
1

2

Jobs CDMI Extension3

Version 2.04

ABSTRACT: This CDMI Extension is intended for developers who are considering a standardized way to add5

functionality to CDMI. When multiple compatible implementations are demonstrated and approved by the Technical6

Working Group, this extension will be incorporated into the CDMI standard.7

This document has been released and approved by the SNIA. The SNIA believes that the ideas, methodologies, and8

technologies described in this document accurately represent the SNIA goals and are appropriate for widespread9

distribution. Suggestion for revision should be directed to http://www.snia.org/feedback/.10

SNIA Working Draft11

June 17, 202012

Jobs CDMI Extension 2.0

USAGE13

Copyright © 2020 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their14

respective owners.15

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and16

other business entities to use this document for internal use only (including internal copying, distribution, and display)17

provided that:18

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,19

2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall20

acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.21

Other than as explicitly provided above, you may not make any commercial use of this document, sell any excerpt or22

this entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved23

to SNIA.24

Permission to use this document for purposes other than those enumerated above may be requested by emailing25

tcmd@snia.org. Please include the identity of the requesting individual or company and a brief description of the pur26

pose, nature, and scope of the requested use.27

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the following28

license:29

BSD 3Clause Software License30

Copyright (c) 2020, The Storage Networking Industry Association.31

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following32

conditions are met:33

* Redistributions of source codemust retain the above copyright notice, this list of conditions and the following disclaimer.34

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following35

disclaimer in the documentation and/or other materials provided with the distribution.36

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be37

used to endorse or promote products derived from this software without specific prior written permission.38

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EX39

PRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER40

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE41

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,42

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB43

STITUTEGOODSORSERVICES; LOSSOFUSE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER44

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD45

ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF46

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.47

© SNIA 2020 SNIA Working Draft i

Jobs CDMI Extension 2.0

DISCLAIMER48

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any49

kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for50

a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages51

in connection with the furnishing, performance, or use of this specification.52

Suggestions for revisions should be directed to https://www.snia.org/feedback/.53

Copyright © 2020 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their54

respective owners.55

© SNIA 2020 SNIA Working Draft ii

Jobs CDMI Extension 2.0

Contents56

Clause 1: Jobs CDMI Extension 157

1.1 Overview . 158

1.2 Instructions to the Editor . 159

Clause 2: Jobs 360

2.1 Job Management . 361

2.2 Job Creation . 462

2.3 Job Object Metadata . 463

2.4 Job Object Value . 564

2.5 Examples . 665

2.6 Job Lifecycle . 766

2.7 Job Actions . 767

2.8 Job Containers . 868

© SNIA 2020 SNIA Working Draft iii

Jobs CDMI Extension 2.0

Clause 169

Jobs CDMI Extension70

1.1 Overview71

Some CDMI systems allow jobs (such as deletion, changing metadata, scanning for viruses, etc.) to be performed72

against CDMI objects. In such a system, multiple jobs may be performed simultaneously against the same or multiple73

objects. In these systems, the client needs be able to track the status of a job separately from the objects on which74

the jobs act. Jobs may also be batched, and a method is needed to track the status for the batch job independently of75

individual jobs that comprise the batch job.76

This extension proposes a new type of data object to handle these requirements. The job data object (extended in a77

similar manner as a query queue object) may be used to define, perform, and track job status independently from the78

objects on which the job is acting.79

1.2 Instructions to the Editor80

To merge this extension into the CDMI 2.0.0 specification, make the following changes:81

1. Insert into preamble/terms.txt, as follows:82

x.x83

job |br| a data object that defines and manages one or more job actions that may be performed against one or more84

CDMI objects (job targets) |br|85

x.x86

job action |br| a specific change in state performed on a per CDMI object basis as a consequence of a job being run87

against a CDMI object88

Note: Examples include deletion, metadata changes, thumbnail creation, etc. |br|89

x.x90

job container |br| a CDMI container object that is capable of storing CDMI job objects |br|91

x.x92

job state |br| a value used to control the runtime state of a job93

Note: Examples include start, stop, and cancel. |br|94

x.x95

job target |br| the set of CDMI objects against which a job performs actions |br|96

2. Add an entry to the end of the table starting on line 135 of cdmi_advanced/cdmi_capability_object.txt, as follows:97

© SNIA 2020 SNIA Working Draft 1

Jobs CDMI Extension 2.0

Table 1: Systemwide capabilities
Capability name Type Definition
cdmi_jobs JSON string If present and “true”, the CDMI server supports job

data objects.
cdmi_jobs_global_container JSON string If present and “true”, contains the URI for the

container for all job data objects in the CDMI server.

3. Add an entry to the end of the table starting on line 451 of cdmi_advanced/cdmi_capability_object.txt, as follows:98

Table 2: Capabilities for data system metadata
Capability name Type Definition
cdmi_job_container_actions JSON array of

JSON strings
If present, lists the job action strings that may be
requested for child job data objects created within a
given container.

4. Add an entry to the end of the table starting on line 612 of cdmi_advanced/cdmi_capability_object.txt, as follows:99

Table 3: Capabilities for data objects
Capability name Type Definition
cdmi_job_states JSON array of

JSON strings
If present, lists the job state strings that may be
specified by a client.

5. Add an entry to the end of the table starting on line 662 of cdmi_advanced/cdmi_capability_object.txt, as follows:100

Table 4: Capabilities for container objects
Capability name Type Definition
cdmi_create_job_container JSON array of

JSON strings
If present, indicates that the container allows the
creation of job container objects and shall list the job
action strings supported for child job containers.

cdmi_create_job_dataobject JSON string If present and “true”, indicates that the container
allows the creation of job data objects.

6. Add an entry to the end of the table starting on line 216 of cdmi_advanced/cdmi_metadata.txt, as follows:101

Table 5: Data system metadata
Metadata name Type Description Requirement
cdmi_job_container_
↪→ actions

JSON
array
of
JSON
strings

Contains a list of requested job actions to be
permitted for job data objects created in the container.
The job action strings that may be requested are
indicated in the “cdmi_job_container_actions”
capability of the parent container.
If all supported actions are to be requested, the string
“ALL” shall be used.

Optional

7. Add an entry to the end of the table starting on line 533 of cdmi_advanced/cdmi_metadata.txt, as follows:102

Table 6: Provided values of data system metadata
Metadata name Type Description Requirement
cdmi_job_container_
↪→ actions_provided

JSON
array
of
JSON
strings

Contains a list of job actions that are permitted for job
data objects created in the container.

Optional

8. Create new clause, “cdmi_jobs.txt” after existing clause 25 “Data Object Versions”, as follows.103

© SNIA 2020 SNIA Working Draft 2

Jobs CDMI Extension 2.0

Clause 2104

Jobs105

2.1 Job Management106

A cloud storage system may optionally implement job management functionality. Job implementation is indicated by the107

presence of the cloud storage systemwide capabilities for jobs and requires support for CDMI data objects.108

Jobs allow arbitrary systemdefined actions (such as deletion, metadata changes, thumbnail creation, virus scanning,109

etc.) to be performed against one or more stored CDMI objects. In addition, multiple jobs may perform actions against110

a single CDMI object. By creating a welldefined “job” object, clients may define jobs, specify which action is to be111

performed, specify which objects the action is to be performed against, monitor the status, and control the operation of112

the job in an interoperable and extensible manner.113

In addition, multiple jobs may be batched together to apply actions sequentially for each target CDMI object. Such114

a batch job may affect multiple objects, and each job may progress at a different rate. The client cares about the115

overall status of its job, not the status on each object that the job affects. Tracking the job completion status in the116

completionStatus and percentComplete fields of the data object as described in clause %s is not adequate for117

such systems.118

These problems are solved by tracking the job status in a separate CDMI job data object. The job data object provides119

access to the completion status and percent complete of the job itself, along with other information required to define,120

monitor, and control the job.121

Jobs may be stored in container objects or may exist as standalone data objects with no parent container.122

Cloud storage systems should consider implementing support for job data objects when the system supports the follow123

ing types of clientcontrolled activities:124

• Serverside transformative operations: If the system allows a client to request that an operation be performed125

against a CDMI data object, the user should initiate and manage the operation through the jobs interface.126

• Batch jobs: When running batch jobs that include multiple individual actions, the user needs to track the status127

for the jobs as the aggregate of the independent tasks.128

• Multithreading: If it is possible for multiple jobs to be performed on the same object simultaneously, the user129

needs to track the status of each job independently.130

• Longrunning jobs: If jobs are run continuously, the user needs to be able to monitor and control the job.131

© SNIA 2020 SNIA Working Draft 3

Jobs CDMI Extension 2.0

2.2 Job Creation132

When a client wishes to create a job data object, it may first check if the system is capable of providing job functionality133

by checking for the presence of the cdmi_jobs capability in the root container capabilities. If this capability is not134

present, creating a job data object shall be successful, but no job action shall be performed.135

Jobs may be created by CDMI clients and CDMI server internal processes.136

Examples of jobs created by CDMI clients may include:137

• deleting data,138

• updating metadata, and139

• serialization.140

Examples of jobs created by internal system processes may include:141

• data migration,142

• virus scans,143

• search indexing, and144

• periodic backups.145

CDMI clients may create jobs through a variety of methods:146

A client may create a job data object without specifying a location by performing a POST operation. In this case, the147

system shall create the job in a job container and return an HTTP response code of 202 Accepted. The URI for newly148

created job object shall be returned in an HTTP Location response header.149

A client may create a job data object at a specific location by performing a PUT operation. Only containers with a150

cdmi_job_dataobject capability shall allow job data objects to be created. The semantics for this are the same as151

other data objects.152

A client may view and access jobs created by internal system processes through the job container. To get a list of153

systemcreated jobs, clients may list the children of the container.154

2.3 Job Object Metadata155

When a client creates a job data object, the presence of the metadata item cdmi_job_state indicates that the data156

object represents a job.157

Metadata, including the cdmi_job_state metadata item may be changed by a client. If the cdmi_job_state meta158

data item is removed, that indicates that the job data object shall no longer manage jobs; instead, it shall be treated as159

a regular CDMI data object by the CDMI server.160

The metadata items for a job data object are shown in Table 7.161

Table 7: Job data object metadata
Job Metadata Item Type Description Requirement
cdmi_job_state JSON

string
Controls the desired runtime state of the job. Defined
values are one of the following:

• Start indicates that the job shall be
transitioned to the Processing state.

• Pause indicates that the job shall be
transitioned to the Idle state.

• Cancel indicates that the job shall be
transitioned to the Canceled state.

Only values specified in the cdmi_job_states
capability shall be accepted by the CDMI server.

Mandatory

continues on next page

© SNIA 2020 SNIA Working Draft 4

Jobs CDMI Extension 2.0

Table 7 – continued from previous page
Job Metadata Item Type Description Requirement
cdmi_job_status JSON

string
A string that indicates the status of the job using one
of the following values.

• Pending indicates that the job object has
been created but has not yet started running.

• Processing indicates that the job is acting
against the specified targets.

• Idle indicates that the job has completed
acting against the specified targets and will
resume if additional targets are specified.

• Complete indicates that the job has
completed acting against the specified targets
and will not resume.

• Canceled indicates that the job was canceled
before it acted against all of the specified
targets.

• A string that begins with “Error” indicates that
an error prevented the job from acting against
one or more of the specified targets.

Mandatory

cdmi_job_
↪→ detailedStatus

JSON
string

A message indicating what the job is currently doing
or indicating the details about the error if it failed.

Optional

cdmi_job_
↪→ percentComplete

JSON
string

The value shall be an integer numeric value from 0
through 100.

Optional

cdmi_job_startTime JSON
string

When present, this metadata item indicates the time
when the job started in ISO8601 format (see %s).

Optional

cdmi_job_endTime JSON
string

When present, this metadata item indicates the time
when the job completed, was halted, or went into an
error status in ISO8601 format (see %s).

Optional

2.4 Job Object Value162

When a client creates a job data object, the JSON fields described in Table 127 shall be provided as the value of the163

data object.164

The value of a job data object shall be immutable once created.165

The value of a job data object are shown in Table 8.166

Table 8: Job data object value
Job Value JSON item Type Description Requirement
cdmi_job_action JSON

string
A systemdefined identifier that indicates what action
should be performed against each CDMI object that
the job targets.
Job actions defined as part of the CDMI specification
(see 2.7) begin with the prefix cdmi_job_action_.
Job actions defined by vendors should begin with a
reverse DNS notation such as org.snia. to prevent
namespace conflicts.
Only job actions specified in the data system
metadata items listed in
cdmi_job_container_actions_provided of
the parent container of the job data object shall be
supported.

Mandatory

continues on next page

© SNIA 2020 SNIA Working Draft 5

Jobs CDMI Extension 2.0

Table 8 – continued from previous page
Job Value JSON item Type Description Requirement
cdmi_job_action_params JSON

object
or
JSON
array

Contains job actionspecific parameters that control
how a job action behaves. .. raw:: latex

vspace*{1ex}
For example, a thumbnail action may take
parameters that indicate the height and width and/or
desired size, output format, etc.

Optional

cdmi_job_target JSON
array
of
JSON
strings

Indicates against which CDMI objects the job action
is performed. .. raw:: latex

vspace*{1ex}
Contains either an array of URIs to CDMI objects
against which the job action shall be performed or a
single URI to a CDMI queue. Each value enqueued
in the queue is a URI to a CDMI object against which
the job action shall be performed.
For details on how queues are used with jobs, see
FIXME.

Mandatory

cdmi_job_results JSON
string

Contains the URI to a CDMI queue that is used to
indicate the results of performing a job.
If present, the job shall enqueue a jobdefined result
value of performing the action against each job target.

Optional

cdmi_job_autodelete JSON
string

Contains the length of time in seconds the job data
object shall be retained after the job status transitions
to “Complete” or “Canceled”.
If this field is not present, the job shall not be
automatically deleted.

Optional

cdmi_job_scheduleTime JSON
string

The earliest time that the job shall run, specified in
ISO8601 format (see %s). The job shall be
scheduled to run as soon as possible if this field is
omitted or if the time specified is earlier than the
current system time.

Optional

2.5 Examples167

EXAMPLE 1: A CDMI job value that deletes three CDMI objects, then immediately deletes itself:168

{
"cdmi_job_action" : "cdmi_job_action_delete",
"cdmi_job_target" : [

"/cdmi_objectid/00007ED900100DA32EC94351F8970400",
"/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"

],
"cdmi_job_autodelete" : "0"

}

EXAMPLE 2: A CDMI job value that deletes every object enqueued into a notification queue:169

{
"cdmi_job_action" : "cdmi_job_action_delete",
"cdmi_job_target" : "/container/jobs/created_mp3_files_queue"

}

Jobs may be used in combination with query and notification queues to perform an action against each query result or170

notification result.171

© SNIA 2020 SNIA Working Draft 6

Jobs CDMI Extension 2.0

2.6 Job Lifecycle172

The defined job status and transitions between status is shown in Fig. 1.173

Pending

Processing

Idle
(Optional)

Complete

Error

Cancelled
(Optional)

Deleted

Start *

Start *

Pause *

Finished

Failed

Cancel *

Retention Period
Expired

* Denotes states that can be controlled through the cdmi_job_state metadata item

Fig. 1: Job Lifecycle

The following status values will be reflected in the cdmi_job_status field of the job data object:174

Pending, Active, Idle, Completed, Error, and Canceled.175

The job is created in the Pending state. If it is started, it moves to the Active state. The job may optionally move176

between the Active and Idle states; however, all systems may not support the Idle state. The job moves to Com177

pleted, Error, or Canceled once it is finished. The Canceled state is optional, as it may not make sense in some178

systems. After completion, the job is retained until the client deletes the job or until the cdmi_job_autodelete pe179

riod elapses. The system shall permit the client to start, pause, restart, or cancel a job using the cdmi_job_state180

metadata item. This functionality is optional, as the ability to directly control a job depends on the system.181

2.7 Job Actions182

A client shall use the cdmi_jobs_actions systemwide capability to discover which job actions are supported.183

Job actions defined in this international standard are shown in Table 9.184

Table 9: Job actions
Job Action Description
cdmi_job_action_sequential_batch Sequential batch jobs perform two or more jobs one after another

against each targeted CDMI object in a specified order.
• Sequential batch jobs have the job action identifier of
cdmi_job_action_batch_sequential.

• The action parameters are an ordered JSON array of URIs to
other job data objects that define the individual operations to
be performed.

Each of these component jobs shall not have a job_target or
job_state, as the job_target and job_state of the
sequential batch job shall be used instead.

continues on next page

© SNIA 2020 SNIA Working Draft 7

Jobs CDMI Extension 2.0

Table 9 – continued from previous page
Job Action Description
cdmi_job_action_parallel_batch Parallel batch jobs perform two or more individual jobs in any order

or at the same time against each targeted CDMI object. Parallel
batch jobs should only perform job actions that do not alter the
target data objects, or unspecified results may occur.

• Parallel batch jobs have the job action identifier of
cdmi_job_action_batch_parallel.

• The action parameters are a JSON array of URIs to other job
data objects that define the individual operations to be
performed.

Each of these component jobs shall not have a job_target or
job_state, as the job_target and job_state of the parallel
batch job shall be used instead.

cdmi_job_action_delete Deletion jobs delete the target CDMI objects.
• Delete jobs have the job action identifier of
cdmi_job_action_delete.

• No job action parameters are required.

cdmi_job_action_update_metadata Update metadata jobs manipulate the metadata of target CDMI
objects.

• Update metadata jobs have the job action identifier of
cdmi_job_action_update_metadata.

• The action parameters are an JSON object that contain or or
more of the below three JSON containers:

• 1. The update_add contains metadata items to be added
to the data object if they don’t already exist;

• 2. The update_modify contains metadata items to be
overwritten if they already exist; and

• 3. The update_delete contains metadata items to be
removed from the data object.

2.8 Job Containers185

CDMI job container objects store job data objects. Use of job containers is optional in CDMI systems but is mandatory186

if clients are permitted to create job data objects.187

Job containers may be dedicated to storing only job data objects, or they may store other containers and data objects,188

including job data objects. CDMI systems may automatically create job containers, and in such systems, CDMI clients189

may not have the ability to create or delete job containers. Other systems may allow CDMI clients to create or delete190

job containers that support storing job data objects that the system or CDMI clients create.191

A CDMI system may create and implement a single, global jobs container that CDMI clients may not change. If present,192

clients locate this global jobs container by the URI specified by the cdmi_jobs_global_container capability de193

scribed in %s.194

Systems may allow multiple job containers. Jobs may be grouped in containers along with nonjob data objects. One195

use of multiple containers is to group jobs by type. Systems may allow CDMI clients to create their own job containers.196

When job containers are supported, a CDMI client shall identify job containers using the197

cdmi_job_container_actions data system metadata capability described in %s.198

The ability of a CDMI client to create a job container object within a container is indicated by the199

cdmi_create_job_container container capability described in %s. This capability also indicates any restrictions on200

job actions for a created child job container.201

Once a job container has been created, the data systemmetadata of the cdmi_job_container_actions_provided202

contains an array of JSON strings that indicate the allowable actions that may be requested for job data objects that are203

created within that job container (see %s). The system generates this list depending on which actions are supported204

and which actions are requested in the data system metadata of the cdmi_job_container_actions described in205

%s.206

A system may allow jobs to be created or deleted within a job container. This function is indicated by the capabilities207

associated with the job container.208

© SNIA 2020 SNIA Working Draft 8

Jobs CDMI Extension 2.0

• The ability of a CDMI client to create a job data object within a job container is indicated by the209

cdmi_create_job_dataobject container capability described in %s.210

• The ability of a CDMI client to delete a job data object within a job container is indicated by the211

cdmi_delete_dataobject data object capability described in %s.212

Using capabilities and data system metadata, the client follows these steps to create a new job container that allows213

jobs for deleting CDMI objects:214

1. Examine the presence and value of the cdmi_create_job_container capability of the parent container to215

see if child job containers may be created and if the cdmi_job_action_delete action is supported.216

2. If job container creation is supported and the cdmi_job_action_delete action is supported, create a new217

child container with the cdmi_job_container_actions data systemmetadata set to ALL (or include the value218

cdmi_job_action_delete) to indicate to the server that job data objects with delete job actions will be created219

in this newly created container.220

3. Examine the cdmi_job_container_actions_provided data system metadata of the newly created con221

tainer to ensure that cdmi_job_action_delete is included in the list.222

4. Examine the cdmi_create_job_dataobject capability of the newly created container to ensure that job cre223

ation is supported.224

5. If job data object creation is supported and the desired action is supported, create a new child data object with225

cdmi_jobs_action metadata supporting the cdmi_job_action_delete job action.226

EXAMPLE 3: An example of the job metadata associated with a job container that indicates that only delete action jobs227

may be created is as follows:228

{
"metadata" : {
"cdmi_job_container_actions" : ["ALL"],
"cdmi_job_container_actions_provided" : ["cdmi_job_action_delete"]

]
}

© SNIA 2020 SNIA Working Draft 9

	Jobs CDMI Extension
	Overview
	Instructions to the Editor

	Jobs
	Job Management
	Job Creation
	Job Object Metadata
	Job Object Value
	Examples
	Job Lifecycle
	Job Actions
	Job Containers

