

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

Standardizing Computational Storage

Bill Martin Jason Molgaard

- Current status of SNIA Computational Storage Standardization
- Overview of SNIA CS Architecture
- Overview of SNIA CS API
- SNIA and NVMe[™] Computational Storage
- Next Steps
- Conclusion

The Continued Growth of Experience

CS TWG is continuing to see growth

48 companies, 258 individual members

Work within SNIA Efforts

- CS SIG Webinars, Blogs, Events
- SDXI Sub-Group Collaboration
- Security TWG Addressing Security

Collaborating with External Groups

NVM Express – Computational Programs

Current Progress of TWG Output

- Architectural Document v1.0 has been released
- v1.1 under development
 - Security enhancements for multiple tenants
 - Chaining of Commands
 - Expansion of use cases
- API v0.8 public review version also available
- API v1.0 under development
 - Abort/reset handling
 - Device Memory
 - NVMe Computational Programs support
 - Other Miscellaneous Updates

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

Architecture Overview

5 | © SNIA. All Rights Reserved.

Computational Storage Architecture

Computational Storage Processor

Computational Storage Processor (CSP)

Computational Storage Drive

Computational Storage Array

Computational Storage Array (CSA)

CSx = Computational Storage **Device** – CSP or CSD or CSA

A Deeper Dive of the CSx Resources

Computational Storage Drive (CSD)

CSR - Computational Storage Resources are the resources available in a CSx necessary for that CSx to store and execute a CSF.

CSF - A Computational Storage Function is a set of specific operations that may be configured and executed by a CSE in a CSEE.

CSE - Computational Storage Engine is a CSR that is able to be programmed to provide one or more specific operation(s).

CSEE - A Computational Storage Engine Environment is an operating environment space for the CSE.

FDM - Function Data Memory is device memory that is available for CSFs to use for data that is used or generated as part of the operation of the CSF.

AFDM - Allocated Function Data Memory is a portion of FDM that is allocated for one or more specific instances of a CSF operation.

Security Considerations for v1.0

Assumptions

- The environment consists of a single physical host or virtual host with one or more CSxes
- The host is responsible for the security of the ecosystem that the CSxes operate within
- CSx security requirements are comparable to the security requirements common to SSDs/HDDs

Privileged Access

Elevated privileges necessary for operations

Sanitization

- All instances of CSF operations should be terminated
- All activated CSEEs and CSFs should be deactivated
- All memory allocations associated with FDM should be removed and associated FDM cleared

Additional Security Considerations for v1.0

Data at-rest Encryption

• A CSx may need to encrypt or decrypt data to operate on it

Key Management

• A CSx may need to manage keys to support encryption or decryption of data

Software Security

- Software executing on a CSx may require:
 - Verification of the integrity of the downloaded program
 - Validation that the code originates from a particular source and has not been compromised

Multi-Tenant Security Considerations for version 1.1

- Trust Relationships
- Elements required for a trust relationship are
 - 1. Identification
 - Exchanged between participating parties
 - 2. Authentication
 - Is done following identification
 - Exchange of authentication information
 - Is done with the same element as Identification is done with
 - 3. Authorization
 - Is done following authentication
 - Authorizes specific actions on specific resources
 - May be done at a lower-level element than the element that was authenticated
 - 4. Access Control
 - Controls access to elements of the CSx that are within the scope of the authorization
 - May be access to a CSE, a CSEE, or a CSF
- Different elements of the trust relationship may be at different levels
 - Identification and Authorization may be at the CSX
 - Authorization may be at the CSEE within the CSX
 - Access Control may be at the CSF activated in the CSEE

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

API Overview

SNIA Computational Storage APIs

CSx

- One set of APIs for all CSx types
 - CSP, CSD, CSA
- APIs hide device details
 - Hardware, Connectivity (local/remote)
- Abstracts device details
 - Discovery
 - Access
 - Device Memory (mapped/unmapped)
 - Near Storage Access
 - Copy Device Memory
 - Download CSFs
 - Execute CSFs
 - Device Management
- Extensible Interface
 - Plugins connect CSx to abstracted APIs
 - Hides vendor specific implementation details
- APIs are OS agnostic

Computational Storage Drive (CSD)

Computational Storage API

• For more information about the SNIA CS API, please attend:

SNIA Computational Storage API by Oscar Pinto

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

SNIA and NVMe Computational Storage

NVMe Computational Storage Architectural Components

Host		
	NVMe Controller	
3	Memory Range Set	NVM Namespace 100 NVM Namespace 101
Programs Compute Namespace 2 Compute Namespaces	Subsystem Local Memory	NVM Namespaces
Domain 1		
NVM Subsystem		

- Compute Namespaces
 - Compute Engines
 - Programs
- Programs operate on data in Subsystem Local Memory
 - Allocated as Memory Range Set
 - Includes program input, output
- NVM Namespaces
 - Persistent storage of data
 - NVM
 - ZNS
 - KV
- Data is transferred between NVM Namespaces and SLM using a copy command

This presentation discusses NVMe work in progress, which is subject to change without notice.

Correlation of SNIA/NVMe terms

SNIA Terms

- Computational Storage Engine
- Computational Storage Engine Environment
- Resource Repository
 - Downloaded CSF and CSEE
 - Pre-loaded CSF and CSF
- Activation
- Function Data Memory (FDM)
- Allocated FDM (AFDM)
- Device Storage

NVMe Terms

- Compute Engine/Compute Namespace
- Virtual (Not currently defined)
- Programs
 - Downloaded programs
 - Device-defined programs
- Activation
- Subsystem Local Memory (SLM)
- Memory Range Set
- NVM Namespaces

Differences between SNIA and NVMe

SNIA

- Defines CSEE
- CSF can directly access
 AFDM or Storage
- Supports an indirect model

NVMe

- CSEE is logical no specific definition
- Program only accesses
 Memory Range Set
- Specific Execute command only

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

Next Steps

Progressing Computational Storage

Complete API v1.0 Specification

Publicly release the API

Complete Architecture and Programming Model v1.1

- Multi-tenant Security Considerations
- Chaining of Commands
- Illustrative Examples growth

CS and SDXI Collaboration

Combining Technologies

CS + SDXI

← SDXI→ CSEE, CSF is SDXI Producer

← SDXI→ Host is SDXI Producer

→ OMPUTE + MEMORY

20 | © SNIA. All Rights Reserved.

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

Conclusion

Interested? Join Us!

Join SNIA: <u>https://www.snia.org/member_com/join-SNIA</u>

Join the Computational Storage TWG: <u>https://members.snia.org/workgroup/index</u>

Additional Presentations on Computational Storage Standardization

- See the following Compute+Memory+Storage Summit presentations on Computational storage
 - SNIA Computational Storage API by Oscar Pinto
 - NVMe[®] Computational Storage by Kim Malone and Bill Martin

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

Please take a moment to rate this session.

Your feedback is important to us.

Post-Summit, visit <u>www.snia.org/cms-summit</u> for additional content.