
 

LTFS Export Extension 

Version 1.0c 

"Publication of this Working Draft for review and comment has been approved by the Cloud 
Storage Technical Working Group. This draft represents a "best effort" attempt by the Cloud 
Storage Technical Working Group to reach preliminary consensus, and it may be updated, 
replaced, or made obsolete at any time. This document should not be used as reference 
material or cited as other than a 'work in progress.' Suggestion for revision should be directed to 
http:/snia.org/feedback." 

Working Draft 



2
 

© SNIA 

Revision History 

Date Version By Comments 

2013-10-15 1.0a LTFS TWG Formal extension created based on draft TWG 
working document. 

2013-10-29 1.0b LTFS TWG Minor fixes, clarified header and extended metadata 

2013-11-11 1.0c LTFS TWG Edits from November Technical Symposium 

 

The SNIA hereby grants permission for individuals to use this document for personal use only, 
and for corporations and other business entities to use this document for internal use only 
(including internal copying, distribution, and display) provided that:  

• Any text, diagram, chart, table, or definition reproduced shall be reproduced in its entirety 
with no alteration, and,  

• Any document, printed or electronic, in which material from this document (or any portion 
hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall 
credit the SNIA for granting permission for its reuse.  

Other than as explicitly provided above, you may not make any commercial use of this 
document, sell any excerpt or this entire document, or distribute this document to third parties. 
All rights not explicitly granted are expressly reserved to SNIA.  

Permission to use this document for purposes other than those enumerated above may be 
requested by e-mailing tcmd@snia.org. Please include the identity of the requesting individual 
and/or company and a brief description of the purpose, nature, and scope of the requested use.  

Copyright © 2013 Storage Networking Industry Association. 

LTFS Export Extension 1.0c Working Draft 



3 

© SNIA 

LTFS Export Extension 
Overview 

LTFS provides a cost-effective and time efficient approach to bulk loading and transfer of large 
quantities of stored cloud data. The LTFS Export Extension standardizes how LTFS tape 
collections can be accessed through CDMI, and used for bulk data transfers. 

Modifications to the CDMI 1.0.2 spec: 

1) Insert new entry into clause 2 

Add referece to LTFS standard 

2) Insert new clause "13.9 LTFS Export" 

The Linear Tape File System (LTFS) standard defines an interoperable way to store and 
exchange files and directories on tape storage devices. LTFS permits files to be stored on a one 
or more LTFS volumes, providing a single namespace view for arbitary sized files and file 
collections. 

LTFS exports allow a collection of CDMI objects to be stored and retrieved from one or more 
LTFS volumes. An LTFS volume or set of volumes is first associated with a CDMI container, 
which instructs the storage system to provide access to the contents of those volumes via 
CDMI. This is accomplished by specifying a CDMI export for that container. Once a CDMI 
container is associated with LTFS volumes, the container can be used to access or deserialize 
the contents of the LTFS volumes, and act as a destination for object creation, copying and 
serialization via standard CDMI operations. 

LTFS exports does not define the underlying mechanisms by which the tapes are accessed, 
which implemented by various software layers running below the cloud interface layer and 
above the tape library. This is left to the LTFS library implementations. 

13.9.1 Managing Latency in LTFS Exports 

Objects residing on an LTFS export may have significantly higher latency as a consequence of 
being stored on tape. The CDMI standard provides access to latency information through the 
cdmi_latency_provided metadata item (see clause 16.4, Table 121), allowing a client to 
determine the expected latency for the object before making the request. 

If an object has significant latency, the client shall be able to tolerate the specified latency 
between the issuance of a request headers and body and receiving the response headers and 
body. 

If supported by the server, changing the cdmi_latency metadata (see clause 16.4, Table 120) 
associated with one or more objects shall instruct the server to cache the objects in a lower 
latency location. When the server has cached the data, the cdmi_latency_provided shall reflect 
the lower latency of the cache. 

cdmi_latency can be changed for individual objects, for containers (affecting all contained 
objects that do not have an explicit cdmi_latency metadata item specified), and for arbitary 
groups of objects using the CDMI jobs functionality. 

LTFS Export Extension 1.0c Working Draft  



4
 

© SNIA 

If a client intends to wait until objects have lower latency before accessing them, the client may 
create a CDMI notification queue (see clause 21) to receive notifications of when the provided 
latency for objects changes. This allows the client to avoid having to poll on the objects. 

13.9.2 Associating CDMI Containers and LTFS Volumes 

To attach a container to a set of LTFS volumes, the information identifying the LTFS volumes to 
be associated is specified as export metadata for the container at container creation time, or by 
modifying an existing empty container to add the required export metadata. 

Required members of the protocol structure for LTFS are 

• "ltfs_volume_uuids". One or more LTFS Volume UUIDs that are to be used for LTFS 
filesystem access. If the first volume UUID listed has a valid LTFS Transfer Request XML 
file in the root directory, the storage system shall automatically update the 
ltfs_volume_uuids list to include all LTFS Volume UUIDs referenced in the Transfer 
Request XML file. 

Optional members of the protocol structure for LTFS are 

• "ltfs_manifest". If present and "true", this indicates that a LTFS Transfer Request XML file 
shall be created. If absent and an LTFS Transfer Request XML files exists on the LTFS 
volumes, the storage system shall create this metadata item and set it to the value "true". 

• "usermap". As described in 13.2. Setting a single user map entry of {"myuser", "<-", "*"} 
will map all existing LTFS users to the "myuser" account. 

• "groupmap". As described in 13.2. Setting a single group map entry of {"mygroup", "<-", 
"*"} will map all existing LTFS groups to the "mygroup" account. 

• "domainmap". Uses the same approach described in 13.2. Setting a single domain map 
entry of {"/cdmi_domains/mydomain/", "<-", "*"} will map all domains on the LTFS export to 
the "cdmi_domains/mydomain/" CDMI domain. 

Example 1: Create a new CDMI container that is associated with four LTFS volumes: 
PUT /ltfs_exported_container/ HTTP/1.1 
X-CDMI-Specification-Version: 1.0.2 
Content-Type: application/cdmi-container 
Accept: application/cdmi-container 
 
{ 
   "exports" :  { 
      "ltfs" : { 
         "ltfs_volume_uuids" : [ 
             "1F912610-3F48-43F3-A53A-D0761B0238DE", 
             "0A198010-740E-433B-920F-0CC95CDD0C7F", 
             "5573B072-FFF7-408A-A599-3FC383E72DDC", 
             "6DECAAD5-9507-4052-876A-F45B1CE1F2AA" 
          ], 
  "usermap" : { 
   {"myuser", "<-", "*"} 
  }, 
  "groupmap" : { 
   {"mygroup", "<-", "*"} 
  }, 
  "domainmap" : { 
   {"/cdmi_domains/mydomain/", "<-", 
"http://sourcecloud.example.com/cdmi_domains/source/"} 

LTFS Export Extension 1.0c Working Draft 



5 

© SNIA 

  } 
      } 
   } 
} 

If all of the requested volume UUIDs are known to the storage system and are accessible, the 
container PUT will succeed without errors, and all LTFS files and objects stored on the specified 
volumes will be accessible through the exported container. 

The association shall be removed by deleting the container or deleting the export metadata. 
Deleting the container shall not delete any stored files or objects. 

13.9.3 Storing Data Objects on LTFS 

CDMI Data Objects shall be stored as an ordinary LTFS file, with extended attributes as 
described in 15.5.6 - CDMI Metadata Mapping for LTFS Storage. 

For each CDMI data object with an object ID, an LTFS symlink with the name of the object ID 
that points to the LTFS file corresponding to the data object shall be created in an 
"/cdmi_objectid/" directory in the root directory of the LTFS volume. If a data object only has an 
ID, the LTFS file is stored directly in the "/cdmi_objectid/" directory. 

For example, a data object named "myDataObject" with ID 
00007E7F00102E230ED82694DAA975D2 shall be translated into the following files on an 
LTFS volume: 
/myDataObject 
/cdmi_objectid/00007E7F00102E230ED82694DAA975D2 -> /myDataObject 

13.9.4 Storing Versioned Data Objects on LTFS 

CDMI Data Objects with versions shall be stored as a collection of LTFS file system items: 

• An LTFS symlink to the current version file inside the versioned object directory, and 

• An LTFS directory, where the name of the directory is the same as the name of the 
versioned data object, appended with “.cdmi_versions”. This directory includes the 
extended attributes as described in 15.5.6 - CDMI Metadata Mapping for LTFS Storage, 
and 

• A file corresponding to each version of the versioned object in the versioned object 
directory where each file shall be a valid stand-alone object. The naming of the version 
files is up to the implementation. 

For example, a versioned data object named “vObj”, with three versions, shall be translated into 
the following files on an LTFS volume: 
/vObj -> /vObj.cdmi_versions/vObj;3 
/vObj.cdmi_versions/ 
/vObj.cdmi_versions/vObj;3  
/vObj.cdmi_versions/vObj;2   
/vObj.cdmi_versions/vObj;1 
/cdmi_objectid/00007ED90010849414B876867FC196C8 -> /vObj 
/cdmi_objectid/00007E7F0010CEC234AD9E3EBFE9531D -> /vObj.cdmi_versions/vObj;3 
/cdmi_objectid/00007E7F0010DCECC805FB6D195DDBCB -> /vObj.cdmi_versions/vObj;2 
/cdmi_objectid/00007E7F0010128E42D87EE34F5A6560 -> /vObj.cdmi_versions/vObj;1 

13.9.5 Storing Container Objects on LTFS 

LTFS Export Extension 1.0c Working Draft  



6
 

© SNIA 

CDMI Container Objects shall be stored as an ordinary LTFS directories, with extended 
attributes as described in 15.5.6 - CDMI Metadata Mapping for LTFS Storage. 

For each CDMI container object with an object ID, an LTFS symlink with the name of the object 
ID that points to the LTFS directory corresponding to the container object shall be created in an 
"/cdmi_objectid/" directory in the root directory of the LTFS volume. 

For example, a container object named "myContainer" would be translated into the following 
files on an LTFS volume: 
/myContainer/ 
/cdmi_objectid/00007E7F00102E230ED82694DAA975D2 -> /myContainer/ 

13.9.6 Storing Queue Objects on LTFS 

CDMI Queue Objects shall be stored as a collection of LTFS file system items: 

• An LTFS file representing the queue object, and 

• An LTFS directory, where the name of the directory is the same as the queue object, 
appended with “.cdmi_queue”. This directory includes the extended attributes as described 
in 15.5.6 - CDMI Metadata Mapping for LTFS Storage, and 

• A file corresponding to each enqueued item in the queue, stored inside the queue object 
directory, where each enqueued item file has a name based on the queueValue number, 
and shall have extended attributes as described in the second table, and 

For example, a queue object with two enqueued items would be represented in the following 
files on an LTFS volume: 
/myQueue 
/myQueue.cdmi_queue/ 
/myQueue.cdmi_queue/0 
/myQueue.cdmi_queue/1 
/cdmi_objectid/00007E7F0010CEC234AD9E3EBFE9531D -> /myQueue 

13.9.7 Storing Reference Objects on LTFS 

CDMI Reference Objects shall be stored as an ordinary LTFS symlink. 

For example, a reference object named "ref" pointing to a data object named "bar" shall be 
translated into the following files on an LTFS volume: 
/bar 
/ref -> /bar 

LTFS Export Extension 1.0c Working Draft 



7 

© SNIA 

13.9.7 Storing Object Fields on LTFS 

CDMI Fields are stored as LTFS extended attributes according to the following table: 

Table 112 – CDMI Fields to LTFS Extended Attribute Mapping 

Object Type D
ata O

bject 

Versioned D
ata O

bject Sym
link 

Versioned D
ata O

bject D
irectory 

Versioned D
ata O

bject Version 

C
ontainer O

bject 

Q
ueue O

bject 

Q
ueue D

irectory 

Q
ueue Item

 

R
eference O

bject 

LTFS Storage Location 

objectType          Derived from the LTFS element type: 
file, directory or symlink 

objectID X  X X X X    Stored as a UTF-8 string containing the 
CDMI object ID in the LTFS extended 
attribute ltfs.vendor.cdmi.objectid 

objectName X X   X X   X Derived from the name of the specific 
LTFS element (file, directory or symlink) 

parentURI X  X X X X    Derived from a concatenation of LTFS 
directory names separated by the 
character ‘/’, which represents the 
position of the object in the LTFS 
directory structure.  

parentID X  X  X X    Stored as the LTFS extended attribute 
ltfs.vendor.cdmi.objectid in the parent 
directory 

parentID    X      Stored as a UTF-8 string containing a 
CDMI object ID in the LTFS extended 
attribute ltfs.vendor.cdmi.parentid 

domainURI X   X X X    Stored as a UTF-8 string containg a 
domain URI in the LTFS extended 
attribute ltfs.vendor.cdmi.domainURI 

mimetype X   X    X  Stored as a UTF-8 string containg the 
mime type in the LTFS extended 
attribute ltfs.vendor.cdmi.mimetype 

metadata 
(header) 

X   X X X    Stored as header/value JSON strings in 
the LTFS extended attribute 
ltfs.vendor.cdmi.x-meta 

LTFS Export Extension 1.0c Working Draft  



8
 

© SNIA 

Metadata 
(extended) 

X   X X X    Stored as CDMI metadata JSON in the 
LTFS extended attribute 
ltfs.vendor.cdmi.metadata 
Refer to table 113 for specific metadata 
mapping. 

valuerange X   X    X  Derived from the LTFS file size 
valuetransfer 
encoding 

X   X    X  Stored as a UTF-8 string in the LTFS 
extended attribute 
ltfs.vendor.cdmi.valuetransferencoding 

value X   X    X  Derived from the LTFS file content 

A list of valid CDMI Domains are not transported via LTFS, and must be mapped by the storage 
system. 

13.9.8 Storing Object Metadata on LTFS 

CDMI metadata is stored as LTFS extended attributes according to the following table: 

Table 113 – CDMI Metadata to LTFS Extended Attribute Mapping 

Metadata Item D
ata O

bject 

Versioned D
ata O

bject Sym
link 

Versioned D
ata O

bject D
irectory 

Versioned D
ata O

bject Version 

C
ontainer O

bject 

Q
ueue O

bject 

Q
ueue D

irectory 

Q
ueue Item

 

R
eference O

bject 

LTFS Storage Location 

cdmi_acl  X  X X X X X X  Stored as a standard LTFS ACL 
metadata (ltfs.permissions.nfsv4acl) 

cdmi_size X   X    X  Derived from the LTFS file length 
cdmi_ctime X  X X X X X X  Stored as standard LTFS object 

metadata (ltfs.createTime) 
cdmi_atime X  X X X X X X  Stored as standard LTFS object 

metadata (ltfs.accessTime) 
cdmi_mtime X  X X X X X X  Stored as standard LTFS object 

metadata (ltfs.modifyTime) 
cdmi_acount X  X X X X X X  Stored as a UTF-8 string in the LTFS 

extended attribute 
ltfs.vendor.cdmi.acount 

cdmi_mcount X  X X X X X X  Stored as a UTF-8 string in the LTFS 

LTFS Export Extension 1.0c Working Draft 



9 

© SNIA 

extended attribute 
ltfs.vendor.cdmi.mcount 

cdmi_hash X   X      Stored as a UTF-8 string containing the 
algorithm, length and value in the 
formation of "ALGLEN:VALUE" in the 
LTFS extended attribute 
ltfs.vendor.cdmi.hash 

cdmi_owner X  X X X X X X  Stored as standard LTFS ACL metadata 
(lfts.permissions.nfsv4acl) 

header 
metadata 
items 

X   X X X    Stored as header/value JSON strings in 
the LTFS extended attribute 
ltfs.vendor.cdmi.x-meta 

All other 
metadata 
items 

X   X X X    Stored as CDMI metadata JSON in the 
LTFS extended attribute 
ltfs.vendor.cdmi.metadata 

 

3) Insert into table "Table 105 - Capabilities for Containers" 

Capability 
Name 

Type Description 

cdmi_export_
container_ltfs 

JSON 
String 

If present and "true", this container can be associated with a set of LTFS 
volumes. 

 

LTFS Export Extension 1.0c Working Draft  


	Working Draft
	LTFS Export Extension
	Overview
	Modifications to the CDMI 1.0.2 spec:
	1)  Insert new entry into clause 2
	2)  Insert new clause "13.9 LTFS Export"
	3)  Insert into table "Table 105 - Capabilities for Containers"



