Extending SAS Connectivity in the Data Center

Bob Hansen
LHP Consulting Group
Agenda

- Introduction – what’s covered, what’s not
- SAS in the data center today
 - What is SAS (briefly)
 - Why SAS / initial limitations
 - Performance Roadmaps
 - Applications
- Data Center Topologies
- External Connection Technology
 - Connectors and cables
 - Limitations
Agenda (cont.)

- SAS 3 – the next generation
 - SAS 3 (12Gb/s) – almost here
 - More Connectivity Capabilities
 - Connector options
 - Cable comparison
 - New topology options
 - Large configuration / long distance performance considerations
- The next next generation
 - Possible SAS 4 enhancements
- Summary

Many thanks to the SCSI Trade Association for source material
Introduction

- We’re going to cover -
 - SAS HW storage connectivity solutions for the data center – now and in the foreseeable future.

- What we’re not
 - SAS inside the box
 - Drive connectors
 - SAS protocol
 - Detailed SAS performance
SAS in the data center today

- Serial Attached SCSI – SAS
 - SCSI Trade Association www.scsita.org
 - Standards organization www.t10.org
- Why did SAS displace Fibre Channel in back end storage connectivity applications
 - SAS takes the best from SCSI and Fibre channel
 - Focused on HDD/SDD connect
 - Low cost, Scalable performance
- Initial limitations
 - Connection based protocol – limits solution scale and in some cases, performance potential
 - Limited device count and connectivity distance
 - Addressed with SAS 3
SAS Performance Roadmap

First Plugfest (leading edge)

First End-User Products (approximately 12–18 months later)

- 3Gb/s SAS
- 6Gb/s SAS
- 12Gb/s SAS
- 24Gb/s SAS

SAS Roadmap updated Nov 2010.
SAS Controller Performance Projections – No SAS protocol changes

Additional Improvements Expected
- Protocol execution
- Application hints
- OS improvements
- Controller caching
- Improvements for external storage systems

6-10X performance gains in ~3 years

Single-chip SAS controller performance across PCIe
SAS applications

- Servers
 - Internal storage scalable via expanders
 - High reliability and redundancy
 - Compatible with SATA, SAS and SSDs

- External Storage
 - DAS
 - RAID / NAS HDD/SSD expansion interconnect
 - Blade Storage mid-plane interconnect
 - Large, complex SAS switch based solutions
Data Center Topologies – single head HA

“Server” can also be RAID or NAS controller

Cascade/Daisy Chain

Dual Domain/Redundant Path: 4 enclosures behind 2 SAS ports on a single server

Dual path to each enclosure, and to individual dual ported drives
“Server” can be Compute, RAID or NAS controller

Dual Domain/Redundant Path: 4 enclosures behind
2 SAS ports each on an HA server pair
Data Center Topology
Very Large Configuration

- 2 Servers, ~900 drives
- Servers could be compute, RAID or NAS controller
- Simple HA connections
- Daisy chained connections between disk enclosures (not shown)
- Server to storage connections could be doubled for increased performance
- Optional x8 wide ports for added performance
- Very deep stacks (be careful!)
SAS 2 External Connectors and Cables

- Mini-SAS is the industry standard today
- QSFP is also in use
- Only Copper cables are deployed
 - Passive Cu at <10m
 - Some active Cu at <25m

Mini-SAS - Active Copper

- Uses an existing GND pin to provide active power
- Functions only at 3Gb/s and 6Gb/s
- Plug Compatible with existing cabling
- No Management Support

Quad Small-factor Pluggable (QSFP) Managed Optical

- Used in other industry standards
- Available for optical use today
- Consumes valuable board real estate
- Limited port counts
Routing tables generally limited to 1024 devices in a single domain
 - Includes virtual phys as well as end devices
 - Large configurations require proprietary extensions to the SAS spec

No support (until SAS 2.1) for optical cables
 - Mini-SAS connectors make it difficult to deploy active Cu solutions

Copper cable length limited to ≤10m for passive and ≤25m for active

Cu cable is physically very stiff and thick – difficult to route
 - High density cabling configurations (think SAS switch) are very difficult

Given short cables storage HW components must be co-located
 - Must be on the same floor
 - Even routing cable across an isle between rows of racks requires very careful planning
 - Very difficult to efficiently use Data Center floor space – especially when doing a technology refresh
SAS 3 (12Gb) – almost here

- SAS 3 spec is expected to go to public comment this month (Sept 2013)
 - SAS 3 components have been available since mid-2011 and are going to production now
- Key SAS 3 features
 - 12Gb – double bandwidth and improved IOPs performance
 - Improved cost/performance & power/bandwidth ratio
 - Backward compatible with 3Gb/s and 6Gb/s backplane device connectors
 - Focus on low latency (SSD) performance
 - Supports MultiLink SAS™ implementations
 - Maximize link utilization when operating at < 12Gb/s
Three very important enhancements to the external SAS interconnect feature set

1. Managed connectors
2. Support for optical cable
3. Support for a large number of devices within a single domain

Semiconductors are in production now - Commercial deployment of SAS 3 solutions is very close
Redesign of the current 6Gb/s connector to run 12Gb/s
- 6Gb/s – SFF-8644 => 12Gbps – SFF-8644

Same hi density form factor –
- 4 x4 SAS connectors on a half height PCIE card
- Backward compatible with mini-SAS

Managed through I2C link (modeled after the QSFP connector management standard)
- Key functionality – cable type identification

Supports passive Cu, Active Cu and Optical
- Minimum air flow requirements for active Cu and Optical cable may be an issue
- Optical cable not yet widely available
QSFP is still a good choice

- Widely available in 4x wide port configurations
 - QSFP+ connectors are the standard for 40GBASE applications today
 - Backward compatible with QSFP
 - No connector change from SAS 3 to SAS 4 data rates
- Optical and copper cable solutions available
 - Optical is available with connectors attached or as separate cable / connectors for field assembly
- Half the density of Mini-SAS HD
- Not appropriate for mix and match applications
 - Mini-SAS HD is the preferred solution
Comparison of Cu and Optical SAS

SAS 3 (12Gb/s) data rates

<table>
<thead>
<tr>
<th></th>
<th>Passive Cu</th>
<th>Active Cu</th>
<th>Optical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported in SAS 3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Max distance</td>
<td>< 10m</td>
<td>< 30m</td>
<td>> 100m *</td>
</tr>
<tr>
<td>Connectors</td>
<td>Mini-SAS HD/ QSFP</td>
<td>Mini-SAS HD/ QSFP</td>
<td>Mini-SAS HD/ QSFP</td>
</tr>
<tr>
<td>Cable routing</td>
<td>Poor</td>
<td>Poor</td>
<td>Good **</td>
</tr>
<tr>
<td>Cost</td>
<td>Base</td>
<td>Base +</td>
<td>Base +</td>
</tr>
</tbody>
</table>

- Performance may be degraded with cables longer than 100m
- ** Cu SAS cables are very stiff making cable routing and high density applications such as SAS switch installations very difficult
SAS 3 – Very Data Center friendly

- Deploy very large storage configurations
 - 1000s of devices with multiple servers / blades / SAS switches
 - Cost optimized archive/backup/cold data storage applications
 (ok – I avoided using the “cloud” word)
 - Enables very flexible, scalable HW in support of software defined storage
- Split the physical location of storage and servers
- Split storage between data center floors
- Comply with data center cable routing rules
- Implement campus level disaster recovery applications
 - Optical SAS is capable of reaching >500m at 12Gb/s without repeaters
 - Long distance SAS performance is dependent on specific vendors implementations
Data Center Topologies – Switched / Bladed solution

- Enabled by SAS 3 routing table and optical support
- Thousands of devices and 10s of servers
- Enables software defined storage
- Efficient, flexible scale out and provisioning
Potential deep stack issues

- A deep stack = many hops from expander to expander to reach the target device
 - example – initiator daisy chained through 10 expansion enclosures to an HDD target
- Each hop adds latency to the transfer – reduces IOPs performance
 - IOPs performance does not double with link rate
 - SSDs should not be deployed in deep stacks
- Fairness can be a problem – do all of the drives in the domain have an equal chance of being accessed?

SAS at a distance – a speed of light problem

- IOPs performance may be limited by # of credits implemented by a particular vendor
- Distance plus a deep stack compounds the problem
Caveat - SAS 4 market requirements are now under development and should be firm by the end of 2013 – join STA / T10 and help!

- What can we expect
 - Double the throughput
 - 2x bandwidth improvement, better IOPs
 - New encoding scheme
 - Possible new connectors / longer reach for Optical
 - SSD optimized, lighter weight protocol??
- Will SAS remain a connection based protocol??
Summary

- SAS will continue to be the best choice for Data Center storage networking applications
- SAS 2 technology deployed today is appropriate for small to medium size solutions where the HW components can be co-located
- SAS 3 enables much larger / complex topologies through larger routing tables and support for SAS optical cables
- SAS optical interconnect enables switch based topologies, allows for the efficient use of data center space and enables direct connect campus-wide disaster recovery solutions
Thank you!

bob.hansen@yahoo.com