
Information Management – Extensible
Access Method (XAM) – Part 2: C API

Version 1.01

“This document has been released and approved by the SNIA. The SNIA
believes that the ideas, methodologies, and technologies described in this
document accurately represent the SNIA goals and are appropriate for
widespread distribution. Suggestion for revision should be directed to the
SNIA Technical Council Managing Director at tcmd@snia.org.”

TECHNICAL POSITION

June 19, 2009

© SNIA

ii TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

Revision History

The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

• Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

• Any document, printed or electronic, in which material from this document (or any portion hereof)
is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for
granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any
excerpt or this entire document, or distribute this document to third parties. All rights not explicitly granted
are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by
e-mailing tcmd@snia.org please include the identity of the requesting individual and/or company and a
brief description of the purpose, nature, and scope of the requested use.

Copyright © 2009 Storage Networking Industry Association.

Version Date Originator Sections Comments

1.0 7/9/08 M. McMinn All Released and approved by SNIA membership on June 23;
changed to Technical Position document.

1.01 6/19/09 M. McMinn All Incorporated errata from SNIA XAM v1 CSpec v8.doc;
added Acknowledgements to Foreword.

© SNIA
Contents

Foreword ... ix
Introduction ...x

1 Scope ..1

2 Normative References ...2

3 Terms and Conventions ..3
3.1 Terms ..3
3.2 Conventions ..3

4 C API Overview ..4
4.1 Basic XAM concepts ...4
4.2 The XAM programming model ..5

4.2.1 The XAM Library object ..5
4.2.2 An XSystem ..5
4.2.3 An XSet ..6
4.2.4 Fields (properties and XStreams) ...6

4.2.4.1 Type and length attributes – properties vs. XStreams6
4.2.4.2 Binding attribute vs. readonly attribute ...7

4.2.5 The XIterator ..7
4.2.6 The XAsync ..8
4.2.7 XAM status ...8
4.2.8 The method hierarchy ..8
4.2.9 Using the XAM API – abstract samples ...9

4.2.9.1 Create an XSet ...9
4.2.9.2 Read an XSet ...9
4.2.9.3 Query an XSet ..9

5 Public C API Reference ...10
5.1 Design goals ..10
5.2 Supporting data types ...10

5.2.1 stypes ...10
5.2.2 XAM status type ...11
5.2.3 Error conditions ..11
5.2.4 XAM handles ..12

5.2.4.1 XSets, XSystems, and XAM – objects with fields ..12
5.2.4.2 XIterator ...12
5.2.4.3 XStream ...13
5.2.4.4 XAsync ...13

5.2.5 XOPID ..13
5.2.6 Callbacks ...13

5.3 Methods ...14
5.3.1 Error token generation ..14

5.3.1.1 XAM_GetErrorToken ..14
5.3.2 Field iteration ..15

5.3.2.1 XAM_OpenFieldIterator ...15
5.3.2.2 XIterator_Next ..16
5.3.2.3 XIterator_HasNext ..16
5.3.2.4 XIterator_Close ..17

5.3.3 Field manipulation ..18
5.3.3.1 Generic field methods ..18
5.3.3.2 Property field methods ...25
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION iii

© SNIA
5.3.3.3 XStream field methods ...44
5.3.4 Connection administration for a XAM Storage System ...52

5.3.4.1 XAMLibrary_Connect ...52
5.3.4.2 XSystem_Authenticate ...53
5.3.4.3 XSystem_Close ..54
5.3.4.4 XSystem_Abandon ..54

5.3.5 XSet instance creation ...55
5.3.5.1 XSystem_CreateXSet ..55
5.3.5.2 XSystem_OpenXSet ..56
5.3.5.3 XSystem_CopyXSet ...57

5.3.6 XSet administration ...58
5.3.6.1 XSystem_IsXSetRetained ..58
5.3.6.2 XSystem_DeleteXSet ...59
5.3.6.3 XSystem_HoldXSet ..60
5.3.6.4 XSystem_ReleaseXSet ...61
5.3.6.5 XSystem_AccessXSet ...62
5.3.6.6 XSystem_GetXSetAccessTime ..63

5.3.7 XSet instance administration ..64
5.3.7.1 XSet_Commit ...64
5.3.7.2 XSet_Close ...65
5.3.7.3 XSet_Abandon ...66

5.3.8 XSet management administration ..67
5.3.8.1 Access policy ...67
5.3.8.2 Base management policy ...69
5.3.8.3 Retention ..70
5.3.8.4 AutoDelete ...80
5.3.8.5 Shred ..82
5.3.8.6 Storage policy ..84
5.3.8.7 XSet management introspection ..85

5.3.9 XSet export and import ...88
5.3.9.1 XSet_OpenExportXStream ..88
5.3.9.2 XSet_OpenImportXStream ..89

5.3.10 Asynchronous operations ...91
5.3.10.1 Jobs ..91
5.3.10.2 XSet async I/O ...92
5.3.10.3 Asynchronous Operations Management ..101

5.4 Fields ...108
5.4.1 XAM Library fields ..108
5.4.2 XSystem fields ..109
5.4.3 XSet fields ..111
5.4.4 Job fields ..112
5.4.5 Query job fields ..112

5.5 Using the XAM API – concrete samples ...113
5.5.1 Create an XSet ...113
5.5.2 Create an XSet - alternate asynchronous method ...114
5.5.3 Read an XSet ...115
5.5.4 Query an XSet using job methods ..115

6 Private (VIM) C API Reference ..118
6.1 XAM Library interaction with the VIM ..118
6.2 Methods ...118

6.2.1 Error token generation ..118
6.2.1.1 VIM_XSystem_GetErrorToken ...118

6.2.2 Field iteration ..119
6.2.2.1 VIM_XSystem_OpenFieldIterator ..119
iv TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
6.2.2.2 VIM_XSet_OpenFieldIterator ...120
6.2.2.3 VIM_XIterator_Next ..121
6.2.2.4 VIM_XIterator_HasNext ...122
6.2.2.5 VIM_XIterator_Close ..123

6.2.3 Field manipulation ..123
6.2.3.1 XSystem generic field methods ..123
6.2.3.2 XSet generic field methods ..128
6.2.3.3 XSystem property field methods ..135
6.2.3.4 XSet property field methods ...151
6.2.3.5 XStream field methods ...169

6.2.4 Connection administration for a XAM Storage System ..178
6.2.4.1 VIM_CreateXSystem ..178
6.2.4.2 VIM_XSystem_Connect ...179
6.2.4.3 VIM_XSystem_Authenticate ..180
6.2.4.4 VIM_XSystem_Close ...181
6.2.4.5 VIM_XSystem_Abandon ..181

6.2.5 XSet instance creation ...182
6.2.5.1 VIM_XSystem_CreateXSet ..182
6.2.5.2 VIM_XSystem_OpenXSet ..183
6.2.5.3 VIM_XSystem_CopyXSet ..184

6.2.6 XSet administration ..185
6.2.6.1 VIM_XSystem_IsXSetRetained ...186
6.2.6.2 VIM_XSystem_DeleteXSet ..186
6.2.6.3 VIM_XSystem_HoldXSet ...187
6.2.6.4 VIM_XSystem_ReleaseXSet ..188
6.2.6.5 VIM_XSystem_AccessXSet ...189
6.2.6.6 VIM_XSystem_GetXSetAccessTime ...190

6.2.7 XSet management administration ..191
6.2.7.1 Access policy ...191
6.2.7.2 Base management policy ...193
6.2.7.3 Retention ..194
6.2.7.4 AutoDelete ...204
6.2.7.5 Shred ..206
6.2.7.6 Storage policy ..208
6.2.7.7 Policy evaluation ..209

6.2.8 XSet instance administration ..212
6.2.8.1 VIM_XSet_Commit ...212
6.2.8.2 VIM_XSet_Close ...214
6.2.8.3 VIM_XSet_Abandon ...214

6.2.9 XSet migration ..215
6.2.9.1 VIM_XSet_OpenExportXStream ..215
6.2.9.2 VIM_XSet_OpenImportXStream ..216

6.2.10 Asynchronous operations ...217
6.2.10.1 Jobs ..217
6.2.10.2 XSet async I/O ...219
6.2.10.3 Asynchronous Operations Management ..227

Annex A
(normative)
Public Header Files ... 235
A.1 xam_types.h ..235
A.2 xam_strings.h ..237
A.3 xam_errors.h ...243
A.4 xam.h ...244
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION v

© SNIA
Annex B
(normative)
Private (VIM) Header Files .. 296
B.1 vim.h ..296

Annex C
(normative)
C API Toolkit ... 360
C.1 Field methods ..360

C.1.1 XAMToolkit_IsPropertyField ..360
C.1.2 XAMToolkit_IsXStreamField ..361

C.2 Base64 conversion ..362
C.2.1 base64_encode ...362
C.2.2 base64_decode ...362

Annex D
(informative)
C API Method Mapping ... 363
vi TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA

XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION vii

Figures
Figure 1 – XAM architecture ..5
Figure 2 – XAM API method hierarchy ..8
Figure 3 – XAM API field methods (includes properties and XStreams) ...9
Figure 4 – XAM status type diagram ...11

© SNIA

viii TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

Tables
Table 1 – Field stypes (a.k.a. simple types) ..7
Table 2 – XAM Library fields ...108
Table 3 – XSystem fields ...109
Table 4 – XSet fields ...111
Table 5 – Job fields ...112
Table 6 – Query job fields ..112
Table D.1 – C Method Name Mapping to XAM Architecture Specification ..363

© SNIA

XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION ix

Foreword

Parts of this Standard

This standard is subdivided in the following parts:

• Information Management – Extensible Access Method (XAM) – Part 1: Architecture

• Information Management – Extensible Access Method (XAM) – Part 2: C API

• Information Management – Extensible Access Method (XAM) – Part 3: Java API

SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome.
They should be sent to the Storage Networking Industry Association, 500 Sansome Street, Suite #504,
San Francisco, CA 94111, U.S.A.

Acknowledgements

The SNIA FCAS (Fixed Content Aware Storage) Technical Working Group, which developed this standard,
would like to recognize the significant contributions made by the following members:

Alan Yoder, Aloke Guha, Avishai Hochberg, Ben Isherwood, Cristian Teodorescu, David Black, David Slik,
David Sobeck, Drew McDaniel, Jered Floyd, James Pinkerton, Jim Carlson, Kalman Meth, Kristina Tripp,
Lance Evans, Leeat Ramati, Mark Carlson, Michael Allison, Michael Kilian, Mike Horgan, Nick Maliwacki,
Paul Monday, Peter Cudhea, Rich Ramos, Sacha Arnoud, Scott Ostapovicz, Steve Quinn, Steve Vernon,
Toby Marek, Wayne Hineman, and Zoran Cakeljic.

© SNIA

x TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

Introduction

Purpose and Audience

This document forms part of the XAM Software Development Kit (SDK). It is a complete reference
document for C application development using the XAM API. It is intended for experienced programmers,
for those developing applications that interface with storage systems that support the XAM API, and for
those developing components of the XAM Library itself.

For an overview of the SNIA XAM, refer to the Business Overview chapter in the [XAM-ARCH].

Organization

The chapter contents of this document are described as follows:

Chapter Contents

Chapter 1, “Scope” Defines the subject of the document and the aspects covered.

Chapter 2, “Normative References” Lists the referenced documents that are indispensable for
the application of this document.

Chapter 3, “Terms and Conventions” Defines the terms and conventions used in this document.

Chapter 4, “C API Overview” Contains an overview of the C API.

Chapter 5, “Public C API Reference” Contains a reference guide to the public C API for applications.

Chapter 6, “Private (VIM) C API Reference” Contains a reference guide to the private C API for the VIMs.

Annex A, “(normative) Public Header Files” Contains the header files for the public C API.

Annex B, “(normative) Private (VIM) Header
Files”

Contains the header files for the private (VIM) C API.

Annex C, “(normative) C API Toolkit” Describes toolkit methods to simplify some common operations
within the C API.

Annex D, “(informative) C API Method
Mapping”

Lists the methods in [XAM-ARCH] and the corresponding method
names for the C binding.

© SNIA Scope

XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 1

1 Scope
This part of the XAM standard specifies the syntax of the C application programming interface (C API). It
applies to programmers who are generating XAM applications in the C programming language. It also
applies to storage system vendors who are creating vendor interface modules (VIMs) in the C
programming language.

This document does not normatively specify the semantics of the interfaces; the specification of the
semantics in the XAM standard is contained in the XAM Architecture Specification [XAM-ARCH]. Any
semantics described in this document are intended to be informative and to simplify the understanding of
the interfaces described herein.

Normative References © SNIA

2 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

2 Normative References
The following referenced document is indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

[XAM-ARCH] “Information Management - Extensible Access Method (XAM) - Part 1: Architecture”, SNIA
draft specification.

© SNIA Terms and Conventions

XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 3

3 Terms and Conventions

3.1 Terms
For the purposes of this document, the definitions in the [XAM-ARCH] apply.

3.2 Conventions
Conventions used in this document include the following:

Convention Description

Note: Contains additional or useful informative text.

CAUTION: Indicates that you should pay careful attention to the probable action, so that you may
avoid system failure or harm.

Fixed-width text Indicates text that you enter at a keyboard or text that is displayed on an output device,
such as a screen. This convention is most commonly used for command syntax and
examples.

Italicized text Indicates a property or field name, i.e., .xset.xuid.

C API Overview © SNIA
4 C API Overview

4.1 Basic XAM concepts
As an interface, XAM abstracts access methods from storage and provides a globally flat namespace. This
interface supports the mobility of information, independent from storage, to allow longevity, distribution,
and management of information. The XAM interface is intended to achieve interoperability, storage
transparency, and automation for Information Lifecycle Management-based practices, long-term records
retention, and information assurance (security).

The primary design goals behind the XAM interface are as follows:

• Provide a generic interface for applications: XAM interface methods have the same syntax and
semantics without regard to the underlying storage. No methods were created that “lock-in” an
application to a specific storage system; in fact, the systems themselves should be semantically
indistinguishable when viewed from the XAM API.

• Minimal yet complete: there was a desire to keep the interface as simple and small (e.g., have as
few API methods as possible, and keep these methods easy to use and understand), yet at the
same time, make sure that the methods make all forms of data manipulation possible. If
functionality could have been achieved by composing other methods (in a way that sufficiently
ensures performance and scalabilty), then a new method was not created for that function.

• Expose no implementation detail: the interface does not expose any internal functionality that
would serve to place restrictions on storage system vendors.

XAM will consist of a set of shared libraries. The ‘topmost’ library will contain the public XAM interfaces;
thus, only the topmost library will be linked to applications that wish to integrate with the XAM API.
However, extension libraries may also be provided which implement higher levels of functionality (e.g.,
placing an export method, an import method, and a delete method in series to create a ‘move’ function).
When such libraries are provided, applications may wish to link to these libraries as well.

The actual implementation of the interfaces will be in the VIMs (Vendor Interface Modules). A XAM Library
may utilize one or more VIMs. The implementation details of the VIMs themselves are beyond the scope of
this document. The XAM API programmer should view the VIM as an internal implementation detail and
avoid coding with specific VIMs in mind, if portable code is the goal. For more detailed information on the
architecture of XAM, please see [XAM-ARCH].
4 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA C API Overview
The architecture of the XAM SDK is briefly illustrated in Figure 1, “XAM architecture”:

4.2 The XAM programming model
The XAM interface programming model supports a hierarchy of class constructs in a containment/
aggregation organization. At the top level, there is the singleton XAM object itself. Below (inside) the XAM
object is one or more XSystems. Finally, each XSystem can contain XSets. Note that all of these object
classes contain fields, and these fields are accessed in the same way without regard to the class of object
that contains the field.

4.2.1 The XAM Library object

Pronunciation zam: The XAM Library object is the top level class for the XAM API library.

• It contains methods to get fields describing the configuration of the XAM system.

• It contains methods to set fields that controlling the configuration of the XAM system.

• It acts as a factory for XSystem instances.

4.2.2 An XSystem

Pronunciation ‘ek-sis-tm: An XSystem is the class that abstracts the connection between the application
and storage system, and is a container of XSets.

• It encapsulates any resource management associated with the connection.

• It contains those methods used to authenticate operations.

Figure 1 – XAM architecture

Application

XAM interface

XAM Library

Exension interface
Exension library

Reference
VIM library

VIM

Vendor VIM
library 2

VIM

Vendor VIM
library 1

VIM

Vendor VIM
library ‘N’

VIM

File System Storage
System 1

Storage
System 2

Storage
System ‘N’...
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 5

C API Overview © SNIA
• It acts as a virtual storage system, partitioning content.

In this document, we will refer to an XSystem as a single storage unit. Applications can only perform
XSystem functions when an XSystem is open; otherwise, run-time errors will be generated.

4.2.3 An XSet

Pronunciation ‘ek-set: An XSet is the class that contains an application’s data and metadata.

• The XSet is assigned a globally unique identifier when stored. This globally unique identifier is
called a XUID (pronounced ‘zoo-id), which stands for XSet Unique Identifier.

• Data and metadata (content) stored in the XSet as fields designated as binding or nonbinding. A
contract exists between the binding content of the XSet and XUID, such that if any binding fields in
the XSet changes, a new XSet will be created with a new XUID upon successful commit.
Nonbinding fields can be changed without generating a new XSet and thus has no effect on the
XUID.

4.2.4 Fields (properties and XStreams)

Pronunciation feeld: A field is the construct where XSets, XSystems, and XAM objects store actual data
and metadata. Fields have a number of attributes, which are listed below:

• Fields have names: Field names are assigned by the creator of the field.

• Fields have types: Field types are assigned by the creator of the field.

• Fields have values: These values can be changed, but the semantics of what happens to an XSet
that contains a field depends on the binding nature of the field.

• Fields have lengths: These lengths are derived from the type and value assigned to the field but
cannot be directly set by the application.

• Fields can be binding or nonbinding: This attribute is assigned by the application. Note that only
fields on XSets can be marked as binding.

• Fields can be read/write or readonly: These attributes are controlled by XAM and cannot be set by
the application.

4.2.4.1 Type and length attributes – properties vs. XStreams
Field types are identified using MIME types. XAM defines some primitive or “simple” MIME types (stypes).
These types are xam_boolean, xam_int, xam_double, xam_string, xam_datetime, and XUID. The
associated MIME types are, respectively; “application/vnd.snia.xam.boolean”, “application/
vnd.snia.xam.int”, “application/vnd.snia.xam.double”, “application/vnd.snia.xam.string”, “application/
vnd.snia.xam.datetime”, and application/vnd.snia.xam.xuid”. These types all have fixed sizes (even the
string type). Fields that have one of these MIME types are referred to as properties. Note that when setting
the value of a property, the XAM API will validate that the value is of the correct type (e.g., for XUID
6 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA C API Overview
property fields, that the value actually contains a properly formatted XUID). The mapping between field
type and field length is described in Table 1, “Field stypes (a.k.a. simple types)”:

Other MIME types are also legal. In fact, any MIME type shall be acceptable. Fields with other MIME types
(e.g., non-stypes) are referred to as XStreams. For XStream fields, the associated length shall be the
number of bytes in the value. Unlike properties, XStreams are not validated. The application programmer
is expected to validate that the specified value is of the specified MIME type.

4.2.4.2 Binding attribute vs. readonly attribute
Finally, we have the attributes binding and readonly. While these may seem related, they are, in fact,
significantly different. To use the XAM API, one must understand the differences between these two field
attributes.

Binding fields are those fields whose values participate in the contract of the XSet, binding the name of the
XSet to the data of the XSet. Thus, if a field whose binding attribute is set to TRUE is changed, a new XSet
will be created when storing (committing) the XSet changes and a new XUID will be generated. The
original XSet (and its requisite XUID) are unchanged. Fields whose binding attribute is set to FALSE
(nonbinding) can be changed without affecting the XSet/XUID contract. Thus, if an XSet only has
nonbinding fields changed, the XUID is unchanged when the modified XSet is committed. Because only
XSets (not XSystems or XAM objects) can be committed, this field attribute can only be set on XSet fields.
The binding attribute can be set by applications.

The readonly attribute controls if the application is allowed to edit a field at all. A field with the readonly
attribute set to TRUE shall generate a run-time error when any method is used to edit the field. The
readonly attribute is set by XAM (by the XAM Library or the XSystem instance); applications cannot alter
the readonly attribute. Note that while having a field’s readonly attribute set to TRUE may seem similar to
setting the field’s binding attribute to TRUE, it is not. A field may be binding and readonly, in which case, an
error will occur when trying to edit the field. A field may be binding and read/write (e.g., readonly = FALSE),
in which case, the edit is allowed, but on commit of the XSet changes, a new XSet with a new XUID is
created, and the original XSet/XUID pair is unchanged.

4.2.5 The XIterator

Pronunciation ek-’zi-ter-a-ter: The XIterator is a field discovery class. This interface was created because
XSets, XSystems, and XAM objects can all have an arbitrary number of fields (the maximum number of
fields on an XSet is 2^63-1. While not an actually arbitrary number, it is still a lot). The XIterator:

• Allows the discovery of all fields on the XSet, XSystem, or XAM object.

• Takes a prefix that allows only a subset of fields to be discovered.

Table 1 - Field stypes (a.k.a. simple types)

stype MIME Type Length (in bytes)

xam_boolean application/vnd.snia.xam.boolean 1

xam_int application/vnd.snia.xam.int 8

xam_double application/vnd.snia.xam.double 8

XUID application/vnd.snia.xam.xuid 9 to 80

xam_string application/vnd.snia.xam.string 0 to MAX_XAM_STRING

xam_datetime application/vnd.snia.xam.datetime 0 to MAX_XAM_STRING
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 7

C API Overview © SNIA
4.2.6 The XAsync

Pronunciation: eks-’A-sink: The XAsync is an object used to access information about an asynchronous
operation. These asynchronous operations allow applications to connect to XSystems and to read and
write XSets that are associated with the XSystem without blocking, or losing control of, the thread that
invokes the method. This object is returned when an asynchronous method is called, which allows
applications to poll the status of the operations. The object is also passed as a parameter to any callbacks
associated with an asynchronous method.

4.2.7 XAM status

Pronunciation zam ‘sta-tus: XAM status is used by all methods to indicate success or failure of the method.

4.2.8 The method hierarchy

The XAM, XSystem, and XSet classes are hierarchical in nature. An application uses a XAM method to
create an XSystem instance and an XSystem instance to create an XSet instance. Different methods are
available when working at each level of the hierarchy. This hierarchical relationship between the methods
of the XAM API is illustrated in Figure 2, “XAM API method hierarchy”:

As illustrated in the hierarchy in Figure 2, field sets and gets can be done at any level of the hierarchy and
on any XSet, XSystem, or XAM object. Property fields can be accessed directly. However, XStream fields
require the use of an XStream class to read and write to the field value. The XStream supports POSIX-like
semantics, and XStreams open for reading allow seeking within the XStream. In addition, the ability to
enumerate the field names of all fields on the XSet, XSystem, or XAM object is also needed at all levels of
the hierarchy.

Figure 2 – XAM API method hierarchy

XAM

XSystem

XSet

XAM.<field edits>

XSet.<field edits>

XAMLibrary.connect

Load library

Unload library

XSet.close

XSystem.openXSet

XSystem.close

XSystem.<field edits>

XSystem.authenticate
XSystem.accessXSet
XSystem.deleteXSet
XSystem.holdXSet

XSet.submitJob
XSet.haltJob
XSet.import/export
XSet.commit
8 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA C API Overview
Figure 3 illustrates the relationship between these field methods:

4.2.9 Using the XAM API – abstract samples

These are abstract examples of the types of operations that an application can perform using the XAM
API. Note that these operations can be performed with either the synchronous or asynchronous methods;
these methods are semantically equivalent.

4.2.9.1 Create an XSet
To write an XSet, the application must first connect to an XSystem. It then creates an XSet instance with
whatever fields it wishes to add to the XSet instance. The application stores (commits) the XSet instance
to the XSystem and gets an identifier (the XUID). The application then releases the resources associated
with the XSet and the XSystem instances.

4.2.9.2 Read an XSet
To read an XSet, the application must first connect to an XSystem that contains the XSet. It should open
the XSet using the XUID returned when the XSet was originally committed (note that this need not be the
same XSystem on which the XSet was originally stored, but the XSet should reside on the XSystem to
avoid a run-time error). The process of opening an XSet will generate an XSet instance. The application
should read the fields from the XSet instance. The application then releases the resources associated with
the XSet and the XSystem instances.

4.2.9.3 Query an XSet
To query, the application must first connect to an XSystem. It then creates an XSet instance with the
specific fields needed to run the query job. A method is called on the XSet instance to start the job on the
XSystem (submitJob). As the query runs, the results will be put into an XStream field on the XSet in the
form of a list of XUIDs, where the application will extract the query results. To access the values of the
fields, the application should read the XSets in the results as outlined in Section 4.2.9.2 (there is no need
to open and close the XSystem each time an XSet is read). When completed, the application then releases
the resources associated with the XSet and the XSystem instances.

Figure 3 – XAM API field methods (includes properties and XStreams)

XSet, XSystem,
or XAM XIterator

XStream

<GetFieldIterator>

Xiterator.Next

Xiterator.Close

XStream.Close

OpenXStream

XStream.Read
XStream.Write

<field editing>

XStream.Seek
XStream.Tell
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 9

Public C API Reference © SNIA
5 Public C API Reference
This chapter describes the public interfaces of the XAM Library. These interfaces are intended to be used
by application programmers.

5.1 Design goals
Some simple design goals were kept in mind while defining the XAM API. These goals are for all methods
to:

• Return status: The use of thread local storage or thread keys for retrieving error/status information
(in the XAM libraries) should not be needed.

• Have output returned by reference

• Emulate an object model

• Be thread safe

• Support asynchronous operations for operations in the data path

• Be kept to a minimum number.

• Favor compilation errors over run-time errors

5.2 Supporting data types

5.2.1 stypes

All XAM fields have type information that is described using MIME types. Complex fields require that the
value of the field (the data associated with the field) be stored in an XStream. However, some predefined
MIME types have also been defined for XAM fields. These MIME types (also known as simple MIME types
or stypes) have data types associated with them, which allows the values to be checked at compile time.

The stypes and the data types are defined in the public header file xam_types.h and are also described
below:

• “application/vnd.snia.xam.boolean”: This MIME type is associated with a standard boolean
type, xam_boolean. A xam field with this type will have a length of 1. A valid field of this type will
contain a zero (0) when FALSE or a non-zero value when TRUE.

• “application/vnd.snia.xam.int”: This MIME type is associated with a 64-bit integer value on
all platforms, xam_int. Note that this is not the same as a standard long type. The value stored in
this field can be positive or negative. A xam field with this type will have a length of 8.

• “application/vnd.snia.xam.double”: This MIME type is associated with a standard double
precision float, xam_double. A xam field with this type will have a length of 8.

• “application/vnd.snia.xam.xuid”: This MIME type is associated with an 80-element byte
array, xam_xuid. A valid field of this type will have a value that is a canonical XUID. A xam field
with this type will have a length of 80.

• “application/vnd.snia.xam.string”: This MIME type is associated with a MAX_XAM_STRING
element byte array, xam_string. A valid field of this type will have MAX_XAM_STRING or fewer
bytes which describe the string. The encoding of a string type is UTF-8. Note that xam_strings
may not contain NULLs; thus NULL termination will be used in the C API to mark the end of a
10 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
string. A xam field with this type will have a length which matches the number of bytes that
describes the actual string; the terminating NULL (or other trailing bytes following the NULL) are
not included in the length.

• “application/vnd.snia.xam.datetime”: This field is associated with a MAX_XAM_STRING
element byte array, xam_datetime. It is a ISO 8601-compliant timestamp string, UTF-8 encoded,
with 4 digit years, negative years allowed, no truncated years, no week dates, no ordinal dates, no
24:00 representation of midnight, time zone designators allowed, no duration or interval formats,
and a millisecond resolution.

5.2.2 XAM status type

Every method in the C API will return status. This status information will be contained in a status type. A
XAM status type is a 32-bit integer, as defined below:

typedef int xam_status;

The top bit is used as a flag, while the remaining 31 bits are used to hold the status payload. The topmost
bit (bit 0) is set to zero when the payload contains a value defined in this standard (standard value), and 1
when the payload contains a non-standard (vendor-specific) value. The status format is illustrated in
Figure 4, “XAM status type diagram”:

Note: Success is denoted with a status set to zero (bit 0 set to zero because it is a standard status code,
and the payload for success uses the standard value of 0).

5.2.3 Error conditions

This document describes a list of error conditions that are associated with each method. However, this list
is not a complete list of all possible errors; instead, it is a list of standardized errors. The specification does
not limit errors to those standard errors described in this text. For example, a VIM is likely to generate

Figure 4 – XAM status type diagram

Byte 0 Byte 1 Byte 2 Byte 3

Payload

Payload

Bit 0:
0 for standard status codes
1 for vendor-specific status codes

0 7
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 11

Public C API Reference © SNIA
errors that are specific to the related XAM Storage System. Applications should be prepared to handle
these non-standard exceptional conditions.

A method is defined to get an error token from a XAM status type. An error token is in the form of a string.
The string starts with a prefix (“xam” for standard errors or the reverse DNS of the vendor for non-standard
errors) followed by a separator (“/”) and ending with a non-localized UTF-8 substring that briefly describes
the error. For example, a standard “out of memory” error might generate the following error token:

“xam/out of memory”

This method requires an XSystem or a XAM Library object. If a XAM Library object is used, the method will
not be able to generate vendor-specific error tokens. Such cases will result in the following error token:

“xam/unknown error”

Note: If an XSystem handle is used, the XSystem does not need to be authenticated for the method to
work.

5.2.4 XAM handles

5.2.4.1 XSets, XSystems, and XAM – objects with fields
Field access methods in XAM are scoped to specific objects (XSets or XSystems) or are global in scope
(XAM Library). To provide a constant type for all of these objects, handles are used. All of these types
inherit from a single common root, the “xam_handle_t”, as described below:

typedef xam_int xam_handle_t;

This type is defined in the appropriate header file. The types for XSets and XSystems use this syntax as
their base, as follows:

typedef xam_handle_t xset_handle;

typedef xam_handle_t xsystem_handle;

These types are also defined in the appropriate header file.

The globally scoped ‘xam library’ handle has no constructor or destructor. A special value is assigned to
this handle that may not be used for any other handle. The xam_library_handle is treated as a global
scope reference, in that using this special value should always be interpreted as referring to the XAM
Library object. The constant defined for this purpose in xam.h is shown below:

#define XAM_LIBRARY_HANDLE (xam_handle_t)1;

An error occurs when a NULL value is passed to any method that expects a handle.

5.2.4.2 XIterator
An XIterator is used to enumerate the field names of the fields on an XSet, XSystem, or XAM object. It
does not have fields itself; therefore, it is not a xam_handle type. The ‘xiterator_handle’ is defined in
xam_types.h, as below:

typedef xam_int xiterator_handle;

The XIterator can be created with a prefix (in which case only those fields that match the prefix are
enumerated) or without one (in which case all fields are listed). Methods also exist to retrieve the next field
name (and advance the cursor) and to release the resources associated with the handle. The specific
methods associated with an XIterator are listed with other methods.
12 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
5.2.4.3 XStream
An XStream is used to manipulate the value of fields that do not have a simple MIME type. As such, it does
not have fields itself and, thus, is not a xam_handle type. The ‘xstream_handle’ is defined in xam_types.h
as defined below:

typedef xam_int xstream_handle;

The XStream uses POSIX-like semantics to manipulate the stream data. An XStream can be opened for
reading, writing, or appending; this creates an XStream instance. An XStream instance that is opened for
reading can then have blocks of data read from it, while an XStream instance that is opened for writing or
appending can have blocks of data written into it. Note that each read or write moves the cursor to the end
of the block of data written or read. The location of the cursor can be discovered (tell) and can also be set
(seek). Seek is only available on XStreams opened for reading.

5.2.4.4 XAsync
An XAsync is used to track the forward progress and retrieve the results for an asynchronous operation.
As such, it does not have fields itself and is not a xam_handle type. The ‘xasync_handle’ is defined in
xam_types.h as defined below:

typedef xam_int xasync_handle;

XAM defines asynchronous versions of synchronous methods that are on the data path and could
potentially block for an extended period of time. The XAsync is automatically created if the asynchronous
version of a method is called. Depending on the method, and to manage the pending operation, the
resultant instance is attached to either a XAM, an XSystem, or an XSet instance. While the operation is
pending, the application can query to see if the operation is complete and optionally can halt the operation.
The application can use the asynchronous method in one of two ways. It can either register a callback
method to be called when the operation completes, or it can poll periodically until the operation has
completed. Once the operation has completed, the application can query the XAsync instance for the
operation results.

5.2.5 XOPID

Every asynchronous method takes as an input argument a XAM asynchronous operation identifier
(XOPID). It can be retrieved from either a pending or completed asynchronous operation. The XOPID type
is as defined below:

typedef xam_int XOPID;

The XOPID is intended to provide a fast mechanism for the application to retrieve its state associated with
the asynchronous operation. Because the 64-bit value is specified by the application and is opaque to the
XAM Storage System, the application can attach any meaning to it that it wishes, including an index into an
application’s data structure, a pointer, or a bitfield.

5.2.6 Callbacks

Every asynchronous method takes, as an optional input argument, a callback method. The callback
method will be called when the operation completes (either successfully or unsuccessfully). The XAM
callback type is a defined below:

typedef
void
(*xasync_callback) (const xasync_handle inHandle);

The callback method is defined by the application. Within the callback routine, the XAM application should
first retrieve the status of the operation. If the operation was successful, the XAM application can also
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 13

Public C API Reference © SNIA
retrieve the output arguments, using the appropriate methods. It can also retrieve the XOPID to help
retrieve the application state that is associated with the asynchronous operation.

5.3 Methods
This section contains a complete list of the methods contained in the API. Note that some error conditions
will affect all methods and are not specifically included in each description (e.g., authentication errors when
the XSystem instance’s authentication expires).

5.3.1 Error token generation

5.3.1.1 XAM_GetErrorToken

Syntax prototype:

Xam_boolean
XAM_GetErrorToken (const xam_handle_t inHandle,
 const xam_status inStatus,
 xam_string* const outToken);

Parameters:

• inHandle is a valid xam_handle containing an XSystem or a XAM Library object reference.

• inStatus is a valid xam_status.

• outToken is a reference to valid storage for a xam_string. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle or xam_handle.

• The second argument is not a valid xam_status.

• The third argument is NULL.

Description:

This method will generate an error token from the xam_status. If passed an XSystem reference, it will be
able to generate error tokens for non-standard status. Otherwise, non-standard status will always generate
the “xam/unknown error” token.

This method does not require a passed-in XSystem to be authenticated. It will also work on an XSystem
that is in a corrupted or aborted state. It returns TRUE on success and FALSE on failure.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
14 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
5.3.2 Field iteration

The names of all fields (or some fields) that exist on a given XSet, XSystem, or XAM Library object can be
enumerated. Note that this field iteration is performed without regard to the type of field.

5.3.2.1 XAM_OpenFieldIterator

Syntax prototype:

xam_status
XAM_OpenFieldIterator (const xam_handle_t inHandle,
 const xam_string inPattern,
 xiterator_handle* const outIterator);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object contains the fields to be enumerated.

• inPattern is a valid xam_string containing a valid, NULL terminated UTF-8 byte sequence. The
pattern in this xam_string will be used to filter the fields which will be enumerated. Those fields that
do not belong with the specified pattern will not be included in the enumeration. The pattern is very
simple: the byte sequence is treated as an explicit prefix, and if the beginning of a field name does
not match the exact bit sequence of the specified pattern, it will be filtered out of the results. All
fields are considered to begin with an empty string; thus, specifying an empty string in the pattern
will result in no fields being filtered.

• outIterator is a reference to valid storage for an xiterator_handle. The value that is passed in is not
used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid prefix (invalid UTF-8).

• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method acts as a factory interface, creating an XIterator from an XSet, XSystem, or XAM object (e.g.,
objects that contain fields). This iterator is used to discover the field names of fields on the object in scope
(e.g., an XSet, XSystem, or XAM object). Only those fields whose names begin with the distinct bit
sequence as specified in the pattern will be included in the enumeration.

Resources associated with the XIterator must be explicitly released. Once the resources are released, the
XIterator will no longer be valid.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 15

Public C API Reference © SNIA
Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.2.2 XIterator_Next

Syntax prototype:

xam_status
XIterator_Next (const xiterator_handle inHandle,
 xam_string* const outName);

Parameters:

• inHandle is a valid xiterator_handle.

• outName is a reference to valid storage for a xam_string. The result is the name of the field
following the current cursor (e.g., the field name of the field at the current cursor/position in the
iteration). The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xiterator_handle.

• The second argument is NULL.

• Undefined errors will occur if the resources associated with the XIterator have already been
released.

Description:

This method copies the field name of the field at the current cursor of the iteration into the provided
storage. The cursor is then advanced to the next field. On reading past the last field, an empty string will be
returned.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.2.3 XIterator_HasNext

Syntax prototype:

xam_status
XIterator_HasNext (const xiterator_handle inHandle,
 xam_boolean* const outHasNext);
16 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Parameters:

• inHandle is a valid xiterator_handle.

• outHasNext is a reference to valid storage for a xam_boolean. It is set to TRUE if there are more
fields following the current cursor (e.g., after the field at the current cursor/position in the iteration).
The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xiterator_handle.

• The second argument is NULL.

• Undefined errors will occur if the resources associated with the XIterator have already been
released.

Description:

This method indicates if there are fields following the field at the current cursor of the iteration into the
provided storage.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.2.4 XIterator_Close

Syntax prototype:

xam_status
XIterator_Close (xiterator_handle inHandle);

Parameters:

• inHandle is a valid xiterator_handle.

Error conditions:

• The first argument is not a valid xiterator_handle.

• Undefined errors will occur if the resources associated with the XIterator have already been
released.

Description:

This method releases the resources associated with an open XIterator. After this method is called, the
XIterator may no longer be used.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 17

Public C API Reference © SNIA
Blocking:

This method will block until complete.

5.3.3 Field manipulation

While all fields are typed using MIME types, these types are divided into two separate categories: those
with a MIME type in the stype set (properties) and those that are not (XStreams). Some field methods can
be used for any type of field (the generic field methods), some can be used only to operate on properties,
and the remainder can be used only to operate on XStreams.

5.3.3.1 Generic field methods

5.3.3.1.1 XAM_ContainsField

Syntax prototype:

xam_status
XAM_ContainsField (const xam_handle_t inHandle,
 const xam_string inName,
 xam_boolean* const outContained);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM Library object reference.

• inName is a xam_string containing the name of the field.

• outContained is a reference to valid storage for a xam_boolean. It is set to TRUE if the field is
contained in the XSet, XSystem, or XAM Library. The value that is passed in is not used and is
overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will set the provided boolean to TRUE if the field is contained in the XSet, XSystem, or XAM
Library. Otherwise, it will be set to FALSE.
18 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.1.2 XAM_SetFieldAsBinding

Syntax prototype:

xam_status
XAM_SetFieldAsBinding (const xset_handle inHandle,
 const xam_string inName);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet reference. This object contains the named
field.

• inName is a xam_string containing the name of the field to manipulate.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will set the binding attribute of a field to TRUE. Note that unlike the other field methods, this
method can only be used with XSets.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 19

Public C API Reference © SNIA
5.3.3.1.3 XAM_SetFieldAsNonbinding

Syntax prototype:

xam_status
XAM_SetFieldAsNonbinding (const xset_handle inHandle,
 const xam_string inName);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet reference. This object contains the named
field.

• inName is a xam_string containing the name of the field to manipulate.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will set the binding attribute of a field to FALSE. Note that unlike the other field methods, this
method can only be used with XSets.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.1.4 XAM_GetFieldType

Syntax prototype:

xam_status
XAM_GetFieldType (const xam_handle_t inHandle,
 const xam_string inName,
 xam_string* const outType);
20 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object contains the named field.

• inName is a xam_string containing the name of the field to manipulate.

• outType is a reference to valid storage for a xam_string. The result is the MIME type of the named
field in the object. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will copy the MIME type of the named field into the provided xam_string.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.1.5 XAM_GetFieldLength

Syntax prototype:

xam_status
XAM_GetFieldLength (const xam_handle_t inHandle,
 const xam_string inName,
 xam_int* const outLength);
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 21

Public C API Reference © SNIA
Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object contains the named field.

• inName is a xam_string containing the name of the field to manipulate.

• outLength is a reference to valid storage for a xam_int. The result is the number of bytes of the
value of the named field in the object. The value that is passed in is not used and is overwritten
with the result.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will copy the length of the named field into the provided xam_int.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.1.6 XAM_GetFieldBinding

Syntax prototype:

xam_status
XAM_GetFieldBinding (const xam_handle_t inHandle,
 const xam_string inName,
 xam_boolean* const outBinding);
22 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object contains the named field.

• inName is a xam_string containing the name of the field to manipulate.

• outBinding is a reference to valid storage for a xam_boolean. The result is TRUE if the binding
attribute of the named field is TRUE or FALSE otherwise. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will set the xam_boolean value to TRUE if the binding attribute of the named field is TRUE or
to FALSE otherwise.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.1.7 XAM_GetFieldReadOnly

Syntax prototype:

xam_status
XAM_GetFieldReadOnly (const xam_handle_t inHandle,
 const xam_string inName,
 xam_boolean* const outReadOnly);
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 23

Public C API Reference © SNIA
Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object contains the named field.

• inName is a xam_string containing the name of the field to manipulate.

• outReadOnly is a reference to valid storage for a xam_boolean. The result is TRUE, if the readonly
attribute of the named field is TRUE, or FALSE otherwise. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will set the xam_boolean value to TRUE, if the readonly attribute of the named field is TRUE,
or to FALSE otherwise.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.1.8 XAM_DeleteField

Syntax prototype:

xam_status
XAM_DeleteField (const xam_handle_t inHandle,
 const xam_string inName);
24 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object contains the named field.

• inName is a xam_string containing the name of the field to delete.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the name refers to a
binding field.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will remove a field from the XSet.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2 Property field methods

5.3.3.2.1 XAM_CreateBoolean

Syntax prototype:

xam_status
XAM_CreateBoolean (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_boolean inValue);
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 25

Public C API Reference © SNIA
Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_boolean containing the value to be stored.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is true, and the handle refers to an xsystem or xam library object.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the field is being created
as binding.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.boolean” on the object
referenced by the passed-in xam_handle_t. Its name, value, and binding attributes will be set according to
the user-provided parameters.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
26 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
5.3.3.2.2 XAM_CreateInt

Syntax prototype:

xam_status
XAM_CreateInt (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_int inValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_int containing the value to be stored.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is true, and the handle refers to an xsystem or xam library object.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the field is being created
as binding.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.int” on the object
referenced by the passed-in xam_handle_t. Its name, value, and binding attributes will be set according to
the user-provided parameters.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 27

Public C API Reference © SNIA
Blocking:

This method will block until complete.

5.3.3.2.3 XAM_CreateDouble

Syntax prototype:

xam_status
XAM_CreateDouble (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_double inValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_double containing the value to be stored.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is true, and the handle refers to an xsystem or xam library object.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the field is being created
as binding.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.double” on the object
referenced by the passed-in xam_handle_t. Its name, value, and binding attributes will be set according to
the user-provided parameters.
28 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.4 XAM_CreateXUID

Syntax prototype:

xam_status
XAM_CreateXUID (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_xuid inValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_xuid containing the value to be stored.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is true, and the handle refers to an xsystem or xam library object.

• The format of the fourth argument is not valid (i.e., not a valid xuid format).

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the field is being created
as binding.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 29

Public C API Reference © SNIA
Description:

This method will create a property field with a type set to “application/vnd.snia.xam.xuid” on the object
referenced by the passed-in xam_handle_t. Its name, value, and binding attributes will be set according to
the user-provided parameters.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.5 XAM_CreateString

Syntax prototype:

xam_status
XAM_CreateString (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_string containing the value to be stored.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is true, and the handle refers to an xsystem or xam library object.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the field is being created
as binding.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.
30 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.string” on the object
referenced by the passed-in xam_handle_t. Its name, value, and binding attributes will be set according to
the user-provided parameters.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.6 XAM_CreateDatetime

Syntax prototype:

xam_status
XAM_CreateDatetime (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_datetime inValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_datetime containing the value to be stored.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is true, and the handle refers to an xsystem or xam library object.

• The format of the fourth argument is not valid (i.e., not a valid datetime format).

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the field is being created
as binding.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 31

Public C API Reference © SNIA
• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.datetime” on the object
referenced by the passed-in xam_handle_t. Its name, value, and binding attributes will be set according to
the user-provided parameters.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.7 XAM_SetBoolean

Syntax prototype:

xam_status
XAM_SetBoolean (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_boolean containing the new value to be stored.

Error conditions:

• The named field is not of type boolean.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the field is a binding field.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.
32 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.boolean” on the object
referenced by the passed-in xam_handle_t. Its value will be set according to the user-provided parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.8 XAM_SetInt

Syntax prototype:

xam_status
XAM_SetInt (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_int inValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_int containing the new value to be stored.

Error conditions:

• The named field is not of type int.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the field is a binding field.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 33

Public C API Reference © SNIA
• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.int” on the object
referenced by the passed-in xam_handle_t. Its value will be set according to the user-provided parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.9 XAM_SetDouble

Syntax prototype:

xam_status
XAM_SetDouble (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_double inValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_double containing the new value to be stored.

Error conditions:

• The named field is not of type double.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the field is a binding field.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.
34 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.double” on the object
referenced by the passed-in xam_handle_t. Its value will be set according to the user-provided parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.10XAM_SetXUID

Syntax prototype:

xam_status
XAM_SetXUID (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_xuid inValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_xuid containing the new value to be stored.

Error conditions:

• The named field is not of type XUID.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The format of the third argument is not valid (i.e., not a valid XUID format).

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the field is a binding field.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 35

Public C API Reference © SNIA
• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.xuid” on the object
referenced by the passed-in xam_handle_t. Its value will be set according to the user-provided parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.11XAM_SetString

Syntax prototype:

xam_status
XAM_SetString (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_string inValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_string containing the new value to be stored.

Error conditions:

• The named field is not of type string.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the field is a binding field.
36 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.string” on the object
referenced by the passed-in xam_handle_t. Its value will be set according to the user-provided parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.12XAM_SetDatetime

Syntax prototype:

xam_status
XAM_SetDatetime (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_datetime inValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_datetime containing the new value to be stored.

Error conditions:

• The named field is not of type datetime.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The format of the third argument is not valid (i.e., not a valid datetime format).

• The xam_handle_t contains an XSet was opened in readonly mode.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 37

Public C API Reference © SNIA
• The xam_handle_t contains an XSet was opened in restricted mode and the field is a binding field.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.datetime” on the
object referenced by the passed-in xam_handle_t. Its value will be set according to the user-provided
parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.13XAM_GetBoolean

Syntax prototype:

xam_status
XAM_GetBoolean (const xam_handle_t inHandle,
 const xam_string inName,
 xam_boolean* const outValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_boolean. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type boolean.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.
38 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.boolean” on
the object referenced by the passed-in xam_handle_t.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.14XAM_GetInt

Syntax prototype:

xam_status
XAM_GetInt (const xam_handle_t inHandle,
 const xam_string inName,
 xam_int* const outValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_int. The value of the named field is written into
this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type int.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 39

Public C API Reference © SNIA
• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.int” on the
object referenced by the passed-in xam_handle_t.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.15XAM_GetDouble

Syntax prototype:

xam_status
XAM_GetDouble (const xam_handle_t inHandle,
 const xam_string inName,
 xam_double* const outValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_double. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type double.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.
40 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.double” on
the object referenced by the passed-in xam_handle_t.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.16XAM_GetXUID

Syntax prototype:

xam_status
XAM_GetXUID (const xam_handle_t inHandle,
 const xam_string inName,
 xam_xuid* const outValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_xuid. The value of the named field is written into
this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type XUID.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 41

Public C API Reference © SNIA
Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.xuid” on the
object referenced by the passed-in xam_handle_t.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.17XAM_GetString

Syntax prototype:

xam_status
XAM_GetString (const xam_handle_t inHandle,
 const xam_string inName,
 xam_string* const outValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_string. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type string.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.
42 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.string” on
the object referenced by the passed-in xam_handle_t.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.2.18XAM_GetDatetime

Syntax prototype:

xam_status
XAM_GetDatetime (const xam_handle_t inHandle,
 const xam_string inName,
 xam_datetime* const outValue);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_datetime. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type datetime.

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 43

Public C API Reference © SNIA
Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.datetime”
on the object referenced by the passed-in xam_handle_t.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.3 XStream field methods

5.3.3.3.1 XAM_CreateXStream

Syntax prototype:

xam_status
XAM_CreateXStream (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inType,
 xstream_handle* const outXStream);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new XStream field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inType is a xam_string that contains the MIME type of the field.

• outXStream is a reference to valid storage for an xstream_handle. The value that is passed in is
not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The fourth argument contains an empty string (“” is not a valid MIME type).

• The fourth argument contains an stype.

• The fifth argument is NULL.

• The xam_handle_t contains an XSet that was opened in readonly mode.
44 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• The xam_handle_t contains an XSet that was opened in restricted mode and the field being
created is a binding field.

• The xam_handle_t contains an XSet that was opened in restricted mode and is on hold.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSet and the maximum number of XStream fields allowed on this
XSet has been reached.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will create an XStream field with a type set to the user-defined MIME type on the object
referenced by the passed-in xam_handle_t. Its name, MIME type, and binding attributes will be set
according to the user-provided parameters. The XStream field is opened in writeonly mode.

Note: The value is not set by the method. This method will create an XStream with a length of zero; other
methods must be used to add data to this field. Also, if the xam_handle_t contains an XSet, this
method may fail with an error if the maximum number of fields supported on an XSet is reached.
To determine the actual maximum number of bytes allowed in an XStream, an application should
evaluate .xsystem.limits.maxFieldsPerXSet on the XSystem instance. For more information on
this topic, please consult the [XAM-ARCH].

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.3.2 XAM_OpenXStream

Syntax prototype:

xam_status
XAM_OpenXStream (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_string inMode,
 xstream_handle* const outXStream);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be created.

• inMode is a string indicating the mode to open the XStream in:
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 45

Public C API Reference © SNIA
— readonly: open for reading. Write methods will fail on the XStream instance.

— writeonly: open for writing. Truncates existing data in the XStream. Read and seek methods
will fail on the XStream instance.

— appendonly: open for writing. Appends to existing data in the XStream. Read and seek
methods will fail on the XStream instance.

• outXStream is a reference to valid storage for an xstream_handle. The value that is passed in is
not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument contains anything other than writeonly, appendonly or readonly.

• The fourth argument is NULL.

• The xam_handle_t contains an XSet that was opened in readonly mode, and the XStream open
mode is writeonly or appendonly.

• The xam_handle_t contains an XSet that was opened in restricted mode, the field is binding, and
the XStream open mode is writeonly or appendonly.

• The xam_handle_t contains an XSet that was opened in restricted mode, is on hold, and the
XStream open mode is writeonly or appendonly.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will create an open XStream in either readonly, writeonly or appendonly mode, based on the
mode argument.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete. For applications that wish to use a non-blocking version of this
method, refer to XSystem_AsyncOpenXStream.
46 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
5.3.3.3.3 XStream_Read

Syntax prototype:

xam_status
XStream_Read (const xstream_handle inHandle,
 char* const ioBuffer,
 const xam_int inBufferLength,
 xam_int* const outBytesRead);

Parameters:

• inHandle is an xstream_handle that must have been opened in read mode.

• ioBuffer is a byte array to read the data into.

• inBufferLength is a xam_int set to the number of bytes in the buffer.

• outBytesRead is a reference to valid storage for a xam_int. On return, this value will contain the
actual number of bytes read. This value will be less than or equal to the inBufferLength. When
there is no more data to be read, a value of -1 will be set. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xstream_handle.

• The first argument is an XStream that was opened writeonly.

• The second argument is NULL.

• The buffer length is less than or equal to zero.

CAUTION: If the inBufferLength is set to a size larger than the actual number of bytes of storage
available in the ioBuffer, undefined results may occur, including data loss and data
corruption.

Description:

This method transfers data from the storage system into the target buffer, up to the number of bytes
requested.

Concurrency requirements:

This method is thread safe.

Blocking:

This method does not block until data is completely read, but will indicate the amount of data that was read
in each call. Subsequent calls may be needed to read the remainder of the data. For applications that wish
to use a completely non-blocking version of this method, refer to XStream_AsyncRead.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 47

Public C API Reference © SNIA
5.3.3.3.4 XStream_Write

Syntax prototype:

xam_status
XStream_Write (const xstream_handle inHandle,
 const char* const inBuffer,
 const xam_int inByteCount,
 xam_int* const outByteWritten);

Parameters:

• inHandle is an xstream_handle that must have been opened in writeonly mode.

• inBuffer is a byte array containing the data to be written.

• inByteCount is a xam_int set to the number of bytes in the buffer to be written.

• outBytesWritten is a reference to valid storage for a xam_int. On return, this will contain the actual
number of bytes written, which will be less than or equal to the inByteCount. The value that is
passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xstream_handle.

• The first argument is an XStream that was opened readonly.

• The second argument is NULL.

• The maximum length (in bytes) of an XStream is exceeded.

CAUTION: If the inByteCount is set to a size larger than the actual number of bytes of storage
available in the inBuffer, undefined results may occur, including data loss and data
corruption.

Description:

This method transfers data from the source buffer to the XAM Storage System, up to the number of bytes
requested.

Note: This method may fail with an error if the maximum number of bytes supported in an
XStream is reached. To determine the actual maximum number of bytes allowed in an XStream,
an application should evaluate the .xsystem.limits.maxSizeOfXStream field on the XSystem
instance. For more information on this topic, please consult the [XAM-ARCH].

Concurrency requirements:

This method is thread safe.

Blocking:

This method does not block until all the data in the buffer is completely written, but it will indicate the
amount of data that was written in each call. Subsequent calls may be needed to write all of the data. For
48 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
applications that wish to use a completely non-blocking version of this method, refer to
XStream_AsyncWrite.

5.3.3.3.5 XStream_Seek

Syntax prototype:

xam_status
XStream_Seek (const xstream_handle inHandle,
 const xam_int inOffset,
 const xam_int inWhence);

Parameters:

• inHandle is an xstream_handle that must have been opened in read mode.

• inOffset is a xam_int containing the number of bytes to change the position by.

• inWhence is a xam_int containing a 0, 1, or 2 (indicating where the offset should be measured
from). These are defined as follows:

— 0: The offset is measured from the start of the XStream.

— 1: The offset is measured from the current position in the XStream.

— 2: The offset is measured from the end of the XStream

Error conditions:

• The first argument is not a valid xstream_handle.

• The first argument is an XStream that was opened writeonly.

• The second and third arguments would result in a new position before to the first byte or past the
final byte in the XStream.

• The third argument contains a value other than 0, 1, or 2.

Description:

This method sets the position indicator for the XStream. The new position, measured in bytes, is obtained
by adding inOffset bytes to the position specified by inWhence. If inWhence is set to 0, 1, or 2, then the
offset is relative to the start of the XStream, the current position, or end-of-data, respectively.

Note: This method can only be used for XStreams opened for read. In addition, this method cannot be
used to create sparse files. It is an error to seek past the end of the data in the XStream, as
indicated by the field attribute ‘length’.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 49

Public C API Reference © SNIA
5.3.3.3.6 XStream_Tell

Syntax prototype:

xam_status
XStream_Tell (const xstream_handle inHandle,
 xam_int* const outPosition);

Parameters:

• inHandle is an xstream_handle.

• outPosition is a xam_int containing the position in the XStream.

Error conditions:

• The first argument is not a valid xstream_handle.

• The second argument is NULL.

Description:

This method gets the current value of the XStream position indicator.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.3.7 XStream_Abandon

Syntax prototype:

xam_status
XStream_Abandon (const xstream_handle inHandle);

Parameters:

• inHandle is an xstream_handle.

Error conditions:

• The first argument is not a valid xstream_handle.

CAUTION: If the XStream has been closed, undefined results may occur, including data loss and data
corruption.

Description:

An XStream in its normal state will generate an error when an application attempts to close it, if there are
open asynchronous operations being performed on it. Making this call will change the state of the XStream
50 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
and allow it to be closed without regard for any open asynchronous operations. Note that the XStream will
no longer be usable after this call is made, and the only call that will succeed is XStream.close.

CAUTION: This very dangerous call may result in data loss if used inappropriately. It is recommended
that applications track all open asynchronous operations and close the asynchronous
operations properly, as opposed to making this call.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.3.3.8 XStream_Close

Syntax prototype:

xam_status
XStream_Close (xstream_handle inHandle);

Parameters:

• inHandle is an xstream_handle.

Error conditions:

• The first argument is not a valid xstream_handle.

• The XStream instance was used for import and an import error occurred.

CAUTION: Closing an already closed XStream can produce undefined results, which may include
data loss and data corruption.

Description:

This method closes a previously opened XStream. Any resources that were allocated can be released at
this point.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete. For applications that wish to use a non-blocking version of this
method, refer to XStream_AsyncClose.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 51

Public C API Reference © SNIA
5.3.4 Connection administration for a XAM Storage System

5.3.4.1 XAMLibrary_Connect

Syntax prototype:

xam_status
XAMLibrary_Connect (const xam_string inXRI,
 xsystem_handle* const outHandle);

Parameters:

• inXRI is a xam_string. It contains the XSystem’s Internationalized Resource Identifier. The format
of the XRI is listed below:

snia-xam://[vimname!]xsystemname[?param=value[{¶m=value}]]

The vimname is a string that describes which VIM to use, and if it is not specified, the XAM system
will choose a VIM to use. A vimname is not allowed to contain a ‘!’ character. The xsystemname is
vendor specific; it may be an IP address or some other id. It may not contain ‘/’, ‘?’, or ‘!’
characters. Finally, param’=’value pairs can be specified. Note that the ‘&’ character is not
permitted in the name/value pair. The full BNF of this format can be found in the XAM Architecture
Specification [XAM-ARCH].

• outHandle is a reference to valid storage for an xsystem_handle. On return, this will contain the
XSystem handle that was created. The value that is passed in is not used and is overwritten with
the result.

Error conditions:

• The first argument is not a valid XRI.

• The second argument is NULL.

• A problem exists with the underlying XAM Storage System or its infrastructure (e.g., a damaged
cable for IP attached storage).

Description:

XAM applications connect to XAM Storage Systems by calling this method and specifying the XSystem’s
Internationalized Resource Identifier (XRI) string as its parameter. It is expected that the XRI will be
specified by the local storage system administrators, and applications should strive to make this easily
configured at run time.

Note: The XSystem instance is not fully usable until it has been authenticated.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
52 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
5.3.4.2 XSystem_Authenticate

Syntax prototype:

xam_status
XSystem_Authenticate (const xsystem_handle inHandle,
 const char* const inBuffer,
 const xam_int inByteCount,
 xstream_handle* const outXStream);

Parameters:

• inHandle is an xsystem_handle.

• inBuffer: Data that is being passed to the authentication mechanism is passed in this array of
bytes.

• inByteCount: The number of significant bytes in the passed-in buffer.

• outXStream is a reference to valid storage for an xstream_handle. On return, this will contain the
XStream handle that was created, and which contains the XSystem’s response to the
authentication information. The value that is passed in is not used and is overwritten with the
result.

Note: The outXStream must be closed when the application has finished its authentication processing.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The fourth argument is NULL.

• There is an authentication failure.

Note: If the XSystem has been closed or if the inByteCount is set to a size larger than the actual number
of bytes of storage available in the inBuffer, undefined results may occur, including data loss and
data corruption.

Description:

This method allows an application to authenticate an XSystem instance. It provides a generic interface to
exchange data as part of the authentication process. The application should check for XSystem instance
properties with the prefix of .xsystem.auth.SASLmechanism.list. to determine which patterns of
authentication (mechanisms) are available for use. After a pattern is selected, the appropriate sequence of
data exchanges should be made (using this call) in order to authenticate. A failed authentication will make
the XSystem instance unusable; applications cannot repeat failed authentications using the same
XSystem instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 53

Public C API Reference © SNIA
5.3.4.3 XSystem_Close

Syntax prototype:

xam_status
XSystem_Close (const xsystem_handle inHandle);

Parameters:

• inHandle is an xsystem_handle.

Error conditions:

• The first argument is not a valid xsystem_handle.

• There are open XSets or XStreams.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method is called to release any resources associated with an XSystem. After calling this method, the
closed XSystem should not be used.

Note: This call will fail if there are any open XSets associated with this XSystem.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.4.4 XSystem_Abandon

Syntax prototype:

xam_status
XSystem_Abandon (const xsystem_handle inHandle);

Parameters:

• inHandle is an xsystem_handle.

Error conditions:

• The first argument is not a valid xsystem_handle.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.
54 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Description:

An XSystem, in its normal state, will generate an error when an application attempts to close it, if it has
open XSets in it. Making this call will change the state of the XSystem and allow it to be closed without
regard for any open XSets. Note that the XSystem will no longer be usable after this call is made, and the
only call that will succeed is XSystem.close.

CAUTION: This very dangerous call may result in data loss if used inappropriately. It is recommended
that applications track all open XSets and close the XSets properly as opposed to making
this call.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.5 XSet instance creation

5.3.5.1 XSystem_CreateXSet

Syntax prototype:

xam_status
XSystem_CreateXSet (const xsystem_handle inHandle,
 const xam_string inMode,
 xset_handle* const outXSet);

Parameters:

• inHandle is an xsystem_handle.

• inMode is a string indicating the mode to open the XSet in:

— restricted: open for reading and limited writing. Adding, deleting, or modifying fields that are
binding is not allowed. Changing fields from binding to nonbinding (or vice versa) is not
allowed. Commit of the XSet instance will fail if any binding fields have been modified.
Successful commit of the XSet will never generate a new XUID.

— unrestricted: open for reading and writing. There are no limits on adding, deleting, or
modifying fields or changing fields from binding to nonbinding (or vice versa). Successful
commit of the XSet will generate a new XUID, if any binding fields have been added, deleted,
or modified, or if any fields have been changed from binding to nonbinding (or vice versa).

• outXSet is a reference to valid storage for an xset_handle. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is NULL.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 55

Public C API Reference © SNIA
• The second argument is not restricted or unrestricted.

• The third argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will create a new, empty XSet instance associated with the XSystem. This XSet will not exist
on the XSystem unless that XSet instance is committed.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.5.2 XSystem_OpenXSet

Syntax prototype:

xam_status
XSystem_OpenXSet (const xsystem_handle inHandle,
 const XUID inXUID,
 const xam_string inMode,
 xset_handle* const outXSet);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be opened.

• inMode is a string indicating the mode to open the XSet in:

— readonly: open for reading. Adding, deleting, or modifying fields is not allowed. Commit of the
XSet instance will fail.

— restricted: open for reading and limited writing. Adding, deleting, or modifying fields that are
binding is not allowed. Changing fields from binding to nonbinding (or vice versa) is not
allowed. Commit of the XSet instance will fail if any binding fields have been modified.
Successful commit of the XSet will never generate a new XUID.

— unrestricted: open for reading and writing. There are no limits on adding, deleting, or
modifying fields or changing fields from binding to nonbinding (or vice versa). Successful
commit of the XSet will generate a new XUID, if any binding fields have been added, deleted,
or modified, or if any fields have been changed from binding to nonbinding (or vice versa).

• outXSet is a reference to valid storage for a xset_handle. On return, this value will contain the
XSet handle. The value that is passed in is not used and is overwritten with the result.
56 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.

• The third argument is not readonly, restricted, or unrestricted.

• The XSet is on hold, and the mode is not readonly.

• The XSystem does not have authorization to open an XSet.

• The XSet does not exist in the XSystem.

• The fourth argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will open an XSet in the XSystem, returning a handle to an XSet instance associated with the
XSystem.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete. For applications that wish to use a non-blocking version of this
method, refer to XSystem_AsyncOpenXSet.

5.3.5.3 XSystem_CopyXSet

Syntax prototype:

xam_status
XSystem_CopyXSet (const xsystem_handle inHandle,
 const XUID inXUID,
 const xam_string inMode,
 xset_handle* const outXSet);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be copied.

• inMode is a string indicating the mode to open the copied XSet in:

— restricted: open for reading and limited writing. Adding, deleting, or modifying fields that are
binding is not allowed. Changing fields from binding to nonbinding (or vice versa) is not
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 57

Public C API Reference © SNIA
allowed. Commit of the XSet instance will fail if any binding fields have been modified.
Successful commit of the XSet will never generate a new XUID.

— unrestricted: open for reading and writing. There are no limits on adding, deleting, or
modifying fields or changing fields from binding to nonbinding (or vice versa). Successful
commit of the XSet will generate a new XUID, if any binding fields have been added, deleted,
or modified, or if any fields have been changed from binding to nonbinding (or vice versa).

• outXSet is a reference to valid storage for a xset_handle. On return, this value will contain the
XSet handle. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.

• The third argument is not restricted or unrestricted.

• The XSystem does not have authorization to open an XSet.

• The XSet does not exist in the XSystem.

• The fourth argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will create a copy of an XSet in the XSystem, returning a handle to an XSet instance
associated with the XSystem. This XSet will not exist on the XSystem unless that XSet instance is
committed.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete. For applications that wish to use a non-blocking version of this
method, refer to XSystem_AsyncCopyXSet.

5.3.6 XSet administration

5.3.6.1 XSystem_IsXSetRetained

Syntax prototype:

xam_status
XSystem_IsXSetRetained (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 xam_boolean* const outIsRetained);
58 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be checked.

• outIsRetained is a reference to valid storage for a xam_boolean. On return, this value will be set to
TRUE, if the XSet is accessible, or FALSE otherwise. The value that is passed in is not used and
is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will evaluate all retention criteria that exists on the specified XSet and shall return TRUE if
there exists retention criterion which would prevent XSet deletion. The method returns FALSE if the
retention criteria are not sufficient to describe a complete retention, if the retention is not enabled, or if the
retention criteria are valid but the retention period has passed.

This method does not evaluate the “on-hold” status.

A non-fatal error will be returned if the specified XUID is improperly formatted, does not exist in the
XSystem, or if the caller is not authorized to read the XSet.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.6.2 XSystem_DeleteXSet

Syntax prototype:

xam_status
XSystem_DeleteXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be deleted.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 59

Public C API Reference © SNIA
Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The second argument contains a XUID of an XSet that does not exist (or is not accessible) in the
XSystem.

• The XSystem does not have authorization to delete an XSet.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will delete an XSet from the XSystem.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.6.3 XSystem_HoldXSet

Syntax prototype:

xam_status
XSystem_HoldXSet (const xsystem_handle inHandle,
 const XUID inXUID,
 const xam_string inHoldID);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be held.

• inHoldID is a xam_string that contains the ID to be associated with the hold.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The second argument contains a XUID of an XSet that does not exist (or is not accessible) in the
XSystem.

• The third argument contains a hold id that is already in use for this XSet.

• The XSystem does not have authorization to hold an XSet.
60 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will place an XSet on hold. A held XSet cannot be changed in any way. An XSet may be
placed on multiple holds, by using different hold ids.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.6.4 XSystem_ReleaseXSet

Syntax prototype:

xam_status
XSystem_ReleaseXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inHoldID);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be held.

• inHoldID is a xam_string that contains the ID associated with the hold.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The second argument contains a XUID of an XSet that does not exist (or is not accessible) in the
XSystem.

• The third argument contains a hold id that is not in use for this XSet.

• The XSet is not being held at all.

• The XSystem does not have authorization to release a hold from an XSet.

• The XSet is not held or is not held using the specified hold id.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 61

Public C API Reference © SNIA
Description:

This method will release a specific hold on an XSet (associated with the hold id).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.6.5 XSystem_AccessXSet

Syntax prototype:

xam_status
XSystem_AccessXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_int inMode,
 xam_boolean* const outIsAccessible);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be checked.

• inMode: The value is the bitwise OR of the access ‘permissions’ to be checked (R_OK for read
permission, WU_OK for write-user permission, WS_OK for write-system permission, D_OK for
delete, H_OK for hold, RE_OK for retention event, J_OK for job and JC_OK for job commit). In
addition, there are composite permissions W_OK (WU_OK|WS_OK), RW_OK (R_OK|W_OK) and
ALL_OK (RW_OK|D_OK|H_OK|RE_OK|J_OK|JC_OK).

• outIsAccessible is a reference to valid storage for a xam_boolean. On return, this value will be set
to TRUE if the XSet is accessible according to the access permissions set by mode, FALSE
otherwise. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument does not contain a valid mode.

• The fourth argument is NULL.

• The XSystem does not have authorization to evaluate the accessibility of an XSet.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.
62 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Description:

This method will check the accessibility of an XSet on the XSystem. It is not an error if the XSet does not
exist on the XSystem; such an XSet shall be noted as being inaccessible.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.6.6 XSystem_GetXSetAccessTime

Syntax prototype:

xam_status
XSystem_GetXSetAccessTime (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 xam_datetime* const outAccessTime);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be checked.

• outAccessTime is a reference to valid storage for a xam_datetime. On return, this value will be set
to the time at which the XSet was last opened or committed, whichever is the most recent. The
value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.

• The XSystem does not have authorization to evaluate the access time of an XSet.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will return the time at which the XSet was last opened or committed, whichever is the most
recent.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 63

Public C API Reference © SNIA
Blocking:

This method will block until complete.

5.3.7 XSet instance administration

5.3.7.1 XSet_Commit

Syntax prototype:

xam_status
XSet_Commit (const xset_handle inHandle,
 xam_xuid* const outXUID);

Parameters:

• inHandle is an xset_handle.

• outXUID is a reference to valid storage for a XUID. On return, this value will contain the XUID that
was assigned to the XSet by the XAM Storage System. The value that is passed in is not used and
is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is NULL.

• The XSystem does not have authorization to commit an XSet.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and one or more binding fields have been created,
modified, or deleted, or one or more fields have been changed from binding to nonbinding (or vice
versa).

• The XSet is not valid, or has been modified in an invalid way (e.g., a field does not have a valid
type).

• The XSet contains a running job (see Section 5.3.10.1, “Jobs”) and the XAM Storage System does
not support committing running jobs.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.
64 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Description:

This method will store an XSet in the XSystem. Note this does not close the XSet, which can still be
modified as allowed by the authorization of the XSystem. A XUID will be assigned by the XAM Storage
System and this XUID will be returned.

Open XStreams will not cause the commit to fail. Only the data that was successfully written to such
XSteams will be committed.

If this is a modified XSet (e.g., an existing XSet was opened and changed), then a new XUID may or may
not be assigned by the commit, according to the following rules:

• If only nonbinding fields are edited (created, deleted, or changed), then the XAM Storage System
shall not assign a new XUID.

• If any binding fields are edited (created, deleted, or changed), then the XAM Storage System shall
assign a new XUID.

Applications that use unrestricted modes should be coded to handle cases where the XUID changes when
a modified XSet is committed.

If a management policy has not been applied to the XSet before commit, a default management policy will
be applied to the XSet at the time of commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete. For applications that wish to use a non-blocking version of this
method, refer to XSet_AsyncCommit.

5.3.7.2 XSet_Close

Syntax prototype:

xam_status
XSet_Close (const xset_handle inHandle);

Parameters:

• inHandle is an xset_handle.

Error conditions:

• The first argument is not a valid xset_handle.

• There are open XStreams.

CAUTION: If the XSet has been closed, undefined results may occur, including data loss and data
corruption.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 65

Public C API Reference © SNIA
Description:

This method is called to release any resources associated with an XSet. After calling this method, the
closed XSet should not be used.

Note: This call will fail if there are any open XStreams associated with this XSet.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.7.3 XSet_Abandon

Syntax prototype:

xam_status
XSet_Abandon (const xset_handle inHandle);

Parameters:

• inHandle is an xset_handle.

Error conditions:

• The first argument is not a valid xset_handle.

CAUTION: If the XSet has been closed, undefined results may occur, including data loss and data
corruption.

Description:

An XSet in its normal state will generate an error when an application attempts to close it, if there are open
XStreams in it. Making this call will change the state of the XSet and allow it to be closed without regard for
any open XStreams. Note that the XSet will no longer be usable after this call is made, and the only call
that will succeed is XSet.close.

CAUTION: This very dangerous call may result in data loss if used inappropriately. It is recommended
that applications track all open XStreams and close the XStreams properly as opposed to
making this call.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
66 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
5.3.8 XSet management administration

5.3.8.1 Access policy

5.3.8.1.1 XSet_ApplyAccessPolicy

Syntax prototype:

xam_status
XSet_ApplyAccessPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

Description:

This method will create or modify a property field with the name of .xset.access.policy and a type set to
“application/vnd.snia.xam.string” on the object referenced by the passed-in xset_handle. Its value and
binding attributes will be set according to the user-provided parameters. This field will be used by the XAM
Storage System to determine the policies to use when accessing this XSet.

Note: If an access policy has not been applied to an XSet at the time of the initial commit, then the
property will be created and set as the default access policy of the XSystem (i.e., the first string in
the .xsystem.access.policy.list.<name>).

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 67

Public C API Reference © SNIA
Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.1.2 XSet_ResetAccessFields

Syntax prototype:

xam_status
XSet_ResetAccessFields (const xset_handle inHandle);

Parameters:

• inHandle is a valid xset_handle.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will remove all access fields from the XSet.

Note: If an access policy has not been applied to an XSet at the time of the initial commit, then the
property will be created and set as the default access policy of the XSystem (i.e., the first string in
the .xsystem.access.policy.list.<name>).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
68 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
5.3.8.2 Base management policy

5.3.8.2.1 XSet_ApplyManagementPolicy

Syntax prototype:

xam_status
XSet_ApplyManagementPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

Description:

This method will create or modify a property field with the name of “xam.management.policy” and a type
set to “application/vnd.snia.xam.string” on the object referenced by the passed-in xset_handle. Its value
and binding attributes will be set according to the user-provided parameters. This field will be used by the
XAM Storage System to determine the default policies to use when managing this XSet.

Note: If the base management policy has not been applied to an XSet at the time of the initial commit,
then the property will be created and set as the default management policy of the XSystem (i.e.
.xsystem.management.policy.default).

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 69

Public C API Reference © SNIA
Blocking:

This method will block until complete.

5.3.8.2.2 XSet_ResetManagementFields

Syntax prototype:

xam_status
XSet_ResetManagementFields (const xset_handle inHandle);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will remove all management fields from the XSet. This will typically result in a new XSet being
created and a new XUID being assigned to this XSet at successful commit.

Note: If the base management policy has not been applied to an XSet at the time of the initial commit,
then the property will be created and set as the default management policy of the XSystem (i.e.,
.xsystem.management.policy.default).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.3 Retention

5.3.8.3.1 XSet_CreateRetention

Syntax prototype:

xam_status
XSet_CreateRetention (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inRetentionID);
70 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inRetentionID is a xam_string containing the retention identifier of the retention being created.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain a validly formatted retention identifier.

• The retention identifier already exists in the XSet.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.

• The retention identifier is “base”

• The retention identifier is “event” and the binding input parameter is FALSE.

Description:

This method will create a scope to for storing and evaluating retention criteria. It creates a field with a type
of “application/vnd.snia.xam.string” and sets the value to the retention id. The field name is formed by
appending the retention id to the following prefix: .xset.retention.list. Thus, the final format of the name is
.xset.retention.list.<retention id>. It will have its binding attribute set according to the binding flag that is set
by the application.

Note: Creating a binding set of retention criteria will result in a new XSet being created and a new XUID
being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.3.2 XSet_SetRetentionEnabledFlag

Syntax prototype:

xam_status
XSet_SetRetentionEnabledFlag (const xset_handle inHandle,
 const xam_string inRetentionID,
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 71

Public C API Reference © SNIA
 const xam_boolean inBinding,
 const xam_boolean inEnabled);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inRetentionID is a xam_string containing the retention identifier of the retention being enabled or
disabled.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inEnabled is a xam_boolean containing a flag indicating if event retention is enabled on this XSet
or not. If the flag is set to TRUE, event retention is enabled; otherwise, it is disabled.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention that is scoped by the retention identifier has not been created on the XSet.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.

• Enabled is being set to false after it was set to true.

• The retention identifier is “base”.

Description:

This method will enabled or disable retention that is scoped by the specified retention id. This flag is stored
in a field of type “application/vnd.snia.xam.boolean”. The name of the field is formed by inserting the
retention id between a prefix (.xset.retention.) and a suffix (.enabled); thus, the final format of the name is
.xset.retention.<retention id>.enabled. If the field does not exist, it will be created; otherwise the value will
be updated if and only if the value is changed from false to true - if the value is set to true it cannot be
changed. It will have its binding attribute set according to the binding flag that is set by the application.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
72 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
5.3.8.3.3 XSet_ApplyRetentionEnabledPolicy

Syntax prototype:

xam_status
XSet_ApplyRetentionEnabledPolicy (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inRetentionID is a xam_string containing the retention identifier of the retention being enabled or
disabled.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention that is scoped by the retention identifier has not been created on the XSet.

• The fourth argument does not contain the name of a valid policy.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.

• The applied policy has the effect of disabling retention for this retention ID after it was previously
enabled.

• The retention identifier is “base”.

Description:

This method will enabled or disable retention that is scoped by the specified retention id. The policy name
of the policy holding the enabled flag is stored in a field of type “application/vnd.snia.xam.string”. The name
of the field is formed by inserting the retention id between a prefix (.xset.retention.) and a suffix
(.enabled.policy); thus, the final format of the name is .xset.retention.<retention id>.enabled.policy. If the
field does not exist, it will be created; otherwise the value will be updated if and only if the value is changed
from false to true - if the value is set to true it cannot be changed. It will have its binding attribute set
according to the binding flag that is set by the application.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 73

Public C API Reference © SNIA
Note: If the .xset.retention.<retention id>.enabled field is also present on the XSet, it will be used by the
XAM Storage System in preference to this field.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.3.4 XSet_SetRetentionDuration

Syntax prototype:

xam_status
XSet_SetRetentionDuration (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_int inDuration);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inRetentionID is a xam_string containing the retention identifier of the retention being enabled or
disabled.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inDuration is a xam_int containing the amount of time (measured in milliseconds from the time of
commit) to retain the XSet. Zero indicates no retention, while a negative one (-1) indicates infinite
retention.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention that is scoped by the retention identifier has not been created on the XSet.

• The fourth argument does not contain a valid duration.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.
74 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• The field already exists on the XSet, and the specified duration value is less than the existing
duration value.

• The retention identifier is “base”.

Description:

This method will set the duration of retention that is scoped by the specified retention id. This flag is stored
in a field of type “application/vnd.snia.xam.int”. The name of the field is formed by inserting the retention id
between a prefix (.xset.retention.) and a suffix (.duration); thus, the final format of the name is
.xset.retention.<retention id>.duration. If the field does not exist, it will be created; otherwise the value will
be updated if and only if the duration is increased. It will have its binding attribute set according to the
binding flag that is set by the application.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.3.5 XSet_ApplyRetentionDurationPolicy

Syntax prototype:

xam_status
XSet_ApplyRetentionDurationPolicy (const xset_handle inHandle,
 const xset_string inRetentionID,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inRetentionID is a xam_string containing the retention identifier of the retention being enabled or
disabled.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention that is scoped by the retention identifier has not been created on the XSet.

• The fourth argument does not contain the name of a valid policy.

• The XSet that was opened in readonly mode.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 75

Public C API Reference © SNIA
• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.

• The applied policy has the effect of decreasing the duration for this retention ID.

• The retention identifier is “base”.

Description:

This method will set the duration of retention that is scoped by the specified retention id. This policy name
is stored in a field of type “application/vnd.snia.xam.string”. The name of the field is formed by inserting the
retention id between a prefix (.xset.retention.) and a suffix (.duration.policy); thus, the final format of the
name is .xset.retention.<retention id>.duration.policy. If the field does not exist, it will be created; otherwise
the value will be updated if and only if the duration is increased. It will have its binding attribute set
according to the binding flag that is set by the application.

Note: If the .xset.retention.<retention id>.duration field is also present on the XSet, it will be used by the
XAM Storage System in preference to this field.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.3.6 XSet_SetRetentionStarttime

Syntax prototype:

xam_status
XSet_SetRetentionStarttime (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inRetentionID is a xam_string containing the retention identifier of the retention being enabled or
disabled.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.
76 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention that is scoped by the retention identifier has not been created on the XSet.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.

• This method has already been used on an XSet.

• The retention identifier is “base”.

Description:

This method will set the start time of retention that is scoped by the specified retention id. The current time
of the XSystem is stored in a field of type “application/vnd.snia.xam.datetime”. The name of the field is
formed by inserting the retention id between a prefix (.xset.retention.) and a suffix (.starttime); thus, the
final format of the name is .xset.retention.<retention id>.starttime. If the field does not exist, it will be
created; otherwise, an error will be generated, as it is not allowed to change the start time once set. It will
have its binding attribute set according to the binding flag that is set by the application.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.3.7 XSet_SetBaseRetention

Syntax prototype:

xam_status
XSet_SetBaseRetention (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_int inDuration);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 77

Public C API Reference © SNIA
• inDuration is a xam_int containing the amount of time (measured in milliseconds from the time of
commit) to retain the XSet. Zero indicates no retention, while a negative one (-1) indicates infinite
retention.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain a valid duration.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

• The field already exists on the XSet, and the specified duration value is less than the existing
duration value.

Description:

If this XSet does not already contain the field .xset.retention.list.base, this method will create the field with
a type of “application/vnd.snia.xam.string” and set the value to “base”. It will also create the “application/
vnd.snia.xam.boolean” field .xset.retention.base.enabled and set the value to true. The duration will be
stored in a field named .xset.retention.base.duration. This field is of type “application/vnd.snia.xam.int”. If
the field already exists, its value will be changed to match the passed in duration if and only if the duration
of the retention is not reduced; the method will generate an error if the duration is reduced. If the field does
not already exist, it will be created with the specified duration as the value. The
.xset.retention.base.duration field will have its binding attribute set according to the binding flag that is set
by the application. The .xset.retention.list.base is always a binding field.

These fields will be used by the XAM Storage System to determine the base retention duration to use
when managing this XSet.

Note: Changing .xset.retention.base.duration from binding to nonbinding (or vice versa) will result in a
new XSet being created and a new XUID being assigned on a successful commit.

Note: When an XSet instance containing the field .xset.retention.list.base is first committed, the field
.xset.retention.base.starttime will be created as a binding field and have its value set to
.xset.time.xuid.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
78 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
5.3.8.3.8 XSet_ApplyBaseRetentionPolicy

Syntax prototype:

xam_status
XSet_ApplyBaseRetentionPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

Description:

If this XSet does not already contain the field .xset.retention.list.base, this method will create the field with
a type of “application/vnd.snia.xam.string” and set the value to “base”. It will also create the “application/
vnd.snia.xam.boolean” field .xset.retention.base.enabled and set the value to true. The duration policy will
be stored in a field named .xset.retention.base.duration.policy. This field is of type “application/
vnd.snia.xam.string”. If the field already exists, its value will be changed to match the passed-in policy, only
if the policy would not reduce the duration of the retention; the method will generate an error if the policy
reduces the duration. If the field does not already exist, it will be created with the specified policy name as
the value. These fields will have their binding attribute set according to the binding flag that is set by the
application.

These fields will be used by the XAM Storage System to determine the base retention duration to use
when managing this XSet.

Note: If the .xset.retention.base.duration field is also present on the XSet, it will be used by the XAM
Storage System in preference to this policy field.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 79

Public C API Reference © SNIA
Note: When an XSet instance containing the field .xset.retention.list.base is first committed, the field
.xset.retention.base.starttime will be created and have its value set to .xset.time.xuid.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.4 AutoDelete

5.3.8.4.1 XSet_ApplyAutoDeletePolicy

Syntax prototype:

xam_status
XSet_ApplyAutoDeletePolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

Description:

If this XSet does not have an auto delete policy applied to it, this method will create a property field on the
specified XSet with the name of .xset.deletion.autodelete.policy and a type set to “application/
vnd.snia.xam.string”. Its value and binding attributes will be set according to the user-provided parameters.
If the field already exists on the XSet, then its value will be updated with the specified value. This field will
80 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
be used by the XAM Storage System to determine if the XSet should be automatically deleted on
expiration of retention.

Note: If this method makes an XSet eligible for deletion, there is no guarantee that the XSet will be
deleted before the call returns.

Note: If the .xset.deletion.autodelete field is also present on the XSet it will be used by the XAM Storage
System in preference to this field.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.4.2 XSet_SetAutoDelete

Syntax prototype:

xam_status
XSet_SetAutoDelete (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_boolean inAutoDelete);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inAutoDelete is a xam_boolean containing a flag indicating if autodelete is enabled on this XSet or
not. If the flag is set to TRUE, autodelete is enabled; otherwise, it is disabled.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 81

Public C API Reference © SNIA
Description:

If this XSet does not have auto delete set on it, this method will create a property field on the specified
XSet with the name of .xset.deletion.autodelete and a type set to “application/vnd.snia.xam.boolean”. Its
value and binding attributes will be set according to the user-provided parameters. If the field already
exists on the XSet, then its value will be updated with the specified value. This field will be used by the
XAM Storage System to determine if the XSet should be automatically deleted on expiration of retention.

Note: If this method makes an XSet eligible for deletion, there is no guarantee that the XSet will be
deleted before the call returns.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.5 Shred

5.3.8.5.1 XSet_ApplyShredPolicy

Syntax prototype:

xam_status
XSet_ApplyShredPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.
82 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Description:

If this XSet does not have an auto shred policy applied to it, this method will create a property field on the
specified XSet with the name of .xset.deletion.shred.policy and a type set to ‘application/
vnd.snia.xam.string’. Its value and binding attributes will be set according to the user-provided parameters.
If the field already exists on the XSet, then its value will be updated with the specified value. This field will
be used by the XAM Storage System to determine if the XSet should be shredded after XSet deletion. If
the .xset.deletion.shred field is also present on the XSet it will be used by the XAM Storage System in
preference to this field.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.5.2 XSet_SetShred

Syntax prototype:

xam_status
XSet_SetShred (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_boolean inShred);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inShred is a xam_boolean containing a flag indicating if shredding is enabled on this XSet or not. If
the flag is set to TRUE, shredding is enabled, otherwise it is disabled.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

Description:

If this XSet does not have auto shred set on it, this method will create a property field on the specified XSet
with the name of .xset.deletion.shred and a type set to “application/vnd.snia.xam.boolean”. Its value and
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 83

Public C API Reference © SNIA
binding attributes will be set according to the user-provided parameters. If the field already exists on the
XSet, then its value will be updated with the specified value. This field will be used by the XAM Storage
System to determine if the XSet should be shredded after deletion.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.6 Storage policy

5.3.8.6.1 XSet_ApplyStoragePolicy

Syntax prototype:

xam_status
XSet_ApplyStoragePolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.
84 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Description:

If this XSet does not have a storage policy applied to it, this method will create a property field on the
specified XSet with the name of .xset.storage.policy and a type set to “application/vnd.snia.xam.string”. Its
value and binding attributes will be set according to the user-provided parameters. If the field already
exists on the XSet, then its value will be updated with the specified value. This field will be used by the
XAM Storage System to determine the storage policy of the XSet.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.7 XSet management introspection

5.3.8.7.1 XSet_GetActualRetentionDuration

Syntax prototype:

xam_status
XSet_GetActualRetentionDuration (const xset_handle inHandle,
 const xam_string inRetentionID,
 xam_int* const outDuration);

Parameters:

• inHandle is a valid xset_handle.

• inRetentionID is a xam_string containing the retention identifier of the retention being created.

• outDuration is a reference to valid storage for a xam_int. On return, this value will be set to the
actual event retention duration (in milliseconds) that is currently in effect for the XSet after
evaluating the policies. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention identifier does not exist in the XSet.

• The third argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The XSet instance was imported and contains a retention duration policy that does not exist.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 85

Public C API Reference © SNIA
• The XSet instance was imported and contains a retention duration policy that does not match the
policy in the XSystem.

Description:

This method will evaluate all factors that affect the retention duration that is currently in effect for the XSet
under the scope of the specified retention id and return that duration to the caller.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.7.2 XSet_GetActualRetentionEnabled

Syntax prototype:

xam_status
XSet_GetActualRetentionEnabled (const xset_handle inHandle,
 const xset_string inRetentionID,
 xam_boolean* const outEnabled);

Parameters:

• inHandle is a valid xset_handle.

• inRetentionID is a xam_string containing the retention identifier of the retention being created.

• outEnabled is a reference to valid storage for a xam_boolean. On return, this value will be set to
match the enabled state in effect for the XSet after evaluating the policies. The value that is
passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention identifier does not exist in the XSet.

• The third argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The XSet instance was imported and contains a retention enabled policy that does not exist.

• The XSet instance was imported and contains a retention enabled policy that does not match the
policy in the XSystem.
86 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Description:

This method will evaluate all factors that affect if retention is enabled for the XSet under the scope of the
specified retention id and return that enabled state to the caller.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.8.7.3 XSet_GetActualAutoDelete

Syntax prototype:

xam_status
XSet_GetActualAutoDelete (const xset_handle inHandle,
 xam_boolean* const outEnabled);

Parameters:

• inHandle is a valid xset_handle.

• outEnabled is a reference to valid storage for a xam_boolean. On return, this value will be set to
match the enabled state in effect for the XSet after evaluating the policies. The value that is
passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The XSet instance was imported and contains an auto-delete policy that does not exist.

• The XSet instance was imported and contains an auto-delete policy that does not match the policy
in the XSystem.

Description:

This method will evaluate all factors that affect if auto delete is enabled for the XSet and return that
enabled state to the caller.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 87

Public C API Reference © SNIA
Blocking:

This method will block until complete.

5.3.8.7.4 XSet_GetActualShred

Syntax prototype:

xam_status
XSet_GetActualShred (const xset_handle inHandle,
 xam_boolean* const outEnabled);

Parameters:

• inHandle is a valid xset_handle.

• outEnabled is a reference to valid storage for a xam_boolean. On return, this value will be set to
match the enabled state in effect for the XSet after evaluating the policies. The value that is
passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The XSet instance was imported and contains a shred policy that does not exist.

• The XSet instance was imported and contains a shred policy that does not match the policy in the
XSystem.

Description:

This method will evaluate all factors that affect if auto shred is enabled for the XSet and return that enabled
state to the caller.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.9 XSet export and import

5.3.9.1 XSet_OpenExportXStream

Syntax prototype:

xam_status
XSet_OpenExportXStream (const xset_handle inHandle,
88 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
 xstream_handle* const outXStream);

Parameters:

• inHandle is an xset_handle.

• outXStream is a reference to valid storage for a xstream_handle. On return, this value will contain
the XStream handle of an XStream opened in readonly mode. The value that is passed in is not
used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is NULL.

• The XSystem does not have authorization to export an XSet.

• The XSet has any open XStreams (including import or export XStreams).

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The XSet has never been committed.

• The XSet has been modified since it was opened.

CAUTION: If the XSet has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will open an export XStream for the XSet. The XSet must have been committed and must not
have been modified since it was opened / committed. The XSet will enter an import/export state and will
thus generate errors if used for any operation until the export XStream is closed. The data in the original
XSet instance will be overwritten.

The XStream will contain a canonical representation of the XSet. This data can be read from the XStream
using normal XStream calls and semantics. When the XStream is closed, the XSet will return to a normal
state.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.9.2 XSet_OpenImportXStream

Syntax prototype:

xam_status
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 89

Public C API Reference © SNIA
XSet_OpenImportXStream (const xset_handle inHandle,
 xstream_handle* const outXStream);

Parameters:

• inHandle is an xset_handle.

• outXStream is a reference to valid storage for a xstream_handle. On return, this value will contain
the XStream handle of an XStream opened in writeonly mode. The value that is passed in is not
used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is NULL.

• The XSystem does not have authorization to import an XSet.

• The XSet was a not newly created XSet.

• The XSet has been modified since it was created.

• The XSet has any open XStreams (including import or export XStreams).

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

CAUTION: If the XSet has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will open an import XStream for the XSet. The XSet will enter an import/export state and will
thus generate errors if used for any operation until the XStream is closed. Any data in the original XSet
instance will be overwritten.

It is expected that a data stream containing the canonical representation of an XSet will be written into the
XStream. When the XStream is closed, the data will be validated. If the data is determined to be valid, then
the XSet will return to a normal state (i.e., will no longer generate errors when operated on), but it will now
refer to the XSet that was described by the canonical data that was written to the XStream. If the validation
of the data fails (i.e., it contains invalid or improperly formatted data), then the XSet will enter a corrupted
state. It will no longer be recoverable, and all operations, except XSet.abandon followed by XSet.close, will
fail.

After a successful validation, the XSet fields can be examined as any normal fields, and the XSet can be
modified. The XSet is not committed, but it is in all ways a normal XSet and may be committed as per
normal XSet semantics. If the XSet is committed before any modification to binding fields (adding,
modifying, or deleting binding fields, or changing the binding attribute of any fields), then the XUID will be
the XUID that is described by the import XStream. Modification to any binding fields, as described above,
will result in a new XSet and a new XUID being assigned on a successful commit.

An XSet that is opened in restricted mode does not allow modifications that would result in the creation of
a new XSet and assignment of a new XUID on a successful commit; edits that would result in the
generation of a new XSet shall result in errors.
90 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.10 Asynchronous operations

5.3.10.1 Jobs

5.3.10.1.1XSet_SubmitJob

Syntax prototype:

xam_status
XSet_SubmitJob (const xset_handle inHandle);

Parameters:

• inHandle is an xset_handle.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSystem does not have authorization to submit a job.

• The XSet is does not contain valid job control fields.

CAUTION: If The XSet has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will submit a job request to the XAM Storage System. Fields on the XSet will be evaluated as
input to the job, according to the semantics of the XAM job control subsystem, which requires the job name
to be contained in a string field named .xam.job.command (see [XAM-ARCH] for more details). This XSet
will be used to communicate health and status information about the job. The status of the job will be
contained in the string field .xam.job.status. If this field contains a value of “error” then the string field
.xam.job.error should be evaluated to determine the actual error.

Jobs may use other fields specific to the job in question. In that case, the prefix of the job should be the job
command (e.g. if the value of “.xam.job.command” is “.vnd.foo” then all fields used by that job should begin
with “.vnd.foo”).

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 91

Public C API Reference © SNIA
Blocking:

This method will block until complete.

5.3.10.1.2XSet_HaltJob

Syntax prototype:

xam_status
XSet_HaltJob (const xset_handle inHandle);

Parameters:

• inHandle is an xset_handle.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSystem does not have authorization to halt a job.

• The XSet is does not contain valid job control fields.

• The XSet was not used to submit a job.

CAUTION: If the XSet has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will stop a currently running job in the XAM Storage System, if the XSet was used to start a
job. Fields on the XSet will be evaluated as input to the job, according to the semantics of the XAM job
control subsystem (refer to [XAM-ARCH] for more details).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

5.3.10.2 XSet async I/O

5.3.10.2.1XSystem_AsyncOpenXSet

Syntax prototype:

xam_status
XSystem_AsyncOpenXSet (const xsystem_handle inHandle,
 const XUID inXUID,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
92 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be opened.

• inMode is a string indicating the mode to open the XSet in:

— readonly: open for reading. Adding, deleting, or modifying fields is not allowed. Commit of the
XSet instance will fail.

— restricted: open for reading and limited writing. Adding, deleting, or modifying fields that are
binding is not allowed. Changing fields from binding to nonbinding (or vice versa) is not
allowed. Commit of the XSet instance will fail if any binding fields have been modified.
Successful commit of the XSet will never generate a new XUID.

— unrestricted: open for reading and writing. There are no limits on adding, deleting, or
modifying fields or changing fields from binding to nonbinding (or vice versa). Successful
commit of the XSet will generate a new XUID, if any binding fields have been added, deleted,
or modified, or if any fields have been changed from binding to nonbinding (or vice versa).

• inXOPID is an application assigned id used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.

• The third argument is not readonly, restricted, or unrestricted.

• The XSet is on hold, and the mode is not readonly.

• The XSystem does not have authorization to open an XSet.

• The XSet does not exist in the XSystem.

• The sixth argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will begin the asynchronous opening of an XSet in the XSystem, ultimately returning a handle
to an XSet instance associated with the XSystem. The specified callback will be invoked as part of the
asynchronous opening. To monitor the status of this operation, the application can poll the Async instance
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 93

Public C API Reference © SNIA
that is generated by this method. A handle to an Async instance is also passed to any provided callback
method when that callback method is invoked.

Concurrency requirements:

This method is thread safe. It is the responsibility of the application to ensure that the callback is coded in
a thread-safe manner.

Blocking:

This method will not block until complete, and will return control immediately. For applications that wish to
use the blocking version of this method, refer to XSystem_OpenXSet.

5.3.10.2.2XSystem_AsyncCopyXSet

Syntax prototype:

xam_status
XSystem_AsyncCopyXSet (const xsystem_handle inHandle,
 const XUID inXUID,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be copied.

• inMode is a string indicating the mode to open the copied XSet in:

— restricted: open for reading and limited writing. Adding, deleting, or modifying fields that are
binding is not allowed. Changing fields from binding to nonbinding (or vice versa) is not
allowed. Commit of the XSet instance will fail if any binding fields have been modified.
Successful commit of the XSet will never generate a new XUID.

— unrestricted: open for reading and writing. There are no limits on adding, deleting, or
modifying fields or changing fields from binding to nonbinding (or vice versa). Successful
commit of the XSet will generate a new XUID, if any binding fields have been added, deleted,
or modified, or if any fields have been changed from binding to nonbinding (or vice versa).

• inXOPID is an application assigned id used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.
94 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• The third argument is not restricted or unrestricted.

• The XSystem does not have authorization to open an XSet.

• The XSet does not exist in the XSystem.

• The sixth argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will begin the asynchronous copying of an XSet in the XSystem, ultimately returning a handle
to an XSet instance associated with the XSystem. The specified callback will be invoked as part of the
asynchronous copying. To monitor the status of this operation, the application can poll the Async instance
that is generated by this method. A handle to an Async instance is also passed to any provided callback
method when that callback method is invoked.

Concurrency requirements:

This method is thread safe. It is the responsibility of the application to ensure that the callback is coded in
a thread-safe manner.

Blocking:

This method will not block until complete, and will return control immediately. For applications that wish to
use the blocking version of this method, refer to XSystem_CopyXSet.

5.3.10.2.3XAM_AsyncOpenXStream

Syntax prototype:

xam_status
XAM_AsyncOpenXStream (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be opened.

• inMode is a string indicating the mode to open the XStream in:

— readonly: open for reading. Write methods will fail on the XStream instance.

— writeonly: open for writing. Truncates existing data in the XStream. Read and seek methods
will fail on the XStream instance.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 95

Public C API Reference © SNIA
— appendonly: open for writing. Appends to existing data in the XStream. Read and seek
methods will fail on the XStream instance.

• inXOPID is an application assigned id used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument contains anything other than writeonly, appendonly or readonly.

• The sixth argument is NULL.

• The xam_handle_t contains an XSet that was opened in readonly mode, and the XStream open
mode is writeonly or appendonly.

• The xam_handle_t contains an XSet that was opened in restricted mode, the field is binding, and
the XStream open mode is writeonly or appendonly.

• The xam_handle_t contains an XSet that was opened in restricted mode, is on hold, and the
XStream open mode is writeonly or appendonly.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method will begin the asynchronous opening of XStream in either readonly, writeonly, or appendonly
mode, based on the mode argument. The specified callback will be invoked as part of the asynchronous
opening. To monitor the status of this operation, the application can poll the Async instance that is
generated by this method. A handle to an Async instance is also passed to any provided callback method
when that callback method is invoked.

Concurrency requirements:

This method is thread safe. It is the responsibility of the application to ensure that the callback is coded in
a thread-safe manner.

Blocking:

This method will not block until complete, and will return control immediately. For applications that wish to
use the blocking version of this method, refer to XSystem_OpenXStream.
96 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
5.3.10.2.4XStream_AsyncRead

Syntax prototype:

xam_status
XStream_AsyncRead (const xstream_handle inHandle,
 char* const ioBuffer,
 const xam_int inBufferLength,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is an xstream_handle that must have been opened in readonly mode.

• ioBuffer is a byte array to read the data into.

• inBufferLength is a xam_int set to the number of bytes in the buffer.

• inXOPID is an application assigned id used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xstream_handle.

• The first argument is an XStream that was opened writeonly.

• The second argument is NULL.

• The buffer length is less than or equal to zero.

• The sixth argument is NULL.

CAUTION: If the inBufferLength is set to a size larger than the actual number of bytes of storage
available in the inBuffer, undefined results may occur, including data loss and data
corruption.

Description:

This method will begin the asynchronous transfer of data from the storage system into the target buffer, up
to the number of bytes requested. The specified callback will be invoked as part of the asynchronous
transfer. To monitor the status of this operation, the application can poll the Async instance that is
generated by this method. A handle to an Async instance is also passed to any provided callback method
when that callback method is invoked.

Concurrency requirements:

This method is thread safe. It is the responsibility of the application to ensure that the callback is coded in
a thread-safe manner.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 97

Public C API Reference © SNIA
Blocking:

This method returns immediately. For applications that wish to use a blocking version of this method, refer
to XStream_Read.

5.3.10.2.5XStream_AsyncWrite

Syntax prototype:

xam_status
XStream_AsyncWrite (const xstream_handle inHandle,
 const char* const inBuffer,
 const xam_int inByteCount,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is an xstream_handle that must have been opened in writeonly mode.

• inBuffer is a byte array containing the data to be written.

• inByteCount is a xam_int set to the number of bytes in the buffer to be written.

• inXOPID is an application assigned id used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xstream_handle.

• The first argument is an XStream that was opened readonly.

• The second argument is NULL.

• The maximum length (in bytes) of an XStream is exceeded.

• The sixth argument is NULL.

CAUTION: If the inByteCount is set to a size larger than the actual number of bytes of storage
available in the inBuffer, undefined results may occur, including data loss and data
corruption.

Description:

This method will begin the asynchronous transfer of data from the source buffer to the XAM Storage
System, up to the number of bytes requested. The specified callback will be invoked as part of the
asynchronous transfer. To monitor the status of this operation, the application can poll the Async instance
that is generated by this method. A handle to an Async instance is also passed to any provided callback
method when that callback method is invoked.
98 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Note: This method may fail with an error if the maximum number of bytes supported in an XStream is
reached. To determine the actual maximum number of bytes allowed in an XStream, an
application should evaluate the .xsystem.limits.maxSizeOfXStream field on the XSystem instance.
For more information on this topic, please consult [XAM-ARCH].

Concurrency requirements:

This method is thread safe. It is the responsibility of the application to ensure that the callback is coded in
a thread-safe manner.

Blocking:

This method returns immediately. For applications that wish to use a blocking version of this method, refer
to XStream_Write.

5.3.10.2.6XStream_AsyncClose

Syntax prototype:

xam_status
XStream_AsyncClose (const xstream_handle inHandleXStream,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandleXStream is an xstream_handle.

• inXOPID is an application assigned id used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xstream_handle.

• The sixth argument is NULL.

CAUTION: Closing an already closed XStream can produce undefined results, including data loss and
data corruption.

Description:

This method will begin the asynchronous closing of a previously opened XStream. Any resources that
were allocated can be released at this point. The specified callback will be invoked as part of the
asynchronous close. To monitor the status of this operation, the application can poll the Async instance
that is generated by this method. A handle to an Async instance is also passed to any provided callback
method when that callback method is invoked.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 99

Public C API Reference © SNIA
Note: It is the responsibility of the application to track the parent of the XStream. The XOPID can be
used for this.

Concurrency requirements:

This method is thread safe. It is the responsibility of the application to ensure that the callback is coded in
a thread-safe manner.

Blocking:

This method returns immediately. For applications that wish to use a blocking version of this method, refer
to XStream_Close.

5.3.10.2.7XSet_AsyncCommit

Syntax prototype:

xam_status
XSet_AsyncCommit (const xset_handle inHandle,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is an xset_handle.

• inXOPID is an application assigned id used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The XSystem does not have authorization to commit an XSet.

• The XSet that was opened in readonly mode.

• The XSet was opened in restricted mode and one or more binding fields have been created,
modified, or deleted, or one or more fields have been changed from binding to nonbinding (or vice
versa).

• The XSet is not valid, or has been modified in an invalid way (e.g., a field does not have a valid
type).

• The XSet contains a running job (see Section Section 5.3.10.1, “Jobs”) and the XAM Storage
System does not support committing running jobs.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.
100 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• The fourth argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method is an asynchronous version of XSet.commit. See Section 5.3.7.1, “XSet_Commit” for
additional information.

Concurrency requirements:

This method is thread safe. It is the responsibility of the application to ensure that the callback is coded in
a thread-safe manner.

Blocking:

This method returns immediately. For applications that wish to use a blocking version of this method, refer
to XSet_Commit.

5.3.10.3 Asynchronous Operations Management
Asynchronous operations are in one of two states: pending and completed. When the operation is first
initiated, it is in the pending state. Because the operation has not completed, it is only possible to query
whether the operation has completed, retrieve the XOPID that was specified when the operation was
initiated, and to halt the operation.

5.3.10.3.1XAsync_Halt

Syntax prototype:

xam_status
XAsync_Halt (const xasync_handle inHandle);

Parameters:

• inHandle is an xasync_handle.

Error conditions:

• The first argument is not a valid xasync_handle.

Description:

This method stops the execution of the operation associated with the Async instance. It may be used at
any time.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 101

Public C API Reference © SNIA
Blocking:

This method will return immediately.

5.3.10.3.2XAsync_IsComplete

Syntax prototype:

xam_status
XAsync_IsComplete (const xasync_handle inHandle,
 xam_boolean* const outIsComplete);

Parameters:

• inHandle is an xasync_handle.

• outIsComplete is a reference to valid storage for a xam_boolean. On return, this value will be set
to TRUE if the operation has completed, FALSE otherwise. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

Description:

This method retrieves the completed state of the operation associated with the Async instance. It may be
used at any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

5.3.10.3.3XAsync_GetXOPID

Syntax prototype:

xam_status
XAsync_GetXOPID (const xasync_handle inHandle,
 XOPID* const outXOPID);

Parameters:

• inHandle is an xasync_handle.

• outXOPID is a reference to valid storage for a XOPID. On return, it is set to the value of the
XOPID. The value that is passed in is not used and is overwritten with the result.
102 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• The operation was programmatically halted.

Description:

This method retrieves the XOPID of the operation associated with the Async instance. It may be used at
any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

5.3.10.3.4XAsync_GetStatus

Syntax prototype:

xam_status
XAsync_GetStatus (const xasync_handle inHandle,
 xam_status* const outStatus);

Parameters:

• inHandle is an xasync_handle.

• outStatus is a reference to valid storage for a xam_status. On return, this value will be set to the
status if the operation has completed. The value that is passed in is not used and is overwritten
with the result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• The operation has not transitioned to the completed state.

• The operation was programmatically halted.

Description:

This method retrieves the xam_status of the operation associated with the Async instance. It may be used
after the operation has transitioned to the completed state.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 103

Public C API Reference © SNIA
Blocking:

This method will return immediately.

5.3.10.3.5XAsync_GetXSet

Syntax prototype:

xam_status
XAsync_GetXSet (const xasync_handle inHandle,
 xset_handle* const outXSet);

Parameters:

• inHandle is an xasync_handle.

• outXSet is a reference to valid storage for a xam_handle. On return, this value will be set to the
xset_handle associated with the operation. The value that is passed in is not used and is
overwritten with the result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• There is no xset_handle associated with the operation.

• The operation was programmatically halted.

Description:

This method retrieves the xset_handle of the operation associated with the Async instance. It may be used
at any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

5.3.10.3.6XAsync_GetXStream

Syntax prototype:

xam_status
XAsync_GetXStream (const xasync_handle inHandle,
 xstream_handle* const outXStream);

Parameters:

• inHandle is an xasync_handle.
104 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• outXStream is a reference to valid storage for a xam_handle. On return, this value will be set to the
xstream_handle associated with the operation. The value that is passed in is not used and is
overwritten with the result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• There is no xstream_handle associated with the operation.

• The operation was programmatically halted.

Description:

This method retrieves the xstream_handle of the operation associated with the Async instance. It may be
used at any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

5.3.10.3.7XAsync_GetXUID

Syntax prototype:

xam_status
XAsync_GetXUID (const xasync_handle inHandle,
 xam_xuid* const outXUID);

Parameters:

• inHandle is an xasync_handle.

• outXUID is a reference to valid storage for a XUID. On return, this value will be set to the XUID
associated with the operation. The value that is passed in is not used and is overwritten with the
result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• There is no XUID associated with the operation.

• The operation was programmatically halted.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 105

Public C API Reference © SNIA
Description:

This method retrieves the xset_handle of the operation associated with the Async instance. It may be used
at any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

5.3.10.3.8XAsync_GetBytesRead

Syntax prototype:

xam_status
XAsync_GetBytesRead (const xasync_handle inHandle,
 xam_int* const outBytesRead);

Parameters:

• inHandle is an xasync_handle.

• outBytesRead is a reference to valid storage for a xam_int. On return, this value will be set to the
number of bytes read by the operation, zero if no data has been read or if the operation does not
read bytes. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• The operation was programmatically halted.

Description:

This method retrieves the number of bytes read by the operation associated with the Async instance. Not
all operations read bytes, and for those operations it will always be set to zero. It may be used at any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

5.3.10.3.9XAsync_GetBytesWritten

Syntax prototype:

xam_status
XAsync_GetBytesWritten (const xasync_handle inHandle,
106 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
 xam_int* const outBytesWritten);

Parameters:

• inHandle is an xasync_handle.

• outBytesWritten is a reference to valid storage for a xam_int. On return, this value will be set to the
number of bytes written by the operation, zero if no data has been written or if the operation does
not write bytes. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• The operation was programmatically halted.

Description:

This method retrieves the number of bytes written by the operation associated with the Async instance.
Not all operations write bytes, and for those operations it will always be set to zero. It may be used at any
time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

5.3.10.3.10XAsync_Close

Syntax prototype:

xam_status
XAsync_Close (const xasync_handle inHandle);

Parameters:

• inHandle is an xasync_handle.

Error conditions:

• The first argument is not a valid xasync_handle.

• The operation has not transitioned to the completed state.

Description:

This method releases the resources of the operation associated with the Async instance and of the Async
instance itself. It may be used after the operation has transitioned to the completed state.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 107

Public C API Reference © SNIA
Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

5.4 Fields
This section contains an informative summary of the standard fields used in the C API. For a complete
description of all fields and their semantics, refer to the XAM Architecture Specification [XAM-ARCH].

5.4.1 XAM Library fields

Table 2 lists the fields that are available on the XAM Library object:

• .xam.apiLevel: used to indicate which version of the XAM API is implemented (e.g. 1.0.0).

• .xam.identity: indicates the origin of the XAM Library (e.g. org.snia). It is intended for informational
use; applications should not code specific behavior with respect to this value.

• .xam.log.append: indicates whether to append to an existing log file (TRUE) or overwrite
(FALSE). The default value is FALSE.

• .xam.log.level: indicates the current level of library logging. This controls what type of information
is logged. Applications may set this value to control the log.

• .xam.log.max.rollovers: indicated the number of previous log files to retain when starting a new
log file. The default value is 1.

• .xam.log.max.size: indicates the maximum size in bytes that a log file may reach before a new log
file is started. The default value is 1GB (2^30 = 1,073,741,824 bytes).

• .xam.log.path: indicates the path of the file to write the log into.

Table 2 – XAM Library fields

Field name stype MIME Type

.xam.apiLevel xam_string application/vnd.snia.xam.string

.xam.identity xam_string application/vnd.snia.xam.string

.xam.log.append xam_boolean application/vnd.snia.xam.boolean

.xam.log.level xam_string application/vnd.snia.xam.string

.xam.log.max.rollovers xam_int application/vnd.snia.xam.int

.xam.log.max.size xam_int application/vnd.snia.xam.int

.xam.log.path xam_string application/vnd.snia.xam.string

.xam.log.verbosity xam_string application/vnd.snia.xam.string

.xam.vim.list.<name> xam_string application/vnd.snia.xam.string
108 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• .xam.log.verbosity: The higher the value, the more detail is logged. Applications may set this
value to control the log.

• .xam.vim.list.<name>: .xam.vim.list. is a prefix for properties listing the names of VIMs that have
already been discovered by the XAM Library.

5.4.2 XSystem fields

Table 3 lists the fields that are available on XSystem instances:

• .xsystem.identity: holds the vendor identity of the XSystem instance.

Table 3 – XSystem fields

Field name stype MIME Type

.xsystem.identity xam_string application/vnd.snia.xam.string

.xsystem.time xam_datetime application/vnd.snia.xam.datetime

.xsystem.limits.maxFieldsPerXSet xam_int application/vnd.snia.xam.int

.xsystem.limits.maxSizeOfXStream xam_int application/vnd.snia.xam.int

.xsystem.auth.SASLmechanism.default xam_string application/vnd.snia.xam.string

.xsystem.auth.SASLmechanism.list.<mechanism> xam_boolean application/vnd.snia.xam.boolean

.xsystem.auth.granule.list.<granule> xam_string application/vnd.snia.xam.string

.xsystem.auth.identity.authentication xam_string application/vnd.snia.xam.string

.xsystem.auth.identity.authorization xam_string application/vnd.snia.xam.string

.xsystem.auth.expiration xam_datetime application/vnd.snia.xam.datetime

.xsystem.job.list.<name> xam_string application/vnd.snia.xam.string

.xsystem.job.commit.supported xam_boolean application/vnd.snia.xam.boolean

.xsystem.job.xam.job.query.continuance.supported xam_boolean application/vnd.snia.xam.boolean

.xsystem.job.xam.job.query.level1.supported xam_boolean application/vnd.snia.xam.boolean

.xsystem.job.xam.job.query.level2.supported xam_boolean application/vnd.snia.xam.boolean

.xsystem.deletion.autodelete xam_boolean application/vnd.snia.xam.boolean

.xsystem.deletion.shred xam_boolean application/vnd.snia.xam.boolean

.xsystem.management.policy.list.<name>

.xsystem.management.policy.default

.xsystem.deletion.autodelete.policy.list.<name>

.xsystem.deletion.shred.policy.list.<name>

.xsystem.storage.policy.list.<name>

.xsystem.retention.duration.policy.list.<name>

.xsystem.retention.enabled.policy.list.<name>
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 109

Public C API Reference © SNIA
• .xsystem.time: holds the current time of the XSystem instance.

• .xsystem.limits.maxFieldsPerXSet: holds the maximum number of fields that may be created in
an XSet.

• .xsystem.limits.maxSizeOfXStream: holds the maximum size of an XStream.

• .xsystem.auth.SASLmechanism.default: holds the default SASL mechanism for the connected
XSystem.

• .xsystem.auth.SASLmechanism.list.<mechanism>: .xsystem.auth.SASLmechanism.list. is a
prefix for properties listing the names of supported SASL mechanisms.

• .xsystem.auth.granule.list.<granule>: .xsystem.auth.granule.list. is a prefix for properties listing
the names of the auth granules.

• .xsystem.auth.identity.authentication: holds the authentication id.

• .xsystem.auth.identity.authorization: holds the authorization id.

• .xsystem.job.list.<name>: .xsystem.job.list. is a prefix for properties listing the names of
supported jobs.

• .xsystem.job.xam.job.query.commit.supported: TRUE if xsystem supports commits of running
queries.

• .xsystem.job.xam.job.query.continuance.supported: TRUE if xsystem supports query that
continue while disconnected.

• .xsystem.job.job.xam.job.query.level1.supported: TRUE if xsystem supports level 1 query.

• .xsystem.job.job.xam.job.query.level2.supported: TRUE if xsystem supports level 2 query.

• .xsystem.deletion.autodelete: TRUE if xsystem supports autodelete.

• .xsystem.deletion.shred: TRUE if xsystem supports shred.

• .xsystem.management.policy.list.<name>: a prefix for properties listing the names of
management policies.

• .xsystem.management.policy.default: holds the default management policy.

• .xsystem.deletion.autodelete.policy.list.<name>: a prefix for properties listing the names of
autodelete policies.

• .xsystem.deletion.shred.policy.list.<name>: a prefix for properties listing the names of shred
policies.

• .xsystem.storage.policy.list.<name>:“ a prefix for properties listing the names of storage policies.

• .xsystem.retention.duration.policy.list.<name>: a prefix for properties listing the names of
duration policies.

• .xsystem.retention.enabled.policy.list.<name>: a prefix for properties listing the names of event
retention policies.
110 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
5.4.3 XSet fields

Table 4 lists the fields that are available on all XSet instances:

• .xset.time.creation: holds the time at which the XSet was created.

• .xset.time.xuid: holds the time at which the XUID was assigned to the XSet.

• .xset.time.commit: holds the time at which the XSet was last modified.

• .xset.time.access: holds the time at which the XSet was last opened or committed.

• .xset.time.residency: holds the time at which the XSet was originally committed.

• .xset.dirty: TRUE when the XSet instance has been modified relative to the XSet.

• .xset.xuid: holds the XUID of the XSet. If the XSet has not been committed or if a binding
modification has been made, this field will not be present.

• .xset.management.policy: determines XSet retention time criteria, autodelete, and shred
behavior in the absence of both value and policy management properties.

• .xset.retention.base.enabled: used to determine if the retention information is valid and retention
is active. This should always be set to true in an XSet.

• .xset.retention.base.duration: used to determine the value of XSet base retention duration.

Table 4 – XSet fields

Field name stype MIME Type

.xset.time.creation xam_datetime application/vnd.snia.xam.datetime

.xset.time.xuid xam_datetime application/vnd.snia.xam.datetime

.xset.time.commit xam_datetime application/vnd.snia.xam.datetime

.xset.time.access xam_datetime application/vnd.snia.xam.datetime

.xset.time.residency xam_datetime application/vnd.snia.xam.datetime

.xset.dirty xam_boolean application/vnd.snia.xam.boolean

.xset.xuid XUID application/vnd.snia.xam.xuid

.xset.management.policy xam_string application/vnd.snia.xam.string

.xset.retention.base.enabled xam_boolean application/vnd.snia.xam.boolean

.xset.retention.base.duration xam_int application/vnd.snia.xam.int

.xset.retention.base.duration.policy xam_string application/vnd.snia.xam.string

.xset.retention.base.starttime xam_datetime application/vnd.snia.xam.datetime

.xset.deletion.autodelete.policy xam_string application/vnd.snia.xam.string

.xset.deletion.shred.policy xam_boolean application/vnd.snia.xam.boolean

.xset.storage.policy xam_string application/vnd.snia.xam.string
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 111

Public C API Reference © SNIA
• .xset.retention.base.duration.policy: used to determine the value of XSet base retention
duration in the absence of the .xset.retention.base.duration property.

• .xset.retention.base.starttime: holds the time awhich retention starts.

• .xset.deletion.autodelete.policy: determines the actual value of XSet autodelete in the absence
of the .xset.deletion.autodelete property.

• .xset.deletion.shred.policy: determines how XSet and child XStreams are handled after removal.

• .xset.storage.policy: determines how to manage an XSet with respect to storage management
capabilities that are outside the scope of XAM, e.g., storage performance, resiliency, and
virtualization.

5.4.4 Job fields

Table 5 lists the standard job fields used by all jobs:

• .xam.job.command: holds the job name. Note that this job name is used as a field prefix for all job
specific fields

• .xam.job.status: holds the status of the job (either OK or ERROR).

• .xam.job.error: holds the error string of the job in cases where the status is ERROR. This field is
not present when the status is OK.

5.4.5 Query job fields

Table 6 lists the fields that are used to control the query job:

• xam.job.query.command: holds the XAM QL string used to run the query.

• xam.job.query.level: holds the query level used at the time the query started.

• xam.job.query.results: an XStream that holds the results of the query.

Table 5 – Job fields

Field name stype MIME Type

.xam.job.command xam_string application/vnd.snia.xam.string

.xam.job.status xam_string application/vnd.snia.xam.string

.xam.job.error xam_string application/vnd.snia.xam.string

Table 6 – Query job fields

Field name stype MIME Type

xam.job.query.command - text/plain

xam.job.query.level xam_string application/vnd.snia.xam.xuid

xam.job.query.results - application/vnd.snia.query.xuid_list

xam.job.query.results.count xam_int application/vnd.snia.xam.double
112 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
• xam.job.query.results.count: holds the number of results in the results XStream.

5.5 Using the XAM API – concrete samples
The method sequences below provide example implementations for the abstract samples presented in the
previous chapter. These examples are for the purpose of illustrating the sequence of methods, and for
clarity ignore such critical concepts as proper error handling.

5.5.1 Create an XSet

This snippet will create an XSet that contains a person’s name and a picture of that person. It does not
detail how the name, the jpeg buffer and the number of bytes in that buffer are set.

xsystem_handle xsys = (xsystem_handle)0;
XAMLibrary_Connect(“myXRI”, &xsys);
if (xsys)
{

xset_handle xset = (xset_handle)0;
XSystem_CreateXSet(xsys, “unrestricted”, &xset);
if (xset)
{

// write the name of the person
xam_string name; // should contain the name
XAM_CreateString(xset, “myName”, true, name);

// write a buffer containing a jpeg image
char* buffer; // should point to the buffer to write
xam_int bcount; // should contain the number of bytes to write
xam_int offset = 0;
xstream_handle xstream = (xstream_handle)0;
XAM_CreateXStream(xset, “myPic”, true, “image/jpeg”, &xstream);
if (xstream)
{

xam_int nWritten = 0;
while (bcount > 0)
{

XStream_Write(xstream, &buffer[offset], bcount,
 &nWritten);
bcount -= nWritten;
offset += nWritten;

}
XStream_Close(xstream);

}

// commit the XSet
XUID myxuid;
XSet_Commit(xset, &myxuid);

// release the resources of the XSet instance
XSet_Close(xset);

}

// release the resources of the XSystem instance
XSystem_Close(xsys);

}

XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 113

Public C API Reference © SNIA
5.5.2 Create an XSet - alternate asynchronous method

This example will illustrate how an application can specify a callback to asynchronously handle the
operation. The callback is outlined below:

// global info
xam_status myStatus;
XUID myXUID;

// the callback itself
void
myCallback (const xasync_handle inHandle)
{

if (XAsync_IsComplete(inHandle))
{

XAsync_GetStatus(inHandle, &myStatus);
XAsync_GetXUID(inHandle, &myXUID);

}
}

This callback will be passed as the callback method for the commit. Note that the only difference from the
previous example is the commit method itself.

xsystem_handle xsys = (xsystem_handle)0;
XAMLibrary_Connect(“myXRI”, &xsys);
if (xsys)
{

xset_handle xset = (xset_handle)0;
XSystem_CreateXSet(xsys, “unrestricted”, &xset);
if (xset)
{

// write the name of the person
xam_string name; // should contain the name
XAM_CreateString(xset, “myName”, true, name);

// write a buffer containing a jpeg image
char* buffer; // should point to the buffer to write
xam_int bcount; // should contain the number of bytes to write
xam_int offset = 0;
xstream_handle xstream = (xstream_handle)0;
XAM_CreateXStream(xset, “myPic”, true, “image/jpeg”, &xstream);
if (xstream)
{

xam_int nWritten = 0;
while (bcount > 0)
{

XStream_Write(xstream, &buffer[offset], bcount,
 &nWritten);
bcount -= nWritten;
offset += nWritten;

}
XStream_Close(xstream);

}

// commit the XSet
xasync_handle async;
XSet_AsyncCommit(xset, “myCommit”, myCallback, &async);

// release the resources of the XSet instance
XSet_Close(xset);

}

114 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
// release the resources of the XSystem instance
XSystem_Close(xsys);

}

5.5.3 Read an XSet

This snippet will open an XSet. It will read fields containing the name and a picture of the named person. It
assumes that the appropriate fields are present on the XSet.

xsystem_handle xsys = (xsystem_handle)0;
XAMLibrary_Connect(“myXRI”, &xsys);
if (xsys)
{

xset_handle xset = (xset_handle)0;
XSystem_OpenXSet(xsys, “readonly”, &xset);
if (xset)
{

// read the name of the person
xam_string name;
XAM_GetString(xset, “myName”, name);

// read the buffer containing the image
char buffer[1000]; // assume image less than 1000 bytes
xam_int offset = 0;
xam_int buflen = 1000;
xstream_handle xstream = (xstream_handle)0;
XAM_OpenXStream(xset, “myPic”, “readonly”, &xstream);
if (xstream)
{

xam_status stat = (xam_status)0;
while (stat == 0)
{

xam_int nRead = 0;
stat = XStream_Read(xstream, &buffer[offset], buflen,
 &nRead);
if (nRead == (-1))

break;
else
{

offset += nRead;
buflen -= nRead;

}
}
XStream_Close(xstream);

}
// release the resources of the XSet instance
XSet_Close(xset);

}

// release the resources of the XSystem instance
XSystem_Close(xsys);

}

5.5.4 Query an XSet using job methods

This snippet will find the XSet containing the information for J. Smith. It will return the image (note that it
assumes that the size of the image is less than 1000 bytes).
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 115

Public C API Reference © SNIA
xsystem_handle xsys = (xsystem_handle)0;
XAMLibrary_Connect(“myXRI”, &xsys);
if (xsys)
{

// get the XUID to read the image from
XUID jsmithXUID = (XUOID)0;
xset_handle xset = (xset_handle)0;
XSystem_CreateXSet(xsys, “unrestricted”, &xset);
if (xset)
{

// create the job command
xam_string cmd;
strcpy(cmd, “.xam.job.query”);
XAM_CreateString(xset, “org.snia.xam.job.command”, true, cmd);

// create the query specific XAMQL string
xam_string xamql;
sprintf(xamql,“SELECT .xset.xuid WHERE myName = /”J. Smith/””);
XAM_CreateString(xset, “.xam.job.query.command”, true, xamql);

// submit the job
XSet_SubmitJob();

// read the results (assume there will be a XUID)
char* xbuffer = (char*)jsmithXUID;
xam_int xbytes = 0;
xstream_handle xstream = (xstream_handle)0;
XAM_OpenXStream(xset, “myPic”, “readonly”, &xstream);
if (xstream)
{

xam_status stat = (xam_status)0;
while (stat == 0)
{

xam_int nRead = 0;
stat = XStream_Read(xstream,
 &xbuffer[xbytes], 80-xbytes,
 &nRead);
if (nRead == (-1))

break;
else

xbytes += nRead;
if (xbytes >= 80)

break;
}
XStream_Close(xstream);

}

// release the resources of the XSet instance
XSet_Close(xset);

}

// read the image from the xset (assume the XUID read succeeded)
XSystem_CreateXSet(xsys, “unrestricted”, &xset);
if (xset)
{

// read the buffer containing the image
char buffer[1000]; // assume image less than 1000 bytes
xam_int offset = 0;
xam_int buflen = 1000;
xstream_handle xstream = (xstream_handle)0;
116 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Public C API Reference
XAM_OpenXStream(xset, “myPic”, “readonly”, &xstream);
if (xstream)
{

xam_status stat = (xam_status)0;
while (stat == 0)
{

xam_int nRead = 0;
stat = XStream_Read(xstream, &buffer[offset], buflen,
 &nRead);
if (nRead == (-1))

break;
else
{

offset += nRead;
buflen -= nRead;

}
}
XStream_Close(xstream);

}

// release the resources of the XSet instance
XSet_Close(xset);

}

// release the resources of the XSystem instance
XSystem_Close(xsys);

}

XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 117

Private (VIM) C API Reference © SNIA
6 Private (VIM) C API Reference
The private interfaces are defined to allow the XAM Library a standard way to interact with VIMs (Vendor
Interface Modules). Applications should avoid coding to these internal C interfaces, as they are intended
for use by VIM programmers. The application programmer should view the VIM interfaces as an internal
implementation detail; coding to these private APIs will result in non-portable code.

6.1 XAM Library interaction with the VIM
The XAM Library provides the public interfaces intended for use by application programmers. The purpose
of the XAM Library is to route the requests that are made through the standard public API to the underlying
VIM APIs. The XAM Library is also responsible for loading the appropriate VIM that is needed to access a
particular XAM Storage System. Thus, a particular XSystem is defined by the XAM Library-driven coupling
of the VIM, the XAM Storage System components, and whatever configuration is done by storage system
administrators.

The XAM Library decides how to dispatch the various field methods, based on the type of object referred to
by the xam_handle_t. XSystem or XSet references are dispatched to the appropriate VIM; other
references are handled by the XAM Library, itself, without referring to a VIM. This same pattern is followed
for creating XIterators and for handling generation of error tokens from xam_status. Some field methods
are only appropriate for XSets. The XAM Library is also responsible for handling these cases and not
dispatching those requests that have semantic errors.

As noted above, the XAM Library is also responsible for locating and loading the VIM when a connect
request is made. The XAM Library will preprocess the XRI to determine if the vimname is specified in the
XRI. If it is specified, the XAM Library will load the specified VIM (or return an error if that VIM cannot be
found or cannot be loaded). If a vimname is not provided, the XAM Library will search for an appropriate
VIM and load the first VIM that meets the requirements of the XRI.

6.2 Methods

6.2.1 Error token generation

The XAM Library is directly responsible for token generation requests for all standard xam_status (i.e., it
shall not invoke VIM methods). The VIM method defined in this section shall only be invoked when the
application provides an XSystem handle, and the xam_status is vendor specific.

6.2.1.1 VIM_XSystem_GetErrorToken

Syntax prototype:

Xam_boolean
VIM_XSystem_GetErrorToken (const xsystem_handle inHandle,
 const xam_status inStatus,
 xam_string* const outToken);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference.

• inStatus is a valid xam_status.

• outToken is a reference to valid storage for a xam_string. The value that is passed in is not used
and is overwritten with the result.
118 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid xam_status.

• The third argument is NULL.

Description:

This method will generate an error token from the xam_status. This method is only responsible for
generating tokens from xam_status that are vendor specific.

This method does not require the XSystem to be authenticated. It will also work on an XSystem that is in a
corrupted or aborted state. It returns TRUE on success and FALSE on failure.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.2 Field iteration

The XAM Library is directly responsible for creating an XIterator when the specified xam_handle_t refers to
the XAM_HANDLE (i.e., it shall not invoke VIM methods). The VIM methods defined in this section as
creating field iterators shall only be invoked when the application provides an XSystem handle or an XSet
handle. The other methods in this section are called from the matching public API call (as defined by the
method name without the “VIM_” prefix).

6.2.2.1 VIM_XSystem_OpenFieldIterator
 xam_status

VIM_XSystem_OpenFieldIterator (const xsystem_handle inHandle,
 const xam_string inPattern,
 xiterator_handle* const outIterator);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object contains the
fields to be enumerated.

• inPattern is a valid xam_string containing a valid, NULL-terminated, UTF-8 byte sequence. The
pattern in this xam_string will be used to filter the fields which will be enumerated. Those fields that
do not belong with the specified pattern will not be included in the enumeration. The pattern is very
simple; the byte sequence is treated as an explicit prefix. If the beginning of a field name does not
match the exact bit sequence of the specified pattern, it will be filtered out of the results.

• outIterator is a reference to valid storage for an xiterator_handle. The value that is passed in is not
used and is overwritten with the result.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 119

Private (VIM) C API Reference © SNIA
Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid prefix (invalid UTF-8).

• The third argument is NULL.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method acts as a factory interface, creating an XIterator from an XSystem. This iterator is used to
discover the field names of fields on the XSystem. Only those fields whose names begin with the distinct
bit sequence as specified in the pattern will be included in the enumeration.

Resources associated with the XIterator must be explicitly released. Once the resources are released, the
XIterator will no longer be valid.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.2.2 VIM_XSet_OpenFieldIterator

Syntax prototype:

xam_status
VIM_XSet_OpenFieldIterator (const xset_handle inHandle,
 const xam_string inPattern,
 xiterator_handle* const outIterator);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object contains the fields to be
enumerated.

• inPattern is a valid xam_string containing a valid, NULL terminated UTF-8 byte sequence. The
pattern in this xam_string will be used to filter the fields which will be enumerated – those fields
that do not being with the specified pattern will not be included in the enumeration. The pattern is
very simple – the byte sequence is treated as an explicit prefix, if the beginning of a field name
does not match the exact bit sequence of the specified pattern it will be filtered out of the results.

• outIterator is a reference to valid storage for an xiterator_handle. The value that is passed in is not
used and is overwritten with the result

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid prefix (invalid UTF-8).
120 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
• The third argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method acts as a factory interface, creating an XIterator from an XSet. This iterator is used to discover
the field names of fields on the XSet. Only those fields whose names begin with the distinct bit sequence
as specified in the pattern will be included in the enumeration.

Resources associated with the XIterator must be explicitly released. Once the resources are released, the
XIterator will no longer be valid.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.2.3 VIM_XIterator_Next

Syntax prototype:

xam_status
VIM_XIterator_Next (const xiterator_handle inHandle,
 xam_string* const outName);

Parameters:

• inHandle is a valid xiterator_handle.

• outName is a reference to valid storage for a xam_string. The result is the name of the field
following the current cursor (e.g., the field name of the field at the current cursor/position in the
iteration). The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xiterator_handle.

• The second argument is NULL.

• Undefined errors will occur, if the resources associated with the XIterator have already been
released.

Description:

This method copies the field name of the field at the current cursor of the iteration into the provided
storage. The cursor is then advanced to the next field. On reading past the last field, an empty string will be
returned.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 121

Private (VIM) C API Reference © SNIA
Note: This method will only be invoked if the XAM Library cannot handle the request (i.e., when the
XIterator was created against the XAM Library).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.2.4 VIM_XIterator_HasNext

Syntax prototype:

xam_status
VIM_XIterator_HasNext (const xiterator_handle inHandle,
 xam_boolean* const outHasNext);

Parameters:

• inHandle is a valid xiterator_handle.

• outHasNext is a reference to valid storage for a xam_boolean. It is set to TRUE if there are more
fields following the current cursor (e.g., after the field at the current cursor/position in the iteration).
The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xiterator_handle.

• The second argument is NULL.

• Undefined errors will occur if the resources associated with the XIterator have already been
released.

Description:

This method indicates of there are fields following the field at the current cursor of the iteration into the
provided storage.

Note: This method will only be invoked if the XAM library cannot handle the request (i.e. when the
XIterator was created against the XAM library).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
122 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.2.5 VIM_XIterator_Close

Syntax prototype:

xam_status
VIM_XIterator_Close (xiterator_handle inHandle);

Parameters:

• inHandle is a valid xiterator_handle.

Error conditions:

• The first argument is not a valid xiterator_handle.

• Undefined errors will occur, if the resources associated with the XIterator have already been
released.

• The iterator is not an XSet or XSystem field iterator.

Description:

This method releases the resources associated with an open XIterator. After this method is called, the
XIterator may no longer be used.

Note: This method will only be invoked if the XAM Library cannot handle the request (i.e., when the
XIterator was created against the XAM Library).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3 Field manipulation

The XAM Library is directly responsible for manipulation of fields when the specified xam_handle_t refers
to the XAM_HANDLE (i.e., it shall not invoke VIM methods to manipulate fields that are on the XAM Library
object). The VIM methods defined in this section shall only be invoked when the application provides an
XSystem handle or an XSet handle (i.e., when the fields reside on an XSystem or an XSet, respectively).

6.2.3.1 XSystem generic field methods

6.2.3.1.1 VIM_XSystem_ContainsField

Syntax prototype:

xam_status
VIM_XSystem_ContainsField (const xsystem_handle inHandle,
 const xam_string inName,
 xam_boolean* const outContained);
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 123

Private (VIM) C API Reference © SNIA
Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference.

• inName is a xam_string containing the name of the field.

• outContained is a reference to valid storage for a xam_boolean. It is set to TRUE if the field is
contained in the XSystem. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The third argument is NULL.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will set the provided Boolean to TRUE if the field is contained in the XSystem. Otherwise, it
will be set to FALSE.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.1.2 VIM_XSystem_GetFieldType

Syntax prototype:

xam_status
VIM_XSystem_GetFieldType (const xsystem_handle inHandle,
 const xam_string inName,
 xam_string* const outType);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object contains the
named field.

• inName is a xam_string containing the name of the field to manipulate.

• outType is a reference to valid storage for a xam_string. The result is the MIME type of the named
field in the object. The value that is passed in is not used and is overwritten with the result.
124 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will copy the MIME type of the named field into the provided xam_string.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.1.3 VIM_XSystem_GetFieldLength

Syntax prototype:

xam_status
VIM_XSystem_GetFieldLength (const xsystem_handle inHandle,
 const xam_string inName,
 xam_int* const outLength);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object contains the
named field.

• inName is a xam_string containing the name of the field to manipulate.

• outLength is a reference to valid storage for a xam_int. The result is the number of bytes of the
value of the named field in the object. The value that is passed in is not used and is overwritten
with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 125

Private (VIM) C API Reference © SNIA
• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will copy the length of the named field into the provided xam_int.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.1.4 VIM_XSystem_GetFieldReadOnly

Syntax prototype:

xam_status
VIM_XSystem_GetFieldReadOnly (const xsystem_handle inHandle,
 const xam_string inName,
 xam_boolean* const outReadOnly);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object contains the
named field.

• inName is a xam_string containing the name of the field to manipulate.

• outReadOnly is a reference to valid storage for a xam_boolean. The result is TRUE, if the readonly
attribute of the named field is TRUE, or FALSE otherwise. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will set the xam_boolean value to TRUE, if the readonly attribute of the named field is TRUE,
or to FALSE otherwise.
126 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.1.5 VIM_XSystem_DeleteField

Syntax prototype:

xam_status
VIM_XSystem_DeleteField (const xsystem_handle inHandle,
 const xam_string inName);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object contains the
named field.

• inName is a xam_string containing the name of the field to delete.

Error conditions:

• The first argument is not a valid xystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will remove a field from the XSystem.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 127

Private (VIM) C API Reference © SNIA
6.2.3.2 XSet generic field methods

6.2.3.2.1 VIM_XSet_ContainsField

Syntax prototype:

xam_status
VIM_XSet_ContainsField (const xset_handle inHandle,
 const xam_string inName,
 xam_boolean* const outContained);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference.

• inName is a xam_string containing the name of the field.

• outContained is a reference to valid storage for a xam_boolean. It is set to TRUE, if the field is
contained in the XSet. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The third argument is NULL.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will set the provided Boolean to TRUE if the field is contained in the XSet. Otherwise it will be
set to FALSE.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.2.2 VIM_XSet_SetFieldAsBinding

Syntax prototype:

xam_status
VIM_XSet_SetFieldAsBinding (const xset_handle inHandle,
 const xam_string inName);
128 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object contains the named
field.

• inName is a xam_string containing the name of the field to manipulate.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The xam_handle_t does not contain an XSet.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet that is in a corrupt state.

• The xam_handle_t contains an XSet that is in an abandoned state.

Description:

This method will set the binding attribute of a field to TRUE.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.2.3 VIM_XSet_SetFieldAsNonbinding

Syntax prototype:

xam_status
VIM_XSet_SetFieldAsNonbinding (const xset_handle inHandle,
 const xam_string inName);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object contains the named
field.

• inName is a xam_string containing the name of the field to manipulate.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 129

Private (VIM) C API Reference © SNIA
Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The xam_handle_t does not contain an XSet.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet that is in a corrupt state.

• The xam_handle_t contains an XSet that is in an abandoned state.

Description:

This method will set the binding attribute of a field to FALSE.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.2.4 VIM_XSet_GetFieldType

Syntax prototype:

xam_status
VIM_XSet_GetFieldType (const xset_handle inHandle,
 const xam_string inName,
 xam_string* const outType);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object contains the named
field.

• inName is a xam_string containing the name of the field to manipulate.

• outType is a reference to valid storage for a xam_string. The result is the MIME type of the named
field in the object. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.
130 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
• The third argument is NULL.

• The xset_handle contains an XSet and the XSet has an open import or export stream.

• The xset_handle contains an XSet that is in a corrupt state.

• The xset_handle contains an XSet that is in an aborted state.

Description:

This method will copy the MIME type of the named field into the provided xam_string.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.2.5 VIM_XSet_GetFieldLength

Syntax prototype:

xam_status
VIM_XSet_GetFieldLength (const xset_handle inHandle,
 const xam_string inName,
 xam_int* const outLength);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object contains the named
field.

• inName is a xam_string containing the name of the field to manipulate.

• outLength is a reference to valid storage for a xam_int. The result is the number of bytes of the
value of the named field in the object. The value that is passed in is not used and is overwritten
with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xset_handle contains an XSet and the XSet has an open import or export stream.

• The xset_handle contains an XSet that is in a corrupt state.

• The xset_handle contains an XSet that is in an aborted state.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 131

Private (VIM) C API Reference © SNIA
Description:

This method will copy the length of the named field into the provided xam_int.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.2.6 VIM_XSet_GetFieldBinding

Syntax prototype:

xam_status
VIM_XSet_GetFieldBinding (const xset_handle inHandle,
 const xam_string inName,
 xam_boolean* const outBinding);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object contains the named
field.

• inName is a xam_string containing the name of the field to manipulate.

• outBinding is a reference to valid storage for a xam_boolean. The result is TRUE if the binding
attribute of the named field is TRUE or FALSE otherwise. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xset_handle contains an XSet and the XSet has an open import or export stream.

• The xset_handle contains an XSet that is in a corrupt state.

• The xset_handle contains an XSet that is in an aborted state.

Description:

This method will set the xam_boolean value to TRUE, if the binding attribute of the named field is TRUE, or
to FALSE otherwise.

Concurrency requirements:

This method is thread safe.
132 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Blocking:

This method will block until complete.

6.2.3.2.7 VIM_XSet_GetFieldReadOnly

Syntax prototype:

xam_status
VIM_XSet_GetFieldReadOnly (const xset_handle inHandle,
 const xam_string inName,
 xam_boolean* const outReadOnly);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object contains the named
field.

• inName is a xam_string containing the name of the field to manipulate.

• outReadOnly is a reference to valid storage for a xam_boolean. The result is TRUE, if the readonly
attribute of the named field is TRUE, or FALSE otherwise. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The xset_handle contains an XSet and the XSet has an open import or export stream.

• The xset_handle contains an XSet that is in a corrupt state.

• The xset_handle contains an XSet that is in an aborted state.

Description:

This method will set the xam_boolean value to TRUE, if the readonly attribute of the named field is TRUE,
or to FALSE otherwise.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 133

Private (VIM) C API Reference © SNIA
6.2.3.2.8 VIM_XSet_DeleteField

Syntax prototype:

xam_status
VIM_XSet_DeleteField (const xset_handle inHandle,
 const xam_string inName);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object contains the named
field.

• inName is a xam_string containing the name of the field to delete.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The xam_handle_t contains an XSet was opened in readonly mode.

• The xam_handle_t contains an XSet was opened in restricted mode and the second argument
contains a name that refers to a binding field.

• The xset_handle contains an XSet and the XSet has an open import or export stream.

• The xset_handle contains an XSet that is in a corrupt state.

• The xset_handle contains an XSet that is in an aborted state.

Description:

This method will remove a field from the XSet.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
134 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.3 XSystem property field methods

6.2.3.3.1 VIM_XSystem_CreateBoolean

Syntax prototype:

xam_status
VIM_XSystem_CreateBoolean (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_boolean inValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_boolean containing the value to be stored.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is TRUE.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.boolean” on the
XSystem instance. Its name, value, and binding attributes will be set according to the user-provided
parameters.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 135

Private (VIM) C API Reference © SNIA
6.2.3.3.2 VIM_XSystem_CreateInt

Syntax prototype:

xam_status
VIM_XSystem_CreateInt (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_int inValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_int containing the value to be stored.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is TRUE.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.int” on the XSystem
instance. Its name, value, and binding attributes will be set according to the user-provided parameters.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
136 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.3.3 VIM_XSystem_CreateDouble

Syntax prototype:

xam_status
VIM_XSystem_CreateDouble (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_double inValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_double containing the value to be stored.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is TRUE.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.double” on the
XSystem instance. Its name, value, and binding attributes will be set according to the user-provided
parameters.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 137

Private (VIM) C API Reference © SNIA
6.2.3.3.4 VIM_XSystem_CreateXUID

Syntax prototype:

xam_status
VIM_XSystem_CreateXUID (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_xuid inValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_xuid containing the value to be stored.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is TRUE.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.xuid” on the XSystem
instance. Its name, value, and binding attributes will be set according to the user-provided parameters.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
138 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.3.5 VIM_XSystem_CreateString

Syntax prototype:

xam_status
VIM_XSystem_CreateString (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_string containing the value to be stored.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is TRUE.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.string” on the XSystem
instance. Its name, value, and binding attributes will be set according to the user-provided parameters.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 139

Private (VIM) C API Reference © SNIA
6.2.3.3.6 VIM_XSystem_CreateDatetime

Syntax prototype:

xam_status
VIM_XSystem_CreateDatetime (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_datetime inValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_datetime containing the value to be stored.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The third argument is TRUE.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.datetime” on the
XSystem instance. Its name, value, and binding attributes will be set according to the user-provided
parameters.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
140 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.3.7 VIM_XSystem_SetBoolean

Syntax prototype:

xam_status
VIM_XSystem_SetBoolean (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_boolean containing the new value to be stored.

Error conditions:

• The named field is not of type Boolean.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.boolean” on the
XSystem instance. Its value will be set according to the user-provided parameter.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.3.8 VIM_XSystem_SetInt

Syntax prototype:

xam_status
VIM_XSystem_SetInt (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_int inValue);
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 141

Private (VIM) C API Reference © SNIA
Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_int containing the new value to be stored.

Error conditions:

• The named field is not of type int.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.int” on the XSystem
instance. Its value will be set according to the user-provided parameter.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.3.9 VIM_XSystem_SetDouble

Syntax prototype:

xam_status
VIM_XSystem_SetDouble (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_double inValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_double containing the new value to be stored.
142 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Error conditions:

• The named field is not of type double.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.double” on the
XSystem instance. Its value will be set according to the user-provided parameter.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.3.10VIM_XSystem_SetXUID

Syntax prototype:

xam_status
VIM_XSystem_SetXUID (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_xuid inValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_xuid containing the new value to be stored.

Error conditions:

• The named field is not of type XUID.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 143

Private (VIM) C API Reference © SNIA
Description:

This method will change a property field with a type set to “application/vnd.snia.xam.xuid” on the XSystem
instance. Its value will be set according to the user-provided parameter.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.3.11VIM_XSystem_SetString

Syntax prototype:

xam_status
VIM_XSystem_SetString (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_string inValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_string containing the new value to be stored.

Error conditions:

• The named field is not of type string.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.string” on the
XSystem instance. Its value will be set according to the user-provided parameter.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
144 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.3.12VIM_XSystem_SetDatetime

Syntax prototype:

xam_status
VIM_XSystem_SetDatetime (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_datetime inValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_datetime containing the new value to be stored.

Error conditions:

• The named field is not of type datetime.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.datetime” on the
XSystem instance. Its value will be set according to the user-provided parameter.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.3.13VIM_XSystem_GetBoolean

Syntax prototype:

xam_status
VIM_XSystem_GetBoolean (const xsystem_handle inHandle,
 const xam_string inName,
 xam_boolean* const outValue);
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 145

Private (VIM) C API Reference © SNIA
Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_boolean. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type Boolean.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.boolean” on
the XSystem instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.3.14VIM_XSystem_GetInt

Syntax prototype:

xam_status
VIM_XSystem_GetInt (const xsystem_handle inHandle,
 const xam_string inName,
 xam_int* const outValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_int. The value of the named field is written into
this value. The value that is passed in is not used and is overwritten with the result.
146 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Error conditions:

• The named field is not of type int.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.int” on the
XSystem instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.3.15VIM_XSystem_GetDouble

Syntax prototype:

xam_status
VIM_XSystem_GetDouble (const xsystem_handle inHandle,
 const xam_string inName,
 xam_double* const outValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_double. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type double.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 147

Private (VIM) C API Reference © SNIA
• The third argument is NULL.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.double” on
the XSystem instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.3.16VIM_XSystem_GetXUID

Syntax prototype:

xam_status
VIM_XSystem_GetXUID (const xsystem_handle inHandle,
 const xam_string inName,
 xam_xuid* const outValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_xuid. The value of the named field is written into
this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type XUID.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.
148 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.xuid” on the
XSystem instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.3.17VIM_XSystem_GetString

Syntax prototype:

xam_status
VIM_XSystem_GetString (const xsystem_handle inHandle,
 const xam_string inName,
 xam_string* const outValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_string. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type string.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.string” on
the XSystem instance.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 149

Private (VIM) C API Reference © SNIA
Blocking:

This method will block until complete.

6.2.3.3.18VIM_XSystem_GetDatetime

Syntax prototype:

xam_status
VIM_XSystem_GetDatetime (const xsystem_handle inHandle,
 const xam_string inName,
 xam_datetime* const outValue);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_datetime. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type datetime.

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.datetime”
on the XSystem instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
150 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.4 XSet property field methods

6.2.3.4.1 VIM_XSet_CreateBoolean

Syntax prototype:

xam_status
VIM_XSet_CreateBoolean (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_boolean inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_boolean containing the value to be stored.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is being created as binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.boolean” on the XSet
instance. Its name, value, and binding attributes will be set according to the user-provided parameters.

Note: If binding, a new XSet is created and a new XUID will be assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 151

Private (VIM) C API Reference © SNIA
6.2.3.4.2 VIM_XSet_CreateInt

Syntax prototype:

xam_status
VIM_XSet_CreateInt (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_int inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_int containing the value to be stored.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is being created as binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.int” on the XSet
instance. Its name, value, and binding attributes will be set according to the user-provided parameters.

Note: If binding, a new XSet is created and a new XUID will be assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
152 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.4.3 VIM_XSet_CreateDouble

Syntax prototype:

xam_status
VIM_XSet_CreateDouble (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_double inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_double containing the value to be stored.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is being created as binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.double” on the XSet
instance. Its name, value, and binding attributes will be set according to the user-provided parameters.

Note: If binding, a new XSet is created and a new XUID will be assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 153

Private (VIM) C API Reference © SNIA
6.2.3.4.4 VIM_XSet_CreateXUID

Syntax prototype:

xam_status
VIM_XSet_CreateXUID (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_xuid inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_xuid containing the value to be stored.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is being created as binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.xuid” on the XSet
instance. Its name, value, and binding attributes will be set according to the user-provided parameters.

Note: If binding, a new XSet is created and a new XUID will be assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
154 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.4.5 VIM_XSet_CreateString

Syntax prototype:

xam_status
VIM_XSet_CreateString (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_string containing the value to be stored.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is being created as binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.string” on the XSet
instance. Its name, value, and binding attributes will be set according to the user-provided parameters.

Note: If binding, a new XSet is created and a new XUID will be assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 155

Private (VIM) C API Reference © SNIA
6.2.3.4.6 VIM_XSet_CreateDatetime

Syntax prototype:

xam_status
VIM_XSet_CreateDatetime (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_datetime inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inValue is a xam_datetime containing the value to be stored.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is being created as binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will create a property field with a type set to “application/vnd.snia.xam.datetime” on the XSet
instance. Its name, value, and binding attributes will be set according to the user-provided parameters.

Note: If binding, a new XSet is created and a new XUID will be assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
156 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.4.7 VIM_XSet_SetBoolean

Syntax prototype:

xam_status
VIM_XSet_SetBoolean (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_boolean containing the new value to be stored.

Error conditions:

• The named field is not of type Boolean.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.boolean” on the XSet
instance. Its value will be set according to the user-provided parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 157

Private (VIM) C API Reference © SNIA
6.2.3.4.8 VIM_XSet_SetInt

Syntax prototype:

xam_status
VIM_XSet_SetInt (const xset_handle inHandle,
 const xam_string inName,
 const xam_int inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_int containing the new value to be stored.

Error conditions:

• The named field is not of type int.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.int” on the XSet
instance. Its value will be set according to the user-provided parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
158 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.4.9 VIM_XSet_SetDouble

Syntax prototype:

xam_status
VIM_XSet_SetDouble (const xset_handle inHandle,
 const xam_string inName,
 const xam_double inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_double containing the new value to be stored.

Error conditions:

• The named field is not of type double.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.double” on the XSet
instance. Its value will be set according to the user-provided parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 159

Private (VIM) C API Reference © SNIA
6.2.3.4.10VIM_XSet_SetXUID

Syntax prototype:

xam_status
VIM_XSet_SetXUID (const xset_handle inHandle,
 const xam_string inName,
 const xam_xuid inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_xuid containing the new value to be stored.

Error conditions:

• The named field is not of type XUID.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.xuid” on the XSet
instance. Its value will be set according to the user-provided parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
160 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.4.11VIM_XSet_SetString

Syntax prototype:

xam_status
VIM_XSet_SetString (const xset_handle inHandle,
 const xam_string inName,
 const xam_string inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_string containing the new value to be stored.

Error conditions:

• The named field is not of type string.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.string” on the XSet
instance. Its value will be set according to the user-provided parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 161

Private (VIM) C API Reference © SNIA
6.2.3.4.12VIM_XSet_SetDatetime

Syntax prototype:

xam_status
VIM_XSet_SetDatetime (const xset_handle inHandle,
 const xam_string inName,
 const xam_datetime inValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inValue is a xam_datetime containing the new value to be stored.

Error conditions:

• The named field is not of type datetime.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is binding.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will change a property field with a type set to “application/vnd.snia.xam.datetime” on the XSet
instance. Its value will be set according to the user-provided parameter.

Note: If the field is binding, a new XSet is created and a new XUID will be assigned on a successful
commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
162 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.4.13VIM_XSet_GetBoolean

Syntax prototype:

xam_status
VIM_XSet_GetBoolean (const xset_handle inHandle,
 const xam_string inName,
 xam_boolean* const outValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_boolean. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type Boolean.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.boolean” on
the XSet instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 163

Private (VIM) C API Reference © SNIA
6.2.3.4.14VIM_XSet_GetInt

Syntax prototype:

xam_status
VIM_XSet_GetInt (const xset_handle inHandle,
 const xam_string inName,
 xam_int* const outValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_int. The value of the named field is written into
this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type int.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.int” on the
XSet instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
164 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.4.15VIM_XSet_GetDouble

Syntax prototype:

xam_status
VIM_XSet_GetDouble (const xset_handle inHandle,
 const xam_string inName,
 xam_double* const outValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_double. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type double.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.double” on
the XSet instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 165

Private (VIM) C API Reference © SNIA
6.2.3.4.16VIM_XSet_GetXUID

Syntax prototype:

xam_status
VIM_XSet_GetXUID (const xset_handle inHandle,
 const xam_string inName,
 xam_xuid* const outValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_xuid. The value of the named field is written into
this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type XUID.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.xuid” on the
XSet instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
166 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.4.17VIM_XSet_GetString

Syntax prototype:

xam_status
VIM_XSet_GetString (const xset_handle inHandle,
 const xam_string inName,
 xam_string* const outValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_string. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type string.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.string” on
the XSet instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 167

Private (VIM) C API Reference © SNIA
6.2.3.4.18VIM_XSet_GetDatetime

Syntax prototype:

xam_status
VIM_XSet_GetDatetime (const xset_handle inHandle,
 const xam_string inName,
 xam_datetime* const outValue);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• outValue is a reference to valid storage for a xam_datetime. The value of the named field is written
into this value. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The named field is not of type datetime.

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will get the value from a property field with a type set to “application/vnd.snia.xam.datetime”
on the XSet instance.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
168 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.3.5 XStream field methods

6.2.3.5.1 VIM_XSystem_CreateXStream

Syntax prototype:

xam_status
VIM_XSystem_CreateXStream (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inType,
 xstream_handle* const outXStream);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference. This object will contain the
new field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inType is a xam_string that contains the MIME type of the field.

• outXStream is a reference to valid storage for an xstream_handle. The value that is passed in is
not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The fourth argument contains an empty string (“” is not a valid MIME type).

• The fifth argument contains a NULL.

• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will create an XStream field with a type set to the user-defined MIME type on the XSystem
instance. Its name, MIME type, and binding attributes will be set according to the user-provided
parameters. The XStream field is opened in writeonly mode.

Note: The value is not set by the method. This method will create an XStream with a length of zero; other
methods must be used to add data to this field.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 169

Private (VIM) C API Reference © SNIA
Blocking:

This method will block until complete.

6.2.3.5.2 VIM_XSet_CreateXStream

Syntax prototype:

xam_status
VIM_XSet_CreateXStream (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inType,
 xstream_handle* const outXStream);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field to be created.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inType is a xam_string that contains the MIME type of the field.

• outXStream is a reference to valid storage for an xstream_handle. The value that is passed in is
not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field that is not legal for applications to create.

• The second argument contains a name of a field that is already in use.

• The fourth argument contains an empty string (“” is not a valid MIME type).

• The fifth argument contains a NULL.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the field is binding.

• The XSet was opened in restricted mode and is on hold.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of XStream fields allowed on this XSet has been reached.
170 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Description:

This method will create an XStream field with a type set to the user-defined MIME type on the XSet
instance. Its name, MIME type, and binding attributes will be set according to the user-provided
parameters. The XStream field is opened in writeonly mode.

Note: The value is not set by the method. This method will create an XStream with a length of zero; other
methods must be used to add data to this field.

Note: This method may fail with an error, if the maximum number of fields that are supported on
an XSet is reached. To determine the actual maximum number of bytes allowed in an XStream,
an application should evaluate the .xsystem.limits.maxFieldsPerXSet field on the XSystem
instance. For more information on this topic, please consult the [XAM-ARCH].

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.5.3 VIM_XSystem_OpenXStream

Syntax prototype:

xam_status
VIM_XSystem_OpenXStream (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_string inMode,
 xstream_handle* const outXStream);

Parameters:

• inHandle is a valid xsystem_handle containing an XSystem reference.

• inName is a xam_string containing the name of the field to be opened.

• inMode is a string indicating the mode to open the XStream in:

— readonly: open for reading. Write methods will fail on the XStream instance.

— writeonly: open for writing. Read and seek methods will fail on the XStream instance.

• outXStream is a reference to valid storage for an xstream_handle. The value that is passed in is
not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument contains anything other than a writeonly or a readonly.

• The fourth argument is NULL.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 171

Private (VIM) C API Reference © SNIA
• The XSystem is in a corrupt state.

• The XSystem is in an abandoned state.

Description:

This method will create an open XStream in either readonly or writeonly mode, based on the mode
argument.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.5.4 VIM_XSet_OpenXStream

Syntax prototype:

xam_status
VIM_XSet_OpenXStream (const xset_handle inHandle,
 const xam_string inName,
 const xam_string inMode,
 xstream_handle* const outXStream);

Parameters:

• inHandle is a valid xset_handle containing an XSet reference. This object will contain the new
field.

• inName is a xam_string containing the name of the field.

• inMode is a string indicating the mode to open the XStream in:

— readonly: open for reading. Write methods will fail on the XStream instance.

— writeonly: open for writing. Read and seek methods will fail on the XStream instance.

• outXStream is a reference to valid storage for an xstream_handle. The value that is passed in is
not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument contains anything other than writeonly or a readonly.

• The fourth argument is NULL.

• The XSet was opened in readonly mode and the XStream open mode is writeonly.
172 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
• The XSet was opened in restricted mode, the field is binding, and the XStream open mode is
writeonly.

• The XSet is on hold and the XStream open mode is writeonly.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will create an open XStream in either readonly or writeonly mode, based on the mode
argument.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.5.5 VIM_XStream_Read

Syntax prototype:

xam_status
VIM_XStream_Read (const xstream_handle inHandle,
 char* const ioBuffer,
 const xam_int inBufferLength,
 xam_int* const outBytesRead);

Parameters:

• inHandle is an xstream_handle that must have been opened in read mode.

• ioBuffer is a byte array to read the data into.

• inBufferLength is a xam_int set to the number of bytes in the buffer.

• outBytesRead is a reference to valid storage for a xam_int. On return, this value will contain the
actual number of bytes read. This value will be less than or equal to the inBufferLength. When
there is no more data to be read, a value of -1 will be set. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xstream_handle.

• The first argument is not an XStream that was opened in readonly mode.

• The second argument is NULL.

• The buffer length is less than or equal to zero.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 173

Private (VIM) C API Reference © SNIA
Note: If the inBufferLength is set to a size larger than the actual number of bytes of storage available in
the inBuffer, undefined results may occur, including data loss and data corruption.

Description:

This method transfers data from the storage system into the target buffer, up to the number of bytes
requested.

Concurrency requirements:

This method is thread safe.

Blocking:

This method does not block until data is completely read, but will indicate the amount of data that was read
in each call. Subsequent calls may be needed to read the remainder of the data.

6.2.3.5.6 VIM_XStream_Write

Syntax prototype:

xam_status
VIM_XStream_Write (const xstream_handle inHandle,
 const char* const inBuffer,
 const xam_int inByteCount,
 xam_int* const outByteWritten);

Parameters:

• inHandle is an xstream_handle that must have been opened in writeonly mode.

• inBuffer is a byte array containing the data to be written.

• inByteCount is a xam_int set to the number of bytes in the buffer to be written.

• outBytesWritten is a reference to valid storage for a xam_int. On return, this value will contain the
actual number of bytes written. This method will be less than or equal to the inByteCount. The
value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xstream_handle.

• The first argument is not an XStream that was opened in writeonly mode.

• The second argument is NULL.

• The maximum length (in bytes) of an XStream is exceeded.

Note: If the inByteCount is set to a size larger than the actual number of bytes of storage available in the
inBuffer, undefined results may occur, including data loss and data corruption.

Description:

This method transfers data from the source buffer to the XAM Storage System, up to the number of bytes
requested.
174 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Note: This method may fail with an error, if the maximum number of bytes supported in an XStream is
reached. To determine the actual maximum number of bytes allowed in an XStream, an application
should evaluate the .xsystem.limits.maxSizeOfXStream field on the XSystem instance. For more
information on this topic, please consult the [XAM-ARCH].

Concurrency requirements:

This method is thread safe.

Blocking:

This method does not block until all the data in the buffer is completely written, but it will indicate the
amount of data that was written in each call. Subsequent calls may be needed to write all of the data.

6.2.3.5.7 VIM_XStream_Seek

Syntax prototype:

xam_status
VIM_XStream_Seek (const xstream_handle inHandle,
 const xam_int inOffset,
 const xam_int inWhence);

Parameters:

• inHandle is an xstream_handle that must have been opened in read mode.

• inOffset is a xam_int containing the number of bytes to change the position by.

• inWhence is a xam_int containing a 0, 1, or 2 (indicating where the offset should be measured
from). These are defined as follows:

— 0: The offset is measured from the start of the XStream.

— 1: The offset is measured from the current position in the XStream.

— 2: The offset is measured from the end of the XStream

Error conditions:

• The first argument is not a valid xstream_handle.

• The first argument is not an XStream that was opened in readonly mode.

• The second and third arguments would result in a new position before the first byte in the XStream,
or past the final byte in the XStream.

• The third argument contains a value other than 0, 1, or 2.

Description:

This method sets the position indicator for the XStream. The new position, measured in bytes, is obtained
by adding inOffset bytes to the position specified by inWhence. If inWhence is set to 0, 1, or 2, then the
offset is relative to the start of the XStream, the current position, or end-of-data, respectively.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 175

Private (VIM) C API Reference © SNIA
Note: This method can only be used for XStreams opened for read. In addition, this method cannot be
used to create sparse files. It is an error to seek past the end of the data in the XStream, as
indicated by the field attribute ‘length’.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.5.8 VIM_XStream_Tell

Syntax prototype:

xam_status
VIM_XStream_Tell (const xstream_handle inHandle,
 xam_int* const outPosition);

Parameters:

• inHandle is an xstream_handle.

• outPosition is a xam_int containing the position in the XStream.

Error conditions:

• The first argument is not a valid xstream_handle.

• The second argument is NULL.

Description:

This method gets the current value of the XStream position indicator.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.5.9 VIM_XStream_Abandon

Syntax prototype:

xam_status
VIM_XStream_Abandon (const xstream_handle inHandle);

Parameters:

• inHandle is an xstream_handle.
176 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Error conditions:

• The first argument is not a valid xstream_handle.

CAUTION: If the XStream has been closed, undefined results may occur, including data loss and data
corruption.

Description:

An XStream in its normal state will generate an error, when an application attempts to close it, if there are
open asynchronous operations being performed on it. Making this call will change the state of the XStream
and allow it to be closed, without regard for any open asynchronous operations.

Note: The XStream will no longer be usable after this call is made, and the only call that will succeed is
XStream.close.

CAUTION: This very dangerous call may result in data loss if used inappropriately. It is recommended
that applications track all open asynchronous operations and close the asynchronous
operations properly as opposed to making this call.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.3.5.10VIM_XStream_Close

Syntax prototype:

xam_status
VIM_XStream_Close (xstream_handle inHandle);

Parameters:

• inHandle is an xstream_handle.

Error conditions:

• The first argument is not a valid xstream_handle.

CAUTION: Closing an already closed XStream can produce undefined results, including data loss and
data corruption)

Description:

This method closes a previously opened XStream. Any resources that were allocated can be released at
this point.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 177

Private (VIM) C API Reference © SNIA
Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.4 Connection administration for a XAM Storage System

When XAMLibrary_Connect is called by the application, the XAM Library is responsible for creating the
XSystem instance, updating the fields on the new XSystem instance, and then preprocessing the XRI to
determine if the vimname is specified in the XRI. If a vimname is not provided, the XAM Library will search
for an appropriate VIM and load the first VIM that meets the requirements of the XRI. After the VIM is
loaded, the XRI is passed to the VIM using the connect method defined in this section. The other methods
in this section are called from the matching API call (as defined by the method name without the “VIM_”
prefix).

When the application creates an XSystem instance (using an XRI and the XAMLibrary.connect method)
the XAMLibrary shall load and initialize the VIM. Loading and initializing the VIM shall not require any
special methods to be invoked by the calling application; this is done automatically as a part of the
connect. The transfer of information from the XAM Library to the VIM is mediated by the XSystem instance.
When constructed, a field shall be created on the XSystem instance. This field shall be named
.xsystem.initializing with a value of TRUE and with readonly also being TRUE. Then, all fields on the XAM
Library shall be copied onto the new XSystem instance. Finally, the .xsystem.initializing field will be
removed. The VIM shall take this information and process it accordingly. Finally, the unauthenticated
XSystem instance shall be returned to the application.

6.2.4.1 VIM_CreateXSystem

Syntax prototype:

xam_status
VIM_CreateXSystem (xsystem_handle* const outHandle);

Parameters:

• outHandle is a reference to valid storage for an xsystem_handle. On return, this value will contain
the XSystem handle that was created. The value that is passed in is not used and is overwritten
with the result.

Error conditions:

• The first argument is NULL.

Description:

This method will create a new XSystem instance, containing a single xam_boolean field. This field shall be
named .xsystem.initializing with a value of TRUE and with readonly also being TRUE. When this field is
present and set to TRUE, the XSystem instance can have fields created on it only. Other methods (with the
exception of Connect, Abandon, and Close) will generate non-fatal errors. This method is invoked by the
XAMLIbrary_Connect method, and the resultant XSystem instance should not be exposed through the
public interfaces, until the fields on the XAM Library are copied to it and the private connect method is
called.
178 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Note: The XSystem instance is not usable to applications until it has been connected to a XAM Storage
System and has been authenticated.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.4.2 VIM_XSystem_Connect

Syntax prototype:

xam_status
VIM_XSystem_Connect (const xsystem_handle inHandle,
 const xam_string inXRI);

Parameters:

• inHandle is an xsystem_handle.

• inXRI is a xam_string. It contains the XSystem’s Uniform Resource Identifier. The format of the
XRI is listed below:

snia-xam://[vimname!]xsystemname[?param=value[{¶m=value}]]

The vimname is a string that describes which VIM to use, and if it is not specified, the XAM system
will choose a VIM to use. A vimname is not allowed to contain a ‘!’ character. The xsystemname is
vendor specific; it may be an IP address or some other id. It may not contain ‘/’, ‘?’, or ‘!’
characters. Finally, param’=’value pairs can be specified. The full BNF of this format can be found
in the XAM Architecture Specification [XAM-ARCH].

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is not a valid XRI.

• The underlying XAM Storage System or its infrastructure (e.g., a damaged cable for IP attached
storage) has a problem.

Description:

This method takes an XSystem instance that contains .xsystem.initializing and connects it to a specific
XAM Storage System. When called, it removes .xsystem.initializing from the XSystem instance, and then
evaluates the XSystem’s Uniform Resource Identifier (XRI) string. It is expected that the XRI will be
specified by the local storage system administrators, and applications should strive to make this easily
configured at run time.

Note: The XSystem instance is not usable until it has been authenticated.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 179

Private (VIM) C API Reference © SNIA
Blocking:

This method will block until complete.

6.2.4.3 VIM_XSystem_Authenticate

Syntax prototype:

xam_status
VIM_XSystem_Authenticate (const xsystem_handle inHandle,
 const char* const inBuffer,
 const xam_int inByteCount,
 xstream_handle* const outXStream);

Parameters:

• inHandle is an xsystem_handle.

• inBuffer: Data that is being passed to the authentication mechanism is passed in this array of
bytes.

• inByteCount: The number of significant bytes in the passed-in buffer.

• outXStream is a reference to valid storage for an xstream_handle. On return, this will contain the
XStream handle that was created, which contains the system’s response to the authentication
information. The value that is passed in is not used and is overwritten with the result.

Note: The outXStream must be closed when the application has finished its authentication processing.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The fourth argument is NULL.

• Authentication fails.

Note: If the XSystem has been closed, or if the inByteCount is set to a size larger than the actual number
of bytes of storage available in the inBuffer, undefined results may occur, including data loss and
data corruption.

Description:

This method allows an application to authenticate an XSystem. It provides a generic interface to exchange
data as part of the authentication process. The application should check for XSystem instance properties
with the prefix of .xsystem.auth.SASLmechanism.list. to determine which patterns of authentication
(mechanisms) are available for use. After a pattern is selected, the appropriate sequence of data
exchanges should be made (using this call), in order to authenticate. A failed authentication will make the
XSystem unusable; applications cannot repeat failed authentications using the same XSystem.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
180 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.4.4 VIM_XSystem_Close

Syntax prototype:

xam_status
VIM_XSystem_Close (const xsystem_handle inHandle);

Parameters:

• inHandle is an xsystem_handle.

Error conditions:

• The first argument is not a valid xsystem_handle.

• There are open XSets or XStreams.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method is called to release any resources associated with an XSystem. After calling this method, the
closed XSystem should not be used.

Note: This call will fail if there are any open XSets associated with this XSystem.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.4.5 VIM_XSystem_Abandon

Syntax prototype:

xam_status
VIM_XSystem_Abandon (const xsystem_handle inHandle);

Parameters:

• inHandle is an xsystem_handle.

Error conditions:

• The first argument is not a valid xsystem_handle.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 181

Private (VIM) C API Reference © SNIA
Description:

An XSystem, in its normal state, will generate an error, when an application attempts to close it, if it has
open XSets in it. Making this call will change the state of the XSystem and allow it to be closed without
regard for any open XSets.

Note: The XSystem will no longer be usable after this call is made, and the only call that will succeed is
XSystem.close.

CAUTION: This very dangerous call may result in data loss if used inappropriately. It is recommended
that applications track all open XSets and close the XSets properly as opposed to making
this call.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.5 XSet instance creation

When applications create an XSet, the XAM Library must return a non-zero error status when the specified
xam_handle_t refers to the XAM_HANDLE or an XSet handle, and it shall not invoke VIM methods in
these cases. The VIM methods defined in this section shall only be called from the matching API call (as
defined by the method name without the “VIM_” prefix), when the application provides an XSystem handle.

6.2.5.1 VIM_XSystem_CreateXSet

Syntax prototype:

xam_status
VIM_XSystem_CreateXSet (const xsystem_handle inHandle,
 const xam_string inMode,
 xset_handle* const outXSet);

Parameters:

• inHandle is an xsystem_handle.

• inMode is a string indicating the mode to open the XSet in:

— restricted: open for reading and limited writing. Adding, deleting, or modifying fields that are
binding is not allowed. Changing fields from binding to nonbinding (or vice versa) is not
allowed. Commit of the XSet instance will fail if any binding fields have been modified.
Successful commit of the XSet will never generate a new XUID.

— unrestricted: open for reading and writing. There are no limits on adding, deleting, or
modifying fields or changing fields from binding to nonbinding (or vice versa). Successful
commit of the XSet will generate a new XUID, if any binding fields have been added, deleted,
or modified, or if any fields have been changed from binding to nonbinding (or vice versa).

• outXSet is a reference to valid storage for an xset_handle. The value that is passed in is not used
and is overwritten with the result.
182 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is NULL.

• The second argument is not restricted or unrestricted.

• The third argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will create a new, empty XSet instance associated with the XSystem. This XSet will not exist
on the XSystem unless that XSet instance is committed.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.5.2 VIM_XSystem_OpenXSet

Syntax prototype:

xam_status
VIM_XSystem_OpenXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inMode,
 xset_handle* const outXSet);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be opened.

• inMode is a string indicating the mode to open the XSet in:

— readonly: open for reading. Adding, deleting, or modifying fields is not allowed. Commit of the
XSet instance will fail.

— restricted: open for reading and limited writing. Adding, deleting, or modifying fields that are
binding is not allowed. Changing fields from binding to nonbinding (or vice versa) is not
allowed. Commit of the XSet instance will fail if any binding fields have been modified.
Successful commit of the XSet will never generate a new XUID.

— unrestricted: open for reading and writing. There are no limits on adding, deleting, or
modifying fields or on changing fields from binding to nonbinding (or vice versa). Successful
commit of the XSet will generate a new XUID, if any binding fields have been added, deleted,
or modified, or if any fields have been changed from binding to nonbinding (or vice versa).
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 183

Private (VIM) C API Reference © SNIA
• outXSet is a reference to valid storage for a xset_handle. On return, this value will contain the
XSet handle. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.

• The third argument is not readonly, restricted, or unrestricted.

• The XSet is on hold, and the mode is not readonly.

• The XSystem does not have authorization to open an XSet.

• The XSet does not exist in the XSystem.

• The fourth argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will open an XSet in the XSystem, returning a handle to an XSet instance associated with the
XSystem. This XSet will not exist on the XSystem, unless that XSet instance is committed.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.5.3 VIM_XSystem_CopyXSet

Syntax prototype:

xam_status
VIM_XSystem_CopyXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inMode,
 xset_handle* const outXSet);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be opened.

• inMode is a string indicating the mode to open the XSet in:
184 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
— restricted: open for reading and limited writing. Adding, deleting, or modifying fields that are
binding is not allowed. Changing fields from binding to nonbinding (or vice versa) is not
allowed. Commit of the XSet instance will fail if any binding fields have been modified.
Successful commit of the XSet will never generate a new XUID.

— unrestricted: open for reading and writing. There are no limits on adding, deleting, or
modifying fields or on changing fields from binding to nonbinding (or vice versa). Successful
commit of the XSet will generate a new XUID, if any binding fields have been added, deleted,
or modified, or if any fields have been changed from binding to nonbinding (or vice versa).

• outXSet is a reference to valid storage for a xset_handle. On return, this value will contain the
XSet handle. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.

• The third argument is not restricted or unrestricted.

• The XSystem does not have authorization to open an XSet.

• The XSet does not exist in the XSystem.

• The fourth argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will create a copy of an XSet in the XSystem, returning a handle to an XSet instance
associated with the XSystem. This XSet will not exist on the XSystem unless that XSet instance is
committed.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.6 XSet administration

When applications invoke XSet management methods, the XAM Library must return a non-zero error
status when the specified xam_handle_t refers to the XAM_HANDLE or an XSet handle, and it shall not
invoke VIM methods in these cases. The VIM methods defined in this section shall only be called from the
matching API call (as defined by the method name without the “VIM_” prefix) when the application provides
an XSystem handle.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 185

Private (VIM) C API Reference © SNIA
6.2.6.1 VIM_XSystem_IsXSetRetained

Syntax prototype:

xam_status
VIM_XSystem_IsXSetRetained (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 xam_boolean* const outIsRetained);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be checked.

• outIsRetained is a reference to valid storage for a xam_boolean. On return, this value will be set to
TRUE, if the XSet is accessible, or FALSE otherwise. The value that is passed in is not used and
is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will evaluate all retention criteria that exists on the specified XSet and shall return TRUE if
there exists retention criterion which would prevent XSet deletion. The method returns FALSE if the
retention criteria are not sufficient to describe a complete retention, if the retention is not enabled, or if the
retention criteria are valid but the retention period has passed.

This method does not evaluate the “on-hold” status.

A non-fatal error will be returned if the specified XUID is improperly formatted, does not exist in the
XSystem, or if the caller is not authorized to read the XSet.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.6.2 VIM_XSystem_DeleteXSet

Syntax prototype:

xam_status
186 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
VIM_XSystem_DeleteXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be deleted.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The second argument contains a XUID of an XSet that does not exist (or is not accessible) in the
XSystem.

• The XSystem does not have authorization to delete an XSet.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will delete an XSet from the XSystem.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.6.3 VIM_XSystem_HoldXSet

Syntax prototype:

xam_status
VIM_XSystem_HoldXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inHoldID);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be held.

• inHoldID is a xam_string that contains the ID to be associated with the hold.

Error conditions:

• The first argument is not a valid xsystem_handle.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 187

Private (VIM) C API Reference © SNIA
• The second argument contains an improperly formatted XUID.

• The second argument contains a XUID of an XSet that does not exist (or is not accessible) in the
XSystem.

• The third argument contains a hold id that is already in use for this XSet.

• The XSystem does not have authorization to hold an XSet.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will place an XSet on hold. A held XSet cannot be changed in any way (e.g., the XSet can
only be opened in readonly mode, and commits of a held XSet will fail).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.6.4 VIM_XSystem_ReleaseXSet

Syntax prototype:

xam_status
VIM_XSystem_ReleaseXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inHoldID);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be held.

• inHoldID is a xam_string that contains the ID associated with the hold.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The second argument contains a XUID of an XSet that does not exist (or is not accessible) in the
XSystem.

• The third argument contains a hold id that is not in use for this XSet.

• The XSet is not being held at all.
188 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
• The XSystem does not have authorization to release a hold from an XSet.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will release a specific hold on an XSet (associated with the hold id).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.6.5 VIM_XSystem_AccessXSet

Syntax prototype:

xam_status
VIM_XSystem_AccessXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_int inMode,
 xam_boolean* const outIsAccessible);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be checked.

• inMode: The value is the bitwise OR of the access ‘permissions’ to be checked (R_OK for read
permission, WU_OK for write-user permission, WS_OK for write-system permission, D_OK for
delete, H_OK for hold, RE_OK for retention event, J_OK for job and JC_OK for job commit). In
addition, there are composite permissions W_OK (WU_OK|WS_OK), RW_OK (R_OK|W_OK) and
ALL_OK (RW_OK|D_OK|H_OK|RE_OK|J_OK|JC_OK).

• outIsAccessible is a reference to valid storage for a xam_boolean. On return, this value will be set
to TRUE, if the XSet is accessible, or FALSE otherwise. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument does not contain a valid mode.

• The fourth argument is NULL.

• The XSystem does not have authorization to query an XSet.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 189

Private (VIM) C API Reference © SNIA
CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will check the accessibility of an XSet on the XSystem. It is not an error if the XSet does not
exist on the XSystem. Such an XSet is noted as being inaccessible.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.6.6 VIM_XSystem_GetXSetAccessTime

Syntax prototype:

xam_status
VIM_XSystem_AccessXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 xam_datetime* const outAccessTime);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be checked.

• outAccessTime is a reference to valid storage for a xam_datetime. On return, this value will be set
to the time at which the XSet was last opened or committed, whichever is the most recent. The
value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.

• The XSystem does not have authorization to evaluate the access time of an XSet.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will get the time at which the XSet was last opened or committed, whichever is the most
recent.
190 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7 XSet management administration

When applications invoke XSet policy management methods, the XAM Library must return a non-zero
error status, when the specified xam_handle_t refers to the XAM_HANDLE or an XSystem, and it shall not
invoke VIM methods in these cases. The VIM methods that are defined in this section shall only be invoked
when the application provides an XSet handle.

6.2.7.1 Access policy

6.2.7.1.1 VIM_XSet_ApplyAccessPolicy

Syntax prototype:

xam_status
VIM_XSet_ApplyAccessPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the second argument is set to TRUE.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will create a property field with the name of .xset.access.policy and a type set to “application/
vnd.snia.xam.string” on the object referenced by the passed-in xam_handle_t. Its value and binding
attributes will be set according to the user-provided parameters. This field will be used by the XAM Storage
System to determine the policies to use when accessing this XSet.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 191

Private (VIM) C API Reference © SNIA
Note: If an access policy has not been applied to an XSet at the time of the initial commit, then the
property will be created and set as the default access policy of the XSystem (i.e., the first string in
.xsystem.access.policy.list.<name>).

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.1.2 VIM_XSet_ResetAccessFields

Syntax prototype:

xam_status
VIM_XSet_ResetAccessFields (const xset_handle inHandle);

Parameters:

• inHandle is a valid xset_handle.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will remove all access fields from the XSet.

Note: If an access policy has not been applied to an XSet at the time of the initial commit, then the
property will be created and set as the default access policy of the XSystem (i.e., the first string in
.xsystem.access.policy.list.<name>).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
192 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.7.2 Base management policy

6.2.7.2.1 VIM_XSet_ApplyManagementPolicy

Syntax prototype:

xam_status
VIM_XSet_ApplyManagementPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the second argument is set to TRUE.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will create a property field with the name of .xset.management.policy and a type set to
“application/vnd.snia.xam.string” on the object referenced by the passed-in xam_handle_t. Its value and
binding attributes will be set according to the user-provided parameters. This field will be used by the XAM
Storage System to determine the default policies to use when managing this XSet.

Note: If the base management policy has not been applied to an XSet at the time of the initial commit,
then the property will be created and set as the default management policy of the XSystem (i.e.,
.xsystem.management.policy.default).

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 193

Private (VIM) C API Reference © SNIA
6.2.7.2.2 VIM_XSet_ResetManagementFields

Syntax prototype:

xam_status
VIM_XSet_ResetManagementFields (const xset_handle inHandle);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

Description:

This method will remove all management fields from the XSet. Calling this method will result in a new XSet
being created and a new XUID being assigned to this XSet at successful commit.

Note: If the base management policy has not been applied to an XSet at the time of the initial commit,
then the property will be created and set as the default management policy of the XSystem (i.e.,
.xsystem.management.policy.default).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.3 Retention

6.2.7.3.1 VIM_XSet_CreateRetention

Syntax prototype:

xam_status
VIM_XSet_CreateRetention (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inRetentionID);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.
194 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inRetentionID is a xam_string containing the retention identifier of the retention being created.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain a validly formatted retention identifier.

• The retention identifier already exists in the XSet.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.

• The retention identifier is “base”

• The retention identifier is “event” and the binding input parameter is FALSE.

Description:

This method will create a scope for storing and evaluating retention criteria. It creates a field with a type of
“application/vnd.snia.xam.string” and sets the value to the retention id. The field name is formed by
appending the retention id to the following prefix: .xset.retention.list. Thus, the final format of the name is
.xset.retention.list.<retention id>. It will have its binding attribute set according to the binding flag that is set
by the application.

Note: Creating a binding set of retention criteria will result in a new XSet being created and a new XUID
being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.3.2 VIM_XSet_SetRetentionEnabledFlag

Syntax prototype:

xam_status
VIM_XSet_SetRetentionEnabledFlag (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_boolean inEnabled);
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 195

Private (VIM) C API Reference © SNIA
Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inRetentionID is a xam_string containing the retention identifier of the retention being enabled or
disabled.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inEnabled is a xam_boolean containing a flag indicating if event retention is enabled on this XSet
or not. If the flag is set to TRUE, event retention is enabled; otherwise, it is disabled.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention that is scoped by the retention identifier has not been created on the XSet.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.

• Enabled is being set to FALSE after it was set to TRUE.

• The retention identifier is “base”.

Description:

This method will enable or disable retention that is scoped by the specified retention id. This flag is stored
in a field of type “application/vnd.snia.xam.boolean”. The name of the field is formed by inserting the
retention id between a prefix (.xset.retention.) and a suffix (.enabled); thus, the final format of the name is
.xset.retention.<retention id>.enabled. If the field does not exist, it will be created; otherwise the value will
be updated only if the value is changed from FALSE to TRUE. if the value is set to TRUE, it cannot be
changed. It will have its binding attribute set according to the binding flag that is set by the application.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
196 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.7.3.3 VIM_XSet_ApplyRetentionEnabledPolicy

Syntax prototype:

xam_status
VIM_XSet_ApplyRetentionEnabledPolicy (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inRetentionID is a xam_string containing the retention identifier of the retention being enabled or
disabled.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention that is scoped by the retention identifier has not been created on the XSet.

• The fourth argument does not contain the name of a valid policy.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.

• The applied policy has the effect of disabling retention for this retention ID after it was previously
enabled.

• The retention identifier is “base”.

Description:

This method will enabled or disable retention that is scoped by the specified retention id. The policy name
of the policy holding the enabled flag is stored in a field of type “application/vnd.snia.xam.string”. The name
of the field is formed by inserting the retention id between a prefix (.xset.retention.) and a suffix
(.enabled.policy); thus, the final format of the name is .xset.retention.<retention id>.enabled.policy. If the
field does not exist, it will be created; otherwise the value will be updated only if the value is changed from
FALSE to TRUE. If the value is set to TRUE, it cannot be changed. It will have its binding attribute set
according to the binding flag that is set by the application.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 197

Private (VIM) C API Reference © SNIA
Note: If the .xset.retention.<retention id>.enabled field is also present on the XSet, it will be used by the
XAM Storage System in preference to this field.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.3.4 VIM_XSet_SetRetentionDuration

Syntax prototype:

xam_status
VIM_XSet_SetRetentionDuration (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_int inDuration);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inRetentionID is a xam_string containing the retention identifier of the retention being enabled or
disabled.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inDuration is a xam_int containing the amount of time (measured in milliseconds from the time of
commit) to retain the XSet. Zero indicates no retention, while a negative one (-1) indicates infinite
retention.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention that is scoped by the retention identifier has not been created on the XSet.

• The fourth argument does not contain a valid duration.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.
198 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
• The field already exists on the XSet, and the specified duration value is less than the existing
duration value.

• The retention identifier is “base”.

Description:

This method will set the duration of retention that is scoped by the specified retention id. This flag is stored
in a field of type “application/vnd.snia.xam.int”. The name of the field is formed by inserting the retention id
between a prefix (.xset.retention.) and a suffix (.duration); thus, the final format of the name is
.xset.retention.<retention id>.duration. If the field does not exist, it will be created; otherwise the value will
be updated only if the duration is increased. It will have its binding attribute set according to the binding
flag that is set by the application.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.3.5 VIM_XSet_ApplyRetentionDurationPolicy

Syntax prototype:

xam_status
VIM_XSet_ApplyRetentionDurationPolicy (const xset_handle inHandle,
 const xset_string inRetentionID,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inRetentionID is a xam_string containing the retention identifier of the retention being enabled or
disabled.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention that is scoped by the retention identifier has not been created on the XSet.

• The fourth argument does not contain the name of a valid policy.

• The XSet that was opened in readonly mode.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 199

Private (VIM) C API Reference © SNIA
• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.

• The applied policy has the effect of decreasing the duration for this retention ID.

• The retention identifier is “base”.

Description:

This method will set the duration of retention that is scoped by the specified retention id. This policy name
is stored in a field of type “application/vnd.snia.xam.string”. The name of the field is formed by inserting the
retention id between a prefix (.xset.retention.) and a suffix (.duration.policy); thus, the final format of the
name is .xset.retention.<retention id>.duration.policy. If the field does not exist, it will be created; otherwise
the value will be updated only if the duration is increased. It will have its binding attribute set according to
the binding flag that is set by the application.

Note: If .xset.retention.<retention id>.duration is also present on the XSet, it will be used by the XAM
Storage System in preference to this field.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.3.6 VIM_XSet_SetRetentionStarttime

Syntax prototype:

xam_status
VIM_XSet_SetRetentionStarttime (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inRetentionID is a xam_string containing the retention identifier of the retention being enabled or
disabled.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.
200 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention that is scoped by the retention identifier has not been created on the XSet.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The maximum number of fields allowed on this XSet has been reached.

• This method has already been used on an XSet.

• The retention identifier is “base”.

Description:

This method will set the start time of retention that is scoped by the specified retention id. The current time
of the XSystem is stored in a field of type “application/vnd.snia.xam.datetime”. The name of the field is
formed by inserting the retention id between a prefix (.xset.retention.) and a suffix (.starttime); thus, the
final format of the name is .xset.retention.<retention id>.starttime. If the field does not exist, it will be
created; otherwise, an error will be generated, as it is not allowed to change the start time once set. It will
have its binding attribute set according to the binding flag that is set by the application.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.3.7 VIM_XSet_SetBaseRetention

Syntax prototype:

xam_status
VIM_XSet_SetBaseRetention (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_int inDuration);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 201

Private (VIM) C API Reference © SNIA
• inDuration is a xam_int containing the amount of time (measured in milliseconds from the time of
commit) to retain the XSet. Zero indicates no retention, while a negative one (-1) indicates infinite
retention.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain a valid duration.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

• The field already exists on the XSet, and the specified duration value is less than the existing
duration value.

Description:

If this XSet does not already contain the field .xset.retention.list.base, this method will create the field with
a type of “application/vnd.snia.xam.string” and set the value to “base”. It will also create the “application/
vnd.snia.xam.boolean” field .xset.retention.base.enabled and set the value to TRUE. The duration will be
stored in a field named .xset.retention.base.duration. This field is of type “application/vnd.snia.xam.int”. If
the field already exists, its value will be changed to match the passed in duration only if the duration of the
retention is not reduced; the method will generate an error if the duration is reduced. If the field does not
already exist, it will be created with the specified duration as the value. The .xset.retention.base.duration
field will have its binding attribute set according to the binding flag that is set by the application. The
.xset.retention.list.base is always a binding field.

These fields will be used by the XAM Storage System to determine the base retention duration to use
when managing this XSet.

Note: Changing .xset.retention.base.duration from binding to nonbinding (or vice versa) will result in a
new XSet being created and a new XUID being assigned on a successful commit.

Note: When an XSet instance containing the field .xset.retention.list.base is first committed, the field
.xset.retention.base.starttime will be created as a binding field and have its value set to
.xset.time.xuid.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
202 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.7.3.8 VIM_XSet_ApplyBaseRetentionPolicy

Syntax prototype:

xam_status
VIM_XSet_ApplyBaseRetentionPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy.

• The XSet that was opened in readonly mode.

• The XSet that was opened in restricted mode and the field being created is a binding field.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

Description:

If this XSet does not already contain the field .xset.retention.list.base, this method will create the field with
a type of “application/vnd.snia.xam.string” and set the value to “base”. It will also create the “application/
vnd.snia.xam.boolean” field .xset.retention.base.enabled and set the value to TRUE. The duration policy
will be stored in a field named .xset.retention.base.duration.policy. This field is of type “application/
vnd.snia.xam.string”. If the field already exists, its value will be changed to match the passed-in policy, only
if the policy would not reduce the duration of the retention; the method will generate an error if the policy
reduces the duration. If the field does not already exist, it will be created with the specified policy name as
the value. These fields will have their binding attribute set according to the binding flag that is set by the
application.

These fields will be used by the XAM Storage System to determine the base retention duration to use
when managing this XSet.

Note: If the .xset.retention.base.duration field is also present on the XSet, it will be used by the XAM
Storage System in preference to this policy field.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 203

Private (VIM) C API Reference © SNIA
Note: When an XSet instance containing the field .xset.retention.list.base is first committed, the field
.xset.retention.base.starttime will be created and have its value set to .xset.time.xuid.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.4 AutoDelete

6.2.7.4.1 VIM_XSet_ApplyAutoDeletePolicy

Syntax prototype:

xam_status
VIM_XSet_ApplyAutoDeletePolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the second argument is set to TRUE.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

Description:

If this XSet does not have an auto delete policy applied to it, this method will create a property field on the
specified XSet with the name of .xset.deletion.autodelete.policy and a type set to “application/
vnd.snia.xam.string”. Its value and binding attributes will be set according to the user-provided parameters.
If the field already exists on the XSet, then its value will be updated with the specified value. This field will
204 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
be used by the XAM Storage System to determine if the XSet should be automatically deleted when
retention expires.

Note: If .xset.deletion.autodelete is also present on the XSet, it will be used by the XAM Storage System
in preference to this field.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.4.2 VIM_XSet_SetAutoDelete

Syntax prototype:

xam_status
VIM_XSet_SetAutoDelete (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_boolean inAutoDelete);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inAutoDelete is a xam_boolean containing a flag indicating if autodelete is enabled on this XSet or
not. If the flag is set to TRUE, autodelete is enabled; otherwise, it is disabled.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the second argument is set to TRUE.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

Description:

If this XSet does not have auto delete set on it, this method will create a property field on the specified
XSet with the name of .xset.deletion.autodelete and a type set to “application/vnd.snia.xam.boolean”. Its
value and binding attributes will be set according to the user-provided parameters. If the field already
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 205

Private (VIM) C API Reference © SNIA
exists on the XSet, then its value will be updated with the specified value. This field will be used by the
XAM Storage System to determine if the XSet should be automatically deleted when retention expires.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.5 Shred

6.2.7.5.1 VIM_XSet_ApplyShredPolicy

Syntax prototype:

xam_status
VIM_XSet_ApplyShredPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the second argument is set to TRUE.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

Description:

If this XSet does not have an auto shred policy applied to it, this method will create a property field on the
specified XSet with the name of .xset.deletion.shred.policy and a type set to “application/
vnd.snia.xam.string”. Its value and binding attributes will be set according to the user-provided parameters.
If the field already exists on the XSet, then its value will be updated with the specified value. This field will
206 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
be used by the XAM Storage System to determine if the XSet should be automatically shredded when it’s
deleted.

Note: If .xset.deletion.shred is also present on the XSet, it will be used by the XAM Storage System in
preference to this field.

Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.5.2 VIM_XSet_SetShred

Syntax prototype:

xam_status
VIM_XSet_SetShred (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_boolean inShred);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inShred is a xam_boolean containing a flag indicating if shred is enabled on this XSet or not. If the
flag is set to TRUE, shredding is enabled, otherwise it is disabled.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the second argument is set to TRUE.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

Description:

If this XSet does not have auto shred set on it, this method will create a property field on the specified XSet
with the name of .xset.deletion.shred and a type set to “application/vnd.snia.xam.boolean”. Its value and
binding attributes will be set according to the user-provided parameters. If the field already exists on the
XSet, then its value will be updated with the specified value. This field will be used by the XAM Storage
System to determine if the XSet should be automatically shredded when it’s deleted.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 207

Private (VIM) C API Reference © SNIA
Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.6 Storage policy

6.2.7.6.1 VIM_XSet_ApplyStoragePolicy

Syntax prototype:

xam_status
VIM_XSet_ApplyStoragePolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

Parameters:

• inHandle is a valid xset_handle. This object will contain the new field.

• inBinding is a xam_boolean set to TRUE, if the field should be binding, or FALSE otherwise.

• inPolicy is a xam_string containing the name of the policy to be applied.

Error conditions:

• The first argument is not a valid xset_handle.

• The third argument does not contain the name of a valid policy.

• The XSet was opened in readonly mode.

• The XSet was opened in restricted mode and the second argument is set to TRUE.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The field does not already exist on the XSet, and the maximum number of fields allowed on this
XSet has been reached.

Description:

If this XSet does not have a storage policy applied to it, this method will create a property field on the
specified XSet with the name of .xset.storage.policy and a type set to “application/vnd.snia.xam.string”. Its
value and binding attributes will be set according to the user-provided parameters. If the field already
exists on the XSet, then its value will be updated with the specified value. This field will be used by the
XAM Storage System to determine the storage policy of the XSet.
208 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Note: Changing this field from binding to nonbinding (or vice versa) will result in a new XSet being
created and a new XUID being assigned on a successful commit.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.7 Policy evaluation

6.2.7.7.1 VIM_XSet_GetActualRetentionDuration

Syntax prototype:

xam_status
VIM_XSet_GetActualRetentionDuration (const xset_handle inHandle,
 const xam_string inRetentionID,
 xam_int* const outDuration);

Parameters:

• inHandle is a valid xset_handle.

• inRetentionID is a xam_string containing the retention identifier of the retention being created.

• outDuration is a reference to valid storage for a xam_int. On return, this value will be set to the
actual minimum retention duration (in milliseconds) that is currently in effect for the XSet after
evaluating the policies. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention identifier does not exist in the XSet.

• The third argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The XSet instance was imported and contains a retention duration policy that does not exist.

• The XSet instance was imported and contains a retention duration policy that does not match the
policy in the XSystem.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 209

Private (VIM) C API Reference © SNIA
Description:

This method will evaluate all factors that affect the retention duration that is currently in effect for the XSet
under the scope of the specified retention id and return that duration to the caller.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.7.2 VIM_XSet_GetActualRetentionEnabled

Syntax prototype:

xam_status
VIM_XSet_GetActualRetentionEnabled (const xset_handle inHandle,
 const xam_string inRetentionID,
 xam_boolean* const outEnabled);

Parameters:

• inHandle is a valid xset_handle.

• inRetentionID is a xam_string containing the retention identifier of the retention being created.

• outEnabled is a reference to valid storage for a xam_boolean. On return, this value will be set to
match the enabled state in effect for the XSet after evaluating the policies. The value that is
passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument does not contain a validly formatted retention identifier.

• The retention identifier does not exist in the XSet.

• The third argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The XSet instance was imported and contains a retention enabled policy that does not exist.

• The XSet instance was imported and contains a retention enabled policy that does not match the
policy in the XSystem.

Description:

This method will evaluate all factors that affect if retention is enabled for the XSet under the scope of the
specified retention id and return that enabled state to the caller.
210 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.7.7.3 VIM_XSet_GetActualAutoDelete

Syntax prototype:

xam_status
VIM_XSet_GetActualAutoDelete (const xset_handle inHandle,
 xam_boolean* const outEnabled);

Parameters:

• inHandle is a valid xset_handle.

• outEnabled is a reference to valid storage for a xam_boolean. On return, this value will be set to
match the enabled state in effect for the XSet after evaluating the policies. The value that is
passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The XSet instance was imported and contains an auto-delete policy that does not exist.

• The XSet instance was imported and contains an auto-delete policy that does not match the policy
in the XSystem.

Description:

This method will evaluate all factors that affect if auto delete is enabled for the XSet and return that
enabled state to the caller.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 211

Private (VIM) C API Reference © SNIA
6.2.7.7.4 VIM_XSet_GetActualShred

Syntax prototype:

xam_status
VIM_XSet_GetActualShred (const xset_handle inHandle,
 xam_boolean* const outEnabled);

Parameters:

• inHandle is a valid xset_handle.

• outEnabled is a reference to valid storage for a xam_boolean. On return, this value will be set to
match the enabled state in effect for the XSet after evaluating the policies. The value that is
passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is NULL.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The XSet instance was imported and contains a shred policy that does not exist.

• The XSet instance was imported and contains a shred policy that does not match the policy in the
XSystem.

Description:

This method will evaluate all factors that affect if shredding is enabled for the XSet and return that enabled
state to the caller.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.8 XSet instance administration

When applications invoke XSet instance management methods, the XAM Library must return a non-zero
error status when the specified xam_handle_t refers to the XAM_HANDLE or an XSystem, and it shall not
invoke VIM methods in these cases. The VIM methods defined in this section shall only be invoked when
the application provides an XSet handle.

6.2.8.1 VIM_XSet_Commit

Syntax prototype:

xam_status
212 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
VIM_XSet_Commit (const xset_handle inHandle,
 XUID* outXUID);

Parameters:

• inHandle is an xset_handle.

• outXUID is a reference to valid storage for a XUID. On return, this value will contain the XUID that
was assigned to the XSet by the XAM Storage System. The value that is passed in is not used and
is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument is NULL.

• The XSystem does not have authorization to commit an XSet.

• The XSet is not valid, or has been modified in an invalid way (e.g., a field does not have a valid
type).

• The XSet contains a running job (see Section 5.3.10.1, "Jobs"), and the XAM Storage System
does not support committing running jobs.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will store an XSet in the XSystem. This does not close the XSet, which can still be modified as
allowed by the authorization of the XSystem. A XUID will be assigned by the XAM Storage System and this
XUID will be returned.

If this is a modified XSet (e.g., an existing XSet was opened, changed, and then committed), then a new
XUID may or may not be assigned, according to the following rules:

• If only variable fields are edited (created, deleted, or changed), then the XAM Storage System may
not assign a new XUID.

• If any binding fields are edited (created, deleted, or changed), then the XAM Storage System must
assign a new XUID.

In any case, an application should be coded to handle cases where the XUID changes when a modified
XSet is committed.

If a management policy has not been applied to the XSet before commit, a default management policy will
be applied to the XSet at the time of commit.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 213

Private (VIM) C API Reference © SNIA
Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.8.2 VIM_XSet_Close

Syntax prototype:

xam_status
VIM_XSet_Close (const xset_handle inHandle);

Parameters:

• inHandle is an xset_handle.

Error conditions:

• The first argument is not a valid xset_handle.

• There are open XStreams.

CAUTION: If the XSet has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method is called to release any resources associated with an XSet. After calling this method, the
closed XSet should not be used.

Note: This call will fail if there are any open XStreams associated with this XSet.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.8.3 VIM_XSet_Abandon

Syntax prototype:

xam_status
VIM_XSet_Abandon (const xset_handle inHandle);

Parameters:

• inHandle is an xset_handle.
214 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Error conditions:

• The first argument is not a valid xset_handle.

CAUTION: If the XSet has been closed, undefined results may occur, including data loss and data
corruption.

Description:

An XSet in its normal state will generate an error when an application attempts to close it, if there are open
XStreams in it. Making this call will change the state of the XSet and allow it to be closed without regard for
any open XStreams.

Note: The XSet will no longer be usable after this call is made, and the only call that will succeed is
XSet.close.

CAUTION: This very dangerous call may result in data loss if used inappropriately. It is recommended
that applications track all open XStreams and close the XStreams properly as opposed to
making this call.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.9 XSet migration

When applications invoke XSet migration methods, the XAM Library must return a non-zero error status
when the specified xam_handle_t refers to the XAM_HANDLE or an XSystem, and it shall not invoke VIM
methods in these cases. The VIM methods defined in this section shall only be invoked when the
application provides an XSet handle.

6.2.9.1 VIM_XSet_OpenExportXStream

Syntax prototype:

xam_status
VIM_XSet_OpenExportXStream (const xset_handle inHandle,
 xstream_handle* const outXStream);

Parameters:

• inHandle is an xset_handle.

• outXStream is a reference to valid storage for a xstream_handle. On return, this value will contain
the XStream handle of an XStream opened in “r” mode. The value that is passed in is not used and
is overwritten with the result.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 215

Private (VIM) C API Reference © SNIA
Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is NULL.

• The XSystem does not have authorization to export an XSet.

• The XSet has any open XStreams (including import or export XStreams).

• The XSet is in a corrupt state. (as a result of a failed import).

• The XSet has never been committed.

• The XSet has been modified since it was opened.

CAUTION: If the XSet has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will open an export XStream for the XSet. The XSet must have been committed and must not
have been modified since it was opened / committed. The XSet will enter an import/export state, and will,
thus, generate errors if used for any operation until the export XStream is closed. The original XSet
referred to by the XSet handle will be overwritten.

The XStream will contain a canonical representation of the XSet. This data can be read from the XStream
using normal XStream calls and semantics. When the XStream is closed, the XSet will return to a normal
state.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.9.2 VIM_XSet_OpenImportXStream

Syntax prototype:

xam_status
VIM_XSet_OpenImportXStream (const xset_handle inHandle,
 xstream_handle* const outXStream);

Parameters:

• inHandle is an xset_handle.

• outXStream is a reference to valid storage for a xstream_handle. On return, this value will contain
the XStream handle of an XStream opened in “w” mode. The value that is passed in is not used
and is overwritten with the result.
216 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is NULL.

• The XSystem does not have authorization to import an XSet.

• The XSet was a not newly created XSet.

• The XSet has been modified since it was created.

• The XSet has any open XStreams (including import or export XStreams).

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

CAUTION: If the XSet has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will open an import XStream for the XSet. The XSet will enter an import/export state and,
therefore, will generate errors if used for any operation until the XStream is closed. The original XSet
referred to by the XSet handle will be overwritten.

It is expected that a data stream containing the canonical representation of an XSet will be written into the
XStream. When the XStream is closed, the data will be validated. If the data is determined to be valid, then
the XSet will return to a normal state (i.e., will no longer generate errors when operated on), but it will now
refer to the XSet that was described by the canonical data that was written to the XStream. If the validation
of the data fails (i.e., it contains invalid or improperly formatted data), then the XSet will enter a corrupted
state. It will no longer be recoverable, and all operations, except XSet.abandon (followed by XSet.close),
will fail.

After a successful validation, the XSet fields can be examined as any normal fields. The XSet can be
modified. The XSet is not committed, but it is in all ways a normal XSet and may be committed as per
normal XSet semantics.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.10 Asynchronous operations

6.2.10.1 Jobs
When applications invoke XSet job methods, the XAM Library must return a non-zero error status when
the specified xam_handle_t refers to the XAM_HANDLE or an XSystem, and it shall not invoke VIM
methods in these cases. The VIM methods defined in this section shall only be invoked when the
application provides an XSet handle.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 217

Private (VIM) C API Reference © SNIA
6.2.10.1.1VIM_XSet_SubmitJob

Syntax prototype:

xam_status
VIM_XSet_SubmitJob (const xset_handle inHandle);

Parameters:

• inHandle is an xset_handle.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSystem does not have authorization to submit a job.

• The XSet does not contain valid job control fields.

CAUTION: If the XSet has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will submit a job request to the XAM Storage System. Fields on the XSet will be evaluated as
input to the job, according to the semantics of the XAM job control subsystem (refer to the [XAM-ARCH] for
more details). This XSet will be used to communicate health and status information about the job, as well
as any results from the job.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.10.1.2VIM_XSet_HaltJob

Syntax prototype:

xam_status
VIM_XSet_HaltJob (const xset_handle inHandle);

Parameters:

• inHandle is an xset_handle.

Error conditions:

• The first argument is not a valid xset_handle.

• The XSystem does not have authorization to halt a job.
218 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
• The XSet is does not contain valid job control fields.

• The XSet was not used to submit a job.

CAUTION: If the XSet has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will stop a currently running job in the XAM Storage System, if the XSet was used to start a
job. Fields on the XSet will be evaluated as input to the job, according to the semantics of the XAM job
control subsystem (refer to the [XAM-ARCH] for more details).

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

6.2.10.2 XSet async I/O

6.2.10.2.1VIM_XSystem_AsyncOpenXSet

Syntax prototype:

xam_status
VIM_XSystem_AsyncOpenXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be opened.

• inMode is a string indicating the mode to open the XSet in:

— readonly: open for reading. Adding, deleting, or modifying fields is not allowed. Commit of the
XSet instance will fail.

— restricted: open for reading and limited writing. Adding, deleting, or modifying fields that are
binding is not allowed. Changing fields from binding to nonbinding (or vice versa) is not
allowed. Commit of the XSet instance will fail, if any binding fields have been modified.
Successful commit of the XSet will never generate a new XUID.

— unrestricted: open for reading and writing. There are no limits on adding, deleting, or
modifying fields or changing fields from binding to nonbinding (or vice versa). Successful
commit of the XSet will generate a new XUID, if any binding fields have been added, deleted,
or modified, or if any fields have been changed from binding to nonbinding (or vice versa).
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 219

Private (VIM) C API Reference © SNIA
• inXOPID is an application-assigned id that is used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.

• The third argument is not readonly, restricted, or unrestricted.

• The XSet is on hold, and the mode is not readonly.

• The XSystem does not have authorization to open an XSet.

• The XSet does not exist in the XSystem.

• The sixth argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will begin the asynchronous opening of an XSet in the XSystem, ultimately returning a handle
to an XSet instance that is associated with the XSystem. The specified callback will be invoked as part of
the asynchronous opening. To monitor the status of this operation, the application can poll the Async
instance that is generated by this method. A handle to an Async instance is also passed to any provided
callback method when that callback method is invoked.

Concurrency requirements:

This method is thread safe. It is the responsibility of the application to ensure that the callback is coded in
a thread-safe manner.

Blocking:

This method will not block until complete, and will return control immediately.

6.2.10.2.2VIM_XSystem_AsyncCopyXSet

Syntax prototype:

xam_status
VIM_XSystem_AsyncCopyXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
220 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is an xsystem_handle.

• inXUID is the XUID of the XSet to be copied.

• inMode is a string indicating the mode to open the copied XSet in:

— restricted: open for reading and limited writing. Adding, deleting, or modifying fields that are
binding is not allowed. Changing fields from binding to nonbinding (or vice versa) is not
allowed. Commit of the XSet instance will fail if any binding fields have been modified.
Successful commit of the XSet will never generate a new XUID.

— unrestricted: open for reading and writing. There are no limits on adding, deleting, or
modifying fields or changing fields from binding to nonbinding (or vice versa). Successful
commit of the XSet will generate a new XUID, if any binding fields have been added, deleted,
or modified, or if any fields have been changed from binding to nonbinding (or vice versa).

• inXOPID is an application-assigned id that is used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The second argument contains an improperly formatted XUID.

• The third argument is NULL.

• The third argument is not restricted or unrestricted.

• The XSystem does not have authorization to open an XSet.

• The XSet does not exist in the XSystem.

• The sixth argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method will begin the asynchronous copying of an XSet in the XSystem, ultimately returning a handle
to an XSet instance that is associated with the XSystem. The specified callback will be invoked as part of
the asynchronous copying. To monitor the status of this operation, the application can poll the Async
instance that is generated by this method. A handle to an Async instance is also passed to any provided
callback method when that callback method is invoked.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 221

Private (VIM) C API Reference © SNIA
6.2.10.2.3VIM_XSet_AsyncOpenXStream

Syntax prototype:

xam_status
VIM_XAM_OpenXStream (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM object reference. This
object will contain the new field.

• inName is a xam_string containing the name of the field to be opened.

• inMode is a string indicating the mode to open the XStream in:

— readonly: open for reading. Write methods will fail on the XStream instance.

— writeonly: open for writing. Truncates existing data in the XStream. Read and seek methods
will fail on the XStream instance.

— appendonly: open for writing. Appends to existing data in the XStream. Read and seek
methods will fail on the XStream instance.

• inXOPID is an application-assigned id that is used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xam_handle_t.

• The second argument is not a valid name (invalid UTF-8).

• The second argument contains a name of a field not present.

• The third argument contains anything other than writeonly, appendonly, or readonly.

• The sixth argument is NULL.

• The xam_handle_t contains an XSet that was opened in readonly mode, and the XStream open
mode is writeonly or appendonly.

• The xam_handle_t contains an XSet that was opened in restricted mode, the field is binding, and
the XStream open mode is writeonly or appendonly.

• The xam_handle_t contains an XSet that was opened in restricted mode, is on hold, and the
XStream open mode is writeonly or appendonly.

• The xam_handle_t contains an XSet that is in a corrupt state.

• The xam_handle_t contains an XSet that is in an abandoned state.
222 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
• The xam_handle_t contains an XSystem that is in a corrupt state.

• The xam_handle_t contains an XSystem that is in an abandoned state.

Description:

This method will begin the asynchronous opening of XStream in either readonly, writeonly, or appendonly
mode, based on the mode argument. The specified callback will be invoked as part of the asynchronous
opening. To monitor the status of this operation, the application can poll the Async instance that is
generated by this method. A handle to an Async instance is also passed to any provided callback method
when that callback method is invoked.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will not block until complete, and will return control immediately.

6.2.10.2.4VIM_XStream_AsyncRead

Syntax prototype:

xam_status
VIMXStream_AsyncRead (const xstream_handle inHandle,
 char* const ioBuffer,
 const xam_int inBufferLength,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is an xstream_handle that must have been opened in readonly mode.

• ioBuffer is a byte array to read the data into.

• inBufferLength is a xam_int set to the number of bytes in the buffer.

• inXOPID is an application-assigned id that is used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xstream_handle.

• The first argument is an XStream that was opened in writeonly mode.

• The second argument is NULL.

• The buffer length is less than or equal to zero.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 223

Private (VIM) C API Reference © SNIA
• The sixth argument is NULL.

CAUTION: If the inBufferLength is set to a size larger than the actual number of bytes of storage
available in the inBuffer, undefined results may occur, including data loss and data
corruption.

Description:

This method will begin the asynchronous transfer of data from the storage system into the target buffer, up
to the number of bytes requested. The specified callback will be invoked as part of the asynchronous
transfer. To monitor the status of this operation, the application can poll the Async instance that is
generated by this method. A handle to an Async instance is also passed to any provided callback method
when that callback method is invoked.

Concurrency requirements:

This method is thread safe.

Blocking:

This method returns immediately.

6.2.10.2.5VIM_XStream_AsyncWrite

Syntax prototype:

xam_status
VIM_XStream_AsyncWrite (const xstream_handle inHandle,
 const char* const inBuffer,
 const xam_int inByteCount,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is an xstream_handle that must have been opened in writeonly mode.

• inBuffer is a byte array containing the data to be written.

• inByteCount is a xam_int set to the number of bytes in the buffer to be written.

• inXOPID is an application-assigned id that is used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xstream_handle.

• The first argument is an XStream that was opened in readonly mode.
224 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
• The second argument is NULL.

• The maximum length (in bytes) of an XStream is exceeded.

• The sixth argument is NULL.

CAUTION: If the inByteCount is set to a size larger than the actual number of bytes of storage
available in the inBuffer, undefined results may occur, including data loss and data
corruption.

Description:

This method will begin the asynchronous transfer of data from the source buffer to the XAM Storage
System, up to the number of bytes requested. The specified callback will be invoked as part of the
asynchronous transfer. To monitor the status of this operation, the application can poll the Async instance
that is generated by this method. A handle to an Async instance is also passed to any provided callback
method when that callback method is invoked.

Note: This method may fail with an error if the maximum number of bytes supported in an XStream is
reached. To determine the actual maximum number of bytes allowed in an XStream, an
application should evaluate .xsystem.limits.maxSizeOfXStream on the XSystem instance. For
more information on this topic, please consult [XAM-ARCH].

Concurrency requirements:

This method is thread safe.

Blocking:

This method returns immediately.

6.2.10.2.6VIM_XStream_AsyncClose

Syntax prototype:

xam_status
VIM_XStream_AsyncClose (const xstream_handle inHandleXStream,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandleXStream is an xstream_handle.

• inXOPID is an application-assigned id that is used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xstream_handle.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 225

Private (VIM) C API Reference © SNIA
• The sixth argument is NULL.

CAUTION: Closing an already closed XStream can produce undefined results, including data loss and
data corruption.

Description:

This method will begin the asynchronous closing of a previously opened XStream. Any resources that
were allocated can be released at this point. The specified callback will be invoked as part of the
asynchronous close. To monitor the status of this operation, the application can poll the Async instance
that is generated by this method. A handle to an Async instance is also passed to any provided callback
method when that callback method is invoked.

Note: The application is responsible for tracking the parent of the XStream. The XOPID can be used for
this.

Concurrency requirements:

This method is thread safe.

Blocking:

This method returns immediately.

6.2.10.2.7VIM_XSet_AsyncCommit

Syntax prototype:

xam_status
VIM_XSet_AsyncCommit (const xset_handle inHandle,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* const outAsyncHandle);

Parameters:

• inHandle is an xset_handle.

• inXOPID is an application-assigned id that is used to distinguish this operation from others.

• inCallback is a function to invoke during the asynchronous processing of this method.

• outAsyncHandle is a reference to valid storage for an xasync_handle. The value that is passed in
is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xsystem_handle.

• The XSystem does not have authorization to commit an XSet.

• The XSet that was opened in readonly mode.
226 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
• The XSet was opened in restricted mode and one or more binding fields have been created,
modified, or deleted, or one or more fields have been changed from binding to nonbinding (or vice
versa).

• The XSet is not valid, or has been modified in an invalid way (e.g., a field does not have a valid
type).

• The XSet contains a running job (see Section Section 5.3.10.1, “Jobs”) and the XAM Storage
System does not support committing running jobs.

• The XSet has an open import or export stream.

• The XSet is in a corrupt state.

• The XSet is in an abandoned state.

• The fourth argument is NULL.

CAUTION: If the XSystem has been closed, undefined results may occur, including data loss and data
corruption.

Description:

This method is an asynchronous version of XSet.commit. See Section 5.3.7.1, “XSet_Commit” for
additional information.

Concurrency requirements:

This method is thread safe.

Blocking:

This method returns immediately.

6.2.10.3 Asynchronous Operations Management
Asynchronous operations are in one of two states: pending and completed. When the operation is first
initiated, it is in the pending state. Because the operation has not completed, it is only possible to query
whether the operation has completed, retrieve the XOPID that was specified when the operation was
initiated, and to halt the operation.

6.2.10.3.1VIM_XAsync_Halt

Syntax prototype:

xam_status
VIM_XAsync_Halt (const xasync_handle inHandle);

Parameters:

• inHandle is an xasync_handle.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 227

Private (VIM) C API Reference © SNIA
Error conditions:

• The first argument is not a valid xasync_handle.

Description:

This method stops the execution of the operation that is associated with the Async instance. It may be
used at any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

6.2.10.3.2VIM_XAsync_IsComplete

Syntax prototype:

xam_status
VIM_XAsync_IsComplete (const xasync_handle inHandle,
 xam_boolean* const outIsComplete);

Parameters:

• inHandle is an xasync_handle.

• outIsComplete is a reference to valid storage for a xam_boolean. On return, this value will be set
to TRUE if the operation has completed, FALSE otherwise. The value that is passed in is not used
and is overwritten with the result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

Description:

This method retrieves the completed state of the operation that is associated with the Async instance. It
may be used at any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.
228 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
6.2.10.3.3VIM_XAsync_GetXOPID

Syntax prototype:

xam_status
VIM_XAsync_GetXOPID (const xasync_handle inHandle,
 XOPID* const outXOPID);

Parameters:

• inHandle is an xasync_handle.

• outXOPID is a reference to valid storage for a XOPID. On return, it is set to the value of the
XOPID. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• The operation was programmatically halted.

Description:

This method retrieves the XOPID of the operation that is associated with the Async instance. It may be
used at any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

6.2.10.3.4VIM_XAsync_GetStatus

Syntax prototype:

xam_status
VIM_XAsync_GetStatus (const xasync_handle inHandle,
 xam_status* const outStatus);

Parameters:

• inHandle is an xasync_handle.

• outStatus is a reference to valid storage for a xam_status. On return, this value will be set to the
status if the operation has completed. The value that is passed in is not used and is overwritten
with the result.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 229

Private (VIM) C API Reference © SNIA
Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• The operation has not transitioned to the completed state.

• The operation was programmatically halted.

Description:

This method retrieves the xam_status of the operation that is associated with the Async instance. It may
be used after the operation has transitioned to the completed state.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

6.2.10.3.5VIM_XAsync_GetXSet

Syntax prototype:

xam_status
VIM_XAsync_GetXSet (const xasync_handle inHandle,
 xset_handle* const outXSet);

Parameters:

• inHandle is an xasync_handle.

• outXSet is a reference to valid storage for a xam_handle. On return, this value will be set to the
xset_handle associated with the operation. The value that is passed in is not used and is
overwritten with the result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• There is no xset_handle associated with the operation.

• The operation was programmatically halted.

Description:

This method retrieves the xset_handle of the operation that is associated with the Async instance. It may
be used at any time.
230 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

6.2.10.3.6VIM_XAsync_GetXStream

Syntax prototype:

xam_status
VIM_XAsync_GetXStream (const xasync_handle inHandle,
 xstream_handle* const outXStream);

Parameters:

• inHandle is an xasync_handle.

• outXStream is a reference to valid storage for a xam_handle. On return, this value will be set to the
xstream_handle associated with the operation. The value that is passed in is not used and is
overwritten with the result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• There is no xstream_handle associated with the operation.

• The operation was programmatically halted.

Description:

This method retrieves the xstream_handle of the operation that is associated with the Async instance. It
may be used at any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 231

Private (VIM) C API Reference © SNIA
6.2.10.3.7VIM_XAsync_GetXUID

Syntax prototype:

xam_status
VIM_XAsync_GetXUID (const xasync_handle inHandle,
 xam_xuid* const outXUID);

Parameters:

• inHandle is an xasync_handle.

• outXUID is a reference to valid storage for a XUID. On return, this value will be set to the XUID
associated with the operation. The value that is passed in is not used and is overwritten with the
result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• There is no XUID associated with the operation.

• The operation was programmatically halted.

Description:

This method retrieves the xset_handle of the operation that is associated with the Async instance. It may
be used at any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

6.2.10.3.8VIM_XAsync_GetBytesRead

Syntax prototype:

xam_status
VIM_XAsync_GetBytesRead (const xasync_handle inHandle,
 xam_int* const outBytesRead);

Parameters:

• inHandle is an xasync_handle.

• outBytesRead is a reference to valid storage for a xam_int. On return, this value will be set to the
number of bytes read by the operation or to zero, if no data has been read, or, if the operation does
not read bytes. The value that is passed in is not used and is overwritten with the result.
232 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA Private (VIM) C API Reference
Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• The operation was programmatically halted.

Description:

This method retrieves the number of bytes read by the operation that is associated with the Async
instance. Not all operations read bytes, and for those operations, it will always be set to zero. It may be
used at any time.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.

6.2.10.3.9VIM_XAsync_GetBytesWritten

Syntax prototype:

xam_status
VIM_XAsync_GetBytesWritten (const xasync_handle inHandle,
 xam_int* const outBytesWritten);

Parameters:

• inHandle is an xasync_handle.

• outBytesWritten is a reference to valid storage for a xam_int. On return, this value will be set to the
number of bytes written by the operation or to zero, if no data has been written, or if the operation
does not write bytes. The value that is passed in is not used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xasync_handle.

• The second argument is NULL.

• The operation was programmatically halted.

Description:

This method retrieves the number of bytes written by the operation that is associated with the Async
instance. Not all operations write bytes, and for those operations, it will always be set to zero. It may be
used at any time.

Concurrency requirements:

This method is thread safe.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 233

Private (VIM) C API Reference © SNIA
Blocking:

This method will return immediately.

6.2.10.3.10VIM_XAsync_Close

Syntax prototype:

xam_status
VIM_XAsync_Close (const xasync_handle inHandle);

Parameters:

• inHandle is an xasync_handle.

Error conditions:

• The first argument is not a valid xasync_handle.

• The operation has not transitioned to the completed state.

Description:

This method releases the resources of the operation that is associated with the Async instance and of the
Async instance itself. It may be used after the operation has transitioned to the completed state.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will return immediately.
234 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
Annex A
(normative)

Public Header Files

The following section contains header files created according to the public API calls defined above.

A.1 xam_types.h
#ifndef XAM_TYPES_H
#define XAM_TYPES_H 1

/* === *\
 * Supporting definitions *
* === */

#define XAM_MAX_STRING 512
#define XAM_MAX_XUID 80

#ifndef TRUE
 #define TRUE (unsigned char)1
#endif
#ifndef FALSE
 #define FALSE (unsigned char)0
#endif

#define XAM_INT_MAX 0x7fffffffL

#ifdef _WIN32
 #undef EXPORT
 #define EXPORT __declspec(dllexport)
 #undef DECL
 #define DECL __cdecl
#else
 #define EXPORT
 #define DECL
#endif

/* == *\
 * Primitive types *
* == */

#ifdef _WIN32
 #if defined (__GNUC__)
 #include <stdint.h>
 typedef int64_t xam_int; /**< 8-byte signed integer */
 #else
 typedef __int64 xam_int; /**< 8-byte signed integer */
 #endif
#else // POSIX
 #include <inttypes.h>
 #if defined (__IBMC__) || defined (__IBMCPP__)
 typedef long long xam_int; /**< 8-byte signed integer */
 #else
 typedef int64_t xam_int; /**< 8-byte signed integer */
 #endif
#endif /* WIN32 or POSIX */
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 235

© SNIA
#if !defined(__cplusplus)
 typedef unsigned char xam_boolean;
 #define true (unsigned char)1
 #define false (unsigned char)0
#else
 typedef bool xam_boolean;
#endif

typedef double xam_double;
typedef char xam_xuid[XAM_MAX_XUID];
typedef char xam_string[XAM_MAX_STRING];
typedef char xam_datetime[XAM_MAX_STRING];

typedef xam_xuid XUID;

/* == *\
 * Method status *
* == */

#ifdef _WIN32
 #if defined (__GNUC__)
 typedef int32_t xam_status; /**< 4-byte signed integer */
 #else
 typedef __int32 xam_status; /**< 4-byte signed integer */
 #endif
#else // POSIX
 #if defined (__IBMC__) || defined (__IBMCPP__)
 typedef int xam_status; /**< 4-byte signed integer */
 #else
 typedef int32_t xam_status; /**< 4-byte signed integer */
 #endif
#endif /* WIN32 or POSIX */

/* == *\
 * Handles for the various XAM classes *
* == */

typedef xam_int xam_handle_t;
typedef xam_handle_t xset_handle;
typedef xam_handle_t xsystem_handle;
typedef xam_handle_t xiterator_handle;
typedef xam_handle_t xstream_handle;
typedef xam_handle_t xasync_handle;

#define XAM_LIBRARY_HANDLE (xam_handle_t)1 /**< XAM Library constant */

/* == *\
 * asynchronous operations typedefs *
* == */

typedef xam_int XOPID;

typedef void (*xasync_callback) (const xasync_handle inHandle);

/* == *\
 * Misc API constants *
* == */

/* XStream whence values */
236 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
static const xam_int XSTREAM_SEEK_SET = 0;
static const xam_int XSTREAM_SEEK_CUR = 1;
static const xam_int XSTREAM_SEEK_END = 2;

/* Access bits */
static const xam_int XSET_R_OK = 0x80000000L; /* Read */
static const xam_int XSET_WU_OK = 0x40000000L; /* Write-user */
static const xam_int XSET_WS_OK = 0x20000000L; /* Write-system */
static const xam_int XSET_C_OK = 0x10000000L; /* Create */
static const xam_int XSET_D_OK = 0x08000000L; /* Delete */
static const xam_int XSET_H_OK = 0x04000000L; /* Hold */
static const xam_int XSET_RE_OK = 0x02000000L; /* Retention-event */
static const xam_int XSET_J_OK = 0x01000000L; /* Job */
static const xam_int XSET_JC_OK = 0x00800000L; /* Job-commit */

/* Access bit composites */
static const xam_int XSET_W_OK = (XSET_WU_OK|XSET_WS_OK); /

* Write */
static const xam_int XSET_ALL_OK = (XSET_R_OK|XSET_W_OK|XSET_C_OK|XSET_D_OK); /

* Read, Write, Create, and Delete */

#endif /* XAM_TYPES_H */

A.2 xam_strings.h
#ifndef XAM_STRINGS_H
#define XAM_STRINGS_H 1

/* === *\
 * environment variable names *
* === */

static const char* const XAM_VIM_PATH_ENV_VAR = "XAM_VIM_PATH";

/* === *\
 * connection string elements *
* === */

static const char* const XAM_PROTOCOL = "snia-xam://";
static const char* const XAM_VIM_LIBRARY_TOKEN = "!";

/* === *\
 * stypes *
* === */

static const char* const XAM_BOOLEAN_MIME_TYPE = "application/
vnd.snia.xam.boolean";

static const char* const XAM_INT_MIME_TYPE = "application/vnd.snia.xam.int";
static const char* const XAM_DOUBLE_MIME_TYPE = "application/

vnd.snia.xam.double";
static const char* const XAM_XUID_MIME_TYPE = "application/vnd.snia.xam.xuid";
static const char* const XAM_STRING_MIME_TYPE = "application/

vnd.snia.xam.string";
static const char* const XAM_DATETIME_MIME_TYPE = "application/

vnd.snia.xam.datetime";

/* === *\
 * XSet create/open mode strings *
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 237

© SNIA
* === */

static const char* const XSET_MODE_READ_ONLY = "readonly";
static const char* const XSET_MODE_RESTRICTED = "restricted";
static const char* const XSET_MODE_MODIFY = "unrestricted";

/* === *\
 * XStream open mode strings *
* === */

static const char* const XSTREAM_MODE_READ_ONLY = "readonly";
static const char* const XSTREAM_MODE_WRITEONLY_TRUNCATE = "writeonly";
static const char* const XSTREAM_MODE_WRITEONLY_APPEND = "appendonly";

/* === *\
 * XAM object field names *
* === */

static const char* const XAM_IDENTITY = ".xam.identity";
static const char* const XAM_API_LEVEL = ".xam.apiLevel";
static const char* const XAM_VIM_LIST = ".xam.vim.list";
static const char* const XAM_MAX_STRING_FIELD = ".xam.maxstring";

/* === *\
 * XAM library logging control field names *
* === */

static const char* const XAM_LOG_LEVEL = ".xam.log.level";
static const char* const XAM_LOG_VERBOSITY = ".xam.log.verbosity";
static const char* const XAM_LOG_PATH = ".xam.log.path";

/* === *\
 * XAM library log config field names *
* === */

static const char* const XAM_LOG_FORMAT = ".xam.log.format";
static const char* const XAM_LOG_APPEND = ".xam.log.append";
static const char* const XAM_LOG_MAX_SIZE = ".xam.log.max.size";
static const char* const XAM_LOG_MAX_ROLLOVERS = ".xam.log.max.rollovers";
static const char* const XAM_LOG_MSG_FILTER = ".xam.log.message.filter";
static const char* const XAM_LOG_COMP_FILTER = ".xam.log.component.filter";
static const char* const XAM_LOG_CFG_PATH = ".xam.log.config.path";
static const char* const XAM_LOG_CFG_POLL_INTERVAL =

".xam.log.config.path.pollInterval";

/* === *\
 * XSystem field names *
* === */

static const char* const XAM_XSYSTEM_INITIALIZING = ".xsystem.initializing";

static const char* const XAM_XSYSTEM_IDENTITY = ".xsystem.identity";
static const char* const XAM_XSYSTEM_TIME = ".xsystem.time";
static const char* const XAM_XSYSTEM_MAX_FIELDS =

".xsystem.limits.maxFieldsPerXSet";
static const char* const XAM_XSYSTEM_MAX_SIZE_OF_XSTREAM =

".xsystem.limits.maxSizeOfXStream";
static const char* const XAM_XSYSTEM_SASL_LIST =

".xsystem.auth.SASLmechanism.list";
238 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
static const char* const XAM_XSYSTEM_SASL_DEFAULT =
".xsystem.auth.SASLmechanism.default";

static const char* const XAM_XSYSTEM_AUTH_GRANULE_LIST =
".xsystem.auth.granule.list";

static const char* const XAM_XSYSTEM_AUTH_IDENTITY_AUTHENTICATION =
".xsystem.auth.identity.authentication";

static const char* const XAM_XSYSTEM_AUTH_IDENTITY_AUTHORIZATION =
".xsystem.auth.identity.authorization";

static const char* const XAM_XSYSTEM_AUTH_EXPIRATION =
".xsystem.auth.expiration";

static const char* const XAM_XSYSTEM_ACCESS =
".xsystem.access";

static const char* const XAM_XSYSTEM_ACCESS_POLICY_LIST =
".xsystem.access.policy.list";

static const char* const XAM_XSYSTEM_MANAGEMENT_POLICY_LIST =
".xsystem.management.policy.list";

static const char* const XAM_XSYSTEM_MANAGEMENT_POLICY_DEFAULT =
".xsystem.management.policy.default";

static const char* const XAM_XSYSTEM_STORAGE_POLICY_LIST =
".xsystem.storage.policy.list";

static const char* const XAM_XSYSTEM_JOB_COMMIT_SUPPORTED =
".xsystem.job.commit.supported";

static const char* const XAM_XSYSTEM_JOB_LIST =
".xsystem.job.list";

static const char* const XAM_XSYSTEM_JOB_LIST_QUERY =
".xsystem.job.list.xam.job.query";

static const char* const XAM_XSYSTEM_JOB_QUERY_CONTINUANCE_SUPPORTED =
".xsystem.job.xam.job.query.continuance.supporte
d";

static const char* const XAM_XSYSTEM_JOB_QUERY_LEVEL1_SUPPORTED =
".xsystem.job.xam.job.query.level1.supported";

static const char* const XAM_XSYSTEM_JOB_QUERY_LEVEL2_SUPPORTED =
".xsystem.job.xam.job.query.level2.supported";

static const char* const XAM_XSYSTEM_AUTODELETE =
".xsystem.deletion.autodelete";

static const char* const XAM_XSYSTEM_AUTODELETE_POLICY_LIST =
".xsystem.deletion.autodelete.policy.list";

static const char* const XAM_XSYSTEM_SHRED =
".xsystem.deletion.shred";

static const char* const XAM_XSYSTEM_SHRED_POLICY_LIST =
".xsystem.deletion.shred.policy.list";

static const char* const XAM_XSYSTEM_RETENTION_DURATION_POLICY_LIST =
 ".xsystem.retention.duration.policy.list";

static const char* const XAM_XSYSTEM_RETENTION_ENABLED_POLICY_LIST =
 ".xsystem.retention.enabled.policy.list ";

static const char* const XAM_XSYSTEM_RETENTION_BASE_ENABLED_POLICY_LIST =
".xsystem.retention.base.enabled.policy.list";

static const char* const XAM_XSYSTEM_RETENTION_BASE_DURATION_POLICY_LIST =
".xsystem.retention.base.duration.policy.list";

static const char* const XAM_XSYSTEM_RETENTION_EVENT_DURATION_POLICY_LIST =
".xsystem.retention.event.duration.policy.list";

static const char* const XAM_XSYSTEM_RETENTION_EVENT_ENABLED_POLICY_LIST =
".xsystem.retention.event.enabled.policy.list";
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 239

© SNIA
/* == *\
 * XSet basic field names *
* == */

static const char* const XAM_XSET_TIME_CREATION = ".xset.time.creation";
static const char* const XAM_XSET_TIME_XUID = ".xset.time.xuid";
static const char* const XAM_XSET_TIME_COMMIT = ".xset.time.commit";
static const char* const XAM_XSET_TIME_ACCESS = ".xset.time.access";
static const char* const XAM_XSET_TIME_RESIDENCY = ".xset.time.residency";
static const char* const XAM_XSET_XUID = ".xset.xuid";
static const char* const XAM_XSET_DIRTY = ".xset.dirty";

/* === *\
 * XSet management field names *
* === */

static const char* const XAM_XSET_ACCESS_POLICY =
".xset.access.policy";

static const char* const XAM_XSET_MANAGEMENT_POLICY =
".xset.management.policy";

static const char* const XAM_XSET_STORAGE_POLICY =
".xset.storage.policy";

static const char* const XAM_XSET_RETENTION_LIST =
".xset.retention.list";

static const char* const XAM_XSET_RETENTION_LIST_BASE =
".xset.retention.list.base";

static const char* const XAM_XSET_RETENTION_LIST_EVENT =
".xset.retention.list.event";

static const char* const XAM_XSET_RETENTION_BASE_ENABLED =
".xset.retention.base.enabled";

static const char* const XAM_XSET_RETENTION_BASE_START_TIME =
".xset.retention.base.starttime";

static const char* const XAM_XSET_RETENTION_BASE_DURATION =
".xset.retention.base.duration";

static const char* const XAM_XSET_RETENTION_BASE_ENABLED_POLICY =
".xset.retention.base.enabled.policy";

static const char* const XAM_XSET_RETENTION_BASE_DURATION_POLICY =
".xset.retention.base.duration.policy";

static const char* const XAM_XSET_RETENTION_EVENT_ENABLED =
".xset.retention.event.enabled";

static const char* const XAM_XSET_RETENTION_EVENT_START_TIME =
".xset.retention.event.starttime";

static const char* const XAM_XSET_RETENTION_EVENT_DURATION =
".xset.retention.event.duration";

static const char* const XAM_XSET_RETENTION_EVENT_ENABLED_POLICY =
".xset.retention.event.enabled.policy";

static const char* const XAM_XSET_RETENTION_EVENT_DURATION_POLICY =
".xset.retention.event.duration.policy";

static const char* const XAM_XSET_AUTODELETE =
".xset.deletion.autodelete";

static const char* const XAM_XSET_AUTODELETE_POLICY =
".xset.deletion.autodelete.policy";

static const char* const XAM_XSET_SHRED =
".xset.deletion.shred";

static const char* const XAM_XSET_SHRED_POLICY =
".xset.deletion.shred.policy";
240 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
static const char* const XAM_XSET_HOLD = ".xset.hold";
static const char* const XAM_XSET_HOLD_LIST = ".xset.hold.list";

/* == *\
 * XSet Job Properties/Values field names *
* == */

static const char* const XAM_JOB_COMMAND =
"org.snia.xam.job.command";

static const char* const XAM_JOB_STATUS = ".xam.job.status";

static const char* const XAM_JOB_STATUS_NEW = "NEW";
static const char* const XAM_JOB_STATUS_STARTING = "STARTING";
static const char* const XAM_JOB_STATUS_RUNNING = "RUNNING";
static const char* const XAM_JOB_STATUS_SHUTTING_DOWN = "SHUTTING DOWN";
static const char* const XAM_JOB_STATUS_COMPLETE = "COMPLETE";
static const char* const XAM_JOB_STATUS_SUSPENDED = "SUSPENDED";
static const char* const XAM_JOB_STATUS_HALTED = "HALTED";
static const char* const XAM_JOB_STATUS_KILLED = "KILLED";

static const char* const XAM_JOB_ERRORHEALTH = ".xam.job.errorhealth";
static const char* const XAM_JOB_ERRORHEALTH_OK = "OK";
static const char* const XAM_JOB_ERRORHEALTH_ERROR = "ERROR";

static const char* const XAM_JOB_ERROR = ".xam.job.error";

/* === *\
 * XSet job command values *
* === */

static const char* const XAM_JOB_QUERY = "xam.job.query";

/* === *\
 * XSet Query Job field names *
* === */

static const char* const XAM_QUERY_XUID_LIST_MIME_TYPE = "application/
vnd.snia.query.xuid_list";

static const char* const XAM_JOB_QUERY_COMMAND = "xam.job.query.command";
static const char* const XAM_JOB_QUERY_RESULTS = "xam.job.query.results";
static const char* const XAM_JOB_QUERY_RESULTS_COUNT =

"xam.job.query.results.count";
static const char* const XAM_JOB_QUERY_LEVEL = "xam.job.query.level";

static const char* const XAM_JOB_QUERY_LEVEL_1 =
"org.snia.xam.job.query.level.1";

static const char* const XAM_JOB_QUERY_LEVEL_2 =
"org.snia.xam.job.query.level.2";

/* === *\
 * XAM job error tokens *
* === */

static const char* const XAM_JOB_ERROR_NOT_A_JOB =
"org.snia.xam::not_a_job";

static const char* const XAM_QUERY_ERROR_UNSPECIFIED_CMD =
"org.snia.xam.query::unspecified_command";
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 241

© SNIA
static const char* const XAM_QUERY_ERROR_LEVEL_NOT_SUPPORTED =
"xam.job.query::level_not_supported";

static const char* const XAM_QUERY_ERROR_INVALID_CMD_SYNTAX =
"xam.job.query::invalid_command_syntax";

static const char* const XAM_QUERY_ERROR_INSUFFICIENT_PERMISSION =
"xam.job.query::insufficient_permission";

static const char* const XAM_QUERY_ERROR_INSUFFICIENT_RESOURCES =
"xam.job.query::insufficient_resources";

/* === *\
 * XAM error tokens *
* === */

static const char* const XAM_OK_TOKEN = "xam/OK";
static const char* const XAM_UNKNOWN_ERROR_TOKEN = "xam/unknown error";
static const char* const XAM_OUT_OF_MEMORY_TOKEN = "xam/out of memory";
static const char* const XAM_INVALID_PARAM_TOKEN = "xam/invalid parameter";
static const char* const XAM_PARAM_NOT_UTF8_TOKEN = "xam/non-UTF8 parameter";
static const char* const XAM_INVALID_HANDLE_TOKEN = "xam/invalid handle";
static const char* const XAM_INVALID_MIME_TYPE_TOKEN = "xam/invalid mime type";
static const char* const XAM_INVALID_XSTREAM_MODE_TOKEN = "xam/invalid xstream

mode";
static const char* const XAM_INVALID_XRI_TOKEN = "xam/invalid XRI";
static const char* const XAM_INVALID_XSET_MODE_TOKEN = "xam/invalid xset mode";
static const char* const XAM_INVALID_FIELD_NAME_TOKEN = "xam/invalid field name";
static const char* const XAM_VIM_NOT_FOUND_TOKEN = "xam/vim not found";
static const char* const XAM_VIM_SYMBOL_NOT_FOUND_TOKEN = "xam/vim symbol not

found";
static const char* const XAM_FIELD_NOT_FOUND_TOKEN = "xam/field not found";
static const char* const XAM_FIELD_IS_READ_ONLY_TOKEN = "xam/field is read only";
static const char* const XAM_FIELD_EXISTS_TOKEN = "xam/field exists";
static const char* const XAM_FIELD_IN_USE_TOKEN = "xam/field in use";
static const char* const XAM_MAX_FIELDS_EXCEEDED_TOKEN = "xam/reached maximum

field limit";
static const char* const XAM_FILESYSTEM_ERROR_TOKEN = "xam/filesystem error";
static const char* const XAM_XSYSTEM_ABANDONED_TOKEN = "xam/xsystem abandoned";
static const char* const XAM_XSET_ABANDONED_TOKEN = "xam/xset abandoned";
static const char* const XAM_XSTREAM_ABANDONED_TOKEN = "xam/xstream abandoned";
static const char* const XAM_XSYSTEM_CORRUPT_TOKEN = "xam/xsystem corrupted";
static const char* const XAM_XSET_CORRUPT_TOKEN = "xam/xset corrupted";
static const char* const XAM_XSTREAM_CORRUPT_TOKEN = "xam/xstream corrupted";
static const char* const XAM_CONNECT_FAILED_TOKEN = "xam/connection failed";
static const char* const XAM_AUTH_REQUIRED_TOKEN = "xam/authentication

required";
static const char* const XAM_AUTH_DATA_NEEDED_TOKEN = "xam/authentication data

needed";
static const char* const XAM_AUTH_FAILED_TOKEN = "xam/authentication

failed";
static const char* const XAM_BAD_XUID_FORMAT_TOKEN = "xam/bad xuid format";
static const char* const XAM_XSET_NOT_FOUND_TOKEN = "xam/xset not found";
static const char* const XAM_PENDING_TOKEN = "xam/operation pending";
static const char* const XAM_NOT_SUPPORTED_TOKEN = "xam/operation not

supported";
static const char* const XAM_OPERATION_NOT_ALLOWED_TOKEN = "xam/operation not

allowed";
static const char* const XAM_OBJECT_IN_USE_TOKEN = "xam/object in use";
static const char* const XAM_NOT_A_JOB_TOKEN = "xam/not a job";
static const char* const XAM_JOB_INVALID_CMD_TOKEN = "xam/job command

invalid";
242 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
static const char* const XAM_JOB_INVALID_CMD_SYNTAX_TOKEN = "xam/job invalid command
syntax";

static const char* const XAM_JOB_ABORTED_TOKEN = "xam/job aborted";
static const char* const XAM_JOB_LEVEL_NOT_SUPPORTED_TOKEN = "xam/job level not

supported";
static const char* const XAM_JOB_INSUFFICIENT_PERMISSIONS_TOKEN = "xam/job

insufficent permissions";
static const char* const XAM_JOB_INSUFFICIENT_RESOURCES_TOKEN = "xam/job

insufficent resources";
static const char* const XAM_JOB_RUNNING_TOKEN = "xam/job already running";
static const char* const XAM_XSET_UNDER_RETENTION_TOKEN = "xam/xset is under

retention";
static const char* const XAM_XSET_UNDER_HOLD_TOKEN = "xam/xset is under hold";
static const char* const XAM_XSET_HOLD_ID_IN_USE_TOKEN = "xam/hold id already in

use";
static const char* const XAM_XSET_INVALID_RETENTION_VALUE_TOKEN = "xam/value would

shorten effective retention";
static const char* const XAM_INVALID_POLICY_NAME_TOKEN = "xam/invalid policy

name";

#endif // XAM_STRINGS_H

A.3 xam_errors.h
#ifndef XAM_ERRORS_H
#define XAM_ERRORS_H 1

/* === *\
 * standard error codes returned by the XAM API *
* === */

#define XAM_UNKNOWN_ERROR 1001 /**< An unknown error occured */
#define XAM_OUT_OF_MEMORY 1002 /**< Out of memory */
#define XAM_INVALID_PARAM 1003 /**< Encountered an invalid API

parameter */
#define XAM_PARAM_NOT_UTF8 1004 /**< Parameter found not to be UTF-

8 */
#define XAM_INVALID_HANDLE 1005 /**< Invalid handle parameter */
#define XAM_INVALID_MIME_TYPE 1006 /**< Invalid mime type */
#define XAM_INVALID_XSTREAM_MODE 1007 /**< Invalid XStream mode */
#define XAM_INVALID_XRI 1008 /**< Invalid XRI */
#define XAM_INVALID_XSET_MODE 1009 /**< Invalid operating mode for the

XSet */
#define XAM_INVALID_FIELD_NAME 1010 /**< The specified field name is

invalid */
#define XAM_VIM_NOT_FOUND 1011 /**< VIM could not be located or

loaded */
#define XAM_VIM_SYMBOL_NOT_FOUND 1012 /**< Required symbol not found in

VIM */
#define XAM_FIELD_NOT_FOUND 1013 /**< Field not found for a given

handle */
#define XAM_FIELD_IS_READ_ONLY 1014 /**< Attempted to write to a read

only field */
#define XAM_FIELD_EXISTS 1015 /**< Field already exists */
#define XAM_FIELD_IN_USE 1016 /**< Field in use error */
#define XAM_MAX_FIELDS_EXCEEDED 1017 /**< Too many fields exist in this

object */
#define XAM_FILESYSTEM_ERROR 1018 /**< Filesystem error */
#define XAM_XSYSTEM_ABANDONED 1019 /**< The XSystem instance has been

abandoned */
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 243

© SNIA
#define XAM_XSET_ABANDONED 1020 /**< The XSet instance has been
abandoned */

#define XAM_XSTREAM_ABANDONED 1021 /**< The XStream instance has been
abandoned */

#define XAM_XSYSTEM_CORRUPT 1022 /**< The XSystem instance has been
corrupted */

#define XAM_XSET_CORRUPT 1023 /**< The XSet instance has been
corrupted */

#define XAM_XSTREAM_CORRUPT 1024 /**< The XStream instance has been
corrupted */

#define XAM_CONNECT_FAILED 1025 /**< Failed to connect to the XSystem
*/

#define XAM_AUTH_REQUIRED 1026 /**< Authentication is required */
#define XAM_AUTH_DATA_NEEDED 1027 /**< Additional authentication data

is required */
#define XAM_AUTH_FAILED 1028 /**< Authentication failed */
#define XAM_BAD_XUID_FORMAT 1029 /**< Bad XUD format */
#define XAM_XSET_NOT_FOUND 1030 /**< XSet not found */
#define XAM_PENDING 1031 /**< Asynchronous operation is

pending */
#define XAM_NOT_SUPPORTED 1032 /**< The operation requested is not

supported */
#define XAM_OPERATION_NOT_ALLOWED 1033 /**< Operation not allowed */
#define XAM_OBJECT_IN_USE 1034 /**< This object is currently in use

*/
#define XAM_NOT_A_JOB 1035 /**< The XSet does not contain a job

request */
#define XAM_JOB_INVALID_CMD 1036 /**< The job command is invalid */
#define XAM_JOB_INVALID_CMD_SYNTAX 1037 /**< The job command syntax is

invalid */
#define XAM_JOB_ABORTED 1038 /**< The job was aborted */
#define XAM_JOB_LEVEL_NOT_SUPPORTED 1039 /**< The job level is insufficent */
#define XAM_JOB_INSUFFICIENT_PERMISSIONS 1040 /**< The job permissions are

insuffient */
#define XAM_JOB_INSUFFICIENT_RESOURCES 1041 /**< The job resources are

insufficent */
#define XAM_JOB_RUNNING 1042 /**< A job is already running */
#define XAM_XSET_UNDER_RETENTION 1043 /**< The XSet is under retention */
#define XAM_XSET_UNDER_HOLD 1044 /**< The XSet is under hold and

cannot be deleted */
#define XAM_XSET_HOLD_ID_IN_USE 1045 /**< The hold id is already in use

*/
#define XAM_XSET_INVALID_RETENTION_VALUE 1046 /**< The specified duration would

shorten the effective retention */
#define XAM_INVALID_POLICY_NAME 1047 /**< Invalid policy name for this

operation */

#endif // XAM_ERRORS_H

A.4 xam.h
#ifndef XAM_H
#define XAM_H

/* types and definitions */
#include "xam_types.h"
#include "xam_strings.h"
#include "xam_errors.h"
244 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
#ifdef __cplusplus
extern "C" {
#endif

/* ===
 * methods for evaluating xam_status
 * ==*/

/** @defgroup Status Status Methods
 @{ */

/**
 Generates an error token from the xam_status. If passed an XSystem
 reference, it will be able to generate error tokens for non-standard
 status. Otherwise, non-standard status will always generate the
 “xam/unknown error” token.

 This method does not require any passed-in XSystem to be authenticated.
 It will also work on an XSystem that is in a corrupted or aborted state .
 It returns TRUE on success, and FALSE on failure.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle, containing an XSystem or a XAM
 library object reference.
 @param inStatus A valid xam_status.
 @param outToken A reference to valid storage for a xam_string. The
 value that is passed in is not used and is overwritten
 with the result
 @return true if the error token was found and written outToken,
 false otherwise
 */
EXPORT xam_boolean DECL
XAM_GetErrorToken (const xam_handle_t inHandle,
 const xam_status inStatus,
 xam_string* outToken);

/** @} */ /* Status functions */

/* ===
 * method prototypes for the XIterator
 * ==*/

/** @defgroup XIterator XIterator Methods
 @{ */

/**
 A factory interface, creating an XIterator from an XSet, XSystem, or XAM
 object (e.g. objects that contain fields). This iterator is used to
 discover the field names of fields on the object in scope (e.g. an XSet,
 XSystem, or XAM object). Only those fields whose names begin with the
 distinct bit sequence as specified in the pattern will be included in
 the enumeration.

 Resources associated with the XIterator must be explicitly released.
 Once the resources are released, the XIterator will no longer be valid.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 245

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that contains the
 fields to be enumerated.
 @param inPattern A valid xam_string, containing a valid, null terminated
 utf-8 byte sequence. The pattern in this xam_string will
 be used to filter the fields which will be enumerated –
 those fields that do not being with the specified pattern
 will not be included in the enumeration. The pattern is
 very simple – the byte sequence is treated as an explicit
 prefix, if the beginning of a field name does not match
 the exact bit sequence of the specified pattern it will be
 filtered out of the results. All fields are considered to
 begin with an empty string, thus specifying an empty
 string in the pattern will result in no fields being
 filtered.
 @param outIterator A reference to valid storage for an xiterator_handle.
 The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_OpenFieldIterator (const xam_handle_t inHandle,
 const xam_string inPattern,
 xiterator_handle* outIterator);

/**
 Determines if there are more field names available to be read
 from the XIterator using the XIterator_Next method.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xiterator_handle.
 @param outHasNext A reference to valid storage for a xam_boolean.
 If additional field names may be read from this XIterator,
 "true" is written here. Otherwise, "false" is written.
 The value that is passed in is not used and is overwritten
 with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XIterator_HasNext (const xiterator_handle inHandle,
 xam_boolean* outHasNext);

/**
 Copies the field name of the field at the current cursor of the iteration
 into the provided storage. The cursor is then advanced to the next field.
 Upon reading past the last field, an empty string will be returned.

 Concurrency requirements:
246 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xiterator_handle.
 @param outName A reference to valid storage for a xam_string. The result
 is the name of the field following the current cursor (e.g.
 the field name of the field at the current cursor/position
 in the iteration). The value that is passed in is not used,
 and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XIterator_Next (const xiterator_handle inHandle,
 xam_string* outName);

/**
 Releases the resources associated with an open XIterator. After this method
 is called, the XIterator may no longer be used.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xiterator_handle
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XIterator_Close (xiterator_handle inHandle);

/** @} */ /* XIterator functions */

/* ==
 * method prototypes for managing XAM Fields (properties or XStreams)
 * ===*/

/** @defgroup Fields Field Management Methods
 @{ */

/**
 Sets the xam_boolean value to true if the named field exists in this
 object, or to false otherwise.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object on which to determine
 the existence of the named field.
 @param inName A xam_string containing the name of the field to locate.
 @param outContained A reference to valid storage for a xam_boolean. The result
 is true if the named field is contained in the object;
 or false otherwise. The value that is passed in is not
 used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 247

© SNIA
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_ContainsField(const xam_handle_t inHandle,
 const xam_string inName,
 xam_boolean* outContained);

/**
 Sets the binding attribute of a field to true.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet reference. This
 is the object that contains the named field.
 @param inName A xam_string containing the name of the field to manipulate.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_SetFieldAsBinding (const xset_handle inHandle,
 const xam_string inName);

/**
 Sets the binding attribute of a field to false.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet reference. This
 is the object that contains the named field.
 @param inName A xam_string containing the name of the field to manipulate.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_SetFieldAsNonbinding (const xset_handle inHandle,
 const xam_string inName);

/**
 Copies the mime-type of the named field into the provided xam_string.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that contains the
 named field.
 @param inName A xam_string containing the name of the field to manipulate.
 @param outType A reference to valid storage for a xam_string. The result
 is the mime-type of the named field in the object. The value
 that is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
248 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_GetFieldType (const xam_handle_t inHandle,
 const xam_string inName,
 xam_string* outType);

/**
 Copies the length of the named field into the provided xam_int.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that contains the
 named field.
 @param inName A xam_string containing the name of the field to manipulate.
 @param outLength A reference to valid storage for a xam_int. The result is
 the number of bytes of the value of the named field in the
 object. The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_GetFieldLength (const xam_handle_t inHandle,
 const xam_string inName,
 xam_int* outLength);

/**
 Sets the xam_boolean value to true if the binding attribute of the named
 field is true, or to false otherwise.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that contains the
 named field.
 @param inName A xam_string containing the name of the field to manipulate.
 @param outBinding A reference to valid storage for a xam_boolean. The result
 is true if the binding attribute of the named field is
 true;
 or false otherwise. The value that is passed in is not
 used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_GetFieldBinding (const xam_handle_t inHandle,
 const xam_string inName,
 xam_boolean* outBinding);

/**
 Sets the xam_boolean value to true if the read-only attribute of the named
 field is true, or to false otherwise.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 249

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that contains the
 named field.
 @param inName A xam_string containing the name of the field to manipulate.
 @param outReadOnly A reference to valid storage for a xam_boolean. The
 result is true if the read-only attribute of the named
 field is true; or false otherwise. The value that is
 passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
*/
EXPORT xam_status DECL
XAM_GetFieldReadOnly (const xam_handle_t inHandle,
 const xam_string inName,
 xam_boolean* outReadOnly);

/**
 Removes a field from the XSet.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that contains the
 named field.
 @param inName A xam_string containing the name of the field to delete.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_DeleteField (const xam_handle_t inHandle,
 const xam_string inName);

/** @} */ /* Field functions */

/* ==
 * method prototypes for managing property fields
 * ===*/

/** @defgroup Property Property Management Methods
 @{ */

/**
 Creates a property field with a type set to
 “application/vnd.snia.xam.boolean” on the object referenced by the passed
 in xam_handle_t. Its name, value and binding attributes will be set in
 accordance with the user-provided parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
250 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_boolean containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_CreateBoolean (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_boolean inValue);

/**
 Creates a property field with a type set to “application/vnd.snia.xam.int”
 on the object referenced by the passed in xam_handle_t. Its name, value and
 binding attributes will be set according to the user provided
 parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_int containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_CreateInt (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_int inValue);

/**
 Creates a property field with a type set to “application/vnd.snia.xam.float”
 on the object referenced by the passed in xam_handle_t. Its name, value and
 binding attributes will be set according to the user provided
 parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 251

© SNIA
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_double containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_CreateDouble (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_double inValue);

/**
 Creates a property field with a type set to “application/vnd.snia.xam.xuid”
 on the object referenced by the passed in xam_handle_t. Its name, value and
 binding attributes will be set according to the user provided
 parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_xuid containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_CreateXUID (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_xuid inValue);

/**
 Creates a property field with a type set to
 “application/vnd.snia.xam.string” on the object referenced by the passed in
 xam_handle_t. Its name, value and binding attributes will be set in
 accordance with the user-provided parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_string containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
252 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
EXPORT xam_status DECL
XAM_CreateString (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inValue);

/**
 Creates a property field with a type set to
 “application/vnd.snia.xam.datetime” on the object referenced by the passed
 in xam_handle_t. Its name, value and binding attributes will be set in
 accordance with the user-provided parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_datetime containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_CreateDatetime (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_datetime inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.boolean” on the object referenced by the passed
 in xam_handle_t. Its value will be set according to the user provided
 parameter.

 @note If the field is binding, this will result in a new XUID being assigned
 to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_boolean containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_SetBoolean (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inValue);
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 253

© SNIA
/**
 Changes a property field with a type set to “application/vnd.snia.xam.int”
 on the object referenced by the passed in xam_handle_t. Its value will be
 set according to the user-provided parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_int containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_SetInt (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_int inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.float” on the object referenced by the passed in
 xam_handle_t. Its value will be set according to the user provided
 parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_double containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_SetDouble (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_double inValue);

/**
 Changes a property field with a type set to “application/vnd.snia.xam.xuid”
 on the object referenced by the passed in xam_handle_t. Its value will be
 set according to the user-provided parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.
254 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_xuid containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_SetXUID (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_xuid inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.string” on the object referenced by the passed in
 xam_handle_t. Its value will be set according to the user provided
 parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_string containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_SetString (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_string inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.datetime” on the object referenced by the passed
 in xam_handle_t. Its value will be set according to the user provided
 parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 255

© SNIA
 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_datetime containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_SetDatetime (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_datetime inValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.boolean” on the object referenced by the passed
 in xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_boolean. The value
 of the named field is written into this value. The value
 that is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_GetBoolean (const xam_handle_t inHandle,
 const xam_string inName,
 xam_boolean* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.int” on the object referenced by the passed in
 xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_int. The value of the
 named field is written into this value. The value that is
 passed in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
256 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
XAM_GetInt (const xam_handle_t inHandle,
 const xam_string inName,
 xam_int* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.float” on the object referenced by the passed in
 xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_double. The value of
 the named field is written into this value. The value that
 is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_GetDouble (const xam_handle_t inHandle,
 const xam_string inName,
 xam_double* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.xuid” on the object referenced by the passed in
 xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_xuid. The value of
 the named field is written into this value. The value that
 is passed
 in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_GetXUID (const xam_handle_t inHandle,
 const xam_string inName,
 xam_xuid* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.string” on the object referenced by the passed in
 xam_handle_t.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 257

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_string. The value of
 the named field is written into this value. The value that
 is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_GetString (const xam_handle_t inHandle,
 const xam_string inName,
 xam_string* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.datetime” on the object referenced by the passed
 in xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_datetime. The value
 of the named field is written into this value. The value
 that is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_GetDatetime (const xam_handle_t inHandle,
 const xam_string inName,
 xam_datetime* outValue);

/** @} */ /* Property functions */

/* ===
 * method prototypes for XStreams and XStream fields
 * ==*/

/** @defgroup XStream XStream Methods
 @{ */

/**
 Creates an XStream field with a type set to the user defined mime-type on
 the object referenced by the passed in xam_handle_t. Its name, mime-type
258 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 and binding attributes will be set according to the user provided
 parameters. The XStream field is opened in “writeonly” mode.

 @note The value is not set by the method. This method will create an
 XStream with a length of zero – other methods must be used to add
 data to this field.

 @note If the xam_handle_t contains an XSet, this method may fail with an
 error if the maximum number of fields supported on an XSet is
 reached. All XSystems must support at least XXX fields on an XSet.
 However, some XAM storage systems may support more than this. To
 determine the actual maximum number of fields allowed on an XSet an
 application should evaluate the YYY field on the XSystem. For more
 information on this topic please consult the XAM architecture
 document.

 @note Call the XStream_Close() function one done with the outXStream so
 others can use if needed.

 @note Call the XAM_DeleteField() function to release the resources
 associated with the created outXStream.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inType A xam_string that contains the mime-type of the field.
 @param outXStream A reference to valid storage for an xstream_handle. The
 value that is passed in is not used and is overwritten
 with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_CreateXStream (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inType,
 xstream_handle* outXStream);

/**
 Creates an open XStream in either “readonly” or “writeonly” mode, based on
 the mode argument.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 259

© SNIA
 @param inMode A string indicating the mode to open the XStream in:
 o “readonly”: open for reading. Write methods will fail on the XStream
 instance.
 o “writeonly”: open for writing. Read and seek methods will fail on the
 XStream instance. Truncates existing data in the XStream.
 o “appendonly”: open for writing. Read and seek methods will fail on the
 XStream instance. Appends the existing data in the XStream.
 @param outXStream A reference to valid storage for an xstream_handle. The
 value that is passed in is not used and is overwritten
 with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_OpenXStream (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_string inMode,
 xstream_handle* outXStream);

/**
 Transfers data from the storage system into the target buffer, up to the
 number of bytes requested.

 @note If the inBufferLength is set to a size larger than the actual number
 of bytes of storage available in the inBuffer, undefined results may
 occur (this includes but is not limited to data loss and data
 corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method does not block until data is completely read, but will
 indicate the amount of data that was read in each call. Subsequent
 calls may be needed to read the remainder of the data.

 @param inHandle An xstream_handle that must have been opened in read mode.
 @param ioBuffer An allocated byte array into which the data will be read.
 @param inBufferLength A xam_int set to the number of bytes available in
 the ioBuffer.
 @param outBytesRead A reference to valid storage for a xam_int. On return
 this will contain the actual number of bytes read. This
 will be less than or equal to the inBufferLength. When
 there is no more data to be read, a value of -1 will be
 set. The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XStream_Read (const xstream_handle inHandle,
 char* ioBuffer,
 const xam_int inBufferLength,
 xam_int* outBytesRead);

/**
 Transfers data from the source buffer to the XAM storage system, up to the
 number of bytes requested.

 @note This method may fail with an error if the maximum number of bytes
 supported in an XStream is reached. All XSystems must support at
260 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 least XXX bytes in an XStream. However, some XAM storage systems may
 support more than this. To determine the actual maximum number of
 bytes allowed in an XStream an application should evaluate the YYY
 field on the XSystem. For more information on this topic please
 consult the XAM architecture document.

 @note If the inByteCount is set to a size larger than the actual number of
 bytes of storage available in the inBuffer, undefined results may
 occur (this includes but is not limited to data loss and data
 corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method does not block until all the data in the buffer is
 completely written, but it will indicate the amount of data that was
 written in each call. Subsequent calls may be needed to write the all
 of the data.

 @param inHandle An xstream_handle that must have been opened in write mode.
 @param inBuffer A byte array containing the data to be written.
 @param inByteCount A xam_int set to the number of bytes in the buffer to be
 written.
 @param outBytesWritten A reference to valid storage for a xam_int. On
 return this will contain the actual number of bytes
 written. This will be less than or equal to the
 inByteCount. The value that is passed in is not used,
 and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XStream_Write (const xstream_handle inHandle,
 const char* inBuffer,
 const xam_int inByteCount,
 xam_int* outBytesWritten);

/**
 Sets the position indicator for the XStream. The new position, measured in
 bytes, is obtained by adding inOffset bytes to the position specified by
 inWhence. If inWhence is set to 0, 1, or 2, then the offset is relative to
 the start of the XStream, the current position, or end-of-data,
 respectively.

 @note This method can only be used for XStreams opened for read. In
 addition, this method cannot be used to create sparse files. It is an
 error to seek past the end of the data in the XStream, as indicated by
 the field attribute ‘length’.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xstream_handle that must have been opened in read mode.
 @param inOffset A xam_int containing the number of bytes to change the
 position by. A positive value moves the cursor forward.
 A negative value moves the cursor backward.
 @param inWhence A xam_int containing a 0, 1 or 2 (indicating where the
 offset should be measured from).
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 261

© SNIA
 The following constants are provided:
 XSTREAM_SEEK_SET(0) - Seek from the start position
 XSTREAM_SEEK_CUR(1) - Seek from the current position
 XSTREAM_SEEK_END(2) - Seek from the end position
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XStream_Seek (const xstream_handle inHandle,
 const xam_int inOffset,
 const xam_int inWhence);

/**
 Obtains the current value of the XStream position indicator.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xstream_handle.
 @param outPosition A xam_int containing the position in the XStream.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XStream_Tell (const xstream_handle inHandle,
 xam_int* outPosition);

/**
 An XStream in its normal state will generate an error when an application
 attempts to close it if there are open asynchronous operations being
 performed on it. Making this call will change the state of the XStream and
 allow it to be closed without regard for any open asynchronous operations.
 Note that the XStream will no longer be usable after this call is made, and
 the only call that will succeed is an XStream.Close.

 @note This is a VERY DANGEROUS call that may result in data loss if used
 inappropriately. It is recommended that applications track all open
 asynchronous operations, and close the asynchronous operations
 properly as opposed to making this call.

 @note If the XStream has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xstream_handle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XStream_Abandon(const xstream_handle inHandle);

/**
 Closes a previously opened XStream. Any resources that were allocated can
 be released at this point.
262 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA

 @note Closing an already closed XStream can produce undefined results (this
 includes but is not limited to data loss and data corruption)

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xstream_handle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XStream_Close (xstream_handle inHandle);

/** @} */ /* XStream functions */

/* ==
 * method prototypes for managing the connection to a XAM storage system
 * ===*/

/** @defgroup XSystem XSystem Methods
 @{ */

/**
 XAM Applications connect to XAM storage systems by calling the ‘connect’
 API method in the XAM API, and specifying the XSystem’s Uniform Resource
 Identifier (XRI) string as its parameter. It is expected that the XRI will
 be specified by the local storage system administrators, and applications
 should strive to make this easily configured at rum time.

 @note The XSystem is not fully usable until it has been authenticated.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inXRI A xam_string. It contains the XSystem’s Uniform Resource
 Identifier. A BNF of this format is listed below:

 snia-xam://[vimname!]xsystemname[?param=value[{¶m=value}]]

 The vimname is a string that describes which VIM to use, and
 if it is not specified the XAM system will choose a VIM to
 use. A vimname is not allowed to contain a ‘!’ character. The
 xsystemname is vendor specific – it may be an IP address, or
 some other id. It may not contain ‘/’, ‘?’, or ‘!’ characters.
 Finally, param’=’value pairs can be specified
 @param outHandle A reference to valid storage for an xsystem_handle.
 On return this will contain the XSystem handle that was
 created. The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAMLibrary_Connect (const xam_string inXRI,
 xsystem_handle* outHandle);
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 263

© SNIA
/**
 Allows an application to authenticate an XSystem. It provides a generic
 interface to exchange data as part of the authentication process. The
 application should check the XSystem property xyz to determine which
 patterns of authentication (mechanisms) are available for use. After a
 pattern is selected, the appropriate sequence of data exchanges should be
 made (using this call) in order to authenticate. A failed authentication
 will make the XSystem unusable – applications cannot repeat failed
 authentications using the same XSystem.

 @note The outXStream must be closed (using XStream_Close() function) when
 the application has finished its authentication processing.

 @note If the XSystem has been closed, or if the inByteCount is set to a
 size larger than the actual number of bytes of storage available in
 the inBuffer, undefined results may occur (this includes but is not
 limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inBuffer Data that is being passed to the authentication mechanism
 is passed in this array of bytes.
 @param inByteCount The number of significant bytes in the passed in buffer.
 @param outXStream A reference to valid storage for an xstream_handle. On
 return this will contain the XStream handle that was
 created, and which contains the systems response to the
 authentication information. The value that is passed in
 is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_Authenticate (const xsystem_handle inHandle,
 const char* inBuffer,
 const xam_int inByteCount,
 xstream_handle* outXStream);

/**
 Called to release any resources associated with an XSystem. After calling
 this method, the closed XSystem should not be used.

 @note This call will fail if there are any open XSets associated with this
 XSystem.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
264 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 */
EXPORT xam_status DECL
XSystem_Close (const xsystem_handle inHandle);

/**
 An XSystem in its normal state will generate an error when an application
 attempts to close it if it has open XSets in it. Making this call will
 change the state of the XSystem and allow it to be closed without regard
 for any open XSets. Note that the XSystem will no longer be usable after
 this call is made, and the only call that will succeed is an XSystem.Close.

 @note This is a VERY DANGEROUS call that may result in data loss if used
 inappropriately. It is recommended that applications track all open
 XSets, and close the XSets properly as opposed to making this call.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_Abandon (const xsystem_handle inHandle);

/** @} */ /* XSystem functions */

/* ==
 * method prototypes for XSet management
 * ===*/

/** @defgroup XSet XSet Management Methods
 @{ */

/**
 Creates a new empty XSet associated with the XSystem. Note that this XSet
 will not exist on the XSystem unless that XSet is committed.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inMode A string indicating the mode to open the XSet in.
 Possible values are:
 o “restricted” - open for reading and limited writing. Adding, deleting
 or modifying fields that are binding is not allowed.
 Changing fields from binding to nonbinding (or vice
 versa) is not allowed. Commit of the XSet instance
 will fail if any binding fields havebeen modified.
 Successful commit of the XSet will never generate a
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 265

© SNIA
 new XUID.
 o “unrestricted” - open for reading and writing. There are no limits
 on adding, deleting or modifying fields; nor are
 there limits on changing fields from binding to
 nonbinding (or vice versa). Successful commit of the
 XSet will generate a new XUID if any binding fields
 have been added, deleted, or modified, or if any
 fields have been changed from binding to nonbinding
 (or vice versa).
 @param outXSet A reference to valid storage for an xset_handle. The value
 that is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_CreateXSet (const xsystem_handle inHandle,
 const xam_string inMode,
 xset_handle* outXSet);

/**
 Opens an XSet in the XSystem.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be opened.
 @param inMode A string indicating the mode to open the XSet in:
 o “readonly” - open for reading. Adding, deleting or modifying fields
 is not allowed. Commit of the XSet instance will fail.
 o “restricted” - open for reading and limited writing. Adding, deleting
 or modifying fields that are binding is not allowed.
 Changing fields from binding to nonbinding (or vice
 versa) is not allowed. Commit of the XSet instance
 will fail if any binding fields havebeen modified.
 Successful commit of the XSet will never generate a
 new XUID.
 o “unrestricted” - open for reading and writing. There are no limits
 on adding, deleting or modifying fields; nor are
 there limits on changing fields from binding to
 nonbinding (or vice versa). Successful commit of the
 XSet will generate a new XUID if any binding fields
 have been added, deleted, or modified, or if any
 fields have been changed from binding to nonbinding
 (or vice versa).
 @param outXSet A reference to valid storage for a xset_handle. On return
 this will contain the XSet handle. The value that is passed
 in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_OpenXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
266 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 const xam_string inMode,
 xset_handle* outXSet);

/**
 Creates a copy of an XSet in the XSystem, returning a handle to an
 XSet instance associated with the XSystem. This XSet will not exist
 on the XSystem unless that XSet instance is committed.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete. For applications that wish
 to use a non-blocking version of this method, refer to
 "XSystem_AsyncCopyXSet".

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be opened.
 @param inMode A string indicating the mode to open the XSet in:
 o “restricted” - open for reading and limited writing. Adding, deleting
 or modifying fields that are binding is not allowed.
 Changing fields from binding to nonbinding (or vice
 versa) is not allowed. Commit of the XSet instance
 will fail if any binding fields havebeen modified.
 Successful commit of the XSet will never generate a
 new XUID.
 o “unrestricted” - open for reading and writing. There are no limits
 on adding, deleting or modifying fields; nor are
 there limits on changing fields from binding to
 nonbinding (or vice versa). Successful commit of the
 XSet will generate a new XUID if any binding fields
 have been added, deleted, or modified, or if any
 fields have been changed from binding to nonbinding
 (or vice versa).
 @param outXSet A reference to valid storage for a xset_handle. On return
 this will contain the XSet handle. The value that is passed
 in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_CopyXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inMode,
 xset_handle* outXSet);

/**
 Evaluates all retention criteria that exists on a given XSet, specified
 as a xam_xuid, and shall return TRUE if there exists retention criteria
 which would prohibit XSet deletion. The method returns FALSE if all XSet
 retention criteria have been met. This method does not evaluate the
 on-hold status.

 A non-fatal error will be returned if the specified XUID is improperly
 formatted, does not exist in the XSystem, or if the caller is not
 authorized to access the XSet.

XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 267

© SNIA
 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be checked.
 @param outIsRetained A reference to valid storage for a xam_boolean.
 On return this will be set to true if the XSet is
 under retention in accordance with the XSet retention
 criteria, false otherwise. The value that is
 passed in is not used, and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_IsXSetRetained (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 xam_boolean* const outIsRetained);

/**
 Deletes an XSet from the XSystem.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be deleted.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_DeleteXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID);

/**
 Places an XSet on hold. A held XSet cannot be changed in any way (e.g. the
 XSet can only be opened in read mode and commits of a held XSet will fail).

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be held.
 @param inHoldID A xam_string that contains the ID to be associated with the
 hold.
268 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_HoldXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inHoldID);

/**
 Releases a specific hold on an XSet (associated with the hold id).

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be held.
 @param inHoldID A xam_string that contains the ID associated with the hold.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_ReleaseXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inHoldID);

/**
 Checks the accessibility of an XSet on the XSystem. It is not an error if
 the XSet does not exist on the XSystem: such an XSet shall be noted as
 being inaccessible.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be checked.
 @param inMode The bitwise OR of the access ‘permissions’ to be checked:
 - XSET_R_OK for read permission
 - XSET_W_OK for write permission
 - XSET_D_OK for delete permission
 @param outIsAccessible A reference to valid storage for a xam_boolean.
 On return this will be set to true if the XSet is
 accessible according to the access permissions
 set by mode, false otherwise. The value that is
 passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_AccessXSet (const xsystem_handle inHandle,
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 269

© SNIA
 const xam_xuid inXUID,
 const xam_int inMode,
 xam_boolean* outIsAccessible);

/**
 Gets the time at which the XSet was last opened or committed, whichever is
 the most recent.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be checked.
 @param outAccessTime A reference to valid storage for a xam_datetime. On
 return this will be set to the time at which the XSet
 was last opened or committed, whichever is the most
 recent. The value that is passed in is not used and
 is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_GetXSetAccessTime (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 xam_datetime* outAccessTime);

/** @} */ /* XSet Management Methods */

/* ==
 * method prototypes for XSet instance adminstration
 * ==*/

/** @defgroup XSetAdmin XSet Instance Administation Methods
 @{ */

/**
 Stores an XSet in the XSystem. Note this does not close the XSet, which can
 still be modified as allowed by the authorization of the XSystem. A XUID
 will be assigned by the XAM storage system and this XUID will be returned.

 Open XStreams will not cause the commit to fail. Only the data that was
 successfully written to such XSteams will be committed.

 If this is a modified XSet (e.g. an existing XSet was opened and changed)
 then a new XUID may or may not be assigned by the commit, in accordance
 with the following rules:
 - If only variable fields are edited (created, deleted, or changed)
 then the XAM storage system may not assign a new XUID.
 - If any binding fields are edited (created, deleted, or changed) then
 the XAM storage system must assign a new XUI.

 In any case, an application should be coded to handle cases where the XUID
 changes when a modified XSet is committed.

 If a management policy has not been applied to the XSet prior to commit, a
270 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 default management policy will be applied to the XSet at the time of commit.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle.
 @param outXUID A reference to valid storage for a XUID. On return this will
 contain the XUID that was assigned to the XSet by the XAM
 storage system. The value that is passed in is not used and
 is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_Commit (const xset_handle inHandle,
 xam_xuid* outXUID);

/**
 Releases any resources associated with an XSet. After calling this method,
 the closed XSet should not be used.

 @note This call will fail if there are any open XStreams associated with
 this XSet.

 @note if the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_Close (const xset_handle inHandle);

/**
 An XSet in its normal state will generate an error when an application
 attempts to close it if there are open XStreams in it. Making this call
 will change the state of the XSet and allow it to be closed without regard
 for any open XStreams. Note that the XSet will no longer be usable after
 this call is made, and the only call that will succeed is an XSet.Close.

 @note this is a VERY DANGEROUS call that may result in data loss if used
 inappropriately. It is recommended that applications track all open
 XStreams, and close the XStreams properly as opposed to making this
 call.

 @note If the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 271

© SNIA
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_Abandon (const xset_handle inHandle);

/** @} */ /* XSet Instance Administration Methods */

/* ==
 * method prototypes for XSet policy management
 * ===*/

/** @defgroup XSetPolicy XSet Policy Management Methods
 @{ */

/**
 Creates or modifies a property field with the name of
 “.xset.access.policy” and a type set to “application/vnd.snia.xam.string”
 on the object referenced by the passed-in xset_handle. Its value and
 binding attributes will be set according to the user-provided parameters.
 This field will be used by the XAM Storage System to determine the policies
 to use when accessing this XSet..

 @note If an access policy has not been applied to an XSet at the time of
 the initial commit, then the property will be created and set as the
 default access policy of the XSystem (i.e. the first string in the
 XSystem AccessPolicyList).

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_ApplyAccessPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 Removes all access fields from the XSet.

 @note If an access policy has not been applied to an XSet at the time of
272 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 the initial commit, then the property will be created and set as
 the default access policy of the XSystem (i.e., the first string
 in the XSystem AccessPolicyList).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

passed-in @param inHandle A valid xset_handle. This is the object that contains
 the access field(s).
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_ResetAccessFields (const xset_handle inHandle);

/**
 Creates a property field with the name of “xam.management_policy” and a
 type set to “application/vnd.snia.xam.string” on the object referenced by
 the passed-in xam_handle_t. Its value and binding attributes will be set in
 accordance with the user-provided parameters. This field will be used by
 the XAM storage system to determine the default policies to use when
 managing this XSet.

 @note If a management policy has not been applied to an XSet at the time
 of the initial commit, then the property will be created and set as
 the default management policy of the XSystem (i.e. first string in
 the XSystem ManagementPolicyList).

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_ApplyManagementPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 Removes all management fields from the XSet. This includes the
 “.xset.retention.start_time”; because this is a binding field, calling this
 method will always result in a new XUID being assigned to this XSet at the
 next commit.

 @note If a management policy has not been applied to an XSet at the time of
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 273

© SNIA
 the initial commit, then the property will be created and set as the
 default management policy of the XSystem (i.e. first string in the
 XSystem ManagementPolicyList).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_ResetManagementFields (const xset_handle inHandle);

/**
 Creates a scope to for storing and evaluating retention criteria. It
 creates a field with a type of “application/vnd.snia.xam.string” and
 sets the value to the retention id. The field name is formed by appending
 the retention id to the following prefix: “.xset.retention.list.”. Thus
 the final format of the name is .xset.retention.list.<retention id>. It
 will have its binding attribute set according to the binding flag
 set by the application.

 @note Changing this field from binding to nonbinding (or vice versa)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_CreateRetention (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inRetentionID);

/**
 Enables or disables retention that is scoped by the specified retention id.
 This flag is stored in a field of type “application/vnd.snia.xam.boolean”.
 The name of the field is formed by inserting the retention id between a
 prefix (.xset.retention.) and a suffix (.enabled); thus, the final format
 of the name is .xset.retention.<retention id>.enabled. If the field does
 not exist it will be created; otherwise the value will be updated if and
 only if the value is changed from false to true - if the value is set to
 true it cannot be changed. It will have its binding attribute set in
 accordance with the binding flag that is set by the application.
274 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inEnabled A xam_boolean containing a flag indicating if event
 retention is enabled on this XSet or not. If the flag is
 set to true, event retention is enabled, otherwise it is
 disabled.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_SetRetentionEnabledFlag (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_boolean inEnabled);

/**
 This method will enabled or disable retention that is scopedretention that is

scoped by the specified
 retention id. The policy name of the policy holding the enabled flag
 is stored in a field of type “application/vnd.snia.xam.string”. The name
 of the field is formed by inserting the retention id between a prefix
 (.xset.retention.) and a suffix (.enabled.policy); thus, the final format
 of the name is .xset.retention.<retention id>.enabled.policy. If the field
 does not exist it will be created; otherwise the value will be updated if
 and only if the value is changed from false to true - if the value is set
 to true it cannot be changed. It will have its binding attribute set in
 accordance with the binding flag that is set by the application.

 @note If the .xset.retention.<retention id>.enabled field is also present
 on the XSet, it will be used by the XAM Storage System in preference
 to this field.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 275

© SNIA
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_ApplyRetentionEnabledPolicy (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 Sets the duration of retention that is scoped by the specified retention id.
 This flag is stored in a field of type “application/vnd.snia.xam.int”.
 The name of the field is formed by inserting the retention id between
 a prefix (.xset.retention.) and a suffix (.duration); thus, the final
 format of the name is .xset.retention.<retention id>.duration. If the
 field does not exist it will be created; otherwise the value will be
 updated if and only if the duration is increased. It will have its
 binding attribute set according to the binding flag that is set by the
 application.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inDuration A xam_int containing the amount of time (measured in
 milliseconds from the time of commit) to retain the XSet.
 Zero indicates no retention, while a negative one (-1)
 indicates infinite retention.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_SetRetentionDuration (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_int inDuration);

/**
 Sets the duration of retention that is scoped by the specified retention id. This
 policy name is stored in a field of type “application/vnd.snia.xam.string”.
 The name of the field is formed by inserting the retention id between a
 prefix (.xset.retention.) and a suffix (.duration.policy); thus, the final
 format of the name is .xset.retention.<retention id>.duration.policy. If
 the field does not exist it will be created; otherwise the value will be
 updated if and only if the duration is increased. It will have its binding
 attribute set according to the binding flag that is set by the application.
276 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 @note If the .xset.retention.<retention id>.duration field is also present
 on the XSet, it will be used by the XAM Storage System in preference
 to this field.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_ApplyRetentionDurationPolicy (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_string inPolicy);
/**
 Sets the start time of retention that is scoped by the specified retention id.
 The current time of the XSystem is stored in a field of type
 “application/vnd.snia.xam.datetime”. The name of the field is formed by
 inserting the retention id between a prefix (.xset.retention.) and a suffix
 (.starttime); thus, the final format of the name is
 .xset.retention.<retention id>.starttime. If the field does not exist, it
 will be created; otherwise, an error will be generated, as it is not allowed
 to change the starttime once set. It will have its binding attribute
 set according to the binding flag that is set by the application.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_SetRetentionStarttime (const xset_handle inHandle,
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 277

© SNIA
 const xam_string inRetentionID,
 const xam_boolean inBinding);

/**
 If this XSet does not already contain the field .xset.retention.list.base,
 this method will create the field with a type of
 “application/vnd.snia.xam.string” and set the value to “base”. It will also
 create the “application/vnd.snia.xam.boolean” field
 .xset.retention.base.enabled and set the value to true. The duration will
 be stored in a field named .xset.retention.base.duration. This field is of
 type “application/vnd.snia.xam.int”. If the field already exists, its value
 will be changed to match the passed-in duration if and only if the duration
 of the retention is not reduced; the method will generate an error if the
 duration is reduced. If the field does not already exist, it will be created
 with the specified duration as the value. These fields will have their
 binding attribute set according to the binding flag that is set by the
 application. These fields will be used by the XAM Storage System to
 determine the base retention duration to use when managing this XSet.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 @note When an XSet instance containing the field .xset.retention.list.base
 is first committed, the field .xset.retention.base.starttime will be
 created and have its value set to .xset.time.xuid.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inDuration A xam_int containing the amount of time (measured in
 milliseconds from the time of commit) to retain the XSet.
 Zero indicates no retention, while a negative one (-1)
 indicates infinite retention.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_SetBaseRetention (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_int inDuration);

/**
 If this XSet does not already contain the field .xset.retention.list.base,
 this method will create the field with a type of
 “application/vnd.snia.xam.string” and set the value to “base”. It will also
 create the “application/vnd.snia.xam.boolean” field
 .xset.retention.base.enabled and set the value to true. The duration policy
 will be stored in a field named .xset.retention.base.duration.policy. This
 field is of type “application/vnd.snia.xam.string”. If the field already
 exists, its value will be changed to match the passed-in policy if and only
 if the policy would not reduce the duration of the retention; the method
 will generate an error if the policy reduces the duration. If the field
 does not already exist, it will be created with the specified policy name
278 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 as the value. These fields will have their binding attribute set in
 accordance with the binding flag that is set by the application. These fields
 will be used by the XAM Storage System to determine the base retention duration
 to use when managing this XSet.

 @note If the .xset.retention.base.duration field is also present on the
 XSet, it will be used by the XAM Storage System in preference to
 this policy field.

 @note When an XSet instance containing the field .xset.retention.list.base
 is first committed, the field .xset.retention.base.starttime will be
 created and have its value set to .xset.time.xuid.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_ApplyBaseRetentionPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 Creates a property field on the specified XSet with the name of
 “xam.autodelete_policy” and a type set to “application/vnd.snia.xam.string”
 Its value and binding attributes will be set according to the user
 provided parameters. This field will be used by the XAM storage system to
 determine if the XSet should be automatically deleted upon expiration of
 retention. Applying the policy will also remove the “xam.autodelete” from
 the XSet.

 @note If the explicit duration field is also present on the XSet
 (“xam.autodelete”) it will be used by the XAM storage system in
 preference to this field.

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 279

© SNIA
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_ApplyAutoDeletePolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 Creates a property field on the specified XSet with the name of
 “xam.autodelete” and a type set to “application/vnd.snia.xam.boolean”. Its
 value and binding attributes will be set according to the user
 provided parameters. This field will be used by the XAM storage system to
 determine if the XSet should be automatically deleted upon expiration of
 retention. Applying the policy will also remove the “xset.autodelete_policy”
 field from the XSet.

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being assigned
 on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inAutoDelete A xam_boolean containing a flag indicating if
 autodelete is enabled on this XSet or not. If the flag
 is set to true, autodelete is enabled, otherwise it is
 disabled.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_SetAutoDelete (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_boolean inAutoDelete);

/**
 If this XSet does not have an auto shred policy applied to it, this method
 will create a property field on the specified XSet with the name of
 “.xset.deletion.shred.policy” and a type set to “application/

vnd.snia.xam.string”.
 Its value and binding attributes will be set according to the user-provided
 parameters. If the field already exists on the XSet, then its value will be
 updated with the specified value. This field will be used by the XAM Storage
 System to determine if the XSet should be shredded after XSet deletion.
 If the “.xset.deletion.shred” field is also present on the XSet it will be
 used by the XAM Storage System in preference to this field.

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
280 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_ApplyShredPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 If this XSet does not have auto shred set on it, this method will create a
 property field on the specified XSet with the name of
 “.xset.deletion.shred” and a type set to “application/vnd.snia.xam.boolean”.
 Its value and binding attributes will be set according to the user-provided
 parameters. If the field already exists on the XSet, then its value will be
 updated with the specified value. This field will be used by the XAM Storage
 System to determine if the XSet should be shredded after deletion.

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being assigned
 on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inShred A xam_boolean containing a flag indicating if shredding is
 enabled on this XSet or not. If the flag is set to TRUE,
 shredding is enabled, otherwise it is disabled.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_SetShred (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_boolean inShred);

/**
 Creates a property field on the specified XSet with the name of
 “xam.storage_policy” and a type set to “application/vnd.snia.xam.string”.
 Its value and binding attributes will be set according to the user
 provided parameters. This field will be used by the XAM storage system to
 determine the storage policy of the XSet.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 281

© SNIA
 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_ApplyStoragePolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 Evaluates all factors that affect the retention duration that is
 currently in effect for the given retention id, and returns that
 duration to the caller.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being checked.
 @param outDuration A reference to valid storage for a xam_int. On return
 this will be set to the actual minimum retention duration
 that is currently being in effect for the XSet after
 evaluating the policies. The value that is passed in is
 not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_GetActualRetentionDuration (const xset_handle inHandle,
 const xam_string inRetentionID,
 xam_int* outDuration);

/**
 Evaluates all factors that affect if this retention is enabled for the
 XSet, and return that enabled state to the caller.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.
282 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param outEnabled A reference to valid storage for a xam_boolean. On return
 this will be set to match the enabled state in effect for
 the XSet after evaluating the policies. The value that is
 passed in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_GetActualRetentionEnabled (const xset_handle inHandle,
 const xam_string inRetentionID,
 xam_boolean* outEnabled);

/**
 Evaluates all factors that affect if auto delete is enabled for the XSet,
 and return that enabled state to the caller.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param outEnabled A reference to valid storage for a xam_boolean. On return
 this will be set to match the enabled state in effect for
 the XSet after evaluating the policies. The value that is
 passed in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_GetActualAutoDelete (const xset_handle inHandle,
 xam_boolean* outEnabled);

/**
 Evaluates all factors that affect if shredding is enabled for the XSet and
 return that enabled state to the caller.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param outEnabled A reference to valid storage for a xam_boolean. On return
 this will be set to match the enabled state in effect for
 the XSet after evaluating the policies. The value that is
 passed in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
xam_status
XSet_GetActualShred (const xset_handle inHandle,
 xam_boolean* outEnabled);

/** @} */ /* XSet policy management */
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 283

© SNIA
/* ==
 * method prototypes for XSet migration
 * ==*/

/** @defgroup Migration Migration Methods
 @{ */

/**
 Opens an export XStream for the XSet. The XSet must have been committed,
 and must not have been modified since it was opened / committed. The XSet
 will enter an import/export state, and will thus generate errors if used
 for any operation until the export XStream is closed. The original XSet
 referred to by the XSet handle will be overwritten.

 The XStream will contain a canonical representation of the XSet. This data
 can be read from the XStream using normal XStream calls and semantics. When
 the XStream is closed the XSet will return to a normal state.

 @note If the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle.
 @param outXStream A reference to valid storage for a xstream_handle. On
 return this will contain the XStream handle of an XStream
 opened in “readonly” mode. The value that is passed in is
 not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_OpenExportXStream (const xset_handle inHandle,
 xstream_handle* outXStream);

/**
 Opens an import XStream for the XSet. The XSet will enter an import/export
 state, and will thus generate errors if used for any operation until the
 XStream is closed. Any data in the original XSet instance will be
 overwritten.

 It is expected that a data stream containing the canonical representation
 of an XSet will be written into the XStream. When the XStream is closed,
 the data will be validated. If the data is determined to be valid, then the
 XSet will return to a normal state (i.e. will no longer generate errors
 when operated on) but it will now refer to the XSet that was described by
 the canonical data that was written to the XStream. If the validation of the
 data fails (i.e. it contains invalid or improperly formatted data) then the
 XSet will enter a corrupted state. It will no longer be recoverable and all
 operations except abandon (followed by close) will fail.

 After a successful validation, the XSet fields can be examined as any
 normal fields. The XSet can be modified. The XSet is not committed, but it
 is in all ways a normal XSet, and may be committed as per normal XSet
 semantics. If the XSet is committed prior to any modification to binding
 fields (adding, modifying or deleting binding fields; or changing the
284 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 binding attribute of any fields) then the XUID will be the XUID described
 by the import XStream. Modification to any binding fields as decribed above
 will result in a new XUID being assigned upon commit.

 @note If the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle an xset_handle.
 @param outXStream A reference to valid storage for a xstream_handle. On
 return this will contain the XStream handle of an XStream
 opened in “w” mode. The value that is passed in is not
 used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_OpenImportXStream (const xset_handle inHandle,
 xstream_handle* outXStream);

/** @} */ /* Migration functions */

/* ==
 * method prototypes for job control
 * ===*/

/** @defgroup Jobs Job Methods
 @{ */

/**
 Submits a job request to the XAM storage system. Fields on the XSet will be
 evaluated as input to the job according to the semantics of the XAM
 job control subsystem (refer to the XAM architecture document for more
 details). This XSet will be used to communicate health and status
 information about the job, as well as any results from the job.

 @note If the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_SubmitJob (const xset_handle inHandle);

/**
 Stops a currently running job in XAM storage system, if the XSet was used
 to start a job. Fields on the XSet will be evaluated as input to the job in
 accordance with the semantics of the XAM job control subsystem (refer to
 the XAM architecture document for more details).
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 285

© SNIA
 @note If the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_HaltJob (const xset_handle inHandle);

/** @} */ /* Job functions */

/* ==
 * method prototypes for async i/o
 * ===*/

/** @defgroup XAsync Async I/O Methods
 @{ */

/**
 Asynchronously opens an XSet in the XSystem.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be opened.
 @param inMode A string indicating the mode to open the XSet in:
 o “readonly” - open for reading. Adding, deleting or modifying fields
 is not allowed. Commit of the XSet instance will fail.
 o “restricted” - open for reading and limited writing. Adding, deleting
 or modifying fields that are binding is not allowed.
 Changing fields from binding to nonbinding (or vice
 versa) is not allowed. Commit of the XSet instance
 will fail if any binding fields havebeen modified.
 Successful commit of the XSet will never generate a
 new XUID.
 o “unrestricted” - open for reading and writing. There are no limits
 on adding, deleting or modifying fields; nor are
 there limits on changing fields from binding to
 nonbinding (or vice versa). Successful commit of the
 XSet will generate a new XUID if any binding fields
 have been added, deleted, or modified, or if any
 fields have been changed from binding to nonbinding
 (or vice versa).
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
286 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSystem_AsyncOpenXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Begins the asynchronous copying of an XSet in the XSystem, ultimately
 returning a handle to an XSet instance associated with the XSystem.
 The specified callback will be invoked as part of the asynchronous
 copying. To monitor the status of this operation, the application can
 poll the Async instance that is generated by this method. A handle to
 an XAsync instance is also passed to any provided callback method when
 that callback method is invoked.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be opened.
 @param inMode A string indicating the mode to copy the XSet in:
 o “restricted” - open for reading and limited writing. Adding, deleting
 or modifying fields that are binding is not allowed.
 Changing fields from binding to nonbinding (or vice
 versa) is not allowed. Commit of the XSet instance
 will fail if any binding fields havebeen modified.
 Successful commit of the XSet will never generate a
 new XUID.
 o “unrestricted” - open for reading and writing. There are no limits
 on adding, deleting or modifying fields; nor are
 there limits on changing fields from binding to
 nonbinding (or vice versa). Successful commit of the
 XSet will generate a new XUID if any binding fields
 have been added, deleted, or modified, or if any
 fields have been changed from binding to nonbinding
 (or vice versa).
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
xam_status
XSystem_AsyncCopyXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 287

© SNIA
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Asynchronously creates an open XStream instance in either “readonly”
 or “writeonly” mode, based on the mode argument.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that will contain the
 new field.
 @param inName A xam_string containing the name of the field to be created.
 @param inMode A string indicating the mode to open the XStream in:
 o “readonly”: open for reading. Write methods will fail on the XStream
 instance.
 o “writeonly”: open for writing. Read and seek methods will fail on the
 XStream instance.
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM_AsyncOpenXStream (const xam_handle_t inHandle,
 const xam_string inName,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Asynchronously transfers data from the storage system into the target
 buffer, up to the number of bytes requested.

 @note If the inBufferLength is set to a size larger than the actual
 number of bytes of storage available in the inBuffer, undefined
 results may occur (this includes but is not limited to data loss and
 data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xstream_handle that must have been opened in read mode.
 @param ioBuffer A byte array to read the data into.
 @param inBufferLength A xam_int set to the number of bytes in the buffer.
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
288 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XStream_AsyncRead (const xstream_handle inHandle,
 char* ioBuffer,
 const xam_int inBufferLength,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Asynchronously transfers data from the source buffer to the XAM storage
 system, up to the number of bytes requested.

 @note This method may fail with an error if the maximum number of bytes
 supported in an XStream is reached. All XSystems must support at
 least XXX bytes in an XStream. However, some XAM storage systems may
 support more than this. To determine the actual maximum number of
 bytes allowed in an XStream an application should evaluate the YYY
 field on the XSystem. For more information on this topic please
 consult the XAM architecture document.

 @note If the inByteCount is set to a size larger than the actual number of
 bytes of storage available in the inBuffer, undefined results may
 occur (this includes but is not limited to data loss and data
 corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xstream_handle that must have been opened in write mode.
 @param inBuffer A byte array containing the data to be written.
 @param inByteCount A xam_int set to the number of bytes in the buffer to be
 written.
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XStream_AsyncWrite (const xstream_handle inHandle,
 const char* inBuffer,
 const xam_int inByteCount,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Asynchronously stores an XSet in the XSystem. Note this does not close
 the XSet, which can still be modified as allowed by the authorization
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 289

© SNIA
 of the XSystem. A XUID will be assigned by the XAM storage system and this
 XUID will be returned.

 Open XStreams will not cause the commit to fail. Only the data that was
 successfully written to such XSteams will be committed.

 If this is a modified XSet (e.g. an existing XSet was opened and changed)
 then a new XUID may or may not be assigned by the commit, in accordance
 with the following rules:
 - If only variable fields are edited (created, deleted, or changed)
 then the XAM storage system may not assign a new XUID.
 - If any binding fields are edited (created, deleted, or changed) then
 the XAM storage system must assign a new XUI.

 In any case, an application should be coded to handle cases where the XUID
 changes when a modified XSet is committed.

 If a management policy has not been applied to the XSet prior to commit, a
 default management policy will be applied to the XSet at the time of commit.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xset_handle.
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_AsyncCommit (const xset_handle inHandle,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Asynchronously closes a previously opened XStream.
 Any resources that were allocated can be released at this point.

 @note Closing an already closed XStream can produce undefined results (this
 includes but is not limited to data loss and data corruption)

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xstream_handle.
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
290 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XStream_AsyncClose (const xstream_handle inHandle,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/** @} */ /* Async functions */

/* ==
 * method prototypes for managing asynchronous operations
 * ===*/

/** @defgroup XAsyncManagement Async Operation Management Methods
 @{ */

/**
 Stops the operation associated with the passed inHandle

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAsync_Halt (const xasync_handle inHandle);

/**
 Allows the caller to discover if the asynchronous operation relating to the
 passed inHandle is complete or not.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions
 @param outIsComplete A reference to valid storage for a xam_boolean. The
 result is true if the async operation related to the
 passed inHandle is complete,
 or false otherwise.
 The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAsync_IsComplete (const xasync_handle inHandle,
 xam_boolean* outIsComplete);
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 291

© SNIA
/**
 Gets the status of the completed asynchronous operation that relates
 to the passed inHandle.

 @note The passed inHandle must relate to an operation that performed an
 asynchronous read or this function will not be successful.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions
 @param outStatus A reference to valid storage for a xam_status.
 On input this param is not used, on output this param is populated
 with the status of the completed asynchronous operation that relates
 to the passed inHandle.

 If the underlying asynchronous operation is not complete
 this function will fail and return a status for this call which
 relates to the failure.

 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAsync_GetStatus (const xasync_handle inHandle,
 xam_status* outStatus);

/**
 Gets the XOPID that was set by the application for the asynchronous
 operation that relates to the passed inHandle

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @param outXOPID A reference to valid storage for a XOPID.
 On input this param is not used.
 On output (if function is successful) this param is
 populated with the XOPID of the asynchronous
 operation that relates to the passed inHandle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAsync_GetXOPID (const xasync_handle inHandle,
 XOPID* outXOPID);

/**
 Gets the XSet of the completed asynchronous operation that relates to the
 passed inHandle. The return status of this function is set appropriately on
 success of failure of this call.

 @note The passed inHandle must relate to an operation that performed an
292 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 asynchronous read or this function will not be successful.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @param outXSet A reference to valid storage for an xset_handle.
 On input this param is not used,
 On output (if function is successful) this param is
 populated with the XSet of the asynchronous
 operation that relates to the passed inHandle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAsync_GetXSet (const xasync_handle inHandle,
 xset_handle* outXSet);

/**
 Gets the XStream from the completed asynchronous operation that relates to the
 passed inHandle. The return status of this function is set appropriately on
 success of failure of this call.

 @note The passed inHandle must relate to an operation that performed an
 asynchronous read or this function will not be successful.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @param outXStream A reference to valid storage for an xstream_handle.
 On input this param is not used,
 On output (if function is successful) this param is
 populated with the XStream from the asynchronous
 operation that relates to the passed inHandle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAsync_GetXStream (const xasync_handle inHandle,
 xstream_handle* outXStream);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.xuid” on the object referenced by the passed
 inHandle.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 293

© SNIA
 @param outXUID A reference to valid storage for a xam_xuid.
 On input this param is not used,
 On output (if function is successful) this param is
 populated with the xam_xuid of the asynchronous
 operation that relates to the passed inHandle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAsync_GetXUID (const xasync_handle inHandle,
 xam_xuid* outXUID);

/**
 Gets the number of bytes read from the completed asynchronous operation
 that relates to the passed inHandle. The return status of this function
 is set appropriately on success of failure of this call.

 @note The passed inHandle must relate to an operation that performed an
 asynchronous read or this function will not be successful.

 @note The asynchronous operation that relates to the passed inHandle must
 be completed for this function call to be successful.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @param outBytesRead A reference to valid storage for a xam_int.
 On input this param is not used,
 On output (if function is successful) this param is
 populated with the number of bytes read
 during the asynchronous operation that relates to
 the passed inHandle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAsync_GetBytesRead (const xasync_handle inHandle,
 xam_int* outBytesRead);

/**
 Gets the number of bytes written for the completed asynchronous operation
 that relates to the passed inHandle. The return status of this function
 is set appropriately on success of failure of this call.

 @note The passed inHandle must relate to an operation that performed an
 asynchronous write or this function will not be successful.

 @note The asynchronous operation that relates to the passed inHandle must
 be completed for this function call to be successful.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
294 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 XXX_AsynchXXX functions.
 @param outBytesWritten A reference to valid storage for a xam_int.
 On input this param is not used,
 On output (if function is successful) this param is
 populated with the number of bytes written
 during the asynchronous operation that relates to
 the passed inHandle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAsync_GetBytesWritten (const xasync_handle inHandle,
 xam_int* outBytesWritten);

/**
 Releases resources associated with the completed asynchronous operation
 that relates to the passed inHandle.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAsync_Close (const xasync_handle inHandle);

/** @} */ /* Async management functions */

#ifdef __cplusplus
} //extern "C"
#endif

#endif // XAM_H
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 295

© SNIA
Annex B
(normative)

Private (VIM) Header Files

The following section contains header files created according to the private API calls defined above.

B.1 vim.h
#ifndef __VIM_H_
#define __VIM_H_

#include "xam_types.h"
#include "xam_strings.h"
#include "xam_errors.h"

#ifdef __cplusplus
extern "C" {
#endif

/**
 Generates an error token from the xam_status. If passed an XSystem
 reference, it will be able to generate error tokens for non-standard
 status. Otherwise, non-standard status will always generate the
 “xam/unknown error” token.

 This method does not require any passed in XSystem to be authenticated.
 It will also work on an XSystem that is in a corrupted or aborted state .
 It returns TRUE on success, and FALSE on failure.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle, containing an XSystem or a XAM
 library object reference.
 @param inStatus A valid xam_status.
 @param outToken A reference to valid storage for a xam_string. The
 value that is passed in is not used and is overwritten
 with the result
 @return true if the error token was found and written outToken,
 false otherwise
 */
EXPORT xam_boolean DECL
VIM_XSystem_GetErrorToken (const xsystem_handle inHandle,
 const xam_status inStatus,
 xam_string* outToken);

/**
 * method prototypes for the XIterator
 ***/

/**
 A factory interface, creating an XIterator from an XSystem. This iterator
 is used to discover the field names of fields on the XSystem. Only those
 fields whose names begin with the distinct bit sequence as specified in the
 pattern will be included in the enumeration.
296 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 Resources associated with the XIterator must be explicitly released. Once
 the resources are released, the XIterator will no longer be valid.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that contains the
 fields to be enumerated.
 @param inPattern A valid xam_string, containing a valid, null terminated
 utf-8 byte sequence. The pattern in this xam_string will
 be used to filter the fields which will be enumerated –
 those fields that do not being with the specified pattern
 will not be included in the enumeration. The pattern is
 very simple – the byte sequence is treated as an explicit
 prefix, if the beginning of a field name does not match
 the exact bit sequence of the specified pattern it will be
 filtered out of the results. All fields are considered to
 begin with an empty string, thus specifying an empty
 string in the pattern will result in no fields being
 filtered.
 @param outIterator A reference to valid storage for an xiterator_handle.
 The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
*/
EXPORT xam_status DECL
VIM_XSystem_OpenFieldIterator (const xsystem_handle inHandle,
 const xam_string inPattern,
 xiterator_handle* outIterator);

/**
 A factory interface, creating an XIterator from an XSet. This iterator is
 used to discover the field names of fields on the XSystem. Only those
 fields whose names begin with the distinct bit sequence as specified in the
 pattern will be included in the enumeration.

 Resources associated with the XIterator must be explicitly released. Once
 the resources are released, the XIterator will no longer be valid.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete

 @param inHandle A valid xam_handle_t, containing an XSet, XSystem, or XAM
 Object reference. This is the object that contains the
 fields to be enumerated.
 @param inPattern A valid xam_string, containing a valid, null terminated
 utf-8 byte sequence. The pattern in this xam_string will
 be used to filter the fields which will be enumerated –
 those fields that do not being with the specified pattern
 will not be included in the enumeration. The pattern is
 very simple – the byte sequence is treated as an explicit
 prefix, if the beginning of a field name does not match
 the exact bit sequence of the specified pattern it will be
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 297

© SNIA
 filtered out of the results. All fields are considered to
 begin with an empty string, thus specifying an empty
 string in the pattern will result in no fields being
 filtered.
 @param outIterator A reference to valid storage for an xiterator_handle.
 The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_OpenFieldIterator (const xset_handle inHandle,
 const xam_string inPattern,
 xiterator_handle* outIterator);

/**
 Determines if there are more field names available to be read
 from the XIterator using the VIM_XIterator_Next method.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xiterator_handle.
 @param outHasNext A reference to valid storage for a xam_boolean.
 If additional field names may be read from this XIterator,
 "true" is written here. Otherwise, "false" is written.
 The value that is passed in is not used and is overwritten
 with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XIterator_HasNext (const xiterator_handle inHandle,
 xam_boolean* outHasNext);

/**
 Copies the field name of the field at the current cursor of the iteration
 into the provided storage. The cursor is then advanced to the next field.
 Upon reading past the last field, an empty string will be returned.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xiterator_handle.
 @param outName A reference to valid storage for a xam_string. The result
 is the name of the field following the current cursor (e.g.
 the field name of the field at the current cursor/position
 in the iteration). The value that is passed in is not used,
 and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XIterator_Next (const xiterator_handle inHandle,
 xam_string* outName);

298 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
/**
 Releases the resources associated with an open XIterator. After this method
 is called, the XIterator may no longer be used.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xiterator_handle
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XIterator_Close (xiterator_handle inHandle);

/**
 * method prototypes for managing XAM Fields (properties or XStreams)
 ***/

/**
 Sets the xam_boolean value to true if the named field exists in this
 object, or to false otherwise.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing a valid XSystem reference.
 This is the object on which to determine the existence
 of the named field.
 @param inName A xam_string containing the name of the field to locate.
 @param outContained A reference to valid storage for a xam_boolean. The result
 is true if the named field exists in the object;
 or false otherwise. The value that is passed in is not
 used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_ContainsField(const xsystem_handle inHandle,
 const xam_string inName,
 xam_boolean* outContained);

/**
 Sets the xam_boolean value to true if the named field exists in this
 object, or to false otherwise.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing a valid XSet reference.
 This is the object on which to determine the existence
 of the named field.
 @param inName A xam_string containing the name of the field to locate.
 @param outExists A reference to valid storage for a xam_boolean. The result
 is true if the named field exists in the object;
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 299

© SNIA
 or false otherwise. The value that is passed in is not
 used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_ContainsField(const xset_handle inHandle,
 const xam_string inName,
 xam_boolean* outExists);

/**
 Sets the binding attribute of a field to true.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet reference. This
 is the object that contains the named field.
 @param inName A xam_string containing the name of the field to manipulate.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SetFieldAsBinding (const xset_handle inHandle,
 const xam_string inName);

/**
 Sets the binding attribute of a field to false.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet reference. This
 is the object that contains the named field.
 @param inName A xam_string containing the name of the field to manipulate.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SetFieldAsNonbinding (const xset_handle inHandle,
 const xam_string inName);

/**
 Copies the mime-type of the named field into the provided xam_string.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that contains the named
 field.
 @param inName A xam_string containing the name of the field to manipulate.
 @param outType A reference to valid storage for a xam_string. The result
300 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 is the mime-type of the named field in the object. The value
 that is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_GetFieldType (const xsystem_handle inHandle,
 const xam_string inName,
 xam_string* outType);

/**
 Copies the mime-type of the named field into the provided xam_string.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object reference.
 This is the object that contains the named field.
 @param inName A xam_string containing the name of the field to manipulate.
 @param outType A reference to valid storage for a xam_string. The result
 is the mime-type of the named field in the object. The value
 that is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetFieldType (const xset_handle inHandle,
 const xam_string inName,
 xam_string* outType);

/**
 Copies the length of the named field into the provided xam_int.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that contains the named
 field.
 @param inName A xam_string containing the name of the field to manipulate.
 @param outLength A reference to valid storage for a xam_int. The result is
 the number of bytes of the value of the named field in the
 object. The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_GetFieldLength (const xsystem_handle inHandle,
 const xam_string inName,
 xam_int* outLength);
/**
 Copies the length of the named field into the provided xam_int.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 301

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that contains the named
 field.
 @param inName A xam_string containing the name of the field to manipulate.
 @param outLength A reference to valid storage for a xam_int. The result is
 the number of bytes of the value of the named field in the
 object. The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetFieldLength (const xset_handle inHandle,
 const xam_string inName,
 xam_int* outLength);

/**
 Sets the xam_boolean value to true if the binding attribute of the named
 field is true, or to false otherwise.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that contains the named
 field.
 @param inName A xam_string containing the name of the field to manipulate.
 @param outBinding A reference to valid storage for a xam_boolean. The result
 is true if the binding attribute of the named field is
 true;
 or false otherwise. The value that is passed in is not
 used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetFieldBinding (const xset_handle inHandle,
 const xam_string inName,
 xam_boolean* outBinding);

/**
 Sets the xam_boolean value to true if the binding attribute of the named
 field is true, or to false otherwise.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that contains the named
 field.
 @param inName A xam_string containing the name of the field to manipulate.
302 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 @param outReadOnly A reference to valid storage for a xam_boolean. The
 result is true if the read only attribute of the named
 field is true; or false otherwise. The value that is
 passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_GetFieldReadOnly (const xsystem_handle inHandle,
 const xam_string inName,
 xam_boolean* outReadOnly);

/**
 Sets the xam_boolean value to true if the read-only attribute of the named
 field is true, or to false otherwise.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete

 @param inHandle A valid xset_handle, containing an XSet Object reference.
 This is the object that contains the named field.
 @param inName A xam_string containing the name of the field to manipulate.
 @param outReadOnly A reference to valid storage for a xam_boolean. The
 result is true if the read-only attribute of the named
 field is true; or false otherwise. The value that is
 passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
*/
EXPORT xam_status DECL
VIM_XSet_GetFieldReadOnly (const xset_handle inHandle,
 const xam_string inName,
 xam_boolean* outReadOnly);

/**
 Removes a field from the XSet.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that contains the named
 field.
 @param inName A xam_string containing the name of the field to delete.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_DeleteField (const xsystem_handle inHandle,
 const xam_string inName);

/**
 Removes a field from the XSet.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 303

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that contains the named
 field.
 @param inName A xam_string containing the name of the field to delete.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_DeleteField (const xset_handle inHandle,
 const xam_string inName);

/**
 * method prototypes for managing property fields
 ***/

/**
 Creates a property field with a type set to
 “application/vnd.snia.xam.boolean” on the object referenced by the passed
 in xam_handle_t. Its name, value and binding attributes will be set in
 accordance with the user-provided parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_boolean containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_CreateBoolean (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_boolean inValue);

/**
 Creates a property field with a type set to
 “application/vnd.snia.xam.boolean” on the object referenced by the passed
 in xam_handle_t. Its name, value and binding attributes will be set in
 accordance with the user-provided parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
304 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_boolean containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_CreateBoolean (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_boolean inValue);

/**
 Creates a property field with a type set to “application/vnd.snia.xam.int”
 on the object referenced by the passed in xam_handle_t. Its name, value and
 binding attributes will be set according to the user provided
 parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_int containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_CreateInt (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_int inValue);

/**
 Creates a property field with a type set to “application/vnd.snia.xam.int”
 on the object referenced by the passed in xam_handle_t. Its name, value and
 binding attributes will be set according to the user provided
 parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_int containing the value to be stored.
 @return The status code generated by calling this function. Use the
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 305

© SNIA
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_CreateInt (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_int inValue);
/**
 Creates a property field with a type set to “application/vnd.snia.xam.float”
 on the object referenced by the passed in xam_handle_t. Its name, value and
 binding attributes will be set according to the user provided
 parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_double containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_CreateDouble (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_double inValue);

/**
 Creates a property field with a type set to “application/vnd.snia.xam.float”
 on the object referenced by the passed in xam_handle_t. Its name, value and
 binding attributes will be set according to the user provided
 parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_double containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_CreateDouble (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_double inValue);
306 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
/**
 Creates a property field with a type set to “application/vnd.snia.xam.xuid”
 on the object referenced by the passed in xam_handle_t. Its name, value and
 binding attributes will be set according to the user provided
 parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_xuid containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_CreateXUID (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_xuid inValue);

/**
 Creates a property field with a type set to “application/vnd.snia.xam.xuid”
 on the object referenced by the passed in xam_handle_t. Its name, value and
 binding attributes will be set according to the user provided
 parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_xuid containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_CreateXUID (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_xuid inValue);

/**
 Creates a property field with a type set to
 “application/vnd.snia.xam.string” on the object referenced by the passed in
 xam_handle_t. Its name, value and binding attributes will be set in
 accordance with the user-provided parameters.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 307

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_string containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_CreateString (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inValue);

/**
 Creates a property field with a type set to
 “application/vnd.snia.xam.string” on the object referenced by the passed in
 xam_handle_t. Its name, value and binding attributes will be set in
 accordance with the user-provided parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_string containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_CreateString (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inValue);

/**
 Creates a property field with a type set to
 “application/vnd.snia.xam.datetime” on the object referenced by the passed
 in xam_handle_t. Its name, value and binding attributes will be set in
 accordance with the user-provided parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.
308 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_datetime containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_CreateDatetime (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_datetime inValue);

/**
 Creates a property field with a type set to
 “application/vnd.snia.xam.datetime” on the object referenced by the passed
 in xam_handle_t. Its name, value and binding attributes will be set in
 accordance with the user-provided parameters.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inValue A xam_datetime containing the value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_CreateDatetime (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inBinding,
 const xam_datetime inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.boolean” on the object referenced by the passed
 in xam_handle_t. Its value will be set according to the user provided
 parameter.

 @note If the field is binding, this will result in a new XUID being assigned
 to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 309

© SNIA
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_boolean containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_SetBoolean (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_boolean inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.boolean” on the object referenced by the passed
 in xam_handle_t. Its value will be set according to the user provided
 parameter.

 @note If the field is binding, this will result in a new XUID being assigned
 to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_boolean containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SetBoolean (const xset_handle inHandle,
 const xam_string inName,
 const xam_boolean inValue);

/**
 Changes a property field with a type set to “application/vnd.snia.xam.int”
 on the object referenced by the passed in xam_handle_t. Its value will be
 set according to the user-provided parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_int containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_SetInt (const xsystem_handle inHandle,
310 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 const xam_string inName,
 const xam_int inValue);

/**
 Changes a property field with a type set to “application/vnd.snia.xam.int”
 on the object referenced by the passed in xam_handle_t. Its value will be
 set according to the user-provided parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_int containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SetInt (const xset_handle inHandle,

 const xam_string inName,
 const xam_int inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.float” on the object referenced by the passed in
 xam_handle_t. Its value will be set according to the user provided
 parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_double containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_SetDouble (const xsystem_handle inHandle,

 const xam_string inName,
 const xam_double inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.float” on the object referenced by the passed in
 xam_handle_t. Its value will be set according to the user provided
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 311

© SNIA
 parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_double containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SetDouble (const xset_handle inHandle,

 const xam_string inName,
 const xam_double inValue);

/**
 Changes a property field with a type set to “application/vnd.snia.xam.xuid”
 on the object referenced by the passed in xam_handle_t. Its value will be
 set according to the user-provided parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_xuid containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_SetXUID (const xsystem_handle inHandle,

 const xam_string inName,
 const xam_xuid inValue);

/**
 Changes a property field with a type set to “application/vnd.snia.xam.xuid”
 on the object referenced by the passed in xam_handle_t. Its value will be
 set according to the user-provided parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
312 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_xuid containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SetXUID (const xset_handle inHandle,

 const xam_string inName,
 const xam_xuid inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.string” on the object referenced by the passed in
 xam_handle_t. Its value will be set according to the user provided
 parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_string containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_SetString (const xsystem_handle inHandle,

 const xam_string inName,
 const xam_string inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.string” on the object referenced by the passed in
 xam_handle_t. Its value will be set according to the user provided
 parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 313

© SNIA
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_string containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SetString (const xset_handle inHandle,

 const xam_string inName,
 const xam_string inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.datetime” on the object referenced by the passed
 in xam_handle_t. Its value will be set according to the user provided
 parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_datetime containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_SetDatetime (const xsystem_handle inHandle,

 const xam_string inName,
 const xam_datetime inValue);

/**
 Changes a property field with a type set to
 “application/vnd.snia.xam.datetime” on the object referenced by the passed
 in xam_handle_t. Its value will be set according to the user provided
 parameter.

 @note If the field is binding, this will result in a new XUID being
 assigned to the XSet upon commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inValue A xam_datetime containing the new value to be stored.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
314 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
VIM_XSet_SetDatetime (const xset_handle inHandle,
 const xam_string inName,
 const xam_datetime inValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.boolean” on the object referenced by the passed
 in xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_boolean. The value
 of the named field is written into this value. The value
 that is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_GetBoolean (const xsystem_handle inHandle,

 const xam_string inName,
 xam_boolean* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.boolean” on the object referenced by the passed
 in xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_boolean. The value
 of the named field is written into this value. The value
 that is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetBoolean (const xset_handle inHandle,

 const xam_string inName,
 xam_boolean* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.int” on the object referenced by the passed in
 xam_handle_t.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 315

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_int. The value of the
 named field is written into this value. The value that is
 passed in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_GetInt (const xsystem_handle inHandle,

 const xam_string inName,
 xam_int* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.int” on the object referenced by the passed in
 xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_int. The value of the
 named field is written into this value. The value that is
 passed in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetInt (const xset_handle inHandle,

 const xam_string inName,
 xam_int* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.float” on the object referenced by the passed in
 xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
316 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 @param outValue A reference to valid storage for a xam_double. The value of
 the named field is written into this value. The value that
 is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_GetDouble (const xsystem_handle inHandle,

 const xam_string inName,
 xam_double* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.float” on the object referenced by the passed in
 xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_double. The value of
 the named field is written into this value. The value that
 is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetDouble (const xset_handle inHandle,

 const xam_string inName,
 xam_double* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.xuid” on the object referenced by the passed in
 xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_xuid. The value of
 the named field is written into this value. The value that
 is passed
 in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 317

© SNIA
VIM_XSystem_GetXUID (const xsystem_handle inHandle,
 const xam_string inName,
 xam_xuid* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.xuid” on the object referenced by the passed in
 xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_xuid. The value of
 the named field is written into this value. The value that
 is passed
 in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetXUID (const xset_handle inHandle,

 const xam_string inName,
 xam_xuid* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.string” on the object referenced by the passed in
 xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_string. The value of
 the named field is written into this value. The value that
 is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_GetString (const xsystem_handle inHandle,

 const xam_string inName,
 xam_string* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.string” on the object referenced by the passed in
 xam_handle_t.
318 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_string. The value of
 the named field is written into this value. The value that
 is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetString (const xset_handle inHandle,

 const xam_string inName,
 xam_string* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.datetime” on the object referenced by the passed
 in xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_datetime. The value
 of the named field is written into this value. The value
 that is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_GetDatetime (const xsystem_handle inHandle,

 const xam_string inName,
 xam_datetime* outValue);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.datetime” on the object referenced by the passed
 in xam_handle_t.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 319

© SNIA
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param outValue A reference to valid storage for a xam_datetime. The value
 of the named field is written into this value. The value
 that is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetDatetime (const xset_handle inHandle,

 const xam_string inName,
 xam_datetime* outValue);

/**
 * method prototypes for XStreams and XStream fields
 ***/

/**
 Creates an XStream field with a type set to the user defined mime-type on
 the object referenced by the passed in xam_handle_t. Its name, mime-type
 and binding attributes will be set according to the user provided
 parameters. The XStream field is opened in “writeonly” mode.

 @note The value is not set by the method. This method will create an
 XStream with a length of zero – other methods must be used to add
 data to this field.

 @note If the xam_handle_t contains an XSet, this method may fail with an
 error if the maximum number of fields supported on an XSet is
 reached. All XSystems must support at least XXX fields on an XSet.
 However, some XAM storage systems may support more than this. To
 determine the actual maximum number of fields allowed on an XSet an
 application should evaluate the YYY field on the XSystem. For more
 information on this topic please consult the XAM architecture
 document.

 @note Call the XStream_Close() function one done with the outXStream so
 others can use if needed.

 @note Call the XAM_DeleteField() function to release the resources
 associated with the created outXStream.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inType A xam_string that contains the mime-type of the field.
 @param outXStream A reference to valid storage for an xstream_handle. The
 value that is passed in is not used and is overwritten
 with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
320 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 */
EXPORT xam_status DECL
VIM_XSystem_CreateXStream (const xsystem_handle inHandle,

 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inType,

 xstream_handle* outXStream);

/**
 Creates an XStream field with a type set to the user defined mime-type on
 the object referenced by the passed in xam_handle_t. Its name, mime-type
 and binding attributes will be set according to the user provided
 parameters. The XStream field is opened in “writeonly” mode.

 @note The value is not set by the method. This method will create an
 XStream with a length of zero – other methods must be used to add
 data to this field.

 @note If the xam_handle_t contains an XSet, this method may fail with an
 error if the maximum number of fields supported on an XSet is
 reached. All XSystems must support at least XXX fields on an XSet.
 However, some XAM storage systems may support more than this. To
 determine the actual maximum number of fields allowed on an XSet an
 application should evaluate the YYY field on the XSystem. For more
 information on this topic please consult the XAM architecture
 document.

 @note Call the XStream_Close() function one done with the outXStream so
 others can use if needed.

 @note Call the XAM_DeleteField() function to release the resources
 associated with the created outXStream.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inType A xam_string that contains the mime-type of the field.
 @param outXStream A reference to valid storage for an xstream_handle. The
 value that is passed in is not used and is overwritten
 with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_CreateXStream (const xset_handle inHandle,

 const xam_string inName,
 const xam_boolean inBinding,
 const xam_string inType,

 xstream_handle* outXStream);

/**
 Creates an open XStream in either “readonly” or “writeonly” mode, based on
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 321

© SNIA
 the mode argument.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xsystem_handle, containing an XSystem Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inMode A string indicating the mode to open the XStream in:
 o “readonly”: open for reading. Write methods will fail on the XStream
 instance.
 o “writeonly”: open for writing. Read and seek methods will fail on the
 XStream instance.
 o “appendonly”: open for writing. Read and seek methods will fail on the
 XStream instance. Appends the existing data in the XStream.
 @param outXStream A reference to valid storage for an xstream_handle. The
 value that is passed in is not used and is overwritten
 with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_OpenXStream (const xsystem_handle inHandle,

 const xam_string inName,
 const xam_string inMode,
 xstream_handle* outXStream);

/**
 Creates an open XStream in either “readonly” or “writeonly” mode, based on
 the mode argument.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle, containing an XSet Object
 reference. This is the object that will contain the new
 field.
 @param inName A xam_string containing the name of the field to be created.
 @param inMode A string indicating the mode to open the XStream in:
 o “readonly”: open for reading. Write methods will fail on the XStream
 instance.
 o “writeonly”: open for writing. Read and seek methods will fail on the
 XStream instance.
 o “appendonly”: open for writing. Read and seek methods will fail on the
 XStream instance. Appends the existing data in the XStream.
 @param outXStream A reference to valid storage for an xstream_handle. The
 value that is passed in is not used and is overwritten
 with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_OpenXStream (const xset_handle inHandle,

 const xam_string inName,
 const xam_string inMode,
322 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 xstream_handle* outXStream);

/**
 Transfers data from the storage system into the target buffer, up to the
 number of bytes requested.

 @note If the inBufferLength is set to a size larger than the actual number
 of bytes of storage available in the inBuffer, undefined results may
 occur (this includes but is not limited to data loss and data
 corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method does not block until data is completely read, but will
 indicate the amount of data that was read in each call. Subsequent
 calls may be needed to read the remainder of the data.

 @param inHandle An xstream_handle that must have been opened in read mode.
 @param ioBuffer A byte array to read the data into.
 @param inBufferLength A xam_int set to the number of bytes in the buffer.
 @param outBytesRead A reference to valid storage for a xam_int. On return
 this will contain the actual number of bytes read. This
 will be less than or equal to the inBufferLength. When
 there is no more data to be read, a value of -1 will be
 set. The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XStream_Read (const xstream_handle inHandle,

 char* ioBuffer,
 const xam_int inBufferLength,
 xam_int* outBytesRead);

/**
 Transfers data from the source buffer to the XAM storage system, up to the
 number of bytes requested.

 @note This method may fail with an error if the maximum number of bytes
 supported in an XStream is reached. All XSystems must support at
 least XXX bytes in an XStream. However, some XAM storage systems may
 support more than this. To determine the actual maximum number of
 bytes allowed in an XStream an application should evaluate the YYY
 field on the XSystem. For more information on this topic please
 consult the XAM architecture document.

 @note If the inByteCount is set to a size larger than the actual number of
 bytes of storage available in the inBuffer, undefined results may
 occur (this includes but is not limited to data loss and data
 corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method does not block until all the data in the buffer is
 completely written, but it will indicate the amount of data that was
 written in each call. Subsequent calls may be needed to write the all
 of the data.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 323

© SNIA
 @param inHandle An xstream_handle that must have been opened in write mode.
 @param inBuffer A byte array containing the data to be written.
 @param inByteCount A xam_int set to the number of bytes in the buffer to be
 written.
 @param outBytesWritten A reference to valid storage for a xam_int. On
 return this will contain the actual number of bytes
 written. This will be less than or equal to the
 inByteCount. The value that is passed in is not used,
 and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XStream_Write (const xstream_handle inHandle,

 const char* inBuffer,
 const xam_int inByteCount,
 xam_int* outBytesWritten);

/**
 Sets the position indicator for the XStream. The new position, measured in
 bytes, is obtained by adding inOffset bytes to the position specified by
 inWhence. If inWhence is set to 0, 1, or 2, then the offset is relative to
 the start of the XStream, the current position, or end-of-data,
 respectively.

 @note This method can only be used for XStreams opened for read. In
 addition, this method cannot be used to create sparse files. It is an
 error to seek past the end of the data in the XStream, as indicated by
 the field attribute ‘length’.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xstream_handle that must have been opened in read mode.
 @param inOffset A xam_int containing the number of bytes to change the
 position by. A positive value moves the cursor forward.
 A negative value moves the cursor backward.
 @param inWhence A xam_int containing a 0, 1 or 2 (indicating where the
 offset should be measured from).
 The following constants are provided:
 XSTREAM_SEEK_SET(0) - Seek from the start position
 XSTREAM_SEEK_CUR(1) - Seek from the current position
 XSTREAM_SEEK_END(2) - Seek from the end position
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XStream_Seek (const xstream_handle inHandle,

 const xam_int inOffset,
 const xam_int inWhence);

/**
 Obtains the current value of the XStream position indicator.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
324 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 This method will block until complete.

 @param inHandle An xstream_handle.
 @param outPosition A xam_int containing the position in the XStream.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XStream_Tell (const xstream_handle inHandle,

 xam_int* outPosition);

/**
 An XStream in its normal state will generate an error when an application
 attempts to close it if there are open asynchronous operations being
 performed on it. Making this call will change the state of the XStream and
 allow it to be closed without regard for any open asynchronous operations.
 Note that the XStream will no longer be usable after this call is made, and
 the only call that will succeed is an XStream.Close.

 @note This is a VERY DANGEROUS call that may result in data loss if used
 inappropriately. It is recommended that applications track all open
 asynchronous operations, and close the asynchronous operations
 properly as opposed to making this call.

 @note If the XStream has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xstream_handle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XStream_Abandon (const xstream_handle inHandle);

/**
 Closes a previously opened XStream. Any resources that were allocated can
 be released at this point.

 @note Closing an already closed XStream can produce undefined results (this
 includes but is not limited to data loss and data corruption)

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xstream_handle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XStream_Close (xstream_handle inHandle);

/**
 * Managing the connection to the XAM Storage System
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 325

© SNIA
 ***/

/**
 XAM Applications connect to XAM storage systems by calling the ‘connect’
 API method in the XAM API, and specifying the XSystem’s Uniform Resource
 Identifier (XRI) string as its parameter. It is expected that the XRI will
 be specified by the local storage system administrators, and applications
 should strive to make this easily configured at rum time.

 The XAM Library utilizes this method to create a VIM specific XSystem
 instance handle on which fields may be created. The connection to the
 storage system does not occur until the XAM Library calls the
 VIM_XSystem_Connect method on this handle.

 @note The XSystem is not fully usable until it has been connected
 and authenticated.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param outHandle A reference to valid storage for an xsystem_handle. On
 return this will contain the XSystem handle that was
 created, on which fields may be created/updated.
 The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_CreateXSystem (xsystem_handle* outHandle);

/**
 XAM Applications connect to XAM storage systems by calling the ‘connect’
 API method in the XAM API, and specifying the XSystem’s Uniform Resource
 Identifier (XRI) string as its parameter. It is expected that the XRI will
 be specified by the local storage system administrators, and applications
 should strive to make this easily configured at rum time.

 The XAM Library utilizes this method to initiate a connection to
 an (already created) XSystem instance.

 @note The XSystem is not fully usable until it has been authenticated.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inXRI A xam_string. It contains the XSystem’s Uniform Resource
 Identifier. A BNF of this format is listed below:

 xsystemname[?param=value[{¶m=value}]]

 The xsystemname is vendor specific – it may be an IP address, or
 some other id. It may not contain ‘/’, ‘?’, or ‘!’ characters.
 Additionally, param’=’value pairs can be specified
 @param inHandle A reference to valid storage for an xsystem_handle.
 This contains an XSystem handle that was created by a call to
326 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 VIM_CreateXSystem.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_Connect (const xsystem_handle inHandle,
 const xam_string inXRI);

/**
 Allows an application to authenticate an XSystem. It provides a generic
 interface to exchange data as part of the authentication process. The
 application should check the XSystem property xyz to determine which
 patterns of authentication (mechanisms) are available for use. After a
 pattern is selected, the appropriate sequence of data exchanges should be
 made (using this call) in order to authenticate. A failed authentication
 will make the XSystem unusable – applications cannot repeat failed
 authentications using the same XSystem.

 @note The outXStream must be closed (using XStream_Close() function) when
 the application has finished its authentication processing.

 @note If the XSystem has been closed, or if the inByteCount is set to a
 size larger than the actual number of bytes of storage available in
 the inBuffer, undefined results may occur (this includes but is not
 limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inBuffer Data that is being passed to the authentication mechanism
 is passed in this array of bytes.
 @param inByteCount The number of significant bytes in the passed in buffer.
 @param outXStream A reference to valid storage for an xstream_handle. On
 return this will contain the XStream handle that was
 created, and which contains the systems response to the
 authentication information. The value that is passed in
 is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_Authenticate (const xsystem_handle inHandle,

 const char* inBuffer,
 const xam_int inByteCount,
 xstream_handle* outXStream);

/**
 Called to release any resources associated with an XSystem. After calling
 this method, the closed XSystem should not be used.

 @note This call will fail if there are any open XSets associated with this
 XSystem.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 327

© SNIA
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_Close (const xsystem_handle inHandle);

/**
 An XSystem in its normal state will generate an error when an application
 attempts to close it if it has open XSets in it. Making this call will
 change the state of the XSystem and allow it to be closed without regard
 for any open XSets. Note that the XSystem will no longer be usable after
 this call is made, and the only call that will succeed is an XSystem.Close.

 @note This is a VERY DANGEROUS call that may result in data loss if used
 inappropriately. It is recommended that applications track all open
 XSets, and close the XSets properly as opposed to making this call.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_Abandon (const xsystem_handle inHandle);

/**
 Evaluates all retention criteria that exists on a given XSet, specified
 as a xam_xuid, and shall return TRUE if there exists retention criteria
 which would prohibit XSet deletion. The method returns FALSE if all XSet
 retention criteria have been met.

This method does not evaluate the on-hold status.

 A non-fatal error will be returned if the specified XUID is improperly
 formatted, does not exist in the XSystem, or if the caller is not
 authorized to access the XSet.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
328 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 @param inXUID The XUID of the XSet to be checked.
 @param outIsRetained A reference to valid storage for a xam_boolean.
 On return this will be set to true if the XSet is
 under retention in accordance with the XSet retention
 criteria, false otherwise. The value that is
 passed in is not used, and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_IsXSetRetained (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 xam_boolean* const outIsRetained);

/**
 Deletes an XSet from the XSystem.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be deleted.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_DeleteXSet (const xsystem_handle inHandle,

const xam_xuid inXUID);

/**
 Places an XSet on hold. A held XSet cannot be changed in any way (e.g. the
 XSet can only be opened in read mode and commits of a held XSet will fail).

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be held.
 @param inHoldID A xam_string that contains the ID to be associated with the
 hold.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_HoldXSet (const xsystem_handle inHandle,

 const xam_xuid inXUID,
 const xam_string inHoldID);

/**
 Releases a specific hold on an XSet (associated with the hold id).
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 329

© SNIA
 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be held.
 @param inHoldID A xam_string that contains the ID associated with the hold.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_ReleaseXSet (const xsystem_handle inHandle,

 const xam_xuid inXUID,
 const xam_string inHoldID);

/**
 Checks the accessibility of an XSet on the XSystem. It is not an error if
 the XSet does not exist on the XSystem: such an XSet shall be noted as
 being inaccessible.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be checked.
 @param inMode The bitwise OR of the access ‘permissions’ to be checked:
 - XSET_R_OK for read permission
 - XSET_W_OK for write permission
 - XSET_D_OK for delete permission
 @param outIsAccessible A reference to valid storage for a xam_boolean.
 On return this will be set to true if the XSet is
 accessible according to the access permissions
 set by mode, false otherwise. The value that is
 passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_AccessXSet (const xsystem_handle inHandle,

const xam_xuid inXUID,
 const xam_int inMode,

xam_boolean* outIsAccessible);

/**
 Gets the time at which the XSet was last opened or committed, whichever is
 the most recent.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).
330 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be checked.
 @param outAccessTime A reference to valid storage for a xam_datetime. On
 return this will be set to the time at which the XSet
 was last opened or committed, whichever is the most
 recent. The value that is passed in is not used and
 is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_GetXSetAccessTime (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 xam_datetime* outAccessTime);

/**
 Creates a new empty XSet associated with the XSystem. Note that this XSet
 will not exist on the XSystem unless that XSet is committed.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inMode A string indicating the mode to open the XSet in.
 Possible values are:
 o “restricted” - open for reading and limited writing. Adding, deleting
 or modifying fields that are binding is not allowed.
 Changing fields from binding to nonbinding (or vice
 versa) is not allowed. Commit of the XSet instance
 will fail if any binding fields havebeen modified.
 Successful commit of the XSet will never generate a
 new XUID.
 o “unrestricted” - open for reading and writing. There are no limits
 on adding, deleting or modifying fields; nor are
 there limits on changing fields from binding to
 nonbinding (or vice versa). Successful commit of the
 XSet will generate a new XUID if any binding fields
 have been added, deleted, or modified, or if any
 fields have been changed from binding to nonbinding
 (or vice versa).
 @param outXSet A reference to valid storage for an xset_handle. The value
 that is passed in is not used and is overwritten with the
 result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_CreateXSet (const xsystem_handle inHandle,
 const xam_string inMode,
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 331

© SNIA
xset_handle* outXSet);

/**
 Creates or modifies a property field with the name of
 “.xset.access.policy” and a type set to “application/vnd.snia.xam.string”
 on the object referenced by the passed-in xset_handle. Its value and
 binding attributes will be set according to the user-provided parameters.
 This field will be used by the XAM Storage System to determine the policies
 to use when accessing this XSet..

 @note If an access policy has not been applied to an XSet at the time of
 the initial commit, then the property will be created and set as the
 default access policy of the XSystem (i.e. the first string in the
 XSystem AccessPolicyList).

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_ApplyAccessPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 Removes all access fields from the XSet.

 @note If an access policy has not been applied to an XSet at the time of
 the initial commit, then the property will be created and set as
 the default access policy of the XSystem (i.e., the first string
 in the XSystem AccessPolicyList).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that contains
 the access field(s).
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_ResetAccessFields (const xset_handle inHandle);

/**
332 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 Creates a property field with the name of “xam.management_policy” and a
 type set to “application/vnd.snia.xam.string” on the object referenced by
 the passed in xam_handle_t. Its value and binding attributes will be set in
 accordance with the user-provided parameters. This field will be used by
 the XAM storage system to determine the default policies to use when
 managing this XSet.

 @note If a management policy has not been applied to an XSet at the time
 of the initial commit, then the property will be created and set as
 the default management policy of the XSystem (i.e. first string in
 the XSystem ManagementPolicyList).

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_ApplyManagementPolicy (const xset_handle inHandle,

const xam_boolean inBinding,
const xam_string inPolicy);

/**
 Removes all management fields from the XSet. This includes the
 “.xset.retention.start_time”; because this is a binding field, calling this
 method will always result in a new XUID being assigned to this XSet at the
 next commit.

 @note If a management policy has not been applied to an XSet at the time of
 the initial commit, then the property will be created and set as the
 default management policy of the XSystem (i.e. first string in the
 XSystem ManagementPolicyList).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_ResetManagementFields (const xset_handle inHandle);

/**
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 333

© SNIA
 Creates a scope to for storing and evaluating retention criteria. It
 creates a field with a type of “application/vnd.snia.xam.string” and
 sets the value to the retention id. The field name is formed by appending
 the retention id to the following prefix: “.xset.retention.list.”. Thus
 the final format of the name is .xset.retention.list.<retention id>. It
 will have its binding attribute set according to the binding flag
 set by the application.

 @note Changing this field from binding to nonbinding (or vice versa)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_CreateRetention (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inRetentionID);

/**
 Enables or disables retention scoped by the specified retention id.
 This flag is stored in a field of type “application/vnd.snia.xam.boolean”.
 The name of the field is formed by inserting the retention id between a
 prefix (.xset.retention.) and a suffix (.enabled); thus, the final format
 of the name is .xset.retention.<retention id>.enabled. If the field does
 not exist it will be created; otherwise the value will be updated if and
 only if the value is changed from false to true - if the value is set to
 true it cannot be changed. It will have its binding attribute set in
 accordance with the binding flag that is set by the application.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inEnabled A xam_boolean containing a flag indicating if event
 retention is enabled on this XSet or not. If the flag is
 set to true, event retention is enabled, otherwise it is
334 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 disabled.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SetRetentionEnabledFlag (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_boolean inEnabled);

/**
 This method will enabled or disable retention scoped by the specified
 retention id. The policy name of the policy holding the enabled flag
 is stored in a field of type “application/vnd.snia.xam.string”. The name
 of the field is formed by inserting the retention id between a prefix
 (.xset.retention.) and a suffix (.enabled.policy); thus, the final format
 of the name is .xset.retention.<retention id>.enabled.policy. If the field
 does not exist it will be created; otherwise the value will be updated if
 and only if the value is changed from false to true - if the value is set
 to true it cannot be changed. It will have its binding attribute set in
 accordance with the binding flag that is set by the application.

 @note If the .xset.retention.<retention id>.enabled field is also present
 on the XSet, it will be used by the XAM Storage System in preference
 to this field.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_ApplyRetentionEnabledPolicy (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 Sets the duration of retention scoped by the specified retention id.
 This flag is stored in a field of type “application/vnd.snia.xam.int”.
 The name of the field is formed by inserting the retention id between
 a prefix (.xset.retention.) and a suffix (.duration); thus, the final
 format of the name is .xset.retention.<retention id>.duration. If the
 field does not exist it will be created; otherwise the value will be
 updated if and only if the duration is increased. It will have its
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 335

© SNIA
 binding attribute set according to the binding flag that is set by the
 application.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inDuration A xam_int containing the amount of time (measured in
 milliseconds from the time of commit) to retain the XSet.
 Zero indicates no retention, while a negative one (-1)
 indicates infinite retention.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
xam_status
VIM_XSet_SetRetentionDuration (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_int inDuration);

/**
 Sets the duration of retention scoped by the specified retention id. This
 policy name is stored in a field of type “application/vnd.snia.xam.string”.
 The name of the field is formed by inserting the retention id between a
 prefix (.xset.retention.) and a suffix (.duration.policy); thus, the final
 format of the name is .xset.retention.<retention id>.duration.policy. If
 the field does not exist it will be created; otherwise the value will be
 updated if and only if the duration is increased. It will have its binding
 attribute set according to the binding flag that is set by the application.

 @note If the .xset.retention.<retention id>.duration field is also present
 on the XSet, it will be used by the XAM Storage System in preference
 to this field.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
336 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_ApplyRetentionDurationPolicy (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding,
 const xam_string inPolicy);
/**
 Sets the start time of retention scoped by the specified retention id. The
 current time of the XSystem is stored in a field of type
 “application/vnd.snia.xam.datetime”. The name of the field is formed by
 inserting the retention id between a prefix (.xset.retention.) and a suffix
 (.starttime); thus, the final format of the name is
 .xset.retention.<retention id>.starttime. If the field does not exist, it
 will be created; otherwise, an error will be generated, as it is not allowed
 to change the starttimme once set. It will have its binding attribute
 set according to the binding flag that is set by the application.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being created.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SetRetentionStarttime (const xset_handle inHandle,
 const xam_string inRetentionID,
 const xam_boolean inBinding);

/**
 If this XSet does not already contain the field .xset.retention.list.base,
 this method will create the field with a type of
 “application/vnd.snia.xam.string” and set the value to “base”. It will also
 create the “application/vnd.snia.xam.boolean” field
 .xset.retention.base.enabled and set the value to true. The duration will
 be stored in a field named .xset.retention.base.duration. This field is of
 type “application/vnd.snia.xam.int”. If the field already exists, its value
 will be changed to match the passed in duration if and only if the duration
 of the retention is not reduced; the method will generate an error if the
 duration is reduced. If the field does not already exist, it will be created
 with the specified duration as the value. These fields will have their
 binding attribute set according to the binding flag that is set by the
 application. These fields will be used by the XAM Storage System to
 determine the base retention duration to use when managing this XSet.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 337

© SNIA
 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 @note When an XSet instance containing the field .xset.retention.list.base
 is first committed, the field .xset.retention.base.starttime will be
 created and have its value set to .xset.time.xuid.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inDuration A xam_int containing the amount of time (measured in
 milliseconds from the time of commit) to retain the XSet.
 Zero indicates no retention, while a negative one (-1)
 indicates infinite retention.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XSet_SetBaseRetention (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_int inDuration);

/**
 If this XSet does not already contain the field .xset.retention.list.base,
 this method will create the field with a type of
 “application/vnd.snia.xam.string” and set the value to “base”. It will also
 create the “application/vnd.snia.xam.boolean” field
 .xset.retention.base.enabled and set the value to true. The duration policy
 will be stored in a field named .xset.retention.base.duration.policy. This
 field is of type “application/vnd.snia.xam.string”. If the field already
 exists, its value will be changed to match the passed in policy if and only
 if the policy would not reduce the duration of the retention; the method
 will generate an error if the policy reduces the duration. If the field
 does not already exist, it will be created with the specified policy name
 as the value. These fields will have their binding attribute set in
 accordance with the binding flag that is set by the application. These fields

will
 be used by the XAM Storage System to determine the base retention duration
 to use when managing this XSet.

 @note If the .xset.retention.base.duration field is also present on the
 XSet, it will be used by the XAM Storage System in preference to
 this policy field.

 @note When an XSet instance containing the field .xset.retention.list.base
 is first committed, the field .xset.retention.base.starttime will be
 created and have its value set to .xset.time.xuid.

 @note Changing this field from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
338 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
xam_status
XSet_ApplyBaseRetentionPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 Creates a property field on the specified XSet with the name of
 “xam.autodelete_policy” and a type set to “application/vnd.snia.xam.string”
 Its value and binding attributes will be set according to the user
 provided parameters. This field will be used by the XAM storage system to
 determine if the XSet should be automatically deleted upon expiration of
 retention. Applying the policy will also remove the “xam.autodelete” from
 the XSet.

 @note If the explicit duration field is also present on the XSet
 (“xam.autodelete”) it will be used by the XAM storage system in
 preference to this field.

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_ApplyAutoDeletePolicy (const xset_handle inHandle,

const xam_boolean inBinding,
const xam_string inPolicy);

/**
 Creates a property field on the specified XSet with the name of
 “xam.autodelete” and a type set to “application/vnd.snia.xam.boolean”. Its
 value and binding attributes will be set according to the user
 provided parameters. This field will be used by the XAM storage system to
 determine if the XSet should be automatically deleted upon expiration of
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 339

© SNIA
 retention. Applying the policy will also remove the “xam.autodelete_policy”
 field from the XSet.

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being assigned
 on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inAutoDelete A xam_boolean containing a flag indicating if
 autodelete is enabled on this XSet or not. If the flag
 is set to true, autodelete is enabled, otherwise it is
 disabled.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SetAutoDelete (const xset_handle inHandle,

const xam_boolean inBinding,
const xam_boolean inAutoDelete);

/**
 If this XSet does not have an auto shred policy applied to it, this method
 will create a property field on the specified XSet with the name of
 “.xset.deletion.shred.policy” and a type set to
 “application/vnd.snia.xam.string”. Its value and binding attributes will be
 set according to the user-provided parameters. If the field already exists
 on the XSet, then its value will be updated with the specified value.
 This field will be used by the XAM Storage System to determine if the XSet
 should be shredded after XSet deletion. If the “.xset.deletion.shred” field
 is also present on the XSet it will be used by the XAM Storage System in
 preference to this field.

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
340 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
VIM_XSet_ApplyShredPolicy (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 If this XSet does not have auto shred set on it, this method will create a
 property field on the specified XSet with the name of “.xset.deletion.shred” and

a
 type set to “application/vnd.snia.xam.boolean”. Its value and binding
 attributes will be set according to the user-provided parameters. If the
 field already exists on the XSet, then its value will be updated with the
 specified value. This field will be used by the XAM Storage System to
 determine if the XSet should be shredded after deletion.

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being assigned
 on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inShred A xam_boolean containing a flag indicating if shredding is
 enabled on this XSet or not. If the flag is set to TRUE,
 shredding is enabled, otherwise it is disabled.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SetShred (const xset_handle inHandle,
 const xam_boolean inBinding,
 const xam_boolean inShred);

/**
 Creates a property field on the specified XSet with the name of
 “xam.storage_policy” and a type set to “application/vnd.snia.xam.string”.
 Its value and binding attributes will be set according to the user
 provided parameters. This field will be used by the XAM storage system to
 determine the storage policy of the XSet.

 @note Changing this policy from binding to nonbinding (or the converse)
 will result in a new XSet being created and a new XUID being
 assigned on commit.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inBinding A xam_boolean set to true if the field should be binding;
 or false otherwise.
 @param inPolicy A xam_string containing the name of the policy to be
 applied.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 341

© SNIA
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_ApplyStoragePolicy (const xset_handle inHandle,

 const xam_boolean inBinding,
 const xam_string inPolicy);

/**
 Evaluates all factors that affect the retention duration that is
 currently in effect for the given retention id, and returns that
 duration to the caller.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param inRetentionID A xam_string containing the retention identifier of the
 retention being checked.
 @param outDuration A reference to valid storage for a xam_int. On return
 this will be set to the actual minimum retention duration
 that is currently being in effect for the XSet after
 evaluating the policies. The value that is passed in is
 not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetActualRetentionDuration (const xset_handle inHandle,
 const xam_string inRetentionID,
 xam_int* outDuration);

/**
 Evaluates all factors that affect if this retention is enabled for the
 XSet, and return that enabled state to the caller.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param outEnabled A reference to valid storage for a xam_boolean. On return
 this will be set to match the enabled state in effect for
 the XSet after evaluating the policies. The value that is
 passed in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetActualRetentionEnabled (const xset_handle inHandle,
 const xam_string inRetentionID,
 xam_boolean* outEnabled);
/**
 Evaluates all factors that affect if auto delete is enabled for the XSet,
 and return that enabled state to the caller.
342 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param outEnabled A reference to valid storage for a xam_boolean. On return
 this will be set to match the enabled state in effect for
 the XSet after evaluating the policies. The value that is
 passed in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetActualAutoDelete (const xset_handle inHandle,

 xam_boolean* outEnabled);

/**
 Evaluates all factors that affect if shredding is enabled for the XSet and
 return that enabled state to the caller.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle A valid xset_handle. This is the object that will contain
 the new field.
 @param outEnabled A reference to valid storage for a xam_boolean. On return
 this will be set to match the enabled state in effect for
 the XSet after evaluating the policies. The value that is
 passed in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_GetActualShred (const xset_handle inHandle,
 xam_boolean* outEnabled);

/**
 * method prototypes for editing an XSet
 ***/

/**
 Opens an XSet in the XSystem.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be opened.
 @param inMode A string indicating the mode to open the XSet in:
 o “readonly” - open for reading. Adding, deleting or modifying fields
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 343

© SNIA
 is not allowed. Commit of the XSet instance will fail.
 o “restricted” - open for reading and limited writing. Adding, deleting
 or modifying fields that are binding is not allowed.
 Changing fields from binding to nonbinding (or vice
 versa) is not allowed. Commit of the XSet instance
 will fail if any binding fields havebeen modified.
 Successful commit of the XSet will never generate a
 new XUID.
 o “unrestricted” - open for reading and writing. There are no limits
 on adding, deleting or modifying fields; nor are
 there limits on changing fields from binding to
 nonbinding (or vice versa). Successful commit of the
 XSet will generate a new XUID if any binding fields
 have been added, deleted, or modified, or if any
 fields have been changed from binding to nonbinding
 (or vice versa).
 o “copy” – open for reading and writing. There are no limits on adding,
 deleting or modifying fields; nor are there limits on
 changing fields from binding to nonbinding (or vice versa).
 The first successful commit will always generate a new XUID.
 Subsequent successful commits of the XSet will generate a
 new XUID if any binding fields have been added, deleted, or
 modified, or if any fields have been changed from binding to
 nonbinding (or vice versa).
 @param outXSet A reference to valid storage for a xset_handle. On return
 this will contain the XSet handle. The value that is passed
 in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_OpenXSet (const xsystem_handle inHandle,

 const xam_xuid inXUID,
 const xam_string inMode,

 xset_handle* outXSet);

/**
 Creates a copy of an XSet in the XSystem, returning a handle to an
 XSet instance associated with the XSystem. This XSet will not exist
 on the XSystem unless that XSet instance is committed.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete. For applications that wish
 to use a non-blocking version of this method, refer to
 "XSystem_AsyncCopyXSet".

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be opened.
 @param inMode A string indicating the mode to open the XSet in:
 o “restricted” - open for reading and limited writing. Adding, deleting
 or modifying fields that are binding is not allowed.
 Changing fields from binding to nonbinding (or vice
 versa) is not allowed. Commit of the XSet instance
 will fail if any binding fields havebeen modified.
 Successful commit of the XSet will never generate a
344 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 new XUID.
 o “unrestricted” - open for reading and writing. There are no limits
 on adding, deleting or modifying fields; nor are
 there limits on changing fields from binding to
 nonbinding (or vice versa). Successful commit of the
 XSet will generate a new XUID if any binding fields
 have been added, deleted, or modified, or if any
 fields have been changed from binding to nonbinding
 (or vice versa).
 @param outXSet A reference to valid storage for a xset_handle. On return
 this will contain the XSet handle. The value that is passed
 in is not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_CopyXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inMode,
 xset_handle* outXSet);

/**
 Stores an XSet in the XSystem. Note this does not close the XSet, which can
 still be modified as allowed by the authorization of the XSystem. A XUID
 will be assigned by the XAM storage system and this XUID will be returned.

 Open XStreams will not cause the commit to fail. Only the data that was
 successfully written to such XSteams will be committed.

 If this is a modified XSet (e.g. an existing XSet was opened and changed)
 then a new XUID may or may not be assigned by the commit, in accordance
 with the following rules:
 - If only variable fields are edited (created, deleted, or changed)
 then the XAM storage system may not assign a new XUID.
 - If any binding fields are edited (created, deleted, or changed) then
 the XAM storage system must assign a new XUI.

 In any case, an application should be coded to handle cases where the XUID
 changes when a modified XSet is committed.

 If a management policy has not been applied to the XSet prior to commit, a
 default management policy will be applied to the XSet at the time of commit.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle.
 @param outXUID A reference to valid storage for a XUID. On return this will
 contain the XUID that was assigned to the XSet by the XAM
 storage system. The value that is passed in is not used and
 is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 345

© SNIA
VIM_XSet_Commit (const xset_handle inHandle,
 xam_xuid* outXUID);

/**
 Releases any resources associated with an XSet. After calling this method,
 the closed XSet should not be used.

 @note This call will fail if there are any open XStreams associated with
 this XSet.

 @note if the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_Close (const xset_handle inHandle);

/**
 An XSet in its normal state will generate an error when an application
 attempts to close it if there are open XStreams in it. Making this call
 will change the state of the XSet and allow it to be closed without regard
 for any open XStreams. Note that the XSet will no longer be usable after
 this call is made, and the only call that will succeed is an XSet.Close.

 @note this is a VERY DANGEROUS call that may result in data loss if used
 inappropriately. It is recommended that applications track all open
 XStreams, and close the XStreams properly as opposed to making this
 call.

 @note If the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_Abandon (const xset_handle inHandle);

/**
 * method prototypes for XSet migration
 ***/

/**
 Opens an export XStream for the XSet. The XSet must have been committed,
 and must not have been modified since it was opened / committed. The XSet
 will enter an import/export state, and will thus generate errors if used
346 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 for any operation until the export XStream is closed. The original XSet
 referred to by the XSet handle will be overwritten.

 The XStream will contain a canonical representation of the XSet. This data
 can be read from the XStream using normal XStream calls and semantics. When
 the XStream is closed the XSet will return to a normal state.

 @note If the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle.
 @param outXStream A reference to valid storage for a xstream_handle. On
 return this will contain the XStream handle of an XStream
 opened in “readonly” mode. The value that is passed in is
 not used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_OpenExportXStream (const xset_handle inHandle,

xstream_handle* outXStream);

/**
 Opens an import XStream for the XSet. The XSet will enter an import/export
 state, and will thus generate errors if used for any operation until the
 XStream is closed. Any data in the original XSet instance will be
 overwritten.

 It is expected that a data stream containing the canonical representation
 of an XSet will be written into the XStream. When the XStream is closed,
 the data will be validated. If the data is determined to be valid, then the
 XSet will return to a normal state (i.e. will no longer generate errors
 when operated on) but it will now refer to the XSet that was described by
 the canonical data that was written to the XStream. If the validation of the
 data fails (i.e. it contains invalid or improperly formatted data) then the
 XSet will enter a corrupted state. It will no longer be recoverable and all
 operations except abandon (followed by close) will fail.

 After a successful validation, the XSet fields can be examined as any
 normal fields. The XSet can be modified. The XSet is not committed, but it
 is in all ways a normal XSet, and may be committed as per normal XSet
 semantics. If the XSet is committed prior to any modification to binding
 fields (adding, modifying or deleting binding fields; or changing the
 binding attribute of any fields) then the XUID will be the XUID described
 by the import XStream. Modification to any binding fields as decribed above
 will result in a new XUID being assigned upon commit.

 @note If the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 347

© SNIA
 @param inHandle an xset_handle.
 @param outXStream A reference to valid storage for a xstream_handle. On
 return this will contain the XStream handle of an XStream
 opened in “w” mode. The value that is passed in is not
 used and is overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_OpenImportXStream (const xset_handle inHandle,

xstream_handle* outXStream);

/**
 * method prototypes for job control
 ***/

/**
 Submits a job request to the XAM storage system. Fields on the XSet will be
 evaluated as input to the job according to the semantics of the XAM
 job control subsystem (refer to the XAM architecture document for more
 details). This XSet will be used to communicate health and status
 information about the job, as well as any results from the job.

 @note If the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_SubmitJob (const xset_handle inHandle);

/**
 Stops a currently running job in XAM storage system, if the XSet was used
 to start a job. Fields on the XSet will be evaluated as input to the job in
 accordance with the semantics of the XAM job control subsystem (refer to
 the XAM architecture document for more details).

 @note If the XSet has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xset_handle
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_HaltJob (const xset_handle inHandle);
348 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
/**
 * method prototypes for asynchronous i/o
 ***/

/**
 Asynchronously opens an XSet in the XSystem.

 The VIM is tasked with starting the asynchronous operation and
 immediately returning a valid XAsync handle corresponding to the
 given XOPID. When the operation is complete, the VIM must notify
 the user of it's completion by invoking the provided callback.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be opened.
 @param inMode A string indicating the mode to open the XSet in:
 o “readonly” - open for reading. Adding, deleting or modifying fields
 is not allowed. Commit of the XSet instance will fail.
 o “restricted” - open for reading and limited writing. Adding, deleting
 or modifying fields that are binding is not allowed.
 Changing fields from binding to nonbinding (or vice
 versa) is not allowed. Commit of the XSet instance
 will fail if any binding fields havebeen modified.
 Successful commit of the XSet will never generate a
 new XUID.
 o “unrestricted” - open for reading and writing. There are no limits
 on adding, deleting or modifying fields; nor are
 there limits on changing fields from binding to
 nonbinding (or vice versa). Successful commit of the
 XSet will generate a new XUID if any binding fields
 have been added, deleted, or modified, or if any
 fields have been changed from binding to nonbinding
 (or vice versa).

 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_AsyncOpenXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 349

© SNIA
 Begins the asynchronous copying of an XSet in the XSystem, ultimately
 returning a handle to an XSet instance associated with the XSystem.
 The specified callback will be invoked as part of the asynchronous
 copying. To monitor the status of this operation, the application can
 poll the Async instance that is generated by this method. A handle to
 an XAsync instance is also passed to any provided callback method when
 that callback method is invoked.

 The VIM is tasked with starting the asynchronous operation and
 immediately returning a valid XAsync handle corresponding to the
 given XOPID. When the operation is complete, the VIM must notify
 the user of it's completion by invoking the provided callback.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xsystem_handle.
 @param inXUID The XUID of the XSet to be opened.
 @param inMode A string indicating the mode to copy the XSet in:
 o “restricted” - open for reading and limited writing. Adding, deleting
 or modifying fields that are binding is not allowed.
 Changing fields from binding to nonbinding (or vice
 versa) is not allowed. Commit of the XSet instance
 will fail if any binding fields havebeen modified.
 Successful commit of the XSet will never generate a
 new XUID.
 o “unrestricted” - open for reading and writing. There are no limits
 on adding, deleting or modifying fields; nor are
 there limits on changing fields from binding to
 nonbinding (or vice versa). Successful commit of the
 XSet will generate a new XUID if any binding fields
 have been added, deleted, or modified, or if any
 fields have been changed from binding to nonbinding
 (or vice versa).
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_AsyncCopyXSet (const xsystem_handle inHandle,
 const xam_xuid inXUID,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Asynchronously creates an open XStream instance in either “readonly”
 or “writeonly” mode, based on the mode argument.
350 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 The VIM is tasked with starting the asynchronous operation and
 immediately returning a valid XAsync handle corresponding to the
 given XOPID. When the operation is complete, the VIM must notify
 the user of it's completion by invoking the provided callback.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle A valid XSystem handle which contains the XStream field.
 @param inName A xam_string containing the name of the field to be created.
 @param inMode A string indicating the mode to open the XStream in:
 o “readonly”: open for reading. Write methods will fail on the XStream
 instance.
 o “writeonly”: open for writing. Read and seek methods will fail on the
 XStream instance.
 o “appendonly”: open for writing. Read and seek methods will fail on the
 XStream instance. Appends the existing data in the XStream.
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSystem_AsyncOpenXStream (const xsystem_handle inHandle,
 const xam_string inName,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Asynchronously creates an open XStream instance in either “readonly”
 or “writeonly” mode, based on the mode argument.

 The VIM is tasked with starting the asynchronous operation and
 immediately returning a valid XAsync handle corresponding to the
 given XOPID. When the operation is complete, the VIM must notify
 the user of it's completion by invoking the provided callback.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle A valid XSet handle which contains the XStream field.
 @param inName A xam_string containing the name of the field to be created.
 @param inMode A string indicating the mode to open the XStream in:
 o “readonly”: open for reading. Write methods will fail on the XStream
 instance.
 o “writeonly”: open for writing. Read and seek methods will fail on the
 XStream instance.
 o “appendonly”: open for writing. Read and seek methods will fail on the
 XStream instance. Appends the existing data in the XStream.
 @param inXOPID Unique ID that is specified by the application to identify
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 351

© SNIA
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_AsyncOpenXStream (const xset_handle inHandle,
 const xam_string inName,
 const xam_string inMode,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Asynchronously transfers data from the storage system into the target
 buffer, up to the number of bytes requested.

 The VIM is tasked with starting the asynchronous operation and
 immediately returning a valid XAsync handle corresponding to the
 given XOPID. When the operation is complete, the VIM must notify
 the user of it's completion by invoking the provided callback.

 @note If the inBufferLength is set to a size larger than the actual
 number of bytes of storage available in the inBuffer, undefined
 results may occur (this includes but is not limited to data loss and
 data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xstream_handle that must have been opened in read mode.
 @param ioBuffer A byte array to read the data into.
 @param inBufferLength A xam_int set to the number of bytes in the buffer.
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XStream_AsyncRead (const xstream_handle inHandle,
 char* ioBuffer,
 const xam_int inBufferLength,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Asynchronously transfers data from the source buffer to the XAM storage
 system, up to the number of bytes requested.

 The VIM is tasked with starting the asynchronous operation and
352 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 immediately returning a valid XAsync handle corresponding to the
 given XOPID. When the operation is complete, the VIM must notify
 the user of it's completion by invoking the provided callback.

 @note This method may fail with an error if the maximum number of bytes
 supported in an XStream is reached. All XSystems must support at
 least XXX bytes in an XStream. However, some XAM storage systems may
 support more than this. To determine the actual maximum number of
 bytes allowed in an XStream an application should evaluate the YYY
 field on the XSystem. For more information on this topic please
 consult the XAM architecture document.

 @note If the inByteCount is set to a size larger than the actual number of
 bytes of storage available in the inBuffer, undefined results may
 occur (this includes but is not limited to data loss and data
 corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xstream_handle that must have been opened in write mode.
 @param inBuffer A byte array containing the data to be written.
 @param inByteCount A xam_int set to the number of bytes in the buffer to be
 written.
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XStream_AsyncWrite (const xstream_handle inHandle,
 const char* inBuffer,
 const xam_int inByteCount,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Asynchronously stores an XSet in the XSystem. Note this does not close
 the XSet, which can still be modified as allowed by the authorization
 of the XSystem. A XUID will be assigned by the XAM storage system and this
 XUID will be returned.

 The VIM is tasked with starting the asynchronous operation and
 immediately returning a valid XAsync handle corresponding to the
 given XOPID. When the operation is complete, the VIM must notify
 the user of it's completion by invoking the provided callback.

 Open XStreams will not cause the commit to fail. Only the data that was
 successfully written to such XSteams will be committed.

 If this is a modified XSet (e.g. an existing XSet was opened and changed)
 then a new XUID may or may not be assigned by the commit, in accordance
 with the following rules:
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 353

© SNIA
 - If only variable fields are edited (created, deleted, or changed)
 then the XAM storage system may not assign a new XUID.
 - If any binding fields are edited (created, deleted, or changed) then
 the XAM storage system must assign a new XUI.

 In any case, an application should be coded to handle cases where the XUID
 changes when a modified XSet is committed.

 If a management policy has not been applied to the XSet prior to commit, a
 default management policy will be applied to the XSet at the time of commit.

 @note If the XSystem has been closed undefined results may occur (this
 includes but is not limited to data loss and data corruption).

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xset_handle.
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XSet_AsyncCommit (const xset_handle inHandle,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 Asynchronously closes a previously opened XStream.
 Any resources that were allocated can be released at this point.

 The VIM is tasked with starting the asynchronous operation and
 immediately returning a valid XAsync handle corresponding to the
 given XOPID. When the operation is complete, the VIM must notify
 the user of it's completion by invoking the provided callback.

 @note Closing an already closed XStream can produce undefined results (this
 includes but is not limited to data loss and data corruption)

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will return immediately.

 @param inHandle An xstream_handle.
 @param inXOPID Unique ID that is specified by the application to identify
 the asynchronous operation.
 @param inCallback A pointer to a function that is called when the
 asynchronous operation completes. The parameter passed to
 the call back function can be probed for information.
 @param outAsyncHandle A handle to the asynchronous operation.
 @return The status code generated by calling this function. Use the
354 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XStream_AsyncClose (const xstream_handle inHandle,
 const XOPID inXOPID,
 xasync_callback inCallback,
 xasync_handle* outAsyncHandle);

/**
 * method prototypes for managing asyncronous operations
 ***/

/**
 Stops the operation associated with the passed inHandle

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XAsync_Halt (const xasync_handle inHandle);

/**
 Allows the caller to discover if the asynchronous operation relating to the
 passed inHandle is complete or not.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions
 @param outIsComplete A reference to valid storage for a xam_boolean. The
 result is true if the async operation related to the
 passed inHandle is complete,
 or false otherwise.
 The value that is passed in is not used and is
 overwritten with the result.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XAsync_IsComplete (const xasync_handle inHandle,
 xam_boolean* outIsComplete);

/**
 Gets the status of the completed asynchronous operation that relates
 to the passed inHandle.

 @note The passed inHandle must relate to an operation that performed an
 asynchronous read or this function will not be successful.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 355

© SNIA
 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions
 @param outStatus A reference to valid storage for a xam_status.
 On input this param is not used, on output this param is populated
 with the status of the completed asynchronous operation that relates
 to the passed inHandle.

 If the underlying asynchronous operation is not complete
 this function will fail and return a status for this call which
 relates to the failure.

 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XAsync_GetStatus (const xasync_handle inHandle,
 xam_status* outStatus);

/**
 Gets the XOPID that was set by the application for the asynchronous
 operation that relates to the passed inHandle

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @param outXOPID A reference to valid storage for a XOPID.
 On input this param is not used.
 On output (if function is successful) this param is
 populated with the XOPID of the asynchronous
 operation that relates to the passed inHandle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XAsync_GetXOPID (const xasync_handle inHandle,
 XOPID* outXOPID);

/**
 Gets the XSet of the completed asynchronous operation that relates to the
 passed inHandle. The return status of this function is set appropriately on
 success of failure of this call.

 @note The passed inHandle must relate to an operation that performed an
 asynchronous read or this function will not be successful.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.
356 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @param outXSet A reference to valid storage for an xset_handle.
 On input this param is not used,
 On output (if function is successful) this param is
 populated with the XSet of the asynchronous
 operation that relates to the passed inHandle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XAsync_GetXSet (const xasync_handle inHandle,
 xset_handle* outXSet);

/**
 Gets the XStream from the completed asynchronous operation that relates to the
 passed inHandle. The return status of this function is set appropriately on
 success of failure of this call.

 @note The passed inHandle must relate to an operation that performed an
 asynchronous read or this function will not be successful.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @param outXStream A reference to valid storage for an xstream_handle.
 On input this param is not used,
 On output (if function is successful) this param is
 populated with the XStream from the asynchronous
 operation that relates to the passed inHandle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XAsync_GetXStream (const xasync_handle inHandle,
 xstream_handle* outXStream);

/**
 Gets the value from a property field with a type set to
 “application/vnd.snia.xam.xuid” on the object referenced by the passed
 inHandle.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @param outXUID A reference to valid storage for a xam_xuid.
 On input this param is not used,
 On output (if function is successful) this param is
 populated with the xam_xuid of the asynchronous
 operation that relates to the passed inHandle.
 @return The status code generated by calling this function. Use the
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 357

© SNIA
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XAsync_GetXUID (const xasync_handle inHandle,
 xam_xuid* outXUID);

/**
 Gets the number of bytes read from the completed asynchronous operation
 that relates to the passed inHandle. The return status of this function
 is set appropriately on success of failure of this call.

 @note The passed inHandle must relate to an operation that performed an
 asynchronous read or this function will not be successful.

 @note The asynchronous operation that relates to the passed inHandle must
 be completed for this function call to be successful.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @param outBytesRead A reference to valid storage for a xam_int.
 On input this param is not used,
 On output (if function is successful) this param is
 populated with the number of bytes read
 during the asynchronous operation that relates to
 the passed inHandle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XAsync_GetBytesRead (const xasync_handle inHandle,
 xam_int* outBytesRead);

/**
 Gets the number of bytes written for the completed asynchronous operation
 that relates to the passed inHandle. The return status of this function
 is set appropriately on success of failure of this call.

 @note The passed inHandle must relate to an operation that performed an
 asynchronous write or this function will not be successful.

 @note The asynchronous operation that relates to the passed inHandle must
 be completed for this function call to be successful.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @param outBytesWritten A reference to valid storage for a xam_int.
 On input this param is not used,
 On output (if function is successful) this param is
 populated with the number of bytes written
358 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
 during the asynchronous operation that relates to
 the passed inHandle.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XAsync_GetBytesWritten (const xasync_handle inHandle,
 xam_int* outBytesWritten);

/**
 Releases resources associated with the completed asynchronous operation
 that relates to the passed inHandle.

 Concurrency requirements:
 This method is thread-safe.
 Blocking:
 This method will block until complete.

 @param inHandle An xasync_handle as retrieved by calling anyone of the
 XXX_AsynchXXX functions.
 @return The status code generated by calling this function. Use the
 XAM_GetErrorToken function to determine the meaning of this value.
 */
EXPORT xam_status DECL
VIM_XAsync_Close (const xasync_handle inHandle);

#ifdef __cplusplus
} // extern "C"
#endif

#endif // __VIM_H_
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 359

© SNIA
Annex C
(normative)

C API Toolkit

This annex defines toolkit methods that will extend the XAM C API. The goal of the toolkit methods is to
make the API easier to use. The methods shall not be incorporated into the same library as the XAM
C API, but shall instead be an additional library that coexists with the XAM C API. These toolkit methods
shall be implemented in a way that makes no assumptions about any particular implementation of a XAM
Library, and shall only link to the public C API methods, never to the private (VIM) methods.

C.1 Field methods
The methods in this section provide convenience functionality for processing fields.

C.1.1 XAMToolkit_IsPropertyField

Syntax prototype:

xam_status
XAMToolkit_IsPropertyField (const xam_handle_t inHandle,
 const xam_string inName,
 xam_boolean* const outIsProperty);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM Library object reference.

• inName is a xam_string containing the name of the field.

• outIsProperty is a reference to valid storage for a xam_boolean. The value that is passed in is not
used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The third argument is NULL.

• The field does not exist.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method evaluates the field type and determines if it is a property. If it is a property, then the method
will set the passed in value to TRUE; otherwise it will be set to FALSE.
360 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.

C.1.2 XAMToolkit_IsXStreamField

Syntax prototype:

xam_status
XAMToolkit_IsXStreamField (const xam_handle_t inHandle,
 const xam_string inName,
 xam_boolean* const outIsXStream);

Parameters:

• inHandle is a valid xam_handle_t containing an XSet, XSystem, or XAM Library object reference.

• inName is a xam_string containing the name of the field.

• outIsProperty is a reference to valid storage for a xam_boolean. The value that is passed in is not
used and is overwritten with the result.

Error conditions:

• The first argument is not a valid xset_handle.

• The second argument is not a valid name (invalid UTF-8).

• The third argument is NULL.

• The field does not exist.

• The xam_handle_t contains an XSet and the XSet has an open import or export stream.

• The xam_handle_t contains an XSet and the XSet is in a corrupt state.

• The xam_handle_t contains an XSet and the XSet is in an abandoned state.

• The xam_handle_t contains an XSystem and the XSystem is in a corrupt state.

• The xam_handle_t contains an XSystem and the XSystem is in an abandoned state.

Description:

This method evaluates the field type and determines if it is an XStream. If it is an XStream, then the
method will set the passed in value to TRUE; otherwise it will be set to FALSE.

Concurrency requirements:

This method is thread safe.

Blocking:

This method will block until complete.
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 361

© SNIA
C.2 Base64 conversion
To store XUID values in printable formats, it is recommended that applications base64 encode them.

C.2.1 base64_encode

Syntax prototype:

void
base64_encode (const char *inSrcBuf, int inSrcLen, char *outDstBuf, int *outDstLen);

Parameters:

• inSrcBuf is a pointer to a character string to be encoded in base64.

• inSrcLen is the length of the input character string.

• outDstBuf is a pointer to a buffer where the base64-encoded output is to be placed.

• outDstLen is the length of the base64-encoded output

Note: To avoid overwriting other data, make sure that outDstBuf is at least (inSrcLen+2)/3 * 4
bytes long.

Error conditions:

None.

C.2.2 base64_decode

Syntax prototype:

void
base64_decode (const char *inSrcBuf, int inSrcLen, char *outDstBuf, int *outDstLen);

Parameters:

• inSrcBuf is a pointer to a character string to be decoded from base64.

• inSrcLen is the length of the input character string.

• outDstBuf is a pointer to a buffer where the decoded output is to be placed.

• outDstLen is the length of the decoded output

Note: To avoid overwriting other data, make sure that outDstBuf is at least (inSrcLen+3)/4 * 3
bytes long.

Error conditions:

None.
362 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
Annex D
(informative)

C API Method Mapping

Table D.1, “C Method Name Mapping to XAM Architecture Specification” lists the methods in [XAM-ARCH]
and the corresponding method name for the C binding.

Table D.1 – C Method Name Mapping to XAM Architecture Specification

Type Methods in Arch Spec Methods in C API Spec

Error token N/A XAM_GetErrorToken

Iteration <XAMHandle>.openFieldIterator XAM_OpenFieldIterator

XIterator.next XIterator_Next

Xiterator.hasNext XIterator_HasNext

XIterator.close XIterator_Close

Generic Field <XAMHandle>.containsField XAM_ContainsField

<XAMHandle>.setFieldAsBinding XAM_SetFieldAsBinding

<XAMHandle>.setFieldAsNonBinding XAM_SetFieldAsNonbinding

<XAMHandle>.getFieldType XAM_GetFieldType

<XAMHandle>.getFieldLength XAM_GetFieldLength

<XAMHandle>.getFieldBinding XAM_GetFieldBinding

<XAMHandle>.getFieldReadOnly XAM_GetFieldReadOnly

<XAMHandle>.deleteField XAM_DeleteField

Property Field <XAMHandle>.createBoolean XAM_CreateBoolean

<XAMHandle>.createInt XAM_CreateInt

<XAMHandle>.createDouble XAM_CreateDouble

<XAMHandle>.createXUID XAM_CreateXUID

<XAMHandle>.createString XAM_CreateString

<XAMHandle>.createDatetime XAM_CreateDatetime

<XAMHandle>.setBoolean XAM_SetBoolean

<XAMHandle>.setInt XAM_SetInt

<XAMHandle>.setDouble XAM_SetDouble

<XAMHandle>.setXUID XAM_SetXUID

<XAMHandle>.setString XAM_SetString

<XAMHandle>.setDatetime XAM_SetDatetime

<XAMHandle>.getBoolean XAM_GetBoolean

<XAMHandle>.getInt XAM_GetInt
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 363

© SNIA
Property Field
(cont.)

<XAMHandle>.getDouble XAM_GetDouble

<XAMHandle>.getXUID XAM_GetXUID

<XAMHandle>.getString XAM_GetString

<XAMHandle>.getDatetime XAM_GetDatetime

XStream Field <XAMHandle>.createXStream XAM_CreateXStream

<XAMHandle>.openXStream XAM_OpenXStream

XStream.read XStream_Read

XStream.write XStream_Write

XStream.seek XStream_Seek

XStream.tell XStream_Tell

XStream.abandon XStream_Abandon

XStream.close XStream_Close

Connection
Administration

XAMLibrary.connect XAMLibrary_Connect

XSystem.authenticate XSystem_Authenticate

XSystem.close XSystem_Close

XSystem.abandon XSystem_Abandon

XSet Instance XSystem.createXSet XSystem_CreateXSet

XSystem.openXSet XSystem_OpenXSet

XSystem.copyXSet XSystem_CopyXSet

XSet.commit XSet_Commit

XSet.close XSet_Close

XSet.abandon XSet_Abandon

XSet Admin XSystem.deleteXSet XSystem_DeleteXSet

XSystem.holdXSet XSystem_HoldXSet

XSystem.releaseXSet XSystem_ReleaseXSet

XSystem.accessXSet XSystem_AccessXSet

XSystem.getXSetAccessTime XSystem_GetXSetAccessTime

XSystem.isXSetRetained XSystem_IsXSetRetained

Management XSet.applyAccessPolicy XSet_ApplyAccessPolicy

XSet.resetAccessFields XSet_ResetAccessFields

XSet.applyManagementPolicy XSet_ApplyManagementPolicy

XSet.resetManagementFields XSet_ResetManagementFields

XSet.createRetention XSet_CreateRetention

Table D.1 – C Method Name Mapping to XAM Architecture Specification

Type Methods in Arch Spec Methods in C API Spec
364 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

© SNIA
Management
(cont.)

XSet.setRetentionEnabledFlag XSet_SetRetentionEnabledFlag

XSet.applyRetentionEnabledPolicy XSet_ApplyRetentionEnabledPolicy

XSet.setRetentionDuration XSet_SetRetentionDuration

XSet.applyRetentionDurationPolicy XSet_ApplyRetentionDurationPolicy

XSet.setRetentionStarttime XSet_SetRetentionStarttime

XSet.setBaseRetention XSet_SetBaseRetention

XSet.applyBaseRetentionPolicy XSet_ApplyBaseRetentionPolicy

XSet.applyAutoDeletePolicy XSet_ApplyAutoDeletePolicy

XSet.setAutoDelete XSet_SetAutoDelete

XSet.applyShredPolicy XSet_ApplyShredPolicy

XSet.setShred XSet_SetShred

XSet.applyStoragePolicy XSet_ApplyStoragePolicy

XSet.getActualRetentionDuration XSet_GetActualRetentionDuration

XSet.getActualRetentionEnabled XSet_GetActualRetentionEnabled

XSet.getActualAutoDelete XSet_GetActualAutoDelete

XSet.getActualShred XSet_GetActualShred

Import/Export XSet.openExportXStream XSet_OpenExportXStream

XSet.openImportXStream XSet_OpenImportXStream

Async I/O XSet.submitJob XSet_SubmitJob

XSet.haltJob XSet_HaltJob

XSystem.asyncOpenXSet XSystem_AsyncOpenXSet

XSystem.asyncCopyXSet XSystem_AsyncCopyXSet

XSet.asyncOpenXStream XAM_AsyncOpenXStream

XStream.asyncRead XStream_AsyncRead

XStream.asyncWrite XStream_AsyncWrite

XStream.asyncClose XStream_AsyncClose

XSet.asyncCommit XSet_AsyncCommit

Async
Operations
Management

XAsync.halt XAsync_Halt

XAsync.isComplete XAsync_IsComplete

XAsync.getXOPID XAsync_GetXOPID

XAsync.getStatus XAsync_GetStatus

XAsync.getXSet XAsync_GetXSet

XAsync.getXStream XAsync_GetXStream

Table D.1 – C Method Name Mapping to XAM Architecture Specification

Type Methods in Arch Spec Methods in C API Spec
XAM C API 1.01 (June 19, 2009) TECHNICAL POSITION 365

© SNIA
Async
Operations
Management
(cont.)

XAsync.getXUID XAsync_GetXUID

XAsync.getBytesRead XAsync_GetBytesRead

XAsync.getBytesWritten XAsync_GetBytesWritten

XAsync.close XAsync_Close

XUID XUIDToString base64_encode

StringToXUID base64_decode

Table D.1 – C Method Name Mapping to XAM Architecture Specification

Type Methods in Arch Spec Methods in C API Spec
366 TECHNICAL POSITION XAM C API 1.01 (June 19, 2009)

	Information Management - Extensible Access Method (XAM) - Part 2: C API
	Contents
	Figures
	Tables
	Foreword
	Introduction

	1 Scope
	2 Normative References
	3 Terms and Conventions
	3.1 Terms
	3.2 Conventions

	4 C API Overview
	4.1 Basic XAM concepts
	4.2 The XAM programming model
	4.2.1 The XAM Library object
	4.2.2 An XSystem
	4.2.3 An XSet
	4.2.4 Fields (properties and XStreams)
	4.2.4.1 Type and length attributes - properties vs. XStreams
	4.2.4.2 Binding attribute vs. readonly attribute

	4.2.5 The XIterator
	4.2.6 The XAsync
	4.2.7 XAM status
	4.2.8 The method hierarchy
	4.2.9 Using the XAM API - abstract samples
	4.2.9.1 Create an XSet
	4.2.9.2 Read an XSet
	4.2.9.3 Query an XSet

	5 Public C API Reference
	5.1 Design goals
	5.2 Supporting data types
	5.2.1 stypes
	5.2.2 XAM status type
	5.2.3 Error conditions
	5.2.4 XAM handles
	5.2.4.1 XSets, XSystems, and XAM - objects with fields
	5.2.4.2 XIterator
	5.2.4.3 XStream
	5.2.4.4 XAsync

	5.2.5 XOPID
	5.2.6 Callbacks

	5.3 Methods
	5.3.1 Error token generation
	5.3.1.1 XAM_GetErrorToken

	5.3.2 Field iteration
	5.3.2.1 XAM_OpenFieldIterator
	5.3.2.2 XIterator_Next
	5.3.2.3 XIterator_HasNext
	5.3.2.4 XIterator_Close

	5.3.3 Field manipulation
	5.3.3.1 Generic field methods
	5.3.3.1.1 XAM_ContainsField
	5.3.3.1.2 XAM_SetFieldAsBinding
	5.3.3.1.3 XAM_SetFieldAsNonbinding
	5.3.3.1.4 XAM_GetFieldType
	5.3.3.1.5 XAM_GetFieldLength
	5.3.3.1.6 XAM_GetFieldBinding
	5.3.3.1.7 XAM_GetFieldReadOnly
	5.3.3.1.8 XAM_DeleteField

	5.3.3.2 Property field methods
	5.3.3.2.1 XAM_CreateBoolean
	5.3.3.2.2 XAM_CreateInt
	5.3.3.2.3 XAM_CreateDouble
	5.3.3.2.4 XAM_CreateXUID
	5.3.3.2.5 XAM_CreateString
	5.3.3.2.6 XAM_CreateDatetime
	5.3.3.2.7 XAM_SetBoolean
	5.3.3.2.8 XAM_SetInt
	5.3.3.2.9 XAM_SetDouble
	5.3.3.2.10 XAM_SetXUID
	5.3.3.2.11 XAM_SetString
	5.3.3.2.12 XAM_SetDatetime
	5.3.3.2.13 XAM_GetBoolean
	5.3.3.2.14 XAM_GetInt
	5.3.3.2.15 XAM_GetDouble
	5.3.3.2.16 XAM_GetXUID
	5.3.3.2.17 XAM_GetString
	5.3.3.2.18 XAM_GetDatetime

	5.3.3.3 XStream field methods
	5.3.3.3.1 XAM_CreateXStream
	5.3.3.3.2 XAM_OpenXStream
	5.3.3.3.3 XStream_Read
	5.3.3.3.4 XStream_Write
	5.3.3.3.5 XStream_Seek
	5.3.3.3.6 XStream_Tell
	5.3.3.3.7 XStream_Abandon
	5.3.3.3.8 XStream_Close

	5.3.4 Connection administration for a XAM Storage System
	5.3.4.1 XAMLibrary_Connect
	5.3.4.2 XSystem_Authenticate
	5.3.4.3 XSystem_Close
	5.3.4.4 XSystem_Abandon

	5.3.5 XSet instance creation
	5.3.5.1 XSystem_CreateXSet
	5.3.5.2 XSystem_OpenXSet
	5.3.5.3 XSystem_CopyXSet

	5.3.6 XSet administration
	5.3.6.1 XSystem_IsXSetRetained
	5.3.6.2 XSystem_DeleteXSet
	5.3.6.3 XSystem_HoldXSet
	5.3.6.4 XSystem_ReleaseXSet
	5.3.6.5 XSystem_AccessXSet
	5.3.6.6 XSystem_GetXSetAccessTime

	5.3.7 XSet instance administration
	5.3.7.1 XSet_Commit
	5.3.7.2 XSet_Close
	5.3.7.3 XSet_Abandon

	5.3.8 XSet management administration
	5.3.8.1 Access policy
	5.3.8.1.1 XSet_ApplyAccessPolicy
	5.3.8.1.2 XSet_ResetAccessFields

	5.3.8.2 Base management policy
	5.3.8.2.1 XSet_ApplyManagementPolicy
	5.3.8.2.2 XSet_ResetManagementFields

	5.3.8.3 Retention
	5.3.8.3.1 XSet_CreateRetention
	5.3.8.3.2 XSet_SetRetentionEnabledFlag
	5.3.8.3.3 XSet_ApplyRetentionEnabledPolicy
	5.3.8.3.4 XSet_SetRetentionDuration
	5.3.8.3.5 XSet_ApplyRetentionDurationPolicy
	5.3.8.3.6 XSet_SetRetentionStarttime
	5.3.8.3.7 XSet_SetBaseRetention
	5.3.8.3.8 XSet_ApplyBaseRetentionPolicy

	5.3.8.4 AutoDelete
	5.3.8.4.1 XSet_ApplyAutoDeletePolicy
	5.3.8.4.2 XSet_SetAutoDelete

	5.3.8.5 Shred
	5.3.8.5.1 XSet_ApplyShredPolicy
	5.3.8.5.2 XSet_SetShred

	5.3.8.6 Storage policy
	5.3.8.6.1 XSet_ApplyStoragePolicy

	5.3.8.7 XSet management introspection
	5.3.8.7.1 XSet_GetActualRetentionDuration
	5.3.8.7.2 XSet_GetActualRetentionEnabled
	5.3.8.7.3 XSet_GetActualAutoDelete
	5.3.8.7.4 XSet_GetActualShred

	5.3.9 XSet export and import
	5.3.9.1 XSet_OpenExportXStream
	5.3.9.2 XSet_OpenImportXStream

	5.3.10 Asynchronous operations
	5.3.10.1 Jobs
	5.3.10.1.1 XSet_SubmitJob
	5.3.10.1.2 XSet_HaltJob

	5.3.10.2 XSet async I/O
	5.3.10.2.1 XSystem_AsyncOpenXSet
	5.3.10.2.2 XSystem_AsyncCopyXSet
	5.3.10.2.3 XAM_AsyncOpenXStream
	5.3.10.2.4 XStream_AsyncRead
	5.3.10.2.5 XStream_AsyncWrite
	5.3.10.2.6 XStream_AsyncClose
	5.3.10.2.7 XSet_AsyncCommit

	5.3.10.3 Asynchronous Operations Management
	5.3.10.3.1 XAsync_Halt
	5.3.10.3.2 XAsync_IsComplete
	5.3.10.3.3 XAsync_GetXOPID
	5.3.10.3.4 XAsync_GetStatus
	5.3.10.3.5 XAsync_GetXSet
	5.3.10.3.6 XAsync_GetXStream
	5.3.10.3.7 XAsync_GetXUID
	5.3.10.3.8 XAsync_GetBytesRead
	5.3.10.3.9 XAsync_GetBytesWritten
	5.3.10.3.10 XAsync_Close

	5.4 Fields
	5.4.1 XAM Library fields
	5.4.2 XSystem fields
	5.4.3 XSet fields
	5.4.4 Job fields
	5.4.5 Query job fields

	5.5 Using the XAM API - concrete samples
	5.5.1 Create an XSet
	5.5.2 Create an XSet - alternate asynchronous method
	5.5.3 Read an XSet
	5.5.4 Query an XSet using job methods

	6 Private (VIM) C API Reference
	6.1 XAM Library interaction with the VIM
	6.2 Methods
	6.2.1 Error token generation
	6.2.1.1 VIM_XSystem_GetErrorToken

	6.2.2 Field iteration
	6.2.2.1 VIM_XSystem_OpenFieldIterator
	6.2.2.2 VIM_XSet_OpenFieldIterator
	6.2.2.3 VIM_XIterator_Next
	6.2.2.4 VIM_XIterator_HasNext
	6.2.2.5 VIM_XIterator_Close

	6.2.3 Field manipulation
	6.2.3.1 XSystem generic field methods
	6.2.3.1.1 VIM_XSystem_ContainsField
	6.2.3.1.2 VIM_XSystem_GetFieldType
	6.2.3.1.3 VIM_XSystem_GetFieldLength
	6.2.3.1.4 VIM_XSystem_GetFieldReadOnly
	6.2.3.1.5 VIM_XSystem_DeleteField

	6.2.3.2 XSet generic field methods
	6.2.3.2.1 VIM_XSet_ContainsField
	6.2.3.2.2 VIM_XSet_SetFieldAsBinding
	6.2.3.2.3 VIM_XSet_SetFieldAsNonbinding
	6.2.3.2.4 VIM_XSet_GetFieldType
	6.2.3.2.5 VIM_XSet_GetFieldLength
	6.2.3.2.6 VIM_XSet_GetFieldBinding
	6.2.3.2.7 VIM_XSet_GetFieldReadOnly
	6.2.3.2.8 VIM_XSet_DeleteField

	6.2.3.3 XSystem property field methods
	6.2.3.3.1 VIM_XSystem_CreateBoolean
	6.2.3.3.2 VIM_XSystem_CreateInt
	6.2.3.3.3 VIM_XSystem_CreateDouble
	6.2.3.3.4 VIM_XSystem_CreateXUID
	6.2.3.3.5 VIM_XSystem_CreateString
	6.2.3.3.6 VIM_XSystem_CreateDatetime
	6.2.3.3.7 VIM_XSystem_SetBoolean
	6.2.3.3.8 VIM_XSystem_SetInt
	6.2.3.3.9 VIM_XSystem_SetDouble
	6.2.3.3.10 VIM_XSystem_SetXUID
	6.2.3.3.11 VIM_XSystem_SetString
	6.2.3.3.12 VIM_XSystem_SetDatetime
	6.2.3.3.13 VIM_XSystem_GetBoolean
	6.2.3.3.14 VIM_XSystem_GetInt
	6.2.3.3.15 VIM_XSystem_GetDouble
	6.2.3.3.16 VIM_XSystem_GetXUID
	6.2.3.3.17 VIM_XSystem_GetString
	6.2.3.3.18 VIM_XSystem_GetDatetime

	6.2.3.4 XSet property field methods
	6.2.3.4.1 VIM_XSet_CreateBoolean
	6.2.3.4.2 VIM_XSet_CreateInt
	6.2.3.4.3 VIM_XSet_CreateDouble
	6.2.3.4.4 VIM_XSet_CreateXUID
	6.2.3.4.5 VIM_XSet_CreateString
	6.2.3.4.6 VIM_XSet_CreateDatetime
	6.2.3.4.7 VIM_XSet_SetBoolean
	6.2.3.4.8 VIM_XSet_SetInt
	6.2.3.4.9 VIM_XSet_SetDouble
	6.2.3.4.10 VIM_XSet_SetXUID
	6.2.3.4.11 VIM_XSet_SetString
	6.2.3.4.12 VIM_XSet_SetDatetime
	6.2.3.4.13 VIM_XSet_GetBoolean
	6.2.3.4.14 VIM_XSet_GetInt
	6.2.3.4.15 VIM_XSet_GetDouble
	6.2.3.4.16 VIM_XSet_GetXUID
	6.2.3.4.17 VIM_XSet_GetString
	6.2.3.4.18 VIM_XSet_GetDatetime

	6.2.3.5 XStream field methods
	6.2.3.5.1 VIM_XSystem_CreateXStream
	6.2.3.5.2 VIM_XSet_CreateXStream
	6.2.3.5.3 VIM_XSystem_OpenXStream
	6.2.3.5.4 VIM_XSet_OpenXStream
	6.2.3.5.5 VIM_XStream_Read
	6.2.3.5.6 VIM_XStream_Write
	6.2.3.5.7 VIM_XStream_Seek
	6.2.3.5.8 VIM_XStream_Tell
	6.2.3.5.9 VIM_XStream_Abandon
	6.2.3.5.10 VIM_XStream_Close

	6.2.4 Connection administration for a XAM Storage System
	6.2.4.1 VIM_CreateXSystem
	6.2.4.2 VIM_XSystem_Connect
	6.2.4.3 VIM_XSystem_Authenticate
	6.2.4.4 VIM_XSystem_Close
	6.2.4.5 VIM_XSystem_Abandon

	6.2.5 XSet instance creation
	6.2.5.1 VIM_XSystem_CreateXSet
	6.2.5.2 VIM_XSystem_OpenXSet
	6.2.5.3 VIM_XSystem_CopyXSet

	6.2.6 XSet administration
	6.2.6.1 VIM_XSystem_IsXSetRetained
	6.2.6.2 VIM_XSystem_DeleteXSet
	6.2.6.3 VIM_XSystem_HoldXSet
	6.2.6.4 VIM_XSystem_ReleaseXSet
	6.2.6.5 VIM_XSystem_AccessXSet
	6.2.6.6 VIM_XSystem_GetXSetAccessTime

	6.2.7 XSet management administration
	6.2.7.1 Access policy
	6.2.7.1.1 VIM_XSet_ApplyAccessPolicy
	6.2.7.1.2 VIM_XSet_ResetAccessFields

	6.2.7.2 Base management policy
	6.2.7.2.1 VIM_XSet_ApplyManagementPolicy
	6.2.7.2.2 VIM_XSet_ResetManagementFields

	6.2.7.3 Retention
	6.2.7.3.1 VIM_XSet_CreateRetention
	6.2.7.3.2 VIM_XSet_SetRetentionEnabledFlag
	6.2.7.3.3 VIM_XSet_ApplyRetentionEnabledPolicy
	6.2.7.3.4 VIM_XSet_SetRetentionDuration
	6.2.7.3.5 VIM_XSet_ApplyRetentionDurationPolicy
	6.2.7.3.6 VIM_XSet_SetRetentionStarttime
	6.2.7.3.7 VIM_XSet_SetBaseRetention
	6.2.7.3.8 VIM_XSet_ApplyBaseRetentionPolicy

	6.2.7.4 AutoDelete
	6.2.7.4.1 VIM_XSet_ApplyAutoDeletePolicy
	6.2.7.4.2 VIM_XSet_SetAutoDelete

	6.2.7.5 Shred
	6.2.7.5.1 VIM_XSet_ApplyShredPolicy
	6.2.7.5.2 VIM_XSet_SetShred

	6.2.7.6 Storage policy
	6.2.7.6.1 VIM_XSet_ApplyStoragePolicy

	6.2.7.7 Policy evaluation
	6.2.7.7.1 VIM_XSet_GetActualRetentionDuration
	6.2.7.7.2 VIM_XSet_GetActualRetentionEnabled
	6.2.7.7.3 VIM_XSet_GetActualAutoDelete
	6.2.7.7.4 VIM_XSet_GetActualShred

	6.2.8 XSet instance administration
	6.2.8.1 VIM_XSet_Commit
	6.2.8.2 VIM_XSet_Close
	6.2.8.3 VIM_XSet_Abandon

	6.2.9 XSet migration
	6.2.9.1 VIM_XSet_OpenExportXStream
	6.2.9.2 VIM_XSet_OpenImportXStream

	6.2.10 Asynchronous operations
	6.2.10.1 Jobs
	6.2.10.1.1 VIM_XSet_SubmitJob
	6.2.10.1.2 VIM_XSet_HaltJob

	6.2.10.2 XSet async I/O
	6.2.10.2.1 VIM_XSystem_AsyncOpenXSet
	6.2.10.2.2 VIM_XSystem_AsyncCopyXSet
	6.2.10.2.3 VIM_XSet_AsyncOpenXStream
	6.2.10.2.4 VIM_XStream_AsyncRead
	6.2.10.2.5 VIM_XStream_AsyncWrite
	6.2.10.2.6 VIM_XStream_AsyncClose
	6.2.10.2.7 VIM_XSet_AsyncCommit

	6.2.10.3 Asynchronous Operations Management
	6.2.10.3.1 VIM_XAsync_Halt
	6.2.10.3.2 VIM_XAsync_IsComplete
	6.2.10.3.3 VIM_XAsync_GetXOPID
	6.2.10.3.4 VIM_XAsync_GetStatus
	6.2.10.3.5 VIM_XAsync_GetXSet
	6.2.10.3.6 VIM_XAsync_GetXStream
	6.2.10.3.7 VIM_XAsync_GetXUID
	6.2.10.3.8 VIM_XAsync_GetBytesRead
	6.2.10.3.9 VIM_XAsync_GetBytesWritten
	6.2.10.3.10 VIM_XAsync_Close

	Annex A (normative) Public Header Files
	A.1 xam_types.h
	A.2 xam_strings.h
	A.3 xam_errors.h
	A.4 xam.h

	Annex B (normative) Private (VIM) Header Files
	B.1 vim.h

	Annex C (normative) C API Toolkit
	C.1 Field methods
	C.1.1 XAMToolkit_IsPropertyField
	C.1.2 XAMToolkit_IsXStreamField
	C.2 Base64 conversion
	C.2.1 base64_encode
	C.2.2 base64_decode

	Annex D (informative) C API Method Mapping

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

