
Information Management —
Extensible Access Method (XAM) —
Part 1: Architecture

Version 1.01

“This document has been released and approved by the SNIA. The SNIA
believes that the ideas, methodologies, and technologies described in this
document accurately represent the SNIA goals and are appropriate for
widespread distribution. Suggestion for revision should be directed to the
SNIA Technical Council Managing Director at tcmd@snia.org.”

TECHNICAL POSITION

June 19, 2009

© SNIA

ii TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

Revision History

The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

• Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

• Any document, printed or electronic, in which material from this document (or any portion hereof)
is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for
granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any
excerpt or this entire document, or distribute this document to third parties. All rights not explicitly granted
are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by
e-mailing tcmd@snia.org please include the identity of the requesting individual and/or company and a
brief description of the purpose, nature, and scope of the requested use.

Copyright © 2009 Storage Networking Industry Association.

Version Date Originator Sections Comments

1.0 7/9/08 M. McMinn All Released and approved by SNIA membership on June 23;
changed to Technical Position document.

1.01 6/19/09 M. McMinn All Incorporated errata from SNIA XAM v1 Arch Spec - Errata
draft v15.doc; added Acknowledgements to Foreword.

© SNIA
Contents

Foreword ..x
Introduction .. xi

1 Scope ..1

2 References ...2
2.1 Normative References ...2
2.2 Informative References ...3

3 Terms and Conventions ..4
3.1 Terms ..4
3.2 Conventions ..8

4 Business Overview ..9
4.1 Background of the SNIA XAM ...9
4.2 The XAM Approach ...9
4.3 Benefits of XAM ...10
4.4 Recommendations for Additional Standards ...10

5 Overview of the XAM Architecture ...11
5.1 XAM Software Modules ...11
5.2 XAM Object Model ..12
5.3 XAM Fields ..13
5.4 XAM Persistent Storage: the XSet ..13
5.5 XSet Management ...13
5.6 XAM Security ...14
5.7 XAM Query ..14
5.8 Extending XAM ..15

6 XAM Objects and Common Operations ...16
6.1 XAM Objects ...16

6.1.1 XAM Primary Object Hierarchy ..18
6.1.2 Primary Object Operations ...19

6.2 XAM Secondary Objects ...19
6.3 XAM Fields ..21

6.3.1 Field Namespace ...21
6.3.2 Field Attributes ...22
6.3.3 Properties ...23
6.3.4 XUID Format ..24
6.3.5 Field Consistency Checks Performed by the XSystem ..25

6.4 Methods that Operate on Fields ..26
6.4.1 Operating on Properties ...27
6.4.2 Determining Field Existence ...27
6.4.3 Deleting Fields ..28
6.4.4 Operating on Field Attributes ..28

6.5 Operating on Secondary Objects – XStreams and XIterators ...28
6.5.1 Operating on XStreams ..28
6.5.2 Operating on XIterators ..30

6.6 FSMs for Secondary Objects – XStreams and XIterators ...31
6.6.1 XStream FSM ...32

6.6.1.1 XStream Instance FSM - Reader ...32
6.6.1.2 XStream Instance FSM - Writer ...34
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION iii

© SNIA
6.6.2 XIterator FSM ...37

7 XAM Library and XSystems ..40
7.1 XAM Library ...40

7.1.1 Vendor Interface Modules ..41
7.1.2 XAM Toolkits ..41
7.1.3 Methods on the XAM Library Object ...41
7.1.4 Fields of the XAM Library Object ...42

7.2 XSystem ..44
7.2.1 XSystem Resource Identifier ..44
7.2.2 XSystem Methods ..46
7.2.3 XSystem Fields ..46

7.3 XAM Session ...50
7.3.1 Authentication State Machine ...51
7.3.2 Initial Authentication ...54
7.3.3 Re-Authentication ...55

7.3.3.1 Reactive Re-Authentication ..55
7.3.3.2 Proactive Re-Authentication ...55
7.3.3.3 Closing/Abandoning XAM sessions ...55

8 XSet Operations ...57
8.1 XSet Behavior ...57
8.2 XSet Fields ..58

8.2.1 Number of Fields on an XSet ...58
8.2.2 Length of a Field on an XSet ..58
8.2.3 Normative XSet Fields ..58
8.2.4 Copying an XSet - Field Behavior ..60

8.3 The XUID – Naming an XSet ..60
8.4 XSet Methods ..62

8.4.1 XSystem Operations on XSets ..62
8.4.2 XSet Operations on XSets ...62

8.5 XSet Instance Finite State Machine (FSM) ...63
8.5.1 Defining the FSM Hierarchy ...63
8.5.2 Master XSet FSM ...63

8.5.2.1 Entering the State Machine ..65
8.5.2.2 Entering The Abandoned State ..65
8.5.2.3 Entering the Corrupt State ...66
8.5.2.4 Performing Generic Operations on an Open XSet67
8.5.2.5 Exporting an XSet ..68
8.5.2.6 Importing an XSet ..69
8.5.2.7 Exiting the Master XSet FSM ...70

8.5.3 Open XSet FSMs ...71
8.5.3.1 Common States ...71
8.5.3.2 The Individual Open XSet FSMs ..71

8.5.4 Summary of XSet System Fields in each XSet Instance State85
8.6 Distributed Access to the Same XSet ...85

8.6.1 Design Goals and Derived Semantics ..86
8.6.2 Use Cases ..87

8.6.2.1 XSet Conflict Resolution, Example 1 ...88
8.6.2.2 XSet Conflict Resolution, Example 2 ...88
8.6.2.3 XSet Conflict Resolution, Example 3 ...88

8.7 XSet Policy ..88
8.8 XSet Import and Export ...90

8.8.1 XSet Export Process ..90
8.8.2 XSet Import Process ..91
iv TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA
8.8.3 Import and Export XStream Instance FSMs ...94
8.8.4 XSet Canonical Format ..96

8.8.4.1 XSet Manifest XML Format ..97
8.8.4.2 The Canonical Representation Build ..98
8.8.4.3 XSet Export Example ..99

8.8.5 Annotating the Canonical Format ...102
8.9 XAM Jobs and XAM Job Control ...102

8.9.1 Standardized Job Input Fields ..103
8.9.2 Standardized Job Output Fields ...103

8.9.2.1 Job Status ..103
8.9.2.2 Job Error ..104

8.10 Asynchronous Operations ...105
8.10.1 The XAsync Object ...105
8.10.2 XAsync FSM ...107

8.10.2.1 Effects on other FSMs ..109

9 XSet Management ..110
9.1 XSet Management Overview ...110

9.1.1 XSet Management Disciplines ...110
9.1.2 XSet Management Properties ..111

9.2 XSet Retention and Deletion Value Management Properties ...112
9.2.1 XSet Retention ...112

9.2.1.1 XSet Retention Value Management Property Methods116
9.2.1.2 XSet Retention Management FSM ..118
9.2.1.3 Examples of Multiple XSet Retention Identifiers ..123

9.2.2 XSet Deletion ...123
9.2.2.1 Deletion Value Management Methods and the Open XSet FSMs125

9.2.3 XSystem Clock/Time Management ...125
9.3 XSet Policy Management Properties ...125

9.3.1 Storage Management Policy ..126
9.3.2 Retention and Deletion Management Policy ..126
9.3.3 XSet Management Policy ...127

9.3.3.1 Policy Management Property Methods and the Open XSet FSMs130
9.3.4 XSet Policy Management Hierarchy ...130
9.3.5 XSet Management Policy Default ...131
9.3.6 getActual Methods for Retention and Deletion Value Management Properties131

9.4 XSet Hold Properties ...132
9.5 Reset Management Fields ..133

10 Query ..134
10.1 Overview of Query ...134
10.2 Query Goals ..135
10.3 Introduction to the Query Language Grammar ..135
10.4 Level 1 Query: Where Clause Operators ..135

10.4.1 String Operators ...137
10.4.2 Numeric Property Value Comparisons ...138
10.4.3 Numeric Comparisons with IEEE-754 Exception Values ...139
10.4.4 Field Attribute Accessor Functions ...139
10.4.5 Logical Operators ...140
10.4.6 Comparison to Non-Existent Fields ..141
10.4.7 Selector Functions for XUID and Date-Time Properties ...141

10.5 Level 2 Query: Where Clause Content Search Operators ..141
10.6 Complete Grammar ...142

10.6.1 Reserved Key Words and Operator Precedence ...143
10.6.2 Specifying String Literals and Field Names with Special Characters144
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION v

© SNIA
10.7 Job Control and API Methods ...144
10.7.1 Query Job Specific XSet Fields ..145
10.7.2 Runtime Behavior of the Query Job ...145
10.7.3 Query Job Error Codes ..146
10.7.4 Result Stream Format ..147
10.7.5 Scope of Query ..148
10.7.6 Runtime Caveats ..148
10.7.7 Result Stream State After a Job Halt ...149
10.7.8 Reading Results of In-Process Queries ...149
10.7.9 What Is / Is Not Included in a Query Result ...149
10.7.10 Query and Permissions ..150

10.8 XAM Query Examples ...150
10.8.1 All XSets ...150
10.8.2 A Subset of XSets ..150
10.8.3 Heterogeneous Properties ...151
10.8.4 The exists() Function ..151
10.8.5 The String like Operator ...151
10.8.6 Numeric Comparisons When Promoting a xam_literal ...151
10.8.7 Numeric Comparisons When Promoting a xam_int Property152
10.8.8 Numeric Comparisons When Restricting a Property Type ...152
10.8.9 Query with Mixed Types ...152

11 Security ...153
11.1 XAM Security Overview ...153
11.2 XAM Application Authentication and SASL ...154

11.2.1 XAM Application Authentication Approaches ...154
11.2.2 SASL Profile and Requirements for XAM ...155

11.3 XSystem Authorization and XSet Access Control ...157
11.3.1 XSystem Authorization ...158

11.3.1.1 XSystem Authorization Elements ...158
11.3.1.2 XSystem Authorization Roles ...162

11.3.2 XSet Access Control Policy ..163

Annex A
(normative)
XAM Toolkit ... 166
A.1 Query ...166

A.1.1 XAMQuery ...166
A.1.2 XUIDIterator ...166

A.2 Base64 Translator ...167
A.3 XUID Padding ..167
A.4 Property vs. XStream Field Determination ..168

Annex B
(normative)
Canonical XSet Interchange Format ... 169
B.1 Introduction ..169
B.2 XSD ...169
vi TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA

XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION vii

Figures

Figure 1 – XAM Software Modules ..11
Figure 2 – Contrasting XSystems and XSystem Instances ...17
Figure 3 – Primary Object Hierarchy ...18
Figure 4 – Secondary Object Hierarchy ..20
Figure 5 – XUID Format ..24
Figure 6 – XStream Instance - Reader FSM ...32
Figure 7 – XStream Instance - Writer FSM ...35
Figure 8 – XIterator Instance FSM ..38
Figure 9 – XAM Library Components ..40
Figure 10 – Authentication State Machine ...52
Figure 11 – Master XSet FSM ...64
Figure 12 – Readonly Open XSet FSM ...72
Figure 13 – Restricted Open XSet FSM ..74
Figure 14 – Unrestricted Open XSet FSM ...79
Figure 15 – Abstract XSet Distributed Access Model ..85
Figure 16 – XSet Distributed Access Example ..86
Figure 17 – Policy Relationships Between the XSet and XSystem ..89
Figure 18 – Export XStream Instance FSM ...95
Figure 19 – Import XStream Instance FSM ...96
Figure 20 – XAsync Instance FSM ..108
Figure 21 – “base” Retention Criteria ..113
Figure 22 – “other” Retention Criteria ..113
Figure 23 – Combined “base” and “other” Retention ...113
Figure 24 – Time-based Retention ..114
Figure 25 – The Retention Finite State Machine (FSM) ..119
Figure 26 – Combining Retention with a Gap ..123
Figure 27 – AutoDelete Behavior With and Without Holds ..123
Figure 28 – An Example Policy Management Property ...127
Figure 29 – XSet Hold and Release Management ..132
Figure 30 – Result Stream ...147
Figure 31 – Result Stream with Variable Length XUID Values ...148

© SNIA
Tables

Table 1 – Primary Object Hierarchy Transitions ..18
Table 2 – Secondary Object Hierarchy Transitions ...20
Table 3 – Static Allocation of Namespace ...21
Table 4 – Field Attributes ...22
Table 5 – stypes ..23
Table 6 – Property Methods ..27
Table 7 – Field Existence Query Method ..27
Table 8 – Field Deletion Method ..28
Table 9 – Field Attribute Methods ..28
Table 10 – XStream Methods ..30
Table 11 – XIterator Methods ..31
Table 12 – XStream Instance - Reader FSM Transitions ..33
Table 13 – XStream Instance - Writer FSM Transitions ..36
Table 14 – XIterator Instance FSM Transitions ...38
Table 15 – Methods on the XAM Library Object ..41
Table 16 – Fields of the XAM Library Object ...42
Table 17 – XSystem Synchronous Methods ...46
Table 18 – XSystem Asynchronous Methods ..46
Table 19 – XSystem Fields ..47
Table 20 – Authentication State Machine ..53
Table 21 – XSet System Fields ...59
Table 22 – XSet Naming Behavior on Commit ..61
Table 23 – XSystem Methods that Operate on XSets ...62
Table 24 – XSet Methods that Operate on XSets ...62
Table 25 – Entrance to the Master XSet FSM ...65
Table 26 – Abandoned State of the Master XSet FSM ...66
Table 27 – Corrupt State of the Master XSet FSM ..67
Table 28 – Generic Operation Effects on Open XSets in the Master XSet FSM67
Table 29 – Export State of the Master XSet FSM ...69
Table 30 – Import State of the Master XSet FSM ..70
Table 31 – Entrance to the Readonly Open XSet FSM ...72
Table 32 – Operations on an Open XSet Instance in the Clean XUID State ...73
Table 33 – Returning to the Readonly FSM after Export ...73
Table 34 – Entrance to the Restricted Open XSet FSM ..75
Table 35 – Operations on an Open XSet Instance in the Clean XUID State ...75
Table 36 – Operations on an Open XSet Instance in the Dirty XUID State ...76
Table 37 – Operations on an Open XSet Instance in the Clean No XUID State77
Table 38 – Operations on an Open XSet Instance in the Dirty No XUID State ...78
Table 39 – Returning to the Restricted FSM after Export ..78
Table 40 – Entrance to the Unrestricted Open XSet FSM ...80
Table 41 – Operations on an Open XSet Instance in the Clean XUID State ...80
Table 42 – Operations on an Open XSet Instance in the Dirty XUID State ...82
Table 43 – Operations on an Open XSet Instance in the Clean No XUID State82
Table 44 – Operations on an Open XSet Instance in the Dirty No XUID State ...83
Table 45 – Returning to the Unrestricted FSM after Export ..84
Table 46 – Returning to the Unrestricted FSM after Import ...84
Table 47 – XSet System Field Presence by XSet Instance State ...85
Table 48 – XSet and XSystem Policy List Properties ..89
Table 49 – XSet System Field Modification on Import ...94
Table 50 – Example XSystem Policy Property ..99
Table 51 – Example XSet for Export ...100
Table 52 – Methods with Asynchronous Versions ...105
Table 53 – XAsync Methods ..105
viii TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA
Table 54 – XAsync Instance FSM Transitions ...108
Table 55 – Management Discipline Property Types ..111
Table 56 – Retention Value Management Properties ..114
Table 57 – Entrance XSet Retention FSM; Setting the Retention Identifier ..120
Table 58 – Setting the Retention Enabled Flag ...121
Table 59 – Setting the Duration ...121
Table 60 – Setting the Start Time ..122
Table 61 – Increasing the Retention Duration on an Active Retention Scope ...122
Table 62 – Deletion Value Management Properties ..124
Table 63 – XSet Policy Management Properties ...127
Table 64 – Hold Properties ..133
Table 65 – Valid Comparisons ..136
Table 66 – Comparison Operators ..136
Table 67 – Operator Descriptions ..136
Table 68 – Summary of "like" Operator ...137
Table 69 – Query Numeric Comparisons of Different types ..138
Table 70 – Escape Sequences for Quoted Field Names and Strings ...144
Table 71 – Query Job-Specific Fields ..145
Table 72 – Query Job Error Codes ..147
Table 73 – Query Example XSets ...150
Table 74 – XAM Requirements for SASL ..156
Table 75 – XSet Policy Management Properties ...164
Table 76 – XSet Access Control Policy Methods ..164
Table A.1 – XAMQuery Methods ...166
Table A.2 – XUIDIterator Methods ..166
Table A.3 – Base64 Methods ..167
Table A.4 – XUID Padding Methods ..167
Table A.5 – Field Determination Methods ...168
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION ix

© SNIA

x TECHNICAL POSITION XAM Arch 1.01, June 19, 2009

Foreword

Parts of this Standard

This standard is subdivided into the following parts:

• Information Management – Extensible Access Method (XAM) – Part 1: Architecture

• Information Management – Extensible Access Method (XAM) – Part 2: C API

• Information Management – Extensible Access Method (XAM) – Part 3: Java API

SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome.
They should be sent to the Storage Networking Industry Association, 500 Sansome Street, Suite #504,
San Francisco, CA 94111, U.S.A.

Acknowledgements

The SNIA FCAS (Fixed Content Aware Storage) Technical Working Group, which developed this standard,
would like to recognize the significant contributions made by the following members:

Alan Yoder, Aloke Guha, Avishai Hochberg, Ben Isherwood, Cristian Teodorescu, David Black, David Slik,
David Sobeck, Drew McDaniel, Jered Floyd, James Pinkerton, Jim Carlson, Kalman Meth, Kristina Tripp,
Lance Evans, Leeat Ramati, Mark Carlson, Michael Allison, Michael Kilian, Mike Horgan, Nick Maliwacki,
Paul Monday, Peter Cudhea, Rich Ramos, Sacha Arnoud, Scott Ostapovicz, Steve Quinn, Steve Vernon,
Toby Marek, Wayne Hineman, and Zoran Cakeljic.

© SNIA

XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION xi

Introduction

Purpose and Audience

This document is intended to be used by two broad audiences. The first audience consists of application
programmers who wish to use the XAM Application Programmers Interface (API) to create, access,
manage, and query reference content through standardized methods that are collectively referred to as
XAM (eXtensible Access Method). The second audience consists of those who implement reference
content stores that wish to provide access to their stores through the XAM standardized methods.

Organization

The chapter contents of this document are described as follows:

Chapter Contents

Chapter 1, “Scope” Defines the subject of the document and the aspects covered.

Chapter 2, “References” Lists the referenced documents that are indispensable for the application of this
document.

Chapter 3, “Terms and
Conventions”

Defines the terms and typographical conventions used in the document.

Chapter 4, “Business
Overview”

Gives the background of the SNIA XAM and how XAM addresses the industry and
market needs.

Chapter 5, “Overview of the
XAM Architecture”

Gives an overview of the XAM architecture, including how the XAM Storage System
vendors connect their storage systems through the XAM standard APIs.

Chapter 6, “XAM Objects
and Common Operations”

Defines the XAM objects as well as the common data structures and operations that
can be associated with the XAM object.

Chapter 7, “XAM Library
and XSystems”

Specifies the XAM application’s logical view of the XAM Storage System and the
software modules that comprise XAM.

Chapter 8, “XSet
Operations”

Defines the behavioral and semantic model of an XSet by describing applicable
methods on individual XSets and their elements.

Chapter 9, “XSet
Management”

Specifies XSet lifecycle management capabilities, including retention, deletion, and
hold.

Chapter 10, “Query” Describes the query language grammar and the two levels of query supported
through the XAM API.

Chapter 11, “Security” Describes three XAM security functions: XAM application authentication, XSystem
authorization, and XSet access control.

Annex A, “(normative) XAM
Toolkit”

Describes toolkit methods to simplify some common operations within XAM.

Annex B, “(normative)
Canonical XSet Interchange
Format”

Describes the XSD (XML Schema Definition) for the XML manifest that is used by
the XSet canonical format when importing and exporting an XSet.

Scope © SNIA

1 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

1 Scope
This part of the XAM standard is a normative specification of the general architecture and semantics of the
XAM API. It applies to programmers who are generating XAM applications in any programming language.
It also applies to storage system vendors who are creating vendor interface modules (VIMs).

This document uses an object model to describe syntax in examples; these examples are informative only.
It is not a normative specification of the syntax of the XAM interfaces in any language binding. The
normative specification of the syntax of the C language binding is defined in the XAM C API Specification
[XAM-C-API]. The normative specification of the syntax of the Java language binding is defined in the XAM
Java API Specification [XAM-JAVA-API].

© SNIA References
2 References

2.1 Normative References
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

[CRC] Williams, Ross, “A Painless Guide to CRC Error Detection Algorithms”, Chapter 16, August 1993,
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html

[IANA-SASL] “Simple Authentication and Security Layer (SASL) Mechanisms” http://www.iana.org/
assignments/sasl-mechanisms

[IEEE754] IEEE Standard 754-1985. IEEE Standard for Binary Floating-Point Arithmetic. IEEE, New York,
1985.

[ISO8601] “Data elements and interchange formats -- Information interchange -- Representation of dates
and times”, ISO 8601, http://isotc.iso.org/livelink/livelink/4021199/
ISO_8601_2004_E.zip?func=doc.Fetch&nodeid=4021199

[RFC2046] Freed, N, et al., “Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types”, RFC
2046, November 1996.

[RFC2387] Levinson, E. “The MIME Multipart/Related Content-type”, RFC 2387, August 1998.

[RFC3066] Alvestrand, H. “Tags for the Identification of Languages”, RFC 3066, January 2001.

[RFC3454] Hoffman, P, et al., “Preparation of Internationalized Strings ("stringprep")”, RFC 3454,
December 2002.

[RFC3491] Hoffman, P, et al., “Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)”,
RFC 3491, March 2003.

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646”, RFC 3629, November 2003

[RFC3986] Berners-Lee, T., “Uniform Resource Identifier (URI): Generic Syntax”, RFC 3986, January
2005.

[RFC3987] Duerst, M, et al., “Internationalized Resource Identifiers (IRIs)”, RFC 3987, January 2005.

[RFC4013] Zeilenga, K., “SASLprep: Stringprep Profile for User Names and Passwords”, RFC 4013,
February 2005.

[RFC4234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005.

[RFC4422] Melnikov, A. Ed, “Simple Authentication and Security Layer (SASL)", RFC 4422, June 2006.

[RFC4616] Zeilenga, K. “The PLAIN Simple Authentication and Security Layer (SASL) Mechanism”, RFC
4616, August 2006.

[UNICODE] The Unicode Consortium, “The Unicode Standard, Version 2.0”, 1996, http://www.unicode.org

[XAM-C-API] “Information Management - Extensible Access Method (XAM) - Part 2: C API”, SNIA draft
specification.

[XAM-JAVA-API] “Information Management - Extensible Access Method (XAM) - Part 3: Java API”, SNIA
draft specification.

[XOP] “XML-binary Optimized Packaging”, http://www.w3.org/TR/xop10/
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 2

References © SNIA
2.2 Informative References
[JSR170] David Nuescheler, Content Repository for Java technology API, Java Specification Request
(JSR) 170, April 2006. (http://jcp.org/en/jsr/detail?id=170)

[RBAC] “An Introduction to Role Based Access Control,” NIST CSL Bulletin on RBAC (December, 1995)
http://csrc.nist.gov/rbac/NIST-ITL-RBAC-bulletin.html or http://csrc.nist.gov/publications/nistbul/csl95-
12.txt

[SMI-S] – “Storage Management Initiative Specification,” - ISO/IEC 24775:2007, http://webstore.ansi.org/
RecordDetail.aspx?sku=ISO%2fIEC+24775%3a2007
3 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Terms and Conventions
3 Terms and Conventions

3.1 Terms
For the purposes of this document, the following definitions apply.

3.1.1 application field
A XAM field with a name attribute outside the system field namespace of .* (see Term 3.1.23, “system
field”).

3.1.2 binding field
An XSet field that affects the value assigned to the XUID when the XUID is created while committing the
XSet to persistent storage.

3.1.3 binding modification
A modification that includes adding or deleting binding fields, changing binding field values, changing the
binding field type, changing the binding flag (changing it from binding to nonbinding or vice versa),
resetting the management properties, or opening a binding XStream in writeonly or appendonly mode.

3.1.4 corrupt
The state of an object instance that results from a fatal error. The only method allowed on a corrupt object
instance is to abandon it; all other invoked methods cause errors.

3.1.5 CRC
Acronym for cyclic redundancy check.

3.1.6 fatal error
A method result indicating that the invoked method failed to completely perform its intended operation. A
fatal error indicates that the object instance on which the method was invoked has transitioned to the
corrupt state.

3.1.7 field
A piece of uniquely identifiable data that can be attached to an XSet, an XSystem, or a XAM Library. Two
types of fields exist: a property and an XStream.

3.1.8 field attribute
One or more features associated with a field. A field has multiple attributes associated with it, including
type (MIME type), binding (TRUE/FALSE), readonly (TRUE/FALSE), and length (length of the value).

3.1.9 method
An abstract interface definition for a specific piece of functionality. When mapped to a specific
programming language definition of the method, this may be a function, a procedure, a macro, or an
object-oriented method.

3.1.10 MIME
Acronym for Multipurpose Internet Mail Extensions. MIME types are used by XAM to indicate the format of
the data contained in an XStream. For additional information, see [RFC2045] and [RFC2046].
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 4

Terms and Conventions © SNIA
3.1.11 nonbinding field
An XSet field that does not affect the value assigned to the XUID when the XUID is created after
committing the XSet to persistent storage.

3.1.12 nonbinding modification
A modification that includes all field editing that is not a binding modification, specifically, adding or deleting
nonbinding fields, changing nonbinding field values, changing the nonbinding field type, or opening a
nonbinding XStream in writeonly or appendonly mode.

3.1.13 non-fatal error
A method result indicating that the invoked method did not perform its intended operation. A non-fatal error
shall not cause an object instance to change its current state.

3.1.14 OID
Acronym for object identifier.

3.1.15 property
A field whose MIME type attribute is one of the XAM-defined simple types (stypes).

3.1.16 RBAC
Acronym for Role Based Access Control.

3.1.17 reference information
Data that changes infrequently once written. Also commonly referred to as fixed content.

3.1.18 Role Based Access Control
An approach to controlling the system access of authorized users based on the user's role within an
organization. For additional discussion, see Chapter 10, “Query”. For more information, see [RBAC].

3.1.19 SASL
Acronym for Simple Authentication and Security Layer.

3.1.20 Simple Authentication and Security Layer
A framework for providing authentication and data security services in connection-oriented protocols and
interfaces via replaceable mechanisms. See [RFC4422].

3.1.21 stype
A set of MIME types defined in the XAM specification that are used for field type attributes and are
commonly referred to as simple types.

3.1.22 synthetic field
A XAM field that may not be physically represented within the XAM Storage System. Some fields may be
derived from other state information within the XAM Storage System. From a XAM application perspective,
it does not matter whether a specific XAM field is synthetic or not.

3.1.23 system field
A XAM field with a name attribute in the reserved system field namespace of .* (see Term 3.1.1,
“application field”). XAM applications are prevented from creating fields in this portion of the field
namespace, though they may be able to change a system field value at the discretion of the XAM Library
and VIM implementations.
5 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Terms and Conventions
3.1.24 system properties
A property that is created and managed by the XSystem or the XAM Library.

3.1.25 TLS
Acronym for Transport Layer Security.

3.1.26 VIM
Acronym for Vendor Interface Module.

3.1.27 Vendor Interface Module
A vendor-specific shared library that implements the standard API calls (known as the VIM API) used by
the XAM Library to communicate with a specific storage system.

3.1.28 VIM API
The methods that the XAM Library uses to communicate with the VIMs.

3.1.29 XAM
Acronym for eXtensible Access Method.

3.1.30 XAM API
The methods that a XAM application uses to communicate with an XSystem, via the XAM Library.

3.1.31 XAM application
An entity that uses the XAM API to access services provided by an XSystem.

3.1.32 XAM job
A XAM mechanism to submit work to the XSystem. The only XAM job defined is the query job.

3.1.33 XAM Library
A shared library that implements the standardized abstraction layer between the XAM API used by
applications and XAM Storage System VIMs (see Section 7.1.1, “Vendor Interface Modules”).

3.1.34 XAM QL
Acronym for the XAM query language.

3.1.35 XAM query
A way to search an XSystem to identify specific content. XAM uses an SQL variant, known as XAM QL, as
its query language. Query results consist of a list of XUIDs identifying the XSets that match the query.

3.1.36 XAM session
The communication mechanism and context (e.g., authentication, authorization) used to access a logical
container of XSets and the XSystem itself. XSystem instance is a synonym.

3.1.37 XAM Storage System
A storage system that provides XAM-compliant storage services. Typically this system is for data that is
not expected to change during its lifetime (e.g., fixed content, reference information, archival data). The
contents of a XAM Storage System are exposed to applications via one or more XSystem objects in the
XAM API.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 6

Terms and Conventions © SNIA
3.1.38 XRI
Acronym for XSystem Resource Identifier.

3.1.39 XSet
The primary storage abstraction in XAM. An XSet binds data and metadata into a single entity that is
stored and retrieved as a unit. MIME types are used to specify data and metadata formats.

3.1.40 XSet instance
An instantiation of an XSet object. An XSet handle manipulates an XSet instance.

3.1.41 XSet Unique Identifier
A globally unique external reference identifier for a specific XSet. Abbreviated XUID.

3.1.42 XStream
A field that is not a simple type (stype). The XSystem does not type check the value of an XStream. An
XStream’s MIME type attribute is any defined type except for the XAM-defined stypes.

3.1.43 XStream instance
An instantiation of an XStream object. An XStream handle manipulates an XStream instance.

3.1.44 XSystem
A logical container of XSets that is visible to XAM applications as an abstraction in the XAM API.

3.1.45 XSystem instance
An XSystem (i.e., a logical container of XSets) and the communication mechanism and context (e.g.,
authentication, authorization) that is used to access the XSystem. XAM session is a synonym. It is also an
instantiation of an XSystem object.

3.1.46 XSystem Resource Identifier
An identifier used to specify a target XSystem that can include optional parameters that are useful when
connecting to a XAM Storage System. The syntax is similar to an Internationalized Resource Identifier
(IRI), with field definitions specific to XAM.

3.1.47 XUID
Acronym for XSet Unique IDentifier.
7 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Terms and Conventions
3.2 Conventions
Typographical conventions used in this document include the following:

Note: The names and syntax of methods described in this document are informative only. The normative
descriptions of the actual method names and the syntax of those methods in C and Java can be
found in the XAM C and Java API Specifications [XAM-C-API] and [XAM-JAVA-API], respectively.

Convention Description

Note: Contains additional or useful informative text.

CAUTION: Indicates that you should pay careful attention to the probable action, so that you may avoid
system failure or harm.

Fixed-width
text

Indicates text that you enter at a keyboard or text that is displayed on an output device, such
as a screen. This convention is most commonly used for command syntax and examples.

<XAMHandle> In a method name, indicates the handle to the XAM primary object: XAM Library,
XSystem, or XSet.

<op> In a method name, indicates one of three operations to be performed: get, set, or create.

<stype> In a method name, indicates one of six stypes: Boolean, Int, Double, XUID, String, or
Datetime.

<attribute> In a method name, indicates one of four attributes: Binding, Length, ReadOnly, or Type.

Italicized text Indicates a property or field name, i.e., .xset.xuid.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 8

Business Overview © SNIA
4 Business Overview

4.1 Background of the SNIA XAM
The amount of reference Information (also known as fixed content) has been growing rapidly each year. At
the same time, business demand for timely access to that data, in both the private and public sectors, has
been growing. Beyond timely access to this data, businesses need a way to relocate data across diverse
hardware platforms, without compromising data integrity.

Current products for storing and managing reference information have significant limits when integrating
with other storage products and applications. Vendor-specific data access and data management methods
(e.g., for naming, retention, and deletion) are common, requiring application software changes, sometimes
extensively, to integrate with each storage product. These integration obstacles also limit the ability to
share reference information among applications, and no standards exist for moving reference information
across different storage products.

To meet these challenges, the storage industry requires a set of standard interfaces to enable more
functional and sophisticated products. These interfaces need to allow multiple vendors to provide different
classes of hardware and software products that store, retrieve, and manage reference information reliably
and seamlessly.

The Storage Networking Industry Association (SNIA) was formed to ensure that storage networks become
efficient, complete, and trusted solutions across the IT community. Comprised of more than 300 members,
SNIA is uniquely committed to delivering standards, education, and services that will propel open storage
networking solutions to the broader market.

4.2 The XAM Approach
The SNIA XAM (eXtensible Access Method) specification has been developed to address these industry
and market needs. XAM will enable products to seamlessly interoperate, allowing customers the flexibility
to select among alternate software and hardware vendors when constructing their storage environments.
Broad adoption of the standards that are defined in this specification will increase customer satisfaction
and accelerate acquisition of new storage technology, expanding the market for reference storage. In
addition, a common interface will reduce time to market for new products and solutions from software
vendors, hardware vendors, and system integrators.

XAM provides an application programming interface (see [XAM-C-API] and [XAM-JAVA-API]) that allows
XAM applications to store data in a fashion that does not depend on the specific storage system. XAM
provides the following important functionality to applications and storage systems:

• Reference information is associated with a globally unique name. By binding reference
information to a unique name, an application can efficiently manage the reference information
without concern for the data’s actual location. Location independence provides a mechanism for
implementing Information Lifecycle Management (ILM) practices within a XAM-based storage
system itself.

• Metadata is raised to the same level of importance as the reference information itself. By
bundling together data and metadata (contextual data about the information being stored),
applications can more easily manage and share reference information, which facilitates ILM.

• Storage systems are accessed via a standard, pluggable architecture. By standardizing the
architecture, customers can add and remove storage products without impacting applications. The
XAM architecture is a software framework that allows XAM-enabled applications to interface with
XAM-compliant vendor devices in order to store and retrieve reference information in a vendor-
independent and location-independent manner.
9 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Business Overview
• A standard XAM storage provider interface. XAM Storage System vendors can plug their
systems into the XAM API by creating a provider for the Vendor Interface Module API (VIM API).
XAM also provides a standardized set of management disciplines and semantics for fixed content,
such as retention, expiration, etc.

4.3 Benefits of XAM
Application developers, storage vendors, and storage management professionals all benefit from XAM:

• Application developers benefit because the standard XAM interface no longer requires vendor-
specific code for reference information storage. This feature enables application developers to
spend less time writing and maintaining vendor-specific code so that they can devote more time to
features that add value to their applications. These developers can rely on a standard interface—
an interface that is designed and supported by the vendors that are involved in the reference
information industry.

• Storage vendors benefit because XAM provides a consistent set of data access and data
management capabilities across XAM-compliant storage systems. Therefore, these vendors can
plug their hardware into a standard interface that enables application vendors using XAM to
transparently use their storage platform. XAM also enables standards-based techniques to move
data between diverse storage platforms and information management applications to design
solutions based on a common set of features and functions.

• Storage management professionals benefit because they can easily relocate data to
accommodate storage system replacement. In addition, they can select best-of-breed application
programs and storage systems without being constrained by integration issues.

4.4 Recommendations for Additional Standards
While this specification defines the base interface, additional standards should be developed over time to
foster greater levels of functionality and integration. These standards include, but are not limited to:

• Implementation-common metadata to support data classification standards, allowing storage-
centric ILM practices that do not depend on the specific application that generated the data.

• Reference information-naming schemas, including standards for embedding structured data into a
flat object space. These schemas will facilitate application integration when processing file
systems, databases, and other data resources with significant internal structure.

• Interfaces for bulk movement of reference information, such as migrating, backing up, and
replicating reference information among XAM-type systems.

• SMI-S [SMI-S] profiles, allowing vendor-specific XAM system implementations to be managed and
monitored in a unified manner. These profiles will provide common functions, while allowing the
management of the rest of the storage infrastructure.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 10

Overview of the XAM Architecture © SNIA
5 Overview of the XAM Architecture
The XAM architecture is a software framework that allows XAM-enabled applications to interface with
XAM-compliant vendor devices. The goal of this architecture is to allow applications to take advantage of
the XAM Application Programming Interface (API) to store and retrieve reference information in a vendor-
independent and location-independent manner.

A primary requirement of the XAM architecture is the ability to support access to multiple vendors’ XAM
Storage Systems and multiple versions of the same vendor’s XAM Storage System. That is, different
versions of the XAM specification must be able to access the same XAM Storage System, or, the same
version of the XAM specification must be able to access different versions of a XAM Storage System. This
architecture also allows multiple applications to access the same XAM Storage System.

The XAM architecture provides a mechanism for XAM Storage System vendors to create Vendor Interface
Modules (VIMs) that act as bridges between the standard XAM APIs and the vendor’s storage systems.
How the VIMs connect to their respective devices (for example, TCP/IP, SCSI, or a file system) is
transparent to the XAM API and the application. The connection is completely encapsulated by the VIM;
the applications should be unaware of the VIM’s existence and functionality.

5.1 XAM Software Modules
The software modules of the XAM architecture are shown in Figure 1, “XAM Software Modules”. XAM
standardizes two interfaces between the XAM software modules:

• XAM API is to be used by applications that want to communicate through standard interfaces to
storage that has been optimized for reference information.

• VIM API is to be used by XAM Storage System implementers that want to communicate through
standard interfaces to applications that have been optimized for reference information.

The semantics of the XAM API and VIM API are very similar; thus, the XAM Library is intended to be a thin
software layer between the application and the VIM. The semantics of the XAM API and VIM API are
defined in this specification. The syntax of these APIs, however, are defined in the XAM C API
Specification [XAM-C-API] and the XAM Java API Specification [XAM-JAVA-API].

Figure 1 – XAM Software Modules

XAM Library

Application

XAM Toolkit

Vendor A
VIM

Vendor B
VIM

Vendor C
VIM

Toolkit API

XAM API

VIM API
11 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Overview of the XAM Architecture
In Figure 1, the application binds to one of the XAM API language bindings supplied by the XAM Library.
XAM standardizes two bindings: a C language binding and a Java language binding. When the application
requests access to a specific XSystem, the XAM Library discovers the appropriate VIM to use to dispatch
the request to the XSystem. Once a XAM session has been created to connect the application to the
XSystem, the XAM Library dispatches additional application requests to the XSystem using the selected
VIM. The VIM then communicates with the XAM Storage System (not shown), executes the request, and
returns the response to the XAM Library, which in turn sends it to the application. The application can also
use convenience interfaces in the XAM Toolkit. See Annex A, “(normative) XAM Toolkit” for more
information.

XAM allows the VIM to act as a cache so that it can optimize communication between the VIM and the
XAM Storage System. Note that the VIM may be operating in the same context as the application, and thus
is potentially subject to malicious attacks. To ensure data security and integrity in the XAM Storage
System, the XAM architecture requires all data security and integrity checks to be performed when the
application’s data is committed to persistent storage. XAM also strongly recommends that these checks
occur at the time the application first modifies the data, so that an application can more directly correlate
any issues to the specific operation that caused the issue.

5.2 XAM Object Model
Section 5.1, “XAM Software Modules” defines the three software modules (Toolkit, XAM Library, and VIM)
within the XAM architecture. The XAM architecture uses these software modules to create a logical view of
the XAM Storage System. This logical view defines a set of objects that are arranged hierarchically,
providing a consistent abstraction that is independent of a variety of implementation approaches.

XAM has three primary objects: the XSet, the XSystem, and the XAM Library objects.

• An XSet is the logical unit of data that an application can commit to persistent storage within XAM.

• An XSystem is a logical container of one or more XSets.

• The XAM Library enables an application to discover and communicate with multiple XAM Storage
Systems.

The XAM architecture enables a single XAM Storage System to contain one or more XSystems.
Additionally, a XAM Storage System may enable an XSystem to span multiple XAM Storage Systems.
Regardless of the physical topology underneath the VIM API, the application’s logical model of the
XSystem is the same.

When an application tries to access a XAM Storage System, a series of logical XAM object instances are
created. When the XAM Library is loaded, a XAM Library object instance is created. When the application
connects to an XSystem, an XSystem object instance is created. When the application opens or creates
an XSet, an XSet object instance is created. Thus, a strict hierarchical relationship exists between XAM
primary objects.

The XAM API also defines two secondary objects, XStreams and XIterators, which can be attached to any
of the XAM primary objects. An XStream is a binary data stream, which can potentially be quite large.
When attached to an XSet, the XStream’s data is committed to persistent storage with the XSet. An
XIterator is a temporary object that cannot be committed to persistent storage. It is used to discover the
names of data that are attached to a primary object.

Each XAM object has an associated finite state machine (FSM). The FSM defines normative behavior that
is visible to the application. It is not intended to represent all of the states a XAM Storage System vendor
might need to implement storage management. The focus of the FSMs is to clearly define the standard
behavior that is visible to the application.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 12

Overview of the XAM Architecture © SNIA
5.3 XAM Fields
Data can be attached to any of the XAM primary objects. XAM defines a field as a data-carrying attribute
that can be attached to a primary object, of which there are two kinds: properties and XStreams. Properties
are used to contain simple kinds of data (strings, integers, etc.), and have a simple set/get style API.
XStreams are used to contain larger and potentially more complex data (JPEGs, XML files, or binary data)
and are accessed as a stream of data through a read/write style API. Regardless of the object to which the
field is attached, the same XAM field-manipulation APIs are used; they are scoped to the appropriate
object on which they operate (XAM Library, XSystem, or XSet).

Note that for some language bindings, both properties and XStreams may be treated as objects. However,
in the XAM architecture, this is neither a requirement nor a convention. Therefore, the individual language
binding must resolve how the properties of the XAM architecture definitions are mapped to the object-
oriented view of properties.

Each of the XAM primary objects has a set of properties that provide information about the object from the
perspective of the XSystem or XAM Library. This set of properties is referred to as system properties. For
the XAM Library and XSystem, system properties are typically related to configuration information. For an
XSet, system properties include information such as the time the data was originally stored, the time it was
last accessed, and other XSet management properties.

5.4 XAM Persistent Storage: the XSet
An XSet is the addressable unit of storage in the XAM architecture from the application’s perspective. For
an application to store data in an XSystem, the application must create an empty XSet, populate the XSet
fields with its data, and then commit the XSet to persistent storage. If the commit is successful, the
application is given a name for the XSet, called a XUID. The application can use the XUID to access the
data it stored, exchange the XUID with another application so that it can retrieve the XSet, use it to create
application-specific relationships between XUIDs, or use it for other purposes.

When an application creates any XSet field, it must specify whether it wants the field to be binding or
nonbinding. A XUID is linked to the binding fields of an XSet. Any change to a binding field, including
creating the field, deleting the field, changing the attributes, or changing the value, creates a new XSet with
a new XUID, on successful commit of the change. The original XSet shall not be modified in this case. If
only nonbinding fields are modified, a new XSet shall not be created on successful commit of the change.
This behavior allows applications to store and freely change information that is not associated with the
identity of the XSet (the XUID), while also ensuring that the information that is associated with the identity
cannot be modified on a specific XSet.

5.5 XSet Management
An XSystem provides both XSet data access and XSet data management. XSet data access methods
specify how to create, store, locate, retrieve, update, and delete an XSet contained within an XSystem.
These methods are primarily used by data-consuming XAM applications. On the other hand, XSet data
management methods specify how an XSystem manages an XSet until it is deleted. These methods are
primarily used by data management XAM applications. In most cases, XAM applications will use a
combination of both XSet data access and management methods. XAM application developers are
strongly encouraged to understand XSet data management, as it differs greatly from data management
that is available from familiar data access interfaces, such as file systems.

An XSystem may provide additional capabilities for XSet data management. These capabilities, which may
include management of resources, security, migration, virtualization, resiliency, and performance, are
outside the scope of XAM.
13 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Overview of the XAM Architecture
XSet data management, or XSet management, is further classified into four management disciplines: XSet
retention, XSet deletion, XSet storage, and XSet hold.

• XSet retention. Retention management uses time criteria to determine the time period(s) during
which XSet deletion from the XSystem is prohibited.

• XSet hold. Hold management pertains to the capability by which XSystems enforce readonly XSet
data access and prohibit XSet deletion.

• XSet deletion. Deletion management pertains to the end-of-life or deletion of an XSet in an
XSystem.

• XSet storage. Storage management pertains to the XSet storage management capabilities, which
may be available in an XSystem, but are outside the scope of XAM.

5.6 XAM Security
The security functionality of XAM provides control over which applications can access a XAM Storage
System and the types of access and operations that are allowed. A XAM application is authenticated as
part of establishing a XAM session with an XSystem; authorization restrictions on the types of allowed
accesses and operations are linked to that authentication. Beyond this, specific XSets may be subjected to
additional access control restrictions.

 XAM Security functionality consists of the following three security disciplines: XAM application
authentication, XSystem authorization, and XSet access control.

• XAM application authentication. The SASL (Simple Authentication and Security Layer)
framework [RFC 4422] allows an application that uses the API to provide authentication to the
XSystem when it connects to it. SASL may also establish an authorization identity for authorization
and access control purposes.

• XSystem authorization. As part of connecting to an XSystem, XAM determines the functional
elements of the API that are allowed to be called during the resulting XAM session. If a SASL
authorization identity is established, that identity is an input to this determination. If an application
tries to call an unauthorized function, that call will return a non-fatal error.

• XSet access control. An XSet may have an access control policy applied to it that determines
whether an API method is allowed. XSet access permissions can be set to allow only read access
or to deny all access to the XSet. A XAM policy name is used to refer to the XSet access control
policy.

5.7 XAM Query
The general purpose XAM API is intended to provide a vendor-independent method for storing and
retrieving application data. In addition to specific API methods to be used for accessing data, a query-
based interface is also included. This interface enables an application to access data using content-based
criteria. These criteria are expressed as relationships between XSet properties and, in some cases,
content queries of some XSet streams.

The XAM query language is modeled on the database standard query language (SQL), with some
important differences:

• All XSets visible within the scope of an XSystem instance are examined for the query.

• XSet property fields contain the relational data to express which XSets are to be returned.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 14

Overview of the XAM Architecture © SNIA
• The return values are always XUID values.

• The XAM architecture specification requires XAM Storage Systems to support relational query of
property values; support for content-based query of XStream data is optional.

To submit a XAM query job, an application must first create an XSet, initialize the job command to a query,
and store the query string. The application then submits the job. The XSystem processes the query,
putting the XUID results into an XStream that is contained in the XSet. The application may store this XSet
to make it persistent. On XSystems that support the functionality, an application can also commit a running
job to persistent storage, to allow the query to continue, even if the XSystem instance is closed or
disconnected.

Committed query job XSets may be accessed by another application, if the application knows the XUID
value. These XSets may also be exported to and/or imported from another XAM Storage System, using
the same import and export mechanisms that are defined for normal XSets.

5.8 Extending XAM
XAM Storage System vendors can extend XAM in a variety of ways. They can create vendor-specific
system fields to advertise or control storage system behavior on the XAM Library, the XSystem or the
XSet; they can specify a vendor-specific storage management capability by assigning semantics for XSet
storage management; and they can specify additional security roles for XSystem authorization. Vendors
can also define new XAM jobs to perform vendor-specific work on the XSystem. A mechanism for vendors
to extend the XAM API to support vendor-specific methods is beyond the scope of this specification.

In addition, application vendors may extend XAM by creating their own application-specific XAM fields for
XSets. This application-specific metadata is not interpreted by the XSystem implementation, but is
preserved as part of the XSet and is available to be queried. The rules for these XAM fields are described
in Section 6.3, “XAM Fields”.
15 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
6 XAM Objects and Common Operations
The XAM architecture defines a hierarchy of objects to represent information. A XAM object is a data
structure that is a package of multiple pieces of data and metadata bundled together for access under a
common external name. This chapter provides a normative definition of the XAM objects as well as the
common data structures and operations that can be associated with the XAM object.

6.1 XAM Objects
XAM defines three primary XAM objects and two secondary objects, each of which is visible to the XAM
application. Primary objects have a strict hierarchical relationship to each other. The three primary objects
are the XAM Library object, the XSystem object, and the XSet object. XAM secondary objects can be
attached to any primary object. The two types of secondary XAM objects are the XStream object and the
XIterator object. Additionally, an asynchronous object is used for asynchronous I/O methods;
asynchronous objects are independent of primary and secondary objects. For further information on
asynchronous I/O, see Section 8.10, “Asynchronous Operations”.

This specification defines a Finite State Machine (FSM) for each XAM object instance except the XAM
Library object. The FSMs specify for each object what operations can occur in each state and what state
transitions shall occur as the result of the successful or unsuccessful completion of these operations. The
XAM Library does not have an FSM because the XAM Library is expected to be stateless, except for
discovery of VIMs and XSystems. Discovery of VIMs and XSystems is an implementation detail of the
XAM Library and is thus outside the scope of this specification.

Note that an object is different from an object instance. Specifically for the XSystem object and the XSet
object, the object exists independently of a XAM application. An XSet is a logical collection of data and
metadata that is identified as a single unit using an XSet Unique Identifier, or XUID. An XSet instance is
the XAM application’s current view of the XSet, which may include changes to the XSet that have not been
committed to persistent storage. Thus, if two XAM applications are viewing the same XSet and XAM
application A modifies data associated with its view of the XSet instance, XAM application B will not see
the changes until XAM application A commits the changes. See Section 8.6, “Distributed Access to the
Same XSet” for additional information on how XAM supports two applications viewing the same XSet on
the same XSystem. Further, after a commit, the XSet instance points to a different XSet if a new XUID is
returned as a result of the commit.

Similarly, an instance of an XSystem object is a XAM application’s view of an XSystem. An XSystem is
simply a collection of XSets and does not include the communication mechanisms or context (e.g.,
authentication, authorization) used to communicate with the XSystem. When a XAM application connects
to an XSystem object, the XSystem object instantiation includes this additional information. Thus, for
example, if a XAM application is not authorized to view all of the XSets in the XSystem, it will see a smaller
number of XSets than a different XAM application that is authorized to view all XSets within the XSystem.
Note that an instance of the XSystem object is simply called the XSystem instance.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 16

XAM Objects and Common Operations © SNIA
Figure 2, “Contrasting XSystems and XSystem Instances” provides an example set of XSystems, XSystem
instances, and XAM applications.

As shown in this figure, when Application Foo successfully connects to XSystem A, XSystem instance 1 is
created. The access rights that were assigned to Application Foo as part of the connection process only
allowed it to access XSet C. At the same time, when Application Bar successfully connects to XSystem A,
XSystem instance 2 is created. Application Bar has broader access rights and can access XSet A, XSet B,
and XSet C. Application Bar also wishes to access XSets on XSystem B. When it successfully connects to
XSystem B, a second XSystem instance is created, XSystem instance 3. Application Bar’s access rights
are somewhat restricted on XSystem B; it can only access XSet D and XSet E.

The XAM specification allows any of the XAM primary objects to contain fields. Fields contain data that is
associated with the particular object (see Section 6.3, “XAM Fields”). A XAM application may change fields
on an XSystem instance; however, these changes shall not be persisted in the corresponding XSystem.
Thus, if two XAM applications are accessing the same XSystem at the same time (i.e., Application Foo and
Application Bar, as shown in Figure 2) and Application Bar modifies a field defined by the XAM
specification as an XSystem field, the field shall not change from Application Foo’s perspective, as seen
through its XSystem instance 1. A mechanism to persist XSystem instance changes made by a XAM
application back to the XSystem is beyond the scope of this specification. Further, a XAM Library or
XSystem shall not be required to support addition of fields to the XAM Library instance or XSystem
instance, respectively. They shall be required to support the fields as specified in this document (see
Chapter 7, “XAM Library and XSystems”.

Note: This specification uses XSystem instance and XAM session interchangeably. XAM session has
particular relevance when discussing connecting to the XSystem (see Section 7.2, “XSystem”).

Figure 2 – Contrasting XSystems and XSystem Instances

Application Bar

Application
Foo

XSystem B

XSystem
Instance 3

XSystem
Instance 1

XSystem
Instance 2

XSet F

XSet E
XSet A

XSet D XSet B

XSet C

XSystem A
17 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
6.1.1 XAM Primary Object Hierarchy

This section defines the normative semantics for creating and releasing XAM primary objects. XAM
primary objects shall have a strict hierarchical relationship, as defined in Figure 3, “Primary Object
Hierarchy” and Table 1, “Primary Object Hierarchy Transitions”. The methods defined shall be the only
mechanisms to create and release primary object instances and associated resources.

A XAM Library object is a singleton; that is, a XAM application shall have exactly one instance of the XAM
Library. When the XAM Library loads, the XAM Library instance is created. The XSystem instance is
created after the XAM application successfully connects to an XSystem. More than one XSystem instance
may be attached to the XAM Library. A XAM application can create or open one or more XSet instances
within a specific XSystem instance, subject to the access control rights that the XAM application has within
the XSystem instance.

Figure 3 – Primary Object Hierarchy

Table 1 – Primary Object Hierarchy Transitions

Primary Object Create
and Release Methods Description

Load XAM Library Success shall instantiate exactly one XAM Library instance. See Section 7.1, “XAM
Library” for additional information.

Unload XAM Library Success shall release the XAM Library instance and all associated resources. See
Section 7.1, “XAM Library” for additional information.

XAMLibrary.connect Success shall instantiate an XSystem instance. See Section 7.2, “XSystem” for
additional information.

XAM Library

XSystem Object

XSet Object

Load XAM Library

Unload XAM Library

XAMLibrary.connect

XSystem.close

Operations on
a XAM Library

Operations on an
XSystem Instance

XSet.close

XSystem.createXSet
XSystem.openXSet
XSystem.copyXSet

Operations on an
XSet Instance
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 18

XAM Objects and Common Operations © SNIA
Note: The mechanism for loading and unloading the XAM Library is platform and language dependent
and, therefore, is outside the scope of this specification. The normative definitions of actual
method names and syntax can be found in the XAM C API Specification [XAM-C-API] and in the
XAM Java API Specification [XAM-JAVA-API].

6.1.2 Primary Object Operations

The normative definitions of the semantics of operations on primary objects are in the following sections:

• For the XAM Library object, see Section 7.1, “XAM Library”.

• For the XSystem object, see Section 7.2, “XSystem”.

• For the XSet object, see Section 8, “XSet Operations”.

6.2 XAM Secondary Objects
The XStream and the XIterator are the only XAM secondary objects. They are secondary objects because
they must be attached to a XAM primary object instance. An XStream is a field of the primary object to
which the XStream is attached. It is necessary to open an XStream in order to store and retrieve the data
that it contains; an opened XStream is called an XStream instance. Opening an XStream creates an
XStream instance within the primary object instance and returns an XStream handle that is used to store
and retrieve data. XIterator instances are used to discover the fields that are attached to a specific primary
object.

XSystem.close Success shall release an XSystem instance and all associated resources. See
Section 7.2, “XSystem” for additional information.

XSystem.createXSet
XSystem.openXSet
XSystem.copyXSet

Success shall instantiate an XSet instance. See Chapter 8, “XSet Operations” for
additional information.

XSet.close Success shall release an XSet instance and all associated resources. See
Section 7.2, “XSystem” for additional information.

Table 1 – Primary Object Hierarchy Transitions

Primary Object Create
and Release Methods Description
19 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
XStream and XIterator instances shall be created and released as shown in Figure 4, “Secondary Object
Hierarchy” and as described in Table 2, “Secondary Object Hierarchy Transitions”.

In Figure 4 and Table 2, <XAMHandle> is the handle to the XAM primary object. The methods defined
shall be the only mechanisms to create and release secondary object instances and associated resources.

The XSystem does not interpret the contents of the XStream, except for XSystems that support a Level 2
query, where some XStreams may be processed for later query (see Chapter 10, “Query” for more
information on the XAM query facility). Vendor extensions for other types of XStream processing shall be
allowed, as long as they are compatible with defined XAM semantics. For a list of methods that interact
with XStreams, see Section 6.5, “Operating on Secondary Objects – XStreams and XIterators”.

The XIterator object is used to enumerate the fields contained within a XAM primary object. This object
allows the XAM application to specify a prefix for the field name to enable iteration through a subset of the
primary object’s fields. For a list of methods that interact with XIterators, see Section 6.5.2, “Operating on
XIterators”.

Figure 4 – Secondary Object Hierarchy

Table 2 – Secondary Object Hierarchy Transitions

Secondary Object Create and
Release Methods Description

<XAMHandle>.openXStream Success shall instantiate an XStream instance.

<XAMHandle>.createXStream Success shall create an XStream field and
instantiate an XStream instance.

XStream.close Success shall release an XStream instance and all
associated resources.

<XAMHandle>.openFieldIterator Success shall instantiate an XIterator instance.

XIterator.close Success shall release an XIterator instance and all
associated resources.

XSet, XSystem, or
XAM Library XIterator

XStream

<XAMHandle>.openFieldIterator

XIterator.next

XIterator.close

XStream.close<XAMHandle>.openXStream
<XAMHandle>.createXStream

Operations on
the XStream

Field Editing
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 20

XAM Objects and Common Operations © SNIA
6.3 XAM Fields
Any XAM primary object can have fields contained within it. Each field has a name, attributes that describe
how to interact with the object, and a value.

6.3.1 Field Namespace

Each field has a name that is scoped to the XSet. Field names shall be UTF-8 encoded strings (see
[RFC3629]) with a maximum length of 512 bytes. Field names shall be case sensitive, so
.xam.org.snia.field is distinct from .xam.org.snia.Field. The field names shall not have embedded NULL
characters. To maximize application interoperability, applications are encouraged to use the IDN profile of
stringprep as defined in [RFC 3491] and [RFC 3454].

XAM divides the field namespace into sub-namespaces, which are statically allocated between the
Storage Networking Industry Association (SNIA) standardization, XAM Storage System vendors and XAM
application vendors.

To avoid field name conflicts between XAM Storage System vendors and to avoid requiring a central XAM
field name registry, XAM takes an approach similar to the Domain Name System (DNS). For XAM Storage
System vendor-defined fields, the first portion of the field name shall be an organization's domain name in
reverse order, followed by the vendor-defined field name.

Example: com.example.company.email.fromHeader
net.example.company.source
org.example.company.standardField

It is strongly recommended that XAM application vendors also use the inverse DNS namespace for
application-defined field name definitions.

Table 3, “Static Allocation of Namespace” specifies the static allocation of the namespace, where “*” is
used as a wildcard to mean one or more of any valid characters.

Table 3 – Static Allocation of Namespace

Namespace Description

.xam.* The XAM Library-owned portion of the namespace. Fields in this namespace shall be
defined in this specification and its follow-ons and shall not be extended by XAM
Storage System vendors.

.xsystem.* The XSystem-owned portion of the namespace. Fields in this namespace shall be
defined in this specification and its follow-ons and shall not be extended by XAM
Storage System vendors.

.xset.* The XSet-owned portion of the namespace. Fields in this namespace shall be
defined in this specification and its follow-ons and shall not be extended by XAM
Storage System vendors.

.vnd.<reverseDNS>.* The XAM System vendor-owned namespace within the XSystem namespace, where
<reverseDNS> is the XAM Storage System vendor’s reverse DNS name.

org.snia.* Reserved for non-XSystem-owned fields. This namespace is owned by the Storage
Networking Industry Association (SNIA) and is reserved to enable SNIA standardized
fields in the future.

org.snia.xam.* Reserved for non-XSystem-owned fields and specified in XAM standard documents.
This namespace is owned by the SNIA Fixed Content Addressable (FCAS) technical
working group.
21 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
The “.*” portion of the field namespace is reserved for the XSystem and XAM Library. Fields defined in this
portion of the field namespace are known as system fields (see Term 3.1.23, “system field”); fields defined
outside this portion of the field namespace are known as application fields (see Term 3.1.1, “application
field”). The XSystem shall return a non-fatal error if a XAM application tries to create a new system field on
any XAM object instance. The XSystem shall also return a non-fatal error if a XAM application tries to
create a field using a name which is an invalid UTF-8 string [RFC3629]. In some situations, a XAM
application may be able to change system fields. Values within the “.*” namespace that are not specified
above shall be reserved for future use.

6.3.2 Field Attributes

Table 4, “Field Attributes” lists the field attributes and their normative behavior, which shall be present for
all XAM fields. Attributes may be set to any valid value except for the binding attribute; the binding attribute
shall only be allowed to be set to TRUE for a field contained within an XSet object.

Type

The type attribute is the MIME type of the value of the data stored in the field. Depending on the MIME
type, a field is either a property or an XStream. A property is intended to be used to store a small amount
of data that is descriptive of or associated with the XAM object. Conversely, an XStream is intended to
store potentially large amounts of data. The XAM API defines get/set style methods to manipulate
properties and stream-oriented read/write methods to manipulate XStreams.

The property MIME types defined in this specification are referred to as simple types, or stypes. The
XSystem shall type check the stypes and set the actual MIME type based on the specific method that the
XAM application uses to create the field. A property is strongly typed to help XAM applications to
interoperate between other XAM applications and to enforce consistency checks when using the XAM API.

On the other hand, the XAM application directly sets an XStream’s type attribute and shall format the
XStream’s MIME type as described in [RFC2045]. XSystems shall return a non-fatal error if the type field of
an XStream is empty or improperly formatted. The XStream data, or value, is intended to be a MIME
document body that matches the MIME type. However, the XSystem does not check the contents of the
MIME document body. From the XSystem’s perspective, the XStream is simply an unstructured stream of
bytes.

Table 4 – Field Attributes

Attribute
Name Description

Type The MIME type of the value [RFC 2045, RFC 2046]. The type attribute
shall be US-ASCII encoded with a maximum length of 512 bytes.

Binding A Boolean value indicating if the field is bound to the XUID of the XSet.
The behavior associated with the binding attribute is described in more
detail in Chapter 8, “XSet Operations”.

Readonly A Boolean value indicating if the field is protected against modification
by the standard field operations.

Length The length of the value, in bytes. The value of length shall be set by the
XSystem; it shall not be set by the XAM application.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 22

XAM Objects and Common Operations © SNIA
Binding

The binding attribute shall only be allowed to be set to TRUE on a field that is within an XSet object. The
binding attribute enables the XAM application to specify the set of fields that are used as input when the
XSystem generates the XUID for an XSet. If the binding attribute of a field is TRUE when the XSystem
generates the XUID, (i.e., when the XSet is committed to persistent storage), any subsequent changes to
the field shall cause the XSystem to generate a new XSet with a new XUID, when the changes are
successfully committed to persistent storage. Further, if the XAM application changes any field in the set of
fields that have the binding attribute set to TRUE (by adding, deleting, or changing), this change shall also
cause the XSystem to generate a new XSet (and associated XUID), when the changes are successfully
committed to persistent storage.

Readonly

Only the XSystem shall set the readonly attribute, which shall be FALSE, unless otherwise specified. XAM
applications shall not be able to change it. If the readonly attribute of a field is TRUE, then the XAM
application shall not be allowed to change the field using the standard field operations of set, create, write,
and delete. If the XAM application tries to change the field using any of these operations, the XSystem
shall return a non-fatal error. If the readonly attribute of an XStream is TRUE, and the application tries to
open the XStream in any mode other than readonly, the XSystem shall return a non-fatal error. If the
readonly attribute of a field is FALSE, then no error occurs. For more information, see Section 6.4.1,
“Operating on Properties”, Section 6.4.3, “Deleting Fields” and Section 6.5.1, “Operating on XStreams”.

The XSystem uses the readonly attribute for fields that only it can change or for preventing changes to
XAM job input parameters while the job is running (see Section 8.9, “XAM Jobs and XAM Job Control” for
more details). However, when setting the readonly attribute, the XSystem shall not be restricted to these
cases. XAM defines specific methods to change some system fields whose readonly attribute is TRUE
(see Section 9.2.1, “XSet Retention” for examples).

Length

The XSystem shall derive the value of the length attribute based on XAM application behavior; the XAM
application shall not set it. For property fields, the value of the length attribute depends on the stype and
shall be as specified as in Table 5, “stypes”. For XStream fields, the XSystem shall derive the value of the
length attribute from the number of bytes that are successfully written to it.

6.3.3 Properties

If the field is a property, it shall be one of the stypes and behave as specified in Table 5, “stypes”.

Table 5 – stypes

stype Name MIME Type string Description
Value of the

Length
Attribute

xam_boolean application/vnd.snia.xam.boolean Shall be either TRUE or FALSE. 1

xam_int application/vnd.snia.xam.int Shall be a signed twos complement
64-bit integer.

8

xam_double application/vnd.snia.xam.double Shall be an [IEEE754] double-
precision floating point value.

8

23 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
Note: Applications should avoid using MIME types that begin with “application/vnd.snia.xam”. This
namespace is reserved for future use.

A language binding of XAM may use XAM-specific classes or similar constructs for the xuid and
xam_datetime stypes rather than representing them as byte strings or character strings. The methods for
any such class are specified in the XAM language binding specification for that language.

When a field value is stored, the XSystem performs the consistency checks that are defined in
Section 6.3.5, “Field Consistency Checks Performed by the XSystem”. If it is not a MIME type, as defined
in Table 5, then the XSystem shall treat it as an XStream. The xam_datetime stype format shall be a
proper subset of the [ISO8601] specification and is intended to be a compatible subset of [JSR170],
Section 6.2.5.1. Specifically:

• Four-digit years shall be used.

• Week dates or ordinal dates shall not be used.

• Midnight shall not be represented with 24:00.

• Time zone designators may be used.

• Duration or interval formats shall not be used.

• All time shall be no finer than millisecond resolution.

6.3.4 XUID Format

The XSystem shall create the XUID, which identifies an XSet. The XUID shall be globally unique and shall
conform to the format defined in Figure 5, “XUID Format”. The native format of a XUID is a variable-length
byte sequence and shall be a maximum length of 80 bytes. A XAM application should treat XUIDs as
opaque byte strings. However, the XUID format is defined such that its integrity can be validated, and XAM
Storage System vendors can assign unique XUID values independently.

xuid application/vnd.snia.xam.xuid Shall be a XUID and use the XUID
format as defined in Section 6.3.4,
“XUID Format”. Note that a XUID
field’s value is not required to refer to
an XSet currently in existence.

Actual length,
in bytes.
Between 9 and
80 bytes,
inclusive

xam_string application/vnd.snia.xam.string Shall be a UTF-8 encoded Unicode
string, with a maximum length of 512
bytes.

Actual length,
in bytes

xam_datetime application/vnd.snia.xam.datetime Shall be a timestamp identifier, as
specified by [ISO8601], as profiled
below, using UTF-8 encoding.

Actual length,
in bytes

0 1 2 3 4 5 6 7 8 9 10 … 78 79

reserved (zero) OID reserved (zero) Length CRC opaque data... …

Figure 5 – XUID Format

Table 5 – stypes

stype Name MIME Type string Description
Value of the

Length
Attribute
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 24

XAM Objects and Common Operations © SNIA
As shown in Figure 5,

• The reserved bytes shall be set to zero.

• The OID (object identifier) field shall be the SNMP enterprise number of the XAM Storage System
vendor that created the XUID, in network byte order. See [RFC2578] and http://www.iana.org/
assignments/enterprise-numbers. 0 is a reserved value.

• The 5th byte is reserved and shall be set to zero.

• The 6th byte shall contain the full length of the XUID, in bytes.

• The CRC field shall contain a 2-byte (16-bit) CRC in network byte order. The CRC field enables
the XUID to be validated for integrity. The CRC field shall be generated by running the algorithm
[CRC] across all bytes of the XUID, as defined by the length field, with the CRC field set to zero.
The CRC function shall have the following parameters:

 Name : "CRC-16"
 Width : 16
 Poly : 0x8005
 Init : 0x0000

RefIn : True
RefOut : True
XorOut : 0x0000
Check : 0xBB3D

This function defines a 16-bit CRC with polynomial 0x8005, reflected input and reflected output.
This CRC-16 is specified in [CRC].

• The native format for a XUID is binary. When necessary, XUID textual representation should be
base64-encoded, as described in Section 6.8 of [RFC2045], which uses US-ASCII.

6.3.5 Field Consistency Checks Performed by the XSystem

An XSystem shall perform the following consistency checks when a XAM application creates a field. If the
check fails, the method shall return with a non-fatal error and leave the field unmodified.

• Field name shall not begin with “.”

• Field name shall be a valid xam_string value (see Table 5, “stypes”).

The XSystem shall perform the following consistency checks when a XAM application creates or modifies
a property. If a check fails, the method shall return with a non-fatal error and shall leave the XSet in the
same state it was in before the method was called.

• xam_boolean shall be either TRUE or FALSE.

• xam_int shall be 8 bytes.

• xam_double shall be 8 bytes.
25 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
• xam_string:

— Shall be <= XAM_MAX_STRING bytes. See [XAM-C-API] and [XAM-JAVA-API].

— Shall be a correctly formatted UTF-8 string [RFC3629].

— Shall not have NULL values embedded within the string.

For further restrictions on a per language binding, see XAM C API Specification [XAM-C-API] and
XAM Java API Specification [XAM-JAVA-API].

• xam_datetime shall satisfy all of the xam_string checks. In addition, xam_datetime:

— Shall use four-digit years.

— Shall not use week or ordinal dates.

— Shall not represent midnight as 24:00.

— Shall not use a duration or interval format.

— Shall have a resolution no finer than one millisecond.

• The XUID:

— Shall have a correct CRC.

— Shall have a length less than or equal to 80 bytes.

— Shall not be required to exist on the XSystem.

The XSystem shall not validate that the reserved fields are set to zero, which enables future use of
the reserved fields.

• The type attribute (MIME type):

— Shall be a US-ASCII string with a length less than or equal to 512 bytes

— Shall consist of two tokens (type and subtype) separated by a "/" without white space. Each
token:

• Shall contain at least one character.

• Shall not contain the SPACE character or any control character.

• Shall not contain any of the following special characters: "(", ")", "<", ">", "@", <,>, ";", ":",
"\", <">, "/", "[", "]", "?" and "=". Note that <.> is allowed, and “/” shall only be used to
separate the two tokens.

The XSystem shall not check that the type attribute is a valid MIME type.

When a XAM application modifies the value of an XStream, the XAM application shall not perform any
validation on the value being stored and shall allow the type of the XStream to be set to any value.

6.4 Methods that Operate on Fields
This section provides the normative behavior of the methods that can be used to discover what fields are
attached to a XAM primary object and to control field attributes and properties. For fields that are
XStreams, the methods are addressed in Section 6.5, “Operating on Secondary Objects – XStreams and
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 26

XAM Objects and Common Operations © SNIA
XIterators”. See the XAM C API Specification [XAM-C-API] and the XAM Java API Specification
[XAM-JAVA-API] for additional information on procedural and object oriented bindings of the XAM API.

Note: The XAM API only specifies interfaces between the XAM application and the XAM Library and
XSystem; any other interfaces used by the XAM application are beyond the scope of this
specification.

6.4.1 Operating on Properties

XAM properties can be operated on using methods that require knowledge of the property’s type. In
Table 6, “Property Methods”, <XAMHandle> is the handle to the XAM primary object and <op> is the
operation to be performed, which is one of create, set, or get.

These operations are semantically defined as:

• create - creates a property field with the specified field name, value, and binding attribute

• set - replaces a property field’s value with the specified value without changing any other attributes
of the field

• get - returns the field value for the specified property field

Note: The normative definitions of actual method names and syntax can be found in the XAM C API
Specification [XAM-C-API] and in the XAM Java API Specification [XAM-JAVA-API].

6.4.2 Determining Field Existence

The method shown in Table 7 is used to confirm or deny whether a field exists within a XAM primary
object. <XAMHandle> is the handle to the XAM primary object.

Table 6 – Property Methods

Property Methods Description

<XAMHandle>.<op>Boolean Operate on a xam_boolean property

<XAMHandle>.<op>Int Operate on a xam_int property

<XAMHandle>.<op>Double Operate on a xam_double property

<XAMHandle>.<op>XUID Operate on a xuid property

<XAMHandle>.<op>String Operate on a xam_string property

<XAMHandle>.<op>DateTime Operate on a xam_datetime property

Table 7 – Field Existence Query Method

Field Methods Description

<XAMHandle>.containsField Shall return a value of TRUE when
the specified field exists within the
XAM object and a value of FALSE
when the field does not exist within
the XAM object
27 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
Note: The normative definition of the actual method name and syntax can be found in the XAM C API
Specification [XAM-C-API] and in the XAM Java API Specification [XAM-JAVA-API].

6.4.3 Deleting Fields

The method shown in Table 8 is used to delete a field. <XAMHandle> is the handle to the XAM primary
object.

Note: The normative definition of the actual method name and syntax can be found in the XAM C API
Specification [XAM-C-API] and in the XAM Java API Specification [XAM-JAVA-API].

6.4.4 Operating on Field Attributes

The methods shown in Table 9 are used to set and retrieve field attributes. <XAMHandle> is the handle to
the XAM primary object.

Note: The normative definitions of actual method names and syntax can be found in the XAM C API
Specification [XAM-C-API] and in the XAM Java API Specification [XAM-JAVA-API].

6.5 Operating on Secondary Objects – XStreams and XIterators
This section defines the methods that applications use to operate on XStream and XIterator instances.
XStreams and XIterators are secondary XAM objects, and as such, shall only be instantiated via factory
methods in primary objects. The primary object becomes the parent of the secondary object. Primary
objects that have secondary object instances open against them cannot be closed. If a XAM application
tries to close such an object, the XSystem shall generate a non-fatal error and the primary object shall not
change state.

6.5.1 Operating on XStreams

XStreams are used for two major purposes in XAM:

• Storage and retrieval of data - the XStream stores data for a field, usually an XSet field.

Table 8 – Field Deletion Method

Field Methods Description

<XAMHandle>.deleteField Delete a field from the XAM object.

Table 9 – Field Attribute Methods

Field Methods Description

<XAMHandle>.setFieldAsBinding Set the specified field binding attribute to TRUE.

<XAMHandle>.setFieldAsNonbinding Set the specified field binding attribute to FALSE.

<XAMHandle>.getFieldType Retrieve the MIME type value for the specified field.

<XAMHandle>.getFieldLength Retrieve the field length value for the specified field.

<XAMHandle>.getFieldBinding Retrieve the binding attribute value for the specified field.

<XAMHandle>.getFieldReadOnly Retrieve the readonly attribute value for the specified field.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 28

XAM Objects and Common Operations © SNIA
• Import and export - a special XStream is created to import or export the contents of an XSet (see
Section 8.8, “XSet Import and Export”).

When an XStream stores data for a field, the field consists of the XStream plus the field attributes (see
Section 6.3.2, “Field Attributes”). For example, an XStream that stores data for a field has no subtype
beyond XStream because the field type is contained in the Type attribute of the field.

An important XStream-based field is the field that contains query results (see Section 10.7.1, “Query Job
Specific XSet Fields”). The end of this XStream cannot be determined until all the query results are
produced; hence, reading this XStream while the corresponding query job is active may result in no bytes
being read without indicating that the end of the XStream has been reached.

XAM operations on XStreams (see Table 10, “XStream Methods”) require an XStream instance. The XAM
application shall use <XAMHandle>.createXStream or <XAMHandle>.openXStream to create an XStream
instance on which to operate. During XStream creation, the XAM application specifies the XStream field
name and attributes and is returned an XStream instance in writeonly mode. If the XAM application opens
an existing XStream, it must specify whether it wants to open it in readonly mode, writeonly mode, or
appendonly mode. Once the XStream instance is created, the XAM application uses conventional read
and write semantics to operate on the XStream. The act of opening an XStream in either writeonly or
appendonly mode shall be treated as a change to the XStream, even if no change actually occurred.

• Open in readonly mode: Opening the XStream in readonly mode shall initialize the current byte
offset to zero. XStream.seek shall be supported to allow reading at arbitrary byte offsets within the
XStream value. XStream.seek shall set the current byte offset to the specified byte offset.
XStream.seek shall return a non-fatal error if the computed destination byte offset lies outside the
boundaries of the XStream, and the current byte offset shall not change. XStream.read shall return
the actual number of bytes read, along with the sequential XStream bytes, starting at the current
byte offset. When read completes, XStream.read shall increment the current byte offset by the
number of bytes actually read. XStream.write shall return a non-fatal error, and the current byte
offset shall not change. XStream.tell shall return the current byte offset, and the current byte offset
shall not change.

• Open in writeonly mode: Opening the XStream in writeonly mode shall initialize the current byte
offset to zero, delete the XStream value, and set the XStream length to zero. XStream.write shall
return the actual number of bytes written into the XStream value, starting at the current byte offset.
When write completes, XStream.write shall increment the XStream length and the current byte
offset by the number of bytes actually written. XStream.read and XStream.seek shall return a non-
fatal error, and the current byte offset shall not change. XStream.tell shall return the current byte
offset, and the current byte offset shall not change.

• Open in appendonly mode: The behavior is the same as writeonly mode except for the
initialization. Opening the XStream in appendonly mode shall initialize the current byte offset to the
XStream length; it shall not change the XStream value or the current XStream length.

Within a single instance of the parent primary object that contains the XStream, the XStream shall not be
open in more than one mode at any time. Within a single primary object instance, an XStream may have
multiple open instances simultaneously in readonly mode, but shall not have more than one open instance
at any time in writeonly mode or appendonly mode. Attempting to open an XStream with a mode that
would violate these restrictions shall cause a non-fatal error.

Once operations on the XStream are complete, the XAM application is expected to close the XStream,
which causes all resources associated with the XStream instance to be freed. Note that any changes
made to an XStream are only associated with the instance of the parent object (i.e., XAM Library,
XSystem, or XSet). If the XAM application closes the parent object, all changes will be lost. For an XSet,
the XAM application can persist the changes to an XStream by using XSet.commit. See Chapter 8, “XSet
Operations” for more information on this operation.
29 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
Once operations on the XStream instance are complete, the XAM application is expected to close the
XStream instance, which causes all resources associated with the XStream instance to be freed. Note that
any changes made to an XStream instance are only associated with the instance of the parent object (i.e.,
XAM Library, XSystem, or XSet).

Note: The normative definitions of actual method names and syntax can be found in the XAM C API
Specification [XAM-C-API] and in the XAM Java API Specification [XAM-JAVA-API].The indication
that XStream.read has reached the end of the XStream is specific to the language binding.

Any invocation of XStream.read on any XStream may result in zero bytes being read without indicating that
the end of the XStream has been reached. XAM implementations should do this only when a significant
delay is expected before more bytes become available for reading from the XStream (e.g., this may be
appropriate for the results XStream of a query job that takes a significant amount of time to execute; the
end of XStream indication cannot be returned until the job is complete).

Immediately retrying an XStream.read that reads zero bytes is not recommended; instead, the XAM
application should wait for some period of time before retrying or should use the asynchronous version of
XStream.read (see Section 8.10, “Asynchronous Operations”).

6.5.2 Operating on XIterators

XAM provides a mechanism called an XIterator to discover the fields attached to a XAM object. This
interface was created because XSets, XSystems, and XAM Libraries can all have a variable number of

Table 10 – XStream Methods

XStream Methods Description

<XAMHandle>.createXStream Create an XStream.

<XAMHandle>.openXStream Open an existing XStream.

XStream.read Read from the current byte offset position. Indicate
when the end of the XStream is reached.

XStream.write Write to the current byte offset position.

XStream.asyncRead Initiate asynchronous read operation from the current
byte offset position.

XStream.asyncWrite Initiate asynchronous write operation to the current byte
offset position.

XStream.seek Move the current byte offset position.

XStream.tell Retrieve the current byte offset position.

XStream.abandon Allows the XStream instance to be closed in all cases.

XStream.close Close the XStream instance.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 30

XAM Objects and Common Operations © SNIA
fields that can be assigned almost any name, as specified by the XAM application, XSystem, or XAM
Library that creates the field.

Note: The normative definitions of actual method names and syntax can be found in the XAM C API
Specification [XAM-C-API] and in the XAM Java API Specification [XAM-JAVA-API].

This specification defines a number of system fields using a naming convention that takes advantage of
the field name argument for the <XAMHandle>.openFieldIterator method to form a collection of related
fields (for an example, see the .xsystem.auth.SASLmechanism.list.<mechanism> definition in
Section 7.2.3, “XSystem Fields”).

Example: To iterate over the fields composing the .xsystem.auth.SASLmechanism.list.<mechanism>
collection on a particular XSystem instance, a XAM application would call
XSystem.openFieldIterator using a field name prefix of
.xsystem.auth.SASLmechanism.list. Subsequent calls of XIterator.next would return the
field names for all of the SASL authentication mechanisms supported by this XSystem
instance. The resulting collection of fields could include:

 .xsystem.auth.SASLmechanism.list.ANONYMOUS
.xsystem.auth.SASLmechanism.list.PLAIN
.xsystem.auth.SASLmechanism.list.CRAM-MD5

6.6 FSMs for Secondary Objects – XStreams and XIterators
This section defines the normative FSMs associated with the XStream instance and the XIterator instance.
The FSM tables (Table 12, Table 13, and Table 14) define the normative transitions for the respective
FSM. The associated figures (Figure 6, Figure 7, and Figure 8) show the respective FSM and associated
state transitions. To interpret the transition labels in the tables and figures, first consider each transition to
be the format Method(status). The transitions occur as follows:

1 The application initiates the method.

2 The object instance responds with a status (typically via a return code on the called method) and a
transition in the state machine.

Note: Status ‘ok’ is considered a non-fatal (recoverable) error return; status ’fatal’ is considered a
fatal (non-recoverable) error return code. For a definition of which method return codes
are considered fatal and non-fatal, please see [XAM-C-API] and [XAM-JAVA-API].

Table 11 – XIterator Methods

XIterator Methods Description

<XAMHandle>.openFieldIterator An XIterator is used to enumerate the field names of the fields on an
XSet, XSystem, or XAM object. It shall set the cursor to the beginning
of the field list, which allows applications to specify a field name prefix.
If such a prefix is specified, only those fields whose name begins with
the prefix shall appear in the iteration.

XIterator.hasNext Shall return a value of TRUE, when there are more fields remaining in
the iteration, and a value of FALSE, when there are no fields remaining
in the iteration.

XIterator.next Shall retrieve the next field name in the iteration.

XIterator.close Shall release all resources associated with the XIterator.
31 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
6.6.1 XStream FSM

This section defines the FSMs for the general XStream instance. There are two FSMs—one for opening an
XStream in readonly mode and one for opening the XStream in writeonly or appendonly mode. The
XStream has two additional specialized FSMs, one for importing an XSet and one for exporting an XSet.
For those FSMs, see Section 8.8, “XSet Import and Export”.

XSet.abandon or XSystem.abandon applied to any of the XStream’s parent objects shall force an exit from
the XStream FSM (reader or writer) from any state within the FSM, and all associated resources shall be
returned to the operating environment.

Note: The XStream instance FSM in no way restricts other methods from being called on the parent
object, i.e., the XAM Library, XSystem, or XSet, except as noted.

6.6.1.1 XStream Instance FSM - Reader
The XSystem shall enter the XStream instance reader FSM when a XAM application calls
<XAMHandle>.openXStream in readonly mode. The FSM and the state transitions are shown in Figure 6,
“XStream Instance - Reader FSM”.

Figure 6 – XStream Instance - Reader FSM

Reader

Abandoned

XStream.close(ok)

XStream.read(non-fatal)
XStream.asyncRead(non-fatal)
XStream.tell(non-fatal)
XStream.seek(non-fatal)
XStream.write(non-fatal)
XStream.asyncWrite(non-fatal)
XStream.abandon(non-fatal)

XStream.abandon(ok)

XStream.read(ok,non-fatal)
XStream.asyncRead(ok,non-fatal)
XStream.tell(ok,non-fatal)
XStream.seek(ok,non-fatal)
XStream.write(non-fatal)
XStream.asyncWrite(non-fatal)

<XAMHandle>.openXStream(readonly)

XStream.close(ok)

Read
Corrupt

XStream.read(fatal)
XStream.asyncRead(fatal)
XStream.tell(fatal)
XStream.seek(fatal)
XStream.close(fatal)

XStream.abandon(ok)

XStream.read(fatal)
XStream.asyncRead(fatal)
XStream.tell(fatal)
XStream.seek(fatal)
XStream.write(fatal)
XStream.asyncWrite(fatal)
XStream.close(fatal)

Figure for Informative Purposes Only
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 32

XAM Objects and Common Operations © SNIA
The XStream instance reader FSM shall have the defined inputs, outputs, and transitions as shown in
Table 12, “XStream Instance - Reader FSM Transitions”.

Table 12 – XStream Instance - Reader FSM Transitions

State Transition To Comment

NULL <XAMHandle>.openXStream in
readonly mode

Reader The reader FSM shall be instantiated when
the method returns successfully.

Reader XStream.read(ok)
XStream.asyncRead(ok)
XStream.tell(ok)
XStream.seek(ok)

Reader The requested operation shall have
completed successfully.

Reader XStream.read(non-fatal)
XStream.asyncRead(non-fatal)
XStream.tell(non-fatal)
XStream.seek(non-fatal)

Reader The requested operation shall have failed,
and the XStream state shall stay the same.

Reader XStream.close(ok) NULL Shall free the XStream instance and release
all resources associated with it.

Reader XStream.close(fatal) Read
Corrupt

If any XAsync instance children have not
been closed, XStream.close shall return a
fatal error and the reader FSM shall transition
to the read corrupt state. Additionally, the
XStream may return a fatal error for other
reasons.

Reader XStream.read(fatal)
XStream.asyncRead(fatal)
XStream.tell(fatal)
XStream.seek(fatal)

Read
Corrupt

All fatal errors returned from XStream
operations in the reader state shall transition
the FSM to the read corrupt state.

Reader XStream.write
XStream.asyncWrite

Reader Shall perform no action and shall always
return a non-fatal error.

Reader XStream.abandon Abandoned Shall transition the XStream instance reader
FSM to the abandoned state and shall
always return success. When it enters the
abandoned state, resources associated with
the XStream instance and any XAsync child
instances may or may not be freed.

Read
Corrupt

XStream.read
XStream.asyncRead
XStream.tell
XStream.seek
XStream.write
XStream.asyncWrite

Read
Corrupt

Shall perform no action and shall always
return a fatal error.

Read
Corrupt

XStream.abandon Abandoned Shall transition the XStream instance reader
FSM to the abandoned state and shall
always return success. When it enters the
abandoned state, resources associated with
the XStream instance and any XAsync child
instances may or may not be freed.
33 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
Note: The normative definitions of actual method names and syntax can be found in the XAM C API
Specification [XAM-C-API] and in the XAM Java API Specification [XAM-JAVA-API].

To exit the XStream instance reader FSM, the XAM application shall call XStream.close. This call shall
cause the FSM to be uninstantiated and the associated resources to be returned to the operating
environment. If XStream.close completed successfully, no error occurred in closing the XStream instance.

If the XAM applications opens the XStream in readonly mode, XStream.close shall always return either
success or a fatal error; non-fatal errors are not allowed. If a fatal error is returned, XStream.close causes
a transition to the read corrupt state and may cause the parent object of the XStream to eventually
transition to the corrupt state (i.e., the XSet, the XSystem, or the XAM Library). This transition could occur,
for example, if connectivity was lost to the XAM System. XStream.close might return a fatal error, and the
parent object (i.e., the XSet, XSystem, or XAM Library) would also transition to the corrupt state when
XIterator.next is called on that object.

In the read corrupt state, all XStream methods shall return a fatal error, except XStream.abandon, which
shall return success and transition to the abandoned state. When this transition occurs, the XSystem can
either immediately release the resources associated with the XStream instance and any XAsync child
instances, or it shall release the resources when it exits from the XStream instance reader FSM.

6.6.1.2 XStream Instance FSM - Writer
The XSystem shall enter the XStream instance writer FSM when a XAM application calls
<XAMHandle>.createXStream or when it calls <XAMHandle>.openXStream in writeonly or appendonly
mode.

Abandoned XStream.read
XStream.asyncRead
XStream.tell
XStream.seek
XStream.write
XStream.asyncWrite
XStream.abandon

Abandoned Shall perform no action and shall always
return a non-fatal error.

Abandoned XStream.close NULL Shall always return success, shall free the
XStream instance, and shall release all
remaining resources associated with the
XStream instance and any XAsync child
instances.

Table 12 – XStream Instance - Reader FSM Transitions

State Transition To Comment
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 34

XAM Objects and Common Operations © SNIA
The FSM and the state transitions are shown in Figure 7, “XStream Instance - Writer FSM”.

Figure 7 – XStream Instance - Writer FSM

Writer

Abandoned

XStream.close(ok)

XStream.write(non-fatal)
XStream.asyncWrite(non-fatal)
XStream.tell(non-fatal)
XStream.seek(non-fatal)
XStream.read(non-fatal)
XStream.asyncRead(non-fatal)
XStream.abandon(non-fatal)

XStream.write(fatal)
XStream.asyncWrite(fatal)
XStream.tell(fatal)
XStream.close(fatal)

XStream.write(ok, non-fatal)
XStream.asyncWrite(ok, non-fatal)
XStream.tell(ok, non-fatal)
XStream.seek(non-fatal)
XStream.read(non-fatal)
XStream.asyncRead(non-fatal)

<XAMHandle>.openXStream (writeonly)
<XAMHandle>.openXStream (appendonly)
<XAMHandle>.createXStream

XStream.close(ok)

Write Corrupt

XStream.write(fatal)
XStream.asyncWrite(fatal)
XStream.tell(fatal)
XStream.seek(fatal)
XStream.read(fatal)
XStream.asyncRead(fatal)
XStream.close(fatal)

XStream.abandon(ok)XStream.abandon(ok)

Figure for Informative Purposes Only
35 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
The XStream Writer FSM shall have the defined inputs, outputs, and transitions as shown in Table 13,
“XStream Instance - Writer FSM Transitions”.

Table 13 – XStream Instance - Writer FSM Transitions

State Transition To Comment

NULL <XAMHandle>.openXStream in
writeonly or appendonly mode
<XAMHandle>.createXStream

Writer The Writer FSM shall be instantiated when
the method returns successfully.

Writer XStream.write(ok, non-fatal)
XStream.asyncWrite(ok, non-fatal)
XStream.tell(ok, non-fatal)

Writer For completion status of either success or
non-fatal error, the Writer FSM shall stay in
the Writer state.

Writer XStream.close(ok) NULL Shall free the XStream instance and release
all resources associated with it.

Writer XStream.close(fatal) Write
Corrupt

If any XAsync instance children have not
been closed, XStream.close shall return a
fatal error and the Writer FSM shall transition
to the Write Corrupt state.

Writer XStream.write(fatal)
XStream.asyncWrite(fatal)
XStream.tell(fatal)

Write
Corrupt

A fatal error occurred while accessing the
XStream.

Writer XStream.read
XStream.asyncRead
XStream.seek

Writer Shall perform no action and shall always
return a non-fatal error.

Writer XStream.abandon Abandoned Shall transition the XStream instance writer
FSM to the abandoned state and shall
always return success. When it enters the
abandoned state, resources associated with
the XStream instance and any XAsync child
instances may or may not be freed.

Write Corrupt XStream.write
XStream.asyncWrite
XStream.tell
XStream.read
XStream.asyncRead
XStream.seek
XStream.close

Write
Corrupt

Shall perform no action and shall always
return a fatal error.

Write Corrupt XStream.abandon Abandoned Shall transition the XStream instance reader
FSM to the abandoned state and shall
always return success. When it enters the
abandoned state, resources associated with
the XStream instance and any XAsync child
instances may or may not be freed.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 36

XAM Objects and Common Operations © SNIA
Note: The normative definitions of actual method names and syntax can be found in the XAM C API
Specification [XAM-C-API] and in the XAM Java API Specification [XAM-JAVA-API].

To exit the XStream instance writer FSM, the XAM application shall call XStream.close. This call shall
cause the FSM to be uninstantiated and the associated resources to be returned to the operating
environment. If XStream.close completed successfully, no error occurred in closing the XStream instance.

Note: The XAM specification makes no guarantees as to how much of the data that was written to the
XStream has been moved to persistent storage. Only XSet.commit provides guarantees of data
having reached persistent storage. The XAM specification provides no persistence guarantees for
XStream data that is the child of the XSystem or the XAM Library, as these persistence guarantees
are outside the scope of this specification.

If XStream.close returns a fatal error (see [XAM-C-API] and [XAM-JAVA-API] for what constitutes a fatal
error), the XSet state for the XStream shall be reset to the value it contained when the last commit
occurred, unless the parent object of the XStream also transitions to the corrupt state when XIterator.next
is called on the parent object. If the XStream field did not exist at the last commit, the field value shall be
set to the empty stream (i.e., the field is not deleted, but all bytes written into the XStream value are lost),
unless the parent object of the XStream also transitions to the corrupt state when XIterator.next is called
on the parent object. See Section 8.5, “XSet Instance Finite State Machine (FSM)” and Section 7.3.1,
“Authentication State Machine” for additional information regarding parent object error states.

Note: Fatal errors, such as connectivity loss to the XAM System, may affect both the XStream FSM and
the parent object’s FSM. In this situation, the XStream state from the prior commit operation may
be unrecoverable after a fatal error on XStream.close.

In the write corrupt state, all XStream methods shall return a fatal error, except XStream.abandon, which
shall return success and transition to the abandoned state. When this transition occurs, the XSystem can
either immediately release the resources associated with the XStream instance and any XAsync child
instances, or it shall release the resources when it exits from the XStream instance reader FSM.

6.6.2 XIterator FSM

This section defines the FSM for the XIterator instance. XSet.abandon or XSystem.abandon applied to any
of the XIterator’s parent objects shall force an exit from the XIterator FSM, and all associated resources
shall be returned to the operating environment.

Abandoned XStream.write
XStream.asyncWrite
XStream.tell
XStream.read
XStream.asyncRead
XStream.seek
XStream.abandon

Abandoned Shall perform no action and shall always
return a non-fatal error.

Abandoned XStream.close NULL Shall always return success, shall free the
XStream instance, and shall release all
remaining resources associated with the
XStream instance and any XAsync child
instances.

Table 13 – XStream Instance - Writer FSM Transitions

State Transition To Comment
37 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Objects and Common Operations
No abandon method for the XIterator exists, and thus no abandoned state. Thus, managing the XIterator
object is simpler. Regardless of the completion status of XIterator.close, all resources associated with the
XIterator instance are released; thus, no explicit abandon operation is required.

The XIterator instance FSM in no way restricts other methods from being called on the parent object, i.e.,
the XAM Library, XSystem, or XSet, except as noted.

The XSystem shall enter the XIterator instance FSM when a XAM application calls
<XAMHandle>.openFieldIterator. The FSM and the state transitions are shown in Figure 8, “XIterator
Instance FSM”.

The XIterator instance FSM shall have the defined inputs, outputs, and transitions as described in
Table 14, “XIterator Instance FSM Transitions”.

Figure 8 – XIterator Instance FSM

Table 14 – XIterator Instance FSM Transitions

State Transition To Comment

NULL <XAMHandle>.openFieldIterator XIterator The XIterator FSM shall be instantiated when the
method returns successfully.

XIterator XIterator.hasNext(ok) XIterator The operation shall have completed successfully
and the return value shall be valid. The XIterator
FSM shall stay in the XIterator state.

XIterator XIterator.hasNext(fatal,non-fatal) XIterator The operation has encountered an error and the
return value may or may not be valid. The XIterator
FSM shall stay in the XIterator state.

XIterator XIterator.next(ok) XIterator The operation shall have completed successfully.
The return value shall be valid and the state of the
iteration shall advance. The XIterator FSM shall
stay in the XIterator state.

XIterator

<XAMHandle>.openFieldIterator

XIterator.close

XIterator.next(ok,non-fatal,fatal)
XIterator.hasNext(ok,non-fatal,fatal)

Figure for Informative Purposes Only
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 38

XAM Objects and Common Operations © SNIA
Note: The normative definitions of actual method names and syntax can be found in the XAM C API
Specification [XAM-C-API] and in the XAM Java API Specification [XAM-JAVA-API].

To exit the XIterator instance FSM, the XAM application shall call XIterator.close. This call shall cause the
FSM to be uninstantiated and the associated resources to be returned to the operating environment. If
XIterator.close completed successfully, no error occurred in closing the XIterator instance.

If the XIterator was successfully opened and XIterator.close returns a non-fatal or fatal error, the fields
associated with the parent object shall not be modified. However, if a fatal error occurred, XIterator.close
may cause the parent object of the XIterator to eventually transition to the corrupt state (i.e., the XSet, the
XSystem, or the XAM Library). This transition could occur, for example, if connectivity was lost to the XAM
System. XIterator.close might return a fatal error, and the parent object (i.e., the XSet, XSystem, or XAM
Library) would also transition to the corrupt state when XIterator.next is called on that object.

Note: No explicit corrupt state exists for the XIterator instance FSM, which simplifies the interaction with
the XIterator. If the XSystem chooses to maintain an internal state that causes the XIterator
instance to become unusable, it may simply return a fatal error for any calls made on the XIterator
instance.

Regardless of the return value of XIterator.next and XIterator.hasNext, the XIterator instance FSM shall
stay in the same XIterator state.

XIterator XIterator.next(fatal,non-fatal) XIterator The operation has encountered an error and the
return value may or may not be valid. The state of
the iteration shall not have changed. The XIterator
FSM shall stay in the XIterator state.

XIterator XIterator.close(ok,fatal,non-fatal) NULL Shall free the XIterator instance and release all
resources associated with it, regardless of whether
the operation completed successfully with a fatal
error or non-fatal error.

Table 14 – XIterator Instance FSM Transitions

State Transition To Comment
39 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Library and XSystems
7 XAM Library and XSystems
This chapter examines, in more detail, the XAM Library and XSystem logical view of XAM and the software
module perspective, taking into account the VIM and XAM Toolkit. Figure 9 shows an overview of the XAM
Library components. This figure was first shown in Chapter 5, “Overview of the XAM Architecture”, which
introduced the XAM software modules.

The logical view of XAM was first introduced in Section 5.2, “XAM Object Model” as a set of hierarchical
objects. Section 6.1, “XAM Objects” formally defined the object hierarchy and how individual object
instances are created and destroyed. This chapter defines the specific attributes of the XAM Library and
XSystem objects.

7.1 XAM Library
This section describes the XAM Library, which is a software component that implements the XAM
Application Programming Interface (API). The XAM Library allows XAM applications to create and manage
XAM sessions and to connect to and manipulate XSystems. The XAM Library also contains fields
(properties or XStreams) that describe its capabilities, configuration, and characteristics.

The XAM Library may have different implementations and characteristics, depending on the programming
language and operating environment for which it is designed. To illustrate, it may be helpful to think of the
XAM Library as a dynamically linked library (DLL) that implements the C language XAM API described in
[XAM-C-API]. Using this analogy, the source code of a XAM application that wants to use the XAM API
must be configured to call the XAM API methods, and the XAM application’s executable code must be
linked with the XAM Library DLL.

It is strongly recommended that the design and implementation of the XAM Library impose no less or more
constraints on concurrency beyond what the target operating environment supports. An application that
uses XAM Library resources should have no effect on other concurrent applications.

Figure 9 – XAM Library Components

XAM Library

Application

XAM Toolkit

Vendor A
VIM

Vendor B
VIM

Vendor C
VIM

Toolkit API

XAM API

VIM API
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 40

XAM Library and XSystems © SNIA
If the operating environment supports it, individual applications may use multithreading to call independent
requests to the XAM Library concurrently; hence, all XAM Library method implementations in these
operating environments shall be thread safe. Calling a block on a XAM API method causes a thread within
the method to block until the XAM Library is able to complete or fail the method.

The XAM Library provides asynchronous (i.e., non-blocking) methods for a subset of the XAM API. By
invoking a non-blocking XAM API method, control is returned immediately to the thread that called the
method. The XAM application can either poll or use a callback method to determine when the operation
has completed (either successfully or with an error). If a callback method is defined when the non-blocking
method is called, then the callback interface shall be called when the non-blocking method has completed.
If a callback method is not specified, the XAM application uses XAsync.isComplete to poll for the status of
the asynchronous method.

7.1.1 Vendor Interface Modules

The XAM Library is a software layer that implements the XAM API methods and abstracts any storage
implementation and interface details away from the application. To communicate with the actual
implementations of XAM Storage Systems, the XAM Library uses Vendor Interface Modules (VIMs), which
are software modules provided by the respective vendors of said systems. The VIM’s purpose is to help
translate standard XAM API commands, which the application calls using the XAM API, into whatever
vendor-specific actions are required to implement them. The XAM Library interfaces with the VIMs using a
standard VIM API described in [XAM-C-API] and [XAM-JAVA-API].

The XAM Library is responsible for discovering and managing all VIMs installed and configured in its
environment. While XAM Library implementations may differ in specifics, all XAM Libraries should support
adding new VIMs and deleting and upgrading existing VIMs. All XAM Libraries should also support the
ability to, on demand, dynamically load and initialize VIMs during normal operations.

XAM Library implementations should seek to optimize the consumption of local resources. The XAM
Library should manage VIMs and their run-time behavior in such a way that a program error encountered
in one VIM should not interfere with unrelated requests in that VIM or other registered VIMs. The XAM
Library should also seek to ensure that VIM management operations do not cause unintended resource
leaks or system crashes.

The functionality of VIMs should be hidden from the application, which enables the application to concern
itself only with the XAM Library and the XAM API.

7.1.2 XAM Toolkits

Besides general applications, optional XAM toolkits may be built on top of the standard XAM API. Such
toolkits may be provided by any storage vendor or interested third party. The XAM standard toolkit and list
of available toolkit methods can be found in Annex A, “(normative) XAM Toolkit”.

7.1.3 Methods on the XAM Library Object

The full specification of XAM API methods can be found in [XAM-C-API] and [XAM-JAVA-API]. Table 15
describes the methods on the XAM Library object.

Table 15 – Methods on the XAM Library Object

Method Input Output Comment

XAMLibrary.connect XRI XSystem instance Establishes a XAM session to a specified XSystem

Note: Disconnecting from an XSystem is listed in Section 7.2.2, “XSystem Methods”.
41 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Library and XSystems
The XRI is used to specify the XSystem to which the application wishes to connect. The XRI may
optionally include a vimName which indicates the preferred VIM to use for the connection. See
Section 7.2.1, “XSystem Resource Identifier”, for details.

7.1.4 Fields of the XAM Library Object

Table 16, “Fields of the XAM Library Object” defines a set of XAM Library object fields that shall be
supported by every XAM Library implementation. Please note that these fields are not necessarily static
and persistent, as the XAM Library object may synthesize them at run time.

The concept of binding/nonbinding field attributes doesn’t apply to XAM Library object fields; therefore, all
XAM Library object fields shall be nonbinding. Some XAM Library object fields may be readonly and
intended to be only inspected by the application. Others may be modifiable by the application to effect a
change in the behavior of the XAM Library object. Changes to XAM Library object fields shall not be
persisted.

.xam.identity

is a xam_string indicating the identity of a particular XAM Library. Applications should treat this field as an
opaque string for informative purposes and shall not make functional decisions based on its contents. XAM
Library vendors shall use this field to indicate the origin, version, and other identifying qualities of a
particular XAM Library.

Example: .xam.identity contains “Example Corp XAM Library, version 2.5, build 006”.

.xam.log.append

is a xam_boolean value indicating whether to append to an existing log file (TRUE) or overwrite (FALSE).
The default value shall be FALSE.

.xam.log.level

is a xam_int property indicating the run-time severity of which loggable events are written to the log file.
The log level applies to the XAM Library object and all associated VIMs. This field can be modified by the

Table 16 – Fields of the XAM Library Object

Field Name Type Binding ReadOnly

.xam.identity xam_string FALSE TRUE

.xam.log.append xam_boolean FALSE FALSE

.xam.log.level xam_int FALSE FALSE

.xam.log.max.rollovers xam_int FALSE FALSE

.xam.log.max.size xam_int FALSE FALSE

.xam.log.verbosity xam_int FALSE FALSE

.xam.log.path xam_string FALSE FALSE

.xam.apiLevel xam_string FALSE TRUE

.xam.vim.list.<name> xam_string FALSE TRUE
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 42

XAM Library and XSystems © SNIA
application, which can use it to increase/decrease the severity of which events are logged. A value of 0
shall mean “no logging”. The permissible values for .xam.log.level shall be:

All 5

INFO 4

WARN 3

ERROR 2

FATAL 1

OFF 0

Example: .xam.log.level contains 0 (no logging).

.xam.log.max.rollovers

is a xam_int value indicating the number of previous log files to retain when starting a new log file. The
default value shall be 1.

.xam.log.max.size

is a xam_int value indicating the maximum size, in bytes, that a log file may reach before a new log file is
started. The default value shall be 1GB (2^30 = 1,073,741,824 bytes).

.xam.log.verbosity

is a xam_int property indicating the run-time verbosity of a XAM Library object and all associated VIMs.
This field can be modified by the application, which can use it to increase/decrease the verbosity of logged
events. A value of 0 shall mean “no logging”. The effect of changing this field, as well as the possible
values of this field, are specific to the implementation of the XAM Library.

Example: .xam.log.verbosity contains 0 (no debugging).

.xam.log.path

is a xam_string property indicating the run-time path to the XAM Library log file. This field can be modified
by the application, which will create the log file at the specified location. The effect of changing this field is
specific to the implementation of the XAM Library.

Example: Example:.xam.log.path “/home/application/xamlog.txt”

.xam.apiLevel

is a xam_string property indicating the XAM API version supported by a XAM Library. The apiLevel shall
always be in the format “xx.yy.zz”. XAM Version 1.0 shall be “01.00.00”.

.xam.vim.list.<name>

is a set of xam_string properties indicating a list of VIM names that are generated by the XAM Library
based on available VIMs configured or discovered in the current operating environment. Each of these
fields is a xam_string containing the vimName. The vimName may be taken verbatim and used to
construct an argument (called an XRI) which is passed into XAMLibrary.connect.

Example: .xam.vim.list.com.example.v0814 contains “com.example.v0814”.
43 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Library and XSystems
A possible resulting XRI would be “snia-xam://com.example.v0814!xsystemname”

7.2 XSystem
This section describes the concept and characteristics of the XSystem. The XSystem is a logical container
of XSets and fields (properties or XStreams), which are pertinent to the XSystem, and describe its
capabilities, configuration, and other characteristics.

It is important to realize the difference between the XSystem and the XAM Storage System. The XSystem
is a logical concept. It defines, contains, and provides access to the set of XSets which are associated with
a unique XAM session. The XAM Storage System is a set of software and hardware components needed
to implement and support the behavior of one or more XSystems. As such, the XAM Storage System is a
concept relevant to storage providers only, and is not exposed to XAM applications. How an individual
XSystem maps to one or more or a subset of XAM Storage Systems is resolved by the implementation of
the VIM and the XAM Storage System and may not be visible to the XAM applications at all.

For example, an XSystem may map to a single storage array supplied by a storage vendor, or maybe to a
physical or logical partition of this array. It may also map to an aggregation of several arrays, or several
partitions residing on the same or different arrays, supplied by the same or different vendors. The
implementations of these arrays may include different types of storage hardware and media, e.g., Fibre
Channel or SATA disk drives, or optical disks or tape drives. All of these details concern only the XAM
Storage System implementor and are abstracted away from the XAM application, which experiences the
XAM world through the simplified virtual concept of an XSystem.

Throughout the XAM documentation, the terms XAM Storage System, XSystem, XSystem instance, and
XAM session are used extensively. These terms are clarified as follows:

• A XAM Storage System is some combination of storage software and hardware and cannot be
directly manipulated by the XAM application. An XSystem is a logical concept, or a virtual
container of XSets, which ultimately maps (by some particular storage vendor’s implementation) to
some XAM Storage System.

• A XAM session is a logical connection between an application and a particular XSystem. This
connection presents the application with a specific view of the XSystem, which is also referred to
as an XSystem instance. An example would be if the XSystem is configured to grant conditional
visibility of its fields or XSets, based on the identity and authentication of the application
establishing the XAM session. Thus, two different applications connecting to the same target
XSystem (via two separate XAM sessions) may see two different XSystem instances, which, in
fact, may be slightly different, as the XSystem view depends on the context of the actual XAM
session.

Thus, the terms XAM session and XSystem instance are synonymous and interchangeable, with the
former term putting an emphasis on the logical connection (and its lifecycle), and the latter term referring to
the object that is visible through this logical connection.

7.2.1 XSystem Resource Identifier

A XAM application connects to an XSystem by calling XAMLibrary.connect in the XAM API and specifying
the XSystem’s Resource Identifier (XRI) string as its parameter. The XRI shall be an IRI (Internationalized
Resource Identifier, [RFC 3987], and its syntax shall be as follows (in ABNF notation). See [RFC 4234] for
details on ABNF.

xam-xri = "snia-xam://" [vimname] xsystemname [params]
vimname = iuserinfo "!" ; allows same characters as user info
xsystemname = ihost ; xsystemname has same syntax as host
params = "?" param "=" value [more-params]
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 44

XAM Library and XSystems © SNIA
more-params = 1*("&" param "=" value)
param = 1*ifragchar
value = 1*ifragchar
ifragchar = ipchar / "/" / "?"; characters allowed in a fragment

The fields iuserinfo, ihost, and ipchar shall be as defined in [RFC 3987]. This syntax allows percent-
encoding in any element. See [RFC 3986] for more details on percent-encoding. This syntax forbids
private use Unicode characters, even though [RFC 3987] allows their use in the query component of an
IRI. This syntax shall be further restricted by the following rules:

• "!" shall be forbidden in the VIM name.

• An xsystemname shall follow the rules for DNS names. A name consists of a sequence of domain
labels separated by ".", each domain label starting and ending with an alphanumeric character and
possibly also containing "-" characters. The rightmost domain label of a fully qualified domain
name in DNS may be followed by a single "." and should be, if it is necessary to distinguish
between the complete domain name and some local domain.

• "&" shall be forbidden in param and value.

As indicated, param=value clauses in the XRI may be used to specify session-related parameters. These
parameters and their values are not defined within the XAM standard and are expected to be vendor
specific. However, the character “.” (a dot) shall be reserved as the first character of parameters that may
be standardized by the SNIA in the future.

Site administrators are expected to create the xsystemnames when their XSystems are configured, and
therefore will be familiar with these names. Likewise, the storage vendors shall create the vimnames for
their respective VIMs. Applications should be designed and coded in a way to allow the XRI to be easily
configured at run time.

Per the XRI definition above, vimname is an optional component of the XRI. If specified, it shall be a
directive to the XAM Library for which VIM to use to reach the specified xsystemname. If not specified, the
XAM Library may need to use some type of algorithm to find the right VIM to use. One possible algorithm is
for the XAM Library to iterate through its list of installed VIMs, trying to establish a connection through each
of them, until it finds the right VIM able to connect to xsystemname. The XAM Library may also choose to
persistently cache previously discovered xsystemname-to-VIM mappings. Since the discovery process
may be inefficient, applications using the XAM Library may want to minimize the impact by specifying the
vimname whenever practical. Prudent application writers may want to be careful not to unconditionally
hard code the vimnames, since the vimnames may change as the VIMs are upgraded or replaced.

When the application creates an XSystem instance (using an XRI and the XAMLibrary.connect method),
the XAM Library shall load and initialize the VIM. Loading and initializing the VIM shall not require any
special methods to be called by the calling application; this is done automatically as a part of the connect.
The transfer of information from the XAM Library to the VIM is mediated by the XSystem instance. When
constructed, a field shall be created on the XSystem instance. This field shall be named
.xsystem.initializing with a value of TRUE and with readonly also being TRUE. Then, all fields on the XAM
Library shall be created on the new XSystem instance with the same field names, attributes, and values.
Finally, .xsystem.initializing will be removed. The VIM shall take this information and process it accordingly.
Finally, the unauthenticated XSystem instance shall be returned to the application.
45 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Library and XSystems
7.2.2 XSystem Methods

Table 17 and Table 18 list the synchronous and asynchronous methods for the XSystem.

7.2.3 XSystem Fields

Table 18, “XSystem Fields” defines a set of XSystem fields that shall be supported by every XSystem
implementation. These fields are not necessarily static and persisted within the XSystem; they may be
synthesized by the XSystem at run time, within the scope of an established XAM session. The visibility of
these fields depends on the specific state within the authentication state machine. See Section 7.3.1,
“Authentication State Machine” for more details on the authentication state machine.

Table 17 – XSystem Synchronous Methods

Method Input Output Comment

XSystem.authenticate XStream
(writeonly mode)

XStream
(readonly mode)

Starts authentication handshake

XSystem.abandon - - Abandons existing XAM session

XSystem.close - - Closes existing XAM session

XSystem.createXSet - XSet instance Creates a new XSet

XSystem.openXSet XUID XSet instance Opens specified XSet

XSystem.copyXSet XUID XSet instance Creates a new XSet with some
system and all application fields
identical in name, attributes, and
value to those of the input XSet

XSystem.deleteXSet XUID - Deletes specified XSet

XSystem.isXSetRetained XUID xam_boolean Verifies whether the XSet is subject
to XSet retention criteria

XSystem.accessXSet XUID xam_boolean Verifies whether the XSet can be
accessed

XSystem.holdXSet XUID, xam_string - Marks specified XSet for hold

XSystem.releaseXSet XUID, xam_string - Releases specified XSet from hold

XSystem.getXSetAccessTime XUID xam_datetime Returns .xset.time.access from
specified XSet without changing it

Table 18 – XSystem Asynchronous Methods

Method Input Output Comment

XSystem.asyncOpenXSet XUID, Callback, XOPID XAsync Opens specified XSet

XSystem.asyncCopyXSet XUID, Callback, XOPID XAsync Creates a new XSet with some
system and all application fields
identical in name, attributes, and
value to those of the input XSet
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 46

XAM Library and XSystems © SNIA
The concept of binding/nonbinding field attributes is irrelevant for XSystem fields; therefore, all XSystem
fields shall be nonbinding. Some XSystem fields may be readonly and intended to be only inspected by the
application. Others may be modifiable by the application to effect a change in the behavior of the XSystem.

.xsystem.identity

is a xam_string indicating the identity of an XSystem. Applications should treat this field as an opaque
string for informative purposes and shall not make functional decisions based on its contents. XSystem

Table 19 – XSystem Fields

Field Name Type Binding Readonly

.xsystem.identity xam_string FALSE TRUE

.xsystem.time xam_datetime FALSE TRUE

.xsystem.limits.maxFieldsPerXSet xam_int FALSE TRUE

.xsystem.limits.maxSizeOfXStream xam_int FALSE TRUE

.xsystem.auth.SASLmechanism.list.<mechanism> xam_boolean FALSE TRUE

.xsystem.auth.SASLmechanism.default xam_string FALSE TRUE

.xsystem.auth.granule.list.<granule> xam_boolean FALSE TRUE

.xsystem.auth.identity.authentication xam_string FALSE TRUE

.xsystem.auth.identity.authorization xam_string FALSE TRUE

.xsystem.auth.expiration xam_int FALSE TRUE

.xsystem.access xam_boolean FALSE TRUE

.xsystem.access.policy.list.<name> xam_string FALSE TRUE

.xsystem.job.commit.supported xam_boolean FALSE TRUE

.xsystem.job.list.<jobType> xam_boolean FALSE TRUE

.xsystem.job.list.xam.job.query xam_boolean FALSE TRUE

.xsystem.job.xam.job.query.continuance.supported xam_boolean FALSE TRUE

.xsystem.job.xam.job.query.level1.supported xam_boolean FALSE TRUE

.xsystem.job.xam.job.query.level2.supported xam_boolean FALSE TRUE

.xsystem.retention.enabled.policy.list.<name> xam_string FALSE TRUE

.xsystem.retention.duration.policy.list.<name> xam_string FALSE TRUE

.xsystem.deletion.autodelete xam_boolean FALSE TRUE

.xsystem.deletion.autodelete.policy.list.<name> xam_string FALSE TRUE

.xsystem.deletion.shred xam_boolean FALSE TRUE

.xsystem.deletion.shred.policy.list.<name> xam_string FALSE TRUE

.xsystem.storage.policy.list.<name> xam_string FALSE TRUE

.xsystem.management.policy.list.<name> xam_string FALSE TRUE

.xsystem.management.policy.default xam_string FALSE TRUE
47 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Library and XSystems
implementers shall use this field to indicate the identity and other identifying qualities of a particular
XSystem.

Example: .xsystem.identity contains “Example Corp – Lab Test System #16”.

.xsystem.time

is a xam_datetime property indicating the current time on an XSystem. The time shall always be reported
as UTC (Coordinated Universal Time), though the precision and granularity depends on the XSystem
implementation.

Example: 2008-08-09T05:52:30.188Z

.xsystem.limits.maxFieldsPerXSet

is a xam_int property indicating the maximum number of fields that each XSet that is created on a
particular XSystem may contain. This value shall be in the range [2^14, 2^63-1] (i.e, from 16,384 to
1.05567e+49 inclusive), depending on the XSystem implementation. The actual limit may be lower,
depending on run-time resource constraints.

.xsystem.limits.maxSizeOfXStream

is a xam_int property indicating the maximum number of bytes each individual XStream created on a
particular XSystem may contain. This value shall be in the range [2^36, 2^63-1] (inclusive of boundaries),
depending on the XSystem implementation. The actual limit may be lower, depending on the constraints of
run-time resources.

.xsystem.auth.SASLmechanism.list.<mechanism>

is a set of xam_boolean properties indicating a list of valid SASL mechanism keywords, as defined and
maintained by IANA; see [IANA-SASL]. The value of each property in this list indicates whether that
particular mechanism is supported by the XSystem.

Example: .xsystem.auth.SASLmechanism.list.CRAM-MD5 (= TRUE) indicates that the XSystem
supports the CRAM-MD5 SASL mechanism.

.xsystem.auth.SASLmechanism.default

is a xam_string property whose value indicates the default SASL mechanism in use by an XSystem.
Applications are encouraged to use the default whenever possible.

Example: .xsystem.auth.SASLmechanism.default (= “CRAM-MD5”) indicates that the XSystem’s
SASL mechanism defaults to CRAM-MD5.

.xsystem.auth.identity.authentication

.xsystem.auth.identity.authorization

are two xam_string properties whose values indicate the SASL authentication and authorization identities
within the scope of the current XAM session. See Section 11.2, “XAM Application Authentication and
SASL” for an in-depth discussion of SASL and these identities.

.xsystem.auth.granule.list.<granule>

is a set of xam_boolean properties indicating a list of valid XAM granules. See Section 11.3.1.1, “XSystem
Authorization Elements” for a normative list of granules. The value of each property in this list indicates
whether that particular granule is granted to the application.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 48

XAM Library and XSystems © SNIA
Example: .xsystem.auth.granule.list.hold (= TRUE) indicates that the application is granted the
granule to call XSystem.holdXSet and XSystem.releaseXSet.

.xsystem.auth.expiration

is a xam_int property indicating the number of seconds remaining before the XSystem will require a re-
authentication. This value is an estimated value and should be treated as a hint. The real value may be
longer than the estimated value. A value of -1 (negative one) shall mean that the expiration estimate is
infinite or that no re-authentication is required.

.xsystem.access

is a xam_boolean property indicating whether an XSystem supports (and has enabled) XSet access
control policy. See Section 11.3.2, “XSet Access Control Policy” for an in-depth explanation of XSet
access control policy.

.xsystem.access.policy.list.<name>

is a set of xam_string properties indicating a list of XSet policy names that are pertinent to the XSystem’s
XSet access control policy capability. See Section 11.3.2, “XSet Access Control Policy” for an in-depth
explanation of XSet access control policy.

.xsystem.job.commit.supported

is a xam_boolean property indicating whether the XSystem supports invoking XSet.commit on an XSet,
which, at present, identifies a running job.

.xsystem.job.list.<jobType>

is a set of xam_boolean properties indicating a list of valid XAM job types. The xam_boolean value of each
individual property in this list indicates whether that particular job type is supported by the XSystem.
JobType “query” shall be supported by all XSystem implementations.

Example: .xsystem.job.list.xam.job.query (= TRUE) indicates that the XSystem supports query
functionality. See Chapter 10, “Query” for an in-depth explanation of XAM query).

.xsystem.job.list.xam.job.query

is a xam_boolean property whose presence and value indicates that the XSystem supports the “query”
jobType.

.xsystem.job.xam.job.query.continuance.supported

.xsystem.job.xam.job.query.level1.supported

.xsystem.job.xam.job.query.level2.supported

is a set of xam_boolean properties indicating the capabilities supported by the “query” jobType on a
particular XSystem. See Section 10.4, “Level 1 Query: Where Clause Operators” and Section 10.5, “Level
2 Query: Where Clause Content Search Operators” for a detailed explanation of XAM query capabilities.

.xsystem.retention.enabled.policy.list.<name>

.xsystem.retention.duration.policy.list.<name>

are xam_string properties indicating lists of XSet policy names that are pertinent to various aspects of the
XSystem’s XSet retention policy management and available on a particular XSystem. See Section 9.3.3,
“XSet Management Policy” for an in-depth explanation of XSet retention management policies.
49 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Library and XSystems
.xsystem.deletion.autodelete

is a xam_ boolean property indicating whether an XSystem supports (and has enabled) the XSystem
deletion of an XSet after XSet retention criteria is satisfied and the XSet is not on-hold. See Section 9.2.2,
“XSet Deletion” for an in-depth explanation of XSet automated deletion.

.xsystem.deletion.autodelete.policy.list.<name>

is a set of xam_string properties indicating a list of XSet policy names that are pertinent to the XSystem’s
autodelete capability. See Section 9.3.3, “XSet Management Policy” for an in-depth explanation of XSet
management policies.

.xsystem.deletion.shred

is a xam_ boolean property indicating whether a XAM Storage System supports (and has enabled) the
shred after delete capability. See Section 9.2.2, “XSet Deletion” for an in-depth explanation of XSet
shredding.

.xsystem.deletion.shred.policy.list.<name>

is a set of xam_string properties indicating a list of XSet policy names that are pertinent to the XSystem’s
shred after delete capability. See Section 9.3.3, “XSet Management Policy” for an in-depth explanation of
XSet management policies.

.xsystem.storage.policy.list.<name>

is a set of xam_string properties indicating a list of XSet policy names that are pertinent to the XSystem’s
storage management capabilities. See Section 9.3.3, “XSet Management Policy” for an in-depth
explanation of XSet management policies.

.xsystem.management.policy.list.<name>

is a set of xam_string properties indicating a list of XSet principal management policy names that are
pertinent to the XSystem’s XSet management capabilities. See Section 9.3.3, “XSet Management Policy”
for an in-depth explanation of XSet management policy.

.xsystem.management.policy.default

is a xam_string property whose value indicates the default principal management policy available on an
XSystem. See Section 9.3.5, “XSet Management Policy Default” for an in-depth explanation of XSet
management policy).

Example: .xsystem.management.policy.default (= “somepolicyname”) indicates that the XSystem’s
XSet management policy defaults to “somepolicyname”.

7.3 XAM Session

Note: In this section, the phrases “connecting to an XSystem” and “opening/establishing a XAM session”
are synonymous, as are “disconnecting from an XSystem” and “closing/terminating a XAM
session”.

To access an XSystem, an application shall first connect to it and establish a XAM session. The XAM
session is a logical connection between the application and the XSystem and persists until either the
application or the XSystem decides to terminate it. The session is also considered terminated, when either
the application or the XSystem terminates abnormally. The XSystem may require an application to specify
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 50

XAM Library and XSystems © SNIA
its identity after a XAM session is established and may authenticate this identity before access to data
within the XSystem is granted.

A single XAM application may establish one or more concurrent XAM sessions to the same XSystem; a
single XAM application may establish several XAM sessions to several XSystems simultaneously; and
several XAM applications may be connected (maintain established XAM sessions) to a single XSystem
concurrently.

Again, it is important to realize that the XAM session is not equivalent to a TCP/IP network connection or
any other type of connection to a vendor’s storage array. The XAM session is a logical concept in the XAM
world. The implementation of the XAM Storage System may use several network connections or any other
means to implement and support the behavior of the XAM session.

XSystems may be configured by their administrators (by means outside of the scope of the XAM standard)
to require applications to identify themselves and to authenticate their identity before granting them any
type of access to data contained in the XSystem. Authentication always happens within the context of a
XAM session and is not an optional step. All XSystems will feature some level of authentication, though the
strength (and complexity) of the authentication process may differ with different XSystem implementations
and their actual configurations in end-user environments.

The implementation of the authentication mechanism in XAM is based on SASL (see Term 3.1.19, “SASL”)
and may include several challenge/response handshake interactions between the application and the
XSystem. The XAM API provides methods for applications to initiate the authentication handshake and to
respond to any challenges.

All XSystem implementations shall support the SASL “ANONYMOUS” and “PLAIN” mechanisms, though
the XAM Storage System administrator may choose not to use these mechanisms. XAM Storage System
vendors are encouraged to implement more sophisticated authentication mechanisms.

7.3.1 Authentication State Machine

XSystems may be configured to require the application to authenticate once on XAM session initiation, or
to re-negotiate their authentication periodically, e.g., after some amount of elapsed time or data traffic.
Since initial authentication shall be required always, applications shall initiate the authentication
handshake and present their credentials immediately after establishing the XAM session (connecting to
the XSystem). Failure to authenticate shall cause the XSystem to deny the application any access to data
contained within it.
51 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Library and XSystems
The state machine in Figure 10, “Authentication State Machine” represents the various states of the XAM
session. These states reflect the authentication status and the status returns that the XAM application may
experience as a result of the method calls. XSystems shall support these methods and status returns.

The states in Figure 10 are labelled U (unauthenticated), A (authenticated), RA (re-authenticating),
F (failed) and X (abandoned). When in states A and RA, the application shall be considered authenticated
and have full access to the XSystem resources. On the other hand, states U, F, and X are states where the
application is in various non-authenticated states, and therefore shall not have access to XSystem
resources. For convenience, this section will refer to a XAM session in states (A, RA) as logged in and in
states (U, F, X) as logged out. Thus, within the context of an established XAM session, an application may

Figure 10 – Authentication State Machine

AU RA

F

X

Auth(done)
Method(non-fatal)

Auth(more)
Method(non-fatal)

Auth(reject)
Method(expire)

Auth(fatal)
Method(fatal)

Abandon

Auth(fatal)
Method(fatal)

Auth(fatal)
Method(fatal)

Abandon

Abandon

Auth(done)

Auth(reject)
Method(expire)

Auth(more)

Auth(done)

Abandon

Connect

Close(ok)

Close(ok)

Close(ok)

Close(ok)

Auth(reject)
Auth(more)

Method(non-fatal)
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 52

XAM Library and XSystems © SNIA
be logged in or logged out, depending on its current state in the authentication state machine as shown in
Figure 10.

To interpret the transition labels in the authentication state machine, first consider each transition to be the
format Method(status). For clarity, Method(status) is used to denote a XAM API method call, excluding the
authentication, close, and abandon methods, which are particularly relevant to the state machine and are
labelled explicitly. The transitions occur as follows:

1 The application initiates the method.

2 The XSystem responds with a status (typically via a return code on the called API method) and a
transition in the state machine.

Note: In the table below, (non-fatal) is considered a recoverable error return, and (fatal) is
considered a non-recoverable error return. See [XAM-C-API] and [XAM-JAVA-API] for
what constitutes a fatal or non-fatal error.

Table 19, “Authentication State Machine” describes the state machine transitions in a more formal way.

Table 20 – Authentication State Machine

State Transition To Comments

NULL XAM session not established

Connect U XAMLibrary.connect succeeds.

U Unauthenticated: XAM session established but application not logged in.

U Close(ok) NULL XSystem.close succeeds. Application terminates XAM session
gracefully.

U Abandon X XSystem.abandon succeeds. Application abandons XAM session
ungracefully.

U Auth(fatal)
Method(fatal)

F XSystem.authenticate returns a fatal error, or any XAM API method
returns a fatal error.

U Auth(more)
Auth(reject)
Method(non-fatal)

U XSystem.authenticate returns ‘more’ (requiring that the handshake be
continued), ‘reject’ (rejecting the authentication attempt without
prejudice), or any XAM API method returns a non-fatal error.

U Auth(done) A XSystem.authenticate successfully completes the authentication
handshake.

A Authenticated: XAM session established, application logged in.

A Close NULL XSystem.close succeeds. Application terminates XAM session
gracefully.

A Abandon X XSystem.abandon succeeds. Application abandons XAM session
ungracefully.

A Auth(fatal)
Method(fatal)

F XSystem.authenticate or any XAM API method returns a fatal error.

A Auth(reject)
Method(expire)

U XSystem.authenticate returns ‘reject’ (rejecting the re-authentication
attempt without prejudice), or any XAM API method returns a non-fatal
expiration error.

A Auth(done)
Method(non-fatal)

A XSystem.authenticate successfully re-authenticates or any XAM API
method returns a non-fatal error.
53 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Library and XSystems
The major concepts of the state machine include initial authentication and re-authentication, of which there
are two types: reactive and proactive.

7.3.2 Initial Authentication

The XAM application enters the state machine by connecting to the XSystem, and the XAM session is
initially placed in state U (unauthenticated). In state U, the XAM application shall have access to XSystem
fields .xsystem.auth.SASLmechanism.list.*. Visibility of other XSystem fields in state U depends on the
XSystem implementation. In states A and RA, all XSystem fields defined in Table 18, “XSystem Fields”
shall be visible. Visibility of XSystem fields in states X and F depends on the XSystem implementation.

The XAM application initiates the authentication handshake by calling XSystem.authenticate. Depending
on the SASL mechanism configured on the XSystem and selected by the application, the application may
need to respond to a series of challenges by iteratively calling XSystem.authenticate. When authentication
succeeds, the XAM session transitions to the A (authenticated) state. When authentication fails, the XAM
session either stays in state U (unauthenticated - authentication rejected) or transitions terminally to state
F (failed - authentication rejected with prejudice or XSystem experienced a fatal error).

Once in state A, the XAM application can access the contents stored within the XSystem, subject to the
capabilities that the site security administrator grants to the application’s identity and role.

A Auth(more) RA XSystem.authenticate returns ‘more’ (requiring that the authentication
handshake be continued).

RA Re-authenticating: XAM session established, application logged-in, proactive re-authentication in
progress.

RA Close NULL XSystem.close succeeds. Application terminates XAM session
gracefully.

RA Abandon X XSystem.abandon succeeds. Application abandons XAM session
ungracefully.

RA Auth(fatal)
Method(fatal)

F XSystem.authenticate or any XAM API method returns a fatal error.

RA Auth(more)
Method(non-fatal)

RA XSystem.authenticate returns ‘more’ (requiring that the handshake be
continued), or any XAM API method returns a non-fatal error.

RA Auth(reject)
Method(expire)

U XSystem.authenticate returns ‘reject’ (rejecting the re-authentication
attempt without prejudice), or any XAM API method returns a non-fatal
expiration error.

RA Auth(done) A XSystem.authenticate successfully completes the re-authentication
handshake.

F Failed: XAM session established but in a failed state; application may call only XSystem.abandon.

F Abandon X XSystem.abandon succeeds.

X Abandoned: XAM session established but in abandoned state; application may only call
XSystem.close.

X Close(ok) NULL XSystem.close succeeds.

Table 20 – Authentication State Machine

State Transition To Comments
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 54

XAM Library and XSystems © SNIA
7.3.3 Re-Authentication

Some security environments may require that storage users periodically re-authenticate with the local
security authority, even if they already hold an established and fully authenticated XAM session. In such
environments, XSystems configured to require periodic re-authentication may trigger the authentication
handshake at any point throughout the lifetime of the XAM session, by signalling to the application that a
re-authentication is required. This signalling is typically done via an appropriate non-fatal error return code,
which may be returned by any XAM API method. Authentication expiration errors are deliberately non-
fatal; if the application successfully re-authenticates after having been signalled to do so, the XAM session
shall be restored to its pre-expiration state. XAM applications should anticipate this scenario and be coded
in a way to react to re-authentication requests gracefully.

Alternatively, applications may also proactively re-authenticate their existing XAM session by initiating the
authentication handshake at any point during the lifetime of the XAM session. The XSystem maintains a
property field (.xsystem.auth.expiration), which contains the number of seconds left until a re-authentication
is required. Applications may take advantage of this field to proactively re-authenticate and avoid
inconveniences, which would otherwise be caused by the XSystem triggering a re-authentication via a
XAM API method non-fatal error return code.

Under either re-authentication scheme, the application is expected to re-authenticate using credentials
which are valid at the time of the re-authentication operation. If the XSystem security environment has
changed during the current XAM session (such as may occur if a user’s password is changed during a
session) the up-to-date credentials must be presented to the XSystem, rather than the original
authentication information. A failure to re-authenticate a running XAM session may cause the application
to be logged out and all further access to data contained in the XSystem to be denied.

7.3.3.1 Reactive Re-Authentication
While in state A, the authentication may expire, causing the next XAM API method called to fail with an
appropriate non-fatal ‘expired’ error code and the XAM session to revert to state U.

In this case (application logged out by XSystem), the full run-time context of the XAM session (e.g., open
XSets, XStreams, etc.) shall be preserved by the XSystem, as long as the XAM session remains
connected. The application may return to normal operations after it successfully re-authenticates with the
XSystem (i.e., successfully completes an authentication handshake, as during initial authentication).
Alternatively, the application may decide to abandon this XAM session and let the XAM Library and
XSystem clean up (i.e., discard) any resources held.

7.3.3.2 Proactive Re-Authentication
While in state A (authenticated) the application may initiate a re-authentication handshake proactively (by
calling XSystem.authenticate), thereby entering state RA (re-authenticating).

While in state RA, the application is negotiating a new authentication handshake (similarly to the initial
authentication), but still has full access to data within the XSystem, until either the re-authentication fails
and the XAM session reverts back to state U, or the XSystem rejects the re-authentication with prejudice
and the XAM session advances into the terminal F (failed) state.

A third possibility is for the application to be logged out from its current XAM session while the re-
authentication handshake is still in progress, in which case the XAM session reverts back to state U
(unauthenticated), and all further access to data contained in the XSystem shall be denied.

7.3.3.3 Closing/Abandoning XAM sessions
To prevent accidental data loss when closing a XAM session, XSystem.close, which disconnects the
application from the XSystem, shall always fail with a non-fatal error, if any resources within the XSystem
(e.g., XSets) are held open by the application. Under normal circumstances, this behavior encourages the
55 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XAM Library and XSystems
application to maintain sound design practices and to always close any open XSet before disconnecting
from the XSystem.

However, under abnormal circumstances (e.g., the application logged out in a XAM session by an
XSystem), the application may find itself unable to return to normal operations (state A), and thus unable to
close open XSets, but also unable to disconnect from the XSystem, as it still holds open XSets from before
it was logged out. In such cases, the XAM application should call <XAMHandle>.abandon on the XSystem
instance, which allows the application to abandon any open XAM session resources, and then disconnect
from the XAM session (by closing the XSystem instance).

Having discussed the semantics of closing a XAM session and the related <XAMHandle>.abandon
method, it is clear that the application may disconnect from an XSystem either in a graceful way (e.g.,
closing all open XSets/resources, then disconnecting from the XAM session), or in a forceful way (e.g.,
abandoning all open XSets/resources, then disconnecting from the XAM session).

CAUTION: The <XAMHandle>.abandon call is not recommended for normal use. It may cause data
loss within the context of the affected XAM session and should be used with extreme
caution and only when absolutely necessary!
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 56

XSet Operations © SNIA
8 XSet Operations
This chapter defines the behavioral model of an XSet and describes applicable methods on individual
XSets and their elements. It also defines the virtual semantic model of an XSet.

Note: The physical layout of an XSet within an XSystem is an implementation detail of XAM Storage
Systems, VIMs, and XSystems and is beyond the scope of this specification.

8.1 XSet Behavior
An XSet is the XAM object that is used to persist reference information. As such, it has fields (properties
and XStreams), some of which the XSystem creates and some of which the application creates. An XSet
can have multiple fields, where each field has several attributes. The XSystem or application may
designate which fields are binding. These fields define the binding content of the XSet, and if any of these
binding fields are added, modified, or deleted, the XSystem creates a new XSet and leaves the original
XSet the same. For full details of fields and attributes, see Chapter 6, “XAM Objects and Common
Operations”. XSets can also be used to run and control jobs (see Section Section 8.9, “XAM Jobs and
XAM Job Control”), including the query job (see Chapter 10, “Query”)

Each XSet has a globally unique identifier called a XUID (XAM Unique Identifier). The XUID is tied to the
set of binding fields in the XSet, and if any of these fields are added, modified, or deleted, then the
XSystem creates a new XSet and generates a new XUID. The mechanism used by the XSystem to create
the XUID depends on the implementation; therefore, it is not defined in this specification. For details
regarding the rules for determining when a new XUID (and thus a new XSet) must be created, see
Section 8.3, “The XUID – Naming an XSet”.

To work with an XSet, a XAM application creates an XSet instance by calling XSystem.createXSet. To
persist the information in the XSet instance and create the XSet, the application calls XSet.commit.
XSet.commit persists any changes made since either the last XSet.commit was called or the XSet was
created (if this is the first commit of the XSet). If any binding fields have changed (added, modified, or
deleted) in the XSet instance since the previous commit, the XSystem creates a new XSet and generates
a new XUID. XSet.commit shall be an atomic operation. If invoking XSet.commit cannot persist all of the
changes made to the XSet, the invocation shall preserve the unmodified contents of the XSet, shall not
generate a new XSet, and shall cause an error (fatal or non-fatal).

Note: If two XSets have the same XUID, they will have identical binding fields and values when the
requirements of this specification are followed. However, if two XSets have identical binding fields
and values, they may (or may not) have the same XUID. For example, if two different vendor
implementations for XUID generation use different algorithms, even though the binding field inputs
to the algorithm are the same, the resultant XUID on commit will not necessarily be the same.

In addition to creating a new XSet instance from scratch, an existing XSet may be opened or copied by
calling XSystem.openXSet or XSystem.copyXSet, respectively. These methods use the XUID to access
the XSet and create an XSet instance with the fields of the XSet. Opening the XSet preserves the XUID of
the XSet, while copying does not. The semantics for an opened or copied XSet instance are the same as
for an XSet instance that was created. Changes to this XSet instance are not persisted until XSet.commit
is called and completes successfully. Note that communication failures or errors may create situations in
which XSet.commit completes successfully at the XAM Storage System, but that success is not
communicated to the XAM application. In such a situation, the XSet may be successfully committed, but
the XSet.commit invocation may return a fatal or non-fatal error.

The XSystem may export the contents of an XSet by using the export process described in Section 8.8,
“XSet Import and Export”. Exporting an XSet produces a canonical XSet, the format of which is described
in Section 8.8.4. The exported XSet can then be imported into another XSystem. Newly created XSet
instances form the substrate for importing XSets into an XSystem. The process for importing a canonical
XSet into a new created XSet instance is described in Section 8.8, “XSet Import and Export”. On a
57 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
successful import, the XSet instance is in essentially the same state as if it were newly opened; on commit,
the original XUID will be returned. Changes can be made to the XSet instance before committing, but
changing binding fields on the XSet instance will result in a new XUID being assigned. If the XSet instance
is not committed after a successful import, the XSet will not be created in the importing XSystem.

Note: Import only works with a newly created XSet instance. If an XSet instance is changed, an import
attempt results in a non-fatal error. Likewise, import does not work on an XSet instance that is
created by opening or copying an existing XSet.

When a XAM application no longer needs an XSet instance, it should call XSet.close, which closes the
XSet and releases any resources held. If the XSet instance has changes that have not been saved by
invoking XSet.commit, these changes will be lost. If a XAM application tries to close an XSystem instance
that contains the XSet without closing the XSet first, the XSystem shall return a non-fatal error.

8.2 XSet Fields

8.2.1 Number of Fields on an XSet

An XSet can contain a large number of fields. The maximum number of fields that an XSet can contain is
finite, however, and is a feature of the XSystem that contains the XSet. To promote portability, all
XSystems must support a minimum number of fields in an XSet. For complete semantics, see
Section 7.2.3, “XSystem Fields”.

The methods that create fields on an XSet shall generate a non-fatal error when used to create a field that
would cause the number of fields on the XSet to exceed the maximum number of fields, as described in
Section 7.2.3. Importing an XSet that has more fields than supported on the XSystem shall likewise fail
with a non-fatal error when the import stream is closed.

8.2.2 Length of a Field on an XSet

XStream field values can contain a large number of bytes. The maximum number of bytes within a single
XStream is limited, and the limit is an aspect of the XSystem that contains the XSet (similar to the number
of fields on an XSet). For portability, all XSystems must support fields with a minimum length. For complete
semantics, refer to Section 7.2.3.

When a request is made that would result in a field length that is longer than allowed by the XSystem (i.e.,
when writing bytes to an XStream), XStream.write shall fail and generate a non-fatal error. Importing an
XSet that has XStream fields with lengths that are longer than supported on the XSystem shall likewise fail
with a non-fatal error when the import XStream is closed.

8.2.3 Normative XSet Fields

This section defines XSet fields that are referred to as XSet system fields. The field, if present, shall have
the name, type, binding value, and readonly value as specified in Table 21, “XSet System Fields”. See
Section 8.5, “XSet Instance Finite State Machine (FSM)” for additional details of when these fields are
modified and Section 8.5.4, “Summary of XSet System Fields in each XSet Instance State” for when these
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 58

XSet Operations © SNIA
fields are present. The values in xset.xuid and .xset.dirty indicate the current FSM state for the XSet
instance.

.xset.time.creation [binding, readonly]

indicates the creation time of the XSet and shall contain the time that XSystem.createXSet was called to
instantiate the XSet instance. This field shall be created in an XSet instance and the value initialized to the
current time by the XSystem when XSystem.createXSet is called. This field shall be copied from the input
XSet when XSystem.copyXSet is called. The value of this field shall not be later than the value of
.xset.time.xuid.

.xset.time.xuid [binding, readonly]

indicates the time at which the XUID was assigned to the XSet and shall contain the time that the XSet was
first committed to an XSystem. This field shall be created and the value initialized to the current time by the
XSystem when XSet.commit is called and the current XSet instance state is either in the dirty no XUID
state or the clean no XUID state. See Section 8.5, “XSet Instance Finite State Machine (FSM)” for
definitions of these states and further discussion. The value of this field shall not be earlier than the value
of .xset.time.creation.

This field should be removed from an XSet instance when a binding modification is made.

.xset.time.commit [nonbinding, readonly]

indicates the modification time of the XSet and shall contain the time that the XSet (i.e., with this XUID)
was most recently committed to the XSystem. This field shall be created and the value initialized to the
current time by the XSystem on first commit. The XSystem shall update the field’s value on each
subsequent commit that makes a modification to the XSet with two exceptions:

• Any change to .xset.time.access shall not be treated as a change to the XSet and shall not cause
.xset.time.commit to be updated.

• Opening an XStream for write shall be considered to be a change to the XSet, even if the contents
of the XStream are not subsequently changed. Opening an XStream for write shall cause
.xset.time.commit to be updated when the XSet is committed.

The value of this field shall not be later than the value of .xset.time.access.

Table 21 – XSet System Fields

Field Name Type Binding Readonly Description

.xset.time.creation xam_datetime Yes Yes Time that the XSet was created

.xset.time.xuid xam_datetime Yes Yes Time that the XUID was assigned to the XSet

.xset.time.commit xam_datetime No Yes Most recent time that the XSet was modified

.xset.time.access xam_datetime No Yes Most recent time that the XSet was opened or
committed

.xset.time.residency xam_datetime No Yes Time that the XSet was first stored in this
XSystem

.xset.xuid xam_xuid No Yes XUID of the XSet

.xset.dirty xam_boolean No Yes Presence vs. absence of uncommitted
changes
59 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
.xset.time.access [nonbinding, readonly]

indicates the last access time of the XSet and shall contain the time that the XSet was most recently
opened (XSystem.open) or committed (XSet.commit), whichever is more recent, except as noted below.
This field shall be created and the value initialized by the XSystem at the time of first commit. The XSystem
shall update the value on each subsequent XSet open or commit. Due to concurrency issues, if a
concurrent access occurs by another XSet instance in parallel with this XSet instance, this field’s value
may be the value when this XSet instance was created (i.e., as a result of XSystem.openXSet), rather than
the current value that has subsequently been updated in the XSet due to actions performed via a different
XSet instance. The value of this field shall not be earlier than the value of .xset.time.commit.

.xset.time.residency [nonbinding, readonly]

indicates the arrival (residency) time of the XSet and shall contain the time that the XSet was first stored to
the present XSystem. The XSystem shall create this field and initialize its value at the time of first commit,
when the XSet instance is in a no XUID state (either a dirty no XUID state or a clean no XUID state). When
an import operation occurs and no binding fields are modified, the XSystem shall update the field’s value
when the XSet is committed to an XSystem. The value of this field should not be earlier than the value of
.xset.time.xuid, but because of clock skew among XSystems, the value of this field may be earlier than the
value of .xset.time.xuid.

.xset.xuid [nonbinding, readonly]

indicates, if present, the XUID value for the XSet. This field shall be present if: 1) the XSet has either been
previously committed to the XSystem, or 2) the current XSet instance data is the result of a successfully
completed import operation (see Section 8.8.2, “XSet Import Process”). The field shall not be present if: 1)
the XSet instance has never been committed to the XSystem, 2) a binding field has been modified on the
XSet, or 3) the XSet was opened in copy mode.

.xset.dirty [nonbinding, readonly]

indicates, if present, whether the XSet instance contains any uncommitted changes (i.e., this field shall be
present if the XSet contains uncommitted changes). This field is only present in XSet instances, because
committed XSets cannot contain uncommitted changes. The XSet instance that is the result of a
successfully completed import operation (see Section 8.8.2, “XSet Import Process”) shall be treated as
containing uncommitted changes until XSet.commit is called. The field shall not be present if the XSet
instance contains no uncommitted changes. An XSet opened in readonly mode cannot contain
uncommitted changes; hence, this field shall not be present in a readonly XSet instance.

8.2.4 Copying an XSet - Field Behavior

XSystem.copyXset shall remove .xset.time.xuid, .xset.time.commit, .xset.time.access and
.xset.time.residency from the XSet instance that is created. XSystem.copyXset shall have no effect on
.xset.time.access in the XSet that the instance is copied from.

Any binding modification to an XSet instance shall remove .xset.time.xuid and .xset.time.residency from
the XSet instance that is modified. No change shall be made to .xset.time.creation by either
XSystem.copyXSet or a binding modification.

8.3 The XUID – Naming an XSet
An XSet’s name is its globally unique identifier, called a XUID (XAM Unique Identifier). All XSets have only
one XUID. If an application creates, modifies, or deletes a binding field in an XSet, the XSystem shall
create a new XSet and generate a new XUID on successful commit. Thus, the XUID is bound to the XSet
by the binding fields of the XSet.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 60

XSet Operations © SNIA
Newly created XSet instances shall have no XUID associated with them (i.e., have no .xset.xuid property)
until they are committed to an XSystem or have been the target of a successful import. When an XSet
instance without an associated XUID is committed to an XSystem, the XSystem creates an XSet and
assigns the XSet a XUID. The application cannot choose this XUID. After the commit, the XSet instance
will have the XUID associated with it. Likewise, newly opened XSet instances will always be associated
with the XUID that was bound to the XSet that was opened.

When an XSet instance that is associated with a XUID is modified, it may break the association between
the XSet instance and the XUID, depending on which fields were created, modified, or deleted and
whether they were binding fields. Thus, a static XUID guarantees the integrity of the binding fields that
make up an XSet. Table 22, “XSet Naming Behavior on Commit” describes these transitions.

When an XSet instance that is associated with a XUID is committed to an XSystem, it shall not create a
new XSet. However, when an XSet instance that has no XUID is committed, it shall create a new XSet with
a new XUID. The previous XSet (if any) shall remain in the XSystem, unchanged and addressable with the
previous XUID. XSet.commit shall not remove the previous XSet (if one exists).

The exception to this rule is import. When an XSet instance is imported, it will be associated with a XUID.
On commit, it may result in an XSet being created within the XSystem it is being imported into, if that XSet
does not already exist on that XSystem.

Table 22 – XSet Naming Behavior on Commit

XSet Instance Change
Shall create new XSet

with new XUID on
successful commit

Add a binding field Yes

Change binding field Yes

Delete binding field Yes

Add a nonbinding field No

Change nonbinding field No

Delete nonbinding field No

Change Nonbinding Field to Binding Yes

Change Binding Field to Nonbinding Yes
61 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
8.4 XSet Methods

8.4.1 XSystem Operations on XSets

Table 23 lists the XSystem methods that operate on XSets. To use these methods, the application must be
connected to the XSystem and have a valid XSystem instance. Complete details of these methods are
found in the [XAM-C-API] and [XAM-JAVA-API].

8.4.2 XSet Operations on XSets

Table 24 lists the XSet methods that save, abandon, import, and export XSet instances. To use these
methods, the application must have a valid XSet instance. Complete details of these methods are found in
the [XAM-C-API] and [XAM-JAVA-API].

Table 23 – XSystem Methods that Operate on XSets

Synchronous Methods Asynchronous Method Description

XSystem.accessXSet - Determines whether an XSet can be accessed,
i.e., if it exists in the XSystem instance and the
caller is authorized to access it

XSystem.createXSet - Creates a new, empty XSet instance

XSystem.openXSet XSystem.asyncOpenXSet Opens an existing XSet on the XSystem
instance, creating an XSet instance that
preserves the XUID of the XSet

XSystem.copyXSet - Creates a copy of an existing XSet on the
XSystem instance, creating an XSet instance
that has no XUID; the XSystem shall not assign
the same XUID associated with the existing XSet
on commit

XSystem.deleteXSet - Deletes an existing XSet

XSystem.holdXSet - Places a hold on an XSet so it cannot be
modified or deleted

XSystem.releaseXSet - Releases a hold on an XSet

XSystem.getXSetAccessTime - Retrieves .xset.time.access from the XSet
without changing its value

XSystem.isXSetRetained - Verifies whether the XSet is subject to XSet
retention criteria

Table 24 – XSet Methods that Operate on XSets

Synchronous Methods Asynchronous Method Description

XSet.commit XSet.asyncCommit Stores any changes to the XSet since it was created,
opened, copied or last committed, whichever is later. The
XSet remains open.

XSet.close - Closes an XSet and releases all resources associated
with the XSet. Close will fail if there are XStreams or
XIterators open against the XSet.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 62

XSet Operations © SNIA
8.5 XSet Instance Finite State Machine (FSM)
An XSet instance is different than an actual XSet. The XSet instance is effectively a handle that contains a
pointer to an XSet. In addition to pointing to an XSet, it encapsulates a variety of temporary states. These
states include the application’s uncommitted operations on the XSet and additional information, like
cached copies of some, all, or part of the fields associated with the XSet. This section defines the
normative Finite State Machines (FSMs) associated with the XSet instance.

The tables in this section define the normative transitions for the FSM; the associated figures further
illustrate the descriptions in the tables.

Note: The XSet instance FSM does not restrict the application from calling other methods on the parent
object (e.g., the XAM Library or XSystem), except where noted.

8.5.1 Defining the FSM Hierarchy

The FSM for the XSet instance is a two-level hierarchical FSM. The top level of the hierarchy is the Master
XSet instance FSM or the Master XSet FSM. The Master XSet FSM describes the states that have the
same behaviors, regardless of how the XSet is opened. The second level of the hierarchy is a breakdown
of the open XSet state of the Master XSet FSM. Three open XSet FSMs exist for the open XSet state, and
the open XSet FSM that is applied is based on the mode in which the XSet was opened. The three FSMs
include:

• Readonly open XSet FSM: XSets opened in readonly mode

• Restricted open XSet FSM: newly created, restricted XSets, or those opened or copied in
restricted mode

• Unrestricted open XSet FSM: newly created, unrestricted XSets, or those opened or copied in
unrestricted mode

The Master XSet FSM and an open XSet FSM are instantiated (and uninstantiated) as a pair. Transitions
in the Master XSet FSM that appear to enter the open XSet state actually enter a state within the
appropriate open XSet FSM, as described above. If a transition leads from an open XSet FSM state to a
state on the Master XSet FSM, the currently instantiated open XSet FSM shall stay instantiated. Only
when the Master XSet FSM is exited will the FSM pair be uninstantiated.

8.5.2 Master XSet FSM

The Master XSet FSM shall have the defined inputs, outputs, and transitions as described in the following
sections:

• Section 8.5.2.1, “Entering the State Machine”

• Section 8.5.2.2, “Entering The Abandoned State”

XSet.abandon - Allows the XSet to be closed without regard for open
XStreams or XIterators

XSet.openExportXStream - Opens a special export stream for the XSet

XSet.openImportXStream - Opens a special import stream for the XSet

Table 24 – XSet Methods that Operate on XSets

Synchronous Methods Asynchronous Method Description
63 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
• Section 8.5.2.3, “Entering the Corrupt State”

• Section 8.5.2.4, “Performing Generic Operations on an Open XSet”

• Section 8.5.2.5, “Exporting an XSet”

• Section 8.5.2.6, “Importing an XSet”

• Section 8.5.2.7, “Exiting the Master XSet FSM”

The FSM and the state transitions are also shown in Figure 11, “Master XSet FSM”. If a method has both a
synchronous and an asynchronous version, only the synchronous version is shown in this figure.

Fatal errors and XSet.abandon arcs to the Master XSet FSM from the specific Open XSet FSMs are not
shown in Figure 11 to aid in readability. For asynchronous XAM methods, the start of the arc indicates
when the application calls the asynchronous operation and corresponds with the instantiation of an
XAsync instance that is in the pending state. The end of the arc indicates when the XAsync instance
transitions to the completed state.

Given the potential size of the state represented by the XSet instance, to optimize access patterns, the
XSet instance points to a new XSet after an XSet.commit, if XSet.commit created a new XSet (i.e., a new
XUID). Thus, the Master XSet instance FSM can dynamically refer to a new XSet over time.

Figure 11 – Master XSet FSM

Open
XSet

Abandoned

Fatal error

Commit, Modify
Add, Delete, Change Attributes
Reset Management Fields

Corrupt

XSet.abandon

XSystem.openXSet(mode)

XSystem.createXSet

ImportExport

XSet.openImportXStream

Close Close

XSet.openExportXStream

XStream.read,
XStream.tell

XStream.write
XStream.tell

Fatal error on
XStream.write
XStream.tell
XStream.close

XSet.abandon

Fatal error on
XStream.read
XStream.tell
XStream.close

XSet.abandon

XSet.close(ok)

XSet.close

XSet.abandon

Note:
Coloring of Export, Open XSet
and Import states indicates the
existence of a subsidiary FSM.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 64

XSet Operations © SNIA
To interpret the transition labels in the Master XSet finite state machine, first consider each transition to be
in the format of Method(status). The transitions occur as follows:

1 The application initiates the method.

2 The XSystem responds with a status (typically via a return code on the called API method) and a
transition in the state machine.

Status ‘non-fatal’ is considered a recoverable error return code; status ‘fatal’ is considered a non-
recoverable (fatal) error return code. For a definition of which method return codes are fatal and non-fatal,
please see [XAM-C-API] and [XAM-JAVA-API].

Table 25, “Entrance to the Master XSet FSM” explicitly shows which methods have both versions by
showing the asynchronous version as optional (e.g., [async]).

8.5.2.1 Entering the State Machine
The XSystem shall enter the Master XSet FSM when a XAM application calls XSystem.openXSet,
XSystem.copyXSet, or XSystem.createXSet. The specific open XSet FSM depends on which open mode
was used:

• If readonly mode was used, the readonly open XSet FSM shall also be instantiated.

• If restricted mode was used, the restricted open XSet FSM shall also be instantiated.

• If unrestricted mode was used, the unrestricted open XSet FSM shall also be instantiated.

When a XAM application calls XSystem.openXSet, the XSystem shall check if the XSet has a valid hold
placed on it. If the XSet is on hold, and if the application opened the XSet in restricted or unrestricted
mode, then the open shall fail. If the open mode was readonly, then the open shall succeed.

The normative transitions into the Master XSet FSM are defined in Table 25. Once the Master XSet FSM is
instantiated and enters the open XSet state, a XAM application can perform operations on the XSet. Or, it
can call XSet.openExportXStream or XSet.openImportXStream. See Section 8.5.3, “Open XSet FSMs” for
further information.

8.5.2.2 Entering The Abandoned State
Regardless of what state the XSet instance is in, if a XAM application calls XSet.abandon, then the XSet
instance FSM shall transition to the abandoned state. When an XSet instance is in the abandoned state,
all methods (except XSet.close) shall return a fatal error. Note that resources associated with open
XStreams or Xiterators will not be released unless the close method of those instances is called.

Table 25 – Entrance to the Master XSet FSM

Start
State Transition Final

State Comment

Outside of
FSM

(NULL)

XSystem.[async]OpenXSet Open
XSet

The Master XSet FSM shall be instantiated when the
method returns successfully. An open XSet FSM shall be
instantiated as dictated by the mode.

XSystem.[async]CopyXSet Open
XSet

The Master XSet FSM shall be instantiated when the
method returns successfully. An open XSet FSM shall be
instantiated as dictated by the mode.

XSystem.createXSet Open
XSet

The Master XSet FSM shall be instantiated when the
method returns successfully. An open XSet FSM shall be
instantiated as dictated by the mode.
65 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
The normative transitions of the abandoned state in the Master XSet FSM are defined in Table 26.

8.5.2.3 Entering the Corrupt State
A XAM application cannot close an XSet instance when it is in the corrupt state (i.e., XSet.close shall not
succeed). When an XSet instance is in the corrupt state, all methods (except XSet.abandon) shall return a
fatal error. To close an XSet instance that is in the corrupt state, a XAM application must first abandon the
XSet instance (XSet.abandon), transition to the abandoned state, and then close the XSet instance
(XSet.close).

No specific API calls exist that allow a XAM application to intentionally enter the corrupt state. The
XSystem decides when an XSet instance enters a corrupt state. The decision to place an XSet instance in
a corrupt state is an implementation detail of the XSystem and beyond the scope of this specification. In
the following example, multiple XSystem instances accessing the same XSystem cause the XSet instance
to enter a corrupt state.

Example: In some XAM Storage Systems, multiple XSystem instances may access the same
XSystem, including the same XSet. In this situation, multiple XSet instances may be
operating on the same XSet. In general, if the XSet is modified by a third party when the
XAM application has an open XSet instance to the same XSet, it generates a non-fatal
distributed access error. See Section 8.6, “Distributed Access to the Same XSet” for
additional information.

Table 26 – Abandoned State of the Master XSet FSM

Start State Transition Final State Comment

Abandoned XSet.setFieldAsBinding
XSet.setFieldAsNonbinding
XSet.getField<attribute>
XSet.containsField
XSet.deleteField
XSet.<op><stype>
XSet.resetManagementFields
XSet.openImportXStream
XSet.openExportXStream
XSet.openFieldIterator

Abandoned All methods shall return a fatal error.

Abandoned XSet.close NULL Shall free the XSet instance and release
all resources associated with it,
regardless of completion status.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 66

XSet Operations © SNIA
The normative transitions of the corrupt state in the Master XSet FSM are defined in Table 27.

8.5.2.4 Performing Generic Operations on an Open XSet
The normative transitions describing operational effects on open XSets in the Master XSet FSM are
defined in Table 28.

Table 27 – Corrupt State of the Master XSet FSM

Start State Transition Final State Comment

Corrupt XSet.setFieldAsBinding
XSet.setFieldAsNonbinding
XSet.getField<attribute>
XSet.containsField
XSet.deleteField
XSet.<op><stype>
XSet.resetManagementFields
XSet.openImportXStream
XSet.openExportXStream
XSet.close
XSet.openFieldIterator

Corrupt All methods shall return a fatal error.

Corrupt XSet.abandon Abandoned Shall cause the XSet instance to enter the
abandoned state.

Table 28 – Generic Operation Effects on Open XSets in the Master XSet FSM

Start State Transition Final State Comment

Open XSet XSet.setFieldAsBinding(ok,non-fatal)
XSet.setFieldAsNonbinding(ok,non-fatal)
XSet.getField<attribute>(ok,non-fatal)
XSet.containsField(ok,non-fatal)
XSet.deleteField(ok,non-fatal)
XSet.<op><stype>(ok,non-fatal)
XSet.resetManagementFields(ok,non-fatal)
XSet.[async]Commit(ok,non-fatal)
XSet.openFieldIterator(ok,non-fatal)

Open XSet For completion status of either
success or non-fatal error, the
Master FSM shall stay in the open
XSet state. See Section 8.5.3,
“Open XSet FSMs” for additional
information. The specific state
within the open XSet FSM depends
on the mode that was used when
creating the XSet instance.

XSet.openExportXStream(non-fatal)
XSet.openImportXStream(non-fatal)

Open XSet Stay in the open XSet state

XSet.openExportXStream(ok) Export On completion, shall transition to
the export state to begin exporting
the XSet.

XSet.openImportXStream(ok) Import On completion, shall transition to
the import state to begin importing
an XSet using the canonical XSet
format.
67 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
8.5.2.5 Exporting an XSet
Exporting an XSet can only be done on an unmodified XSet. Once the FSM enters the export state, the
only methods that can be used are XStream.read, XStream.tell, XSet.abandon, and XStream.close. All
methods performed on an XSet in the export state shall return a non-fatal error and keep the Master XSet
FSM in the export state. See Section 8.8, “XSet Import and Export” for a more detailed description of the
export process. The export process is begun by calling XSet.openExportXStream followed by
XStream.read (potentially multiple times) to retrieve the canonical description of the XSet. Once the entire
XSet is fully exported, XStream.read returns a unique value to indicate that all bytes in the canonical
description have been read. If XStream.read or XStream.tell return a non-fatal error, then the method may
be retried, and the Master XSet FSM remains in the export state.

The XAM application would then normally call XStream.close once the export completes. If the entire XSet
was exported, then XStream.close will complete successfully. See the [XAM-C-API] and [XAM-JAVA-API]
for additional information. At any time, the export XStream may be closed. If XStream.close is successful,
no changes to the XSet shall occur. No changes shall occur because an export effectively creates a
transient (temporary) XStream that does not change the XSet and is gone when the export completes. If
XStream.close completes with a fatal error, the Master XSet FSM shall transition to the corrupt state.

Open XSet XSet.setFieldAsBinding(fatal)
XSet.setFieldAsNonbinding(fatal)
XSet.<attribute>(fatal)
XSet.containsField(fatal)
XSet.deleteField(fatal)
XSet.<op><stype>(fatal)
XSet.resetManagementFields(fatal)
XSet.abandon(fatal)
XSet.close(fatal)

Corrupt A fatal error occurred while
accessing the XSet. All further
accesses to the XSet instance shall
return an error.

XSet.abandon(ok, non-fatal) Abandoned Shall cause the XSet instance to
enter the abandoned state.

XSet.close(ok) NULL Shall free the XSet instance and
release all resources associated
with it.

XSet.close(non-fatal) Open XSet A non-fatal error occurred, possibly
due to open XStreams.

Table 28 – Generic Operation Effects on Open XSets in the Master XSet FSM

Start State Transition Final State Comment
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 68

XSet Operations © SNIA
The normative transitions of the export state in the Master XSet FSM are defined in Table 29.

Note: XSet.close is not a valid transition from the export state, because there is an open XStream.

8.5.2.6 Importing an XSet
Importing an XSet can only be done on a newly created XSet. Once the FSM enters the import state, the
only XSet or XStream methods that can be used are XStream.write, XStream.tell, XSet.abandon, and
XStream.close. All methods performed on an XSet in the import state shall return a non-fatal error and
keep the Master XSet FSM in the import state. See Section 8.8, “XSet Import and Export” for a more
detailed description of the import process.

The XAM application starts the import process by calling XSet.openImportXStream followed by
XStream.write (potentially multiple times), to input the canonical format byte stream for the XSet. Once the
entire XSet is fully imported, the XAM application would normally call XStream.close. The XSystem shall
parse, validate, and populate all fields for the XSet instance before XStream.close completes. The
XSystem may perform partial validation on each XStream.write call. If any fatal errors are encountered, the
XSystem may return the fatal error on completion of XStream.write and shall return the fatal error on
completion of the close. If non-fatal errors were encountered on XStream.write, the operation may be
retried. If non-fatal errors were encountered on XStream.close, the FSM shall transition to the open XSet
state and populate the fields in the XSet instance.

Table 29 – Export State of the Master XSet FSM

Start
State Transition Final State Comment

Export XSet.setFieldAsBinding
XSet.setFieldAsNonbinding
XSet.getField<attribute>
XSet.containsField
XSet.deleteField
XSet.<op><stype>
XSet.resetManagementFields
XSet.openImportXStream
XSet.openExportXStream
XSet.close
XSet.openFieldIterator
XStream.seek
XStream.[async]Write

Export All methods shall return a non-fatal error.

XStream.[async]Read(ok, non-fatal)
XStream.tell(ok, non-fatal)
XStream.[async]Close(non-fatal)

Export See Section 8.8.3, “Import and Export
XStream Instance FSMs” for additional
information.

XStream.[async]Close(ok) OpenXSet See Section 8.8.1, “XSet Export Process” for
additional information. The specific state
within the open XSet FSM depends on the
mode that was used when creating the XSet
instance.

XStream. [async]Close(fatal)
XStream.[async]Read(fatal)
XStream.tell(fatal)
XSet.abandon(fatal)

Corrupt See Section 8.8.3, “Import and Export
XStream Instance FSMs” for additional
information.

XSet.abandon(ok, non-fatal) Abandoned Shall cause the XSet instance to enter the
abandoned state.
69 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
If the entire XSet was imported and the XSystem encounters no fatal or non-fatal errors, then
XStream.close will complete successfully. If a fatal error was returned, then the XSet transitions to the
corrupt state. See the [XAM-C-API] and [XAM-JAVA-API] for additional information. On successful
completion of the import, the Master XSet FSM transitions to the open XSet state. See Section 8.5.3,
“Open XSet FSMs” for information on the specific XSet open state that is entered.

The normative transitions of the import state in the Master XSet FSM are defined in Table 30.

Note: XSet.close is not a valid transition from the import state, because there is an open XStream.

8.5.2.7 Exiting the Master XSet FSM
To exit the Master XSet FSM, the XAM application shall call XSet.close. A successful close shall cause the
FSM to be uninstantiated and the associated resources to be returned to the operating environment. The
FSM shall not be uninstantiated, however, if the application calls XSystem.abandon on the parent
XSystem instance.

Unless the XSet instance is in an abandoned state, an XSet.close call shall fail if there are any open
XStreams (including import XStreams, export XStreams, readonly XStreams, and writeonly XStreams).
Note that the import and export states, by definition, have open XStreams. An XSet instance in the
abandoned state can always be closed.

Table 30 – Import State of the Master XSet FSM

Start State Transition Final State Comment

Import XSet.setFieldAsBinding
XSet.setFieldAsNonbinding
XSet.getField<attribute>
XSet.containsField
XSet.deleteField
XSet.<op><stype>
XSet.resetManagementFields
XSet.openImportXStream
XSet.openExportXStream
XSet.openFieldIterator
XStream.seek
XStream.[async]Read

Import All methods shall return a non-fatal error.

XStream.[async]Write(ok, non-fatal)
XStream.tell(ok, non-fatal)
XStream.[async]Close(non-fatal)

Import See the Section 8.8.3, “Import and Export
XStream Instance FSMs” for additional
information.

XStream. [async]Close(ok) OpenXSet The specific state within the open XSet
FSM depends on the mode that was used
when creating the XSet instance. See
Section 8.8.3, “Import and Export XStream
Instance FSMs” for additional information.

XStream.[async]Close(fatal)
XStream.[async]Write(fatal)
XStream.tell(fatal)
XSet.abandon(fatal)

Corrupt See Section 8.8.3, “Import and Export
XStream Instance FSMs” for additional
information.

XSet.abandon(ok, non-fatal) Abandoned Shall cause the XSet instance to enter the
abandoned state.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 70

XSet Operations © SNIA
8.5.3 Open XSet FSMs

8.5.3.1 Common States
The open XSet FSMs share the same common states, which are based on the following binary attributes:

• An XSet instance is either dirty or clean

— dirty: an XSet instance with fields that have been changed since the time of open or last
commit. This change includes loss of .xset.xuid (e.g., XSystem.openXSet in copy mode) if the
changes were binding. The act of opening an XStream for write or append shall cause the
XSet that contains the opened XStream to become dirty.

— clean: defined as not dirty

• An XSet instance either has a XUID or has no XUID

— XUID: the XSet instance has a XUID bound to it. This designation means that xset.xuid is
present and the value is the XSet’s XUID.

— no XUID: the XSet instance does not have a XUID and does not have .xset.xuid. This happens
because it either never had a XUID assigned to it, the XSet instance had a binding
modification, and therefore will have a new XUID assigned to it on commit, or the XSet
instance was opened in copy mode.

These two binary attributes thus combine to form the four valid states in an open XSet FSM: clean XUID,
clean no XUID, dirty XUID, or dirty no XUID.

The state within the open XSet FSM can be derived by examining the following XSet instance fields:
.xset.xuid and .xset.dirty.

• .xset.xuid is present in XUID states and not present in no XUID states.

• .xset.dirty is present in states labeled dirty and not present in states that are labeled clean. These
fields are synthetic properties that are not present on the XSet when it is committed to persistent
storage. Because these fields are synthetic, XAM query cannot be used on either of these fields.

• Export includes .xset.xuid but not .xset.dirty, because export is always initiated from a clean XUID
state.

8.5.3.2 The Individual Open XSet FSMs
Note that the Master XSet FSM transitions to and from the import and export state are explicitly shown on
the open XSet FSMs. While not shown in the figures for readability purposes, as stated previously, it is
possible to exit the FSMs on a fatal error, a call to XSet.abandon, and a call to XSystem.abandon. These
transitions are shown in the tables enumerating all possible transitions.

8.5.3.2.1 Readonly Open XSet FSM

When a XAM application opens an XSet in readonly mode and tries to make binding or nonbinding
modifications to the XSet instance, the XSystem must return a non-fatal error. Likewise, if a XAM
application tries to call XSet.commit on that XSet instance, the XSystem must also return a non-fatal error.
71 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
Figure 12 illustrates the readonly open XSet FSM.

8.5.3.2.1.1 Entering the State Machine

To enter the readonly XSet FSM, an XSet must be opened in readonly mode. This open will create an
XSet instance that is in the clean XUID state. Even when an XSet has a valid hold on it, it may still be
opened in readonly mode. The readonly XSet FSM does not allow binding or nonbinding modifications on
the XSet instance, nor does it allow XSet.commit to succeed.

The normative transitions into the readonly open XSet FSM are defined in Table 31.

8.5.3.2.1.2 Operations on an Open XSet Instance in the Clean XUID State

The normative transitions describing operational effects on open XSet instances are defined in Table 32,
“Operations on an Open XSet Instance in the Clean XUID State”. Note that methods that create/change

Figure 12 – Readonly Open XSet FSM

Table 31 – Entrance to the Readonly Open XSet FSM

Start State Transition Final
State Comment

Outside of
FSM

(NULL)

XSystem.[async]OpenXSet Clean
XUID

The readonly open XSet FSM shall be instantiated
when the method returns successfully.

Dirty
XUID

Dirty
No

XUID

Clean
No

XUID

Clean
XUID

XSet.commit (ok, error)
Binding modification (ok, error)
Nonbinding modification (ok, error)

XSet.openXSet (readonly)

XSet.openExportXStream

XStream.close (ok)
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 72

XSet Operations © SNIA
fields but that are not specifically mentioned (e.g., job control methods) are governed by the appropriate
binding or nonbinding modification entries.

8.5.3.2.1.3 Returning to Readonly FSM after Exporting an XSet

An export of an XSet can only be done on an unmodified XSet instance in the clean XUID state. Export
does not change the XSet instance; thus, it returns the XSet instance to the clean XUID state after
completion. To complete an export and return to the clean XUID state, the application should call
XStream.close on the export XStream instance. If XStream.close is completed with a fatal error, the XSet
instance shall transition to the corrupt state in the Master XSet FSM.

The normative transitions returning to the clean XUID state after export are defined in Table 33.

Table 32 – Operations on an Open XSet Instance in the Clean XUID State

Start State Transition Final State Comment

Clean XUID XSet.[async]Commit
Binding modification
Nonbinding modification
XSet.openImportXStream
XSet.openExportXStream(non-fatal)

Clean XUID Shall return a non-fatal error.

XSet.getField<attribute>(ok, non-fatal)
XSet.get<stype>(ok, non-fatal)
XSet.containsField(ok, non-fatal)

Clean XUID Perform the operation.

XSet.openXStream(ok) Clean XUID The appropriate XStream FSM shall be
instantiated, depending on the mode,
when the method returns successfully.

XSet.openExportXStream(ok) Export The export XStream FSM shall be
instantiated when the method returns
successfully.

XSet.abandon Abandoned Shall cause the XSet instance to enter
the abandoned state.

XSet.getField<attribute>(fatal)
XSet.get<stype>(fatal)
XSet.containsField(fatal)
XSet.openXStream(fatal)
XSet.openExportXStream(fatal)
XSet.[async]Commit(fatal)
XSet.close(fatal)

Corrupt A fatal error occurred. The XSet instance
is corrupt.

XSet.close(non-fatal) Clean XUID A non-fatal error occurred, possibly due
to open XStreams.

Table 33 – Returning to the Readonly FSM after Export

Start State Transition Final State Comment

Export
(not shown)

XStream.close(ok) Clean XUID The export completed successfully.

XStream.close(non-fatal) Clean XUID The export completed unsuccessfully.

XStream.close(fatal) Corrupt The export completed unsuccessfully.
73 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
8.5.3.2.1.4 Returning to Readonly FSM after Importing an XSet

Importing an XSet can only be done on a newly created XSet instance in the clean no XUID state.
Because it is impossible to transition to the clean no XUID state with the readonly XSet FSM, it is
impossible to perform an import in this mode.

8.5.3.2.2 Restricted Open XSet FSM

An XSet instance in restricted mode will allow only nonbinding modifications, once the XSet is in a XUID
state (clean XUID or dirty XUID). Note that creating an XSet instance in restricted mode (createXSet) will
always start in a “No XUID” state; thus, all edits are permitted until the XSet is committed. Trying to make a
binding modification on an XSet instance that has been opened in restricted mode will result in a non-fatal
error, because the XSet instance starts in the clean XUID state. Because binding modifications are not
allowed once the XSet has a XUID, new XUIDs shall never be assigned on successful commit once the
XUID is assigned.

Figure 13 illustrates the restricted open XSet FSM.

8.5.3.2.2.1 Entering the State Machine

To enter the restricted XSet FSM, an XSet must be created, opened, or copied in restricted mode.
XSystem.createXSet will create an XSet instance that is in the clean no XUID state; XSystem.openXSet
will create an XSet instance that is in the clean XUID state; and XSystem.copyXSet will create an XSet
instance that is in the dirty no XUID state. If an XSet has a valid hold on it, trying to open the XSet in
restricted mode shall result in a non-fatal error; it shall not result in an error to copy an XSet on hold,
however.

Figure 13 – Restricted Open XSet FSM

Dirty
XUID

Dirty
No

XUID

Clean
No

XUID

Clean
XUID

XSystem.[async]OpenXSet
(restricted)

Start Export

Export Success

Start Import

XSystem.createXSet
(restricted)

Import Success

XSet.[async]Commit
Nonbinding
modificationXSet.[async]Commit

XSet.[async]Commit

XSet.[async]Commit (same XUID)
Binding Modification (with error)

XSystem.copyXSet
(restricted)

Nonbinding modification
Binding modification (with error)

Binding or
Nonbinding
modification

Binding or
Nonbinding
modification
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 74

XSet Operations © SNIA
The normative transitions into the restricted open XSet FSM are defined in Table 34.

8.5.3.2.2.2 Operations on an Open XSet Instance in the Clean XUID State

The normative transitions describing operational effects on open XSet instances are defined in Table 35,
“Operations on an Open XSet Instance in the Clean XUID State”. Note that methods that create/change
fields but that are not specifically mentioned (e.g., job control methods) are governed by the appropriate
binding or nonbinding modification entries.

Table 34 – Entrance to the Restricted Open XSet FSM

Start State Transition Final
State Comment

Outside of
FSM

XSystem.[async]CreateXSet Clean No
XUID

The restricted open XSet FSM shall be instantiated
when the method returns successfully.

XSystem.[async]OpenXSet Clean
XUID

The restricted open XSet FSM shall be instantiated
when the method returns successfully.

XSystem.[async]CopyXSet Dirty No
XUID

The restricted open XSet FSM shall be instantiated
when the method returns successfully.

Table 35 – Operations on an Open XSet Instance in the Clean XUID State

Start State Transition Final State Comment

Clean XUID Binding modification
XSet.openImportXStream

Clean XUID Shall return a non-fatal error.

XSet.[async]Commit(ok) Clean XUID Perform the operation. Shall update
.xset.time.access and return the XUID.

XSet.[async]Commit(fatal) Corrupt Shall return a fatal error.

Nonbinding modification Dirty XUID Perform the operation.

XSet.getField<attribute>(ok)
XSet.get<stype>(ok)
XSet.containsField(ok)

Clean XUID Perform the operation.

XSet.getField<attribute>(non-fatal)
XSet.get<stype>(non-fatal)
XSet.containsField(non-fatal)

Clean XUID A non-fatal error occurred; the XSet
instance shall not have changed.

XSet.openExportXStream(ok) Export The export XStream FSM shall be
instantiated when the method returns
successfully.

XSet.abandon Abandoned Shall cause the XSet instance to enter
the abandoned state.
75 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
8.5.3.2.2.3 Operations on an Open XSet Instance in the Dirty XUID state

The normative transitions describing operational effects on open XSet instances are defined in Table 36,
“Operations on an Open XSet Instance in the Dirty XUID State”. Note that methods that create/change
fields but that are not specifically mentioned (e.g., job control methods) are governed by the appropriate
binding or nonbinding modification entries.

Clean XUID XSet.getField<attribute>(fatal)
XSet.get<stype>(fatal)
XSet.containsField(fatal)
XSet.openXStream(fatal)
XSet.openExportXStream(fatal)
XSet.close(fatal)

Corrupt A fatal error occurred. The XSet instance
is corrupt.

XSet.close(non-fatal) Clean XUID A non-fatal error occurred, possibly due
to open XStreams.

Table 36 – Operations on an Open XSet Instance in the Dirty XUID State

Start State Transition Final State Comment

Dirty XUID XSet.[async]Commit Clean XUID Perform the operation. Persist the
nonbinding modifications in the XSet
instance to the XSet and return the
existing XUID.

XSet.[async]Commit(fatal) Corrupt Shall return a fatal error.

Binding modification
XSet.openImportXStream

Dirty XUID Shall return a non-fatal error.

Nonbinding modification Dirty XUID Perform the operation.

XSet.getField<attribute>(ok)
XSet.get<stype>(ok)
XSet.containsField(ok)

Dirty XUID Perform the operation.

XSet.getField<attribute>(non-fatal)
XSet.get<stype>(non-fatal)
XSet.containsField(non-fatal)

Dirty XUID A non-fatal error occurred; the XSet
instance shall not have changed.

XSet.openImportXStream Dirty XUID Shall return a non-fatal error.

XSet.openExportXStream Dirty XUID Shall return a non-fatal error.

XSet.abandon Abandoned Shall cause the XSet instance to enter the
abandoned state.

XSet.getField<attribute>(fatal)
XSet.get<stype>(fatal)
XSet.containsField(fatal)
XSet.openXStream(fatal)
XSet.close(fatal)

Corrupt A fatal error occurred. The XSet instance
is corrupt.

XSet.close(non-fatal) Dirty XUID A non-fatal error occurred, possibly due to
open XStreams.

Table 35 – Operations on an Open XSet Instance in the Clean XUID State

Start State Transition Final State Comment
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 76

XSet Operations © SNIA
8.5.3.2.2.4 Operations on an Open XSet Instance in the Clean No XUID State

The normative transitions describing operational effects on open XSet instances are defined in Table 37.

Table 37 – Operations on an Open XSet Instance in the Clean No XUID State

Start State Transition Final State Comment

Clean No XUID XSet.openExportXStream Clean No
XUID

Shall return a non-fatal error.

XSet.[async]Commit Clean XUID Perform the operation.

Persist the changes in the XSet
instance to the XSet and assign a
new XUID.

XSet.[async]Commit(fatal) Corrupt Shall return a fatal error.

Nonbinding modification Dirty No XUID Perform the operation.

Binding modification DIrty No XUID Perform the operation.

XSet.getField<attribute>(ok)
XSet.get<stype>(ok)
XSet.containsField(ok)

Clean No
XUID

Perform the operation.

XSet.getField<attribute>(non-fatal)
XSet.get<stype>(non-fatal)
XSet.containsField(non-fatal)

Clean No
XUID

A non-fatal error occurred; the XSet
instance shall not have changed.

XSet.openImportXStream(ok) Import The import XStream FSM shall be
instantiated when the method
returns successfully.

XSet.abandon Abandoned Shall cause the XSet instance to
enter the abandoned state.

XSet.getField<attribute>(fatal)
XSet.get<stype>(fatal)
XSet.containsField(fatal)
XSet.openXStream(fatal)
XSet.openImportXStream(fatal)
XSet.close(fatal)

Corrupt A fatal error occurred. The XSet
instance is corrupt.

XSet.close(non-fatal) Clean No
XUID

A non-fatal error occurred, possibly
due to open XStreams.
77 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
8.5.3.2.2.5 Operations on an Open XSet Instance in the Dirty No XUID State

The normative transitions describing operational effects on open XSet instances are defined in Table 44.

8.5.3.2.2.6 Returning to Restricted FSM after Exporting an XSet

An application can only export an XSet on an unmodified XSet instance in the clean XUID state. Export
does not change the XSet instance; thus, it returns the XSet instance to the clean XUID state after
completion. To complete an export and return to the clean XUID state, the application should call
XStream.close on the export XStream instance. If XStream.close is completed with a fatal error, the XSet
instance shall transition to the corrupt state in the Master XSet FSM.

The normative transitions returning to the clean XUID state after export are defined in Table 39.

Table 38 – Operations on an Open XSet Instance in the Dirty No XUID State

Start State Transition Final State Comment

Dirty No XUID XSet.openExportXStream
XSet.openImportXStream

Dirty No XUID Shall return a non-fatal error.

XSet.[async]Commit Clean XUID Perform the operation.

Persist the changes in the XSet
instance to the XSet and assign a
new XUID.

XSet.[async]Commit(fatal) Corrupt Shall return a fatal error.

Nonbinding modification Dirty No XUID Perform the operation.

Binding modification Dirty No XUID Perform the operation.

XSet.getField<attribute>(ok)
XSet.get<stype>(ok)
XSet.containsField(ok)

Dirty No XUID Perform the operation.

XSet.getField<attribute>(non-fatal)
XSet.get<stype>(non-fatal)
XSet.containsField(non-fatal)

Dirty No XUID A non-fatal error occurred; the XSet
instance shall not have changed.

XSet.abandon Abandoned Shall cause the XSet instance to
enter the abandoned state.

XSet.getField<attribute>(fatal)
XSet.get<stype>(fatal)
XSet.containsField(fatal)
XSet.openXStream(fatal)
XSet.close(fatal)

Corrupt A fatal error occurred. The XSet
instance is corrupt.

XSet.close(non-fatal) Dirty No XUID A non-fatal error occurred, possibly
due to open XStreams.

Table 39 – Returning to the Restricted FSM after Export

Start State Transition Final State Comment

Export
(not shown)

XStream.close(ok) Clean XUID The export completed successfully.

XStream.close(non-fatal) Clean XUID The export completed unsuccessfully.

XStream.close(fatal) Corrupt The export completed unsuccessfully.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 78

XSet Operations © SNIA
8.5.3.2.2.7 Returning to Restricted FSM after Importing an XSet

An application can only import an XSet on a newly created XSet instance in the clean no XUID state.
Because it is impossible to transition to the clean no XUID state with the restricted XSet FSM, it is
impossible to perform an import in this mode.

8.5.3.2.3 Unrestricted Open XSet FSM

When an application opens an XSet in unrestricted mode, it can make both binding and nonbinding
modifications on the XSet instance. When it makes a binding modification to the XSet instance, the
XSystem assigns a new XUID on commit. If the XSet instance is newly created and has never been
committed, then the XSystem shall also assign a new XUID on commit. Finally, if the application opens an
XSet in copy mode and then calls XSet.commit for the first time on the XSet instance, the XSystem
assigns a new XUID. In all other cases, if only nonbinding modifications are made to an XSet instance,
then the XSystem, on commit, shall return the same XUID that is currently associated with the XSet.

• The import process allows an application to change binding fields after the import XStream is
closed. However, because of the binding modification, the XSystem shall remove the XUID that
was associated with the XSet during the successful import process.

• XSet.resetManagementFields changes a binding property (.xset.retention.base.starttime); thus, it
is a binding modification.

Figure 14 illustrates the unrestricted open XSet FSM.

Figure 14 – Unrestricted Open XSet FSM

Dirty
XUID

Dirty
No

XUID

Clean
No

XUID

Clean
XUID

XSystem.[async]OpenXSet
(unrestricted)

Start Export

Export Success

Start Import

XSystem.createXSet
(unrestricted)

Import Success

XSet.[async]Commit
Nonbinding
modification

Binding
modification

XSet.[async]Commit

XSet.[async]Commit

XSet.[async]Commit
(return same XUID)

XSystem.copyXSet
(unrestricted) Binding modification

Nonbinding
modification

Binding or
Nonbinding
modification

Binding or
Nonbinding

modification
79 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
8.5.3.2.3.1 Entering the State Machine

The unrestricted XSet FSM can be entered in one of three ways:

• An XSet is opened in unrestricted mode, which puts the XSet instance in the clean XUID state.

• An XSet is copied in unrestricted mode, which puts the XSet instance in the dirty no XUID state.

• An XSet instance is newly created, which puts the XSet instance in the clean no XUID state.

If an application opens an XSet instance in unrestricted mode and the XSet has a valid hold on it, then
XSystem.openXSet will fail. If an application copies an XSet instance in unrestricted mode and the XSet
has a valid hold on it, then the hold will be removed from the newly copied XSet instance. When
XSet.commit is called on the new XSet instance, the XSystem assigns a new XUID, as per standard
restricted commit semantics.

The normative transitions into the unrestricted open XSet FSM are defined in Table 40.

8.5.3.2.3.2 Operations on an Open XSet Instance in the Clean XUID state

The normative transitions describing operational effects on open XSet instances are defined in Table 41.

Table 40 – Entrance to the Unrestricted Open XSet FSM

Start State Transition Final State Comment

Outside of
FSM (NULL)

XSystem.[async]OpenXSet in
unrestricted mode

Clean XUID The unrestricted open XSet FSM shall be
instantiated when the method returns
successfully.

XSystem.[async]CopyXSet in
unrestricted mode

Dirty No XUID The unrestricted open XSet FSM shall be
instantiated when the method returns
successfully.

XSystem.createXSet Clean No
XUID

The unrestricted open XSet FSM shall be
instantiated when the method returns
successfully.

Table 41 – Operations on an Open XSet Instance in the Clean XUID State

Start State Transition Final State Comment

Clean XUID XSet.ImportXStream Clean XUID Shall return a non-fatal error.

XSet.[async]Commit(ok) Clean XUID Perform the operation.

Shall update .xset.time.access and
return the XUID.

XSet.[async]Commit(fatal) Corrupt Shall return a fatal error.

Nonbinding modification Dirty XUID Perform the operation.

Binding modification DIrty No XUID Perform the operation.

XSet.getField<attribute>(ok)
XSet.get<stype>(ok)
XSet.containsField(ok)

Clean XUID Perform the operation.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 80

XSet Operations © SNIA
Clean XUID XSet.getField<attribute>(non-fatal)
XSet.get<stype>(non-fatal)
XSet.containsField(non-fatal)

Clean XUID A non-fatal error occurred; the XSet
instance shall not have changed.

XSet.openExportXStream(ok) Export The export XStream FSM shall be
instantiated when the method returns
successfully.

XSet.abandon Abandoned Shall cause the XSet instance to
enter the abandoned state.

XSet.getField<attribute>(fatal)
XSet.get<stype>(fatal)
XSet.containsField(fatal)
XSet.openXStream(fatal)
XSet.openExportXStream(fatal)
XSet.close(fatal)

Corrupt A fatal error occurred. The XSet
instance is corrupt.

XSet.close(non-fatal) Clean XUID A non-fatal error occurred, possibly
due to open XStreams.

Table 41 – Operations on an Open XSet Instance in the Clean XUID State

Start State Transition Final State Comment
81 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
8.5.3.2.3.3 Operations on an Open XSet Instance in the Dirty XUID State

The normative transitions describing operational effects on open XSet instances are defined in Table 42.

8.5.3.2.3.4 Operations on an Open XSet Instance in the Clean No XUID State

The normative transitions describing operational effects on open XSet instances are defined in Table 43.

Table 42 – Operations on an Open XSet Instance in the Dirty XUID State

Start State Transition Final State Comment

Dirty XUID XSet.openImportXStream
XSet.openExportXStream

Dirty XUID Shall return an error.

XSet.[async]Commit Clean XUID Perform the operation.

Persist the changes in the XSet
instance to the XSet and return the
existing XUID.

XSet.[async]Commit(fatal) Corrupt Shall return a fatal error.

Nonbinding modification Dirty XUID Perform the operation.

Binding modification Dirty No XUID Perform the operation.

XSet.getField<attribute>(ok)
XSet.get<stype>(ok)
XSet.containsField(ok)

Dirty XUID Perform the operation.

XSet.getField<attribute>(non-fatal)
XSet.get<stype>(non-fatal)
XSet.containsField(non-fatal)

Dirty XUID A non-fatal error occurred; the XSet
instance shall not have changed.

XSet.abandon Abandoned Shall cause the XSet instance to
enter the abandoned state.

XSet.getField<attribute>(fatal)
XSet.get<stype>(fatal)
XSet.containsField(fatal)
XSet.openXStream(fatal)
XSet.close(fatal)

Corrupt A fatal error occurred. The XSet
instance is corrupt.

XSet.close(non-fatal) Dirty XUID A non-fatal error occurred, possibly
due to open XStreams.

Table 43 – Operations on an Open XSet Instance in the Clean No XUID State

Start State Transition Final State Comment

Clean No XUID XSet.openExportXStream Clean No
XUID

Shall return a non-fatal error.

XSet.[async]Commit Clean XUID Perform the operation.

Persist the changes in the XSet
instance to the XSet and assign a
new XUID.

XSet.[async]Commit(fatal) Corrupt Shall return a fatal error.

Nonbinding modification Dirty No XUID Perform the operation.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 82

XSet Operations © SNIA
8.5.3.2.3.5 Operations on an Open XSet Instance in the Dirty No XUID State

The normative transitions describing operational effects on open XSet instances are defined in Table 44.

Clean No XUID Binding modification DIrty No XUID Perform the operation.

XSet.getField<attribute>(ok)
XSet.get<stype>(ok)
XSet.containsField(ok)

Clean No
XUID

Perform the operation.

XSet.getField<attribute>(non-fatal)
XSet.get<stype>(non-fatal)
XSet.containsField(non-fatal)

Clean No
XUID

A non-fatal error occurred; the XSet
instance shall not have changed.

XSet.openImportXStream(ok) Import The export XStream FSM shall be
instantiated when the method
returns successfully.

XSet.abandon Abandoned Shall cause the XSet instance to
enter the abandoned state.

XSet.getField<attribute>(fatal)
XSet.get<stype>(fatal)
XSet.containsField(fatal)
XSet.openXStream(fatal)
XSet.openImportXStream(fatal)
XSet.close(fatal)

Corrupt A fatal error occurred. The XSet
instance is corrupt.

XSet.close(non-fatal) Clean No
XUID

A non-fatal error occurred, possibly
due to open XStreams.

Table 44 – Operations on an Open XSet Instance in the Dirty No XUID State

Start State Transition Final State Comment

Dirty No XUID XSet.openExportXStream
XSet.openImportXStream

Dirty No XUID Shall return a non-fatal error.

XSet.[async]Commit Clean XUID Perform the operation.

Persist the changes in the XSet
instance to the XSet and assign a
new XUID.

XSet.[async]Commit(fatal) Corrupt Shall return a fatal error.

Nonbinding modification Dirty No XUID Perform the operation.

Binding modification Dirty No XUID Perform the operation.

XSet.getField<attribute>(ok)
XSet.get<stype>(ok)
XSet.containsField(ok)

Dirty No XUID Perform the operation.

XSet.getField<attribute>(non-fatal)
XSet.get<stype>(non-fatal)
XSet.containsField(non-fatal)

Dirty No XUID A non-fatal error occurred; the XSet
instance shall not have changed.

Table 43 – Operations on an Open XSet Instance in the Clean No XUID State

Start State Transition Final State Comment
83 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
8.5.3.2.3.6 Returning to Unrestricted FSM after Exporting an XSet

An application can only export an XSet on an unmodified XSet instance in the clean XUID state. Export
does not change the XSet instance; thus, it returns the XSet instance to the clean XUID state after
completion. To complete an export and return to the clean XUID state, the application should call
XStream.close. If XStream.close is completed with a fatal error, the XSet instance shall transition to the
corrupt state in the Master XSet FSM.

The normative transitions returning to the clean XUID state after export are defined in Table 45.

8.5.3.2.3.7 Returning to Unrestricted FSM after Importing an XSet

An application can only import an XSet on a newly created XSet instance in the clean no XUID state. After
a successful import, the XSet instance will be in a dirty XUID state. The import model allows an application
to change binding fields before committing the XSet, but standard semantics apply (e.g., if it makes a
binding modification, the XSystem removes the imported XUID, which removes the XUID field, and
assigns a new XUID on commit).

The normative transitions returning to the dirty XUID state after import are defined in Table 46.

Dirty No XUID XSet.abandon Abandoned Shall cause the XSet instance to
enter the abandoned state.

XSet.getField<attribute>(fatal)
XSet.get<stype>(fatal)
XSet.containsField(fatal)
XSet.openXStream(fatal)
XSet.close(fatal)

Corrupt A fatal error occurred. The XSet
instance is corrupt.

XSet.close(non-fatal) Dirty No XUID A non-fatal error occurred, possibly
due to open XStreams.

Table 45 – Returning to the Unrestricted FSM after Export

Start State Transition Final State Comment

Export (not shown) XStream.close(ok) Clean XUID The export completed successfully.

XStream.close(non-fatal) Clean XUID The export completed unsuccessfully.

XStream.close(fatal) Corrupt The export completed unsuccessfully.

Table 46 – Returning to the Unrestricted FSM after Import

Start State Transition Final State Comment

Import (not shown) XStream.close(ok) Dirty XUID The import completed successfully.

XStream.close(non-fatal) Dirty XUID The export completed unsuccessfully.

XStream.close(fatal) Corrupt The export completed unsuccessfully.

Table 44 – Operations on an Open XSet Instance in the Dirty No XUID State

Start State Transition Final State Comment
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 84

XSet Operations © SNIA
8.5.4 Summary of XSet System Fields in each XSet Instance State

Table 47 shows the XSet system fields that shall be present by XSet Instance State. In this table, Yes
means that the field is present, No means that the field is not present, Maybe means that the field may be
present, and N/A means that all methods that can access the fields return a non-fatal error; thus, whether
a field is present does not apply. See Section 8.1, “XSet Behavior” for additional information.

8.6 Distributed Access to the Same XSet
Distributed access refers to the parallel (concurrent) reading, writing, and deleting of common data (see
Figure 15, “Abstract XSet Distributed Access Model”). Concurrency issues can arise when common data is
accessed and edited in a distributed fashion. Because distributed edits of common data structures can
conflict, it is important to define the semantics describing how these conflicts are resolved when the data is
saved.

In XAM, these concurrency issues can manifest when two XAM applications (or two processes/threads
within the same XAM application) open an XSet (by opening its XUID) at the same time. This open causes
an XSet instance to be created. In Figure 16, Application A and Application B are opening the same XSet
and creating two separate XSet instances. This figure shows a simple conflict case. When each

Table 47 – XSet System Field Presence by XSet Instance State

XSet Field Clean No
XUID

Dirty No
XUID

Clean
XUID

Dirty
XUID Import Export Corrupt Abandon

.xset.time.creation Yes Yes Yes Yes N/A N/A N/A N/A

.xset.time.xuid No No Yes Yes N/A N/A N/A N/A

.xset.time.commit No Maybe Yes Yes N/A N/A N/A N/A

.xset.time.access No No Yes Yes N/A N/A N/A N/A

.xset.time.residency No No Yes Yes N/A N/A N/A N/A

.xset.dirty No Yes No Yes N/A N/A N/A N/A

.xset.xuid No No Yes Yes N/A N/A N/A N/A

Figure 15 – Abstract XSet Distributed Access Model
85 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
application modifies, creates, or deletes one or more nonbinding fields within its XSet instance and tries to
commit the change to the XSystem, a conflict occurs because the changes are to the same fields.

All changes to the XSet before the commit by Application A are not visible to Application B. Concurrency
issues occur when one application performs a commit operation while only changing, adding, or deleting
nonbinding fields, because this does not change the XUID. If binding fields are changed, added, or
deleted, a new XSet is created, per the Unrestricted Open XSet FSM. Thus, if both applications are editing
the same XSet and have modified a binding field, no conflict occurs.

For this reason, a concurrency conflict occurs when an XSystem instance detects that an XSet instance’s
access to an XSet (or XSet access) has been changed since the XSet instance was created.

An XSet access is defined, for the purposes of concurrency, as follows:

• reading, changing, creating, or deleting a field associated with the XSet

• commiting or deleting an XSet

• placing or releasing a hold on an XSet

An XSet is defined to have changed when an operation causes any of the fields in the XSet, except
.xset.time.access, to change. Note that changing field values or attributes in the XSet instance does not
change values in the XSet. The only methods that change the XSet are XSet.commit,
XSystem.deleteXSet, XSystem.holdXSet, and XSystem.releaseXSet. While XSystem.openXSet changes
.xset.time.access, for the purposes of concurrency, this time change is not considered a change to the
XSet. An XSystem is allowed to return an access time for the current XSet instance, rather than the most
up-to-date access time of the XSet.

After an XSet instance is created, it shall be able to detect that an XSet has been changed in the XSystem.

8.6.1 Design Goals and Derived Semantics

The concurrency model in XAM is based on the following design goals:

• XAM 1.0 does not support explicit locks. If a XAM application wishes to ensure exclusive access to
an XSet, the mechanism to enforce this is outside the scope of the XAM 1.0 specification.

• XAM VIMs may implement transparent use of scratch memory to store, retrieve, or cache
intermediate values or partial values of an XSet before a commit occurs. If the actual XSet is
modified, the XAM VIM is not required to update any cached data associated with the XSet. As

Figure 16 – XSet Distributed Access Example

Application A
opens XSet

Application B
opens XSet

XSet with one or
more binding

fields

Application A modifies
nonbinding field

Application B modifies
nonbinding field

Application A
commits XSet

Application B
commits XSet

Conflict
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 86

XSet Operations © SNIA
mentioned previously, the XAM VIM is required to be able to detect the conflict if it accesses the
XSet in the back-end storage (i.e., the XSystem).

• When a concurrency conflict exists, the first commit precedes other commits on the same XSet.
This precedence rule avoids potential data loss scenarios.

• Simple, clear conflict-error semantics are required for the XAM application and XSystem
implementers. Instead of trying to merge partial conflicts within an XSet, XAM 1.0 places the entire
XSet instance that detected the conflict into the corrupt state and prevents further operations on
the XSet instance.

Thus, XAM 1.0 supports multiple concurrent XAM application readers with a single XAM application writer
to the same XSet. However, if multiple application writers try to change the same XSet, XAM 1.0 detects
that the conflict occurred but leaves it to the XAM application to recover. Additionally, even the single writer
is not transparent to the readers; if the XSet is modified by the writer, XSet readers may be able to
continue to read the old data for some amount of time. However, when the XSystem instance detects the
conflict, the XSet instance will be placed in the corrupt state, and the XAM application reader will have to
abandon and then close the XSet instance. After the XAM application re-opens the XSet, it should assume
that any prior data it has read may have changed, unless it has a mechanism for detecting changes within
the XSet.

More formally, the first XSet instance commit shall define what the XSet will contain. If two or more XSet
instances are opened against an existing XSet, then the first one to commit any changes to the XSet shall
have its changes stored in the XSet. The second (and subsequent) XSet instance, on detection of the
modified XSet, shall enter the XSet instance corrupt state, causing the access that detected the conflict to
return a non-fatal concurrency error and all further accesses to fail with a non-fatal concurrency error. Note
that it is acceptable for VIMs that use a cache to succeed while the XSet access is within the cache.
However, even for caching VIMs, once a concurrency failure is detected, all subsequent accesses shall
return a failure.

Note: The XAM Library and XSystem instance cannot be committed to persistent storage. Any field edits
associated with either a XAM Library instance or an XSystem instance are not persistent; they only
affect the local instance. Thus, XAM Library and XSystem instances cannot suffer from these
concurrency issues.

8.6.2 Use Cases

Distributed access can be divided into two groups:

• Single XSet instance concurrency, which describes concurrent access of an XSet instance by
multiple threads within a single process.

• Multiple XSet instance concurrency, which describes concurrent access of a single XSet through
the use of multiple XSet instances. Multiple XSet instance concurrency issues can arise in many
ways; they can occur within a single process or task on a single host, within multiple processes or
tasks on a single host, or within multiple processes or tasks across multiple hosts.

Note: The divergence caused by performing different edits (change and commit) on nonbinding fields on
the same XSet (i.e., XSets that have the same XUID) that is stored on multiple physical XAM
Storage Systems is not within the definition of a concurrency conflict. This conflict does not
become an issue until the XSets converge. Convergence occurs when both XSets are accessed
by the same application, or when one XSet is migrated to a XAM Storage System that contains a
divergent XSet. Convergence issues that are caused by a XAM application accessing two
diverged XSets on two different XSystems is beyond the scope of this specification. XAM
migration is defined as the combination of an XSet export followed by an XSet import. XAM
enables a XAM application performing the migration (thus causing convergence) to have the tools
87 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
to evaluate the data that has diverged and make an appropriate application-specific choice
between the diverged data. See Section 8.8, “XSet Import and Export” for further information.

8.6.2.1 XSet Conflict Resolution, Example 1
Process A on the host opens an XSet instance, while process B on the same host opens an XSet instance
to the same XSet (both have unrestricted access to the XSet). Process A modifies a nonbinding field on
the XSet instance and commits the XSet. Process A can continue to change the XSet instance because
the XSet is in sync with the XSet instance. Any edits made to the XSet instance by process B will cause
XSet.commit to return a non-fatal error. Based on the state of the VIM cache (if any), tries to read or edit
XSet fields in process B may also return a fatal or non-fatal error. Once a fatal error is returned, the XSet
instance is transitioned to the corrupt state, and all future operations on the XSet, except for XSet.abandon
and then XSet.close, return a fatal error.

8.6.2.2 XSet Conflict Resolution, Example 2
Process A opens an XSet instance in readonly mode, while process B opens the same XSet with
unrestricted access. Process A is not allowed to change the fields on the XSet, thus, it cannot cause
concurrency problems for process B. Note that process A is still vulnerable to process B causing changes
to the XSet, which may result in process A’s XSet instance transitioning to the corrupt state when process
A tries to read XSet fields that the VIM has to obtain from the XAM Storage System.

8.6.2.3 XSet Conflict Resolution, Example 3
A single process containing two threads opens an XSet instance in each thread (both are unrestricted, and
each XSet instance was opened using the same XUID). The XSet contains a field that has an existing
value. Thread A modifies the field, while thread B reads the field. Thread order is undefined. XAM does not
define if thread B will read the original or the modified value from the field. This type of thread
synchronization is the responsibility of the application.

8.7 XSet Policy
An XSet policy is an agreement, between XAM applications and an XSystem, for a set of XAM-specified
behaviors or rules that apply to the XSet. An XSystem advertises the list of XSet policy agreements, for
which the XSystem is willing and obligated to abide by, to XAM applications via a list of XSystem fields or
an XSystem policy list. A XAM application can only select an XSet policy agreement from the XSystem
policy list. The XSet policy agreement is finalized once the XAM application commits the XSet instance
containing the selected XSet policy.

An XSet system property is used to store the applicable policy for each area of agreement; this property is
called an XSet policy property. XSet policy properties shall have a readonly attribute of TRUE. For each
XSet policy property, a corresponding method is specified to apply policy in that area to the XSet; the
method shall apply a named policy (provided as a parameter to the method), shall set the value of the
corresponding XSet policy property to the policy name, and shall create the XSet policy property if it does
not exist. Reset methods are specified to remove XSet policy properties, and a single reset method may
remove multiple XSet policy properties. For XSet policy properties, the apply and reset methods take the
place of the general field create, set, and delete operations specified in Section 6.4, “Methods that Operate
on Fields” for XSet policy properties, because a XAM application cannot use the general field methods to
create system fields, set readonly fields, or delete readonly fields.

The set of policy names that may be used as the value of an XSet policy property are stored in a
corresponding policy list in the XSystem that contains the XSet. An XSystem policy list is a set of XSystem
properties whose names have a common prefix that designates the area of (policy) agreement to which
the policies apply. A property in an XSystem policy list shall contain the policy name value that may be
used in the corresponding XSet policy property, and that value shall be the final name component of the
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 88

XSet Operations © SNIA
XSystem property name (i.e., the XSystem property name is required to end with .<policy name>, where
<policy name> is the value of the property). Unless otherwise specified, an XSystem policy list may be
empty (i.e., no XSystem policy list properties exist for a specified common name prefix). The attributes of
the XSet policy and XSystem policy list properties are specified in Table 48.

An XSet policy shall only be created or updated with a policy name found in the XSystem policy list, where
the <XAM standard name> portion of the XSet policy matches the property names of the XSystem policy
list. Unless otherwise specified, the <XAM standard name> portion of the XSet policy property name shall
match the <XAM standard name> portion of the XSystem policy list property name. A XAM application may
use the XIterator mechanism (see Chapter 6, “XAM Objects and Common Operations”) on the XSystem to
discover the valid policy names that can be used to create or update an XSet policy. Alternatively, a XAM
application may simply create or update an XSet policy using the appropriate XSet policy method. If a XAM
application specifies an invalid policy name (i.e., a policy name that is not included in the XSystem policy
list), then the XSet policy method shall generate a non-fatal error.

Table 48 – XSet and XSystem Policy List Properties

Property Name stype Binding Readonly

.xset.<XAM standard name>.policy xam_string XAM specified TRUE

.xsystem.<XAM standard name>.policy.list.<name> xam_string FALSE TRUE

Figure 17 – Policy Relationships Between the XSet and XSystem

Agreement “foo val”

Agreement “bar val”

Agreement “foobar val”

XSystem XSet Policy Agreements

XSet

Name = “.xset.policy”
Value = “bar val”

XSet Policy

XSystem
Instance

Name = “.xsystem.policy.list.foo val”
Value = “foo val”

Name = “.xsystem.policy.list.bar val”
Value = “bar val”

1. The XAM application
 updates xset.policy to
 “bar val.”

2. The XSystem must
 honor the “bar val”
 policy for the other XSet.
89 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
An XSystem may change the behavior and rules of an XSet policy agreement or create or remove an XSet
policy agreement at any time. The XSystem shall advertise the XSet policy agreement alterations on any
XSystem instance created after the changes are made. Conversely, the XSystem shall not advertise the
XSet policy agreement alterations on any XSystem instance created before the changes are made.

The XSet policy XAM-specified behaviors and rules, complete specification of property attributes, and
associated XSet policy methods are defined in Chapter 9, “XSet Management” and Chapter 11, “Security”
as XSet policy pertains to the following XAM management and security XSet disciplines:

• Retention

• Deletion

• Storage

• Access control

Note: Due to the abstracted nature of an XSet policy, XAM does not include the semantics or the data
definitions employed by the XAM Storage System to formulate the XSystem policy list. If a XAM
Storage System administrator wants to migrate an XSet from one XSystem to another, the XAM
Storage System administrator should define policy names on each XSystem, such that migration
from one XSystem to another preserves the policies associated with an XSet. The XAM
application responsible for the import can detect differences between the exported XSet’s
getActuals and the imported XSet’s getActuals; however, it is beyond the scope of this
specification to reconcile the conflict.

8.8 XSet Import and Export
One of the key factors in achieving long-term data persistence is the ability to move XSets between
different XSystems. This ability is achieved by using the XSet import and export mechanism. This
specification defines the behavior of the methods used to perform the export of an XSet from an XSystem,
the methods used to perform the import of an XSet into an XSystem, and the canonical XSet data format
that these methods use.

The definition of the canonical XSet format can be found in Annex B, “(normative) Canonical XSet
Interchange Format”. This definition describes the XAM representation of an XSet when it is outside of an
XSystem. The internal representation of an XSet within an XSystem is outside of the scope of this
specification. XSystem implementers are free to optimize the internal representation of an XSet.

XSet.openImportXStream opens an import XStream to the XSet instance. The application imports an XSet
by using XStream.write to write the bytes of an XSet that is in canonical format into the import XStream.
The import is complete when the application closes the import XStream.

XSet.openExportXStream opens an export XStream to the XSet instance. The XSet instance must be in a
clean state to begin an export. The application exports the XSet from the XStream by using XStream.read
to read the canonical representation of the XSet from the export XStream. The export is complete, when a
read of the export XStream generates an End Of Stream indicator, and the application closes the export
XStream.

8.8.1 XSet Export Process

The XSet export process shall create an XStream representation of the contents of an XSet. The contents
of this export XStream shall be in the canonical XSet format. This XStream is created on a clean
(unmodified) XSet instance. The XSystem shall generate a non-fatal error when an application tries to
open an export XStream against an XSet instance that is not in a clean state. The existing XSet will be
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 90

XSet Operations © SNIA
unmodified by creating the export XStream. Note that XStream.seek shall return a non-fatal error when
used on an export XStream.

To ensure data integrity and interoperability, the following export rules shall be enforced by the XSystem.
An XSystem:

• Shall export all application fields

• Shall export all XAM system fields

• Shall export all vendor system fields not created by the exporting XSystem

• May export vendor system fields understood by the exporting XSystem

Exporting an XSet

Exporting an XSet shall be a multi-step process using XSet.openExportXStream, XStream.read, and
XStream.close. The following steps shall be required:

1 Open an existing XSet instance using XSystem.openXSet.

2 Call XSet.openExportXStream to begin the export. An XStream handle will be returned. Opening
an export XStream shall put the XSet instance into the export state. When an XSet instance is in
this state, it may not be modified in any way (i.e., all methods that create, change, or delete shall
return a non-fatal error).

3 Read the canonical representation of the XSet from the XStream using XStream.read.
XStream.read should be called over and over until it generates an End of Stream indicator.

4 Close the export XStream using XStream.close. This close shall return the XSet instance to the
state it was in before the export operation.

On successful export, the standard system fields (see Section 8.2.3, “Normative XSet Fields”) shall not be
modified.

8.8.2 XSet Import Process

The XSet.openImportXStream method is called on a newly created XSet instance. Trying to import into
anything but a newly created XSet instance shall result in a non-fatal error. XSet.openImportXStream
opens an import XStream on the XSet instance. When an XSet instance has an open import XStream, it
may not be edited (i.e., all methods to create, change, or delete shall return a non-fatal error). The
application imports an XSet by using XStream.write to write the bytes of an XSet that is in canonical format
into the import XStream; this process results in that XSet instance being fully populated and in a dirty XUID
state. XStream.seek shall return a non-fatal error when used on an import XStream. The import is
complete when the application closes the import XStream.

If the import is successful (i.e., the canonical representation was complete and it was successfully
transferred to the XStream), the data will be validated when the import XStream is closed. If it is invalid, the
XSet will enter a corrupt state. On success, the XSet instance will have the XUID (as defined in the
canonical representation) assigned to it; if the binding fields change in the XSet after the import, the XUID
will be removed and a new XUID shall be assigned on commit of the XSet instance. If the XSet already
exists in the XSystem, the application may open the existing XSet and compare the two and resolve any
conflicts, if needed. This pattern allows the application to do a more sophisticated import, where it can
choose to commit (or not commit) the XSet without any consequences.

To ensure data integrity and interoperability, the following import rules shall be enforced by the XSystem:

• The imported XSet shall retain all fields found in the canonical XSet data, although the XAM
Storage System is allowed to delete that XAM Storage System’s vendor fields.
91 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
• The importing XSystem shall change those nonbinding XAM system fields that are required to
change (e.g., .xset.time.commit may change; .xset.time.residency shall change).

• The importing XSystem may change nonbinding vendor system fields understood by the importing
XSystem.

• All fields and field contents exist on the XSet instance, but the XSet instance has not yet been
committed to the XSystem. This requirement allows the importing application to decide whether to
commit, change and commit, or discard the XSet instance.

• If an XSet with the same XUID exists in the importing XSystem, the existing XSet shall be replaced
by the imported XSet instance on commit of the imported XSet. An XSystem may generate a fatal
or non-fatal error on commit of the imported XSet, if a field replacement would result in a violation
of system field update rules (e.g., cause .xset.retention.<retention id>.duration to decrease), or if
the imported XSet has a binding policy property whose policy cannot be enforced on the importing
XSystem.

Importing an XSet

Importing an XSet is a multi-step process using XSet.openImportXStream, XStream.write, and
XStream.close. The following steps shall be required:

1 Create a new XSet using XSystem.createXSet.

2 Call XSet.openImportXStream to allow the import. An import XStream handle is returned. Opening
an import XStream shall put the XSet instance into the import state. When an XSet instance is in
this state, it may not be modified in any way (i.e., all methods that create, change, or delete shall
return a non-fatal error).

3 Write the canonical representation of the XSet to the XStream using XStream.write.

4 Close the XStream using XStream.close. If XStream.close is successful, the XSystem shall validate
the imported contents and set up the XSet state accordingly. More details on validation can be
found below.

When the XStream is closed, the XSystem shall validate the canonical XSet data. If the canonical XSet
data is invalid, then XStream.close shall cause a fatal error, and the imported XSet instance shall enter a
corrupted state. Note that an XSet instance in a corrupted state cannot be recovered, and all operations,
except abandon, shall cause a fatal error.

The XSystem shall validate any exported policies to determine their applicability and effect on the
importing XSystem. An XSystem policy that is specified as a policy property in the exported XSet is
encoded as a policy element in the canonical format. An XSet property value that is represented in the
exported XSystem policy and for which there exists an XSet.get<actual value> method (e.g.,
XSet.getActualRetentionDuration) is encoded as a property element within the policy element of the
canonical format (see Section 8.8.4.1, “XSet Manifest XML Format”). The exported policy information shall
be used by the importing XSystem to validate the exported policies.

Exported policies shall be validated or reconciled to the policies of the importing XSystem (before
XStream.close returns control to the application) as follows:

• Nonbinding XSet policy properties:

— If the importing XSystem has a policy with the same name, and if using that policy to replace
the policy property values represented in the exported XSet's policy does not violate the XSet
system field update rules (e.g., causing .xset.retention.<retention id>.duration to decrease is a
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 92

XSet Operations © SNIA
violation), then the exported XSet policy field is valid and shall be included in the imported
XSet instance.

— If the importing XSystem has a policy with the same name, and if using that policy to replace
the policy property values represented in the exported XSet's policy violates the XSet system
field update rules, or if the importing XSystem has no policy with the same name, then the
importing XSystem may validate the exported XSet policy by changing the XSet policy
property in the imported XSet instance to a policy name that does not result in a violation of
the XSet system field update rules.

— Otherwise, the exported XSet policy field is invalid for the importing XSystem; XStream.close
for the import XStream shall cause a fatal error, and the imported XSet instance shall enter a
corrupted state.

• Binding XSet policy properties:

— If the importing XSystem has a policy with the same name, and if using that policy to replace
the policy property values represented in the exported XSet's policy does not violate the XSet
system field update rules (e.g., causing .xset.retention.<retention id>.duration to decrease is a
violation), then the exported XSet policy field shall be considered valid and shall be included in
the imported XSet instance.

— If the importing XSystem has a policy with the same name, and if using that policy to replace
the policy property values represented in the exported XSet's policy violates the XSet system
field update rules, then the exported XSet policy field is invalid for the importing XSystem,
XStream.close for the import XStream shall cause a fatal error, and the imported XSet
instance shall enter a corrupted state.

— If the importing XSystem has no policy with the same name, then the importing XSystem may
validate the exported XSet policy by creating a policy with the same name with policy property
values that do not violate the XSet system field update rule and that include the XSet policy
property in the imported XSet instance.

— Otherwise, the exported XSet policy field is invalid for the importing XSystem, XStream.close
for the import XStream shall cause a fatal error, and the imported XSet instance shall enter a
corrupted state

On successful XStream close, the imported XSet instance contains validated fields, including any XSet
policy properties. The imported XSet instance shall enter the dirty state (meaning it has been modified),
and .xset.xuid shall be populated with the XUID from the imported data. The XSet instance will not have
been committed; it may then be committed or discarded as any normal XSet instance would be. Unless
there is a subsequent change to a binding field in the XSet, the XUID in .xset.xuid will be returned on
successful commit of the imported XSet instance.

If the XSet already exists in the XSystem, as determined by XSystem.accessXSet, the application can
open the existing XSet and compare the two so that any conflicts can be resolved, if needed. Comparing
the two allows the application to do a more sophisticated import, where it can choose to commit (or not
commit) the XSet without any consequences.
93 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
On successful import, the system fields shall be modified as shown in Table 49.

When the XSet instance that contains the imported XSet is committed, .xset.time.access and
.xset.time.residency shall be set to the current time.

8.8.3 Import and Export XStream Instance FSMs

See Section 8.5, “XSet Instance Finite State Machine (FSM)” for additional information regarding the
import and export states of the Master XSet FSM. Policies include the following:

• XStream.close in import corrupt state shall always return a fatal error.

• XStream.close(fatal) on import causes the entire XSet to transition to the corrupt state.

• In import corrupt state, all methods shall return a fatal error except XStream.abandon.

• XStream.close removes the XStream from the XSet.

Table 49 – XSet System Field Modification on Import

Field Name Modified New Value

.xset.time.creation No N/A

.xset.time.xuid No N/A

.xset.time.commit No N/A

.xset.time.access Yes Time XSet was imported

.xset.time.residency Yes Time XSet was imported

.xset.xuid Yes XUID from imported XSet

.xset.dirty Yes Set to TRUE
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 94

XSet Operations © SNIA
See Figure 18, “Export XStream Instance FSM” and Figure 19, “Import XStream Instance FSM” for an
illustration of these export and import functions.

Figure 18 – Export XStream Instance FSM

Export
Reader

Abandoned

XStream.close(ok)

XStream.read(non-fatal)
XStream.asyncRead(non-fatal)
XStream.tell(non-fatal)
XStream.seek(non-fatal)
XStream.write(non-fatal)
XStream.asyncWrite(non-fatal)
XStream.abandon(non-fatal)

XStream.abandon

XStream.read(ok,non-fatal)
XStream.asyncRead(ok,non-fatal)
XStream.tell(ok,non-fatal)
XStream.seek(non-fatal)
XStream.write(non-fatal)
XStream.asyncWrite(non-fatal)

XSet.openExportStream()

XStream.close(ok)
Export Read

Corrupt

XStream.read(fatal)
XStream.asyncRead(fatal)
XStream.tell(fatal)
XStream.close(fatal)

XStream.abandon

XStream.read(fatal)
XStream.asyncRead(fatal)
XStream.tell(fatal)
XStream.seek(fatal)
XStream.write(fatal)
XStream.asyncWrite(fatal)
XStream.close(fatal)

To Master XSet FSM
clean XUID state
95 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
8.8.4 XSet Canonical Format

The main goals for the canonical format are interoperability and performance. Interoperability is required
so that XSets can be moved between different XSystems without a loss of data. Good performance is
required to enable XSystems to efficiently export or import large numbers of XSets in a reasonable amount
of time. Secondary goals are the use of existing standards and parsers, where possible, and the ability to
do offline inspection of exported XSets. The format should also support the ability to describe multiple
XSets within the same data.

With these design goals in mind, the canonical XSet format shall be packaged in two main parts: an XML
document describing the policies, properties and streams of the XSet, or XSet “manifest”, and the binary
representation of the streams. Since properties are compact, they shall be fully defined in the XML
document. Since XStreams can be rather large, only the attributes of the stream shall be included in the
XML document; the actual contents shall be outside the XML document in a separate part of the package.

Figure 19 – Import XStream Instance FSM

Import
Writer

Abandoned

XStream.close(ok)

XStream.write(non-fatal)
XStream.asyncWrite(non-fatal)
XStream.tell(non-fatal)
XStream.seek(non-fatal)
XStream.read(non-fatal)
XStream.asyncRead(non-fatal)
XStream.abandon(non-fatal)

XStream.write(fatal)
XStream.asyncWrite(fatal)
XStream.tell(fatal)
XStream.close(fatal)

XStream.write(ok, non-fatal)
XStream.asyncWrite(ok, non-fatal)
XStream.tell(ok, non-fatal)
XStream.seek(non-fatal)
XStream.read(non-fatal)
XStream.asyncRead(non-fatal)

XSet.openImportXStream()

XStream.close(ok)

Import Write
Corrupt

XStream.write(fatal)
XStream.asyncWrite(fatal)
XStream.tell(fatal)
XStream.seek(fatal)
XStream.read(fatal)
XStream.asyncRead(fatal)
XStream.close(fatal)

XStream.abandon

XStream.abandon

To Master XSet FSM
corrupt state

To Master XSet FSM
dirty XUID state
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 96

XSet Operations © SNIA
The format of the package shall adhere to the XML-binary Optimized Packaging (XOP) format [XOP]. With
this format, the binary data is attached as MIME attachments following the XML document. The MIME
attachments shall conform to the MIME Multipart/Related Content-type specification as defined in [RFC
2387]. A table of contents attachment shall be added as the first attachment to list the offsets of each of the
XStream’s binary data. This attachment allows for parallel access to the XStreams if desired. The format of
the XML document shall allow multiple XSets to be included in one canonical XSet package, although the
current version of the specification supports only import and export of a single XSet at a time. If the XSet
does not contain any XStreams, then no MIME attachments shall follow the XML document. As per the
XOP format, the order of the MIME parts shall not be considered significant, except for the purpose of
determining the root MIME part.

Using XML enables the use of standard XML parsers. However, XML is not designed to handle binary data
efficiently; it requires Base64 encoding, thus expanding the size of the data by 33%. By using XOP, the
applications can use existing XML tools to parse and understand the XSet structure, while not requiring
them (and the XSystem) to Base64 encode/decode the XStreams. The format does not include a digital
signature, compression, encryption, or cryptographic XSet integrity.

This specification uses an XML Schema Definition (XSD) to define the format. The use of schema allows
for better validation of the contents if applications so choose, while not impacting the performance of
applications which do not. The schema is found in Annex B, “(normative) Canonical XSet Interchange
Format”.

8.8.4.1 XSet Manifest XML Format
The XML format is organized into two parts: policies and XSets. The policies section lists the XSystem
policies that are in effect. The XSets section lists the properties and XStreams of each XSet in the
manifest. The format of the XML manifest allows for multiple XSets to be included in a single package,
although this version of the specification only specifies the inclusion of a single XSet in a manifest.

The root element for the XSet XML format shall be called xsets. This element shall be followed by the
element policies, which shall contain the XSystem policies that are referenced by the XSet. Each policy
shall be expressed with a policy element, which in turn shall contain one or more property elements. The
policy element shall contain name, type, readonly, binding, and length attributes followed by a value
element containing the value of the policy property. These attributes and the value shall correspond to the
XSystem policy. The property elements contained in the policy element shall correspond to the actual
values of the XSet properties represented by the XSystem policy. Each property element shall have name,
type, readonly, binding, and length attributes followed by a value element containing the value of the
property. The attributes for the property shall contain the values of the attributes of the corresponding
XSystem property.

The following is an example of a policy element:

<policies>
 <policy name=".xsystem.management.policy.list.default" type="application/

vnd.snia.xam.string" readOnly="false"
binding="false" length="7" >

 <string>default</string>
 <property name=".xset.retention.base.duration" type="application/

vnd.snia.xam.int" readOnly="false"
binding="false" length="8" >

 <integer>60000</integer>
 </property>
 <property name=".xset.retention.base.enabled" type="application/

vnd.snia.xam.boolean" readOnly="false"
binding="false" length="1" >

 <boolean>true</boolean>
97 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
 </property>
 <property name=".xset.retention.event.duration" type="application/

vnd.snia.xam.int" readOnly="false"
binding="false" length="8" >

 <integer>0</integer>
 </property>
 <property name=".xset.retention.event.enabled" type="application/

vnd.snia.xam.boolean" readOnly="false"
binding="false" length="1" >

 <boolean>false</boolean>
 </property>
 <property name=".xset.deletion.autodelete" type="application/

vnd.snia.xam.boolean" readOnly="false"
binding="false" length="1" >

 <boolean>true</boolean>
 </property>
 <property name=".xset.deletion.shred" type="application/

vnd.snia.xam.boolean" readOnly="false"
binding="false" length="1" >

 <boolean>true</boolean>
 </property>
 </policy>
</policies>

Following the policies element shall be one or more xset elements. The xset element shall contain the
properties and XStreams for a single XSet. The XSet element shall contain two sub-elements: properties
and xstreams. The properties element shall contain the entries for all the properties exported for this XSet.
Each property shall be defined by a property element containing the name, type, readonly, binding, and
length attributes of the property. A value child element shall contain the value of the property. The
attributes for the property element shall contain the values of the attributes of the corresponding XSet
properties.

The next element shall be the xstreams element, which defines the XStream information. Each XStream
shall be represented by an xstream element, containing the name, type, readonly, binding, and length
attributes of the property. One child element, xop:include, is mandated by XOP. It contains the content-id
(in an href element), prefaced by cid: to the MIME part containing the XStream contents. The xop:Include
element shall also contain an xmlns:xop attribute containing the URI of the XOP specification. The
attributes for the XStream property shall contain the values of the attributes of the corresponding XStream.

8.8.4.2 The Canonical Representation Build
The first component of the canonical representation is the root part of the XOP package. As per the XOP
specification, it must identify a media type of “application/xop+xml”. The “start” parameter identifies the
Content-ID of the “root” MIME object. In the XAM case, this parameter may be set to any value that
adheres to XOP by the exporting XSystem, but this value shall be the same as the Content-Id of the XSet
manifest part of the XOP package, as described below. This element should be processed first on import.
The “start-info” parameter provides additional information on the “root” object, which is the XAM manifest
XML. In the XAM case, it shall be used to indicate the format of the object, XML, using the MIME type “text/
xml”. The use of XML is required by XOP. A “Content-Description” entry is used to describe the contents of
the package. This entry can be used to provide additional information about the contents.

The following is a sample root part of the XOP package:

Content-Type: Multipart/Related;boundary=MIME_boundary;
 type="application/xop+xml";
start="<canonicalxset.xml@snia.org>";
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 98

XSet Operations © SNIA
start-info="text/xml"
Content-Description=”some text”

The second component is the root MIME part containing the XSet manifest. As per XOP, the Content-Type
parameter shall be “application/xop+xml”, and the type parameter shall be the same as the start-info
parameter above. The contents of the Content-ID parameter shall match the start parameter from the root
part of the XOP package as described above. The XSet manifest is contained in this MIME part.

The following is an example of this part of the XOP package:

Content-Type: application/xop+xml;
 charset=UTF-8;
 type="text/xml"
Content-Transfer-Encoding: 8bit
Content-ID: <canonicalxset.xml@snia.org>

The next MIME part is the XSet “table of contents”, which contains the MIME content-type of “text/text”,
content-transfer-encoding of “text”, and a content-id of “<TOC>”. The contents of this part are a list of text
lines that contain the offsets of the XStreams. The format of each line is:

Offset of [XSet XUID]:[content-id of MIME part with contents]:[offset in bytes]

Where,

• [XSet XUID] is the text representation of the XUID

• [content-id of MIME part with contents] contains the content-id of the relevant MIME part

• [offset in bytes] is the offset in bytes from the beginning of the package to the start of the
MIME boundary delimiter that precedes the Content-Type description of the binary data in the
package

The remaining MIME parts are the XStreams’ contents, where each XStream shall be contained in a
separate MIME part. The Content-Type parameter shall contain the MIME type for the XStream data. The
Content-Transfer-Encoding shall represent the encoding used (e.g., binary). The Content-ID shall
match the href used in the XML manifest. The use of binary encoding is strongly recommended to reduce
the package size. If binary is not possible, the contents should be Base64 encoded.

The choice of which encoding to use depends on the ability of the XSystem to set the MIME boundary
string. The MIME boundary string shall be any set of characters not used in any of the MIME part contents.
If the exporting system cannot meet this requirement, it shall encode the contents using Base64 encoding,
so that it can set the MIME boundary string to a string not occurring in the contents.

8.8.4.3 XSet Export Example
The example in Table 50 shows how an XSet would appear in the canonical format. For this example, we
have an XSystem policy and several XSet fields.

Table 50 – Example XSystem Policy Property

Name Type Binding Readonly Length Value

org.snia.policy.test application/vnd.snia.xam.int FALSE TRUE 8 1
99 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
Table 51 lists the XSet properties and XStreams used for this example.

Note: “XUID1234” is not a proper value for a XUID. It is listed for pedagogical purposes only and should
be interpreted as the base64 encoding of a valid XUID.

The XSet would have the following XML representation:

<?xml version=”1.0” encoding=”UTF-8”?>

<!--Sample XAM XSet -->

<xsets xsi:schemaLocation=”http://www.snia.org/2007/xam/export XAMCanonicalXSetDefinition.xsd”
xmlns=”http://www.snia.org/2007/xam/export” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xop=”http://www.w3.org/2004/08/xop/include”>

<version>1.0.0</version>

<policies>

<policy name=”.xsystem.management.policy.list.default” type=”application/
vnd.snia.xam.string”

readOnly=”true” binding=”false” length=”7”>

<string>testing</string>

<property binding=”false” type=”application/vnd.snia.xam.int” length=”8”
readOnly=”true” name=”org.snia.policy.test”>

<integer>1</integer>

</property>

</policy>

</policies>

<xset>

<properties>

<property binding=”false” type=”application/vnd.snia.xam.boolean” length=”1”
readOnly=”true” name=”org.snia.property.test”>

<boolean>true</boolean>

</property>

Table 51 – Example XSet for Export

Name Type Binding Readonly Length Value

org.snia.property.test application/vnd.snia.xam.boolean FALSE TRUE 1 TRUE

org.snia.xuid.property application/vnd.snia.xam.xuid TRUE TRUE 8 XUID1234

org.snia.stream.property image/jpeg FALSE TRUE 20000
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 100

XSet Operations © SNIA
<property binding=”true” type=”application/vnd.snia.xam.xuid” length=”8”
readOnly=”true” name=”org.snia.xuid.property”>

<string>XUID1234</string>

</property>

</properties>

<xstreams>

<xstream binding=”false” type=”image/jpeg” length=”20000” readOnly=”true”
name=”org.snia.stream.property”>

<xop:Include href=”cid:org.snia.stream.property@snia.org”
xmlns:xop=”http://www.w3.org/2004/08/xop/include”/>

</xstream>

</xstreams>

</xset>

</xsets>

The XOP package for this would look like this:

Content-Type: Multipart/Related;boundary=MIME_boundary;
type="application/xop+xml";
start="<canonicalxset.xml@snia.org>";
start-info="text/xml"

Content-Description: A sample XSet export document with one XStream

--MIME_boundary
Content-Type: application/xop+xml; charset=UTF-8; type="text/xml"
Content-Transfer-Encoding: 8bit
Content-ID: <canonicalxset.xml@snia.org>

[Sample XSet XML from above omitted]

--MIME_boundary
Content-Type: text/text
Content-Transfer-Encoding: text
Content-ID: <TOC>

Offset of XUID1234:org.snia.xam.stream.property@snia.org: 300

--MIME_boundary
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <org.snia.stream.property@snia.org>

// binary octets for png

--MIME_boundary--
101 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
The MIME_boundary text shall be any sequence of characters that does not appear in the binary data that
follows.

8.8.5 Annotating the Canonical Format

The XSet canonical format shall allow optional attributes and elements to be included. These attributes
and elements will allow vendors to annotate existing XSet properties and XStreams. In addition, they shall
neither be XAM-defined attributes or elements nor considered as extensions to XAM.

Any vendor-added attributes or elements shall follow these rules:

• Import shall work even if the vendor-specific additions are not understood by the importing
XSystem. An export-to-import sequence of operations shall be fully compliant with XAM, even if all
of the additions are ignored and discarded on import. Ignoring vendor-specific additions shall not
cause any API-visible behavior differences between the exporting XSystem and the importing
XSystem.

• All added vendor annotations shall only be done in an added vendor namespace. Addition of
annotations in any of the namespaces already used in the canonical format shall not be allowed.

8.9 XAM Jobs and XAM Job Control
Outside of XAM, a job typically refers to a sequence of one or more operation commands that are
submitted to a system (typically in the form of a script), which are then run without any user interaction. Job
control describes the mechanism by which these commands are submitted and how jobs are interacted
with once they have been submitted (e.g., determining status or halting a running job).

In XAM, jobs and XAM job control follow this model. However, XAM jobs are targeted toward the sequence
of commands as defined by the underlying XAM Storage System vendors. This sequencing allows the
vendors to add both standard and non-standard operations to the XAM API, without requiring new API
calls. An example of a job (and the only job that is standardized in this specification) is query. XAM jobs are
VIM dependent. Note that standard XAM jobs (e.g., query) must have a deterministic outcome as defined
in the functional specifications of that XAM job.

XAM job control uses XSets as the communication medium when running jobs, both for submitting the job
and for determining status. Thus, the semantics defined for XSet manipulation can thus be re-used,
providing that the interface is consistent around issues like persistence and data manipulation (e.g., field
manipulation). Thus, fields on an XSet can be used to identify which command to run, to determine job
status, and to control the job. Job control XSets need not be newly created; a XAM application can simply
add the appropriate fields to an existing XSet and submit the job to the XSystem instance.

To run a XAM job, the XSet used for job submission must have certain standardized job input fields added
to it. Then, the XSet can be submitted to the job control system using a XAM standard method
(XSet.submitJob). The status of the job can be evaluated by examining the fields on the XSet using
standard field access methods. Note that a XAM job can be terminated at any time by using an additional
dedicated API method, XSet.haltJob.

The job XSet may be optionally committed before the job has been started or after it has completed, to
enable persistent storage of job input parameters and/or results. Additionally, if an XSystem supports it,
the job XSet may be committed at any point in the job lifecycle. This option enables persistent storage of
the job results, even if the session to the XSystem is lost (e.g., normal or abnormal close of an XSystem,
then reopen the XSystem later and examine the job XSet). The job operation, itself, is unchanged by the
commit operation. Note that applications must be prepared to handle errors, when committing an XSet that
contains a job; not all XSystems will allow such an XSet to be committed. Also note that such a failure to
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 102

XSet Operations © SNIA
commit will not halt the job; an in-progress job will continue to run even when such an error occurs. An
application can determine if the XSystem supports the committing of XSets that are bound to a running job
by examining the following field on the XSystem (set to TRUE if commit is supported):

.xsystem.job.commit.supported

Note: The XAM Storage System is not guaranteed to continue to process the job while the XSystem is
not open. An application can determine if the XSystem supports job continuance by examining the
following field on the XSystem (set to TRUE if continuance is supported):

.xsystem.job.xam.job.query.continuance.supported

8.9.1 Standardized Job Input Fields

A single standard field is used to identify the action that is to be taken by the job. This field must be created
on an XSet before submitting the XSet to the job control system. The standard field is named as follows:

org.snia.xam.job.command

This field may be binding or nonbinding, at the discretion of the application. It should be of MIME-type
“application/vnd.snia.xam.string” (and is thus a property field). It should contain a string that identifies
which job should be run when the XSet is submitted to the job control system. Submitting a job that does
not have this field defined, or is defined but is the wrong type, should result in a non-fatal malformed job
command error. Submitting a job to a system that does not recognize the command string should result in
a non-fatal unrecognized job command error. The field is not a readonly field by default. However, after the
XSet is submitted to the job control system, the field will become readonly until the job is completed (either
naturally or terminated through application action). Standard field errors will occur if the application tries to
edit/delete the field while it is in a readonly state.

Note that some jobs may require additional fields. The definition of these fields is beyond the scope of the
generic description of jobs and job control and should be defined by the specific job (e.g., query). As a
matter of convention, it is expected that the string used to identify the command will be used as the prefix
of any additional fields used by the job. Thus, if the command field org.snia.job.command has a value of
“vnd.com.example.my_command”, then it would be expected that all fields must begin with the prefix
“vnd.com.example.my_command”. For example, a “parameter” field would have the field name
“vnd.com.example.my_command.parameter”. Additionally, as a matter of convention, for fields that cannot
change over the lifetime of a job, it is expected that the fields will change to readonly, while the job is
operational.

8.9.2 Standardized Job Output Fields

Jobs can fail at various times during the job creation, submission, and run phases. The condition of a job
can be determined by examining the standard fields that contain status, health and error information. The
status field describes what step in the job lifecycle the job is in. The health field indicates whether the job
has encountered an error. Both the health and error fields will only be created if the job has encountered
an error. The error field will contain the specific error token associated with the job.

8.9.2.1 Job Status
To properly report status, applications will refer to different error return mechanisms. Errors encountered
during job submission can be determined by examining the code returned by XSet.submitJob. Errors
encountered after the successful submission of a job shall be reported on the job XSet using the properties
defined here.
103 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
The XSystem creates the status field on the XSet when an application submits a job. The status field name
is defined as follows:

.xam.job.status

Note that the status field is a “.” prefaced field, and thus, the application cannot create it. The status field is
a nonbinding field and is always in a readonly state. It is a property field of MIME-type “application/
vnd.snia.xam.string”. The string will be set to one of the following values:

• “NEW”: The job was just submitted and has not yet been started by the system.

• “STARTING”: The job has been started but is still being initialized and is not yet running,

• “RUNNING”: The job is running.

• “SHUTTING DOWN”: The job is in the process of stopping for some reason.

• “COMPLETE”: The job is no longer running. It has run to the end.

• “SUSPENDED”: The job is no longer running. The system has temporarily ceased processing;
however, it will resume.

• “HALTED”: The job is no longer running because the application stopped it.

Note: When changing one or more binding fields of a “RUNNING” job XSet, which results in the
creation of a new XSet (e.g., on commit, when it was already committed and had a XUID),
then the new XSet will have the job state set to “HALTED”.

• “KILLED”: The job is no longer running because the application stopped it.

8.9.2.2 Job Error
The XSystem will create the errorhealth field on the XSet, if it encounters an error while running the job.
The errorhealth field is defined as follows:

.xam.job.errorhealth

Note that the errorhealth field is a system field, and thus, the application cannot create it. The errorhealth
field is a nonbinding field, and is always in a readonly state, if it exists. It is a property field of MIME-type
“application/vnd.snia.xam.string”. The value shall be “ERROR”. If this field exists on an XSet that is
submitted as a job, the XSystem will remove it.

The XAM Storage System shall create the error field (if not already present) and set it to contain the
associated error token as appropriate to the job in question. Note that this field does not supersede errors
that occur while submitting a job; job submission errors will be returned from the API. The error field name
is defined as follows:

.xam.job.error

Note that the error field is a system field, and thus, the application cannot create it. The error field is a
nonbinding field, and is always in a readonly state. It is a property field of MIME-type “application/
vnd.snia.xam.string”. The field will contain an error token as appropriate to the job in question.

Additional job-specific fields may also be added, but they should follow the guidelines as per additional
input fields and are otherwise beyond the scope of a generic discussion of jobs and job control.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 104

XSet Operations © SNIA
8.10 Asynchronous Operations
Asynchronous versions of specific methods in the XSet data path were created because the synchronous
versions of those methods may take an extended time to complete. This delay can cause the thread calling
the method to block. For example, a method may require communication between the VIM and the back
end of the XAM Storage System, and a thread calling the method will block until the XAM Storage System
responds. The methods with an asynchronous version are defined in Table 52, “Methods with
Asynchronous Versions”. Applications that do not wish to block should use the appropriate asynchronous
version of the method from the table.

8.10.1 The XAsync Object

Once an application initiates an operation asynchronously, it creates an object instance, the XASync
instance, to manage the operation. It uses the XAsync instance to determine if the asynchronous method
has completed, to terminate the operation if it has not yet completed, and to get the output of the method
after it has completed.

Table 53, “XAsync Methods” defines the methods that operate on an XAsync instance. For additional
information on operating on the XAsync instance, see Section 8.10.2, “XAsync FSM”.

Table 52 – Methods with Asynchronous Versions

Methods with Asynchronous Analogs
Description

Synchronous Asynchronous

XSystem.openXSet XSystem.asyncOpenXSet Success shall instantiate an XSet
instance. See Section 8.1, “XSet
Behavior” for additional information.

XSystem.copyXSet XSystem.asyncCopyXSet Success shall instantiate an XSet
instance. See Section 8.1, “XSet
Behavior” for additional information.

<XAMHandle>.openXStream <XAMHandle>.asyncOpenXStream Success shall instantiate an XStream
instance.

XStream.read XStream.asyncRead Read from the current byte offset position.

XStream.write XStream.asyncWrite Write to the current byte offset position.

XStream.close XStream.asyncClose Success shall release an XStream
instance and all associated resources.

XSet.commit XSet.asyncCommit Persistently store the information in the
XSet to the XSystem.

Table 53 – XAsync Methods

Type of Method XAsync Methods Description

Operating on the XAsync
instance while the
operation is pending

XAsync.halt Halt the asynchronous operation. Returns when the
asynchronous operation has been successfully halted
or completed.

Retrieving state of the
object while the operation
is pending or completed

XAsync.isComplete Test to see if the asynchronous operation has
completed.

XAsync.getXOPID Retrieve the XOPID.
105 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
When the XAsync instance is created, the XAM application can optionally specify a callback method,
which will be called when the method completes, and an XOPID, which is an opaque 64-bit value that the
application can retrieve at any time. The asynchronous method that is used to start the asynchronous
operation returns a handle to the XAsync instance on completion. Note that method completion does not
imply that the requested operation has completed. For example, if XSystem.asyncOpenXSet is called, the
open of the XSet is not completed when the asynchronous call returns. Instead, the XAM application can
use either a poll-based method or a callback-based method to determine if the operation has completed:

• Poll-based method: The XAM application periodically polls the XAsync instance, to determine the
completion status of the requested operation. If the operation status is pending, then the operation
has not completed. Once the operation has completed, the XAM application can retrieve the status
and output arguments.

• Callback-based method: The XAM application provides a callback function, when the
asynchronous operation is initiated. When the requested operation completes, the callback
method is called. From within the callback method, the XAM application can retrieve the status and
output arguments.

Once an asynchronous operation has begun, the XAM application can query whether the operation has
completed (XAsync.isComplete) or can halt the operation (XAsync.halt). Both methods are blocking calls.
XAsync.halt is a blocking method that will not return until the asynchronous operation has been
successfully halted or completed. If the asynchronous operation has been successfully halted or
completed when XAsync.haltis invoked, the method shall return immediately.

Thus, once XAsync.halt completes, the XAM object instance that was being asynchronously operated on
(i.e., XSystem.openXSet; XSet.commit or <XAMHandle>.openXStream; and XStream.read,
XStream.write, or XStream.close) has moved to its final end state. If the operation completed successfully,
the output arguments can be retrieved. If not, only the output XAM status can be retrieved.

Retrieving output results
of the asynchronous
operation after the
operation has completed

XAsync.getStatus Retrieve the status of the asynchronous operation. If
the operation has not completed, the returned status
shall be pending.

XAsync.getXSet Returns the XSet handle output argument. Valid only if
the asynchronous call was XSystem.asyncOpenXSet;
otherwise, it returns a non-fatal error.

XASync.getXStream Returns the XStream handle output argument. Valid
only if the asynchronous call was
<XAMHandle>.asyncOpenXStream.

XAsync.getXUID Returns the XUID output argument. Valid only if the
asynchronous call was XSet.commit; otherwise, it
returns a non-fatal error.

XAsync.getBytesRead Returns the BytesRead output argument. Valid only if
the asynchronous call was XStream.asyncRead;
otherwise, it returns a non-fatal error.

XAsync.getBytesWritten Returns the BytesWritten output argument. Valid only
if the asynchronous call was XStream.asyncWrite;
otherwise, it returns a non-fatal error.

Destroying an XAsync
instance

XAsync.close Success shall release an XAsync instance and all
associated resources.

Table 53 – XAsync Methods

Type of Method XAsync Methods Description
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 106

XSet Operations © SNIA
Each asynchronous XAM method shall require two additional input arguments, a callback method
parameter and a XOPID parameter, and shall output an XAsync object instance. If the XAM application
wishes to poll for the result, it does not provide a callback method. For a poll-based model, the XAM
application is expected to call XAsync.isComplete repeatedly until the method returns TRUE for the
isComplete result.

The XOPID shall always be specified by the XAM application, even if it is not used by the XAM application.
A XAM application can use XAsync.getXOPID to retrieve the XOPID for a specific XAsync instance. The
XAM application may use the XOPID to retrieve the application context about the operation. The
mechanism for associating application context to the XOPID is the responsibility of the XAM application
and is beyond the scope of this specification.

If a callback method is provided by the XAM application, then the callback method shall be called when the
asynchronous method completes and shall pass the XAsync object or handle back as a parameter. This
behavior is equivalent to transitioning to the completed state of the XAsync instance FSM, as shown in
Figure 20, “XAsync Instance FSM”. If a callback method is not provided by the XAM application, then no
callback method shall be called.

8.10.2 XAsync FSM

This section defines the FSM for the XAsync instance.

Note: No abandon method exists for the XAsync instance. Instead, the XAM application must first call
XAsync.halt to halt the operation. This call will cause the parent object state to reach a determinate
state, at which time the XAsync instance can be closed.

As mentioned previously, using the asynchronous version of the XAM methods that support asynchronous
operations does not introduce new states to the associated FSMs. Instead, consider the XAsync instance
FSM as being created when the method is called (i.e., the beginning of the arc in the parent FSM) and the
parent arc as transitioning to the new state, when the XAsync FSM transitions to the completed state.
Once the operation has completed, the XAsync instance must then be closed by the XAM application.

Entry to the XAsync instance FSM shall be when the FSM is instantiated, as defined in Section 8.10.1,
“The XAsync Object”.
107 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Operations
The FSM and the state transitions are shown in Figure 20, “XAsync Instance FSM”.

The XAsync instance FSM shall have the defined inputs, outputs, and transitions as shown in Table 54,
“XAsync Instance FSM Transitions”.

Figure 20 – XAsync Instance FSM

Table 54 – XAsync Instance FSM Transitions

Start
State Transition Final

State Comment

Outside of
FSM

(NULL)

<XAMHandle>.async* Pending The XAsync FSM shall be instantiated when the
method returns successfully.

Pending XAsync.close
XAsync.getStatus
XAsync.getXSet
XAsync.getXUID
XAsync.getBytesRead
XAsync.getBytesWritten

Pending Shall perform no action and always return a fatal error.

XAsync.isComplete
XAsync.getXOIP

Pending Regardless of the completion status, the XAsync FSM
shall stay in the pending state.

Completion of asynchronous
operation

Complete This transition occurs due to the completion of the
operation associated with this XAsync instance.

XAsync.halt Complete When the parent FSM has completed its FSM
transition, then the halt operation shall transition to the
complete state.

<XAMHandle>.abandon NULL Shall free the XAsync instance and release all
resources associated with it.

Pending

<XAMHandle>.async*

XAsync.isComplete,
XAsync.getXOPID

XAsync.close(fatal)
XAsync.getStatus(fatal)

XAsync.getXSet(fatal)
XAsync.getXUID(fatal)

XAsync.getBytesRead(fatal)
XAsync.getBytesWritten(fatal)

Complete

XAsync.isComplete
XAsync.getXOPID
XAsync.getStatus
XAsync.getXSet
XAsync.getXUID
XAsync.getBytesRead
XAsync.getBytesWritten
XAsync.halt

XAsync.close
<XAMHandle>.abandon

Completion of async
operation,

XAsync.halt

<XAMHandle>.abandon
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 108

XSet Operations © SNIA
Exit from the XAsync instance FSM shall cause the FSM to be uninstantiated and the associated
resources to be returned to the operating environment. The XAsync instance FSM shall be uninstantiated
through calling XAsync.close, and as previously noted, <XAMHandle>.abandon on any of its parents. If the
XAsync.close completed successfully, no error occurred in closing the XAsync instance.

8.10.2.1 Effects on other FSMs
The XAsync instance FSM is not intended to affect the parent FSMs, where arcs support both
asynchronous and synchronous arc transitions. This FSM includes the implementation of XAsync.halt. If
an XSystem receives a halt request, it must transition the parent FSM to a valid state, before XAsync.halt
returns, and transition the specific XAsync instance to the complete state. This implementation means that
FSMs that include complex operations, such as XSet.commit, must behave the same way, regardless of
whether the operation was called synchronously or asynchronously.

If the method is initiated through an asynchronous method, then the status is valid when the method has
completed. At any point before the method completes, the status is pending. For FSM arcs that are
initiated by an asynchronous method, the start of the arc occurs when the asynchronous method is called,
which also causes the XAsync instance to be created. The end of the arc occurs when the asynchronous
method completes (either successfully or with a fatal or non-fatal error). Note that completion of the
asynchronous method does not destroy the XAsync instance. The XAM application must call XAsync.close
to release the resources.

Complete XAsync.close NULL Shall free the XAsync instance and release all
resources associated with it, regardless of whether the
XAsync.close completed successfully with a fatal or
non-fatal error.

XAsync.getStatus
XAsync.getXSet
XAsync.getXUID
XAsync.getBytesRead
XAsync.getBytesWritten
XAsync.halt

Complete The XAsync FSM shall stay in the complete state.
XAsync.halt shall return immediately.

<XAMHandle>.abandon NULL Shall free the XAsync instance and release all
resources associated with it.

Table 54 – XAsync Instance FSM Transitions

Start
State Transition Final

State Comment
109 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
9 XSet Management

9.1 XSet Management Overview
An XSystem provides both XSet data access and XSet data management. XSet data access methods
specify how to create, store, locate, retrieve, update, and delete an XSet that is contained within an
XSystem. These methods are primarily used by data-consuming XAM applications. On the other hand,
XSet data management methods specify how an XSystem manages an XSet until it is deleted. These
methods are primarily used by data management XAM applications. In most cases, XAM applications will
use a combination of both XSet data access and management methods.

Note: Application developers are strongly encouraged to understand XSet data management, as it
differs greatly from data management that is available from familiar data access interfaces, such
as file systems.

9.1.1 XSet Management Disciplines

XSet management is split into management disciplines: XSet retention, XSet hold, XSet deletion, and XSet
storage.

• XSet retention uses retention time criteria to determine the time period(s) during which XSet
deletion from the XSystem is prohibited.

— An XSystem shall not delete an XSet before the XSet retention time criteria are met, and any
deletion tries (e.g., by a XAM application) shall generate non-fatal errors.

— After the XSet retention time criteria have been met, XSet retention shall no longer be a
reason to prohibit XSet deletion.

• XSet hold enforces readonly XSet data access and prohibition of XSet deletion. While an XSet is
on hold, an XSystem shall:

— Strictly enforce read-only access to the XSet.

— Prohibit XSet deletion.

• XSet deletion controls XSystem actions with respect to XSet deletion.

— An XSystem may automatically delete an XSet once the retention time and hold criteria have
been met.

— A XAM Storage System may automatically shred or destroy the binary recording of an XSet
that has been deleted.

• XSet storage controls storage management capabilities of the XSystem, such as resource,
security, migration, virtualization, resiliency, and performance, all of which are outside the scope of
XAM. XAM accommodates these capabilities by providing an XSet abstraction that requires the
XSystem to adhere to the mutually agreed-to rules and behavior for data storage management.

XSet retention management, deletion management, and storage management apply to any XAM
application that creates or deletes an XSet, as these disciplines mandate how an XSystem manages an
XSet when it is created and until it is deleted. In contrast, XSet hold management applies to special-
purpose XAM applications that single out XSets for readonly access and prohibit XSet deletion until the
XAM application determines that the XSet hold is no longer required.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 110

XSet Management © SNIA
9.1.2 XSet Management Properties

XSet management properties specify the XSystem requirements for managing an entire XSet. A XAM
application may express the desired XSet management behavior through two types of XSet management
properties:

• Value management property: The value of the property shall directly mandate XSet management
behavior.

• Policy management property: The value of this property shall be an XSet policy name and shall
indirectly mandate XSet management behavior. For more information, see Section 8.7, “XSet
Policy”.

Table 55 shows which XSet management property types are used by each XSet management discipline.

In addition to the discipline-specific properties, XAM defines a principal management policy property that
shall specify the retention, deletion, and storage behaviors that apply in the absence of discipline-specific
properties. This principal management policy property shall always be present on a committed XSet.

When a XAM application calls XSet.commit, the XSystem shall create the following XSet properties, if the
property is not already present in the XSet instance:

• Principal policy management property

— .xset.management.policy

• Retention value management properties

— .xset.retention.list.base

— .xset.retention.base.enabled

— .xset.retention.base.starttime

— .xset.retention.list.event

• Hold value management property

— .xset.hold

The associated value and attribute settings for the properties above are described in the property
specifications. All XSet value and policy management properties have a readonly attribute of TRUE, and
therefore, shall only be created, modified, or removed using the XSet management methods described in
this chapter. These changes will be made to the XSet instance before persistence, and thus, will be
reflected in the XSet.

Table 55 – Management Discipline Property Types

XSet Management
Discipline

Value
Management

Property

Policy
Management

Property

Retention X X

Deletion X X

Storage X

Hold X
111 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
For the retention, deletion, and storage disciplines, once an XSet value or policy management property
exists in a committed XSet, it shall not be removed from the XSet.

Certain XSet operations may generate a new, uncommitted XSet from an existing committed XSet. For
detailed information on XSet operations, see Section 8.4, “XSet Methods” and Section 8.5, “XSet Instance
Finite State Machine (FSM)”. When these XSet operations occur, management properties for the retention,
deletion, and storage disciplines shall be transferred from the existing XSet to the new, uncommitted XSet
instance. Hold discipline properties shall not be transferred from the existing XSet to the new, uncommitted
XSet instance, and when committed, the new XSet shall not be on hold.

If a XAM application wants management properties removed from the new, uncommitted XSet instance
instead of inherited from the existing XSet, the application should reset the management fields and set the
desired management properties before committing the XSet instance.

9.2 XSet Retention and Deletion Value Management Properties
XSet retention defines the criteria that an XSystem shall use to prohibit XSet deletion. XSet deletion
defines the criteria that may be used by an XSystem to automatically delete an XSet, once all retention and
hold time criteria are satisfied. XSet deletion also defines the XSet shredding criteria that a XAM Storage
System may use to destroy the binary recording of a deleted XSet. The values of XSet retention and
deletion value management properties shall be preserved by export and import activities that transfer
XSets to other XSystems.

9.2.1 XSet Retention

Retention management uses time criteria to determine the time period(s) during which XSet deletion from
the XSystem shall be prohibited. XSet retention criteria shall be specified by:

• A retention criteria identifier: a XAM application-specified string that shall unify the retention criteria

• A retention enablement flag: a Boolean value indicating if retention shall be (or was) enforced

• A starting time and time duration: the start time, when used together with duration, indicates when
retention shall no longer be enforced

A XAM application may create multiple sets of retention criteria on a single XSet, where each set is unified
by its retention identifier. When it tries to delete an XSet, the XSystem shall evaluate all such retention
criteria and return a non-fatal error, if any such retention criteria has not been met.

In addition to any XAM application-defined retention criteria identifiers, all XSets shall have retention
criteria identifiers of “base” and “event”. All XSet retention criteria shall operate independently of the XSet
on-hold status (see Section 9.4, “XSet Hold Properties”), and a XAM application may determine if an XSet
is currently subject to any XSet retention criteria by using XSystem.isXSetRetained.

Examples of “base” retention and all other retentions are shown in Figure 22 and Figure 23. Figure 23 is
an example of combining “base” retention and “other” retention. These figures show retention criteria
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 112

XSet Management © SNIA
applied to an XSet in a manner such that XSet deletion is continuously prohibited until XSet retention
criteria is met.

Figure 21 – “base” Retention Criteria

Figure 22 – “other” Retention Criteria

Figure 23 – Combined “base” and “other” Retention

Delete XSet Not Allowed

“base”retention criteria is met at time =
retention start time + retention duration

“base” retention
duration

“base” retention start
time (automatically

set at commit)

“base” XSet Retention Management

Delete XSet Allowed

Delete XSet Not Allowed

Retention time criterion is met at time =
retention starttime + retention duration

“other”
retention

start time set

“other”
retention id
defined and

enabled

“other” XSet Retention Management

Delete XSet Allowed

“other”
retention
duration

Delete XSet Not Allowed

“other” retention time criterion is met.
All retention time criteria is met.

“base”
retention
duration

“base” retention
start time

&
“other” retention
id defined and

disabled

Combined XSet Retention Management

Delete XSet Allowed

“other”
retention
duration

“other”
start time

“base” retention time
criterion is met.

“other”
retention
enabled
113 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
Figure 24 is an example of how to establish time-based retention with an “other” retention identifier.

Table 56 lists the retention value management properties, which are described in the paragraphs following
the table. Note that the retention identifier that provides scope to the retention criteria (indicated as
<retention id>) shall be encoded into the field name.

Figure 24 – Time-based Retention

Table 56 – Retention Value Management Properties

Field stype Binding Read-
only Update Rules

.xset.retention.list.base xam_string TRUE TRUE Shall only be set when
created

.xset.retention.list.event xam_string TRUE TRUE Shall only be set when
created

.xset.retention.list.<retention id>

(where <retention id> is other than
“base” or “event”)

xam_string Application
specified

TRUE Shall only be set when
created

.xset.retention.base.enabled xam_boolean TRUE TRUE Shall be set to a value of
TRUE and shall not be
changed to FALSE.

Shall be set only if
.xset.retention.list.base exists

.xset.retention.<retention id>.enabled

(where <retention id> is other than
“base”)

xam_boolean Application
specified

TRUE Value shall not be changed
from TRUE to FALSE.

Shall be set only if
.xset.retention.list.<retention
id> exists

.xset.retention.<retention id>.duration xam_int Application
specified

TRUE Value shall not be decreased.

Shall be set only if:

• .xset.retention.list.<retention
id> exists and

• <retention id> enabled flag
is TRUE or FALSE

Delete XSet Not Allowed

“other”retention criteria is met at time =
retention start time + retention duration

“other” retention
duration

“other” retention
id defined,

enabled, and
start time set

“other” Time-based XSet Retention Management

Delete XSet Allowed
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 114

XSet Management © SNIA
.xset.retention.list.<retention id>

contains the retention criteria identifier on the XSet. This identifier shall provide a scope for all other
retention criteria having the same identifier. Note that the property string value shall be equivalent to the
retention identifier section of the field name and that .xset.retention.list.base and .xset.retention.list.event
shall be binding properties. If .xset.retention.list.base and .xset.retention.list.event are not present in the
XSet instance, a successful XSet.commit shall create and set these properties. Once
.xset.retention.list.<retention id> is created and set, it shall not be set again.

Methods - XSet.createRetention, XSet.setBaseRetention, XSet.applyBaseRetentionPolicy

.xset.retention.<retention id>.enabled

indicates if the retention criteria under the given scope should be evaluated when determining if XSet
deletion shall be prohibited. A value of TRUE indicates that XSet deletion shall be prohibited until the
retention time criteria, .xset.retention.<retention id>.starttime plus .xset.retention.<retention id>.duration, is
met. A value FALSE indicates that XSet deletion shall be allowed and the retention time criteria shall be
ignored. Once the value is TRUE, it shall not be changed to FALSE. Note that .xset.retention.base.enabled
shall be a binding property and shall have a value of TRUE. If .xset.retention.base.enabled is not present in
the XSet instance, a successful XSet.commit shall create and set this property. .xset.retention.<retention
id>.enabled shall be set only when .xset.retention.list.<retention id> exists on the XSet.

Methods - XSet.setRetentionEnabledFlag, XSet.setBaseRetention, XSet.applyBaseRetentionPolicy

.xset.retention.base.starttime xam_datetime TRUE TRUE Shall only be set when
created with the value of
.xset.time.xuid

Shall be set only if:

• .xset.retention.list.base
exists and

• “base” enabled flag is
TRUE and

• “base” duration is a positive
integer or -1

.xset.retention.<retention
id>.starttime

(where <retention id> is other than
“base”)

xam_datetime Application
specified

TRUE Shall only be set when
created

Shall be set only if:

• .xset.retention.list.<retention
id> exists and

• <retention id> enabled flag
is TRUE and

• <retention id> duration is a
positive integer or -1

Table 56 – Retention Value Management Properties

Field stype Binding Read-
only Update Rules
115 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
.xset.retention.<retention id>.duration

when combined with .xset.retention.<retention id>.starttime, indicates the end time for which the XSystem
shall prohibit deletion of the XSet for the retention criteria under the given scope. This value shall be
specified as a positive number of milliseconds, zero, or as “forever,” which is represented by a value of -1.
This value shall only be allowed to increase and never decrease; thus, once “forever” is specified, it shall
not be set again. The .xset.retention.<retention id>.duration property shall be set only when
.xset.retention.list.<retention id> exists on the XSet and the policy-determined or property value of
.xset.retention.<retention id>.enabled is TRUE or FALSE.

 Methods - XSet.setRetentionDuration, XSet.setBaseRetention

.xset.retention.base.starttime

indicates the start time for the retention time criteria for the “base” retention identifier. The
.xset.retention.base.starttime property shall be created only when: .xset.retention.list.base exists on the
XSet; the policy-determined or property value of .xset.retention.base.enabled is TRUE; and the policy-
determined or property value of .xset.retention.base.duration is a positive integer or -1. If
.xset.retention.base.starttime is not present in the XSet instance, a successful XSet.commit shall create
and set this property as a binding property with a value that is the same as .xset.time.xuid. Once
.xset.retention.base.starttime is created and set, it shall not be set again.

.xset.retention.<retention id>.starttime

indicates the start time for the retention criteria under the given scope other than “base”. The
.xset.retention.<retention id>.starttime property shall be created only when: .xset.retention.list.<retention id>
exists on the XSet; the policy-determined or property value of .xset.retention.<retention id>.enabled is
TRUE; and the policy-determined or property value of .xset.retention.<retention id>.duration is a positive
integer or -1. Once .xset.retention.<retention id>.starttime is created and set, it shall not be set again.

 Method - XSet.setRetentionStarttime

9.2.1.1 XSet Retention Value Management Property Methods
XSet retention value management properties shall not be created or set using the standard field create and
set operations. Therefore, to allow applications to create and set the retention value management
properties, the following methods are provided.

These methods generally provide a one-to-one correspondence with the retention properties, with the
exception of a utility method that shall create the “base” retention criteria. This utility method creates
multiple properties, but the actions performed by this method shall be performed as a group, so that
intermediate states are not visible through the XAM API.

XSet.setBaseRetention

This method will take a xam_int containing a duration to set as the value for .xset.retention.base.duration. It
shall create the binding field .xset.retention.list.base, with a value of “base”, if it does not exist in the XSet
instance. It shall create the binding field .xset.retention.base.enabled, with the value set to TRUE, if it does
not exist in the XSet instance. Note that the XSystem will create/set the value of
.xset.retention.base.starttime to the value of .xset.time.xuid at the time of first commit. An additional flag
shall allow the application to choose if .xset.retention.base.duration is a binding or a nonbinding field.

XSet.createRetention

This method shall take an application-specified xam_string, which shall not be “base”, as the retention
criteria identifier. It shall create .xset.retention.list.<retention id> with a value of <retention id>, where
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 116

XSet Management © SNIA
<retention id> shall be the application-specified xam_string. An application shall also specify a
xam_boolean to select, if .xset.retention.list.<retention id> shall be binding or nonbinding. If the retention id
is "event" and this xam_boolean value is FALSE, then a non-fatal error shall be returned, because the
.xset.retention.list.event property is always a binding property.

XSet.setRetentionEnabledFlag

This method shall take an application-specified <retention id>, which shall not be “base”, and
xam_boolean that indicates if the <retention id> retention criteria is enabled or not. It shall create and/or
set .xset.retention.<retention id>.enabled with the xam_boolean value that is specified by the application.
An application shall also specify a xam_boolean to select, if .xset.retention.<retention id>.enabled shall be
binding or nonbinding.

XSet.setRetentionDuration

This method shall take an application-specified <retention id>, which shall not be “base”, and xam_int that
specifies the number of milliseconds after .xset.retention.<retention id>.starttime, which the XSystem shall
no longer prohibit XSet deletion, or negative one (-1), if the XSystem shall prohibit XSet deletion forever,
whenever .xset.retention.<retention id>.enabled is TRUE. It shall create .xset.retention.<retention
id>.duration, with the xam_int value passed in by the application. An application shall also specify a
xam_boolean to select, if .xset.retention.<retention id>.duration shall be binding or nonbinding.

XSet.setRetentionStarttime

This method shall take an application-specified <retention id>, which shall not be “base”, and create
.xset.retention.<retention id>.starttime with the value of the current time on the XSystem (i.e., the value of
.xsystem.time). An application shall also specify a xam_boolean to select, if .xset.retention.<retention
id>.starttime shall be binding or nonbinding.

XSystem.isXSetRetained

This method shall evaluate all retention criteria that exists on a given XSet, specified as a xam_xuid, and
shall return TRUE if retention criteria exists that would prohibit XSet deletion. This method shall return
FALSE if all XSet retention criteria, i.e., retention criteria associated with the “base”, “event”, and
.xset.retention.list.<retention id> identifiers, have been met. This method shall not evaluate the on-hold
status. A non-fatal error shall be returned if the specified XUID is improperly formatted, does not exist in
the XSystem, or if the application is not authorized to access the XSet.

9.2.1.1.1 Retention Value Management Methods and the Open XSet FSMs
The methods that create or alter XSet retention value management properties shall have the following
effects on the open XSet finite state machines (FSMs) that are specified in Section 8.5, “XSet Instance
Finite State Machine (FSM)”:

• If the XSet retention value management property does not exist in the XSet, then creating the
property shall cause the same FSM effects as creating any other field. The field shall be set as
binding or nonbinding by the appropriate field creation method. See Section 6.4, “Methods that
Operate on Fields” for more information.
117 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
• If the XSet retention value management property exists in the XSet, altering the property value
shall cause the same FSM effects as XSet.set<stype>.

— If the existing XSet retention value management property is nonbinding, it shall cause the
FSM effects of a nonbinding modification.

— If the existing XSet retention value management property is binding, it shall cause the FSM
effects of a binding modification.

If the XSet retention value management property exists in the XSet, altering the property’s binding attribute
shall cause the same FSM effects as XSet.setFieldAsNonbinding or XSet.setFieldAsBinding, whichever is
appropriate.

9.2.1.2 XSet Retention Management FSM
The FSM for XSet retention management is normatively defined in this section. This FSM is based on
creating and changing individual retention elements that are represented as fields and are under the scope
of a single retention identifier. An XSet can have multiple retention identifiers defined, and thus, can have
multiple retention FSMs associated with it. This FSM does not try to describe how the fields are created or
modified. Any additional semantics that are overlaid onto the open XSet FSMs are described above. This
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 118

XSet Management © SNIA
FSM (see Figure 25) will describe how retention management is defined for an XSet that is under the
scope of a single retention identifier.

Three states are controlled by the retention criteria scoped by a retention identifier: indefinite, active, and
inactive. Before retention identifiers are created, the XSet is not under retention management.

• The indefinite state is a state in which any attempt to delete the XSet shall result in a non-fatal
error. Indefinite retention is characterized by a valid retention id, but incomplete retention criteria
(i.e., one of following fields are not present in the XSet: the enabled flag, the duration, and the start
time).

• Retention is said to be active for a given scope, when the retention identifier is set and the
retention criteria is scoped with the retention identifier (enabled flag, duration, and start time), and
all are present and valid.

Figure 25 – The Retention Finite State Machine (FSM)

Retention Identifier
is defined

Inactive
(incomplete)

Indefinite
(enabled)

Indefinite
(enabled with duration)

Active

Non-fatal errors:
 - Set starttime
 - Set duration

enabled = falseenabled = true

Set duration

Non-fatal errors:
 - Set starttime
 - enabled = false

Non-fatal errors:
 - Reduce duration
 - enabled = false

Set starttime

enabled = true

Increase duration

Non-fatal errors:
 - Reduce duration
 - enabled = false
 - Set starttime

Increase duration
Set enabled = true

Non-fatal errors:
 - Reduce duration
 - Set starttime

Inactive

Inactive
(with duration)

Set duration

Non-fatal errors:
 - Set starttime

enabled = true

enabled = true
119 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
• When retention in a given scope is inactive, it shall have no effect when deleting the XSet. An XSet
can be inactive when the enabled flag is set to FALSE. It may also be inactive when the criteria
that are scoped by the retention identifier is incomplete or invalid.

Note: A correctly implemented state machine does not allow entry into the inactive retention
state due to invalid fields; however, an inactive retention state can be entered by importing
improperly formatted canonical XSet data. In such cases, the inactive state can only be
left by resetting all management fields in the XSet.

The tables in this section define the normative transitions for the FSM. Refer to Figure 25 above for an
illustration of those normative transitions and states. XSet.applyBaseRetentionPolicy,
XSet.applyRetentionEnabledPolicy, and XSet.applyRetentionDurationPolicy are equivalent to
XSet.setBaseRetention, XSet.setRetentionEnabledFlag, and XSet.setRetentionDuration in the transition
columns of the retention FSM tables (see Table 57 through Table 61).

Table 57 – Entrance XSet Retention FSM; Setting the Retention Identifier

Start State Transition Final State Comment

Outside of
FSM

No retention

XSet.createRetention Inactive
(incomplete)

This method creates a retention
identifier on the XSet, providing the
scope for the complete retention
criteria to be applied to the XSet.

XSet.setBaseRetention Active This method creates the “base”
retention identifier, sets the enabled
flag to TRUE, and sets the duration.
The start time is set to .xset.time.xuid
at the time that the XSet instance is
committed.

XSet.setRetentionEnabledFlag Outside of FSM A non-fatal error occurs when this
method is called before the retention
identifier is created.

XSet.setRetentionDuration Outside of FSM A non-fatal error occurs when this
method is called before the retention
identifier is created.

XSet.setRetentionStarttime Outside of FSM A non-fatal error occurs when this
method is called before the retention
identifier is created.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 120

XSet Management © SNIA
Once the retention identifier is defined, then XSet retention is in an inactive state until the corresponding
enabled flag is set. To move from this state to other substates, the enabled flag must be set, as described
in Table 58.

After the retention identifier is defined and the enabled flag is set (note that the value may come from the
management policy for the XSet, scoped by the retention identifier), the duration of the retention must be
set, as described in Table 59.

Table 58 – Setting the Retention Enabled Flag

Start state Transition Final state Comment

Inactive
(incomplete)

XSet.setRetentionEnabledFlag (TRUE) Indefinite
(enabled)

Transitions the FSM to the Indefinite
(enabled) substate.

XSet.setRetentionEnabledFlag (FALSE) Inactive Transitions the FSM to the inactive
state.

XSet.setRetentionDuration Inactive
(incomplete)

A non-fatal error occurs when this
method it called before the enabled
flag is set.

XSet.setRetentionStarttime Inactive
(incomplete)

A non-fatal error occurs when this
method it called before the enabled
flag is set.

Table 59 – Setting the Duration

Start state Transition Final state Comment

Indefinite
(enabled)

XSet.setRetentionDuration (initial) Indefinite (enabled
with duration)

Initial duration value can be
any valid positive integer, zero,
or -1, indicating that the
retention duration is forever.

XSet.setRetentionEnabledFlag (TRUE) Indefinite (enabled) No change.

XSet.setRetentionEnabledFlag (FALSE) Indefinite (enabled) A non-fatal error occurs.

XSet.setRetentionStarttime Indefinite (enabled) A non-fatal error occurs when
this method is called before the
duration is set.

Inactive XSet.setRetentionDuration (initial) Inactive (duration) Initial duration value can be
any valid positive integer, zero,
or -1, indicating that the
retention duration is forever.

XSet.setRetentionEnabledFlag (TRUE) Indefinite (enabled) Transitions the FSM to the
Indefinite (enabled) substate.

XSet.setRetentionEnabledFlag (FALSE) Inactive No change.

XSet.setRetentionStarttime Inactive A non-fatal error occurs when
this method is called before the
duration is set.
121 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
Once the retention identifier is set and the enabled flag and duration are set, then retention end time can
be established by setting the retention start time, as shown in Table 60.

Once the retention is in an active state, only the duration shall be changeable, and then only when the
duration is increased. The start time and enabled flag shall generate not-fatal errors when an application
tries to change it, as shown in Table 61.

Table 60 – Setting the Start Time

Start state Transition Final state Comment

Indefinite
(enabled with
duration)

XSet.setRetentionStarttime Active Transitions to the active state.

XSet.setRetentionDuration (increase) Indefinite (enabled
with duration)

No change.

XSet.setRetentionDuration (decrease) Indefinite (enabled
with duration)

A non-fatal error occurs when
reducing the duration.

XSet.setRetentionEnabledFlag
(TRUE)

Indefinite (enabled
with duration)

No change.

XSet.setRetentionEnabledFlag
(FALSE)

Indefinite (enabled
with duration)

Once set to TRUE, setting
enabled to FALSE results in a
non-fatal error.

Inactive (with
duration)

XSet.setRetentionEnabledFlag
(TRUE)

Indefinite (enabled
with duration)

Transitions to the Indefinite
(enabled with duration) state.

XSet.setRetentionStarttime Inactive (with
duration)

A non-fatal error occurs when
setting the start time before
retention is enabled.

XSet.setRetentionDuration (increase) Inactive (with
duration)

No change.

XSet.setRetentionDuration (decrease) Inactive (with
duration)

A non-fatal error occurs when
reducing the duration.

XSet.setRetentionEnabledFlag
(FALSE)

Inactive (with
duration)

No change.

Table 61 – Increasing the Retention Duration on an Active Retention Scope

Start state Transition Final state Comment

Active XSet.setRetentionStarttime Active A non-fatal error shall occur when
setting the start time after it had already
been set.

XSet.setRetentionDuration (increase) Active No change.

XSet.setRetentionDuration (decrease) Active A non-fatal error occurs when reducing
the duration.

XSet.setRetentionEnabledFlag (TRUE) Active No change.

XSet.setRetentionEnabledFlag
(FALSE)

Active Once set to TRUE, setting enabled to
FALSE results in a non-fatal error.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 122

XSet Management © SNIA
9.2.1.3 Examples of Multiple XSet Retention Identifiers
When using multiple retention criteria, XAM applications may create an XSet retention time gap, during
which deleting an XSet is allowed. Figure 26 shows an example of an XSet retention time gap, with “base”
and “other” retention criteria, whereby an XSet is vulnerable to deletion. XAM applications should be aware
of this vulnerability when setting the XSet retention criteria.

9.2.2 XSet Deletion

XSet deletion properties shall determine whether an XSystem may delete an XSet, once an XSystem is no
longer required to prohibit XSet deletion. An XSystem may delete an XSet, once retention and hold time
criteria are met. For hold time criteria, see Section 9.4, “XSet Hold Properties”. XSet deletion properties
also shall determine whether a XAM Storage System may shred or destroy the binary recording of a
deleted XSet.

Figure 27 shows examples of automatic XSet deletion, once all retention criteria are met, both with and
without holds on the XSet.

Figure 26 – Combining Retention with a Gap

Figure 27 – AutoDelete Behavior With and Without Holds

“other” retention time criterion is met.
All retention time criteria is met.

“base”
retention
duration

“base” retention
starttime

&
“other” retention
id defined and

disabled

Combined XSet Retention Management With a Gap

Delete XSet Allowed
(but not deleted)

“other”
retention
duration

“other”
starttime

“base” retention time
criterion is met.

“other”
retention
enabled

Delete XSet
Delete XSet Not

Allowed
Delete XSet Not

Allowed

Delete XSet Not Allowed

Hold

XSet AutoDelete With Holds When Retention Criteria Met

Retention time
criteria met

XSet Does Not Exist

 Retention
start time

XSystem automatically deletes
XSet when last hold is released

Release

Delete XSet Not Allowed

XSystem automatically deletes
XSet when retention criteria is met

 retention
start time

XSet AutoDelete With No Holds When Retention Criteria Met

XSet Does Not Exist
123 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
Table 62 lists the deletion value management properties, which are described in the paragraphs following
the table.

.xset.deletion.autodelete

indicates that an XSystem shall automatically, and asynchronously, delete the XSet once the XSet
retention time criteria has been met and the XSet is not on hold. If this value is TRUE, then the XSet shall
automatically be deleted; otherwise, it shall not.

An XSystem may ignore .xset.deletion.autodelete. Applications shall determine if an XSystem supports an
.xset.deletion.autodelete value of TRUE, if .xsystem.deletion.autodelete has a value of TRUE. If
.xsystem.deletion.autodelete is FALSE, then an XSet shall only be deleted by a XAM application by using
XSystem.deleteXSet. Setting .xset.deletion.autodelete to TRUE when .xsystem.deletion.autodelete is
FALSE shall not result in a non-fatal or fatal error. XAM applications that set .xset.deletion.autodelete to
TRUE should anticipate the possibility that the XSystem may be enabled for automatic XSet deletion,
when the XSet retention time criteria are met and the XSet is not on hold.

Method – XSet.setAutoDelete

.xset.deletion.shred

indicates that a XAM Storage System shall automatically, and asynchronously, shred or destroy the binary
recording of an XSet once the XSet is deleted from the XSystem. If this value is TRUE, then the binary
recording of the deleted XSet shall automatically be shredded; otherwise, it shall not.

The method or algorithm that a XAM Storage System uses to shred the binary recording of a deleted XSet
is outside the scope of XAM.

An XSystem may ignore .xset.deletion.shred. Applications shall determine if an XSystem supports an
.xset.deletion.shred value of TRUE, if .xsystem.deletion.shred is TRUE. If .xsystem.deletion.shred is
FALSE, then the binary recording of a deleted XSet shall not be shredded by the XAM Storage System.
Setting .xset.deletion.shred to TRUE when .xsystem.deletion.shred is FALSE shall not result in a non-fatal
or fatal error. XAM applications that set .xset.deletion.shred to TRUE should anticipate that the XSystem
may be enabled for automatic XSet shredding when the XSet is deleted.

Method – XSet.setShred

Table 62 – Deletion Value Management Properties

Field stype Binding Readonly Comments

.xset.deletion.autodelete xam_boolean Application
specified

TRUE XSet autodelete shall occur if set to TRUE
and .xsystem.deletion.autodelete is
set to TRUE.

.xsystem.deletion.autodelete xam_boolean FALSE TRUE See Section 7.1, “XAM Library” and
Section 7.2, “XSystem”.

.xset.deletion.shred xam_boolean Application
specified

TRUE XSet shred shall occur if set to
TRUE and .xsystem.deletion.shred
is set to TRUE.

.xsystem.deletion.shred xam_boolean FALSE TRUE See Section 7.1, “XAM Library” and
Section 7.2, “XSystem”.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 124

XSet Management © SNIA
9.2.2.1 Deletion Value Management Methods and the Open XSet FSMs
The methods that create or alter XSet deletion value management properties (XSet.setAutoDelete and
XSet.setShred) shall have the following effects on the XSet finite state machines (FSMs) specified in
Section 8.5, “XSet Instance Finite State Machine (FSM)”:

• If the XSet deletion value management property does not exist in the XSet, then creating this
property shall cause the same FSM effects as creating any other field. This field shall be set as
binding or nonbinding by the appropriate field creation method. See Section 6.4, “Methods that
Operate on Fields” for more information.

• If the XSet deletion value management property exists in the XSet, then XSet.set<deletion value
management property> that alters the property value shall cause the same FSM effects as an
XSet.set<stype> method.

— If the existing XSet deletion value management property is nonbinding, then
XSet.set<deletion value management property> shall cause the FSM effects of a nonbinding
modification.

— If the existing XSet deletion value management property is binding, then an XSet.set<deletion
value management property> shall cause the FSM effects of a binding modification.

• If the XSet deletion value management property exists in the XSet, then XSet.set<deletion value
management property> that modifies the property’s binding attribute shall cause the same FSM
effects as XSet.setFieldAsNonbinding or XSet.setFieldAsBinding, whichever is appropriate.

9.2.3 XSystem Clock/Time Management

The accuracy and integrity of the XSet properties for retention start times depend on the accuracy and
integrity of the XSystem clock that is used to set their values. Equally important is the relative accuracy and
integrity of the XSystem clock, which determines if XSet retention duration has elapsed, to the XSystem
clock, which sets the start time property. Relative time differences between these two clocks can lead to
undesirable retention and deletion management behavior.

For example, an XSet is created in an XSystem at time 0 with .xset.retention.base.duration of 8 years and
.xset.deletion.autodelete of TRUE. At time 1 year, the XSystem clock is adjusted forward to 9 years. Now,
because the XSystem time is 9 years, the XSet retention time criterion is satisfied, even though only 1 year
has actually elapsed. And since .xset.deletion.autodelete is TRUE, the XSystem automatically deletes the
XSet.

The specifications for accuracy and integrity of XSystem time keeping is not within the scope of XAM.
However, to prevent undesirable XSet retention and deletion management consequences, XSystems are
strongly encouraged to maintain accurate clock time, with zero or minimal deviation to clock integrity.

9.3 XSet Policy Management Properties
The XSet policy management properties are XSet policy properties as described in Section 8.7, “XSet
Policy”. Included in XAM is an XSet policy management property that represents an abstraction for
XSystem storage management capabilities, which are outside the scope of XAM. The storage policy
property allows XAM applications to use such XSystem storage management capabilities for XSet
management. XAM also includes XSet policy management properties that govern retention and deletion
management in a manner that is consistent with the governance of the retention and deletion value
management properties described in Section 9.2, “XSet Retention and Deletion Value Management
Properties”. In other words, the XSet policy management properties shall be used to determine the actual
values of retention durations, retention enablement, automatic deletion, and shredding, in the absence of
the corresponding value management property in the XSet. Lastly, the XSet principal management policy
125 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
property is used by the XSystem to determine the actual value of the retention, deletion, and storage
management properties, value or policy, when the corresponding XSet management property in an XSet is
absent. A successfully committed XSet shall always have a principal policy management property.

The XSet policy management properties, together with the corresponding retention and deletion value
management properties, have a hierarchical precedence relationship. This hierarchy eliminates ambiguity
of the actual governing XSet retention and deletion management value in cases where multiple XSet policy
and value management properties exist in an XSet and when each property can determine the same
governing value.

The XSet policy management properties are XSet policy properties (see Section 8.7, “XSet Policy”), and
therefore, may not be interoperable across XSystems. To accommodate XSystem interoperability, the
getActual methods get the value management property or policy management property that is the
determined (actual) value of the retention and deletion value management properties. The getActual
methods may also be used by XAM applications to analyze the net effect of altering XSet policy
management properties.

9.3.1 Storage Management Policy

Per the XSet storage management discipline, storage management properties pertain to XSystem storage
management capabilities, which are outside the scope of XAM, e.g., XSet storage performance, resiliency,
and virtualization. As a result, such XSystem-specific XSet storage management capabilities are abstractly
specified as a storage policy management property.

9.3.2 Retention and Deletion Management Policy

Retention and deletion policy management properties are used by an XSystem to determine XSet
retention time criteria, autodelete, and shred behavior in the absence of the corresponding value
management properties. The XSet value management property behaviors that a XAM application may
indirectly express through retention and deletion policy management properties are:

• .xset.retention.<retention id>.enabled

• .xset.retention.<retention id>.duration

• .xset.deletion.autodelete

• .xset.deletion.shred

Figure 28, “An Example Policy Management Property” shows an XSet that contains two management
properties. The first property is .xset.deletion.shred with a xam_boolean value of TRUE. The second
property is .xset.deletion.shred.policy with a xam_string value of “confidential”. The XSystem policy named
“confidential” states that the value that the XSystem uses in the absence of .xset.deletion.shred is the
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 126

XSet Management © SNIA
xam_boolean of TRUE. In either case, the XSystem recognizes the actual value of TRUE for XSet
shredding.

An XSystem shall be subject to the same update rules (see Table 56, “Retention Value Management
Properties”) in updating a retention actual value in a retention policy agreement as the corresponding
retention value management property. Likewise, a XAM application shall be subject to the same update
restrictions with respect to the actual values as the corresponding retention value management property,
when updating a retention policy management property.

9.3.3 XSet Management Policy

The principal management policy property, or XSet management policy, shall be used by an XSystem to
determine XSet retention criteria, autodelete, and shred behavior in the absence of both value and policy
management properties for any of the retention and deletion value management properties mentioned
previously. An XSystem shall also use the XSet principal management policy property to determine the
storage management behavior in the absence of the XSet storage policy management property.

An XSystem shall be subject to the same update rules (see Table 56, “Retention Value Management
Properties”) in updating a retention actual value in a management policy agreement as the corresponding
retention value management property. Likewise, a XAM application shall be subject to the same update
rules with respect to the retention actual values as the corresponding retention value management
property, when updating a management policy property.

Table 63 lists the XSet policy management properties, which are described in the paragraphs following the
table.

Figure 28 – An Example Policy Management Property

Table 63 – XSet Policy Management Properties

Policy Management Property Name
[Binding-Application Specified,

Readonly-TRUE]
Policy Management Property Method

.xset.management.policy XSet.applyManagementPolicy

.xset.retention.<retention id>.enabled.policy XSet.applyRetentionEnabledPolicy

.xset.retention.base.duration.policy XSet.applyBaseRetentionPolicy

.xset.retention.<retention id>.duration.policy XSet.applyRetentionDurationPolicy

.xset.deletion.autodelete.policy XSet.applyAutoDeletePolicy

XSystem XSet Policy AgreementsXSet

Name = .xset.deletion.shred
Value = TRUE

Polcy Name = confidential
.xset.deletion.shred = TRUEName = .xset.deletion.shred.policy

Value = “confidential”
127 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
.xset.management.policy

shall be used by an XSystem to determine XSet retention criteria, autodelete, and shred behavior in the
absence of both value and policy management properties for any of the following value management
properties:

• .xset.retention.<retention id>.enabled

• .xset.retention.<retention id>.duration

• .xset.deletion.autodelete

• .xset.deletion.shred

The XSystem shall also use .xset.management.policy to determine the XSet storage management
behavior in the absence of .xset.storage.policy.

When XSet.commit creates a new XSet and .xset.management.policy does not exist, XSet.commit shall
create .xset.management.policy and shall set its value to the policy name found in
.xsystem.management.policy.default.

An XSystem shall be subject to the same update rules (see Table 56) in updating a retention management
value in a retention management policy agreement as the corresponding retention value management
property. Likewise, a XAM application shall be subject to the same update rules with respect to the policy-
determined retention values as the corresponding retention value management property, when updating a
retention management policy property.

Method - XSet.applyManagementPolicy

.xset.retention.<retention id>.enabled.policy

shall be used by an XSystem to determine the actual value of an XSet’s retention enablement for a given
scope (as specified by the retention id) in the absence of .xset.retention.<retention id>.enabled.

An XSystem shall be subject to the same update rules (see Table 56) in updating a retention management
value in a retention management policy agreement as the corresponding retention value management
property. Likewise, a XAM application shall be subject to the same update rules with respect to the policy-
determined retention values as the corresponding retention value management property, when updating a
retention management policy property.

The XSystem policy list for .xset.retention.<retention id>.enabled.policy shall have XSystem property names
of .xsystem.retention.enabled.policy.list.<name>.

Method - XSet.applyRetentionEnabledPolicy

.xset.deletion.shred.policy XSet.applyShredPolicy

.xset.storage.policy XSet.applyStoragePolicy

Table 63 – XSet Policy Management Properties

Policy Management Property Name
[Binding-Application Specified,

Readonly-TRUE]
Policy Management Property Method
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 128

XSet Management © SNIA
.xset.retention.base.duration.policy

shall be used by an XSystem to determine the actual value of an XSet’s retention duration for a given
scope (as specified by the retention id) in the absence of .xset.retention.base.duration.

An XSystem shall be subject to the same update rules (see Table 56) in updating a retention management
value in a retention management policy agreement as the corresponding retention value management
property. Likewise, a XAM application shall be subject to the same update rules with respect to the policy-
determined retention values as the corresponding retention value management property, when updating a
retention management policy property.

The XSystem policy list for .xset.retention.base.duration.policy shall have XSystem property names of
.xsystem.retention.duration.policy.list.<name>.

Method - XSet.applyBaseRetentionPolicy

.xset.retention.<retention id>.duration.policy

shall be used by an XSystem to determine the actual value of an XSet’s retention duration for a given
scope (as specified by the retention id) in the absence of .xset.retention.<retention id>.duration.

An XSystem shall be subject to the same update rules (see Table 56) in updating a retention management
value in a retention management policy agreement as the corresponding retention value management
property. Likewise, a XAM application shall be subject to the same update rules with respect to the policy-
determined retention values as the corresponding retention value management property, when updating a
retention management policy property.

The XSystem policy list for .xset.retention.<retention id>.duration.policy shall have XSystem property names
of .xsystem.retention.duration.policy.list.<name>.

Method - XSet.applyRetentionDurationPolicy

.xset.deletion.autodelete.policy

shall be used by an XSystem to determine the actual value of XSet autodelete in the absence of
.xset.deletion.autodelete.

Method - XSet.applyAutoDeletePolicy

.xset.deletion.shred.policy

shall be used by an XSystem to determine the actual value of XSet shred in the absence of
.xset.deletion.shred.

Method - XSet.applyShredPolicy

.xset.storage.policy

shall be used by an XSystem to determine how to manage an XSet with respect to the storage
management capabilities of the XAM Storage System that are outside the scope of XAM, e.g., storage
performance, resiliency, and virtualization.

Method - XSet.applyStoragePolicy
129 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
9.3.3.1 Policy Management Property Methods and the Open XSet FSMs
The methods that create or alter the XSet policy management properties shall have the following effects on
the XSet finite state machines (FSMs) specified in Section 8.5, “XSet Instance Finite State Machine
(FSM)”:

• If the XSet policy management property does not exist in the XSet, then creating the property shall
cause the same FSM effects as creating any other field. The field shall be set as binding or
nonbinding by the appropriate field creation method. See Section 6.4, “Methods that Operate on
Fields” for more information.

• If the XSet policy management property exists in the XSet, then XSet.apply<management policy>
that alters the property value, i.e., policy name, shall cause the same FSM effects as an
XSet.set<stype> method.

— If the existing XSet policy management property is nonbinding, then XSet.apply<management
policy> shall cause the FSM effects of a nonbinding modification.

— If the existing XSet policy management property is binding, then an XSet.apply<management
property> shall cause the FSM effects of a binding modification.

If the XSet policy management property exists in the XSet, then an XSet.apply<management policy> that
alters the property’s binding attribute shall cause the same FSM effects as XSet.setFieldAsNonbinding or
XSet.setFieldAsBinding, whichever is appropriate.

9.3.4 XSet Policy Management Hierarchy

The XSet policy management properties, together with the retention and deletion value management
properties, are conceptually organized in a three-level hierarchy, with the retention and deletion value
management properties as the third level:

• Level 1: .xset.management.policy

— Level 2: .xset.retention.<retention id>.duration.policy

• Level 3: .xset.retention.<retention id>.duration

— Level 2: .xset.retention.<retention id>.enabled.policy

• Level 3: .xset.retention.<retention id>.enabled

— Level 2: xset.deletion.autodelete.policy

• Level 3: .xset.deletion.autodelete

— Level 2: xset.deletion.shred.policy

• Level 3: .xset.deletion.shred

— Level 2: .xset.storage.policy

Per the definitions of the policy management properties, the precedence order that a XSystem shall use for
XSet retention, deletion, and storage management is:

1 Retention and deletion value management properties (Level 3)

2 Retention, deletion, and storage management discipline policy properties (Level 2)

3 Principal management policy property (Level 1)
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 130

XSet Management © SNIA
Given this order of precedence, an XSet-creating XAM application may control XSet retention and deletion
management by setting the retention and deletion value or policy management properties (level 3 or
level 2) when the application creates the XSet.

The management policy hierarchy has relevance when a XAM application creates or updates any of the
retention, deletion, storage, or principal policy management properties in the hierarchy. An XSet policy
management property, which has or would have precedence for a level 3 property, shall not be changed or
created if that property setting would violate the update rules (see Table 56) that apply to the specific
level 3 value management property.

For example, the .xset.retention.<retention id>.duration property has an update rule that it can only be
updated to a larger value. If the actual value for XSet base retention duration is 2 years, as determined by
.xset.retention.foo.duration.policy (where retention id = foo), an attempt to create and set
.xset.retention.foo.duration to 1 year shall generate a non-fatal error. Whereas, an attempt to create and
set .xset.retention.foo.duration to 3 years is successful, with precedence given to
.xset.retention.foo.duration. .xset.retention.foo.duration.policy remains in the XSet, but this property shall no
longer be used to determine the actual retention duration value for the “foo” retention scope.

The XSet policy management hierarchy places a restriction on the XSystem policy agreements that
correspond to level 1 and level 2 XSet policy properties. If the level 1 and level 2 XSet policy values are
identical (i.e., they have the same policy name), then they shall also, in effect, represent the same policy.
Specifically, the actual value determined from a level 2 retention or deletion policy property shall be the
same actual value determined from the level 1 policy property.

For example, “foo” is a valid policy name for both .xset.management.policy and
.xset.retention.bar.duration.policy (where retention id = bar). The “foo” retention duration policy for the “bar
retention scope is defined to be 2 years. An XSet that has .xset.retention.bar.duration.policy = “foo” and
does not have .xset.retention.bar.duration, has an actual base retention duration value of 2 years. Likewise,
an XSet that has .xset.management.policy = “foo” and does not have .xset.retention.bar.duration.policy or
an .xset.retention.bar.duration, also has an actual retention duration value of 2 years.

9.3.5 XSet Management Policy Default

As described in Section 9.2, “XSet Retention and Deletion Value Management Properties” and previously
in this section, XSet retention and deletion value and policy management properties may be created, and
possibly altered, throughout the life of the XSet. If a XAM application creates a new XSet and elects to not
define the retention, deletion, and storage management properties, a default mechanism shall determine
the governing retention and deletion values and storage policy.

When XSet.commit creates a new XSet and .xset.management.policy does not exist, XSet.commit shall
create .xset.management.policy, the principal management policy property, and shall set its value to the
policy name found in .xsystem.management.policy.default. The XSystem policy list,
.xsystem.management.policy.list.<policy name>, shall be non-empty and
.xsystem.management.policy.default shall contain a management policy name found on the XSystem
management policy list. Therefore, .xset.management.policy shall exist in every committed XSet.

9.3.6 getActual Methods for Retention and Deletion Value Management Properties

The getActual methods shall return the actual values determined from the XSet policy management
hierarchy for the retention and deletion value management properties. If the value management property
exists in the XSet, then the value returned by the getActual method shall be the same value obtained using
the XSet.get<type> method. If the value management property does not exist in the XSet, then the value
returned by the getActual method shall be the policy-determined value. If a policy-determined value is not
established, then the getActual method shall return a non-fatal error.
131 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA XSet Management
The getActual methods are:

• XSet.getActualRetentionDuration

• XSet.getActualRetentionEnabled

• XSet.getActualAutoDelete

• XSet.getActualShred

The XSet.get<management actual value> methods above shall cause the same XSet finite state machine
effects as an XSet.get<stype> method as specified in Section 8.5, “XSet Instance Finite State Machine
(FSM)”.

9.4 XSet Hold Properties
A XAM application may place an XSet on hold. When an XSet is on hold, XAM applications shall be
subject to failures or unexpected state changes on XSet operations, which would otherwise be successful
if the XSet was not on hold. An XSystem shall maintain an on-hold XSet in readonly mode with respect to
the application XSet access and shall prohibit XSet deletion, either automated or explicit. XAM applications
shall tolerate these XSet on-hold failures or state changes.

An XSet shall be placed on hold via XSystem.holdXSet and shall be taken off hold via
XSystem.releaseXSet (see Figure 29). The hold string identifier specification shall bind the hold/release
pair together, and thus, implicitly defines the hold/release time criteria.

The hold property, .xset.hold, shall be added to the XSet with a value of FALSE, indicating that the XSet is
not on hold on initial successful commit of a new XSet.

When a XAM application subsequently places an XSet on hold with XSystem.holdXSet, .xset.hold shall be
updated with a value of TRUE, indicating that the XSet is on hold and the specified hold identifier shall be
added to the hold list as the.xset.hold.list.<hold id> property with value <hold id>. When a XAM application
releases a hold on an XSet using XSystem.releaseXSet, .xset.hold.list<hold id> shall be removed from the
XSet. And if the removed hold list property is the last one and the hold list becomes empty, then .xset.hold
shall be set to FALSE, to indicate that the XSet is no longer on hold. A XAM application may determine the
on-hold status of an XSet by the .xset.hold property.

A XAM application may use the XIterator mechanism to discover the hold list.

Figure 29 – XSet Hold and Release Management

XSet access is readonly;
delete XSet is not allowed

Hold time criterion is met at time =
last release occurs

XSet
Created

XSet Hold and Release Management

Standard XSet Access
Delete XSet Allowed

Hold(1)
start time

Hold(2)
start time

Release (1) Release (2)
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 132

XSet Management © SNIA
Table 64 lists the hold properties, which are described in the paragraphs following the table.

.xset.hold

shall indicate the on-hold status of an XSet. When XSet.commit creates a new XSet and .xset.hold does
not exist, XSet.commit shall create .xset.hold and shall set its value to FALSE. When a hold list is created
on the XSet, the value of .xset.hold shall be set to TRUE. A release that removes the last
.xset.hold.list.<hold id> property shall update .xset.hold to FALSE. The .xset.hold property shall not be
created on the XSet instance that is created by XSystem.copyXSet and shall be removed from the XSet
instance on a binding modification.

Methods - XSystem.holdXSet, XSystem.releaseXSet

.xset.hold.list.<hold id>

shall identify the hold with a xam_string hold identifier when an XSet is placed on hold. .xset.hold.list.<hold id>
shall be added with a value of <hold id>, and .xset.hold shall be set to TRUE. A release that specifies the
identical <hold identifier> shall remove .xset.hold.list.<hold id> and update .xset.hold to FALSE, if the last
.xset.hold.list<hold id> is removed.

.xset.hold.list<hold id> shall not be created on the XSet instance that is created by XSystem.copyXSet and
shall be removed from the XSet instance on a binding modification.

Methods – XSystem.holdXSet, XSystem.releaseXSet

9.5 Reset Management Fields
As mentioned in Chapter 8, “XSet Operations”, certain XSet operations may create a new, uncommitted
XSet instance from an existing XSet. When this happens, the new, uncommitted XSet instance shall inherit
all retention, deletion, and storage value and policy management properties that exist in the existing XSet.
Furthermore, hold properties shall not be propagated into the new, uncommitted XSet instance. The on-
hold property shall be created and set to a value of FALSE, on initial successful commit of the new XSet. If
a XAM application wants to remove the value and policy management properties, rather than have them
inherited by the new uncommitted XSet instance, then the XAM application may use
XSet.resetManagementFields to remove all value and policy management properties from the XSet
instance.

Method - XSet.resetManagementFields

XSet.resetManagementFields shall cause the same XSet finite state machine effects as a binding
modification, as specified in Section 8.5, “XSet Instance Finite State Machine (FSM)”.

Table 64 – Hold Properties

Property Name stype Binding Readonly Comments

.xset.hold xam_boolean FALSE TRUE Added at XUID creating commit and set
to FALSE

.xset.hold.list.<hold id> xam_string FALSE TRUE Value=<hold id>
133 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Query
10 Query

10.1 Overview of Query
The general purpose XAM API is intended to provide a vendor-independent method for storing and
retrieving application data. In addition to specific API methods to be used for accessing data, a query-
based interface is also included. This interface enables an application to access data using content-based
criteria. These criteria are expressed as relationships between XSet properties and, in some cases,
content queries of some XSet streams.

The XAM query language is based on a subset of the SQL standard. Specifically, XAM queries look like
the select statement of SQL. An example XAM query is shown as follows:

select ".xset.xuid" where "com.example.subject" = ‘Electronics Service, Unit #16‘

The XAM query function is designed around the common concepts and capabilities provided by the XAM
API. A query is performed by creating a query XSet, then submitting it as a XAM job. As results are found
matching the query, they are stored into the same XSet. If the query XSet is committed, the query runs
asynchronously from the application, and the results are persisted across application sessions. In
response to a query, the XAM query system will return the XUID information to the application. The
application can use the XUIDs to reference the selected XSets to read, change, or process according to
the application’s business logic.

XAM query should not be confused with the more general purpose SQL relational databases. XAM query
is not intended to provide the same performance guarantees seen in a mature relational database
management system. XAM Storage Systems are generally designed to be archives of data, rather than
relational databases. Example uses of query include locating the following types of records:

• Archived medical data records for a patient

• A collection of telephone data records referencing some phone number

• A computer backup data set containing a named file

Refinements of these basic searches can be extended using the XAM query relational operators to narrow
the search. These search strategies might include modifiers to searches to include date ranges, user
identifiers, etc. Metadata contained in XSets is flat with respect to the XSet, and relationships beyond ’in
the XSet’ should not be expected. An application will be unable to store data in a table form or perform
SQL-style, row-level, comparisons between data types.

XAM supports two levels of query, level 1 and level 2. Level 1 allows query on simple metadata, while
level 2 allows query into stream content.

• The level 1 query capability restricts the where clause to relationships between property fields in
an XSet. A storage vendor shall implement level 1 query capability within an XSystem.

• The level 2 query capability, in addition to level 1 expressions, allows for expressing relationships
between the content of some XStreams. A storage vendor may implement level 2 query capability
within an XSystem.

In both cases, a single language and grammar describe all of the capabilities. Both levels of query are
accessed through a single, defined job type that all XAM Storage Systems shall support.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 134

Query © SNIA
10.2 Query Goals
The XAM query capability has several goals:

• Provide a primary way of locating XSets appropriate to an application-defined criteria

• Provide a sufficiently rich expressive grammar to allow applications to describe a wide range of
data collections

• Leverage concepts from a well known query language (SQL)

10.3 Introduction to the Query Language Grammar
The XAM Query Language (XAM QL) is modeled on the SQL select statement. Two parts to the statement
allow the application writer to control the contents of the query. Consider the query example:

select ".xset.xuid" where ".xset.time.xuid" > date(‘2006-01-01T00:00:00.0‘)

The first part (the select clause) specifies that the application is requesting a list of XUID values. Unlike
SQL, the return value “.xset.xuid” is required and shall be the only allowable value. The second part (the
where clause) allows specification of a subset of XSets to be returned in the results. For XAM 1.0, the
select clause shall be present and contain only the phrase “select ’.xset.xuid’”.

Because XAM QL allows any characters to be used as field names, all instances of field names in the XAM
query string shall be quoted. Quoting of XAM field names is accomplished by using double quotes,
whereas, string literals use single quotes.

The second part of the query, the where clause, is optional and provides the greatest amount of
application control. This optional clause allows an application to use the simplest form of a XAM query:

select ".xset.xuid"

In this example, the results stream will contain a list of every XSet that is readable at the time of the query.
More typical examples are like the previous example, which specifies all XSets created after January 1,
2006.

10.4 Level 1 Query: Where Clause Operators
The operators listed in this section are defined to operate on XSet properties and field attributes, also
known as a level 1 query. All XAM Storage Systems shall implement level 1 query. This type of query is
restricted to comparisons between:

• XSet properties and literal values

• Field attributes and literal values

XSets with named properties of differing types, as specified by the literal expression, shall not be included
in the query results.
135 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Query
Table 65 shows which field and literal types can be validly compared.

Table 66 shows which comparison operators may be used, depending on the field type.

Table 67 describes the valid operators in the level 1 query.

Table 65 – Valid Comparisons

Literal
Field Type

xam_boolean xam_int xam_double xam_string xam_datetime xam_xuid

boolean *

int * *1

1. This comparison may be narrowed to only xam_double properties, by specifying the property type equal to ‘application/
.xam.snia.xam.double’ in the where clause.

double *2

2. This comparison may be narrowed to only xam_int properties, by specifying the property type equal to ‘application/
.xam.snia.xam.int’ in the where clause.

*

string *

datetime *

XUID *

Table 66 – Comparison Operators

Field Type
Operators

= <> < <= > >= like

xam_boolean * *

xam_int * * * * * *

xam_double * * * * * *

xam_string * * * * * * *

xam_datetime * * * * * *

xam_xuid * *

Table 67 – Operator Descriptions

Operator Description

= Equality test between values

<> Inequality test between values

Note: XAM query allows ’!=’ as a synonym for ’<>’.

< Less than

<= Less than or equal
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 136

Query © SNIA
The like operator compares literal strings against xam_string properties. The string literals in the
comparison is a pattern which may contain a wildcard character ’%’. This wildcard character shall match
zero or more characters and is the only wildcard expression allowed in the string literal.

Table 68 summarizes the results of various like expressions given a property “com.example.prop”
containing the value ‘abcdefg’.

10.4.1 String Operators

Applications are given a great amount of freedom in how strings are generated in UTF-8 [RFC 3629].
Because of this freedom, applications are expected to follow UTF-8 rules and limitations. XAM shall
validate UTF-8 correctness for string-valued properties. String literals supplied to the XAM query system
shall be verified for UTF-8 correctness. Any non-conforming UTF-8 string literals shall generate a XAM
non-fatal query syntax error.

 Some of the complications that could affect the query string comparisons include:

• Lack of canonical representations for some glyphs

• Non-printable characters

• Single vs. multiple glyph characters

• Different string representations for the same data from multiple applications

Solving all of these issues is outside the scope of XAM query and XAM. XAM query string comparison
operators shall operate on a byte-by-byte basis. For relational operators (e.g., “>”, “<”, etc.), the

> Greater than

>= Greater than or equal

AND, OR,
NOT

Logical operators

Like1 Simple pattern matching on strings

1. This operator is similar to SQL, but is limited to the ’%’ operator, which matches
zero or more characters. This operator does not support any other pattern
matching models typical in SQL. See the examples shown in Table 68.

Table 68 – Summary of "like" Operator

Expression Result

"com.example.prop" like ‘abc%‘ TRUE

"com.example.prop" like ‘%efg‘ TRUE

"com.example.prop" like ‘%def%‘ TRUE

"com.example.prop" like ‘ab%fg‘ TRUE

"com.example.prop" like ‘xb%‘ FALSE

"com.example.prop" like ‘%‘ TRUE

Table 67 – Operator Descriptions

Operator Description
137 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Query
relationships shall be defined by the byte values. XAM query string comparisons shall be case sensitive.
The XAM Storage System shall not try to normalize textual values to ignore case, nor are any functional
values supplied to do so. All data normalization and UTF-8 conformance shall be the responsibility of the
application. To maximize application interoperability, applications are encouraged to use the IDN profile of
stringprep as defined in [RFC 3491] and [RFC 3454].

String literals shall be written using single quotes. For example:

select ".xset.xuid" where "com.example.string-property" = ‘My string literal‘

To specify a single quote in a string, the single quote shall be written into the string using the backslash
quote notation. For example:

select ".xset.xuid" where "com.example.ownership" = ‘Tom\‘s‘

The length operator shall return the number of bytes used by the string. It should not be used to compare
the number of characters, as this comparison depends on the character encoding being used. String
properties in XAM are limited in length (see Section 6.3, “XAM Fields”), and string literals longer than this
shall generate a XAM non-fatal query syntax error.

10.4.2 Numeric Property Value Comparisons

The query system allows specification of numeric literal values for comparison, requiring the query system
to compare numeric value property fields. For purposes of comparisons, all numeric-valued properties
shall be comparable with one another. When comparing a xam_double with an xam_int, the xam_int value
shall be promoted to a xam_double for the purposes of comparison. The promotion of the numeric value
shall be for comparison purposes only and shall have no effect on any XSet property value. Numeric
promotion shall occur whenever the type of the literal and a property value differ, regardless of other
subclauses in the where expression. Literal values are typed by how they are represented. Integer literal
values shall contain no decimal point, and double literal values shall contain the appropriate decimal point.
Table 69 summarizes this behavior.

When required, the comparisons may be restricted to a specific type by using the typeof() function. This
restriction allows the query to specify tighter control on the comparisons. The following example shows
how a query can be restricted to only integer-valued properties. In this example, only XSets with a xam_int
valued com.example.property will be considered:

select ".xset.xuid" where "com.example.property" = 12 and
typeof("com.example.property") = ‘application/vnd.snia.xam.int‘

Any XSets containing a double-valued property named com.example.property shall fail the comparison
and will not be included in the result set.

Table 69 – Query Numeric Comparisons of Different types

Type of
Property

Type of Literal

xam_int xam_double

xam_int = Promote property value

xam_double Promote literal value =
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 138

Query © SNIA
A query may also restrict the numeric comparison to double, as illustrated in this example:

select ".xset.xuid" where "com.example.property-two" = 124.0 and
typeof("com.example.property-two") = ‘application/vnd.snia.xam.double‘

In this case, any XSets with integer-valued properties named com.example.property-two will fail the
comparison and will not be included in the result set. Also note that this example specifies a double literal,
which causes a double-to-double comparison.

10.4.3 Numeric Comparisons with IEEE-754 Exception Values

The IEEE-754 Floating Point Numeric [IEEE754] standard defines two exceptional values which can be
stored into a XAM Storage System by an application. These values are:

• NaN - An IEEE-754 value representing a “non-number”

• Inf - An IEEE-754 value representing “infinity”

The XAM query system shall compare these values as defined below, but unlike other systems, the XAM
query system shall not generate an exception during the processing of the query.

All comparisons with NaN shall fail by returning a FALSE condition. For instance, consider the query with a
property named com.example.not-number, containing the value NaN.

select ".xset.xuid" where "com.example.not-number" > 12

This query will never return any results. In other words, the result stream in the query job XSet will contain
zero XUID values when the query has completed. This is because the comparison Nan > 12 is always
going to fail.

The value Inf shall not fail and shall generate correct comparisons. For instance, the following query with a
property named com.example.+big, contains the value of +Inf.

select ".xset.xuid" where "com.example.+big" > -99

The XSet which has com.example.+big with the value of +Inf will be included in the results because +Inf is
larger than -99.

Nan, +Inf, and -Inf shall be acceptable values as numeric literal values and shall be considered to be
xam_double values.

10.4.4 Field Attribute Accessor Functions

The field attribute accessor functions are exists(), typeof(), readonly(), binding(), and length(). Descriptions
and examples of these functions are as follows:

• exists() tests for the existence of an XSet field as specified by field name (either property or
stream). An XSet containing the named field shall evaluate this function to TRUE, and an XSet
that does not contain the named field shall evaluate this function to FALSE. For example,

select ".xset.xuid" where exists("com.example.name")

• typeof() returns the MIME type of the named XSet field. This function is only suitable as part of a
string comparison. For example,

select ".xset.xuid" where typeof("com.example.data") = ‘text/plain‘
139 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Query
select ".xset.xuid" where typeof("com.example.data") like ‘text%‘

The typeof function may be used whenever an application could use a field reference to a string-valued
property. Comparisons with any non-string literal value shall generate a non-fatal error.

• readonly() evaluates to TRUE when the field is marked as readonly. For example,

select ".xset.xuid" where readonly("com.example.flag")

select ".xset.xuid" where not readonly("com.example.name")

• binding() evaluates to TRUE when the field is marked as binding. For example,

select ".xset.xuid" where binding("com.example.case_id")

select ".xset.xuid" where not binding("com.example.subject")

• length() returns the length, in bytes, of the named field. This function is more useful for streams,
but is also defined for properties. The length() function used on property fields returns the length
as defined in Table 5, “stypes”. The result of length() on a stream being updated is unspecified. For
example,

select ".xset.xuid" where length("com.example.data") > 1024

10.4.5 Logical Operators

Subclauses within the where expression may be combined and modified by using the logical operators not,
and, and or. These operators function the same as those defined in SQL.

• not negates the Boolean expression. For example,

where not binding("com.example.property")1

Only selects XSets with nonbinding properties named ’com.example.property’

where not ("com.example.property1" < 12 or "com.example.property2" > 100)

Only selects XSets with property1 >= 12 AND property2 <= 100

• and requires both comparisons to be TRUE before including the XSet in the results.

where typeof("com.example.stream") = ‘image/jpeg‘ and
length("com.example.stream") > 1024

Only selects XSets containing Jpeg images larger than 1024 bytes

• or evaluates to TRUE if either subclause evaluates to TRUE

where typeof("com.example.stream") = ‘image/jpeg‘ or
typeof("com.example.stream") = ‘image/gif‘

Only selects XSets containing the named stream of image type Jpeg or GIF

These logical operators allow the query author to combine property relationships in ways that are unique
and useful to the application.

1. Note that normal Boolean rules apply. This example may also be written as ’where binding(com.example.property)
= FALSE
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 140

Query © SNIA
10.4.6 Comparison to Non-Existent Fields

If a field referenced in a XAM Query string does not exist in an XSet, then:

• If the field name is the argument to the exists() function, then the exists() function shall return
FALSE for evaluation of the query on that XSet.

• Any other use of the field name in the query string shall cause an XSet in which the named field
does not exist to be excluded from the result set.

10.4.7 Selector Functions for XUID and Date-Time Properties

The query language accepts selector functions to allow a specification of some values that may violate
other parts of grammar. These value types are date-time and XUID-valued literals.

The function date takes a properly formed date-time value, specified as a string. The value shall be
consistent with the date-time specification being used by XAM (see Section 6.3.3, “Properties”). An
improperly formed data-time value shall generate a non-fatal error during the parsing of the query.

The function xuid takes a printable format of a XUID (base64 encoded) and is specified as a string. The
value shall be consistent with the XUID specification. An improperly formed XUID literal shall generate a
non-fatal error during the parsing of the query.

10.5 Level 2 Query: Where Clause Content Search Operators
Optionally, a vendor may choose to implement the where clause XStream search operators. These
functions allow an application to perform searches through appropriate XStreams. For instance, an
application can select XSets where an XStream contains the word “SNIA.” An application may determine if
level 2 queries are supported by reading the Boolean property .xsystem.job.xam.job.query.level2.supported
from the XSystem instance (see Section 6.3, “XAM Fields”). If this Boolean property is TRUE, then the
application may use level 2 constructs.

Level 2 query expressions are part of the XAM QL and, if level 2 is supported, the vendor shall support
level 2 as part of the standard XAM query job type. Vendors may implement query extensions via vendor-
specific job types, but these shall not be considered interoperable with different vendor’s XAM Storage
Systems.

This functionality is intended to apply to any XStream content type (as specified by the stream’s MIME
type) that is amenable to string-based analysis. Examples include ’text/plain’, ’application/msword,’ and so
on. Any system that supports level 2 query shall support query against XStream types of ’text/plain.’ The
ability to perform textual search with additional XStream types is vendor specific.

Vendor systems may search text slightly differently, depending on the character sets used to store the
content. For the following discussion, a token is a categorized block of text, usually consisting of indivisible
characters. For most European character sets, a token is a collection of characters separated by white
space. For idiographic languages, a token may be a series of octet values, since white space is implied.

The following where clause operators may be used in a query submitted to a level 2 compliant system.

• contains – Indicates that the specified stream contains the indicated token. This operator shall
accept a single token. For example,

select ".xset.xuid" where "com.example.mystream" contains(‘foo‘)

This example indicates that the word ’foo’ is contained somewhere in the stream ’mystream’.
141 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Query
• before – Indicates that one token is before the other specified token in terms of location. This
operator shall accept two tokens as arguments. For example,

select ".xset.xuid" where "com.example.mystream" before(‘first‘, ‘second‘)

This example indicates that the word ‘first‘ is before an occurrence of ‘second.‘

• after – Indicates that one token is after the other specified token in terms of location. This
operator shall accept two tokens as arguments. For example,

select ".xset.xuid" where "com.example.mystream" after(‘last‘, ‘first‘)

This example indicates that the word ‘last‘ is after an occurrence of ‘first.‘

• within – Indicates that the specified stream contains the indicated tokens near each other. This
operator shall accept three arguments, two string tokens, and the token distance allowed. There
shall be no implied ordering for the two tokens. For example,

select ".xset.xuid" where "com.example.mystream" within(‘word1‘, ‘word2‘, 7)

This example indicates that the word ‘word1‘ occurs within 7 tokens of ‘word2.‘ Distance between
tokens can be explained by the following example:

A quick brown fox jumped over the lazy dog

The distance between tokens shall be defined as the number of intervening, non-matching tokens
between the two tokens specified to the within operator. For the previous example, the distance
between dog and some other tokens are listed here:

— lazy – zero. There are no tokens between lazy and dog.

— the – one. There is one token between the and dog.

— over – two. There are two tokens between over and dog.

The distance between any token and itself shall be considered to be zero and shall be equivalent
to a contains(token) clause in the query.

Negative distance values are not meaningful and shall generate a query parse error.

10.6 Complete Grammar
The following ABNF [RFC 4234] grammar represents the XAM QL. This grammar uses the rules, “char”
and “digit” from the core rules of the ABNF RFC. The XAM QL is case insensitive and uses the US-ASCII
[RFC 1345] character set, except that the control characters in the range 0x00 to 0x1F and the delete
character (DEL, 0x7f) are not used. String literals and field names specified in a query expression shall be
full UTF-8.

XAM-query = "select" xuid-property-name ["where" where-expression]
xuid-property-name = dq ".xset.xuid" dq ; as in ".xset.xuid"
property-name = dq *(char) dq
where-expression = term
term = ["not"] (factor / "(" term ")") ["and" term / "or" term]
factor = (property-name binary-op literal-expression) /

 (property-name) /
 (attribute-bool-fn) /

 (attribute-bool-fn binary-op literal-expression) /
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 142

Query © SNIA
 (attribute-function binary-op literal-expression) /
 (property-name level2op)
binary-op = "=" / "<>" / "!=" / "<" / "<=" / ">" / ">=" / "like"
attribute-bool-fn = attribute-bool-name "(" property-name ")"
attribute-bool-name = "exists" / "binding" / "readonly"
attribute-function = attribute-fn-name "(" property-name ")"
attribute-fn-name = "typeof" / "length"
level2op = "contains" "(" xam-string-literal ")" /
 "before" "(" xam-string-literal "," xam-string-literal ")" /

 "after" "(" xam-string-literal "," xam-string-literal ")" /
 "within" "(" xam-string-literal "," xam-string-literal ","

xam-integer-literal ")"
literal-expression = (xam-integer-literal / xam-double-literal /
 xam-string-literal / xam-boolean-literal /

xam-date-literal/ xam-xuid-literal)
xam-boolean-literal= "TRUE" / "FALSE"
xam-integer-literal= [sign-prefix] 1*digit
xam-double-literal = [sign-prefix] (1*digit) "." (1*digit) [exponent] /
 [sign-prefix] "Inf" / "NaN"
exponent = ("e" / "E") [sign-prefix] 1*digit ; base 10 exponentiation
sign-prefix = ("+" / "-")
xam-string-literal = sq *(char) sq; String as in ‘abc def ghi‘
xam-date-literal = "date" "(" xam-string-literal ")"; date(‘2006-04-01T00:00‘)
xam-xuid-literal = "xuid" "(" xam-string-literal ")"; xuid (‘AAAAAwAbB68AAH‘)
sq = %x27 ; This is a single quote, as in ‘foo‘
dq = %x22 ; This is a double quote, as in "bar"

Use of the space character (SP 0x20) has been omitted from the above grammar for clarity. When the
space character occurs within a quoted string, it represents a space character. Within a XAM query
expression, the space character may be used before or after any key word, quoted string, binary operator,
attribute function name, literal or any of the characters "(", ")" and ",". In some cases, the space character
is necessary, e.g., to distinguish "and not" (two key words) from "andnot" (not a key word). The space
character shall not be used within any integer or double literal.

10.6.1 Reserved Key Words and Operator Precedence

The only reserved key words shall be select, where, and, or, not, like, exists, binding, readonly, typeof,
length, TRUE, FALSE, before, after, contains, within, date, and xuid.

Operator precedence shall be as follows:

1 Attribute functions and exponent signs: exists, readonly, typeof, length, binding, +, -1

2 Binary operators: =, <>, >, >=, <, <=, like

3 not

4 and

5 or

Operators of the same precedence shall be evaluated left to right within the query. Operator precedence
may be overridden using parentheses. The following example illustrates how parentheses change the
meaning of a query:

1. Plus (+) and minus (-) operators may only appear as part of numeric literals.
143 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Query
select ".xset.xuid" where not "com.example.bool-prop" and
"com.example.int-prop" = 42

Compared with:

select ".xset.xuid" where not ("com.example.bool-prop" and
"com.example.int-prop" = 42)

In the first example, the not operator applies to the com.example.bool-prop property, while in the second
example, the not operator applies to the expressions com.example.bool-prop and com.example.int-prop =
42.

10.6.2 Specifying String Literals and Field Names with Special Characters

Table 70 describes the escape sequences for quoted field names and strings.

If the field name contains double quote characters, each double quote character shall be escaped by using
the backslash notation. For example, the field name for the xam_boolean property com.example.”qstring”
should be represented in the query as:

select ".xam.xuid" where "com.example.\"qstring\" " = TRUE

For field names containing a backslash character, the backslash itself shall be escaped. For example, the
field name for the xam_double property com.example.file\ratio would be represented in the query as:

select ".xam.xuid" where "com.example.file\\ratio" = 100.1

String literals which contain a single quote character shall be escaped using the backslash single quote
notation. For example, the string literal of ’a quoted string’ would be represented in a query as shown in the
following example.

select ".xset.xuid" where "com.example.string-prop" = '\'a quoted string\' '

The only acceptable escape characters shall be those listed in Table 70; any other escape sequence shall
generate an error. All quoted strings shall always escape any contained quote characters.

10.7 Job Control and API Methods
A query to a XAM Storage System is run as a job. As discussed in Section 8.9, “XAM Jobs and XAM Job
Control”, the input to the query jobs is an XSet. To successfully submit a query job, the query XSet
requires two input fields:

• org.snia.xam.job.command - Set to ‘xam.job.query’.

Table 70 – Escape Sequences for Quoted Field Names and Strings

Escape Sequence Meaning Notes

\\ Backslash (\)

\' Single quote (')

\” Double quote (")

\uxxxx Character with value
xxxx

xxxx is a hexadecimal
Unicode code only.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 144

Query © SNIA
• xam.job.query.command - This text XStream (MIME type of ‘text/plain; charset=utf-8’) shall contain
the XAM query expression string to be processed.

A query job XSet may optionally be committed before or during the execution of the job, but this commit is
not required. Failing to commit a job before closing the XSet shall cause the results of the query job to not
be persistently stored. The uncommitted XSet will likely terminate the associated job when the XSet is
closed. An application may determine if a commit of running jobs is allowed by checking the Boolean
property .xsystem.job.commit.supported in the XSystem instance (see Section 7.2.3, “XSystem Fields”).

10.7.1 Query Job Specific XSet Fields

Table 71 shows the specific fields created as part of the query job but does not show all the generic job
fields. See Section 8.9.2, “Standardized Job Output Fields” for more information.

org.snia.xam.job.command

is a xam_string property indicating what job this XSet represents. The value of this string shall be
‘xam.job.query’.

xam.job.query.command

is a UTF-8 text stream (MIME type of ‘text/plain; charset=utf-8’) and shall contain the query string itself and
shall be required for the query job.

xam.job.query.results

is a stream (MIME type of ‘application/vnd.snia.query.xuid_list’) containing the binary XUID values
resulting from the evaluation of the query.

xam.job.query.results.count

is a xam_int property indicating the number of XUID result values in the stream ‘xam.job.query.results’.

xam.job.query.level

is a xam_string property indicating the level of the query which matches the results. The value shall be
either ‘org.snia.xam.job.query.level.1’ or ‘org.snia.xam.job.query.level.2’.

10.7.2 Runtime Behavior of the Query Job

Once the required job control fields are set (org.snia.xam.job.command and xam.job.query.command), the
job can be executed successfully by invoking XSet.submitJob. Failure to set these fields shall result in the

Table 71 – Query Job-Specific Fields

Field Name Type Binding Readonly

org.snia.xam.job.command xam_string Application choice TRUE when running

xam.job.query.command text/plain; charset=utf-8 Application choice TRUE when running

xam.job.query.results application/
vnd.snia.query.xuid_list

FALSE TRUE when running

xam.job.query.results.count xam_int FALSE TRUE when running

xam.job.query.level xam_string FALSE TRUE when running
145 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Query
standard job error field .xam.job.error being added to the job XSet with the value set to either
‘org.snia.xam::not_a_job’ or ‘org.snia.xam::unspecified_command’.

Note that when formatting a query command, the calling entity, such as an application, is responsible for
verifying the level of query that is supported (1 or 2) and submitting the properly formulated query string. A
level 2 type where clause submitted to a XAM system that only supports level 1 query syntax shall result in
a non-fatal error field as above, with the value set to:

‘xam.job.query::level_not_supported‘

Other syntax errors in the query command string shall result in the error field being created with the value
of:

‘xam.job.query::invalid_command_syntax‘

All syntax errors shall be non-fatal errors with respect to the query job and shall cause the job to abort.

When XSet.submitJob is successfully executed, the query job shall store the query results in the job XSet
in the form of an XStream. This field is named xam.job.query.results.

The XStream shall contain a list of XUIDs of the XSets that match the query specification. The XStream
shall have a MIME type of ‘application/vnd.snia.xam.query.xuid_list’ and the XUID values in the stream
shall be written using their binary format.

The following fields shall also be added to the XSet by the job. These fields will contain the number of
results first and then the query level at which the job was run.

• xam.job.query.results.count

• xam.job.query.level

The results stream will contain a number of XUIDs at any given time, which is reflected in
xam.job.query.results.count. This property shall be updated as results are entered into the results XStream.
During query processing, this update allows the application to provide confirmation that results are being
processed (if needed). In the end, it provides a quick way of determining the count of the number of XUIDs
in the results. Because this property is dynamic, it shall be nonbinding and readonly. Updating
xam.job.query.results.count is not required to be atomic. However, to ensure good application behavior, the
XAM Storage System shall add new XUID values to the result stream before updating
xam.job.query.results.count.

The results of a query run in a level 2 system that are exported to a level 1 compliant system are still legal
results. An application may process those results, assuming that all other required XSets have also been
imported into the level 1 system. Running the level 2 query in a level 1 system shall result in a non-fatal
error as described above.

Applications may determine if the query job has completed by examining the job properties that indicate if
the job has completed. See Section 8.9.2.1, “Job Status” for more information.

10.7.3 Query Job Error Codes

A job’s run state may be determined by examining the value of .xam.job.status. See the job description of
this document in Section 8.9.2.1, “Job Status”. An XSystem that restarts while active query jobs are being
processed shall ensure that, for committed query jobs, the appropriate error code is set or the job is run.
The XStorage System vendor may choose to terminate these jobs, restart them, or continue from the point
of interruption.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 146

Query © SNIA
The query job may set the following error codes into .xam.job.error. These errors are described in
Table 72, “Query Job Error Codes”.

10.7.4 Result Stream Format

The result stream shall be typed as ‘application/vnd.snia.xam.query.xuid_list’. This stream shall contain
binary XUID values that are the result of the query job. Each XUID value in the stream shall be stored in a
binary format, as part of an 80-byte record (see Figure 30, “Result Stream”). If the resulting XUID is shorter
than 80 bytes, the record shall be zero padded, as shown in Figure 31, “Result Stream with Variable
Length XUID Values”. While processing the query, the XAM Storage System shall never write a partial
XUID to the result stream. Applications shall read all 80 bytes to ensure that an entire XUID value is
returned from the stream. Partial XUID values passed to other XAM API methods shall result in a non-fatal
error.

XUID values obtained from the query stream shall be acceptable to all XAM functions taking binary XUIDs
as arguments. The application may ignore the zero padding and treat all XUID values in the stream as
80-byte values. Other XAM functions requiring XUID arguments shall accept these values and ignore the
zero byte padding.

Table 72 – Query Job Error Codes

Error Code Description

xam.job.query::level_not_supported Query-specific non-fatal error when a specific XSystem is
unable to support the level required by the query command.

xam.job.query::invalid_command_syntax A non-fatal syntax error occurred when parsing the query
command.

xam.job.query::insufficient_permission The currently authenticated user does not have sufficient
permission to execute a query job.

xam.job.query::insufficient_resources The XSystem does not pose sufficient resources to
complete the query job.

Figure 30 – Result Stream

 80-byte XUID

 80-byte XUID

 80-byte XUID

XUID #N-2

XUID #N-1

XUID #N

 80-byte XUID

 80-byte XUID

 80-byte XUID

XUID #0

XUID #1

XUID #2
147 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Query
The XUID Iterator, as described in Section A.1.2, “XUIDIterator”, shall present a sequential interface to this
stream, but applications may perform random seek operations in the stream to access the results non-
sequentially. An application randomly accessing XUIDs within the stream shall perform the appropriate
offset calculations, assuming 80-byte XUID values throughout the stream.

The query result stream is logically defined to contain all of the query results, including those that have yet
to be generated by a running query job. A XAM application that reads the entire results stream until end of
stream is indicated does not need to recheck the results stream later to determine whether more results
have been added. It shall be possible for a XAM application to read the XStream that contains the query
results while the corresponding query job is running, but end of stream shall not be indicated before the job
completes. If all of the available XUIDs from a query results XStream for a running query job have been
read and a significant delay is likely until another XUID is added, an XStream.read method invocation
should return quickly, indicating that zero bytes have been read, and the method shall not indicate that the
end of the XStream has been reached. An asynchronous XStream.read invocation should wait for
additional results while the corresponding query job is running.

10.7.5 Scope of Query

Any XSet property value that is accessible to an application program via the XAM Library shall be capable
of being queried by the XAM QL. This requirement shall be TRUE for all standard, vendor-implemented,
and application-defined properties.

10.7.6 Runtime Caveats

Applications using the XAM QL should note the following:

• Even though the XAM QL is similar to SQL and supports a modified subset of SQL features, the
XAM Storage System may not have been implemented using a database. To ensure
interoperability between XAM Storage Systems, the application shall not assume any particular
implementation for the XAM query.

• A query does not alter the behavior of the XAM Storage System; no locking or suspend operations
are supported. A query result is, therefore, not an instantaneous snapshot of the system. Data
stored while the query job is running may or may not be included in the query results.

• The application may evaluate the results of a query job at any time, even before the job has
completed. Note that reaching the end of the data in the result XStream does not imply that the
result set is complete; completeness of the result can only be evaluated when the job has finished.

Figure 31 – Result Stream with Variable Length XUID Values

 80-byte XUID

 25-byte XUID

 79-byte XUID

XUID #N-2

XUID #N-1

XUID #N

 40-byte XUID

 61-byte XUID

 50-byte XUID

XUID #0

XUID #1

XUID #2

40 bytes

19 bytes

30 bytes

55 bytes

1

Zero
Byte

Padding
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 148

Query © SNIA
• Query jobs have a finite duration and shall complete without intervention. However, a job may be
terminated prematurely (halted) using an API call. When a query job is halted, the appropriate
value shall be set on the standard job status field (.xam.job.status). Halting a query job shall not
cause creation of the standard job health and error fields (.xam.job.errorhealth and .xam.job.error,
respectively).

10.7.7 Result Stream State After a Job Halt

When halted, the XAM Storage System may place zero or more complete XUIDs in the result XStream of
the query XSet. Previously existing rows of the result XStream shall not be modified. Note that in all cases,
writing partial XUIDs shall be prohibited. An application shall always see complete XUID values in the
result stream. Halting a query job shall be considered a permanent condition on the query job. After halting
a query, an application may resubmit the query job. Continuation of query processing on a halted query job
shall not be possible.

10.7.8 Reading Results of In-Process Queries

Result XStreams produced by query jobs may be consumed by applications before the XAM Storage
System has finished storing all of the result rows. If, while reading results, the application has consumed all
of the available data and the query job is still running, XStream.read shall return zero bytes but not yet
indicate an end of file. If an application wishes to wait until new XUID values are written into the result
XStream, XStream.asyncRead, specifying a timeout value, should be used.

10.7.9 What Is / Is Not Included in a Query Result

The completeness of a query job can be evaluated by evaluating the status field of the job XSet and the
health field (if it exists) of the job XSet. The health field is only created if the job encounters an error.

A query result is a transient, point-in-time snapshot of the XAM Storage System, which implies that there is
no “locking” of the system during a query. A direct result of this statement is that since the system is
changing during a query, certain XSets will be included and others will not.

The general rule is that any XSet that has been stored before the query initiation shall be valid for the
search criteria, and any XSet that has been stored after the query has completed shall not be included in
the search. XSets that are stored during the actual query job execution will have nondeterministic results—
they may or may not be included. Inclusion depends on how the query result set is constructed, and there
are no assumptions. Moreover, this rule shall also apply to deletions and expiration of XSets in the XAM
Storage System. Thus, any changes during the query will result in nondeterministic results.

The only guarantee is that an XSet, which was stored before the query initiation and not modified before
the query was completed, shall qualify as a target for the search criteria.

XAM query guarantees that XSets stored:

• before submitting the query are considered for inclusion in the result set.

• after the query has completed are not considered for inclusion in the result set.

• while the query is being processed may or may not be considered for inclusion in the result set.

The same rules apply to the query result set. A query result set may include XUIDs of XSets that are no
longer on the system or an attribute that was modified after the query store. In other words, even though
the query result set met the search criteria at the time of the query, due to a change, it no longer qualifies.

For example, the following query has a where clause specifying a nonbinding property:

select ".xset.xuid" where "com.example.propertyXYZ" = 5
149 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Query
Assume XUID 795 meets this search. After the query stores the XUID, an application changed
com.example.propertyXYZ to 9. Later, rerunning the query will not include XUID 795. In other words, the
results of a query shall be considered to be valid for the time the query was run, but the results are likely to
be different if the same query is run later.

10.7.10 Query and Permissions

With respect to permissions, the assumed behavior is that a query shall operate within the roles/
permissions granted to the connection. That means the query results shall only include those XSets that
are visible and accessible to the application, at least from a read perspective, to the role under which the
query is executed.

The procedures outlined in Chapter 11, “Security” determine which XAM users can submit and process
queries. The job authorization granule controls the ability to submit queries, and the job-commit
authorization granule controls the ability to commit an XSet that represents a running query, thereby
allowing it to continue after the XAM session ends. Roles that authorize these granules permit the
corresponding actions. See Chapter 11, “Security” for more details.

10.8 XAM Query Examples
The semantic examples in this section illustrate XAM query and show the expected behavior from a XAM
1.0 compliant system. For the sake of discussion, assume an XSystem contains the following collections of
XSets. As shown in Table 73, the XUID values are “XSET1”, “XSET2”, “XSET3”.

10.8.1 All XSets

This query selects all XSets in the above example:

select ".xset.xuid"

Result set:

• XSET1

• XSET2

• XSET3

10.8.2 A Subset of XSets

This query selects a subset of the XSets in this system. This example demonstrates the restriction due to
the where clause.

select ".xset.xuid" where ("com.example.foo" > 0) and ("com.example.foo" < 50)

Table 73 – Query Example XSets

XSET1 XSET2 XSET3

Property Value Property Value Property Value

com.example.foo 1 com.example.foo 77 com.example.foo 6

com.example.bar ’string’ com.example.bar 42

com.example.num 123.55 com.example.num 100 com.example.num 200
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 150

Query © SNIA
Result set:

• XSET1

• XSET3

10.8.3 Heterogeneous Properties

This query demonstrates the behavior of a where clause when properties are heterogeneous with respect
to type. For this example, look at the property “com.example.bar”.

select ".xset.xuid" where ("com.example.bar" > 0) and ("com.example.bar" < 100)

Result set:

• XSET2

Note: XSET3 does not contain “com.example.bar.” A non-existent property cannot participate in the
where clause, so XSET3 is restricted from the result set. XSET1 has the property, but it is an stype
string. This string is not an appropriate type for participating in the where clause for this example,
so XSET1 is excluded from the result set.

10.8.4 The exists() Function

This query demonstrates the behavior of the exists() function.

select ".xset.xuid" where exists("com.example.bar")

Results set:

• XSET1

• XSET2

The exists operator only tests for the presence of an XSet field. In this case, all the XSets containing a field
named com.example.bar will be returned into the result set.

10.8.5 The String like Operator

This query demonstrates the behavior of the string like operator:

select ".xset.xuid" where "com.example.bar" like ‘%ing%‘

Result set:

• XSET1

The like operator has the same behavior as SQL. Note that because XSET2 does not have a string-valued
property, it is not eligible for inclusion in the result set. XSET3 is not eligible because com.example.bar
does not exist.

10.8.6 Numeric Comparisons When Promoting a xam_literal

This query demonstrates numeric comparisons when promoting a xam_int literal:

select ".xset.xuid" where "com.example.num" >= 124

Result set:
151 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Query
• XSET3

XSET3 is included in the result because the value of property com.example.num, 200, is greater than the
literal 124. XSET1 is not included in the result because the value of property com.example.num, 123.55, is
not greater than or equal to literal 124.0 (promoted). XSET2 is not included because the value of property
com.example.num, 100, is not greater than or equal to 124.

10.8.7 Numeric Comparisons When Promoting a xam_int Property

This query demonstrates numeric comparisons when promoting a xam_int property:

select ".xset.xuid" where "com.example.num" >= 124.6

Result Set

• XSET3

XSET3 is included in the result because the value of property com.example.num, 200.0 (promoted), is
greater than the literal 124.6. XSET1 is not included in the result, because the value of property
com.example.num, 123.55, is not greater than or equal to 124.6. XSET2 is not included in the result set
because the value of property com.example.num, 100.0 (promoted), is not greater or equal to 124.6.

10.8.8 Numeric Comparisons When Restricting a Property Type

This query demonstrates numeric comparisons when restricting to a particular type of property:

select ".xset.xuid" where ("com.example.num" >= 123) and
typeof("com.example.num") = ‘application/vnd.snia.xam.int‘)

Result Set

• XSET3

XSET3 is included in the result because the value of property com.example.num, 200, is greater than the
literal 123. XSET1 is not included in the result because, even though the value of property
com.example.num, 123.55, is greater than or equal to 123.0 (promoted), the type of the property is not a
xam_int. XSET2 is not included in the result set because the value of property com.example.num, 100, is
not greater than or equal to 123.

10.8.9 Query with Mixed Types

This query demonstrates querying a named property with mixed types:

select ".xset.xuid" where ("com.example.bar" >= 10) or
("com.example.bar" like '%ing')

Result Set

• XSET1

• XSET2

XSET1 is included in the result set because the value of “com.example.bar”='string' matches the
expression like '%ing'. XSET2 is included in the result set because the value of “com.example.bar”=42
matches the expression >= 10.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 152

Security © SNIA
11 Security

11.1 XAM Security Overview
XAM security functionality consists of three security disciplines: XAM application authentication, XSystem
authorization, and XSet access control.

• XAM application authentication. The SASL (Simple Authentication and Security Layer)
framework [RFC 4422] enables an application that uses the XAM API to authenticate to the
XSystem as part of connecting to the XSystem. SASL may also establish an authorization identity
for authorization and access control purposes.

• XSystem authorization. When connecting to an XSystem, authorization determines which
functional elements of the API may be called during the resulting XAM session. The SASL
authorization identity may be an input to authorization decisions.

• XSet access control. An XSet may have an access control policy applied to it that determines
whether an API method is permitted. XSet access permissions can forbid modifications or deny
access to some or all XAM applications. A XAM policy name is used to refer to the XSet access
control policy.

XAM separates policy from mechanism for XSystem authorization and XSet access control. XAM specifies
the enforcement mechanisms for XSystem authorization and XSet access control, but does not specify
how to determine what access restrictions are to be enforced. The latter area, including configuration and
operation of XSystem authorization and XSet access control policies, is outside the scope of this standard.
XAM specifies how a XAM application can determine what controls are being enforced (i.e., the permitted
vs. denied methods) without attempting to call the affected methods. XAM also specifies some inputs to
authorization and access control decisions (e.g., SASL authorization identity or XSet access control policy
name), but does not specify how these inputs are used, whether other inputs are used, or how the
decisions are made. XAM specifies a standard set of roles for authorization identities, but does not require
that this set be used. The operation and configuration of XSystem authorization and XSet access control
policies are outside the scope of this specification. These policies may consider inputs other than what is
specified by the XAM standard in making decisions.

XAM does not specify cryptographic integrity or confidentiality for either communications or stored data.
Cryptographic integrity detects unauthorized changes to communication and/or stored data via means
outside the XAM API. Confidentiality protects communications and/or stored data from unauthorized
disclosure via means outside the XAM API. A VIM or XAM Storage System may implement cryptographic
integrity and confidentiality for communications or stored data (e.g., by using a security protocol such as
Transport Layer Security (TLS) or by encrypting the data before storing it in the XAM Storage System).
The means of applying such services to XSets are vendor specific (e.g., a storage policy in
.xset.storage.policy may be used, or this may be specified as part of the connect string). A VIM or XAM
Storage System may participate in the SASL authentication, so that it can link these security measures to
the authenticated identity of the XAM application.

XSet visibility is a security-related concept. As discussed in Section 7.2, “XSystem”, an XSystem is a
logical container of XSets, an XSystem may contain more than one XSet, and an XSet may be contained
by more than one XSystem. An XSet is only visible through the XAM API via the XSystem or XSystems
that contain the XSet; the XSet shall not be visible through any XSystem that does not contain the XSet. A
XAM session is created by connecting to an XSystem (the term XAM session is synonymous with
XSystem instance). A XAM session shall only access XSets contained in the XSystem to which the
session is connected. An important consequence of this principle is that the XAM session used to launch a
query job scopes the query job to the XSystem to which the XAM session is connected. The query is
directed to that XSystem and shall not return results for XSets that are not contained by that queried
XSystem. Similarly, if an attempt is made to open an XSet that is not part of the XSystem to which the XAM
153 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Security
session (on which the XSet open attempt occurs) is connected, that open attempt shall return a non-fatal
error and shall not open the XSet.

11.2 XAM Application Authentication and SASL
XAM uses the SASL framework to provide connection-oriented authentication of applications, including
replaceable SASL authentication mechanisms. A XAM application may authenticate on its own behalf or
may pass authentication through from the actual user of the XAM application. This distinction is not visible
at the XAM API, as the authentication identity is considered to represent the XAM application at the XAM
API in both cases. A SASL authentication dialogue shall be conducted by passing text-based SASL tokens
back and forth across the XAM API in an iterated challenge/response sequence until the authentication
succeeds or fails. Authentication failure is a non-fatal error that does not create a XAM session. The SASL
framework also supports data security services, but that support shall not be used with XAM. SASL's
mechanism replacement support enables authentication mechanisms to be added without change to the
XAM API, but a XAM application is responsible for generation and interpretation of SASL tokens for any
SASL mechanism that the application uses.

The SASL framework contains two identities, an authentication identity and an authorization identity.

• The authentication identity represents the XAM application or the user of the XAM application.

• The authorization identity determines what that XAM application or user is permitted to do.

Authorization identity support is not present in every SASL authentication mechanism. Authorization
identity presentation and usage shall be optional for every SASL authentication in XAM.

After SASL authentication is complete, the two SASL identities shall be made accessible via the following
XSystem fields for the duration of the XAM session:

• .xsystem.auth.identity.authentication - SASL authentication identity

• .xsystem.auth.identity.authorization - SASL authorization identity. This field shall contain the null
string, if no SASL authorization identity is used.

These two XSystem identity fields shall be of type xam_string, shall be readonly, and shall be nonbinding.

Auditing (including auditing use of privileged authentication and authorization identities) should be
performed, but the means for doing so are outside the scope of the XAM API standard.

A SASL authorization identity may be used to assert a role in support of Role Based Access Control
(RBAC), but a full RBAC implementation involves significant authorization management functionality and
process restrictions that are outside the scope of the XAM API (see [RBAC]).

11.2.1 XAM Application Authentication Approaches

XAM application authentication (and optional establishment of the authorization identity) consists of
proving the identity of the XAM application to the XAM Storage System. The XAM Storage System may
check that authentication directly or may delegate this responsibility to a third-party authentication server.
Any delegation of this authentication check responsibility shall provide security measures sufficient to
assure the correctness and integrity of the check. Using TLS [TLS] to communicate with an LDAP [LDAP]
server that has a PKI certificate is one example of how this requirement can be met. In all cases, the XAM
application authentication shall be checked as part of XAMLibrary.connect, and this check shall be
performed in a fashion that prevents tampering by the application or other entities not trusted by the XAM
Storage System. For example, if the VIM is in the same address space as the application and there is no
protection boundary that prevents application modifications to VIM code or state, then this authentication
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 154

Security © SNIA
check shall not be performed in the VIM. The XAM Library is not involved in authentication; the XAM
Library passes the SASL tokens between the XAM application and the VIM without change.

In the reverse direction, authentication of the XAM Storage System to the XAM application is not
supported, due to an asymmetry in the XAM implementation architecture. In contrast to XAM application
authentication, where the application using the API authenticates to the VIM or something beyond it, the
VIM does not need to be authenticated to the XAM application. The VIM is code running in the XAM
Library framework, possibly in the same address space as the XAM application, and hence has to be
implicitly trusted by the XAM application. Configuration controls on what VIM code can be loaded (e.g.,
dynamically) and called through the XAM API are platform specific and outside the scope of the XAM API.
If authentication of the XAM Storage System is necessary, that authentication may need to be checked by
the VIM on behalf of the XAM application (e.g., if TLS is used between the VIM and the XAM Storage
System, only the VIM can reliably check the certificate presented by the XAM Storage System, as the
binding of the certificate to the TLS connection is not visible through the XAM API).

The flexibility of the SASL framework enables use of a number of authentication implementation
approaches, because the text-based SASL tokens are independent of both interfaces and protocols. Three
possible authentication implementation approaches are:

• Simple pass-through - The XAM application authenticates to the XAM Storage System; SASL
tokens flow through the VIM without change.

• VIM mediation - The SASL dialogue is between the XAM application and the VIM. The VIM uses
the SASL dialogue to call another mechanism (that need not employ SASL) to complete the
authentication. For example, a password-based SASL mechanism may be used to establish
access to a certificate and its private key (or other credentials) that the VIM uses to authenticate to
the XAM Storage System on behalf of the XAM application.

• VIM responsibility - The SASL dialogue does not perform any authentication. Instead, the VIM
handles authentication on behalf of all applications that use the VIM. The SASL EXTERNAL
mechanism is among the ways to realize this approach.

In addition, a third-party authentication server may be used with XAM authentication in multiple ways, for
example:

• The XAM application may contact a third-party authentication server to obtain security credentials
for use with SASL.

• The VIM may contact a third-party authentication server to obtain credentials, either for itself or for
the XAM application.

• The XAM Storage System may contact a third-party authentication server (e.g., via RADIUS) to
validate the authentication.

The above approaches may be used individually or in combination. For example, a VIM may obtain
authentication credentials on behalf of the application, and the XAM Storage System may use a third-party
authentication server to validate authentications based on those credentials.

11.2.2 SASL Profile and Requirements for XAM

The details of how XAM employs SASL are specified in Section 7.3, “XAM Session”. This section covers
the SASL profile that specifies how SASL is applied to XAM. Section 4 of [RFC 4422] specifies the (profile)
155 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Security
elements that are required in a standard that employs the SASL framework. The XAM specification of
these required elements is shown in Table 74.

As specified in Section 7.3, “XAM Session”, all XAM implementations shall support the SASL
ANONYMOUS and PLAIN mechanisms and are encouraged to support at least one stronger
authentication mechanism. Use of the ANONYMOUS and PLAIN methods shall not be required, and a
XAM Storage System may disable them by default. The SASL ANONYMOUS mechanism provides no
authentication, so the resulting level of security is roughly equivalent to anonymous FTP.

The SASL PLAIN mechanism passes a password in the clear, and hence, should not be used over a
network, unless the password is protected by a secure protocol providing confidentiality (e.g., TLS) or
some other means of preventing unauthorized use (e.g., the password is a one-time password that cannot

Table 74 – XAM Requirements for SASL

Element XAM Specification

Service name The service name shall be "snia-xam", and a request will be made to register it in the
IANA GSSAPI registry of service names, when a stable public version of the XAM API is
available. The use of a hyphen ('-') in the service name should avoid conflict with other
service names.

SASL mechanism
negotiation

The XAM application retrieves a list of supported SASL mechanisms via the API, selects
one, and uses it. The list of mechanisms shall be in the
.xsystem.auth.SASLmechanism.list.<mechanism> XSystem fields, and the default SASL
mechanism that should be used in the absence of a specific reason to use a different
mechanism shall be in the .xsystem.auth.SASLmechanism.default field (see Section 7.2.3,
“XSystem Fields”. The list of supported SASL mechanisms should be retrieved prior to
each SASL authentication exchange, as the list may change during the lifetime of a XAM
session.

Authentication
exchange messages

The API methods for initiating authentication (including providing the name of the selected
SASL mechanism), transferring challenges and responses, and indicating the outcome of
the negotiation are specified in Section 7.3.1, “Authentication State Machine”,
[XAM-C-API], and [XAM-JAVA-API].

Authorization identity
syntax and semantics

An authorization identity shall be a displayable Unicode string that satisfies the SASLprep
[RFC 4013] requirements for user names. Authorization identities shall be case-
insensitive. The UTF-8 character-encoding format [RFC 3629] should be used unless the
SASL mechanism specifies a different format. The authorization identity prefix "xam-"
shall be reserved for authorization identities defined by this standard. The semantics of
authorization identities are defined in Section 11.3, “XSystem Authorization and XSet
Access Control”.

Support for aborting
an authentication
exchange

This support is provided by the XSystem.abandon method (see Section 7.3.3.3, “Closing/
Abandoning XAM sessions”). Note that while XSystem.abandon is generally safe to use
during an initial authentication, the warning in Section 7.3.3 about possible data loss
applies to use of XSet.abandon during reauthentication of a XAM session that has dirty
uncommitted data.

When security layers
take effect

Not applicable. SASL security layers shall not be negotiated for or used with XAM.

Ordering of security
layers with respect to
other security
services

Not applicable, as XAM forbids SASL from negotiating security layers (see previous
element).

Effect of multiple
authentications

Multiple authentications shall be supported for the purpose of re-authenticating an existing
session. The effect of multiple authentications is specified in Section 7.3.3.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 156

Security © SNIA
be reused). Use of the SASL PLAIN mechanism, without additional protection of the password, may be a
serious security flaw; therefore, in accordance with [RFC 4616], by default, implementations are strongly
discouraged from advertising and strongly discouraged from using the PLAIN mechanism across a
network, unless adequate data security services are in place. The SASL PLAIN mechanism may be used
to provide authentication credentials that VIM uses to obtain access to more powerful credentials (e.g., PKI
certificate and associated private key) on behalf of the application, but the password should not be
transmitted across a network, unless the password is encrypted or otherwise protected.

SASL authorization identities shall be supported but shall be optional to use in the XAM API. SASL
mechanism support for authorization identities varies (e.g., the ANONYMOUS mechanism does not
support authorization identities, but the PLAIN mechanism does), and use of authorization identities is
generally optional when supported by a SASL mechanism. XAM implementations shall support
authorization identities, and in particular, shall not reject a SASL authentication with an error solely
because the authentication contains a SASL authorization identity. Determining whether authorization
identities are required is a vendor- and site-specific security policy decision; authentications that do not
present authorization identities may be rejected with a non-fatal error.

11.3 XSystem Authorization and XSet Access Control
XAM distinguishes XSystem authorization from XSet access control by the objects to which their
restrictions apply:

• XSystem authorization shall be instantiated when a XAM session is established by connecting to
an XSystem. XSystem authorization controls what methods are permitted vs. prohibited on that
XAM session, independent of the XSet that is the target of the methods (e.g., whether creation of
new XSets or modification of application fields is permitted).

• XSet access control is associated with an individual XSet. XSet access control determines
whether an individual XSet can be accessed in a specific fashion (e.g., read vs. write). This
determination may be independent of the XAM session (e.g., modifications to an XSet may be
forbidden for all sessions).

XSystem authorization and XSet access control enforcement are based on grouping API methods into
granules; each authorization or access control decision either permits or denies all the methods in the
granule. Some methods are subject to both XSystem authorization and XSet access control. Any such
method shall be permitted or denied as follows:

• A method shall be permitted only if it is permitted by both XSystem authorization and XSet access
control.

• A method shall be denied if it is denied by either XSystem authorization or XSet access control.

For example, if XSystem authorization causes a XAM session to forbid modifications, any attempt to
modify any XSet field does not perform the modification and returns a non-fatal error, even if XSet access
control permits modifications. A second example is that if an XSet is set to forbid modifications by XSet
access control, any attempt to modify any XSet field does not perform the modification and returns a non-
fatal error, even if modifications are authorized for the XAM session by XSystem authorization.

The interfaces for XSystem authorization and XSet access control granule permissions and prohibitions
and the means by which they are associated with a XAM session are outside the scope of the XAM
standard. XSystem authorization permissions shall be associated with a XAM session as a consequence
of successful authentication. XAM provides XSystem fields that enable a XAM application to determine
what granules (and hence methods) its XSystem authorization permissions permit vs. deny on a XAM
session. XAM provides an XSet policy name field that enables an XSet access control policy to be applied
to an XSet and provides the XSystem.accessXSet method to report which accesses are permitted vs.
denied on an XSet.
157 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Security
XAM employs SASL, so any XAM session with an XSystem has a SASL authentication identity and may
have a SASL authorization identity. Both identities may be used to make XSystem authorization and XSet
access control decisions (i.e., they are acceptable inputs to XSystem authorization and XSet access
control decisions).

11.3.1 XSystem Authorization

XSystem authorization determines what methods may be performed on a XAM session with an XSystem.
Actual XSystem authorization policy is opaque; the XAM API provides means of determining what
XSystem authorization restrictions are in place, but not why. The specification, management, and
application of XSystem authorization policies are outside the scope of the XAM API.

11.3.1.1 XSystem Authorization Elements
XSystem authorization controls the methods that are authorized as a set of groups. This section specifies
these groups, which are called authorization granules. XSystem authorization implementations shall not
make finer grain distinctions within a granule.

XAM authorization is based on control of effects that are independent of how they are performed, but the
authorization granules are specified in terms of API methods that are permitted vs. denied for
concreteness. The XAM API provides multiple means of achieving some effects (e.g., creation of a new
XSet), each of which is listed with the granule that controls that effect; hence, these method lists contain a
number of entries. Each granule specification begins with a short description of the effects that it is
intended to control.

Creation and modification of XSets each involve two API operations; the first operation creates or modifies
the XSet instance, and the second operation commits the XSet instance (XSet.commit), to make the
results persistent. Authorization control requirements for these steps are slightly different. An operation is
controlled by authorization, when attempting an unauthorized creation or modification results in a non-fatal
authorization error. Operations that modify XSets and their contents should be controlled by authorization,
and any operation whose effects are visible outside the XSet instance or after the XSet instance is closed
shall be controlled by authorization. To make this concrete, any operation that creates or opens an XSet
shall be controlled by authorization, and XSet.commit shall be controlled by authorization. Operations on
XSet instances, where the modifications will be discarded if the XSet instance is not committed, should be
controlled by authorization. If XSet.commit is not called, the modifications are discarded; otherwise,
authorization is enforced on XSet.commit if it has not been previously enforced. Authorization shall control
any operation on an XSet instance that immediately affects the actual XSet, independent of whether
XSet.commit is subsequently called (e.g., XSystem.holdXSet).

11.3.1.1.1 XSystem Authorization Granule (Component) Specification

The granules are: read, write-application, write-system, create, delete, job, job-commit, hold, and
retention-event. The methods each granule permits shall be as follows, and for any method that has an
asynchronous version (e.g., XSystem.asyncOpenXSet is the asynchronous version of
XSystem.openXSet), the asynchronous version shall be permitted whenever the original method is
permitted:

• Read: Read XSet contents. The read granule shall always be permitted on any XSet that is visible
in a XAM session. In the XSet state diagrams in Chapter 8, the read granule shall permit all states
and methods in the master finite state machine (FSM), except import. The read granule shall also
permit the readonly mode FSM (i.e., only the clean XUID state) in Section 8.5.3. The read granule
shall permit the following methods:

— XSystem.openXSet in readonly mode

— XSet.close, XSet.abandon, and XSet.containsField on any open XSet.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 158

Security © SNIA
— Any method that reads XSet contents (any XSet fields) and any XAM fields, as long as no
modification is made. For XStreams, this granule permits opening the XStream in readonly
mode, plus the read, seek, tell, abandon, and close methods. For management properties, the
permitted methods include the getActual methods (see Chapter 9, “XSet Management”).

— Creation of an XIterator (<XAMHandle>.openFieldIterator) and all XIterator methods.

— XSystem.accessXSet and XSystem.getXSetAccessTime

— Exporting XSets via XSystem.openExportXStream, plus XStream.read, XStream.tell, and
XStream.close on the resulting XStream. XStream.seek is prohibited on an export XStream.

— An XSet.commit that makes no modifications to the XSet and that does not create a new XSet

• Write-application: Write XSet application contents. The write-application granule shall permit
opening an XSet in restricted mode and the applicable states and methods of the restricted mode
FSM, i.e., the clean XUID and dirty XUID states as shown in Figure 13, “Restricted Open XSet
FSM”. Nonbinding modifications to the application portion of XSets shall be permitted, but binding
modifications to XSets shall require the create granule. The write-application granule shall consist
of the following methods for application fields, in addition to the methods in the read granule:

— XSystem.openXSet in restricted mode.

— Any method that makes a nonbinding modification to XSet application fields, including
creating, setting, and deleting nonbinding application XSet fields. These methods include
XSet.setFieldasBinding and XSet.setFieldasNonBinding, when no change to the binding
attribute occurs.

— All XStream operations on XStreams that are nonbinding application fields. In addition to the
methods permitted by the read granule, this adds XSet.createXStream, opening an XStream
in writeonly or appendonly mode, and XStream.write.

— XSet.commit, when no binding modification has been made to the XSet, so that XSet.commit
does not create a new XSet.

• Write-system: Write XSet system contents. This granule shall permit XSystem.openXSet in
restricted mode and operations that make nonbinding modifications to system fields, except for
retention and hold functionality. The general field operations specified in Section 6.4, “Methods
that Operate on Fields” cannot be used to set or delete system fields. Any system field that can be
set or deleted has a specific method for that purpose, and with the exception of retention
functionality, all such methods shall be part of this granule when they make nonbinding
modifications. Binding modifications shall require the create granule.

• Create: Create new XSets. This granule shall permit opening an XSet in unrestricted mode,
copying an XSet, and importing an XSet. It shall include the states and methods of the unrestricted
mode FSM in Section 8.5.3.2.3. The create granule also permits the import state in the master
XSet FSM in Section 8.5.2. The create granule requires both write-application and write-system
functionality. Therefore, if the create granule is permitted, both write-application and write-system
granules shall be permitted. The create granule does not control whether XSet.commit can be
called on an XSet that represents a job (e.g., a query job); that method call shall be controlled by
the job-commit granule. The create granule shall permit the following methods, in addition to those
permitted by the read, write-application, and write-system granules:

— XSystem.createXSet, XSystem.openXSet, and XSystem.copyXSet in any mode

— Any method that makes a binding modification to the XSet, including creating, setting, and
deleting binding XSet fields. These methods include XSet.setFieldasBinding and
159 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Security
XSet.setFieldasNonBinding, when a change to the binding attribute occurs, and any API that
changes the binding attribute of a system field or deletes a system field.

— All XStream operations on XStreams that are binding fields. In addition to the methods
permitted by the read granule, this adds XSet.createXStream, opening an XStream in
writeonly or appendonly mode, and XStream.write.

— Importing XSets via XSet.openImportXStream, plus XStream.write, XStream.tell, and
XStream.close on the resulting XStream. (Note that XStream.seek is prohibited on writeonly
XStreams, including import XStreams).

— XSet.commit, when a binding modification has been made to the XSet, so that XSet.commit
creates a new XSet.

• Delete: Delete XSets. This granule shall permit XSystem.deleteXSet.

• Job: Run jobs, including the query job (see Section 8.9, “XAM Jobs and XAM Job Control”). This
granule does not cover committing jobs or their results. This granule shall include:

— XSystem.createXSet to create an XSet to run a job (see Section 11.3.1.1.3, “The Job Granule
and XSet Creation” for a special case when the create and job-commit granules are not
permitted).

— Creation and modification of job input fields, including org.snia.xam.job.command and
xam.job.query.command. See Section 10.7.1, “Query Job Specific XSet Fields” and input
fields for any additional vendor-specific jobs controlled by this granule. This permission is in
addition to the applicable permissions from the write-application and create granules, so that
the job granule provides sufficient permission to run jobs in the absence of the write-
application and create granules.

— XSet.submitJob and XSet.haltJob on an uncommitted XSet that represents a query job

• Job-commit: The ability to commit jobs and their results, including query jobs. This granule shall
permit:

— XSet.submitJob and XSet.haltJob on a committed XSet that represents a job

— XSet.commit on an XSet that represents a running job

The job-commit granule requires job, create, write-user, and write-system functionality, so these
four granules shall be permitted whenever the job-commit granule is permitted.

• Hold: Add and release XSet holds. This granule shall permit XSystem.holdXSet and
XSystem.releaseXSet.

• Retention-event: The ability to set retention start times and create new retention identifiers. This
granule is independent of the write-system and create granules that are required to modify XSet
system fields; one of these two granules must be permitted, in addition to retention-event, so that
the permissions granted by retention-event can be effective. This results in three cases:

a If neither the write-system nor the create granule is permitted, the retention-event granule shall
have no effect.

b If the write-system granule is permitted, the retention-event granule shall permit
XSet.createRetention and XSet.setRetentionStarttime, when they make nonbinding
modifications.

c If the create granule is permitted, the retention-event granule shall permit XSet.createRetention
and XSet.setRetentionStarttime in all cases.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 160

Security © SNIA
11.3.1.1.2 Authorization Requirements for Common XSet Operations

Based on the granules specified above, permission to perform XSystem.openXSet shall require:

• The read granule to open the XSet in readonly mode. The read granule is always permitted, so
open in readonly mode shall always be permitted.

• The write-application or write-system granule to open the XSet in restricted mode.

• The create granule to open the XSet in unrestricted mode. The create granule implies the write-
application and write-user granules, and hence, shall permit opening an XSet in any mode.

XSystem.createXSet and XSystem.copyXSet both create a new XSet; hence, permission to perform each
of these methods shall require the create granule.

Based on the granules specified above, permission to access the contents of an XSet involves:

• The read granule for read access. This access is always permitted.

• The write-application or write-system granule for nonbinding modifications to application and user
fields, respectively.

• The create granule for binding modifications of any form. The reason for requiring the create
granule is that a new XSet is created by XSet.commit of an XSet instance on which a binding
modification has been performed. The create granule implies the write-application and write-
system granules, and hence, permits nonbinding modifications.

XSet.commit authorization is subtle. The granule that shall be required to perform XSet.commit depends
on the effects of XSet.commit:

1 If the XSet represents a running job that becomes disconnected from the XAM session because of
XSet.commit, the job-commit granule shall be required.

2 If the XSet.commit creates a new XSet (i.e., the XSet instance is the result of XSystem.createXSet,
XSystem.copyXSet, or a binding modification to an open XSet), the create granule shall be
required.

3 If only nonbinding modifications have been made to the open XSet, the write-application and/or
write-system granules shall be required, according to whether modifications have been made to
application and/or system fields.

4 If XSet.commit does not create a new XSet or modify the existing XSet, then the read granule shall
be required; this granule is always permitted, and hence, this operation is always permitted.

Some errors caused by lack of sufficient authorization for XSet.commit can be detected at an earlier stage.
The XSet.commit authorization checks specified above shall always be performed. In addition,
authorization checks should be made on all operations that modify an XSet instance, so that an operation
that creates an uncommitable XSet instance (e.g., a new binding field created in an existing XSet without
holding the create granule) returns a non-fatal error at the point where the XSet instance would become
uncommitable (vs. waiting for XSet.commit to discover that the open XSet instance cannot be committed).
For example, in item 3 above, if the appropriate write granule is not held, any earlier field modification
operation should have returned a non-fatal error indicating that modifications are not authorized.

11.3.1.1.3 The Job Granule and XSet Creation

The job granule permits XSystem.createXSet for the purpose of creating an XSet to run a job. If the job
granule is permitted, but the job-commit and create granules are not permitted, that XSet can never be
committed (see items 1 and 2 above). In this situation, a special job-only XSet results when
XSystem.createXSet is called in restricted mode. This XSet behaves as follows:
161 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Security
• Creation and modification of job input fields shall be permitted for all jobs, both standard XAM jobs
(i.e., the query job) and jobs (if any) defined by the XAM Storage System vendor. Any method that
creates or modifies a field, other than a job input field, should return a non-fatal error.

• XSet.commit shall return a non-fatal error indicating that the XSet can only be used to run jobs.

• The XSet shall occupy only the clean no XUID and dirty no XUID states of the restricted mode
XSet FSM as defined in Section 8.5.3.2.2, “Restricted Open XSet FSM”.

11.3.1.1.4 XSystem Authorization Properties

For a XAM session, the permissions and restrictions imposed by XSystem authorization can be
determined by examining the values of Boolean XSystem properties whose names have the form
.xsystem.auth.granule.list.<granule>, e.g.,:

• .xsystem.auth.granule.list.read

• .xsystem.auth.granule.list.write-application

• .xsystem.auth.granule.list.write-system

• .xsystem.auth.granule.list.create

Attempting to call a function that is not permitted on a XAM session shall return a non-fatal error.

XSystem authorization may be extended to vendor-specific functional additions by defining vendor-specific
authorization granules. The vendor-specific Boolean XSystem properties that indicate whether a vendor-
specific authorization granule is permitted vs. denied shall have names of the form
<reversed-dns>.authz.<granule>, e.g., .com.example.xamsys.authz.funky where com.example.xamsys is
the vendor-specific reversed DNS prefix and funky is the name of the authorization granule (see
Section 6.3.1, “Field Namespace”). Vendor-specific authorization granules shall not affect the behavior of
authorization granules defined in this standard, and in particular, shall not provide additional control over
methods that are covered by a granule defined in this standard.

11.3.1.2 XSystem Authorization Roles
A XAM role shall be a named collection of authorization granules. XSystem authentication causes a role to
be applied to the created XAM session, determining what actions are authorized on that session. Roles are
passed across the XAM API as SASL authorization identities. The prefix "xam-" indicates a standard XAM
role and shall only be used for roles defined in this document. Other roles may be defined and used. The
standard XAM roles and their component granules shall be:

• xam-read-only: read. This role provides read access without permission to perform modifications
for situations in which it is possible to determine the information to be accessed (i.e., the XUIDs of
the XSets) via means outside the XAM API. This role is appropriate for read access via a XAM
application that maintains its own index to information that the application has stored.

• xam-read-job: read, job. This role provides read access plus the ability to run XAM jobs (e.g.,
queries). For more information, see Section 8.9, “XAM Jobs and XAM Job Control”. This role is
appropriate for a XAM application that browses stored information by using queries to determine
what has been stored.

• xam-restricted: read, job, write-application, write-system. In addition to read access, this role
provides the ability to modify nonbinding fields of stored XSets. It is appropriate for a XAM
application that annotates stored information without modifying it, when the stored information that
is not to be modified has been stored in binding fields of XSets.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 162

Security © SNIA
• xam-create: read, write-application, write-system, create, job. This role provides general access to
an XSystem to read, write, and create, but not delete XSets.

• xam-job-commit: read, write-application, write-system, create, job, job-commit. This role adds the
ability to run a background (detached) job (e.g., a query job) to the xam-create role. It is a separate
role, so that limits can be imposed on consumption of XAM Storage System resources by
background (detached) jobs.

• xam-create-delete: read, write-application, write-system, create, delete, job. This role adds the
ability to delete XSets to the xam-create role.

• xam-hold: read, job, hold. This role is intended for a XAM application that manages holds on
XSets, e.g., for litigation support purposes.

• xam-event: read, job, RetentionEvent. This role is intended for a XAM application that manages
retention events on XSets; see Section 9.2.1, “XSet Retention”.

• xam-super: All granules shall be included. Support for this role shall not be required, but if any role
providing permission to call all methods is supported, this role shall be supported. Some
environments require a super user role that can do anything.

Auditing (including auditing use of important or sensitive XSystem authorization roles) should be
performed, but the means for doing so are outside the scope of the XAM API standard.

11.3.2 XSet Access Control Policy

XSet access control policy is the rough analog of control over which users are permitted to read and write
files. XSet access control policy governs three method groups via the read, write-application, and write-
system granules:

• Read: Read and export XSet contents. Read shall always be permitted.

• Write-application: Write XSet application fields and create, modify, or remove application fields.

• Write-system: Write XSet system fields and create, modify, or remove system fields.

These granules include the same methods as the XSystem authorization granules with the same names
specified in Section 11.3.1.1 and shall be the granularity of XSet access control permissions. All methods
within each granule (read, write-application, or write-system) shall be permitted or forbidden as a unit; finer
grain distinctions shall not be made.

XSystem.accessXSet enables a XAM application to determine whether each of these method groups is
permitted; it indicates that a method group is permitted, if XSystem authorization and XSet access control
both permit it. If an XSet cannot be read via a XAM session, it shall not be visible through that XAM
session. XSystem.accessXSet for read access shall indicate whether the XSet is visible. If
XSystem.accessXSet successfully returns "FALSE", the XSet does not exist in the context of the XAM
session.

In contrast, XSystem.openXSet shall return a non-fatal error, when read access is not permitted, just as a
non-fatal error is returned, when XSystem.openXSet is called with a XUID for an XSet that does not exist
within the XAM Storage system. The same non-fatal error shall be used for both cases; this prevents a
XAM application that is unable to read an XSet from determining whether the XSet exists based on which
non-fatal error is returned.

XSet access control shall be an XSet policy (see Section 8.7, “XSet Policy”). Access control is
accomplished indirectly through named policies, the details of which are specific to the implementation.
Policy names shall be strings chosen by means outside the scope of the XAM standard. The
163 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA Security
.xset.access.policy field shall contain the name of the access control policy, if one has been applied; this
field shall be a xam_string. This policy name shall be an input to XSet access control policy decisions that
determine whether the methods included in each of the above granules are permitted or denied on the
XSet. Table 75 lists the XSet access control policy property and the policy property method, which are
described in the paragraphs following the table.

XSet.applyAccessPolicy (see Table 76) shall be used to apply a policy and specify whether the access
control policy field is binding. The access control policies that may be applied to an XSet shall be contained
in the .xsystem.access.policy.list.<name> fields of the XSystem; these fields shall be an XSystem policy list
(see Section 8.7, “XSet Policy”). If this list is empty, then any call of XSet.applyAccessPolicy in the
corresponding XAM session shall return a non-fatal error. The .xsystem.access field of the XSystem
indicates whether the XSystem supports XSet access control.

If .xset.access.policy does not exist for an XSet, then no additional access controls exist beyond those
imposed by XSystem authorization. An authorized application may remove access control using
XSet.resetAccessFields to remove .xset.access.policy. In contrast to the top-level
.xset.management.policy, which is required to exist in every committed XSet, .xset.access.policy shall not
be required to exist in any XSet.

The authorization granule (see Section 11.3.1.1) required to call these methods depends on whether the
access control policy value is binding. If the new or existing value, if any, of .xset.access.policy is binding,
the create granule shall be required. If the new or existing value, if any, of .xset.access.policy is
nonbinding, the write-system granule shall be required.

These methods shall have the following effects on the XSet finite state machines (FSMs) specified in
Section 8.5:

• If .xset.access.policy does not exist in the XSet, then XSet.applyAccessPolicy shall cause the
same FSM effects as XSet.create<stype>, and XSet.resetAccessFields has no FSM effects.

• If .xset.access.policy exists in the XSet, then XSet.applyAccessPolicy shall cause the FSM effects
of a binding modification or a nonbinding modification, whichever is performed by the method. If
the field is nonbinding, both before and after the modification, the modification is nonbinding;
otherwise, the modification is binding.

Table 75 – XSet Policy Management Properties

Policy Property Name
[Binding: Application-

Specified, Readonly: FALSE]
Policy Property Method

.xset.access.policy XSet.applyAccessPolicy

Table 76 – XSet Access Control Policy Methods

Method Input Output Comment

XSet.applyAccessPolicy policy name - Establishes the access control policy for the XSet by
creating or setting the .xset.access.policy field, including
whether the policy value is binding on the XSet.

XSet.resetAccessFields - - Resets the access control fields for the XSet by removing
the .xset.access.policy field if it exists.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 164

Security © SNIA
• If .xset.access.policy exists in the XSet, then XSet.resetAccessFields shall cause the FSM effects
of a binding modification or a nonbinding modification, whichever is performed by the method. If
the field is nonbinding before it is removed by this method, the modification is nonbinding;
otherwise, the modification is binding.

All access control is accomplished via indirection. For example, the XAM API cannot directly forbid
modifications to an XSet. Instead, an access control policy, e.g., "NoChanges", is defined that forbids
modifications (i.e., does not permit either of the write granules). The policy is made available by creating
the corresponding XSystem's .xsystem.access.policy.list.<name>, and the policy is applied to the XSet via
XSet.setAccessPolicy. This design decision insulates the XAM API from access control details.

XSet access control policies shall be optional to support. If an XSystem does not support XSet access
control policies, then there shall be no .xsystem.access.policy.list.<name>, and .xsystem.access shall have
the value FALSE. In this situation, all calls of XSet.applyAccessPolicy to any XSet in the XSystem shall
return a non-fatal error.

Auditing (including auditing use of important or sensitive XSet access control policies) should be
performed, but the means for doing so are outside the scope of the XAM API standard.
165 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA
Annex A
(normative)
XAM Toolkit

This annex describes a toolkit of normative (required) functionality to be provided, in addition to the
standard API methods.This toolkit shall be implemented using only the standard API methods and shall
not require additional methods to be specified for VIMs to correctly operate.

Most of the functionality in this toolkit is present as a recognition that common operations need to be easy
to perform.

A.1 Query
The XAM query facility is expected to be used frequently. The toolkit provides convenience functions to
make the functionality easier to use. These toolkit functions are built on the base XAM API and shall not
require new VIM interfaces.

A.1.1 XAMQuery

Invoking and checking on the progress of a query are operations which will take place often. Functions are
introduced here to make submission and query termination easier. Table A.1, “XAMQuery Methods”
details the method query toolbox calls.

A.1.2 XUIDIterator

The XAM query system produces a stream of XUID result values, which are attached to the query job
XSet. To process the XUID values, the application program needs to read through them. An application
may read the stream directly, but the XUIDIterator utility functions may be used for ease of programming.

An XUIDIterator is similar to a cursor in the stream. XUIDIterator code shall be re-entrant, and multiple
XUIDIterators shall be permitted on the same result XStream. The application programmer shall be
responsible for allocating and deallocating the XUIDIterators. Table A.2, “XUIDIterator Methods” details
the methods available to the XUIDIterator.

Table A.1 – XAMQuery Methods

Method Input Output Comment

query query_string XSet Creates an XSet, fills in the appropriate jobs fields, and calls
XSet.submitJob. The query_string argument shall be
compatible with the query job command.

queryCompleted XSet xam_boolean Tests the query XSet job to determine, if the job is still
running. This method shall return FALSE, if the job status
represents a terminal state, and TRUE in all other cases.

Table A.2 – XUIDIterator Methods

Method Input Output Comment

start XStream - Initializes the XUIDIterator. The application passes in the XStream of
the query results job.

hasNext - xam_boolean Returns FALSE if the associated query result stream is complete and all
XUIDs have been returned; otherwise, this method shall return TRUE.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 166

© SNIA
A.2 Base64 Translator
To store XUID values in printable formats, it is recommended that applications base64 encode it. This
encoding algorithm is detailed in Section 6.8 of [RFC 2045]. Table A.3, “Base64 Methods” details the
Base64 encoding and decoding methods.

A.3 XUID Padding
XUID values may be encountered that have been padded with extra zero value bytes. For ease of reading,
the query job result stream (see Chapter 10, “Query”) pads XUID values to present fixed-length records in
the result XStream. To preserve the significant bytes of the XUID, padding bytes should be removed.
Table A.4, “XUID Padding Methods” details this tool.

nextXUID - xam_xuid Returns the next XUID from the result stream. If the job has not yet
completed, this method shall block. An unblock shall occur when new
XUID values are placed into the stream. This method shall return non-
padded XUID values.

close Closes the XUIDIterator, allowing the VIM to release any resources
associated with the XIterator.

Table A.3 – Base64 Methods

Method Input Output Comment

XUIDToString XUID xam_string Base64 encodes the bytes of the XUID. This method shall ignore
padding bytes presented in the XUID.

stringToXUID xam_string XUID Decodes the Base64-encoded XUID. This method shall produce an
unpadded XUID.

Table A.4 – XUID Padding Methods

Method Input Output Comment

stripPadding byte_array XUID Removes padding bytes from a byte
array that contains a padded XUID.

addPadding XUID byte_array Adds padding bytes to a XUID to
produce a fixed-length record of 80
bytes.

Table A.2 – XUIDIterator Methods

Method Input Output Comment
167 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA
A.4 Property vs. XStream Field Determination
An application may wish to easily determine if a field is either a property or an XStream. While an
application may check by examining the MIME type of a field, these methods are more convenient for a
certain amount of ‘future proofing’.

Table A.5 – Field Determination Methods

Method Input Output Comment

fieldIsProperty xam_string xam_boolean Returns TRUE if the named field’s MIME
type is one of stypes.

fieldIsStream xam_string xam_ boolean Returns FALSE if the named field’s
MIME type is one of stypes.
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 168

© SNIA
Annex B
(normative)

Canonical XSet Interchange Format

B.1 Introduction
This annex describes the XSD (XML Schema Definition) for the XML manifest part of the XSet canonical
format. This XSD defines the XSet XML manifest that contains the complete definitions and content of
properties and definitions of XStreams for the XSets being imported or exported. The contents of the
XStreams are found in the MIME attachments that are contained in the same XOP package as the XML
manifest.

B.2 XSD
<?xml version=”1.0” encoding=”UTF-8”?>
<!--
 XAM Architecture Specification
 Canonical XSet Export/Import Format

 All contents copyright 2008 Storage Networking Industry Association
 Please see the SNIA XAM Architecture Specification for details on
 how this document may be used
-->
<xs:schema xmlns=”http://www.snia.org/2007/xam/export” xmlns:xs=”http://www.w3.org/2001/
XMLSchema” xmlns:xop=”http://www.w3.org/2004/08/xop/include” targetNamespace=”http://
www.snia.org/2007/xam/export” elementFormDefault=”qualified”
attributeFormDefault=”unqualified” version=”1.0.0”>

<xs:import namespace=”http://www.w3.org/2004/08/xop/include” schemaLocation=”http://
www.w3.org/2004/08/xop/include”/>

<xs:import namespace=”http://www.w3.org/2001/XMLSchema” schemaLocation=”http://
www.w3.org/2001/XMLSchema”/>

<!-- The canonical XSet Export/Import format is organized as follows
 <xsets>
 <version>
 <policies>
 <policy [attributes]><[value type]>[value]</[value type]>
 <property [attributes]><[value type]>[value]</[value type]></property>
 </policy>
 </policies>
 <xset>
 <properties>
 <property [attributes]><[value type]>[value]</[value type]></property>
 </properties>
 <xstreams>
 <xstream [attributes]>
 <xop:Include />
 </xstream>
 </xstreams>
 </xset>
 </xsets>

value type can be one of string, integer, boolean, date, float
-->

<!-- Define the field attributes for properties and streams-->
169 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

© SNIA
<xs:attributeGroup name=”FieldAttrs”>
<xs:attribute name=”name” type=”xs:string” use=”required”/>
<xs:attribute name=”type” type=”xs:anySimpleType” use=”required”/>
<xs:attribute name=”binding” type=”xs:boolean” use=”required”/>
<xs:attribute name=”readOnly” type=”xs:boolean” use=”required”/>
<xs:attribute name=”length” type=”xs:long” use=”required”/>
<xs:anyAttribute namespace=”##any” processContents=”lax”/>

</xs:attributeGroup>
<!--

 Define a property type
-->
<xs:complexType name=”PropertyType”>

<xs:sequence>
<xs:choice minOccurs=”1” maxOccurs=”1”>

<xs:element minOccurs=”1” maxOccurs=”1” name=”string” type=”xs:string”/>
<xs:element minOccurs=”1” maxOccurs=”1” name=”integer” type=”xs:int”/>
<xs:element minOccurs=”1” maxOccurs=”1” name=”boolean” type=”xs:boolean”/

>
<xs:element minOccurs=”1” maxOccurs=”1” name=”date” type=”xs:dateTime”/>
<xs:element minOccurs=”1” maxOccurs=”1” name=”double” type=”xs:double”/>
<xs:element minOccurs=”1” maxOccurs=”1” name=”xuid” type=”xs:string”/>

</xs:choice>
</xs:sequence>
<xs:attributeGroup ref=”FieldAttrs”/>

</xs:complexType>
<!--

 Define the format of each policy entry
 -->

<xs:complexType name=”policy_type”>
<xs:sequence>

<xs:element name=”policy” minOccurs=”0” maxOccurs=”unbounded”>
<xs:complexType>

<xs:sequence>
<xs:element minOccurs=”1” maxOccurs=”1” name=”string” type=”xs:string”/>
<xs:element name=”property” type=”PropertyType” minOccurs=”0”

maxOccurs=”unbounded”/>
</xs:sequence>
<xs:attributeGroup ref=”FieldAttrs”/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<!--

 Define the format of each xset entry
 -->

<xs:complexType name=”xset_type”>
<xs:sequence>

<xs:element name=”properties”>
<xs:complexType>

<xs:sequence>
<!-- XAM defines several required properties, so there will definitely be at

least one (minOccurs=1) -->
<xs:element name=”property” type=”PropertyType”

maxOccurs=”unbounded”/>
</xs:sequence>
XAM Arch 1.01 (June 19, 2009) TECHNICAL POSITION 170

© SNIA
</xs:complexType>
</xs:element>
<xs:element name=”xstreams”>

<xs:complexType>
<xs:sequence>
<!-- An XSet may have 0 XStreams -->
<xs:element name=”xstream” minOccurs=”0” maxOccurs=”unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element ref=”xop:Include”/>
<xs:any namespace=”##any” processContents=”lax” minOccurs=”0”/>
</xs:sequence>
<xs:attributeGroup ref=”FieldAttrs”/>
</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<!--

 Define the xsets entry
 -->

<xs:element name=”xsets”>
<xs:annotation>

<xs:documentation>XAM Canonical XSet Export/Import Format
 </xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<!-- There is exactly one version element -->
<xs:element name=”version” type=”xs:string”/>
<!-- There is exactly one policies element -->
<xs:element name=”policies” type=”policy_type”/>
<!-- There is at least one XSet in the document -->
<xs:element name=”xset” type=”xset_type” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>
171 TECHNICAL POSITION XAM Arch 1.01 (June 19, 2009)

	Information Management - Extensible Access Method (XAM) - Part 1: Architecture
	Contents
	Figures
	Tables

	Foreword
	Introduction
	1 Scope
	2 References
	2.1 Normative References
	2.2 Informative References

	3 Terms and Conventions
	3.1 Terms
	3.2 Conventions

	4 Business Overview
	4.1 Background of the SNIA XAM
	4.2 The XAM Approach
	4.3 Benefits of XAM
	4.4 Recommendations for Additional Standards

	5 Overview of the XAM Architecture
	5.1 XAM Software Modules
	5.2 XAM Object Model
	5.3 XAM Fields
	5.4 XAM Persistent Storage: the XSet
	5.5 XSet Management
	5.6 XAM Security
	5.7 XAM Query
	5.8 Extending XAM

	6 XAM Objects and Common Operations
	6.1 XAM Objects
	6.1.1 XAM Primary Object Hierarchy
	6.1.2 Primary Object Operations

	6.2 XAM Secondary Objects
	6.3 XAM Fields
	6.3.1 Field Namespace
	6.3.2 Field Attributes
	6.3.3 Properties
	6.3.4 XUID Format
	6.3.5 Field Consistency Checks Performed by the XSystem

	6.4 Methods that Operate on Fields
	6.4.1 Operating on Properties
	6.4.2 Determining Field Existence
	6.4.3 Deleting Fields
	6.4.4 Operating on Field Attributes

	6.5 Operating on Secondary Objects - XStreams and XIterators
	6.5.1 Operating on XStreams
	6.5.2 Operating on XIterators

	6.6 FSMs for Secondary Objects - XStreams and XIterators
	6.6.1 XStream FSM
	6.6.1.1 XStream Instance FSM - Reader
	6.6.1.2 XStream Instance FSM - Writer

	6.6.2 XIterator FSM

	7 XAM Library and XSystems
	7.1 XAM Library
	7.1.1 Vendor Interface Modules
	7.1.2 XAM Toolkits
	7.1.3 Methods on the XAM Library Object
	7.1.4 Fields of the XAM Library Object

	7.2 XSystem
	7.2.1 XSystem Resource Identifier
	7.2.2 XSystem Methods
	7.2.3 XSystem Fields

	7.3 XAM Session
	7.3.1 Authentication State Machine
	7.3.2 Initial Authentication
	7.3.3 Re-Authentication
	7.3.3.1 Reactive Re-Authentication
	7.3.3.2 Proactive Re-Authentication
	7.3.3.3 Closing/Abandoning XAM sessions

	8 XSet Operations
	8.1 XSet Behavior
	8.2 XSet Fields
	8.2.1 Number of Fields on an XSet
	8.2.2 Length of a Field on an XSet
	8.2.3 Normative XSet Fields
	8.2.4 Copying an XSet - Field Behavior

	8.3 The XUID - Naming an XSet
	8.4 XSet Methods
	8.4.1 XSystem Operations on XSets
	8.4.2 XSet Operations on XSets

	8.5 XSet Instance Finite State Machine (FSM)
	8.5.1 Defining the FSM Hierarchy
	8.5.2 Master XSet FSM
	8.5.2.1 Entering the State Machine
	8.5.2.2 Entering The Abandoned State
	8.5.2.3 Entering the Corrupt State
	8.5.2.4 Performing Generic Operations on an Open XSet
	8.5.2.5 Exporting an XSet
	8.5.2.6 Importing an XSet
	8.5.2.7 Exiting the Master XSet FSM

	8.5.3 Open XSet FSMs
	8.5.3.1 Common States
	8.5.3.2 The Individual Open XSet FSMs
	8.5.3.2.1 Readonly Open XSet FSM
	8.5.3.2.1.1 Entering the State Machine
	8.5.3.2.1.2 Operations on an Open XSet Instance in the Clean XUID State
	8.5.3.2.1.3 Returning to Readonly FSM after Exporting an XSet
	8.5.3.2.1.4 Returning to Readonly FSM after Importing an XSet

	8.5.3.2.2 Restricted Open XSet FSM
	8.5.3.2.2.1 Entering the State Machine
	8.5.3.2.2.2 Operations on an Open XSet Instance in the Clean XUID State
	8.5.3.2.2.3 Operations on an Open XSet Instance in the Dirty XUID state
	8.5.3.2.2.4 Operations on an Open XSet Instance in the Clean No XUID State
	8.5.3.2.2.5 Operations on an Open XSet Instance in the Dirty No XUID State
	8.5.3.2.2.6 Returning to Restricted FSM after Exporting an XSet
	8.5.3.2.2.7 Returning to Restricted FSM after Importing an XSet

	8.5.3.2.3 Unrestricted Open XSet FSM
	8.5.3.2.3.1 Entering the State Machine
	8.5.3.2.3.2 Operations on an Open XSet Instance in the Clean XUID state
	8.5.3.2.3.3 Operations on an Open XSet Instance in the Dirty XUID State
	8.5.3.2.3.4 Operations on an Open XSet Instance in the Clean No XUID State
	8.5.3.2.3.5 Operations on an Open XSet Instance in the Dirty No XUID State
	8.5.3.2.3.6 Returning to Unrestricted FSM after Exporting an XSet
	8.5.3.2.3.7 Returning to Unrestricted FSM after Importing an XSet

	8.5.4 Summary of XSet System Fields in each XSet Instance State

	8.6 Distributed Access to the Same XSet
	8.6.1 Design Goals and Derived Semantics
	8.6.2 Use Cases
	8.6.2.1 XSet Conflict Resolution, Example 1
	8.6.2.2 XSet Conflict Resolution, Example 2
	8.6.2.3 XSet Conflict Resolution, Example 3

	8.7 XSet Policy
	8.8 XSet Import and Export
	8.8.1 XSet Export Process
	8.8.2 XSet Import Process
	8.8.3 Import and Export XStream Instance FSMs
	8.8.4 XSet Canonical Format
	8.8.4.1 XSet Manifest XML Format
	8.8.4.2 The Canonical Representation Build
	8.8.4.3 XSet Export Example

	8.8.5 Annotating the Canonical Format

	8.9 XAM Jobs and XAM Job Control
	8.9.1 Standardized Job Input Fields
	8.9.2 Standardized Job Output Fields
	8.9.2.1 Job Status
	8.9.2.2 Job Error

	8.10 Asynchronous Operations
	8.10.1 The XAsync Object
	8.10.2 XAsync FSM
	8.10.2.1 Effects on other FSMs

	9 XSet Management
	9.1 XSet Management Overview
	9.1.1 XSet Management Disciplines
	9.1.2 XSet Management Properties

	9.2 XSet Retention and Deletion Value Management Properties
	9.2.1 XSet Retention
	9.2.1.1 XSet Retention Value Management Property Methods
	9.2.1.1.1 Retention Value Management Methods and the Open XSet FSMs

	9.2.1.2 XSet Retention Management FSM
	9.2.1.3 Examples of Multiple XSet Retention Identifiers

	9.2.2 XSet Deletion
	9.2.2.1 Deletion Value Management Methods and the Open XSet FSMs

	9.2.3 XSystem Clock/Time Management

	9.3 XSet Policy Management Properties
	9.3.1 Storage Management Policy
	9.3.2 Retention and Deletion Management Policy
	9.3.3 XSet Management Policy
	9.3.3.1 Policy Management Property Methods and the Open XSet FSMs

	9.3.4 XSet Policy Management Hierarchy
	9.3.5 XSet Management Policy Default
	9.3.6 getActual Methods for Retention and Deletion Value Management Properties

	9.4 XSet Hold Properties
	9.5 Reset Management Fields

	10 Query
	10.1 Overview of Query
	10.2 Query Goals
	10.3 Introduction to the Query Language Grammar
	10.4 Level 1 Query: Where Clause Operators
	10.4.1 String Operators
	10.4.2 Numeric Property Value Comparisons
	10.4.3 Numeric Comparisons with IEEE-754 Exception Values
	10.4.4 Field Attribute Accessor Functions
	10.4.5 Logical Operators
	10.4.6 Comparison to Non-Existent Fields
	10.4.7 Selector Functions for XUID and Date-Time Properties

	10.5 Level 2 Query: Where Clause Content Search Operators
	10.6 Complete Grammar
	10.6.1 Reserved Key Words and Operator Precedence
	10.6.2 Specifying String Literals and Field Names with Special Characters

	10.7 Job Control and API Methods
	10.7.1 Query Job Specific XSet Fields
	10.7.2 Runtime Behavior of the Query Job
	10.7.3 Query Job Error Codes
	10.7.4 Result Stream Format
	10.7.5 Scope of Query
	10.7.6 Runtime Caveats
	10.7.7 Result Stream State After a Job Halt
	10.7.8 Reading Results of In-Process Queries
	10.7.9 What Is / Is Not Included in a Query Result
	10.7.10 Query and Permissions

	10.8 XAM Query Examples
	10.8.1 All XSets
	10.8.2 A Subset of XSets
	10.8.3 Heterogeneous Properties
	10.8.4 The exists() Function
	10.8.5 The String like Operator
	10.8.6 Numeric Comparisons When Promoting a xam_literal
	10.8.7 Numeric Comparisons When Promoting a xam_int Property
	10.8.8 Numeric Comparisons When Restricting a Property Type
	10.8.9 Query with Mixed Types

	11 Security
	11.1 XAM Security Overview
	11.2 XAM Application Authentication and SASL
	11.2.1 XAM Application Authentication Approaches
	11.2.2 SASL Profile and Requirements for XAM

	11.3 XSystem Authorization and XSet Access Control
	11.3.1 XSystem Authorization
	11.3.1.1 XSystem Authorization Elements
	11.3.1.1.1 XSystem Authorization Granule (Component) Specification
	11.3.1.1.2 Authorization Requirements for Common XSet Operations
	11.3.1.1.3 The Job Granule and XSet Creation
	11.3.1.1.4 XSystem Authorization Properties

	11.3.1.2 XSystem Authorization Roles

	11.3.2 XSet Access Control Policy

	Annex A (normative) XAM Toolkit
	A.1 Query
	A.1.1 XAMQuery
	A.1.2 XUIDIterator

	A.2 Base64 Translator
	A.3 XUID Padding
	A.4 Property vs. XStream Field Determination

	Annex B (normative) Canonical XSet Interchange Format
	B.1 Introduction
	B.2 XSD

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

