
18

Computational Storage
Architecture and Programming

Model
Version 1.0

Abstract: This SNIA document defines recommended behavior for hardware and software that
supports Computational Storage.

This document has been released and approved by the SNIA. The SNIA believes that the ideas,
methodologies and technologies described in this document accurately represent the SNIA goals
and are appropriate for widespread distribution. Suggestions for revisions should be directed to
https://www.snia.org/feedback/.

SNIA Standard
August 30, 2022

https://www.snia.org/feedback/

2 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

USAGE
Copyright © 2022 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their
respective owners.

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof) is

reproduced, shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting
permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document or any portion
thereof, or distribute this document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the
following license:

BSD 3-Clause Software License

Copyright (c) 2022, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its
contributors may be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Computational Storage Architecture and Programming Model 3
SNIA Standard Version 1.0

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

4 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Computational Storage Architecture and Programming Model 5
SNIA Standard Version 1.0

Revision History

Major Revision Editor Date Comments
0.1 R1 Stephen Bates 02-Feb-2019 Initial conversion of the NVM Programming Model document.
0.1 R2 Stephen Bates 11-Mar-2019 Added initial draft of Scope section with some initial feedback
0.1 R3 Stephen Bates

David Slik
02-April-2019 Added diagram to Scope section and introduced “Computational Function” as a

term.
0.1 R4 Nick Adams 04-Apr-2019 Updates per Morning Session on 03-Apr-2019
0.1 R5 Scott Shadley 24-Apr-2019 Updates added per F2F meeting in Boston
0.1 R6 Stephen Bates

and Bill Martin
21-Aug-2019 Removed resolved comments, added Theory of Operation, added illustrative

diagrams, added placeholder for an illustrative example. Also performed a large
amount of editorial clean-up. Added forward and removed taxonomy and
abstract (approved by TWG on August 28th 2019).

0.1 R7 Stephen Bates
and Bill Martin

XX Oct 2019 Update foreword section. Add references, abbreviations and definitions.

0.1 R8 David Slik 12 Nov 2019 Moved fields into tables, updated diagrams.

0.1 R9 Stephen Bates 14 Nov 2019 Minor editorial changes

0.1 R10 Bill Martin 20 Nov 2019 Incorporated approved dictionary terms, abbreviations, and reference
modifications

0.1 R11 Bill Martin 11 Dec 2019 Incorporated NetInt proposal for Video Compression CSS
Incorporated ScaleFlux proposal for Database Filter CSS
Removed previously accepted changes

0.1 R12 Stephen Bates 15 Dec 2019 Incorporated DellEMC proposal for Hashing and CRC
Removed list of CSSes at start of Section 5.
Remove reference to how to add new CSSes to Section 5.
Update the list of contributors as per the list on the Wiki
Resolved and removed comments.
Added illustrative examples from Eideticom and Arm/NGD Systems in their
current form and started merging them correctly into this document..
Incorporated Seagate proposal for large dataset PCSS

0.1 R13 Stephen Bates 18 Dec 2019 Removed Annex B (Illustrative Examples)

0.3 R1 Stephen Bates 18 Dec 2019 Update author list
Slight fix to Philip’s PCSS example
Add Raymond’s FCSS example
Minor corrections to document.

0.4 R1 Bill Martin 8 April 2020 Added PCSS on a Large Multi-Device Dataset
Added PCSS – Linux Container Example

0.4 R2 Bill Martin 20 May 2020 Added FCSS – Data Deduplication
Added PCSS – OPEN CL example

0.4 R3 Bill Martin 29 July 2020 Updated example in B.4 Data Deduplication Example
Added Data Compression Illustrative Example
Added Data Filtration Illustrative Example

0.4 R4 Bill Martin 5 August 2020 Added Scatter Gather illustrative example

0.5 R1 Bill Martin 10 Aug 2020 Minor editorial cleanup
Removed editor’s notes in preparation for public review release

0.5 R2 Bill Martin 12 Aug 2020 Modifications created during TWG call on August 12. There are some partial
sentences as the discussion was ended due to the end of the call.

0.5 R3 Bill Martin 8 September Includes editor’s comments removed from public review version
Includes comments received to date (Intel (Kim) and HPe (Chris))
Changes for the terminology of CSS, FCSS, PCSS, and CSP

6 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

0.5 R4 Bill Martin 30 September Renaming of components (e.g., addition of Computational Storage Engine,
Computational Storage Service becomes Computational Storage Function)

0.5 R5 Bill Martin 9 November Changes from meetings
Modified figures as requested
Added memory definitions
Removed resolved comments

0.5 R6 Bill Martin 10 Dec 2020 Removed change tracking R4 to R5
Fixed figure 1.1 to include CFM
Added brief descriptions of CSFM, FDM, AFDM in 4.1
Moved example discover request and response to an annex

0.5 R7 Scott Shadley 16 Dec 2020 Comments from TWG meeting

0.5 R8 Scott Shadley 1 Jan 2021 Comments from TWG meeting

0.5 R9 Bill Martin 28 Jan 2021 Updated direct/indirect model
Moved discovery/configuration request/response to annex
Other editorial changes from Jan 27, 2021 meeting

0.5 R10 Bill Martin 28 Jan 2021 Removed redline and completed comments

0.5 R11 Bill Martin 10 Feb 2021 Resolved a number of comments from TWG meetings
See individual comments with resolutions

0.5 R12 Bill Martin 11 Feb 2021 Removed redline and completed comments

0.5 R13 Bill Martin 16 Feb 2021 Modifications from TWG meeting

0.5 R14 Bill Martin 23 Mar 2021 Updated Large Data Set CSFs
Updating Appendix B, sect 5 (Compression) and 6 (data filtering) illustrative
examples to align with the CSx/CSE/CSF terminology. (change)
Removed all resolved comments

0.5 R15 Bill Martin 23 April 2021 Updates from work group meetings with change bars

0.5 R16 Bill Martin 27 April 2021 Changes to 4.2 and 4.3 as agreed to in TWG meeting
Incorporated architecture model changes agreed in TWG meeting
Incorporated changes to section 5 as agreed in TWG meeting
Incorporate changes for Appendix B from 4/14/2021

0.5 R17 Bill Martin 27 April 2021 Accepted changes and removed resolved comments

0.5 R18 Bill Martin 27 May 2021 Added Configuration flow chart per proposal
Updated Open CL CSS per proposal
Updated figures in Usage section
Updated Usage definition to make consistent
Moved open comments to “editor’s notes”

0.5 R19 Bill Martin 3 June 2021 Incorporated modifications to B.2

0.8 R0 Arnold Jones 9 June 2021 Formatted as a Working Draft for release outside the TWG per TWG approval
ballot.

0.8 R1 Bill Martin 31 March 2022 Added initial security considerations
Fixed must/shall wording throughout (3 instances)
Added CSEE definition

0.8 R2 Bill Martin 1 June 2022 Removed track changes from previous revision
Added modifications from SNIA-CS-Arch-Prog-Model-Theory-of-op-mods-06-
01-2022.

0.8 R3 Bill Martin 21 June 2022 Removed previous change tracking
Incorporated all RFC comments
Resolved most RFC comments

0.8 R4 Bill Martin 22 June 2022 Removed previous change tracking
Incorporated changes requested at TWG meeting
All comments marked “done”

Computational Storage Architecture and Programming Model 7
SNIA Standard Version 1.0

0.8 R5 Bill Martin 23 June 2022 Clean version – all comments removed

0.9 Bill Martin Changed header from 0.8R5 to 0.9 for member vote and public review

8 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

 Table of Contents
FOREWORD ... 13

1.1 SCOPE .. 13

2 REFERENCES .. 15

3 DEFINITIONS, ABBREVIATIONS, AND CONVENTIONS 16

3.1 DEFINITIONS .. 16

3.2 KEYWORDS .. 17

3.3 ABBREVIATIONS ... 18

4 THEORY OF OPERATION ... 19

4.1 OVERVIEW ... 19

4.2 DISCOVERY ... 22

4.3 CONFIGURATION .. 24

4.4 SECURITY .. 24

4.5 CSF USAGE .. 28

5 EXAMPLE COMPUTATIONAL STORAGE FUNCTIONS 32

5.1 COMPRESSION CSF ... 32

5.2 DATABASE FILTER CSF .. 32

5.3 ENCRYPTION CSF .. 32

5.4 ERASURE CODING CSF .. 32

5.5 REGEX CSF .. 33

5.6 SCATTER-GATHER CSF ... 33

5.7 PIPELINE CSF ... 33

5.8 VIDEO COMPRESSION CSF ... 33

5.9 HASH/CRC CSF.. 34

5.10 DATA DEDUPLICATION CSF .. 34

5.11 LARGE DATA SET CSFS ... 34

Computational Storage Architecture and Programming Model 9
SNIA Standard Version 1.0

6 EXAMPLE COMPUTATIONAL STORAGE EXECUTION ENVIRONMENT 35

6.1 OPERATING SYSTEM CSEE .. 35

6.2 CONTAINER PLATFORM CSEE .. 35

6.3 CONTAINER CSEE ... 35

6.4 EBPF CSEE ... 35

6.5 FPGA BITSTREAM CSEE ... 35

 (INFORMATIVE) ILLUSTRATIVE EXAMPLES 36

A.1 CSFS ON A LARGE MULTI-DEVICE DATASET USING CEPH .. 36

A.1.1 INTRODUCTION ... 36

A.1.2 THEORY OF OPERATION .. 38

A.1.3 DISCOVERY ... 38

A.1.4 CONFIGURATION .. 39

A.1.5 USAGE .. 39

A.1.6 EXAMPLE APPLICATION DEPLOYMENT .. 40

A.2 USING A CONTAINERIZED APPLICATION WITHIN LINUX (CSEE WITH INCLUDED CSF) 42

A.2.1 THEORY OF OPERATION .. 42

A.2.2 DISCOVERY ... 42

A.2.3 CONFIGURATION .. 43

A.2.4 USAGE .. 44

A.2.5 EXAMPLE OF APPLICATION DEPLOYMENT ... 45

A.3 DATA DEDUPLICATION CSF .. 47

A.3.1 OVERVIEW ... 47

A.3.2 THEORY OF OPERATION .. 49

A.3.3 DISCOVERY ... 50

A.3.4 CONFIGURATION .. 50

10 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

A.3.5 OPERATION ... 52

A.3.6 MONITORING .. 52

A.3.7 CSF DATA DEDUPLICATION EXAMPLE .. 52

A.4 A COMPUTATIONAL STORAGE FUNCTION ON A NVM EXPRESS AND OPENCL BASED
COMPUTATIONAL STORAGE DRIVE ILLUSTRATIVE EXAMPLE .. 58

A.4.1 CSEE EXAMPLE .. 58

A.4.2 COMPUTATIONAL STORAGE DRIVE ... 59

A.4.3 THEORY OF OPERATION .. 60

A.4.4 DISCOVERY ... 60

A.4.4.1 NVME FUNCTION DISCOVERY .. 60

A.4.4.2 OPENCL CSP FUNCTION DISCOVERY .. 61

A.4.5 CONFIGURATION – EXPLICIT MODE .. 62

A.4.6 USAGE – STORAGE DIRECT .. 62

A.4.7 USAGE – EXPLICIT MODE COMPUTATIONAL STORAGE ... 64

A.5 DATA COMPRESSION CSF EXAMPLE ... 66

A.5.1 OVERVIEW ... 66

A.5.2 THEORY OF OPERATION .. 66

A.5.3 DISCOVERY ... 66

A.5.4 CONFIGURATION .. 67

A.5.5 MONITORING .. 67

A.6 DATA FILTER CSF EXAMPLE ... 68

A.6.1 OVERVIEW ... 68

A.6.2 THEORY OF OPERATION .. 68

A.6.3 DISCOVERY ... 69

A.6.4 CONFIGURATION .. 69

Computational Storage Architecture and Programming Model 11
SNIA Standard Version 1.0

A.6.5 OPERATION ... 69

A.6.6 MONITORING .. 70

12 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

Table of Figures
Figure 4.1– An Architectural view of Computational Storage ... 20
Figure 4.2 – CSF Discovery and Configuration Flowchart ... 23
Figure 4.3 - Direct Usage Model .. 29
Figure 4.4 – Indirect Usage Interactions .. 30
Figure B.1.1 – Ceph, a scale-out storage system .. 37
Figure B.1.2 – Ceph CSA .. 38
Figure B.1.3 – Ceph CSDs .. 38
Figure B.1.4 – Skyhook Example 1 .. 40
Figure B.1.5 – Skyhook Command Execution ... 41
Figure B.2.6 – CSx discovery process ... 43
Figure B.2.7 – CSx Configuration process... 44
Figure B.2.8 – CSx usage .. 45
Figure B.3.1 – Simplified Data Deduplication Process .. 47
Figure B.3. 2 Post Process Data Deduplication ... 48
Figure B.3. 3 Inline Data Deduplication ... 49
Figure B.3. 4 Configuration Parameters .. 51
Figure B.3. 5 Volume Creation .. 53
Figure B.3. 6 Enable Deduplication ... 53
Figure B.3. 7 Retrieve Status ... 54
Figure B.3. 8 Disable Deduplication Scheduling .. 54
Figure B.3. 9 Copy files ... 55
Figure B.3. 10 Verify space utilized ... 55
Figure B.3. 11 Schedule deduplication .. 56
Figure B.3. 12 Monitor Progress .. 56
Figure B.3. 13 verify space savings ... 57
Figure B.4.1 CS architectural diagram adapted for this illustrative example 59
Figure B.6. 1 An example to illustrate the function of data filter FCSS 68

Computational Storage Architecture and Programming Model 13
SNIA Standard Version 1.0

FOREWORD
The SNIA Computational Storage Technical Working Group was formed to establish
architectures and software computation in its many forms to be more tightly coupled with storage,
at both the system and drive level. An architecture model and a programing model are necessary
to allow vendor-neutral, interoperable implementations of this industry architecture.

This SNIA specification outlines the architectural models that are defined to be Computational
Storage. As this specification is developed, requirements in interface standards and specific
APIs may be proposed as separate documents and developed in the appropriate organizations.

1.1 Scope

This specification focuses on defining the capabilities and actions that are able to be
implemented across the interface between Computational Storage devices (CSxes) (e.g.
Computational Storage Processors, Computational Storage Drives and Computational Storage
Arrays) and either Host Agents or other CSxes.

The actions mentioned above are associated with several aspects of a CSx:

• Management. Actions that allow Host Agent(s), based on security policies, to perform:
o Discovery. Mechanisms to identify and determine the capabilities and

Computational Storage Resources (CSR).
o Configuration. Programming parameters for initialization, operation, and/or

resource allocation
• Security. Considerations for security related to CSxes
• Usage. Allows a Host Agent or CSx to offload Computational Storage tasks to a CSx,

including providing the target CSx with information about data locality both local to the
CSx or resident on one or more non-local locations.

This specification makes no assumptions about the physical nature of the interface between
the Host Agent and CSx(s). This specification and the actions associated with it will be
implemented across a range of different physical interfaces. This specification also makes
no assumptions about the storage protocols used by Host Agents and CSx(s).

The following storage protocols between the Host Agent and the CSx may be supported:

• Logical Block Address. Data is grouped into fixed-size logical units and operations
are atomic at that unit size. Data is indexed via a numerical index into the Logical
Block Address.

• Key-Value. Data is not fixed-size and is indexed by a key.
• Persistent Memory. Byte addressable non-volatile memory.

14 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

This specification defines actions for passing data through multiple Computational Storage
Functions that may or may not reside on a single CSx. Additionally, it defines actions for
requesting multiple Computational Storage Functions to perform a set of tasks.

Computational Storage Architecture and Programming Model 15
SNIA Standard Version 1.0

2 References
The following referenced documents are indispensable for the application of this document.

SNIA Computational
Storage API

Computational Storage API v0.5 rev 0, available from
https://www.snia.org/tech_activities/publicreview

NVMe® 2.0 NVM Express Base Specification 2.0,
Approved standard, available from http://nvmexpress.org

FIPS 140-3 Federal Information Processing Standards Publication 140-3 (FIPS PUB
140-3) Security Requirements for Cryptographic Modules, March 2019,
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf

ISO/IEC 19790 ISO/IEC 19790:2012(E), Information technology — Security techniques
— Security requirements for cryptographic modules, August 2012,
https://www.iso.org/standard/52906.html

ISO/IEC 24759 ISO/IEC 24759:2017(E), Information technology — Security techniques
— Test requirements for cryptographic modules, March 2017,
https://www.iso.org/standard/72515.html

ISO/IEC 15408

(multi-part standard)

ISO/IEC 15408-1:2009, Information technology — Security techniques —
Evaluation criteria for IT security — Part 1: Introduction and general
model, December 2009, https://www.iso.org/standard/50341.html

ISO/IEC 15408-2:2008, Information technology — Security techniques —
Evaluation criteria for IT security — Part 2: Security functional
components, August 2008, https://www.iso.org/standard/46414.html

ISO/IEC 15408-3:2008, Information technology — Security techniques —
Evaluation criteria for IT security — Part 3: Security assurance
components, August 2008, https://www.iso.org/standard/46413.html

http://snia.org/tech_activities/publicreview/#compapi
http://nvmexpress.org/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://www.iso.org/standard/52906.html
https://www.iso.org/standard/72515.html
https://www.iso.org/standard/50341.html
https://www.iso.org/standard/46414.html
https://www.iso.org/standard/46413.html

16 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

3 Definitions, abbreviations, and conventions
For the purposes of this document, the following definitions and abbreviations apply.

3.1 Definitions

3.1.1 Allocated Function Data Memory
Function Data Memory (FDM) that is allocated for a particular instance of a CSF

3.1.2 Computational Storage
architectures that provide computation coupled to storage, offloading host processing or
reducing data movement.

3.1.3 Computational Storage Array (CSA)
storage array that contains one or more CSEs.

3.1.4 Computational Storage Device (CSx)
Computational Storage Drive, Computational Storage Processor, or Computational Storage
Array.

3.1.5 Computational Storage Drive (CSD)
storage element that contains one or more CSEs and persistent data storage.

3.1.6 Computational Storage Engine (CSE)
component that is able to execute one or more CSFs

note 1 to entry Examples are: CPU, FPGA.

3.1.7 Computational Storage Engine Environment (CSEE)
operating environment for a CSE

Note 1 to entry Examples are: Operating System, Container Platform, eBPF, and FPGA
Bitstream.

3.1.8 Computational Storage Function (CSF)
a set of specific operations that may be configured and executed by a CSE.

Note 1 to entry Examples are: compression, RAID, erasure coding, regular expression,
encryption.

3.1.9 Computational Storage Processor (CSP)
component that contains one or more CSEs for an associated storage system without providing
persistent data storage

Computational Storage Architecture and Programming Model 17
SNIA Standard Version 1.0

3.1.10 Computational Storage Resource (CSR)
resources available in a CSx necessary for that CSx to perform computation

Note 1 to entry Examples are: FDM, Resource Repository, CPU, memory, FPGA resources)

3.1.11 Function Data Memory (FDM)
Device memory used for storing data that is used by the Computational Storage Functions
(CSFs) and is composed of allocated and unallocated Function Data Memory

3.1.12 platform firmware
the collection of all device firmware on a platform

3.2 Keywords

In the remainder of the specification, the following keywords are used to indicate text related to
compliance:

3.2.1 mandatory
a keyword indicating an item that is required to conform to the behavior defined in this standard

3.2.2 may
a keyword that indicates flexibility of choice with no implied preference; “may” is equivalent to
“may or may not”

3.2.3 may not
keywords that indicate flexibility of choice with no implied preference; “may not” is equivalent to
“may or may not”

3.2.4 need not
keywords indicating a feature that is not required to be implemented; “need not” is equivalent to
“is not required to”

3.2.5 optional
a keyword that describes features that are not required to be implemented by this standard;
however, if any optional feature defined in this standard is implemented, then it shall be
implemented as defined in this standard

3.2.6 shall
a keyword indicating a mandatory requirement; designers are required to implement all such
mandatory requirements to ensure interoperability with other products that conform to this
standard

18 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

3.2.7 should
a keyword indicating flexibility of choice with a strongly preferred alternative

3.3 Abbreviations

AFDM Allocated Function Data Memory

CSA Computational Storage Array

CSD Computational Storage Drive

CSE Computational Storage Engine

CSEE Computational Storage Engine Environment

CSF Computational Storage Function

CSP Computational Storage Processor

CSR Computational Storage Resources

CSx Computational Storage devices

FDM Function Data Memory

SSD Solid State Disk

Computational Storage Architecture and Programming Model 19
SNIA Standard Version 1.0

4 Theory of Operation

4.1 Overview

This section describes the theory of operations for Computational Storage Devices (CSxes),
Computational Storage Resources (CSRs), Computational Storage Engines (CSEs),
Computational Storage Engine Environments (CSEEs), and Computational Storage Functions
(CSFs).

Computational Storage architectures enable improvements in application performance and/or
infrastructure efficiency through the integration of compute resources (outside of the traditional
compute & memory architecture) either directly with storage or between the host and the
storage. The goal of these architectures is to enable parallel computation and/or to alleviate
constraints on existing compute, memory, storage, and I/O.

20 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

Host 1 Host n
CS

Driver

I/OMGMT

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Computational Storage Processor (CSP)

Host 1 Host n
CS

Driver

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Computational Storage Drive (CSD)

Host 1 Host n
CS

Driver

I/OMGMT

Storage
Controller

Storage Device
or CSD

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Array
Control

Storage Device
or CSD

Transparent
Storage
Access

Proxied
Storage
Access

Computational Storage Array (CSA)

Figure 4.1– An Architectural view of Computational Storage

An illustrative example of Computational Storage devices (CSxes) is shown in Figure 4.1. A CSx
consists of the following components:

• Computational Storage Resources (CSR) which contain:
o A Resource Repository where the following may be stored:

 Computational Storage Functions (CSFs); and
 Computational Storage Engine Environments (CSEEs);

o Function Data Memory (FDM) which may be partitioned into Allocated Function
Data Memory (AFDM); and

o One or more Computational Storage Engines (CSEs);
• A Storage Controller for CSD or an Array Controller for CSA;

Computational Storage Architecture and Programming Model 21
SNIA Standard Version 1.0

• Device Memory; and
• Device Storage for CSD and CSA.

Computational Storage Resources (CSRs) are the resources available in a CSx necessary for
that CSx to store and execute a CSF.

A Computational Storage Engine (CSE) is a CSR that is able to be programmed to provide one
or more CSFs.

A Computational Storage Engine Environment (CSEE) is an operating environment for the CSE.

A Computational Storage Function (CSF) is a set of specific operations that may be configured
and may be executed by a CSE in a CSEE.

Activation is the process of associating a CSEE with a CSE or associating a CSF with a CSEE.
As part of activation of a CSEE, any resources that are necessary for that CSEE to be used on
the CSE are assigned. As part of activation of a CSF, any resources that are necessary for that
CSF to be used on the CSEE are assigned to the. When a CSEE association with a CSE or a
CSF association with a CSEE is no longer required, the CSEE or CSF may be deactivated. This
deactivation process releases any assigned resources.

A CSE is required to have a CSEE activated to be able to have a CSF activated. A CSE has
FDM associated with it. A CSE is able to have one or more CSEEs and one or more CSFs
activated at the time of manufacture that are usable by the host via management and I/O
interfaces, or it is able to have one or more CSEEs and one or more CSFs downloaded by the
host and activated. A CSE may have CSFs that have been programmed at the time of
manufacture that are not changeable (i.e,. not stored in the Resource Repository) (e.g.,
compression, RAID, erasure coding, regular expression, encryption). CSFs that are stored in the
Resource Repository may be activated in a CSEE in a CSE.

A CSEE may be pre-installed or downloaded by the host. A downloaded CSEE or pre-installed
CSEE is required to be activated for use. A CSEE may support the ability to have additional
CSEEs activated within it. A CSEE may have a CSF embedded within the CSEE. That CSF may
be implicitly activated when the CSEE is activated on a CSE.

A CSF is required to be activated on a CSE to be used. The CSF performs only the defined
operations (e.g., a specific eBPF program or compression) that are reported by the CSx (i.e..,
the underlying operation is not changeable).

Function Data Memory (FDM) is device memory that is available for CSFs to use for data that is
used or generated as part of the operation of a CSF. Allocated Function Data Memory (AFDM)
is a portion of FDM that is allocated for one or more specific instances of a CSF operation. Any
specific instance of a CSF operation shall only be allowed to access the AFDM allocated for that
instance of a CSF operation. AFDM may be explicitly deallocated or may be deallocated on a
power cycle or reset condition. As part of deallocating AFDM, the physical memory that was
allocated to that AFDM should be cleared in order to prevent a subsequent instance of a CSF
operation from accessing user data that is in that physical memory. On a reset, power cycle, or

22 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

sanitize operation that deallocates AFDM, all FDM should be cleared to prevent any instance of
a CSF operation from accessing user data that was not specifically stored in AFDM for that
instance of a CSF operation.

The Resource Repository is a region of memory and/or storage located within the CSx that
contains zero or more images for CSFs and CSEEs that are available for activation. These
CSFs and CSEEs are required to be activated in the CSE in order to be utilized.

A Computational Storage Processor (CSP) is a component that is able to execute one or more
CSFs for an associated storage system without providing persistent data storage. The CSP
contains CSRs and Device Memory. The mechanism by which the CSP is associated with the
storage system is implementation specific.

A Computational Storage Drive (CSD) is a component that is able to execute one or more
CSFs and provides persistent data storage. The CSD contains a Storage Controller, CSRs,
Device Memory, and persistent data storage.

A CSD may function as a standard Storage Drive, with existing host interfaces and drive
functions. As such, the system is able to have a storage controller with associated storage
memory, along with storage addressable by the host through standard management and I/O
interfaces.

A Computational Storage Array (CSA) is a storage array that is able to execute one or more
CSFs. As a storage array, a CSA contains control software, which provides virtualization to
storage services, storage devices, and CSRs for the purpose of aggregating, hiding complexity
or adding new capabilities to lower level storage resources. The CSRs in the CSA may be
centrally located or distributed across CSDs/CSPs within the array.

4.2 Discovery

4.2.1 CSx Discovery Overview
Discovery of CSxes is fabric dependent and is outside of the scope of this architecture.

4.2.2 CSR Discovery Overview
Once a CSx is discovered, to utilize Computational Storage Resources (CSRs), the
characteristics of that CSx needs to be discovered. This involves a CSR discovery process for
each discovered CSx. The CSR discovery process discovers all resources available including
CSEs, CSEEs, CSFs, and FDM.

Discovery of a CSE includes information of any activated CSEEs and any activated CSFs in
those CSEEs.

Computational Storage Architecture and Programming Model 23
SNIA Standard Version 1.0

CSEEs in the Resource Repository may be discovered and information about any CSFs pre-
activated in those CSEEs is returned. CSEEs in the Resource Repository are required to be
activated in order to be used.

CSFs in the Resource Repository may be discovered. CSFs in the Resource Repository are
required to be activated in order to be used.

Section 4.2.3 shows an example discovery flow. The specifics of a CSR discovery process are
defined in API specifications (e.g., SNIA Computational Storage API).

4.2.3 CSF Discovery and Configuration Example
Figure 4.2 shows an example flowchart of discovery and configuration of a CSF. This example
assumes that each of the actions can be completed and that there are no errors. This is only
one example of how configuration is able to be completed.

CSF Discovery and
Configuration

CSF Activated
On a CSEE?

CSEE Activated
On a CSE?

N

CSEE in
Resource

Repository?

N

CSF in
Resource

Repository?
Y

Download CSF

N

Activate CSF in CSEEY

Download CSEE N

Activate CSEE on
CSE

Y

CSF Config
Required?Y Configure CSFY

CSF ready for use

N

Figure 4.2 – CSF Discovery and Configuration Flowchart

The flow of the discovery and configuration process is a number of steps to determine what is
already activated in the CSX. For a CSF or CSEE that is not already activated there is a
discovery if the desired CSF or CSEE exists in the Resource Repository. If a desired CSF or

24 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

CSEE is not in the Resource Repository then it has to be downloaded to the Resource
Repository.

For a desired CSEE that is not activated, that CSEE is required to be activated in a CSE. After
the desired CSEE is activated and the desired CSF is available in the Resource Repository,
that CSF is activated in the CSEE.

For a desired CSF that is activated in a CSEE, that CSF is configured, if there are static
configurations that are required for all executions of that CSF. Once the CSF is configured it is
available for an application to execute.

4.3 Configuration

4.3.1 CSE Configuration Overview
A CSE may be configured to prepare it for use. One aspect of CSE configuration is activation of
one or more CSEEs. A CSEE may be activated in the CSE at time of manufacture and therefore
not be required to be activated as part of configuration. The specifics of a CSE configuration
process are defined in API specifications (e.g., SNIA Computational Storage API).

4.3.2 CSEE Configuration Overview
A CSEE may be configured to prepare it for use. A CSEE is required to be activated in order to
be used by a CSE. One aspect of CSEE configuration is activation of one or more CSFs. A
CSF may be pre-activated in the CSEE and therefore not be required to be activated as part of
configuration. The specifics of a CSEE configuration process are defined in API specifications
(e.g., SNIA Computational Storage API).

4.3.3 CSF Configuration Overview
A Computational Storage Function may be configured to prepare it for use. A CSF is required to
be activated in order to be used by a CSEE. The specifics of a CSF configuration process are
defined in API specifications (e.g., SNIA Computational Storage API).

This process may be done once for the CSF, prior to any specific invocation of the CSF, or as
parameters associated with the invocation of a CSF.

4.4 Security

4.4.1 General
Security requirements for computational storage vary significantly (e.g., depending on the
environment, interconnectivity, and sensitivity of data). As such, security is presented in this
document as considerations that may be used to help determine the security that is
appropriate to the risks. Some of the considerations are written such that specific requirements
are identified for certain elements of security (e.g., a decision to use encryption results in
specific requirements such as security strength, key management, and others).

Computational Storage Architecture and Programming Model 25
SNIA Standard Version 1.0

The security considerations have been written with the following assumptions:

a) the environment consists of a single physical host or virtual host with one or more
CSxes

b) the host is responsible for the security of the ecosystem that the CSxes operate within
c) CSx security requirements are comparable to the security requirements common to

SSDs/HDDs

It is important to note that multi-host environments as well as situations where the CSxes need
to participate in the protection of data result in significantly more complex security
considerations and requirements.

4.4.2 Privileged Access and Operations
As stated in the assumptions in 4.4.1, the host is responsible for much of the security in a
basic computational storage configuration. Much of this security involves privileged operations
that are performed/executed by individuals (systems administrators or other privileged users)
and entities (e.g., system applications) that have elevated privileges that are beyond normal
users and entities. While the security associated with these operations and accesses are out of
scope for this document, this security is critical to protecting data, resources, configuration,
and state.

4.4.3 CSx Security Considerations
The security considerations identified in this sub-section are those considered relevant, given
the assumptions stated in 4.4.1. Security is anticipated to be an important element of most
computational storage implementations.

A rogue or broken CSF could consume all of the resources that other CSFs may need to
operate. Therefore, mitigation mechanisms (e.g. verification of CSFs and sandboxing of
CSFs) should be considered.

Unless other steps are taken to prevent it, the associated storage for the CSx is consumable
by any and all CSFs.

4.4.3.1 CSx Sanitization
As part of any Sanitize operation:

a) all instances of CSF operations should be terminated
b) all activated CSEEs and CSFs should be deactivated; and
c) all memory allocations associated with FDM should be removed and associated FDM

cleared.

4.4.3.2 CSx Data at-rest Encryption
Data at-rest encryption is a commonly required feature of storage devices. Therefore, a CSx
should implement the same data at-rest encryption as would be implemented on any storage
device in a similar application.

26 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

A CSx may include the capability to encrypt data prior to recording the resulting ciphertext on
storage media and decrypt ciphertext that has been recorded on storage media. When data at-
rest encryption is implemented, the following should be provided:

a) strong symmetric encryption that provides a minimum of 128-bits of security strength to
protect data (e.g., selection of encryption algorithms and modes of operations suitable
for storage to be protected);

b) cryptographic keys that are only used for one purpose (e.g., do not use key-encrypting
keys (i.e., key wrapping keys) to encrypt data or use data encrypting keys to encrypt
other keys);

c) key management functionality (see 4.4.3.3) necessary for the data at-rest encryption;
d) capability to rekey the data with a different data/media encryption key (DEK/MEK) (i.e.,

reading the data, decrypting it with the old key, encrypting the data with a new key, and
writing the new ciphertext).

Additional elements of data at-rest encryption implementations may include:

a) controls on the amount of data protected under a single key as well as within the
established cryptoperiods;

b) proof/verification of encryption (enabled v disabled);
c) cryptographic modules used to protect sensitive or regulated data should be validated

using recognized security criteria (e.g. ISO/IEC 19790, ISO/IEC 15408, and NIST FIPS
140-3); and

d) archiving/escrowing the keys and keying material on key management servers.

The use of data at-rest encryption within a CSx has the following implications:

a) import/export compliance issues may affect the sale, distribution, and use of the CSx in
certain jurisdictions; which may require specific licensing; and

b) data reduction technologies (e.g., compression and deduplication) are generally
ineffective when applied to ciphertext.

4.4.3.3 CSx Key Management
Key management functionality is typically included in conjunction with data at-rest encryption
(see 4.4.3.2) as opposed to a standalone capability.

A CSx may include key management capabilities to support encryption and decryption of data
as well as cryptographic erase-based storage sanitization (see 4.4.3.4). When key
management is implemented, the following should be provided:

a) cryptographic services that provide a minimum of 128 bits of security strength;
b) key generation with sufficient entropy (e.g., at least 256 bits of entropy input for AES-

256) that uses the entire key space;
c) secure distribution of the keys (e.g., authentication key or KEK);
d) secure storage of keys and key material (e.g., with a hardware security module); and

Computational Storage Architecture and Programming Model 27
SNIA Standard Version 1.0

e) secure, secondary storage for key backup/recovery.

Providing Key Management within a CSx has the following implications:

a) import/export compliance issues may affect the sale, distribution, and use of the CSx in
certain jurisdictions; which may require specific licensing.

4.4.3.4 CSx Storage Sanitization
The controlled elimination of data in the form of storage sanitization is a commonly required
feature of storage devices, therefore, it should be applied to CSxes. Failure to include storage
sanitization may expose data to unauthorized access.

A CSx may include storage sanitization capabilities for controlled elimination of data. When
storage sanitization is implemented, the following should be provided:

a) storage sanitization (i.e., media-based or logical sanitization) using clear or purge
methods;

b) cryptographic erase (i.e., purge sanitization method in IEEE 2883) that ensures all
copies of the encryption keys used to encrypt the target data are sanitized (see 4.4.3.2
data at-rest encryption and 4.4.3.3 key management); and

c) validation of sanitization operation outcomes.

Additional elements of storage sanitization implementations may include:

a) producing records (i.e., evidence) of sanitization operations that are able to serve as
proof of sanitization; and

b) sanitization performed in conjunction with autonomous data movement.

Providing storage sanitization within a CSx has the following implications:

a) sanitization is not disrupted by firmware update, etc.

4.4.3.5 CSx Roots of Trust (RoT)
Roots of Trust (RoT) in the form of highly reliable hardware and software components that
perform specific, critical security functions that provide a firm foundation from which to build
security and trust are often included to support data at-rest encryption (see 4.4.3.2), key
management (see 4.5.3.2), and attestation functionality.

If the CSx includes RoT and Chains of Trust (CoT), the following NIST SP 800-193, 4.1.1
requirements should be implemented:

a) the security mechanisms are founded in Roots of Trust (RoT);
b) if Chains of Trust (CoT) are used, a RoT serves as the anchor for the CoT;
c) all RoTs and CoTs are either immutable or protected using mechanisms which ensure

all RoTs and CoTs remain in a state of integrity; and

28 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

d) all elements of the Chains of Trust for Update (NIST SP 800-193, 4.1.2), Detection
(NIST SP 800-193, 4.1.3) and Recovery (NIST SP 800-193, 4.1.4) in non-volatile
storage are implemented in platform firmware.

4.4.3.6 CSx Software Security
Software within a CSx may be in the following forms:

a) computational Storage Engine Environment (CSEE); or
b) computational Storage Functions (CSFs).

This software may be pre-installed or downloaded by the host.

A CSx may include a wide range of software security mechanisms, but the following should be
provided:

a) verification of the integrity of downloaded CSx software (e.g., use of checksums to
detect errors);

b) validation that the code is coming from a particular source and that the code has not
been altered or compromised by a third party (e.g., use of code signing).

4.5 CSF Usage

4.5.1 CSF Usage Overview
Once configured, a host may use the CSF with:

a) a direct usage model; or
b) an indirect usage model.

In the direct usage model, the host sends a computation request that specifies a CSF to execute
on data in the FDM. The data movement between host or storage and the FDM may be done
outside of the operation of the CSF.

In the indirect usage model, the host sends a storage request to the Storage Controller. A CSF
is executed on the data associated with a storage request based on:

a) parameters in the storage request;
b) the data locality; or
c) the data characteristics (e.g., size).

For the indirect usage model that operates on data based on locality or characteristics, the
Storage Controller is configured to associate a CSF with data locality or data characteristics prior
to sending a storage request.

4.5.1.1 Direct CSF Usage Model
Figure 4.3 shows an example of the direct CSF usage model.

Computational Storage Architecture and Programming Model 29
SNIA Standard Version 1.0

Host 1
CS

Driver

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

Computational Storage Drive (CSD)

1 3

2

Figure 4.3 - Direct Usage Model

Figure 4.3 assumes that AFDM is allocated for the specific instance of the CSF and that data on
which computation is to be performed is placed in that AFDM, prior to the request to the CSE,
through some process that is not shown in this figure. The result data, if any, is placed in the
AFDM and through some process, not shown in this example, moved from the AFDM to storage
or the host. The steps shown in Figure 4.3 for a direct usage model are:

(1) The host sends a command to invoke the CSF;
(2) The CSE performs the requested computation on data that is in AFDM and places the

result, if any, into AFDM; and
(3) The CSE returns a response to the host.

4.5.1.2 Indirect CSF Usage Model

Figure 4.4 shows an example of the indirect CSF usage model.

30 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

Host 1
CS

Driver

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

Computational Storage Drive (CSD)
1 5

4

2
3

Figure 4.4 – Indirect Usage Interactions

Figure 4.4 assumes a read operation with computation on the data that is being read. The steps
shown in Figure 4.4 to perform an indirect computation through the Storage Controller are:

(1) The host configures the CSD to associate a specific CSF with reads that have specific
characrteristics;

(2) The host sends a storage request to a Storage Controller where:
a. that storage request is associated with that target CSF; and
b. the storage controller determines what CSF is associated with the storage request;

(3) The Storage Controller moves data from storage into the FDM;
(4) The Storage Controller instructs the CSE to perform the indicated computation on the

data in the FDM;
(5) The CSE performs the computation on the data and places the result, if any, into the

FDM; and
(6) The Storage Controller returns the computation results, if any, from the FDM to the host.

Computational Storage Architecture and Programming Model 31
SNIA Standard Version 1.0

4.5.2 CSF Execution
A CSF execution is specific to the type of CSF (e.g., for a compression CSF, a command may
instruct the CSF to read from a given location in system memory, compress the data, and store
the resulting data to a specified location in a storage device).

32 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

5 Example Computational Storage Functions
This section describes example Computational Storage Functions (CSFs) (see 4.1).

See section (See 4.2 and 4.3) for information about CSF discovery and configuration.

5.1 Compression CSF

A compression CSF reads data from a source location, compresses or decompresses the data,
and writes the result to a destination location.

CSF configuration specifies the compression algorithm and associated parameters.

CSF command specifies the source address and length and the destination address and
maximum lengths.

5.2 Database Filter CSF

A database filter CSF reads data from source location(s), performs a database projection
(column selection) and filter (row selection) on the data according to projection and filter
conditions, and writes the result(s) to destination location(s).

CSF configuration specifies the database format, table schema, selection and filter conditions,
and associated parameters.

CSF command specifies the source address and length, and the destination addresses and
lengths.

5.3 Encryption CSF

An encryption CSF reads data from a source location, encrypts or decrypts the data, and writes
the result to a destination location.

CSF configuration specifies the encryption algorithm, keying information, and associated
parameters.

CSF command specifies the source address and length and the destination address and length.

5.4 Erasure Coding CSF

An erasure coding CSF reads data from source location(s), performs a EC encode or decode
on the data, and writes the result(s) to destination location(s).

CSF configuration specifies the EC algorithm and associated parameters.

Computational Storage Architecture and Programming Model 33
SNIA Standard Version 1.0

CSF command specifies the source address and length and the destination addresses and
lengths.

5.5 RegEx CSF

A regex CSF reads data from source location(s), performs a regular expression patterning
matching or transformation on the data, and writes the result(s) to the destination location.

CSF configuration specifies the RegEx string(s) and associated parameters.

CSF command specifies the source address and length and the destination address and length.

5.6 Scatter-Gather CSF

A Scatter-Gather CSF reads data from set of source location(s) and writes the data to a set of
destination location(s).

CSF configuration does not have any parameters.

CSF command specifies the source addresses and lengths and the destination addresses and
lengths.

5.7 Pipeline CSF

A Pipeline CSF performs a series of operations on data according to a data flow specification,
allowing different CSF commands to be combined together in a standardized way.

CSF configuration does not have any parameters.

CSF command specifies a collection of commands, their order and dependencies, and
calculations defining the relationships of the addresses between commands.

5.8 Video Compression CSF

A video compression CSF reads data from a source location, compresses or decompresses the
video, and writes the result to a destination location. In order to accommodate multiple parallel
compressions, the video compression CSF may support a single compression stream or multiple
compression stream

CSF configuration specifies the stream, compression algorithm and associated parameters.

CSF command specifies the stream, source address and length and the destination address
and maximum lengths.

34 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

5.9 Hash/CRC CSF

A hash/CRC CSF reads data from a source location, calculates a hash or CRC value based on
the source data, and writes the result to a destination location.

CSF configuration specifies the hashing/CRC algorithm and associated parameters.

CSF command specifies the source address and length and the destination address.

As an optional feature this CSF may calculate the hash/CRC value based on the source data
and compare the hash/CRC result to a pre-calculated value supplied by the initiator. The CSS
will notify the initiator whether the calculated value matches the supplied value.

5.10 Data Deduplication CSF

A data deduplication CSF reads data from source location(s), performs deduplication or
duplication on the data, and writes the result(s) to the destination location(s).CSF configuration
specifies the data deduplication algorithm and associated parameters.

CSF command specifies the source address and length and the destination address and
maximum lengths.

5.11 Large Data Set CSFs

This example is for a large data set wherein the data is sharded as objects across a plurality of
computational storage devices (CSxes) and these objects are further tagged as belonging to a
named object class. The object class being defined as a set of methods that act on those named
objects. The object class is the CSF. The object class subsystem is the CSE. There are CSEs
defined and configured in each of the CSxes. The FDM, and AFDM is pulled from system
memory CSF configuration includes the object class methods.

The CSF command specifies the objects names to be acted upon, the object class method to
enact and other parameters for the object class model.

Computational Storage Architecture and Programming Model 35
SNIA Standard Version 1.0

6 Example Computational Storage Execution Environment
This section describes example Computational Storage Execution Environments (CSEEs) (see
4.1).

See section (see 4.2 and 4.3) for information about CSEE discovery, configuration, and
activation.

6.1 Operating System CSEE

An Operating System CSEE provides a specific operating system environment (e.g., Linux). The
Operating System CSEE may contain one or more activated CSFs and may support the
activation of one or more downloaded CSFs.

6.2 Container Platform CSEE

A Container Platform CSEE provides an environment to host one or more Container CSEEs.

In order to provide CSFs, it is necessary to have this type of CSEE configured with a Container
CSEE.

6.3 Container CSEE

A Container CSEE provides a container environment. The Container CSEE may contain one or
more activated CSFs and may support the activation of one or more downloaded CSFs.

6.4 eBPF CSEE

An extended Berkeley Packet Filter (eBPF) CSEE provides an environment for running eBPF
programs. The eBPF CSEE may contain one or more activated eBPF CSFs and supports the
activation of one or more downloaded eBPF CSFs.

6.5 FPGA Bitstream CSEE

A FPGA Bitstream CSEE provides an environment for an FPGA device. The FPGA Bitstream
CSEE may contain one or more activated CSFs and may support the activation of one or more
downloaded CSFs.

36 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

 (Informative) Illustrative Examples
A.1 CSFs on a Large Multi-Device Dataset using Ceph

A.1.1 Introduction
A large multi-device dataset is a dataset that:

1. may not fit into a single storage device;
2. may be large enough to require hundreds or thousands of devices; and
3. may require scalable performance by utilizing many storage devices.

Due to the size of these datasets, a single server may be insufficient to house all of the necessary
storage devices. Consequently, these datasets may also span servers. This illustrative example
uses TCP/IP as it provides scaling for a large number of devices.

A large dataset is to be sharded into chunks, that have semantic meaning to the application and
are stored across a set of storage devices. To act on that data in the computational storage
sense it is necessary to map the data shards to the devices where they are stored and then
deliver a function to each of the devices. That function is then able to be executed in the device
against each of the data set’s shards stored in that device. This may be done simultaneously on
thousands of devices.

There are many systems that enable the scaling of storage to thousands of devices. One such
system used for this example is Ceph. Ceph allows many applications to jointly share shards of
data called objects across potentially thousands of devices. Ceph is responsible for mapping the
location of each of the objects across all the devices. Although intermediary servers called object
storage daemons (OSDs) use local storage interconnects, the primary application interconnect
is TCP/IP. Applications locate and interact with an object by a unique key that translates to a
unique IP and TCP port address. Applications do not dictate this address but rather let Ceph
manage the location of the object, abstracting the clients from the actual location.

Below is a diagram of Ceph showing client applications running in containers (App CT) using a
variety of APIs (File, Block, S3) that are all implemented using the underlying Ceph RADOS API.
This API permits the storing and retrieving of arbitrary sized objects as well as executing
methods against objects.

Computational Storage Architecture and Programming Model 37
SNIA Standard Version 1.0

Figure B.1.1 – Ceph, a scale-out storage system

The Ceph OSD servers in the diagram are responsive to the application’s object requests.
Although a single OSD satisfies a single object request, a dataset may be sharded into many
objects and those objects will be stored across all of the available OSDs. Since the application
is abstracted away from an object’s location, the application should also be abstracted away
from the location of the execution environment. Furthermore, operating on a large dataset
means engaging with many OSDs so abstracting the workload above the device level is also
appropriate (i.e., an application should be able to have a distributed dataset while still operating
on it as a single dataset).

Looking at the Computational Storage Architecture, Ceph could be viewed as the CSA and the
OSDs could be viewed as Computational Storage Processors.

A CSE would be discovered and configured in the OSD.

38 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

Figure B.1.2 – Ceph CSA

However, nothing in the software architecture prevents running a Ceph OSD as a single device
server. In this case, the OSD server would be viewed as a Computational Storage Drive (CSD).

Figure B.1.3 – Ceph CSDs

A.1.2 Theory of Operation
In this section, we walk through the Large Multi-Device Dataset Ceph Computational Storage
Theory of Operation (See Section 4) and apply it in a specific manner to this illustrative example.
The three main phases of operation are:

a) Discovery (see section 4.2)
b) Configuration (see section 4.3)
c) Usage (see section 4.4)

A.1.3 Discovery
Most of the device discovery in this example is handled by Ceph; however, discovery of the
Ceph system and the available CSRs and CSFs needs to be done. Built into Ceph is the ability
to run code in the OSDs against an object by means of an object class definition. This facility
should be viewed as the CSE. An object class definition contains methods that can be executed
within an OSD against an object. An object class should be viewed as a CSF. Both preloaded
and downloaded CSFs are able to be created, so discovery of these object classes will be
necessary.

Computational Storage Architecture and Programming Model 39
SNIA Standard Version 1.0

A.1.4 Configuration
for this illustrative example, a Ceph system is required to be preinstalled and configured. The
workloads are deployed by delivering the CSFs (i.e., object classes, if required) to each of the
CSEs (i.e., OSD servers).

A.1.5 Usage
The application calls the CSF using the CSF parameters. Abstracted from the application, the
CSF is translated into the Ceph object class. The CSF parameters are the object class method,
the name(s) of the targeted objects, and any inbound parameters. The invocation of the CSF is
handled by the Ceph RADOS rados_exec() function1. Upon return any outbound parameters are
returned including the calls status.

1 There are several variants of the rados_exec() call, including versions that are associated with a read and
write. There are also async versions of each call.

40 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

A.1.6 Example Application Deployment
Skyhook is an opensource middleware application that provides a Ceph backend to
PostgreSQL. It enables PostgreSQL table stores by sharding tables on row boundaries,
placing N rows of a table into a single object. If N = 1000 and an example table had a total of
100,000 rows, Skyhook would create 100 objects that would be distributed to potentially 100
OSDs/Devices in Ceph.

Figure B.1.4 – Skyhook Example 1

Skyhook has defined its own object class (CSF) on each Ceph OSD node (CSE). This object
class implements methods that evaluate SQL queries. When PostgreSQL receives a user
submitted SQL query, it submits the query to Skyhook. Skyhook then submits that query to each
of the 100 objects of the table in parallel by calling the RADOS exec() function (CSF Command).
This call (CSF command) passes the query to the SQL evaluation method, each object
independently evaluates the query for its rows, returning the results back to skyhook. Skyhook
then assembles all of the results into a single result that is then returned to PostgreSQL.

Computational Storage Architecture and Programming Model 41
SNIA Standard Version 1.0

Figure B.1.5 – Skyhook Command Execution

Not only does this allow the DB to scale the performance and size independent of device
capacities, but it also implements parallel execution.

42 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

A.2 Using a Containerized Application within Linux (CSEE with included CSF)
This illustrative example is of a Computational Storage Drive (CSD) based on the NVMe™ over
PCIe® specification, that consists of one typical LBA based NVM storage device, multiple
programmable applications processors co-located on the same controller capable of running
Linux OS capable of running containerized application for searching data.

Specific assumptions for this illustrative example include:

a) A server running a modern Linux kernel and user-space distribution;
b) A single-ported single host system (i.e., no consideration for multi-port NVMe devices;
c) No use of virtualization;
d) A pre-activated CSEE (Running a Linux OS - CSEE1) is within the CSE;
e) A CSEE is available to store in the Device Storage that is a Container (CSEE2) with a

CSF1;
f) CSF1 runs an Artificial Intelligence (AI) Application;
g) No Peer-to-Peer capabilities or namespaces are used; and
h) Leverages existing PCIe and NVMe methods around security.

A.2.1 Theory of Operation
In this section, we will walk through the Theory of Operation (see section 4) and apply it in a
specific manner to this illustrative example. The three main phases of operation are:

a) Discovery;
b) Configuration; and
c) Usage.

In this illustrative example, it is assumed that some updates to the existing NVMe Linux driver
are made. The driver is required to be capable of recognizing and configuring a Computational
Storage drive.

A.2.2 Discovery
NVMe/PCIe already has a very robust controller discovery and creation process. A PCIe device
(i.e. an NVMe™ controller) is able to be discovered by the host at power-up time via PCIe bus
enumeration or at run-time via a hot-plug event and bus rescan. A modern Linux operating
system is able to detect PCIe devices via both the methods mentioned above, allowing discovery
of a new NVMe controller to be done at any time in a running system.

Once an NVMe controller has been detected, the NVMe Computational Storage driver is able to
be used to discover the capabilities of the controller via the NVMe Identify Admin command.
The procedure is:

1. PCIe enumeration discovers the NVMe controller of the CSD;
2. The Computational Storage NVMe Linux driver binds to this PCIe device; and

Computational Storage Architecture and Programming Model 43
SNIA Standard Version 1.0

3. The driver discovers the capabilities of the Computational Storage Drive:
a. An activated CSEE within the CSE that runs a Linux OS Environment (CSEE1).

Host 1
CS

Driver

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEE1

Resource Repository

CSEE1

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

Computational Storage Drive (CSD)

Figure B.2.6 – CSx discovery process

A.2.3 Configuration
The CSEE1 is active within the CSE. As shown in Figure B.2.7, the following steps take place:

A) the CSEE2 for the Docker Container is moved into the Device Storage of the CSD. An
Admin command causes the application processor(s) to boot into a Linux Environment.
The software that supports Docker is loaded automatically as part of Linux start-up
process; and

B) once Linux has booted, the CSEE2 for the Docker Environment is loaded with the CSF1.

44 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

The Computational Storage NVMe driver is notified so that the specific compute workload can
be downloaded.

Host 1
CS

Driver

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEE1

Resource Repository
CSEE1

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

Computational Storage Drive (CSD)

CSEE2
CSF1

CSEE2
CSF1

CSEE2
CSF1

A

B

Figure B.2.7 – CSx Configuration process

A.2.4 Usage
Once the configuration process has completed and both CSEE1 and CSEE2 are activated and
the CSF1 is ready to process data, the usage process steps (as shown in Figure B.2.8) can
occur:

1) The CSF1 is told by the host to execute the function on data;
2) Input Data is pulled from Device Storage into Device Memory, in the Allocated Function

Data Memory (AFDM) space of the Function Data Memory (FDM);
3) The data is operated on by the CSF1 and is then stored as Output Data in the Device

Storage at the location specified by the function; and
4) The host can then access both the original Input Data and the new Output Data as

required to complete the process steps.

Computational Storage Architecture and Programming Model 45
SNIA Standard Version 1.0

Host 1
CS

Driver

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEE1

Resource Repository
CSEE1

FDM
AFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

Computational Storage Drive (CSD)

CSEE2
CSF1

CSEE2
CSF1

CSEE2
CSF1

1

3

Output
Data

Input
Data

4 2

Figure B.2.8 – CSx usage

A.2.5 Example of Application Deployment
The open source application called Openalpr (Open source Automatic License Plate
Recognition) may be deployed using the Docker market place.

OpenALPR is an open source Automatic License Plate Recognition library written in C++ with
bindings in C#, Java, Node.js, Go, and Python. The library analyzes images and video streams
to identify license plates. The output is the text representation of any license plate characters.
Openalpr provides a set of shared libraries but also makes use of a few other shared open
source libraries.

In the Docker market place, there is a Docker image based on the “Vendor OS Choice” that
contains the Openalpr shared libraries, its command-line utility application, and all the required
shared libraries (e.g., OpenCV, python, and java)

46 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

In this specific example, the user would:

1) ssh from the host to the device using the default IP/username/password provided by
the device vendor. (e.g.., user@server:~# ssh csd@ipaddress)

2) Build a Docker image (i.e., user@server:~# docker build -t openalpr
https://github.com/openalpr/openalpr.git

3) Download test image (i.e., user@server:~# wget
http://plates.openalpr.com/h786poj.jpg)

4) Run alpr on image (i.e., user@server:~# docker run -it --rm -v $(pwd):/data:ro
openalpr -c eu h786poj.jpg)

The output of this example is:

user@server:~# /openalpr$ alpr ./h786poj.jpg

plate0: top 10 results -- Processing Time = 58.1879ms.
 - PE3R2X confidence: 88.9371
 - PE32X confidence: 78.1385
 - PE3R2 confidence: 77.5444
 - PE3R2Y confidence: 76.1448

mailto:csd@10.1.1.2
https://github.com/openalpr/openalpr.git

Computational Storage Architecture and Programming Model 47
SNIA Standard Version 1.0

A.3 Data Deduplication CSF

A.3.1 Overview
Data deduplication is a technique used to reduce the amount of data stored on a storage
device. Compression results in the removal of repeating bytes or streams within a chunk or
segment of storage, but data deduplication results in the removal of matching chunks or
segments of storage.

Figure B.3.1 – Simplified Data Deduplication Process

Figure B.3.1 describes a simplified data deduplication process where a given data object or
stream is given to the deduplication process. The data object is split into chunks where the
chunks can then be identified and compared. A location repository of pointers referencing the
unique chunks is created and any duplicate chunks are released from the data object so that the
resulting storage is reduced.

There are two generic ways of performing data deduplication on a device. The first way is post
process data deduplication where the data that is being deduplicated already resides on the
device and is processed at a scheduled time and duration. The second way is inline data
deduplication where the data that is being deduplicated is immediately processed for
deduplication so that only unique data is stored on the device.

48 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

Figure B.3. 2 Post Process Data Deduplication

Figure B.3. 2 describes post process data deduplication. This process does not interfere with
the initial ingestion of the data object or stream and allows the system to schedule a time and
duration for the deduplication process. Once the data object or stream is stored, the data is
chunked where the chunk metadata describes the size, references, and location of the data. A
repository is also created to map the location of each chunk with respect to the way the data
was initially stored. The chunks are compared and if chunks are identical, the chunk metadata
of the first instance of the chunk is updated with a reference count. The repository pointer for
the identical chunk is also updated to the first instance of the chunk. Once the data object or
stream has had all the chunks compared, the identical chunks are freed so that only a single
instance of the chunk is stored on the device. Finally, the chunks are consolidated within the
device.

Computational Storage Architecture and Programming Model 49
SNIA Standard Version 1.0

Figure B.3. 3 Inline Data Deduplication

Figure B.3.3 describes inline data deduplication. This process interferes with the ingestion of
the initial data object or stream being saved to the device. As the data object or stream is
being written to the device, chunks are compared and written only once if identical. This
allows for less storage space to be used on the initial ingestion of the data object or stream.
The first time the data is stored into the device, a chunk repository is created to describe the
location of the chunks within the data object or stream. The initial chunk is stored with chunk
metadata that describes size, location, and references to the chunk. Subsequent chunks are
then compared with existing chunks, and if unique, it is stored as a unique chunk. If it’s
identical, the repository is updated to reference the single instance of the chunk and the
number of references in the chunk metadata is updated. The process continues until the data
object or stream is complete.

These descriptions of data deduplication are all simplified to explain generic ways to perform
data deduplication. The CSx that will implement data deduplication will likely have more
intricate proprietary ways of performing the data deduplication.

A.3.2 Theory of Operation

To successfully implement data deduplication as a CSF, a CSx must be able to communicate
the ability to perform data deduplication within a CSE. Once the ability is determined, the CSF
then needs to be successfully configured. The data object or data stream can then be
processed by the CSE using the data deduplication CSF while allowing monitoring of the
progress of that operation.

50 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

This illustrative example will attempt to provide the initial framework of the following steps
needed to successfully allow for a CSx to perform data deduplication as a CSF.

A.3.3 Discovery
To determine if a CSx supports the Data deduplication CSF, the CSx needs to first be
discovered as a CSx. If a CSx supports the Data deduplication CSF, then the CSx needs to
also indicate if the Data deduplication CSF allows configuration. If the CSx allows for certain
configuration parameters to the Data deduplication CSF, then the configurable parameters
need to be shared. The following is a possible list of configurable parameters:

1. Supported Chunk Sizes – The acceptable size values to chunk the data object into
comparable chunks. Typically, these are large, but they could also be variable.

2. Scheduling – The schedule and duration of post process data deduplication.
3. Failover – The action to take if data deduplication is interrupted (e.g., discarding,

resuming from last good write, restarting).
4. Monitoring – The type of data to collect during data deduplication (e.g., the current data

deduplication space savings, the I/O rate of the data deduplication operation, the size of
the data processed, the size of the data remaining to be processed, the percentage
complete).

5. Inline or Post Process Deduplication
6. Type of method to perform chunk comparison – Three common types are hashing,

binary comparison and delta differencing.
7. Hashing Algorithm – Type of hashing algorithms allowed to identify unique chunks.
8. Data deduplication Analysis – Methods to determine the likely savings gained by

performing data deduplication on a data object or stream.
9. Operational Interruption – Whether or not the data deduplication operation is able to be

interrupted for purpose of either suspending, abandoning or resuming the request.

Note that discovery may also return the default values of the configurable parameters as well
as capabilities like operational interruption that the Data deduplication CSF supports.

A.3.4 Configuration
Once a CSx that supports the Data deduplication CSF is discovered, the Data deduplication
CSF can be configured if allowed. It’s possible that the Data deduplication CSF will have
default values that the user may not want to override, and configuration is not necessary. If
the user wants to configure the Data deduplication CSF, then the parameters returned by
discovery need to be set and sent to the Data deduplication CSF before the data deduplication
operation is performed by the CSE.

Table 1

Element Name Requirement Description

Computational Storage Architecture and Programming Model 51
SNIA Standard Version 1.0

DeduplicationSupport Mandatory Specifies whether Deduplication can be
configured as a CSF within the CSE.

DeduplicationType Optional The type of deduplication to perform. This can
be either inline or post process deduplication

DeduplicationSchedule Conditional Valid when post process deduplication is
specified. This would be the time, frequency,
and duration when the deduplication would be
performed.

DeduplicationChunk Optional If set, the size of the chunks to perform
deduplication comparisons.

DeduplicationFailover Optional If set, the action to take when data
deduplication is interrupted. Possible actions
are discarding, resume from last good write,
restart, etc.

DeduplicationMonitoring Optional If set, type of data to collect during data
deduplication. Possible types of data to collect
are current data deduplication space savings,
the I/O rate of the data deduplication operation,
the size of the data processed, the size of the
data remaining to be processed, the percentage
complete, etc.

DeduplicationComparison Optional If set, type of method to perform chunk
comparison. Three common types are hashing,
binary comparison and delta differencing

DeduplicationHash Optional If set, type of hashing algorithm to identify
unique chunks

DeduplicationSavings Optional If set, perform an analysis on data being
received to determine the amount space saved.

DeduplicationOperation Optional If set, allow for the interruption of the data
deduplication function by request with option to
either suspend, abandoned or resume the data
deduplication operation.

Figure B.3. 4 Configuration Parameters

52 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

Figure B.3.4 lists the type of parameters that could be configured for the Data deduplication
CSF prior to sending a data object or stream to the CSx.

A.3.5 Operation
The data deduplication CSF will begin when the data object or stream is sent. The data object
or stream may have already been processed by another CSF or be processed for input into
another CSF. For example, data deduplication is inefficient on encrypted data, so the
Encryption CSF should first decrypt the data before sending it to the data deduplication CSF.
Additionally, once the data has been deduplicated, the data is able to then be sent to the
compression CSF for additional storage savings.

The operation of the data deduplication CSF may be interrupted if allowed. Otherwise, the
user will need to wait for the operation to complete or fail to determine the next course of
action.

A.3.6 Monitoring
As the data object is being processed by the data deduplication CSF, the user can get status
and statistics on the process. The following are possible status and statistics to monitor:

1. Current data deduplication space savings
2. The I/O rate of the data deduplication operation
3. Current amount of data processed by the data deduplication operation
4. Current amount of data remaining to be processed by the data deduplication operation
5. The percentage of completion of the data deduplication operation
6. Success or failure of the operation
7. Existing state of the operation such as paused, interrupted, resumed, etc.

Based on the status and statistics, the user can then determine if the operation needs to be
paused, abandoned, or resumed.

A.3.7 CSF Data Deduplication Example

Computational Storage Architecture and Programming Model 53
SNIA Standard Version 1.0

1. It is necessary to create a volume (see Figure B.3. 5 Volume Creation) to perform data
deduplication.

Figure B.3. 5 Volume Creation

2. Configure data duplication to be enabled on the created volume by sending a
configuration parameter to the data deduplication CSF. This operation is illustrated in
Figure B.3. 6 Enable Deduplication.

Figure B.3. 6 Enable Deduplication

3. Verify that data deduplication is enabled and ready for the created volume by retrieving
status. The status indicates that the configurable parameters have been set. This
operation is illustrated by Figure B.3. 7 Retrieve Status.

Created
Volume

Create Volume

Host
Computational
Storage Device (CSx)

Created
Volume

Enable Data
Deduplication

Host
Computational
Storage Device (CSx)

Dedup Enabled

54 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

Figure B.3. 7 Retrieve Status

4. Turn off the schedule of the post process data deduplication on the volume by sending
the data deduplication CSF a request that data deduplication not be scheduled to occur
on the volume. This is shown in Figure B.3. 8 Disable Deduplication Scheduling.

Figure B.3. 8 Disable Deduplication Scheduling

5. Mount the volume to a server and copy files from existing server directories into the new
directory as shown in Figure B.3. 9 Copy files. This writes the files to the newly created

Created
Volume

Retrieve
Deduplication
Status

Host
Computational
Storage Device (CSx)

Dedup Enabled Dedup Enabled
Schedule Now

Created
Volume

Disable
Schedule

Host Computational
Storage Device (CSx)

Dedup Enabled
Schedule Disabled

Computational Storage Architecture and Programming Model 55
SNIA Standard Version 1.0

volume and since there is no deduplication scheduled, the data is not deduplicated.

Figure B.3. 9 Copy files

6. Examine the volume for the storage consumed and space using existing server tools as
shown in. Figure B.3. 10 Verify space utilized. No space savings have been made
since deduplication has yet to occur.

Figure B.3. 10 Verify space utilized

7. Send a request to the data deduplication CSF, to schedule the data deduplication
immediately on the volume as shown in Figure B.3. 11 Schedule deduplication. The

56 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

data deduplication then occurs on the volume.

Figure B.3. 11 Schedule deduplication

8. Monitor the progress of deduplication by sending the data deduplication CSF a status
request. The data deduplication CSF returns the amount of space that has been
deduplicated and the percentage complete. This is shown in Figure B.3. 12 Monitor
Progress.

Figure B.3. 12 Monitor Progress

9. When the deduplication is complete, check the space savings by sending a status
request to the data deduplication CSF as shown in Figure B.3. 13 verify space savings.
The space savings depends on the amount of data that was deduplicated on the

Computational Storage Architecture and Programming Model 57
SNIA Standard Version 1.0

volume.

Figure B.3. 13 verify space savings

58 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

A.4 A Computational Storage Function on a NVM Express and OpenCL based
Computational Storage Drive Illustrative Example

A.4.1 CSEE Example
A PCIe OpenCL-based Computational Storage Drive (CSD) that consists of an NVMe
Controller and an OpenCL accelerator (CSE) which can execute Computational Storage
Functions (CSFs). The Computational Storage interface is done over OpenCL not over NVMe.
In this example, the NVMe controller and OpenCL accelerator appear as two separate PCI
physical functions (PF) on the host. The OpenCL accelerator exposes part of the Function
Data Memory (FDM) over the PCIe BAR of its PCI physical function (PF) and this exposed
memory is mapped into the host’s address space. This enables the host software to allocate
buffers from this PCIe BAR memory and use them to move data between the NVMe controller
and the OpenCL accelerator directly while bypassing the host system memory entirely. This
feature is called PCIe peer-to-peer (P2P) transfer. For the rest of this illustrative example the
term P2P is associated with the memory exposed over PCIe BAR and the direct transfer
mechanism between the NVMe controller and the OpenCL accelerator. Note that the P2P
memory is part of the FDM which is part of the computational storage resources (CSR) and not
associated with NVMe storage controller within this CSD

Other specific assumptions for this illustrative example include:

• An application class processor running a modern Linux kernel and user-space
distribution.

• A single host system. i.e. no consideration for multi-port NVMe devices.
• No virtualization.
• Leverage existing PCIe and NVMe methods around security.

Computational Storage Architecture and Programming Model 59
SNIA Standard Version 1.0

Figure B.4.1 CS architectural diagram adapted for this illustrative example

A.4.2 Computational Storage Drive
Figure B.4.1 describes the elements comprising a CSD. There is a Computational Storage
Engine (CSE) combined with persistent memory data storage in the form of an NVMe SSD within
a single device (represented by Storage Controller and Device Storage blocks in the figure). The
CSEE provides an environment for executing the CSF, If the input data for the CSF is on the
device storage, it can be directly transferred (using P2P transfer mechanism) to an AFDM buffer
which is allocated from the P2P memory. Similarly, if the output data from the CSF is to be stored
on the device storage, it is able to be directly transferred from the P2P AFDM buffer using P2P
transfer mechanisms. .This example also applies to a case with two discrete PCIe devices
connected to the same PCIe fabric (i.e., they are not part of same device as shown in the above

60 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

figure but are port of two different physical devices). In this case the OpenCL device is referred
to as a Computational Storage Processor(CSP) with an exposed PCIe P2P BAR memory and
the second device is an NVMe SSD.

This example does not explicitly address multiple CSDs in one system, but the architecture,
including the software drivers for OpenCL and NVMe all support multiple devices in one
system.

A.4.3 Theory of Operation
This section walks through the Theory of Operation and applies it in a specific fashion to this
illustrative example. The three main phases are:

• Discovery
• Configuration
• Usage

A.4.4 Discovery
In this illustrative example, the storage controller of the CSD is discovered and configured using
the procedures described in the NVMe base specification without any changes. The OpenCL
accelerator (CSE) is discovered and configured using the OpenCL APIs.

PCIe devices (NVMe controller and OpenCL device) are discovered by the host at power-up via
PCIe bus enumeration or at run-time via a hot-plug event and bus rescan. A modern OS like
Linux binds the relevant drivers to the discovered PCIe devices. In this case the NVMe driver is
bound to the NVMe controller of the CSD and the OpenCL runtime driver is bound to the OpenCL
device.

A.4.4.1 NVMe Function Discovery
Once an NVMe controller has been detected, the NVMe driver on the host discovers the
capabilities of said controller via the NVMe Identify Admin command. NVMe has the concept of
namespaces, which refers to discrete resources behind an NVMe controller and one controller
is able to support many namespaces as well as being able to (optionally) create and delete
namespaces (via namespace management commands). Therefore:

1) PCIe enumeration discovers the NVMe controller.
2) The NVMe driver binds to this PCIe device and controller capabilities and namespaces

are discovered using standard NVMe controller Identify Admin commands.
3) The driver configures the NVMe namespaces using NVMe NS identify commands and

makes them available to the storage stack on the host.

In this example the driver will discover one namespace on the NVMe controller of the CSD

a) Namespace 1: Conventional LBA based storage namespace.

Computational Storage Architecture and Programming Model 61
SNIA Standard Version 1.0

At this point the information about the namespaces on this NVMe- controller of the CSD is able
to be displayed with admin tools like nvme-cli. As an example the output of nvme-cli list for
such a device might look like:

Node SN Model Namespace Type Format or SubType FW Rev
/dev/nvme0n1 nvme1 Vendor A 1 Conventional LBA 512 B + 0 B 1.0

A.4.4.2 OpenCL CSP Function Discovery

As the OpenCL accelerator is on a separate PCI physical function, the first two stages of
discovery for the OpenCL CSE mirror those of the NVMe controller:

1. PCIe enumeration is used to discover the OpenCL CSP.
2. The Linux OpenCL Runtime driver binds to this PCIe device

The OpenCL Runtime driver implements platform-specific features that allow applications to
query OpenCL devices, device configuration information, and to create OpenCL contexts using
one or more devices.

The OpenCL runtime driver also discovers the PCIe P2P BAR memory exposed by the
OpenCL CSE and maps it to the host’s physical address space.

OpenCL defines set of APIs to discover OpenCL platforms and devices and to configure them.
In OpenCL, a platform is defined as the set of OpenCL devices from a vendor that implement
OpenCL functionality. The platform vendor also provides the OpenCL runtime drivers to
manage the OpeCL devices. A typical usage of OpenCL device involves discovering the
platform of the vendor and discovering the devices on that platform.

The OpenCL Runtime driver implements APIs that allow applications to query OpenCL devices
and device configuration information.

The APIs relevant to discovering the OpenCL device are described below:

This API returns the number and list of OpenCL platforms found on the system:

cl_int clGetPlatformIDs(cl_uint num_entries, cl_platform_id *platforms, cl_uint *num_platforms)

This API is used to get the platform specific info of the desired vendor platform:

cl_int clGetPlatformInfo(cl_platform_id platform,
cl_platform_info param_name,

 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

62 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

This API is used to find the number of OpenCL devices and their device-ids of the specific vendor
platform selected.

cl_int clGetDeviceIDs(cl_platform_id platform,
 cl_device_type device_type,
 cl_uint num_entries,
 cl_device_id *devices,
 cl_uint *num_devices)

Finally, the following API can be used to iterate over all the discovered devices and find the
desired device based on parameter CL_DEVICE_NAME. In this example the OpenCL
accelerator inside the CSD will have a unique name that can be matched.

cl_int clGetDeviceInfo(cl_device_id device,
 cl_device_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

A.4.5 Configuration – Explicit Mode
OpenCL provides a rich set of APIs to configure the CSE. These include mechanism to
partition a device, create contexts, download OpenCL kernels (CSF), allocate memory (FDM),
and more.

A.4.6 Usage – Storage Direct
The OpenCL device can be further optionally partitioned to sub-devices each having its own
context and command queue. The following API is used to create sub-devices.

cl_int clCreateSubDevices (cl_device_id in_device ,
 const cl_device_partition_property *properties ,
 cl_uint num_devices ,
 cl_device_id *out_devices ,
 cl_uint *num_devices_ret)

Once the device is selected, an OpenCL context must be created on that device using the
following API

cl_context clCreateContext(cl_context_properties *properties,
 cl_uint num_devices,
 const cl_device_id *devices,

Computational Storage Architecture and Programming Model 63
SNIA Standard Version 1.0

 void *pfn_notify (
 const char *errinfo,
 const void *private_info,
 size_t cb,
 void *user_data
),
 void *user_data,
 cl_int *errcode_ret)

The OpenCL context can be equated with the CSEE in the CSD. The context is used to create
a command queue between the host and the device and to load OpenCL kernels, allocate
memory objects.

The API to create the command queue is:

cl_command_queue clCreateCommandQueue(cl_context context,
 cl_device_id device,
 cl_command_queue_properties properties,
 cl_int *errcode_ret)

After the command queue is created, an OpenCL program is able to be created from a binary
file (whose format is specific to the OpenCL device execution environment). The OpenCL
program may contain one or more OpenCL kernels. An OpenCL kernel is equivalent to a CSF
on the CSD.

The following APIs are used to build the OpenCL program from binary and create OpenCL
kernels (CSFs)

cl_program clCreateProgramWithBinary (cl_context context,
 cl_uint num_devices,
 const cl_device_id *device_list,
 const size_t *lengths,
 const unsigned char **binaries,
 cl_int *binary_status,
 cl_int *errcode_ret)

cl_kernel clCreateKernel (cl_program program,
 const char *kernel_name,
 cl_int *errcode_ret)

The input and output buffers for the OpenCL kernels are allocated on the device and mapped
to host side buffers using the following APIs

The following API allocates a buffer on the OpenCL device and a corresponding buffer on the
host memory

cl_mem clCreateBuffer (cl_context context,

64 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

 cl_mem_flags flags,
 size_t size,
 void *host_ptr,
 cl_int *errcode_ret)

The following API returns the host mapped address of the buffer created in the previous API.

void * clEnqueueMapBuffer (cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_map,
 cl_map_flags map_flags,
 size_t offset,
 size_t cb,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event,
 cl_int *errcode_ret)

The device side buffer handle retuned by clCreateBuffer APIs is passed to OpenCL kernel
using the following API

cl_int clSetKernelArg (cl_kernel kernel,
 cl_uint arg_index,
 size_t arg_size,
 const void *arg_value)

There is no explicit configuration required for the NVMe controller as the host driver already
enumerates and configures the namespaces during the discovery process as per the NVMe
standard

A.4.7 Usage – Explicit Mode Computational Storage
In this example we look at a simple CSF use case where data stored on the storage of the CSD
is read, a transformation is performed on that data and the result is returned to the host.

As the input data is stored on the NVMe data storage of the CSD, it needs to be first read and
given to the CSF. There are two ways to do this: The host issues an NVMe read operation and
reads the data into its memory. Once that is complete, moves that data to OpenCL device
memory (AFDM) using the OpenCL API clEnqueueMigrateMemObjects. The other method is to
make use of the P2P mechanism. In this mechanism the host issues NVMe read operation but
the destination of that operation is the P2P memory on the OpenCL device. Using the PCI P2P
operation, the NVMe controller directly moves the data into OpenCL device memory (AFDM).
Using the P2P mechanism reduces the extra data movement from NVMe storage to host
memory and then back to OpenCL device memory (AFDM).

Computational Storage Architecture and Programming Model 65
SNIA Standard Version 1.0

Once the data is available in AFDM, the OpenCL kernel (CSF) can be triggered to run using the
following API.

cl_int clEnqueueTask (cl_command_queue command_queue,
 cl_kernel kernel,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

The host now waits for the CSF to complete it operations using the API

cl_int clWaitForEvents(
 cl_uint num_events,
 const cl_event* event_list)

Once the operation is complete, the result data can be moved back to host memory using the
OpenCLAPI clEnqueueMigrateMemObjects API

cl_int clEnqueueMigrateMemObjects (cl_command_queue command_queue ,
 cl_uint num_mem_objects ,
 const cl_mem *mem_objects ,
 cl_mem_migration_flags flags ,
 cl_uint num_events_in_wait_list ,
 const cl_event *event_wait_list ,
 cl_event *event)

If the use case is to store the result of the CSF back to the NVMe storage of the CSD, the output
buffer also can be allocated from the P2P area in the AFDM and NVMe write operation can be
initiated to move it into the storage directly using the P2P transfer mechanism between NVMe
controller and the OpenCL device.

66 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

A.5 Data Compression CSF Example

A.5.1 Overview

Data compression aims to reduce the amount of data stored on a storage device. By reducing
the amount of data being physically written to or read from storage media (e.g., flash memory
chips), data compression can also improve the storage device IO performance and lifetime span,
in addition to storage cost saving.

Different from off-loading compression/decompression through a specific API, Data
Compression CSF carries out compression/decompression on the IO data path, transparently
from the host (i.e., host simply issues normal IO write/read requests to a CSD with a Data
Compression CSF, without calling any other specific API). In order to materialize the storage
cost reduction, Data Compression CSF must expose a logical storage space that is larger than
its internal physical storage space. However, due to the runtime variation of data compressibility,
it is possible that the physical storage space will be used up before the logical storage space is
used up. Moreover, it is desirable for users to know how well different files or objects are
compressed by Data Compression CSF. Therefore, Data Compression FCSS must provide
adequate reporting mechanism and observability in terms of data compression.

A.5.2 Theory of Operation

In order to successfully implement data compression CSF that operates on all write data, a CSx
must be able to communicate that it contains a CSE that is able to perform data compression
CSF. Once the CSF’s ability is determined, the CSF should allow the host to monitor and query
the effect of data compression. This illustrative example will attempt to provide the initial
framework of the following steps needed to successfully allow for a CSx to perform a data
compression CSF.

A.5.3 Discovery
In order to determine if a CSx supports the Data Compression CSF, the CSx must first be
discovered as a CSx, with a CSE that is able to perform the function. If the CSE is able to
perform a Data Compression CSF, then the CSE must also indicate if the Data Compression
CSF allows configuration. If the CSE allows for configuration parameters to the Data
Compression CSF, then the configurable parameters must be shared. The following is a
possible list of configurable parameters:

1. Supported compression block sizes – The acceptable values of compression data block
size. The block size can be set globally for the entire Data Compression CSF, be set
separately for each logical storage space region of the Data Compression CSF, or even
be set for each individual write request sent to the Data Compression CSF.

2. Supported maximum logical storage space – The maximum size of the logical storage
space that can be exposed by the Data Compression CSF.

Computational Storage Architecture and Programming Model 67
SNIA Standard Version 1.0

3. Monitoring – The type of information to collect during runtime operation. Such
information can include the runtime physical storage capacity usage of the entire Data
Compression CSF, and the runtime physical storage capacity usage of any given logical
storage space.

Note that discovery may also return the default values of the configurable parameters.

A.5.4 Configuration
Once the configurable parameters of a CSE that supports the Data Compression CSF are
discovered, the Data Compression CSF is able to be configured if allowed. It is possible that
the Data Compression CSF will have default values that the user may not want to override, and
configuration is not necessary. If the user wants to configure the Data Compression CSF, then
the parameters returned by discovery need to be set and sent to the Data Compression CSF
before the data compression operation is performed.

A.5.5 Monitoring
As the data is being written to the Data Compression CSF, the user can get statistics on the
compression. The following are possible statistics to monitor:

1. Current physical storage space usage of the entire CSF
2. Current physical storage space usage of any logical storage space region of CSF
3. Lifetime data compression ratio of all the data written to CSF so far
4. Data compression ratio over a specified amount of data that has been written to the

CSF

68 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

A.6 Data Filter CSF Example

A.6.1 Overview

As one important category of operations in data analysis, data filtering aims to filter out the data
that are not needed by a query. In conventional practice, a CPU (or GPU) is responsible for data
filtering, which requires transferring all the raw data from the storage device into the CPU (or
GPU) memory. The unique feature of Data Filter CSF is to pushdown the data filtering operation
from the CPU (or GPU) to a CSE in the CSD. It can offload the data filtering operation from the
CPU (or GPU), leading to higher system performance, and less host resource contention in
terms of CPU/GPU cycles, memory capacity and bandwidth, and I/O bus bandwidth. The
following example illustrates using data filter CSF to carry out in-storage data filtering, as shown
in Figure 1. A table with four columns is stored in the Data Filter CSF that receives a request
“SELECT ID where State=CA” that seeks the IDs of all the table entries in which State equals to
CA. As illustrated in the figure, the Data Filter CSF fetch all the table entries from the storage
media, extracts each table entry, and checks whether the 4th column in the entry equals to CA.
After scanning the entire table, the Data Filter CSF returns the IDs of all the matching entries.

Figure B.6. 1 An example to illustrate the function of data filter FCSS

A.6.2 Theory of Operation

Computational Storage Architecture and Programming Model 69
SNIA Standard Version 1.0

In order to successfully implement data filter as a CSF, a CSx must be able to communicate that
it contains a CSE with the ability to perform data filter CSF. Once the ability is determined, the
CSF should allow the host to query the supported filter functions and data schema. This
illustrative example provides the initial framework of the following steps needed to successfully
allow for a CSE to perform data filter as an CSF.

A.6.3 Discovery
The steps in discovery are:

a) Discover if the Data Filter CSF allows configuration.
a. If the Data Filter CSF allows configuration, then discover the configurable

parameters. Discovery may also return the default values of the configurable
parameters.

b. The following is list of possible parameters:
i. Supported data formats (e.g. Parquet/ORC, JSON, XML formats). In order

to perform data filtering, Data Filter CSF must be able to understand the
data format specified by the host.

ii. Supported data types (e.g., ASCII string, integer)
iii. Supported filtering operations (e.g. >,<,=)
iv. Failover – The action to take (e.g. rollback to host-based data filter) if data

filter is interrupted.
b) Discover operational attributes of the Data Filter CSF

a. Monitoring Capabilities – The type of process information that can be collected
during data filtering. Such possible information includes the I/O rate of the data
filtering operation, the size of the data processed, the size of the data remaining
to be processed, the percentage complete, etc.

b. Operational Interruption Capability – Whether or not the data filtering operation
can be interrupted for purpose of either suspending, abandoning, or resuming the
request.

A.6.4 Configuration
Once a CSE that supports the Data Filter CSF is discovered, the Data Filter CSF is able to be
configured if allowed. It is possible that the Data Filter CSF will have default values that the user
may not want to override, and configuration is not necessary. If the user wants to configure the
Data Filter CSF, then the parameters returned by discovery need to be set and sent to the Data
Filter CSF before the data filtering operation is performed.

A.6.5 Operation
To utilize data filter CSF to carry out in-storage data filtering, host passes enough information
about the data filter operation to the CSE that executes the data filter CSF. Accordingly, the data
filter CSF performs in-storage data filtering and returns the results back to the host. The
information about the data filter operation may include:

70 Computational Storage Architecture and Programming Model
SNIA Standard Version 1.0

1. The address of to-be-processed data
2. The data format (e.g., MySQL, Parquet) and schema (e.g., the number of columns in

the table, and data type of each column)
3. The specific filter operation to be performed
4. The host memory address for the returned data

A.6.6 Monitoring
As the data object is being processed by the data filter CSF, the user can get status and statistics
on the process. The following are possible status and statistics to monitor (not all items are
required; not all items are unique to this CSF):

8. The I/O rate of the data filter operation
9. Current amount of data processed by the data filtering operation
10. Current amount of data remaining to be processed by the data filtering operation
11. The percentage of completion of the data filtering operation
12. Success or failure of the operation
13. Existing state of the operation such as paused, interrupted, resumed, etc.

Based on the status and statistics, the user can then determine if the operation needs to be
paused, abandoned or resumed.

Computational Storage Architecture and Programming Model 71
SNIA Standard Version 1.0

	Foreword
	1.1 Scope

	2 References
	3 Definitions, abbreviations, and conventions
	3.1 Definitions
	3.1.1 Allocated Function Data Memory
	3.1.2 Computational Storage
	3.1.3 Computational Storage Array (CSA)
	3.1.4 Computational Storage Device (CSx)
	3.1.5 Computational Storage Drive (CSD)
	3.1.6 Computational Storage Engine (CSE)
	3.1.7 Computational Storage Engine Environment (CSEE)
	3.1.8 Computational Storage Function (CSF)
	3.1.9 Computational Storage Processor (CSP)
	3.1.10 Computational Storage Resource (CSR)
	3.1.11 Function Data Memory (FDM)
	3.1.12 platform firmware

	3.2 Keywords
	3.2.1 mandatory
	3.2.2 may
	3.2.3 may not
	3.2.4 need not
	3.2.5 optional
	3.2.6 shall
	3.2.7 should

	3.3 Abbreviations

	4 Theory of Operation
	4.1 Overview
	4.2 Discovery
	4.2.1 CSx Discovery Overview
	4.2.2 CSR Discovery Overview
	4.2.3 CSF Discovery and Configuration Example

	4.3 Configuration
	4.3.1 CSE Configuration Overview
	4.3.2 CSEE Configuration Overview
	4.3.3 CSF Configuration Overview

	4.4 Security
	4.4.1 General
	4.4.2 Privileged Access and Operations
	4.4.3 CSx Security Considerations
	4.4.3.1 CSx Sanitization
	4.4.3.2 CSx Data at-rest Encryption
	4.4.3.3 CSx Key Management
	4.4.3.4 CSx Storage Sanitization
	4.4.3.5 CSx Roots of Trust (RoT)
	4.4.3.6 CSx Software Security

	4.5 CSF Usage
	4.5.1 CSF Usage Overview
	4.5.1.1 Direct CSF Usage Model
	4.5.1.2 Indirect CSF Usage Model

	4.5.2 CSF Execution

	5 Example Computational Storage Functions
	5.1 Compression CSF
	5.2 Database Filter CSF
	5.3 Encryption CSF
	5.4 Erasure Coding CSF
	5.5 RegEx CSF
	5.6 Scatter-Gather CSF
	5.7 Pipeline CSF
	5.8 Video Compression CSF
	5.9 Hash/CRC CSF
	5.10 Data Deduplication CSF
	5.11 Large Data Set CSFs

	6 Example Computational Storage Execution Environment
	6.1 Operating System CSEE
	6.2 Container Platform CSEE
	6.3 Container CSEE
	6.4 eBPF CSEE
	6.5 FPGA Bitstream CSEE

	Annex A. (Informative) Illustrative Examples
	A.1 CSFs on a Large Multi-Device Dataset using Ceph
	A.1.1 Introduction
	A.1.2 Theory of Operation
	A.1.3 Discovery
	A.1.4 Configuration
	A.1.5 Usage
	A.1.6 Example Application Deployment
	A.2 Using a Containerized Application within Linux (CSEE with included CSF)
	A.2.1 Theory of Operation
	A.2.2 Discovery
	A.2.3 Configuration
	A.2.4 Usage
	A.2.5 Example of Application Deployment
	A.3 Data Deduplication CSF
	A.3.1 Overview
	A.3.2 Theory of Operation
	A.3.3 Discovery
	A.3.4 Configuration
	A.3.5 Operation
	A.3.6 Monitoring
	A.3.7 CSF Data Deduplication Example
	A.4 A Computational Storage Function on a NVM Express and OpenCL based Computational Storage Drive Illustrative Example
	A.4.1 CSEE Example
	A.4.2 Computational Storage Drive
	A.4.3 Theory of Operation
	A.4.4 Discovery
	A.4.4.1 NVMe Function Discovery
	A.4.4.2 OpenCL CSP Function Discovery
	A.4.5 Configuration – Explicit Mode
	A.4.6 Usage – Storage Direct
	A.4.7 Usage – Explicit Mode Computational Storage
	A.5 Data Compression CSF Example
	A.5.1 Overview
	A.5.2 Theory of Operation
	A.5.3 Discovery
	A.5.4 Configuration
	A.5.5 Monitoring
	A.6 Data Filter CSF Example
	A.6.1 Overview
	A.6.2 Theory of Operation
	A.6.3 Discovery
	A.6.4 Configuration
	A.6.5 Operation
	A.6.6 Monitoring

