


Four Reasons To Start Working With NFSv4.1 Now

# SNIA WEBCAST

Presented by: Alex McDonald

**Hosted by: Gilles Chekroun** 



HOSTED BY THE ETHERNET STORAGE FORUM



## Ethernet Storage Forum Members

Education













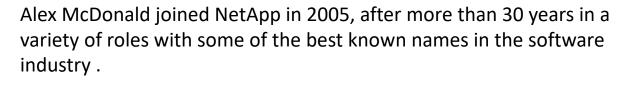








The SNIA
Ethernet Storage
Forum (ESF)
focuses on
educating endusers about
Ethernetconnected
storage
networking
technologies.




#### Webcast Presenter

Education



Alex McDonald Office of the CTO NetApp



With a background in software development, support, sales and a period as an independent consultant, Alex is now part of NetApp's Office of the CTO that supports industry activities and promotes technology & standards based solutions, and is co-chair of the SNIA NFS Special Interest Group.

Gilles joined Cisco 18 years ago. For the last ten years, Gilles' focus has been Storage & SAN extension technologies for designing and implementing Disaster Recovery Centers.

Gilles is now dedicated to Data Center Technologies like Unified Fabric, FCoE and Unified Computing System and is a member of the Cisco Europe Data Centre and Virtualisation Team as a Distinguished Engineer. He is a member of the Board of Directors of SNIA Europe (Storage Networking Industry Association) as Technical Chair.



Gilles Chekroun Distinguished Engineer Cisco

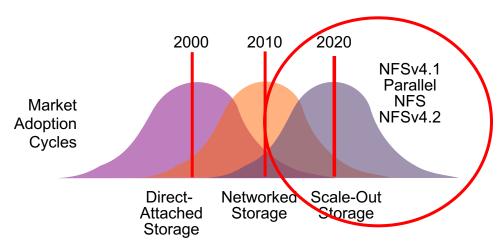


#### SNIA's NFS Special Interest Group

Education

- NFS SIG drives adoption and understanding of pNFS across vendors to constituents
  - Marketing, industry adoption, Open Source updates
- NetApp, EMC, Panasas and Sun founders
  - NetApp, EMC and Panasas act as co-chairs
- White paper on migration from NFSv3 to NFSv4
  - "Migrating from NFSv3 to NFSv4"




Learn more about us at: www.snia.org/forums/esf





### NFS; Ubiquitous & Everywhere

- NFS is ubiquitous and everywhere
- NFS doesn't stand still
  - NFSv2 in 1983, through NFSv4.1 in 2010
  - NFSv4.2 to be agreed at IETF shortly
  - Faster pace for minor revisions
- NFSv3 very successful
  - Protocol adoption is over time, and there have been no big incentives to change







#### **Evolving Requirements**

Education

#### Economic Trends

- Cheap and fast computing clusters
- Cheap and fast network (IGbE to I0GbE, 40GbE and I00GbE in the datacenter)
- Cost effective & high performance storage based on Flash & SATA

#### Performance

- Exposes single threaded bottlenecks in applications
- Increased demands of compute parallelism and consequent data parallelism

#### Powerful compute systems

- Analysis begets more data, at exponential rates
- Competitive edge (ops/sec)

#### Business requirement to reduce solution times

- Beyond performance; NFS 4.1 brings increased scale & flexibility
- Outside of the datacenter; requires good security



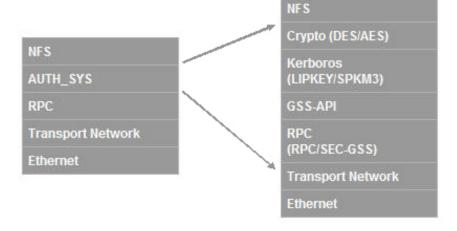


# Performance, Management and Reliability

- Random I/O and Metadata intensive workloads
  - Memory and CPU are hot spots
  - Load balancing limited to pair of NFS heads; originally designed for HA
    - Not a limitation of the NFS 4.1 protocol
- Compute farms are growing larger in size
  - NFS head can handle a 1000+ NFS clients
  - NFS head hardware comparable to client CPU, I/O, Memory
  - NFS head requires more spindles to distribute the I/O
- Reliability and availability are challenging
  - Data striping limited to single head and disks
  - Non-disruptive upgrades affect dual-head configurations
  - Access and connectivity is typically limited to a pair of NFS server heads






## NFSv4 Major Features; Security

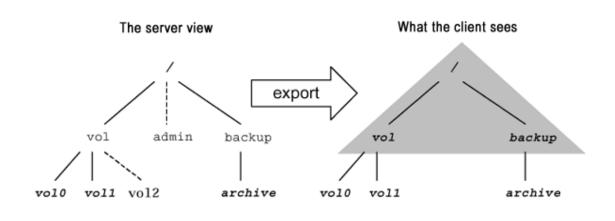
Education

- Strong security framework
- Access control lists (ACLs) for security and Windows® compatibility
- Mandatory security with Kerberos

Negotiated RPC security that depends on cryptography,

RPCSEC\_GSS








### NFSv4 Major Features; Namespace

Education

- Uniform and "infinite" namespace
  - Moving from user/home directories to datacenter & corporate use
  - Meets demands for "large scale" protocol
  - Unicode support for UTF-8 codepoints
- No automounter required
  - Simplifiesadministration



The Pseudo-file system



# NFSv4 Major Features; Stateful Clients

- NFSv4 gives client independence
  - Previous model had "dumb" stateless client
  - Server had the smarts
- Pushes work out to client through delegations & caching
- Why?
  - Compute nodes work best with local data
  - NFSv4 eliminates the need for local storage
  - Exposes more of the backend storage functionality
    - Client can help make server smarter by providing hints



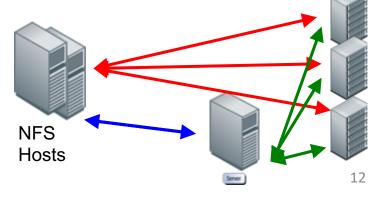


#### NFSv4. I Major Features; Sessions

- NFSv3 server never knows if client got reply message
- NFSv4.1 introduces Sessions
  - Major protocol infrastructure change
  - Exactly Once Semantics (EOS)
  - Bounded size of reply cache
  - Unlimited parallelism
- A session maintains the server's state relative to the connections belonging to a client

#### NFSv4.1 Major Features; Layouts

Education


#### Layouts

- Files, objects and block layouts
- Provides flexibility for storage that underpins it
- Location transparent
  - Striping and clustering

#### Examples

Blocks, Object and Files layouts all available from various

vendors

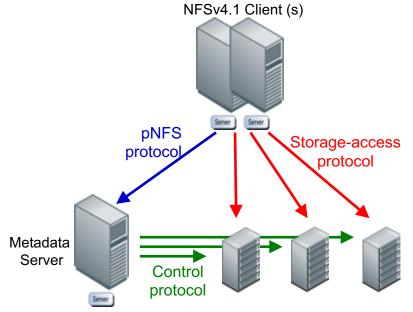






#### NFSv4.1 Major Features; pNFS

Education


#### NFSv4.1 (pNFS) can aggregate bandwidth

Modern approach; relieves issues associated with

point-to-point connections

- pNFS Client
  - Client read/write a file
  - Server grants permission
  - File layout (stripe map) is given to the client
  - Client parallel R/W directly to data servers

- Removes IO Bottlenecks
  - No single storage node is a bottleneck
  - Improves large file performance
- ImprovesManagement
  - Data and clients are load balanced
  - Single Namespace







#### Linux Client and NFSv4. I

- Upstream (Linus) Linux NFSv4.1 client support
  - Basic client in Kernel 2.6.32
  - pNFS support (files layout type) in Kernel 2.6.39
  - Support for the 'objects' and 'blocks' layouts was merged in Kernel 3.0 and 3.1 respectively
- Full read and write support for all three layout types in the upstream kernel,
  - O\_DIRECT reads and writes now supported.

#### Linux Client and NFSv4. I

- pNFS client support in distributions
  - Fedora 15 was first for pNFS files
  - Kernel 2.6.40 (released August 2011)
- Red Hat Enterprise Linux version 6.2, 6.3
  - "Technical preview" support for NFSv4.1 and for the pNFS files layout type
  - Full support in RHEL6.4
- Other Open Source
  - Microsoft NFSv4. I Windows client from CITI





#### Filesystem Implications

- Files, blocks, objects can co-exist in the same storage network
  - Can access the same file system; even the same file
- NFS flexible enough to support unlimited number of storage layout types
  - Three IETF standards, files, blocks, objects
  - Others evaluated experimentally
- NAS vs SAN; no-one cares any more
  - IETF process defines how you get to storage, not what your storage looks like
  - Underlying pNFS implementations will vary substantially between storage vendors



#### Virtualization; The Game Changer

- Server virtualization a major area of use
  - VMware, Citrix Xen
- Demands of 1000s of images on 100s of servers
- Requirements from a storage system
  - Single system image, resiliency, load balanced, transparent & non-disruptive upgrades...
- NFS a good fit in virtualized environments
  - Matches well datacenter use cases
  - NFS widely available and ubiquitous





#### NFS & The Virtualized Datacenter

Education **VM** DB Cluster Datastore Mount Server:/ pNFS Name Space **MDS** Server Hypervisor Cluster Nodes HV1 DB Srv1 Srv2 Srv2 Srv3

- NFS has more relevance today for commercial, HPC and other use cases than it ever did
  - Features for a virtualized data centers
- Developments driven by application requirements
- Adoption slow, but will continue to increase
  - NFSv4 support widely available
  - New NFSv4.1 with client & server support
  - NFS defines how you get to storage, not what your storage looks like



#### The Four Reasons for NFSv4.1

|                      | Functional                                           | Business Benefit                                           |
|----------------------|------------------------------------------------------|------------------------------------------------------------|
| Security             | ACLs for authorization Kerberos for authentication   | Compliance, improved access, storage efficiency, WAN use   |
| High<br>availability | Client and server lease management with fail over    | High Availability, Operations simplicity, cost containment |
| Single<br>namespace  | Pseudo directory system                              | Reduction in administration & management                   |
| Performance          | Multiple read, write, delete operations per RPC call | Better network utilization for all NFS clients             |
|                      | Delegate locks, read and write procedures to clients | Leverage NFS client hardware for better I/O                |
|                      | Parallelised I/O                                     | 20                                                         |



#### Summary/Call to Action

- pNFS is the first open standard for parallel I/O across the network
  - Ask vendors to include NFSv4.1 support for client/servers
- pNFS has wide industry support
  - commercial implementations and open source
- Start using NFSv4.1 today
  - NFSv4.2 nearing approval
- Future BrightTalk Sessions
  - NFSv4.1 Plan for a Smooth Migration
  - Advances in NFS; pNFS, FedFS and NFSv4.2





## Question & Answer





# To download this Webcast after the presentation, go to

http://www.snia.org/about/socialmedia/

