Persistence and Energy Savings

Tom Coughlin, Coughlin Associates, Inc. Jim Handy, Objective Analysis

Outline

- Findings from Last Year
- Why Persistence will Move into the CPU
- How this improves Applications
- Summary

Outline

- Findings from Last Year
- Why Persistence will Move into the CPU
- How this improves Applications
- Summary

SSDs in PCs

	SSD	HDD	
Sustained Read	230MB/s	60MB/s	
Sustained Write	130MB/s	50MB/s	
Random Read IOPS	2,500	70	
Random Write IOPS	25	115	
Ave. File Access	0.12ms	19.0ms	
Read latency	<1ms	15ms	
Active Power – Read	0.5W	2.1W	
Idle Power	0.1W	1.0W	
Standby Power	0.06W	0.20W	
Hibernate Resume	<5s	40s	

- 14% of total power went to HDD
- SSD's speed helped it power down more
 - HDD Powered down 10% of time
 - SSD powered down 96%
- Savings
 - Storage power 13%
 - Mother board power 2%

SNIA SSD TCO Model

	Power	Read IOPS	mW/IOPS
146GB 3.5: Enterprise Fibre Channel SSD	16.4W	10,000	1.6
64GB 2.5" Enterprise SATA SSD	6.5W	3,500	1.9
146GB 2.5" 15k RPM SAS HDD	11.0W	420	26.2
300GB 2.5" 10k RPM SAS HDD	10.2W	270	37.8
600GB 3.5" 15k RPM Fibre Channel HDD	24.3W	380	63.9
600GB 3.5" 10k RPM Fibre Channel HDD	18.1W	280	64.6
2TB 3.5" 7.2k RPM Enterprise SATA HDD	19.6W	133	147.4

From the perspective of mW/IOPS SSDs are a slam-dunk! (Even WITHOUT) considering the savings elsewhere in the system.

Faster Performance Reduces Energy Use

Source: Intel & Objective Analysis, July 2017

- Allows other parts of the system to enter their own idle states sooner
- Further reduces energy consumption
- HUGI: "Hurry Up, Go Idle."

PM Energy Savings

- Assumptions:
 - XPoint adoption follows Objective Analysis forecast
 - XPoint-based energy savings
 - 10% in Memory Mode
 - 30% in App Direct Mode
 - PM-Aware Software doesn't take off until 2023
 - Does not estimate reduced server requirements

Outline

- Findings from Last Year
- Why Persistence will Move into the CPU
- How this improves Applications
- Summary

NOR Flash Stopped Scaling at 28nm

Something Else <u>Will</u> Replace It

Process Geometry

Candidates for NOR Replacement

MRAM

ReRAM

PCM

FRAM

SRAM Is Similarly Challenged

It May Have Already Stopped Scaling

Putting Things in Perspective

Putting Things in Perspective

What Becomes Persistent?

Outline

- Findings from Last Year
- Why Persistence will Move into the CPU
- How this improves Applications
- Summary

Benefits of Persistent Caches

- Energy consumption
- Faster transactions
- This provides significant value for data center

and embedded system applications

Energy Savings from Persistence

Relative Energy Consumption

Cooperative Management of Storage and Memory

Speed-Up from Persistence (For HUGI)

Relative Execution Time

Justin Meza *et al*, <u>A Case for Efficient Hardware/Software</u> Cooperative Management of Storage and Memory

Intermittent Data Centers

Image from Lancium

Maximize Sleep

More Sleep = Lower Energy

- Going in / out of sleep burns energy
 Mostly storing / reloading RAM
- Only sleep when:

EnergySavings_{Sleep} > EnergyCost_{LoadStore}
→ Limits sleep to few, long periods

Conventional Sleep by Storing SRAM

Using Persistent Memory instead of RAM:

- Simply power memory off!
- Eliminates store/reload energy cost
- Enables frequent "Micro-Naps"
 - Save significant additional energy

Jeff Lewis, Spin Memory Presentation, 2019 MRAM Developers Day

Advantages for Embedded Electronics

Persistent Caches Need Development Support

- BIOS Support
- Operating system support
- Application program support
- Standards
- Hardware support

After That, Expect Persistent Registers!

New Report: Emerging Memories Find Their Direction

Now Available!

http://www.tomcoughlin.com/techpapers.htm https://Objective-Analysis.com/reports/#Emerging

Outline

- Findings from Last Year
- Why Persistence will Move into the CPU
- How this improves Applications
- Summary

Summary

- SSDs provide faster performance, lowing power use
- Persistent memory offers additional energy savings
- Persistent caches are on their way
 - Persistent registers will follow
- Persistent Memory will decrease energy demand in industrial, civic and consumer applications
- Buy our report!