
Hadoop Distributed File System

Dhruba Borthakur
Apache Hadoop Project Management Committee

dhruba@apache.org
dhruba@facebook.com

Hadoop, Why?

•  Need to process huge datasets on large clusters
of computers

•  Nodes fail every day
 – Failure is expected, rather than exceptional.
 – The number of nodes in a cluster is not constant.

•  Very expensive to build reliability into each
application.

•  Need common infrastructure
 – Efficient, reliable, easy to use
 – Open Source, Apache License

Hadoop History

•  Dec 2004 – Google paper published

•  July 2005 – Nutch uses new MapReduce implementation

•  Jan 2006 – Doug Cutting joins Yahoo!

•  Feb 2006 – Hadoop becomes a new Lucene subproject
•  Apr 2007 – Yahoo! running Hadoop on 1000-node cluster

•  Jan 2008 – An Apache Top Level Project

•  Feb 2008 – Yahoo! production search index with Hadoop

•  July 2008 – First reports of a 4000-node cluster

Who uses Hadoop?

•  Amazon/A9
•  Facebook
•  Google
•  IBM
•  Joost
•  Last.fm
•  New York Times
•  PowerSet
•  Veoh
•  Yahoo!

What is Hadoop used for?

•  Search
–  Yahoo, Amazon, Zvents,

•  Log processing
–  Facebook, Yahoo, ContextWeb. Joost, Last.fm

•  Recommendation Systems
–  Facebook

•  Data Warehouse
–  Facebook, AOL

•  Video and Image Analysis
–  New York Times, Eyealike

Public Hadoop Clouds

•  Hadoop Map-reduce on Amazon EC2 instances

–  http://wiki.apache.org/hadoop/AmazonEC2

•  IBM Blue Cloud
–  Partnering with Google to offer web-scale infrastructure

•  Global Cloud Computing Testbed
–  Joint effort by Yahoo, HP and Intel

Commodity Hardware

Typically in 2 level architecture
– Nodes are commodity PCs
– 30-40 nodes/rack
– Uplink from rack is 3-4 gigabit
– Rack-internal is 1 gigabit

Goals of HDFS

•  Very Large Distributed File System
 – 10K nodes, 100 million files, 10 PB

•  Assumes Commodity Hardware
 – Files are replicated to handle hardware failure
 – Detect failures and recovers from them

•  Optimized for Batch Processing
 – Data locations exposed so that computations can
move to where data resides
 – Provides very high aggregate bandwidth

Distributed File System

•  Single Namespace for entire cluster
•  Data Coherency

 – Write-once-read-many access model
 – Client can only append to existing files

•  Files are broken up into blocks
 – Typically 128 MB block size
 – Each block replicated on multiple DataNodes

•  Intelligent Client
 – Client can find location of blocks
 – Client accesses data directly from DataNode

Functions of a NameNode

•  Manages File System Namespace

 – Maps a file name to a set of blocks

 – Maps a block to the DataNodes where
it resides

•  Cluster Configuration Management

•  Replication Engine for Blocks

NameNode Metadata

•  Meta-data in Memory
 – The entire metadata is in main memory
 – No demand paging of FS meta-data

•  Types of Metadata
 – List of files
 – List of Blocks for each file
 – List of DataNodes for each block
 – File attributes, e.g access time, replication factor

•  A Transaction Log
 – Records file creations, file deletions. etc

DataNode

•  A Block Server
 – Stores data in the local file system (e.g. ext3)
 – Stores meta-data of a block (e.g. CRC)
 – Serves data and meta-data to Clients

•  Block Report
 – Periodically sends a report of all existing blocks to
the NameNode

•  Facilitates Pipelining of Data
 – Forwards data to other specified DataNodes

Block Placement

•  Current Strategy

 -- One replica on random node on local rack

 -- Second replica on a random remote rack

 -- Third replica on same remote rack

 -- Additional replicas are randomly placed

•  Clients read from nearest replica

•  Would like to make this policy pluggable

Replication Engine

•  NameNode detects DataNode failures

 – Chooses new DataNodes for new
replicas

 – Balances disk usage

 – Balances communication traffic to
DataNodes

Data Correctness

•  Use Checksums to validate data
 – Use CRC32

•  File Creation
 – Client computes checksum per 512 byte
 – DataNode stores the checksum

•  File access
 – Client retrieves the data and checksum
from DataNode
 – If Validation fails, Client tries other replicas

Namenode Failure

•  A single point of failure

•  Transaction Log stored in multiple
directories

 – A directory on the local file system

 – A directory on a remote file system
(NFS/CIFS)

•  Need to develop a real HA solution

Data Pipelining

•  Client retrieves a list of DataNodes on
which to place replicas of a block

•  Client writes block to the first DataNode

•  The first DataNode forwards the data to
the next DataNode in the Pipeline

•  When all replicas are written, the Client
moves on to the next block in file

Secondary NameNode

•  Copies FsImage and Transaction Log from
NameNode to a temporary directory

•  Merges FSImage and Transaction Log into a
new FSImage in temporary directory

•  Uploads new FSImage to the NameNode

 – Transaction Log on NameNode is purged

User Interface

•  Command for HDFS User:
 – hadoop dfs -mkdir /foodir
 – hadoop dfs -cat /foodir/myfile.txt
 – hadoop dfs -rm /foodir myfile.txt

•  Command for HDFS Administrator
 – hadoop dfsadmin -report
 – hadoop dfsadmin -decommission datanodename

•  Web Interface
 – http://host:port/dfshealth.jsp

Hadoop Map/Reduce

•  Implementation of the Map-Reduce programming model
 – Framework for distributed processing of large data sets
 – Data handled as collections of key-value pairs
 – Pluggable user code runs in generic framework

•  Very common design pattern in data processing
 – Demonstrated by a unix pipeline example:
 cat * | grep | sort | unique -c | cat > file

 input | map | shuffle | reduce | output
•  Natural for:

 – Log processing
 – Web search indexing
 – Ad-hoc queries

Hadoop Subprojects

•  Hive
– A Data Warehouse with SQL support

•  HBase
– table storage for semi-structured data

•  Zookeeper
– coordinating distributed applications

•  Mahout
– Machine learning

Hadoop at Facebook

•  Hardware
– 4800 cores, 600 machines, 16GB/8GB per

machine – Nov 2008

– 4 SATA disks of 1 TB each per machine

– 2 level network hierarchy, 40 machines per
rack

Hadoop at Facebook

•  Single HDFS cluster across all cores

– 2 PB raw capacity

–  Ingest rate is 2 TB compressed per day

– 10 TB uncompressed

– 12 Million files

Hadoop Growth at Facebook

 Data Flow at Facebook

Web Servers  Scribe Servers 

Network 
Storage 

Hadoop Cluster Oracle RAC  MySQL 

Hadoop Usage at Facebook
•  Statistics per day:

– 55TB of compressed data scanned per day

– 3200+ jobs on production cluster per day

– 80M compute minutes per day

•  Barrier to entry is significantly reduced:

– SQL like language called Hive

– http://hadoop.apache.org/hive/

Useful Links

•  HDFS Design:

 – http://hadoop.apache.org/core/docs/current/hdfs_design.html

•  Hadoop API:

 – http://lucene.apache.org/hadoop/api/

•  Hadoop Wiki
–  http://wiki.apache.org/hadoop/

