

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

A Host-Assisted Computational Storage Architecture

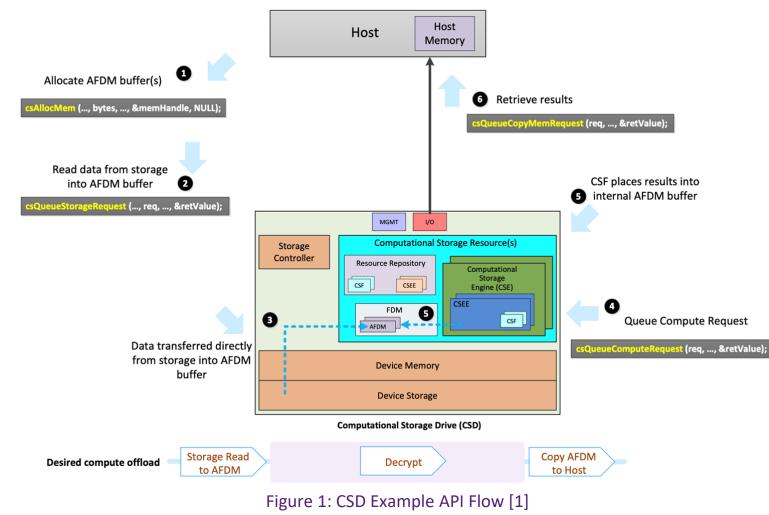
Tao Lu, Ph.D. Research Manager, DapuStor Corporation

- Computational Storage Drive (CSD)
- Host Cores vs. In-device Controllers/Accelerators
- Host-Assisted CSD (HA-CSD) Architecture
- Evaluation
- Conclusion

Computational Storage Drive: In-storage Processing

Data compression and decompression

Encryption and decryption



Pattern matching and regular expressions

Data analytics and machine learning

Computational Storage Drive Model and API: Standards

- Host dictates CSD to run a function on specified data
- No collaboration between the host and device
 - Device compute power
 - Over-provisioned, or
 - Be the bottleneck !
 - Host compute power wasted!

COMPUTE + MEMORY + STORAGE SUMMIT

Source: Computational Storage API Version 0.5 rev 0, https://www.snia.org/sites/default/files/technical-work/computational/draft/SNIA-Computational-Storage-API-v0.5r0-DRAFT.pdf

4 | © SNIA. All Rights Reserved.

Host Cores vs. In-device Controllers / Accelerators

Host cores

- Good Performance
- Shall not be occupied by IO

In-device

- Hardware Accelerators
 - High performance
 - Not always deployed
 - Long R&D cycle

SSD controllers

- Low Performance
- Dedicated for IO

	Write		Read	
	OPS	CPU Util.	OPS	CPU Util.
No Comp.	38,381	35.7%	59,111	37.9%
ZSTD	16,600	31.2%	47,023	66.9%

Table 1: RocksDB throughput and average host CPU utilization with and without ZSTD compression enabled. OPS indicates operations per second.

Compression Saves Storage Space but Greatly Consumes Host CPU Resources

	AMD EPYC 7282	Arm Cortex-A53
Compression	200 MB/s	44 MB/s
Decompression	533 MB/s	137 MB/s


Table 2: Single-thread compression and decompression throughput (MB/s): host AMD x86 CPU vs. SSD ARM Cortex Core. The tests are conducted with *lzbench* at 4KB compression granularity using the *silesia* dataset.

ARM Cores of the SSD Controller are weak

COMPUTE + MEMORY

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

FTL-CSD Offline Compression to Avoid Write Bottleneck

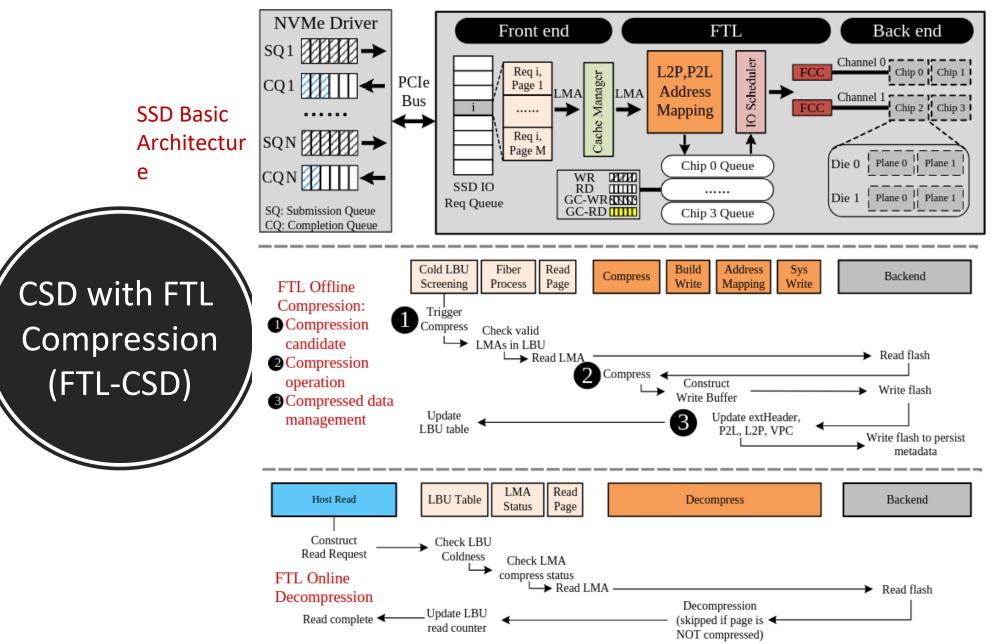
6 | © SNIA. All Rights Reserved.

Related Work

Research Work

- Park Y, Kim JS. zFTL: Power-efficient data compression support for NAND flash-based consumer electronics devices. IEEE transactions on consumer electronics. 2011.
- Zuck, Aviad, et al. **Compression and SSDs: Where and how?**. INFLOW'14.
- Zhang, Xuebin, et al. Reducing solid-state storage device write stress through opportunistic in-place delta compression. FAST'16
- Qiao, Yifan, et al. Closing the B+-tree vs.{LSM-tree} Write Amplification Gap on Modern Storage Hardware with Built-in Transparent Compression. FAST'22.

Product


- Seagate Nytro 1351 and 1551 SSD
- ScaleFlux CSD 2000/3000

FTL-CSD Offline Compression: Design Highlights

- Screening Compression Candidates
 - Cold Page Recognition
 - Compressible Page Recognition
- FTL Compression and Decompression
- Address Mapping
- Garbage Collection
- SSD Logical Capacity Expansion

FTL-CSD Performance

Write throughput is good, thanks to the offline compression

- As good as its standard SSD peer
- Read throughput is poor, due to the FTL decompression bottleneck
 - More than one order of magnitude lower than its standard SSD peer

COMPUTE + MEMORY

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

Host-Assisted CSD (HA-CSD) Architecture

11 | © SNIA. All Rights Reserved.

HA-CSD to Mitigate Read Bottleneck

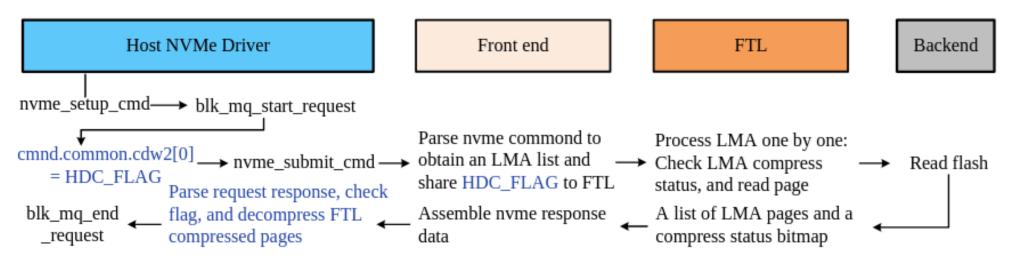
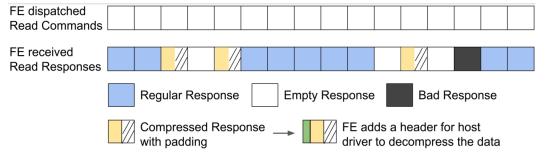



Figure 3: Read IO flow of host-assisted decompression. HDC_Flag indicates the host will decompress the data, therefore the FTL rapidly returns pages without needing to conduct decompression.

 opcode
 flags
 command_id
 nsid

 cdw2 (reserved)

 metadata

 nvme_data_ptr [16 bytes]

 cdw10-15 [24 bytes]

Figure 4: Illustration of firmware frontend (FE) read command and response data layouts.

Figure 5: NVMe Base Specification v1.4 Command Format. We utilize the reserved *cdw2* (4 bytes) command field to store the *HDC* host decompression flag.

Evaluation

Device	Description
SSD	A regular PCIe Gen4 commercial SSD without in- storage compression
FTL-CSD	The PCIe Gen4 SSD with compression and decompr ession integrated in the FTL
HA-FTL-CSD	Enable host-assisted decompression for the FTL- CSD
FPGA-CSD	SSD with an in-storage FPGA compression module (ScaleFlux CSD2000)

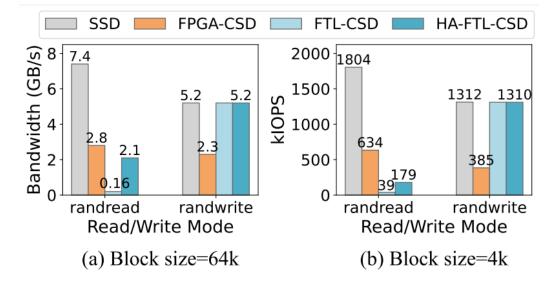


Figure 6: Read and write throughput with fio benchmark

Evaluation

Device	Description
SSD	A regular PCIe Gen4 commercial SSD without in- storage compression
FTL-CSD	The PCIe Gen4 SSD with compression and decompr ession integrated in the FTL
HA-FTL-CSD	Enable host-assisted decompression for the FTL- CSD
FPGA-CSD	SSD with an in-storage FPGA compression module (ScaleFlux CSD2000)

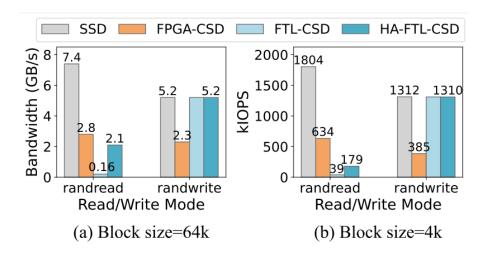
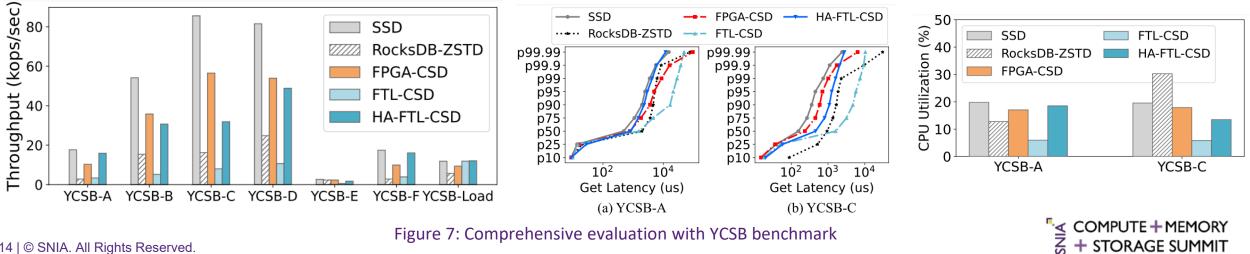



Figure 6: Read and write throughput with fio benchmark

Conclusion

In-storage Hardware Accelerator

- Pros
 - Performance: Hardware is the King
- Cons
 - Hardware is costly and not always available; Not that flexible

SSD Controller

- Pros
 - Always available; Programmable
 - Well handle offline tasks such as compression
- Cons
 - Wimpy compute power, cannot well handle online tasks (e.g. decompression in critical IO path)
- HA-CSD
 - Utilize the host CPU to assist the SSD controller
 - Enable computational functions supported by FTL firmware to achieve near-hardware performance

COMPUTE + MEMORY

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

Thank You! Please take a moment to rate this session.

Your feedback is important to us.