

Wael Noureddine Chelsio Communications

Outline

- iSCSI Overview
- iSCSI HBA Update
- Benchmarks and roadmap
 - Performance
 - Virtualization
- Data integrity protection

iSCSI Timeline

- RFC 3720 in 2004
 - Latest RFC 7143 in April 2014
- Designed for Ethernet-based storage area networks
 - Data protection
 - Performance
 - Latency
 - Flow control
- Leading Ethernet based SAN technology
 - In-boxed initiators
 - Plug-and-play
- Closely tracks Ethernet speeds
 - Increasingly high bandwidth

- □ 10GbE, IEEE 802.3ae 2002
 - First 10Gbps hardware iSCSI in 2004 (Chelsio)
- 40/100GbE, IEEE 802.3ba
 2010
 - First 40Gbps hardware iSCSI in 2013 (Chelsio)
 - First 100Gbps hardware iSCSI expected in 2016
- **400GbE**, IEEE P802.3bs
 - Task Force formed March 2014

iSCSI Trends

- □ iSCSI growth
 - FC in secular decline
 - FCoE struggles with limitations
- Ethernet flexibility
 - iSCSI for both front and back end networks
- Convergence
 - Block-level and file-level access in one device using a single Ethernet controller
 - Converged adapters with RDMA over Ethernet and iSCSI consolidate front and back end storage fabrics

- Hardware offloaded 40Gbps iSCSI aligns with migration from spindles to NVRAM
 - Unlocks potential of new low latency, high speed SSDs
- Virtualization
 - Native iSCSI initiator support in all major OS/hypervisors
 - Simplifies storage virtualization

iSCSI Trends

Source: Crehan Research - 2Q14 CREHAN Quarterly Market Share Tables

2014 Storage Developer Conference. © Chelsio Communications Inc. All Rights Reserved.

iSCSI Overview

- High performance
 - Zero copy DMA on both ends
 - Hardware TCP/IP offload
 - Hardware iSCSI processing
- Data protection
 - CRC-32 for header
 - CRC-32 for payload
 - No overhead with hardware offload

- Scalable TCP/IP foundation
 - IP routability to datacenter, WAN and Cloud scales
 - Reliability/robustness even over wireless links
 - Congestion and flow control
 - Leverages all infrastructure

iSCSI Layering

Chelsio T5 Ethernet Controller ASIC

T5 Storage Protocol Support

SD (14

iSCSI Performance at 40Gbps

iSCSI Target with T580-CR HBA, Linux 3.6.11 kernel

- Storage array with 64 targets connected to 8 initiator machines through 40Gbps switch
 - □ Targets are *ramdisk null-rw*
 - Each initiator connects to 8 targets
- Iometer configuration on initiators
 - Random access pattern
 - □ 50 outstanding IO per target
 - □ 8 worker threads, one per target
 - IO size ranges from 512B to 32KB

iSCSI Performance at 40Gbps

SD @

2014 Storage Developer Conference. © Chelsio Communications Inc. All Rights Reserved.

iSCSI READ IOPS – 10Gbps vs. 40Gbps

IO Size (B)

2014 Storage Developer Conference. © Chelsio Communications Inc. All Rights Reserved.

iSCSI READ BW – 10Gbps vs. 40Gbps

2014 Storage Developer Conference. © Chelsio Communications Inc. All Rights Reserved.

iSCSI Bandwidth Roadmap

As of 2013, T5 offload engine iSCSI PDU processing capacity sufficient for standard frames at 400Gbps rate.

2014 Storage Developer Conference. © Chelsio Communications Inc. All Rights Reserved.

Virtualized iSCSI

- Initiator VM and target VM running on the same system
- Communication through T5 onchip embedded switch
- Target VM communicates through VM Direct Path to the T5 adapter
- Initiator VM runs a paravirtualized driver to utilize the fully offloaded T5 initiator

Virtualized iSCSI IOPS and Throughput

2014 Storage Developer Conference. © Chelsio Communications Inc. All Rights Reserved.

SD @

Advanced Data Integrity Protection

- Above and beyond iSCSI CRC-32
- Data Integrity Field (DIF) protects against silent data corruption with 16b CRC
 - Adds 8-bytes of Protection Information (PI) per block
- Data Integrity Extension (DIX) allows this check to be done between application and HBA
- T10-DIF+DIX provide a full end-toend data integrity check
 - iSCSI CRC-32 handoff possible
- T5 supports hardware offloaded T10-DIF+DIX for iSCSI (and FCoE)

Martin Petersen, Oracle, https://oss.oracle.com/~mkp/docs/dix.pdf

iSCSI Summary

- Mature protocol with wide industry support
- Native initiator in-boxed in all major operating systems/hypervisors
 - Back-end and front-end applicability, virtualization
- Hardware offloaded iSCSI shipping at 40Gbps
 - High IOPS and throughput
 - Low latency
- Robust TCP/IP foundation allows operation over Wireless, LAN and WAN networks
 - Hardware offload eliminates overhead
 - No specialized cables, equipment, switches, or forwarders
 - True network convergence
- Roadmap to 100Gbps, 400Gbps and beyond
- Hardware based end-to-end data integrity protection

Thank You

Ask about Chelsio's 40Gbps iSCSI evaluation program at: <u>sales@chelsio.com</u>

Visit <u>www.chelsio.com</u> for more info