

Cloud Data Management Interface
Extension: Versioning

Version 1.0g

"Publication of this Working Draft for review and comment has been approved by the Cloud
Storage Technical Working Group. This draft represents a "best effort" attempt by the Cloud
Storage Technical Working Group to reach preliminary consensus, and it may be updated,
replaced, or made obsolete at any time. This document should not be used as reference
material or cited as other than a 'work in progress.' Suggestion for revision should be directed to
http:/snia.org/feedback."

Working Draft

 Versioning 1.0g Working Draft 2

Revision History

Date Version By Comments
2011-12-05 1.0a David Slik,

NetApp, Inc.
Updates to include standard SNIA front matter, minor edits to
proposed extension as discussed at last face-to-face.

2012-01-12 1.0b Marie McMinn Updates to include standard SNIA front matter and technical
edit

2012-01-13 1.0c David Slik,
NetApp, Inc.

Added serialization example, updates based on SNIA TWG
ballot feedback.

2012-01-23 1.0d David Slik,
NetApp, Inc.

Incorporated comments and feedback from January face-to-
face review, including re-written introduction, updated
diagrams and added the X-CDMI-Version-Inhibit header and
the ability to specify if only content updates create versions.

2012-01-24 1.0e David Slik,
NetApp, Inc.

Fixed data system metadata lists to be JSON Arrays of
JSON Strings instead of comma-delimited lists.

2012-01-24 1.0f David Slik,
NetAPp, Inc.

Updates to reflect TWG discussions, removed X-CDMI-
Version-Inhibit.

2012-01-26 1.0g Marie McMinn Updates include minor edits.

The SNIA hereby grants permission for individuals to use this document for personal use only,
and for corporations and other business entities to use this document for internal use only
(including internal copying, distribution, and display) provided that:

• Any text, diagram, chart, table, or definition reproduced shall be reproduced in its entirety
with no alteration, and,

• Any document, printed or electronic, in which material from this document (or any portion
hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall
credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this
document, sell any excerpt or this entire document, or distribute this document to third parties.
All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be
requested by e-mailing tcmd@snia.org. Please include the identity of the requesting individual
and/or company and a brief description of the purpose, nature, and scope of the requested use.

Copyright © 2012 Storage Networking Industry Association.

© SNIA

Working Draft Versioning 1.0g 3

Object Versioning CDMI Extension
Overview

This CDMI extension adds the ability to request that data objects be versioned and defines how
versions are accessed and managed. Version-enabled data objects provide access to and
retention of historical versions of a data object and can provide compliance functionality and
revision history. Version-enabled data objects also help applications handle multiple concurrent
writers in disconnected distributed environments.

Versioning is based around the snapshot concept introduced in CDMI 1.0 and follows the same
architectural pattern. It should be reviewed in this context.

Important note for reviewers: Please start reading at section 23 on Page 10.

Modifications to the CDMI 1.0.1 spec:

1) Insert into Clause 3 - "Terms"

3.x
current data object version
the most recent version of a version-enabled data object

3.x
data object version
either the current data object version or a historical data object version

3.x
historical data object version
a non-current state of a version-enabled data object

3.x
version-enabled data object
a CDMI data object with versioning enabled

2) Insert into Clause 8.4.8 - "Examples", at the end of the clause:

EXAMPLE 5 GET to the URI to read a newly-created data object with a current version:
GET /MyContainer/MyVersionedDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0.1

The following shows the response.
HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.1

{
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED900100DA32EC94351F8970400",
 "objectName" : "MyVersionedDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",

 Versioning 1.0g Working Draft 4

 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "33",
 "cdmi_versioning" : "user",
 "cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
 "cdmi_version_current" : "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA",
 "cdmi_version_oldest" : [
 "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
]
 },
 "valuerange" : "0-32",
 "valuetransferencoding" : "utf-8",
 "value" : "First version of this Data Object"
}

EXAMPLE 6 GET to the URI to read a data object with two historical versions:
GET /MyContainer/MyVersionedDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0.1

The following shows the response.
HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.1

{
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED900100DA32EC94351F8970400",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "33",
 "cdmi_versioning" : "user",
 "cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
 "cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
 "cdmi_version_oldest" : [
 "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
]
 },
 "valuerange" : "0-32",
 "valuetransferencoding" : "utf-8",
 "value" : "Third version of this Data Object"
}

EXAMPLE 7 GET to the URI of a data object version:
GET /cdmi_objectid/00007ED9001005192891EEBE599D94BB HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0.1

The following shows the response.

© SNIA

Working Draft Versioning 1.0g 5

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.1

{
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED9001005192891EEBE599D94BB",
 "objectName" : "MyVersionedDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "34",
 "cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
 "cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
 "cdmi_version_oldest" : [
 "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
],
 "cdmi_version_parent" : "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA",
 "cdmi_version_children" : [
 "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC"
]
 },
 "valuerange" : "0-33",
 "valuetransferencoding" : "utf-8",
 "value" : "Second version of this Data Object"
}

3) Insert into Clause 12.1.3 - "Data System Metadata Capabilities", Table 104 -
"Capabilities for Data System Metadata":

Capability Name Type Description

cdmi_versioning JSON
Array of
JSON
Strings

If present, this capability indicates that the cloud storage system
shall support versioning of data objects and contains a list of which
versioning behaviors are supported. The following values are
defined:

• "value" indicates that the system shall support the versioning of
the object value.

• "user" indicates that the system shall support the versioning of
the object value and user metadata.

• "all" indicates that the system shall support the versioning of all
updates made to a data object.

When present, the system shall support the following storage
system metadata: "cdmi_version_object", "cdmi_version_current",
"cdmi_version_oldest", "cdmi_version_parent", and
"cdmi_version_children", as indicated by the corresponding storage
system metadata capabilities.

cdmi_versions_count JSON
String

If present, this capability specifies the maximum number of historical
versions that may be specified. If absent, restrictions on the number
of historical versions specified shall be ignored.

 Versioning 1.0g Working Draft 6

Capability Name Type Description

cdmi_version_age JSON
String

If present, this capability specifies the maximum age of historical
versions that may be specified. If absent, restrictions on the age of
historical versions specified shall be ignored.

cdmi_versions_size JSON
String

If present, this capability specifies the maximum total size of
historical versions that may be specified. If absent, restrictions on
the size of historical versions specified shall be ignored.

4) Insert into Clause 16.3 - "Support for Storage System Metadata", Table 117 - "Storage
System Metadata":

Metadata Name Type Description Requirement

cdmi_version_object JSON String If present and "true", this capability indicates that
the cloud storage system shall generate a
"cdmi_version_object" storage system metadata
for each version-enabled data object and data
object version.

Conditional

cdmi_version_current JSON String If present and "true", this capability indicates that
the cloud storage system shall generate a
"cdmi_version_current" storage system
metadata for each version-enabled data object
and data object version.

Conditional

cdmi_version_oldest JSON Array
of JSON
Strings

If present and "true", this capability indicates that
the cloud storage system shall generate a
"cdmi_version_oldest" storage system metadata
for each version-enabled data object and data
object version.

Conditional

cdmi_version_parent JSON String If present and "true", this capability indicates that
the cloud storage system shall generate a
"cdmi_version_parent" storage system metadata
for each data object version that has a previous
version.

Conditional

cdmi_version_children JSON Array
of JSON
Strings

If present and "true", this capability indicates that
the cloud storage system shall generate a
"cdmi_version_children" storage system
metadata for each data object version.

Conditional

© SNIA

Working Draft Versioning 1.0g 7

5) Insert into Clause 16.4 - "Data System Metadata", Table 118 - "Data System
Metadata":

Metadata Name Type Description Requirement

cdmi_versioning JSON String If present, this metadata item indicates that
versioning is requested to be enabled for the
data object.

• If set to the value "value", versions shall be
created when the value is updated.

• If set to the value "user", versions shall be
created when the value and/or user
metadata is updated.

• If set to the value "all", versions shall be
created when any update is performed
against the version-enabled data object.

This data system metadata item shall not be
present in data object versions.

Optional

cdmi_versions_count JSON String This metadata item contains the maximum
number of historical versions requested to be
retained.

• If "cdmi_versions_count" is not present, no
limit should be placed on the number of
versions that are retained.

• If "cdmi_versions_count" is present and has
a value of zero, only the current version
should be retained.

• If "cdmi_versions_count" is present and has
a value greater than zero, up to the specified
number of historical versions should be
retained.

• If the number of historical versions exceeds
the value specified, historical versions
should be deleted from the oldest to the
newest until the number of historical versions
equals the value contained in
"cdmi_versions_count".

Optional

 Versioning 1.0g Working Draft 8

Metadata Name Type Description Requirement

cdmi_versions_age JSON String This metadata item contains the maximum age
of the oldest historical version requested to be
retained, specified as the number of seconds
before the current time.

• If "cdmi_versions_age" is not present, no
limit should be placed on the age of versions
that are retained.

• If "cdmi_versions_age" is present, historical
versions should be retained until their age is
greater than the value contained in
"cdmi_versions_age".

• If the age of a historical version exceeds the
value specified, that historical version should
be deleted.

Optional

cdmi_versions_size JSON String This metadata item contains the maximum
amount of space requested to be used to retain
historical versions, specified in bytes.

• If "cdmi_versions_size" is not present, no
limit should be placed on the size of versions
that are retained.

• If "cdmi_versions_size" is present, historic
versions should be retained until the total
storage consumption of the historical
versions exceeds the value contained in
"cdmi_versions_size".

• If the total size consumed by historical
versions exceeds the value specified,
historical versions should be deleted from
the oldest to the newest until the total
storage consumption of historical versions is
equal or less than the value contained in
"cdmi_versions_count".

Optional

6) Insert into Clause 16.5 - "Support for Provided Data System Metadata", Table 119 -
"Support for Provided Data System Metadata":

Capability Name Type Description Requirement

cdmi_versioning_provided JSON
String

Contains the value "value", "user", or "all" if
versioning is enabled for the data object.

Conditional

cdmi_versions_count_provided JSON
String

Contains the maximum number of historical
versions that will be retained.

Optional

© SNIA

Working Draft Versioning 1.0g 9

Capability Name Type Description Requirement

cdmi_versions_age_provided JSON
String

Contains the oldest age of a historical
version that will be retained, in seconds
before the current time.

Optional

cdmi_versions_size_provided JSON
String

Contains the maximum amount of space
that can be used to retain historical
versions, in bytes.

Optional

 Versioning 1.0g Working Draft 10

7) Insert new Clause after 22 - "Query Queues":

23 Data Object Versions
23.1 Overview

Version-enabled data objects allow the previous state of a data object to be retained when an
update is performed. In a non-version-enabled data object, each update changes the state of
the object, and the previous state is lost. This state change is illustrated in Figure 10:

/a.txt
ID 400

“value” : “First”

CDMI Client
PUT /a.txt“value” : “First”

CDMI Server

HTTP 201 CREATED

/a.txt
ID 400

“value” : “Second”

PUT /a.txt“value” : “Second”

HTTP 204 NO

CONTENT

/a.txt
ID 400

“value” : “Third”

PUT /a.txt“value” : “Third”

HTTP 204 NO

CONTENT

Non-Versioned Data Object

Figure 10 – Updates to a non-version-enabled data object

When a data object has versioning enabled, each update creates a new "current version" with
the same contents of the version-enabled data object, and the previous current version
becomes a historical version. All versions can be accessed via separate URIs and are
immutable. The version-enabled data object continues to be mutable and has the same
behaviors to clients as a non-version-enabled data object. This behavior is illustrated in Figure
11 from the perspective of a client.

© SNIA

Working Draft Versioning 1.0g 11

Current VersionVersion-Enabled Data Object

CDMI Client
PUT /b.txt“value” : “First”

CDMI Server

HTTP 201 CREATED

PUT /b.txt“value” : “Second”

HTTP 204 NO

CONTENT

PUT /b.txt“value” : “Third”

HTTP 204 NO

CONTENT

/b.txt
ID 500

“value” : “First”

/b.txt
ID 500

“value” : “Second”

/b.txt
ID 500

“value” : “Third”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Second”

/cdmi_objectid/503
ID 503

“value” : “Third”

Historical Versions

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Second”

=

=

=

Figure 11 – Updates to a version-enabled data object

Using this approach, CDMI clients that are not aware of versioning can continue to access
version-enabled data objects the same way as non-version-enabled data objects, while CDMI
clients that are aware of versioning can access and manage the immutable versions associated
with the version-enabled data object.

Versioning is enabled for a data object by adding a data system metadata item that indicates
that versioning is desired.

Version-enabled data objects and all associated versions contain additional storage system
metadata items. These metadata items allow a client to discover the versions that are
associated with a version-enabled data object and to iterate through these versions.

The maximum number of versions to be retained, maximum age of versions to be retained, and
the maximum space that can be consumed by versions is controlled by data system metadata.

When a data object is version enabled, it always contains at least one version, the "current
version". The current version has the same contents as the version-enabled data object but has
a different identifier (URI and Object Identifier) and is immutable. When a version-enabled data
object is changed, a new current version is created, and the previous current version becomes a
historical version.

Versioning has multiple client use cases:

• Clients that need to preserve all data written to a data object over time can use versions to
retain all updates made to a data object.

• Clients can restore the contents of a historical version by copying it to the version-enabled
data object.

• Clients that retrieve a large data object across multiple parallel or sequential transactions or
that need to be able to resume a retrieval at a later time can retrieve the URI for the current
version of the data object. Clients can then use that URI to retrieve the data object itself. As
the current version is immutable and retains its identifier, even if an update occurs (where
the current version becomes a historical version), the client will always receive the same
results and will not receive a mixture of the older and newer data object contents.

 Versioning 1.0g Working Draft 12

• Clients can iterate through historical versions to detect where concurrent updates have
occurred and can access any overwritten data.

Distributed CDMI implementations can also use versions to merge concurrent changes made on
different, eventually consistent nodes without resulting in data loss.

23.2 Traversing Version-Enabled Data Objects

Version-enabled data objects have multiple metadata items that allow a client to traverse
through the data object versions.

When a client enables versioning for a data object, the following metadata items shall be added
to the version-enabled data object:

• a cdmi_version_object metadata item that contains the URI to the corresponding version-
enabled data object. This metadata item allows a client to detect that a given object is a
version-enabled data object and not a data object version.

• a cdmi_version_current field that contains the URI to the current version of the version-
enabled data object.

• a cdmi_version_oldest field that contains the URI of one or more of the oldest versions.
More than one version can exist in this metadata item, as explained in clause 23.3
Concurrent Updates and Version-Enabled Data objects.

Each data object version shall contain the above three fields, with the same values as found in
the version-enabled data object. Each data object version shall also contain the following two
fields:

• a cdmi_version_parent field that contains the URI of the previous version. If the data object
version does not have a parent, this field is omitted.

• cdmi_version_children field that contains the URIs of the versions created by modifying this
version. If the data object version does not have any children, this metadata item shall be
empty.

To visualize how these fields allow a client to traverse data object versions, the linkages
between the version-enabled data object and data object versions in the final state of Figure 11
is illustrated in Figure 12.

/b.txt
ID 500

“value” : “Third” /cdmi_objectid/502
ID 502

“value” : “Second”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/503
ID 503

“value” : “Third”

cdmi_versions_current

cdmi_versions_parent

cdmi_versions_current

cdmi_versions_object

cdmi_versions_oldest

cdmi_versions_children

cdmi_versions_parent

cdmi_versions_children

cdmi_versions_current

Figure 12 – Linkages between a version-enabled data object and data object versions

© SNIA

Working Draft Versioning 1.0g 13

A client accessing the version-enabled data object (/b.txt) can traverse to the current version
and to the oldest version.

A client accessing a data object version can traverse to the version-enabled data object, to the
current version, to the parent version, to child versions, and to the oldest version.

23.3 Concurrent Updates and Version-Enabled Data Objects

When multiple concurrent updates are performed against a version-enabled data object, each
update is performed against the state of the object at the time the update starts. The change to
the state resulting from the update to the object becomes visible to clients at the time the update
completes.

Two different types of concurrent updates can occur: overlapping updates and nested updates.
Figures 13 and 14 show the update sequence and resulting version linkages for overlapping
updates:

Current VersionVersion-Enabled Data ObjectCDMI Client A
PUT /b.txt“value” : “First”

CDMI Server

HTTP 201 CREATED

PUT /b.txt“value” : “Second”

HTTP 204 NO

CONTENT

/b.txt
ID 500

“value” : “first”

/b.txt
ID 500

“value” : “Second”

/b.txt
ID 500

“value” : “Third”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Second”

/cdmi_objectid/503
ID 503

“value” : “Third”

Historical Versions

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Second”

CDMI Client B

PUT /b.txt

“value” : “Third”

HTTP 204 NO CONTENT

Figure 13 – Overlapping concurrent updates

/b.txt
ID 500

“value” : “Third” /cdmi_objectid/502
ID 502

“value” : “Second”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/503
ID 503

“value” : “Third”

cdmi_versions_current

cdmi_versions_parent

cdmi_versions_current

cdmi_versions_object

cdmi_versions_oldest

cdmi_versions_children

cdmi_versions_parent

cdmi_versions_children

cdmi_versions_current

Figure 14 – Linkages for overlapping updates

In the sequence illustrated in Figure 13, both the "Second" and "Third" updates are performed
against the "First" state. As the "Third" update completes last, it becomes the current version. In
this example, historical version 501 would have two children, versions 502 and 503. Both
versions 502 and 503 would have the same parent 501.

 Versioning 1.0g Working Draft 14

Figures 15 and 16 show the update sequence and resulting version linkages for nested
updates:

Current VersionVersion-Enabled Data Object

CDMI Client A
PUT /b.txt“value” : “First”

CDMI Server

HTTP 201 CREATED

PUT /b.txt“value” : “Second”

HTTP 204 NO

CONTENT

/b.txt
ID 500

“value” : “First”

/b.txt
ID 500

“value” : “Third”

/b.txt
ID 500

“value” : “Second”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Third”

/cdmi_objectid/503
ID 503

“value” : “Second”

Historical Versions

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Third”

CDMI Client B

PUT /b.txt

“value” : “Third”

HTTP 204 NO CONTENT

Figure 15 – Nested concurrent updates

/b.txt
ID 500

“value” : “Second” /cdmi_objectid/502
ID 502

“value” : “Third”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/503
ID 503

“value” : “Second”

cdmi_versions_current

cdmi_versions_parent

cdmi_versions_current

cdmi_versions_object

cdmi_versions_oldest

cdmi_versions_children

cdmi_versions_parent

cdmi_versions_children

cdmi_versions_current

Figure 16 – Linkages for nested updates

In the sequence illustrated in Figure 16, both the "Second" and "Third" updates are performed
against the "First" state. As the "Second" update completes last, it becomes the current version.
In this example, historical version 501 would have two children, versions 502 and 503. Both
versions 502 and 503 would have the same parent 501.

Both of these data structures are equivalent, with the only difference being which update
completed last.

23.4 Capabilities for Version-Enabled Data Objects

The relationship between version-enabled data objects, data object versions, and capabilities is
shown in Figure 17.

© SNIA

Working Draft Versioning 1.0g 15

capabilitiesURI

capabilitiesURI

capabilitiesURI

capabilitiesURI

“/” Root URI “cdmi_capabilities/”

“dataobject_version/”

“dataobject/”/b.txt
ID 500

Historical Version
ID 501

capabilitiesURI

Historical Version
ID 502

Current Version
ID 503

Figure 17 – Version to capabilityURI Relationships

Data object versions are immutable but may be deleted by a client or by the system, depending
on the data system metadata specified.

23.5 Updates Triggering Version Creation

If versioning is enabled by setting the value of the cdmi_versions metadata item in the version-
enabled data object to "value", the following updates will trigger the creation of a new version:

• changing the mimetype,
• changing the value, or
• changing the valuetransferencoding.

If versioning is enabled by setting the value of the cdmi_versions metadata item in the version-
enabled data object to "user", the following updates will trigger the creation of a new version:

• changing the mimetype,
• changing the value,
• changing the valuetransferencoding, or
• adding, modifying, or removing user metadata.

If versioning is enabled by setting the value of the cdmi_versions metadata item in the version-
enabled data object to "all", then all updates to the data object will trigger the creation of a new
version.

The effective ACL, owner, and domain of the data object versions shall be the ACL, owner, and
domain of the version-enabled data object.

Modifications performed with the X-CDMI-Partial header shall not trigger the creation of a new
version until the completionStatus is changed from "Processing" to "Complete".

23.6 Operations against Version-Enabled Data Objects

Moving a version-enabled data object within a system is considered to be an update to the
name and/or parentURI fields.

 Versioning 1.0g Working Draft 16

Moving a version-enabled data object between systems moves all data object versions
associated with the version-enabled data object and preserves all identifiers. If the destination
name and/or URI are different, the move is considered to be an update to the name and/or
parentURI fields.

Copying a version-enabled data object shall only copy the version-enabled data object itself.
Versions of the version-enabled data object are not copied.

Deleting a version-enabled data object shall also delete all versions associated with that
version-enabled data object.

Disabling versioning for a version-enabled data object shall preserve all versions. Previously
existing versioning metadata shall remain present while versioning is disabled. Re-enabling
versioning for a data object that previously was version-enabled shall result in the creation of a
new current version.

If a version-enabled data object is placed under retention or hold, the retention behaviors of the
version-enabled data object shall be applied to the data object versions.

No additional log messages or notifications are defined for version-enabled data objects. When
a version-enabled data object is updated, an additional creation log message and/or notification
message shall be generated for the created data object version. Likewise, when a data object
version is accessed or deleted, a log and/or notification message is generated.

If a limited number, size, or age for versions is requested and a change to a version-enabled
data object results in a version being automatically deleted, then the system shall generate a
corresponding deletion log and/or notification message for the deleted data object version.

23.7 Operations against Data Object Versions

A data object version is presented to the client as a standard CDMI data object.

Moving, copying over, deserializing over, and updating a data object version shall not be
permitted and shall result in an HTTP status code of 403 Forbidden.

Copying a data object version is permitted. For example, to promote a version to become the
current version of a version-enabled data object, the URI of the data object version is used in
the copy field when performing an update to the URI of the version-enabled data object.
Updates can also be performed as part of the copy operation.

Deleting a historical data object version shall be permitted if the client has ACL permissions to
delete the version-enabled data object and the version-enabled data object.

Deleting the current version of a version-enabled data object shall revert the current version to
the current version's parent. If there is no parent version, deleting the current version shall result
in an HTTP status code of 403 Forbidden.

When an intermediate historical version is deleted, the parent and children metadata items of
the parent and all child data object versions of the data object version being deleted must be
updated.

EXAMPLE In a version chain "C" -> "B" -> "A", where "C" is the newest and "A" is the oldest,
deleting version "B" shall produce the following results:

• The cdmi_version_parent metadata item of "C" is set to the URI contained in the
cdmi_version_parent metadata item of "B".

© SNIA

Working Draft Versioning 1.0g 17

• The URI of "B" in the cdmi_version_children metadata item of "A" is replaced with the URIs
contained in the cdmi_version_children metadata item of "B".

In pseudocode, the above translates to:
C->cdmi_version_parent = B->cdmi_version_parent
A->cdmi_version_children[B] = B->cdmi_version_children
Delete B

If the oldest version of a version-enabled data object is deleted and there are two or more
children of that version, both of the children of the deleted oldest version will become the new
oldest version.

When accessing a data object version, the cdmi_acount and cdmi_atime of the data object
version shall be updated if present.

When accessing a historical version of a version-enabled data object, the ACL, owner, and
domainURI of the version-enabled data object shall be in effect.

Standard log and notification messages are sent when data object versions are accessed and
deleted.

23.8 Query of Data Object Versions

As data object versions are regular CDMI objects, they will be included in query results unless
explicitly excluded.

Querying for data object versions is performed by including the scope:
"metadata" :
{
 "cdmi_version_children" : "*"
}

Querying for version-enabled data objects (but not their versions) is performed by including the
scope:

"metadata" :
{
 "cdmi_versioning" : "*"
}

Querying for non-versioned data objects with no versions is performed by including the scope:
"metadata" :
{
 "cdmi_version_current" : "!*"
}

Querying for non-versioned data objects with versions is performed by including the scope:
"metadata" :
{
 "cdmi_versioning" : "!*",
 "cdmi_version_current" : "*"
}

 Versioning 1.0g Working Draft 18

23.9 Version-Enabled Data Object Serialization

Serializing a version-enabled data object shall serialize the data object, the versioning-related
metadata, the current version, and all historical versions. The current version and all historical
versions shall be serialized as data objects contained within a JSON array. These data objects
shall replace the contents of the value field of the serialized representation of the version-
enabled data object.

EXAMPLE A version-enabled data object with three versions is serialized.
{
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED900100DA32EC94351F8970400",
 "objectName" : "MyVersionedDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "33",
 "cdmi_versioning" : "user",
 "cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
 "cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
 "cdmi_version_oldest" : [
 "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
]
 },
 "value" : [
 {
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED90010F077F4EB1C99C87524CC",
 "objectName" : "MyVersionedDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "33",
 "cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
 "cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
 "cdmi_version_oldest" : [
 "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
],
 "cdmi_version_parent" : "/cdmi_objectid/00007ED9001005192891EEBE599D94BB",
 "cdmi_version_children" : [
]
 },
 "valuerange" : "0-32",
 "valuetransferencoding" : "utf-8",
 "value" : "Third version of this Data Object"
 },
 {
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED9001005192891EEBE599D94BB",
 "objectName" : "MyVersionedDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",

© SNIA

Working Draft Versioning 1.0g 19

 "capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "34",
 "cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
 "cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
 "cdmi_version_oldest" : [
 "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
],
 "cdmi_version_parent" : "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA",
 "cdmi_version_children" : [
 "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC"
]
 },
 "valuerange" : "0-33",
 "valuetransferencoding" : "utf-8",
 "value" : "Second version of this Data Object"
 },
 {
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED90010512EB55A9304EAC5D4AA",
 "objectName" : "MyVersionedDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "33",
 "cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
 "cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
 "cdmi_version_oldest" : [
 "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"
],
 "cdmi_version_children" : [
 "/cdmi_objectid/00007ED9001005192891EEBE599D94BB"
]
 },
 "valuerange" : "0-32",
 "valuetransferencoding" : "utf-8",
 "value" : "First version of this Data Object"
 }
]
}

Serializing a non-version-enabled data object that has versions shall serialize the data object,
the versioning-related metadata, and all historical versions. The contents of the value field of the
data object, the current version, and all historical versions serialized as data objects shall be
contained within a JSON array. These data objects shall replace the contents of the value field
of the serialized representation of the version-enabled data object.

Deserializing either a version-enabled data object or a non-version-enabled data object with
versions shall restore the data object and all serialized versions.

Serializing and deserializing a data object version shall not be permitted.

Attempting to deserialize a serialized version-enabled data object or non-version-enabled data
object with versions onto a system that does not support versions shall result in an HTTP status
code of 400 Bad Request. This error code results because a CDMI system that does not

 Versioning 1.0g Working Draft 20

support versions expects a JSON string for the value field of a serialized data object, not a
JSON array.

	Working Draft
	Object Versioning CDMI Extension
	Overview
	Modifications to the CDMI 1.0.1 spec:
	1) Insert into Clause 3 - "Terms"
	2) Insert into Clause 8.4.8 - "Examples", at the end of the clause:
	3) Insert into Clause 12.1.3 - "Data System Metadata Capabilities", Table 104 - "Capabilities for Data System Metadata":
	4) Insert into Clause 16.3 - "Support for Storage System Metadata", Table 117 - "Storage System Metadata":
	5) Insert into Clause 16.4 - "Data System Metadata", Table 118 - "Data System Metadata":
	6) Insert into Clause 16.5 - "Support for Provided Data System Metadata", Table 119 - "Support for Provided Data System Metadata":
	7) Insert new Clause after 22 - "Query Queues":

	23 Data Object Versions
	23.1 Overview
	23.2 Traversing Version-Enabled Data Objects
	23.3 Concurrent Updates and Version-Enabled Data Objects
	23.4 Capabilities for Version-Enabled Data Objects
	23.5 Updates Triggering Version Creation
	23.6 Operations against Version-Enabled Data Objects
	23.7 Operations against Data Object Versions
	23.8 Query of Data Object Versions
	23.9 Version-Enabled Data Object Serialization

