A method to vary the Host interface signaling speeds in a Storage Array driving towards Greener Storage.”

Dr. M. K. Jibbe, Technical Director
NetApp, Wichita, Ks USA
Mahmoud.jibbe@netapp.com
316 636 8810

Arun Rajendran, Software Engineer
NetApp, Bangalore, India
Introduction

- This presentation describes a method which can be used effectively to alter the signaling speeds of a Host Interface based on set performance criterion or user defined application / time of day criterion that are user definable.

- The end goals are
 - Considerable power savings by changing the signaling speeds to a lower supported speed. Such savings are confirmed by our background study and analysis.
 - Reduce the MTBF of components by operating such components at nominal speeds and improving the operable life span of the system
 - Move towards Greener Storage, low power operation, minimize Heat dissipation and emission reduction
Current Green Storage Technology

- Here are some of the Green Storage Cost Cutting, Saving, and Measures
 - Using Analytics to monitor companies energy fertilize the green to reduce cost and increase sustainability
 - Cloud is cost effective in providing software services, virtualization, and scalable computing resources
 - Increase computational power (Reduce Idle time)
 - Reduce the data center load (Server count and Energy use,
 - Lengthen the lifespan of PCs /Servers (More Manageable Central Site)
 - Power down devices based on usage
Enterprise Storage Arrays are required to be power efficient.

Most of Application Work loads don’t saturate the available raw bandwidth over the Storage Interfaces. This is mainly due to be Application specific latencies, protocol snags and other reasons.

There is a significant time difference between maximum possible raw data bandwidth and real-time bandwidth realized during a data transfer across a UI between a Storage Host and Target.

- A conceptual view of this delta is presented in the subsequent slide

Explore further possibilities to dissipate lesser power over a Storage interface beyond ACTIVE/SLUMBER state variations.

- Active = Fully operational
- Partial = Low Power State
- Slumber = Off state / Deep Sleep state

A Storage interface signaling at lower Speeds dissipate lower power, this needs to be factored to enable power efficiency.
Bandwidth Delta – Conceptual View

Effective Bandwidth delta

RAW Performance Delta

DATA

Slumber/partial

Full Speed Transmission

Half speed Transmission

Transfer Window (in UI of time)

Power Dissipation
Performance / Utilization Based Downscaling

- Determine the peak performance numbers which are specified in the Product Specifications and arrive at multiple thresholds downwards from such peak.
- During a real time data transfer the Management application connected to the storage array fetches the Host interface performance counter statistics at regular polling intervals.
- The decision logic in the management host compares the real time data to the pre-defined performance thresholds during a set monitoring window.
- Based on the real time performance/utilization trends, the management system can direct the storage array to vary the host interface speeds.
- The topology elements in this communication flow are mentioned below.
Topology in Details

- Management Server
- Speed Calculation
- Management Channel over Ethernet
- Exchanging Performance Counter Data
- Variable Host Channel Speed
- Target Array Controller
- SAN Interface
- Ethernet Switch
- Host Servers
Based on Peak Bandwidth Capability of an Array - RD/WR / sec. establish the following steps:

- Determine the maximum Read / write performance or obtain the aggregate bandwidth per sec from the product specifications
- Derive multiple comparison thresholds from this peak value.

The number of comparison thresholds defined would be based on the number of variable speeds of a given host interface,

- Example: For a SAS2 link based array the number of comparison thresholds would be 3 as the no of speed variants are 3 (1.5, 3, and 6 Gbps).
- If X MB/s is the peak bandwidth in the array specifications and the array’s host interface speed can be set at three different levels. These performance thresholds/indexes are
 \[
 PI(n) = \frac{X}{2^n}
 \]
 where \(n \) is the speed variants: (\(PI(0) \) X MB/s, \(PI(1) \) X/2 MB/s, and \(PI(2) \) X/4 MB/s are defined)

- Performance index are defined at the mid point to avoid frequent speed transitions.

Note: This schema can be applied to other specified performance / utilization metrics such as IOPs /sec etc.
Conceptual View

X axis - Performance Indexes and the matching thresholds

Y axis - Host interface speed variations

Real time logged data

PI 0
X MB/s

PI 1
X/2 MB/s

PI 2
X/4 MB/s

6Gbps 3Gbps 1.5Gbps

2011 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.
The Flow

- The Link Speed Change request shall be honored at the next Open Connection requests from the Specified Host.
- The link speed change request flow is described in the subsequent slides.
Another approach that we propose is time of day based host interface link speed variation;

- Speed variation is directly dependent on the application load pattern
 - It is known that the load patterns tend to vary a lot across a time of day for e.g. an exchange server can drive data at a much faster (9:00 am – 3:00 pm) rather than the end of day (after 5:00 pm).
 - Another example: For overnight backup Windows, Downscaling considers the power savings while running the interfaces at a lesser signaling speed throughout the backup window.

- Setup a set of time sensitive rules based on which the array can configure to downgrade the link speed

- The performance based link speed change flow and the time sensitive rules can be combined to reduce energy for the same array
 - Apply the performance utilization based schema only during the time window specified per rules.
Link Speed Change Flow.

Start, Link Speed change flow

Host Interface speed change request from the management application

Array registers the request

Is data transfers Pending?

YES
Complete the pending data transfer requests
Refuse /ignore new data / connection requests

NO
Send connection close

Program the current speed into a rollback register
Program the PHY registers to a downward speed
Initialize the phy's at the newer speed
Contd...

1. Wait for connection request to establish connection.

2. Establish new connection to the host.

 - Is speed negotiation successful?
 - YES: Send to the management host the link speed change has been successful.
 - NO: Fetch the last successful negotiated speed from the roll back register and establish connection.

3. The Storage Management layer sets the current performance index based on the response.

4. End.

Notify Management with Speed change Failure and Roll Back to Previous Speed.
Advantages.

- The proposed method will deliver considerable power savings even when the system is online and processing I/Os.
- The method also achieve the optimal use of the available raw bandwidth by switching to lesser raw bandwidth if the data rate doesn’t utilize the offered initial higher bandwidth rate.
- The performance thresholds defined are based on the specified performance metrics supported by the array. Such thresholds determines the utilization efficiency of the array capabilities.
- The link speed variation based power saving can co-exist with the existing protocol specific power saving modes (partial/slumber). A 3Gbps link in partial / slumber mode dissipates lesser power than 6Gbps in partial/slumber mode.
- SAS power dissipation is 20% reduction per port between 6 and 3 Gbps.
- The method also addresses exception conditions and allows rollback to the last supported speed if the system can’t perform a link speed change / negotiation.
Disadvantages

- The proposed method could create significant overheads if the polling periods for the performance data aren’t chosen carefully.
- Overheads could also be high if there are far too many performance data based on which the host interface speed would be varied, Choose the appropriate Performance metrics.
- The definition of optimum time intervals for the subsequent interface speed switch might not be possible during Burst IOs or Scattered IOs.
 - In such condition (Scattered IOs across long duration), the default Power management modes (like Sleep/Active) is far more beneficial in terms of power savings.
- The target array might not be able to find adequate window during concurrent data transfers across multiple Hosts. In such cases, target may not switch to a low speed mode.
Thank you