>
Y

> »
- »

|

SNIA

Storage Networking Industry Association

ISCSI| Management AP

Version 1.1.6

This document has been released and approved by the SNIA. The SNIA
believes that the ideas, methodologies and technologies described in this
document accurately represent the SNIA goals and are appropriate for
widespread distribution. Suggestion for revision should be directed to
tcmd@snia.org.

SNIA Technical Position

Table of Contents

S Yoo o T 1
P = (=] =10 ot PSPPSR 2
IR B To oW =T o1 @] 01Y/=T o1 i o o O PRSP 3
3.1 API DESCHIPHON FOMI@L....cuutiiiiiiiiiie ittt ettt ettt s b e et e e s sanbe e e e e 3

4 Background Technical INfOrM@atioN...........cooiiiiiiiiiiiie e 4
N =T 0 1 PSSP 4
o O] o T01= | £ 7

[o] = 1 V=Yg Lo I o 18 o1 1S SO EPPP TP 7

10 o] 1= B | 5 TR PPPRTR 8

L@ o1 | 2 1 RS 9
The Shared Node vs. NON-Shared NOUEScooiiiiiieiiiiiiee e 9

I o L= L 1 AN R 10
Target OIDs and Logical Unit OIDS...........uuiiiiiiiiiiiiiiieieee e s e e e e st er e e e e e s snnnnnreeeeeae s 10
Software Initiators Versus Hardware INtIatorScooiviiiiiiiiiieiice e 11
iISCSI Session and ConNNection ParameEtersooiiiiuiiiiiieie e e e s e e 12
Class RelationShip DIAGIAMuuiii ittt e s e e e e e s nenneees 14

5 CONSLANTS QNG TYPES ..eeiiiiiiiiiie ittt ettt ettt e e e s bt e e e st e e s aabbe e e e abbe e e e anbeeeeenee 15
5.1 IMA _WECHAR L.ttt ettt e s e e s at e e s et e e e st e e e e nbae e e e ansbeeeeanreeeeenres 15
oI 1V N = G I SRR 15
TR R 11V N = 1 | PRSP 15
5.4 IMA_XBOOL ...ttt sttt e e e n e e e e anree e e e e 15

ES TS T 111N U1 1N PSP 15

C G 11,V N U1 1N I T SRR 15
I A 11 VN U AN I 5 SRR PR 15
5.8 IMA_UINTBA ...ttt sttt e e st e e ettt e e e nbb e e e s anbb e e e s ennbeeeeenees 15
5.9 IMA_DATETIME . ..cii ittt ettt ettt e s et e e st e e e st e e e e s anbre e e e aneee 16
5.10 IMA_OBJECT VISIBILITY _FN ..ottt 17
5.11 IMA_OBJECT _PROPERTY _FN ...oiiiiiiiiiii ittt ettt 18
5.12 IMA _OBJIECT TYPE... ..ottt ettt ettt e e e s st e e e et e e e s entaeaeeennes 19
5.13 IMAL STATUS ittt st e e e sttt e e s st ae e e s asteeeesensbeeeessbaeeeennees 21
5.14 1Y AN @ | PSSP 25
5.15 Y N @ 11 R N S PRSP 26
5.16 IMA_NODE_NAME ...ttt ittt ettt e et e e st e e s anbe e e s e nbee e e s nnbaeeeennees 27
5.17 IMA _NODE_ALIAS.....c ettt ettt et e e s et e e e s ae e e e nnbae e e e enees 28
5.18 IMA_TP_ADDRESS ... ettt ettt e s e e s et e e s s nbe e e e e nees 29
5.19 IMA_HOST _INAME ...ttt ettt e e st e e s e st e e e e nbae e e e eneee 30
5.20 Y N = (O 1S I | PRSP 31
5.21 IMA_TARGET _ADDRESSooi oottt entae e 32
5.22 IMA _ADDRESS KEYoiiiiiiiiiii ettt ettt st e st a e st a e s st e e s e nnbae e e s nntaeaeeenees 33
5.23 IMA _ADDRESS KEYS ..ottt ittt ettt e st e e e et e e e e nntae e e s s nae e e e e nees 34
5.24 IMA_STATIC_DISCOVERY_TARGET ...cooiiiiiiiiiiiie et seiie e siae e siree e 35
5.25 IMA_DISCOVERY_ADDRESS _PROPERTIESciiiiiiieiiiiee e 36
5.26 IMA_STATIC_DISCOVERY_TARGET_PROPERTIESccccviiiiiiee e 37
5.27 IMA_IP_PROPERTIES.....cii ittt ittt ettt st e e s s nree e e s nneaea e e nnees 38
5.28 IMA_LIBRARY_PROPERTIESooiiiiiiiie ittt 41
5.29 IMA_PLUGIN_PROPERTIESottiiiiiiiiee ittt s 42
5.30 IMA_NODE_PROPERTIES.....ccciitiitiiiiite ettt sttt st 43
5.31 IMA_LHBA _PROPERTIES.coiiiiiiiiiiiite ettt 45
iISCSI Management API SNIA Technical Position i

Version 1.1.6

5.32 Upper Level Protocol (ULP) FIagS.......cccuuiriiieeei et s e e s s sninene e e e e e 47

5.33 IMA_PHBA _PROPERTIESooiiiiiiiiiiiite ettt 48
5.34 IMA_DISCOVERY_PROPERTIES.......ctiti ettt 51
5.35 IMA_PHBA DOWNLOAD _IMAGE_TYPEooii ittt 53
5.36 IMA_PHBA DOWNLOAD_IMAGE_PROPERTIES........ccccoiiiiee e 54
5.37 IMA_ISNS_DISCOVERY_METHOD.......cctiiiiiiieiiiiiteesiiee e sie e siae e ssiaee e enaee e 55
5.38 IMA_PHBA DOWNLOAD_PROPERTIES......coiiiiiieiiiie et 56
5.39 IMA_IPSEC_PROPERTIESciiiiiiiie ittt sen e nae e e nnnae e e 57
5.40 IMA_MIN_MAX _VALUE ...ttt ettt ettt sttt e s st e e e st e e e 58
5.41 IMA_BOOL_VALUEottt sttt e e st e e s e e e e s 60
5.42 IMA_MAC _ADDRESSci ittt ettt ettt e e st e e s s nnbae e e s s bbeeeeanees 61
5.43 IMA_LNP_PROPERTIESooiiiitiiiie ittt sttt st 62
5.44 IMA_PNP_PROPERTIES..... .ottt 63
5.45 IMA _PNP_STATISTICS ...ttt e et e e et re e e s s nbe e e e e nees 65
5.46 IMA_NETWORK_PORTAL_PROPERTIEScciitite ettt 66
5.47 IMA _PHBA STATUS ..ottt sttt st et e e st e e s et e e e e nnrae e e s antaeeeeennes 67
5.48 IMA_ NETWORK_PORT_STATUS ...ttt 68
5.49 IMA_TARGET_DISCOVERY_METHOD........ccttiiiiiiieiiiiie et 70
5.50 IMA_TARGET _PROPERTIES ..ottt sttt e et 71
5.51 IMA_TARGET_ERROR_STATISTICS.....oii ittt 73
5.52 IMA_ LU _PROPERTIES ...ttt ettt st e e s e e e 75
5.53 IMA_DEVICE_STATISTICS ...eei ittt ettt st s neae e e 77
5.54 IMA_STATISTICS_PROPERTIES ...ttt st 78
5.55 IMA_AUTHMETHODcoiiiiiiiie ittt et e e e e 79
5.56 IMA_CHAP_INITIATOR_AUTHPARMS. ...ttt 80
5.57 IMA_SRP_INITIATOR_AUTHPARMScooittie ettt 82
5.58 IMA_KRB5_INITIATOR_AUTHPARMS ...ttt 83
5.59 IMA_SPKM_INITIATOR_AUTHPARMS ...ttt ettt 84
5.60 IMA_INITIATOR_AUTHPARMSoiiiiiiit ittt naae e 85
LT 2 1 PRSP SPPPRN 86
L0 Y N Eo o) 0= 1 (=T o] o PP UPPTT TR 87
6.1.1 Library and PIUGIN APIS ...ttt e e a e e et e e e 87

L 2 N o o L= Y = £ PSPPI 87
6.1.3 (oo o= L = AN AN o £ 87
6.1.4 PRYSICAI HBA APIS.....coiii ittt e e e e e e e e e e e e s s nnnarneeaeeeeeanns 89
6.1.5 NEtWOrK POrtal APIS......ocuiiiiiiiiiiee et 89
6.1.6 Logical Network Port (LNP) APIS.......cooiiiiiieie et 89
6.1.7 Physical Network Port (PNP) APISooiiiiiiiie et 90
6.1.8 TANGEE APIS ... e 90
6.1.9 LogiCal Unit (LU) APIS......uuiiiiiiiiie ittt e e st e e s e e st e e s snnaaeassnenees 91
6.1.10 MiISCEIIANEOUS APIS.....coii ittt e e e e e e bbb e e eea e e e e e eans 91
6.2 APIS DY NAITIE ..eeiiiiiiiiii ettt a e e e et e e e e et e e e e s sbee e e e nreeeeennees 93
6.2.1 IMA_AdADISCOVEIYAUAIESS ..vvveiiiei ittt e e e e s e e e e e s e eer e e e e e e e s snbaaereeeeeeeaans 95
6.2.2 IMA_AddStatiCDISCOVEIYTAIGEL......cccviiieieeee e e e e e e e e e e s e ere e e e e e e e s srraar e e e e e e e e enes 97
6.2.3 IMA_DeregisterForObjectPropertyChanges.........cccceeeeeiiciiiieieeee e ccciiieeee e 99
6.2.4 IMA_DeregisterForObjectVisibilityChangescccccceeiviiiiiiieeiee e 100
6.2.5 IMA EXPOSELU. ..uuuiuitiiiieeieiii s e e e s a e e e e e a e e e e e n e s e n e e e e e anenneeeeas 101
6.2.6 LAY (=T 1Y 1= 4T YA 103
6.2.7 IMA_GenerateNOAENAIMEcooiiiiiiiiiiie e 104
6.2.8 IMA_GEtAAUArESSKEBYS. ...eeiiiiiiiiee ettt 105
6.2.9 IMA_GetAssociatedPIUugiNOIdcoiueiiiiiiiiiie et 106
6.2.10 IMA_GetDataPdulnOrderProperties........ ... iiiuiiiiieaae et e eiiieeee e 107
6.2.11 IMA_GetDataSequencelnOrderPropertiesccuueeieieeeinniiiiiieeee e eiiiieeeee e 108
6.2.12 IMA_GetDefaultTime2RetaiNPropertiesccoouiiiiiieeie e 109
6.2.13 IMA_GetDefaultTime2WaitProperties.cccceeiiiiciiiiieiee e eeneeee e 110
iISCSI Management API SNIA Technical Position i

Version 1.1.6

6.2.14 IMA_GetDEVICESIALISTICSuvvvreeiiiieee it e s s e e e e e e e e e e s e srnnre e e e aees 111

6.2.15 IMA_GetDiscoveryAddressOidLiStuuviiieeeiiiiiiiieee e e e 113
6.2.16 IMA_GetDiscoveryAddreSSPrOPertiesccoocuuiieiiiiiie it 115
6.2.17 IMA_GetDiSCOVEIYPIOPEITIESccciiueiiieiiiiiie ettt 116
6.2.18 IMA_GetErrorRecoveryLeVvelPropertiesccocciiiieiiiieee e 118
6.2.19 IMA_GetFirstBurstLengthProperties. ... 119
6.2.20 IMA_GetimmediateDataProperties.c.uueieiiiaaiiiiiiieee e 120
6.2.21 IMA_GetINitialR2TPIOPEItIEScviiiiiiieeiiiiie e ettt e seeee e stee e s irae e e s sbre e e e e e e e eeees 121
6.2.22 IMA_GetInitiatorAUTNPAIMScvviiii e e are e 122
6.2.23 IMA_GetInUselnitiatorAuthMethodsoeeeiiiiiiiiiiiieee e 124
6.2.24 IMA_GELIPPIOPEITIES ..oeeiie ettt e e e arr e e e e s e e reeeee s 126
6.2.25 IMA_GEetIPSECPIOPEITIES.eiiieeiiee e e e e ettt e e e s s e e e e e s s r e e e e e e s e nanrraeeeeees 127
6.2.26 IMA_GEetLhDAOIALIST.........eviiiiiiiiie e 128
6.2.27 IMA_GEtLNDAPTOPEITIESeiiiiiiiiiiieeee e 129
6.2.28 IMA_GEetLibraryPropertieseeiiiueiieiiiiiee ettt 130
6.2.29 IMA_GEtLNPOIALIST.....ccciiviiiieiiiiie e ittt s e e e e nnbae e e e snrae e e e e 131
6.2.30 IMA_GEtLNPPIOPEITIES ...ttt ettt e e e e e e e eeeeea s 132
6.2.31 IMA_GELLUOIeeeiiiiiii ettt ettt e st e e s st e e e s e e e e e e e nnnae e e e enees 133
6.2.32 IMA_GELLUOIALIST......utiiiiiiiee ittt eeiiie e sttt e se e e e st e e e st e e e s nnbae e e e nntaeeeeenens 135
6.2.33 IMA_GEtLUPTOPEITIES ...cco ittt a e e e st areeee s 137
6.2.34 IMA_GetMaxBurstLengthProperties.........cccccceeeeeiicciiieieee e esireee e 138
6.2.35 IMA_GetMaxConnecCtioNSPIOPEITIESuvviiieeiiiiiiiiiieeee e e s e e snrreee e 139
6.2.36 IMA_GetMaxOutstandingR2TPIOPEItiESccovvcuvviieieiee s ceciierer e e e e senreere e e 140
6.2.37 IMA_GetMaxRecvDataSegmentLengthProperties.........ccccoecvvvveeeeeeiniccciiieeeeeeen, 141
6.2.38 IMA_GetNetworkPortalOidLiSt..........ccoiiciiiieiieee s 142
6.2.39 IMA_GetNetworkPortalProperties.ciiiiiiiiiiiie ittt 143
6.2.40 IMA_GEetNetWOrKPOIMSIAIUS.cciiiiiiiiiiiiii et 144
6.2.41 IMA_GEtNOUEPIOPEITIESceiiiiiiiiieiitiie ettt bbb 145
6.2.42 IMA_GetNonSharedNOdEOIALIST.........uuuuuiiiiiieicc e 146
LI B |V AN € 1= (@] o] =Tt Y o 1= I PSSP 147
6.2.44 IMA_GetPhbaDownloadProperties.c.uuueiiiiaiiiiiiieieeee e 148
6.2.45 IMA_GetPhbDaOIdLISTevviiiiiiiie e 149
6.2.46 IMA_GetPhbaProperties. ... 150
6.2.47 IMA_GetPhbDaStatusccoceiiiiiiii et 151
6.2.48 IMA_GetPIUGINOIALISE......ccciiciereeieee e e s rnee e e e 152
6.2.49 IMA_GetPIUGINPIOPEITIESuviiieiiee i ettt e e e s e e s ranrrnee e e e s 153
6.2.50 IMA_GEtPNPOIALISTeeieiiiiieieieeeiee ettt ettt st e sae e e snbe e snaeesnneeen 154
6.2.51 IMA_GEtPNPPIOPEITIESeiieiiiiiie ittt 155
6.2.52 IMA_GEetPNPSIALISHICSeeiiiiiiieiee ittt 156
6.2.53 IMA_GetSharedNOAEOIM...........uiiiiiiiiee it ebee e e nees 158
6.2.54 IMA_GetStaticDiscoveryTargetOidLISt ...t 159
6.2.55 IMA_GetStaticDiscoveryTargetPropertiesoooouuvieeeiiaiiiniiiiieeee e 161
6.2.56 IMA_GetStatiStICSPIrOPEITIESucviiie i i it e e e e e e e areeee s 162
6.2.57 IMA_GetSupportedAUthMEthods...........c..vviiiiie e 163
6.2.58 IMA_GetTargetErrorStatiStiCS .. .uuuiiiiiiiiiiiiiiieie e e e e 165
6.2.59 IMA_GetTargetOidLiStccceiiieieee e e e e e e renrreeee s 167
6.2.60 IMA_GetTargetPrOPErtiEScc.uuuiiiieeee ittt e e e e e s et e e e e e s s s rrer e e e e e e s e aanrraeeeeees 169
6.2.61 IMA_ISPhbaDownIoadFileceveieiiiiiiiiiiiice e 170
6.2.62 IMA_LUINQUITY .ottt ettt ettt e et e et e e e anb e e e enbeas 172
6.2.63 IMA_LUREAACAPACILYeeieiiuiiiieeiiiiee ettt e e e 174
6.2.64 IMA_LUREPOIMLUNSeiiiiieiiiiiee ettt e e s 176
6.2.65 IMA_PhbaDoWNIOAdcccoiuiiiiiiiiiie it ire e s e nees 179
6.2.66 IMA_PIUGINIOCHeviiiei ittt e s e e e nnrae e e e eneee 181
6.2.67 IMA_RegisterForObjectPropertyChangesccccovveiieeeiii it 183
6.2.68 IMA_RegisterForObjectVisibilityChanges...........ccccviieeeee e 184
6.2.69 IMA_RemoVEDISCOVEIYAUUIESScccoiiiiiieiiie ettt e s e e e r e e e e 185
iISCSI Management API SNIA Technical Position i

Version 1.1.6

6.2.70 IMA_REemMOVESIAIEDALAuviiiiiiee i 186

6.2.71 IMA_RemoveStatiCDISCOVEIYTarget.......cuuuiiieeeieiiiiiieeeee e e s seeeerinee e e e e e s seenreneeeee s 187
6.2.72 IMA_SetDataPdUINOIUENc.uiiiiiiiiee ettt 189
6.2.73 IMA_SetDataSequenCeINOIUErcouiiiiieiiiie e 191
6.2.74 IMA_SetDefaUltGAtEWAYueieiiiiiieiiiiiie ettt 193
6.2.75 IMA_SetDefault TIMEZ2REIAINuuriiiccce e 194
6.2.76 IMA_SetDefaultTIME2WAILuuuriciee s 196
6.2.77 IMA _SetDNSSEIVEIAUUIESSuuuiiiiiiiiiiii s e e s e e ee e e e e e eas 198
6.2.78 IMA_SEtErrorRECOVEIYLEVEccviiiiiiiiiieee ettt 200
6.2.79 IMA_SetFirstBUrStLENGIN.........ouviiiiiiiiie e 202
6.2.80 IMA_SetimmediateData...........ccuueeeieeiiiiiiiiiiiece e 204
6.2.81 IMA_SetINtIAIR2Teeiieiiiiiee e 206
6.2.82 IMA_SetInitiatorAUthMEtNOASccoii e 207
6.2.83 IMA_SetInitiatorAUTNPAIMSooiiiiiiiiiiiie e 209
6.2.84 IMA_SetIpConfigMEthOd...........uiiiiiiiiiie e 211
6.2.85 IMA_SEtISNSDISCOVEIYetiiiiiiiieiiiiie ettt st bne e s aneees 213
6.2.86 IMA_SetMaxBUurstLength...........cooiiiiiiiiii e 215
6.2.87 IMA_SetMaxXCONNECLIONSuuuuuuiiiiiiiiiiieiiriiiiern oo 217
6.2.88 IMA_SetMaxRecvDataSegmentLength.........cccoiiiiiiiiiaiiiniiiee e 219
6.2.89 IMA_SetMaxOutStandiNngR2Tccceeiiiiiiiiiiiie e e e sanreaeeeee s 221
6.2.90 IMA_SetNetworkPortallpAdArESSccuvviiiiiie e 223
6.2.91 IMA_SEINOUEAIIBScceiiiiiiieiiiiiie ettt s s s e bee e e e nnrae e e e enees 225
6.2.92 IMA_SEtNOGENGIMEcce ittt e e s e er e e e e e s e nreeeees 227
6.2.93 IMA_SetSendTargetSDISCOVEIY......ccciiiiiiiiieiieeee s ieciie e e e e e e s sseeee e e e e e e s e nanreaeeeeees 229
6.2.94 IMA_SEtSIPDISCOVEIY ...oceeiiieiieieiee e e e e e e ettt et e e e e e s r e e e e e s s snane e e e ae e e s e aanreaneeeees 231
6.2.95 IMA_SetSIatiCDISCOVETYociiiiiiiieiitiie ettt ettt s e e 233
6.2.96 IMA_SetStatiStiCSCOIECHIONciiiiiiiiie e 235
6.2.97 IMA_SetSUDNEIMASKeeiiiiiiiiiie ittt 237
6.2.98 IMA _UNEXPOSELU ...evviiiiiiiiie ettt ettt st e et e e st e e et e e e s sstae e e e sntbe e e s esbeeeeenees 238

7 Implementation COMPIIANCEcoiii i e e e e e e s eeeeaae s 240
N N[0 (=Y TN 241
S0 R O 11=T o a0 LT T [T (N (0] (= RPN 241
T Y (=10 I @] [=Tox B 1D PR 241
RESEIVEA FIEIAS ...ttt e et e e e s srb e e e s snbeeeenees 241
Event Notification Within a Single Client ... 241
Event Notification and Multi-Threadingcouveveiiiiciiiiir e 241
[PSEC SECUIMEY.....eeeieiitite ettt ettt e sttt e e st bt e e s bb e e e e sbbe e e e s bbe e e e s abbeeeesanbeeesanes 241
Transmission of Authorization Parameterscccuuiiiiieeei i 241
Target OIDS and iISCSI TAIGELSveiiiiiiiiee ittt e e 241
Configuration Changes and the IMA_STATUS_REBOOT_NECESSARY status 241
8.2 Library Implementation NOTEScooiiiiiiiiiie e 242
L0 o] 1= o] 0 I L PSR SSR 242
Multi-threading SUPPOI.......cooi i e e e e s s e e e e e e e s e s saarre e e e e e e e s s esnnnraneees 242
Event Notification and Multi-Threadingcccceeeei i 242
)0 To1 (U =T == Tod (] o PR 242
(O 11 [1aTo I @Fo] 0 17/=T] 1o 1SRRI 242
8.3 Plugin Implementation NOESccoiiiiiiiiiiiee s e e e 242
L0 1T |5 1P 242
RESEIVEA FIEIUS ... e e e e st e e e e e e s s e e e e e e e annnrnreeas 243
MUlti-threading SUPPOIT.......cooiiiiiie et sb e s 243
Event Notification To Different CHENtSuveiiiiiiiii e 243
Event Notification and Multi-Threadingcooo e 243
1Yo ol Y=o U 1P RPTPT PP 243
Persistence of Authorization Parameters..........cccvviiiiiiieiiiiiee s siee e 243
iISCSI Management API SNIA Technical Position iv

Version 1.1.6

Executing SCSI Commands and Operating System Compatibility...........ccccccevveeeiiiiciinnnn. 243

Executing SCSI Commands and Session Management..........cccvveeeeeeeeeeiccieineeeeeesssseveeees 244
PIUGIN TOCHIS. ...ttt ettt e ettt e e e st et e e s st e e e e abbeeeesnbbeeeaaes 244
Target OIDs and Logical UNit OIDS..........uuiiiiiiiiiiiiiiee ittt 244
Annex A (informative) DEVICE NAMESceiiiiiiiiiiiiiiiiie et e e e e e e e e e e e e s s snsabreeeeeaaeeseanne 245
A.1 osDeviceName Field of the IMA_LHBA PROPERTIES Structureocooeeeeee. 245
A.2 osDeviceName Field of the IMA_LU_PROPERTIES Structureooeeeeeeeeee. 245
Annex B (informative) Coding EXaMPIES.........cooiiiiiiiiiiiiiaieec e 246
B.1 Example of Getting Library ProOperti€Sscccoviiiiiiiiiie et sivnne e 247
B.2 Example of Getting PIUGQiN PrOPertiescuviiiiiiiiiiiiiiee ettt siraane e 248
B.3 Example of Getting an Associated PIUgIN ID..........cccceeeiiiiiiiiiieece e 249
B.4 Example of Getting NOAE PrOPertieS........uuuiiiiiiiiciiiiiieee et e e e seaer e e e e s e snnrreeee e 250
B.5 Example of Setting a NOGE NAMEuvviiiiiiiiiiiiieee e e e srrren e e e 251
B.6 Example of Getting LHBA Propertiesoccuuiii it 252
B.7 Example of Getting PHBA PrOperties.......coccuuiieiiiiiiiiee et 253
B.8 Example of Getting PHBA DiSCOVErY Properti€S........c.uuiiuiiuriieiiiiiie it 254
B.9 Example of Getting/Setting LHBA Max Burst Length.............coooiiiiiiiiiiiiiiiiieeeeeeen 255
B.10 Example of Getting all LUs of all Targets Visible to a Systemcccccceiiiiiiiiinnn, 256
iISCSI Management API SNIA Technical Position v

Version 1.1.6

Foreword

This specification documents an API that allows a management application to discover and
manage the iSCSI resources on a system. The API uses an architecture that allows multiple
iISCSI HBAs, sometimes referred to as a hardware initiators, and/or multiple iSCSI software
initiators installed on a system to provide a common interface to clients of the library. This API
can be used by host-based management applications. A client of the API should be able to move
between platforms by simply recompiling.

This specification includes two informative annexes.

iISCSI Management API SNIA Technical Position Vi
Version 1.1.6

Introduction

Clause 1 defines the scope of this document.
Clause 2 lists the documents referenced within this standard.

Clause 3 describes the conventions used in presenting the API interfaces.

Clause 4 provides background technical information on terms used within this standard and
concepts describing the relationship between the library and an iISCSI implementation.

Clause 5 defines the Constants and Structures of the standard.
Clause 6 defines the programmatic functions (APIs) of the standard.

Clause 7 provides information on implementation compliance.

Clause 8 provides guidance to implementers of the API to help achieve interoperability between
implementation releases, and between implementations from different vendors.

Annex A is an informative annex with guidelines on device names.

Annex B is an informative annex with coding examples.

The following people have contributed to the creation of this document:

= Duane Baldwin Tivoli

= Yogesh Bansal Sun

= Richard Bridgeman iReady

= Mark Carlson Sun

= Eric Cheng Adaptec

= Bilal Chinoy EMC (formerly Prisa)
= John Crandall Brocade

= Don Deel EMC (formerly Prisa)
= David Dillard VERITAS

= Rob Elliott HP (formerly Compaq)
= John Forte Sun

= David Goble Emulex

= John Hufferd IBM

= Dixon Hutchinson Legato

= Donna Jollay QLogic

= Robert Johnson QLogic

= Ramamurthy Krithivas Intel

= Katherine McComb Emulex

= Ken Nicholson iReady

= Yukari Nishikawa QLogic

Jim Norton

iISCSI Management API

Version 1.1.6

J.S. Norton Co. / IBM

SNIA Technical Position

vii

le Wei Njoo

Dave Peterson
Mike Smith

Mike Smith
Predrag Spasic
Todd Sperry

Chris Thomas

Paul von Behren
David Wysochanski

iISCSI Management API

Version 1.1.6

Agilent

Cisco

iReady

QLogic

HP

Adaptec

iReady

Sun

Network Appliance

SNIA Technical Position

viii

1 Scope

This API provides interfaces to discover and manage iSCSI resources on a system. The intended
audience is vendors that deliver drivers that provide these resources to a system.

iISCSI Management API SNIA Technical Position 1
Version 1.1.6

2 References

The following standards contain provisions which, through reference in this text, constitute
provisions of this American National Standard. At the time of publication, the editions indicated
were valid. All standards are subject to revision, and parties to agreements based on this
American National Standard are encouraged to investigate the possibility of applying the most
recent editions of the standards indicated below.

IETF RFC 3720, Internet Small Computer Systems Interface (iISCSI)
IEEE 802.3-2000, IEEE Standard for Information technology

ANSI INCITS 408-2005, SCSI Primary Commands 3 (SPC-3)

IETF RFC 1994, PPP Challenge Handshake Authentication Protocol (CHAP)
IETF RFC 2945, The SRP Authentication and Key Exchange System

ANSI INCITS 386-2004, Fibre Channel HBA API (FC-HBA)

ISO/IEC 19501 Unified Modeling Language (UML)

ISO/IEC 9899:1999, Programming Languages -- C

iISCSI Management API SNIA Technical Position
Version 1.1.6

3 Document Conventions

3.1 API Description Format

Each API's description is divided into seven sections. These sections are described below.

1. Synopsis
This section gives a brief description of what action the API performs.

2. Prototype
This section gives a C prototype of the function. The prototypes show the following:

e The name of the API
e The return type of the API

3. Parameters
This section lists each parameter along with an explanation of what the parameter
represents.

4. Typical Return Values
This section lists the Typical Return Values of the API with an explanation of why a
particular return value would be returned. It is important to note that this list is not a
comprehensive list of all of the possible return values. There are certain errors, e.g.
IMA_ERROR_INSUFFICIENT_MEMORY, that might be returned by any API. Return
values such as these are not listed.

5. Remarks
This section contains comments about the API that may be useful to the reader. In
particular, this section will contain extra information about the information returned by the
APL.

6. Support
This section says if an API is mandatory to be supported, optional to be supported, or
mandatory to be supported under certain conditions.

e |f an APl is mandatory to be supported a client can rely on the API functioning
under all circumstances.

e |fthe APl is optional to be supported then a client cannot rely on the API
functioning.

e |fthe APl is mandatory to be supported under certain conditions then a client can
rely on the API functioning if the specified conditions are met. Otherwise a client
should assume that the API is not supported.

7. SeeAlso
This section lists other related APIs or related code examples that the reader might find
useful.
iISCSI Management API SNIA Technical Position 3

Version 1.1.6

4 Background Technical Information

4.1 Terms

The terms that are used in this specification are defined in this section.

Alias!

An alias string can be associated with an iISCSI Node. The alias

allows an organization to associate a user-friendly string with the
iISCSI Name. However, the alias string is not a substitute for the

iISCSI Name.

Discovery
Address

An address used in a SendTargets discovery session. The
discovery address is used to represent one or more targets to be
discovered. One example of a discovery address is a gateway that
exposes one or more targets to one or more iSCSI initiators.

Host

A compute node connected to the SAN.

iSCSI Node!

The iSCSI Node represents a single iSCSI initiator or iSCSI target.
There are one or more iISCSI Nodes within a Network Entity. The
iISCSI Node is accessible via one or more Network Portals. An
iISCSI Node is identified by its iISCSI Name. The separation of the
iISCSI Name from the addresses used by and for the iISCSI node
allows multiple iISCSI nodes to use the same address, and the
same iSCSI node to use multiple addresses.

LHBA

See Logical HBA.

LNP

Logical Network Port

Logical HBA

A representation of a parallel SCSI HBA to the operating system.

Logical Network
Port

A logical network port is a collection of one or more physical
network ports that have been aggregated together. This can be
done using IEEE 802.3ad, but may be done in other ways as well.

Note: If more than one physical network port is used to create a
logical network port those physical network ports do not have to be
on the same PHBA.

LUN

Logical Unit Number

Network Entity"

The Network Entity represents a device or gateway that is
accessible from the IP network. A Network Entity must have one or
more Network Portals, each of which can be used to gain access to
the IP network by some iSCSI Nodes contained in that Network
Entity.

Network Portal

The Network Portal is a component of a Network Entity that has a
TCP/IP network address and that may be used by an iISCSI Node
within that Network Entity for the connection(s) within one of its

iISCSI Management API
Version 1.1.6

SNIA Technical Position 4

iISCSI sessions. A Network Portal in an initiator is identified by its IP
address. A Network Portal in a target is identified by its IP address
and its listening TCP port.

Object ID

A unique identifier assigned to any object within the IMA. Objects
sometimes represent physical entities, e.g. physical HBAs. At
other times, objects represent logical entities, e.g. network portals.

OID

Object ID

Persistent

The quality of something being non-volatile. This usually means
that it is recorded on some non-volatile medium such as flash RAM
or magnetic disk. Implicitly, this shall also be readable from the
non-volatile medium.

Examples of persistent storage:
= Under Windows, the Registry would be a common
place to find persistently stored values (assuming that

the values are not stored as volatile).

= Under any OS a file on magnetic hard disk would be
persistent.

PHBA

Physical HBA

Physical HBA

A physical HBA (PHBA) is a controller card that has one or more
physical network ports mounted on it and that plugs into a slot in a
motherboard. If a motherboard has physical network ports
mounted on it directly, in can be considered a PHBA in regards to
the requirements specified in this document. Normally, a
motherboard would not be considered a PHBA.

Physical Network
Port

A physical connection on a physical HBA that connects the PHBA
to the network, e.g. an RJ-45. A physical HBA has one or more
physical network ports.

Plugin

A plugin is software, typically written by an HBA vendor, that
provides support for one or more models of iISCSI HBAs. The
plugin’s job is to provide a bridge between the library’s interface
and the vendor’'s HBA device driver. A plugin is implemented as a
loadable module: a DLL in Windows and a shared object in UNIX.
A plugin is accessed by an application through the iSCSI
Management API library.

The SNIA FC HBA API's concept of a vendor library is the
equivalent to a plugin.

PNP

Physical Network Port

Portal Groups®

iISCSI supports multiple connections within the same session; some
implementations will have the ability to combine connections in a

iISCSI Management API
Version 1.1.6

SNIA Technical Position 5

session across multiple Network Portals. A Portal Group defines a
set of Network Portals within an iISCSI Network Entity that
collectively supports the capability of coordinating a session with
connections spanning these portals. Not all Network Portals within
a Portal Group need participate in every session connected through
that Portal Group. One or more Portal Groups may provide access
to an iISCSI Node. Each Network Portal, as utilized by a given
iISCSI Node, belongs to exactly one portal group within that node.

Portal Group Tag*

This 16-bit quantity identifies the Portal Group within an iSCSI
Node. All Network Portals with the same portal group tag in the
context of a given iSCSI Node are in the same Portal Group.

Primary
Discovery Method

A discovery method that does not depend upon any other discovery
method to discover targets. iSNS target discovery, SLP target
discovery, and static target discovery are all primary discovery
methods.

Secondary
Discovery Method

A discovery method that depends upon other discovery methods to
discover targets. SendTargets target discovery is a secondary
discovery method because it cannot discover any targets without
using some other discovery method.

Stale Data

Stale data is configuration data that refers to targets or logical units
that are no longer present or that are no longer visible to the
system.

For example, setting iISCSI login parameters associated with a
target using the IMA_SetFirstBurstLength API and then removing
the target from the network will create stale data because the
configuration data that’s been set for the target is retained after the
target is removed from the network. Similarly, calling the
IMA_Exposelu API for a logical unit and then removing the logical
unit's target from the network will create stale data because
configuration data indicating that the logical unit is exposed is
retained after the target is removed from the network.

Unicode

Unicode is a system of uniquely identifying (numbering) characters
such that nearly any character in any language is identified.

UTF-8?

Unicode Transformation Format, 8-bit encoding form. UTF-8 is the
Unicode Transformation Format that serializes a Unicode scalar
value as a sequence of one to four bytes.

! Definition taken from IETF RFC 3720.

% Definition taken from the glossary of the Unicode Consortium web site. See
http://www.unicode.org/glossary/index.html.

iISCSI Management API
Version 1.1.6

SNIA Technical Position 6

4.2 Concepts

Library and Plugins
The iSCSI Management API shall be implemented in one of two ways:

e Alibrary.
e Alibrary in combination with plugins.

If an implementation uses a library without plugins then either the plugin functionality is
built into the library itself or the library is able to interface with vendor specific modules
using a pre-existing interface. These vendor specific modules would provide functionality
equivalent to plugins.

The library provides an interface that applications use to perform iISCSI management.
Among other things, the library is responsible for loading plugins and dispatching
requests from a management application to the appropriate plugin(s).

Plugins are provided by iSCSI HBA vendors to manage their hardware. Typically, a
plugin will take a request in the generic format provided by the library and then translate
that request into a vendor specific format and forward the request onto the vendor’s
device driver. In practice, a plugin may use a DLL or shared object library to
communicate with the device driver. Also, it may communicate with multiple device
drivers. Ultimately, the method a plugin uses to accomplish its work is entirely vendor
specific. It is anticipated that most implementations will use plugins and such an
implementation is generally assumed throughout this document. With the exception of
two APIs (IMA_GetAssociatedPluginOid and IMA_GetPluginOidList), the method of
implementation does not matter to the client.

The figure below shows a simple block diagram of how the iISCSI Management API
library and plugins fit into a total iISCSI management application architecture.

iISCSI Management API SNIA Technical Position 7
Version 1.1.6

API Library

iSCSI Management
(The "Library")

Management
Application

Plugin for Plugin for
Vendor A Vendor B
[Operating System]
Device Device
Driver for Driver for
Vendor A Vendor B
™ OJ0m = 0
sl &b
Vendor A Vendor B
iISCSI HBA iISCSI HBA

Object ID

The core element of the iISCSI Management API (IMA) is the object ID (OID). An object
ID is a structure that “uniquely” identifies an object. The reason uniquely is in quotes in
the previous sentence is that it is possible, though very unlikely, that an object ID would

be reused and refer to a different object.
An object ID consists of three fields:

1. An object type. This identifies the type of object, e.g. iSCSI node, PHBA, LHBA,
etc., that the object ID refers to.

2. An object owner identifier. This is a number that is used to uniquely identify the
owner of the object. Objects are owned by either the library or a plugin.

3. An object sequence number. This is a number used by the owner of an object,
possibly in combination with the object type, to identify an object.

iISCSI Management API SNIA Technical Position
Version 1.1.6

To a client that uses the library object IDs shall be considered opaque. A client shall use
only documented APIs to access information found in the object ID.

There are several rules for object IDs that the library, plugins, and clients shall follow.
They are:

An object ID can only refer to one object at a time.

An object can only have one object ID that refers to it at any one time. It is not
permissible to have two or more object IDs that refer to the same object at the
same time. In some cases this may be difficult, but the rule still shall be followed.

For example, suppose a PHBA is in a system. That PHBA will have an object ID.
If the PHBA is removed and then reinserted (while the associated plugin is
running) then one of two things can happen:

e The PHBA can retain the same object ID as it had before it was removed
OR

e The PHBA can get a new object ID and the old object ID will no longer
be usable.

This can only happen if the same PHBA is reinserted. If a PHBA is removed and
another PHBA is inserted that has not been in the system while a particular
instance of the library and plugins are running then that PHBA shall be given a
new object ID.

The library and plugins can uniquely identify an object within their own object
space by using either the object sequence number or by using the object
sequence number in combination with the object type. Which method is used is
up to the implementer of the library or plugin.

Object sequence numbers shall be reused in a conservative fashion to minimize
the possibility that an object ID will ever refer to two (or more) different objects in
any once instance of the library or plugin. This rule for reuse only applies to a
particular instance of the library or plugin. Neither the library nor plugins are
required or expected to persist object sequence numbers across instances.

Because neither the library nor plugins are required to persist object sequence
numbers a client using the library shall not use persisted object IDs across
instances of itself.

Similarly, different instances of the library and plugins may use different object
IDs to represent the same physical entity.

Object ID List

An object ID list is a list of zero or more object IDs. There are several APIs,
e.g.IMA_GetNonSharedNodeOidList, that return object ID lists. Once a client is finished
using an object ID list the client shall free the memory used by the list by calling the
IMA_FreeMemory API.

The Shared Node vs. Non-shared Nodes
The following is the definition of an iISCSI node found in IETF RFC 3720:
The iSCSI Node represents a single iSCSI initiator or iISCSI target. There are

one or more iISCSI Nodes within a Network Entity. The iSCSI Node is
accessible via one or more Network Portals. An iISCSI Node is identified by

iISCSI Management API SNIA Technical Position 9
Version 1.1.6

its ISCSI Name. The separation of the iISCSI Name from the addresses used
by and for the iISCSI node allows multiple iISCSI nodes to use the same
addresses, and the same iSCSI node to use multiple addresses. iSCSI
nodes also have addresses.

The following text from IETF RFC 3720 gives a somewhat clearer idea of what an iSCSI
node is:

An iSCSI name really names a logical software entity, and is not tied to a port
or other hardware that can be changed. For instance, an initiator name
should name the iSCSI initiator node, not a particular NIC or HBA. When
multiple NICs are used, they should generally all present the same iSCSI
initiator name to the targets, because they are just paths to the same SCSI
layer. In most operating systems, the named entity is the operating system
image.

So, in simple terms, an iSCSI node is a uniquely named entity that runs on a particular
operating system image. IETF RFC 3720 allows for more than one node to run on a
particular image, but it strongly encourages that only one node be used. (For more
information on why this is the case please refer to the various iSCSI related
specifications.)

To this end the iISCSI Management API has the concept of a shared node. The shared
node is intended to be the single node of an operating system image that is encouraged
in the iISCSI specification. The reason that it's called the shared node is that the node is
shared by all the vendors whose iISCSI HBAs are in a system.

All other nodes in an operating system image are considered to be non-shared nodes.
That is, they are nodes that are created by an HBA vendor to be used exclusively by that
vendor’s iISCSI HBAs in combination with the operating system image. Non-shared
nodes run counter to the spirit of what IETF RFC 3720 intended a node to be. However,
the need for them in this specification reflect some limitations of existing HBA
implementations.

Logical HBA

A logical HBA (LHBA) is a representation of a parallel SCSI HBA to the operating system.
Typically, today’s operating systems only have an understanding of the specifics of
parallel SCSI. They don't understand other SCSI transports such as FCP or iSCSI.
Therefore, device drivers for these other transports are required to map transport specific
concepts to parallel SCSI concepts. For example, an iISCSI HBA device driver cannot
identify a device to the OS using the iSCSI node name. Instead, it must conjure up a
parallel SCSI ID (0-15) for the device. In addition, it may have to map eight byte SCSI
LUNSs to three bit SCSI LUNSs.

In addition, some HBA vendors provide dynamic multi-pathing in their device drivers.
This allows the host to communicate with targets using different initiator ports in the host,
thus allowing the device driver to provide both load balancing and fail over capabilities
transparently to the operating system. An LHBA allows a device driver to easily
implement these features transparently to the operating system.

Target OIDs and Logical Unit OIDs

A target OID should not be confused with a parallel SCSI target ID. A target OID is an
IMA_OID structure in which the object type field indicates that the OID structure specifies
an iSCSI target accessible via a LHBA. An iSCSI target will have a unique OID on each
LHBA that can access a LU of the target.

iISCSI Management API SNIA Technical Position 10
Version 1.1.6

Similarly, a logical unit OID should not be confused with a SCSI LUN. A logical unit OID
is an IMA_OID structure in which the object type field indicates that the OID structure
specifies an iSCSI logical unit accessible via an iSCSI target. A logical unit will have a
unique OID on each LHBA that can access the LU.

Software Initiators Versus Hardware Initiators

There are two basic types of implementations of iISCSI initiators, they are typically
referred to as software initiators and hardware initiators.

e A software initiator usually is a device driver that runs on top of the TCP/IP stack
that comes with the operating system. It connects to iSCSI targets using the
NICs that are being used for traditional networking tasks.

e A hardware initiator usually includes a specialized adapter, usually referred to as
an HBA, that includes special hardware and/or firmware for accelerating TCP/IP
and sometimes iSCSI as well. This solution also includes a device driver to allow
the operating system to use the HBA.

These terms are imprecise as both types of initiators use software and hardware.
However, these terms have come into common use and so this specification uses them
as well.

The reason to introduce these two types of initiators is that they provide different levels of
discovery and management capabilities, which requires clients to manage them
somewhat differently.

For example, a software initiator will typically know little, if anything, about the underlying
hardware that is being used. Therefore, an IMA client cannot determine (using IMA) the
topology of the storage network, the redundancy of connections between the initiator and
a target, etc. Meanwhile, a hardware initiator will know the hardware that it is using and
be able to provide an IMA client with this kind of information.

Another example, is that when querying and setting various discovery methods for iISCSI
targets a software initiator will require this be done using the logical HBA, while a
hardware initiator may allow either the logical or the physical HBA to be used. The
software initiator requires that the logical HBA be used because it doesn’t know anything
about the underlying hardware and it cannot therefore expose any physical HBA objects.

The diagram below shows the software and hardware stack needed for both a hardware
initiator and a software initiator.

iISCSI Management API SNIA Technical Position 11
Version 1.1.6

iSCSI Management
API Library
(The "Library")

Management
Application

Plugin for Plugin for
Hardware Software
Initiator Initiator

[Operating System

Device Driver

for Software
Initiator

. —

TCP/IP Driver

—
Device Driver
for
o gwv—
I?]?ti:;?):e . NIC Driver)
St E
Vendor A Ethernet NIC

iSCSI HBA

iSCSI Session and Connection Parameters

iISCSI supports the negotiation of both session specific and connection specific
parameters, e.g., max burst length. This API recognizes two levels at which a client can
guery and set these parameters: the target level, the LHBA level. There is a third level
which is used, but is not queryable or settable: the driver level.

iISCSI Management API SNIA Technical Position 12
Version 1.1.6

If a client sets one or more of these parameters at the target level then those values will
be used as the proposed initial value when negotiating the actual value to use at runtime
with a target. A client can only set a proposed initial value for a parameter, it cannot
specify an actual value that is guaranteed to be used.

If a client sets a value for a parameter at the LHBA level than that value will be used as
the proposed initial value when negotiating the actual value to use at runtime unless a
value for that parameter has been set for that parameter on that specific target. Thus a
target specific value overrides the setting of an LHBA specific value.

If a client does not set value for a parameter at either the target or the LHBA level then
the driver level value, i.e., a default value specified by the driver implementation is used.

In summary:
o |If atarget level value for a parameter has been specified it is used.

e If no target level value has been specified for a parameter, but an LHBA level
value has been specified then it is used.

e Finally, if neither a target level nor an LHBA level value for a parameter has been
specified then the driver level (implementation default) value is used.

iISCSI Management API SNIA Technical Position 13
Version 1.1.6

Class Relationship Diagram

Below is a Universal Modeling Language (ISO/IEC 19501 UML) diagram that shows the
relationship between the various classes of objects in the IMA. Each class may contain a
few example properties.

Physical Objects

m Logical Unit
+Vendor ID +LUN

1.*
There is a 1 to ™' composite 1
relationship between a
plugin and every class in . -
this diagram 1. iSCSI Target
<>+Name
+Alias

Network Portal Logical Network Port Physical Network Port
+IP Address +MAC Address e +MAC Address

1.%
1
Node :
+N Logical HBA Physical HBA
ame -
i i -Vendor
- yondc
+Mode of Operation
iSCSI Management API SNIA Technical Position 14

Version 1.1.6

5 Constants and Types
5.1IMA_WCHAR

Typedef'd as a wchar_t.

5.2IMA_BYTE

The smallest unsigned integer that is at least 8 bits in length.

5.3IMA_BOOL
Typedef'd to an IMA_UINT32. A variable of this type can have either of the following values:

¢ IMA_TRUE
This symbol has the value 1.
e IMA_FALSE

This symbol has the value 0.

5.4 IMA_XBOOL

Typedef'd to an IMA_UINT32. This is an extended boolean. A variable of this type can have any
of the following values:

e IMA_TRUE

This symbol has the value 1.
e IMA FALSE

This symbol has the value 0.
e IMA_UNKNOWN

This symbol has the value OXFFFFFFFF.

5.5 IMA_UINT

The smallest unsigned integer that is at least 32 bits in length.

5.6 IMA_UINT16

The smallest unsigned integer that is at least 16 bits in length.

5.7IMA_UINT32

The smallest unsigned integer that is at least 32 bits in length.

5.8 IMA_UINT64

The smallest unsigned integer that is at least 64 bits in length.

iISCSI Management API SNIA Technical Position 15
Version 1.1.6

5.9 IMA_DATETIME

Typedef'd to a struct tm. Thisis a structure declared in time.h that comes with the standard
C runtime library.

iISCSI Management API SNIA Technical Position 16
Version 1.1.6

5.10 IMA_OBJECT_VISIBILITY_FN

Format
typedef void (* IMA_OBJECT _VISIBILITY_FN)(
[*in*/ IMA_BOOL becomingVisible,
[*in*/ IMA_OID oid
);
Parameters

becomingVisible

A boolean indicating if the object specified by oid is becoming visible or is
disappearing. If this parameter has the value IMA_TRUE then the object is
becoming visible. If this parameter has the value IMA_FALSE then the object is

disappearing.
oid
The object ID of the object whose visibility is changing.

Remarks

This type is used to declare client functions that can be used with the
IMA_RegisterForObjectVisibilityChanges and
IMA_DeregisterForObjectVisibilityChanges APlIs.

iISCSI Management API SNIA Technical Position 17
Version 1.1.6

5.11 IMA_OBJECT_PROPERTY_FN

Format
typedef void (* IMA_OBJECT_PROPERTY_FN)(
[*in*/ IMA_OID oid
);
Parameters
oid

The object ID of the object whose property(ies) changed.

Remarks
This type is used to declare client functions that can be used with the
IMA_RegisterForObjectPropertyChanges and
IMA_DeregisterForObjectPropertyChanges APIs.

iISCSI Management API SNIA Technical Position
Version 1.1.6

18

5.12 IMA_OBJECT_TYPE

Format

typedef enum IMA_object_type

{
IMA_OBJECT_TYPE_UNKNOWN
IMA_OBJECT_TYPE_PLUGIN
IMA_OBJECT_TYPE_NODE
IMA_OBJECT_TYPE_LHBA
IMA_OBJECT_TYPE_PHBA
IMA_OBJECT_TYPE_NETWORK_PORTAL
IMA_OBJECT_TYPE_PORTAL_GROUP
IMA_OBJECT_TYPE_LNP
IMA_OBJECT_TYPE_PNP
IMA_OBJECT _TYPE_TARGET
IMA_OBJECT TYPE_ LU
IMA_OBJECT _TYPE_DISCOVERY_ADDRESS
IMA_OBJECT_TYPE_STATIC_DISCOVERY_TARGET

} IMA_OBJECT_TYPE;

Fields

cCo~Nocu,~,wNEFO

B
PO

=
N

IMA_OBJECT_TYPE_UNKNOWN

The object has an unknown type. If an object has this type it's most likely an
uninitialized object.

This symbol has the value 0.

IMA_OBJECT _TYPE_PLUGIN
The object represents a plugin to the IMA library.

This symbol has the value 1.

IMA_OBJECT_TYPE_NODE
The object represents an iSCSI node.

This symbol has the value 2.

IMA_OBJECT_TYPE_LHBA
The object represents a logical HBA.

This symbol has the value 3.

IMA_OBJECT_TYPE_PHBA
The object represents a physical HBA.

This symbol has the value 4.

IMA_OBJECT _TYPE _NETWORK_ PORTAL
The object represents an iISCSI network portal.

This symbol has the value 5.

IMA_OBJECT _TYPE_PORTAL_GROUP
The object represetns an iSCSI portal group.

iISCSI Management API SNIA Technical Position
Version 1.1.6

19

This symbol has the value 6.

IMA_OBJECT _TYPE_LNP
The object represents a logical network port.

This symbol has the value 7.

IMA_OBJECT_TYPE_PNP
The object represents a physical network port.

This symbol has the value 8.

IMA_OBJECT _TYPE_TARGET
The object represents an iISCSI target relative to an LHBA.

This symbol has the value 9.

IMA_OBJECT_TYPE_LU
The object represents a logical unit relative to a target.

This symbol has the value 10.

IMA_OBJECT_TYPE_DISCOVERY_ADDRESS
The object represents a discovery address relative to a PNP or an LHBA.

This symbol has the value 11.

IMA_OBJECT _TYPE_STATIC DISCOVERY _TARGET
The object represents a static discovery target relative to a LNP or an LHBA.

This symbol has the value 12.

iISCSI Management API SNIA Technical Position
Version 1.1.6

5.13 IMA_STATUS

IMA_STATUS is an enumerated type used to indicate the status of an API call. Most statuses
are errors, however some are not. The non-error statuses indicate that an operation successfully
completed. However, there is additional information that the client needs to be aware of and the
status indicates what this information is.

Currently there are a limited number of status values that indicate that an invalid parameter was
specified to an API call. Additional statuses which indicate more precisely why a parameter was
invalid may be added to future versions of the iISCSI Management API specification. Statuses in
the range of 0xC0000000 to OXCFFFFFFF are reserved for indicating conditions that mean an
invalid parameter was specified to an API. Clients shall be written to handle invalid parameter
statuses that may be added in later versions of this specification.

Macros

IMA_SUCCESS

This macro returns IMA_TRUE if the specified status code indicates that a call
succeeded. It returns IMA_FALSE if the specified status code indicates that the call
failed.

IMA_ERROR

This macro returns IMA_TRUE if the specified status code indicates that a call failed.
It reutrns IMA_FALSE if the specified status code indicates that the call succeeded.

Non-error Statuses

IMA_STATUS_SUCCESS
This status indicates that the API call succeeded.

This symbol has the value 0x00000000.

IMA_STATUS_REBOOT_NECESSARY

This status indicates that the operation succeeded, but a reboot is necessary to have
the change take affect.

This symbol has the value 0x00000001.

IMA_STATUS_INCONSISTENT_NODE_PROPERTIES

This status indicates there is an inconsistency between the node properties,
specifically either the node name or node alias, kept by the library and one or more
plugins. The client should set both the node name (using IMA_SetNodeName) and
node alias (using IMA_SetNodeAlias) to fix this problem.

This symbol has the value 0x00000002.

IMA_STATUS_SCSI_STATUS_CONDITION_MET

This status indicates that a SCSI command succeeded with a CONDITION MET
status.

This symbol has the value 0x00000100.

Error Statuses

IMA_ERROR_NOT_SUPPORTED
This error indicates that the specified API is not supported by the owner of the object.

iISCSI Management API SNIA Technical Position 21
Version 1.1.6

This symbol has the value 0x80000001.

IMA_ERROR_INSUFFICIENT_MEMORY

This error indicates that there was insufficient memory to complete the request. Itis
possible that any API can return this error.

This symbol has the value 0x80000002.

IMA_ERROR_LAST_PRIMARY_DISCOVERY_METHOD

This error indicates that the call would disable the last primary discovery method for
the PHBA specified in the call. A client is not allowed to disable all primary discovery
methods for a PHBA.

This symbol has the value 0x80000003.

IMA_ERROR_UNEXPECTED_OS_ERROR

This error indicates that either the library or plugin encountered an unexpected error
from an OS API while attempting to perform the requested operation.

This symbol has the value 0x80000004.

IMA_ERROR_SYNC_TIMEOUT

This error indicates that an attempt to acquire ownership of some synchronization
mechanism, e.g. a mutex or semaphore, has timed out.

This symbol has the value 0x80000005.

IMA_ERROR_LU_EXPOSED

This error indicates the requested operation cannot be completed because an LU is
currently exposed to the operating system. For the called API to succeed the logical
unit shall not be exposed to the operating system. This error is returned by the
IMA_ExposelLu and IMA_RemoveStaticDiscoveryTarget APIs.

This symbol has the value 0x80000006.

IMA_ERROR_LU_NOT_EXPOSED

This error indicates an attempt to use a logical unit that is not currently exposed to
the operating system. For the called API to succeed the logical unit shall be exposed
to the operating system. This error is returned by the IMA_UnexposelLu and the
IMA_GetDeviceStatistics APIs.

This symbol has the value 0x80000007.

IMA_ERROR_LU_IN_USE

This error indicates an attempt to unexpose a logical unit that is in use by the
operating system. This error is returned by the IMA_UnexposelLu API.

This symbol has the value 0x80000008.

IMA_ERROR_TARGET_TIMEOUT

This error indicates that communication with a target was necessary to perform the
requested API and that the target didn’t respond to a command that was sent to it.

This symbol has the value 0x80000009.

iISCSI Management API SNIA Technical Position 22
Version 1.1.6

IMA_ERROR_LOGIN_REJECTED

This error indicates that a login to a target was needed to perform the requested API
and the target rejected the attempt.

This symbol has the value 0x8000000A.

IMA_ERROR_STATS_COLLECTION_NOT_ENABLED

This error indicates that an attempt was made to retrieve statistics from an object that
did not have statistics collection enabled.

This symbol has the value 0x8000000B.

IMA_ERROR_SCSI_STATUS_CHECK_CONDITION
This error indicates that a SCSI command failed with a CHECK CONDITION status.

This symbol has the value 0x80000100.

IMA_ERROR_SCSI_STATUS BUSY
This error indicates that a SCSI command failed with a BUSY status.

This symbol has the value 0x800000101.

IMA_ERROR_SCSI_STATUS_RESERVATION_CONFLICT

This error indicates that a SCSI command failed with a RESERVATION CONFLICT
status.

This symbol has the value 0x800000102.

IMA_ERROR_SCSI_STATUS TASK_SET FULL
This error indicates that a SCSI command failed with a TASK SET FULL status.

This symbol has the value 0x80000103.

IMA_ERROR_SCSI_STATUS _ACA_ACTIVE
This error indicates that a SCSI command failed with a ACA ACTIVE status.

This symbol has the value 0x80000104.

IMA_ERROR_SCSI_STATUS _TASK_ABORTED
This error indicates that a SCSI command failed with a TASK ABORTED status.

This symbol has the value 0x80000105.

IMA_ERROR_PLUGINS_NOT_SUPPORTED
This error indicates that the library implementation does not support plugins.

This symbol has the value 0x80000106.

IMA_ERROR_INVALID_PARAMETER
This error indicates that a specified parameter was invalid.

This error can be returned in a number of situations, such as

e When a client calls an API and specifies a NULL pointer as a parameter to
an API that does not accept NULL pointers.

e When a client calls an API and specifies an integer parameter that is out
range of the acceptable values for the parameter.

iISCSI Management API SNIA Technical Position 23
Version 1.1.6

e When a client specifies a pointer to a structure as a parameter to an API and
the contents of the structure contain invalid pointers or out of range integer
parameters as stated above.

This symbol has the value 0xC0000000.

IMA_ERROR_INVALID_OBJECT TYPE

This error indicates that the object type of the specified IMA_OID structure is invalid.
Most likely an uninitialized variable or a corrupted variable was used in an API call.

This symbol has the value 0xC0000001.

IMA_ERROR_INCORRECT OBJECT _TYPE

This error indicates that an object with an incorrect type was specified in an API call.
This can be caused by passing an object ID of the wrong type to an API call. It can
also be caused by using an uninitialized variable or a corrupted variable.

This symbol has the value 0xC0000002.

IMA_ERROR_OBJECT _NOT_FOUND

This error indicates an object specified in the API call was not found. This can be
caused by using an uninitialized variable or a corrupted variable. It can also be
caused by using an object ID that referred to an object or plugin that is no longer
known to the system.

This symbol has the value 0xC0000003.

IMA_ERROR_NAME_TOO_LONG
This error indicates that a name specified in an API call is too long.

This symbol has the value 0xC0000004.

IMA_ ERROR_UNKNOWN_ERROR
This error indicates that some sort of unknown error has occurred.

This symbol has the value 0x8FFFFFFF.

iISCSI Management API SNIA Technical Position 24
Version 1.1.6

5.14 IMA_OID

Format
typedef struct IMA_oid

IMA_OBJECT TYPE objectType;

IMA_UINT32 ownerld;
IMA_UINT64 objectSequenceNumber;
} IMA_OID;
Fields
objectType

The type of the object. When an object ID is supplied as a parameter to an API the
library uses this value to ensure that the supplied object’s type is appropriate for the
API that was called.

ownerld

A number determined by the library that it uses to uniquely identify the owner of an
object. The owner of an object is either the library itself or a plugin. When an object
ID is supplied as a parameter to an API the library uses this value to determine if it
should handle the call itself or direct the call to one or more plugins.

objectSequenceNumber

A number determined by the owner of an object, that is used by the owner possibly in
combination with the object type, to uniquely identify an object.

Remarks

This structure shall be treated as opaque by clients of the API. Appropriate APIs, e.g.
IMA_GetObjectType and IMA_GetAssociatedPluginOid, shall be used to extract
information from the structure.

iISCSI Management API SNIA Technical Position 25
Version 1.1.6

5.15 IMA_OID_LIST

Format
typedef struct IMA_oid_list

IMA_UINT oidCount;
IMA_OID oids[1];
}IMA_OID_LIST;
Fields
oidCount

The number of object IDs in the oids array.

oids
A variable length array of zero or more object IDs. There are oidCount object IDs in
this array.
Remarks
This structure is used by a number of APIs to return lists of objects. Any instance of this
structure returned by an API shall be freed by a client using the IMA_FreeMemory API.

Although oids is declared to be an array of one IMA_OID structure it can in fact contain
any number of IMA_OID structures.

iISCSI Management API SNIA Technical Position 26
Version 1.1.6

5.16 IMA_NODE_NAME

Format
typedef IMA_WCHAR IMA_NODE_NAME[224];

Remarks

This type is used to represent an iISCSI node name. An iSCSI node name is a unique
identifier for an iISCSI node.

The name shall be terminated with a Unicode nul character.

Both initiators and targets have node names.

iISCSI Management API SNIA Technical Position
Version 1.1.6

27

5.17 IMA_NODE_ALIAS

Format
typedef IMA_WCHAR IMA_NODE_ALIAS[256];

Remarks

This type is used to represent an iISCSI node alias. An iSCSI node alias is intended to be
used as a human useful description of an iISCSI node.

The alias shall be terminated with a Unicode nul character.

Both initiators and targets may have node aliases.

iISCSI Management API SNIA Technical Position 28
Version 1.1.6

5.18 IMA_IP_ADDRESS

Format
typedef struct IMA_ip_address

IMA_BOOL ipv4Address;
IMA_BYTE ipAddress[16];

} IMA_IP_ADDRESS;
Fields

ipv4Address
A boolean indicating the type of IP address this structure represents. If this field has
value IMA_TRUE then this is an IPv4 address; if this field has the value IMA_FALSE
then this is an IPv6 address.

ipAddress
An array of bytes containing the IP address.

e Ifipv4Address has the value IMA_TRUE then bytes 0 through 3 of this array
contain the IP address. Byte 0 of the array contains the most significant byte
of the IP address and byte 3 contains the least significant byte of the
address.

o If ipv4Address has the value IMA_FALSE then bytes 0 through 15 of this
array contain the IP address. Byte 0 of the array contains the most
significant byte of the IP address and byte 15 contains the least significant
byte of the address.

iISCSI Management API SNIA Technical Position 29
Version 1.1.6

5.19 IMA_HOST_NAME

Format
typedef IMA_ WCHAR IMA_HOST_NAME[256];

Remarks
This type is used to represent a DNS hostname.

This type is used as part of the IMA_HOST _ID union.

The hostname shall be terminated by a Unicode nul character.

iISCSI Management API SNIA Technical Position
Version 1.1.6

30

520 IMA_HOST_ID

Format
typedef struct IMA_host_id

IMA_BOOL hostnamelnUse;
union
{
IMA_HOST_NAME hostname;
IMA_IP_ADDRESS ipAddress;
}id;

} IMA_HOST _ID;
Fields

hostnamelnUse

A boolean indicating whether a DNS hostname or IP address is represented by the
IpAddress field. If this field has the value IMA_TRUE then the hostname field
contains the value. If this field has the value IMA_FALSE then the ipAddress field
contains the value.

hostname

If hostnamelnUse has the value IMA_TRUE then this field contains a DNS hostname,
otherwise the value of this field is undefined.

ipAddress

If hostnamelnUse has the value IMA_FALSE then this field contains an IP address,
otherwise the value of this field is undefined.

Remarks
This type is used to represent a hostname or IP address used in a iSCSI target address.

iISCSI Management API SNIA Technical Position 31
Version 1.1.6

5.21 IMA_TARGET_ADDRESS

Format
typedef struct IMA_target_address

IMA_HOST _ID hostnamelpAddress;
IMA_UINT16 portNumber;
} IMA_TARGET_ADDRESS;

Fields

hostnamelpAddress
A DNS hostname or IP address at which a target can be contacted.

portNumber

The IP port number which can used in conjunction with the DNS hostname or IP
address to contact an iSCSI target.

Remarks
This structure is used to represent a target address that can be used to contact an iSCSI
target.
iISCSI Management API SNIA Technical Position

Version 1.1.6

32

5.22 IMA_ADDRESS_KEY

Format
typedef struct IMA_address_key

IMA_IP_ADDRESS ipAddress;

IMA_BOOL portalNumberValid;
IMA_UINT16 portNumber;
IMA_BOOL portalGroupTagValid;
IMA_UINT16 portalGroupTag;

} IMA_ADDRESS_KEY;
Fields

ipAddress
An IP address at which a target can be contacted.

portNumberValid
A boolean indicating if the field portNumber has a valid value..

portNumber

The IP port number that is used in conjunction with the IP address to contact an
iISCSI target. If portNumberValid has the value IMA_TRUE then this value is valid. If
portNumberValid has the value IMA_FALSE then this value is undef+ined.

If portNumberValid has the value IMA_TRUE then this field shall not be the value
zero.

portalGroupTagValid
A boolean indicating if the field portalGroupTag has a valid value.

portalGroupTag

A 16-bit unsigned integer indicating the portal group tag to be used when connecting
to the target. If portalGroupTagValid has the value IMA_TRUE then this value is
valid. If portalGroupTagValid has the value IMA_FALSE then this value is undefined.

Remarks
This structure is used as a part of the IMA_ADDRESS_KEYS structure.

iISCSI Management API SNIA Technical Position 33
Version 1.1.6

5.23 IMA_ADDRESS_KEYS

Format
typedef struct IMA_address_keys

IMA_UINT addressKeyCount;
IMA_ADDRESS _KEY addressKeys[1];

} IMA_ADDRESS_KEYS;
Fields

addressKeyCount
The count of address keys in the addressKeys array.

addressKeys

This is an array of one or more target address keys that can be used to contact a
target.

Remarks
This structure is returned by the IMA_GetAddressKeys API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

34

5.24 IMA_STATIC_DISCOVERY_TARGET

Format
typedef struct IMA_static_discovery_target

IMA_NODE_NAME targetName;
IMA_TARGET_ADDRESS targetAddress;

IMA_BOOL portalGroupTagValid;
IMA_UINT16 portalGroupTag;

} IMA_STATIC_DISCOVERY_TARGET;
Fields

targetName
The iSCSI node name of the statically discovered target.

targetAddress
A target address at which the statically discovered target resides.

portalGroupTagValid
A boolean indicating if the field portalGroupTag has a valid value.

portalGroupTag
An 16-bit unsigned integer indicating the portal group tag to be used when
connecting to the target. If portalGroupTagValid has the value IMA_TRUE then this
value is valid. If portalGroupTagValid has the value IMA_FALSE then this value is
undefined.

Remarks
This structure is used to represent a statically discovered target. This structure is used in
the IMA_AddStaticDiscoveryTarget API.

If a valid portalGroupTag value is not provided then the initiator should use a
SendTargets discovery session to determine a value to use.

iISCSI Management API SNIA Technical Position 35
Version 1.1.6

5.25 IMA_DISCOVERY_ADDRESS_PROPERTIES

Format
typedef struct IMA_discovery _address_properties

IMA_OID associatedNodeOid;

IMA_OID associatedLhbaOid;

IMA_TARGET_ADDRESS discoveryAddress;
} IMA_DISCOVERY_ADDRESS_PROPERTIES;

Fields

associatedNodeOQid
The object ID of the node through which the target is being accessed.

associatedLhbaOid
The object ID of the LHBA that is used to communicate with the discovery address.

discoveryAddress
A target address representing the discovery address.

Remarks
This structure is returned by the IMA_GetDiscoveryAddressProperties API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

36

5.26 IMA_STATIC_DISCOVERY_TARGET_PROPERTIES

Format
typedef struct IMA_static_discovery_target_properties

IMA_OID associatedNodeOid;
IMA_OID associatedLhbaOid;
IMA_STATIC_DISCOVERY_TARGET staticConfigTarget;

} IMA_STATIC_DISCOVERY_TARGET_PROPERTIES;
Fields

associatedNodeOQid
The object ID of the node through which the target is being accessed.

associatedLhbaOid
The object ID of the LHBA that is used to communicate with the target.

staticConfigTarget
The statically configured target.

Remarks
This structure is returned by the IMA_GetStaticDiscoveryTargetProperties API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

37

5.27 IMA_IP_PROPERTIES

Format
typedef struct IMA_ip_properties

IMA_BOOL ipConfigurationMethodSettable;
IMA_BOOL dhcpConfigurationEnabled;
IMA_BOOL subnetMaskSettable;

IMA_BOOL subnetMaskValid;
IMA_IP_ADDRESS subnetMask;

IMA_BOOL defaultGatewaySettable;
IMA_BOOL defaultGatewayValid;
IMA_IP_ADDRESS defaultGateway;

IMA_BOOL primaryDnsServerAddressSettable;
IMA_BOOL primaryDnsServerAddressValid;
IMA_IP_ADDRESS primaryDnsServerAddress;
IMA_BOOL alternateDnsServerAddressSettable;
IMA_BOOL alternateDnsServerAddressValid;

IMA_IP_ADDRESS alternateDnsServerAddress;
IMA_ BYTE reserved[64];

} IMA_IP_PROPERTIES;
Fields

ipConfigurationMethodSettable
A boolean indicating if the IP configuration method is settable using the
IMA_SetlpConfigMethod API. If the value of this field is IMA_TRUE then the
IMA_SetlpConfigMethod API is supported for the associated object. If the value of
this field is IMA_FALSE then the API is not supported for that object.

dhcpConfigurationEnabled

A boolean indicating if the subnetMask, defaultGateway, primaryDnsServerAddress,
and alternateDnsServerAddress fields have been set via DHCP or using static
configuration. If the value of this field is IMA_TRUE then these fields have been set
using DHCP. If the value of this field is IMA_FALSE then these fields have been set
via static configuration or they are not otherwise settable.

subnetMaskSettable

A boolean indicating if the subnet mask can be set using the IMA_SetSubnetMask
API. If the dhcpConfigurationEnabled field has the value IMA_TRUE then this field
shall have the value IMA_FALSE. The subnet mask can only be set when static
configuration is enabled.

subnetMaskValid
A boolean indicating if the field subnetMask has a valid value.

iISCSI Management API SNIA Technical Position 38
Version 1.1.6

subnetMask
A structure containing the subnet mask. If subnetMaskValid has the value

IMA_TRUE then this value is valid. If subnetMaskValid has the value IMA_FALSE
then this value is undefined.

defaultGatewaySettable
A boolean indicating if the default gateway can be set using the
IMA_SetDefaultGateway API. If the dhcpConfigurationEnabled field has the value
IMA_TRUE then this field shall have the value IMA_FALSE. The default gateway
can only be set when static configuration is enabled.

defaultGatewayValid
A boolean indicating if the field defaultGateway has a valid value.

defaultGateway
A structure containing the default gateway. If defaultGatewayValid has the value

IMA_TRUE then this value is valid. If defaultGatewayValid has the value
IMA_FALSE then this value is undefined.

primaryDnsServerAddressSettable
A boolean indicating if the primary DNS server address can be set using the
IMA_SetDnsServerAddress API. If the dhcpConfigurationEnabled field has the value
IMA_TRUE then this field shall have the value IMA_FALSE. The primary DNS server
can only be set when static configuration is enabled.

primaryDnsServerAddressValid
A boolean indicating if the field primaryDnsServerAddress has a valid value.

primaryDnsServerAddress

An array containing the name or address of the primary DNS server. |If
primaryDnsServerAddressValid has the value IMA_TRUE then this value is valid. If
primaryDnsServerAddressValid has the value IMA_FALSE then this value is
undefined.

alternateDnsServerAddressSettable

A boolean indicating if the alternate DNS server can be set using the
IMA_SetDnsServerAddress API. If the dhcpConfigurationEnabled field has the value
IMA_TRUE then this field shall have the value IMA_FALSE. The alternate DNS
server can only be set when static configuration is enabled. If
primaryDnsServerAddressSettable has the value IMA_FALSE then this field shall
have the value IMA_FALSE. The alternate DNS server address can only be set if the
primary DNS server can be set.

alternateDnsServerAddressValid
A boolean indicating if the field alternateDnsServerAddress has a valid value.

alternateDnsServerAddress

An array containing the name or address of the alternate DNS server. If
alternateDnsServerAddressValid has the value IMA_TRUE then this value is valid. If
alternateDnsServerAddressValid has the value IMA_FALSE then this value is
undefined.

iISCSI Management API SNIA Technical Position 39
Version 1.1.6

reserved
This field is reserved.

Remarks

If both the primary and alternate DNS servers are valid then the implementation tries
to use the primary DNS server for domain name resolution. If there are errors using
the primary DNS server the implementation will use the alternate DNS server. The
method that an implementation uses to determine which DNS server to use is
implementation specific.

iISCSI Management API SNIA Technical Position 40
Version 1.1.6

5.28 IMA_LIBRARY_PROPERTIES

Format

typedef struct IMA_library properties

{
IMA_UINT supportedimaVersion;
IMA_WCHAR vendor[256];
IMA_WCHAR implementationVersion[256];
IMA_WCHAR fileName[256];
IMA_DATETIME buildTime;
IMA_ BYTE reserved[64];

} IMA_LIBRARY_PROPERTIES;

Fields

supportedimaVersion

The version of the iISCSI Management APl implemented by the library. The value
returned by a library for the API as described in this document is one.

vendor

A nul terminated Unicode string containing the name of the vendor that created the
binary version of the library.

implementationVersion

A nul terminated Unicode string containing the implementation version of the library
from the vendor specified in vendor.

fileName

A nul terminated Unicode string ideally containing the path and file name of the
library that is being used by the currently executing process can be found. If the path
cannot be determined then it is acceptable to fill this field with only the name (and
extension if applicable) of the file of the library. If this cannot be determined then this
field shall be an empty string.

buildTime
The time and date that the library that is executing was built.

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetLibraryProperties API.

iISCSI Management API SNIA Technical Position 41
Version 1.1.6

5.29 IMA_PLUGIN_PROPERTIES

Format

typedef struct IMA_plugin_properties

{
IMA_UINT supportedimaVersion;
IMA_WCHAR vendor[256];
IMA_WCHAR implementationVersion[256];
IMA_WCHAR fileName[256];
IMA_DATETIME buildTime;
IMA_BOOL IhbasCanBeCreatedAndDestroyed;
IMA_ BYTE reserved[64];

} IMA_PLUGIN_PROPERTIES;

Fields

supportedimaVersion

The version of the iISCSI Management APl implemented by a plugin. The value
returned by a library for the API as described in this document is one.

vendor

A nul terminated Unicode string containing the name of the vendor that created the
binary version of the plugin.

implementationVersion

A nul terminated Unicode string containing the implementation version of the plugin
from the vendor specified in vendor.

fileName

A nul terminated Unicode string ideally containing the path and file name of the
plugin that is filing in this structure.

If the path cannot be determined then this field will contain only the name (and
extension if applicable) of the file of the plugin. If this cannot be determined then this
field will be be an empty string.

buildTime
The time and date that the plugin that is specified by this structure was built.

IhbasCanBeCreatedAndDestroyed

A boolean indicating if LHBAs can be created or destroyed. For this version of the
IMA this value is always IMA_FALSE.

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetPluginProperties API.

iISCSI Management API SNIA Technical Position 42
Version 1.1.6

5.30 IMA_NODE_PROPERTIES

Format
typedef struct IMA_node_properties

IMA_BOOL runninglninitiatorMode;
IMA_BOOL runninglnTargetMode;
IMA_BOOL nameValid;
IMA_NODE_NAME name;

IMA_BOOL aliasVvalid;
IMA_NODE_ALIAS alias;

IMA_BOOL nameAndAliasSettable;
IMA_BYTE reserved[64];

} IMA_NODE_PROPERTIES;

Fields

runninglininitiatorMode
A boolean indicating if the node is running as initiator or not.

runninglnTargetMode
A boolean indicating if the node is running as a target or not.

nameValid
A boolean indicating if the node’s name is valid or not.

name
A nul terminated Unicode string that contains the name of the node.

The value in this field is only valid if nameValid is setto IMA_TRUE. If nameValid is
set to IMA_FALSE then this field will contain an empty string.

aliasVvalid
A boolean indicating if the node’s alias is valid or not.

alias
A nul terminated Unicode string that contains the alias of the node.

This field is only valid if aliasValid is set to IMA_TRUE. If aliasValid is set to
IMA_FALSE then this field will contain an empty string.

nameAndAliasSettable

A boolean indicating if both the name and alias are settable using
IMA_SetNodeName and IMA_SetNodeAlias.

reserved
This field is reserved.

iISCSI Management API SNIA Technical Position 43
Version 1.1.6

Remarks
This structure is returned by the IMA_GetNodeProperties API.

It is possible for both runninglininitiatorMode and runninginTargetMode to be set to
IMA_TRUE. This means that the node is operating both as an initiator and as a target.

iISCSI Management API SNIA Technical Position
Version 1.1.6

44

5.31 IMA_LHBA_PROPERTIES

Format

typedef struct IMA_Ihba_properties

{
IMA_WCHAR osDeviceName[256];
IMA_BOOL luExposingSupported;
IMA_BOOL isDestroyable;
IMA_BOOL staleDataRemovable;
IMA_UINT staleDataSize;
IMA_BOOL initiatorAuthMethodsSettable;
IMA_BOOL targetAuthMethodsSettable;
IMA_BYTE reserved[128];

} IMA_LHBA_PROPERTIES;

Fields

osDeviceName

A nul terminated Unicode string that contains the operating system’s name for a
logical HBA. If this is an empty string then the device name for the LHBA is
unknown.

See Annex A (informative) Device Names for details on the value(s) of this field for
each operating system.

I[uExposingSupported

A boolean indicating if the LHBA supports exposing and unexposing of individual LUs
using the IMA_ExposeLu and IMA_UnexposeLu APIs. If the value of this field is
IMA_TRUE then a client can control the exposing and unexposing of all LUs
associated with the LHBA using the IMA_ExposeLu and IMA_UnexposelLu APlIs. If
th value of this field is IMA_FALSE then a client cannot control the exposing and
unexposing of LUs using the IMA.

isDestroyable
A boolean indicating if the LHBA can be destroyed.

For this version of the IMA this value shall always be IMA_FALSE.

staleDataRemovable

A boolean indicating if stale data associated with the LHBA is removable. If this
value is IMA_TRUE then the data can be removed using IMA_RemoveStaleData.

staleDataSize

The approximate size, in bytes, of the amount of stale data associated with the
LHBA. If this value is zero then there is no stale data associated with the LHBA.

initiatorAuthMethodsSettable

A boolean indicating if the initiator authentications methods used by the LHBA can be
set by a client using the IMA_SetInitiatorAuthMethods API.

iISCSI Management API SNIA Technical Position 45
Version 1.1.6

targetAuthMethodsSettable
A boolean that, for this version of the IMA specification, shall be set to IMA_FALSE.

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetLhbaProperties API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

46

5.32 Upper Level Protocol (ULP) Flags

These are flag values used in the supportedUlps field of the IMA_PHBA_ PROPERTIES structure.

IMA_ULP_TCP
This flag indicates that TCP is supported.

This symbol has the value 0x01.

IMA_ULP_SCTP
This flag indicates that SCTP is supported.

This symbol has the value 0x02.

IMA_ULP_UDP
This flag indicates that UDP is supported.

This symbol has the value 0x04.

These flags may be OR'd together. For example, it's valid for a PHBA to support both TCP and
SCTP. In this case, a value of 0x03 would be returned in the supportedUlps field of the
IMA_PHBA PROPERTIES structure filled in by a call to IMA_GetPhbaProperties.

iISCSI Management API SNIA Technical Position 47
Version 1.1.6

5.33 IMA_PHBA_PROPERTIES

Format

typedef struct IMA_phba_properties

{
IMA_WCHAR vendor[64];
IMA_WCHAR model[256];
IMA_WCHAR description[256];
IMA_WCHAR serialNumber[64];
IMA_WCHAR hardwareVersion[256];
IMA_WCHAR asicVersion[256];
IMA_WCHAR firmwareVersion[256];
IMA_WCHAR optionRomVersion[256];
IMA_WCHAR driverName[256];
IMA_WCHAR driverVersion[256];
IMA_UINT supportedUIps;
IMA_XBOOL bidirectionalTransfersSupported.
IMA_UINT maximumCdbLength;
IMA_XBOOL canBeNic;
IMA_XBOOL isNic;
IMA_XBOOL isInitiator;
IMA_XBOOL isTarget;
IMA_XBOOL usingTcpOffloadEngine;
IMA_XBOOL usinglscsiOffloadEngine;
IMA_BYTE reserved[128];

} IMA_PHBA_PROPERTIES;

Fields

vendor

A nul terminated Unicode string that contains the name of the vendor of a PHBA. If
the first character in this field is nul then the vendor is unknown.

model

A nul terminated Unicode string that contains the name of the model of a PHBA. If
the first character in this field is nul then the model is unknown.

description

A nul terminated Unicode string that contains a description of a PHBA. This is a user
friendly description of the PHBA. If the first character in this field is nul then there is
no description.

serialNumber

A nul terminated Unicode string that contains the serial number of a PHBA. If the first
character in this field is nul then the serial number is unknown.

iISCSI Management API
Version 1.1.6

SNIA Technical Position 48

hardwareVersion

A nul terminated Unicode string that contains the hardware version of a PHBA. If the
first character in this field is nul then the hardware version is unknown.

asicvVersion

A nul terminated Unicode string that contains the ASIC version of a PHBA. If the first
character in this field is nul then the ASIC version is unknown or is not applicable.

firmwareVersion

A nul terminated Unicode string that contains the firmware version of a PHBA. If the
first character in this field is nul then the firmware version is unknown or is not
applicable.

optionRomVersion

A nul terminated Unicode string that contains the option ROM version of a PHBA. If
the first character in this field is nul then the option ROM version is unknown or is not
applicable.

driverName
A nul terminated Unicode string that contains the full name of the driver controlling a
PHBA. If the first character in this field is nul then the name of the driver is unknown.

On operating systems, such as Windows, where files have extensions the full name
includes the extension. The full name does not include the path to the file.

driverVersion

A nul terminated Unicode string that contains the version of the driver specified in
driverName. If the first character in this field is nul then the version of the driver is
unknown.

This field can have a known value only if driverName has a known value as well.

supportedUlps
A field containing flags that indicate what upper level protocols are supported by a
PHBA. Examples of upper level protocols include:
= TCP, represented by IMA_ULP_TCP
= SCTP, represented by IMA_ULP_SCTP

= UDP, represented by IMA_ULP_UDP

bidirectionalTransfersSupported
A extended boolean that indicates if a PHBA supports executing SCSI commands
that cause bidirectional transfers.

Note: The value of this field applies to the entire “stack”: the hardware, ASIC,
firmware, driver, etc. All shall support SCSI commands that cause bidirectional
transfers for this field to be set to IMA_TRUE.

maximumCdbLength
The maximum length, in bytes, of a CDB that can be transferred by a PHBA. If this
field has a value of zero that indicates that this value is unknown.

Note: The value of this field applies to the entire “stack”: the hardware, ASIC,
firmware, driver, etc. All shall support the maximum CDB length returned in this field.

iISCSI Management API SNIA Technical Position 49
Version 1.1.6

canBeNic
An extended boolean that indicates if a PHBA can also function as a “standard” NIC
concurrently with functioning as an iSCSI PHBA.

Note: The value of this field applies to the entire “stack”: the hardware, ASIC,
firmware, driver, etc. All shall support the PHBA functioning concurrently as a NIC for
the value returned in this field to be IMA_TRUE.

isNic
A extended boolean that indicates if a PHBA is functioning as a “standard” NIC
concurrently with functioning as an iSCSI PHBA.

isInitiator
An extended boolean indicating if the PHBA is functioning as an initiator.

isTarget
An extended boolean indicating if the PHBA is functioning as a target.

usingTcpOffloadEngine
An extended boolean indicating if the PHBA is using a TCP offload engine.
Note: This value shall only be set to IMA_TRUE if a TCP offload engine is present
and is being used. If it can be determined that a TCP offload engine is present, but it

cannot be determined if that offload engine is being used then this value shall be set
to IMA_UNKNOWN.

usinglscsiOffloadEngine
An extended boolean indicating if the PHBA is using a iSCSI offload engine.
Note: This value shall only be set to IMA_TRUE if a iSCSI offload engine is present
and is being used. If it can be determined that an iSCSI offload engine is present,

but it cannot be determined if that offload engine is being used then this value shall
be set to IMA_UNKNOWN.

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetPhbaProperties API.
Both isInitiator and isTarget cannot be set to IMA_FALSE as this would mean that the

PHBA was not functioning as either an initiator or target: which means that it's not
functioning.

iISCSI Management API SNIA Technical Position 50
Version 1.1.6

5.34 IMA_DISCOVERY_PROPERTIES

Format

typedef struct IMA_discovery_properties

{
IMA_BOOL iSnsDiscoverySettable;
IMA_XBOOL iSnsDiscoveryEnabled;
IMA_ISNS_DISCOVERY_METHOD iSnsDiscoveryMethod;
IMA_HOST_ID iSnsHost;
IMA_BOOL slpDiscoverySettable;
IMA_XBOOL slpDiscoveryEnabled;
IMA_BOOL staticDiscoverySettable;
IMA_XBOOL staticDiscoveryEnabled;
IMA_BOOL sendTargetsDiscoverySettable;
IMA_XBOOL sendTargetsDiscoveryEnabled;
IMA_BYTE reserved[128];

} IMA_DISCOVERY_PROPERTIES;
Fields

iSnsDiscoverySettable

A boolean that indicates if iISNS target discovery can be enabled and disabled using
the IMA_SetlsnsDiscovery API.

iSnsDiscoveryEnabled

An extended boolean that indicates if iISNS target discovery is currently enabled or
disabled.

Note: It is possible for this field to have a value of IMA_TRUE and the
iSnsDiscoverySettable field to have a value of IMA_FALSE. This means that the
associated PHBA/LHBA performs iSNS target discovery and that it cannot be
disabled.

iSnsDiscoveryMethod
A value which indicates how the iISNS server is being discovered. This field is valid
only if iSnsDiscoveryEnabled has the value IMA_TRUE, otherwise the value of this
field is undefined.

iSnsHost
A nul terminated Unicode string containing the domain name of the iISNS server the
specified PHBA is using. If there is no iISNS server in use, either because iISNS
target discovery is disabled or because no iSNS server is found, then this shall be an
empty string.

slpDiscoverySettable

A boolean that indicates if SLP target discovery can be enabled and disabled using
the IMA_SetSlIpDiscovery API.

iISCSI Management API SNIA Technical Position 51
Version 1.1.6

slpDiscoveryEnabled

An extended boolean that indicates if SLP target discovery is currently enabled or
disabled.

Note: It is possible for this field to have a value of IMA_TRUE and the
slpDiscoverySettable field to have a value of IMA_FALSE. This means that the
associated PHBA/LHBA performs SLP target discovery and that it cannot be
disabled.

staticDiscoverySettable

A boolean that indicates if static target discovery can be enabled and disabled using
the IMA_SetStaticDiscovery API.

staticDiscoveryEnabled
An extended boolean that indicates if static target discovery is currently enabled or
disabled.

Note: It is possible for this field to have a value of IMA_TRUE and the
staticDiscoverySettable field to have a value of IMA_FALSE. This means that the
specified PHBA performs static target discovery and that it cannot be disabled.

sendTargetsDiscoverySettable

A boolean that indicates if SendTargets target discovery can be enabled and
disabled using the IMA_SetSendTargetsDiscovery API.

sendTargetsDiscoveryEnabled

An extended boolean that indicates if SendTargets target discovery is currently
enabled or disabled.

Note: It is possible for this field to have a value of IMA_TRUE and the
sendTargetsDiscoverySettable field to have a value of IMA_FALSE. This means that
the associated PHBA/LHBA performs SendTargets target discovery and that it
cannot be disabled.

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetDiscoveryProperties API.

It is possible for all of the xxxDiscoveryEnabled fields to have the value IMA_FALSE and
for all of the xxxDiscoverySettable fields to also have the value IMA_FALSE. This
indicates that no target discovery is being done by the PHBA/LHBA and no target
discovery can be enabled for the PHBA/LHBA. Such a set of discovery properties would
indicate that a PHBA/LHBA is acting as a target, but not as an initiator.

iISCSI Management API SNIA Technical Position 52
Version 1.1.6

5.35 IMA_PHBA_DOWNLOAD_IMAGE_TYPE

Format
typedef enum IMA_phba_download_image_type

IMA_DOWNLOAD_IMAGE_TYPE_FIRMWARE
IMA_DOWNLOAD_IMAGE_TYPE_OPTION_ROM
IMA_DOWNLOAD_IMAGE_TYPE_ALL

} IMA_PHBA_DOWNLOAD_IMAGE_TYPE;

Fields

no
NP O

IMA_IMAGE_TYPE_FIRMWARE
This value indicates that a file contains a firmware download image.

This symbol has the value 0.

IMA_IMAGE_TYPE_OPTION_ROM
This value indicates that a file contains an option ROM download image.

This symbol has the value 1.

IMA_IMAGE_TYPE_ALL

This value indicates that a file contains all of the download images, i.e. it contains
both a firmware download image and an option ROM download image.

This symbol has the value 2.

Remarks

This type is used in the IMA_PHBA DOWNLOAD_IMAGE_PROPERTIES structure and

by the IMA_PhbaDownload API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

53

5.36 IMA_PHBA_DOWNLOAD_IMAGE_PROPERTIES

Format
typedef struct IMA_phba_download_image_properties

IMA_PHBA_DOWNLOAD_IMAGE_TYPE imageType:
IMA_WCHAR version[32];
IMA_WCHAR description[512];
IMA_XBOOL upgrade;

} IMA_PHBA_DOWNLOAD_IMAGE_PROPERTIES;

Fields

imageType

This field indicates the type of the associated download image.

version

This field contains a nul terminated Unicode string which indicates the version of the
download image. If the version cannot be determined or there is no version then this
string is empty.

description
This field contains a nul terminated Unicode string which describes the download

image and possibly any bug fixes that the download image contains. If there is no
description then this string is empty.

upgrade

An extended boolean indicating if the specified download image would be an
upgrade, i.e. a later version, than the image that currently resides in the associated
PHBA. If this field has the value IMA_TRUE then it is an upgrade. If this field has
the value IMA_FALSE then it is not an upgrade, i.e. it may be the same version or it
may be a downgrade. If this field has the value IMA_UNKNOWN then it cannot be
determined if this is an upgrade or not.

Remarks
This type is used by both the IMA_IsPhbaDownloadFile and the IMA_PhbaDownload
APlIs.
iISCSI Management API SNIA Technical Position 54

Version 1.1.6

5.37 IMA_ISNS_DISCOVERY_METHOD

Format
typedef enum IMA_isns_discovery_method

IMA_ISNS_DISCOVERY_METHOD_STATIC
IMA_ISNS_DISCOVERY_METHOD_DHCP
IMA_ISNS_DISCOVERY_METHOD_SLP

} IMA_ISNS_DISCOVERY_METHOD;

Fields

no
NP O

IMA_ISNS DISCOVERY_METHOD_STATIC
This value indicates that the discovery method is static.

This symbol has the value 0.

IMA_ISNS_DISCOVERY_METHOD_DHCP
This value indicates that the discovery method is DHCP.

This symbol has the value 1.

IMA_ISNS_DISCOVERY_METHOD_SLP
This value indicates that the discovery method is SLP.

This symbol has the value 2.

Remarks

This type is used to indicate how a the iISNS server is discovered. It is used as a field in

the IMA_DISCOVERY_PROPERTIES structure and as a parameter to the

IMA_SetlsnsDiscovery API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

55

5.38 IMA_PHBA_DOWNLOAD_PROPERTIES

Format
typedef struct IMA_phba_download_properties
{
IMA_BOOL isPhbaDownloadFileSupported;
IMA_BOOL optionRomDownloadSupported;
IMA_BOOL firmwareDownloadSupported;
IMA_ BYTE reserved[32];

} IMA_PHBA_DOWNLOAD_PROPERTIES;

Fields
isPhbaDownloadFileSupported
A boolean indicating if the PHBA supports the IMA_IsPhbaDownloadFile API.
optionRomDownloadSupported
A boolean indicating if the PHBA supports downloading option ROM code.

firmwareDownloadSupported
A boolean indicating if the PHBA supports downloading firmware code.

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetPhbaDownloadProperties API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

5.39 IMA_IPSEC_PROPERTIES

Format
typedef struct IMA_ipsec_properties
{
IMA_BOOL ipsecSupported;
IMA_BOOL implementedinHardware;
IMA_BOOL implementedinSoftware;
IMA_ BYTE reserved[32];

} IMA_IPSEC_PROPERTIES;

Fields

ipsecSupported

A boolean indicating if IPsec is supported in accordance with the requirements of the
iISCSI standard.

implementedinHardware
An boolean indicating if IPsec is provided in hardware.

implementedinSoftware
An boolean indicating if IPsec is provided in software.

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetlpsecProperties API.

It is possible for both implementedinHardware and implementedinSoftware to both have
the value of IMA_TRUE. This means that some IPsec algorithms are implemented in
hardware, while other algorithms are implemented in software. It is not possible to
determine which algorithms are implemented in which location.

It is not valid to return this structure where ipsecSupported is set to IMA_TRUE and both
implementedinHardware and implementedinSoftware are set to IMA_FALSE.

iISCSI Management API SNIA Technical Position 57
Version 1.1.6

5.40 IMA_MIN_MAX_VALUE

Format

typedef struct IMA_min_max_value

{
IMA_BOOL currentValueValid;
IMA_BOOL settable;
IMA_UINT32 currentValue;
IMA_UINT32 defaultValue;
IMA_UINT32 minimumValue;
IMA_UINT32 maximumValue;
IMA_UINT32 incrementValue;

} IMA_MIN_MAX_VALUE;

Fields

currentValueVvalid
A boolean indicating if the currentValue field contains a valid value.

settable

Indicates if the corresponding property is settable. If this field has the value
IMA_TRUE then the defaultValue, minimumValue, maximumValue, and
incrementValue fields shall contain valid values. If this field has the value
IMA_FALSE then these fields have undefined values.

currentValue

If currentValueValid has the value IMA_TRUE then this field contains the current
value of the associated property. If currentValueValid has the value IMA_FALSE
then the value of this field is undefined.

defaultValue

If settable has the value IMA_TRUE then this field contains the implementation’s
default value of the associated property. If settable has the value IMA_FALSE then
the value of this field is undefined.

minimumValue

If settable has the value IMA_TRUE then this field contains the implementation’s
minimum value of the associated property. If settable has the value IMA_FALSE
then the value of this field is undefined.

maximumValue

If settable has the value IMA_TRUE then this field contains the implementation’s
maximum value of the associated property. If settable has the value IMA_FALSE
then the value of this field is undefined.

incrementValue

If settable has the value IMA_TRUE then this field contains a value that can be
added to or subtracted from currentValue to obtain other possible values of the
associated property. If settable has the value IMA_FALSE then the value of this field
is undefined.

iISCSI Management API SNIA Technical Position 58
Version 1.1.6

Remarks

If the currentValueValid field is IMA_FALSE then the value of settable shall also be
set to IMA_FALSE.

The fields in this structure contain values that are defined by the implementation and
not by IETF RFC 3720. Itis possible that an implementation may be more or less
restrictive in the values that it can accept than IETF RFC 3720 allows.

An example of how to use incrementValue: Suppose that a structure is obtained
where currentValueValid is IMA_TRUE, settable is IMA_TRUE, currentValue is 50,
defaultValue is 50, minimumValue is 30, maximumValue is 70 and incrementValue is
10. In this case, the possible values that the property can be set to are 30, 40, 50,
60, and 70. The new value shall be the current value plus or minus some multiple of
incrementValue.

iISCSI Management API SNIA Technical Position 59

Version 1.1.6

5.41 IMA_BOOL_VALUE

Format
typedef struct IMA_bool_value

IMA_BOOL currentValueValid;
IMA_BOOL settable;
IMA_BOOL currentValue;
IMA_BOOL defaultValue;

} IMA_BOOL_VALUE;
Fields

currentValueValid
A boolean indicating if the currentValue field contains a valid value.

settable

Indicates if the corresponding property is settable. If this field has the value
IMA_TRUE then the defaultValue shall contain a valid value. If this field has the
value IMA_FALSE then the defaultValue field contains an undefined value.

currentValue

If currentValueValid has the value IMA_TRUE then this field contains the current
value of the associated property. If currentValueValid has the value IMA_FALSE
then the value of this field is undefined.

defaultValue

If settable has the value IMA_TRUE then this field contains the implementation’s
default value of the associated property. If settable has the value IMA_FALSE then
the value of this field is undefined.

iISCSI Management API SNIA Technical Position
Version 1.1.6

60

5.42 IMA_MAC_ADDRESS

Format
typedef IMA_BYTE IMA_MAC_ADDRESS[6];
Remarks

A MAC address is a series of six bytes which uniquely identifies a physical or logical
network port. Byte O of the array is the most significant byte of the MAC address, byte 1

is the next most significant byte, etc., on to byte 5 of the array which is the least
significant byte of the MAC address.

iISCSI Management API

SNIA Technical Position
Version 1.1.6

61

5.43 IMA_LNP_PROPERTIES

Format
typedef struct IMA_Inp_properties

IMA_MAC_ADDRESS macAddress;
IMA_BOOL macAddressSettable;

IMA_BYTE reserved[32];

} IMA_LNP_PROPERTIES;
Fields

macAddress
An array of bytes containing the MAC address.
It is possible that an LNP will have the same MAC address as a PNP. This means
that there is a one to one relationship between the LNP and the PNP.

macAddressSettable
A boolean indicating if the MAC address of the logical network port can be set.

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetLnpProperties API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

62

5.44 IMA_PNP_PROPERTIES

Format
typedef struct IMA_pnp_properties

IMA_OID associatedPhbaOid;
IMA_MAC_ADDRESS macAddress;
IMA_BOOL macAddressSettable;
IMA_UINT maximumTransferRate;
IMA_UINT currentTransferRate;
IMA_UINT maximumFramesSize;
IMA_BYTE reserved[64];

} IMA_PNP_PROPERTIES;
Fields

associatedPhbaOid
The object ID of the PHBA to which the PNP the structure describes is attached.

macAddress
An array of bytes containing the MAC address.

It is possible that a PNP will have the same MAC address as an LNP. This means
that there is a one to one relationship between the PNP and the LNP.

macAddressSettable
A boolean indicating if the MAC address of the physical network port can be set.

maximumTransferRate
The maximum number of megabits that can be transferred in one second through the
port at any time.

So, if the maximum transfer rate of the port is 10 Mb then this field will contain 10. If
the maximum transfer rate of the port is 100 Mb then this field will contain 100, etc.

currentTransferRate
The maximum number of megabits that can be transferred in one second through the
port at the current time.

So, if the current transfer rate of the port is 10 Mb then this field will contain 10. If the
current transfer rate of the port is 100 Mb then this field will contain 100, etc.

This value is the current transfer rate of the port, it has nothing to do with how much
data is actually being transferred through the port.

maximumFrameSize
The maximum size of a frame, in bytes.

reserved
This field is reserved.

iISCSI Management API SNIA Technical Position 63
Version 1.1.6

Remarks
This structure is returned by the IMA_GetPnpProperties API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

64

5.45 IMA_PNP_STATISTICS

Format
typedef struct IMA_pnp_statistics
{
IMA_UINT64 bytesSent;
IMA_UINT32 pdusSent;
IMA_UINT64 bytesReceived;
IMA_UINT32 pdusReceived;

} IMA_PNP_STATISTICS;

Fields

bytesSent
The number of bytes sent in iISCSI PDUs on a physical network port.

bytesReceived

The number bytes received in ISCSI PDUs on a physical network port.

pdusSent
The number of ISCSI PDUs sent on a physical network port.

pdusReceived
The number of iISCSI PDUs received on a physical network port.

Remarks
This structure is returned by the IMA_GetPnpStatistics API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

65

5.46 IMA_NETWORK_PORTAL_PROPERTIES

Format
typedef struct IMA_network_portal_properties

IMA_IP_ADDRESS ipAddress;
IMA_OID associatedLnp;

IMA_BYTE reserved[32];

} IMA_NETWORK_PORTAL_PROPERTIES;

Fields

ipAddress
The IP address of the network portal.

associatedLnp
The OID of the LNP with which the network portal is associated.

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetNetworkPortalProperties API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

66

5.47 IMA_PHBA_STATUS

Format
typedef enum IMA_phba_status

IMA_PHBA_STATUS_WORKING
IMA_PHBA_STATUS_FAILED
} IMA_PHBA_STATUS;

o
o

Values

IMA_PHBA_ STATUS WORKING
This status indicates that the PHBA is working properly.

This symbol has the value 0.

IMA_PHBA_STATUS_FAILED

This status indicates that the PHBA has failed and is no longer functioning.

This symbol has the value 1.

Remarks
This status is returned by the IMA_GetPhbaStatus API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

67

5.48 IMA_NETWORK_PORT_STATUS

Format

typedef enum IMA_network_port_status

{
IMA_NETWORK_PORT_STATUS WORKING
IMA_NETWORK_PORT_STATUS DEGRADED
IMA_NETWORK_PORT_STATUS_CRITICAL
IMA_NETWORK_PORT_STATUS_ FAILED
IMA_NETWORK_PORT_STATUS DISCONNECTED

} IMA_NETWORK_PORT_STATUS;

Fields

(TRRTRRTRRTINT
BWNPRO

IMA_NETWORK_PORT_STATUS_WORKING
This status indicates that the specified link is in a normal operational state.

e For a PNP this status indicates that the port is working correctly.
e For an LNP this status indicates means that all of the PNPs associated with
the LNP are working.

IMA_NETWORK_PORT_STATUS DEGRADED
This status indicates that the specified link is in a degraded operational state.

e This status cannot be specified for a PNP.

e For an LNP this status indicates that two or more of the PNPs associated
with the LNP are in a working state, but one or more of the PNP’s associated
with the LNP has failed or is disconnected.

This means that some failures have occurred, but there is still redundancy.

IMA_NETWORK_PORT_STATUS CRITICAL
This status indicates that the specified link is in a critical operational state.

e This status cannot be specified for a PNP.

e For an LNP this status indicates that only one of the PNPs associated with
the LNP is in a working state; all other associated PNPs have either failed or
are disconnected.

This means that some failures have occurred, and there is no redundancy.

IMA_NETWORK_PORT_STATUS FAILED
This status indicates the specified link has failed.

e For a PNP this status indicates that the port has failed; that it cannot be used
to transmit data.

e For an LNP this status indicates that all of the PNPs associated with the LNP
have failed.

IMA_NETWORK_PORT_STATUS_DISCONNECTED
This status indicates that the specified link is disconnected.

e For a PNP this status indicates that the port is disconnected from the
network.

iISCSI Management API SNIA Technical Position 68
Version 1.1.6

e For an LNP this status indicates that one of the PNPs associated with the
LNP is in a disconnected state and that all PNPs associated with the LNP are
not in a working state.

Another way of thinking of this is that none of the PNPs associated with the
LNP is in a working state and at least one of the PNPs is in a disconnected
state.

Remarks
This status is returned by the IMA_GetLinkStatus API.

A link’s status should in no way be confused with iISCSI connection or iISCSI session
failures that may have used that link. An LNP that fails or becomes disconnected may
result iISCSI connection failures and possibly iISCSI session failures as well. However,
iISCSI connection and iSCSI session failures can occur for reasons other than an LNP
failure or disconnect.

iISCSI Management API SNIA Technical Position 69
Version 1.1.6

5.49 IMA_TARGET_DISCOVERY_METHOD

Format
typedef enum IMA_TARGET_DISCOVERY_METHOD

IMA_TARGET_DISCOVERY_METHOD_STATIC
IMA_TARGET_DISCOVERY_METHOD_SLP
IMA_TARGET_DISCOVERY_METHOD_ISNS
IMA_TARGET_DISCOVERY_METHOD_SENDTARGETS

} IMA_TARGET_DISCOVERY_METHOD;

Fields

oANRE

IMA_TARGET_DISCOVERY_METHOD_STATIC
This value indicates that a target was discovered using static discovery.

This symbol has the value 1.

IMA_TARGET_DISCOVERY_METHOD_SLP
This value indicates that a target was discovered using SLP.

This symbol has the value 2.

IMA_TARGET_DISCOVERY_METHOD_ISNS
This value indicates that a target was discovered using iSNS.

This symbol has the value 4.

IMA_TARGET_DISCOVERY_METHOD_SENDTARGETS
This value indicates that a target was discovered using SendTargets.

This symbol has the value 8.

iISCSI Management API SNIA Technical Position
Version 1.1.6

5.50 IMA_TARGET_PROPERTIES

Format
typedef struct IMA_target_properties

IMA_OID associatedNodeOid;
IMA_OID associatedLhbaOid;

IMA_NODE_NAME name;
IMA_NODE_ALIAS alias;

IMA_UINT32 discoveryMethodFlags;
IMA_BOOL sendTargetsDiscoverySettable;
IMA_BOOL sendTargetsDiscoveryEnabled,;
IMA_BYTE reserved[128];

} IMA_TARGET_PROPERTIES;
Fields

associatedNodeOid
The object ID of the node through which the target is being accessed.

associatedLhbaOid
The object ID of the LHBA that is used to communicate with the target.

name
A nul terminated Unicode string that contains the name of the target.

alias
A nul terminated Unicode string that contains the alias of the target. If the target

does not have an alias or the alias is not available then this value shall be an empty
string.

discoveryMethodFlags

An integer which contains flags indicating how the target was discovered. This value
is a bitwise OR’ing of the flags defined in IMA_TARGET_DISCOVERY_METHOD.

sendTargetsDiscoverySettable

A boolean indicating if a client can control if SendTargets commands are sent to
the target in an attempt to discover additional targets. If this field has the value
IMA_TRUE then a client can call IMA_SetSendTargetsDiscovery to enable/disable
the sending SendTargets to the target associated with the properties structure. If
this field has the value IMA_FALSE then if a client called the
IMA_SetSendTargetsDiscovery API specifying the target associated with the
properties structure that call would fail with an IMA_ ERROR_NOT_SUPPORTED
error.

sendTargetsDiscoveryEnabled

A boolean indicating if SendTargets commands are being sent to the target in an
attempt to discover additional targets.

iISCSI Management API SNIA Technical Position 71
Version 1.1.6

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetTargetProperties API.

It is possible for the field sendTargetsDiscoverySettable to have the value IMA_FALSE
and the field sendTargetsDiscoveryEnabled to have the value IMA_TRUE at the same
time. If this is the case then SendTargets discovery is being performed on the target
and the client cannot disable this.

iISCSI Management API SNIA Technical Position
Version 1.1.6

72

5.51 IMA_TARGET_ERROR_STATISTICS

Format
typedef struct IMA_target_error_statistics

IMA_BOOL loginFailedCountValid,;

IMA_UINT32 loginFailedCount;

IMA_BOOL sessionFailedCountValid;

IMA_UINT32 sessionFailedCount;

IMA_BOOL headerOrDigestSessionFailedCountValid;
IMA_UINT32 headerOrDigestSessionFailedCount
IMA_BOOL timeLimitExceededSessionFailedCountValid;
IMA_UINT32 timeLimitExceededSessionFailedCount;
IMA_BOOL formatErrorSessionFailedCountValid;
IMA_UINT32 formatErrorSessionFailedCount;
IMA_BOOL closedConnectionDueToTimeoutCountValid;
IMA_UINT32 closedConnectionDueToTimeoutCount;
IMA_BOOL lastLoginFailureTimeValid;

IMA_DATETIME lastLoginFailureTime;

IMA_BYTE reserved[64];

} IMA_TARGET_ERROR_STATISTICS;

Fields

loginFailedCountValid
A boolean indicating if the loginFailedCount field contains a valid value.

loginFailedCount

If the loginFailedCountValid field has the value IMA_TRUE then this field contains the
number of times that iISCSI login attempts failed across all attempted sessions with
the target. If the loginFailedCountValid field has the value IMA_FALSE then the
value of this field is undefined.

sessionFailedCountValid
A boolean indicating if the sessionFailedCount field contains a valid value.

sessionFailedCount
If the sessionFailedCountValid field has the value IMA_TRUE then this field contains
the number of times iISCSI sessions failed with the associated target. If the
sessionFailedCountValid field has the value IMA_FALSE then the value of this field is
undefined.

headerOrDigestSessionFailedCountValid

A boolean indicating if the headerOrDigestSessionFailedCount field contains a valid
value.

iISCSI Management API SNIA Technical Position 73
Version 1.1.6

headerOrDigestSessionFailedCount

If the headerOrDigestSessionFailedCountValid field has the value IMA_TRUE then
this field contains the total number of iISCSI PDU header or data digest errors across
all iISCSI sessions of the associated target. If the
headerOrDigestSessionFailedCountValid field has the value IMA_FALSE then the
value of this field is undefined.

timeLimitExceededSessionFailedCountValid

A boolean indicating if the timeLimitExceededSessionFailedCount field contains a
valid value.

timeLimitExceededSessionFailedCount

If the timeLimitExceededSessionFailedCountValid field has the value IMA_TRUE
then this field contains the number of sessions which were failed due to a sequence
exceeding a time limit. If the timeLimitExceededSessionFailedCountValid field has
the value IMA_FALSE then the value of this field is undefined.

formatErrorSessionFailedCountValid

A boolean indicating if the formatErrorSessionFailedCount field contains a valid
value.

formatErrorSessionFailedCount

If the formatErrorSessionFailedCountValid field has the value IMA_TRUE then this
field contains the total number of sessions which were failed due to receipt of a PDU
which contained a format error. If the formatErrorSessionFailedCountValid field has
the value IMA_FALSE then the value of this field is undefined.

closedConnectionDueToTimeoutCountValid

A boolean indicating if the closedConnectionDueToTimeoutCount field contains a
valid value.

closedConnectionDueToTimeoutCount

If the closedConnectionDueToTimeoutCountValid has the value IMA_TRUE then this
field contains the number of times iISCSI connections with the associated target were
terminated due to timeout. If the closedConnectionDueToTimeoutCountValid has the
value IMA_FALSE then the value of this field is undefined.

lastLoginFailureTimeValid
A boolean indicating if the lastLoginFailureTime field contains a valid value.

lastLoginFailureTime

If the lastLoginFailureTimeValid field has the value IMA_TRUE then this field
contains the time stamp of the last failed iISCSI login attempt with the associated
target. If the lastLoginFailureTimeValid field has the value IMA_FALSE then the
value of this field is undefined.

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetTargetErrorStatistics API.

iISCSI Management API SNIA Technical Position 74
Version 1.1.6

5.52 IMA_LU_PROPERTIES

Format
typedef struct IMA_lu_properties

IMA_OID associatedTargetOid;
IMA_BYTE targetLun[8];
IMA_BOOL exposedToOs;
IMA_DATETIME timeExposedToOs;
IMA_BOOL osDeviceNameValid;
IMA_WCHAR osDeviceName[64];
IMA_BOOL osParallelldsValid;
IMA_UINT32 osBusNumber;
IMA_UINT32 osTargetld;
IMA_UINT32 osLun;

IMA_BYTE reserved[128];

} IMA_LU_PROPERTIES;
Fields

associatedTargetOid
The object ID of the target to which the specified logical unit is attached.

targetLun
The logical unit number of the logical unit on the target.

exposedToOs

A boolean indicating if the logical unit is currently exposed to the operating system,
i.e., the operating system can communicate with the logical unit using standard
operating system device interfaces.

timeExposedToOs

If exposedToOs contains the value IMA_TRUE this field contains the date and time
the LU was exposed to the OS.

osDeviceNameValid

A boolean indicating if the osDeviceName field contains a valid value. This field shall
be IMA_TRUE if the name is known. This field shall be IMA_FALSE if the name is
not known or if the logical unit has no name that indentifies it to the operating system.

osDeviceName

If osDeviceNameValid has the value IMA_TRUE then this field contains a nul
terminated Unicode string that indicates the name that the logical unit was declared
to the operating system with.

If osDeviceNameValid has the value IMA_FALSE then the value of this field is
undefined.

See Annex A for details on how to set this field for each operating system.

iISCSI Management API SNIA Technical Position 75
Version 1.1.6

osParallelldsValid

A boolean indicating if the subsequent parallel SCSI identifiers are valid or not. If the

parallel SCSI identifiers are known then this field shall have the value IMA_TRUE.

If these values are not known or if the logical unit is declared to the operating system

as a parallel SCSI logical unit then this field shall have the value IMA_FALSE.

osBusNumber

If osParallelldsValid has the value IMA_TRUE then this field contains the parallel
SCSI bus number that the LU was declared to the operating system with. If the
operating system does not have the concept of buses on a parallel SCSI controller
then this field shall have the value zero.

If osParallelldsValid has the value IMA_FALSE then the value of this field is
undefined.

osTargetld
If osParallelldsValid has the value IMA_TRUE then this field contains the parallel
SCSl target ID that the logical unit was declared to the operating system with.

If osParallelldsValid has the value IMA_FALSE then the value of this field is
undefined.

osLun

If osParallelldsValid has the value IMA_TRUE then this field contains the parallel
SCSil logical unitnumber that the logical unit was declared to the operating system
with.

If osParallelldsValid has the value IMA_FALSE then the value of this field is
undefined.

reserved
This field is reserved.

Remarks
This structure is returned by the IMA_GetLuProperties API.

iISCSI Management API SNIA Technical Position
Version 1.1.6

76

5.53 IMA_DEVICE_STATISTICS

Format
typedef struct IMA_device_statistics

IMA_UINT64 scsiPayloadBytesSent;
IMA_UINT64 scsiPayloadBytesReceived;
IMA_UINT64 iScsiPduBytesSent;
IMA_UINT64 iScsiPduBytesReceived;
IMA_UINT64 iScsiPdusSent;

IMA_UINT64 iScsiPdusReceived;
IMA_UINT64 millisecondsSpentSending;
IMA_UINT64 millisecondsSpentReceiving;

} IMA_DEVICE_STATISTICS;
Fields

scsiPayloadBytesSent
This value contains the number of bytes sent in SCSI payloads.

scsiPayloadBytesReceived
This value contains the number of bytes received in SCSI payloads.

iScsiPduBytesSent
This value contains the number of bytes sent in iISCSI PDUs.

iScsiPduBytesReceived
This value contains the number of bytes received in iISCSI PDUs.

iScsiPdusSent
This value contains the number of iISCSI PDUs sent.

iScsiPdusReceived
This value contains the number of iISCSI PDUs received.

millisecondsSpentSending

This value is the approximate number of milliseconds that have been spent sending
data. If this value is zero then the value is unknown.

millisecondsSpentReceiving

This value is the approximate number of milliseconds that have been spent
receiving data. If this value is zero then the value is unknown.

Remarks
This structure is returned by the IMA_GetDeviceStatistics API.

iISCSI Management API SNIA Technical Position 77
Version 1.1.6

5.54 IMA_STATISTICS_PROPERTIES

Format
typedef struct IMA_statistics_properties

IMA_BOOL statisticsCollectionSettable;
IMA_BOOL statisticsCollectionEnabled;

} IMA_STATISTICS_PROPERTIES;
Fields

statisticsCollectionSettable

A boolean indicating if statistics collection is settable, i.e., it can be enabled and
disabled.

statisticsCollectionEnabled
A boolean indicating if statistics collection is enabled.

Remarks
This structure is returned by the IMA_GetStatisticsProperties API.
It is possible for statisticsCollectionEnabled to have the value IMA_TRUE and

statisticsCollectionSettable to have the value IMA_FALSE. In this case, statistics
collection is always enabled and cannot be disabled.

iISCSI Management API SNIA Technical Position
Version 1.1.6

78

5.55 IMA_AUTHMETHOD

Format

typedef enum IMA_authmethod

{
IMA_ AUTHMETHOD_NONE
IMA_AUTHMETHOD_CHAP
IMA_AUTHMETHOD_SRP
IMA_AUTHMETHOD_KRB5
IMA_ AUTHMETHOD_SPKM1
IMA_ AUTHMETHOD_SPKM2

} IMA_AUTHMETHOD;

Fields

T T TR TR TR
OAWNRPO

IMA_ AUTHMETHOD_NONE
This indicates that no authentication is performed.

This symbol has the value 0.

IMA_AUTHMETHOD_CHAP

This indicates that Challenge Handshake Authentication Protocol (CHAP)
authentication compatible with IETF RFC 3720 is performed.

This symbol has the value 1.

IMA_AUTHMETHOD_SRP

This indicates that Secure Remote Password (SRP) authentication compatible with
IETF RFC 3720 is performed.

This symbol has the value 2.

IMA_AUTHMETHOD_KRB5

This indicates that Kerberos V5 (KRB5) authentication compatible with IETF RFC
3720 is performed.

This symbol has the value 3.

IMA_AUTHMETHOD_SPKM1

This indicates that Simple Public Key Mechanism one (SPKM1) authentication
compatible with IETF RFC 3720 is performed.

This symbol has the value 4.

IMA_AUTHMETHOD_SPKM2

This indicates that Simple Public Key Mechanism two (SPKM2) authentication
compatible with IETF RFC 3720 is performed.

This symbol has the value 5.

iISCSI Management API SNIA Technical Position 79
Version 1.1.6

5.56 IMA_CHAP_INITIATOR_AUTHPARMS

Format

typedef struct IMA_chap_initiator_authparms

{
IMA_UINT retries;
IMA_BYTE name[512];
IMA_UINT namelength;
IMA_UINT minValuelLength;
IMA_UINT maxValuelLength;
IMA_BYTE challengeSecret[256];
IMA_UINT challengeSecretLength;
IMA_BYTE reserved[512];

} IMA_CHAP_INITIATOR_AUTHPARMS;
Fields

retries
When this structure is retrieved this field contains the number of retries that the
implementation will perform when a challenge fails.

When this structure is being set this field contains the recommended number of
retries that the implementation should use. The implementation is free to ignore this
value if it chooses.

name
An array of one or more bytes and shall be formatted per section 4.1 of RFC 1994.

nameLength
The number of bytes that have been set in name.

minValueLength
When this structure is retrieved this field contains the minimum number of bytes that
can be used by the implementation to construct the CHAP Value.

When this structure is being set this field contains the recommended minimum
number of bytes to be used by the implementation to constructor the CHAP Value.

maxValueLength
When this structure is retrieved this field contains the maximum number of bytes that
can be used by the implementation to construct the CHAP Value.

When this structure is being set this field contains the recommended maximum
number of bytes to be used by the implementation to constructor the CHAP Value.

challengeSecret

When this structure is retrieved this field is unused and this array shall contain all
zeros.

iISCSI Management API SNIA Technical Position 80
Version 1.1.6

When this structure is set this field contains the CHAP Secret that is used when
computing the hash value that is used to challenge a target. It is also used to
compute the hash value when challenged by a target.

challengeSecretLength

When this structure is retrieved this field is unused and shall contain the value zero.

When this structure is being set this field contains the the length, in bytes, of the
secret that has been stored in challengeSecret.

reserved
This field is reserved and shall be set to all zeros.

Remarks
This structure is used to set the CHAP initiator authentication parameters for an LHBA.

This structure is included in the IMA_INITIATOR_AUTHPARMS union.

Currently, no method is provided to determine the hash algorithms that may be used, the
hash algorithms to use, or their preferred order of use.

iISCSI Management API SNIA Technical Position 81
Version 1.1.6

5.57 IMA_SRP_INITIATOR_AUTHPARMS

Format
typedef struct IMA_srp_initiator_authparms
{
IMA_BYTE userName[512];
IMA_UINT userNamelLength;
IMA_ BYTE reserved[512];

} IMA_SRP_INITIATOR_AUTHPARMS:;
Fields

userName

The name of the user to be transmitted to the host (in this case the target) as
specified in RFC 2945.

userNameLength
The length, in bytes, of the name specified in userName.

reserved
This field is reserved and shall be set to zero.

Remarks

This structure is used to set the SRP initiator authentication parameters for an LHBA.

This structure is included in the IMA_INITIATOR_AUTHPARMS union.

iISCSI Management API SNIA Technical Position
Version 1.1.6

82

5.58 IMA_KRBS_INITIATOR_AUTHPARMS

Format
typedef struct IMA_krb5_initiator_authparms
{
IMA_BYTE clientKey[1024];
IMA_UINT clientkeyLength;
IMA_ BYTE reserved[2048];

} IMA_KRB5_INITIATOR_AUTHPARMS;
Fields

clientkey
When this structure is retrieved this field shall be set to zero.

When this structure is set this field shall contain the client key to be used.

clientkKeyLength
When this structure is retrieved this field shall be set to zero.

When this structure is set this field shall contain the length, in bytes, of the client key
stored in clientKey.

reserved
This field is reserved and shall be set to 0.

Remarks
This structure is used to set the Kerberos initiator authentication parameters for an LHBA.

Only target authentication is supported; mutual authentication, where the initiator
authenticates the target and the target authenticates the initiator is not currently
supported.

This structure is included in the IMA_INITIATOR_AUTHPARMS union.

iISCSI Management API SNIA Technical Position 83
Version 1.1.6

5.59 IMA_SPKM_INITIATOR_AUTHPARMS

Format

typedef struct IMA_spkm_initiator_authparms

{
IMA_BYTE privateKey[4096];
IMA_UINT privateKeyLength;
void publicKey[4096];
IMA_UINT publicKeyLength;
IMA_ BYTE reserved[4096];

} IMA_SPKM_INITIATOR_AUTHPARMS;
Fields

privateKey
When this structure is retrieved this field shall be set to all zeros.

When this structure is set this field contains the private key of the associated object.

privateKeyLength
When this structure is retrieved this field shall be zero.

When this structure is set this field contains the length, in bytes, of the private key
stored in privateKey.

publicKey
When this structure is retrieved this field shall be the currently set public key of the
associated object.

When this structure is set this field contains the new public key of the associated
object.

publicKeyLength

When this structure is retrieved this field shall be the length, in bytes, of the public
key stored in publicKey.

When this structure is set this field contains the length, in bytes, of the public key
stored in publicKey.

Remarks

This structure is used to set the SPKM1 and SPKM2 initiator authentication parameters
for an LHBA.

This structure is included in the IMA_INITIATOR_AUTHPARMS union.

No method is provided to retrieve or control the algorithm identifiers used by SPKM1 or
SPKM2.

iISCSI Management API SNIA Technical Position
Version 1.1.6

84

5.60 IMA_INITIATOR_AUTHPARMS

Format
typedef union IMA_initiator_authparms
{
IMA_CHAP_INITIATOR_AUTHPARMS chapParms;
IMA_SRP_INITIATOR_AUTHPARMS srpParms;
IMA_KRB5_INITIATOR_AUTHPARMS kerberosParms;
IMA_SPKM_INITIATOR_AUTHPARMS spkmParms;

} IMA_INITIATOR_AUTHPARMS;
Fields

chapParms

The initiator authentication parameters for CHAP if the authentication method is
IMA_AUTHMETHOD_CHAP.

srpParms

The initiator authentication parameters for SRP if the authentication method is
IMA_AUTHMETHOD_SRP.

kerberosParms

The initiator authentication parameters for Kerberos if the authentication method is
IMA_AUTHMETHOD_KRBS.

spkmParms

The initiator authentication parameters for SPKM if the authentication method is
IMA_AUTHMETHOD_SPKM1 or IMA_AUTHMETHOD_SPKM2.

Remarks

This structure is used as a parameter to the IMA_GetlnitiatorAuthParms and the
IMA_SetlnitiatorAuthParms APIs.

iISCSI Management API SNIA Technical Position
Version 1.1.6

85

6 APIs

There are ten groups of APIs in the iISCSI Management API. These groups are:
1. Library and Plugin APIs
2. Node APIs
3. Logical HBA APIs

Physical HBA APIs

Network Portal APIs

Logical Network Port (LNP) APIs

Physical Network Port (PNP) APIs

Target APIs

© © N o 0 &

Logical Unit (LU) APIs

10. Miscellaneous APls

iISCSI Management API SNIA Technical Position
Version 1.1.6

6.1 APIs by Category
6.1.1 Library and Plugin APIs
There are five APIs that deal with the library and plugins. They are:

1. IMA_GetLibraryProperties
2. IMA_GetPluginOidList
3. IMA_GetPluginProperties
4. IMA_PluginlOCt|
5. IMA_GetAssociatedPluginOid

6.1.2 Node APIs
There are seven node related APIs. They are:

1. IMA_GetSharedNodeOid

2. IMA_GetNonSharedNodeOidList
3. IMA_GetNodeProperties
IMA_SetNodeName
IMA_GenerateNodeName

IMA_SetNodeAlias

N oo g A

IMA_GetAssociatedPluginOid

6.1.3 Logical HBA APIs
There are 43 logical HBA related APIs. They are:

1. IMA_GetLhbaOidList
IMA_GetLhbaProperties
IMA_GetNetworkPortalOidList
IMA_GetTargetOidList

2

3

4

5. IMA_GetLuOidList
6. IMA_GetDiscoveryProperties

7. IMA_SetlsnsDiscovery

8. IMA_SetSlIpDiscovery

9. IMA_SetStaticDiscovery

10. IMA_AddStaticDiscoveryTarget

11. IMA_RemoveStaticDiscoveryTarget

iISCSI Management API SNIA Technical Position
Version 1.1.6

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

iISCSI Management API

Version 1.1.6

IMA_SetSendTargetsDiscovery
IMA_GetlpsecProperties
IMA_RemoveStaleData
IMA_GetFirstBurstLengthProperties
IMA_SetFirstBurstLength
IMA_GetMaxBurstLengthProperties
IMA_SetMaxBurstLength

IMA_GetMaxRecvDataSegmentLengthProperties

IMA_SetMaxRecvDataSegmentLength
IMA_GetMaxConnectionsProperties
IMA_SetMaxConnections
IMA_GetDefaultTime2RetainProperties
IMA_SetDefaultTime2Retain
IMA_GetDefaultTime2WaitProperties
IMA_SetDefaultTime2Wait
IMA_GetlnitialR2TProperties
IMA_SetInitialRT2
IMA_GetMaxOutstandingRT2Properties
IMA_SetMaxOutstandingR2T
IMA_GetErrorRecoveryLevelProperties
IMA_SetErrorRecoverylLevel
IMA_GetimmediateDataProperties
IMA_SetimmediateData
IMA_GetDataPdulnOrderProperties
IMA_SetDataPdulnOrder
IMA_GetDataSequencelnOrderProperties
IMA_SetDataSequencelnOrder
IMA_GetSupportedAuthMethods
IMA_GetIinUselnitiatorAuthMethods
IMA_SetlnitiatorAuthMethods
IMA_GetlnitiatorAuthParms

IMA_SetlInitiatorAuthParms

SNIA Technical Position

88

6.1.4 Physical HBA APIs
There are 15 physical HBA related APIs. They are:

1. IMA_GetPhbaOidList

2. IMA_GetPhbaProperties

3. IMA_GetPhbaStatus
IMA_GetDiscoveryProperties
IMA_SetlsnsDiscovery
IMA_SetSIpDiscovery
IMA_SetStaticDiscovery

IMA_AddsStaticDiscoveryTarget

© © N o 0 &

IMA_RemoveStaticDiscoveryTarget
10. IMA_SetSendTargetsDiscovery

11. IMA_GetPnpOidList

12. IMA_GetPhbaDownloadProperties
13. IMA_IsPhbaDownloadFile

14. IMA_PhbaDownload

15. IMA_SetStatisticsCollection

6.1.5 Network Portal APIs
There are currently three network portal related APIs. They are:

1. IMA_GetNetworkPortalOidList
2. IMA_GetNetworkPortalProperties
3. IMA_SetNetworkPortallpAddress

6.1.6 Logical Network Port (LNP) APIs
There are currently four logical network prot related APIs. They are:

1. IMA_GetLnpOidList
2. IMA_GetPnpOidList
3. IMA_GetLnpProperties

4. IMA_GetNetworkPortStatus

iISCSI Management API SNIA Technical Position
Version 1.1.6

89

6.1.7 Physical Network Port (PNP) APIs
There are currently four physical network port related APIs. They are:

1. IMA_GetPnpOidList
IMA_GetNetworkPortStatus
IMA_GetPnpProperties

IMA_GetStatisticsProperties

2

3

4

5. IMA_GetPnpStatistics
6. IMA_GetlpProperties

7. IMA_SetlpConfigMethod

8. IMA_SetDefaultGateway

9. IMA_SetDnsServerAddress

10. IMA_SetSubnetMask

6.1.8 Target APIs
There are currently 32 target related APIs. They are:

1. IMA_GetAddressKeys

2. IMA_GetTargetOidList

3. IMA_GetTargetProperties
IMA_GetStatisticsProperties
IMA_GetTargetErrorStatistics
IMA_SetSendTargetsDiscovery
IMA_GetLuOidList

IMA_GetFirstBurstLengthProperties

© © N o g &

IMA_SetFirstBurstLength

10. IMA_GetMaxBurstLengthProperties

11. IMA_SetMaxBurstLength

12. IMA_GetMaxRecvDataSegmentLengthPropertie
13. IMA_SetMaxRecvDataSegmentLength

14. IMA_GetMaxConnectionsProperties

15. IMA_SetMaxConnections

16. IMA_GetDefaultTime2RetainProperties

17. IMA_SetDefaultTime2Retain

iISCSI Management API SNIA Technical Position
Version 1.1.6

18. IMA_GetDefaultTime2WaitProperties
19. IMA_SetDefaultTime2Wait

20. IMA_GetlInitialR2TProperties

21. IMA_SetInitialRT2

22. IMA_GetMaxOutstandingRT2Properties
23. IMA_SetMaxOutstandingR2T

24. IMA_GetErrorRecoverylLevelProperties
25. IMA_SetErrorRecoverylLevel

26. IMA_GetlmmediateDataProperties

27. IMA_SetimmediateData

28. IMA_GetDataPdulnOrderProperties

29. IMA_SetDataPdulnOrder

30. IMA_GetDataSequencelnOrderProperties
31. IMA_SetDataSequencelnOrder

32. IMA_GetDeviceStatistics

33. IMA_SetStatisticsCollection

6.1.9 Logical Unit (LU) APIs
There are currently ten logical unit related APIs. They are:

1. IMA_GetLuOid

2. IMA_GetLuOidList
3. IMA_GetLuProperties
IMA_Lulnquiry
IMA_LuReadCapacity
IMA_LuReportLuns
IMA_ExposeLu

IMA_UnexposeLu

© © N o g &

IMA_GetStatisticsProperties
10. IMA_GetDeviceStatistics

11. IMA_SetStatisticsCollection

6.1.10 Miscellaneous APIs

iISCSI Management API SNIA Technical Position
Version 1.1.6

There are six miscellaneous APIs. They are:

iISCSI Management API

Version 1.1.6

1.

2
3
4,
5
6

IMA_GetObjectType

IMA_FreeMemory
IMA_RegisterForObijectVisibilityChanges
IMA_DeregisterForObjectVisibilityChanges
IMA_RegisterForObjectPropertyChanges
IMA_DeregisterForObjectPropertyChanges

SNIA Technical Position

92

6.2 APIs by Name

There are 98 APIs in the iISCSI Management API. They are:

1.
2.

© © N o 0 &

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.

iISCSI Management API

IMA_AddDiscoveryAddress

IMA_AddStaticDiscoveryTarget

IMA_DeregisterForObjectPropertyChanges
IMA_DeregisterForObjectVisibilityChanges

IMA_ExposelLu
IMA_FreeMemory
IMA_GenerateNodeName
IMA_GetAddressKeyProperties
IMA_GetAssociatedPluginOid

. IMA_GetDataPdulnOrderProperties

IMA_GetDataSequencelnOrderProperties

IMA_GetDefaultTime2RetainProperties
IMA_GetDefaultTime2WaitProperties
IMA_GetDeviceStatistics
IMA_GetDiscoveryAddressOidList
IMA_GetDiscoveryAddressProperties
IMA_GetDiscoveryProperties
IMA_GetErrorRecoveryLevelProperties
IMA_GetFirstBurstLengthProperties
IMA_GetimmediateDataProperties
IMA_GetlnitialR2TProperties
IMA_GetlnitiatorAuthParms
IMA_GetIinUselnitiatorAuthMethods
IMA_GetlpProperties
IMA_GetlpsecProperties
IMA_GetLhbaOidList
IMA_GetLhbaProperties
IMA_GetLibraryProperties
IMA_GetLnpOidList

Version 1.1.6

30
31

. IMA_GetLnpProperties

. IMA_GetLuOid

. IMA_GetLuOidList

. IMA_GetLuProperties

. IMA_GetMaxBurstLengthProperties

. IMA_GetMaxConnectionsProperties

. IMA_GetMaxOutstandingRT2Properties

. IMA_GetMaxRecvDataSegmentLengthProperties

. IMA_GetNetworkPortalOidList

. IMA_GetNetworkPortalProperties
. IMA_GetNetworkPortStatus

. IMA_GetNodeProperties

. IMA_GetNonSharedNodeOidList
. IMA_GetObjectType

. IMA_GetPhbaDownloadProperties
. IMA_GetPhbaOidList

. IMA_GetPhbaProperties

. IMA_GetPhbaStatus

. IMA_GetPluginOidList

. IMA_GetPluginProperties

. IMA_GetPnpOidList

. IMA_GetPnpProperties

. IMA_GetPnpStatistics

. IMA_GetSharedNodeOid

. IMA_GetStaticDiscoveryTargetOidList

. IMA_GetStaticDiscoveryTargetProperties

. IMA_GetStatisticsProperties
. IMA_GetSupportedAuthMethods

. IMA_GetTargetErrorStatistics

SNIA Technical Position

93

59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.

IMA_GetTargetOidList
IMA_GetTargetProperties
IMA_IsPhbaDownloadFile
IMA_Lulnquiry
IMA_LuReadCapacity
IMA_LuReportLuns
IMA_PhbaDownload
IMA_PluginlOCitl

91.
92.
93.
94.
95.
96.
97.
98.

IMA_RegisterForObjectPropertyChanges

IMA_RegisterForObjectVisibility
IMA_RemoveDiscoveryAddress
IMA_RemoveStaleData
IMA_RemoveStaticDiscoveryTa
IMA_SetDataPdulnOrder
IMA_SetDataSequencelnOrder
IMA_SetDefaultGateway
IMA_SetDefaultTime2Retain
IMA_SetDefaultTime2Wait
IMA_SetDnsServerAddress
IMA_SetErrorRecoveryLevel
IMA_SetFirstBurstLength
IMA_SetimmediateData
IMA_SetlnitialRT2
IMA_SetlnitiatorAuthMethods
IMA_SetlnitiatorAuthParms
IMA_SetlpConfigMethod
IMA_SetlsnsDiscovery
IMA_SetMaxBurstLength
IMA_SetMaxConnections
IMA_SetMaxOutstandingR2T
IMA_SetMaxRecvDataSegment
IMA_SetNetworkPortallpAddres

iISCSI Management API
Version 1.1.6

Changes

rget

Length

S

IMA_SetNodeAlias
IMA_SetNodeName
IMA_SetSendTargetsDiscovery
IMA_SetSlIpDiscovery
IMA_SetStaticDiscovery
IMA_SetStatisticsCollection
IMA_SetSubnetMask

IMA_UnexposeLu

SNIA Technical Position

94

6.2.1 IMA_AddDiscoveryAddress

Synopsis
Adds a discovery address to be used for send targets discovery by the specified
physical network port or logical HBA.

Prototype
IMA_STATUS IMA_AddDiscoveryAddress(
/*in*/ IMA_OID oid,

[*in*/ const IMA_TARGET_ADDRESS discoveryAddress,
/* out */ IMA_OID *pDiscoveryAddressOid

);

Parameters
oid
The object ID of the PNP or LHBA to which the discovery address is being
added.

discoveryAddress

The target address of the target to add to the specified PNP’s or LHBA's list of
discovery addresses that are to be used in a send targets discovery session.

pDiscoveryAddressOid

A pointer to a IMA_OID structure allocated by the caller or NULL. If not NULL,
on successful return it will contain the OID of the discovery address added by this
API.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the discovery address is used by the
PNP or the LHBA in a send targets discovery session.

IMA_ERROR_NOT_SUPPORTED

Returned if send targets discovery is not supported by the specified PNP or
LHBA.

IMA_ERROR_INVALID_PARAMETER

Returned if discoveryAddress is NULL or specifies a memory area from which
data cannot be read. Also, returned if discoveryAddress specifies an empty
structure.

Returned if pDiscoveryAddressOid is not NULL and specifies a memory area to
which data cannot be written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PNP or LHBA object.

iISCSI Management API SNIA Technical Position 95
Version 1.1.6

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a PNP or LHBA that is currently known to the
system.

Remarks

The discovery address is persistent, i.e., it will continue to be used until removed by
the IMA_RemoveDiscoveryAddress API.

It is not an error to specify a discovery address that is already being used.

This call does not verify that the specified discovery address exists or that the PNP or
LHBA has sufficient rights to login into the specified discovery address.

If the return value from this APl is IMA_SUCCESS then an attempt to use the
discovery address in a send targets discovery session will be made by the iISCSI
stack as soon as possible, possibly before the API returns control to the caller. If a
client wishes to know when the target(s) represented by the discovery address are
discovered it should call the IMA_RegisterForObjectVisibilityChanges API before
calling this API to register a notification function.

If the return value from this APl is IMA_STATUS REBOOT_NECESSARY then an
attempt to use the discovery address will be made by the iISCSI stack on reboot.
This discovery is guaranteed to have been attempted by the time the top of the iISCSI
stack finishes initializing. This may or may not occur prior to the time an IMA client
can execute.

Support

Mandatory if the sendTargetsDiscoverySettable field in the
IMA_DISCOVERY_PROPERTIES structure returned by
IMA_GetDiscoveryProperties is true for the same oid.

See Also

IMA_RemoveDiscoveryAddress
IMA_GetDiscoveryAddressProperties
IMA_RegisterForObijectVisibilityChanges
IMA_GetDiscoveryProperties

iISCSI Management API SNIA Technical Position 96

Version 1.1.6

6.2.2 IMA_AddStaticDiscoveryTarget

Synopsis
Adds a target to be statically discovered by the specified physical network port or
logical HBA.

Prototype

IMA_STATUS IMA_AddStaticDiscoveryTarget(
[*in*/ IMA_OID oid,
[*in*/ constIMA_STATIC_DISCOVERY_TARGET staticDiscoveryTarget,
/* out */ IMA_OID *pStaticDiscoveryTargetOid

);

Parameters
oid
The object ID of the PNP or LHBA to which the target to be discovered is being
added.

staticDiscoveryTarget

The name and target address of the target to add to the specified PNP’s or
LHBA's list of targets that are to be statically discovered.

pStaticDiscoveryTargetOid

A pointer to a IMA_OID structure allocated by the caller or NULL. If not NULL,
on successful return it will contain the OID of the static discovery target added by
this API.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before discovery of the specified target takes
affect.

IMA_ERROR_NOT_SUPPORTED

Returned if static target discovery is not supported by the specified PNP or
LHBA.

IMA_ERROR_INVALID_PARAMETER

Returned if staticDiscoveryTarget is NULL or specifies a memory area from
which data cannot be read. Also, returned if staticDiscoveryTarget specifies an
empty structure.

Returned if pStaticDiscoveryTargetOid is not NULL and specifies a memory area
to which data cannot be written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PNP or LHBA object.

iISCSI Management API SNIA Technical Position 97
Version 1.1.6

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a PNP or LHBA that is currently known to the
system.

Remarks

The discovery of the target is persistent, i.e., it will continue to be “discovered” until it
is removed using IMA_RemoveStaticDiscoveryTarget.

It is not an error to specify a target that is already being discovered, either statically
or by other methods.

This call does not verify that the specified target exists or that the PNP or LHBA has
sufficient rights to login into the specified target.

If the return value from this APl is IMA_SUCCESS then an attempt to discover the
specified target(s) will be made by the iISCSI stack as soon as possible, possibly
before the API returns control to the caller. If a client wishes to know when the
target(s) is/are actually discovered it should call the
IMA_RegisterForObijectVisibilityChanges API before calling this API to register a
notification function.

If the return value from this APl is IMA_STATUS REBOOT_NECESSARY then an
attempt to discover the specified target(s) will be made by the iSCSI stack on reboot.
This discovery is guaranteed to have been attempted by the time the top of the iISCSI
stack finishes initializing. This may or may not occur prior to the time an IMA client
can execute.

When a client is finished using the returned list it shall free the memory used by the
returned list by calling IMA_FreeMemory.

Support

Mandatory if the staticDiscoverySettable field in the
IMA_DISCOVERY_PROPERTIES structure returned by
IMA_GetDiscoveryProperties is true for the same oid.

See Also
IMA_RemoveStaticDiscoveryTarget

IMA_GetStaticDiscoveryTargetProperties
IMA_RegisterForObjectVisibilityChanges
IMA_GetDiscoveryProperties
IMA_SetStaticDiscovery

iISCSI Management API SNIA Technical Position 98
Version 1.1.6

6.2.3 IMA_DeregisterForObjectPropertyChanges

Synopsis

Deregisters a client function to be called whenever an object’s property changes.
Prototype

IMA_STATUS IMA_DeregisterForObjectPropertyChanges (

/*in* IMA_OBJECT_PROPERTY_FN pClientFn

);
Parameters

pClientFn

A pointer to an IMA_OBJECT_PROPERTY_FN function defined by the client that
was previously registered using the IMA_RegisterForObjectPropertyChanges
API. On successful return this function will no longer be called to inform the
client of object property changes.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pClientFn is NULL or specifies a memory area that is not executable.

Support
Mandatory

Remarks

The function specified by pClientFn will no longer be called whenever an object’s
property changes.

It is not an error to unregister a client function that is not registered.

See Also
IMA_RegisterForObjectPropertyChanges

iISCSI Management API SNIA Technical Position 99
Version 1.1.6

6.2.4 IMA_DeregisterForObjectVisibilityChanges

Synopsis
Deregisters a client function to be called whenever a high level object appears or
disappears.

Prototype

IMA_STATUS IMA_DeregisterForObjectVisibilityChanges (
/*in* IMA_OBJECT_VISIBILITY_FN pClientFn
);

Parameters
pClientFn

A pointer to an IMA_OBJECT_VISIBILITY_FN function defined by the client that
was previously registered using the IMA_RegisterForObjectVisibilityChanges
API. On successful return this function will no longer be called to inform the
client of object visibility changes.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pClientFn is NULL or specifies a memory area that is not executable.

Support
Mandatory

Remarks

The function specified by pClientFn will be no longer be called whenever high level
objects appear or disappear.

It is not an error to unregister a client function that is not registered.

See Also
IMA_RegisterForObjectVisibilityChanges

iISCSI Management API SNIA Technical Position 100
Version 1.1.6

6.2.5 IMA_ExposeLu

Synopsis

Exposes the specified logical unit to the operating system.
Prototype

IMA_STATUS IMA_ExposeLu(

/*in* IMA_OID luOid

);
Parameters

luOid

The object ID of the LU to expose to the operating system.

Typical Return Values
IMA_STATUS _REBOOT_NECESSARY
Returned if a reboot is necessary before the LU is exposed to the OS.

IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA associated with the LU does not support selective
exposing/exposing of logical units.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if luOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if luOid does not specify a LU object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if luOid does not specify a LU that is currently known to the system.

IMA_ERROR_LU_EXPOSED

Returned if luOid specifies a LU that is currently exposed to the operating
system.

IMA_ERROR_TARGET_TIMEOUT

Returned if the target associated with the specified LU failed to respond to an
iISCSI login request from an initiator.

IMA_ERROR_LOGIN_REJECTED

Returned if the target associated with the specified LU rejected an iSCSI login
request from an initiator.

Remarks

The exposing of the LU is persistent, i.e. the LU will continue to be exposed to the
OS whenever the associated device driver loads, until a successful call to
IMA_UnexposeLu for the same LU.

If a session has not already been created with the target associated with the logical
unit then an iSCSI login will be performed with the target to ensure that the initiator
has permission to access the target. If a session already exists between the LHBA

iISCSI Management API SNIA Technical Position 101
Version 1.1.6

and the target then another session may or may not be created, at the discretion of
the LHBA software and firmware.

Support

Mandatory if the luExposingSupported field of the IMA_LHBA PROPERTIES
structure returned by the IMA_GetLhbaProperties API for the LHBA that is associated
with the LU has the value IMA_TRUE.

See Also
Concepts: Target Object IDs and Logical Unit Object IDs

IMA_UnexposelLu
IMA_GetLuld
IMA_GetLuOidList

iISCSI Management API SNIA Technical Position 102
Version 1.1.6

6.2.6 IMA_FreeMemory

Synopsis

Frees memory returned by an IMA API.
Prototype

IMA_STATUS IMA_FreeMemory(

[*in */ void *pMemory

);
Parameters

pMemory

A pointer to memory returned by an IMA API, such as IMA_OID_LIST structure
returned by the library. If the specified pointer is NULL then the function
succeeds, but takes no action. On successful return if the specified pointer is
non-NULL the allocated memory is freed.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pMemory is non-NULL and specifies a memory area to which data
cannot be written.

Support
Mandatory

Remarks

Clients shall free all IMA_OID_LIST structures returned by any API by using this
function.

See Also
IMA_GetLhbaOidList

IMA_GetLnpOidList
IMA_GetLuOidList
IMA_GetNonSharedNodeOidList
IMA_GetPhbaOidList
IMA_GetPnpOidList
IMA_GetTargetOidList

iISCSI Management API SNIA Technical Position 103
Version 1.1.6

6.2.7 IMA_GenerateNodeName

Synopsis
Generates a ‘unique’ node name for the currently running system.

Prototype

IMA_STATUS IMA_GenerateNodeName(
[* out */ IMA_NODE_NAME generatedName
);

Parameters
generatedName
On successful return contains the generated node name.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if generatedName is NULL or specifies a memory area to that data
cannot be written.

Remarks

This API only generates a single name for a system, therefore it shall only be used to
generate the shared node name; it shall not be used to generate nonshared node
names.

This API call only generates a node name, it does not set the node name. To do that
call the IMA_SetNodeName API.

The name generated by this API is based on the name of the computer that the client
is running on. This API does not search the network to ensure that the generated
name is not already in use. If the client chooses to use the node name generated by
this API the client should ensure that the node name is not already being used by
another node.

Support
Mandatory

See Also
IMA_GetSharedNodeOid

IMA_GetNonSharedNodeOidList
IMA_SetNodeName

Example of Setting a Node Name

iISCSI Management API SNIA Technical Position 104
Version 1.1.6

6.2.8 IMA_GetAddressKeys

Synopsis
Gets the address keys of a target.

Prototype

IMA_STATUS IMA_GetAddressKeys(

*in */ IMA_OID targetOid,

/“out*/ IMA_ADDRESS_KEYS **ppKeys
);

Parameters
targetOid
The object ID of the target whose address keys are being retrieved.

ppKeys
A pointer to a pointer to an IMA_ ADDRESS_KEY Sstructure allocated by the
caller. On successful return this will contain a pointer to an
IMA_ADDRESS_KEYS structure.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if ppKeys is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if targetOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if targetOid does not specify a target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if targetOid does not specify a target that is currently known to the
system.

IMA_ERROR_TARGET_TIMEOUT

Returned if the target failed to respond to an iSCSI discovery session creation
from an initiator.

Remarks
The returned list of address keys is guaranteed to contain no duplicate values.
When a client is finished using the returned keys structure it shall free the memory
used by the list by calling IMA_FreeMemory.

Support
Mandatory

See Also
IMA_FreeMemory

iISCSI Management API SNIA Technical Position 105
Version 1.1.6

6.2.9 IMA_GetAssociatedPluginOid

Synopsis
Gets the object ID for the plugin associated with the specified object ID.

Prototype

IMA_STATUS IMA_GetAssociatedPluginOid(
*in */ IMA_OID oid
/~out*/ IMA_OID *pPluginOid

);

Parameters
oid
The object ID of an object that has been received from a previous API call.
pPluginOid
A pointer to an IMA_OID structure allocated by the caller. On successful return
this will contain the object ID of the plugin associated with the object specified by

oid. This can then be used to work with the plugin, e.g., to get the properties of
the plugin or the send the plugin an I0Ctl.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if oid specifies an object not owned by a plugin, but instead one that is
owned by the library.

Returned if pPluginOid is NULL or specifies a memory area to which data cannot
be written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid specifies an object with an invalid type.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify a plugin that is currently known to the system.

IMA_ERROR_PLUGINS_NOT_SUPPORTED
Returned if the library implementation does not support plugins.

Remarks
None

Support
Mandatory

See Also
Example of Getting an Associated Plugin ID

IMA_PluginlOCitl

iISCSI Management API SNIA Technical Position 106
Version 1.1.6

6.2.10 IMA_GetDataPdulnOrderProperties

Synopsis
Gets the DataPDUInOrder iSCSI login parameter properties for the specified logical
HBA or target.
Prototype
IMA_STATUS IMA_GetDataPdulnOrderProperties(
[*in*/ IMA_OID oid,

/* out */ IMA_BOOL_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose DataPDUInOrder properties are to
be retrieved.

pProps
A pointer to an IMA_BOOL_VALUE structure allocated by the caller. On
successful return this structure will contain the DataPDUInOrder properties for
the specified LHBA or target.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned ifoid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks
None

Support
Mandatory for both LHBAs and targets

See Also
IMA_SetDataPdulnOrder

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 107
Version 1.1.6

6.2.11 IMA_GetDataSequencelnOrderProperties

Synopsis
Gets the DataSequencelnOrder iSCSI login parameter properties for the specified
logical HBA or target.

Prototype
IMA_STATUS IMA_GetDataSequencelnOrderProperties(
[*in*/ IMA_OID oid,

/* out */ IMA_BOOL_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose DataSequence InOrder properties
are to be retrieved.

pProps
A pointer to an IMA_BOOL_VALUE structure allocated by the caller. On
successful return this structure will contain the DataSequencelnOrder
properties for the specified LHBA or target.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned ifoid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks
None

Support
Mandatory for both LHBAs and targets

See Also
IMA_SetDataSequencelnOrder

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 108
Version 1.1.6

6.2.12 IMA_GetDefaultTime2RetainProperties

Synopsis
Gets the Defaul tTime2Retain iSCSI login parameter properties for the specified
logical HBA or target.

Prototype
IMA_STATUS IMA_GetDefaultTime2RetainProperties(
[*in*/ IMA_OID oid,

/~out*/ IMA_MIN_MAX_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose Defaul tTime2Retain properties
are to be retrieved.

pProps
A pointer to an IMA_MIN_MAX_VALUE structure allocated by the caller. On
successful return this structure will contain the Defaul tTime2Retain
properties of this LHBA.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify a LHBA that is currently known to the system.

Remarks

The returned structure contains the minimum and maximum values for the
implementation, which may or may not be the minimum and maximum values as
found in IETF RFC 3720.

Support
Mandatory for both LHBAs and targets

See Also
IMA_SetDefaultTime2Retain

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 109
Version 1.1.6

6.2.13 IMA_GetDefaultTime2WaitProperties

Synopsis
Gets the Defaul tTime2Wait iSCSI login parameter properties for the specified
logical HBA or target.

Prototype
IMA_STATUS IMA_GetDefaultTime2WaitProperties(
[*in*/ IMA_OID oid,

/~out*/ IMA_MIN_MAX_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose Defaul tTime2Wai t properties are
to be retrieved.

pProps
A pointer to an IMA_MIN_MAX_VALUE structure allocated by the caller. On
successful return this structure will contain the Defaul tTime2Wait properties
for the specified LHBA or target.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The returned structure contains the minimum and maximum values for the
implementation, which may or may not be the minimum and maximum values as
found in IETF RFC 3720.

Support
Mandatory for both LHBAs and targets

See Also
IMA_SetDefaultTime2Wait

ISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 110
Version 1.1.6

6.2.14 IMA_GetDeviceStatistics

Synopsis
Gets the statistics of the specified target or logical unit which is exposed to the
operating system.

Prototype
IMA_STATUS IMA_GetDeviceStatistics(
[*in*/ IMA_OID oid,

/“out*/ IMA_DEVICE_STATISTICS *pStats
);

Parameters
oid
The object ID of the target or LU whose statistics are being retrieved.

pStats

A pointer to an IMA_DEVICE_STATISTICS structure allocated by the caller. On
successful return it will contain the statistics of the specified target or LU.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pStats is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LU object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify a LU that is currently known to the system.

IMA_ERROR_LU_NOT_EXPOSED

Returned if oid specifies a target that has not no LUs exposed to the operating
system.

Returned if oid specifies a LU that is not exposed to the operating system.

IMA_ERROR_STATS COLLECTION_NOT_ENABLED
Returned if statistics collection is not enabled for oid.

Remarks

If oid specifies a target then the statistics for the target are returned. At least one LU
shall be exposed to the operating system for the target to have statistics.

If oid specifies a LU then the statistics for the LU are returned. The LU shall be
exposed to the operating system for the LU to have statistics.

iISCSI Management API SNIA Technical Position 111
Version 1.1.6

Support

Mandatory if the statisticsCollectionEnabled field of the
IMA_STATISTICS_PROPERTIES structure returned by the
IMA_GetStatisticsProperties API has the value IMA_TRUE.

See Also
IMA_STATISTICS_PROPERTIES

IMA_GetLuOidList
IMA_SetStatisticsCollection

iISCSI Management API SNIA Technical Position 112
Version 1.1.6

6.2.15 IMA_GetDiscoveryAddressOidList

Synopsis
Gets a list of the object IDs of all the discovery addresses associated with the
specified logical HBA or physical network port.

Prototype
IMA_STATUS IMA_GetDiscoveryAddressOidList(
/*in*/ IMA_OID oid,

/~out*/ IMA_OID_LIST **ppList
);

Parameters
oid
The object ID of the logical HBA object or a physical network port object for
which to retrieve the known discovery addresses.

ppList

A pointer to a pointer to an IMA_OID_LIST structure. On successful return this
will contain a pointer to an IMA_OID_LIST that contains the object IDs of all of
the discovery addresses associated with the specified object.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if ppList is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_NOT_SUPPORTED

Returned if send targets discovery is not supported by the specified PNP or
LHBA.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or a PNP object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify an object that is currently known to the system.

Remarks
The returned list is guaranteed to not contain any duplicate entries.

When a client is finished using the returned list it shall free the memory used by the
list by calling IMA_FreeMemory.

Support

Mandatory if the sendTargetsDiscoverySettable field in the
IMA_DISCOVERY_PROPERTIES structure returned by
IMA_GetDiscoveryProperties is true for the same oid.

iISCSI Management API SNIA Technical Position 113
Version 1.1.6

See Also
IMA_FreeMemory

IMA_AddDiscoveryAddress
IMA_RemoveDiscoveryAddress

IMA_GetDiscoveryAddressProperties

iISCSI Management API SNIA Technical Position 114
Version 1.1.6

6.2.16 IMA_GetDiscoveryAddressProperties

Synopsis
Gets the properties of the specified discovery address.

Prototype

IMA_STATUS IMA_GetDiscoveryAddressProperties(
[*in */ IMA_OID discoveryAddressQOid,
* out */ IMA_DISCOVERY_ADDRESS_PROPERTIES *pProps

);

Parameters
discoveryAddressTargetOid
The object ID of the discovery address whose properties are being retrieved.

pProps
A pointer to an IMA_DISCOVERY_ADDRESS_PROPERTIES structure allocated

by the caller. On successful return this will contain the properties of the
discovery address specified by discoveryAddressOid.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if discoveryAddressOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if discoveryAddressOid does not specify a discovery address.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if discoveryAddressOid does not specify a discovery address that is
currently known to the system.

Remarks
None

Support
Mandatory

See Also
IMA_AddsStaticDiscoveryTarget

IMA_RemoveStaticDiscoveryTarget
IMA_GetStaticDiscoveryTargetOidList

iISCSI Management API SNIA Technical Position 115
Version 1.1.6

6.2.17 IMA_GetDiscoveryProperties

Synopsis
Gets the discovery properties of the specified physical or logical HBA.

Prototype

IMA_STATUS IMA_GetDiscoveryProperties(

[*in* IMA_OID oid,

/* out */ IMA_DISCOVERY_PROPERTIES *pProps
);

Parameters
oid
The object ID of the PHBA or LHBA whose discovery properties are being
retrieved.

pProps
A pointer to an IMA_DISCOVERY_PROPERTIES structure allocated by the

caller. On successful return it will contain the discovery properties of the
specified PHBA or LHBA.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT _TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PHBA or LHBA object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a PHBA or LHBA that is currently known to the
system.

Remarks
None

Support
Mandatory for PHBAs.

Optional for LHBAs.

See Also
IMA_GetPhbaOidList

IMA_GetLhbaOidList
IMA_SetlsnsDiscovery
IMA_SetSlIpDiscovery
IMA_SetStaticDiscovery

iISCSI Management API SNIA Technical Position 116
Version 1.1.6

IMA_SetSendTargetsDiscovery
Example of Getting PHBA Discovery Properties

iISCSI Management API SNIA Technical Position 117
Version 1.1.6

6.2.18 IMA_GetErrorRecoverylLevelProperties

Synopsis
Gets the ErrorRecoverylLevel iSCSI login properties for the specified logical HBA
or target.
Prototype
IMA_STATUS IMA_GetErrorRecoverylLevelProperties(
[*in*/ IMA_OID oid,

/~out*/ IMA_MIN_MAX_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose ErrorRecoverylLevel properties
are to be retrieved.

pProps
A pointer to an IMA_MIN_MAX_VALUE structure allocated by the caller. On
successful return this structure will contain the ErrorRecoverylevel
properties for the specified LHBA or target.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned ifoid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The returned structure contains the minimum and maximum values for the
implementation, which may or may not be the minimum and maximum values as
found in IETF RFC 3720.

Support
Mandatory for both LHBAs and targets

See Also
IMA_SetErrorRecoverylLevel

ISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 118
Version 1.1.6

6.2.19 IMA_GetFirstBurstLengthProperties

Synopsis
Gets the FirstBurstLength iSCSI login parameter properties of the specified
logical HBA or target.

Prototype
IMA_STATUS IMA_GetFirstBurstLengthProperties(
[*in*/ IMA_OID oid,

/~out*/ IMA_MIN_MAX_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose FirstBurstLength properties are
to be retrieved.

pProps
A pointer to an IMA_MIN_MAX_VALUE structure allocated by the caller. On
successful return this structure will contain the FirstBurstLength properties
of the specified LHBA or target.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The returned structure contains the minimum and maximum values for the
implementation, which may or may not be the minimum and maximum values as
found in IETF RFC 3720.

Support
Mandatory for both LHBAs and targets

See Also
IMA_MIN_MAX_VALUE

IMA_SetFirstBurstLength

iISCSI Management API SNIA Technical Position 119
Version 1.1.6

6.2.20 IMA_GetimmediateDataProperties

Synopsis
Gets the ImmediateData iSCSI login parameter properties for the specified logical
HBA or target.
Prototype
IMA_STATUS IMA_GetlmmediateDataProperties(
[*in*/ IMA_OID oid,

/* out */ IMA_BOOL_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose ImmediateData properties are to be
retrieved.

pProps
A pointer to an IMA_BOOL_VALUE structure allocated by the caller. On
successful return this structure will contain the ImmediateData properties for
the specified LHBA or target.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned ifoid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks
None

Support
Mandatory for both LHBAs and targets

See Also
IMA_SetimmediateData

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 120
Version 1.1.6

6.2.21 IMA_GetlnitialR2TProperties

Synopsis
Gets the InitialR2T iSCSI login parameter properties for the specified logical HBA
or target.
Prototype
IMA_STATUS IMA_GetlnitialR2TProperties(
[*in*/ IMA_OID oid,

/* out */ IMA_BOOL_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose InitialR2T properties are to be
retrieved.

pProps
A pointer to an IMA_BOOL_VALUE structure allocated by the caller. On
successful return this structure will contain the InitialR2T properties of the
specified LHBA or target.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned ifoid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks
None

Support
Mandatory for both LHBAs and targets

See Also
IMA_SetlInitialRT2

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 121
Version 1.1.6

6.2.22 IMA_GetlnitiatorAuthParms

Synopsis
Gets the parameters for the specified authentication method on the specified LHBA.
Prototype
IMA_STATUS IMA_GetlnitiatorAuthParms(
/*in* IMA_OID IhbaOid,
[in IMA_AUTHMETHOD method,

/“out*/ IMA_INITIATOR_AUTHPARMS *pParms
);

Parameters
IhbaOid

The object ID of the LHBA whose authentication parameters are to be retrieved.

method

The authentication method of the LHBA whose authentication parameters are to
be retrieved.

pParms

A pointer to an IMA_INITIATOR_AUTHPARMS structure. On successful return
this will contain the initiator authentication parameters for the specified
authentication method on the specified LHBA.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the getting of authentication parameters is not supported by the
specified LHBA. In this case, it is likely that LHBA does not support any
authentication methods.

IMA_ERROR_INVALID_PARAMETER

Returned if method does not specify a valid authentication method or does not
specify a supported authentication method.

Returned if method has the value IMA_ AUTHMETHOD_NONE.

Returned if pParms is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if IhbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if lhbaOid does not specify an LHBA.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if IhbaOid does not specify an LHBA that is currently known to the
system.

Remarks
None.

iISCSI Management API SNIA Technical Position 122
Version 1.1.6

Support
Optional

See Also
IMA_SetlnitiatorAuthParms

Client Implementation Notes: Transmission of Authorization Parameters

iISCSI Management API SNIA Technical Position 123
Version 1.1.6

6.2.23 IMA_GetInUselnitiatorAuthMethods

Synopsis
Gets the authentication methods currently in use by the specified logical HBA.

Prototype

IMA_STATUS IMA_GetInUselnitiatorAuthMethods(
/*in*/ IMA_OID IhbaOid,
[/*in, out */] IMA_UINT *pMethodCount,
[* out */ IMA_AUTHMETHOD *pMethodList;
);

Parameters
IhbaOid

The object ID of an LHBA whose authentication methods are to be retrieved.

pMethodCount

A pointer to an IMA_UINT allocated by the caller. On entry the pointed to value
shall contain the maximum number of entries that can be placed into

pMethodList. On return it will contain the number of entries that could be placed
into pMethodList.

pMethodList

A pointer to an array of IMA_ AUTHMETHODs allocated by the caller. This value
may be NULL. If this value is not NULL on successful return the array will be
filled in with the authentication methods currently being used by the LHBA.

These entries will be sorted in decreasing order of preference for use by the
LHBA.

If this value is NULL then the value pointed to by pMethodCount on entry shall be
zero.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pMethodList specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if IhbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if IhbaOid does not specify an LHBA.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if IhbaOid does not specify an LHBA that is currently known to the
system.

Remarks

This API is the counterpart of the IMA_SetInitiatorAuthMethods API. The list of
authentication methods returned by this API is the same list, in the same order, as
those specified to the last successful call to IMA_SetlnitiatorAuthMethods. If no

iISCSI Management API SNIA Technical Position 124
Version 1.1.6

successful call to IMA_SetlnitiatorAuthMethods has been made then the
authentication methods in the returned list and their order in the list is vendor specific.

A successful call to this API will always return at least one authentication method.
The returned list is guaranteed to contain no duplicate values.

The number of authentication methods returned in pMethodList will be the minimum
of the value in *pMethodCount on entry to the APl and the value of *pMethodCount
on succesful return from the API.

If the call fails and the value of pMethodList is not NULL then the data pointed to by
pMethodList will be unchanged.

Support
Mandatory

See Also
IMA_GetSupportedAuthMethods

IMA_SetInitiatorAuthMethods

iISCSI Management API SNIA Technical Position 125
Version 1.1.6

6.2.24 IMA_GetlpProperties

Synopsis
Gets the IP properties of the specified physical network port.

Prototype

IMA_STATUS IMA_GetlpProperties(

*in */ IMA_OID oid,

/“out*/ IMA_IP_PROPERTIES *pProps
);

Parameters
oid
The object ID of the PNP whose IP properties are to be retrieved.

pProps

A pointer to an IMA_IP_PROPERTIES structure. On successful return this will
contain the IP properties of the PNP specified by oid.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PNP object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify a PNP that is currently known to the system.

Remarks
None

Support
Mandatory

See Also
IMA_SetDefaultGateway

IMA_SetDnsServerAddress
IMA_SetlpConfigMethod
IMA_SetSubnetMask

iISCSI Management API SNIA Technical Position 126
Version 1.1.6

6.2.25 IMA_GetlpsecProperties

Synopsis
Gets the IPsec properties of the specified physical network port or logical HBA.

Prototype

IMA_STATUS IMA_GetlpsecProperties(

/*in* IMA_OID oid,

* out */ IMA_IPSEC_PROPERTIES *pProps
);

Parameters
phbaOid
The object ID of the PNP or LHBA whose IPsec properties are being retrieved.

pProps
A pointer to an IMA_IPSEC_PROPERTIES structure allocated by the caller. On

successful return this will contain the IPsec properties of the specified PNP or
LHBA.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if pid does not specify a PNP or LHBA object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a PNP or LHBA that is currently known to the
system.

Remarks

If the ipsecSupported field in the returned IMA_IPSEC_PROPERTIES structure has
the value of IMA_FALSE then the values of all other fields in the structure are not
defined.

Support
Mandatory

See Also
IMA_GetLhbaOidList

IMA_GetPnpOidList

IPsec Security in Client Usage Notes

iISCSI Management API SNIA Technical Position 127
Version 1.1.6

6.2.26 IMA_GetLhbaOidList

Synopsis
Gets a list of the object IDs of all the logical HBAs in the system.

Prototype
IMA_STATUS IMA_GetLhbaOidList(
/* out */ IMA_OID_LIST **ppList

);

Parameters
ppList
A pointer to a pointer to an IMA_OID_LIST structure. On successful return this
will contain a pointer to an IMA_OID_LIST that contains the object IDs of all of
the LHBASs currently in the system.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if ppList is NULL or specifies a memory area to which data cannot be
written.

Remarks
If there are no LHBASs then the call completes successfully and the returned list
contains zero entries.

The returned list is guaranteed to not contain any duplicate entries.

When a client is finished using the returned list it shall free the memory used by the
list by calling IMA_FreeMemory.

Support
Mandatory

See Also
IMA_FreeMemory

Example of Getting LHBA Properties

iISCSI Management API SNIA Technical Position 128
Version 1.1.6

6.2.27 IMA_GetLhbaProperties

Synopsis
Gets the properties of the specified logical HBA.

Prototype

IMA_STATUS IMA_GetLhbaProperties(

/*in* IMA_OID IhbaOid,

* out */ IMA_LHBA_PROPERTIES *pProps
);

Parameters
IhbaOid

The object ID of the LHBA whose properties are being retrieved.

pProps
A pointer to an IMA_LHBA PROPERTIES structure allocated by the caller. On

successful return this will contain the properties of the LHBA specified by
IhbaOid.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if IhbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if lhbaOid does not specify anLHBA.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if IhbaOid does not specify an LHBA that is currently known to the
system.

Remarks
None

Support
Mandatory

See Also
Example of Getting LHBA Properties

iISCSI Management API SNIA Technical Position 129
Version 1.1.6

6.2.28 IMA_GetLibraryProperties

Synopsis
Gets the properties of the IMA library that is being used.

Prototype

IMA_STATUS IMA_GetLibraryProperties(
/* out */ IMA_LIBRARY_PROPERTIES *pProps
)i

Parameters
pProps
A pointer to an IMA_LIBRARY_PROPERTIES structure allocated by the caller.
On successful return this structure will contain the properties of the IMA library
that is being used.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

Remarks
None

Support
Mandatory

See Also
Example of Getting Library Properties

iISCSI Management API SNIA Technical Position 130
Version 1.1.6

6.2.29 IMA_GetLnpOidList

Synopsis
Gets a list of the object IDs of all the iISCSI usable logical network ports in the
system.

Prototype

IMA_STATUS IMA_GetLnpOidList(
/~out*/ IMA_OID_LIST **ppList
);

Parameters
ppList
A pointer to a pointer to an IMA_OID_LIST. On successful return this will contain
a pointer to an IMA_OID_LIST that contains the object IDs of all of the iISCSI
usable LNPs known to the system.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if ppList is NULL or specifies a memory area to which data cannot be
written.

Remarks
The returned list is guaranteed to not contain any duplicate entries.

When the caller is finished using the list it shall free the memory used by the list by
calling IMA_FreeMemory.

Support
Mandatory

See Also
IMA_FreeMemory

iISCSI Management API SNIA Technical Position 131
Version 1.1.6

6.2.30 IMA_GetLnpProperties

Synopsis
Gets the properties of the specified logical network port.

Prototype

IMA_STATUS IMA_GetLnpProperties(

*in */ IMA_OID InpOid,

/~out*/ IMA_LNP_PROPERTIES *pProps
);

Parameters
InpOid
The object ID of the LNP whose properties are being retrieved.

pProps
A pointer to an IMA_LNP_PROPERTIES structure. On successful return this will
contain the properties of the LNP specified by InpOid.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if InpOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if InpOid does not specify an LNP.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if InpOid does not specify an LNP that is currently known to the system.

Remarks
None

Support
Mandatory

iISCSI Management API SNIA Technical Position 132
Version 1.1.6

6.2.31 IMA_GetLuOid

Synopsis
Gets a logical unit object ID for the specified LUN connected to the specified target.
Prototype
IMA_STATUS IMA_GetLuOid(
/*in* IMA_OID targetOid,
/*in* IMA_BYTE Iun[8],

/“out*/ IMA_OID *pluOid
);

Parameters
targetOid

The object ID of the target that controls the logical unit whose object ID is being
retrieved.

lun

The LUN specifying the logical unit of the target whose object ID is being
retrieved.

pluOid

A pointer to an IMA_OID structure allocated by the caller. On successful return it
will contain the object ID of the logical unit for the specified LUN connected to the
specified target.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pluOid is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if targetOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if targetOid does not specify a target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if targetOid does not specify a target that is currently known to the
system.

Remarks

This API does not verify that the specified LUN actually exists. The client should use
the IMA_LuReportLuns API to retrieve the LUNSs that are available on the specified
target.

Support
Mandatory

See Also
Concepts: Target Object IDs and Logical Unit Object IDs

iISCSI Management API SNIA Technical Position 133
Version 1.1.6

IMA_GetLuOidList
IMA_GetLuProperties
IMA_LuReportLuns

iISCSI Management API SNIA Technical Position 134
Version 1.1.6

6.2.32 IMA_GetLuOidList

Synopsis
Gets a list of the object IDs of all the logical units associated with the specified LHBA
or target object ID that are exposed to the operating system.

Prototype
IMA_STATUS IMA_GetLuOidList(
[*in*/ IMA_OID oid,

/~out*/ IMA_OID_LIST **ppList
);

Parameters
oid
The object ID of the LHBA or target whose logical unit object IDs are being
retrieved.

ppList

A pointer to a pointer to an IMA_OID_LIST structure. On successful return this
will contain a pointer to an IMA_OID_LIST that contains the object IDs of all of
the logical units associated with the specified object that are exposed to the
operating system.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if ppList is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The entries in the returned list represent LUs that are currently exposed to the
operating system. These LUs may have been exposed to the OS using the
IMA_ExposelLu API or may have been exposed to the OS via some other mechanism
outside of IMA.

The returned list is guaranteed to not contain any duplicate entries.
When a client is finished using the returned list it shall free the memory used by the
list by calling IMA_FreeMemory.

Support
Mandatory

iISCSI Management API SNIA Technical Position 135
Version 1.1.6

See Also
Concepts: Target Object IDs and Logical Unit Object IDs

IMA_FreeMemory
IMA_GetLuOid
IMA_GetLuProperties

iISCSI Management API SNIA Technical Position 136
Version 1.1.6

6.2.33 IMA_GetLuProperties

Synopsis
Gets the properties of the specified logical unit.

Prototype

IMA_STATUS IMA_GetLuProperties(

*in */ IMA_OID IuOid,

/“out*/ IMA_LU PROPERTIES *pProps
);

Parameters
luOid

The object ID of the LU whose properties are being retrieved.

pProps
A pointer to an IMA_LU_ PROPERTIES structure allocated by the caller. On
successful return it will contain the properties of the specified LU.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if luOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if luOid does not specify a LU object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if luOid does not specify a LU that is currently known to the system.

Remarks

A successful call to this API does not guarantee that the LU associated the luOid
actually exists. The best way for a client to ensure that a LU exists is to call the
IMA_Lulnquiry API and examine the returned data to determine if it indicates that the
LU exists.

Support
Mandatory

See Also
IMA_GetLuOid

IMA_GetLuOidList

iISCSI Management API SNIA Technical Position 137
Version 1.1.6

6.2.34 IMA_GetMaxBurstLengthProperties

Synopsis
Gets the MaxBurstLength iSCSI login parameter properties of the specified logical
HBA or target.
Prototype
IMA_STATUS IMA_GetMaxBurstLengthProperties(
[*in*/ IMA_OID oid,

/~out*/ IMA_MIN_MAX_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose MaxBurstLength properties are to
be retrieved.

pProps
A pointer to an IMA_MIN_MAX_VALUE structure allocated by the caller. On
successful return this structure will contain the MaxBurstLength properties of
the specified LHBA or target.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The returned structure contains the minimum and maximum values for the
implementation, which may or may not be the minimum and maximum values as
found in IETF RFC 3720.

Support
Mandatory for both LHBAs and targets

See Also
IMA_SetMaxBurstLength

ISCSI Session and Connection Parameters
Example of Getting/Setting LHBA Max Burst Length

iISCSI Management API SNIA Technical Position 138
Version 1.1.6

6.2.35 IMA_GetMaxConnectionsProperties

Synopsis
Gets the MaxConnections iSCSI login parameter properties for the specified logical
HBA or target.
Prototype
IMA_STATUS IMA_GetMaxConnectionsProperties(
[*in*/ IMA_OID oid,

/~out*/ IMA_MIN_MAX_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose MaxConnections properties are to
be retrieved.

pProps
A pointer to an IMA_MIN_MAX_VALUE structure allocated by the caller. On
successful return this structure will contain the MaxConnections properties of
sessions associated with this LHBA or target.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The returned structure contains the minimum and maximum values for the
implementation, which may or may not be the minimum and maximum values as
found in IETF RFC 3720.

Support
Mandatory for both LHBAs and targets

See Also
IMA_SetMaxConnections

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 139
Version 1.1.6

6.2.36 IMA_GetMaxOutstandingR2TProperties

Synopsis
Gets the MaxOutstandingR2T per task iSCSI login parameter properties for the
specified logical HBA or target.

Prototype
IMA_STATUS IMA_GetMaxOutstandingR2TProperties(
[*in*/ IMA_OID oid,

/~out*/ IMA_MIN_MAX_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose MaxOutstandingR2T properties are
to be retrieved.

pProps
A pointer to an IMA_MIN_MAX_VALUE structure allocated by the caller. On
successful return this structure will contain the MaxOutstandingR2T properties
for the specified LHBA or target.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned ifoid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The returned structure contains the minimum and maximum values for the
implementation, which may or may not be the minimum and maximum values as
found in IETF RFC 3720.

Support
Mandatory for both LHBAs and targets

See Also
IMA_SetMaxOutstandingR2T

ISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 140
Version 1.1.6

6.2.37 IMA_GetMaxRecvDataSegmentLengthProperties

Synopsis
Gets the MaxRecvDataSegmentLength iSCSI login parameter properties of the
specified logical HBA or target.

Prototype
IMA_STATUS IMA_GetMaxRecvDataSegmentLengthProperties(
[*in*/ IMA_OID oid,

/~out*/ IMA_MIN_MAX_VALUE *pProps
);

Parameters
oid
The object ID of the LHBA or target whose MaxRecvDataSegmentLength
properties are to retrieved.

pProps
A pointer to an IMA_MIN_MAX_VALUE structure allocated by the caller. On
successful return this structure will contain the MaxRecvDataSegmentLength
properties of the LHBA or target.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The returned structure contains the minimum and maximum values for the
implementation, which may or may not be the minimum and maximum values as
found in IETF RFC 3720.

Support
Mandatory for both LHBAs and targets

See Also
IMA_SetMaxRecvDataSegmentLength

ISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 141
Version 1.1.6

6.2.38 IMA_GetNetworkPortalOidList

Synopsis
Gets a list of the object IDs of the network portals that can be used to enumerate the
network portals of a logical HBA.

Prototype
IMA_STATUS IMA_GetNetworkPortalOidList(
[*in*/ IMA_OID oid,

/~out*/ IMA_OID_LIST **ppList
);

Parameters
oid
The object ID of the LNP whose network portals are being enumerated.

ppList

A pointer to a pointer to an IMA_OID_LIST structure. On successful return this
will contain a pointer to an IMA_OID_LIST that contains the object IDs of all of
the network portals associated with the specified OID.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if ppList is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify an LNP object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify an LNP that is currently known to the system.

Remarks
The returned list is guaranteed to not contain any duplicate entries.
When a client is finished using the returned list it shall free the memory used by the
list by calling IMA_FreeMemory.

Support
Mandatory

See Also
IMA_FreeMemory

iISCSI Management API SNIA Technical Position 142
Version 1.1.6

6.2.39 IMA_GetNetworkPortalProperties

Synopsis
Gets the properties of the specified network portal.

Prototype

IMA_STATUS IMA_GetNetworkPortalProperties(
[*in*/ IMA_OID networkPortalOid,
* out */ IMA_NETWORK_PORTAL_PROPERTIES *pProps

);

Parameters
networkPortalOid
The object ID of the network portal whose properties are being retrieved.

pProps

A pointer to an IMA_ NETWORK_PORTAL_PROPERITES structure allocated by
the caller. On successful return this structure will contain the properties of the
network portal specified by networkPortalOid.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if networkPortalOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if networkPortalOid does not specify a network portal object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if networkPortalOid does not specify an LNP that is currently known to
the system.

Remarks
None

Support
Mandatory

iISCSI Management API SNIA Technical Position 143
Version 1.1.6

6.2.40 IMA_GetNetworkPortStatus

Synopsis
Gets the status of a specified logical or physical network port.

Prototype

IMA_STATUS IMA_GetNetworkPortStatus(

*in */ IMA_OID portOid,

/~out*/ IMA_NETWORK_PORT_STATUS *pStatus
);

Parameters
portOid

The object ID of the logical or physical network port whose status is being
retrieved.

pStatus

A pointer to an IMA_ NETWORK_PORT_STATUS variable allocated by the
caller. On successful return it will contain the current status of the specified
logical or physical network port.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if pStatus is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if portOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if portOid does not specify a logical or physical network port object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if portOid does not specify a logical or physical network port that is
currently known to the system.

Remarks
None

Support
Mandatory for both LNPs and PNPs.

iISCSI Management API SNIA Technical Position 144
Version 1.1.6

6.2.41 IMA_GetNodeProperties

Synopsis
Gets the properties of the specified iISCSI node.

Prototype

IMA_STATUS IMA_GetNodeProperties(

/*in* IMA_OID nodeOid,

* out */ IMA_NODE_PROPERTIES *pProps
);

Parameters
nodeOid
The ID of the node to get the properties of.

pProps

A pointer to an IMA_NODE_PROPERTIES structure allocated by the caller. On
successful return this will contain the properties of the specified by nodeOid.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if nodeOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if nodeOid does not specify a hode object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if nodeOid does not specify a node that is currently known to the
system.

Remarks
None

Support
Mandatory

See Also
IMA_GetSharedNodeOid

IMA_GetNonSharedNodeOidList

Example of Getting Node Properties

iISCSI Management API SNIA Technical Position 145
Version 1.1.6

6.2.42 IMA_GetNonSharedNodeOidList

Synopsis
Gets a list of the object IDs for the non-shared nodes of the currently executing
operating system image.

Prototype

IMA_STATUS IMA_GetNonSharedNodeOidList(
/“out* IMA_OID_LIST **ppList

);

Parameters
ppList
A pointer to a pointer to an IMA_OID_LIST. On successful return this will contain
a pointer to an IMA_OID_LIST that contains the object IDs of all of the non-
shared nodes currently in the system.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if ppList is NULL or specifies a memory area to which data cannot be
written.

Remarks

If there are no non-shared nodes then the call completes successfully and the
returned list contains zero entries.

The returned list is guaranteed to not contain any duplicate entries.

When a client is finished using the returned list it shall free the memory used by the
list by calling IMA_FreeMemory.

Support
Mandatory

See Also
Concepts: The Shared Node vs. Non-shared Nodes

IMA_FreeMemory
IMA_GetSharedNodeOid
IMA_GetNodeProperties

Example of Getting an Associated Plugin ID

iISCSI Management API SNIA Technical Position 146
Version 1.1.6

6.2.43 IMA_GetObjectType

Synopsis
Gets the object type of an initialized object ID.

Prototype

IMA_STATUS IMA_GetObjectType(

*in */ IMA_OID oid,

/“out*/ IMA_OBJECT_TYPE *pObjectType
);

Parameters
oid
The initialized object ID to get the type of.

pObjectType
A pointer to an IMA_OBJECT_TYPE variable allocated by the caller. On
successful return it will contain the object type of oid.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pObjectType is NULL or specifies a memory area to which data
cannot be written.

IMA_ERROR_INVALID_OBJECT_TYPE

Returned if oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid has an owner that is not currently known to the system.

Remarks

This API is provided so that clients can determine the type of object an object ID
represents. This can be very useful for a client function that receives notifications of
object visibility changes.

Support
Mandatory

See Also
IMA_RegisterForObjectVisibilityChanges

iISCSI Management API SNIA Technical Position 147
Version 1.1.6

6.2.44 IMA_GetPhbaDownloadProperties

Synopsis
Gets the download properties for the specified PHBA.

Prototype

IMA_STATUS IMA_GetPhbaDownloadProperties(

/*in* IMA_OID phbaOid,

* out */ IMA_PHBA_DOWNLOAD_PROPERTIES *pProps
);

Parameters
phbaOid
The object ID of the PHBA whose download properties are being queried.

pProps
A pointer to an IMA_PHBA_DOWNLOAD_ PROPERTIES structure allocated by

the caller. On successful return it will contain the download properties of the
specified PHBA.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if phbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if phbaOid does not specify a PHBA object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if phbaOid does not specify a PHBA that is currently known to the
system.

Remarks
None

Support
Mandatory

See Also
IMA_GetPhbaOidList

IMA_IsPhbaDownloadFile
IMA_PhbaDownload

iISCSI Management API SNIA Technical Position 148
Version 1.1.6

6.2.45 IMA_GetPhbaOidList

Synopsis
Gets a list of the object IDs of all the physical HBAs in the system.

Prototype

IMA_STATUS IMA_GetPhbaOidList(
/~out* IMA_OID_LIST **ppList
);

Parameters
ppList

A pointer to a pointer to an IMA_OID_LIST. On successful return this will contain
a pointer to an IMA_OID_LIST that contains the object IDs of all of the PHBAs
currently in the system.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if ppList is NULL or specifies a memory area to which data cannot be
written.

Remarks
The returned list is guaranteed to not contain any duplicate entries.

If there are no PHBAS then the call completes successfully and the returned list
contains zero entries.

When a client is finished using the returned list it shall free the memory used by the
list by calling IMA_FreeMemory.

Support
Mandatory

See Also
IMA_FreeMemory

iISCSI Management API SNIA Technical Position 149
Version 1.1.6

6.2.46 IMA_GetPhbaProperties

Synopsis
Gets the general properties of a physical HBA.

Prototype

IMA_STATUS IMA_GetPhbaProperties(

/*in* IMA_OID phbaOid,

* out */ IMA_PHBA_PROPERTIES *pProps
);

Parameters
phbaOid
The object ID of the PHBA whose properties are being queried.

pProps
A pointer to an IMA_PHBA_PROPERTIES structure allocated by the caller. On

successful return this will contain the properties of the PHBA specified by
phbaOid.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if phbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if phbaOid does not specify a PHBA object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if phbaOid does not specify a PHBA that is currently known to the
system.

Remarks
None

Support
Mandatory

See Also
IMA_GetPhbaOidList

Example of Getting PHBA Properties

iISCSI Management API SNIA Technical Position 150
Version 1.1.6

6.2.47 IMA_GetPhbaStatus

Synopsis
Gets the status of a specified physical HBA.

Prototype

IMA_STATUS IMA_GetPhbaStatus(

*in */ IMA_OID hbaOid,

/~out*/ IMA_PHBA_ STATUS *pStatus
);

Parameters
hbaOid

The object ID of the physical HBA whose status is being retrieved.

pStatus

A pointer to an IMA_PHBA_STATUS variable allocated by the caller. On
successful return it will contain the current status of the specified physical HBA.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pStatus is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if hbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if hbaOid does not specify a physical HBA object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if hbaOid does not specify a physical HBA that is currently known to the
system.

Remarks
None

Support
Mandatory for PHBAs.

iISCSI Management API SNIA Technical Position 151
Version 1.1.6

6.2.48 IMA_GetPluginOidList

Synopsis
Gets a list of the object IDs of all currently loaded plugins.

Prototype

IMA_STATUS IMA_GetPluginOidList(
/~out* IMA_OID_LIST **ppList
);

Parameters
ppList

A pointer to a pointer to an IMA_OID_LIST. On successful return this will contain
a pointer to an IMA_OID_LIST that contains the object IDs of all of the plugins
currently loaded by the library.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if ppList is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_PLUGINS_NOT_SUPPORTED
Returned if the library implementation does not support plugins.

Remarks
The returned list is guaranteed to not contain any duplicate entries.
When the caller is finished using the list it shall free the memory used by the list by
calling IMA_FreeMemory.

Support
Mandatory

See Also
IMA_FreeMemory

IMA_GetPluginProperties
Example of Getting Plugin Properties

iISCSI Management API SNIA Technical Position 152
Version 1.1.6

6.2.49 IMA_GetPluginProperties

Synopsis
Gets the properties of the specified vendor plugin.

Prototype

IMA_STATUS IMA_GetPluginProperties(

[*in */ IMA_OID pluginOid

* out */ IMA_PLUGIN_PROPERTIES *pProps
)i

Parameters
pluginOid
The ID of the plugin whose properties are being retrieved.

pProps
A pointer to an IMA_PLUGIN_PROPERTIES structure allocated by the caller.
On successful return this will contain the properties of the plugin specified by
pluginid.

Typical Return Values
IMA_ERROR_INVALID_OBJECT_TYPE

Returned if pluginOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if pluginOid does not specify a plugin object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if pluginOid does not specify a plugin that is currently known to the
system.

IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

Remarks
None

Support
Mandatory

See Also
IMA_GetAssociatedPluginOid

IMA_GetPluginOidList
Example of Getting Plugin Properties

iISCSI Management API SNIA Technical Position 153
Version 1.1.6

6.2.50 IMA_GetPnpOidList

Synopsis
Gets a list of the object IDs of all the physical network ports associated with an
object.

Prototype

IMA_STATUS IMA_GetPnpOidList(
*in */ IMA_OID oid,
/~out*/ IMA_OID_LIST **ppList
);

Parameters
old

The object ID of the PHBA or LNP whose PNPs are being retrieved.

ppList

A pointer to a pointer to an IMA_OID_LIST. On successful return this will contain
a pointer to an IMA_OID_LIST that contains the object IDs of all of the PNPs that
associated with the specified PHBA or LNP.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if ppList is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PHBA or LNP.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a PHBA or LNP that is currently known to the
system.

Remarks
The returned list is guaranteed to contain at least one entry.
The returned list is guaranteed to not contain any duplicate entries.
When the caller is finished using the list it shall free the memory used by the list by
calling IMA_FreeMemory.

Support
Mandatory

See Also
IMA_FreeMemory

IMA_GetPnpProperties

iISCSI Management API SNIA Technical Position 154
Version 1.1.6

6.2.51 IMA_GetPnpProperties

Synopsis
Gets the properties of the specified physical network port.

Prototype

IMA_STATUS IMA_GetPnpProperties(

/*in* IMA_OID pnpOid,

* out */ IMA_PNP_PROPERTIES *pProps
);

Parameters
pnpOid
The object ID of the physical network port whose properties are being retrieved.

pProps
A pointer to an IMA_PNP_PROPERTIES structure. On successful return this will
contain the properties of the physical network port specified by pnpOid.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if pnpOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if pnpOid does not specify a physical network port object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if pnpOid does not specify a physical network port that is currently
known to the system.

Remarks
None

Support
Mandatory

iISCSI Management API SNIA Technical Position 155
Version 1.1.6

6.2.52 IMA_GetPnpStatistics

Synopsis
Gets the statistics related to a physical network port.

Prototype

IMA_STATUS IMA_GetPnpStatistics(

*in */ IMA_OID pnpOid,

/“out*/ IMA_PNP_STATISTICS *pStats
);

Parameters
pnpOid
The object ID of the physical network port whose statistics are being retrieved.

pStats

A pointer to an IMA_PNP_STATISTICS structure allocated by the caller. On
successful return it will contain the current statistics of the specified physical
network port.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pStats is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if pnpOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if pnpOid does not specify a physical network port object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if pnpOid does not specify a physical network port that is currently
known to the system.

IMA_ERROR_STATS_COLLECTION_NOT_ENABLED
Returned if statistics collection is not enabled for the PNP specified by pnpOid.

Remarks

Statistics can only be retrieved if statistics collection is enabled. The
IMA_GetStatisticsProperties APl is used to determine if statistics collection is
enabled and can be enabled. If statistics collection is not enabled, but can be
enabled, the IMA_SetStatisticsCollection APl is used to enable statistics collection.

Support

Mandatory if either the statisticsCollectionEnabled or statisticsCollectionSettable
fields of the IMA_STATISTICS PROPERTIES structure returned by the
IMA_GetStatisticsProperties API for the specified PNP have the value IMA_TRUE.

See Also
IMA_STATISTICS PROPERTIES

iISCSI Management API SNIA Technical Position 156
Version 1.1.6

IMA_GetStatisticsProperties
IMA_SetStatisticsCollection

iISCSI Management API SNIA Technical Position 157
Version 1.1.6

6.2.53 IMA_GetSharedNodeOid

Synopsis
Gets the object ID of the shared node of the currently executing operating system
image.

Prototype

IMA_STATUS IMA_GetSharedNodeOid(
/* out */ IMA_OID *pSharedNodeOid
);

Parameters
pSharedNodeOid

A pointer to an IMA_OID structure allocated by the caller. On successful return it
will contain the object ID of the shared node of the currently executing system is
placed.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pSharedNodeOid is NULL or specifies a memory area to which data
cannot be written.

Remarks
None

Support
Mandatory

See Also
Concepts: The Shared Node vs. Non-shared Nodes

IMA_GetNonSharedNodeOidList
IMA_GetNodeProperties
Example of Getting Node Properties

Example of Setting a Node Name

iISCSI Management API SNIA Technical Position 158
Version 1.1.6

6.2.54 IMA_GetStaticDiscoveryTargetOidList

Synopsis
Gets a list of the object IDs of all the static discovery targets associated with the
specified logical HBA or physical network port.

Prototype
IMA_STATUS IMA_GetStaticDiscoveryTargetOidList(
/*in*/ IMA_OID oid,

/~out*/ IMA_OID_LIST **ppList
);

Parameters
oid
The object ID of the logical HBA object or a physical network port object for
which to retrieve the known static discovery targets.

ppList

A pointer to a pointer to an IMA_OID_LIST structure. On successful return this
will contain a pointer to an IMA_OID_LIST that contains the object IDs of all of
the static discovery targets associated with the specified object.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if ppList is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or an PNP object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify an object that is currently known to the system.

Remarks
The returned list is guaranteed to not contain any duplicate entries.

When a client is finished using the returned list it shall free the memory used by the
list by calling IMA_FreeMemory.

Support

Mandatory if the staticDiscoverySettable field in the
IMA_DISCOVERY_PROPERTIES structure returned by
IMA_GetDiscoveryProperties is true for the same oid.

See Also
IMA_FreeMemory

IMA_AddStaticDiscoveryTarget

IMA_RemoveStaticDiscoveryTarget

iISCSI Management API SNIA Technical Position 159
Version 1.1.6

IMA_GetStaticDiscoveryTargetProperties

iISCSI Management API SNIA Technical Position 160
Version 1.1.6

6.2.55 IMA_GetStaticDiscoveryTargetProperties

Synopsis
Gets the properties of the specified static discovery target.

Prototype

IMA_STATUS IMA_GetStaticDiscoveryTargetProperties(
[*in */ IMA_OID staticDiscoveryTargetOid,
* out */ IMA_STATIC_DISCOVERY_TARGET_PROPERTIES *pProps

);

Parameters
staticDiscoveryTargetOid
The object ID of the static discovery target whose properties are being retrieved.

pProps
A pointer to an IMA_STATIC_DISCOVERY_TARGET_PROPERTIES structure

allocated by the caller. On successful return this will contain the properties of the
static discovery target specified by staticDiscoveryTargetOid.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if staticDiscoveryTargetOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if staticDiscoveryTargetOid does not specify a static discovery target.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if staticDiscoveryTargetOid does not specify a static discovery target
that is currently known to the system.

Remarks
None

Support
Mandatory

See Also
IMA_AddsStaticDiscoveryTarget

IMA_RemoveStaticDiscoveryTarget
IMA_GetStaticDiscoveryTargetOidList

iISCSI Management API SNIA Technical Position 161
Version 1.1.6

6.2.56 IMA_GetStatisticsProperties

Synopsis
Gets the statistics properties of the specified target, logical unit, or physical network
port.

Prototype

IMA_STATUS IMA_GetStatisticsProperties(

/*in*/ IMA_OID oid,

/* out */ IMA_STATISTICS_PROPERTIES *pProps
)i

Parameters
oid
The object ID of the target, LU, or PNP whose statistics are to be retrieved.
pProps

A pointer to an IMA_STATISTICS_PROPERTIES structure. On successful
return this will contain the statistics properties of the specified object.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if setting statistics collection is not supported for the specified object.

IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a target, LU, or PNP object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a target, LU, or PNP that is currently known to
the system.

Remarks
The setting of this value is persistent.

Support
Mandatory

See Also
IMA_GetDeviceStatistics

IMA_GetTargetErrorStatistics
IMA_SetStatisticsCollection

iISCSI Management API SNIA Technical Position 162
Version 1.1.6

6.2.57 IMA_GetSupportedAuthMethods

Synopsis
Gets a list of the authentication methods supported by the specified logical HBA.

Prototype
IMA_STATUS IMA_GetSupportedAuthMethods(
[*in*/ IMA_OID IhbaOid,
[*in*/ IMA_BOOL getSettableMethods,
/*in, out*/ IMA_UINT *pMethodCount,
/* out */ IMA_AUTHMETHOD *pMethodList;

);

Parameters
IhbaOid

The object ID of an LHBA whose authentication methods are to be retrieved.

getSettableMethods

A boolean that indicates which set of authentication methods should be returned.
If the value of this parameter is IMA_TRUE then a list of authentication methods
that are currently settable is returned. Settable authentication methods are those
methods whose authentication parameters have been set. If the value of this
parameter is IMA_FALSE then a list of all of the supported authentication
methods is returned. This list may include authentication methods which cannot
be set, i.e. enabled, until the method’s authentication parameters are set.

pMethodCount

A pointer to an IMA_UINT allocated by the caller. On entry the pointed to value
shall contain the maximum number of entries that can be placed into
pMethodList. On return it will contain the number of entries that could be placed
into pMethodList.

pMethodList

A pointer to an array of IMA_ AUTHMETHODs allocated by the caller. This value
may be NULL. If this value is not NULL on successful return the array will be
filled in with the authentication methods supported by the LHBA. These entries
will be sorted in decreasing order of preference of the vendor of the LHBA. If this
value is NULL then the value pointed to by pMethodCount on entry shall be zero.

Typical Return Values
IMA_ERROR_INVALID_OBJECT_TYPE

Returned if IhbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if IhbaOid does not specify an LHBA.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if IhbaOid does not specify an LHBA that is currently known to the
system.

iISCSI Management API SNIA Technical Position 163
Version 1.1.6

IMA_ERROR_INVALID_PARAMETER

Returned if pMethodList specifies a memory area to which data cannot be
written.

Remarks

A successful call to this API will always return at least one authentication method:
IMA_AUTHMETHOD_NONE.

The returned list is guaranteed to contain no duplicate values.

The number of authentication methods returned in pMethodList will be the minimum
of the value in *pMethodCount on entry to the APl and the value of *pMethodCount
on succesful return from the API.

If the call fails and the value of pMethodList is not NULL then the data pointed to by
pMethodList will be unchanged.

Support
Mandatory

See Also
IMA_GetInUselnitiatorAuthMethods

IMA_SetlnitiatorAuthMethods

iISCSI Management API SNIA Technical Position 164
Version 1.1.6

6.2.58 IMA_GetTargetErrorStatistics

Synopsis
Gets the error statistics of the specified target.

Prototype

IMA_STATUS IMA_GetTargetErrorStatistics(

/*in* IMA_OID targetOid,

* out */ IMA_TARGET_ERROR_STATISTICS *pStats
);

Parameters
targetOid
The object ID of the target whose error statistics are being retrieved.

pStats

A pointer to an IMA_TARGET_ERROR_STATISTICS structure allocated by the
caller. On successful return it will contain the error statistics of the specified
target.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pStats is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if targetOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if targetOid does not specify a target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if targetOid does not specify a target that is currently known to the
system.

IMA_ERROR_STATS_COLLECTION_NOT_ENABLED
Returned if statistics collection is not enabled for the specified target.

Remarks

Statistics are only collected when statistics collection is enabled for the target.
Determining if statistics collection can be enabled and is enabled is done using the
IMA_GetStatisticsProperties API. Statistics collection is enabled using the
IMA_SetStatisticsCollection API.

Support

Mandatory if the statisticsCollectionEnabled field of the
IMA_STATISTICS_PROPERTIES structure returned by the
IMA_GetStatisticsProperties API for the specified target has the value IMA_TRUE.

See Also
IMA_STATISTICS PROPERTIES

iISCSI Management API SNIA Technical Position 165
Version 1.1.6

IMA_GetStatisticsProperties
IMA_GetTargetOidList
IMA_SetStatisticsCollection

iISCSI Management API SNIA Technical Position 166
Version 1.1.6

6.2.59 IMA_GetTargetOidList

Synopsis
Gets a list of the object IDs of all the targets that have been discovered by the
specified logical HBA or that are reachable via the specified logical network port.

Prototype
IMA_STATUS IMA_GetTargetOidList(
[*in*/ IMA_OID oid,

/~out*/ IMA_OID_LIST **ppList
);

Parameters
oid
The object ID of the object to get the known targets of. This shall be a logical
HBA object or a logical network port object.

ppList

A pointer to a pointer to an IMA_OID_LIST structure. On successful return this
will contain a pointer to an IMA_OID_LIST that contains the object IDs of all of
the targets associated with the specified object.

Typical Return Values
IMA_ERROR_INVALID _PARAMETER

Returned if ppList is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or an LNP object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify an object that is currently known to the system.

Remarks

The returned list is the union of all targets that have been found via the various
discovery methods: static discovery, SLP, iSNS, and SendTargets.

The returned list is guaranteed to not contain any duplicate entries. Therefore, if oid
specifies an LHBA and an iSCSI target is discovered using more than one discovery
method it will appear only once in the returned list. However, if oid specifies an LNP
then a single iISCSI target may be accessible via multiple LHBAs, in which case a
single iISCSI target would be referred to be mulitple OIDs — one for each LHBA. In
this case, all of the OIDs that refererd to the iSCSI target would be in the returned list.

When a client is finished using the returned list it shall free the memory used by the
list by calling IMA_FreeMemory.

Support
Mandatory

iISCSI Management API SNIA Technical Position 167
Version 1.1.6

See Also
Concepts: Target Object IDs and Logical Unit Object IDs

IMA_FreeMemory
IMA_GetTargetProperties

iISCSI Management API SNIA Technical Position 168
Version 1.1.6

6.2.60 IMA_GetTargetProperties

Synopsis
Gets the properties of the specified target.

Prototype

IMA_STATUS IMA_GetTargetProperties(

/*in* IMA_OID targetOid,

* out */ IMA_TARGET_PROPERTIES *pProps
);

Parameters
targetOid
The object ID of the target whose properties are being retrieved.

pProps
A pointer to an IMA_TARGET_PROPERTIES structure allocated by the caller.
On successful return it will contain the properties of the specified target.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pProps is NULL or specifies a memory area to which data cannot be
written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if targetOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if targetOid does not specify a target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if targetOid does not specify a target that is currently known to the
system.

IMA_ERROR_TARGET_TIMEOUT
Returned if the target failed to respond to an iSCSI login request from an initiator.

IMA_ERROR_LOGIN_REJECTED
Returned if the target rejected an iSCSI login request from an initiator.

Remarks
This call can force an iSCSI login to the specified target.

Support
Mandatory

See Also
IMA_GetTargetOidList

iISCSI Management API SNIA Technical Position 169
Version 1.1.6

6.2.61 IMA_IsPhbaDownloadFile

Synopsis
Determines if a file is suitable for download to a physical HBA.

Prototype

IMA_STATUS IMA_IsPhbaDownloadFile(
[*in*/ IMA_OID phbaOid,
[*in*/ const IMA_WCHAR *pFileName,
/* out */ IMA_PHBA_DOWNLOAD_IMAGE_PROPERTIES *pProps

);

Parameters
phbaOid
The object ID of the PHBA whose download properties are being queried.

pFileName

A pointer to the name, and if necessary the path, of a file that is to be examined
to determine if it contains a downloadable image for the specified PHBA.

pProps
A pointer to an IMA_PHBA DOWNLOAD_ IMAGE_PROPERTIES structure

allocated by the caller. On successful return this structure will contain the
properties of the specified image file.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if this API is not supported by the specified PHBA.

IMA_ERROR_INVALID_PARAMETER

Returned if pFileName is NULL or specifies a memory area from which data
cannot be read.

Returned if pFileName specifies a file that cannot be opened for reading or that
does not contain a download image that can be download to the specified PHBA.

Returned if pProps is NULL or specifies a memory to which data cannot written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if phbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if phbaOid does not specify a PHBA object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if phbaOid does not specify a PHBA that is currently known to the
system.

Remarks

A client can use this API to validate that a file contains a download image before
attempting to download a file using IMA_PhbaDownload.

iISCSI Management API SNIA Technical Position 170
Version 1.1.6

Support

Mandatory if the isPhbaDownloadFileSupported field of the

IMA_PHBA DOWNLOAD_PROPERTIES structure returned by the
IMA_GetPhbaDownloadProperties API for the same PHBA has the value
IMA_ TRUE.

See Also
IMA_GetPhbaDownloadProperties

IMA_PhbaDownload

iISCSI Management API SNIA Technical Position 171
Version 1.1.6

6.2.62 IMA_Lulnquiry

Synopsis
Gets the specified SCSI INQUIRY data for the specified logical unit.
Prototype
IMA_STATUS IMA_Lulnquiry(
/*in* IMA_OID deviceOid,
/*in* IMA_BOOL evpd,
/*in* IMA_BOOL cmddt,
[*in*/ IMA_BYTE pageCode,

/* out */ IMA_BYTE *pOutputBuffer,
[/*in, out */1 IMA_UINT *pOutputBufferLength,

/* out */ IMA_BYTE *pSenseBuffer,
[/*in, out */] IMA_UINT *pSenseBufferLength

);

Parameters
deviceOid

The object ID of the target or LU whose INQUIRY data is to be retrieved. If the
object ID specifies a target then the command will be sent to LUN 0 of the target.

evpd
A boolean indicating if the EVPD bit shall be set.

cmddt
A boolean indicating if the CMDDT bit shall be set

pageCode
The value to be placed in the page or operation code byte.

pOutputBuffer

A pointer to the memory location which on successful completion will contain the
data returned by the logical unit.

pOutputBufferLength

On entry this shall point to the length, in bytes, of the memory area specified by
pOutputBuffer. On successful return this shall point to the number of bytes that
were placed into the output buffer.

pSenseBuffer

A pointer to a memory location which upon this command failing with a CHECK
CONDITION status will contain the sense data received from the logical unit.
This parameter may be NULL, in which case no sense data will be transferred to
the client if the INQUIRY command fails with a CHECK CONDITION status.

pSenseBufferLength

A pointer to the sense buffer length. On entry to the function this shall point to a
variable containing the maximum length, in bytes, of pSenseBuffer.

iISCSI Management API SNIA Technical Position 172
Version 1.1.6

If IMA_ERROR_SCSI_STATUS_CHECK_CONDITION is returned by the API
then on exit it will contain the number of sense data bytes returned in
pSenseBuffer. If pSenseBuffer is NULL then this value shall be 0. If any other
value is returned by the API then on exit this value will be unchanged.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pOutputBuffer is NULL or specifies a memory area to which
pOutputBufferLength bytes cannot be written.

Returned if outputBufferLength is 0.

Returned if *pSenseBufferLength is greater than zero and pSenseBuffer
specifies a memory area to which pSenseBufferLength bytes cannot be written.

Returned if evpd or cmddt have a value other than IMA_TRUE or IMA_FALSE.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if deviceOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if deviceOid does not specify a target or LU object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if deviceOid does not specify a target or LU that is currently known to
the system.

IMA_ERROR_SCSI_STATUS_CHECK_CONDITION

Returned if the SCSI INQUIRY command failed with a CHECK CONDITION
status. If this value is returned then if pSenseBuffer is not NULL it will contain
the sense data returned by the logical unit.

IMA_ERROR_TARGET_TIMEOUT

Returned if the target associated with the specified LU failed to respond to an
iISCSI login request from an initiator.

IMA_ERROR_LOGIN_REJECTED

Returned if the target associated with the specified LU rejected an iSCSI login
request from an initiator.

Remarks
None

Support
Mandatory

See Also
IMA_LuReadCapacity

IMA_LuReportLuns

iISCSI Management API SNIA Technical Position 173
Version 1.1.6

6.2.63 IMA_LuReadCapacity

Synopsis
Gets the SCSI READ CAPACITY data for the specified logical unit.
Prototype
IMA_STATUS IMA_LuReadCapacity(
/*in* IMA_OID deviceOid,
[*in*/ IMA_UINT cdbLength,

/* out */ IMA_BYTE *pOutputBuffer,
[/*in, out */] IMA_UINT *pOutputBufferLength,

/* out */ IMA_BYTE *pSenseBuffer,
[/*in, out */1 IMA_UINT *pSenseBufferLength

);

Parameters

deviceOid

The object ID of the target or LU whose READ CAPACITY data is being
retrieved. If the object ID specifies a target then the command will be sent to
LUN 0 of the target.

cdbLength
The length in bytes of the READ CAPACITY CDB that shall be sent to the target

or LU. Valid values are 10 and 16. Support of the 10 byte CDB is mandatory,
while support for the 16 byte CDB is optional.

pOutputBuffer

A pointer to the memory location that on successful completion will contain the
data returned by the logical unit.

pOutputBufferLength

On entry this shall point to the length, in bytes, of the memory area specified by
pOutputBuffer. On successful return this shall point to the number of bytes that
were actually placed into the output buffer.

pSenseBuffer

A pointer to a memory location that upon this command failing with a CHECK
CONDITION status will contain the sense data received from the logical unit.
This parameter may be NULL, in which case no sense data will be transferred to
the client if the READ CAPACITY command fails with a CHECK CONDITION
status.

pSenseBufferLength

A pointer to the sense buffer length. On entry to the function this shall point to a
variable containing the maximum length, in bytes, of pSenseBuffer.

If IMA_ERROR_SCSI_STATUS_CHECK_CONDITION is returned by the API
then on exit it will contain the number of sense data bytes returned in
pSenseBuffer. If pSenseBuffer is NULL then this value shall be 0. If any other
value is returned by the API then on exit this value will be unchanged.

iISCSI Management API SNIA Technical Position 174

Version 1.1.6

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pOutputBuffer is NULL or specifies a memory area to which
pOutputBufferLength bytes cannot be written.

Returned if outputBufferLength is 0.

Returned if pSenseBufferLength is greater than zero and pSenseBuffer specifies
a memory area to which pSenseBufferLength bytes cannot be written.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if deviceOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if deviceOid does not specify a target or LU object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if deviceOid does not specify a target or LU that is currently known to
the system.

IMA_ERROR_SCSI_STATUS_CHECK_CONDITION

Returned if the SCSI READ CAPACITY command failed with a CHECK
CONDITION status. If this value is returned then if pSenseBuffer is not NULL it
will contain the sense data returned by the logical unit.

IMA_ERROR_TARGET_TIMEOUT

Returned if the target associated with the specified LU failed to respond to an
iISCSI login request from an initiator.

IMA_ERROR_LOGIN_REJECTED

Returned if the target associated with the specified LU rejected an iSCSI login
request from an initiator.

Remarks

The length of the CDB affects both the length of the data buffer used and the format
of the data in pOutputBuffer on successful return from this API. It is up to the caller
to properly specify the length of the data buffer and to interpret the format of the
returned data.

Support
Mandatory

See Also
IMA_Lulnquiry

IMA_LuReportLuns

iISCSI Management API SNIA Technical Position 175
Version 1.1.6

6.2.64 IMA_LuReportLuns

Synopsis
Gets the SCSI REPORT LUNS data for the specified logical unit.
Prototype
IMA_STATUS IMA_LuReportLuns(
/*in* IMA_OID deviceOid,
[*in*/ IMA_BOOL sendToWellKnownLu,
[*in*/ IMA_BYTE selectReport,

/* out */ IMA_BYTE *pOutputBuffer,
[/*in, out */] IMA_UINT *pOutputBufferLength,

/* out */ IMA_BYTE *pSenseBuffer,
[/*in, out */1 IMA_UINT *pSenseBufferLength
);

Parameters
deviceOid

The object ID of the target or LU whose REPORT LUNS data is being retrieved.
If the object ID identifies a target then the command will be sent to either LUN 0
or the well known REPORT LUNS LUN of the target, depending upon the value
of wellKnownLun.

sendToWellKnownLu

If oid specifies a target then sendToWellKnownLu indicates if the REPORT
LUNS command shall be sent to the REPORT LUNS well known LU or to the LU
at LUN 0.

o If oid specifies a target and sendToWellKnownLu has the value
IMA_TRUE then the REPORT LUNS command will be sent to the
REPORT LUNS well known LU of the target.

o |If oid specifies a target and sendToWellKnownLu has the value
IMA_FALSE then the REPORT LUNS command will be sent to LUN 0 of
the target.

o If oid specifies a LU then the REPORT LUNS command is sent to the
specified LU and the value of sendToWellKnownLu is ignored.

See section 9 of ANSI INCITS 408-2005 for more information regarding well
known LUs.

selectReport

The select report value as defined for the REPORT LUNS command. See the
T10 document ANSI INCITS 408-2005 or your device's SCSI interface
documentation for more information on the values this field can contain.

pOutputBuffer

A pointer to the memory location that on successful completion will contain the
data returned by the logical unit.

iISCSI Management API SNIA Technical Position 176
Version 1.1.6

pOutputBufferLength

A pointers to the output buffer length. On entry to the function this shall point to a
variable containing the maximum length, in bytes, of pOutputBuffer.

On successful return it will contain the number of bytes that were actually
returned in pOutputBuffer. On failed return this value will be unchanged.

pSenseBuffer

A pointer to a memory location that upon this command failing with a CHECK
CONDITION status will contain the sense data received from the logical unit.
This parameter may be NULL, in which case no sense data will be transferred to
the client if the REPORT LUNS command fails with a CHECK CONDITION
status.

pSenseBufferLength

A pointer to the sense buffer length. On entry to the function this shall point to a
variable containing the maximum length, in bytes, of pSenseBuffer.

If IMA_ERROR_SCSI_STATUS_CHECK_CONDITION is returned by the API
then on exit it will contain the number of sense data bytes returned in
pSenseBuffer. If pSenseBuffer is NULL then this value shall be 0. If any other
value is returned by the API then on exit this value will be unchanged.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if deviceOid specifies a target and sendToWellKnownLu has the value
IMA_TRUE and sending to the REPORT LUNS well known LUN is not
supported.

IMA_ERROR_INVALID_PARAMETER

Returned if pOutputBuffer is NULL or specifies a memory area to which
pOutputBufferLength bytes cannot be written.

Returned if pOutputBufferLength is NULL or specifies a memory which cannot be
written.

Returned if *pOutputBufferLength is 0.

Returned if pSenseBufferLength is greater than zero and pSenseBuffer specifies
a memory area to which pSenseBufferLength bytes cannot be written.

Returned if sendToWellKnownLu has a value other than IMA_TRUE and
IMA_FALSE.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if deviceOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if deviceOid does not specify a LU object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if deviceOid does not specify a LU that is currently known to the
system.

iISCSI Management API SNIA Technical Position 177
Version 1.1.6

IMA_ERROR_SCSI_STATUS_CHECK_CONDITION

Returned if the SCSI REPORT LUNS command failed with a CHECK
CONDITION status. If this value is returned then if pSenseBuffer is not NULL it
will contain the sense data returned by the logical unit.

IMA_ERROR_TARGET_TIMEOUT

Returned if the target associated with the specified LU failed to respond to an
iISCSI login request from an initiator.

IMA_ERROR_LOGIN_REJECTED

Returned if the target associated with the specified LU rejected an iSCSI login
request from an initiator.

Remarks
None

Support

Mandatory in all situations except when oid specifies a target and
sendToWellKnownLu has the value IMA_TRUE. Supporting this situation is optional.

See Also
IMA_Lulnquiry

IMA_LuReadCapacity

iISCSI Management API SNIA Technical Position 178
Version 1.1.6

6.2.65 IMA_PhbaDownload

Synopsis
Downloads the image in the specified file to the specified physical HBA.
Prototype
IMA_STATUS IMA_PhbaDownload(
/*in* IMA_OID phbaOid,
/*in* IMA_PHBA_DOWNLOAD_IMAGE_TYPE imageType,

[*in*/ const IMA_WCHAR *pFileName
);

Parameters
phbaOid
The object ID of the PHBA whose to which the image file is being downloaded.

imageType
The type of a image that is to be downloaded.

pFileName
A pointer to the name, and if necessary the path, of a file that contains the image
to download to the PHBA.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if this API is not supported by the specified PHBA.

IMA_ERROR_INVALID_PARAMETER

Returned if imageType does not specify a valid
IMA_PHBA_DOWNLOAD_IMAGE_TYPE value.

Returned if pFileName is NULL or specifies a memory area from which data
cannot be read.

Returned if pFileName specifies a file that cannot be opened for reading or that
does not contain a download image of the specified image type.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if phbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if phbaOid does not specify a PHBA object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if phbaOid does not specify a PHBA that is currently known to the
system.

Remarks
None

iISCSI Management API SNIA Technical Position 179
Version 1.1.6

Support
If IMA_GetPhbaDownloadProperties is not supported then this API shall not be
supported as well.

Mandatory if any of the fields in the IMA_PHBA_DOWNLOAD_PROPERTIES
structure as would be returned by the IMA_GetPhbaDownloadProperties API for the
specified PHBA can be set to IMA_TRUE.

See Also
IMA_PHBA_DOWNLOAD_IMAGE_TYPE

IMA_GetPhbaDownloadProperties
IMA_IsPhbaDownloadFile

iISCSI Management API SNIA Technical Position 180
Version 1.1.6

6.2.66 IMA_PluginlOCitl

Synopsis
Sends a vendor specific command to a specified plugin.
Prototype
IMA_STATUS IMA_PluginlOCtl(
[*in */ IMA_OID pluginQid,
[*in*/ IMA_UINT command,
[*in*/ const void *plnputBuffer,
[*in*/ IMA_UINT inputBufferLength,

/* out */ void *pOutputBuffer,
[/*in, out */] IMA_UINT *pOutputBufferLength,
);

Parameters
pluginOid
The object ID of the plugin to which the command is being set.

command
The command to be sent to the plugin.

pinputBuffer

A pointer to a buffer allocated by the caller that contains any input parameters
the specified command needs. A value of NULL for this parameter indicates that
there are no input parameters being provided by the caller. In this case the value
of inputBufferLength shall be 0.

inputBufferLength

The length, in bytes, of the input buffer. The plugin shall not attempt to read
more data than is specified by the caller.

pOutputBuffer

A pointer to a buffer allocated by the caller that contains any output of the
specified command. A value of NULL for this parameter indicates that the caller
expects to receive no output data from the plugin. In this case the value of
pOutputBufferLength shall be NULL.

pOutputBufferLength

A pointer to a value that on entry contains the length, in bytes, of the output
buffer. On successful return that value will be the number of bytes returned in
pOutputBuffer. If this value is NULL then both plnputBuffer and pOutputBuffer
shall be NULL and inputBufferLength shall be 0.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the plugin does not support this API call.

IMA_ERROR_INVALID_PARAMETER
Returned if:

e plnputBuffer is NULL and inputBufferLength is not 0

iISCSI Management API SNIA Technical Position 181
Version 1.1.6

o pOutputBuffer is NULL and plnputBufferLength points to a value that is
not 0.

e pOutputBuffer is not NULL and pOutputBufferLength is NULL or points to
avalue that is 0.

o if the plugin does not support the specified command or if the input
and/or output buffers and lengths are not correct for the given command.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if pluginOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if pluginOid does not specify a plugin object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if pluginOid does not specify a plugin that is currently known to the
system.

Remarks

This purpose of this API call is to allow a client to send a plugin a command that is
vendor unique, i.e., a command that is specific to a particular plugin. The command
values and the format of both the input and output buffers is entirely plugin specific.
Itis up to a client to determine if a particular plugin supports particular plugin IOCtls
that the client wants to send. Clients can do this by using the vendor and version
fields of the IMA_PLUGIN_PROPERTIES structure as returned by the
IMA_GetPluginProperties API.

Support
Optional

See Also
IMA_PLUGIN_PROPERTIES

IMA_GetPluginOidList
IMA_GetPluginProperties

iISCSI Management API SNIA Technical Position 182
Version 1.1.6

6.2.67 IMA_RegisterForObjectPropertyChanges

Synopsis

Registers a client function to be called whenever the property of an object changes.
Prototype

IMA_STATUS IMA_RegisterForObjectPropertyChanges (

/*in* IMA_OBJECT_PROPERTY_FN pClientFn

);
Parameters

pClientFn

A pointer to an IMA_OBJECT_PROPERTY_FN function defined by the client.
On successful return this function will be called to inform the client of objects that
have had one or more properties change.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER
Returned if pClientFn is NULL or specifies a memory area that is not executable.

Support
Mandatory

Remarks

The function specified by pClientFn will be called whenever the property of an object
changes. For the purposes of this function a property is defined to be a field in an
object’s property structure and the object’s status. Therefore, the client function will
not be called if a statistic of the associated object changes. But, it will be called when
the status changes (e.g. from working to failed) or when a name or other field in a
property structure changes.

It is not an error to re-register a client function. However, a client function has only
one registration. The first call to deregister a client function will deregister it no
matter how many calls to register the function have been made.

If multiple properties of an object change simultaneously a client function may be
called only once to be notified that the changes have occurred.

See Also
IMA_DeregisterForObjectPropertyChanges

iISCSI Management API SNIA Technical Position 183
Version 1.1.6

6.2.68 IMA_RegisterForObjectVisibilityChanges

Synopsis
Registers a client function to be called whenever a high level object appears or
disappears.

Prototype

IMA_STATUS IMA_RegisterForObjectVisibilityChanges (
/*in* IMA_OBJECT_VISIBILITY_FN pClientFn
);

Parameters
pClientFn

A pointer to an IMA_OBJECT_VISIBILITY_FN function defined by the client. On
successful return this function will be called to inform the client of objects whose
visibility has changed.

Typical Return Values
IMA_ERROR_INVALID_PARAMETER

Returned if pClientFn is NULL or specifies a memory area that is not executable.

Support
Mandatory

Remarks

The function specified by pClientFn will be called whenever high level objects appear
or disappear. The following are considered high level objects:

« Nodes (IMA_OBJECT_TYPE_NODE)
e Logical HBAs (IMA_OBJECT TYPE_LHBA)
e Physical HBAs (IMA_OBJECT_TYPE_PHBA)
e Targets (IMA_OBJECT_TYPE_TARGET)

All other objects are considered lower level objects and the function specified by
pClientFn will not be called for their appearance or disappearance. Lower level
object visibility can be determined from high level object visibility.

It is not an error to re-register a client function. However, a client function has only
one registration. The first call to deregister a client function will deregister it no
matter how many calls to register the function have been made.

See Also
IMA_DeregisterForObjectVisibilityChanges

iISCSI Management API SNIA Technical Position 184
Version 1.1.6

6.2.69 IMA_RemoveDiscoveryAddress

Synopsis
Removes a discovery address being used for send targets discovery by a physical
network port or logical HBA.

Prototype

IMA_STATUS IMA_RemoveDiscoveryAddress(
[*in*/ IMA_OID discoveryAddressOid
);

Parameters
discoveryAddressOid

The object ID of the discovery address that is to no longer be used for send
targets discovery.

Typical Return Values
IMA_STATUS _REBOOT_NECESSARY

Returned if a reboot is necessary before the specified discovery address is no
longer used for send targets discovery.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if discoveryAddressOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if discoveryAddressOid does not specify a discovery address object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if discoveryAddressOid does not specify a discovery address that is
currently known to the system.

IMA_ERROR_LU_EXPOSED

Returned if discoveryAddressOid specifies an iSCSI target that currently has a
LU exposed to the operating system.

Remarks

This change is persistent. The specified discovery address will no longer be used by
the associated PNP or LHBA for send targets discovery.

Support
Mandatory

See Also
IMA_AddDiscoveryAddress

IMA_GetDiscoveryAddressProperties
IMA_GetDiscoveryProperties
IMA_SetSendTargetsDiscovery

iISCSI Management API SNIA Technical Position 185
Version 1.1.6

6.2.70 IMA_RemoveStaleData

Synopsis
Removes all of the stale persistent data of the specified LHBA.

Prototype

IMA_STATUS IMA_RemoveStaleData(
/*in*/ IMA_OID IhbaOid,
);

Parameters
IhbaOid

The object ID of the LHBA whose stale data is to be removed.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA does not support removing stale data.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if IhbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if IhbaOid does not specify a LHBA object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if IhbaOid does not specify a LHBA that is currently known to the
system.

Remarks
Stale data includes the following:

e Any data required to expose LUs that belong to targets that are not present.
This could occur by calling the IMA_ExposeLu API.

e AnyiSCSI login parameter applied specifically to targets that are not present.
This could occur by calling the IMA_SetMaxBurstLength,
IMA_SetMaxRecvDataSegmentLength, or other similar APIs.

Support

Mandatory if the staleDataRemovable field of the IMA_LHBA PROPERTIES
structure returned by the IMA_GetLhbaProperties API has the value IMA_TRUE for
the LHBA specified by InbaOid. Otherwise not supported, i.e., this call shall return
IMA_ERROR_NOT_SUPPORTED.

See Also
IMA_GetLhbaProperties

iISCSI Management API SNIA Technical Position 186
Version 1.1.6

6.2.71 IMA_RemoveStaticDiscoveryTarget

Synopsis
Removes a target being statically discovered by a physical network port or logical
HBA.
Prototype
IMA_STATUS IMA_RemoveStaticDiscoveryTarget(
[*in*/ IMA_OID staticDiscoveryTargetOid
);
Parameters

staticDiscoveryTargetOid
The object ID of the static discovery target that is to no longer be discovered.

Typical Return Values
IMA_STATUS _REBOOT_NECESSARY

Returned if a reboot is necessary before the specified static discovery target is
no longer discovered.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if staticDiscoveryTargetOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE

Returned if staticDiscoveryTargetOid does not specify a static discovery target
object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if staticDisocveryTargetOid does not specify a static discovery target
that is currently known to the system.

IMA_ERROR_LU_EXPOSED

Returned if staticDiscoveryTargetOid specifies an iSCSI target that currently has
a LU exposed to the operating system.

Remarks

This change is persistent. The specified target will no longer be discovered by the
associated PHBA or LHBA.

Support
Mandatory

See Also
IMA_AddStaticDiscoveryTarget

IMA_GetStaticDiscoveryTargetProperties
IMA_GetDiscoveryProperties

iISCSI Management API SNIA Technical Position 187
Version 1.1.6

IMA_SetStaticDiscovery

iISCSI Management API SNIA Technical Position 188
Version 1.1.6

6.2.72 IMA_SetDataPdulnOrder

Synopsis
Sets the DataPDUInOrder iSCSI login parameter value for the specified logical
HBA or target.
Prototype
IMA_STATUS IMA_SetDataPdulnOrder(
[*in*/ IMA_OID oid,
[*in*/ IMA_BOOL dataPdulnOrder
);
Parameters
oid

The object ID of the LHBA or target whose DataPDUInOrder value is being set.

dataPdulnOrder
The new value for the DataPDUInOrder value for the specified LHBA or target.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the DataPDUInOrder
takes affect.

IMA_ERROR_NOT_SUPPORTED
Returned if the LHBA does not support setting the DataPDUInOrder value.

IMA_ERROR_INVALID_PARAMETER

Returned if dataPdulnOrder does not contain the value IMA_TRUE or
IMA_FALSE.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

Support

Mandatory if the settable field in the IMA_BOOL_VALUE structure returned by
IMA_GetDataPdulnOrderProperties for the same oid has the value IMA_TRUE.

See Also

IMA_GetDataPdulnOrderProperties

iISCSI Management API SNIA Technical Position 189
Version 1.1.6

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 190
Version 1.1.6

6.2.73 IMA_SetDataSequencelnOrder

Synopsis
Sets the DataSequence InOrder iSCSI login parameter value for the specified
logical HBA or target.

Prototype
IMA_STATUS IMA_SetDataSequencelnOrder(
[*in*/ IMA_OID oid,
[*in*/ IMA_BOOL dataSequencelnOrder
);
Parameters
oid
The object ID of the LHBA or target whose DataSequence InOrder value is
being set.

dataSequencelnOrder
The new DataSequence InOrder value for the specified LHBA or target.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA does not support setting the DataSequence lnOrder
value.

IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the
DataSequencelnOrder takes affect.

IMA_ERROR_INVALID_PARAMETER

Returned if dataSequencelnOrder does not contain the value IMA_TRUE or
IMA_FALSE.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

Support

Mandatory if the settable field in the IMA_BOOL_VALUE structure returned by
IMA_GetDataSequencelnOrderProperties for the same oid has the value IMA_TRUE.

iISCSI Management API SNIA Technical Position 191
Version 1.1.6

See Also
IMA_GetDataSequencelnOrderProperties

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 192
Version 1.1.6

6.2.74 IMA_SetDefaultGateway

Synopsis
Sets the default gateway for the the specified physical network port.
Prototype
IMA_STATUS IMA_SetDefaultGateway(
/*in* IMA_OID oid,
[*in*/ IMA_IP_ADDRESS defaultGateway
);
Parameters
oid

The object ID of the PNP whose default gateway is to be set.

defaultGateway
The new default gateway for the PNP.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the default gateway takes
affect.

IMA_ERROR_NOT_SUPPORTED
Returned if setting the default gateway is not supported by the specified PNP.

IMA_ERROR_INVALID_PARAMETER
Returned if any fields in defaultGateway contains any invalid values.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify an PNP.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify an PNP that is currently known to the system.

Remarks
The setting of this value is persistent.

Support

Mandatory if the defaultGatewaySettable field in the IMA_IP_PROPERTIES structure
returned by the IMA_GetlpProperties API for the same oid has the value IMA_TRUE.

See Also
IMA_GetlpProperties

iISCSI Management API SNIA Technical Position 193
Version 1.1.6

6.2.75 IMA_SetDefaultTime2Retain

Synopsis
Sets the Defaul tTime2Retain iSCSI login parameter value for the specified
logical HBA or target.

Prototype
IMA_STATUS IMA_SetDefaultTime2Retain(
[*in*/ IMA_OID oid,
[*in*/ IMA_UINT defaultTime2Retain
);
Parameters
oid
The object ID of the LHBA or target whose Defaul tTime2Retain value is
being set.

defaultTime2Retain

The new value for the new Defaul tTime2Retain for the specified LHBA or
target.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA does not support setting the DefaultTime2Retain
value.

IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the
DefaultTime2Retain value actually takes affect.

IMA_ERROR_INVALID_PARAMETER
Returned if defaultTime2Retain is out of range for the LHBA.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

The valid range of DefaultTime2Retain values can be determined by calling
IMA_GetDefaultTime2RetainProperties and examining the minimum and maximum
values returned in the IMA_MIN_MAX_ VALUE structure.

iISCSI Management API SNIA Technical Position 194
Version 1.1.6

Support

Mandatory if the settable field in the IMA_MIN_MAX_ VALUE structure returned by
IMA_GetDefaultTime2RetainProperties for the same oid is true.

See Also
IMA_GetDefaultTime2RetainProperties

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 195
Version 1.1.6

6.2.76 IMA_SetDefaultTime2Wait

Synopsis
Sets the Defaul tTime2Wait iSCSI login parameter value for the specified logical
HBA or target.
Prototype
IMA_STATUS IMA_SetDefaultTime2Wait(
[*in*/ IMA_OID oid,
[*in*/ IMA_UINT defaultTime2Wait
);
Parameters
oid
The object ID of the LHBA or target whose Defaul tTime2Wait value is being
set.
defaultTime2Wait

The new value for the new Defaul tTime2Wait for the specified LHBA.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA does not support setting the DefaultTime2Wait value.

IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the DefaultTime2Wait
value takes affect.

IMA_ ERROR_INVALID PARAMETER
Returned if defaultTime2Wait is out of range for the LHBA.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

The valid range of DefaultTime2Wai t values can be determined by calling
IMA_GetDefaultTime2WaitProperties and examining the minimum and maximum
values returned in the IMA_MIN_MAX_VALUE structure.

iISCSI Management API SNIA Technical Position 196
Version 1.1.6

Support

Mandatory if the settable field in the IMA_MIN_MAX_ VALUE structure returned by
IMA_GetDefaultTime2WaitProperties for the same oid is true.

See Also
IMA_GetDefaultTime2WaitProperties

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 197
Version 1.1.6

6.2.77 IMA_SetDnsServerAddress

Synopsis
Sets the address of the primary and alternate DNS servers for the specified physical
network port.

Prototype
IMA_STATUS IMA_SetDnsServerAddress(
[*in*/ IMA_OID oid,

[*in*/ const IMA_IP_ADDRESS *pPrimaryDnsServerAddress,
[*in*/ const IMA_IP_ADDRESS *pAlternateDnsServerAddress

);

Parameters
oid
The object ID of the PNP whose DNS servers are to be set.

primaryDnsServerAddress

A pointer to the IP address of the primary DNS server. This parameter can be
NULL in which case the primary DNS server address is being cleared. In this
case alternateDnsServerAddress shall also be NULL.

alternateDnsServerAddress

A pointer to the IP address of the alternate DNS server. This parameter can be
NULL in which case the alternate DNS server address is being cleared.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the DNS servers takes
affect.

IMA_ERROR_NOT_SUPPORTED

Returned if setting the primary DNS server address is not supported by the
specified PNP.

Returned if setting the alternate DNS server address is not supported by the
specified PNP and alternateDnsServerAddress is not NULL.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify an PNP.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify an PNP that is currently known to the system.

IMA_ERROR_INVALID_PARAMETER

Returned if primaryDnsServerAddress or alternateDnsServerAddress are not
NULL and specify a memory area from which data cannot be read.

iISCSI Management API SNIA Technical Position 198
Version 1.1.6

Returned if primaryDnsServerAddress is NULL and alternateDnsServerAddress
is not NULL. Itis not valid to have an alternate DNS server without having a
primary DNS server.

Returned if primaryDnsServerAddress and alternateDnsServerAddress are both
not NULL and both specify the same IP address.

Remarks
The setting of these values is persistent.

Support

Mandatory if the primaryDnsServerAddressSettable field in the
IMA_IP_PROPERTIES structure returned by the IMA_GetlpProperties API for the
same oid has the value IMA_TRUE.

See Also
IMA_GetlpProperties

iISCSI Management API SNIA Technical Position 199
Version 1.1.6

6.2.78 IMA_SetErrorRecoverylLevel

Synopsis
Sets the ErrorRecoverylLevel iSCSI login parameter value for the specified
logical HBA or target.

Prototype
IMA_STATUS IMA_SetErrorRecoverylLevel(
[*in*/ IMA_OID oid,
[in] IMA_UINT errorRecoverylLevel
);
Parameters
oid
The object ID of the LHBA or target whose ErrorRecoverylLevel value is
being set.
errorRecoverylLevel

The new value for the ErrorRecoverylLevel for the specified LHBA or target.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA does not support setting the ErrorRecoverylLevel
value.

IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the
ErrorRecoverylevel takes affect.

IMA_ERROR_INVALID_PARAMETER
Returned if errorRecoverylLevel is out of range for the LHBA.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

The valid range of ErrorRecoverlLevel values can be determined by calling
IMA_GetErrorRecoveryLevelProperties and examining the minimum and maximum
values returned in the IMA_MIN_MAX_VALUE structure.

iISCSI Management API SNIA Technical Position 200
Version 1.1.6

Support

Mandatory if the settable field in the IMA_BOOL_VALUE structured returned by
IMA_GetErrorRecoverylLevelProperties for the same oid has the value IMA_TRUE.

See Also
IMA_GetErrorRecoveryLevelProperties

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 201
Version 1.1.6

6.2.79 IMA_SetFirstBurstLength

Synopsis
Sets the FirstBurstLength iSCSI login parameter of the specified logical HBA or
target.
Prototype
IMA_STATUS IMA_SetFirstBurstLength(
[*in*/ IMA_OID oid,
[*in*/ IMA_UINT firstBurstLength
);
Parameters
oid
The object ID of the LHBA or target whose FirstBurstLength value is being
set.
firstBurstLength

The value for the new FirstBurstLength for the LHBA or target.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA does not support setting the FirstBurstLength.

IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of FirstBurstLength
takes affect.

IMA_ERROR_INVALID PARAMETER
Returned if firstBurstLength is out of range for the LHBA.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

The valid range of FirstBurstLength values can be determined by calling
IMA_GetFirstBurstLengthProperties and examining the minimum and maximum
values returned in the IMA_MIN_MAX_VALUE structure.

iISCSI Management API SNIA Technical Position 202
Version 1.1.6

Support

Mandatory if the settable field in the IMA_MIN_MAX_ VALUE structure returned by
IMA_GetFirstBurstLengthProperties for the same oid is true.

See Also
IMA_GetFirstBurstLengthProperties

iISCSI Management API SNIA Technical Position 203
Version 1.1.6

6.2.80 IMA_SetimmediateData

Synopsis
Sets the ImmediateData iSCSI login parameter value for the specified logical HBA
or target.
Prototype
IMA_STATUS IMA_SetimmediateData(
[*in*/ IMA_OID oid,
[*in*/ IMA_BOOL immediateData
);
Parameters
oid

The object ID of the LHBA or target whose ImmediateData value is being set.

immediateData
The new value for ImmediateData for the specified LHBA or target.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA does not support setting the ImmediateData value.

IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of ImmediateData takes
affect.

IMA_ERROR_INVALID_PARAMETER

Returned if immediateData does not contain the value IMA_TRUE or
IMA_FALSE.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

Support

Mandatory if the settable field in the IMA_BOOL_VALUE structure returned by
IMA_GetimmediateDataProperties for the same oid has the value IMA_TRUE.

See Also
IMA_GetimmediateDataProperties

iISCSI Management API SNIA Technical Position 204
Version 1.1.6

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 205
Version 1.1.6

6.2.81 IMA_SetInitialR2T

Synopsis
Sets the InitialR2T iSCSI login parameter value for the specified logical HBA or
target.
Prototype
IMA_STATUS IMA_SetlnitialR2T(
[*in*/ IMA_OID oid,
[*in*/ IMA_BOOL initialR2T
);
Parameters
oid

The object ID of the LHBA or target whose InitialR2T value is being set.

initialR2T
The new value for the InitialR2T for the specified LHBA or target.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA does not support setting the InitialR2T value.

IMA_STATUS_REBOOT_NECESSARY
Returned if a reboot is necessary before the setting of InitialR2T takes affect.

IMA_ ERROR_INVALID PARAMETER
Returned if initialR2T does not contain the value IMA_TRUE or IMA_FALSE.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

Support

Mandatory if the settable field in the IMA_BOOL_VALUE structure returned by
IMA_GetlnitialR2TProperties for the same oid has the value IMA_TRUE.

See Also
IMA_GetlnitialR2TProperties

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 206
Version 1.1.6

6.2.82 IMA_SetlnitiatorAuthMethods

Synopsis
Sets the authentication methods for the specified logical HBA when used as an
initiator.
Prototype
IMA_STATUS IMA_SetlnitiatorAuthMethods(
/*in*/ IMA_OID IhbaOid,
[*in*/ IMA_UINT methodCount,

[*in*/ const IMA_ AUTHMETHOD *pMethodList
);

Parameters
IhbaOid
The object ID of an LHBA whose authentication methods are to be set.

methodCount

The number of authentication methods in pMethodList. There shall be at least
one entry in the list.

pMethodList

A list of one or more authentication methods that the LHBA shall use for all
targets with which the LHBA communicates.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the specified
authentication methods will take affect.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if IhbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if lhbaOid does not specify an LHBA.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if IhbaOid does not specify an LHBA that is currently known to the
system.

IMA_ERROR_INVALID_PARAMETER
Returned if methodCount is zero.

Returned if pMethodList is NULL, or pMethodList specifies a memory area from
which data cannot be read.

Returned if the contents of pMethodList contain duplicate authentication methods

Returned if the contents of pMethodList contain an authentication method which
is not supported..

iISCSI Management API SNIA Technical Position 207
Version 1.1.6

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

Support

Mandatory if the initiatorAuthMethodsSettable field of the IMA_LHBA_PROPERTIES
structure returned by the IMA_GetLhbaProperties API for the same lhbaOid has the
value IMA_TRUE.

See Also
IMA_GetSupportedAuthMethods

IMA_GetInUselnitiatorAuthMethods

iISCSI Management API SNIA Technical Position 208
Version 1.1.6

6.2.83 IMA_SetInitiatorAuthParms

Synopsis
Sets the parameters for the specified authentication method for the specified LHBA.
Prototype
IMA_STATUS IMA_SetlInitiatorAuthParams(
/*in* IMA_OID IhbaOid,
[in IMA_AUTHMETHOD method,

[*in*/ const IMA_INITIATOR_AUTHPARMS *pParms
);

Parameters
IhbaOid

The object ID of the LHBA whose authentication parameters are to be retrieved.

method

The authentication method of the LHBA whose authentication parameters are to
be retrieved.

pParms

A pointer to an IMA_INITIATOR_AUTHPARMS structure that contains the
parameters to associated with the specified authentication method.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the authentication
parameters takes affect.

IMA_ERROR_NOT_SUPPORTED

Returned if the setting of authentication parameters is not supported by the
specified LHBA. In this case, it is likely that LHBA does not support any
authentication methods.

IMA_ERROR_INVALID_PARAMETER

Returned if method does not specify a valid authentication method or does not
specify a supported authentication method.

Returned if method has the value IMA_ AUTHMETHOD_ NONE.

Returned if pParms is NULL or specifies a memory area from which data cannot
be read.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if IhbaOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if IhbaOid does not specify an LHBA.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if IhbaOid does not specify an LHBA that is currently known to the
system.

iISCSI Management API SNIA Technical Position 209
Version 1.1.6

Remarks
The setting of this data is persistent.

This API does not cause the specified authentication method to be used. To do that
a client shall call the IMA_SetInitiatorAuthMethods API.

The setting of authentication parameters does not affect any established sessions. If
the authentication method is enabled, or is subsequently enabled then the
authentication parameters specified as a parameter to this APl will be used.

Support
Optional

See Also
IMA_GetlnitiatorAuthParms

Client Implementation Notes: Transmission of Authorization Parameters

iISCSI Management API SNIA Technical Position 210
Version 1.1.6

6.2.84 IMA_SetlpConfigMethod

Synopsis
Sets the IP configuration method for the specified physical network port.
Prototype
IMA_STATUS IMA_SetlpConfigMethod(
/*in* IMA_OID oid,
[*in*/ IMA_BOOL enableDhcplpConfiguration
);
Parameters
oid

The object ID of the PNP whose IP configuration method is to be set.

enableDhcpl[Configuration

A boolean indicating if DHCP configuration of IP is being enabled. If this
parameter has the value IMA_TRUE then DHCP configuration of IP is enabled.
If this parameter has the value IMA_FALSE then DHCP configuration of IP is
disabled, thereby enabling static configuration of IP.

Typical Return Values
IMA_STATUS _REBOOT_NECESSARY

Returned if a reboot is necessary before this will call will take effect.

IMA_ERROR_INVALID_PARAMETER

Returned if enableDhcplpConfiguration does not contain the value IMA_TRUE or
IMA_FALSE.

IMA_ERROR_NOT_SUPPORTED

Returned if setting the IP configuration method is not supported by the specified
PHBA.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PNP object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify a PNP that is currently known to the system.

Remarks
The setting of this value is persistent.

It is not an error to enable DHCP IP configuration when it is already enabled, nor is it
an error to disable DHCP IP configuration when it is already disabled.

Neither enabling or disabling DHCP IP configuration causes the removal of any
stored static IP configuration information, e.g. DNS server addresses or the gateway
address. Thus if static IP configuration is enabled and static IP configuration
parameters are set, e.g. DNS server addresses, then DHCP IP configuration is

iISCSI Management API SNIA Technical Position 211
Version 1.1.6

enabled, and then static IP configuration is enabled once again the previously set
static IP configuration parameters will be in effect.

Support

Mandatory if the ipConfigurationMethodSettable field of the IMA_IP_PROPERTIES
structure returned by the IMA_GetlpProperties API for the same PNP has the value
IMA_TRUE.

See Also
IMA_GetlpProperties

IMA_SetDefaultGateway
IMA_SetDnsServerAddress
IMA_SetSubnetMask

iISCSI Management API SNIA Technical Position 212
Version 1.1.6

6.2.85 IMA_SetisnsDiscovery

Synopsis
Enables/disables iSNS target discovery for a physical or logical HBA..
Prototype
IMA_STATUS IMA_SetlsnsDiscovery(
/*in* IMA_OID oid,
[*in*/ IMA_BOOL enablelsnsDiscovery,
/*in* IMA_ISNS_DISCOVERY_METHOD discoveryMethod,

[*in*/ const IMA_HOST _ID *iSnsHost
);

Parameters
oid
The object ID of the PHBA or LHBA whose iSNS target discovery properties are
being set.

enablelsnsDiscovery

Set to IMA_TRUE if the PHBA or LHBA shall discover targets using iSNS, set to
IMA_FALSE if the PHBA or LHBA shall not discover targets using iSNS.

discoveryMethod

If enablelsnsDiscovery has the value IMA_TRUE then this parameter specifies
the method that shall be used to discover the iSNS server.

If this parameter has the value IMA_ISNS_DISCOVERY_METHOD_STATIC
then the iISNS server will be discovered statically. In this case the iSnsHost
parameter shall contain the name or address of the iISNS server and the iISNS
server at that location will be used.

If this parameter has the value IMA_ISNS_DISCOVERY_METHOD_DHCP then
the iSNS server will be discovered using DHCP.

If this parameter has the value IMA_ISNS_DISCOVERY_METHOD_SLP then
the iSNS server will be discovered using SLP.

iSnsHost

If enablelsnsDiscovery has the value IMA_TRUE and discoveryMethod has the
value IMA_ISNS_DISCOVERY_METHOD_STATIC then this is a pointer to the
host name of the iISNS server to be used.

If enablelsnsDiscovery has the value IMA_FALSE or enablelsnsDiscovery has
the value IMA_TRUE, but discoveryMethod does not have the value
IMA_ISNS_DISCOVERY_METHOD_STATIC then this parameter shall be NULL.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY
Returned if a reboot is necessary before this will call will take effect.

iISCSI Management API SNIA Technical Position 213
Version 1.1.6

IMA_ERROR_NOT_SUPPORTED

Returned if the enabling/disabling of iISNS target discovery is not supported by
the specified PHBA/LHBA.

IMA_ERROR_INVALID_PARAMETER

Returned if enablelsnsDiscovery has a value other than IMA_TRUE and
IMA_FALSE.

Returned if discoveryMethod has a value other than
IMA_ISNS_DISCOVERY_METHOD_STATIC,
IMA_ISNS_DISCOVERY_METHOD_DHCP, and
IMA_iSNS_DISCOVERY_METHOD_SLP.

Returnd if enabledlsnsDiscovery has the value IMA_TRUE and domainName is
NULL or specifies a memory area from which data cannot be read.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PHBA or LHBA object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a PHBA or LHBA that is currently known to the
system.

IMA_ERROR_LAST_PRIMARY_DISCOVERY_METHOD

Returned if enablelsnsDiscovery is set to IMA_FALSE and iSNS target discovery
is the last primary discovery method for the PHBA or LHBA, i.e., SLP target
discovery and static target discovery are both either disabled or not supported.

Remarks
This setting is persistent.
Disabling iISNS discovery does not “undiscover” any targets that were previously
discovered using iSNS discovery.

Support

Mandatory if the iSnsDiscoverySettable field in the IMA_DISCOVERY_PROPERTIES
structure returned by IMA_GetDiscoveryProperties is set to IMA_TRUE for the same
oid.

See Also
IMA_GetDiscoveryProperties
IMA_SetSlIpDiscovery
IMA_SetStaticDiscovery
IMA_SetSendTargetsDiscovery

iISCSI Management API SNIA Technical Position 214
Version 1.1.6

6.2.86 IMA_SetMaxBurstLength

Synopsis
Sets the MaxBurstLength iSCSI login parameter of the specified logical HBA or
target.
Prototype
IMA_STATUS IMA_SetMaxBurstLength(
[*in*/ IMA_OID oid,
[*in*/ IMA_UINT maxBurstLength
);
Parameters
oid

The object ID of the LHBA or target whose MaxBurstLength value is to be set

maxBurstLength
The value for the new MaxBurstLength for the LHBA or target.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA does not support setting the MaxBurstLength.

IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of MaxBurstLength
actually takes affect.

IMA_ ERROR_INVALID PARAMETER
Returned if maxBurstLength is out of range for the LHBA.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

The valid range of MaxBurstLength values can be determined by calling
IMA_GetMaxBurstLengthProperties and examining the minimum and maximum
values returned in the IMA_MIN_MAX_VALUE structure.

Support
Mandatory if the settable field in the IMA_MIN_MAX_ VALUE structure returned by
IMA_GetMaxBurstLengthProperties for the same oid is true.

iISCSI Management API SNIA Technical Position 215
Version 1.1.6

See Also
IMA_GetMaxBurstLengthProperties

iISCSI Session and Connection Parameters
Example of Getting/Setting LHBA Max Burst Length

iISCSI Management API SNIA Technical Position 216
Version 1.1.6

6.2.87 IMA_SetMaxConnections

Synopsis
Sets the MaxConnections for sessions iSCSI login parameter for the specified
logical HBA or target

Prototype
IMA_STATUS IMA_SetMaxConnections(
[*in*/ IMA_OID oid,
[*in*/ IMA_UINT maxConnections
);
Parameters
oid

The object ID of the LHBA or target whose MaxConnections value is to be set.

maxConnections
The new value for MaxConnections of the specified object.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA does not support setting the MaxConnections value.

IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of MaxConnections value
actually takes affect.

IMA_ ERROR_INVALID PARAMETER
Returned if maxConnections is out of range for the LHBA.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

The valid range of MaxConnections values can be determined by calling
IMA_GetMaxConnectionsProperties and examining the minimum and maximum
values returned in the IMA_MIN_MAX_VALUE structure.

Support
Mandatory if the settable field in the IMA_MIN_MAX_ VALUE structure returned by
IMA_GetMaxConnectionsProperties for the same oid is true.

iISCSI Management API SNIA Technical Position 217
Version 1.1.6

See Also
IMA_GetMaxConnectionsProperties

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 218
Version 1.1.6

6.2.88 IMA_SetMaxRecvDataSegmentLength

Synopsis
Sets the MaxRecvDataSegmentLength iSCSI login parameter of the specified
logical HBA or target.

Prototype
IMA_STATUS IMA_SetMaxRecvDataSegmentLength(
[*in*/ IMA_OID oid,
[*in*/ IMA_UINT maxRecvDataSegmentLength
);
Parameters
oid

The object ID of the LHBA or target whose MaxRecvDataSegmentLength
value is to be set.

maxRecvDataSegmentLength
The value for the new MaxRecvDataSegmentLength.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA does not support setting the
MaxRecvDataSegmentLength.

IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of
MaxRecvDataSegmentLength actually takes affect.

IMA_ERROR_INVALID_PARAMETER
Returned if maxRecvDataSegmentLength is out of range for the LHBA.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

The valid range of MaxRecvDataSegmentLength values can be determined by
calling IMA_GetMaxRecvDataSegmentLengthProperties and examining the minimum
and maximum values returned in the IMA_MIN_MAX_ VALUE structure.

iISCSI Management API SNIA Technical Position 219
Version 1.1.6

Support

Mandatory if the settable field in the IMA_MIN_MAX_ VALUE structure returned by
IMA_GetMaxRecvDataSegmentLengthProperties for the same oid is true.

See Also
IMA_GetMaxRecvDataSegmentLengthProperties

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 220
Version 1.1.6

6.2.89 IMA_SetMaxOutstandingR2T

Synopsis
Sets the MaxOQutstandingR2T per task iISCSI login parameter value for the
specified logical HBA or target.

Prototype
IMA_STATUS IMA_SetMaxOutstandingR2T(
[*in*/ IMA_OID oid,
[*in*/ IMA_UINT maxOutstandingR2T
);
Parameters
oid
The object ID of the LHBA or target whose MaxOutstandingR2T value is being
set.

maxOutstandingR2T

The new value for the MaxOutstandingR2T per task for the specified LHBA or
target.

Typical Return Values
IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA or target does not support setting the
MaxOutstandingR2T value.

IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of MaxOutstandingR2T per
task takes affect.

IMA_ERROR_INVALID_PARAMETER
Returned if maxOutstandingR2T is out of range for the LHBA .

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a LHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a LHBA or target that is currently known to the
system.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

The valid range of MaxOutstandingR2T values can be determined by calling
IMA_GetMaxOutstandingR2TProperties and examining the minimum and maximum
values returned in the IMA_MIN_MAX_ VALUE structure.

iISCSI Management API SNIA Technical Position 221
Version 1.1.6

Support

Mandatory if the settable field in the IMA_MIN_MAX_ VALUE structure returned by
IMA_GetMaxOutstandingR2TProperties for the same oid has the value IMA_TRUE.

See Also
IMA_GetMaxOutstandingR2TProperties

iISCSI Session and Connection Parameters

iISCSI Management API SNIA Technical Position 222
Version 1.1.6

6.2.90 IMA_SetNetworkPortallpAddress

Synopsis
Sets the IP address of the specified network portal.

Prototype

IMA_STATUS IMA_SetNetworkPortallpAddress(

[*in*/ IMA_OID networkPortalOid,

[*in*/ const IMA_IP_ADDRESS *pNewlpAddress
);

Parameters
networkPortaOid
The object ID of the network portal to set the IP address of.

pNewlpAddress

A pointer to an IMA_IP_ADDRESS structure allocated and initialized by the caller
that contains the new IP address of the network portal specified by
networkPortalOid.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the IP address actually
takes affect.

IMA_ERROR_NOT_SUPPORTED

Returned if the specified network portal does not support having its IP address
being set.

IMA_ERROR_INVALID_PARAMETER

Returned if pNewlpAddress is NULL or specifies a memory area from which data
cannot be read.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if networkPortalOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if networkPortalOid does not specify a network portal object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if networkPortalOid does not specify a network portal that is currently
known to the system.

Remarks
This setting is persistent.

As noted above a reboot may be required to cause the new IP address to be used.
Also, as noted above, this API call may or may not fail if there is an IP address
conflict on the network portal’s fabric. If it fails is up to the implementer(s) of the
plugin and the underlying software, firmware, and hardware.

iISCSI Management API SNIA Technical Position 223
Version 1.1.6

Support
Optional

See Also
IMA_GetNetworkPortalProperties

iISCSI Management API SNIA Technical Position 224
Version 1.1.6

6.2.91 IMA_SetNodeAlias

Synopsis
Sets the alias of the specified node.

Prototype

IMA_STATUS IMA_SetNodeAlias

[*in*/ IMA_OID nodeOid,

[*in*/ const IMA_NODE_ALIAS newAlias
);

Parameters
nodeOid

The object ID of the node whose alias is being set.

newAlias

A pointer to a Unicode string that contains the new node alias. If this parameter
is NULL then the current alias is deleted, in which case the specified node no
longer has an alias.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

A reboot is necessary before the setting of the alias actually takes affect.

IMA_ERROR_INVALID_PARAMETER

Returned if newAlias is NULL or specifies a memory area from which data cannot
be read.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if nodeOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if nodeOid does not specify a node object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if nodeOid does not specify a node that is currently known to the
system.

IMA_ERROR_NAME_TOO_LONG
Returned if newAlias contains more than 255 bytes when encoded in UTF-8.

Remarks

The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

iISCSI node aliases are transferred to initiators and targets in UTF-8 format. A client
of this API does not need to deal with UTF-8 strings, however underneath the covers
the alias will be encoded as a UTF-8 string.

If this call returns a status of IMA_STATUS_REBOOT_NECESSARY then any
subsequent calls made to IMA_GetNodeProperties for the same node may return
IMA_STATUS_INCONSISTENT_NODE_PROPERTIES when, in fact, there is no

iISCSI Management API SNIA Technical Position 225
Version 1.1.6

inconsistency. Rebooting the system, as indicated by the
IMA_STATUS REBOOT_NECESSARY status, will rectify the situation.

Support

Mandatory if nameAndAliasSettable field of the IMA_NODE_PROPERTIES structure
returned for the same node has the value IMA_TRUE.

See Also
IMA_GetSharedNodeOid

IMA_GetNodeProperties
IMA_SetNodeName

iISCSI Management API SNIA Technical Position 226
Version 1.1.6

6.2.92 IMA_SetNodeName

Synopsis
Sets the name of the specified node.

Prototype

IMA_STATUS IMA_SetNodeName(
/*in*/ IMA_OID nodeOid,
[*in*/ const IMA_NODE_NAME newName

);

Parameters
nodeOid
The object ID of the node whose name is being set.

newName
The new name of the specified node.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the name actually takes
affect.

IMA_ERROR_INVALID_PARAMETER

Returned if newName is NULL, or specifies a memory area from which data
cannot be read, or has a length of 0.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if nodeOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if nodeOid does not specify a node object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if nodeOid does not specify a node that is currently known to the
system.

IMA_ERROR_NAME_TOO_LONG
Returned if newName contains more than 223 bytes when encoded in UTF-8.

Remarks
The setting of this value is persistent and applies only to subsequent sessions
created by the initiator; existing sessions are not affected.

There are several important points to note regarding this API:

e iSCSI node names are transferred to initiators and targets in UTF-8 format.
A client of this API does not need to deal with UTF-8 strings, this is done
internally by the IMA library or plugins.

e This API does not examine the iSCSI network to ensure that the new name is
not already in use. Itis the client’s responsibility to do that before calling this
API.

iISCSI Management API SNIA Technical Position 227
Version 1.1.6

o |If this call returns a status of IMA_STATUS REBOOT_NECESSARY then
any subsequent calls made to IMA_GetNodeProperties for the same node
may return IMA_STATUS_INCONSISTENT_NODE_PROPERTIES when, in
fact, there is no inconsistency. Rebooting the system, as indicated by the
IMA_STATUS_REBOOT_NECESSARY status, will rectify the situation.

Support
Mandatory if nameAndAliasSettable field of the IMA_NODE_PROPERTIES structure

returned for the same node has the value IMA_TRUE.

See Also
IMA_GetSharedNodeOid

IMA_GetNonSharedNodeOidList
IMA_GetNodeProperties
IMA_SetNodeAlias

Example of Setting a Node Name

iISCSI Management API SNIA Technical Position 228
Version 1.1.6

6.2.93 IMA_SetSendTargetsDiscovery

Synopsis
Enables/disables SendTargets target discovery for a physical HBA, logical HBA, or
target.
Prototype
IMA_STATUS IMA_SetSendTargetsDiscovery(
[*in*/ IMA_OID oid,
[*in*/ IMA_BOOL enableSendTargetsDiscovery
);
Parameters
oid

The object ID of the PHBA, LHBA, or target whose SendTargets target
discovery property is being set.

enableSendTargetsDiscovery

Set to IMA_TRUE if SendTargets discovery of targets is being enabled for the
specified PHBA, LHBA, or target. Set to IMA_FALSE if SendTargets discovery
of targets is being disabled.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY
Returned if a reboot is necessary before this will call will take effect.

IMA_ERROR_NOT_SUPPORTED

Returned if enabling/disabling SendTargets discovery is not supported by the
specified PHBA or LHBA.

IMA_ERROR_INVALID_PARAMETER

Returned if enableSendTargetsDiscovery has a value other than IMA_TRUE and
IMA_FALSE.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PHBA, LHBA, or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a PHBA, LHBA, or target that is currently known
to the system.

Remarks
The setting of this value is persistent.

Disabling SendTargets discovery does not “undiscover” any targets that were
previously discovered using SendTargets discovery.

iISCSI Management API SNIA Technical Position 229
Version 1.1.6

Support

For a PHBA or LHBA mandatory if the sendTargetsDiscoverySettable field in the
IMA_DISCOVERY_PROPERTIES structure returned by the
IMA_GetDiscoveryProperties API has the value IMA_TRUE for the same oid.

For a target mandatory if the sendTargetsDiscoverySettable field in the
IMA_TARGET_PROPERTIES structure returned by the IMA_GetTargetProperties
API has the value IMA_TRUE for the same oid.

See Also
IMA_GetDiscoveryProperties

IMA_SetlsnsDiscovery
IMA_SetSlIpDiscovery

iISCSI Management API SNIA Technical Position 230
Version 1.1.6

6.2.94 IMA_SetSlpDiscovery

Synopsis
Enables/disables SLP target discovery for a physical or logical HBA.
Prototype
IMA_STATUS IMA_SetSIpDiscovery(
/*in* IMA_OID oid,
[*in*/ IMA_BOOL enableSlIpDiscovery
);
Parameters
phbaOid
The object ID of the PHBA or LHBA whose SLP target discovery property is
being set.

enableSIpDiscovery

Set to IMA_TRUE if SLP discovery of targets is being enabled for the specified
PHBA or LHBA. Setto IMA_FALSE if SLP discovery of targets is being disabled.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before this change will take effect.

IMA_ERROR_NOT_SUPPORTED

Returned if enabling/disabling SLP discovery is not supported by the specified
PHBA or LHBA.

IMA_ERROR_INVALID_PARAMETER

Returned if enableSIpDiscovery has a value other than IMA_TRUE and
IMA_FALSE.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PHBA or LHBA object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a PHBA or LHBA that is currently known to the
system.

IMA_ERROR_LAST_PRIMARY_DISCOVERY_METHOD

Returned if enableSIpDiscovery is set to IMA_FALSE and SLP target discovery is
the last primary discovery method for the PHBA/LHBA, i.e., SNS target discovery
and static target discovery are both either disabled or not supported.

Remarks
This setting is persistent.

Disabling SLP discovery does not “undiscover” any targets that were previously
discovered using SLP discovery.

iISCSI Management API SNIA Technical Position 231
Version 1.1.6

Support

Mandatory if the slpDiscoverySettable field in the IMA_DISCOVERY_PROPERTIES
structure returned by IMA_GetDiscoveryProperties is set to IMA_TRUE for the same
oid.

See Also
IMA_GetDiscoveryProperties
IMA_SetlsnsDiscovery
IMA_SetStaticDiscovery
IMA_SetSendTargetsDiscovery

iISCSI Management API SNIA Technical Position 232
Version 1.1.6

6.2.95 IMA_SetStaticDiscovery

Synopsis
Enables/disables static target discovery for a physical or logical HBA.
Prototype
IMA_STATUS IMA_SetStaticDiscovery(
/*in* IMA_OID oid,
[*in*/ IMA_BOOL enableStaticDiscovery
);
Parameters
oid
The object ID of the PHBA or LHBA whose static target discovery property is
being set.

enableStaticDiscovery

Set to IMA_TRUE if static target discovery is being enabled for the specified
PHBA or LHBA. Setto IMA_FALSE if static target discovery is being disabled.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before this will call will take effect.

IMA_ERROR_NOT_SUPPORTED

Returned if enabling/disabling static discovery is not supported by the specified
PHBA or LHBA.

IMA_ERROR_INVALID_PARAMETER

Returned if enableStaticDiscovery has a value other than IMA_TRUE and
IMA_FALSE.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PHBA or LHBA object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a PHBA or LHBA that is currently known to the
system.

IMA_ERROR_LAST_PRIMARY_DISCOVERY_METHOD

Returned if enableStaticDiscovery is set to IMA_FALSE and static target
discovery is the last primary discovery method for a PHBA or LHBA, i.e., iISNS
target discovery and SLP target discovery are both either disabled or not
supported.

Remarks
This setting is persistent.

iISCSI Management API SNIA Technical Position 233
Version 1.1.6

Disabling static discovery does not “undiscover” any targets that were previously
discovered using static discovery. Such targets can be “undiscovered” by calling the
IMA_RemoveStaticDiscoveryTarget API.

Support

Mandatory if the staticDiscoverySettable field in the
IMA_DISCOVERY_PROPERTIES structure returned by
IMA_GetDiscoveryProperties is set to IMA_TRUE for the same oid.

See Also
IMA_GetDiscoveryProperties

IMA_SetlsnsDiscovery
IMA_SetSlIpDiscovery
IMA_SetSendTargetsDiscovery

iISCSI Management API SNIA Technical Position 234
Version 1.1.6

6.2.96 IMA_SetStatisticsCollection

Synopsis
Enables/disables statistics collection for a physical HBA’s physical network ports, or a
target, or a target’s LUs.

Prototype
IMA_STATUS IMA_SetStatisticsCollection(
[*in*/ IMA_OID oid,
[*in*/ IMA_BOOL enableStatisticsCollection
);
Parameters
oid

The object ID of the PHBA, target, or LU whose statistics collection setting is
being modified.

enableStatisticsCollection

Set to IMA_TRUE if statistics collection is being enabled for the specified object.
Set to IMA_FALSE if statistics collection is being disabled for the specified
object.

Typical Return Values
IMA_STATUS _REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of statistics collection takes
affect.

IMA_ERROR_NOT_SUPPORTED
Returned if oid does not support enabling/disabling of statistics collection.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PHBA or target object.

IMA_ERROR_OBJECT_NOT_FOUND

Returned if oid does not specify a PHBA or target that is currently known to the
system.

Remarks
If oid specifies a PHBA then this call affects the statistics collection of the PNPs of
the PHBA.

If oid specifies a target then this call affects the statistics collection of the target
and/or the target’s LUs. A plugin shall support the collection of either target statistics
or LU statistics and may support both.

The setting of this value is persistent.

iISCSI Management API SNIA Technical Position 235
Version 1.1.6

Support

Mandatory if the statisticsCollectionSettable field of the
IMA_STATISTICS_PROPERTIES structure as returned by
IMA_GetStatisticsProperties for the same oid has the value IMA_TRUE.

See Also
IMA_GetDeviceStatistics

IMA_GetStatisticsProperties
IMA_GetTargetErrorStatistics

iISCSI Management API SNIA Technical Position 236
Version 1.1.6

6.2.97 IMA_SetSubnetMask

Synopsis
Sets the subnet mask for the specified physical network port.
Prototype
IMA_STATUS IMA_SetSubnetMask(
/*in* IMA_OID oid,
[*in*/ IMA_IP_ADDRESS subnetMask
);
Parameters
oid

The object ID of the PNP whose subnet mask is to be set.

subnetMask
The new subnet mask for the PNP.

Typical Return Values
IMA_STATUS_REBOOT_NECESSARY

Returned if a reboot is necessary before the setting of the subnet mask takes
affect.

IMA_ERROR_NOT_SUPPORTED
Returned if setting the subnet mask is not supported by the specified PNP.

IMA_ ERROR_INVALID_PARAMETER
Returned if any fields in subnetMask contain any invalid values.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if oid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if oid does not specify a PNP.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if oid does not specify a PNP that is currently known to the system.

Remarks
The setting of this value is persistent.

Support

Mandatory if the subnetMaskSettable field in the IMA_IP_PROPERTIES structure
returned by the IMA_GetlpProperties API for the same oid has the value IMA_TRUE.

See Also
IMA_GetlpProperties

iISCSI Management API SNIA Technical Position 237
Version 1.1.6

6.2.98 IMA_UnexposeLu

Synopsis

Unexposes the specified logical unit from the operating system.
Prototype

IMA_STATUS IMA_UnexposeLu(

/*in* IMA_OID luOid

);
Parameters

luOid

The object ID of the LU to unexpose from the operating system.

Typical Return Values
IMA_STATUS _REBOOT_NECESSARY

Returned if a reboot is necessary before the LU is unexposed to the OS.

IMA_ERROR_NOT_SUPPORTED

Returned if the LHBA associated with the LU does not support selective
exposing/unexposing of logical units.

IMA_ERROR_INVALID_OBJECT_TYPE
Returned if luOid does not specify any valid object type.

IMA_ERROR_INCORRECT_OBJECT_TYPE
Returned if luOid does not specify a LU object.

IMA_ERROR_OBJECT_NOT_FOUND
Returned if luOid does not specify a LU that is currently known to the system.

IMA_ERROR_LU_NOT_EXPOSED
Returned if luOid specifies a LU that is not exposed to the operating system.

IMA_ERROR_LU_IN_USE
Returned if luOid specifies a LU that is currently in use by the operating system.

Remarks

The unexposing of the LU is persistent, i.e., the LU will not be exposed to the
operating system until a successful IMA_ExposelLu for the same LU is made.

It is the client’s responsibility to ensure that the LU is not in use, e.g. no part of the LU
is part of a mounted volume, before calling this API.

Support

Mandatory if the luExposingSupported field of the IMA_LHBA PROPERTIES
structure returned by the IMA_GetLhbaProperties API for the LHBA that is associated
with the LU has the value IMA_TRUE.

See Also
IMA_ExposeLu

iISCSI Management API SNIA Technical Position 238
Version 1.1.6

IMA_GetLuld
IMA_GetLuOidList

iISCSI Management API SNIA Technical Position 239
Version 1.1.6

7 Implementation Compliance

An implementation of the API described in this document shall meet the following requirements:
1. Provide an entry point for each API listed in this document.
2. Implement all APIs which are listed as mandatory to implement.

3. Attempt to perform or cause the performance of all of the actions that are specified for an
API when all parameters to that API are valid.

4. Fail an API call if the implementation is aware that one of the requirements specified for
that API cannot be satisfied.

It's important to note that what is compliant with this specification is not simply an implementation
of the library, but an implementation of the library in combination with an implementation of a

plugin.

iISCSI Management API SNIA Technical Position 240
Version 1.1.6

8 Notes

8.1 Client Usage Notes

Persisted Object IDs

Because the library does not make any claims as to the persistence of object sequence
numbers, a client using the library shall not use persisted object identifiers across
instances of itself.

Reserved Fields

Most structures in the API contain reserved fields. Clients shall ignore the values in any
reserved fields in any structures.

Event Notification Within a Single Client

The method used to deliver events within a client is specific to the library and/or plugin
implementation. Therefore, when a client receives an event it shall not use the thread
delivering the event for any significant amount of time. If the work needed to respond to
an event is at all significant the client should somehow save the information needed to
respond to the event and then have another thread perform the actual work to handle the
event. If a client fails to do this it may delay the delivery of subsequent events and it may
even cause events to be lost. The method a client uses to save the data of an event and
causes another thread to respond to the event is entirely client specific.

Event Notification and Multi-Threading

A client that uses the event notification APIs of the library shall also be multi-thread safe.
A client cannot assume that an event is delivered on the same thread that registered for
the event, nor can a client assume that the client created the thread used to deliver the
event. The only thing a client can assume about a thread used to deliver an event is that
it was properly initialized to use the C runtime library.

IPsec Security

The API provides a function that allows a client to query the IPsec capabilities of a
physical HBA (PHBA). The returned data allows a client to determine if IPsec is
supported by a PHBA and what IPsec options the PHBA supports. However, the API
does not provide any function to set IPsec security policies. Any client that wants to add,
change or delete IPsec security policies shall use mechanisms provided by the operating
system to perform these operations.

Transmission of Authorization Parameters

If a client is acting as a proxy for an application on another system and the client and the
application transmit authorization parameters that the transmission be encrypted.

Target OIDs and iSCSI Targets

A single iSCSI target will have one target OID for each LHBA from which the target can
be accessed. Itis up to a client to determine, through whatever means it chooses, that
different target OIDs refer to the same iSCSI target.

Configuration Changes and the IMA_STATUS _REBOOT_NECESSARY status

Any API that causes a configuration change can return the status
IMA_STATUS _REBOOT_NECESSARY. In this case, if a client retrieves values that
have been previously set the client will continue to receive values as if the values had not

iISCSI Management API SNIA Technical Position 241
Version 1.1.6

been set. If a client wishes to present values to a user that indicate the future value of a
setting then the client shall cache the values that it set.

For example, suppose a client retrieves the MaxBurstLength setting of a target and it
has a value of 128K. Now, suppose the client sets the MaxBurstLength setting of that
target to 196K and then retrieves the value of the setting again. The value that is
retrieved will be the original value 128K, not the new value 196K.

8.2 Library Implementation Notes

Object IDs

Object sequence numbers shall be reused in a conservative fashion to minimize the
possibility that an object ID will ever refer to two (or more) different objects in any once
instance of the library. This rule for reuse only applies to a particular instance of the
library. The library is not required nor expected to persist object sequence numbers
across instances of itself.

Multi-threading Support

Any implementation of this API, i.e. the library, shall be multi-thread safe. That s, the
library shall allow a client to safely have multiple threads calling APIs in the library
simultaneously. It is the responsibility of the library to synchronize the usage of any
library resources being used by different threads.

Event Notification and Multi-Threading

A client shall be able to call any APl while the client is handling an event. Therefore, the
library implementation shall not leave any resources locked while calling a client’s event
handler that would be needed if the client’s event handler called an API. Otherwise, if the
client’s event handler did call an API, either the API would have to fail or the calling
thread would deadlock waiting for a resource.

Structure Packing

In order to ensure binary compatibility between different implementations of the IMA it is
necessary that each implementation provide header files and/or document compiler
options so that each structure is packed such that there are no padding bytes between
structure members.

Calling Conventions

In order to ensure binary compatibility between different implementations of the IMA it is
necessary that each implementation provide header files and/or document compiler
options so that all APIs in the IMA are called using the C calling convention.

8.3 Plugin Implementation Notes

Object IDs

Object sequence numbers shall be reused in a conservative fashion to minimize the
possibility that an object ID will ever refer to two or more different objects in any one
instance of a plugin. This rule for reuse only applies to a particular instance of the plugin.
A plugin is not required nor expected to persist object sequence numbers across
instances of itself.

iISCSI Management API SNIA Technical Position 242
Version 1.1.6

Reserved Fields

Most structures in the API contain reserved fields. Plugins shall zero out any fields that
they consider reserved.

Multi-threading Support

Plugins shall also be multi-thread safe. A client shall be able to have multiple threads
active at anyone time. It is the responsibility of the plugin to synchronize the usage of
plugin resources being used by different threads.

Event Notification To Different Clients

Timely delivery of events to clients is necessary. Therefore, vendor implementations
shall not, in any way, serialize delivery of events to plugins. It is not permissible for a
vendor implementation to allow one client to significantly delay delivery of events to any
other client.

Event Notification and Multi-Threading

A client shall be able to call any API while the client is handling an event. Therefore, a
plugin shall not leave any resources locked while calling a client’s event handler that
would be needed if the client’'s event handler called an API. Otherwise, if the client’s
event handler did call an API, either the APl would have to fail or the calling thread would
deadlock waiting for a resource.

IPsec Security

If a plugin reports that any of its physical HBAs support IPsec it is the responsibility of the
vendor providing the plugin to monitor the operating system’s IPsec security policy
database to get policy information. This shall be done outside of the plugin because the
plugin may not be loaded when the IPsec security policy database is updated. How a
vendor does this is entirely upto the vendor.

Persistence of Authorization Parameters

A plugin, or some entity below the plugin, shall persist authorization parameters. It is
strongly recommended that the entity persisting the authorization parameters secure
them from unauthorized access. This can be accomplished by setting the appropriate
permissions on files or other storage objects. This can also be accomplished by
encrypting the persisted data and then decrypting the data when retrieving it. Of course,
these two techniques can be combined for maximum security of the authorization
parameters.

Executing SCSI Commands and Operating System Compatibility
There are three APIs that can cause the execution of SCSI commands. These APlIs are:

e IMA_Lulnquiry
e |IMA_ LuReadCapacity
e |IMA_LuReportLuns

If the calling of one of these APIs results in a SCSI command being sent to a logical unit
that is exposed to the operating system, it is the responsibility of the plugin to ensure that
executing the command does not interfere in any way with the operating system’s use of
the logical unit. In particular, important statuses, such as UNIT ATTENTION, shall be
conveyed to the operating system. Typically, this is accomplished by using operating
system interfaces to send the commands to the logical unit when that logical unit is

iISCSI Management API SNIA Technical Position 243
Version 1.1.6

exposed to the operating system. When the logical unit is not exposed to the operating
system the plugin shall use a private interface to the device driver.

Executing SCSI Commands and Session Management

How a plugin or lower level software manages sessions to execute SCSI commands as a
result of IMA API calls is entirely up to that implementation. If a plugin determines that it
needs to send a SCSI command to a logical unit as a result of an API call and no session
has been created with the logical unit's associated target then a session shall be created
between the initiator and target. Once the command has been executed it is entirely up
to the implementation if the session remains or is closed.

Plugin IOCtls
Plugins shall not define IOCtls that allow a client to send a SCSI command to a LU using
the IMA_PluginlOCtl API. The only SCSI commands that may be sent to a LU are the
ones specifically supported by the library.

Target OIDs and Logical Unit OIDs

If a plugin is providing support for two or more LHBAs and the same iSCSI target or
iISCSI LUs are exposed via two or more LHBAs it shall generate different (unique) object
IDs for each target or LU per each LHBA through which that the target or LU is
accessible.

iISCSI Management API SNIA Technical Position 244
Version 1.1.6

Annex A (informative) Device Names

This appendix contains information on how to specify the osDeviceName field in the

IMA_LHBA PROPERTIES and the IMA_LU_ PROPERTIES structures. Whenever possible the
values used in the fields of these structures are identical to the values used in similar structures in
ANSI INCITS 386-2004 (FC-HBA API).

In the tables below text appearing in bold shall appear in the indicated position exactly as it

appears in the sample. Text appearing in italics is a placeholder for other text as determined by
the specified operating system.

A.1 osDeviceName Field of the IMA_LHBA PROPERTIES

Structure
Operating System Value
AIX /dev/iscsin
Linux /dev/name
Solaris /devices/name
Windows \\Scsin:

A.2 osDeviceName Field of the IMA_LU_PROPERTIES Structure

Operating value
System Disk/Optical CD-ROM Tape Changer
/dev/hdiskn (disk)
AIX or /dev/cdn /dev/rmtn Empty string
/deviomdn (optical)
Linux /dev/sdn /dev/srn /dev/st/n Empty string
Solaris /dev/rdsk/cxtydzs2 | /dev/rdsk/cxtydzs2 /dev/rmt/nn Empty string
Windows \\\PHYSICALDRIVEnN \\.\CDROMn \\TAPEN \W\CHANGERnN
iISCSI Management API SNIA Technical Position 245

Version 1.1.6

Annex B (informative) Coding Examples

This appendix contains samples of how to use the IMA. All of these examples are informative; if
there is a discrepancy between these examples and anything in any of the previous sections of
this document the examples should be considered incorrect and the previous sections correct.

One note about the examples: the examples will all perform error detection, however they will not
perform error reporting. This is an exercise left to the reader.

There are ten coding examples. They are:
e Example of Getting Library Properties
o Example of Getting Plugin Properties
o Example of Getting an Associated Plugin ID
e Example of Getting Node Properties
e Example of Setting a Node Name
e Example of Getting LHBA Properties
o Example of Getting PHBA Properties
o Example of Getting PHBA Discovery Properties
o Example of Getting/Setting LHBA Max Burst Length

e Example of Getting all LUs of all Targets Visible to a System

iISCSI Management API SNIA Technical Position 246
Version 1.1.6

B.1 Example of Getting Library Properties

//

// This example prints the properties of the IMA library.
//

IMA_STATUS status;

IMA_LI1BRARY_PROPERTIES props;

//

// Try to get the library properties. If this succeeds then print

// the properties.

//

status = IMA_GetLibraryProperties(&props);

iT (IMA_SUCCESS(status))

{
printf(“Library Properties:\n”);
printfF(“\tIMA version: %u\n”, props.supportedlmaVersion);
wprintf(L*“\tVendor: %ls\n”, props.vendor);
wprintf(L*“\tImplementation version: %ls\n”,

props.implementationVersion);

wprintf(L*“\tFile name: %ls\n”, props.fileName);
printf(‘“\tBuild date/time: %s\n”, DateTime(&props.-buildTime));

iISCSI Management API SNIA Technical Position 247
Version 1.1.6

B.2 Example of Getting Plugin Properties

//

// This example gets the properties of the first plugin returned by
// the library.

//

IMA_STATUS status;

IMA_OID_LIST *pList;

//
// Get the list of plugin IDs.
//
status = IMA_GetPluginOidList(&pList);
iT (IMA_SUCCESS(status))
{
//
// Make sure there’s a plugin to get the properties of.
//
if (pList->o0idCount !'= 0)

IMA_PLUGIN_PROPERTIES props;

status = IMA_GetPluginProperties(pList->0ids[0], &props);

iT (IMA_SUCCESS(status))

{
printf(“Plugin Properties:\n>);
printfF(“\tIMA version: %u\n”, props.supportedlmaVersion);
wprintf(L*“\tVendor: %Is\n”, props.vendor);
wprintf(L*“\tImplementation version: %ls\n”,

props.implementationVersion);

wprintf(L*“\tFile name: %ls\n”, props.fileName);
printfF(“\tBuild date/time: %s\n”, DateTime(&props.-buildTime))

//

// Always remember to free an object ID list when it’s no longer
// needed. Failing to do so will cause memory leaks.

//

IMA_FreeMemory(pList);

iISCSI Management API SNIA Technical Position
Version 1.1.6

248

B.3 Example of Getting an Associated Plugin ID

//

// This example prints the name of the vendor associated with the
// first non-shared node that’s iIn use.

//

IMA_STATUS status;

IMA_OID_LIST *pList;

//
// Get a list of the object IDs of all of the non-shared nodes in the
// system.
//
status = IMA_GetNonSharedNodeOidList(&pList);
it (IMA_SUCCESS(status))
{
//
// Make sure there’s a node to get the associated plugin of.
//
if (pList->oidCount > 0)

{
IMA_OID pluginld;
status = IMA_GetAssociatedPluginOid(pList->0ids[0], &pluginld);
if (IMA_SUCCESS(status))
{
IMA_PLUGIN_PROPERTIES pluginProps;
status = IMA_GetPluginProperties(pluginld, &pluginProps);
if (IMA_SUCCESS(status))
{
wprintf(L*“Vendor: %ls\n”, pluginProps.vendor);
}
}
}
//

// Always remember to free an object ID list when it’s no longer
// needed. Failing to do so will cause memory leaks.

//

IMA_FreeMemory(pList);

iISCSI Management API SNIA Technical Position 249
Version 1.1.6

B.4 Example of Getting Node Properties

//

// This example prints the properties of the shared node.
//

IMA_STATUS status;

IMA_OID nodeOid;

//
// Get the object ID of the shared node.
//
status = IMA_GetSharedNodeOid(&nodeOid);
iT (IMA_SUCCESS(status)))
{
//
// Get the properties of the shared node. If this succeeds then
// print the properties.
//
IMA_NODE_PROPERTIES props;
status = IMA_GetNodeProperties(nodeOid, &props);
iT (IMA_SUCCESS(status)))

{
printf(“Shared node properties:\n>);

if (props.nodeNameSet == IMA_TRUE)
wprintf(*\tNode Name: \”%Is\’\n”, props.name);

}

else

{

}
if (props.nodeAliasSet == IMA TRUE)

printfF(““\tName: Not set\n”);

wprintf(L*“\tNode Alias: \”%Is\”\n”, props.alias);
}

else

printf(“\tAlias: Not set\n”);
}

printfF(‘“\tInitiator: %s\n”, YesNo(props.runninglninitiatorMode));
printfF(“\tTarget: %s\n”, YesNo(props.runninglnlnitiatorMode));

iISCSI Management API SNIA Technical Position 250
Version 1.1.6

B.5 Example of Setting a Node Name

//

// This example sets the name of the shared node to an IMA generated
// node name.

//

IMA_STATUS status;

IMA_OID nodeOid;

//

// Get the object ID of the shared node.
//

status = IMA_GetSharedNodeOid(&nodeOid);
if (IMA_SUCCESS(status))

{
IMA_NODE_NAME nodeName;
//
// Generate a node name.
//
status = IMA_GenerateNodeName(hodeName);
if (IMA_SUCCESS(status))
{
//
// Set the node name to the generated name. If this succeeds
// then print a message to this effect.
//
status = IMA_SetNodeName(nodeOid, nodeName);
if (IMA_SUCCESS(status)))
{
wprintf(L“The name of the node was set to \”%Is\”.\n”,
nodeName) ;
//
// Check if a reboot is necessary to make the new node name
// take affect. |If it is then print a message to this effect.
//
if (status == IMA_STATUS REBOOT_NECESSARY)
printf(“Reboot to make this change take affect.\n”);
}
}
}
}
iISCSI Management API SNIA Technical Position 251

Version 1.1.6

B.6 Example of Getting LHBA Properties

//

// This example prints out the 0S device name for each of the LHBA’s
// that are currently in the system.

//

IMA_STATUS status;

IMA_OID_LIST *pList;

//

// First, get the list of LHBA IDs.
//

status = IMA_GetLhbaOidList(&pList);
iT (IMA_SUCCESS(status))

{
//
// Either print a header or print that there are no LHBAs
// in the system.
//
if (pList->o0idCount == 0)
printf(“There are no logical HBAs in the system.\n”);
}
else
printf(“Logical HBA 0S Device Names:\n);
}
//
// Next,iterate through the list, getting the properties of each
// one. Print the OS device name from the properties structure.
//
for (unsigned 1 = 0; 1 < pList->oidCount; i++)
{
IMA_LHBA_ PROPERTIES props;
status = IMA_GetLhbaProperties(pList->oids[i], &props);
if (IMA_SUCCESS(status))
wprintfF(\t%ls\n”’, props.osDeviceName);
}
}
//
// Always remember to free an object ID list when it’s no longer
// needed. Failing to do so will cause memory leaks.
//
IMA_FreeMemory(pList);
}
iISCSI Management API SNIA Technical Position 252

Version 1.1.6

B.7 Example of Getting PHBA Properties

//

// This example prints out the description for each of the PHBA’s
// that are currently in the system.

//

IMA_STATUS status;

IMA_OID_LIST *pList;

//

// First, get the list of PHBA IDs.
//

status = IMA_GetPhbaOidList(&pList);
iT (IMA_SUCCESS(status))

{
//
// Either print a header or print that there are no PHBAs
// in the system.
//
if (pList->o0idCount == 0)
printf(“There are no physical HBAs in the system.\n);
}
else
printf(“Physical HBA Descriptions:\n”);
}
//
// Next, iterate through the list, getting the properties of each
// one. Print the description from the properties structure.
//
for (unsigned 1 = 0; 1 < pList->oidCount; i++)
{
IMA_PHBA_PROPERTIES props;
status = IMA_GetPhbaProperties(pList->oids[i], &props);
if (IMA_SUCCESS(status))
wprintfF(*\t%u. %Is\n”, 1 + 1, props.description);
}
}
//
// Always remember to free an object ID list when it’s no longer
// needed. Failing to do so will cause memory leaks.
//
IMA_FreeMemory(pList);
}
iISCSI Management API SNIA Technical Position 253

Version 1.1.6

B.8 Example of Getting PHBA Discovery Properties

//

// This example prints if each of the four types of discovery methods
// i1s enabled or disabled.

//

IMA_STATUS status;

IMA_OID_LIST *pList;

//
// Get the list of object IDs of the PHBAs in the system.
//
status = IMA_GetPhbaOidList(&pList);
iT (IMA_SUCCESS(status))
{
//
// lterate through the list of PHBAs.
//
for (unsigned 1 = 0; 1 < pList->oidCount; i++)
{
//
// Get the discovery properties of the “current” PHBA.
//
IMA_DISCOVERY_PROPERTIES props;
printf(“PHBA %u\n”, 1 + 1);

status = IMA_GetDiscoveryProperties(pList->oids[i], &props);

//
// 1T the discovery properties have been successfully gotten
// then print them.
//
iT (IMA_SUCCESS(status))
{
printF(“\tiSNS discovery enabled: %s\n,
xbool (props.iSnsDiscoveryEnabled));
printF(“\tSLP discovery enabled: %s\n”,
Xxbool (props.slpDiscoveryEnabled));
printf(“\tStatic discovery enabled: %s\n”,
xbool (props.staticDiscoveryEnabled));
printf(‘“\tSendTargets discovery enabled: %s\n\n”,
xbool (props.sendTargetsDiscoveryEnabled));

//

// Always remember to free an object ID list when it’s no longer
// needed. Failing to do so will cause memory leaks.

//

IMA_FreeMemory(pList);

iISCSI Management API SNIA Technical Position 254
Version 1.1.6

B.9 Example of Getting/Setting LHBA Max Burst Length

//

// This example sets the maximum burst length of the first LHBA in a
// system to the maximum allowable value.

//

IMA_STATUS status;

IMA_OID_LIST *pList;

//
// Get the list of LHBA IDs.
//
status = IMA_GetLhbaOidList(&pList);
if (IMA_SUCCESS(status))
{
//
// Make sure there is at least one LHBA.
//
if (pList->o0idCount > 0)
{
IMA_MIN_MAX VALUE props;
IMA_OID IhbaOid = pList->0ids[0];

//
// Get the current max burst length for the first LHBA.
//
status = IMA_GetMaxBurstLengthProperties(lhbalid, &props);
if ((IMA_SUCCESS(status)) && (props.currentValueVvValid))
{

//

// Set the maximum burst length to the maximum value.

//

if (props.currentValue '= props.maximumValue)

status = IMA_SetMaxBurstLength(lhbaOid,
props.maximumValue);

//

// Always remember to free an object ID list when it’s no longer
// needed. Failing to do so will cause memory leaks.

//

IMA_FreeMemory(pList);

iISCSI Management API SNIA Technical Position 255
Version 1.1.6

B.10 Example of Getting all LUs of all Targets Visible to a System

//

// This example shows how to go through the LUs visible to a system
// to determine what LUs should be exposed to the 0OS that are not
// already.

//

// This example omits an important part of doing this in a real

// application. That is that LU IDs associated with different LHBAs
// may in fact refer to the same LU. This is an exercise left to the
// IMA developer. :-)

//

// Also, certain supporting functions are also omitted from this

// example.

//

//
// This function processes a “system” by getting all of the LHBAs
// in the system and processing each of those LHBAs.

//
void ProcessSystem()
{
IMA_OID_LIST *pList;
//
// Get the list of LHBA IDs.
//
IMA_STATUS status = IMA_GetLhbaOidList(&pList);
iT (IMA_SUCCESS(status))
{
//
// lterate through all of the LHBAs iIn the system processing
// the targets of each LHBA.
//
for (unsigned 1 = 0; 1 < pList->oidCount; i++)
void ProcessLhba(pList->oids[i]);
}
//
// Always remember to free an object ID list when it’s no longer
// needed. Failing to do so will cause memory leaks.
//
IMA_FreeMemory(pList);
}
}
iISCSI Management API SNIA Technical Position 256

Version 1.1.6

//

// This function processes an LHBA by getting the list of targets
// associated with the LHBA and processing each of those targets.
//

void ProcesslLhba(IMA_OID IhbaOid)

{
IMA_OID_LIST *pList;
//
// Get the list of target OIDs for this LHBA.
//
IMA_STATUS status = IMA GetTargetOidList(lhba, &pList);
if (IMA_SUCCESS(status))
{
for (unsigned 1 = 0; 1 < pList->oidCount; i++)
void ProcessTarget(pList->oids[i]);
}
//
// Always remember to free an object ID list when it’s no longer
// needed. Failing to do so will cause memory leaks.
//
IMA_FreeMemory(pList);
}
}
//

// This function processes a target by getting all of the LUNs of the
// target and then processing each of the LUs associated with a LUN.
//

void ProcessTarget(IMA_OID targetOid)

{

IMA_BYTE reportLunsBuf[8192];

IMA_STATUS status = IMA LuReportLuns(targetOid, IMA FALSE, O,
reportLunsBuf, sizeof(reportLunsBuf),
NULL, O

):
if (IMA_SUCCESS(status))
{
unsigned listlLength = GetReportLunsListLength(reportLunsBuf);
for (unsigned i = 8; 1 < listLength; 1 += 8)

IMA_UINT64 lun = GetLun(reportLunsBuf, 1);
ProcessLu(targetOid, lun);
}
}
}

iISCSI Management API SNIA Technical Position 257
Version 1.1.6

//

// This function processes a logical unit by getting the LU’s
// properties and possibly other data about the LU to determine
// if it should be exposed to the OS.

//

void ProcessLu(IMA_OID targetOid, IMA BYTE lun[8])

{

IMA_OID 1uOid;
IMA_STATUS status = IMA GetLuOidld(targetOid, lun, &luQid);
if (IMA_SUCCESS(status))
{
IMA_LU PROPERTIES props;
status = IMA_GetLuProperties(luOid, &props);
if (IMA_SUCCESS(status))

{
if (props.exposedToOs == IMA_FALSE)

//
// Here the application should send an INQUIRY command

// and/or a READ CAPACITY command to see if the logical
// unit has the desired properties.
//

iISCSI Management API SNIA Technical Position
Version 1.1.6

258

