

Computational Storage API
Version 0.9 rev 1

ABSTRACT: This SNIA Draft Standard defines the interface between an application and a
Computational Storage device (CSx). For each CSx there will need to be a library that performs
the mapping from the APIs in this specification and the CSx on the specific interface for that CSx.

Publication of this Working Draft for review and comment has been approved by the Computational
Storage TWG. This draft represents a “best effort” attempt by the Computational Storage TWG to reach
preliminary consensus, and it may be updated, replaced, or made obsolete at any time. This document
should not be used as reference material or cited as other than a “work in progress.” Suggestions for
revisions should be directed to http://www.snia.org/feedback/.

Working Draft
July 27, 2023

http://www.snia.org/feedback/

2 Computational Storage API
Working Draft Version 0.9 rev 1

USAGE
Copyright © 2023 Storage Networking Industry Association. All rights reserved. All other
trademarks or registered trademarks are the property of their respective owners.

Storage Networking Industry Association (SNIA) hereby grants permission for individuals to use this
document for personal use only, and for corporations and other business entities to use this document for
internal use only (including internal copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof)

is reproduced shall acknowledge SNIA copyright on that material, and shall credit SNIA for
granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document or any
portion thereof, or distribute this document to third parties. All rights not explicitly granted are expressly
reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by
e-mailing tcmd@snia.org. Please include the identity of the requesting individual and/or company and a
brief description of the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available
under the following license:

BSD 3-Clause Software License

Copyright © 2023, Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the Storage Networking Industry Association, SNIA, or the names of its
contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

mailto:tcmd@snia.org

 Computational Storage API 3
Working Draft Version 0.9 rev 1

DISCLAIMER
The information contained in this publication is subject to change without notice. SNIA makes no warranty
of any kind with regard to this specification, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. SNIA shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the furnishing, performance, or use of this
specification.

4 Computational Storage API
Working Draft Version 0.9 rev 1

Table of Contents
 SCOPE .. 10

 ABOUT COMPUTATIONAL STORAGE APIS ... 10

 DOCUMENT LAYOUT ... 10

 DEFINITIONS, ABBREVIATIONS, AND CONVENTIONS 11

 DEFINITIONS .. 11

2.1.1 Allocated Function Data Memory .. 11

2.1.2 Computational Storage .. 11

2.1.3 Computational Storage Array .. 11

2.1.4 Computational Storage Device .. 11

2.1.5 Computational Storage Drive .. 12

2.1.6 Computational Storage Engine .. 12

2.1.7 Computational Storage Engine Environment ... 12

2.1.8 Computational Storage Function ... 12

2.1.9 Computational Storage Processor ... 12

2.1.10 Computational Storage Resource .. 13

2.1.11 Container .. 13

2.1.12 CSx name ... 13

2.1.13 Filesystem .. 13

2.1.14 Function Data Memory ... 13

2.1.15 host... 14

2.1.16 Hypervisor .. 14

2.1.17 NVMe® .. 14

2.1.18 Peer-to-Peer ... 14

2.1.19 P2P... 14

 Computational Storage API 5
Working Draft Version 0.9 rev 1

2.1.20 PCIe® .. 14

2.1.21 string... 14

2.1.22 Virtual Machine ... 14

 KEYWORDS ... 14

2.2.1 mandatory ... 15

2.2.2 may ... 15

2.2.3 may not.. 15

2.2.4 need not .. 15

2.2.5 optional .. 15

2.2.6 shall ... 15

2.2.7 should .. 15

 ABBREVIATIONS ... 15

 REFERENCES .. 16

 CONVENTIONS ... 16

 COMPUTATIONAL STORAGE .. 17

 APIS OVERVIEW .. 20

 DISCOVERY AND CONFIGURATION .. 22

4.1.1 Discovery ... 22

4.1.2 Configuration ... 25

 FDM ALLOCATION .. 27

 COMPUTE TYPES AND EXECUTION ... 27

 DOWNLOADING FUNCTIONS .. 28

 EXTENDING API SUPPORT .. 28

 ASSOCIATION OF CSP AND STORAGE .. 28

 API USAGE EXAMPLE .. 29

6 Computational Storage API
Working Draft Version 0.9 rev 1

 DETAILS ON COMMON USAGES ... 30

 FDM USAGE ... 30

5.1.1 FDM usage example for CSD .. 30

5.1.2 Allocating from FDM .. 31

5.1.3 FDM to host memory mapping .. 32

5.1.4 Copy data between host memory and AFDM .. 34

 SCHEDULING COMPUTE OFFLOAD JOBS .. 35

5.2.1 Batching requests .. 37

5.2.2 Optimal Scheduling ... 42

 WORKING WITH CSFS .. 43

 COMPLETION MODELS .. 43

 CS API INTERFACE DEFINITIONS ... 45

 API ACCESS AND FLOW CONVENTIONS .. 45

 USAGE OVERVIEW ... 46

 COMMON DEFINITIONS ... 49

6.3.1 Character Arrays ... 49

6.3.2 Data Types .. 49

6.3.3 Status Values .. 50

6.3.4 Notification Options ... 52

6.3.5 Data Structures ... 53

6.3.6 Resources ... 71

6.3.7 Resource Dependency .. 71

6.3.8 Notification Callbacks .. 72

 DISCOVERY ... 74

6.4.1 csQueryCSxList() .. 74

 Computational Storage API 7
Working Draft Version 0.9 rev 1

6.4.2 csQueryCSFList() .. 75

6.4.3 csGetCSxFromPath() .. 77

 ACCESS .. 79

6.5.1 csOpenCSx() ... 79

6.5.2 csCloseCSx() .. 79

6.5.3 csRegisterNotify() .. 80

6.5.4 csDeregisterNotify() ... 81

 AFDM MANAGEMENT ... 82

6.6.1 csAllocMem() ... 82

6.6.2 csFreeMem() ... 84

6.6.3 csInitMem() .. 85

 STORAGE IOS ... 87

6.7.1 csQueueStorageRequest() .. 87

 CSX DATA MOVEMENT .. 89

6.8.1 csQueueCopyMemRequest() .. 89

 CSF SCHEDULING .. 92

6.9.1 csGetCSFId() .. 92

6.9.2 csAbortRequest() .. 94

6.9.3 csQueueComputeRequest() .. 94

6.9.4 csHelperSetComputeArg() .. 96

 BATCH SCHEDULING .. 98

6.10.1 csAllocBatchRequest() ... 98

6.10.2 csFreeBatchRequest() .. 99

6.10.3 csAddBatchEntry() ... 100

6.10.4 csHelperReconfigureBatchEntry() .. 101

8 Computational Storage API
Working Draft Version 0.9 rev 1

6.10.5 csHelperResizeBatchRequest() ... 102

6.10.6 csQueueBatchRequest() .. 102

 EVENT MANAGEMENT .. 107

6.11.1 csCreateEvent() ... 107

6.11.2 csDeleteEvent() .. 107

6.11.3 csPollEvent() .. 108

 MANAGEMENT .. 110

6.12.1 csQueryDeviceProperties() .. 110

6.12.2 csQueryDeviceStatistics() .. 111

6.12.3 csCSEEDownload() .. 112

6.12.4 csCSFDownload() .. 113

6.12.5 csConfig() ... 114

6.12.6 csReset() .. 116

 LIBRARY MANAGEMENT ... 116

6.13.1 csQueryLibrarySupport() .. 117

6.13.2 csRegisterPlugin() .. 118

6.13.3 csDeregisterPlugin() ... 119

A SAMPLE CODE .. 120

A.1 INITIALIZATION AND QUEUING A SYNCHRONOUS REQUEST 120

A.2 QUEUING AN ASYNCHRONOUS REQUEST .. 121

A.3 USING BATCH PROCESSING .. 122

A.4 APPLYING HYBRID BATCH PROCESSING FEATURE .. 123

A.5 USING FILES FOR STORAGE IO .. 125

 Computational Storage API 9
Working Draft Version 0.9 rev 1

Table of Figures
Figure 1: An Architectural view of Computational Storage .. 18

Figure 2: CS API Library ... 20

Figure 3: API interrelationships ... 21

Figure 4: CSx resource overview ... 23

Figure 5: API mapping for discovery and configuration .. 24

Figure 6: Activating a CSEE .. 26

Figure 7: Activating a CSF .. 27

Figure 8: Example API flows .. 29

Figure 9: System Memory Map ... 34

Figure 10: Example data transfers between AFDM in a CSx and host memory ... 35

Figure 11: Batch requests ... 37

Figure 12: Optimal CSF Scheduling ... 42

Figure 13: API access flows ... 46

Figure 14: Resource dependency chart .. 72

10 Computational Storage API
Working Draft Version 0.9 rev 1

 Scope
This document describes the software application interface definitions for a
Computational Storage device CSx. This is the base set of functions and additional
libraries are able to be built on this set of functions.

Familiarity to storage and filesystems usage is desired. An understanding on how
compute and memory may be utilized in an application and sound understanding of the
Operating System environment is required. Applications of computational storage,
although not typically restricted, apply to Enterprise and Datacenter usages and
applications in high-performance and datacenter environments.

This document is intended for members of the SNIA workgroup and its associates.

 About Computational Storage APIs

Computational Storage (CS) APIs are targeted towards providing a standardized way to
access compute offload capable devices. This API specification is based on the SNIA
Computational Storage Architecture and Programming Model. These may be connected
direct attached or network attached or attached over some kind of fabric. This
specification of CS APIs targets both types of connected devices with the aim of
providing an interface that is seamless while standardized across all such current and
future Computational Storage Devices.

Additionally, the CS APIs may provide an interface that is able to also work when the
application is in transition and does not have a device-based offload mechanism in
place. For such cases, a host CPU based mechanism may be substituted for a device-
based implementation without changing the API interface.

 Document layout

This document is broken down by providing a familiarity of device types, API usages,
API definitions and sample code.

 Computational Storage API 11
Working Draft Version 0.9 rev 1

 Definitions, abbreviations, and conventions
For the purposes of this document, the following definitions and abbreviations apply.

 Definitions

2.1.1 Allocated Function Data Memory
Function Data Memory (FDM) that is allocated for a particular instance of an API

Note 1 to entry:

See SNIA Computational Storage Architecture and Programing Model

2.1.2 Computational Storage
architectures that provide Computational Storage Functions coupled to storage,
offloading host processing or reducing data movement

Note 1 to entry:

These architectures enable improvements in application performance and/or
infrastructure efficiency through the integration of compute resources (outside of the
traditional compute & memory architecture) either directly with storage or between the
host and the storage. The goal of these architectures is to enable parallel computation
and/or to alleviate constraints on existing compute, memory, storage, and I/O.

note 2 to entry:

See SNIA Computational Storage Architecture and Programing Model

2.1.3 Computational Storage Array
collection of Computational Storage Devices, control software, and optional storage
devices.

Note 1 to entry:

See SNIA Computational Storage Architecture and Programing Model

2.1.4 Computational Storage Device
Computational Storage Drive, Computational Storage Processor, or Computational
Storage Array.

Note 1 to entry:

12 Computational Storage API
Working Draft Version 0.9 rev 1

See SNIA Computational Storage Architecture and Programing Model

2.1.5 Computational Storage Drive
storage element that provides Computational Storage Functions and persistent data
storage.

Note 1 to entry:

See SNIA Computational Storage Architecture and Programing Model

2.1.6 Computational Storage Engine
component that is able to execute one or more CSFs

Note 1 to entry

Examples are: CPU, FPGA.

note 2 to entry: See SNIA Computational Storage Architecture and Programing Model

2.1.7 Computational Storage Engine Environment
operating environment for a CSE

Note 1 to entry Examples are: Operating System, Container Platform, eBPF, and FPGA
Bitstream.

2.1.8 Computational Storage Function
Specific operations that may be configured and executed by a CSE.

Note 1 to entry

Examples are: compression, RAID, erasure coding, regular expression, encryption.

Note 1 to entry:

See SNIA Computational Storage Architecture and Programing Model

2.1.9 Computational Storage Processor
device that provides Computational Storage Functions for an associated storage system
without providing persistent data storage.

Note 1 to entry:

 Computational Storage API 13
Working Draft Version 0.9 rev 1

See SNIA Computational Storage Architecture and Programing Model

2.1.10 Computational Storage Resource
resource available for a host to provision on a CSx that enables that CSx to be
programmed to perform a CSF

Note 1 to entry

A CSx contains one or more CSEs and each CSE executes one or more CSFs.

Note 2 to entry

Examples: CSE, CPU, memory, and FPGA resources

Note 3 to entry:

See SNIA Computational Storage Architecture and Programing Model

2.1.11 Container
A container does not host a VM but instead binds an application to a container library
that provides a secure container-type environment to the application and host OSs. It
uses fewer resources and is lightweight compared to a conventional Hypervisor/VM
configuration

2.1.12 CSx name
a string that identifies a CSx. This is returned in query requests (e.g.,
csQueryCSxList) and provided to the csOpenCSx function

2.1.13 Filesystem
software component that imposes structure on the address space of one or more
physical or virtual disks so that applications may deal more conveniently with abstract
named data objects of variable size called files

2.1.14 Function Data Memory
Device memory used for storing data that is used by the Computational Storage
Functions (CSFs) and is composed of allocated and unallocated Function Data Memory

Note 1 to entry:

14 Computational Storage API
Working Draft Version 0.9 rev 1

See SNIA Computational Storage Architecture and Programing Model

2.1.15 host
computer system to which disks, disk subsystems, or file servers are attached and
accessible for data storage and I/O

2.1.16 Hypervisor
host OS with elevated privileges that works with hardware mechanisms such as Intel’s
VT and VT-d technology and hosts VMs

2.1.17 NVMe®
NVM Express Specification

2.1.18 Peer-to-Peer
data transfer directly between two devices that does not involve a host or host memory

2.1.19 P2P
Peer-to-Peer

2.1.20 PCIe®
Peripheral Component Interconnect Express is a high-speed serial computer expansion
bus standard

2.1.21 string
a C language style string

A string is a sequence of characters that are treated as a single data item. A string is
terminated by the null character '\0'.

2.1.22 Virtual Machine
virtual machine or guest OS within a virtualized environment

 Keywords

In the remainder of the specification, the following keywords are used to indicate text
related to compliance:

 Computational Storage API 15
Working Draft Version 0.9 rev 1

2.2.1 mandatory
a keyword indicating an item that is required to conform to the behavior defined in this
standard

2.2.2 may
a keyword that indicates flexibility of choice with no implied preference; “may” is
equivalent to “may or may not”

2.2.3 may not
keywords that indicate flexibility of choice with no implied preference; “may not” is
equivalent to “may or may not”

2.2.4 need not
keywords indicating a feature that is not required to be implemented; “need not” is
equivalent to “is not required to”

2.2.5 optional
a keyword that describes features that are not required to be implemented by this
standard; however, if any optional feature defined in this standard is implemented, then
it shall be implemented as defined in this standard

2.2.6 shall
a keyword indicating a mandatory requirement; designers are required to implement all
such mandatory requirements to ensure interoperability with other products that
conform to this standard

2.2.7 should
a keyword indicating flexibility of choice with a strongly preferred alternative

 Abbreviations

AFDM Allocated Function Data Memory

API Application Programming Interface

CSA Computational Storage Array

CSD Computational Storage Drive

16 Computational Storage API
Working Draft Version 0.9 rev 1

CSE Computational Storage Engine

CSEE Computational Storage Engine Environment

CSF Computational Storage Function

CSP Computational Storage Processor

CSR Computational Storage Resource

CSx Computational Storage devices

DMA Direct Memory Access

FDM Function Data Memory

FPGA Field-Programmable Gate Array

NVM Non-Volatile Memory

P2P Peer-to-Peer

SSD Solid State Disk

VM Virtual Machine

 References

The following documents, in whole or in part, are normatively referenced in this
document and are indispensable for its application. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

SNIA Computational Storage Architecture and Programming Model

 Conventions

Text in light blue indicates a common definition (see 6.3)

 Computational Storage API 17
Working Draft Version 0.9 rev 1

 Computational Storage
These APIs provide definitions of functions to support the SNIA Computational Storage
Architecture specification.

As defined in the SNIA Computational Storage Architecture specification, Computational
storage provides Computational Storage Functions coupled to storage, offloading host
processing or reducing data movement.

CSxes as defined in the SNIA Computational Storage Architecture specification
includes Computational Storage Processors (CSP), Computational Storage Drives

(CSD) and Computational Storage Arrays (CSA) (see Figure 1)

Host 1 Host n
CS

Driver

I/OMGMT

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Computational Storage Processor (CSP)

Host 1 Host n
CS

Driver

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Computational Storage Drive (CSD)

Host 1 Host n
CS

Driver

I/OMGMT

Storage
Controller

Storage Device
or CSD

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Array
Control

Storage Device
or CSD

Transparent
Storage
Access

Proxied
Storage
Access

Computational Storage Array (CSA)

18 Computational Storage API
Working Draft Version 0.9 rev 1

Figure 1: An Architectural view of Computational Storage

Additionally, a Computational Storage Function (CSF) is defined as a data function that
performs computation on data as defined in the SNIA Computational Storage
Architecture and Programming Model. The table below provides examples of
computational storage functions.

Table 1: Example Computational Storage Function Types

Compression

Encryption

Database filter

Erasure coding

RAID

Hash/CRC

RegEx (pattern matching)

Scatter Gather

Pipeline

Video compression

Data Deduplication

Large Data Set

Table 2: Example Computational Storage Engine Environment Types

Operating System Image

 Computational Storage API 19
Working Draft Version 0.9 rev 1

Container Image

Berkeley packet filter (BPF)

FPGA Bitstream

The SNIA Computational Storage Architecture and Programming Model defines Host
Agents that are able to communicate with the device using a device driver and an
interface (e.g., PCIe, Ethernet,). Host Agents are able to perform management,
discovery, configuration, monitoring, operations and security on the device. The fixed
and programmable computational storage functions are programmable through a Host
Agent using a well-defined interface.

This document defines the host level interfaces at the application level using software
APIs.

20 Computational Storage API
Working Draft Version 0.9 rev 1

 APIs Overview
Computational storage is possible with CSEs that are able to execute compute tasks
typically run on a host CPU. These CSEs may use FDM that is different from the host
memory and memory for storing CSFs. This memory is where computation functions
run when they do. A mechanism is needed to transfer data to and from AFDM. These
data transfers are required for inputs and outputs to the CSE compute functions. Data
transfers to AFDM may be from host memory and/or storage. There are specific APIs
that target these operations and interactions with the CSE. This section targets the
usage of APIs and how they are able to be used with CSEs for computational storage.

This standard defines a base set of APIs that may be implemented in an API library as
shown in Figure 2. Additional libraries are able to be built on this base set of functions.
This version of the standard is tailored for a host orchestrated interface. There are
additional APIs required for a fully device managed interface.

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Resource
Repository

Computational
Storage Engine (CSE)

Cloud Computing AppsStorage Apps Data Analytics Apps

App Adaptor B

Device driver

SNIA CS API Library

fabric

User-space

Kernel space

SW function HW function

decrypt decompress checksum

search compare sort

DB-search

eBPF RTL ASIC

transform

custom

custom

…

App Adaptor CApp Adaptor A

PluginPluginPlugin

Computational Storage Device (CSx)

Figure 2: CS API Library

Although the APIs have been tailored for a host managed interface, they also apply to a
device managed interface. In the device managed interface, the APIs are performed by

 Computational Storage API 21
Working Draft Version 0.9 rev 1

the device. Discovery, access, allocation and configuration of resources and all queued
operations directly apply. Only the completion models may need host support to map
them (e.g., callback vs. synchronous model).

As Computational Storage APIs provide mechanisms to allocate AFDM, there is a
requirement that the case of computation overrunning the AFDM needs to be
documented.

If the device that this API interfaces to does not implement a particular API, then the API
may return an error or implement an emulation of that API. The default is to return an
error.

The interrelation between applications, APIs, CSxes, and functions is shown in Figure 3.

Figure 3: API interrelationships

Host

CS Driver

Fabric (PCIe, Ethernet, etc)

API

Application

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource
RepositoryCSF CSEECSEECSF

FDM
AFDMAFDM

Computational Storage Drive (CSD)

22 Computational Storage API
Working Draft Version 0.9 rev 1

 Discovery and configuration

As shown in Figure 1, computational storage is provided by CSxes (i.e., CSDs, CSPs
and CSAs). Each of these may have their own configurations, that may be specified
prior to use (see 6.12.5). The CSx may be directly attached to the host or connected
through a network or fabric. This document and the APIs are storage agnostic. This API
provides mechanisms for discovery of functionality of CSxes but not discovery of
CSxes. We use NVMe as the exemplar fabric throughout.

4.1.1 Discovery

4.1.1.1 CSx Discovery
CSxes may be discovered using the csQueryCSxList() API. The API returns a
comma separated list of CSxes if there are more than one available. A CSx may also be
discovered using the csGetCSxFromPath() API, where the path represents a device,
directory or file.

Once a CSx is discovered, its resources may be queried with the
csQueryDeviceProperties() API.

4.1.1.2 Discovery API
The csQueryDeviceProperties() API provides individual properties available at
different resource levels (e.g., CSx, CSE, CSEE, FDM and CSF). The API also provides
details on the repository, activation states and configuration. Figure 4 illustrates how the
API may be applied at various resource levels by providing the resource identifier as the
input. The engine type here is an abstracted representation of the compute hardware
resource and is specific to a device as provided by the vendor. It is uniquely identified
by the field CSETypeToken. A vendor may choose not to expose engine differences.

 Computational Storage API 23
Working Draft Version 0.9 rev 1

CSx

engine type X engine type Y engine type Z

…

FDM

FDM

FDM

CSFCSFCSFCSF

CSEE

CSE

CSFCSFCSFCSF

CSEE

CSE

CSFCSFCSFCSF

CSEE

CSE

Figure 4: CSx resource overview

The csQueryDeviceProperties() API takes the resource type as input and
provides the properties of the resource as output. The
csQueryDeviceProperties() API called with a resource type of CS_CSx_TYPE
returns the CsxProperties data structure as output which denotes hardware and
software details of the CSx. Similarly, other resource types may be provided as input to
get the necessary outputs, as shown in Figure 4.

Table 3: Device properties by resource type

CS_RESOURCE_TYPE Input Properties Output

CS_CSx_TYPE CSxProperties

CS_CSE_TYPE CSEProperties

CS_CSEE_TYPE CSEEProperties

CS_FDM_TYPE FDMProperties

24 Computational Storage API
Working Draft Version 0.9 rev 1

CS_CSF_TYPE CSFProperties

CS_VENDOR_SPECIFIC_TYPE CSVendorSpecific

Additional details on the properties data structures and their sub-structures are provided
in 6.3.5.3.1.

Figure 5 summarizes the APIs required to discover and configure a CSx and its
resources.

CSFProperties CSFInfo+ CSFInstance*

CSEProperties CSEInfo
engine type X

ComputeResource

CSEEProperties CSEEInfo CSEEInstance*
EEIId

CSFId FIId
csGetCSFId()

csQueryDeviceProperties()

csConfig()

Figure 5: API mapping for discovery and configuration

4.1.1.3 CSF Discovery
CSFs are not executable before activation. Activation is done as described in 4.1.2.2. A
list of available CSFs is retrieved using the csQueryDeviceProperties() API using
the CS_RESOURCE_TYPE enumerator CS_CSF_TYPE. Activated CSFs may be
discovered using the csGetCSFId() API and the csQueryCSFList() API. Only
activated CSF instances denoted by their FIId’s will be populated by the
csGetCSFId() API and the csQueryCSFList() API.

4.1.1.4 Example discovery process
The following code example illustrates how the discovery APIs may be applied. The
CSx comma separated list is first parsed for individual CSx entries and each entry is
queried for each resource as shown below.

// query all available CSxes

 Computational Storage API 25
Working Draft Version 0.9 rev 1

status = csQueryCSxList(&len, listBuf);
token = strtok(listBuf, “,”);
i = 0;
while (token != NULL) {
 status = csOpenCSx(token, NULL, &devArray[i]);
 // query for CSX properties
 status = csQueryDeviceProperties(devArray[i], CS_CSx_TYPE, &lenCSx, propCSx);
 if (status != CS_SUCCESS)
 ERROR_OUT(“Query CSx properties error!\n”);
 // query for CSE properties
 status = csQueryDeviceProperties(devArray[i], CS_CSE_TYPE, &lenCSE, propCSE);
 if (status != CS_SUCCESS)
 ERROR_OUT(“Query CSE properties error!\n”);
 // query for CSEE properties
 status = csQueryDeviceProperties(devArray[i], CS_CSEE_TYPE, &lenCSEE, propCSEE);
 if (status != CS_SUCCESS)
 ERROR_OUT(“Query CSEE properties error!\n”);
 // query for CSF properties
 status = csQueryDeviceProperties(devArray[i], CS_CSF_TYPE, &lenCSF, propCSF);
 if (status != CS_SUCCESS)
 ERROR_OUT(“Query CSF properties error!\n”);
 // loop through the whole list
 token = strtok(NULL, “,”);
 i++;
}

4.1.2 Configuration
A CSx needs to be configured to be usable. Once it has been fully discovered, it may be
configured using the csConfig() API. Configuration involves activation of the specific
resource. This API takes the CsConfigInfo data structure as input to configure the
specific resource.

Each resource is identified by an Id field in the associated data structure (e.g., the
CSEInfo data structure for a CSE is identified by its unique CSEId).

4.1.2.1 Configuring a CSEE
A CSEE is required to be configured and activated before it may be used. A CSEE is
activated by pairing its CSEEId in CSEEInfo data structure with a CSEId in the CSEInfo
data structures. More than one engine type may be paired with a CSEE by activating
the Id pairs. Figure 6 depicts a CSEE being paired with a CSE whose Ids are provided
as input, and on successful activation, return EEIId, the activated CSEE instance.

26 Computational Storage API
Working Draft Version 0.9 rev 1

CSEProperties

CSEInfo
ComputeResource

ComputeResource

engine type X

CSEInfo
ComputeResource

ComputeResource

engine type Y

CSEEProperties CSEEInfo CSEEInstance*
CSEEId

CSEId

EEIId

Figure 6: Activating a CSEE

An EEIId is used to configure a CSF. The CSEE activated instance informs the device
that it will be utilized for computational storage activities. The device in turn will setup
internal configuration options and resources to bring it to this state.

4.1.2.2 Configuring a CSF
Only activated CSFs may be used during execution. Activation of a CSF involves
pairing the CSF with an active CSEE instance and one or more compute resources.

As input, a previously activated CSEE instance EEIId is paired with a CSF using its
CSFId and one or more compute resources represented by ERId. Figure 7 depicts the
flow with the various inputs, and on successful activation, provides FIId for the activated
CSF instance as output.

CSFProperties CSFInfo+ CSFInstance*

CSEProperties

CSEInfo
ComputeResource

ComputeResource

engine type X

CSEInfo
ComputeResource

ComputeResource

engine type Y

CSEEProperties CSEEInfo CSEEInstance*

ERId

EEIId

CSFId FIId

 Computational Storage API 27
Working Draft Version 0.9 rev 1

Figure 7: Activating a CSF

Activated resources will consume device resources as part of their internal
configuration. CSF’s and CSEE’s may also be deactivated using the csConfig() API.
A resource is deactivated when it is no longer required or to release resources for other
CSFs or CSEEs(e.g., a well-known algorithm-based CSF that is downloadable may be
more performant than the vendor provided CSF that is built-in and therefore the built-in
CSF may be deactivated to conserve device resources).

Additional details on configuration data structures are provided in 6.3.5.3.2.

 FDM allocation

FDM is memory that is closest to the CSE and is separate from host memory but may
be mapped to a host memory address. FDM is the memory that a computational
storage function will operate on. FDM may be exposed to the host (e.g., through a PCIe
BAR) when direct attached or not exposed at all for direct or network attached usages.

There may be more than one FDM available to the device as shown in Figure 1. In a
device that has more than one CSE, FDM may be configured for different accesses
(i.e., one CSE may be configured to access all available FDMs while another CSE may
be configured to access only one FDM). These details are discoverable through the
device properties API. Since all FDM usage is based on the CSF and the CSE that can
access it, an application chooses the appropriate FDM while discovering CSFs through
the csGetCSFId() API. This API provides a list of all FDMs that the CSF has access
to, along with their access details, as specified in FDMAccess data structure.

FDM is allocated and deallocated using the csAllocMem() API and the csFreeMem()
API.

 Compute types and execution

CSEs that are able to perform compute offload may be of various types (e.g., ASICs,
FPGAs, and embedded CPUs). Execution of compute operations initiated by the
csQueueComputeRequest() API or the csQueueBatchRequest() API are
independent of the type of CSE. The type specific functionality of a CSE may be
handled by a device driver whose implementation details may be abstracted at the API
level.

For cases where a CSx does not exist and compute is conducted on the host CPU, the
plugin framework may be utilized to provide similar functionality transparently so that the
application does not have to change. Additional details on plugins are available in
section 6.13.

28 Computational Storage API
Working Draft Version 0.9 rev 1

 Downloading Functions

In certain CSEEs, CSFs are able to be downloaded. The csCSFDownload() API
provides the mechanism for downloading CSFs to CSEEs with such capabilities.
Following a download, the host may initiate a discovery to determine what CSFs are
available.

 Extending API support

The plugin capability of this specification provides the ability to extend capabilities.

A plugin is a software entity that provides the data exchange between the abstracted
CS APIs and a device’s specific interface. The data exchange is accomplished by
having a mapping layer between these interfaces. A Plugin may also abstract specific
functionality for a device. Plugins also play a role in providing seamless access, e.g.,
local or remote connectivity using the same APIs, supporting new features,
substituting/aiding in device feature support. Plugins may be applied at various places in
a CS API software stack implementation to provide features and to help support a
common set of APIs. Plugins are required to be registered first with the API library
before they are able to be applied. The csRegisterPlugin() API and the
csDeregisterPlugin() API are used to insert/remove plugin capability in the CS
API stack.

 Association of CSP and storage

Association between storage and a CSP is required for any device-to-device activity
(e.g., peer-to-peer (P2P)) to function properly. With CSPs, the CSE is a free standing
device where storage is separate. Without association, P2P has the possibility of failing
since data may not get loaded or stored in the right device. This problem becomes
evident when more than one CSP is configured on the same system. The problem
becomes severe when the host user application is not able to identify the association
between these devices.

For PCIe implementations, issues that arise due to incorrect association result in data
corruption, IO failures in the case where the CPU prohibits access across root-
complexes, and in virtualized environments where each device may get mapped in a
way that has no co-relation at the PCIe bus level.

The mechanism to associate a CSP with one or more storage controllers is vendor
specific and is out of scope for this document.

 Computational Storage API 29
Working Draft Version 0.9 rev 1

 API usage example

The following example illustrates the usage of CS APIs for a typical flow for near data
processing. In this example, the CSD provides decrypt function capability and does not
expose FDM to the host. The steps below depict the individual items in Figure 8 for a
CSD.

1) Host application allocates FDM input and output buffers for processing in CSx.
2) Data is next initiated to load from the storage device into input AFDM.
3) Data is loaded from the storage device into the AFDM by P2P transfer.
4) The decryption CSF is invoked to work on data in the AFDM.
5) The CSF posts the output data into the output AFDM buffer and notifies the application that the

decryption is complete.
6) The output results are copied from the output AFDM to host memory.

Desired compute offload Storage Read
to AFDM

Copy AFDM
to Host

Decrypt

Device Storage

Device Memory

Storage
Controller

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)

CSEE

Resource Repository

FDM
AFDMAFDM

CSFCSF CSEECSEE

Computational Storage Drive (CSD)

MGMT I/O

CSFCSF

Allocate AFDM buffer(s)

Read data from storage
into AFDM buffer

Data transferred directly
from storage into AFDM

buffer

Queue Compute Request

Retrieve results
csAllocMem (…, bytes, …, &memHandle, NULL);

csQueueStorageRequest (…, req, …, &retValue);

csQueueComputeRequest (req, …, &retValue);

csQueueCopyMemRequest (req, …, &retValue);

4

1

2

3
5

6

CSF places results into
internal AFDM buffer

Host
MemoryHost

5

Figure 8: Example API flows

30 Computational Storage API
Working Draft Version 0.9 rev 1

 Details on Common Usages
 FDM Usage

A CSx has FDM that is allocated for a CSF to use for inputs and outputs. This memory
is pre-allocated by the host application prior to its usage.

The csAllocMem() API and the csFreeMem() API are used to allocate and free
FDM. This memory is allocated out of FDM and is referred to as AFDM.

CSxes may implement FDM in different ways. The API abstractions provide a
transparent view of the FDM.

5.1.1 FDM usage example for CSD
This CSD example does not expose FDM to the host and hence all data transfers, while
opaque, are described using the CS APIs.

When the host allocates FDM buffers, they are referenced as AFDM. Once allocated,
these AFDMs may be provided as input and output buffers for loading data from storage
media, running compute functions with these data buffers, and copying data to and from
host memory.

The host allocates the necessary amount of AFDM buffers with the csAllocMem()
API.

The loading of storage media into the allocated AFDM is conducted by the
csQueueStorageRequest() API.

Compute functions provided with these buffers are executed using the
csQueueComputeRequest() API and the csQueueBatchRequest() API.

Data transfers between AFDM and host memory are conducted using the
csQueueCopyMemRequest() API.

Key resources utilized by CSFs include compute and device memory. In this example,
we use a generic CSF to describe compute and memory. For existing CSx
architectures, memory usage is as follows:

a) Data transfer from host memory to FDM
A) Data that the CSF will work on
B) Input parameters to the CSF

b) Data transfer from FDM to host memory
A) Data that the CSF returns to host application
B) Miscellaneous results (e.g., status and other variables)

c) Memory (that is outside of FDM) usage for CSFs

 Computational Storage API 31
Working Draft Version 0.9 rev 1

A) Internal device memory usage for CSFs during runtime not accessible by host (e.g.,
stack, scratchpad, operating system memory when the CSF is hosted by one, device
local RAM for device-based functions)

In this architecture, the host pre-populates the data that the CSF has to work on (item
a.A above) into the FDM. This is achieved by the device having the capability to transfer
data directly between storage and FDM. For a CSx that does not contain storage such
as a CSP, the host reads data into host memory from a storage device (e.g., SSD or
CSD) and then copies it to FDM on the CSP. These memory transactions involve DMA
transfers through the fabric. This is because in this model, the CSFs have no direct
DMA access to the host or peer device(s) and vice versa. Similarly, when the CSF has
output data (item b.A above) stored in FDM that is required to be written to the media,
the data is first DMAed to host memory and then written to the media. Each of these
operations require 2 data transactions on the fabric, and in doing so, consume a part or
all of the available bandwidth to the CPU. There is a high possibility of running into
performance limitations when there are other similar devices populated and when
network cards are also transferring data on the same fabric.

5.1.2 Allocating from FDM
FDM is allocated using the csAllocMem() API to provide memory for inputs and
outputs of the CSF. FDM may or may not be visible in host address space depending
on the CSx type. For example, Figure 8 depicts a CSD that does not expose FDM in
the host’s address space. The csAllocMem() API allocates FDM at a granularity as
specified by the CSx. In addition to allocating FDM, this API also facilitates mapping it
into host’s system address space, if the CSx supports this mapping.

5.1.2.1 When to map AFDM to a virtual address
When AFDM is allocated, it should request host address mapping in only the following
conditions:

a) AFDM will be passed to the OS filesystem/block subsystem to load data directly from the SSD
utilizing the P2P protocol

b) AFDM will be passed to the OS filesystem/block subsystem to commit data directly from CSx to
SSD using P2P; and

c) AFDM will be accessed directly from host application software

The allocation request for mapping however depends on the ability of the CSx to have
FDM exposed in host address space.

5.1.2.2 When not to map AFDM to a virtual address
AFDM should not request a virtual address pointer when allocated for the following
usages:

a) AFDM is not exposed by the device to the host;
b) AFDM is used to transfer data from host memory as input to CSF for computation;

32 Computational Storage API
Working Draft Version 0.9 rev 1

c) AFDM is used to collect results from CSF and subsequently copied back to host memory;
d) AFDM is used in batch requests;
e) When a CSx has large memory area to expose that may run into restrictions with the host

systems BIOS;
f) When there are multiple CSxes and the additional exposed memory hits system BIOS limits; and
g) When the CSx is connected remotely.

For data transfers between host memory and device memory, the csQueueCopyMemRequest()
API provides a mechanism for data transfer. In certain configurations (e.g., a virtualized configuration with
a hypervisor), direct device memory access may provide unpredictable results and the DMA request may
encounter errors (i.e., even though the memory is mapped with a virtual address, it may still fail if
accessed directly).

 In these cases, device memory should be accessed through the device DMA engine
using this API.

5.1.3 FDM to host memory mapping
FDM may be used as memory mapped to host address space or without a mapping.
The device should be queried for its properties using the
csQueryDeviceProperties() API to verify which modes it supports.

a) memory exposed to host address space with mapping; or
b) memory not exposed to host address space.

5.1.3.1 FDM not exposed to host address space
In this example, FDM allocations with the csAllocMem() API do not request a virtual
address pointer to be returned by setting the parameter VaAddressPtr to NULL. The
device provides translations for such allocations internally for their memory locations.
For this example, the API hides such details through the abstracted interface and
provides the same definitions by skipping the mapping functionality. Remotely
connected CSxes also adopt this usage model as they do not expose FDM as a virtual
address to the local host.

Storage I/O to this type of FDM is achieved using the csQueueStorageRequest()
API which facilitates the transfer of data from storage directly to FDM buffers where the
transfers do not leave the device. Doing so may save host CPU usage, cache and
memory usage, and fabric bandwidth. These savings translate into performance,
latency, and power benefits.

5.1.3.2 FDM exposed to host address space
The API definitions support devices that also expose FDM to host address space. In this
usage, a virtual address pointer is requested during allocation through the parameter
VaAddressPtr. With CSxes that map FDM to host memory address space, it is
possible to transfer directly between storage and the FDM using P2P. This saves on the

 Computational Storage API 33
Working Draft Version 0.9 rev 1

additional hop to host memory, host CPU involvement and in some cases, external
fabric transactions.

The csAllocMem() API maps the AFDM to host’s address space, if the device
provides such an interface. With AFDM mapped to host address space, an application
is able to perform P2P data transfers between SSD and AFDM using the filesystem.

 Using AFDM for P2P transfers

As shown in Figure 9, devices operate with host CPU by exposing AFDM in the host’s
address space (e.g., the NVMe and CSx both make their memory visible through PCIe
BARs). The CPU has full visibility of FDM in this system address space. Devices are
able to transfer data to any physical address in host addressable memory.

AFDM is able to be used for P2P transfers as follows:

a) Host software allocates the required amount of FDM using the csAllocMem() API with the
option of mapping to a virtual address. Memory should be allocated in a size that is aligned to
the device and favorable of host software usage (e.g., in host OS page size increments which
maps it to the host page boundary), where security protections are able to be enforced;

b) The mapped virtual address is able to be passed to a filesystem or block subsystem for
read/write access. Before the AFDM buffer is provided as input to the filesystem, the application
is required to ensure that no buffering occurs in the I/O request. This may be achieved by
disabling I/Os from being cached by the OS. For filesystems, the file should be opened with the
O_DIRECT flag so no buffering occurs and the I/O is directly submitted to the OS block layer. If
not, the results are indeterminate since data may be directly passed to the CSx and any caching
layers in between may prevent this;

c) Memory passed to the SSD is required to start at the minimum offset supported by the block
device. This is 4KB for all modern SSDs;

d) The SSD DMAs data to an address that resides on the CSx. P2P is complete when the I/O request
is complete and signaled back to the host as part of the normal I/O operations. The DMA
transfer that occurred between the SSD and the AFDM does not involve the external fabric if
both devices are within the same device enclosure. This action saves fabric bandwidth and
associated latencies with the I/O. For user space filesystems and block level accesses, the virtual
address returned in step 2 needs to be passed directly through an ioctl call to the NVMe
driver. Here the SSD block translations may need to be done from the appropriate filesystem to
describe the I/O request at the block level;

34 Computational Storage API
Working Draft Version 0.9 rev 1

4 GB

0 GB

16 EB

256 TB 48-bits

64-bits

Device Map in Host
System Space

32-bits

FDM BAR
Function Data
Memory (FDM)

x86

NVMe BAR

N.A.

Host DRAM

64
 b

its
32

 b
its

Figure 9: System Memory Map

e) The application then invokes the CSF to act on the data transferred. The CSF has local access to
the data transferred since it is in AFDM; and

f) When compute is complete, the CSF passes the data back to the application memory either
through the csQueueCopyMemRequest() API or committing it directly to SSD as in step 4.

Even though data movement is offloaded from host memory, the host CPU is still
involved in the orchestration of data, as this is where the application resides.

There are three key advantages with the peering approach:

a) Reduction of PCIe bus bandwidth utilization;
b) Reduction in CPU utilization due to reduced memory copies; and
c) Reduction in host memory utilization.

5.1.4 Copy data between host memory and AFDM
Data transfers between host memory and AFDM requires only the
csQueueCopyMemRequest()API.

This API takes data transfer direction as part of the request, as shown in Figure 10.

 Computational Storage API 35
Working Draft Version 0.9 rev 1

Device Storage

Device Memory

Storage
Controller

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)

CSEE

Resource Repository

FDM
AFDMAFDM

CSFCSF CSEECSEE

Computational Storage Drive (CSD)

MGMT I/O

CSFCSF

CS_COPY_TO_DEVICE

Host MemoryHost

Device Storage

Device Memory

Storage
Controller

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)

CSEE

Resource Repository

FDM
AFDMAFDM

CSFCSF CSEECSEE

Computational Storage Drive (CSD)

MGMT I/O

CSFCSF

CS_COPY_FROM_DEVICE

Host MemoryHost

Figure 10: Example data transfers between AFDM in a CSx and host memory

 Scheduling Compute Offload Jobs

Scheduling compute offload is done using the csQueueComputeRequest() API. This
request API takes as input the CSF to which a job should be queued along with its
arguments. The number of arguments and their values should match the definition of
the CSF as the API library will not enforce these and the behavior may be undefined.

An advanced method of queuing jobs is batching multiple requests together using the
csQueueBatchRequest() API. This APIallows multiple jobs to be batched together
as one request.

Compute offload jobs require input and produce output. Each of these entities require a
job request.

computeinput output

Table 4 summarizes job processing for input, compute and output.

Table 4: Job request processing

Job Details

36 Computational Storage API
Working Draft Version 0.9 rev 1

Input Provides input to a compute job. Input to a compute job may
be provided in two ways:

Input method Related function

Storage a) Use file system calls with device
memory mapped to host; and

b) Use the csQueueStorageRequest()
API with type option
CS_STORAGE_LOAD_TYPE

Host memory Use the
csQueueCopyMemRequest() API
or the csQueueBatchRequest() API
with option CS_COPY_TO_DEVICE

Compute The actual compute job may be scheduled to run in the
following ways:

method Related function

Single or batch
request

Use the
csQueueComputeRequest() API
for a single request or the
csQueueBatchRequest() API for
batch request.

Output Provides output from a compute job. Output from a compute
job may be received in two ways:

Input method Related function

Storage a) Use file system calls with device
memory mapped to host; and

b) Use the csQueueStorageRequest()
API with type option
CS_STORAGE_STORE_TYPE

Host memory Use the
csQueueCopyMemRequest() API
or the csQueueBatchRequest() API

 Computational Storage API 37
Working Draft Version 0.9 rev 1

with option
CS_COPY_FROM_DEVICE

5.2.1 Batching requests
The csQueueBatchRequest() API is an advanced queuing mechanism that
minimizes the interactions between host software and the device by optimizing the
input(s) and output(s). It is useful in cases where the work required to be performed by
the CSx is required to be done in a particular order with a set of operations. These could
be serialized jobs, parallelized jobs, or a combination of jobs that may be queued to a
CSx. Jobs may be combined into a single batch request and submitted by the
application at one time and get notified of a completion response only after all of the
batched requests are done.

Batching requests using this API helps the application to pipeline multiple requests by
their dependencies, reduce host CPU usage, reduce latencies by having less host
context switches, and providing a more optimized execution path. Most computation
jobs tend to have a combination of more than one queued job to complete the required
task in a combination of input, compute, and output jobs. Batching requests may or may
not be supported in hardware. For cases where it is not supported in hardware, the
underlying software implementation of the APIs supports this usage and APIs and
provide similar functionality. Batch request functionality is able to be discovered using
the csQueryDeviceProperties() API.

computeinput output

compute

compute

compute

compute

compute

input

input

input

input

input

output

output

output

output

output

a) b) c) d)

computeinput compute

computeinput compute

compute output

e)

Figure 11: Batch requests

38 Computational Storage API
Working Draft Version 0.9 rev 1

Figure 11 illustrates different types of batch requests. In option a, a serialized notation of job requests
using the batching option is shown. In this option, input is the first job and on completion,
provides data to the compute job. On completion of the compute job, the results are provided to
the output job, which satisifies the serialization and dependency requirements. Options b, c and d
illustrate parallel operations of job processing for input, compute and output respectively. Option
e represents a more complex batch request where there are more inputs and more compute
requests in one batch request. This option also exhibits parallelism and dependencies from the
previous job, as applicable. The usage of each job type is defined in Table 4.

Here are a few illustrative examples on how multiple job requests may be scheduled
with one request.

5.2.1.1 Serialized operations example
Serialized operations involve dependencies, where the output of the previous job is the
input to the next job. Instead of submitting each of these jobs individually, the user is
able to create a batch request and post them at one time and get the results after the
last job has completed. On the CSx, the requests will be processed serially and will not
interrupt the user on completion of each job in the batch.

computeinput output

Applying it with API calls, there are many combinations of these jobs. A serial batch
request presents jobs as an array with the order required. Serial batch request implies
dependency between the previous and next job and does not require additional
dependency details as a hybrid operation does (see 5.2.1.3).

In this example, data is first copied from host memory to device and compute offload
work is scheduled after the copy is done. The next operation does not start before the
previous operation is completed.

csQueueCopyMemRequest(
CS_COPY_TO_DEVICE) csQueueComputeRequest()

The next example is the same as the previous with the addition of copying the results
back to host memory. This example demonstrates an input job, a compute job and an
output job.

csQueueCopyMemRequest(
CS_COPY_TO_DEVICE) csQueueComputeRequest() csQueueCopyMemRequest(

CS_COPY_FROM_DEVICE)

 Computational Storage API 39
Working Draft Version 0.9 rev 1

The following example is a typical flow that manipulates stored data and provides the
output back to host.

csQueueCopyMemRequest(
CS_COPY_FROM_DEVICE)csQueueComputeRequest()csQueueStorageRequest()

In the following example, the output of a compute request becomes the input to the next
compute request.

csQueueComputeRequest()csQueueComputeRequest() csQueueComputeRequest()

For additional details, see sample code in section A.3.

5.2.1.2 Parallelized operations examples
Parallelized operations apply to jobs that are required to be done by multiple CSEs at
the same time in a distributed manner. The ability to do so is required to be supported
by the CSE.

In this example, 6 compute jobs are initiated at the same time and their completion
results are conveyed back after all of them are completed. This type of scheduling and
completion greatly simplifies the application orchestration tasks on the host side.

csQueueComputeRequest()

csQueueComputeRequest()

csQueueComputeRequest()

csQueueComputeRequest()

csQueueComputeRequest()

csQueueComputeRequest()

In another example usage, data results may have been completed in AFDM by many
CSFs or the results may be fragmented and ready for the host. The batch request helps
in collating the results back to the host in a manner similar to scatter gather lists.

csQueueCopyMemRequest(
CS_COPY_FROM_DEVICE)

csQueueCopyMemRequest(
CS_COPY_FROM_DEVICE)

csQueueCopyMemRequest(
CS_COPY_FROM_DEVICE)

csQueueCopyMemRequest(
CS_COPY_FROM_DEVICE)

csQueueCopyMemRequest(
CS_COPY_FROM_DEVICE)

csQueueCopyMemRequest(
CS_COPY_FROM_DEVICE)

40 Computational Storage API
Working Draft Version 0.9 rev 1

With some CSx implementations, DMA copy operations may be more efficient if multiple
requests are collapsed together with a single request for best performance.

The parallelized operations apply very well with distributed compute usages not only for
single CSEs but also for multiple CSEs and may be more optimal from the execution
point of view. As shown in the above two examples, the same operations may be
queued to two different CSEs with a single API request. This may provide interesting
and powerful application outcomes.

For additional details, see sample code in section A.3.

5.2.1.3 Hybrid operations examples
Hybrid scheduling operations are able to be employed when the current job’s input
depends on the previous job’s output to complete. These may be in any order and
nested too. Here are some examples of the combinations.

a) A previous serial/parallel job’s output is the input to the next serial/parallel job;
b) A previous storage job’s output is the input to the next serial/parallel job; and
c) A previous data copy job’s output is the input to the next serial/parallel job.

Each of these use cases has a serialization step between the completion of one
operation and execution of the next operation. A dependency exists that one operation
has to complete to provide the data required by the subsequent operation. The use
case where a serial job depends on a previous serial job is not covered above since it
may be handled by serialized operations as listed in section 5.2.1.1. There may also be
paths where data dependency does not exist. This may be the case which has multiple
inputs at the start of the batch request and where each request may take a different
path. The example shown below shows such a case. This is also depicted in Figure 11
option e.

csCopyDeviceMem(
CS_COPY_FROM_DEVICE)

csQueueStorageRequest() csQueueComputeRequest() csQueueComputeRequest()

csQueueStorageRequest() csQueueComputeRequest() csQueueComputeRequest()

csQueueComputeRequest()

Since a data dependency exists, and the data resides in device space, it is able to be
provided as an input to enable hybrid mode using the csQueueBatchRequest()
API.Batch requests in hybrid mode may take dependencies into account as part of
execution. Serial and parallel requests by design are assumed to follow a specific flow
and no additional information on dependency may be followed in the execution path.

Scheduling hybrid batch operations is possible using the csQueueBatchRequest()
API with additional parameters. The additional batch functions define the dependencies

 Computational Storage API 41
Working Draft Version 0.9 rev 1

by resource type and provides details on what the current request depends on to
complete before it is able to start. Using these dependencies, complex operations as
listed in the combinations above are able to be performed by queuing them in advance
and allowing the subsystem to take care of the executions and order. This may also be
handled directly in the device or by the software framework without application
intervention.

In this example, each request represents a node in the batch of requests with Mode
specifying the operation for that node.

Table 5 summarizes batch operations.

Table 5: Batch requests

Batch mode Details

serial A batch request that has more than one request that is executed
in pipeline mode, where, the next job will not start until the
current job is complete. Since dependency is explicit, only the
request details are necessary to execute the batch request.

Batch requests are listed serially using the helper functions.

Individual APIs that are able to be batched serially are the
csQueueStorageRequest() API, the
csQueueComputeRequest() API and the
csQueueCopyMemRequest() API.

parallel In this mode of execution, the intended purpose is to breakdown
a larger request into smaller jobs and execute them
independently. There is no dependency on any of these parallel
jobs within the request and they may all start together at the
same time.

The csQueueStorageRequest() API, the
csQueueComputeRequest() API, or the
csQueueCopyMemRequest() API are able to be batched in a
single request to execute in parallel. These APIs may also be
mixed together and also run in parallel. The supporting hardware
is required to support the required parallelism for this batch
operation to execute as intended.

42 Computational Storage API
Working Draft Version 0.9 rev 1

hybrid In this mode, complex and nested operations are able to be
performed with the batch request.

The csQueueStorageRequest() API, the
csQueueComputeRequest() API, and the
csQueueCopyMemRequest() API are able to be batched in a
single request to execute in batch mode. The sequence of
requests may be included as single requests or as a series of
nested graph operations.

For additional details, see sample code in section A.3.

5.2.2 Optimal Scheduling
Batch based scheduling requests provide optimal IO flows to and from CSFs. The
scheduling of compute and data movement internally utilize the most efficient path
available through the compute offload device. No separate calls are necessary to
prepare for it.

Some attention has to be placed on the CSE if more than one CSF is queued for
execution at the same time. If multiple CSFs are queued on a CSE, then function
grouping is required to be used to provide hints during scheduling. Grouping is achieved
by the csGroupComputeByIds() API.

When compute has to be aligned to utilize a CSF without idle time in-between
executions, the scheduler, by design, should manage the transitions between different
execution times most efficiently.

A
input output

computeinput output

computeinput output

B

C

compute

Figure 12: Optimal CSF Scheduling
Figure 12 depicts compute being utilized very efficiently with minimal idle time. A, B and
C are separate batch request executions that use a single CSF. For this example, start
of execution also depends on when the previous input request completes.

 Computational Storage API 43
Working Draft Version 0.9 rev 1

 Working with CSFs

CSF functionality depends on its CSE implementation. Since CSEs types may be built
differently from one another, a CSF for one type of CSE may not have similar
characteristics to a CSF for another type of CSE. A CSF for one CSE type may not work
with another CSE type. Some CSFs may be able to execute multiple instances from one
image while others may require their own image instance to run.

A CSx may be preloaded with zero or more CSFs by the manufacturer. CSFs may also
be downloaded. These two sources for CSFs and the available count are dependent on
the implementation of the CSx, CSEE and CSE resources. CSFs may be downloaded
using the csCSFDownload() API.

A CSF may be represented by a name such as compress, checksum etc. Since a name
string may not be able to uniquely represent a CSFs implementation, a global unique
identifier is also supported. This identifier may provide a standardized representation of
the CSF’s algorithmic implementation.

A CSF by default resides in the resource repository. CSFs are required to be configured
and activated before they can be executed. This involves pairing the CSF with the
correct CSE and CSEE environment. Configuration and activation is achieved using the
csConfig() API. They are discovered for this step using the
csQueryDeviceProperties() API. Both of these APIs are privileged operations and
are used to setup a CSx.

Activated CSFs are discoverable by non-privileged users using the csGetCSFId() API
which returns details on one or more CSFs in the CSFIdInfo data structure. These
details include a CSFId that may be used to execute the CSF, relative performance and
power details, which may be used to choose a CSF from the list, and a count of the
instances available for execution.

Executing a CSF is done using the csQueueComputeRequest() API. An advanced
version of execution may also be achieved using the csQueueBatchRequest() API,
which facilitates batching a sequence of operations.

To save reqources, a CSF instance, if not utilized, may be deactivated using the
csConfig() API. A CSF that was previously downloaded may be unloaded using the
csCSFDownload() API.

 Completion Models

Storage, Memory Copy and Compute requests use a queued IO model, where the
request may be queued. These requests have three different options to complete the

44 Computational Storage API
Working Draft Version 0.9 rev 1

request as shown in Table 6. The requests may be queued for synchronous or
asynchronous completions.

With the synchronous completion model, the request does not return before it is
completed from the API library.

With an Asynchronous completion model, the request may be queued with a callback
API or with an event. The callback API will be notified asynchronously in an arbitrary
thread context when request completes. With events, the user may poll using the
csPollEvent() API in the callers context and when ready to process the completion.
The IO for both asynchronous completion types get a completion back only when the
request at the device is complete.

Table 6: Completion Models

Completion Model Inputs Description

Synchronous Context = NULL

CallbackFn = NULL

EventHandle = NULL

This is a blocking model,
where the submitted
request will not return to
caller until complete.

Asynchronous
Callback

Context = <User Context>

CallbackFn = <User
Callback API>

EventHandle = NULL

This is a non-blocking
model, where the user
callback API is notified
when the requested IO is
complete.

Asynchronous
Event

Context = <User Context>

CallbackFn = NULL

EventHandle = <User Event
handle>

This is a non-blocking
model, where the user
event is signaled when the
requested IO is complete.
The user is able to poll the
event handle for
completion status to
change from CS_QUEUED.

 Computational Storage API 45
Working Draft Version 0.9 rev 1

 CS API Interface Definitions
CS APIs enable interfacing with one or more CSEs and provide near storage
processing access methods. Definitions will be provided in the following file

#include "cs.h"

This header file defined for a C programming language contains structures, data types
and interface definitions. The associated interface definitions for the APIs will be
provided as a user space library. The details of the library are out of scope for this
document.

 API Access and flow conventions

The API definitions listed in this section use the following convention for handles.
Handles have very specific usage. Only one handle is accepted per task as the main
input and additional handles will be referenced either as arguments or internally based
on reference.

46 Computational Storage API
Working Draft Version 0.9 rev 1

csCSEEDownload

csInitMem

CS_REQ_HANDLE

CS_DEV_HANDLE

CS_MEM_HANDLE CS_CSF_ID

CS_EVT_HANDLE

csQueryCSxList
csQueryCSFList

csQueueStorageRequest
csAllocMem

csFreeMem
csQueueCopyMemRequest csQueueComputeRequest

csAllocBatchRequest

csCreateEvent
csDeleteEvent
csPollEvent

csQueryDeviceProperties
csQueryDeviceStatistics

csCSFDownload

csRegisterPlugin
csDeregisterPlugin

csQueryLibrarySupport

Discovery

All Device
Interactions

All Event
Interactions

CS_BATCH_HANDLE

csFreeBatchRequest
csAddBatchEntry
csHelperReconfigureBatchEntry
csHelperResizeBatchRequest
csQueueBatchRequest

All Batch
Interactions

csHelperSetComputeArg

csAbortRequest

All Compute
Interactions

csReset

csGetCSxFromPath
csRegisterNotify
csDeregisterNotify

csOpenCSx

All Memory
Interactions

csCloseCSx

csGetCSFId

csConfig

Figure 13: API access flows

 Usage Overview

The CS API interface to applications is able to be broken down by functionality into the
sections as defined in

Table 7.

 Computational Storage API 47
Working Draft Version 0.9 rev 1

Table 7: CS API matrix

Functionality APIs

Device Discovery

- Identify CSxes
- Identify CSFs
- Identify CSx associated with Storage device

csQueryCSxList()

csQueryCSFList()

csGetCSxFromPath()

Device Access

- Open/Close CSx device for access

csOpenCSx()

csCloseCSx()

FDM management

- Allocate/Deallocate FDM

csAllocMem()

csFreeMem()

csInitMem()

Storage IOs

- Issue read/write IOs from/to Storage

Use filesystem with FDM and
initiate P2P

csQueueStorageRequest()

CSx Data movement

- Transfer data between device memory and host
memory

csQueueCopyMemRequest()

CSF access and scheduling

- Schedule CSF on device

csGetCSFId()

csAbortRequest()

csQueueComputeRequest()

csHelperSetComputeArg()

csQueueBatchRequest()

csAllocBatchRequest()

48 Computational Storage API
Working Draft Version 0.9 rev 1

csFreeBatchRequest()

csAddBatchEntry()

csHelperReconfigureBatchEntry()

csHelperResizeBatchRequest()

Device Management

- Query device properties and capabilities
- Manage device functionality

csQueryDeviceProperties()

csQueryDeviceStatistics()

csGroupComputeByIds()

csUngroupComputeFromGroupId()

csCSFDownload()

csCSEEDownload()

csConfig()

csReset()

csRegisterNotify()

csDeregisterNotify()

Event Management

- Create/delete events for completion processing

csCreateEvent()

csDeleteEvent()

csPollEvent()

Library Management

- Query API library support
- Manage library interfaces to support APIs

csQueryLibrarySupport()

csRegisterPlugin()

csDeregisterPlugin()

 Computational Storage API 49
Working Draft Version 0.9 rev 1

 Common Definitions

6.3.1 Character Arrays
All strings are null terminated. Since a string is null terminated, the maximum number of
non-null characters in the character array is one less than the size of the character
array.

The null termination character is not included in the string length.

6.3.2 Data Types

Name Description

s8 Signed 8-bit data; used as input to functions and
arguments

u8 Unsigned 8-bit data; used in arguments scheduling a CSF

f8 Float 8-bit data; used in arguments scheduling a CSF

s16 Signed 16-bit data; used as input to functions and
arguments

u16 Unsigned 16-bit data; used in arguments scheduling a
CSF

f16 Float 16-bit data; used in arguments scheduling a CSF

s32 Signed 32-bit data; used as input to functions and
arguments

u32 Unsigned 32-bit data; used in arguments scheduling a
CSF

f32 Float 32-bit data; used in arguments scheduling a CSF

s64 Signed 64-bit data; used as input to functions and
arguments

50 Computational Storage API
Working Draft Version 0.9 rev 1

u64 Unsigned 64-bit data; used in arguments scheduling a
CSF

f64 Float 64-bit data; used in arguments scheduling a CSF

u128 Unsigned 128-bit data; used in arguments scheduling a
CSF

6.3.3 Status Values
One or more of the values in Table 8 are returned by the interface APIs and are
classified under CS_STATUS.

Table 8: Status Value Definitions

Status Value Definition Description

CS_SUCCESS The action was completed with success

CS_COULD_NOT_MAP_MEMORY The requested memory allocated could
not be mapped

CS_DEVICE_ERROR The device is in error and is not able to
make progress

CS_DEVICE_NOT_AVAILABLE The CSx is unavailable

CS_DEVICE_NOT_READY The device is not ready for any
transactions

CS_DEVICE_NOT_PRESENT The requested device is not present

CS_INVALID_DEVICE_NAME The device name specified does not exist

CS_INVALID_PATH No such device, file or directory exists

CS_ENTITY_NOT_ON_DEVICE The entity does not exist on requested
device

 Computational Storage API 51
Working Draft Version 0.9 rev 1

CS_NO_MATCHING_DEVICE No Storage or CSx was available

CS_ERROR_IN_EXECUTION There was an error that occurred in the
execution path

CS_FATAL_ERROR There was a fatal error that occurred

CS_HANDLE_IN_USE The requested handle is already in use

CS_INVALID_HANDLE An invalid handle was passed

CS_INVALID_ARG One or more invalid arguments were
provided

CS_INVALID_ID The specified input ID was invalid and
does not exist

CS_INVALID_LENGTH The specified buffer is not of sufficient
length

CS_INVALID_OPTION An invalid option was specified

CS_INVALID_CSF_ID The CSF identifier specified was invalid

CS_INVALID_CSF_NAME The CSF name specified does not exist or
is invalid

CS_INVALID_FDM_ID The FDM identifier specified was invalid

CS_INVALID_GLOBAL_ID The Global Identified specified is not valid

CS_IO_TIMEOUT An IO submitted has timed out

CS_LOAD_ERROR The specified download could not be
initialized

CS_MEMORY_IN_USE The requested memory is still in use

CS_NO_PERMISSIONS There were insufficient permissions to
proceed with request

52 Computational Storage API
Working Draft Version 0.9 rev 1

CS_NOT_DONE The request is not done

CS_NOT_ENOUGH_MEMORY There is not enough memory to satisfy the
request

CS_OUT_OF_RESOURCES The system is out of resources to satisfy
the request

CS_QUEUED The request was successfully queued

CS_NOTHING_QUEUED No queued requests to poll

CS_COULD_NOT_UNMAP_MEMORY Memory previously mapped could not be
unmapped for AFDM

CS_UNKNOWN_MEMORY The memory referenced was unknown

CS_UNSUPPORTED The request is not supported

CS_UNSUPPORTED_TYPE The specified download type is not
supported

CS_UNSUPPORTED_INDEX The specified hardware index is not
supported for this download

6.3.4 Notification Options
The following definitions specify the fixed defined values that can be specified as
notification options as an input to the csRegisterNotify() API. The same values
will be provided to the notification callback, if invoked.

Table 9: Notification Value Definitions

Status Value Definition Description

CS_NOTIFY_SYSTEM_ERROR A system error has occurred

CS_NOTIFY_CSE_UNRESPONSIVE The specified CSE is not responding
normally and may be unusable

 Computational Storage API 53
Working Draft Version 0.9 rev 1

CS_NOTIFY_CSEE_UNRESPONSIVE The specified CSEE is not responding
normally and may be unusable

CS_NOTIFY_CSF_UNRESPONSIVE The specified CSF is not responding
normally and may be unusable

CS_NOTIFY_CSE_RESET A CSE resource was reset

CS_NOTIFY_CSEE_RESET A CSEE resource was reset

CS_NOTIFY_CSx_RESET The CSx was reset

CS_NOTIFY_CSx_ADDED A new CSx is available

CS_NOTIFY_CSx_REMOVED A CSx is not available

CS_NOTIFY_CSF_ADDED A new CSF was loaded

CS_NOTIFY_CSF_REMOVED A CSF was unloaded

CS_NOTIFY_RESOURCE_WARNING The CSx is running out of resources

CS_NOTIFY_DOWNLOAD_INFO Additional information is available for
downloaded CSF

CS_NOTIFY_CONFIG_INFO Additional information is available for
downloaded configuration

6.3.5 Data Structures

6.3.5.1 Definitions

6.3.5.2 Enumerations
The enumerations in this section are used in API parameters and data structures.

 CS_RESOURCE_TYPE

typedef enum {

54 Computational Storage API
Working Draft Version 0.9 rev 1

 CS_CSx_TYPE = 1,
 CS_CSE_TYPE = 2,
 CS_CSEE_TYPE = 3,
 CS_FDM_TYPE = 4,
 CS_CSF_TYPE = 5,
 CS_VENDOR_SPECIFIC_TYPE = 6
} CS_RESOURCE_TYPE;

 CS_CSEE_RESOURCE_TYPE

typedef enum {
 CS_CSEE_UNDEFINED = 0,
 CS_CSEE_FPGA = 1,
 CS_CSEE_BPF = 2,
 CS_CSEE_CONTAINER = 3,
 CS_CSEE_OPERATING_SYSTEM = 4,
 CS_CSEE_VENDOR_SPECIFIC = 65535
} CS_CSEE_RESOURCE_TYPE;

 CS_CSF_RESOURCE_TYPE

typedef enum {
 CS_CSF_UNDEFINED = 0,
 CS_CSF_FPGA_BITSTREAM = 1,
 CS_CSF_BPF_PROGRAM = 2,
 CS_CSF_CONTAINER_IMAGE = 3,
 CS_CSF_OPERATING_SYSTEM_IMAGE = 4,
 CS_CSF_VENDOR_SPECIFIC = 65535
} CS_CSF_RESOURCE_TYPE;

 CS_RESOURCE_SUBTYPE

The following enum defines CSEE and CSF resource subtypes that may be used with
the csCSEEDownload() API and the csCSFDownload() API.

typedef enum {
 CS_SUBTYPE_UNDEFINED = 0,
 CS_SUBTYPE_FPGA_AMD = 1,
 CS_SUBTYPE_FPGA_INTEL = 2,
 CS_SUBTYPE_CONTAINER_DOCKER = 3,
 CS_SUBTYPE_CONTAINER_KUBERNETES = 4,
 CS_SUBTYPE_OS_LINUX = 5,
 CS_SUBTYPE_OS_VMWARE = 6,
 CS_SUBTYPE_VENDOR_SPECIFIC = 65535
} CS_RESOURCE_SUBTYPE;

 Computational Storage API 55
Working Draft Version 0.9 rev 1

 CS_STATE

typedef enum {
 CS_INACTIVE_STATE = 0,
 CS_ACTIVE_STATE = 1,
} CS_STATE;

 CS_CONFIG_TYPE

typedef enum {
 CS_CSEE_ACTIVATE = 1,
 CS_CSF_ACTIVATE = 2,
 CS_FDM_ACTIVATE = 3,
 CS_VENDOR_SPECIFIC = 4
} CS_CONFIG_TYPE;

 CS_FDM_FLAG_TYPE

CS_FDM_FLAG_TYPE specifies options to csMemFlags parameter for the
csAllocMem() API and the csFreeMem() API.

typedef enum {
CS_FDM_CLEAR = 1, // clears AFDM to all zeroes
CS_FDM_FILL = 2 // fill AFDM with specified value
} CS_FDM_FLAG_TYPE;

 CS_MEM_COPY_TYPE

typedef enum {
 CS_COPY_TO_DEVICE = 1,
 CS_COPY_FROM_DEVICE = 2,
 CS_COPY_WITHIN_DEVICE = 3
} CS_MEM_COPY_TYPE;

 CS_STORAGE_REQ_MODE

typedef enum {
 CS_STORAGE_BLOCK_IO = 1,
 CS_STORAGE_FILE_IO = 2
} CS_STORAGE_REQ_MODE;

56 Computational Storage API
Working Draft Version 0.9 rev 1

 CS_STORAGE_IO_TYPE

typedef enum {
CS_STORAGE_LOAD_TYPE = 1,
CS_STORAGE_STORE_TYPE = 2

} CS_STORAGE_IO_TYPE;

 CS_COMPUTE_ARG_TYPE

This enum defines the CSF argument types.

typedef enum {
CS_AFDM_TYPE = 1,
CS_8BIT_VALUE_TYPE = 2,
CS_16BIT_VALUE_TYPE = 3,
CS_32BIT_VALUE_TYPE = 4,
CS_64BIT_VALUE_TYPE = 5,
CS_128BIT_VALUE_TYPE = 6,
CS_DESCRIPTOR_TYPE = 7
} CS_COMPUTE_ARG_TYPE;

 CS_BATCH_MODE

This enum enumerated the possible batch modes as follows:

typedef enum {
CS_BATCH_SERIAL = 1,
CS_BATCH_PARALLEL = 2,
CS_BATCH_HYBRID = 3

} CS_BATCH_MODE;

 CS_BATCH_REQ_TYPE

typedef enum {
 CS_COPY_AFDM = 1,
 CS_STORAGE_IO = 2,
 CS_QUEUE_COMPUTE = 3
} CS_BATCH_REQ_TYPE;

 CS_STAT_TYPE

This data type defines various statistics that are able to be queried from a CSx.

typedef enum {
 CS_STAT_CSE_USAGE = 1, // query to provide CSE runtime statistics
 CS_STAT_CSx_MEM_USAGE = 2, // query CSx memory usage
 CS_STAT_CSF = 3 // query statistics on a specific function
} CS_STAT_TYPE;

 Computational Storage API 57
Working Draft Version 0.9 rev 1

 CS_LIBRARY_SUPPORT

typedef enum {
 CS_FILE_SYSTEMS_SUPPORTED = 1,
 CS_RESERVED = 2
} CS_LIBRARY_SUPPORT;

 CS_PLUGIN_TYPE

typedef enum {
 CS_PLUGIN_COMPUTE = 1,
 CS_PLUGIN_NVME = 2,
 CS_PLUGIN_FILE_SYSTEM = 4,
 CS_PLUGIN_CUSTOM = 8
} CS_PLUGIN_TYPE;

A plugin may be more than one type; therefore, this is a defined as a bitmask.

6.3.5.3 Structures
The structures in this section are used in API parameters and within other data
structures.

 Properties Data Structures

The following data structures are used for discovery of all resources for a CSx. The data
structure CSProperties is queried using the csQueryDeviceProperties() API
and provides the properties for all compute resources of a CSx. The structure contains
sub-structures that are required to be queried individually using the
CS_RESOURCE_TYPE enumerator. The discoverable sub-structures include
CSxProperties, CSEProperties, CSEEProperties, FDMProperties, and
CSFProperties.

The sub-structure CSxProperties provides information pertaining to the CSx. The
BatchRequestsSupported field specifies if this CSx supports batch requests in
hardware.

The sub-structure CSEProperties provides information on all CSEs, where each one
is described by the sub-structure CSEInfo. The field CSETypeToken is a device
specified entry that uniquely distinguishes between different CSE types. The
MaxRequestsPerBatch field denotes the maximum number of requests that may be
batched together in a batch request through csQueueBatchRequest API. The
MaxCSFParametersAllowed field denotes the maximum parameters supported for a
given CSF by the CSE. A function cannot exceed this number and will be rejected if it

58 Computational Storage API
Working Draft Version 0.9 rev 1

does by the queueing API. Each CSE is further identified by the sub-structure
ComputeResource that provides individual details on the CSE.

The sub-structure CSEEProperties provides details on the execution environment
and is associated to the CSE by the CSETypeToken field. Each CSEE represented by
CSEEInfo sub-structure may describe any CSFs that are built-in or preloaded in the
CSx by the field NumBuiltinCSFs. The NumActivatedCSFs field denotes the total
number of CSFs available for execution.

The sub-structure FDMProperties describes all FDMs available on the CSx. Each
FDM is described by sub-structure FDMInfo. The DeviceManaged field when set to 1
identifies that the CSx manages FDM for allocations and deallocations and determines
how the memory is managed. If this field is set to zero, it means that the host manages
this resource. The HostVisible field when set to 1 denotes that FDM is available as
a physical resource in the system’s address space and may be mapped into a host’s
virtual address. If set to zero, FDM is not visible and needs specific APIs to operate on
it. The ClearContentsSupported and InvalidateContentsSupported fields
when set to 1 specify if the FDM supports this feature in hardware. The
ConfigSupported field specifies if the FDM may be configured. The NumCSEs field
denotes the CSEs that have access to the FDM while CSEList field is a pointer that
provides the details on the individual CSEs described in CSEAccess data structure.

The sub-structure CSFProperties describes all the CSFs that are available on the
CSx. Each CSF is described by the sub-structure CSFInfo that describes its
association to a CSE by the CSETypeToken field. Additional fields such as CSFId
uniquely identify the CSF and BuiltIn verify if it is built-in/preloaded by the vendor. A
CSF are required to be activated to be able to run on a CSE and its activation state and
associations is further described by the sub-structure CSFInstance. A CSF may be
executed on more than one CSE if that engine type allows it.

6.3.5.3.1.1 CsProperties

typedef union {
 CSxProperties CSxDetails; // details on CSx
 CSEProperties CSEDetails[1]; // details on all CSEs
 CSEEProperties CSEEDetails[1]; // details on all CSEEs
 FDMProperties FDMDetails[1]; // details on all FDMs
 CSFProperties CSFDetails[1]; // details on all CSFs
 CSVendorSpecific VSDetails; // vendor specific
} CsProperties;

 Computational Storage API 59
Working Draft Version 0.9 rev 1

6.3.5.3.1.2 CSxProperties

typedef struct {
 u16 HwVersion; // specifies the hardware version of this CSx
 u16 SwVersion; // specifies the software version that runs on this

CSx
 u32 VendorId; // specifies the vendor id of this CSx
 u32 DeviceId; // specifies the device id of this CSx
 char FriendlyName[32]; // an identifiable string for this CSx
 struct {
 u64 BatchRequestsSupported : 1;// CSx supports batch requests in hardware
 u64 Reserved : 63;
 } Flags;
} CSxProperties;

6.3.5.3.1.3 ComputeResource

typedef struct {
 u16 HwVersion;
 u16 SwVersion;

char Name[32]; // an identifiable string for this CR
 u32 ERId; // Engine Resource Identifier for this

ComputeResource
 CRProperties *Features; // additional features like perf, security etc [TBD]
} ComputeResource;

6.3.5.3.1.4 CSEInfo

typedef struct {
 u16 CSETypeToken; // device provided token to differentiate between its

// CSE types
 u8 RelativePerformance; // values [1-10]; higher is better; 0 is not defined

u8 RelativePower; // values [1-10]; lower is better; 0 is not defined
u32 MaxRequestsPerBatch; // maximum number of requests supported per

// batch request
 u32 MaxCSFParametersAllowed;// maximum number of parameters supported
 u32 CSEId; // CSE Id unique to this CSx
 u16 MaxCSEEs; // maximum number of CSEEs for this CSE
 u16 NumActivatedCSEEs; // number of activated CSEEs
 u16 NumAvailableCRs; // number of CRs not allocated
 u16 NumCRs; // total CRs in list
 ComputeResource *CRs; // a pointer to a list of CRs for this CSE Type
} CSEInfo;

6.3.5.3.1.5 CSEProperties

typedef struct {
 u16 NumCSEs; // number of CSEs in array
 CSEInfo CSE[1]; // a array of CSEs
} CSEProperties;

60 Computational Storage API
Working Draft Version 0.9 rev 1

6.3.5.3.1.6 CSEEInstance

typedef struct {
 CS_STATE State; // current activation state
 u32 CSEId; // CSE Id unique to this CSx
 u32 EEIId; // Execution Environment Instance Identifier
} CSEEInstance;

6.3.5.3.1.7 CSEEInfo

typedef struct {
 CS_CSEE_RESOURCE_TYPE Type; // the type of CSEE
 u16 SwVersion;
 char Name[32]; // an identifiable string for this CSEE
 u16 CSETypeToken; // device provided token to differentiate

between
// its CSE types

 u16 NumBuiltinCSFs; // number of available vendor preloaded CSFs
 u32 CSEEId; // unique CSEE Id
 u16 MaxCSFs; // maximum number of CSFs for this CSEE
 u16 NumActivatedCSFs; // number of activated CSFs
 u16 NumEEIs; // number of activated CSEE instances
 CSEEInstance *EEInstances; // a pointer to a list of activated CSEE

instances
} CSEEInfo;

6.3.5.3.1.8 CSEEProperties

typedef struct {
 u16 NumCSEEs; // number of CSEEs in array
 CSEEInfo CSEE[1]; // an array of CSEEs
} CSEEProperties;

6.3.5.3.1.9 FDMFlags

typedef struct {
 u64 DeviceManaged: 1; // FDM allocations managed by device
 u64 HostVisible: 1; // FDM may be mapped to host address space
 u64 ClearContentsSupported: 1; // supports clearing FDM with zeros
 u64 InvalidateContentsSupported: 1;// supports invalidating FDM with non-zeros
 u64 ConfigSupported: 1; // supports configuration
 u64 Reserved: 59;
} FDMFlags;

6.3.5.3.1.10 CSEAccess

typedef struct {
 u32 CSEId; // CSE Id unique to this CSx
 u8 RelativePerformance; // values [1-10]; higher is better; 0 is not defined
 u8 RelativePower; // values [1-10]; lower is better; 0 is not defined
} CSEAccess;

 Computational Storage API 61
Working Draft Version 0.9 rev 1

6.3.5.3.1.11 FDMInfo

typedef struct {
 u32 FDMId; // unique FDM Id
 u64 FDMSize; // size of FDM in bytes
 FDMFlags Flags; // FDM Settings
 u16 NumCSEs; // total CSEs in list
 CSEAccess *CSEList; // a pointer to a list of CSEs having access
} FDMInfo;

6.3.5.3.1.12 FDMProperties

typedef struct {
 u16 NumFDMs; // number of FDMs in array
 FDMInfo FDM[1]; // an array of FDMs (as applicable)
} FDMProperties;

6.3.5.3.1.13 CSFInstance

typedef struct {
 CS_STATE State; // current activation state
 u32 EEIId; // paired CSEE instance Id
 u32 FIId; // unique CSF Instance Id
 u16 NumCRs; // number of CRs in CRList
 u32 *ERList; // pointer to a list of CR identifiers on which a CSF

// instance is activated
} CSFInstance;

6.3.5.3.1.14 CSFInfo

typedef struct {
 u64 GlobalId; // global unique identifier assigned to the CSF
 char UniqueName[32]; // an identifiable string for this CSF, if available
 u16 CSETypeToken; // device provided token to differentiate between its

// CSE types
 u32 CSFId; // unique CSF Id
 u8 Builtin: 1; // preloaded by vendor
 u8 Reserved: 7;
 u16 NumFIs; // number of associated instances for this CSF
 CSFInstance *FInstances; // pointer to list of CSF instances with CSEE & CR

details
} CSFInfo;

6.3.5.3.1.15 CSFProperties

typedef struct {
 u16 NumCSFs; // number of CSFs in CSFInfo array
 CSFInfo CSF[1]; // an array of CSFs
} CSFProperties;

62 Computational Storage API
Working Draft Version 0.9 rev 1

6.3.5.3.1.16 CSVendorSpecific

typedef struct {
 void *VSData;
} CSVendorSpecific;

 Configuration Data Structures

The data structure csConfigInfo is provided as input to configure a CSx using the
csConfig() API. On success, the data structure CsConfigData provides the results
of the requested configuration. Configurations are selected using the CS_CONFIG_TYPE
enumerator.

The CSEE resource may be configured with a CSE resource that matches its resource
type by the CSETypeToken field in their respective data structures. Configuring these
resources together is described using the CSEEConfig data structure. On successful
configuration, the a unique Execution Environment Instance Identifier (EEIId) along with
the activation state set is returned as a result in sub-data structure
CsActivationInfo. The EEIId identifier is primarily used for activating a CSF.

Similarly, the CSF resource may be configured with a valid EEIId and one or more
compute resource (CR). The configuration request is valid for the same CSETypeToken
types i.e., an activation may only be performed on the same CSETypeToken types. On
successful configuration, the sub-data structure CsActivationInfo is populated with
the unique Functional Instance Identifier (FIId) and the resultant activated state. The
FIId is a unique instance of a CSF. There can be multiple activated FIIds for a single
CSF. The maximum number of CSFs that may be activated is dependent on the CSE.
Only activated CSFs are visible when queried using the csGetCSFId() API and the
csQueryCSFList() API. Only activated CSF instances are used in execution using
the csQueueComputeRequest() API or the csQueueBatchRequest() API.

The FDM resource may be configured using the FDMConfig sub-structure. The
specified FDMId may be configured to the specified State field only if the FDM
supports it as specified in FDMInfo. If successful, the applied state is reflected in the
State field of CsActivationInfo.

6.3.5.3.2.1 CsConfigInfo

The data structure CsConfigInfo is defined as follows:

typedef struct {
 CS_CONFIG_TYPE Type;
 union {
 CSEEConfig CSEEActivateInfo; // configuration details for CSEE
 CSFConfig CSFActivateInfo; // configuration details for CSF

 Computational Storage API 63
Working Draft Version 0.9 rev 1

 FDMConfig FDMActivateInfo; // configuration details for FDM
 CSVendorConfig VSInfo; // vendor specific
 } u;
} CsConfigInfo;

6.3.5.3.2.2 CsConfigData

typedef union {
 CsActivationInfo Data;
 void *VSData;
} CsConfigData;

6.3.5.3.2.3 CSEEConfig

typedef struct {
 CS_STATE State; // requested activation state
 u32 CSEEId; // unique CSEE Identifier
 u32 CSEId; // CSE Id unique to CSx
} CSEEConfig;

6.3.5.3.2.4 CSFConfig

typedef struct {
 CS_STATE State; // requested activation state
 u32 CSFId; // unique CSF Id
 u32 EEIId; // Execution Environment Instance Identifier
 U16 NumCRs; // number of CRs in array
 u32 CRArray[1]; // an array of one or more Compute Resources

// (ERIds see 6.3.5.3.1.3)
} CSFConfig;

6.3.5.3.2.5 FDMConfig

typedef struct {
 CS_STATE State; // requested configuration state
 u32 FDMId; // requested FDM configuration by Id
} FDMConfig;

6.3.5.3.2.6 CSVendorConfig

typedef struct {
 void *VSData;
} CSVendorConfig;

6.3.5.3.2.7 CsActivationInfo

typedef struct {

64 Computational Storage API
Working Draft Version 0.9 rev 1

 CS_STATE State; // current activation state
 u32 Id; // resource specific unique Identifier
} CsActivationInfo;

 Memory Data Structures

The memory data structures provide the definitions on how memory is organized and for
its access usage with the necessary APIs. Memory is represented by its memory handle
and is required to be allocated using the csAllocMem() API prior to usage.

6.3.5.3.3.1 CsMemFlags

The data structure CsMemFlags provides inputs to the csAllocMem() API specifying:

• the FDM (i.e., in the FDMId field) from which to allocate memory; and
• flags that specify how the memory is to be initialized.

The value for FDMId is queried by CSF using the the csGetCSFId() API.

typedef struct {
 u32 FDMId; // refer to the csGetCSFId() API for details
 CS_FDM_FLAG_TYPE Flags; // see 6.3.5.2.7
 u32 FillValue; // only valid when fill flag is specified
} CsMemFlags;

6.3.5.3.3.2 CsDevAFDM

The data structure CsDevAFDM defines how memory may be used and defines a
previously allocated memory handle and an offset denoted by ByteOffset to
reference within that memory.

typedef struct {
CS_MEM_HANDLE MemHandle; // an opaque memory handle for AFDM
unsigned long ByteOffset; // denotes the offset with AFDM

} CsDevAFDM;

6.3.5.3.3.3 CsCopyMemRequest

The structure CsCopyMemRequest describes the memory copy request between the
host memory and the AFDM. A CsCopyMemRequest is able to describe a copy from
host memory to the AFDM or from the AFDM to host memory based on the Type field.

typedef struct {
CS_MEM_COPY_TYPE Type; // see 6.3.5.2.8
union {

 void *HostVAddress; // defines host memory if specified in Type
 CsDevAFDM SrcDevMem; // defines the source device memory for copy

 // between device memories

 Computational Storage API 65
Working Draft Version 0.9 rev 1

} u;
CsDevAFDM DevMem; // see 6.3.5.3.3.1
unsigned int Bytes;

} CsCopyMemRequest;

 Storage Data Structures

The structure CsStorageRequest describes the storage IO request between the
storage device and the CSF. Storage IO is able to be described as a block or file
request and utilizes the Mode field to select it. The Type field describes the direction of
data flow from storage device.

Block requests describe details such as the namespace to operate on, the LBA and
number of blocks to transfer. Multiple LBA block ranges may be specified in the same
request. They also describe the AFDM that the transfer occurs to/from. The
StorageIndex field specifies the drive to target the request to in a CSA and is
reserved for other CSx types. See CsDevAFDM data structure for details on the DevMem
field as specified in section 6.3.5.3.3.1.

For file requests, the CsFileIo structure describes the file request to perform with
details on the file handle, offset within the file, bytes to read/write, and device memory
buffer details. File based requests will be satisfied for the default file system(s) for that
OS. A specific file system support should be first queried before making a file-based
request. The handle is required to refer to a valid open file with the required set of
access rights to satisfy the intent of the request. File offset and bytes requested are
required to adhere to the storage drives block requirements. For file write based
requests, the API will synchronize on writing to that portion of the file with the filesystem
and reserve space in advance, if needed. File based requests get translated internally
to a storage IO request. See section 6.13.1 for more information on file system support.

6.3.5.3.4.1 CsStorageRequest

The data structure CsStorageRequest is defined as follows:

typedef struct {
CS_STORAGE_REQ_MODE Mode; // see 6.3.5.2.9
CS_DEV_HANDLE DevHandle; // the CSx handle
union {
CsBlockIo BlockIo; // see 6.3.5.3.4.1
CsFileIo FileIo; // see 6.3.5.3.4.4

} u;
} CsStorageRequest;

6.3.5.3.4.2 CSBlockRange

The data structure CsBlockRange is defined as follows:

66 Computational Storage API
Working Draft Version 0.9 rev 1

typedef struct {
u32 NamespaceId; // represents a LUN or namespace
u64 StartLba; // the starting LBA for this range
u32 NumBlocks; // total number of blocks for this range

} CsBlockRange;

6.3.5.3.4.3 CsBlockIo

The data structure CsBlockIo is defined as follows:

typedef struct {
CS_STORAGE_IO_TYPE Type; // see 6.3.5.2.10
u32 StorageIndex; // denotes the index in a CSA, zero otherwise
CsDevAFDM DevMem; // see 6.3.5.3.3.1
int NumRanges; // number of LBA block ranges
CsBlockRange Range[1]; // An array of LBA block ranges

} CsBlockIo;

6.3.5.3.4.4 CsFileIo

The data structure CsFileIo is defined as follows:

typedef struct {
CS_STORAGE_IO_TYPE Type; // see 6.3.5.2.10
void *FileHandle;
u64 Offset;
u32 Bytes;
CsDevAFDM DevMem; // see 6.3.5.3.3.1

} CsFileIo;

 Compute Data Structures

Compute requests are described using the CsComputeRequest data-structure. The
CSFId data field holds the identifier of the CSF that has to be executed. The NumArgs
field describes the total number of arguments passed down to the CSF while Args
describes the first argument. Args may be described in an array where, the total count
in the array is described by NumArgs field.

The Args field is described by the CsComputeArg data-structure. The Type field
denotes the argument type while the details are one of the types in the union.

6.3.5.3.5.1 CsComputeRequest

The structure CsComputeRequest is an input to schedule and run a CSF. The
arguments are function dependent.

typedef struct {
CS_CSF_ID CSFId; // A unique identifier for a Computational Storage

// Function within a CSx see 6.3.7
int NumArgs; // set to total arguments to CSF
CsComputeArg Args[1]; // see 6.3.5.3.5

// allocate enough space past this for multiple

 Computational Storage API 67
Working Draft Version 0.9 rev 1

} CsComputeRequest; // arguments

6.3.5.3.5.2 CsComputeArg

The structure CsComputeArg describes an individual argument to a CSF. A handle
references AFDM while the values refer to scalar inputs to the CSF.

typedef struct {
CS_COMPUTE_ARG_TYPE Type;
union {
CsDevAFDM DevMem; // see 6.3.5.3.3.1
u64 Value64;
u32 Value32;
u16 Value16;
u8 Value8;

} u;
} CsComputeArg;

 Batch Data Structures

Batch requests help optimize the total number of API requests by combining multiple
requests into one batch. Batch requests also help execute repeatable tasks. Batch
request setup is defined in detail under section 5.2.

Each request in a batch is described by the CsBatchRequest data structure. The
ReqType data field describes the type of batch request.

6.3.5.3.6.1 CsBatchRequest

The data structure CsBatchRequest is defined as follows:

typedef struct {
 CS_BATCH_REQ_TYPE ReqType; // see 6.3.5.2.13
 union {
 CsCopyMemRequest CopyMem; // see 6.3.5.3.3.3
 CsStorageRequest StorageIo; // see Error! Reference source not found.
 CsComputeRequest Compute; // see Error! Reference source not found.
 } u;
} CsBatchRequest;

 Statistics Data Structures

CSx statistics for specific resources may be queried using the
csQueryDeviceStatistics() API.

The Stats parameter defined as CsStatsInfo structure is used to query a specific
statistic type as provided by the Type input parameter. The optional Identifier
parameter may be provided if Type requires it. For example, the CSFId may be
provided as the Identifier parameter to query the particular CSF’s usage statistics
as defined in CSFUsage data structure.

68 Computational Storage API
Working Draft Version 0.9 rev 1

6.3.5.3.7.1 CsStatsInfo

The data structure CsStatsInfo is defined as follows:

typedef union {
 CSEUsage CSEDetails;
 CSxMemory MemoryDetails; // see 6.3.5.3.7.3
 CSFUsage CSFDetails; // see 6.3.5.3.7.4
} CsStatsInfo;

6.3.5.3.7.2 CSEUsage

CSEUsage provides the following details when queried for a particular CSE. The
counters reflect numbers since the device was last reset.

typedef struct {
 u32 PowerOnMins;
 u32 IdleTimeMins;
 u64 TotalFunctionExecutions;// total number of executions performed by CSE
} CSEUsage;

6.3.5.3.7.3 CSxMemory

CSxMemory defines device memory usage.

All counters are represented in bytes if not specified.

typedef struct {
 u64 TotalAllocatedFDM; // total FDM in bytes that have been allocated
 u64 LargestBlockAvailableFDM; // largest amount of FDM that may be allocated
 u64 AverageAllocatedSizeFDM; // average size of FDM allocations in bytes
 u64 TotalFreeFDM; // total FDM memory that is not in use
 u64 TotalAllocationsFDM; // count of total number of FDM allocations
 u64 TotalDeAllocationsFDM; // count of total number of FDM deallocations
 u64 TotalFDMtoHostinMB; // total FDM transferred to host memory in

// megabytes
 u64 TotalHosttoFDMinMB; // total host memory transferred to FDM in

megabytes
 u64 TotalFDMtoStorageinMB; // total FDM transferred to storage in megabytes
 u64 TotalStoragetoFDMinMB; // total storage transferred to FDM in megabytes
} CSxMemory;

6.3.5.3.7.4 CSFUsage

CSFUsage defines per function statistics since the function was loaded. The counters
get cleared when it gets unloaded. The specific function is chosen as input with the
Identifier parameter.

typedef struct {
 u64 TotalUptimeSeconds; // total utilized time by CSF in seconds
 u64 TotalExecutions; // number of executions performed
 u64 ShortestTimeUsecs; // the shortest time the CSF ran in microseconds
 u64 LongestTimeUsecs; // the longest time the CSF ran in microseconds
 u64 AverageTimeUsecs; // the average runtime in microseconds
} CSFUsage;

 Computational Storage API 69
Working Draft Version 0.9 rev 1

 FDMAccess

The data structure FDMAccess specifies the FDM access by FDMId for a given CSF
and is defined as follows:

typedef struct {
 u32 FDMId; // Unique FDM identifier that is used to allocate FDM
 u8 RelativePerformance; // values [1-10]; higher is better; 0 is not defined
 u8 RelativePower; // values [1-10]; lower is better; 0 is not defined

FDMFlags Flags; // FDM settings
} FDMAccess;

 CSFUniqueId

typedef struct {
char UniqueName[32]; // an identifiable string for CSF if available,

// NULL otherwise
 u64 GlobalId; // global unique identifier for CSF if available,

// zeroes otherwise
} CSFUniqueId;

 CSFIdInfo

The data structure CSFIdInfo is returned on a successful query from the
csGetCSFId() API and is defined as follows:

typedef struct {
 CS_CSF_ID CSFId; // unique CSF Identifier used to schedule compute

// work
 u8 RelativePerformance; // values [1-10]; higher is better; 0 is not defined
 u8 RelativePower; // values [1-10]; lower is better; 0 is not defined
 u8 Count; // number of instances of this CSF available
 u8 NumFDMs; // number of FDMs accessible by the CSF
 FDMAccess *FDMList; // list of accessible FDMs
} CSFIdInfo;

 CsCommonDownloadInfo

This is a sub-structure of CsCSFDownloadInfo and CsCSEEDownloadInfo data
structures. The UniqueName field is an identifiable string for the resource being
downloaded, if available. The Unload field is only set if a previously downloaded
resource at Index in the main data structure is to be unloaded. This field is set to zero
otherwise. The Length and DataBuffer fields denote the length and contents of the
resource being downloaded.

typedef struct {
char UniqueName[32]; // an identifiable string for resource, if available
int Unload; // unload previously loaded entity, zero otherwise

 int Length; // length in bytes of data in DataBuffer

70 Computational Storage API
Working Draft Version 0.9 rev 1

 void *DataBuffer; // download data for CS resource
} CsCommonDownloadInfo;

 CsCSEEDownloadInfo

The data structure CsCSEEDownloadInfo contains download information for a CSEE
resource based on the enumerated Type field. The Type field is required to be set to
one of CS_CSEE_RESOURCE_TYPE definitions (see 6.3.5.2.2). The SubType field
provides additional information on the download for the chosen resource (see 6.3.5.2.4.
The CSEId field refers to a CSE identifier the CSEE is being downloaded to while the
Index field is a hardware specific index for the CSE chosen.

If Unload field in common is set, then only the CSEId and Index fields are valid.

typedef struct {
CS_CSEE_RESOURCE_TYPE Type;

 CS_RESOURCE_SUBTYPE SubType; // value dependent on resource type
u32 CSEId; // CSE Id to download the resource to
u32 Index; // A hardware-based index where the download

// resides
 CsCommonDownloadInfo common; // common fields (refer to 6.3.5.3.11)
} CsCSEEDownloadInfo;

 CsCSFDownloadInfo

The data structure CsCSFDownloadInfo contains download information for a CSF
resource based on the enumerated Type field. The Type field is required to be set to
one of CS_CSF_RESOURCE_TYPE definitions (see 6.3.5.2.3). The SubType field
provides additional information on the download for the chosen resource (see 6.3.5.2.4).
The GlobalId field, if non-zero, refers to a global unique identifier for the CSF being
downloaded. The CSEEId field refers to a CSEE identifier the CSF is being downloaded
to while the Index field is a hardware specific index for the CSEE chosen.

If Unload field in common is set, then only the CSEEId and Index fields are valid.

typedef struct {
 CS_CSF_RESOURCE_TYPE Type;
 CS_RESOURCE_SUBTYPE SubType; // value dependent on resource type
 u64 GlobalId; // global unique identifier assigned to

// the CSF, if available
u32 CSEEId; // CSEE Id to download the resource to
u32 Index; // A hardware-based index where the

// download resides
CsCommonDownloadInfo common; // common fields (refer to 6.3.5.3.11)

} CsCSFDownloadInfo;

 Computational Storage API 71
Working Draft Version 0.9 rev 1

 CsPluginRequest

The data structure CsPluginRequest is defined as follows:

typedef struct {
 enum CS_PLUGIN_TYPE Type; // see 6.3.5.2.16
 char PluginPath[4096]; // full path to plugin
} CsPluginRequest;

6.3.6 Resources
Table 10: Table of resources

Resource Details

CS_DEV_HANDLE The global device handle received back from
csOpenCSx

CS_MEM_HANDLE Denotes a device memory handle and represents
memory allocated on device

CS_CSF_ID Denotes a computational storage function for all
compute offload purposes

CS_EVT_HANDLE Denotes an event handle for asynchronous IO

CS_BATCH_HANDLE Denotes a batch request handle

CS_REQ_HANDLE A handle to the outstanding request

6.3.7 Resource Dependency
Table 10 describes the resource dependency for each resource.

72 Computational Storage API
Working Draft Version 0.9 rev 1

Required

Optional

Legend

CS_DEV_HANDLE

CS_MEM_HANDLE CS_EVT_HANDLE

CS_BATCH_HANDLE

CS_REQ_HANDLE

CS_CSF_ID

Figure 14: Resource dependency chart
Each resource created with the device is represented by a handle of type
CS_XXX_HANDLE or CS_CSF_ID where XXX denotes the resource handle type. Some
paths are required for the resource to be created and used while other paths may be
optional.

For example, scheduling of compute offload jobs uses the CS_CSF_ID and may be
done using synchronous or asynchronous notification mechanisms for completion.
Here, CS_EVT_HANDLE is a notification option available that is not mandatory since an
asynchronous mechanism may also be utilized with the callback option. Similarly,
CS_MEM_HANDLE may be used by itself for device memory transfer operations.

The resource CS_EVT_HANDLE is a global resource while the others are allocated from
the device. In a multi-device usage scenario, device specific resource handles play a
key role in uniquely identifying resource by device type. The underlying implementation
infrastructure will guarantee that there is no overlap between the resources and they
areable to be kept unique when scaled.

6.3.8 Notification Callbacks
Common callback API definition to receive notifications on various CS based events.
The callback is registered through the csRegisterNotify() API.

typedef void(*csDevNotificationFn)(u32 Notification,

 Computational Storage API 73
Working Draft Version 0.9 rev 1

 void *Context, CS_STATUS Status, int Length, void *Buffer);

This callback is invoked with specific notification information for which the context will
correspond to. If the notification is for the CSx, the context will correspond to the context
specified when the CSx was opened. If the notification corresponds to a CSE, then the
context will correspond the CSE at the time it was opened.

Common callback API definition while queuing IO to the CSx

typedef void(*csQueueCallbackFn)(void *QueueContext,

 CS_STATUS Status, u64 CompValue);

74 Computational Storage API
Working Draft Version 0.9 rev 1

 Discovery

6.4.1 csQueryCSxList()
This API returns all of the CSxes available in the system.

6.4.1.1 Synopsis
CS_STATUS csQueryCSxList(int *Length, char *Buffer);

6.4.1.2 Parameters

IN OUT Length Length in bytes of buffer passed for output

OUT Buffer Returns a list of CSx names

6.4.1.3 Description
The csQueryCSxList() API fills Buffer with a comma separated list of all known
CSxes identified by CSx names, if the length specified in Length is sufficient. This API
may return zero or more CSxes as a list in Buffer when there are multiple CSxes
devices in the system. If the length specified in Length is not sufficient to hold the
contents returned in Buffer, then Length will be populated with the required size
and an error status will be returned.

If a valid Buffer pointer is specified where the length specified in Length is sufficient,
then it is updated with the list of CSx names available and Length updated to the
actual length of the string returned. If the length specified in Length is not sufficient to
hold the contents returned in Buffer, then Length will be populated with the required
size and an error status will be returned. An invalid input will return an error status.

If a NULL pointer is specified for Buffer and a valid pointer is provided for Length,
then the required buffer size is returned back in Length. The user will have to allocate
a buffer of the returned size and reissue the request. The user is able to also provide a
large enough buffer and satisfy the request.

All input and output parameters are required for this API.

6.4.1.4 Return Value
This API returns CS_SUCCESS if there is no error and zero or more CSxes were
available for the list.

Otherwise, this API returns a status of CS_DEVICE_NOT_PRESENT,
CS_INVALID_ARG, or CS_INVALID_LENGTH as defined in 6.3.3.

 Computational Storage API 75
Working Draft Version 0.9 rev 1

6.4.1.5 Notes
There may be one to multiple CSxes available in the system. The caller should always
check the value of Length in bytes for a non-zero value, which represents valid entries.
A null terminated string is returned in Buffer if Length is non-zero. If the list contains
more than one CSx entry, then each entry will be comma separated. This API may still
return with success when Length is zero.

The returned comma separated list of CSx names is able to be parsed and an entry is
able to be selected and provided to the csOpenCSx() API to interface with the CSx.

An example source fragment implementation to return all known CSxes is:

length = 0;
status = csQueryCSxList(&length, NULL);
if (status != CS_INVALID_LENGTH)
 ERROR_OUT(“unknown error!\n);

csx_array = malloc(length);
status = csGetCSxList(&length, &csx_array[0]);
if (status != CS_SUCCESS)
 ERROR_OUT(“csGetCSxList() failed with status %d \n”, status);
// process comma separated CSx list

6.4.2 csQueryCSFList()
This API returns zero or more CSFs available based on the query criteria.

6.4.2.1 Synopsis
CS_STATUS csQueryCSFList(const char *Path, int *Length, int *Count,

CSFUniqueId *Buffer);

6.4.2.2 Parameters

IN Path A string that denotes a path to a file, directory that resides
on a device, a device path, or a CSx. The file/directory may
indirectly refer to a namespace and partition.

IN OUT Length Length of buffer passed for output

OUT Count The total count of CSFUniqueId data structures returned

OUT Buffer A pointer to hold an array of CSFUniqueId data
structures for one or more activated CSFs if successful

76 Computational Storage API
Working Draft Version 0.9 rev 1

6.4.2.3 Description
The csQueryCSFList() API fills Buffer with an array of CSFUniqueId data
structures for one or more activated CSFs for the query based on Path if the length
specified in Length is sufficient. This API may return one or more CSFUniqueId data
structures in Buffer that match the Path criteria. A Path set to NULL is an invalid
option and an error will be returned.

If a valid Buffer pointer is specified where the length specified in Length is sufficient,
then the buffer is updated with the array of CSFUniqueId data structures available and
Length is updated to the actual length of all CSFUnqiueId data structures returned for
all functions that match Path. If the length specified in Length is not sufficient to hold
the contents returned in Buffer, then Length will be populated with the required
buffer size and an error status will be returned. An invalid input will return an error
status.

If a NULL pointer is specified for Buffer and a valid pointer is provided for Length,
then the required buffer size is returned back in Length. The user will have to allocate
a buffer of the returned size and reissue the request. The user is able to also provide a
large enough buffer and satisfy the request.

The Count value returned specifies the total number of CSFUniqueId data structures
populated in Buffer.

All input and output parameters are required for this API.

6.4.2.4 Return Value
This API returns CS_SUCCESS if there is no error and one or more functions were
available for the list.

Otherwise, this API returns a status of CS_INVALID_ARG, CS_INVALID_LENGTH,
CS_UNSUPPORTED, CS_OUT_OF_RESOURCES, CS_DEVICE_NOT_PRESENT,
CS_ENTITY_NOT_ON_DEVICE, CS_INVALID_DEVICE_NAME, CS_INVALID_PATH
or CS_NO_MATCHING_DEVICE as defined in 6.3.3.

6.4.2.5 Notes
If the Path input specified a device path or a CSx, then the CSFUniqueId data
structures returned, if any, are those available in that path. If the Path input specified a
file or a directory, the query will reference the device path they reside on to satisfy the
query.

There may be one to multiple CSFs available on any given CSx. The caller should
always check the value of Length and Count for non-zero values which represents
valid entries. If the Buffer contains more than one CSFUniqueId data structures, then

 Computational Storage API 77
Working Draft Version 0.9 rev 1

Count will specify the total number of data structures. This API may still return with
success when Length is zero.

The returned list of CSFUniqueId data structures may be parsed and a required entry
may be selected for further discovery or utilized to interface with a specific CSx.

6.4.3 csGetCSxFromPath()
This API returns the CSx associated with the specified file or directory path.

6.4.3.1 Synopsis
CS_STATUS csGetCSxFromPath(const char *Path, unsigned int *Length,

char *DevName);

6.4.3.2 Parameters

IN Path A string that denotes a path to a file, directory that resides
on a device or a device path. The file/directory may
indirectly refer to a namespace and partition.

IN OUT Length Length of buffer passed for output

OUT DevName Returns the qualified name to the CSx

6.4.3.3 Description
The csGetCSxFromPath() API queries the device, file, or directory path provided by
Path to return the CSx associated with the specified path. If a NULL pointer is specified
in Path, then all known CSxes are returned. If multiple CSxes are returned, then they
will be comma separated.

If a valid DevName buffer pointer is specified where the length specified in Length is
sufficient, then it is updated with the qualified name of the CSx for access. If the length
specified in Length is not sufficient to hold the contents returned in Buffer, then
Length will be populated with the required size and an error status will be returned. An
invalid input returns an error status.

If a NULL pointer is specified for DevName and a valid pointer is provided for Length,
then the requested buffer size is returned back in Length. The user may allocate a
buffer of the returned length and reissue the request. The user may also provide a large
enough buffer and satisfy the request.

All input and output parameters are required for this API.

78 Computational Storage API
Working Draft Version 0.9 rev 1

6.4.3.4 Return Value
This API returns CS_SUCCESS if there is no error and a CSx was found to be associated
with the path specified.

Otherwise, this API returns a status of CS_INVALID_ARG, CS_INVALID_PATH,
CS_ENTITY_NOT_ON_DEVICE, CS_NO_MATCHING_DEVICE,
CS_UNSUPPORTED, CS_OUT_OF_RESOURCES, CS_DEVICE_NOT_PRESENT, or
CS_INVALID_LENGTH as defined in 6.3.3.

6.4.3.5 Notes
The Path parameter denotes the path to a device, filename or directory on a Linux
filesystem. If the path specified is partial, then it will be resolved to its full path internally
before mapping the device pair. This API works with most typical Linux file systems
(e.g., ext3, ext4 and xfs) that are mounted on an underlying device without any raid
indirections. This API will return CS_NO_MATCHING_DEVICE for such inputs.

The returned DevName is qualified to be used with the the csOpenCSx() API to
interface with the CSE.

An example source fragment implementation would be:

status = csGetCSxFromPath(my_file_path, &length, &csx_array[0]);
if (status != CS_SUCCESS) {
 ERROR_OUT(“The specified path %s returned an error %d\n”, my_file_path, status);}
// open device, initialize CSF and pre-allocate buffers
status = csOpenCSx(csx_array[0], &dev_context, &dev);
…

 Computational Storage API 79
Working Draft Version 0.9 rev 1

 Access

These set of functions are used to access a CSE. The user is able to utilize the
discovery functions to find the CSE through the Storage/filesystem pair.

6.5.1 csOpenCSx()
Return a handle to the CSx associated with the specified device name.

6.5.1.1 Synopsis
CS_STATUS csOpenCSx(const char *DevName, void *DevContext,

 CS_DEV_HANDLE *DevHandle);

6.5.1.2 Parameters

IN DevName A string that denotes the full name of the device

IN DevContext A user specified context to associate with the device for
future notifications

OUT DevHandle Returns the handle to the CSE device

6.5.1.3 Description
The csOpenCSx() API opens the CSx and provides a handle for future usages to the
user.

If a valid DevName is specified and available, a handle to the CSx is returned if all other
parameters are valid. Any invalid parameter returns an error status.

All input and output parameters are required for this API.

6.5.1.4 Return Value
This API returns CS_SUCCESS if there is no error and the specified CSx was found.

Otherwise, this API returns a status of CS_INVALID_ARG,
CS_ENTITY_NOT_ON_DEVICE or CS_DEVICE_NOT_PRESENT as defined in 6.3.3.

6.5.2 csCloseCSx()
Close a CSx previously opened and associated with the specified handle.

6.5.2.1 Synopsis
CS_STATUS csCloseCSx(CS_DEV_HANDLE DevHandle);

80 Computational Storage API
Working Draft Version 0.9 rev 1

6.5.2.2 Parameters

IN DevHandle Handle to CSx

6.5.2.3 Description
A valid DevHandle is required to be provided for this API. If the CSx is open, then it is
closed and all outstanding requests are terminated.

All input and output parameters are required for this API.

6.5.2.4 Return Value
This API returns CS_SUCCESS if there is no error and the CSx was found as specified.

Otherwise, this API returns an error status of CS_INVALID_HANDLE, as defined in
6.3.3.

6.5.3 csRegisterNotify()
Register a callback API to be notified based on various computational storage events
across all CSxes.

This is an optional API.

6.5.3.1 Synopsis
CS_STATUS csRegisterNotify(const char *DevName, u32 NotifyOptions,

csDevNotificationFn NotifyFn);

6.5.3.2 Parameters

IN DevName A string that denotes a specific CSE or CSx to provide
notifications for. If NULL, all CSEs and CSxes will be
registered

IN NotifyOptions Denotes the notification types to registered to

IN NotifyFn A user specified callback notification function

6.5.3.3 Description
The csRegisterNotify() API registers the provided callback for notifications based
on options selected in NotifyOptions by the user.

 Computational Storage API 81
Working Draft Version 0.9 rev 1

If a valid DevName is specified, the notifications will only be registered for the specified
CSE or CSx. If NULL is specified, then the callback will be registered across all CSxes
and CSEs. An invalid input returns an error status.

All input parameters are required for this API.

6.5.3.4 Return Value
This API returns CS_SUCCESS if there are no errors.

Otherwise, this API returns a status of CS_INVALID_ARG, CS_INVALID_OPTION,
CS_DEVICE_NOT_PRESENT, CS_DEVICE_NOT_AVAILABLE,
CS_OUT_OF_RESOURCES or CS_DEVICE_NOT_READY as defined in 6.3.3.

6.5.3.5 Notes
The callback is invoked by the API subsystem to provide notifications asynchronously
based on notification options provided at registration time. Callbacks may be invoked for
different types of notifications and errors, some of which may be fatal (i.e., the device is
not able to recover from its error state). The caller acts upon these notifications with
appropriate actions.

6.5.4 csDeregisterNotify()
Deregister a previously registered callback API for notifications on computational
storage events. A callback API may have been previously registered using the
csRegisterNotify() API.

This is an optional API.

6.5.4.1 Synopsis
CS_STATUS csDeregisterNotify(const char *DevName, csDevNotificationFn NotifyFn);

6.5.4.2 Parameters

IN DevName A string that denotes a specific CSE or CSx to deregister
notifications from. If NULL, all CSEs and CSxes will be
deregistered

IN NotifyFn The callback notification function previously registered

6.5.4.3 Description
The csDeregisterNotify() API removes a previously provided callback for
notifications from one or more CSEs or CSxes.

82 Computational Storage API
Working Draft Version 0.9 rev 1

If a valid DevName is specified, the notifications will only be deregistered for the
specified CSE or CSx. If NULL, the callback will be deregistered across all CSxes and
CSEs. An invalid input returns an error status.

All input parameters are required for this API.

6.5.4.4 Return Value
This API returns CS_SUCCESS if there are no errors.

Otherwise, this API returns a status of CS_INVALID_ARG,
CS_DEVICE_NOT_PRESENT, or CS_OUT_OF_RESOURCES as defined in 6.3.3.

 AFDM management

6.6.1 csAllocMem()
Allocates memory from the FDM for the requested size in bytes.

6.6.1.1 Synopsis
CS_STATUS csAllocMem(CS_DEV_HANDLE DevHandle, int Bytes,

const CsMemFlags *MemFlags, CS_MEM_HANDLE *MemHandle,
CS_MEM_PTR *VAddressPtr);

6.6.1.2 Parameters

IN DevHandle Handle to CSx

IN Bytes Length in bytes of FDM to allocate

IN MemFlags Options for allocating FDM (see 6.3.5.3.3.1)

OUT MemHandle Pointer to hold the memory handle once allocated

OUT VAddressPtr Pointer to hold the virtual address of device memory
allocated in host system address space. This is optional
and may be NULL if memory is not required to be mapped

6.6.1.3 Description
The csAllocMem() API allocates requested memory from FDM.

If a valid MemHandle pointer is specified, it is updated with the handle to the AFDM. An
invalid input returns an error status. If a valid VAddressPtr pointer is specified, the
AFDM is mapped into the user’s virtual address space in host memory. Only CSxes with

 Computational Storage API 83
Working Draft Version 0.9 rev 1

FDM host visible capability may use the VAddressPtr parameter. See section
6.3.5.3.1.9 for the capability details.

The values set in the MemFlags data structure describe how FDM is allocated. The
csAllocMem() API allocates memory specified by the FDMId and only uses
CS_FDM_CLEAR and CS_FDM_FILL, as defined in section 6.3.5.2.7. If
CS_FDM_CLEAR is selected, then the contents of AFDM is cleared. If CS_FDM_FILL
is specified, then the contents of AFDM is populated with the value in FillValue. The
FillValue field is only valid is CS_FDM_CLEAR is specified and ignored otherwise. A
value of zero in the Flags field specifies that no option was selected for MemFlags and
AFDM is not modified on allocation.

All input parameters are required for this API.

6.6.1.4 Return Value
This API returns CS_SUCCESS if there were no errors and device memory was
successfully allocated.

Otherwise, this API returns an error status of CS_DEVICE_NOT_AVAILABLE,
CS_INVALID_HANDLE, CS_INVALID_ARG, CS_INVALID_OPTION,
CS_INVALID_FDM_ID, CS_OUT_OF_RESOURCES, CS_NOT_ENOUGH_MEMORY,
or CS_COULD_NOT_MAP_MEMORY as defined in 6.3.3.

6.6.1.5 Notes
AFDM is allocated using this API. AFDM is allocated on a host page size granularity
and is rounded off for other values that are not in multiples of this size. It will be
guaranteed that the virtual address pointer, if requested, will also be host page aligned.

The optional parameter VAddressPtr should only be used when the host application
needs to transfer data between storage and AFDM. For all other cases this field should
be set to NULL and the MemHandle returned from this API call should be used instead.
These details are summarized below

a) If the host application wants to use the direct p2p capability between storage and AFDM,
then it provides VAddressPtr as the buffer to filesystem read/write requests. Care
should be taken that no buffering is enabled executing through a filesystem path by
specifying the O_DIRECT flag when a file is opened. For those filesystems that do not
provide such an interface, an appropriate mechanism should be used to keep data coherent.
See section 6.7 for additional details.

b) For usages where the host applications need to transfer data between host memory and
device memory, this parameter is not required and should be set to NULL. See usage of
csQueueCopyMemRequest() in section 6.8.1.

84 Computational Storage API
Working Draft Version 0.9 rev 1

6.6.2 csFreeMem()
Frees AFDM for the memory handle specified.

6.6.2.1 Synopsis
CS_STATUS csFreeMem(CS_MEM_HANDLE MemHandle,

const CsMemFlags *MemFlags);

6.6.2.2 Parameters

IN MemHandle Handle to AFDM

IN MemFlags Options to specify while freeing FDM (see 6.3.5.3.3.1)

6.6.2.3 Description
The csFreeMem() API frees previously requested AFDM.

If a valid MemHandle value is specified, the memory represented by it is freed and
returned back to the FDM. Any memory mappings created by the allocate call are also
released and freed.

The values set in MemFlags describe how to handle AFDM when it is freed. The
csFreeMem() API only uses CS_FDM_CLEAR and CS_FDM_FILL as defined in
section Error! Reference source not found.. If CS_FDM_CLEAR is selected, then the
contents of AFDM represented by MemHandle is cleared. If CS_FDM_FILL is specified,
then the contents of AFDM represented by MemHandle is populated with the value in
FillValue. The FillValue field is only valid if CS_FDM_FILL is specified and
ignored otherwise. A value of zero in the Flags field specifies that no option is selected
for MemFlags and AFDM is not modified when it is freed..

The FDMId field in MemFlags is ignored for this API as it does not apply.

All input parameters are required for this API.

6.6.2.4 Return Value
This API returns CS_SUCCESS if there is no error.

Otherwise, this API returns an error status of CS_INVALID_HANDLE,
CS_UNKNOWN_MEMORY, CS_MEMORY_IN_USE, or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

6.6.2.5 Notes
The caller should ensure that no outstanding transactions are present on the memory
handle being freed. If there outstanding transactions, then the request returns
CS_MEMORY_IN_USE.

 Computational Storage API 85
Working Draft Version 0.9 rev 1

6.6.3 csInitMem()
Initialize AFDM contents for the memory handle specified.

6.6.3.1 Synopsis
CS_STATUS csInitMem(CS_MEM_HANDLE MemHandle, unsigned long ByteOffset,

unsigned int Bytes, const CsMemFlags *MemFlags);

6.6.3.2 Parameters

IN MemHandle Handle to AFDM

IN ByteOffset Offset at which to start initialization

IN Bytes Number of bytes to initialize

IN MemFlags Options to initialize AFDM (see 6.3.5.3.3.1)

6.6.3.3 Description
The csInitMem() APIinitializes the contents of a previously requested AFDM with the
specified details.

If a valid MemHandle value is specified, the contents of the memory represented by the
handle is initialized. The option specified in the MemFlags parameter is applied to the
specified AFDM for number of bytes specified by Bytes starting at ByteOffset.

The ByteOffset and Bytes parameters is required to specify valid values for the
AFDM being initialized. This API returns an error if the offset plus the number of bytes
specified is greater than the size of the AFDM.

The MemFlags parameter for the csInitMem() API only supports CS_FDM_CLEAR
and CS_FDM_FILL for the Flags field as defined in section Error! Reference source
not found.. If CS_FDM_CLEAR is selected, then the AFDM referenced by MemHandle
is cleared. If CS_FDM_FILL is specified, then the value in the FillValue field is used
to populate the AFDM referenced by MemHandle. The FillValue field is only valid if
CS_FDM_FILL is specified and ignored otherwise. A value of zero in the Flags field
specifies that the contents of AFDM represented by MemHandle not be initialized. The
FDMId field in MemFlags is ignored for this API.

All input parameters are required for this API.

6.6.3.4 Return Value
This API returns CS_SUCCESS if there is no error.

86 Computational Storage API
Working Draft Version 0.9 rev 1

Otherwise, this API returns an error status of CS_INVALID_HANDLE,
CS_UNKNOWN_MEMORY, CS_COULD_NOT_UNMAP_MEMORY,
CS_INVALID_ARG, CS_INVALID_LENGTH, CS_INVALID_OPTION, or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

6.6.3.5 Notes
The caller should ensure that the memory initialization requested at AFDM’s offset and
bytes has no outstanding transactions in progress. Doing so may incur unknown results.

 Computational Storage API 87
Working Draft Version 0.9 rev 1

 Storage IOs

IO requests to and from storage devices are typically orchestrated through existing
filesystems and block subsystem interfaces. P2P transfers between storage and CSxes
may be achieved through filesystem read/write calls or through
csQueueStorageRequest() API. For filesystem usage, the AFDM is allocated with
virtual address mapping, and this address pointer is then passed along to the
filesystem/block subsystem. This allows the data to be loaded directly into AFDM from
storage and vice versa.. Only CSxes with FDM host visible capability may use the
filesystem access path.

For more advanced usages, P2P access alone may not be able to satisfy a user
request. The following are examples where P2P with a filesystem may not work:

• the CSx does not support host visible FDM; and
• the user requires remote CSx access.

6.7.1 csQueueStorageRequest()
Queues a storage IO request to the device.

6.7.1.1 Synopsis
CS_STATUS csQueueStorageRequest(const CsStorageRequest *Req, void *Context,

csQueueCallbackFn CallbackFn, CS_EVT_HANDLE EventHandle,
CS_REQ_HANDLE *ReqHandle, u64 *CompValue);

6.7.1.2 Parameters

IN Req Structure to the storage request

IN Context A user specified context for the storage request when
asynchronous. The parameter is required only if
CallbackFn or EventHandle is specified.

IN CallbackFn A callback function if the request needs to be
asynchronous.

IN EventHandle A handle to an event previously created using the
csCreateEvent() API. This value may be NULL if
CallbackFn parameter is specified to be a valid value or
if the request is synchronous.

OUT ReqHandle A pointer to receive the request handle if successful. The
received handle is able to be used to abort this request

88 Computational Storage API
Working Draft Version 0.9 rev 1

using the csAbortRequest() API. This is an optional
parameter and depends on the implementation.

OUT CompValue Additional completion value provided as part of completion.
This may be optional depending on the implementation.

6.7.1.3 Description
The csQueueStorageRequest() API queues a storage request to the device.

A valid Req structure (see Error! Reference source not found.) is required to initiate
the storage IO operation. All fields in Req structure are required and describe the source
and destination details. The request may be performed synchronously or
asynchronously. To be performed synchronously, the parameters CallbackFn and
EventHandle should be set to NULL and Context is ignored. To be performed
asynchronously, either a callback is required to be specified in CallbackFn or an
event handle is required to be specified in EventHandle. It is an error to specify both
of these parameters. If Context is specified, it is returned in the asynchronous
completion path.

An optional pointer may be specified to receive a ReqHandle for the request. The
ReqHandle allows the request to subsequently be aborted. For asynchronous
operation, if a valid pointer is specified, it is updated with a handle to the submitted
request. A synchronous operation ignores this parameter.

For EventHandle, see the csCreateEvent() API for usage.

6.7.1.4 Return Value
If there are no errors, then for:

a) a synchronous data transfer operation a status of CS_SUCCESS is returned; and
b) an asynchronous data transfer operation a status of CS_QUEUED is returned.

Otherwise, this API returns an error status of CS_INVALID_HANDLE,
CS_INVALID_ARG, CS_INVALID_OPTION, CS_UNKNOWN_MEMORY, or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

This API may provide additional completion value returned in CompValue.

 Computational Storage API 89
Working Draft Version 0.9 rev 1

 CSx data movement

The application is able to copy data from host memory to AFDM or from AFDM to host
memory using this API call.

6.8.1 csQueueCopyMemRequest()
Copies data between host memory and AFDM in the direction requested.

6.8.1.1 Synopsis
CS_STATUS csQueueCopyMemRequest(const CsCopyMemRequest *CopyReq,

void *Context, csQueueCallbackFn CallbackFn,
CS_EVT_HANDLE EventHandle, CS_REQ_HANDLE *ReqHandle,
u64 *CompValue);

6.8.1.2 Parameters

IN CopyReq A request structure that describes the source and
destination details of the copy request

IN Context A user specified context for the copy request when
asynchronous. The parameter is required only if
CallbackFn or EventHandle is specified.

IN CallbackFn A callback function if the copy request needs to be
asynchronous.

IN EventHandle A handle to an event previously created using the
csCreateEvent() API. This value may be NULL if
CallbackFn parameter is specified to be valid value or if
also set to NULL when the request needs to be
synchronous.

OUT ReqHandle A pointer to receive the request handle if successful. The
received handle is able to be used to abort this request
using the csAbortRequest() API.This is an optional
parameter and depends on the implementation.

OUT CompValue Additional completion value provided as part of completion.
This may be optional depending on the implementation.

90 Computational Storage API
Working Draft Version 0.9 rev 1

6.8.1.3 Description
The csQueueCopyMemRequest() API copies data between device memory and host
memory in the specified direction.

A valid CopyReq structure (see 6.3.5.3.3.3) is required to initiate the copy operation. All
fields in the CopyReq structure are required and describe the source and destination
details. To perform the request synchronously, the parameters CallbackFn and
EventHandle should be set to NULL and Context is ignored. To perform the request
asynchronously, either a callback is required to be specified in CallbackFn or an
event handle is required to be specified in EventHandle. It is an error to specify both
of these parameters. If Context is specified, it is returned in the asynchronous
completion path. See notes for details.

An optional pointer may be specified to receive a ReqHandle for the request. The
ReqHandle allows the request to subsequently be aborted. For asynchronous
operation, if a valid pointer is specified, it is updated with a handle to the submitted
request. A synchronous operation ignores this parameter.

6.8.1.4 Return Value
If there are no errors, then for:

a) a synchronous data transfer operation a status of CS_SUCCESS is returned; and
b) an asynchronous data transfer operation a status of CS_QUEUED is returned.

Otherwise, this API returns an error status of CS_INVALID_HANDLE,
CS_INVALID_ARG, CS_INVALID_OPTION, CS_UNKNOWN_MEMORY, or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

This API may provide additional completion value returned in CompValue.

6.8.1.5 Notes
The CsCopyMemRequest structure describes the copy request with the host memory
and device memory details and the size in the Bytes field that needs to be copied. The
Type field describes the direction for the memory copy.

The ByteOffset field in CsDevAFDM may be set to zero for normal users. For
advanced users, this field may be used in specifying one large device buffer with
specific offsets for each request. One usage would be in a scatter gather list.

The copy operation may be requested to be synchronous or asynchronous. If
synchronous, then all other inputs other than CopyReq should be set to NULL. If
asynchronous, then either the CallbackFn or the EventHandle is required to be set
to a valid value. It is an error for both the CallbackFn and the EventHandle to be set.

 Computational Storage API 91
Working Draft Version 0.9 rev 1

An example source fragment implementation to copy from host memory to device
memory is:

// copy 4kb from host buffer to offset 0 of device memory handle synchronously
copyReq.Type = CS_COPY_TO_DEVICE;
copyReq.u.HostVAddress = &buffer;
copyReq.DevMem.MemHandle = devMem[0];
copyReq.DevMem.ByteOffset = 0;
copyReq.Bytes = 4096;
// block till copy is complete
status = csQueueCopyMemRequest(©Req, NULL, NULL, NULL, Null, NULL);
if (status != CS_SUCCESS)
 ERROR_OUT(“csQueueCopyMemRequest() failed with status %d!\n”, status);
…

92 Computational Storage API
Working Draft Version 0.9 rev 1

 CSF scheduling

CSxes provide one or more CSFs to which compute work may be scheduled. These
functions require a mechanism to invoke them and collect their results.

The following APIs provide the functionality to invoke one or more CSFs.

6.9.1 csGetCSFId()
Fetches the CSF details specified by name for scheduling compute offload tasks.

6.9.1.1 Synopsis
CS_STATUS csGetCSFId(CS_DEV_HANDLE DevHandle, const char *CSFName,

u64 GlobalId, int *Length, int *Count, CSFIdinfo *Buffer);

6.9.1.2 Parameters

IN DevHandle Handle to CSx

IN CSFName A pre-specified function name, if GlobalId is not specified

IN GlobalId Global Identifier, if CSFName is not specified

IN OUT Length The length of Buffer to hold CSFIdInfo details

OUT Count Count of CSFIdInfo structures returned

OUT Buffer A pointer to hold an array of CSFIdInfo data-structures
for one or more CSFs if successful that contains FDMId,
performance, and power details

6.9.1.3 Description
The csGetCSFId() API returns one or more CSFIdInfo data-structures in Buffer
when the length specified in Length is sufficient to satisfy the request. The CSFName or
GlobalId should be a valid value that is available in the CSx specified by DevHandle.

This API returns an error if:

a) the specified CSFName or GlobalId is not found; or
b) both CSFName and GlobalId are specified.

CSFs may be queried by either CSFName or GlobalId. If CSFName is specified by a
valid NULL terminated string, then GlobalId should be set to zero. If GlobalId is
specified, then CSFName should be set to NULL.

 Computational Storage API 93
Working Draft Version 0.9 rev 1

If a valid Buffer pointer is specified where the length specified in Length is sufficient,
then it is updated with an array of available CSFIdInfo data-structures and Length is
updated to the actual length of data returned in Buffer. If the length specified in
Length is not sufficient to hold the contents returned in Buffer, then Length is
populated with the required length and an error status is returned. An invalid input
returns an error status.

If a NULL pointer is specified for Buffer and a valid pointer is provided for Length,
then the required buffer length is returned in Length. The user should allocate a buffer
of the returned length and reissue the request.

The Count value returned specifies the total number of CSFIdInfo data structures
populated in Buffer.

All input and output parameters are required for this API.

6.9.1.4 Return Value
CS_SUCCESS is returned if there are no errors in initializing this API.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_INVALID_OPTION, CS_INVALID_HANDLE, CS_INVALID_CSF_NAME,
CS_INVALID_GLOBAL_ID, CS_DEVICE_NOT_AVAILABLE, or CS_INVALID_LENGTH
as defined in 6.3.3.

6.9.1.5 Notes
 Any compute work that needs to be run on a CSx first requires the associated CSFs to
be configured. A list of configured CSFs may be queried through the
csQueryCSFList() API.

This API should be called prior to any compute work being scheduled. The data
returned in Buffer may contain an array of CSFIdInfo data-structures. The CSFId
data field returned uniquely identifies the CSF and is used for scheduling work. The
RelativePerformance data field and RelativePower data field help differentiate
between multiple CSF instances, if received back from this API. The Count data field
denotes the number of instances for this CSF and determines the parallelism available.

The NumFDMs data field provides the details of the FDMs that are accessible by the
CSF in CSFIdInfo data structure and FDMList is a pointer to the list of FDMs. Each
FDM entry contains the FDMId that may be used to allocate FDM using the
csAllocMem() API while the RelativePerformance and RelativePower data
fields help differentiate between FDMs.

94 Computational Storage API
Working Draft Version 0.9 rev 1

6.9.2 csAbortRequest()
Aborts the queued request that is specified by the request handle.

6.9.2.1 Synopsis
CS_STATUS csAbortRequest(CS_REQ_HANDLE ReqHandle);

6.9.2.2 Parameters

IN ReqHandle Handle to the outstanding request to abort.

6.9.2.3 Description
The csAbortRequest() API aborts the specified request. The input ReqHandle
represents a request submitted using one of the csQueueStorageRequest() API,
the csQueueCopyMemRequest() API, the csQueueComputeRequest() API, or the
csQueueBatchRequest() API. If successful, the outstanding request is canceled
from the queue and completed in error.

6.9.2.4 Return Value
A status value of CS_SUCCESS is returned if no errors were encountered in aborting the
CSF.

Otherwise, this API returns an error status of CS_INVALID_HANDLE,
CS_FATAL_ERROR, CS_DEVICE_NOT_AVAILABLE, or CS_UNSUPPORTED as
defined in 6.3.3.

6.9.2.5 Notes
Use this API to abort a queued task that may no longer be valid or is misbehaving.

6.9.3 csQueueComputeRequest()
Queues a compute offload request to the device to be executed synchronously or
asynchronously in the device.

6.9.3.1 Synopsis
CS_STATUS csQueueComputeRequest(const CsComputeRequest *Req,

void *Context, csQueueCallbackFn CallbackFn,
CS_EVT_HANDLE EventHandle, CS_REQ_HANDLE *ReqHandle,
u64 *CompValue);

6.9.3.2 Parameters

IN Req A request structure that describes the CSE function and its
arguments to queue.

 Computational Storage API 95
Working Draft Version 0.9 rev 1

IN Context A user specified context for the queue request when
asynchronous. The parameter is required only if
CallbackFn or EventHandle is specified.

IN CallbackFn A callback function if the queue request needs to be
asynchronous.

IN EventHandle A handle to an event previously created using
csCreateEvent. This value may be NULL if
CallbackFn parameter is specified to be valid value or if
also set to NULL when the request needs to be
synchronous.

OUT ReqHandle A pointer to receive the request handle if successful. The
received handle is able to be used to abort this request
using the csAbortRequest() API.This is an optional
parameter and depends on the implementation.

OUT CompValue Additional completion value provided as part of completion.
This may be optional depending on the implementation.

6.9.3.3 Description
The csQueueComputeRequest() API queues a CSF request to the CSx. The inputs
and outputs for the CSF are specified in the Req data structure. The request may be
performed synchronously or asynchronously. To perform the request synchronously, the
parameters CallbackFn and EventHandle should be set to NULL and Context is
ignored. To perform the request asynchronously, either a callback is required to be
specified in CallbackFn or an event handle is required to be specified in
EventHandle. It is an error to specify both of these parameters. If Context is
specified, it is returned in the asynchronous completion path.

An optional pointer may be specified to receive a ReqHandle for the request to allow
the request to be aborted. For asynchronous operation, if a valid pointer is specified, it
is updated with a handle for the submitted request. A synchronous operation ignores
this parameter.

For more information on callback usage, see 6.3.8.

For more information on using events for polling see 6.11.3.

6.9.3.4 Return Value
if there are no errors, then for:

96 Computational Storage API
Working Draft Version 0.9 rev 1

a) a synchronous queue operation CS_SUCCESS is returned; and
b) an asynchronous queue operation CS_QUEUED is returned.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_INVALID_OPTION, CS_INVALID_HANDLE, CS_INVALID_CSF_ID,
CS_ERROR_IN_EXECUTION, CS_UNKNOWN_MEMORY, or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

This API may provide additional completion value returned in CompValue.

6.9.3.5 Notes
The CSF needs to be loaded first and its handle populated in the Req structure.

This is a generic queueing API for any type of CSF. It is the responsibility of the caller to
ensure that the number of arguments and their individual values map correctly to the
CSF.

The data structure CsComputeRequest (see Error! Reference source not found.) provides
inputs on the function the request should be issued to and its input arguments. The field
NumArgs defines the number of arguments that need to be issued to the function. The
user should ensure that these match actual function inputs.

See the csQueueCopyMemRequest() API (see 6.8.1) for DevMem field details and
requirements on the CallbackFn and EventHandle inputs. An EventHandle is
utilized only by user space applications. Kernel space applications such as drivers and
filesystems use the CallbackFn.

For EventHandle, see the csCreateEvent() API for usage.

6.9.4 csHelperSetComputeArg()
Helper function that is able to optionally be used to set an argument for a compute
request.

6.9.4.1 Synopsis
void csHelperSetComputeArg(CsComputeArg *ArgPtr,

CS_COMPUTE_ARG_TYPE Type, …);
Parameters

IN ArgPtr A pointer to the argument in CsComputeRequest to be
set.

 Computational Storage API 97
Working Draft Version 0.9 rev 1

IN Type The argument type to set. This value may be one of the
enumerated type values.

IN <…> One or more variables that make up the argument by type.

6.9.4.2 Description
The csHelperSetComputeArg() API is a helper function that sets an argument for a
compute request. A compute request may have one or more arguments. Each
argument may have one or more inputs that describe it. This API sets up the argument
with minimal code.

This API does not validate inputs.

6.9.4.3 Return Value
No status is returned from this API since it does not change any values.

6.9.4.4 Notes
The helper function may optionally be used to setup individual arguments to a compute
request as shown in the following example code snippet. It helps replace the
commented code when applied.

// setup compute request with 3 arguments
req->CSFId = functId;
req->NumArgs = 3;
argPtr = &req->Args[0];
csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, inMemHandle, inMemOffset);
csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, 16384);
csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, outMemHandle, 0);
/* code it replaces
argPtr[0].Type = CS_AFDM_TYPE; // input data buffer
argPtr[0].u.DevMem.MemHandle = inMemHandle;
argPtr[0].u.DevMem.ByteOffset = inMemOffset;
argPtr[1].Type = CS_32BIT_VALUE_TYPE; // size
argPtr[1].u.Value32 = 16384;
argPtr[2].Type = CS_AFDM_TYPE; // output data buffer
argPtr[2].u.DevMem.MemHandle = outMemHandle;
argPtr[2].u.DevMem.ByteOffset = 0;
*/

98 Computational Storage API
Working Draft Version 0.9 rev 1

 Batch scheduling

For offload work that involves more than one step with functions, batch scheduling aids
in queuing such requests. Batching may involve serializing multiple requests pipelined
to execute one after another or parallelizing them to execute together, provided the
required hardware resources are available.

The process of scheduling batched requests helps in the following ways:

a) Minimize on host orchestration sub-tasks and associated latency costs;
b) Minimize on host CPU context switches;
c) Simplify the number of steps involved in processing user data; and
d) Reduce overall latency of the intended compute work.

Batch request processing may be conducted with the csAllocBatchRequest()
API(see 6.10.1), the csFreeBatchRequest() API (see 6.10.2), the
csAddBatchEntry() API (see 6.10.3), the csHelperReconfigureBatchEntry()
API (see 6.10.4), the csHelperResizeBatchRequest() API (see 6.10.5), and the
csQueueBatchRequest() API (see 6.10.6). A batch operation is setup by first
creating a batch request and then populating it with the list of requests. Once setup, the
operation is able to be queued using the csQueueBatchRequest() API. Batch
operations are identified by the batch handle and are able to be reused once a queued
request is complete. Optionally, entries added to the batch request are able to be
reconfigured as needed for successive IOs.

6.10.1 csAllocBatchRequest()
Allocates a batch handle that may be used to submit batch requests. The handle
resource may be set up with the individual requests that need to be batch processed.
The allocation may be requested for serial, parallel, or hybrid batched request flows that
support storage, compute, and data copy requests all in one function.

6.10.1.1 Synopsis
CS_STATUS csAllocBatchRequest(CS_BATCH_MODE Mode, int MaxReqs,

CS_BATCH_HANDLE *BatchHandle);

6.10.1.2 Parameters

IN Mode The requested batch mode namely, serial, parallel or
hybrid.

 Computational Storage API 99
Working Draft Version 0.9 rev 1

IN MaxReqs The maximum number of requests the caller perceives
added to this batch resource. This parameter provides a
hint to the sub-system for resource management.

OUT BatchHandle The created handle for batch request processing if
successful.

6.10.1.3 Description
The csAllocBatchRequest() API creates a batch request handle resource that may
be used to queue more than one request later.

6.10.1.4 Return Value
If there are no errors in the allocation of the resource, then the status CS_SUCCESS is
returned.

Otherwise, this API returns an error status of CS_INVALID_HANDLE,
CS_INVALID_ARG, CS_INVALID_OPTION, CS_OUT_OF_RESOURCES, or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

6.10.2 csFreeBatchRequest()

Frees a batch handle previously allocated with a call to the csAllocBatchRequest()
API.

6.10.2.1 Synopsis
CS_STATUS csFreeBatchRequest(CS_BATCH_HANDLE BatchHandle);

6.10.2.2 Parameters

IN BatchHandle The handle previously allocated for batch requests.

6.10.2.3 Description
The csFreeBatchRequest() API frees all resources allocated for the requested
batch handle.

6.10.2.4 Return Value
CS_SUCCESS is returned if there are no errors in freeing the batch resources.

Otherwise, this API returns an error status of CS_INVALID_HANDLE, or
CS_NOT_DONE as defined in 6.3.3.

100 Computational Storage API
Working Draft Version 0.9 rev 1

6.10.3 csAddBatchEntry()
Add a request to the batch request resource represented by the input handle. The
request type is: storage, compute, or copy memory. Additionally, the batch index
parameters places the request at the required point in the list of requests.

6.10.3.1 Synopsis
CS_STATUS csAddBatchEntry(const CS_BATCH_HANDLE BatchHandle

CsBatchRequest *Req, CS_BATCH_INDEX Before,
CS_BATCH_INDEX After, CS_BATCH_INDEX *Curr);

6.10.3.2 Parameters

IN BatchHandle The batch request handle that describes the CSx batch to
which the items specified in CsBatchRequest are to be
added.

IN Req The request to add to the batch request represented by
BatchHandle parameter. Denotes a compound request
structure that describes the CSx batch items. The CSx
batch items contain the CSx based work items that may
include storage request, compute requests or memory
copy requests.

IN Before A batch entry index that denotes the position of an existing
request entry that the current request will be inserted in
front of. A zero value denotes the current request is
required to be the first request. Any other non-zero value is
required to represent a valid entry returned back from a
previous call to this API.

IN After A batch entry index that denotes the position of an existing
request entry that the current request will be inserted in
after of. A zero value denotes the current request is
required to be the first request. Any other non-zero value is
required to represent a valid entry returned back from a
previous call to this API.

OUT Curr A pointer to hold the output of the batch entry index for the
current request index of a successful call to this API.

 Computational Storage API 101
Working Draft Version 0.9 rev 1

6.10.3.3 Description
The csAddBatchEntry() API adds a request to a batch of requests represented by
the BatchHandle parameter.

6.10.3.4 Return Value
CS_SUCCESS is returned if there are no errors in processing the entry addition.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_INVALID_OPTION, CS_INVALID_HANDLE, CS_INVALID_CSF_ID,
CS_UNKNOWN_MEMORY, CS_HANDLE_IN_USE, or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

Notes

The parameter Req defines:

a) the individual requests themselves;
b) the type of batch request (i.e., CS_COPY_DEV_MEM, CS_STORAGE_IO, or

CS_QUEUE_COMPUTE); and
c) the work item which may be one of CsCopyMemRequest, CsStorageRequest or

CsComputeRequest data structures.

See details in the csQueueCopyMemRequest() API, the
csQueueStorageRequest() API, and the csQueueComputeRequest() API.

6.10.4 csHelperReconfigureBatchEntry()
Helps reconfigure an existing batch request entry with new request information.

6.10.4.1 Synopsis
CS_STATUS csHelperReconfigureBatchEntry(CS_BATCH_HANDLE BatchHandle,

CS_BATCH_INDEX Entry, const CsBatchRequest *Req);

6.10.4.2 Parameters

IN BatchHandle The handle previously allocated for batch requests.

IN Entry The request’s batch entry index that is reconfigured.

IN Req The new batch request entry details.

6.10.4.3 Description
The csHelperReconfigureBatchEntry() API reconfigures an existing batch
request entry located at the specified index denoted by Entry parameter.

102 Computational Storage API
Working Draft Version 0.9 rev 1

6.10.4.4 Return Value
CS_SUCCESS is returned if there are no errors in reconfiguring the batch request entry.

Otherwise, this API returns an error status of CS_INVALID_HANDLE,
CS_INVALID_ARG, CS_INVALID_OPTION, CS_INVALID_HANDLE, or
CS_UNKNOWN_MEMORY as defined in 6.3.3.

6.10.5 csHelperResizeBatchRequest()
Resizes an existing batch request for the maximum number of requests that it is able to
accommodate.

6.10.5.1 Synopsis
CS_STATUS csHelperResizeBatchRequest(CS_BATCH_HANDLE BatchHandle,

int MaxReqs);

6.10.5.2 Parameters

IN BatchHandle The handle previously allocated for batch requests that is
resized.

IN MaxReqs The maximum number of requests the caller perceives that
this batch resource is resized to. The parameter may not
exceed the maximum supported by the CSE.

6.10.5.3 Description
The csHelperResizeBatchRequest() API resizes an existing batch request to the
maximum request size specified.

6.10.5.4 Return Value
CS_SUCCESS is returned if there are no errors in the resizing of the resource.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_INVALID_OPTION, CS_OUT_OF_RESOURCES, or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

6.10.6 csQueueBatchRequest()
Queues a data graph request to the device to be executed synchronously or
asynchronously in the device. The request is able to support serial, parallel or a mixed
variety of batched jobs defined by their data flow and support storage, compute and

 Computational Storage API 103
Working Draft Version 0.9 rev 1

data copy requests all in one function. The handle is required to already have been
populated with the list of batched requests.

6.10.6.1 Synopsis
CS_STATUS csQueueBatchRequest(CS_BATCH_HANDLE BatchHandle,

void *Context, csQueueCallbackFn CallbackFn,
CS_EVT_HANDLE EventHandle, CS_REQ_HANDLE *ReqHandle,
u64 *CompValue);

6.10.6.2 Parameters

IN BatchHandle The handle previously allocated for batch requests.

IN Context A user specified context for the queue request when
asynchronous. The parameter is required only if
CallbackFn or EventHandle is specified.

IN CallbackFn A callback function if the queue request needs to be
asynchronous.

IN EventHandle A handle to an event previously created using the
csCreateEvent() API. This value may be NULL if
CallbackFn parameter is specified to be valid value or if
also set to NULL when the request needs to be
synchronous.

OUT ReqHandle A pointer to receive the request handle if successful. The
received handle may be used to abort this request using
the csAbortRequest() API.This is an optional
parameter and depends on the implementation.

OUT CompValue Additional completion value provided as part of completion.
This may be optional depending on the implementation.

6.10.6.3 Description
The csQueueBatchRequest() API queues a batch of requests that may include flows
for storage, compute, and device memory copies with the CSE.

The inputs and outputs for the request are specified in the Req data structure which
contains entries for storage, compute and device memory copy. The details of Req are
populated using the helper functions detailed in 6.10. The request may be performed
synchronously or asynchronously. To perform the request synchronously, the
parameters CallbackFn and EventHandle should be set to NULL and Context is

104 Computational Storage API
Working Draft Version 0.9 rev 1

ignored. To perform the request asynchronously, either a callback is required to be
specified in CallbackFn or an event handle is required to be specified in
EventHandle. It is an error to specify both of these parameters. If Context is
specified, it is returned in the asynchronous completion path. See notes for details.

An optional pointer may be specified to receive a ReqHandle for the request to allow
the request to be aborted. For asynchronous operation, if a valid pointer is specified, it
is updated with a handle to the submitted request. A synchronous operation ignores this
parameter.

For more information on callback usage, see 6.3.8.

For more information on using events for polling see 6.11.3.

6.10.6.4 Return Value
CS_SUCCESS is returned if there are no errors in synchronous queue operation.

CS_QUEUED is returned if there are no errors in asynchronous queue operation.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_INVALID_HANDLE, CS_UNKNOWN_MEMORY, CS_ERROR_IN_EXECUTION, or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

This API may provide additional completion value returned in CompValue.

6.10.6.5 Notes
Queueing work items in batches simplifies how a more complex operation should be
done in one request. A batch of requests is able to take many forms as noted below:

a) A mixture of storage operations, compute memory copy operations and device-based CSF
executions. E.g. Copy data from host memory to compute memory and run a CSF. Additionally
may copy the results back to host memory;

b) Divide a large compute work item into smaller work items and run each of them on similar
functions in parallel;

c) Copy multiple copies of data from device memory to host memory that may describe something
similar to a scatter gather list in storage;

d) Load data from storage directly in device memory, run a CSF and copy the results back to host
memory. This may be the most common type of usage;

e) Queue the output of the first CSF to a second CSF and so forth;
f) Load storage data and metadata in parallel and run separate computational storage functions

on them in parallel, collate the results to a secondary CSF and copy the results back to host
memory.

This is a generic queueing function to batch different operations of CSFs and device
memory copy operations. It is the responsibility of the caller to ensure the number of
arguments and their individual values map correctly to the CSF.

 Computational Storage API 105
Working Draft Version 0.9 rev 1

The batching operation requires that a batch handle be allocated using the
csAllocBatchRequest() API and then individual requests be added using the
csAddBatchEntry() API.

Batching requests require the Mode field input, which may be CS_BATCH_SERIAL,
CS_BATCH_PARALLEL, and CS_BATCH_HYBRID. This input instructs the API library
on how to handle this request. Serialized requests are those that depend on the
previous requests output as their input. Parallelized requests are breaking down
multiple requests into smaller requests that execute all at the same time. Requests may
be sent in parallel to the same function on the same device or different devices to be
executed at the same time. For additional details on batching requests see section
5.2.1.

If the data input to a CSF has dependencies on a previous operation to complete, then
the CS_BATCH_INDEX parameters are required to be utilized correctly to place the new
request entry in the batch of requests. Each new request may be inserted anywhere in
the batch and the indices help guide the queue placement. For example, a previous
request may have an AFDM copy from host or a storage IO request that needs to
populate the input data to this batch request. In a serialized request using
CS_BATCH_SERIAL mode, the storage request is placed first followed by the CSF
request. The dependencies of individual requests are guided by the placement of each
request in the batch list. The batch request preprocessor will look up dependencies of
memory resources in the list. Optimizations on queuing requests may be applied based
on this information presented by the batch details. With CS_BATCH_HYBRID mode,
complex flow graphs are able to be processed where multiple serial and parallel flows
are able to be accommodated. Additional details on this usage is provided under hybrid
operations in section 5.2.1.3.

The requirements on the CallbackFn and EventHandle apply the same way as in
the csQueueCopyMemRequest() API.An EventHandle will be utilized only by user
space applications while function space users (e.g., drivers and filesystems) will use the
CallbackFn.

For EventHandle, see the csCreateEvent() API for usage.

The following example shows batch request processing to analyze a 1GB data file and
provide the output back to the host. It demonstrates reuse and reconfigurability.

// preprocess: discover & configure CSF(s), Storage
// open file in O_DIRECT mode and locate data section
// preallocate AFDM for inputs/outputs
// Allocate a batch request for serial mode processing
status = csAllocBatchRequest(CS_BATCH_SERIAL, 3, &BatchHandle);
if (status != CS_SUCCESS)
 ERROR_OUT(“csAllocBatchRequest failed\n”);
// allocate storage, compute and DMA requests and set them up..
status = csAddBatchEntry(BatchHandle, &storReq, 0, 0, &storEntry);
if (status != CS_SUCCESS)
 ERROR_OUT(“csAllocBatchEntry failed for storEntry\n”);

106 Computational Storage API
Working Draft Version 0.9 rev 1

status = csAddBatchEntry(BatchHandle, &compReq, 0, storEntry, &compEntry);
if (status != CS_SUCCESS)
 ERROR_OUT(“csAllocBatchEntry failed for compEntry\n”);
status = csAddBatchEntry(BatchHandle, ©Req, 0, compEntry, ©Entry);
if (status != CS_SUCCESS)
 ERROR_OUT(“csAllocBatchEntry failed for copyEntry\n”);
// process through entire data file of 1GB
while (fileSize) {
 status = csQueueBatchRequest(BatchHandle, NULL, NULL, NULL, NULL, NULL);
 if (status != CS_SUCCESS)
 ERROR_OUT(“csQueueBatchRequest failed\n”);
 fileSize -= dataSize;
 // advance file pointer to next 1MB (only updates storage batch details)
 storReq.u.StorageIo.u.FileIo.Offset += dataSize;
 status = csHelperReconfigureBatchEntry(BatchHandle, storEntry, &storReq);
 if (status != CS_SUCCESS)
 ERROR_OUT(“csHelperReconfigureBatchEntry failed\n”);
}
status = csFreeBatchRequest(BatchHandle);
if (status != CS_SUCCESS)
 ERROR_OUT(“csFreeBatchRequest failed\n”);

 Computational Storage API 107
Working Draft Version 0.9 rev 1

 Event Management

The following functions aid in the usage of OS abstracted events.

6.11.1 csCreateEvent()
Allocates an event resource and returns a handle when successful.

6.11.1.1 Synopsis
CS_STATUS csCreateEvent(CS_EVT_HANDLE *EventHandle);

6.11.1.2 Parameters

OUT EventHandle Pointer to hold the event handle once allocated

6.11.1.3 Description
The csCreateEvent() API allocates and initializes a system event resource.

If a valid EventHandle pointer is specified, it is updated with the handle to the
allocated event resource. An invalid input will return an error status.

All input parameters are required for this API.

6.11.1.4 Return Value
CS_SUCCESS is returned if there were no errors and an event resource was
successfully allocated.

Otherwise, this API returns an error status of CS_INVALID_ARG or
CS_NOT_ENOUGH_MEMORY as defined in 6.3.3.

6.11.1.5 Notes
Event resource is allocated at the system level not at the device level. It is able to be
used with any CSx. Once used, it will be referenced by that device and should not be
used simultaneously by more than once device.

6.11.2 csDeleteEvent()
Frees a previously allocated event resource.

6.11.2.1 Synopsis
CS_STATUS csDeleteEvent(CS_EVT_HANDLE EventHandle);

108 Computational Storage API
Working Draft Version 0.9 rev 1

6.11.2.2 Parameters

IN EventHandle The event handle that needs to be freed

6.11.2.3 Description
The csDeleteEvent() API deletes an event resource previously allocated using the
csCreateEvent() API.

If a valid EventHandle is specified, it is freed and returned back to the system. An
invalid input will return an error status.

All input parameters are required for this API.

6.11.2.4 Return Value
CS_SUCCESS is returned if there were no errors and an event resource was
successfully freed.

Otherwise, this API returns an error status of CS_INVALID_HANDLE or
CS_HANDLE_IN_USE as defined in 6.3.3.

6.11.3 csPollEvent()
Polls the event specified for any pending events.

6.11.3.1 Synopsis
CS_STATUS csPollEvent(CS_EVT_HANDLE EventHandle, void **Context,

u64 *CompValue);

6.11.3.2 Parameters

IN EventHandle The event handle that needs to be polled

OUT Context The context to the event that completed

OUT CompValue Additional completion value provided as part of completion.
This may be optional depending on the implementation.

6.11.3.3 Description
The csPollEvent() API queries an event resource previously allocated using the
csCreateEvent() API when used with CSFs. The Context parameter returned will
refer to the original context provided when the request was made.

 Computational Storage API 109
Working Draft Version 0.9 rev 1

If a valid EventHandle is specified, it is queried for any pending events. An invalid
input will return an error status.

All input parameters are required for this API.

6.11.3.4 Return Value
CS_NOT_DONE is returned if there no pending events.

CS_SUCCESS is returned if the pending work item completed successfully without
errors.

Otherwise, this API returns an error status of CS_INVALID_HANDLE,
CS_DEVICE_NOT_AVAILABLE, CS_DEVICE_ERROR, CS_FATAL_ERROR,
CS_IO_TIMEOUT, CS_NOTHING_QUEUED, or CS_ERROR_IN_EXECUTION as
defined in 6.3.3 that maps to the work item it was included in.

This API may provide additional completion value returned in CompValue.

6.11.3.5 Notes
An event resource is submitted to the csQueueCopyMemRequest() API, the
csQueueComputeRequest() API, or the csQueueBatchRequest() API for polling.
It is the responsibility of the user to ensure that the correct event handle is used to poll
and that the handle was not freed use the csDeleteEvent() API.

110 Computational Storage API
Working Draft Version 0.9 rev 1

 Management

Device management provides functions that are used to query and manage the device
properties and resources.

6.12.1 csQueryDeviceProperties()
Queries the CSx for its properties.

This is a privileged API.

6.12.1.1 Synopsis
CS_STATUS csQueryDeviceProperties(CS_DEV_HANDLE DevHandle,

CS_RESOURCE_TYPE Type, int *Length, CsProperties *Buffer);

6.12.1.2 Parameters

IN DevHandle Handle to CSx

IN Type The type of CSx resource to query

IN OUT Length Length in bytes of buffer passed for output

OUT Buffer A pointer to a buffer that is able to hold the device
properties

6.12.1.3 Description
The csQueryDeviceProperties() API fills Buffer with the device properties for
the CSx as requested by the Type field, if the length specified in Length is sufficient.
This API, if successful, may return one or more sub-structures in Buffer.

If a valid Buffer pointer is provided, where the length specified in Length is sufficient,
then it is updated with the requested CSx resource type properties and Length is
updated with the total data returned in bytes in Buffer. If the length specified in
Length is not sufficient to hold the contents returned in Buffer, then Length will be
populated with the required size and an error status will be returned.

If a NULL pointer is specified for Buffer and a valid pointer is provided for Length,
then the required buffer size is returned back in Length for that resource type. The
user will have to allocate a buffer of the returned size and reissue the request.

If a valid pointer is specified for Buffer and a valid pointer is provided for Length and
the value in Length is not sufficient for the device properties, then the required buffer
size is returned back in Length.

 Computational Storage API 111
Working Draft Version 0.9 rev 1

All input parameters are required for this API.

6.12.1.4 Return Value
CS_SUCCESS is returned if there are no errors.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_INVALID_HANDLE, CS_INVALID_ID, CS_INVALID_LENGTH,
CS_NO_PERMISSIONS, CS_NOT_ENOUGH_MEMORY, CS_DEVICE_ERROR,
CS_DEVICE_NOT_READY, or CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

6.12.1.5 Notes
The properties returned provide information on versions in use and are able to be used
by the caller when multiple devices are in use.

A user utilizes this API early on in device setup to verify that the properties are as
expected prior to configuring the CSx.

6.12.2 csQueryDeviceStatistics()
Queries the CSx for specific runtime statistics. These could vary depending on the
requested type inputs. Details on CSFs and the CSx may be queried.

This is a privileged API.

6.12.2.1 Synopsis
CS_STATUS csQueryDeviceStatistics(CS_DEV_HANDLE DevHandle,

CS_STAT_TYPE Type, void *Identifier, CsStatsInfo *Stats);

6.12.2.2 Parameters

IN DevHandle Handle to CSx

IN Type Statistics type to query

IN Identifier Additional options based on Type

OUT Stats A pointer to a buffer that will hold the requested statistics

6.12.2.3 Description
The csQueryDeviceStatistics() API returns the device statistics based on Type
requested. The Stats field is a union of structures and is populated with the desired
output based on the input provided by Type and Identifier fields.

112 Computational Storage API
Working Draft Version 0.9 rev 1

The identifier is optional and is required only for certain statistics types. The
Identifier is used with structures CSEDetails and CSFDetails. When used for
CSEDetails, the Identifier field refers to the CSEId field in CSEProperties. When
used for CSFDetails, the Identifier refers to the CSFId statistics to be queried.

For a specific CSE’s statistics, the Identifier should be set to its unique CSEId
available in the csQueryDeviceProperties() API.Similarly, for specific CSF
statistics, the Identifier is required to be set to its unique CSFId also available using the
csQueryDeviceProperties() API. An error is returned if the Identifier is set to
NULL while Type requires it.

All input parameters are required for this API.

6.12.2.4 Return Value
CS_SUCCESS is returned if there are no errors.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_INVALID_HANDLE, CS_NO_PERMISSIONS, CS_NOT_ENOUGH_MEMORY, or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

6.12.2.5 Notes
The Statistics returned provide information on CSx usage (e.g., utilization and health).
Some of the statistics reflected will be preserved since the power on state. The counters
will not be reset on a query.

6.12.3 csCSEEDownload()
Downloads a specified CSEE resource. It is implementation specific as to how the
downloaded resource is secured.

This is a privileged API.

6.12.3.1 Synopsis
CS_STATUS csCSEEDownload(CS_DEV_HANDLE DevHandle,

CsCSEEDownloadInfo *Info, u32 *CSEEId);

6.12.3.2 Parameters

IN DevHandle Handle to CSx

IN Info A pointer to a buffer that holds the CSEE resource details
to download

 Computational Storage API 113
Working Draft Version 0.9 rev 1

OUT CSEEId A pointer to hold the identifier to the downloaded CSEE
resource

6.12.3.3 Description
The csCSEEDownload() API downloads a CSEE using the details in Info. The Info
parameter provides the details of download contents (e.g., the
CS_CSEE_RESOURCE_TYPE and CS_RESOURCE_SUBTYPE. Additional details on
these fields are provided in section (see 6.3.5.2.2 and 6.3.5.2.4). On a successful
download, a CSEEId for the downloaded CSEE is returned. This value may be used to
configure the downloaded resource using the csConfig() API.

All parameters are required for this API.

6.12.3.4 Return Value
CS_SUCCESS is returned if there are no errors.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_UNSUPPORTED, CS_UNSUPPORTED_ TYPE, CS_UNSUPPORTED_INDEX
CS_INVALID_HANDLE, CS_NO_PERMISSIONS, CS_INVALID_OPTION,
CS_LOAD_ERROR, CS_NOT_ENOUGH_MEMORY or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

6.12.3.5 Notes
CSxes that contain a CSE that is not capable of accepting a downloaded CSEE fail this
API (e.g., CSx devices that only have fixed functionality).

6.12.4 csCSFDownload()
Downloads a specified CSF resource. It is implementation specific as to how the
downloaded code is secured.

This is a privileged API.

6.12.4.1 Synopsis
CS_STATUS csCSFDownload(CS_DEV_HANDLE DevHandle,

CsCSFDownloadInfo *Info, u32 *CSFId);

6.12.4.2 Parameters

IN DevHandle Handle to CSx

IN Info A pointer to a buffer that holds the CSF resource details to
download

114 Computational Storage API
Working Draft Version 0.9 rev 1

OUT CSFId A pointer to hold the identifier to the downloaded CSF
resource

6.12.4.3 Description
The csCSFDownload() API downloads a CSF using the details in Info. The Info
parameter provides the details of download contents such as the
CS_CSF_RESOURCE_TYPE. Additional details on these fields are provided in section
6.3.5.3.13 and 6.3.5.2.4. On a successful download, a CSFId for the downloaded CSF
is returned. This value may be used to configure the downloaded resource using the
csConfig() API.

All parameters are required for this API.

6.12.4.4 Return Value
CS_SUCCESS is returned if there are no errors.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_UNSUPPORTED, CS_UNSUPPORTED_ TYPE, CS_UNSUPPORTED_INDEX
CS_INVALID_HANDLE, CS_NO_PERMISSIONS, CS_INVALID_OPTION,
CS_LOAD_ERROR, CS_NOT_ENOUGH_MEMORY, or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

6.12.4.5 Notes
CSxes that contain a CSEE that is not capable of accepting a downloaded CSF fail this
API (e.g., CSx devices that only have fixed functionality).

6.12.5 csConfig()
Configures the activation state or vendor specific configuration of the specified CSx.
The CSEE and CSF are the resources that may be activated or configured with this API.
Prior to usage, these resources are required to be activated.

This is a privileged API.

6.12.5.1 Synopsis
CS_STATUS csConfig(CS_Dev_HANDLE DevHandle, int *Length,

const CsConfigInfo *Info, CsConfigData *Data);

6.12.5.2 Parameters

IN DevHandle Handle to CSx

IN Length Length of Info when vendor configuration is specified

 Computational Storage API 115
Working Draft Version 0.9 rev 1

IN Info A pointer to the data structure with the requested
configuration

OUT Data Configuration results

6.12.5.3 Description
The csConfig() API configures the specified CSx resource. The requested
configuration is specified in Info and the results of the configuration are provided as
output in Data. The Length parameter is specified when implementation specific
details are described in the VSInfo field in the Info parameter.

The Length parameter is optional based on the presence of VSInfo. All other
parameters are required for this API.

6.12.5.4 Return Value
CS_SUCCESS is returned if there are no errors.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_INVALID_LENGTH, CS_INVALID_OPTION, CS_INVALID_ID,
CS_UNSUPPORTED, CS_INVALID_HANDLE, CS_NO_PERMISSIONS,
CS_LOAD_ERROR, CS_DEVICE_ERROR, CS_NOT_ENOUGH_MEMORY or
CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

6.12.5.5 Notes
Only CSxes that contain a CSE that is capable of processing configuration input accept
this API.

116 Computational Storage API
Working Draft Version 0.9 rev 1

6.12.6 csReset()
Resets the CSx resource specified.

This is a privileged API.

6.12.6.1 Synopsis
CS_STATUS csReset(CS_DEV_HANDLE DevHandle,

CS_RESOURCE_TYPE ResourceType, u32 ResourceId);

6.12.6.2 Parameters

IN DevHandle Handle to CSx

IN ResourceType Type of resource to reset

IN ResourceId The Identifier of the resource to reset

6.12.6.3 Description
The csReset() API resets the specified CSx resource . As part of the operation,
outstanding transactions to one or more of the CSEs are aborted and IOs are de-
queued and completed in error.

All input parameters are required for this API.

6.12.6.4 Return Value
CS_SUCCESS is returned if there are no errors.

Otherwise, this API returns an error status of CS_UNSUPPORTED,
CS_INVALID_HANDLE, CS_NO_PERMISSIONS, CS_DEVICE_ERROR,
CS_DEVICE_NOT_READY, CS_DEVICE_NOT_PRESENT, CS_FATAL_ERROR,
CS_NOT_ENOUGH_MEMORY, or CS_DEVICE_NOT_AVAILABLE as defined in 6.3.3.

6.12.6.5 Notes
The call is only able to be done by a privileged user.

 Library Management

Library management involves functions that are used to query and manage the API
library interfaces and resources for compute offload devices. These library functions
may be used to add additional functionality not available in the API library, achieve
compatibility, or to enable vendor specific requirements.

 Computational Storage API 117
Working Draft Version 0.9 rev 1

6.13.1 csQueryLibrarySupport()
Queries the API library for supported functionality. Any application that uses the library
is able to use this query.

6.13.1.1 Synopsis
CS_STATUS csQueryLibrarySupport(CS_LIBRARY_SUPPORT Type,

int *Length, char *Buffer);

6.13.1.2 Parameters

IN Type Library support type query

IN OUT Length Length of buffer passed for output

OUT Buffer Returns a list of queried items

6.13.1.3 Description
The csQueryLibrarySupport() API fills Buffer with a list of all items for query
based on Type, if the length specified in Length is sufficient. The output copied to
Buffer will be a set of strings separated by commas.

If a valid Buffer pointer is specified where the length specified in Length is sufficient,
then the buffer is updated with the list of all items that match support for Type to actual
length of string. If the length specified in Length is not sufficient to hold the contents
returned in Buffer, then Length will be populated with the required size and an error
status will be returned. An invalid input will return an error status.

If a NULL pointer is specified for Buffer and a valid pointer is provided for Length,
then the required buffer size is returned back in Length. The user should allocate a
buffer of the returned size and reissue the request. The user may also provide a large
enough buffer and satisfy the request.

All input and output parameters are required for this API.

6.13.1.4 Return Value
CS_SUCCESS if there is no error and the query for Type was met.

Otherwise, this API returns an error status of CS_INVALID_ARG or
CS_INVALID_LENGTH as defined in 6.3.3.

6.13.1.5 Notes
The caller should always check the value of Length for a non-zero value, which
represents valid entries in Buffer for the specified query. A null terminated string is

118 Computational Storage API
Working Draft Version 0.9 rev 1

returned in Buffer when Length is non-zero. This API may still return success when
Length is zero.

The returned queried list is able to be parsed and verified as the user intended.

A typical source fragment implementation to return file system support would be

length = 0;
status = csQueryLibrarySupport(CS_FILE_SYSTEMS_SUPPORTED, &length, NULL);
if (status != CS_INVALID_LENGTH)
 ERROR_OUT(“csQueryLibrarySupport returned unknown error\n”);

fs_list = malloc(length);
status = csQueryLibrarySupport(CS_FILE_SYSTEMS_SUPPORTED, &length, &fs_list[0]);
if (status != CS_SUCCESS)
 ERROR_OUT(“csQueryLibrarySupport returned error\n);
// verify if XFS filesystem is supported
…

6.13.2 csRegisterPlugin()
Registers a specified plugin with the API library.

This is a privileged API.

6.13.2.1 Synopsis
CS_STATUS csRegisterPlugin(const CsPluginRequest *Req);

6.13.2.2 Parameters

IN Req Request structure to register a plugin

6.13.2.3 Description
The csRegisterPlugin() API registers the specified plugin.

All input parameters are required for this API.

6.13.2.4 Return Value
CS_SUCCESS is returned if there are no errors.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_INVALID_OPTION, CS_NO_PERMISSIONS, or CS_NOT_ENOUGH_MEMORY as
defined in 6.3.3.

 Computational Storage API 119
Working Draft Version 0.9 rev 1

6.13.2.5 Notes
This functionality is used by a privileged process to register a plugin in the system.
Computational storage device providers and vendors who provide their own plugin
support would use this API.

6.13.3 csDeregisterPlugin()
Deregisters a specified plugin from the API library.

This is a privileged API.

6.13.3.1 Synopsis
CS_STATUS csDeregisterPlugin(const CsPluginRequest *Req);

6.13.3.2 Parameters

IN Req Request structure to deregister a plugin

6.13.3.3 Description
The csDeregisterPlugin() API deregisters the specified plugin.

All input parameters are required for this API.

6.13.3.4 Return Value
CS_SUCCESS is returned if there are no errors.

Otherwise, this API returns an error status of CS_INVALID_ARG,
CS_INVALID_OPTION, CS_NO_PERMISSIONS, or CS_NOT_ENOUGH_MEMORY as
defined in 6.3.3.

6.13.3.5 Notes
This functionality is used by a privileged process to deregister a plugin in the system.
Computational storage device providers and vendors who provide their own plugin
support would use this API.

120 Computational Storage API
Working Draft Version 0.9 rev 1

A Sample Code

A.1 Initialization and queuing a synchronous request

A synchronous (blocking) request where the user waits for the IO to complete is illustrated in the
following decryption example which exercises the following steps

a) Discover the CSx and access it;

b) Discover the CSF to run decryption;

c) Allocate device memory;

d) Transfer encrypted data from host memory to device; and

e) Execute the CSF.

Initialization may occur in the following way:

// discover my device
length = sizeof(csxBuffer);
status = csGetCSxFromPath("myFileToAccelerate", &length, &csxBuffer);
if (status != CS_SUCCESS)
 ERROR_OUT("No CSx device found!\n");
// open device, init function and prealloc buffers
status = csOpenCSx(csxBuffer, &MyDevContext, &dev);
if (status != CS_SUCCESS)
 ERROR_OUT("Could not access device\n");

// query run details of decrypt CSF
status = csGetCSFId(dev, “decrypt”, &infoLength, &count, &csfInfo);
if (status != CS_SUCCESS)
 ERROR_OUT("CSX does not contain any decrypt CSFs \n");
// pick highest performant CSF from returned list
CSFIdInfo *p = csfInfo;
CSFIdInfo *myCSF = NULL;
for (i=0; i< count; i++, p++) {
 if ((myCSF == NULL) ||
 ((myCSF != NULL) && (p->RelativePerformance > myCSF->RelativePerformance))) {
 myCSF = p;
 }
}
decryptId = myCSF->CSFId ;

// Next, pick the most performant FDM for chosen CSF
FDMAccess *p = myCSF->FDMList;
FDMAccess *myFDM = NULL;
for (i = 0; i < myCSF->NumFDMs; i++, p++) {
 if ((myFDM == NULL) ||
 ((myFDM != NULL) && (p->RelativePerformance > myFDM->RelativePerformance))) {
 myFDM = p;
 }
}

 Computational Storage API 121
Working Draft Version 0.9 rev 1

// allocate device memory
CsMemFlags f;
f.s->FDMId = myFDM->FDMId;
f.s->Flags = 0; // may also be CS_FDM_CLEAR
for (i = 0; i < 2; i++) {
 status = csAllocMem(dev, CHUNK_SIZE, &f, 0, &AFDMArray[i] , NULL);
 if (status != CS_SUCCESS)
 ERROR_OUT("AFDM alloc error\n");
}

Source data may be fetched in the following way:

// next, copy encrypted data from host memory into AFDM
// allocate copy request and issue it
CsCopyMemRequest copyReq = malloc(sizeof(CsCopyMemRequest));
if (!copyReq)
 ERROR_OUT("request alloc error\n");
// setup copy request
copyReq->Type = CS_COPY_TO_DEVICE;
copyReq->u.HostVAddress = encrypt_buf;
copyReq->DevMem.MemHandle = AFDMArray[0];
copyReq->DevMem.ByteOffset = 0;
copyReq->Bytes = CHUNK_SIZE;
// issue a synchronous copy request
status = csQueueCopyMemRequest(copyReq, copyReq, NULL, NULL, NULL, NULL);
if (status != CS_SUCCESS)
 ERROR_OUT("Copy to AFDM error\n");

Compute execution may be performed in the following way.

// allocate compute request for 3 args
CsComputeRequest compReq = malloc(sizeof(CsComputeRequest) + \
 (sizeof(CsComputeArg) * 3));
if (!compReq)
 ERROR_OUT("request alloc error\n");
// setup work request
compReq->CSFId = decryptId;
compReq->NumArgs = 3;
argPtr = &compReq->Args[0];
csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, AFDMArray[0], 0);
csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, CHUNK_SIZE);
csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, AFDMArray[1], 0);
// issue a synchronous compute request
status = csQueueComputeRequest(compReq, compReq, NULL, NULL, NULL, NULL);
if (status != CS_SUCCESS)
 ERROR_OUT("Compute exec error\n");

A.2 Queuing an asynchronous request

The above example is able to be modified to be an asynchronous non-blocking request
for compute offload. There are 2 asynchronous mechanisms: event based and callback
based.

The following code snippet demonstrates the changes to compute execution while
applying an event based mechanism.

// allocate event for async processing
status = csCreateEvent(&evtHandle);
if (status != CS_SUCCESS)
 ERROR_OUT("Could not create event\n");

122 Computational Storage API
Working Draft Version 0.9 rev 1

// allocate compute request for 3 args
CsComputeRequest compReq = malloc(sizeof(CsComputeRequest) + (sizeof(CsComputeArg) *
3));
if (!compReq)
 ERROR_OUT("request alloc error\n");
// setup work request
compReq->CSFId = decryptId;
compReq->NumArgs = 3;
argPtr = &compReq->Args[0];
csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, AFDMArray[0], 0);
csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, CHUNK_SIZE);
csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, AFDMArray[1], 0);
// issue an event based asynchronous compute request
status = csQueueComputeRequest(compReq, compReq, NULL, evtHandle, NULL, NULL);
if (status != CS_SUCCESS)
 ERROR_OUT("Compute exec error\n");
while ((status = csPollEvent(evtHandle, &context, NULL)) != CS_SUCCESS) {
 // IO not done; do other work
}

If the event usage is swapped with a callback based model, the sample code will
change as follows. No event creation is required.

// issue a callback based asynchronous compute request
status = csQueueComputeRequest(compReq, compReq, MyAsyncCbFn, NULL, NULL, NULL);
if (status != CS_SUCCESS)
 ERROR_OUT("Compute exec error\n");
// do other work till callback MyAsyncCbFn is invoked in separate thread context

A.3 Using Batch processing

Batch processing aids inprocessing more than one request optimally as one
csQueueBatchRequest() API is able to take multiple requests as process them as a
single request (see section 6.10). The following example illustrates a sequence of
serialized batch processing requests. Data is first read from the storage device and
populated in the first AFDM buffer. In the second request, the CSF is executed on the
data read to decompress its contents into a second AFDM buffer. In the third request,
the contents of the second buffer are copied into host memory. The batch of requests
are set to execute serially and are dependent on the serialization for the final output
which is handled by this batch type. The request is set to execute asynchronously in
non-blocking mode.

// batch execute storage IO + compute offload + DMA results to host
//
// allocate a batch request handle
status = csAllocBatchRequest(CS_BATCH_SERIAL, 3, &batchHandle);
if (status != CS_SUCCESS)
 ERROR_OUT("batch request allocation error\n");
// setup storage IO. Batch only for LBA based IO
// for others use normal file IO not with batch
storReq = malloc(sizeof(CsBatchRequest));
if (!storReq)
 ERROR_OUT("memory alloc error\n");
storReq->reqType = CS_STORAGE_IO;
storReq->u.StorageIo.Mode = CS_STORAGE_BLOCK_IO;
storReq->u.StorageIo.StorageIndex = 0;
storReq->u.StorageIo.DevHandle = devHandle;
storReq->u.StorageIo.u.BlockIo.Type = CS_STORAGE_LOAD_TYPE;

 Computational Storage API 123
Working Draft Version 0.9 rev 1

storReq->u.StorageIo.u.BlockIo.DevMem.MemHandle = inMemHandle;
storReq->u.StorageIo.u.BlockIo.DevMem.ByteOffset = 0;
storReq->u.StorageIo.u.BlockIo.NumRanges = 1;
storReq->u.StorageIo.u.BlockIo.Range[0].NamespaceId = NSId;
storReq->u.StorageIo.u.BlockIo.Range[0].StartLba = LBAs[0];
storReq->u.StorageIo.u.BlockIo. Range[0].NumBlocks = 1;
status = csAddBatchEntry(batchHandle, storReq, 0, 0, &storEntry);
if (status != CS_SUCCESS)
 ERROR_OUT("batch request error\n");
// next, setup compute IO with 3 CSF arguments
compReq = malloc(sizeof(CsBatchRequest) + (sizeof(CsComputeArg) * 3));
if (!compReq)
 ERROR_OUT("memory alloc error\n");
compReq->reqType = CS_QUEUE_COMPUTE;
compReq->u.Compute. CSFId = funcId;
compReq->u.Compute.NumArgs = 3;
argPtr = &compReq->u.Compute.Args[0];
csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, inMemHandle, 0);
csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, 4096 * 3);
csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, outMemHandle, 0);
status = csAddBatchEntry(batchHandle, compReq, 0, storEntry, &compEntry);
if (status != CS_SUCCESS)
 ERROR_OUT("batch request error\n");
// lastly, setup DMA results to host
copyReq = malloc(sizeof(CsBatchRequest));
if (!copyReq)
 ERROR_OUT("memory alloc error\n");
copyReq->reqType = CS_COPY_DEV_MEM;
copyReq->u.CopyMem.Type = CS_COPY_FROM_DEVICE;
copyReq->u.CopyMem.u.HostVAddress = resBuffer;
copyReq->u.CopyMem.DevMem.MemHandle = outMemHandle;
copyReq->u.CopyMem.DevMem.ByteOffset = 0;
copyReq->u.CopyMem.Bytes = 4096 * 3;
status = csAddBatchEntry(batchHandle, copyReq, 0, compEntry, ©Entry);
if (status != CS_SUCCESS)
 ERROR_OUT("batch request error\n");
// now queue batch request
status = csQueueBatchRequest(batchHandle, NULL, NULL, evtHandle, NULL, NULL);
if (status != CS_SUCCESS)
 ERROR_OUT("Batch exec error\n");
while ((status = csPollEvent(evtHandle, &context, NULL)) != CS_SUCCESS) {
 // IO not done; do other work
}

A.4 Applying Hybrid Batch Processing Feature

The following example demonstrates how to use dependency in batch requests to
create a hybrid processing model, where an input completion is required prior to starting
the next request. The example reads data from storage, runs parallel compute offload
operation on it, and once complete, copies the results scattered in device memory back
to host memory buffer. The example is able to be representative of analytical data that
is read and computed on, and whose results are collated and provided back to host. In
this example, 128KB of data is read and 32KB of results are collected.

// hybrid batch setup execution
// large storage IO + 8 parallel compute requests + 8 parallel copy results to host
//
// allocate enough resources for batch request handle
status = csAllocBatchRequest(CS_BATCH_HYBRID, 1 + 8 + 8, &batchHandle);
if (status != CS_SUCCESS)

124 Computational Storage API
Working Draft Version 0.9 rev 1

 ERROR_OUT("batch request allocation error\n");
// setup storage IO. Batch only LBA based IO
// for others use normal file IO not with batch
storReq = malloc(sizeof(CsBatchRequest));
if (!storReq)
 ERROR_OUT("memory alloc error\n");
// read 128kb data from Storage into device memory
storReq->reqType = CS_STORAGE_IO;
storReq->u.StorageIo.Mode = CS_STORAGE_BLOCK_IO;
storReq->u.StorageIo.DevHandle = devHandle;
storReq->u.StorageIo.u.BlockIo.Type = CS_STORAGE_LOAD_TYPE;
storReq->u.StorageIo.u.BlockIo.StorageIndex = 0;
storReq->u.StorageIo.u.BlockIo.DevMem.MemHandle = inMemHandle;
storReq->u.StorageIo.u.BlockIo.DevMem.ByteOffset = 0;
storReq->u.StorageIo.u.BlockIo.NumRanges = 1;
storReq->u.StorageIo.u.BlockIo.Range[0].NamespaceId = NSId;
storReq->u.StorageIo.u.BlockIo.Range[0].StartLba = LBAs[0];
storReq->u.StorageIo.u.BlockIo.Range[0].NumBlocks = 32;
status = csAddBatchEntry(batchHandle, storReq, 0, 0, &storEntry);
if (status != CS_SUCCESS)
 ERROR_OUT("batch request error\n");
// allocate memory for parallel compute batch requests and reuse req
compReq = malloc(sizeof(CsBatchRequest) + (sizeof(CsComputeArg) * 3));
if (!compReq)
 ERROR_OUT("memory alloc error\n");
inMemOffset = 0;
for (i = 0; i < 8; i++) {
 // next, setup compute IO with 3 arguments each
 compReq->reqType = CS_QUEUE_COMPUTE;
 compReq->u.Compute.CSFId = csfId;
 compReq->u.Compute.NumArgs = 3;
 argPtr = &compReq->u.Compute.Args[0];
csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, inMemHandle, inMemOffset);
csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, 16384);
csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, outMemArray[i], 0);
 status = csAddBatchEntry(batchHandle, compReq, 0, storEntry,
&computeEntryArray[i]);
 if (status != CS_SUCCESS)
 ERROR_OUT("batch request error\n");
 // distribute source buffer sequentially
 inMemOffset += 16384;
}
// now allocate memory for parallel DMA batch requests and reuse req
copyReq = malloc(sizeof(CsBatchRequest));
if (!copyReq)
 ERROR_OUT("memory alloc error\n");
outMemOffset = 0;
for (j = 0; j < 8; j++) {
 // lastly setup DMA results to host at 4kb offsets
 copyReq->reqType = CS_COPY_DEV_MEM;
 copyReq->u.CopyMem.Type = CS_COPY_FROM_DEVICE;
 copyReq->u.CopyMem.u.HostVAddress = &resBuffer[outMemOffset];
 copyReq->u.CopyMem.DevMem.MemHandle = outMemArray[j];
 copyReq->u.CopyMem.DevMem.ByteOffset = 0;
 copyReq->u.CopyMem.Bytes = 4096;
 status = csAddBatchEntry(batchHandle, copyReq, 0, computeEntryArray[j],
 ©EntryArray[j]);
 if (status != CS_SUCCESS)
 ERROR_OUT("batch request error\n");
 // increment destination host buffer sequentially for one final output
 outMemOffset += 4096;
}
// all done, queue the batch request

 Computational Storage API 125
Working Draft Version 0.9 rev 1

status = csQueueBatchRequest(batchHandle, NULL, NULL, evtHandle, NULL, NULL);
if (status != CS_SUCCESS)
 ERROR_OUT("batch request error\n");
// wait on the final results
while ((status = csPollEvent(evtHandle, &context, NULL)) != CS_SUCCESS) {
 // IO not done; do other work
 // poll for previous IOs too and mark them done
}

A.5 Using files for storage IO

Using the filesystem managed files for reading and writing data is a powerful interface
that the csQueueStorageRequest() API provides. The following example
demonstrates using a file to read data at a particular offset and provide those contents
to a CSF.

Files used by the CS API are required to be opened using the O_DIRECT flag. The file
handle returned by the operating system is able to then be utilized by the API as shown
below. 128K bytes are read from storage using the file handle and loaded in AFDM.
Data read or written by this method are required to follow block granularity and
alignment guidelines for the Offset and Bytes fields or the call may fail.

// query capabilities for file IO in API library
status = csQueryLibrarySupport(CS_FILE_SYSTEMS_SUPPORTED, &buflen, &buf);
if (status != CS_SUCCESS)
 ERROR_OUT("Could not query device properties\n");
// verify if filesystem is supported

// allocate storage IO request for file usage
storReq = malloc(sizeof(CsStorageRequest));
if (!storReq)
 ERROR_OUT("memory alloc error\n");

// setup request to read 128kb from the start of the file
storReq->Mode = CS_STORAGE_FILE_IO;
storeReq->DevHandle = devHandle;
storReq->u.CsFileIo.Type = CS_STORAGE_LOAD_TYPE;
storReq->u.CsFileIo.FileHandle = fd;
storReq->u.CsFileIo.Offset = 0;
storReq->u.CsFileIo.Bytes = 128 * 1024;
storReq->u.CsFileIo.DevMem.MemHandle = inMemHandle;
storReq->u.CsFileIo.DevMem.ByteOffset = 0;
status = csQueueStorageRequest(storReq, storReq, NULL, evtHandle, NULL, NULL);
if (status != CS_SUCCESS)
 ERROR_OUT("Storage request error\n");

// wait on the request to complete or do some other work
while ((status = csPollEvent(evtHandle, &context)) != CS_SUCCESS) {
 // IO not done; do other work
}

	1 Scope
	1.1 About Computational Storage APIs
	1.2 Document layout

	2 Definitions, abbreviations, and conventions
	2.1 Definitions
	2.1.1 Allocated Function Data Memory
	2.1.2 Computational Storage
	2.1.3 Computational Storage Array
	2.1.4 Computational Storage Device
	2.1.5 Computational Storage Drive
	2.1.6 Computational Storage Engine
	2.1.7 Computational Storage Engine Environment
	2.1.8 Computational Storage Function
	2.1.9 Computational Storage Processor
	2.1.10 Computational Storage Resource
	2.1.11 Container
	2.1.12 CSx name
	2.1.13 Filesystem
	2.1.14 Function Data Memory
	2.1.15 host
	2.1.16 Hypervisor
	2.1.17 NVMe®
	2.1.18 Peer-to-Peer
	2.1.19 P2P
	2.1.20 PCIe®
	2.1.21 string
	2.1.22 Virtual Machine

	2.2 Keywords
	2.2.1 mandatory
	2.2.2 may
	2.2.3 may not
	2.2.4 need not
	2.2.5 optional
	2.2.6 shall
	2.2.7 should

	2.3 Abbreviations
	2.4 References
	2.5 Conventions

	3 Computational Storage
	4 APIs Overview
	4.1 Discovery and configuration
	4.1.1 Discovery
	4.1.1.1 CSx Discovery
	4.1.1.2 Discovery API
	4.1.1.3 CSF Discovery
	4.1.1.4 Example discovery process

	4.1.2 Configuration
	4.1.2.1 Configuring a CSEE
	4.1.2.2 Configuring a CSF

	4.2 FDM allocation
	4.3 Compute types and execution
	4.4 Downloading Functions
	4.5 Extending API support
	4.6 Association of CSP and storage
	4.7 API usage example

	5 Details on Common Usages
	5.1 FDM Usage
	5.1.1 FDM usage example for CSD
	5.1.2 Allocating from FDM
	5.1.2.1 When to map AFDM to a virtual address
	5.1.2.2 When not to map AFDM to a virtual address

	5.1.3 FDM to host memory mapping
	5.1.3.1 FDM not exposed to host address space
	5.1.3.2 FDM exposed to host address space
	5.1.3.2.1 Using AFDM for P2P transfers

	5.1.4 Copy data between host memory and AFDM

	5.2 Scheduling Compute Offload Jobs
	5.2.1 Batching requests
	5.2.1.1 Serialized operations example
	5.2.1.2 Parallelized operations examples
	5.2.1.3 Hybrid operations examples

	5.2.2 Optimal Scheduling

	5.3 Working with CSFs
	5.4 Completion Models

	6 CS API Interface Definitions
	6.1 API Access and flow conventions
	6.2 Usage Overview
	6.3 Common Definitions
	6.3.1 Character Arrays
	6.3.2 Data Types
	6.3.3 Status Values
	6.3.4 Notification Options
	6.3.5 Data Structures
	6.3.5.1 Definitions
	6.3.5.2 Enumerations
	6.3.5.2.1 CS_RESOURCE_TYPE
	6.3.5.2.2 CS_CSEE_RESOURCE_TYPE
	6.3.5.2.3 CS_CSF_RESOURCE_TYPE
	6.3.5.2.4 CS_RESOURCE_SUBTYPE
	6.3.5.2.5 CS_STATE
	6.3.5.2.6 CS_CONFIG_TYPE
	6.3.5.2.7 CS_FDM_FLAG_TYPE
	6.3.5.2.8 CS_MEM_COPY_TYPE
	6.3.5.2.9 CS_STORAGE_REQ_MODE
	6.3.5.2.10 CS_STORAGE_IO_TYPE
	6.3.5.2.11 CS_COMPUTE_ARG_TYPE
	6.3.5.2.12 CS_BATCH_MODE
	6.3.5.2.13 CS_BATCH_REQ_TYPE
	6.3.5.2.14 CS_STAT_TYPE
	6.3.5.2.15 CS_LIBRARY_SUPPORT
	6.3.5.2.16 CS_PLUGIN_TYPE

	6.3.5.3 Structures
	6.3.5.3.1 Properties Data Structures
	6.3.5.3.1.1 CsProperties
	6.3.5.3.1.2 CSxProperties
	6.3.5.3.1.3 ComputeResource
	6.3.5.3.1.4 CSEInfo
	6.3.5.3.1.5 CSEProperties
	6.3.5.3.1.6 CSEEInstance
	6.3.5.3.1.7 CSEEInfo
	6.3.5.3.1.8 CSEEProperties
	6.3.5.3.1.9 FDMFlags
	6.3.5.3.1.10 CSEAccess
	6.3.5.3.1.11 FDMInfo
	6.3.5.3.1.12 FDMProperties
	6.3.5.3.1.13 CSFInstance
	6.3.5.3.1.14 CSFInfo
	6.3.5.3.1.15 CSFProperties
	6.3.5.3.1.16 CSVendorSpecific

	6.3.5.3.2 Configuration Data Structures
	6.3.5.3.2.1 CsConfigInfo
	6.3.5.3.2.2 CsConfigData
	6.3.5.3.2.3 CSEEConfig
	6.3.5.3.2.4 CSFConfig
	6.3.5.3.2.5 FDMConfig
	6.3.5.3.2.6 CSVendorConfig
	6.3.5.3.2.7 CsActivationInfo

	6.3.5.3.3 Memory Data Structures
	6.3.5.3.3.1 CsMemFlags
	6.3.5.3.3.2 CsDevAFDM
	6.3.5.3.3.3 CsCopyMemRequest

	6.3.5.3.4 Storage Data Structures
	6.3.5.3.4.1 CsStorageRequest
	6.3.5.3.4.2 CSBlockRange
	6.3.5.3.4.3 CsBlockIo
	6.3.5.3.4.4 CsFileIo

	6.3.5.3.5 Compute Data Structures
	6.3.5.3.5.1 CsComputeRequest
	6.3.5.3.5.2 CsComputeArg

	6.3.5.3.6 Batch Data Structures
	6.3.5.3.6.1 CsBatchRequest

	6.3.5.3.7 Statistics Data Structures
	6.3.5.3.7.1 CsStatsInfo
	6.3.5.3.7.2 CSEUsage
	6.3.5.3.7.3 CSxMemory
	6.3.5.3.7.4 CSFUsage

	6.3.5.3.8 FDMAccess
	6.3.5.3.9 CSFUniqueId
	6.3.5.3.10 CSFIdInfo
	6.3.5.3.11 CsCommonDownloadInfo
	6.3.5.3.12 CsCSEEDownloadInfo
	6.3.5.3.13 CsCSFDownloadInfo
	6.3.5.3.14 CsPluginRequest

	6.3.6 Resources
	6.3.7 Resource Dependency
	6.3.8 Notification Callbacks

	6.4 Discovery
	6.4.1 csQueryCSxList()
	6.4.1.1 Synopsis
	6.4.1.2 Parameters
	6.4.1.3 Description
	6.4.1.4 Return Value
	6.4.1.5 Notes

	6.4.2 csQueryCSFList()
	6.4.2.1 Synopsis
	6.4.2.2 Parameters
	6.4.2.3 Description
	6.4.2.4 Return Value
	6.4.2.5 Notes

	6.4.3 csGetCSxFromPath()
	6.4.3.1 Synopsis
	6.4.3.2 Parameters
	6.4.3.3 Description
	6.4.3.4 Return Value
	6.4.3.5 Notes

	6.5 Access
	6.5.1 csOpenCSx()
	6.5.1.1 Synopsis
	6.5.1.2 Parameters
	6.5.1.3 Description
	6.5.1.4 Return Value

	6.5.2 csCloseCSx()
	6.5.2.1 Synopsis
	6.5.2.2 Parameters
	6.5.2.3 Description
	6.5.2.4 Return Value

	6.5.3 csRegisterNotify()
	6.5.3.1 Synopsis
	6.5.3.2 Parameters
	6.5.3.3 Description
	6.5.3.4 Return Value
	6.5.3.5 Notes

	6.5.4 csDeregisterNotify()
	6.5.4.1 Synopsis
	6.5.4.2 Parameters
	6.5.4.3 Description
	6.5.4.4 Return Value

	6.6 AFDM management
	6.6.1 csAllocMem()
	6.6.1.1 Synopsis
	6.6.1.2 Parameters
	6.6.1.3 Description
	6.6.1.4 Return Value
	6.6.1.5 Notes

	6.6.2 csFreeMem()
	6.6.2.1 Synopsis
	6.6.2.2 Parameters
	6.6.2.3 Description
	6.6.2.4 Return Value
	6.6.2.5 Notes

	6.6.3 csInitMem()
	6.6.3.1 Synopsis
	6.6.3.2 Parameters
	6.6.3.3 Description
	6.6.3.4 Return Value
	6.6.3.5 Notes

	6.7 Storage IOs
	6.7.1 csQueueStorageRequest()
	6.7.1.1 Synopsis
	6.7.1.2 Parameters
	6.7.1.3 Description
	6.7.1.4 Return Value

	6.8 CSx data movement
	6.8.1 csQueueCopyMemRequest()
	6.8.1.1 Synopsis
	6.8.1.2 Parameters
	6.8.1.3 Description
	6.8.1.4 Return Value
	6.8.1.5 Notes

	6.9 CSF scheduling
	6.9.1 csGetCSFId()
	6.9.1.1 Synopsis
	6.9.1.2 Parameters
	6.9.1.3 Description
	6.9.1.4 Return Value
	6.9.1.5 Notes

	6.9.2 csAbortRequest()
	6.9.2.1 Synopsis
	6.9.2.2 Parameters
	6.9.2.3 Description
	6.9.2.4 Return Value
	6.9.2.5 Notes

	6.9.3 csQueueComputeRequest()
	6.9.3.1 Synopsis
	6.9.3.2 Parameters
	6.9.3.3 Description
	6.9.3.4 Return Value
	6.9.3.5 Notes

	6.9.4 csHelperSetComputeArg()
	6.9.4.1 Synopsis
	6.9.4.2 Description
	6.9.4.3 Return Value
	6.9.4.4 Notes

	6.10 Batch scheduling
	6.10.1 csAllocBatchRequest()
	6.10.1.1 Synopsis
	6.10.1.2 Parameters
	6.10.1.3 Description
	6.10.1.4 Return Value

	6.10.2 csFreeBatchRequest()
	6.10.2.1 Synopsis
	6.10.2.2 Parameters
	6.10.2.3 Description
	6.10.2.4 Return Value

	6.10.3 csAddBatchEntry()
	6.10.3.1 Synopsis
	6.10.3.2 Parameters
	6.10.3.3 Description
	6.10.3.4 Return Value

	6.10.4 csHelperReconfigureBatchEntry()
	6.10.4.1 Synopsis
	6.10.4.2 Parameters
	6.10.4.3 Description
	6.10.4.4 Return Value

	6.10.5 csHelperResizeBatchRequest()
	6.10.5.1 Synopsis
	6.10.5.2 Parameters
	6.10.5.3 Description
	6.10.5.4 Return Value

	6.10.6 csQueueBatchRequest()
	6.10.6.1 Synopsis
	6.10.6.2 Parameters
	6.10.6.3 Description
	6.10.6.4 Return Value
	6.10.6.5 Notes

	6.11 Event Management
	6.11.1 csCreateEvent()
	6.11.1.1 Synopsis
	6.11.1.2 Parameters
	6.11.1.3 Description
	6.11.1.4 Return Value
	6.11.1.5 Notes

	6.11.2 csDeleteEvent()
	6.11.2.1 Synopsis
	6.11.2.2 Parameters
	6.11.2.3 Description
	6.11.2.4 Return Value

	6.11.3 csPollEvent()
	6.11.3.1 Synopsis
	6.11.3.2 Parameters
	6.11.3.3 Description
	6.11.3.4 Return Value
	6.11.3.5 Notes

	6.12 Management
	6.12.1 csQueryDeviceProperties()
	6.12.1.1 Synopsis
	6.12.1.2 Parameters
	6.12.1.3 Description
	6.12.1.4 Return Value
	6.12.1.5 Notes

	6.12.2 csQueryDeviceStatistics()
	6.12.2.1 Synopsis
	6.12.2.2 Parameters
	6.12.2.3 Description
	6.12.2.4 Return Value
	6.12.2.5 Notes

	6.12.3 csCSEEDownload()
	6.12.3.1 Synopsis
	6.12.3.2 Parameters
	6.12.3.3 Description
	6.12.3.4 Return Value
	6.12.3.5 Notes

	6.12.4 csCSFDownload()
	6.12.4.1 Synopsis
	6.12.4.2 Parameters
	6.12.4.3 Description
	6.12.4.4 Return Value
	6.12.4.5 Notes

	6.12.5 csConfig()
	6.12.5.1 Synopsis
	6.12.5.2 Parameters
	6.12.5.3 Description
	6.12.5.4 Return Value
	6.12.5.5 Notes

	6.12.6 csReset()
	6.12.6.1 Synopsis
	6.12.6.2 Parameters
	6.12.6.3 Description
	6.12.6.4 Return Value
	6.12.6.5 Notes

	6.13 Library Management
	6.13.1 csQueryLibrarySupport()
	6.13.1.1 Synopsis
	6.13.1.2 Parameters
	6.13.1.3 Description
	6.13.1.4 Return Value
	6.13.1.5 Notes

	6.13.2 csRegisterPlugin()
	6.13.2.1 Synopsis
	6.13.2.2 Parameters
	6.13.2.3 Description
	6.13.2.4 Return Value
	6.13.2.5 Notes

	6.13.3 csDeregisterPlugin()
	6.13.3.1 Synopsis
	6.13.3.2 Parameters
	6.13.3.3 Description
	6.13.3.4 Return Value
	6.13.3.5 Notes

	A Sample Code
	A.1 Initialization and queuing a synchronous request
	A.2 Queuing an asynchronous request
	A.3 Using Batch processing
	A.4 Applying Hybrid Batch Processing Feature
	A.5 Using files for storage IO

