Reliable, Scaling and High Performance Storage System

Yosuke Hara - @yosukehara
A Researcher of R.I.T. and Tech Lead LeoFS

with Masahiro Sanjo, Coordinator of R.I.T.
LeoFS is an Unstructured Object Storage for the Web and a highly available, distributed, eventually consistent storage system.

LeoFS was published as OSS on July of 2012

leo-project.net/leofs
Overview

Brief Benchmark Report
Multi Data Center Replication
NFS Support
LeoFS Administration at Rakuten
Future Plans
LeoFS QoS
Overview
LeoFS
The Lion of Storage Systems

HIGH Availability

LeoFS Non Stop

HIGH Scalability

3 Vs in 3 HIGHs

Velocity: Low Latency
Minimum Resources

Volume: Petabyte / Exabyte
Variety: Photo, Movie, Unstructured-data

HIGH Cost
Performance Ratio
LeoFS Overview

Request from Web Applications / Browsers w/HTTP over REST-API / S3-API

Load Balancer

Gateway

Storage

Manager

Keeping High Availability
Keeping High Performance
Easy Administration

Monitor

GUI Console

(Erlang RPC)

(TCP/IP, SNMP)
LeoFS Gateway
LeoFS Overview - Gateway

HTTP Request and Response

Built in *Object Cache Mechanism*

REST-API / S3-API

Stateless Proxy + Object Cache
[Memory Cache, Disc Cache]

Use Consistent Hashing for decision of a primary node

Storage Cluster

Fast HTTP Server - Cowboy API Handler Object Cache Mechanism
LeoFS Storage
LeoFS Overview - Storage

WRITE: Auto Replication
READ: Auto Repair of an Inconsistent Object with Async

Use "Consistent Hashing" for Data Operation in the Storage Cluster

RING
2^128 (MD5)
of replicas = 3

KEY = "bucket/leofs.key"
Hash = md5(Filename)

"P2P"
LeoFS Overview - Storage

Storage consists of **Object Storage and Metadata Storage**

Includes **Replicator** and **Recoverer** for the eventual consistency
LeoFS Overview - Storage - Data Structure

- **Metadata**:
 - Key
 - KeySize
 - Custom Meta Size
 - File Size
 - Offset
 - Version
 - Time-stamp
 - Checksum

- **Needle**:
 - Checksum
 - KeySize
 - User-Meta Size
 - DataSize
 - Offset
 - Version
 - Time-stamp
 - Key
 - User-Meta
 - Actual File
 - Footer

- **Object Container**:
 - Super-block
 - Needle-1
 - Needle-2
 - Needle-3
 - Needle-4
 - Needle-5

- **For retrieving an object**

- **For Sync**

- **Robust and High Performance Necessary for GC**
LeoFS Overview - Storage - Large Object Support

To Equalize Disk Usage in Every Storage Node
To Realise High I/O efficiency and High Availability

[WRITE Operation]

An Original Object’s Metadata

Client(s)	Gateway	Storage Cluster

Original Object Name
Original Object Size
of Chunks

Every chunked object is replicated in the storage cluster
LeoFS Manager
LeoFS Overview - Manager

Operate LeoFS - Gateway and Storage Cluster

"RING Monitor" and "NodeState Monitor"

Storage Cluster

Gateway(s)

Manager(s)

Monitor
RING, Node State

Operate
status, suspend, resume, detach, whereis, ...
Brief Benchmark Report
Brief Benchmark Report

Summary of the benchmark results

LeoFS kept in a stable performance through the benchmark

Bottleneck is Disk I/O

The cache mechanism contributed to reduce network traffic between Gateway and Storage
Brief Benchmark Report

1st Case:

Group of Value Ranges

Storage: 5, Gateway: 1, Manager: 2

R:W = 9:1

source: https://github.com/leo-project/notes/tree/master/leofs/benchmark/leofs/20140605/tests/1m_r9w1_240min

2nd Case:

Group of Value Ranges

Storage: 5, Gateway: 1, Manager: 2

R:W = 8:2

source: https://github.com/leo-project/notes/tree/master/leofs/benchmark/leofs/20140605/tests/1m_r8w2_120min
Brief Benchmark Report

Server Spec - Gateway:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Intel(R) Xeon(R) CPU X5650 @ 2.67GHz * 2 (12 cores / 24 threads)</td>
</tr>
<tr>
<td>Memory</td>
<td>96GB</td>
</tr>
<tr>
<td>Disk</td>
<td>HDD - 240GB RAID0</td>
</tr>
<tr>
<td>Network</td>
<td>10G-Ether</td>
</tr>
</tbody>
</table>

Server Spec - Storage x5:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Intel(R) Xeon(R) CPU X5650 @ 2.67GHz * 2 (12 cores / 24 threads)</td>
</tr>
<tr>
<td>Memory</td>
<td>96GB</td>
</tr>
<tr>
<td>Disk</td>
<td>HDD - 240GB RAID0 (System)</td>
</tr>
<tr>
<td></td>
<td>HDD - 2TB RAID0 (Data)</td>
</tr>
<tr>
<td>Network</td>
<td>10G-Ether</td>
</tr>
</tbody>
</table>
Brief Benchmark Report - 1st Case (R:W=9:1)

Environment:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>10Gbps</td>
</tr>
<tr>
<td>OS</td>
<td>CentOS release 6.5 (Final)</td>
</tr>
<tr>
<td>Erlang</td>
<td>OTP R16B03-1</td>
</tr>
<tr>
<td>LeoFS</td>
<td>v1.0.2</td>
</tr>
</tbody>
</table>

System Consistency Level:

\[
\begin{array}{c|c|c|c|c}
N & W & R & D \\
3 & 2 & 1 & 2 \\
\end{array}
\]

Benchmark Configuration:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>4.0h</td>
</tr>
<tr>
<td>\textbf{R:W}</td>
<td>9:1</td>
</tr>
<tr>
<td># of Concurrent Processes</td>
<td>64</td>
</tr>
<tr>
<td># of Keys</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Value Size

<table>
<thead>
<tr>
<th>Range (byte)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>10240</td>
</tr>
<tr>
<td>10241</td>
<td>102400</td>
</tr>
<tr>
<td>10241</td>
<td>819200</td>
</tr>
<tr>
<td>819201</td>
<td>1572864</td>
</tr>
</tbody>
</table>
Brief Benchmark Report - 1st Case (R:W=9:1)

1,500ops

No Errors

50ms

source: https://github.com/leo-project/notes/tree/master/leofs/benchmark/leofs/20140601/tests/1m_r9w1_240min
Brief Benchmark Report - 1st Case / Network Traffic

- Gateway
 - 10.0Gbps
 - 7.0Gbps
 - 6.0Gbps
 - 5.0Gbps

- Storage
 - 60%
Brief Benchmark Report - 1st Case / Memory and CPU

Memory Usage

CPU Load 5min

- gateway
- storage-1
- storage-2
- storage-3
- storage-4
- storage-5

.gateway
.storage-1
.storage-2
.storage-3
.storage-4
.storage-5
Brief Benchmark Report - 2nd Case (R:W=8:2)

Environment:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>10Gbps</td>
</tr>
<tr>
<td>OS</td>
<td>CentOS release 6.5 (Final)</td>
</tr>
<tr>
<td>Erlang</td>
<td>OTP R16B03-1</td>
</tr>
<tr>
<td>LeoFS</td>
<td>v1.0.2</td>
</tr>
</tbody>
</table>

System Consistency Level:

[N:3, W:2, R:1, D:2]

Benchmark Configuration:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>2.0h</td>
</tr>
<tr>
<td>R:W</td>
<td>8:2</td>
</tr>
<tr>
<td># of Concurrent Processes</td>
<td>64</td>
</tr>
<tr>
<td># of Keys</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Value Size

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range (byte)</td>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td>10240</td>
<td>24.00%</td>
</tr>
<tr>
<td>10241</td>
<td>102400</td>
<td>30.00%</td>
</tr>
<tr>
<td>10241</td>
<td>819200</td>
<td>30.00%</td>
</tr>
<tr>
<td>819201</td>
<td>1572864</td>
<td>16.00%</td>
</tr>
</tbody>
</table>
Brief Benchmark Report - 2nd Case (R:W=8:2)

1,000 ops
No Errors

60-70ms
80-90ms

OPS
Latency

60-70ms
80-90ms
Compare 1st case with 2nd case
Brief Benchmark Report

1st Case - Network Traffic

2nd Case - Network Traffic

minus 0.7Gbps
Brief Benchmark Report

1st Case - Disk util%

2nd Case - Disk util%

1.8x high
Brief Benchmark Report

1st Case - CPU Load 5min

2nd Case - CPU Load 5min

1.6x high
Brief Benchmark Report

Conclusion:

LeoFS kept in a stable performance through the benchmark

Bottleneck is Disk I/O

The cache mechanism contributed to reduce network traffic between Gateway and Storage
Multi Data Center Replication
Multi Data Center Replication

- HIGH-Scalability
- HIGH-Availability
- Easy Operation for Admins
- NO SPOF
- NO Performance Degradation

Locations:
- US
- Europe
- Singapore
- Tokyo
Multi Data Center Replication

Designed it as simple as possible

1. Easy Operation to build **multi clusters**.
2. **Asynchronous data replication** between clusters
 Stacked data is **transferred** to remote cluster(s)
3. **Eventual consistency**
Multi Data Center Replication

Preparing the MDC Replication

Executing “Join Cluster” on Manager Console

"join cluster DC-2 and DC-3"

DC-1
[# of replicas:3]

DC-2
[# of replicas:1]

DC-3
[# of replicas:1]

Monitors and Replicates each “RING” and “System Configuration”

"Leo Storage Platform"
Multi Data Center Replication

Stacking objects

Application(s)
Request to the Target Region

DC-1
[# of replicas:3]

DC-2
[# of replicas:1]

DC-3
[# of replicas:1]

Temporally Stacking objects
- One container's capacity is \(*32MB\)
- When capacity is full, send it to remote cluster(s)

* 32MB: default capacity - able to set optional value

Monitors and Replicates each “RING” and “System Configuration”

"Leo Storage Platform"

leo_rpc
Multi Data Center Replication

Transferring stacked objects

Application(s)
Request to the Target Region

DC-1

DC-2

DC-3

Stacked an object with a metadata
Compress it with LZ4

Replicated an object

Monitors and Replicates each “RING” and “System Configuration”

"Leo Storage Platform"
Multi Data Center Replication

Investigating stored objects

Client

Storage cluster

Manager cluster

1) Receive metadata of stored objects
2) Compare them at the local cluster
3) Fix inconsistent objects

Application(s)

Request to the Target Region

DC-1

DC-2

DC-3

 leo_rpc

 leo_rpc

 leo_rpc

 leo_rpc

Monitor and Replicate each “RING” and “System Configuration”

"Leo Storage Platform"
NFS Support
Future Plans

NFS Support

Data-HUB: Centralize unstructured data in LeoFS
LeoFS Administration at Rakuten

Presented by Masahiro Sanjo
Rakuten Institute of Technology
LeoFS Administration at Rakuten

Storage Platform

File Sharing Service

Others

Portal Site

Photo Storage

Background Storage of OpenStack
Storage Platform
Storage Platform - Scaling the Storage Platform

Reduce Costs
High Reliability
Easy to Scale
S3-API
Using Various Services

Total Usage: 450TB/600TB
of Files: 600 Million
Daily Growth: 100GB
Daily Reqs: 13 Million
Storage Platform - System Layout

Requests from Web Applications / Browsers w/HTTP over S3-API

Load Balancer / Cache Servers

Manager x 2

Total disk space: 600TB
Number of Files: 600 Million
Access Stats:
800Mbps (MAX)
400Mbps (AVG)

Gateway x 4
Storage x 14

Requests from Web Applications / Browsers
Load Balancer / Cache Servers
Manager x 2

Monitor
GUI Console

Total disk space: 600TB
Number of Files: 600 Million
Access Stats:
800Mbps (MAX)
400Mbps (AVG)
Storage Platform - Monitor

Status Collection *(Ganglia)*
Status Check *(Nagios)*
Port + Threshold Check

Ganglia Agent
Send Mail Alert

Manager x 2

Gateway x 4
Storage x 14

Monitor
GUI Console

(TCP/IP, SNMP)
(Erlang RPC)
Storage Platform - Spreading Globally

Covering All Services with Multi DC Replication
File Sharing Service

https://owncloud.com/
File Sharing Service - Required Targets

- Reduce Costs
- Handle Confidential Files
- Store Large Files
- Scale Easily

Rakuten + ownCloud
File Sharing Service - Usage

Share **Docs** and **Videos** with Group Companies
Over 20 Companies, Over 10 Countries
Over 4,000 Users, Over 10,000 Teams
File Sharing Service - System Layout

- Web GUI File Browser
- Authenticate Users
- LDAP
- Manager x 2
 - Monitor
 - GUI Console
- Manage Configurations
- Manage Login Session (KVS)
- File Sharing Service
 - System Layout
 - Web GUI File Browser
 - LDAP
 - Manager x 2
 - Monitor
 - GUI Console
 - Manage Configurations
 - Manage Login Session (KVS)

- OwnCloud
- MariaDB
- ROMA

- Manage Configurations
- Manage Login Session (KVS)
File Sharing Service - Future Plans

Cover 25 Countries/Regions
Over 20,000 Users
Empowering the Services and the Users Through the Cloud Storage
Future Plans
Future Plans

SavannaDB for Statistics Data

Insight LeoFS

Operate LeoFS

REST-API (JSON)

Leolnights

Future Plans

SavannaDB's Agent

Notify a message of over # of req threshold

Retrieved metrics and stats from SavannaDB’s Agents

+ openstack™
Set Sail for “Cloud Storage”

Website: leo-project.net
Twitter: @LeoFastStorage