Implementing Computational Storage with Existing SSD Controller Resources

Ramyakanth Edupuganti
Staff Applications Engineer
Microchip Technology
Agenda

• Abstract
• NVMe SSD Resources
• Computational Storage Examples
• Data Processing Offload Engines
• Data Processing Offload Analysis
• Summary
Abstract

• Computing and storage needs are ever expanding in enterprise applications. NVMe™ SSD controllers are evolving in functionalities and incorporating various computing resources such as multiple co-processors, hardware accelerators, additional memories, peripherals, etc.. However, these computing and storage resources within an SSD may not be utilized at all times. These resources may be leveraged to offload the host CPU or remote CPUs to improve the overall system performance and TCO. The NVMe standard also provides mechanisms to take advantage of these resources with compute ability.
Why Computational Storage?

Data Applications
- Big Data Analytics
- Data Mining
- Cloud Computing
- Machine Learning
- Artificial Intelligence

Data Life Cycle
- Creation/Collection
- Processing
- Analysis
- Use
- Store
- Destroy
- Retrieve

Storage Architecture
- Server
- Fabric
- Storage Systems
- Expanders
- SSDs
NVMe SSD Resources

Front-End Resources
- Ports
- Switches
- DMA

Data Processing Resources
- CPU
- XTS/AES
- Hash
- T10DIF
- RAID
- Compression
- List Engine
- Interval Checking

Back-End Resources
- DMA
- NAND Mgmt
- FTL
- ECC

Host

NAND
Port Resources

- SSDs may have multiple ports including Expansion PCIe® to connect additional devices or augment the SSD capabilities. These resources can be used for computational storage.
With the trend in reduced silicon geometry, SSD controllers are integrating more CPUs than are always needed for traditional SSD applications.

Computational storage SSDs typically have 4-16 high-speed processor cores.

These processors can be used for various compute operations such as image processing, data analytics, AI, machine learning, deep learning, etc.
Data Processing Offload Engines

- Hash engine
 - Key-value store applications
 - Authentication
 - Data searching
- XOR engine
 - Perform RAID parity
- Compression engine
 - Data compression for improving NAND endurance
- Encrypting/decrypting engine
 - Protection of data is becoming more critical
- Other offload engines
 - E.g., linked list, LBA range checking, etc.

Flash Memory Summit

Santa Clara, CA
August 2019
Data Offload Analysis – 512B

![Bar Chart](chart.png)

- **CPU Cycles**
- **# of Operations**
- **Server CPU 512B**
- **CSP CPU 512B**

Santa Clara, CA
August 2019
Data Offload Analysis - 4KB
Summary

• Newer NVMe SSD controllers are incorporating various computing resources such as multiple co-processors, hardware accelerators, additional memories, peripherals, etc.

• These resources may be leveraged to offload the host CPU, or remote CPUs in a Fabric topology to improve the overall system performance, TCO

• Computational storage SSD is one of the building blocks of composable platforms
• Microchip offers a range of products for enterprise storage and data center applications
• Come and visit us at booth #213
• www.microchip.com