
Validators CDMI Extension
Version 2.0.2

ABSTRACT: This CDMI Extension is intended for developers who are considering a standardized way to add
functionality to CDMI. When multiple compatible implementations are demonstrated and approved by the Technical
Working Group, this extension will be incorporated into the CDMI standard.

This document has been released and approved by SNIA. SNIA believes that the ideas, methodologies, and
technologies described in this document accurately represents SNIA's goals and are appropriate for widespread
distribution. Suggestion for revision should be directed to http://www.snia.org/feedback/.

SNIA Working Draft

January 19, 2024



Validators CDMI Extension 2.0a

USAGE

Copyright © 2024 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their
respective owners.

SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and
other business entities to use this document for internal use only (including internal copying, distribution, and display)
provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall
acknowledge SNIA copyright on that material, and shall credit SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any excerpt or
this entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by emailing
tcmd@snia.org. Please include the identity of the requesting individual or company and a brief description of the pur-
pose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the following
license:

BSD 3-Clause Software License

Copyright (c) 2024, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source codemust retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTEGOODSORSERVICES; LOSSOFUSE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© SNIA 2024 SNIA Working Draft i



Validators CDMI Extension 2.0a

DISCLAIMER

The information contained in this publication is subject to change without notice. SNIA makes no warranty of any kind
with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. SNIA shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to https://www.snia.org/feedback/.

Copyright © 2024 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their
respective owners.

© SNIA 2024 SNIA Working Draft ii



Validators CDMI Extension 2.0a

Contents

Clause 1: Validators CDMI Extension 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Instructions to the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Clause 2: Object Validators 4
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Validator Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Validator Object Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Validator Object Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

© SNIA 2024 SNIA Working Draft iii



Validators CDMI Extension 2.0a

Clause 1

Validators CDMI Extension

1.1 Overview

Some CDMI systems allow validation to be performed against CDMI objects. In such a system, multiple validations may
be performed simultaneously against the same or multiple objects. In these systems, the client receives an indication of
validation failure on object creation or modification, with validation success either resulting in normal HTTP responses
being returned, or an indication of validation failure annotated as object metadata.

This extension proposes a new type of data object to define validations on object creation and modification. The valida-
tion data object (extended in a similar manner as a query queue object) may be used to define validations independently
from the objects on which the validator is acting.

Validating existing objects is performed using CDMI jobs.

1.2 Instructions to the Editor

To merge this extension into the CDMI 2.0.0 specification, make the following changes:

1.2.1 terms.txt

Insert into preamble/terms.txt, as follows:

x.1
validator

|br| a data object with specific metadata that defines andmanages validation operations performed against match-
ing newly created and updated CDMI objects (validation targets) |br|

x.2
validation operation

|br| the process of evaluating a validation schema against a validation target |br|
x.3
validation schema

|br| metadata that describes the organization and format of CDMI objects |br|
x.4
validation scope

|br| metadata that defines which validation targets validation operations are performed against. |br|
x.5
validation targets

|br| the set of CDMI objects against which validation operations are performed |br|

© SNIA 2024 SNIA Working Draft 1



Validators CDMI Extension 2.0a

1.2.2 cdmi_capability_object.txt

Add an entry to the end of the table starting on line 135 of cdmi_advanced/cdmi_capability_object.txt, as follows:

Table 1.1: System-wide capabilities
Capability name Type Definition
cdmi_validators JSON string If present and “true”, indicates that the CDMI server

supports validation data objects.
cdmi_validators_global_
↪→ container

JSON string If present, contains the URI for the container for all
validator data objects in the CDMI server.

Add an entry to the end of the table starting on line 612 of cdmi_advanced/cdmi_capability_object.txt, as follows:

Table 1.2: Capabilities for data objects
Capability name Type Definition
cdmi_validator_schema_formats JSON strings If present, contains a list of schema formats that may be

specified a validator data objects.
Schema formats are media types as specified in RFC
6838.
Currently defined schema formats include:
application/schema+json

Add an entry to the end of the table starting on line 662 of cdmi_advanced/cdmi_capability_object.txt, as follows:

Table 1.3: Capabilities for container objects
Capability name Type Definition
cdmi_create_validator_
↪→ container

JSON strings If present and “true”, indicates that the container
allows the creation of validator container objects.

cdmi_create_validator_
↪→ dataobject

JSON strings If present and “true”, indicates that the container
allows the creation of validator data objects.

1.2.3 cdmi_metadata.txt

Add an entry to the end of the table starting on line 533 of cdmi_advanced/cdmi_metadata.txt, as follows:

Table 1.4: Data system metadata
Metadata name Type Description Requirement
cdmi_validation_schema_
↪→ provided

JSON
array
of
JSON
strings

When an object is validated by one or more validator
object, contains the URI(s) for each matching
validator object. When CDMI data object versions are
supported, the URI to the version of the validator data
object used for validation shall be provided.

Optional

cdmi_validation_result_
↪→ provided

JSON
array
of
JSON
strings

When an object is validated by one or more validator
object, contains the validation result for each
matching validator object.
Supported values are passed and failed:

• passed - The object was validated against the
schema and validation succeeded

• failed - The object was validated against the
schema and validation failed

Optional

© SNIA 2024 SNIA Working Draft 2



Validators CDMI Extension 2.0a

1.2.4 validators.txt

Create new clause, “cdmi_validators.txt.txt” after existing clause 25 “Data Object Versions”, as follows.

© SNIA 2024 SNIA Working Draft 3



Validators CDMI Extension 2.0a

Clause 2

Object Validators

2.1 Overview

A cloud storage system may optionally implement object validation functionality. Validator implementation is indicated
by the presence of the cloud storage system-wide capabilities for validators.

Validators allow the evaluation of schemas on object creation and modification. In addition, multiple validators may
perform validation actions against a single CDMI object. By creating a well-defined “validator” object, clients may define
validators, specify the schema to be used to perform the validation, and specify which objects the validation is to be
performed against.

Validators may be stored in container objects or may exist as standalone data objects with no parent container.

Cloud storage systems should consider implementing support for validator data objects when the system supports the
following types of client-controlled activities:

• Data format consistency: If the user requires CDMI objects to conform to a given schema in order to ensure data
consistency, the user may define a validator to prevent non-conformant objects. For example, this allows the user
to specify that created data objects shall have a value that validates against a given schema.

• Metadata presence and values: If the user requires CDMI objects’ metadata to conform to a given schema in
order to specify metadata constraints, the user may define a validator to prevent non-conformant objects. For
example, this allows the user to specify that created data objects shall have a metadata value greater than one
for the cdmi_data_redundency data system metadata.

• Limiting object types: If a user requires the limitation of what types of objects can be created, the user may define
a validator to prevent the creation of non-conformant objects. For example, this allows the user to specify that
created data objects shall have a mimetype that validates against a given schema.

• Limiting use of CDMI features: If a user requires the limitation of which CDMI creation and modification features
are to be exposed, the user may define a validator to prevent the specification of non-desired CDMI features. For
example, this allows the user to specify that created data objects cannot specify deserialization sources.

2.2 Validator Creation

Validators are CDMI objects with the following properties:

• A cdmi_validation_scope data system metadata item, indicating which objects the validation is performed
against, and,

• A schema in the value of the data object

When a client wishes to create a validator data object, it should first check the following:

1. Check if the system is capable of providing validation functionality by checking for the presence of the
cdmi_validator capability in the root container capabilities. If this capability is not present, creating a val-
idator data object shall be successful, but no validation operations shall be performed.

2. Check if the system supports the schema format to be used by the validator by checking the contents of the
cdmi_validator_schema_formats data object capability.

© SNIA 2024 SNIA Working Draft 4



Validators CDMI Extension 2.0a

3. If the data object is being created in a container, check if the container is capable of providing validation function-
ality by checking for the presence of the cdmi_create_validator_dataobject for the container.

If these conditions are not met, creating a validator data object shall be successful, but no validation operations shall be
performed.

Validators are created as CDMI data objects with additional metadata:

• cdmi_validation_scope - Indicates which objects are to be validated.

• cdmi_validation_mark - Indicates that all validated objects are to be marked with the result of the validation
process. (optional)

• cdmi_validation_deny - Indicates that object creation and update requests that fail validation shall be denied.
(optional)

CDMI clients may create validators through a variety of methods:

1. A client may create a validator data object without specifying the location by performing a POST operation. In
this case, the system may create the validator in a validator container and return an HTTP response code of
202 Accepted. The URI for the newly created validator data object shall be returned in an HTTP Location
response header.

2. A client may create a validator data object at a specific location by performing a PUT operation. Only containers
with a cdmi_create_validator_container capability shall allow validator data objects to be created. The semantics
for creating this object are the same as for other data objects.

A client may view and access validators created by internal system processes through a CDMI container containing
validator data objects. To get a list of system-created validators, clients may list the children of the container.

2.3 Validator Object Value

A validator object shall contain the schema used to perform validation. If the schema format for the data in the object
value does not match against one of the schema formats listed in the cdmi_validator_schema_formats data object
capability, the validator shall not be used.

The value of a validator object may be changed. If valid, the updated value shall be used for all subsequent validations.

2.4 Validator Object Metadata

When a client creates a validator data object, the presence of the metadata item cdmi_validation_scope indicates
that the data object represents a validator.

The metadata of a validator object may be changed. If valid, the updated metadata shall be used for all subsequent
validations.

If the cdmi_validation_scope metadata is removed from a validator object, the data object shall no longer be
considered a validator object.

If the cdmi_validation_scope metadata is added to a data object, the data object shall be considered to be a
validator object.

Metadata items for a validator data object are shown in Table 6:

Table 2.5: Validator object metadata
Metadata name Type Description Requirement
cdmi_validation_scope JSON

Object
If this data system metadata item is present, it
indicates which objects validations should be
performed against. The format of this object is
described in %s.

Optional

continues on next page

© SNIA 2024 SNIA Working Draft 5



Validators CDMI Extension 2.0a

Table 2.5 – continued from previous page
Metadata name Type Description Requirement
cdmi_validation_mark JSON

string
If this data system metadata item is present and
“true”, it indicates that all objects validated shall
have cdmi_validation_schema_provided and
cdmi_validation_result_provided data
system metadata added to each object when a
validation is performed.

Optional

cdmi_validation_deny JSON
string

If this data system metadata item is present and
“true”, it indicates that object creation or update that
matches against the validation scope and fails
validation shall result in a 400 Bad Request HTTP
status code response.

Optional

© SNIA 2024 SNIA Working Draft 6



Validators CDMI Extension 2.0a

2.5 Examples

EXAMPLE 1: Allow/Deny - Create a validator that denies the creation or update of objects in the “myContainer” container
if they do not validate against the specified JSON schema:

--> PUT /validators/myValidator.json HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object
--> Content-Type: application/cdmi-object
-->
--> {
--> "valuetransferencoding" : "json",
--> "mimetype" : "application/schema+json",
--> "metadata" : {
--> "cdmi_validation_scope" : [
--> {
--> "parentURI": "starts /myContainer/"
--> }
--> ],
--> "cdmi_validation_deny" : "true"
--> },
--> "value" : {
--> "$schema": "https://json-schema.org/draft/2019-09/schema",
--> "type": "object",
--> "required": [ "value" ],
--> "properties": {
--> "value": {
--> "type": "object",
--> "required": [ "name" ],
--> "properties": {
--> "name": {
--> "type": "string"
--> }
--> },
--> "additionalProperties": false
--> }
--> }
--> }
--> }

<-- HTTP/1.1 201 Created
<-- Content-Type: application/cdmi-object
<--
<-- {
<-- "objectType" : "application/cdmi-object",
<-- "objectID" : "00007ED90010D891022876A8DE0BC0FD",
<-- "objectName" : "myValidator.json",
<-- "parentURI" : "/validators/",
<-- "parentID" : "00007E7F00102E230ED82694DAA975D2",
<-- "domainURI" : "/cdmi_domains/MyDomain/",
<-- "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
<-- "completionStatus" : "Complete",
<-- "mimetype" : "application/schema+json",
<-- "metadata" : {
<-- "cdmi_size" : "314",
<-- ...
<-- }
<-- }

© SNIA 2024 SNIA Working Draft 7



Validators CDMI Extension 2.0a

EXAMPLE 2: Allow/Deny - Create a object in the myContainer container that successfully validates against the schema:

--> PUT /myContainer/test1.json HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object
--> Content-Type: application/cdmi-object
-->
--> {
--> "valuetransferencoding" : "json",
--> "mimetype" : "application/json",
--> "value" : {
--> "name": "John Smith"
--> }
--> }

<-- HTTP/1.1 201 Created
<-- Content-Type: application/cdmi-object
<--
<-- {
<-- "objectType" : "application/cdmi-object",
<-- "objectID" : "00007ED90010D891022876A8DE0BC0FD",
<-- "objectName" : "test1.json",
<-- "parentURI" : "/myContainer/",
<-- "parentID" : "00007E7F00102E230ED82694DAA975D2",
<-- "domainURI" : "/cdmi_domains/MyDomain/",
<-- "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
<-- "completionStatus" : "Complete",
<-- "mimetype" : "application/json",
<-- "metadata" : {
<-- "cdmi_size" : "24",
<-- ...
<-- }
<-- }

EXAMPLE 3: Allow/Deny - Create a object in the myContainer container that does not successfully validate against the
schema:

--> PUT /myContainer/test1.json HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object
--> Content-Type: application/cdmi-object
-->
--> {
--> "valuetransferencoding" : "json",
--> "mimetype" : "application/json",
--> "value" : {
--> "firstName": "John"
--> }
--> }

<-- HTTP/1.1 400 Bad Request

© SNIA 2024 SNIA Working Draft 8



Validators CDMI Extension 2.0a

EXAMPLE 4: Mark - Create a validator that marks newly created or updated objects in the “myContainer” container with
the results of a validation against the specified JSON schema:

--> PUT /validators/myValidator.json HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object
--> Content-Type: application/cdmi-object
-->
--> {
--> "valuetransferencoding" : "json",
--> "mimetype" : "application/schema+json",
--> "metadata" : {
--> "cdmi_validation_scope" : [
--> {
--> "parentURI": "starts /myContainer/"
--> }
--> ],
--> "cdmi_validation_mark" : "true"
--> },
--> "value" : {
--> "$schema": "https://json-schema.org/draft/2019-09/schema",
--> "type": "object",
--> "required": [ "value" ],
--> "properties": {
--> "value": {
--> "type": "object",
--> "required": [ "name" ],
--> "properties": {
--> "name": {
--> "type": "string"
--> }
--> },
--> "additionalProperties": false
--> }
--> }
--> }
--> }

<-- HTTP/1.1 201 Created
<-- Content-Type: application/cdmi-object
<--
<-- {
<-- "objectType" : "application/cdmi-object",
<-- "objectID" : "00007ED90010D891022876A8DE0BC0FD",
<-- "objectName" : "myValidator.json",
<-- "parentURI" : "/validators/",
<-- "parentID" : "00007E7F00102E230ED82694DAA975D2",
<-- "domainURI" : "/cdmi_domains/MyDomain/",
<-- "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
<-- "completionStatus" : "Complete",
<-- "mimetype" : "application/schema+json",
<-- "metadata" : {
<-- "cdmi_size" : "314",
<-- ...
<-- }
<-- }

© SNIA 2024 SNIA Working Draft 9



Validators CDMI Extension 2.0a

EXAMPLE 5: Mark - Create a object in the myContainer container that successfully validates against the schema:

--> PUT /myContainer/test1.json HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object
--> Content-Type: application/cdmi-object
-->
--> {
--> "valuetransferencoding" : "json",
--> "mimetype" : "application/json",
--> "value" : {
--> "name": "John Smith"
--> }
--> }

<-- HTTP/1.1 201 Created
<-- Content-Type: application/cdmi-object
<--
<-- {
<-- "objectType" : "application/cdmi-object",
<-- "objectID" : "00007ED90010D891022876A8DE0BC0FD",
<-- "objectName" : "test1.json",
<-- "parentURI" : "/myContainer/",
<-- "parentID" : "00007E7F00102E230ED82694DAA975D2",
<-- "domainURI" : "/cdmi_domains/MyDomain/",
<-- "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
<-- "completionStatus" : "Complete",
<-- "mimetype" : "application/json",
<-- "metadata" : {
<-- "cdmi_size" : "24",
<-- "cdmi_validation_schema_provided" : [
<-- "/cdmi_objectid/00007ED90010D891022876A8DE0BC0FD"
<-- ],
<-- "cdmi_validation_result_provided" : [
<-- "passed"
<-- ],
<-- ...
<-- }
<-- }

© SNIA 2024 SNIA Working Draft 10



Validators CDMI Extension 2.0a

EXAMPLE 6: Mark - Create a object in the myContainer container that does not successfully validate against the
schema:

--> PUT /myContainer/test1.json HTTP/1.1
--> Host: cloud.example.com
--> Accept: application/cdmi-object
--> Content-Type: application/cdmi-object
-->
--> {
--> "valuetransferencoding" : "json",
--> "mimetype" : "application/json",
--> "value" : {
--> "firstName": "John"
--> }
--> }

<-- HTTP/1.1 201 Created
<-- Content-Type: application/cdmi-object
<--
<-- {
<-- "objectType" : "application/cdmi-object",
<-- "objectID" : "00007ED90010D891022876A8DE0BC0FD",
<-- "objectName" : "test1.json",
<-- "parentURI" : "/myContainer/",
<-- "parentID" : "00007E7F00102E230ED82694DAA975D2",
<-- "domainURI" : "/cdmi_domains/MyDomain/",
<-- "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
<-- "completionStatus" : "Complete",
<-- "mimetype" : "application/json",
<-- "metadata" : {
<-- "cdmi_size" : "24",
<-- "cdmi_validation_schema_provided" : [
<-- "/cdmi_objectid/00007ED90010D891022876A8DE0BC0FD"
<-- ],
<-- "cdmi_validation_result_provided" : [
<-- "failed"
<-- ],
<-- ...
<-- }
<-- }

© SNIA 2024 SNIA Working Draft 11


	Validators CDMI Extension
	Overview
	Instructions to the Editor
	terms.txt
	cdmi_capability_object.txt
	cdmi_metadata.txt
	validators.txt


	Object Validators
	Overview
	Validator Creation
	Validator Object Value
	Validator Object Metadata
	Examples


