Intro to Capacity Optimization Methods (COMs)

Chuck Paridon (original work by Dr. Alan Yoder)
Member SNIA GSI
Carlos Pratt (Presenter)
Member SNIA Green Technical working group
Outline

▷ COM overview
▷ How they work
COM overview

- COM = Capacity Optimization Method
- Basic idea: figure out a way to store more data in less space
 - energy use is theoretically proportional to space used
Currently acknowledged COMs

- Parity RAID (no longer evaluated by Emerald Tests)
- Thin Provisioning
- Read-only Delta Snapshots
- Writeable Delta Snapshots
- Data Deduplication
- Compression
The key to it all

- For ENERGY STAR, all that matters is the ratio of data segments to parity segments
 - A larger number translates directly into power savings
 - Less power to store a given amount of data is the goal

- RAID 1 is 1 to 1
 - This is what we want to improve on
 - E.g. RAID 5 with 8 drives is 7 to 1
RAID summary

Types of RAID

<table>
<thead>
<tr>
<th>RAID Type</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 0</td>
<td>simple striping</td>
<td>not really RAID</td>
</tr>
<tr>
<td>RAID 1</td>
<td>mirroring</td>
<td>NOT parity RAID</td>
</tr>
<tr>
<td>RAID 4</td>
<td>parity on a separate drive</td>
<td>okay for ES</td>
</tr>
<tr>
<td>RAID 5</td>
<td>parity striped across drives</td>
<td>okay for ES</td>
</tr>
<tr>
<td>RAID 6</td>
<td>double parity</td>
<td>okay for ES</td>
</tr>
<tr>
<td>“erasure codes”</td>
<td>non-XOR parity</td>
<td>okay for ES</td>
</tr>
<tr>
<td>distributed parity</td>
<td>multiple parity, widely distributed</td>
<td>okay for ES</td>
</tr>
<tr>
<td>RAID 0+1, 1+0, RAID 10</td>
<td>striping+mirroring</td>
<td>NOT parity RAID</td>
</tr>
<tr>
<td>replication</td>
<td>e.g. Hadoop, AWS</td>
<td>NOT parity RAID</td>
</tr>
</tbody>
</table>

1. protection against failures during RAID reconstruct
Thin Provisioning

Traditional: pre-allocation of storage space
- Storage is dedicated in advance of application usage
- Much wastage due to multiple levels of over-provisioning

Thin provisioning: allocation on demand
- Admins track total storage used by all users of the system and expand as needed
- More of a storage utility model
Thin provisioning, cont.

- Thin provisioning power saving effects are indirect
 - Avoid buying and powering up storage ahead of need
 - I.e. minimize the amount of unused space on a system
 - Good administrative practices greatly increase its effectiveness
 - An empty system is an empty system, no matter what
Delta Snapshots

Snapshot
- A Point-in-time (PIT) copy of some data
- Usually at a volume or filesystem level

Traditional method
- Full copy
- Lock volume, suspend or log writes, make copy, write log, unlock

Delta method
- Copy on write
- Snapshots share blocks

SNIA Emerald™ Training ~ February─March 2018
www.sniaemerald.com
Delta Snapshots cont.

- **Read only**
 - Live copy continues as before
 - PIT copy cannot be written
 - Useful for backups

- **Writeable**
 - Live copy continues as before
 - PIT copy can be written
 - Useful for “what if” scenarios, test runs on live data
 - Example: Data cloning for disaster recovery testing
Data Deduplication

- A.K.A. “dedup”
- Basic idea: replace duplicate blocks with pointers to shared blocks

Instead of:

Do:

File 1 File 2 File 3 “Catalog”

SNIA Emerald™ Training ~ February–March 2018 www.sniaemerald.com
Data Deduplication

- **Two fundamental types**
 - “Inline” – Dedup at wire speed, before writing to disk
 - Usually used for streaming backup systems
 - Note: streaming backup systems are not “online” systems in the SNIA taxonomy, so are not covered by the ES spec
 - “Post process” – Dedup performed after initial write to non-volatile media

- **Global vs. local**
 - Global dedup works across all the nodes in a cluster—very hard
 - i.e. system-wide, not global in the planetary sense
 - Most dedup is “local” to a given node
Deduplication, cont.

Many variations

- File or object level
 - Coarsest grained, least overhead
- Block level
 - Granularity at 4K or larger
- Variable-size
 - Finer granularity, but more overhead
- Yada yada
 - Whatever
Compression

- Old and venerable technology
- Well understood
- Zip, pkzip, WinRAR, others
- Finer grained than dedup
 - Byte level dedup inside typically a 32K sliding window
- Difficult, but possible, to combine with dedup
- Which is “better” depends on dataset
COM Benefits summary

- All COMs allow you to store more data in less space

- Parity RAID
 - replacement for mirroring
 - Usually 40-some percent power savings over RAID 1

- Thin provisioning
 - Can take systems from 30% utilization (legacy) to 80%

- Delta snapshots
 - Huge savings possible when change delta is small

- Deduplication
 - Savings depend on several factors, can be large
 - Think of backing up thousands of laptops, all originally burned from the same master image

- Compression
 - Savings vary with data characteristics, can be large
 - As compression is local to a file or block, it can’t achieve what dedup can
Q&A - Intro to Capacity Optimization Methods (COMs)

Thank You for Your Attention

Chuck Paridon (original work by Dr. Alan Yoder)
Member SNIA GSI

Carlos Pratt (presenter)
Member SNIA Green Technical working group