSCSI Driver
- FCoE Driver
- Lower Layer Driver
- RDMA Offload
- iSCSI Offload
- FCoE Offload
- NIC
- TCP Offload
- T5 Network Controller
iSCSI Performance at 40Gbps

- Storage array with 64 targets connected to 8 initiator machines through 40Gbps switch
 - Targets are *ramdisk null-rw*
 - Each initiator connects to 8 targets
- Iometer configuration on initiators
 - Random access pattern
 - 50 outstanding IO per target
 - 8 worker threads, one per target
 - IO size ranges from 512B to 32KB
iSCSI Performance at 40Gbps

![Graph showing iSCSI Performance at 40Gbps](image-url)
iSCSI READ IOPS – 10Gbps vs. 40Gbps

<table>
<thead>
<tr>
<th>IO Size (B)</th>
<th>40G</th>
<th>10G</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>3.5</td>
<td>2.0</td>
</tr>
<tr>
<td>1024</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2048</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>4096</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>8192</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>16384</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>32768</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

4x improvement at 2048 B
iSCSI READ BW – 10Gbps vs. 40Gbps
As of 2013, T5 offload engine iSCSI PDU processing capacity sufficient for standard frames at 400Gbps rate.
Virtualized iSCSI

- Initiator VM and target VM running on the same system
- Communication through T5 on-chip embedded switch
- Target VM communicates through VM Direct Path to the T5 adapter
- Initiator VM runs a paravirtualized driver to utilize the fully offloaded T5 initiator
Virtualized iSCSI IOPS and Throughput

![Graph showing IO/s (Thousands) and Throughput (MB/s) versus IO Size (KB).]

- Read IO/s
- Write IO/s
- Read Throughput
- Write Throughput
Advanced Data Integrity Protection

- Above and beyond iSCSI CRC-32
- Data Integrity Field (DIF) protects against silent data corruption with 16b CRC
 - Adds 8-bytes of Protection Information (PI) per block
- Data Integrity Extension (DIX) allows this check to be done between application and HBA
- T10-DIF+DIX provide a full end-to-end data integrity check
 - iSCSI CRC-32 handoff possible
- T5 supports hardware offloaded T10-DIF+DIX for iSCSI (and FCoE)

iSCSI Summary

- Mature protocol with wide industry support
- Native initiator in-boxed in all major operating systems/hypervisors
 - Back-end and front-end applicability, virtualization
- Hardware offloaded iSCSI shipping at 40Gbps
 - High IOPS and throughput
 - Low latency
- Robust TCP/IP foundation allows operation over Wireless, LAN and WAN networks
 - Hardware offload eliminates overhead
 - No specialized cables, equipment, switches, or forwarders
 - True network convergence
- Roadmap to 100Gbps, 400Gbps and beyond
- Hardware based end-to-end data integrity protection
Thank You

Ask about Chelsio’s 40Gbps iSCSI evaluation program at: sales@chelsio.com

Visit www.chelsio.com for more info