

## Reliable, Scaling and High Performance Storage System

Yosuke Hara - @yosukehara

A Researcher of R.I.T. and Tech Lead LeoFS

with **Masahiro Sanjo**, Coordinator of R.I.T.





LeoFS is an Unstructured Object Storage for the Web and a highly available, distributed, eventually consistent storage system.



# LeoFS was published as OSS on July of 2012 leo-project.net/leofs



#### Overview

**Brief Benchmark Report** 

Multi Data Center Replication

**NFS Support** 

**LeoFS Administration at Rakuten** 

Future Plans LeoFS QoS



## Overview





**HIGH Availability** 

LeoFS Non Stop

#### 3 Vs in 3 HIGHs

<u>Velocity: Low Latency</u> Minimum Resources

Volume: Petabyte / Exabyte

<u>Variety: Photo, Movie, Unstructured-data</u>

HIGH Cost Performance Ratio

HIGH Scalability



#### **LeoFS Overview**

**Gateway** 

Storage

Request from Web Applications / Browsers w/HTTP over REST-API / S3-API

Load Balancer

**Keeping High Availability Keeping High Performance Easy Administration** 





(Erlang RPC)

(TCP/IP, SNMP)







**GUI Console** 





(Erlang RPC)







### LeoFS Gateway



#### **LeoFS Overview - Gateway**

#### **HTTP Request and Response**

Built in Object Cache Mechanism

Clients **REST-API / S3-API Stateless Proxy + Object Cache** Gateway(s) [ Memory Cache, Disc Cache ] **Use Consistent Hashing** for decision of a primary node **Storage Cluster** 

Fast HTTP Server - Cowboy
API Handler
Object Cache Mechanism



Storage Cluster

## LeoFS Storage



**WRITE: Auto Replication** 

READ: Auto Repair of an Inconsistent Object with Async





#### **LeoFS Overview - Storage**

Storage consists of *Object Storage and Metadata Storage*Includes *Replicator* and *Recoverer* for the eventual consistency





#### **LeoFS Overview - Storage - Data Structure**





#### LeoFS Overview - Storage - Large Object Support

To Equalize Disk Usage in Every Storage Node





Client(s)

Gateway

Storage Cluster





## LeoFS Manager



#### **LeoFS Overview - Manager**

**Operate LeoFS - Gateway and Storage Cluster** 







#### Summary of the benchmark results

LeoFS kept in a stable performance through the benchmark

**Bottleneck is Disk I/O** 

The cache mechanism contributed to reduce network traffic between Gateway and Storage



#### 1st Case:

#### **Group of Value Ranges**

Storage:5, Gateway:1, Manager:2

R:W = 9:1

source: https://github.com/leo-project/notes/tree/master/leofs/benchmark/leofs/20140605/tests/1m\_r9w1\_240min

#### 2nd Case:

#### **Group of Value Ranges**

Storage:5, Gateway:1, Manager:2

R:W = 8:2

source: https://github.com/leo-project/notes/tree/master/leofs/benchmark/leofs/20140605/tests/1m\_r8w2\_120min



#### **Server Spec - Gateway:**

| CPU     | Intel(R) Xeon(R) CPU X5650 @ 2.67GHz * 2 (12 cores / 24 threads) |  |  |
|---------|------------------------------------------------------------------|--|--|
| Memory  | 96GB                                                             |  |  |
| Disk    | HDD - 240GB RAID0                                                |  |  |
| Network | 10G-Ether                                                        |  |  |

#### **Server Spec - Storage x5:**

| CPU     | Intel(R) Xeon(R) CPU X5650 @ 2.67GHz * 2 (12 cores / 24 threads) |
|---------|------------------------------------------------------------------|
| Memory  | 96GB                                                             |
| Disk    | HDD - 240GB RAID0 (System)                                       |
|         | HDD - 2TB RAID0 (Data)                                           |
| Network | 10G-Ether                                                        |

#### **Brief Benchmark Report - 1st Case (R:W=9:1)**

#### **Environment:**

| Network | 10Gbps                     |
|---------|----------------------------|
| OS      | CentOS release 6.5 (Final) |
| Erlang  | OTP R16B03-1               |
| LeoFS   | v1.0.2                     |

System Consistency Level: [N:3, W:2, R:1, D:2]

#### **Benchmark Configuration:**

| Duration                  | 4.0h    |          |            |  |
|---------------------------|---------|----------|------------|--|
| R:W                       | 9:1     |          |            |  |
| # of Concurrent Processes | 64      |          |            |  |
| # of Keys                 | 100,000 |          |            |  |
| Value Size                | Range   | e (byte) | Percentage |  |
|                           | 1024    | 10240    | 24.00%     |  |
|                           | 10241   | 102400   | 30.00%     |  |
|                           | 10241   | 819200   | 30.00%     |  |
|                           | 819201  | 1572864  | 16.00%     |  |
|                           |         |          |            |  |

#### **Brief Benchmark Report - 1st Case (R:W=9:1)**





Latency

#### **Brief Benchmark Report - 1st Case / Network Traffic**



#### **Brief Benchmark Report - 1st Case / Memory and CPU**

#### Memory Usage





#### **Brief Benchmark Report - 2nd Case (R:W=8:2)**

#### **Environment:**

| Network | 10Gbps                     |
|---------|----------------------------|
| OS      | CentOS release 6.5 (Final) |
| Erlang  | OTP R16B03-1               |
| LeoFS   | v1.0.2                     |

System Consistency Level: [N:3, W:2, R:1, D:2]

#### **Benchmark Configuration:**

| Duration                  | 2.0h         |         |            |   |  |
|---------------------------|--------------|---------|------------|---|--|
| R:W                       | 8:2          |         |            |   |  |
| # of Concurrent Processes | 64           |         |            |   |  |
| # of Keys                 | 100,000      |         |            |   |  |
| Value Size                | Range (byte) |         | Percentage |   |  |
|                           | 1024         | 10240   | 24.00%     |   |  |
|                           | 10241        | 102400  | 30.00%     |   |  |
|                           | 10241        | 819200  | 30.00%     |   |  |
|                           | 819201       | 1572864 | 16.00%     |   |  |
|                           |              |         |            | _ |  |

#### **Brief Benchmark Report - 2nd Case (R:W=8:2)**



楽®天 ® Rakuten

) PS

Latency

## Compare 1st case with 2nd case





1st Case - Disk util%







#### **Conclusion:**

LeoFS kept in a stable performance through the benchmark

**Bottleneck is Disk I/O** 

The cache mechanism contributed to reduce network traffic between Gateway and Storage







#### Designed it as simple as possible

- 1. Easy Operation to build multi clusters.
- 2. Asynchronous data replication between clusters

  Stacked data is transferred to remote cluster(s)
- 3. Eventual consistency

#### **Preparing the MDC Replication**



"Leo Storage Platform"



#### Stacking objects



"Leo Storage Platform"

#### Transferring stacked objects



"Leo Storage Platform"



#### **Multi Data Center Replication**

#### **Investigating stored objects**



"Leo Storage Platform"



## NFS Support



#### **Future Plans**

### **NFS Support**

Data-HUB: Centralize unstructured data in LeoFS





# LeoFS Administration at Rakuten

Presented by Masahiro Sanjo
Rakuten Institute of Technology



#### LeoFS Administration at Rakuten

**Storage Platform** 

File Sharing Service

**Others** 

Portal Site

Photo Storage

Background Storage of OpenStack



## Storage Platform



#### Storage Platform - Scaling the Storage Platform

Reduce Costs
High Reliability
Easy to Scale
S3-API





#### Storage Platform - Scaling the Storage Platform

### Using Various Services



#### **Storage Platform - System Layout**



#### **Storage Platform - Monitor**



#### **Storage Platform - Spreading Globally**

# Covering All Services with Multi DC Replication





# File Sharing Service





#### File Sharing Service - Required Targets



Reduce Costs
Handle Confidential Files
Store Large Files
Scale Easily



#### File Sharing Service - Usage



Share Docs and Videos with Group Companies
Over 20 Companies, Over 10 Countries
Over 4,000 Users, Over 10,000 Teams



#### File Sharing Service - System Layout



#### File Sharing Service - Future Plans

# Cover 25 Countries/Regions Over 20,000 Users





### **Empowering the Services and the Users** Through the Cloud Storage







## **Future Plans**



#### **Future Plans**



LeoInsight

