SNIA

Advancing storage &
information technology

Encrypted Object Extension

Version 1.1.1i

ABSTRACT:

"Publication of this Working Draft for review and comment has been approved by the Cloud
Storage Technical Working Group. This draft represents a "best effort" attempt by the Cloud
Storage Technical Working Group to reach preliminary consensus, and it may be updated,
replaced, or made obsolete at any time. This document should not be used as reference

material or cited as other than a 'work in progress.' Suggestion for revision should be directed to
http:/snia.org/feedback."

Working Draft

November 16, 2016



© SNIA

USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only,
and for corporations and other business entities to use this document for internal use only
(including internal copying, distribution, and display) provided that:

Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

Any document, printed or electronic, in which material from this document (or any portion
hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit
the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this
document, sell any or this entire document, or distribute this document to third parties. All rights
not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be
requested by e-mailing tcmd@snia.org. Please include the identity of the requesting individual
and/or company and a brief description of the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made
available under the following license:

BSD 3-Clause Software License
Copyright © 2016, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its
contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS I1S" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Encrypted Object Extension Working Draft 2
November 16, 2016 Version 1.1.1i



© SNIA

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA
makes no warranty of any kind with regard to this specification, including, but not limited to, the
implied warranties of merchantability and fithess for a particular purpose. The SNIA shall not be
liable for errors contained herein or for incidental or consequential damages in connection with
the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2016 SNIA. All rights reserved. All other trademarks or registered trademarks are
the property of their respective owners.

Encrypted Object Extension Working Draft 3
November 16, 2016 Version 1.1.1i



© SNIA

Revision History

Date Version | By Comments

2015-06-22 1.1a CDMI TWG Initial draft for TWG review

2015-06-23 1.1b CDMI TWG Updates from TWG review

2015-11-19 1.1c CDMI TWG Updates to support JOSE representations

2015-12-16 1.1d CDMI TWG Updates to address review comments

2016.01.19 1.1e CDMI TWG Updates to address review comments

2016-03-14 1.1f CDMI TWG Updates to incorporate review comments

2016-08-25 1.1g CDMI TWG Updates to incorporate implementation feedback

2016-10-03 1.1.1h CDMI TWG Updates to incorporate SDC Plugfest findings and
to update for the CDMI 1.1.1 ISO version in
preparation for merging.

2016-11-16 1.1.1i CDMI TWG Updates to separate out value signing KMS IDs

from object signing KMS IDs, and added process
for signing and verifying whole-object signatures.

Encrypted Object Extension

November 16, 2016

Working Draft
Version 1.1.1i




© SNIA

Encrypted Object Extension

Overview

Cloud storage systems are often used to store encrypted objects. While no additional support is
required for a CDMI system to handle encrypted objects where all encryption and decryption
functionality is performed by the clients, there is significant value in being able to permit the
cloud to encrypt and decrypt objects. Encryption and decryption enables cloud-based
processing of object plaintext, plaintext delivery to clients, and the ability to encrypt cloud-side.

This extension defines a series of operations that can be performed against CDMI objects,
where the value of the object is a valid Cryptographic Message Syntax (CMS) data structure, or
where the value of the object is a valid JSON Web Encryption (JWE) data structure.

These operations include:

e Create a new encrypted object

e Delete an existing encrypted object

e Encrypt an existing non-encrypted object

e Decrypt an existing encrypted object

e Re-encrypt an existing encrypted object with a different key/algorithm
e Access the ciphertext of an encrypted object

e Access the plaintext of an encrypted object

e Update the plaintext of an existing encrypted object

This extension also defines metadata specifying how an encrypted object is encrypted and
signed and how keys are obtained from a remote key management system using a standard
such as KMIP.

It is important to note that this extension only protects the ‘value’ of CDMI object; it does not
hide the existence of an object, nor does it protect the contents or presence of the object name,
ID, or any other object fields and metadata.

Encrypted objects can be created client-side and server-side, and are stored in CMS or JWE
format. The subset of the CMS and JWE standard used is specified later in this extension.

Modifications to the CDMI 1.1.1 spec:

1) In Clause 2, add reference to CMS and JWE:
RFC 5652, Cryptographic Message Syntax (CMS) - https://www.ietf.org/rfc/rfc5652.txt
RFC 7515, JSON Web Signatures (JWS) - https://www.ietf.org/rfc/rfc7515.txt
RFC 7516, JSON Web Encryption (JWE) - https://www.ietf.org/rfc/rfc7516.txt
RFC 7518, JSON Web Algorithms (JWA) - https://www.ietf.org/rfc/rfc7518.txt

Encrypted Object Extension Working Draft 5
November 16, 2016 Version 1.1.1i



2)

3)

4)

© SNIA

In Clause 3, add the following terms:

JOSE
JavaScript Object Signing and Encryption

JWA
JSON Web Algorithm

JWE
JSON Web Encryption

JWS
JSON Web Signing

In Clause 6.1, add to end:

Ciphertext representation of encrypted objects are created, accessed, and updated by
explicitly specifying a MIME type "application/cms" or "application/jose+json". Otherwise, a
plaintext representation is created, accessed, and updated. For more details on encrypted
objects, see clause 23.

In Clause 6.2.8, add examples 2 and 3:
EXAMPLE 2 PUT to the container URI to create an encrypted object:

PUT /MyContainer/MyEncryptedObject.txt HTTP/1.1
Host: cloud.example.com

Content-Type: application/cms

Content-Length: 1425

<CMS Encrypted Object>
The following shows the response:
HTTP/1.1 201 Created

EXAMPLE 3 PUT to the container URI to create an encrypted object:

PUT /MyContainer/MyEncryptedObject2.txt HTTP/1.1
Host: cloud.example.com

Content-Type: application/jose+json
Content-Length: 1425

<JWE Encrypted Object JSON>

The following shows the response:

HTTP/1.1 201 Created

Encrypted Object Extension Working Draft 6
November 16, 2016 Version 1.1.1i



5) In Clause 6.3.3, add to end of table 8:

© SNIA

If the object has a mimetype of "application/cms" or
"application/jose+json", and the mimetype
"application/cms" or "application/jose+json" is included in
the Accept mimetype, the CDMI server shall return the
CMS or JOSE value in the response message body.

Otherwise, the decrypted plaintext shall be returned in the
response message body, along with the encapsulated
mimetype in the Content-Type response header. If
decryption is not possible, an error result code shall be
returned. (See Clause 23 — Encrypted Objects)

If the Accept mimetype list includes "*/*" before
"application/cms" and/or "application/jose+json", the server
will first try to return the decrypted plaintext, and shall
return the CMS or JOSE value when decryption fails.

If the Accept mimetype list excludes "*/*", decrypted
plaintext shall only be returned if the encapsulated
mimetype is included in the Accept mimetype list.

Header Type Description Requirement
Accept Header | "*/*" or a value as per clause 5.13.2 "Content-type Optional
String negotiation".

6) In Clause 6.3.8, add examples 3 through 5:

EXAMPLE 3

GET to the data object URI to always return the ciphertext of an encrypted
object:

GET /MyContainer/MyEncryptedObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cms, application/jose+json

The following shows the response:

HTTP/1.1 200 OK
Content-Type:

Content-Length:

application/cms

1425

<CMS Encrypted Object>

EXAMPLE 4

GET to the data object URI to read the plaintext of an encrypted object, if
possible; otherwise, get the ciphertext:

GET /MyContainer/MyEncryptedObject.txt HTTP/1.1
Host: cloud.example.com

Accept: */%*,

application/cms, application/jose+json

<Header credentials used to authenticate and access the decryption

key>

The following shows the response:

Encrypted Object Extension

November 16, 2016

Working Draft
Version 1.1.1i




7)

8)

© SNIA

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 252

<Decrypted contents of Encrypted Value>

EXAMPLE 5 GET to the data object URI to read the plaintext of an encrypted object:

GET /MyContainer/MyEncryptedObject.txt HTTP/1.1

Host: cloud.example.com

<Header credentials used to authenticate and access the decryption
key>

The following shows the response:

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 252

<Decrypted contents of Encrypted Value>

In Clause 8.1, add to end:

CDMI data object operations only permit management operations and access to the
ciphertext of encrypted objects. For more details on encrypted objects, see clause 23.

In Clause 8.2.9, add examples 5 and 6:
EXAMPLE 5 PUT to the container URI to create an encrypted object:

PUT /MyContainer/MyEncryptedObject.txt HTTP/1.1
Host: cloud.example.com

Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"mimetype" : "application/cms",
"metadata" : {
"cdmi enc _key id" : "testkey"
by
"valuetransferencoding" : "base64"
"value" : "<CMS Encrypted Object in Base64>"

}

The following shows the response:

HTTP/1.1 201 Created

EXAMPLE 6 PUT to the container URI to create an encrypted object:

PUT /MyContainer/MyEncryptedObject2.txt HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object

Encrypted Object Extension Working Draft 8
November 16, 2016 Version 1.1.1i



X-CDMI-Specification-Version: 1.1

{

"mimetype"
"metadata"

"cdmi_ enc key id"

by

"application/jose+json",

"valuetransferencoding”™ : "json",
"value" : {
"protected": "eyJdhbGciOiJkaXIiLCJraWQiOiI3N2M3ZTJ1i

" iV" .

OCO2ZTEzLTQ1Y2YtODY3Mi02MTdiNWIONTIO
M2EiLCJ1bmMiOiJBMTI4RONNINO",

"refado7QzzKx6QAB",

"ciphertext": "JW i f52hww ELQPGaYyeAB6HYGcR55919T

"tag" :
"Cty" :

}

YnSovc23XJoBcW29rHP8yZ0OZG7YhLpT1lbjF
uvZPjOS-mOIFtVcXkZXdH lr FrdYt9HRUY
kshtrMmIUAyGmUnd9zMDB2n0cRDIHAZEFVed
UDxkUwVAE7 YGRPdcgMyiBoCO-FBdE-Nceb
4h3-FtBP-c BIWCPTJjb900SbdcdREEMIMyZ
BH8ySWMVilgPD9yxi-aQpGbSv_FION4IZAXs
cj5g-NJsUPbjk29-s7LJAGbl15wEBtXphVCg
yy53CoIKLHHeJHXex45Uz9%9aKZ2SRSInZI-wj
sYOyu3cT4 aQ3ilo-tiE-F8Ios61EKgyIQ4
CWao8PFM3j8TTnp",

"vbb32Xvllea20tmHAdccRQ",
"text/plain"

The following shows the response:

HTTP/1.1 201 Created

9) In Clause 8.4.4, add to the end of the "mimetype" row in table 30:

© SNIA

"77cTe2b8-6e13-45cf£-8672-617b5b45243a"

If this field is set to "application/cms" or
"application/jose+json", the CDMI server shall encrypt or re-
encrypt the value of the object in place, using the key
specified by the "cdmi_enc_key_id" metadata item. If the
"cdmi_enc_key_id" metadata item is not present, the object
ID shall be used as the key identifier. The mimetype of the
plaintext shall be stored in the CMS or JWE JSON
representation.

If a "cdmi_enc_value_sign_id" metadata item is present, the
encrypted object shall also be signed.

If this field is changed from "application/cms" or
"application/jose+json" to any other mimetype, the CDMI
server shall decrypt the value of the object in place,
replacing the specified mimetype with the mimetype of the

Header Type Description Requirement
Mimetype | JSON <existing content> Optional
String

Encrypted Object Extension

November 16, 2016

Working Draft
Version 1.1.1i




© SNIA

Header Type Description

Requirement

encrypted object, if stored as part of the encrypted object.

For more details on encrypted objects, see clause 23.

10) In Clause 8.4.8, add examples 11 and 12:

EXAMPLE 11 PUT to the data object URI to encrypt an existing object:

PUT /MyContainer/MyDataObject.txt HTTP/1.1

Host: cloud.example.com

Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{

"mimetype" : "application/cms",

"metadata" : {
"cdmi enc key id"

}

"testkey"

The following shows the response:

HTTP/1.1 204 No Content

EXAMPLE 12 PUT to the data object URI to decrypt an existing encrypted object:

PUT /MyContainer/MyEncryptedObject.txt HTTP/1.1

Host: cloud.example.com

Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{

"mimetype" : "text/plain"

}

The following shows the response:

HTTP/1.1 204 No Content

11) In Clause 12.1.1, Add new rows at end of table "Table 100 - System-Wide Capabilities"

Capability Name Type Description
cdmi_enc_cms JSON If present and "true", this capability indicates that the cloud
String storage system supports operations against the contents of CMS
encrypted objects.
cdmi_enc_jwe JSON If present and "true", this capability indicates that the cloud
String storage system supports operations against the contents of JWE
encrypted objects.
cdmi_enc_inplace JSON If present and "true", this capability indicates that the cloud

Encrypted Object Extension
November 16, 2016

Working Draft 10
Version 1.1.1i




© SNIA

Capability Name Type Description

String storage system supports operations to encrypt and decrypt
objects in place, including updates.

cdmi_enc_access JSON If present and "true", this capability indicates that the cloud
String storage system supports operations to decrypt objects on access.

cdmi_cms_encryption | JSON If present, this capability lists which CMS
Array of | ContentEncryptionAlgorithmldentifier encryption algorithms are
JSON supported for operations against the contents of CMS encrypted
Strings objects.

cdmi_cms_digest JSON If present, this capability lists which CMS
Array of | MessageAuthenticationCodeAlgorithm digest algorithms are
JSON supported for operations against the contents of CMS encrypted
Strings objects.

cdmi_cms_signature | JSON If present, this capability lists which CMS
Array of | SignatureAlgorithmldentifier signature algorithms are supported
JSON for operations against the contents of CMS encrypted objects.
Strings

cdmi_jwe_enc JSON If present, this capability lists which JOSE "enc" encryption
Array of | algorithms are supported for operations against the contents of
JSON JWE encrypted objects, as defined in RFC 7518.
Strings

cdmi_jwe_alg JSON If present, this capability lists which JOSE "alg" encryption
Array of | algorithms are supported for operations against the contents of
JSON JWE encrypted objects, as defined in RFC 7518.
Strings

cdmi_jws_alg JSON If present, this capability lists which JOSE "alg" encryption
Array of | algorithms are supported for operations against the contents of
JSON JWS signatures, as defined in RFC 7518.
Strings

12) In Clause 16.3, add new row at end of table "Table 118 — Storage System Metadata":

metadata). See section 23.7 for more details.

Metadata Name Type Description Requirement
cdmi_enc_signature | JSON Contains a JWS compact serialization of a Optional
Object | signature for the entire object (value and

13) In Clause 16.4, add new row at end of table "Table 119 — Data System Metadata":

and decrypt the object.

Metadata Name Type Description Requirement
cdmi_enc_key_id JSON Contains a unique key identifier (e.g., KMIP Optional
String Identifier) for the symmetric key used to encrypt

Encrypted Object Extension
November 16, 2016

Working Draft
Version 1.1.1i

11




© SNIA

Metadata Name Type Description Requirement
cdmi_enc_value_sig | JSON Contains a unique key identifier (e.g., KMIP Optional
n_id String Identifier) for the private key used for signing the

value of the object.
cdmi_enc_value_ver | JSON Contains a unique key identifier (e.g. KMIP Optional
ify_id String Identifier) for the public key or certificate chain

used for verifying the signature of the value of the

object.
cdmi_enc_object_si | JSON Contains a unique key identifier (e.g., KMIP Optional
gn_id String Identifier) for the private key used for signing the

entire object.
cdmi_enc_object_ve | JSON Contains a unique key identifier (e.g. KMIP Optional
rify_id String Identifier) for the public key or certificate chain

used for verifying the signature of the entire

object.

14) Add new clause 23, "Encrypted Objects"
23.1 Overview

A cloud storage system may optionally implement additional operations against encrypted
objects. Support for these operations are indicated by the presence of the cloud storage
system-wide capabilities for encrypted objects.

Encrypted object operations include the ability to encrypt, re-encrypt, and decrypt objects
that are already stored in the cloud (in-place), to sign and verify the signature of encrypted
objects, and to access and update the plaintext associated with encrypted objects.

The CDMI International Standard does not specify the method by which keys are managed.
Key management services are provided by an external key management system (KMS), and
the use of the KMIP standard is given as an example of how a CDMI server interacts with an
external KMS.

CDMI objects can contain values that are encrypted. Operations against an encrypted CDMI
object are only supported if the encrypted object value is a valid CMS or JWE JSON format.
The CMS or JWE JSON object shall include an embedded mimetype of the encrypted
object. For JWE, the "cty" header shall be used for this purpose.

23.2 Encryption Operations

The state transition diagram for encrypted objects is shown in Figure 14:

Encrypted Object Extension Working Draft 12
November 16, 2016 Version 1.1.1i



© SNIA

Update Plaintext

Delete
Non-Encrypted
Object

Create
Non-Encrypted
Object

Non-
Encrypted
Object

DELETE

Decrypt
(Access to key
required)

Encrypt
Access to key
required)

Delete
Non-Encrypted
Object

(Access to key not required)

Create
Encrypted
Object

(Access to key not required)

Encrypted
Object

DELETE

Update Ciphertext
A

(Access to key not required)

Update Plaintext

(Access to key required)

Re-encrypt

(Access to new and old keys
required)

Figure 14 — Encrypted Object State Transitions
The following eight encryption operations are defined:
23.2.1 Create a new encrypted object

Client-encrypted objects shall be stored to a CDMI server using a standard HTTP or CDMI
PUT operation, as described in clauses 6.2 and 8.2. The client shall indicate that an object
is encrypted by specifying a mimetype of "application/cms" or "application/jose+json".

A client may register an encryption key, signing keys and/or verification keys with a Key
Management System (KMS), and may indicate the Key IDs in cdmi_enc_key_id,
cdmi_enc_value_sign_id, cdmi_enc_object_sign_id, cdmi_enc_value_verify_id, and/or
cdmi_enc_object_verify_id metadata items. This allows the CDMI server to access the keys
from the KMS on behalf of a client, when needed.

Creating an encrypted objects on a CDMI server does not require any encryption-specific
capabilities to be supported, and is backwards compatible with earlier versions of the CDMI
standard. This permits encrypted objects to be stored and transferred by CDMI servers that
do not support encryption-specific functionality.

23.2.2 Delete an encrypted object

Encrypted objects shall be deleted using a standard HTTP or CDMI DELETE operation, as
described in clauses 6.5 and 8.5. Any client with sufficient permissions shall be permitted to
delete an encrypted object, regardless of if they can access the decryption keys.

Encrypted Object Extension Working Draft 13
November 16, 2016 Version 1.1.1i



© SNIA

23.2.3 Encrypt an unencrypted object

Existing unencrypted objects shall be encrypted in-place by performing a CDMI PUT
operation, as described in clause 8.4, that changes the object mimetype to "application/cms"
or "application/jose+json" and specifies a cdmi_enc_key_id metadata item. The client may
also specify a cdmi_enc_value_sign_id and/or cdmi_enc_value_verify_id metadata item to
indicate that the object is to be signed, and to provide signature verification information.

The CDMI Server shall use the client's credentials (which are included in HTTP headers,
and are out of scope of this International Standard) to retreive the encryption and signing
keys, and encryption and signing algorithm information from the KMS, and shall use the

keys to encrypt and sign the value of the object. The mimetype of the encrypted value is
stored in the CMS wrapper, or in a "cty" field of the JWE JSON.

23.2.4 Decrypt an encrypted object

Existing encrypted objects shall be decrypted in-place by performing a CDMI PUT operation,
as described in clause 8.4, that changes the object mimetype from "application/cms" or
"application/jose+json" to the original mimetype as specified in the CMS wrapper, or in the
"cty" field of the JWE JSON. Specifying any other fields or metadata shall return a 400 Bad
Request result code.

The CDMI Server shall use the client's credentials (which are included in HTTP headers,
and are out of scope of this International Standard) to retreive the encryption, signing and
verification keys, and encryption, signing and verification algorithm information from the
KMS, and shall use the keys to decrypt and verify the encrypted value and user metadata
included in the object.

23.2.5 Re-encrypt an encrypted object

Existing encrypted objects shall be re-encrypted in-place by performing a CDMI PUT
operation, as described in clause 8.4, that retains the object mimetype of "application/cms"
or "application/jose+json", or changes the object mimetype from "application/cms" to
"application/jose+json", or vice-versa. The client shall also specify a new cdmi_enc_key _id,
cdmi_enc_value_sign_id and/or cdmi_enc_value_verify_id metadata item to indicate the
new key(s) to be used. Specifying any other fields or metadata shall return a 400 Bad
Request result code.

The CDMI Server shall use the client's credentials (which are included in HTTP headers,
and are out of scope of this International Standard) to retreive both the original encryption
and signing keys using the original metadata values, and the new encryption and signing
keys using the new metadata values from the KMS, and shall use these keys to decrypt,
verify, encrypt and sign the value of the object, as needed.

If an encrypted object does not have an existing cdmi_enc_key_id metadata item, does not
have a "kid" header, and no keys are associated with the Object ID, the specified metadata
shall be added to the object, and no re-encryption operation shall be performed.

23.2.6 Access ciphertext of an encrypted object

The ciphertext content of an encrypted object shall be read by performing an HTTP GET
operation, as described in clause 6.3, with an Accept header value of "application/cms" or
"application/jose+json", depending on the mimetype of the encrypted object.

Encrypted Object Extension Working Draft 14
November 16, 2016 Version 1.1.1i



© SNIA

The ciphertext content of an encrypted object shall also be read by performing a CDMI GET
operation, as described in clause 8.3.

23.2.7 Access plaintext of an encrypted object

The plaintext value of an encrypted object shall be read by performing an HTTP GET
operation, as described in clause 6.3, with an Accept header value other than
"application/cms" or "application/jose+json", typically "*/*. Object plaintext cannot be
transparently accessed using a CDMI GET.

The CDMI Server shall use the client's credentials (which are included in HTTP headers,
and are out of scope of this International Standard) to retreive the encryption, signing and
verification keys, and encryption, signing and verification algorithm information from the
KMS, and shall use the keys to decrypt and verify the encrypted value included in the object.

When an encrypted object is decrypted for access, the plaintext shall not be retained or
cached by the CDMI server.

23.2.8 Update plaintext of an encrypted object

The plaintext value of an encrypted object shall be modified by performing an HTTP PUT
operation, as described in clause 6.4, with an Content-Type header value other than
"application/cms" or "application/jose+json", typically "*/*"., depending on the mimetype of
the encrypted object. Object plaintext cannot be transparently modified using a CDMI GET.

The CDMI Server shall use the client's credentials (which are included in HTTP headers,
and are out of scope of this International Standard) to retreive the encryption, signing and
verification keys, and encryption, signing and verification algorithm information from the
KMS, and shall use the keys to decrypt and verify the encrypted value, update the value,
and re-encrypt/re-sign the updated value.

When an encrypted object is decrypted for update, the plaintext shall not be retained or
cached by the CDMI server.

23.2.9 Other CDMI Operations

Other operations specifed by this International Standard (such as copying, serializing,
querying, etc) treat an encrypted value the same way as a non-encrypted value.

23.3 Example Uses of Encrypted Objects
Encrypted objects can be used with CDMI systems in the following ways:

e Passthrough — A client may store an encrypted object in any format in a CDMI server,
with the ciphertext being accessible to the server and to other authorized clients. No
access to the plaintext is provided. Passthrough use is compatible with all CDMI
systems and is useful when the clients manage all security-related operations and want
to protect against potentially untrustworthy clouds.

e Server-side encryption and signing — A client may instruct a CDMI server that
supports encrypted object operations to take an existing CDMI object and encrypt or
encrypt and sign it in place into CMS or JWE JSON representation, where the value of
the object is persistently stored from that point on in an encrypted format. Server-side

Encrypted Object Extension Working Draft 15
November 16, 2016 Version 1.1.1i



© SNIA

encryption and signing is useful when clients trust the CDMI server and want to increase
object security without having to re-upload the data.

e Server-side decryption — A client may instruct a CDMI server that supports encrypted
object operations to take an existing CDMI object and decrypt it in place from a CMS or
JWE JSON representation, where the value of the object is persistently stored from that
point on in a decrypted format. Server-side decryption is useful when a client trusts the
CDMI server and wants to decrease object security without having to re-upload the data.

e Client access decryption — A CDMI server may automatically attempt to decrypt an
encrypted object when accessed via HTTP. Client access decryption is useful to provide
transparent access to authorized HTTP clients without requiring modifications to the
HTTP clients.

e Cloud access decryption — A CDMI server may automatically decrypt encrypted
objects when it has access to the decryption keys. Cloud access decryption is useful for
cloud-resident data processing performed by the CDMI server, such as virus scanning,
query, and analytics.

o Signature verification — A CDMI server can automatically verify signatures that are
attached to encrypted objects that include a signature. Signature verification is useful for
detecting corruption or alteration before delivering data to a client.

23.4 KMS Integration

The encryption key is obtained from the KMS using a unique identifier that is stored in the
cdmi_enc_key_id metadata item associated with the encrypted object. If this metadata item
is not present, the CDMI object ID shall be used to locate the key.

When a client requests that an operation be performed that requires accessing the key for
the object, the CDMI server evaluates the credentials provided by the client to determine if
the client is authorized to perform the requested operation. If the operation is permitted, the
CDMI server retrieves the key from the KMS to complete the requested operation. To
retrieve the key, the client may be required to provide additional information in the HTTP
request that the CDMI server can then use to authenticate to the KMS.

The CDMI International Standard does not specify the mechanism by which the CDMI
server communicates with the KMS. In this International Standard, the KMIP protocol is
used as an example. CMS and JWE strings for algorithms, key lengths, etc., need to be
mapped to the strings used by the KMS (see KMIP clause 9.1.3.2.7).

All keys are created and managed externally to the CDMI server, typically by the client or a
system operating on behalf of the client. As a consequence, the CDMI server requires read-
only access to the KMS. The CDMI server shall not cache keys.

23.5 CMS Format

Any valid CMS-formatted data can be stored to a CDMI server. However, encrypted object
operations are only defined for the following subset of valid CMS-formatted data.

For encryption operations, the CDMI server shall support the following:

e EnvelopedData
e EncryptedContentinfo

Encrypted Object Extension Working Draft 16
November 16, 2016 Version 1.1.1i



© SNIA

e contentEncryptionAlgorithm value listed in the cdmi_cms_encryption capability of that
CDMI server

For signature operations, the CDMI server shall support the following:

e AuthenticatedData

e SignedData

o digestAlgorithms value listed in the cdmi_cms_digest capability of that CDMI server

e Signerinfo

e signatureAlgorithm value listed in the cdmi_cms_signature capability of that CDMI server

The following CMS-formatted data may be ignored: recipientinfos
23.6 JOSE Format

Any valid JWE-formatted data can be stored to a CDMI server. However, encrypted object
operations are only defined for the following subset of valid JWE-formatted data.

For encryption operations, the CDMI server shall support the following:

o JWE with Direct Encryption (Symmetric Key from KMS)
o JWE with Key Encryption (Public Key from KMS)

For signature operations, the CDMI server shall support the following:

e JWS RSA (Private Key from KMS)
o JWS ECDSA (Private Key from KMS)
o JWS HMAC-SHA2 (Symmetric Key from KMS)

The following CMS-formatted data may be ignored: Multiple recipients and multiple
signatures

23.7 Signature/Digest Verification

If a signature is present as part of the CMS or JWE JSON value, the CDMI server shall
verify that the signature of the value is valid before allowing plaintext access or modification.

If a whole-object signature is present, the CDMI server shall verify that the signature
contained in the cdmi_enc_signature metadata item is valid before allowing any read
operations for the object. Write operations are permitted for an object with an invalid or
unverifiable whole-object signature.

When present, a whole-object signature shall be attached as a "cdmi_enc_signature"
metadata item in JWS compact format, with the second field (the JWS payload field)
replaced with an empty string as described in Appendix F of RFC 7515.

For signature creation and verification, payload field shall be computed using the following
process:

1. Create a serialized representation of the CDMI object, as described in clause 15

2. Remove the following metadata items, if present:

Encrypted Object Extension Working Draft 17
November 16, 2016 Version 1.1.1i



© SNIA

. cdmi_atime

. cdmi_acount

. cdmi_enc_signature

o Any *_provided metadata items

3. Sort all JSON objects in the serialized CDMI object according to the following rules:

o Within each JSON object, name/value pair entries shall be sorted
lexicographically by name

. Within each JSON array, the initial order shall be preserved
4. Remove all JSON whitespace
5. Base64 URL encode, according to the JWS RFC 7515
23.8 Error Handling

If a decryption or signature validation operation is requested against a CDMI object
containing an invalid CMS or JWE JSON representation, an HTTP status code of 500
Internal Error shall be returned to the client.

If a decryption or signature validation operation is requested against a CDMI object
containing a valid CMS or JWE JSON representation that uses an unsupported algorithm or
feature, an HTTP status code of 501 Not Implemented shall be returned to the client.

If a decryption or signature validation operation is requested against a CDMI object
containing a valid CMS or JWE JSON representation, but the required keys are temporarily
unavailable given the credentials presented, an HTTP status code of 408 Request Timeout
shall be returned to the client.

If a decryption or signature validation operation is requested against a CDMI object
containing a valid CMS or JWE JSON representation, but the required keys are unavailable
given the credentials presented, an HTTP status code of 401 Unauthorized shall be returned
to the client.

If a decryption or signature validation operation is requested against a CDMI object
containing a valid CMS or JWE JSON representation, valid keys are available, and
signature verification fails, an HTTP status code of 403 Forbidden shall be returned to the
client.

Encrypted Object Extension Working Draft 18
November 16, 2016 Version 1.1.1i



