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Agenda

▪ Benefits of hardware acceleration for solid state storage devices

▪ RISC-V based hardware acceleration

▪ Hardware accelerator attachment options

▪ Hardware accelerator microarchitecture

▪ Status & future work
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Block Diagram of Host with Storage Device
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Host Based Encryption

▪ Encryption can be performed by the host either by the
▪ User through software libraries such as OpenSSL or
▪ Kernel through APIs such as /dev/crypto on Linux

▪ Encryption throughput on the host can be improved by
▪ Cryptographic instruction set extensions (ISEs) 

▪ x86 and ARM ISAs added crypto ISEs many years ago
▪ RISC-V Zk* scalar 32/64-bit ISE ratified in Oct 2021 but not yet implemented in 

newer RISC-V cores
▪ RISC-V vector crypto instruction spec Zvk* in public review but not yet ratified

▪ Traditional crypto hardware accelerator (ACC) is attached to peripheral bus with 
DMA access to main memory
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Storage Based Encryption

▪ Encryption can also be performed by the storage device
▪ Provides additional level of security for data that is not encrypted 

by the host
▪ Improves data security as keys are stored in the storage device 

rather than in main memory used by the host
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Hardware Based Storage Device Encryption

▪ Hardware solution can improve throughput and power efficiency of 
encryption/decryption of solid state (SSD) based storage devices 

▪ Increases encryption read and write throughput relative to firmware 
library running on the microcontroller (uC)

▪ May also be faster than using crypto instruction extensions (ISEs) 
on the microcontroller

▪ Open source RISC-V ISA allows a hardware accelerator to be 
attached to a RISC-V based microcontroller (uC)
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Hardware Accelerator for Encryption/Decryption

▪ Allows offload of encryption/decryption, data authentication and 
key generation from the storage device’s microcontroller core(s)
▪ Allows microcontroller to focus on flash translation layer (FTL) 

functionality such as logical to physical block address 
mapping, wear levelling and garbage collection

▪ Better power efficiency than general purpose microcontroller
▪ Cuts down power dissipated due to fetch, rename, dispatch 

and scheduling (for out-of-order core) of crypto ops expended 
in general purpose core
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Azimuth Technology Hardware Accelerator
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Azimuth Technology Hardware Accelerator

▪ Supports 2 different types of attachment
▪ Tightly Attached

▪ Can be attached inside the microcontroller CPU to the load/store unit or 
L2 cache

▪ Only supported for RISC-V CPU with license which allows integration of 
an accelerator and/or addition of custom instructions by the customer

▪ Closely Attached
▪ Can be attached to the interconnect of the microcontroller SOC which 

interfaces to the last level cache (LLC)
▪ Allows HWA to participate in a coherency protocol such as AXI or CHI 

as a non-caching node
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Azimuth Technology Hardware Accelerator (cont’d)

▪ Either config allows firmware running on the microcontroller (uC) 
core to configure the accelerator (HWA) with a lower latency
▪ Core initiates processing on the accelerator which then 

performs its own memory accesses and finishes computation
▪ HWA shares the memory interface of the uC to perform 

▪ reads from solid state memory to decrypt data and write it to 
DRAM

▪ reads from DRAM to encrypt data and write it to solid state 
memory
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Tightly Attached Accelerator Config
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Tightly Attached Accelerator Interfaces

▪ Management interface
▪ firmware can use RISC-V special register (csr) read/writes to 

configure, start and stop HWA operation
▪ Memory interface

▪ HWA can initiate reads or writes to the L1 data or L2 caches
▪ Completion interface

▪ Synchronous - firmware polls for completion through 
management interface

▪ Asynchronous - HWA can interrupt the core upon successful 
completion or exceptional result
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Closely Attached Accelerator Config
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Closely Attached Accelerator Interfaces

▪ Management interface
▪ similar to tightly attached config but uses memory mapped reads and writes 

instead of special register reads and writes
▪ Memory interface

▪ HWA shares the memory interface of the core with the last level cache (LLC) 
which may use an industry standard AXI or CHI coherency protocol

▪ HWA provides RN-I interface for CHI interconnect
▪ Allows for encryption/decryption from memory directly into LLC which can be an 

L2, L3 or L4
▪ Completion interface

▪ similar to tightly attached config where status may be polled or signalled through 
an interrupt
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HWA Block Diagram
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HWA Microarchitecture

▪ Support for processing separate threads by providing special 
register bank per thread

▪ HWA consists of ‘n’ pipes with shared memory interface and 
carryless multiplier where 1 <= n <= 8

▪ Banks can be mapped to pipes to allow software to configure 
processing throughput per thread

▪ Compute resources are decoupled from loads
▪ only allocated on load return to improve compute efficiency
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Encryption/Decryption Algorithm Support

▪ HW A optimized for authenticated encryption with associated data (AEAD), with 
confidentiality provided by using the Galois/Counter Mode (GCM)
▪ AES used for the block cipher with authentication based on the GHASH

▪ The following encryption/decryption algorithms will be supported by the hardware 
accelerator
▪ AES-128 (11 rounds), AES-256 (15 rounds)
▪ SM4 (8 rounds)
▪ SM3 
▪ SHA 256, SHA 512
▪ AES128/256 GCM
▪ SM4 GCM
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Software Interface

▪ Hardware accelerator can be programmed through regular RISC-
V instructions
▪ only additional address space needs to be added for special 

register or memory mapped I/O accesses
▪ Memory region types can be configured using RISC-V physical 

memory attributes (PMA)
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Configurability

▪ Configurability through parameters allows tuning of performance, 
power and area (PPA) to meet the constraints of a particular 
system 

▪ Memory interface can be configured to be either AXI4 or CHI
▪ Number of crypto pipelines configurable to upto 8 pipes



20 | © SNIA. All Rights Reserved. 

Integration

▪ Offered as a soft IP which can be integrated into an SOC
▪ RTL is coded using system verilog
▪ Input parameters can be used to configure HWA

▪ Integration guide provided with each release
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Status

▪ RTL, written in system verilog, currently in development using Amazon 
Web Services (AWS) EC2 platform
▪ Starting point for datapath RTL was RISC-V crypto task group’s open 

source RTL for 64-bit datapath which was expanded to 128-bits 
▪ Unit level verification environment will use AWS EC2 F1 testbench but 

has not yet started
▪ Performance stats for AES-GCM will be obtained on AWS EC2 F1 

FPGA platform
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Future Improvements

▪ Update interrupt interface to support RISC-V AIA spec
▪ Improve hardware prefetcher to reduce memory latency

▪ current prefetcher is configured by software and does not adapt 
to memory subsystem load

▪ Investigate susceptibility to differential power analysis (DPA) 
attacks and add support for any countermeasures

▪ Add performance counters to determine pipe utilization and 
memory throughput
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About the Speaker

▪ Architect at Azimuth Technology, which was founded in August 
2020

▪ 25+ year industry experience in design and development of x86, 
ARM and RISC-V CPUs

▪ Based in Austin, Texas, USA
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Contact Information

Thank you for your time! Please contact us if you have any questions, 
comments or suggestions

▪ Email: azimuthtechusa@gmail.com
▪ Web site: www.azimuthtech.org
▪ LinkedIn Company Profile: Azimuth Technology
▪ LinkedIn Personal Profile: Kelvin Goveas

mailto:azimuthtechusa@gmail.com
http://www.azimuthtech.org
https://www.linkedin.com/in/azimuth-technology-85569a211/
https://www.linkedin.com/in/kelvin-goveas-9a61027/
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Please take a moment to rate this session. 
Your feedback is important to us. 
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