
 1

NVM Programming Model (NPM)
Version 1.1

Abstract: This SNIA document defines recommended behavior for software supporting Non-
Volatile Memory (NVM).

Publication of this Working Draft for review and comment has been approved by the NVM
Programming TWG. This draft represents a “best effort” attempt by the NVM Programming TWG
to reach preliminary consensus, and it may be updated, replaced, or made obsolete at any time.
This document should not be used as reference material or cited as other than a “work in
progress.” Suggestion for revision should be directed to http://www.snia.org/feedback/.

Working Draft

November 7, 2014

http://www.snia.org/feedback/

USAGE 2

The SNIA hereby grants permission for individuals to use this document for personal use only, 3
and for corporations and other business entities to use this document for internal use only 4
(including internal copying, distribution, and display) provided that: 5

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its 6
entirety with no alteration, and, 7
 8

2. Any document, printed or electronic, in which material from this document (or any 9
portion hereof) is reproduced shall acknowledge the SNIA copyright on that material, 10
and shall credit the SNIA for granting permission for its reuse. 11
 12

Other than as explicitly provided above, you may not make any commercial use of this 13
document, sell any or this entire document, or distribute this document to third parties. All 14
rights not explicitly granted are expressly reserved to SNIA. 15

Permission to use this document for purposes other than those enumerated above may be 16
requested by e-mailing tcmd@snia.org. Please include the identity of the requesting individual 17
and/or company and a brief description of the purpose, nature, and scope of the requested 18
use. 19

All code fragments, scripts, data tables, and sample code in this SNIA document are made 20
available under the following license: 21
 22

BSD 3-Clause Software License 23
 24
Copyright (c) 2014, the Storage Networking Industry Association. 25
 26
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the 27
following conditions are met: 28
 29
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following 30
disclaimer. 31
 32
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following 33
disclaimer in the documentation and/or other materials provided with the distribution. 34
 35
* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be 36
used to endorse or promote products derived from this software without specific prior written permission. 37
 38
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY 39
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 40
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 41
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 42
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 43
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 44
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 45
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 46
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 47

NVM Programming Model (NPM) Working Draft 2
Version 1 Update 1

DISCLAIMER 48

The information contained in this publication is subject to change without notice. The SNIA 49
makes no warranty of any kind with regard to this specification, including, but not limited to, the 50
implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not 51
be liable for errors contained herein or for incidental or consequential damages in connection 52
with the furnishing, performance, or use of this specification. 53

Suggestions for revisions should be directed to http://www.snia.org/feedback/. 54

Copyright © 2014 SNIA. All rights reserved. All other trademarks or registered trademarks are 55
the property of their respective owners. 56

NVM Programming Model (NPM) Working Draft 3
Version 1 Update 1

Revision History 57

Update 1 Revision 1 58

Date 59
November 7, 2014 60

 61
Changes Incorporated 62
 63
• USAGE: added BSD 3-clause license (new SNIA template) 64
• 1 Scope: last sentence: clarified expectation that sharing data was consistent with native 65

hardware (as well as OS) behavior 66
• 3.4 Conventions: remove text on numeric conventions because they are not used 67
• 4.1 bullet #1: changed hard-coded section number to xref 68
• 4.3.3 remove bullet saying NVM.PM.VOLUME addresses errors 69
• 6.8 last paragraph: changed Programming to have 2 “m”s 70
• 6,10 Aligned operations on fundamental data types::moved here from former Consistency 71

Annex (Ballot-Proposal-00008) 72
• 7.2.7 NVM.BLOCK.SCAR last paragraph: added “r” to “scarred” in “A block stays scarred 73

until it is updated by a write operation.” 74
• 8.4.3.2.3, Failure Scenarios, paragraph 1: removed word “fundamental” 75
• 9.1 remove bullet saying NVM.PM.VOLUME addresses errors 76
• 10.1 NVM.PM.FLE Overview: changes “bold red line” to “red wavy line” 77
• 10.1.1 Applications and PM Consistency:: Content moved from former Consistency Annex 78

(Ballot-Proposal-00008) 79
• 10.2.4 NVM.PM.FILE.SYNC paragraph 3: deleted “An annex to this specification is 80

proposed to address this.” This refers to former Consistency Annex content which is now in 81
10.1.1 (Ballot-Proposal-00008) 82

• 10.2.23 NVM.PM.FILE.MAP paragraph 3: add OPTIMIZED-FLUSH and 83
OPTIMIZED_FLUSH_AND_SYNC to the list of sync actions (Ballot-Proposal-00006) 84

• 10.2.5 NVM.PM.FILE.OPTIMIZED_FLUSH and 10.2.7 85
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_SYNC: added “Requires: NVM.PM.FILE.MAP” 86
(Ballot-Proposal-00006) 87

• 10.3.3 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY first sentence: add reference 88
to new 6.10 discussion of aligned operations on fundamental data types (Ballot-Proposal-89
00008) 90

• Annex B Consistency deleted (Ballot-Proposal-00008) 91

92

NVM Programming Model (NPM) Working Draft 4
Version 1 Update 1

Table of Contents 93

FOREWORD ... 9 94
1 SCOPE .. 10 95
2 REFERENCES .. 11 96
3 DEFINITIONS, ABBREVIATIONS, AND CONVENTIONS ... 12 97

3.1 DEFINITIONS .. 12 98

3.2 KEYWORDS .. 13 99

3.3 ABBREVIATIONS ... 13 100

3.4 CONVENTIONS ... 14 101

4 OVERVIEW OF THE NVM PROGRAMMING MODEL (INFORMATIVE) 15 102
4.1 HOW TO READ AND USE THIS SPECIFICATION ... 15 103

4.2 NVM DEVICE MODELS ... 15 104

4.3 NVM PROGRAMMING MODES ... 17 105

4.4 INTRODUCTION TO ACTIONS, ATTRIBUTES, AND USE CASES... 19 106

5 COMPLIANCE TO THE PROGRAMMING MODEL.. 21 107
5.1 OVERVIEW ... 21 108

5.2 DOCUMENTATION OF MAPPING TO APIS ... 21 109

5.3 COMPATIBILITY WITH UNSPECIFIED NATIVE ACTIONS .. 21 110

5.4 MAPPING TO NATIVE INTERFACES .. 21 111

6 COMMON PROGRAMMING MODEL BEHAVIOR ... 22 112
6.1 OVERVIEW ... 22 113

6.2 CONFORMANCE TO MULTIPLE FILE MODES .. 22 114

6.3 DEVICE STATE AT SYSTEM STARTUP ... 22 115

6.4 SECURE ERASE .. 22 116

6.5 ALLOCATION OF SPACE ... 22 117

6.6 INTERACTION WITH I/O DEVICES .. 22 118

6.7 NVM STATE AFTER A MEDIA OR CONNECTION FAILURE .. 23 119

NVM Programming Model (NPM) Working Draft 5
Version 1 Update 1

6.8 ERROR HANDLING FOR PERSISTENT MEMORY .. 23 120

6.9 PERSISTENCE DOMAIN .. 23 121

6.10 ALIGNED OPERATIONS ON FUNDAMENTAL DATA TYPES .. 23 122

6.11 COMMON ACTIONS .. 24 123

6.12 COMMON ATTRIBUTES ... 25 124

6.13 USE CASES ... 25 125

7 NVM.BLOCK MODE ... 27 126
7.1 OVERVIEW ... 27 127

7.2 ACTIONS ... 29 128

7.3 ATTRIBUTES .. 32 129

7.4 USE CASES .. 36 130

8 NVM.FILE MODE .. 40 131
8.1 OVERVIEW ... 40 132

8.2 ACTIONS ... 40 133

8.3 ATTRIBUTES .. 42 134

8.4 USE CASES .. 43 135

9 NVM.PM.VOLUME MODE .. 50 136
9.1 OVERVIEW ... 50 137

9.2 ACTIONS ... 50 138

9.3 ATTRIBUTES .. 53 139

9.4 USE CASES .. 55 140

10 NVM.PM.FILE... 58 141
10.1 OVERVIEW .. 58 142

10.2 ACTIONS .. 61 143

10.3 ATTRIBUTES ... 66 144

10.4 USE CASES ... 68 145

NVM Programming Model (NPM) Working Draft 6
Version 1 Update 1

ANNEX A (INFORMATIVE) PM POINTERS ... 78 146
ANNEX B (INFORMATIVE) PM ERROR HANDLING ... 79 147
ANNEX C (INFORMATIVE) DEFERRED BEHAVIOR .. 83 148

D.1 REMOTE SHARING OF NVM ... 83 149

D.2 MAP_CACHED OPTION FOR NVM.PM.FILE.MAP ... 83 150

D.3 NVM.PM.FILE.DURABLE.STORE ... 83 151

D.4 ENHANCED NVM.PM.FILE.WRITE .. 83 152

D.5 MANAGEMENT-ONLY BEHAVIOR ... 83 153

D.6 ACCESS HINTS ... 83 154

D.7 MULTI-DEVICE ATOMIC MULTI-WRITE ACTION ... 83 155

D.8 NVM.BLOCK.DISCARD_IF_YOU_MUST ACTION .. 83 156

D.9 ATOMIC WRITE ACTION WITH ISOLATION .. 85 157

D.10 ATOMIC SYNC/FLUSH ACTION FOR PM .. 85 158

D.11 HARDWARE-ASSISTED VERIFY .. 85 159

 160

NVM Programming Model (NPM) Working Draft 7
Version 1 Update 1

Table of Figures 161

Figure 1 Block NVM example .. 16 162
Figure 2 PM example... 16 163
Figure 3 Block volume using PM HW .. 16 164
Figure 4 NVM.BLOCK and NVM.FILE mode examples ... 17 165
Figure 5 NVM.PM.VOLUME and NVM.PM.FILE mode examples ... 18 166
Figure 6 NVM.BLOCK mode example ... 27 167
Figure 7 SSC in a storage stack .. 36 168
Figure 8 SSC software cache application .. 37 169
Figure 9 SSC with caching assistance... 37 170
Figure 10 NVM.FILE mode example ... 40 171
Figure 11 NVM.PM.VOLUME mode example .. 50 172
Figure 12 Zero range offset example ... 54 173
Figure 13 Non-zero range offset example ... 54 174
Figure 14 NVM.PM.FILE mode example ... 58 175
Figure 15 Linux Machine Check error flow with proposed new interface 81 176
 177

NVM Programming Model (NPM) Working Draft 8
Version 1 Update 1

FOREWORD 178
The SNIA NVM Programming Technical Working Group was formed to address the ongoing 179
proliferation of new non-volatile memory (NVM) functionality and new NVM technologies. An 180
extensible NVM Programming Model is necessary to enable an industry wide community of 181
NVM producers and consumers to move forward together through a number of significant 182
storage and memory system architecture changes. 183

This SNIA specification defines recommended behavior between various user space and 184
operating system (OS) kernel components supporting NVM. This specification does not 185
describe a specific API. Instead, the intent is to enable common NVM behavior to be exposed 186
by multiple operating system specific interfaces. 187

After establishing context, the specification describes several operational modes of NVM 188
access. Each mode is described in terms of use cases, actions and attributes that inform user 189
and kernel space components of functionality that is provided by a given compliant 190
implementation. 191

Acknowledgements 192

The SNIA NVM Programming Technical Working Group, which developed and reviewed this 193
standard, would like to recognize the significant contributions made by the following members: 194

Organization Represented Name of Representative 195
EMC Bob Beauchamp 196
Hewlett Packard Hans Boehm 197
NetApp Steve Byan 198
Hewlett Packard Joe Foster 199
Fusion-io Walt Hubis 200
Red Hat Jeff Moyer 201
Fusion-io Ned Plasson 202
Rougs, LLC Tony Roug 203
Intel Corporation Andy Rudoff 204
Microsoft Spencer Shepler 205
Fusion-io Nisha Talagata 206
Hewlett Packard Doug Voigt 207
Intel Corporation Paul von Behren 208

NVM Programming Model (NPM) Working Draft 9
Version 1 Update 1

1 Scope 209
This specification is focused on the points in system software where NVM is exposed either as 210
a hardware abstraction within an operating system kernel (e.g., a volume) or as a data 211
abstraction (e.g., a file) to user space applications. The technology that motivates this 212
specification includes flash memory packaged as solid state disks and PCI cards as well as 213
other solid state non-volatile devices, including those which can be accessed as memory. 214

It is not the intent to exhaustively describe or in any way deprecate existing modes of NVM 215
access. The goal of the specification is to augment the existing common storage access 216
models (e.g., volume and file access) to add new NVM access modes. Therefore this 217
specification describes the discovery and use of capabilities of NVM media, connections to the 218
NVM, and the system containing the NVM that are emerging in the industry as vendor specific 219
implementations. These include: 220

• supported access modes, 221
• visibility in memory address space, 222
• atomicity and durability, 223
• recognizing, reporting, and recovering from errors and failures, 224
• data granularity, and 225
• capacity reclamation. 226

This revision of the specification focuses on NVM behaviors that enable user and kernel space 227
software to locate, access, and recover data. It does not describe behaviors that are specific to 228
administrative or diagnostic tasks for NVM. There are several reasons for intentionally leaving 229
administrative behavior out of scope. 230
• For new types of storage programming models, the access must be defined and agreed on 231

before the administration can be defined. Storage management behavior is typically 232
defined in terms of how it enables and diagnoses the storage programming model. 233

• Administrative tasks often require human intervention and are bound to the syntax for the 234
administration. This document does not define syntax. It focuses only on the semantics of 235
the programming model. 236

• Defining diagnostic behaviors (e.g., wear-leveling) as vendor-agnostic is challenging across 237
all vendor implementations. A common recommended behavior may not allow an approach 238
optimal for certain hardware. 239

 240
This revision of the specification does not address sharing data across computing nodes. This 241
revision of the specification assumes that sharing data between processes and threads follows 242
the native OS and hardware behavior. 243

NVM Programming Model (NPM) Working Draft 10
Version 1 Update 1

2 References 244
The following referenced documents are indispensable for the application of this document. 245

For references available from ANSI, contact ANSI Customer Service Department at (212) 642-246
49004980 (phone), (212) 302-1286 (fax) or via the World Wide Web at http://www.ansi.org. 247

SPC-3 ISO/IEC 14776-453, SCSI Primary Commands – 3 [ANSI INCITS 408-
2005]
Approved standard, available from ANSI.

SBC-2 ISO/IEC 14776-322, SCSI Block Commands - 2 [T10/BSR INCITS 514]
Approved standard, available from ANSI.

ACS-2 ANSI INCITS 482-2012, Information technology - ATA/ATAPI Command
Set -2
Approved standard, available from ANSI.

NVMe 1.1 NVM Express Revision 1.1,
Approved standard, available from http://nvmexpress.org

SPC-4 SO/IEC 14776-454, SCSI Primary Commands - 4 (SPC-4) (T10/1731-D)
Under development, available from http://www.t10.org.

SBC-4 ISO/IEC 14776-324, SCSI Block Commands - 4 (SBC-4) [BSR INCITS
506]
Under development, available from http://www.t10.org.

T10 13-
064r0

T10 proposal 13-064r0, Rob Elliot, Ashish Batwara, SBC-4 SPC-5
Atomic writes
Proposal, available from http://www.t10.org.

ACS-2 r7 Information technology - ATA/ATAPI Command Set – 2 r7 (ACS-2)
Under development, available from http://www.t13.org.

Intel SPG Intel Corporation, Intel 64 and IA-32 Architectures Software Developer's
Manual Combined Volumes 3A, 3B, and 3C: System Programming
Guide, Parts 1 and 2, available from
http://download.intel.com/products/processor/manual/325384.pdf

 248

NVM Programming Model (NPM) Working Draft 11
Version 1 Update 1

http://nvmexpress.org/
http://download.intel.com/products/processor/manual/325384.pdf

3 Definitions, abbreviations, and conventions 249
For the purposes of this document, the following definitions and abbreviations apply. 250

3.1 Definitions 251

3.1.1 durable 252
committed to a persistence domain (see 3.1.7) 253

3.1.2 load and store operations 254
commands to move data between CPU registers and memory 255

3.1.3 memory-mapped file 256
segment of virtual memory which has been assigned a direct byte-for-byte correlation with 257
some portion of a file 258

3.1.4 non-volatile memory 259
any type of memory-based, persistent media; including flash memory packaged as solid state 260
disks, PCI cards, and other solid state non-volatile devices 261

3.1.5 NVM block capable driver 262
driver supporting the native operating system interfaces for a block device 263

3.1.6 NVM volume 264
subset of one or more NVM devices, treated by software as a single logical entity 265

See 4.2 NVM device models 266

3.1.7 persistence domain 267
location for data that is guaranteed to preserve the data contents across a restart of the device 268
containing the data 269

See 6.9 Persistence domain 270

3.1.8 persistent memory 271
storage technology with performance characteristics suitable for a load and store programming 272
model 273

3.1.9 programming model 274
set of software interfaces that are used collectively to provide an abstraction for hardware with 275
similar capabilities 276

NVM Programming Model (NPM) Working Draft 12
Version 1 Update 1

3.2 Keywords 277

In the remainder of the specification, the following keywords are used to indicate text related to 278
compliance: 279

3.2.1 mandatory 280
a keyword indicating an item that is required to conform to the behavior defined in this 281
standard 282

3.2.2 may 283
a keyword that indicates flexibility of choice with no implied preference; “may” is equivalent to 284
“may or may not” 285

3.2.3 may not 286
keywords that indicate flexibility of choice with no implied preference; “may not” is equivalent to 287
“may or may not” 288

3.2.4 need not 289
keywords indicating a feature that is not required to be implemented; “need not” is equivalent 290
to “is not required to” 291

3.2.5 optional 292
a keyword that describes features that are not required to be implemented by this standard; 293
however, if any optional feature defined in this standard is implemented, then it shall be 294
implemented as defined in this standard 295

3.2.6 shall 296
a keyword indicating a mandatory requirement; designers are required to implement all such 297
mandatory requirements to ensure interoperability with other products that conform to this 298
standard 299

3.2.7 should 300
a keyword indicating flexibility of choice with a strongly preferred alternative 301

3.3 Abbreviations 302

ACID Atomicity, Consistency, Isolation, Durability 303

NVM Non-Volatile Memory 304

PM Persistent Memory 305

SSD Solid State Disk 306

NVM Programming Model (NPM) Working Draft 13
Version 1 Update 1

3.4 Conventions 307

Representation of modes in figures 308

Modes are represented by red, wavy lines in figures, as shown below: 309
 310
The wavy lines have labels identifying the mode name (which in turn, identifies a clause of the 311
specification). 312

NVM Programming Model (NPM) Working Draft 14
Version 1 Update 1

4 Overview of the NVM Programming Model (informative) 313

4.1 How to read and use this specification 314

Documentation for I/O programming typically consists of a set of OS-specific Application 315
Program Interfaces (APIs). API documentation describes the syntax and behavior of the API. 316
This specification intentionally takes a different approach and describes the behavior of NVM 317
programming interfaces, but allows the syntax to integrate with similar operating system 318
interfaces. A recommended approach for using this specification is: 319

1. Determine which mode applies (read 4.3 NVM programming modes). 320

2. Refer to the mode section to learn about the functionality provided by the mode and 321
how it relates to native operating system APIs; the use cases provide examples. The mode 322
specific section refers to other specification sections that may be of interest to the developer. 323

3. Determine which mode actions and attributes relate to software objectives. 324

4. Locate the vendor/OS mapping document (see 5.2) to determine which APIs map to the 325
actions and attributes. 326

For an example, a developer wants to update an existing application to utilize persistent 327
memory hardware. The application is designed to bypass caches to assure key content is 328
durable across power failures; the developer wants to learn about the persistent memory 329
programming model. For this example: 330

1. The NVM programming modes section identifies NVM.PM.FILE mode (see 10 331
NVM.PM.FILE) as the starting point for application use of persistent memory. 332

2. The NVM.PM.FILE mode text describes the general approach for accessing PM (similar 333
to native memory-mapped files) and the role of PM aware file system. 334

3. The NVM.PM.FILE mode identifies the NVM.PM.FILE.MAP and NVM.PM.FILE.SYNC 335
actions and attributes that allow an application to discover support for optional features. 336

4. The operating system vendor’s mapping document describes the mapping between 337
NVM.PM.FILE.MAP/SYNC and API calls, and also provides information about supported PM-338
aware file systems. 339

4.2 NVM device models 340

4.2.1 Overview 341
This section describes device models for NVM to help readers understand how key terms in 342
the programming model relate to other software and hardware. The models presented here 343
generally apply across operating systems, file systems, and hardware; but there are 344
differences across implementations. This specification strives to discuss the model generically, 345
but mentions key exceptions. 346

NVM Programming Model (NPM) Working Draft 15
Version 1 Update 1

One of the challenges discussing the software view of NVM is that the same terms are often 347
used to mean different things. For example, between commonly used management 348
applications, programming interfaces, and operating system documentation, volume may refer 349
to a variety of things. Within this specification, NVM volume has a specific meaning. 350

An NVM volume is a subset of one or more NVM devices, treated by software as a single 351
logical entity. For the purposes of this specification, a volume is a container of storage. A 352
volume may be block capable and may be persistent memory capable. The consumer of a 353
volume sees its content as a set of contiguous addresses, but the unit of access for a volume 354
differs across different modes and device types. Logical addressability and physical allocation 355
may be different. 356

In the examples in this section, “NVM block device” refers to NVM hardware that emulates a 357
disk and is accessed in software by reading or writing ranges of blocks. “PM device” refers to 358
NVM hardware that may be accessed via load and store operations. 359

4.2.2 Block NVM example 360
Consider a single drive form factor SSD where the entire SSD 361
capacity is dedicated to a file system. In this case, a single NVM block 362
volume maps to a single hardware device. A file system (not depicted) is 363
mounted on the NVM block volume. 364

The same model may apply to NVM block hardware other than an SDD (including flash on 365
PCIe cards). 366
4.2.3 Persistent memory example 367
This example depicts a NVDIMM and PM volume. A PM-aware file system 368
(not depicted) would be mounted on the PM volume. 369

The same model may apply to PM hardware other than an NVDIMM (including SSDs, PCIe 370
cards, etc.). 371

4.2.4 NVM block volume using PM hardware 372
In this example, the persistent memory implementation includes a driver 373
that uses a range of persistent memory (a PM volume) and makes it 374
appear to be a block NVM device in the legacy block stack. This 375
emulated block device could be aggregated or de-aggregated like legacy 376
block devices. In this example, the emulated block device is mapped 1-1 to an NVM block 377
volume and non-PM file system. 378

Note that there are other models for connecting a non-PM file system to PM hardware. 379

Figure 1 Block NVM example

Figure 2 PM example

Figure 3 Block volume using PM HW

NVM block volume

SSD hardware

NVDIMMs

PM volume

PM hardware

NVM block volume

PM volume

NVM Programming Model (NPM) Working Draft 16
Version 1 Update 1

4.3 NVM programming modes 380

4.3.1 NVM.BLOCK mode overview 381
NVM.BLOCK and NVM.FILE modes are used when NVM devices provide block storage 382
behavior to software (in other words, emulation of hard disks). The NVM may be exposed as a 383
single or as multiple NVM volumes. Each NVM volume supporting these modes provides a 384
range of logically-contiguous blocks. NVM.BLOCK mode is used by operating system 385
components (for example, file systems) and by applications that are aware of block storage 386
characteristics and the block addresses of application data. 387

This specification does not document existing block storage software behavior; the 388
NVM.BLOCK mode describes NVM extensions including: 389

• Discovery and use of atomic write and discard features 390
• The discovery of granularities (length or alignment characteristics) 391
• Discovery and use of ability for applications or operating system components to mark 392

blocks as unreadable 393
 394

Figure 4 NVM.BLOCK and NVM.FILE mode examples 395

Application

NVM block capable driver

File system

Application

NVM device NVM device

User space
Kernel space

Native file
API

NVM.BLOCK mode

NVM.FILE mode

 396
4.3.2 NVM.FILE mode overview 397
NVM.FILE mode is used by applications that are not aware of details of block storage 398
hardware or addresses. Existing applications written using native file I/O behavior should work 399
unmodified with NVM.FILE mode; adding support in the application for NVM extensions may 400
optimize the application. 401

An application using NVM.FILE mode may or may not be using memory-mapped file I/O 402
behavior. 403

NVM Programming Model (NPM) Working Draft 17
Version 1 Update 1

The NVM.FILE mode describes NVM extensions including: 404

• Discovery and use of atomic write features 405
• The discovery of granularities (length or alignment characteristics) 406

4.3.3 NVM.PM.VOLUME mode overview 407
NVM.PM.VOLUME mode describes the behavior for operating system components (such as 408
file systems) accessing persistent memory. NVM.PM.VOLUME mode provides a software 409
abstraction for Persistent Memory hardware and profiles functionality for operating system 410
components including: 411

• the list of physical address ranges associated with each PM volume 412
 413

Figure 5 NVM.PM.VOLUME and NVM.PM.FILE mode examples 414

Application

PM device PM device PM device. . .

User space

Kernel space

MMU
MappingsPM-aware file system

NVM PM capable driver

Load/
store

Native file
API

PM-aware kernel module

PM device

NVM.PM.VOLUME mode

NVM.PM.FILE mode

 415

4.3.4 NVM.PM.FILE mode overview 416
NVM.PM.FILE mode describes the behavior for applications accessing persistent memory. 417
The commands implementing NVM.PM.FILE mode are similar to those using NVM.FILE mode, 418
but NVM.PM.FILE mode may not involve I/O to the page cache. NVM.PM.FILE mode 419
documents behavior including: 420

• mapping PM files (or subsets of files) to virtual memory addresses 421
• syncing portions of PM files to the persistence domain 422

NVM Programming Model (NPM) Working Draft 18
Version 1 Update 1

4.4 Introduction to actions, attributes, and use cases 423

4.4.1 Overview 424
This specification uses four types of elements to describe NVM behavior. Use cases are the 425
highest order description. They describe complete scenarios that accomplish a goal. Actions 426
are more specific in that they describe an operation that represents or interacts with NVM. 427
Attributes comprise information about NVM. Property Group Lists describe groups of related 428
properties that may be considered attributes of a data structure or class; but the specification 429
allows flexibility in the implementation. 430

4.4.2 Use cases 431
In general, a use case states a goal or trigger and a result. It captures the intent of an 432
application and describes how actions are used to accomplish that intent. Use cases illustrate 433
the use of actions and help to validate action definitions. Use cases also describe system 434
behaviors that are not represented as actions. Each use case includes the following 435
information: 436

• a purpose and context including actors involved in the use case; 437
• triggers and preconditions indicating when a use case applies; 438
• inputs, outputs, events and actions that occur during the use case; 439
• references to related materials or concepts including other use cases that use or extend the 440

use case. 441

4.4.3 Actions 442
Actions are defined using the following naming convention: 443

<context>.<mode>.<verb> 444

The actions in this specification all have a context of “NVM”. The mode refers to one of the 445
NVM models documented herein (or “COMMON” for actions used in multiple modes). The verb 446
states what the action does. Examples of actions include “NVM.COMMON.GET_ATTRIBUTE” 447
and “NVM.FILE.ATOMIC_WRITE”. In some cases native actions that are not explicitly 448
specified by the programming model are referenced to illustrate usage. 449

The description of each action includes: 450

• parameters and results of the action 451
• details of the action’s behavior 452
• compatibility of the action with pre-existing APIs in the industry 453

A number of actions involve options that can be specified each time the action is used. The 454
options are given names that begin with the name of the action and end with a descriptive term 455
that is unique for the action. Examples include NVM.PM.FILE.MAP_COPY_ON_WRITE and 456
NVM.PM.FILE.MAP_SHARED. 457

NVM Programming Model (NPM) Working Draft 19
Version 1 Update 1

A number of actions are optional. For each of these, there is an attribute that indicates whether 458
the action is supported by the implementation in question. By convention these attributes end 459
with the term “CAPABLE” such as NVM.BLOCK.ATOMIC_WRITE_CAPABLE. Supported 460
options are also enumerated by attributes that end in “CAPABLE”. 461

4.4.4 Attributes 462
Attributes describe properties or capabilities of a system. This includes indications of which 463
actions can be performed in that system and variations on the internal behavior of specific 464
actions. For example attributes describe which NVM modes are supported in a system, and 465
the types of atomicity guarantees available. 466

In this programming model, attributes are not arbitrary key value pairs that applications can 467
store for unspecified purposes. Instead the NVM attributes are intended to provide a common 468
way to discover and configure certain aspects of systems based on agreed upon 469
interpretations of names and values. While this can be viewed as a key value abstraction it 470
does not require systems to implement a key value repository. Instead, NVM attributes are 471
mapped to a system’s native means of describing and configuring those aspects associated 472
with said attributes. Although this specification calls out a set of attributes, the intent is to allow 473
attributes to be extended in vendor unique ways through a process that enables those 474
extensions to become attributes and/or attribute values in a subsequent version of the 475
specification or in a vendor’s mapping document. 476

4.4.5 Property group lists 477
A property group is set of property values used together in lists; typically property group 478
lists are inputs or outputs to actions. The implementation may choose to implement a property 479
group as a new data structure or class, use properties in existing data structures or classes, or 480
other mechanisms as long as the caller can determine which collection of values represent the 481
members of each list element. 482

NVM Programming Model (NPM) Working Draft 20
Version 1 Update 1

5 Compliance to the programming model 483

5.1 Overview 484

Since a programming model is intentionally abstract, proof of compliance is somewhat indirect. 485
The intent is that a compliant implementation, when properly configured, can be used in such a 486
way as to exhibit the behaviors described by the programming model without unnecessarily 487
impacting other aspects of the implementation. 488

Compliance of an implementation shall be interpreted as follows. 489

5.2 Documentation of mapping to APIs 490

In order to be considered compliant with this programming model, implementations must 491
provide documentation of the mapping of attributes and actions in the programming model to 492
their counterparts in the implementation. 493

5.3 Compatibility with unspecified native actions 494

Actions and attributes of the native block and file access methods that correspond to the 495
modes described herein shall continue to function as defined in those native methods. This 496
specification does not address unmodified native actions except in passing to illustrate their 497
usage. 498

5.4 Mapping to native interfaces 499

Implementations are expected to provide the behaviors specified herein by mapping them as 500
closely as possible to native interfaces. An implementation is not required to have a one-to-one 501
mapping between actions (or attributes) and APIs – for example, an implementation may have 502
an API that implements multiple actions. 503

NVM Programming Model action descriptions do not enumerate all possible results of each 504
action. Only those that modify programming model specific behavior are listed. The results that 505
are referenced herein shall be discernible from the set of possible results returned by the 506
native action in a manner that is documented with action mapping. 507

Attributes with names ending in _CAPABLE are used to inform a caller whether an optional 508
action or attribute is supported by the implementations. The mandatory requirement for 509
_CAPABLE attributes can be met by the mapping document describing the implementation’s 510
default behavior for reporting unsupported features. For example: the mapping document 511
could state that if a flag with a name based on the attribute is undefined, then the 512
action/attribute is not supported. 513

NVM Programming Model (NPM) Working Draft 21
Version 1 Update 1

6 Common programming model behavior 514

6.1 Overview 515

This section describes behavior that is common to multiple modes and also behavior that is 516
independent from the modes. 517

6.2 Conformance to multiple file modes 518

A single computer system may include implementations of both NVM.FILE and NVM.PM.FILE 519
modes. A given file system may be accessed using either or both modes provided that the 520
implementations are intended by their vendor(s) to interoperate. Each implementation shall 521
specify its own mapping to the NVM Programming Model. 522

A single file system implementation may include both NVM.FILE and NVM.PM.FILE modes. 523
The mapping of the implementation to the NVM Programming Model must describe how the 524
actions and attributes of different modes are distinguished from one another. 525

Implementation specific errors may result from attempts to use NVM.PM.FILE actions on files 526
that were created in NVM.FILE mode or vice versa. The mapping of each implementation to 527
the NVM Programming Model shall specify any limitations related multi-mode access. 528

6.3 Device state at system startup 529

Prior to use, a file system is associated with one or more volumes and/or NVM devices. 530

The NVM devices shall be in a state appropriate for use with file systems. For example, if 531
transparent RAID is part of the solution, components implementing RAID shall be active so the 532
file system sees a unified virtual device rather than individual RAID components. 533

6.4 Secure erase 534

Secure erase of a volume or device is an administrative act with no defined programming 535
model action. 536

6.5 Allocation of space 537

Following native operating system behavior, this programming model does not define specific 538
actions for allocating space. Most allocation behavior is hidden from the user of the file, volume 539
or device. 540

6.6 Interaction with I/O devices 541

Interaction between Persistent Memory and I/O devices (for example, DMA) shall be 542
consistent with native operating system interactions between devices and volatile memory. 543

NVM Programming Model (NPM) Working Draft 22
Version 1 Update 1

6.7 NVM State after a media or connection failure 544

There is no action defined to determine the state of NVM for circumstances such as a media or 545
connection failure. Vendors may provide techniques such as redundancy algorithms to 546
address this, but the behavior is outside the scope of the programming model. 547

6.8 Error handling for persistent memory 548

The handling of errors in memory-mapped file implementations varies across operating 549
systems. Existing implementations support memory error reporting however there is not 550
sufficient similarity for a uniform approach to persistent memory error handling behavior. 551
Additional work is required to define an error handling approach. The following factors are to 552
be taken into account when dealing with errors. 553

• The application is in the best position to perform recovery as it may have access to 554
additional sources of data necessary to rewrite a bad memory address. 555

• Notification of a given memory error occurrence may need to be delivered to both kernel 556
and user space consumers (e.g., file system and application) 557

• Various hardware platforms have different capabilities to detect and report memory errors 558
• Attributes and possibly actions related to error handling behavior are needed in the NVM 559

Programming model 560

A proposal for persistent memory error handling appears as an appendix; see Annex B. 561

6.9 Persistence domain 562

NVM PM hardware supports the concept of a persistence domain. Once data has reached a 563
persistence domain, it may be recoverable during a process that results from a system restart. 564
Recoverability depends on whether the pattern of failures affecting the system during the 565
restart can be tolerated by the design and configuration of the persistence domain. 566

Multiple persistence domains may exist within the same system. It is an administrative act to 567
align persistence domains with volumes and/or file systems. This must be done in such a way 568
that NVM Programming Model behavior is assured from the point of view of each compliant 569
volume or file system. 570

6.10 Aligned operations on fundamental data types 571

Data alignment means putting the data at a memory offset equal to some multiple of the word 572
size, which increases the system's performance due to the way the CPU handles memory 573
(from Wikipedia “Data structure alignment”). Data types are fundamental when they are native 574
to programming languages or libraries. 575

Aligned operations on data types are usually exactly the same operations that under normal 576
operation become visible to other threads/data producers atomically. They are already well-577
defined for most settings: 578

NVM Programming Model (NPM) Working Draft 23
Version 1 Update 1

• Instruction Set Architectures already define them. 579
o E.g., for x86, MOV instructions with naturally aligned operands of at most 64 bits 580

qualify. 581

• They’re generated by known high-level language constructs, e.g.: 582
o C++11 lock-free atomic<T>, C11 _Atomic(T), Java & C# volatile, OpenMP atomic 583

directives. 584

For optimal performance, fundamental data types fit within CPU cache lines. 585

6.11 Common actions 586

6.11.1 NVM.COMMON.GET_ATTRIBUTE 587
Requirement: mandatory 588

Get the value of one or more attributes. Implementations conforming to the specification shall 589
provide the get attribute behavior, but multiple programmatic approaches may be used. 590

Inputs: 591
• reference to appropriate instance (for example, reference to an NVM volume) 592
• attribute name 593

Outputs: 594
• value of attribute 595

The vendor’s mapping document shall describe the possible errors reported for all applicable 596
programmatic approaches. 597

6.11.2 NVM.COMMON.SET_ATTRIBUTE 598
Requirement: optional 599

Note: at this time, no settable attributes are defined in this specification, but they may be 600
added in a future revision. 601

Set the value of one attribute. Implementations conforming to the specification shall provide 602
the set attribute behavior, but multiple programmatic approaches may be used. 603

Inputs: 604
• reference to appropriate instance 605
• attribute name 606
• value to be assigned to the attribute 607

The vendor’s mapping document shall describe the possible errors reported for all applicable 608
programmatic approaches. 609

NVM Programming Model (NPM) Working Draft 24
Version 1 Update 1

6.12 Common attributes 610

6.12.1 NVM.COMMON.SUPPORTED_MODES 611
Requirement: mandatory 612

SUPPORTED_MODES returns a list of the modes supported by the NVM implementation. 613

Possible values: NVM.BLOCK, NVM.FILE, NVM.PM.FILE, NVM.PM.VOLUME 614

NVM.COMMON.SET_ATTRIBUTE is not supported for 615
NVM.COMMON.SUPPORTED_MODES. 616

6.12.2 NVM.COMMON.FILE_MODE 617
Requirement: mandatory if NVM.FILE or NVM.PM.FILE is supported 618

Returns the supported file modes (NVM.FILE and/or NVM.PM.FILE) provided by a file system. 619

Target: a file path 620

Output value: a list of values: “NVM.FILE” and/or “NVM.PM.FILE” 621

See 6.2 Conformance to multiple file modes. 622

6.13 Use cases 623

6.13.1 Application determines which mode is used to access a file system 624

Purpose/triggers: 625
An application needs to determine whether the underlying file system conforms to NVM.FILE 626
mode, NVM.PM.FILE mode, or both. 627

Scope/context: 628
Some actions and attributes are defined differently in NVM.FILE and NVM.PM.FILE; 629
applications may need to be designed to handle these modes differently. This use case 630
describes steps in an application’s initialization logic to determine the mode(s) supported by 631
the implementation and set a variable indicating the preferred mode the application will use in 632
subsequent actions. This application prefers to use NVM.PM.FILE behavior if both modes are 633
supported. 634

Success scenario: 635
1) Invoke NVM.COMMON.GET_ATTRIBUTE (NVM.COMMON.FILE_MODE) targeting a 636

file path; the value returned provides information on which modes may be used to 637
access the data. 638

2) If the response includes “NVM.FILE”, then the actions and attributes described for the 639
NVM.FILE mode are supported. Set the preferred mode for this file system to 640
NVM.FILE. 641

NVM Programming Model (NPM) Working Draft 25
Version 1 Update 1

3) If the response includes “NVM.PM.FILE”, then the actions and attributes described for 642
the NVM.PM.FILE mode are supported. Set the preferred mode for this file system to 643
NVM.PM.FILE. 644

Outputs: 645

Postconditions: 646
A variable representing the preferred mode for the file system has been initialized. 647

See also: 648
6.2 Conformance to multiple file modes 649
6.12.2 NVM.COMMON.FILE_MODE 650

NVM Programming Model (NPM) Working Draft 26
Version 1 Update 1

7 NVM.BLOCK mode 651

7.1 Overview 652

NVM.BLOCK mode provides programming interfaces for NVM implementations behaving as 653
block devices. The programming interfaces include the native operating system behavior for 654
sending I/O commands to a block driver and adds NVM extensions. To support this mode, the 655
NVM devices are supported by an NVM block capable driver that provides the command 656
interface to the NVM. This specification does not document the native operating system block 657
programming capability; it is limited to the NVM extensions. 658

Figure 6 NVM.BLOCK mode example 659

Block-aware application

NVM block capable driver

File system

NVM device NVM device

User space

Kernel space

NVM.BLOCK mode

 660

Support for NVM.BLOCK mode requires that the NVM implementation support all behavior not 661
covered in this section consistently with the native operating system behavior for native block 662
devices. 663

The NVM extensions supported by this mode include: 664

• Discovery and use of atomic write and discard features 665
• The discovery of granularities (length or alignment characteristics) 666
• Discovery and use of per-block metadata used for verifying integrity 667
• Discovery and use of ability for applications or operating system components to mark 668

blocks as unreadable 669
 670
7.1.1 Discovery and use of atomic write features 671
Atomic Write support provides applications with the capability to assure that all the data for an 672
operation is written to the persistence domain or, if a failure occurs, it appears that no 673
operation took place. Applications may use atomic write operations to assure consistent 674

NVM Programming Model (NPM) Working Draft 27
Version 1 Update 1

behavior during a failure condition or to assure consistency between multiple processes 675
accessing data simultaneously. 676
 677
7.1.2 The discovery of granularities 678
Attributes are introduced to allow applications to discover granularities associated with NVM 679
devices. 680
 681
7.1.3 Discovery and use of capability to mark blocks as unreadable 682
An action (NVM.BLOCK.SCAR) is defined allowing an application to mark blocks as 683
unreadable. 684
 685
7.1.4 NVM.BLOCK consumers: operating system and applications 686
NVM.BLOCK behavior covers two types of software: NVM-aware operating system 687
components and block-optimized applications. 688

7.1.4.1 NVM.BLOCK operating system components 689
NVM-aware operating system components use block storage and have been enhanced to take 690
advantage of NVM features. Examples include file systems, logical volume managers, 691
software RAID, and hibernation logic. 692

7.1.4.2 Block-optimized applications 693
Block-optimized applications use a hybrid behavior utilizing files and file I/O operations, but 694
construct file I/O commands in order to cause drivers to issue desired block commands. 695
Operating systems and file systems typically provide mechanisms to enable block-optimized 696
application. The techniques are system specific, but may include: 697

• A mechanism for a block-optimized application to request that the file system move data 698
directly between the device and application memory, bypassing the buffering typically 699
provided by the file system. 700

• The operating system or file system may require the application to align requests on block 701
boundaries. 702

The file system and operating system may allow block-optimized applications to use memory-703
mapped files. 704

7.1.4.3 Mapping documentation 705
NVM.BLOCK operating system components may use I/O commands restricted to kernel space 706
to send I/O commands to drivers. NVM.BLOCK applications may use a constrained set of file 707
I/O operations to send commands to drivers. As applicable, the implementation shall provide 708
documentation mapping actions and/or attributes for all supported techniques for NVM.BLOCK 709
behavior. 710

The implementation shall document the steps to utilize supported capabilities for block-711
optimized applications and the constraints (e.g., block alignment) compared to NVM.FILE 712
behavior. 713

NVM Programming Model (NPM) Working Draft 28
Version 1 Update 1

7.2 Actions 714

7.2.1 Actions that apply across multiple modes 715
The following actions apply to NVM.BLOCK mode as well as other modes. 716

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1) 717
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2) 718

7.2.2 NVM.BLOCK.ATOMIC_WRITE 719
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true 720

Block-optimized applications or operating system components may use ATOMIC_WRITE to 721
assure consistent behavior during a power failure condition. This specification does not specify 722
the order in which this action occurs relative to other I/O operations, including other 723
ATOMIC_WRITE or ATOMIC_MULTIWRITE actions. This specification does not specify when 724
the data written becomes visible to other threads. 725

Inputs: 726
• the starting memory address 727
• a reference to the block device 728
• the starting block address 729
• the length 730
The interpretation of addresses and lengths (block or byte, alignment) should be consistent 731
with native write actions. Implementations shall provide documentation on the requirements for 732
specifying the starting addresses, block device, and length. 733

Return values: 734
• Success shall be returned if all blocks are updated in the persistence domain 735
• an error shall be reported if the length exceeds ATOMIC_WRITE_MAX_DATA_LENGTH 736

(see 7.3.3) 737
• an error shall be reported if the starting address is not evenly divisible by 738

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.4) 739
• an error shall be reported if the length is not evenly divisible by 740

ATOMIC_WRITE_LENGTH_GRANULARITY (see 7.3.5) 741
• If anything does or will prevent all of the blocks from being updated in the persistence 742

domain before completion of the operation, an error shall be reported and all the logical 743
blocks affected by the operation shall contain the data that was present before the device 744
server started processing the write operation (i.e., the old data, as if the atomic write 745
operation had no effect). If the NVM and processor are both impacted by a power failure, 746
no error will be returned since the execution context is lost. 747

• the different errors described above shall be discernible by the consumer and shall be 748
discernible from media errors 749

Relevant attributes: 750
ATOMIC_WRITE_MAX_DATA_LENGTH (see 7.3.3) 751

NVM Programming Model (NPM) Working Draft 29
Version 1 Update 1

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.4) 752
ATOMIC_WRITE_LENGTH_GRANULARITY (see 7.3.5) 753
ATOMIC_WRITE_CAPABLE (see 7.3.1) 754

7.2.3 NVM.BLOCK.ATOMIC_MULTIWRITE 755
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 756

Block-optimized applications or operating system components may use 757
ATOMIC_MULTIWRITE to assure consistent behavior during a power failure condition. This 758
action allows a caller to write non-adjacent extents atomically. The caller of 759
ATOMIC_MULTIWRITE provides a Property Group List (see 4.4.5) where the properties 760
describe the memory and block extents (see Inputs below); all of the extents are written as a 761
single atomic operation. This specification does not specify the order in which this action 762
occurs relative to other I/O operations, including other ATOMIC_WRITE or 763
ATOMIC_MULTIWRITE actions. This specification does not specify when the data written 764
becomes visible to other threads. 765

Inputs: 766
A Property Group List (see 4.4.5) where the properties are: 767
• memory address starting address 768
• length of data to write (in bytes) 769
• a reference to the device being written to 770
• the starting LBA on the device 771
Each property group represents an I/O. The interpretation of addresses and lengths (block or 772
byte, alignment) should be consistent with native write actions. Implementations shall provide 773
documentation on the requirements for specifying the ranges. 774
Return values: 775
• Success shall be returned if all block ranges are updated in the persistence domain 776
• an error shall be reported if the block ranges overlap 777
• an error shall be reported if the total size of memory input ranges exceeds 778

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH (see 7.3.8) 779
• an error shall be reported if the starting address in any input memory range is not evenly 780

divisible by ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.9) 781
• an error shall be reported if the length in any input range is not evenly divisible by 782

ATOMIC_MULTIWRITE_LENGTH_GRANULARITY (see 7.3.10) 783
• If anything does or will prevent all of the writes from being applied to the persistence 784

domain before completion of the operation, an error shall be reported and all the logical 785
blocks affected by the operation shall contain the data that was present before the device 786
server started processing the write operation (i.e., the old data, as if the atomic write 787
operation had no effect). If the NVM and processor are both impacted by a power failure, 788
no error will be returned since the execution context is lost. 789

• the different errors described above shall be discernible by the consumer 790

NVM Programming Model (NPM) Working Draft 30
Version 1 Update 1

Relevant attributes: 791
ATOMIC_MULTIWRITE_MAX_IOS (see 7.3.7) 792
ATOMIC_MULTIWRITE_MAX_DATA_LENGTH (see 7.3.8) 793
ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.9) 794
ATOMIC_MULTIWRITE_LENGTH_GRANULARITY (see 7.3.10) 795
ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) 796

7.2.4 NVM.BLOCK.DISCARD_IF_YOU_CAN 797
Requirement: mandatory if DISCARD_IF_YOU_CAN_CAPABLE (see 7.3.17) is true 798

This action notifies the NVM device that some or all of the blocks which constitute a volume 799
are no longer needed by the application. This action is a hint to the device. 800

Although the application has logically discarded the data, it may later read this range. Since 801
the device is not required to physically discard the data, its response is undefined: it may 802
return successful response status along with unknown data (e.g., the old data, a default 803
“undefined” data, or random data), or it may return an unsuccessful response status with an 804
error. 805
 806
Inputs: a range of blocks (starting LBA and length in logical blocks) 807

Status: Success indicates the request is accepted but not necessarily acted upon. 808

7.2.5 NVM.BLOCK.DISCARD_IMMEDIATELY 809
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 7.3.18) is true 810

Requires that the data block be unmapped (see NVM.BLOCK.EXISTS 7.2.6) before the next 811
READ or WRITE reference even if garbage collection of the block has not occurred yet, 812

DISCARD_IMMEDIATELY commands cannot be acknowledged by the NVM device until the 813
DISCARD_IMMEDIATELY has been durably written to media in a way such that upon 814
recovery from a power-fail event, the block is guaranteed to remain discarded. 815

Inputs: a range of blocks (starting LBA and length in logical blocks) 816

The values returned by subsequent read operations are specified by the 817
DISCARD_IMMEDIATELY_RETURNS (see 7.3.19) attribute. 818

Status: Success indicates the request is completed. 819

See also EXISTS (7.2.6), DISCARD_IMMEDIATELY_RETURNS (7.3.19), 820
DISCARD_IMMEDIATELY_CAPABLE (7.3.18). 821

7.2.6 NVM.BLOCK.EXISTS 822
Requirement: mandatory if EXISTS_CAPABLE (see 7.3.12) is true 823

NVM Programming Model (NPM) Working Draft 31
Version 1 Update 1

An NVM device may allocate storage through a thin provisioning mechanism or one of the 824
discard actions. As a result, a block can exist in one of three states: 825
• Mapped: the block has had data written to it 826
• Unmapped: the block has not been written, and there is no memory allocated 827
• Allocated: the block has not been written, but has memory allocated to it 828

The EXISTS action allows the NVM user to determine if a block has been allocated. 829

Inputs: an LBA 830

Output: the state (mapped, unmapped, or allocated) for the input block 831

Result: the status of the action 832

7.2.7 NVM.BLOCK.SCAR 833
Requirement: mandatory if SCAR_CAPABLE (see 7.3.13) is true 834

This action allows an application to request that subsequent reads from any of the blocks in 835
the address range will cause an error. This action uses an implementation-dependent means 836
to insure that all future reads to any given block from the scarred range will cause an error until 837
new data is stored to any given block in the range. A block stays scarred until it is updated by a 838
write operation. 839

Inputs: reference to a block volume, starting offset, length 840

Outputs: status 841

Relevant attributes: 842

NVM.BLOCK.SCAR_CAPABLE (7.3.13) – Indicates that the SCAR action is supported. 843

7.3 Attributes 844

7.3.1 Attributes that apply across multiple modes 845
The following attributes apply to NVM.BLOCK mode as well as other modes. 846

NVM.COMMON.SUPPORTED_MODES (see 6.12.1) 847

7.3.2 NVM.BLOCK.ATOMIC_WRITE_CAPABLE 848
Requirement: mandatory 849

This attribute indicates that the implementation is capable of the 850
NVM.BLOCK.ATOMIC_WRITE action. 851

7.3.3 NVM.BLOCK.ATOMIC_WRITE_MAX_DATA_LENGTH 852
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true. 853

NVM Programming Model (NPM) Working Draft 32
Version 1 Update 1

ATOMIC_WRITE_MAX_DATA_LENGTH is the maximum length of data that can be 854
transferred by an ATOMIC_WRITE action. 855

7.3.4 NVM.BLOCK.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY 856
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true. 857

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the starting 858
memory address for an ATOMIC_WRITE action. Address inputs to ATOMIC_WRITE shall be 859
evenly divisible by ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY. 860

7.3.5 NVM.BLOCK.ATOMIC_WRITE_LENGTH_GRANULARITY 861
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true. 862

ATOMIC_WRITE_LENGTH_GRANULARITY is the granularity of the length of data transferred 863
by an ATOMIC_WRITE action. Length inputs to ATOMIC_WRITE shall be evenly divisible by 864
ATOMIC_WRITE_LENGTH_GRANULARITY. 865

7.3.6 NVM.BLOCK.ATOMIC_MULTIWRITE_CAPABLE 866
Requirement: mandatory 867

ATOMIC_MULTIWRITE_CAPABLE indicates that the implementation is capable of the 868
NVM.BLOCK.ATOMIC_MULTIWRITE action. 869

7.3.7 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_IOS 870
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 871

ATOMIC_MULTIWRITE_MAX_IOS is the maximum length of the number of IOs (i.e., the size 872
of the Property Group List) that can be transferred by an ATOMIC_MULTIWRITE action. 873

7.3.8 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH 874
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 875

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH is the maximum length of data that can be 876
transferred by an ATOMIC_MULTIWRITE action. 877

7.3.9 NVM.BLOCK.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY 878
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 879

ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the 880
starting address of ATOMIC_MULTIWRITE inputs. Address inputs to ATOMIC_MULTIWRITE 881
shall be evenly divisible by ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY. 882

7.3.10 NVM.BLOCK.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY 883
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 884

NVM Programming Model (NPM) Working Draft 33
Version 1 Update 1

ATOMIC_MULTIWRITE_LENGTH_GRANULARITY is the granularity of the length of 885
ATOMIC_MULTIWRITE inputs. Length inputs to ATOMIC_MULTIWRITE shall be evenly 886
divisible by ATOMIC_MULTIWRITE_LENGTH_GRANULARITY. 887

7.3.11 NVM.BLOCK.WRITE_ATOMICITY_UNIT 888
Requirement: mandatory 889

If a write is submitted of this size or less, the caller is guaranteed that if power is lost before the 890
data is completely written, then the NVM device shall ensure that all the logical blocks affected 891
by the operation contain the data that was present before the device server started processing 892
the write operation (i.e., the old data, as if the atomic write operation had no effect). 893

If the NVM device can’t assure that at least one LOGICAL_BLOCKSIZE (see 7.3.14) extent 894
can be written atomically, WRITE_ATOMICITY_UNIT shall be set to zero. 895

The unit is NVM.BLOCK.LOGICAL_BLOCKSIZE (see 7.3.14). 896

7.3.12 NVM.BLOCK.EXISTS_CAPABLE 897
Requirement: mandatory 898

This attribute indicates that the implementation is capable of the NVM.BLOCK.EXISTS action. 899

7.3.13 NVM.BLOCK.SCAR_CAPABLE 900
Requirement: mandatory 901

This attribute indicates that the implementation is capable of the NVM.BLOCK.SCAR (see 902
7.2.7) action. 903

7.3.14 NVM.BLOCK.LOGICAL_BLOCK_SIZE 904
Requirement: mandatory 905

LOGICAL_BLOCK_SIZE is the smallest unit of data (in bytes) that may be logically read or 906
written from the NVM volume. 907

7.3.15 NVM.BLOCK.PERFORMANCE_BLOCK_SIZE 908
Requirement: mandatory 909

PERFORMANCE_BLOCK_SIZE is the recommended granule (in bytes) the caller should use 910
in I/O requests for optimal performance; starting addresses and lengths should be multiples of 911
this attribute. For example, this attribute may help minimizing device-implemented 912
read/modify/write behavior. 913

7.3.16 NVM.BLOCK.ALLOCATION_BLOCK_SIZE 914
Requirement: mandatory 915

NVM Programming Model (NPM) Working Draft 34
Version 1 Update 1

ALLOCATION_BLOCK_SIZE is the recommended granule (in bytes) for allocation and 916
alignment of data. Allocations smaller than this attribute (even if they are multiples of 917
LOGICAL_BLOCK_SIZE) may work, but may not yield optimal lifespan. 918

7.3.17 NVM.BLOCK.DISCARD_IF_YOU_CAN_CAPABLE 919
Requirement: mandatory 920

DISCARD_IF_YOU_CAN_CAPABLE shall be set to true if the implementation supports 921
DISCARD_IF_YOU_CAN. 922

7.3.18 NVM.BLOCK.DISCARD_IMMEDIATELY_CAPABLE 923
Requirement: mandatory 924

Returns true if the implementation supports DISCARD_IMMEDIATELY. 925

7.3.19 NVM.BLOCK.DISCARD_IMMEDIATELY_RETURNS 926
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 7.3.18) is true 927

The value returned from read operations to blocks specified by a DISCARD_IMMEDIATELY 928
action with no subsequent write operations. The possible values are: 929

• A value that is returned to each read of an unmapped block (see NVM.BLOCK.EXISTS 930
7.2.6) until the next write action 931

• Unspecified 932

7.3.20 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 933
Requirement: mandatory 934

FUNDAMENTAL_BLOCK_SIZE is the number of bytes that may become unavailable due to 935
an error on an NVM device. 936

A zero value means that the device is unable to provide a guarantee on the number of 937
adjacent bytes impacted by an error. 938

This attribute is relevant when the device does not support write atomicity. 939

If FUNDAMENTAL_BLOCK_SIZE is smaller than LOGICAL_BLOCK_SIZE (see 7.3.14), an 940
application may organize data in terms of FUNDAMENTAL_BLOCK_SIZE to avoid certain torn 941
write behavior. If FUNDAMENTAL_BLOCK_SIZE is larger than LOGICAL_BLOCK_SIZE, an 942
application may organize data in terms of FUNDAMENTAL_BLOCK_SIZE to assure two key 943
data items do not occupy an extent that is vulnerable to errors. 944

NVM Programming Model (NPM) Working Draft 35
Version 1 Update 1

7.4 Use cases 945

7.4.1 Flash as cache use case 946

Purpose/triggers: 947
Use Flash based NVM as a data cache. 948

Scope/context: 949
Flash memory’s fast random I/O performance and non-volatile characteristic make it a good 950
candidate as a Solid State Cache device (SSC). This use case is described in Figure 7 SSC in 951
a storage stack. 952

Figure 7 SSC in a storage stack 953

 954
 955
A possible software application is shown in Figure 8 SSC software cache application. In this 956
case, the cache manager employs the Solid State Cache to improve caching performance and 957
to maintain persistence and cache coherency across power fail. 958

NVM Programming Model (NPM) Working Draft 36
Version 1 Update 1

Figure 8 SSC software cache application 959

 960

It is also possible to use an enhanced SSC to perform some of the functions that the cache 961
manager must normally contend with as shown in Figure 9 SSC with caching assistance. 962

Figure 9 SSC with caching assistance 963

 964
In this use case, the Solid State Cache (SSC) provides a sparse address space that may be 965
much larger than the amount of physical NVM memory and manages the cache through its 966
own admission and eviction policies. The backing store is used to persist the data when the 967
cache becomes full. As a result, the block state for each block of virtual storage in the cache 968
must be maintained by the SSC. The SSC must also present a consistent cache interface that 969
can persist the cached data across a power fail and never returns stale data. 970

NVM Programming Model (NPM) Working Draft 37
Version 1 Update 1

In either of these cases, two important extensions to existing storage commands must be 971
present: 972

Eviction: An explicit eviction mechanism is required to invalidate cached data in the 973
SSC to allow the cache manager to precisely control the contents of the SSC. This 974
means that the SSC must insure that the eviction is durable before completing the 975
request. This mechanism is generally referred to as a persistent trim. This is the 976
NVM.BLOCK.DISCARD_IMMEDIATELY functionality. 977
Exists: The EXISTS action allows the cache manager to determine the state of a block, 978
or of a range of blocks, in the SSC. This action is used to test for the presence of data in 979
the cache, or to determine which blocks in the SSC are dirty and need to be flushed to 980
backing storage. This is the NVM.BLOCK.EXISTS functionality. 981

The most efficient mechanism for a cache manager would be to simply read the requested 982
data from the SSC which would the return either the data or an error indicated that the 983
requested data was not in the cache. This approach is problematic, since most storage drivers 984
and software require reads to be successful and complete by returning data - not an error. 985
Device that return errors for normal read operations are usually put into an offline state by the 986
system drivers. Further, the data that a read returns must be consistent from one read 987
operation to the next, provided that no intervening writes occur. As a result, a two stage 988
process must be used by the cache manager. The cache manager first issues an EXISTS 989
action to determine if the requested data is present in the cache. Based on the result, the 990
cache manager decides whether to read the data from the SSC or from the backing storage. 991

Success scenario: 992
The requested data is successfully read from or written to the SSC. 993

See also: 994
• 7.2.5 NVM.BLOCK.DISCARD_IMMEDIATELY 995
• 7.2.6 NVM.BLOCK.EXISTS 996
• Ptrim() + Exists(): Exposing New FTL Primitives to Applications, David Nellans, Michael 997

Zappe, Jens Axboe, David Flynn, 2011 Non-Volatile Memory Workshop. See: 998
http://david.nellans.org/files/NVMW-2011.pdf 999

• FlashTier: a Lightweight, Consistent, and Durable Storage Cache, Mohit Saxena, 1000
Michael M. Swift and Yiying Zhang, University of Wisconsin-Madison. See: 1001
http://pages.cs.wisc.edu/~swift/papers/eurosys12_flashtier.pdf 1002
HEC: Improving Endurance of High Performance Flash-based Cache Devices, Jingpei 1003
Yang, Ned Plasson, Greg Gillis, Nisha Talagala, Swaminathan Sundararaman, Robert 1004
Wood, Fusion-io, Inc., SYSTOR ’13, June 30 - July 02 2013, Haifa, Israel 1005

• Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory, Eunji 1006
Lee, Hyokyung Bahn, and Sam H. Noh. See: 1007
https://www.usenix.org/system/files/conference/fast13/fast13-final114_0.pdf 1008

7.4.2 SCAR use case 1009

Purpose/triggers: 1010
Demonstrate the use of the SCAR action 1011

NVM Programming Model (NPM) Working Draft 38
Version 1 Update 1

http://david.nellans.org/files/NVMW-2011.pdf
http://pages.cs.wisc.edu/%7Eswift/papers/eurosys12_flashtier.pdf

Scope/context: 1012
This generic use case for SCAR involves two processes. 1013
• The “detect block errors process” detects errors in certain NVM blocks, and uses SCAR to 1014

communicate to other processes that the contents of these blocks cannot be reliably read, 1015
but can be safely re-written. 1016

• The “recover process” sees the error reported as the result of SCAR. If this process can 1017
regenerate the contents of the block, the application can continue with no error. 1018

For this use case, the “detect block errors process” is a RAID component doing a background 1019
scan of NVM blocks. In this case, the NVM is not in a redundant RAID configuration so block 1020
READ errors can’t be transparently recovered. The “recover process” is a cache component 1021
using the NVM as a cache for RAID volumes. Upon receipt of the SCAR error on a read, this 1022
component evaluates whether the block contents also reside on the cached volume; if so, it 1023
can copy the corresponding volume block to the NVM. This write to NVM will clear the SCAR 1024
error condition. 1025

Preconditions: 1026
The “detect block errors process” detected errors in certain NVM blocks, and used SCAR to 1027
mark these blocks. 1028

Success scenario: 1029
1. The cache manager intercepts a read request from an application 1030
2. The read request to the NVM cache returns a status indicating the requested blocks 1031

have been marked by a SCAR action 1032
3. The cache manager uses an implementation-specific technique and determines the 1033

blocks marked by a SCAR are also available on the cached volume 1034
4. The cache manager copies the blocks from the cached volume to the NVM 1035
5. The cache manager returns the requested block to the application with a status 1036

indicating the read succeeded 1037

Postconditions: 1038
The blocks previously marked with a SCAR action have been repaired. 1039

Failure Scenario: 1040
1. In Success Scenario step 3 or 4, the cache manager discovers the corresponding 1041

blocks on the volume are invalid or cannot be read. 1042
2. The cache manager returns a status to the application indicating the blocks cannot be 1043

read. 1044

NVM Programming Model (NPM) Working Draft 39
Version 1 Update 1

8 NVM.FILE mode 1045

8.1 Overview 1046

NVM.FILE mode addresses NVM-specification extensions to native file I/O behavior (the 1047
approach to I/O used by most applications). Support for NVM.FILE mode requires that the 1048
NVM solution ought to support all behavior not covered in this section consistently with the 1049
native operating system behavior for native block devices. 1050

Figure 10 NVM.FILE mode example 1051

NVM block capable driver

File system

Application

NVM.BLOCK mode

NVM device NVM device

User space

Kernel space

NVM.FILE mode

 1052

8.1.1 Discovery and use of atomic write features 1053
Atomic Write features in NVM.FILE mode are available to block-optimized applications (see 1054
7.1.4.2 Block-optimized applications). 1055

8.1.2 The discovery of granularities 1056
The NVM.FILE mode exposes the same granularity attributes as NVM.BLOCK. 1057

8.1.3 Relationship between native file APIs and NVM.BLOCK.DISCARD 1058
NVM.FILE mode does not define specific action that cause TRIM/DISCARD behavior. File 1059
systems may invoke NVM.BLOCK DISCARD actions when native operating system APIs 1060
(such as POSIX truncate or Windows SetEndOfFile). 1061

8.2 Actions 1062

8.2.1 Actions that apply across multiple modes 1063
The following actions apply to NVM.FILE mode as well as other modes. 1064

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1) 1065
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2) 1066

NVM Programming Model (NPM) Working Draft 40
Version 1 Update 1

8.2.2 NVM.FILE.ATOMIC_WRITE 1067
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 8.3.2) is true 1068

Block-optimized applications may use ATOMIC_WRITE to assure consistent behavior during a 1069
failure condition. This specification does not specify the order in which this action occurs 1070
relative to other I/O operations, including other ATOMIC_WRITE and ATOMIC_MULTIWRITE 1071
actions. This specification does not specify when the data written becomes visible to other 1072
threads. 1073

The inputs, outputs, and error conditions are similar to those for 1074
NVM.BLOCK.ATOMIC_WRITE, but typically the application provides file names and file 1075
relative block addresses rather than device name and LBA. 1076

Relevant attributes: 1077

ATOMIC_WRITE_MAX_DATA_LENGTH 1078
ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY 1079
ATOMIC_WRITE_LENGTH_GRANULARITY 1080
ATOMIC_WRITE_CAPABLE 1081

8.2.3 NVM.FILE.ATOMIC_MULTIWRITE 1082
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 8.3.6) is true 1083

Block-optimized applications may use ATOMIC_MULTIWRITE to assure consistent behavior 1084
during a failure condition. This action allows a caller to write non-adjacent extents atomically. 1085
The caller of ATOMIC_MULTIWRITE provides properties defining memory and block extents; 1086
all of the extents are written as a single atomic operation. This specification does not specify 1087
the order in which this action occurs relative to other I/O operations, including other 1088
ATOMIC_WRITE and ATOMIC_MULTIWRITE actions. This specification does not specify 1089
when the data written becomes visible to other threads. 1090

The inputs, outputs, and error conditions are similar to those for 1091
NVM.BLOCK.ATOMIC_MULTIWRITE, but typically the application provides file names and file 1092
relative block addresses rather than device name and LBA. 1093

Relevant attributes: 1094
ATOMIC_MULTIWRITE_MAX_IOS 1095
ATOMIC_MULTIWRITE_MAX_DATA_LENGTH 1096
ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY 1097
ATOMIC_MULTIWRITE_LENGTH_GRANULARITY 1098
ATOMIC_MULTIWRITE_CAPABLE 1099

NVM Programming Model (NPM) Working Draft 41
Version 1 Update 1

8.3 Attributes 1100

Some attributes share behavior with their NVM.BLOCK counterparts. NVM.FILE attributes are 1101
provided because the actual values may change due to the implementation of the file system. 1102

8.3.1 Attributes that apply across multiple modes 1103
The following attributes apply to NVM.FILE mode as well as other modes. 1104

NVM.COMMON.SUPPORTED_MODES (see 6.12.1) 1105
NVM.COMMON.FILE_MODE (see 6.12.2) 1106

8.3.2 NVM.FILE.ATOMIC_WRITE_CAPABLE 1107
Requirement: mandatory 1108

This attribute indicates that the implementation is capable of the 1109
NVM.BLOCK.ATOMIC_WRITE action. 1110

8.3.3 NVM.FILE.ATOMIC_WRITE_MAX_DATA_LENGTH 1111
Requirement: mandatory 1112

ATOMIC_WRITE_MAX_DATA_LENGTH is the maximum length of data that can be 1113
transferred by an ATOMIC_WRITE action. 1114

8.3.4 NVM.FILE.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY 1115
Requirement: mandatory 1116

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the starting 1117
memory address for an ATOMIC_WRITE action. Address inputs to ATOMIC_WRITE shall be 1118
evenly divisible by ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY. 1119

8.3.5 NVM.FILE.ATOMIC_WRITE_LENGTH_GRANULARITY 1120
Requirement: mandatory 1121

ATOMIC_WRITE_LENGTH_GRANULARITY is the granularity of the length of data transferred 1122
by an ATOMIC_WRITE action. Length inputs to ATOMIC_WRITE shall be evenly divisible by 1123
ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY. 1124

8.3.6 NVM.FILE.ATOMIC_MULTIWRITE_CAPABLE 1125
Requirement: mandatory 1126

This attribute indicates that the implementation is capable of the 1127
NVM.FILE.ATOMIC_MULTIWRITE action. 1128

8.3.7 NVM.FILE.ATOMIC_MULTIWRITE_MAX_IOS 1129
Requirement: mandatory 1130

NVM Programming Model (NPM) Working Draft 42
Version 1 Update 1

ATOMIC_MULTIWRITE_MAX_IOS is the maximum length of the number of IOs (i.e., the size 1131
of the Property Group List) that can be transferred by an ATOMIC_MULTIWRITE action. 1132

8.3.8 NVM.FILE.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH 1133
Requirement: mandatory 1134

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH is the maximum length of data that can be 1135
transferred by an ATOMIC_MULTIWRITE action. 1136

8.3.9 NVM.FILE.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY 1137
Requirement: mandatory 1138

ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the 1139
starting address of ATOMIC_MULTIWRITE inputs. Address inputs to ATOMIC_MULTIWRITE 1140
shall be evenly divisible by ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY. 1141

8.3.10 NVM.FILE.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY 1142
Requirement: mandatory 1143

ATOMIC_MULTIWRITE_LENGTH_GRANULARITY is the granularity of the length of 1144
ATOMIC_MULTIWRITE inputs. Length inputs to ATOMIC_MULTIWRITE shall be evenly 1145
divisible by ATOMIC_MULTIWRITE_LENGTH_GRANULARITY. 1146

8.3.11 NVM.FILE.WRITE_ATOMICITY_UNIT 1147
See 7.3.11 NVM.BLOCK.WRITE_ATOMICITY_UNIT 1148

8.3.12 NVM.FILE.LOGICAL_BLOCK_SIZE 1149
See 7.3.14 NVM.BLOCK.LOGICAL_BLOCK_SIZE 1150

8.3.13 NVM.FILE. PERFORMANCE_BLOCK_SIZE 1151
See 7.3.15 NVM.BLOCK.PERFORMANCE_BLOCK_SIZE 1152

8.3.14 NVM.FILE.LOGICAL_ALLOCATION_SIZE 1153
See 7.3.16 NVM.BLOCK.ALLOCATION_BLOCK_SIZE 1154

8.3.15 NVM.FILE.FUNDAMENTAL_BLOCK_SIZE 1155
See 7.3.20 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 1156

8.4 Use cases 1157

8.4.1 Block-optimized application updates record 1158
Update a record in a file without using a memory-mapped file 1159

NVM Programming Model (NPM) Working Draft 43
Version 1 Update 1

Purpose/triggers: 1160
An application using block NVM updates an existing record. The application requests that the 1161
file system bypass cache; the application conforms to native API requirements when 1162
bypassing cache – this may mean that read and write actions must use multiples of a page 1163
cache size. For simplicity, this application uses fixed size records. The record size is defined 1164
by application data considerations, not disk or page block sizes. The application factors in the 1165
PERFORMANCE_BLOCK_SIZE granularity to avoid device-side inefficiencies such as 1166
read/modify/write. 1167

Scope/context: 1168
Block NVM context; this shows basic behavior. 1169

Preconditions: 1170
- The administrator created a file and provided its name to the application; this name is 1171
accessible to the application – perhaps in a configuration file 1172
- The application has populated the contents of this file 1173
- The file is not in use at the start of this use case (no sharing considerations) 1174

Inputs: 1175
The content of the record, the location (relative to the file) where the record resides 1176

Success scenario: 1177
1) The application uses the native OPEN action, passing in the file name and specifying 1178

appropriate options to bypass the file system cache 1179
2) The application acquires the device’s optimal I/O granule size by using the 1180

GET_ATTRIBUTE action for the PERFORMANCE_BLOCK_SIZE. 1181
3) The application allocates sufficient memory to contain all of the blocks occupied by the 1182

record to be updated. 1183
a. The application determines the offset within the starting block of the record and uses 1184

the length of the block to determine the number of partial blocks. 1185
b. The application allocates sufficient memory for the record plus enough additional 1186

memory to accommodative any partial blocks. 1187
c. If necessary, the memory size is increased to assure that the starting address and 1188

length read and write actions are multiples of PERFORMANCE_BLOCK_SIZE. 1189
4) The application uses the native READ action to read the record by specifying the starting 1190

disk address and the length (the same length as the allocated memory buffer). The 1191
application also provides the allocated memory address; this is where the read action will 1192
put the record. 1193

5) The application updates the record in the memory buffer per the inputs 1194
6) The application uses the native write action to write the updated block(s) to the same disk 1195

location they were read from. 1196
7) The application uses the native file SYNC action to assure the updated blocks are written to 1197

the persistence domain 1198

NVM Programming Model (NPM) Working Draft 44
Version 1 Update 1

8) The application uses the native CLOSE action to clean up. 1199

Failure Scenario 1: 1200
The native read action reports a hardware error. If the unreadable block corresponds to blocks 1201
being updated, the application may attempt recovery (write/read/verify), or preventative 1202
maintenance (scar the unreadable blocks). If the unreadable blocks are needed for a 1203
read/modify/write update and the application lacks an alternate source; the application may 1204
inform the user that an unrecoverable hardware error has occurred. 1205

Failure Scenario 2: 1206
The native write action reports a hardware error. The application may be able to recover by 1207
rewriting the block. If the rewrite fails, the application may be able to scar the bad block and 1208
write to a different location. 1209

Postconditions: 1210
The record is updated. 1211

8.4.2 Atomic write use case 1212

Purpose/triggers: 1213
Used by a block-optimized application (see Block-optimized applications) striving for durability 1214
of on-disk data 1215

Scope/context: 1216
Assure a record is written to disk in a way that torn writes can be detected and rolled back (if 1217
necessary). If the device supports atomic writes, they will be used. If not, a double write buffer 1218
is used. 1219

Preconditions: 1220
The application has taken steps (based on NVM.BLOCK attributes) to assure the record being 1221
written has an optimal memory starting address, starting disk LBA and length. 1222

Success scenario: 1223
• Use GET_ATTRIBUTE to determine whether the device is ATOMIC_WRITE_CAPABLE 1224

(or ATOMIC_MULTIWRITE_CAPABLE) 1225
• Is so, use the appropriate atomic write action to write the record to NVM 1226
• If the device does not support atomic write, then 1227

o Write the page to the double write buffer 1228
o Wait for the write to complete 1229
o Write the page to the final destination 1230

• At application startup, if the device does not support atomic write 1231
• Scan the double write buffer and for each valid page in the buffer check if the page 1232

in the data file is valid too. 1233

NVM Programming Model (NPM) Working Draft 45
Version 1 Update 1

Postconditions: 1234
After application startup recovery steps, there are no inconsistent records on disk after a failure 1235
caused the application (and possibly system) to restart. 1236

8.4.3 Block and File Transaction Logging 1237

Purpose/Triggers: 1238
An application developer wishes to implement a transaction log that maintains data integrity 1239
through system crashes, system resets, and power failures. The underlying storage is block-1240
granular, although it may be accessed via a file system that simulates byte-granular access to 1241
files. 1242

Scope/Context: 1243
NVM.BLOCK or NVM.FILE (all the NVM.BLOCK attributes mentioned in the use case are also 1244
defined for NVM.FILE mode). 1245

For notational convenience, this use case will use the term “file” to apply to either a file in the 1246
conventional sense which is accessed through the NVM.FILE interface, or a specific subset of 1247
blocks residing on a block device which are accessed through the NVM.BLOCK interface. 1248

Inputs: 1249
• A set of changes to the persistent state to be applied as a single transaction. 1250
• The data and log files. 1251

Outputs: 1252
• An indication of transaction commit or abort 1253

Postconditions: 1254
• If an abort indication was returned, the data was not committed and the previous 1255

contents have not been modified. 1256
• If a commit indication was returned, the data has been entirely committed. 1257
• After a system crash, reset, or power failure followed by system restart and execution of 1258

the application transaction recovery process, the data has either been entirely 1259
committed or the previous contents have not been modified. 1260

Success Scenario: 1261
The application transaction logic uses a log file in combination with its data file to atomically 1262
update the persistent state of the application. The log may implement a before-image log or a 1263
write-ahead log. The application transaction logic should configure itself to handle torn or 1264
interrupted writes to the log or data files. 1265

8.4.3.1 NVM.BLOCK.WRITE_ATOMICITY_UNIT >= 1 1266
If the NVM.BLOCK.WRITE_ATOMICITY_UNIT is one or greater, then writes of a single logical 1267
block cannot be torn or interrupted. 1268

NVM Programming Model (NPM) Working Draft 46
Version 1 Update 1

In this case, if the log or data record size is less than or equal to the 1269
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application need not handle torn or interrupted 1270
writes to the log or data files. 1271

If the log or data record size is greater than the NVM.BLOCK.LOGICAL_BLOCK_SIZE, the 1272
application should be prepared to detect a torn write of the record and either discard or recover 1273
such a torn record during the recovery process. One common way of detecting such a torn 1274
write is for the application to compute hash of the record and record the hash in the record. 1275
Upon reading the record, the application re-computes the hash and compares it with the 1276
recorded hash; if they do not match, the record has been torn. Another method is for the 1277
application to insert the transaction identifier within each logical block. Upon reading the 1278
record, the application compares the transaction identifiers in each logical block; if they do not 1279
match, the record has been torn. Another method is for the application to use the 1280
NVM.BLOCK.ATOMIC_WRITE action to perform the writes of the record. 1281

8.4.3.2 NVM.BLOCK.WRITE_ATOMICITY_UNIT = 0 1282
If the NVM.BLOCK.WRITE_ATOMICITY_UNIT is zero, then writes of a single logical block can 1283
be torn or interrupted and the application should handle torn or interrupted writes to the log or 1284
data files. 1285

In this case, if a logical block were to contain data from more than one log or data record, a 1286
torn or interrupted write could corrupt a previously-written record. To prevent propagating an 1287
error beyond the record currently being written, the application aligns the log or data records 1288
with the NVM.BLOCK.LOGICAL_BLOCK_SIZE and pads the record size to be an integral 1289
multiple of NVM.BLOCK.LOGICAL_BLOCK_SIZE. This prevents more than one record from 1290
residing in the same logical block and therefore a torn or interrupted write may only corrupt the 1291
record being written. 1292

8.4.3.2.1 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE >= 1293
NVM.BLOCK.LOGICAL_BLOCK_SIZE 1294

If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is greater than or equal to the 1295
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application should be prepared to handle an 1296
interrupted write. An interrupted write results when the write of a single 1297
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit is interrupted by a system crash, system 1298
reset, or power failure. As a result of an interrupted write, the NVM device may return an error 1299
when any of the logical blocks comprising the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 1300
unit are read. (See also SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html.) 1301
This presents a danger to the integrity of previously written records that, while residing in 1302
differing logical blocks, share the same fundamental block. An interrupted write may prevent 1303
the reading of those previously written records in addition to preventing the read of the record 1304
in the process of being written. 1305

One common way of protecting previously written records from damage due to an interrupted 1306
write is to align the log or data records with the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 1307
and pad the record size to be an integral multiple of 1308
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE. This prevents more than one record from 1309

NVM Programming Model (NPM) Working Draft 47
Version 1 Update 1

http://www.sqlite.org/psow.html

residing in the same fundamental block. The application should be prepared to discard or 1310
recover the record if the NVM device returns an error when subsequently reading the record 1311
during the recovery process. 1312

8.4.3.2.2 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE < 1313
NVM.BLOCK.LOGICAL_BLOCK_SIZE 1314

If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is less than the 1315
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application should be prepared to handle both 1316
interrupted writes and torn writes within a logical block. 1317

 As a result of an interrupted write, the NVM device may return an error when the logical block 1318
containing the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit which was being written at 1319
the time of the system crash, system reset, or power failure is subsequently read. The 1320
application should be prepared to discard or recover the record in the logical block if the NVM 1321
device returns an error when subsequently reading the logical block during the recovery 1322
process. 1323

A torn write results when an integral number of NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 1324
units are written to the NVM device but the entire NVM.BLOCK.LOGICAL_BLOCK_SIZE has 1325
not been written. In this case, the NVM device may not return an error when the logical block is 1326
read. The application should therefore be prepared to detect a torn write of a logical block and 1327
either discard or recover such a torn record during the recovery process. One common way of 1328
detecting such a torn write is for the application to compute a hash of the record and record the 1329
hash in the record. Upon reading the record, the application re-computes the hash and 1330
compares it with the recorded hash; if they do not match, a logical block within the record has 1331
been torn. Another method is for the application to insert the transaction identifier within each 1332
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit. Upon reading the record, the application 1333
compares the transaction identifiers in each NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 1334
unit; if they do not match, the logical block has been torn. 1335

8.4.3.2.3 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE = 0 1336
If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is zero, the application lacks sufficient 1337
information to handle torn or interrupted writes to the log or data files. 1338

Failure Scenarios: 1339
Consider the recovery of an error resulting from an interrupted write on a device where the 1340
NVM.BLOCK.WRITE_ATOMICITY_UNIT is zero. This error may be persistent and may be 1341
returned whenever the affected block is read. To repair this error, the application should be 1342
prepared to overwrite such a block. 1343

One common way of ensuring that the application will overwrite a block is by assigning it to the 1344
set of internal free space managed by the application, which is never read and is available to 1345
be allocated and overwritten at some point in the future. For example, the block may be part of 1346
a circular log. If the block is marked as free, the transaction log logic will eventually allocate 1347
and overwrite that block as records are written to the log. 1348

NVM Programming Model (NPM) Working Draft 48
Version 1 Update 1

Another common way is to record either a before-image or after-image of a data block in a log. 1349
During recovery after a system crash, system reset, or power failure, the application replays 1350
the records in the log and overwrites the data block with either the before-image contents or 1351
the after-image contents. 1352

See also: 1353
• SQLite.org, Atomic Commit in SQLite, http://www.sqlite.org/atomiccommit.html 1354
• SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html 1355
• SQLite.org, Write-Ahead Logging, http://www.sqlite.org/wal.html 1356

NVM Programming Model (NPM) Working Draft 49
Version 1 Update 1

http://www.sqlite.org/atomiccommit.html
http://www.sqlite.org/psow.html
http://www.sqlite.org/wal.html

9 NVM.PM.VOLUME mode 1357

9.1 Overview 1358

NVM.PM.VOLUME mode describes the behavior to be consumed by operating system 1359
abstractions such as file systems or pseudo-block devices that build their functionality by 1360
directly accessing persistent memory. NVM.PM.VOLUME mode provides a software 1361
abstraction (a PM volume) for persistent memory hardware and profiles functionality for 1362
operating system components including: 1363

• list of physical address ranges associated with each PM volume 1364
 1365

The PM volume provides memory mapped capability in a fashion that traditional CPU load and 1366
store operations are possible. This PM volume may be provided via the memory channel of the 1367
CPU or via a PCIe memory mapping or other methods. Note that there should not be a 1368
requirement for an operating system context switch for access to the PM volume. 1369

Figure 11 NVM.PM.VOLUME mode example 1370

PM Device PM Device PM Device. . .

Load/store

User space

Kernel space

GET_RANGESET, ...

PM-aware kernel component

NVM PM capable driver

NVM.PM.VOLUME mode

 1371

9.2 Actions 1372

9.2.1 Actions that apply across multiple modes 1373
The following actions apply to NVM.PM.VOLUME mode as well as other modes. 1374

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1) 1375
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2) 1376

9.2.2 NVM.PM.VOLUME.GET_RANGESET 1377
Requirement: mandatory 1378

NVM Programming Model (NPM) Working Draft 50
Version 1 Update 1

The purpose of this action is to return a set of processor physical address ranges (and relate 1379
properties) representing all of the content for the identified volume. 1380

When interpreting the set of physical addresses as a contiguous, logical address range; the 1381
data underlying that logical address range will always be the same and in the same sequence 1382
across PM volume instantiations. 1383

Due to physical memory reconfiguration, the number and sizes of ranges may change in 1384
successive get ranges calls, however the total number of bytes in the sum of the ranges does 1385
not change, and the order of the bytes spanning all of the ranges does not change. The space 1386
defined by the list of ranges can always be addressed relative to a single base which 1387
represents the beginning of the first range. 1388

Input: a reference to the PM volume 1389

Returns a Property Group List (see 4.4.5) where the properties are: 1390

• starting physical address (byte address) 1391
• length (in bytes) 1392
• connection type – see below 1393
• sync type – see below 1394

For this revision of the specification, the following values (in text) are valid for connection type: 1395

• “memory”: for persistent memory attached to a system memory channel 1396
• “PCIe”: for persistent memory attached to a PCIe extension bus 1397

For this revision of the specification, the following values (in text) are valid for sync type: 1398

• “none”: no device-specific sync behavior is available – implies no entry to 1399
NVM.PM.VOLUME implementation is required for flushing 1400

• “VIRTUAL_ADDRESS_SYNC”: the caller needs to use VIRTUAL_ADDRESS_SYNC (see 1401
9.2.3) to assure sync is durable 1402

• “PHYSICAL_ADDRESS_SYNC”: the caller needs to use PHYSICAL_ADDRESS_SYNC 1403
(see 9.2.4) to assure sync is durable 1404

9.2.3 NVM.PM.VOLUME.VIRTUAL_ADDRESS_SYNC 1405
Requirement: optional 1406

The purpose of this action is to invoke device-specific actions to synchronize persistent 1407
memory content to assure durability and enable recovery by forcing data to reach the 1408
persistence domain. VIRTUAL_ADDRESS_SYNC is used by a caller that knows the 1409
addresses in the input range are virtual memory addresses. 1410

Input: virtual address and length (range) 1411

See also: PHYSICAL_ADDRESS_SYNC 1412

NVM Programming Model (NPM) Working Draft 51
Version 1 Update 1

9.2.4 NVM.PM.VOLUME.PHYSICAL_ADDRESS_SYNC 1413
Requirement: optional 1414

The purpose of this action is to synchronize persistent memory content to assure durability and 1415
enable recovery by forcing data to reach the persistence domain. This action is used by a 1416
caller that knows the addresses in the input range are physical memory addresses. 1417

See also: VIRTUAL_ADDRESS_SYNC 1418

Input: physical address and length (range) 1419

9.2.5 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN 1420
Requirement: mandatory if DISCARD_IF_YOU_CAN_CAPABLE (see 9.3.6) is true 1421

This action notifies the NVM device that the input range (volume offset and length) are no 1422
longer needed by the caller. This action may not result in any action by the device, depending 1423
on the implementation and the internal state of the device. This action is meant to allow the 1424
underlying device to optimize the data stored within the range. For example, the device can 1425
use this information in support of functionality like thin provisioning or wear-leveling. 1426

Inputs: a range of addresses (starting address and length in bytes). The address shall be a 1427
logical memory address offset from the beginning of the volume. 1428

Status: Success indicates the request is accepted but not necessarily acted upon. 1429

9.2.6 NVM.PM.VOLUME.DISCARD_IMMEDIATELY 1430
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 9.3.7) is true 1431

This action notifies the NVM device that the input range (volume offset and length) are no 1432
longer needed by the caller. Similar to DISCARD_IF_YOU_CAN, but the implementation is 1433
required to unmap the range before the next READ or WRITE action, even if garbage 1434
collection of the range has not occurred yet. 1435

Inputs: a range of addresses (starting address and length in bytes). The address shall be a 1436
logical memory address offset from the beginning of the volume. 1437

The values returned by subsequent read operations are specified by the 1438
DISCARD_IMMEDIATELY_RETURNS (see 9.3.8) attribute. 1439

Status: Success indicates the request is completed. 1440

9.2.7 NVM.PM.VOLUME.EXISTS 1441
Requirement: mandatory if EXISTS_CAPABLE (see9.3.9) is true 1442

A PM device may allocate storage through a thin provisioning mechanism or one of the discard 1443
actions. As a result, memory can exist in one of three states: 1444

NVM Programming Model (NPM) Working Draft 52
Version 1 Update 1

• Mapped: the range has had data written to it 1445
• Unmapped: the range has not been written, and there is no memory allocated 1446
• Allocated: the range has not been written, but has memory allocated to it 1447

The EXISTS action allows the NVM user to determine if a range of bytes has been allocated. 1448

Inputs: a range of bytes (starting byte address and length in bytes) 1449

Output: a Property Group List (see 4.4.5) where the properties are the starting address, length 1450
and state. State is a string equal to “mapped”, “unmapped”, or “allocated”. 1451

Result: the status of the action 1452

9.3 Attributes 1453

9.3.1 Attributes that apply across multiple modes 1454
The following attributes apply to NVM.PM.VOLUME mode as well as other modes. 1455
NVM.COMMON.SUPPORTED_MODES (see 6.12.1) 1456
 1457
9.3.2 NVM.PM.VOLUME.VOLUME_SIZE 1458
Requirement: mandatory 1459

VOLUME_SIZE is the volume size in units of bytes. This shall be the same as the sum of the 1460
lengths of the ranges returned by the GET_RANGESETS action. 1461

9.3.3 NVM.PM.VOLUME.INTERRUPTED_STORE_ATOMICITY 1462
Requirement: mandatory 1463

INTERRUPTED_STORE_ATOMICITY indicates whether the device supports power fail 1464
atomicity of store actions. 1465

A value of true indicates that after a store interrupted by reset, power loss or system crash; 1466
upon restart the contents of persistent memory reflect either the state before the store or the 1467
state after the completed store. A value of false indicates that after a store interrupted by reset, 1468
power loss or system crash, upon restart the contents of memory may be such that 1469
subsequent loads may create exceptions depending on the value of the 1470
FUNDAMENTAL_ERROR_RANGE attribute (see 9.3.4). 1471

9.3.4 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE 1472
Requirement: mandatory 1473

FUNDAMENTAL_ERROR_RANGE is the number of bytes that may become unavailable due 1474
to an error on an NVM device. 1475

This attribute is relevant when the device does not support write atomicity. 1476

NVM Programming Model (NPM) Working Draft 53
Version 1 Update 1

A zero value means that the device is unable to provide a guarantee on the number of 1477
adjacent bytes impacted by an error. 1478

A caller may organize data in terms of FUNDAMENTAL_ERROR_RANGE to avoid certain torn 1479
write behavior. 1480

9.3.5 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE_OFFSET 1481
Requirement: mandatory 1482

The number of bytes offset from the beginning of a volume range (as returned by 1483
GET_RANGESET) before FUNDAMENTAL_ERROR_RANGE_SIZE intervals apply. 1484

A fundamental error range is not required to start at a byte address evenly divisible by 1485
FUNDAMENTAL_ERROR_RANGE. FUNDAMENTAL_ERROR_RANGE_OFFSET shall be set 1486
to the difference between the starting byte address of a fundamental error range rounded 1487
down to a multiple of FUNDAMENTAL_ERROR_RANGE. 1488

Figure 12 Zero range offset example depicts an implementation where fundamental error 1489
ranges start at bye address zero; the implementation shall return zero for 1490
FUNDAMENTAL_ERROR_RANGE_OFFSET. 1491

Figure 12 Zero range offset example 1492

PM range

FUNDAMENTAL_RANGE_SIZE

Byte Address Zero

PM range

FUNDAMENTAL_RANGE_SIZE

PM range

FUNDAMENTAL_RANGE_SIZE

 1493

Figure 13 Non-zero range offset example depicts an implementation where fundamental error 1494
ranges start at a non-zero offset; the implementation shall return the difference between the 1495
starting byte address of a fundamental error range rounded down to a multiple of 1496
FUNDAMENTAL_ERROR_RANGE. 1497

Figure 13 Non-zero range offset example 1498

PM range

FUNDAMENTAL_RANGE_SIZE

Byte Address Zero

PM range

FUNDAMENTAL_RANGE_SIZE

PM range

FUNDAMENTAL_RANGE_SIZENon-zero
FUNDAMENTAL

RANGE
OFFSET

 1499

9.3.6 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN_CAPABLE 1500
Requirement: mandatory 1501

Returns true if the implementation supports DISCARD_IF_YOU_CAN. 1502

9.3.7 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_CAPABLE 1503
Requirement: mandatory 1504

Returns true if the implementation supports DISCARD_IMMEDIATELY. 1505

NVM Programming Model (NPM) Working Draft 54
Version 1 Update 1

9.3.8 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_RETURNS 1506
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 9.3.7) is true 1507

The value returned from read operations to bytes specified by a DISCARD_IMMEDIATELY 1508
action with no subsequent write operations. The possible values are: 1509

• A value that is returned to each load of bytes in an unmapped range until the next store 1510
action 1511

• Unspecified 1512

9.3.9 NVM.PM.VOLUME.EXISTS_CAPABLE 1513
Requirement: mandatory 1514

This attribute indicates that the implementation is capable of the NVM.PM.VOLUME.EXISTS 1515
action. 1516

9.4 Use cases 1517

9.4.1 Initialization steps for a PM-aware file system 1518

Purpose/triggers: 1519
Steps taken by a file system when a PM-aware volume is attached to a PM volume. 1520

Scope/context: 1521
NVM.PM.VOLUME mode 1522

Preconditions: 1523
• The administrator has defined a PM volume 1524
• The administrator has completed one-time steps to create a file system on the PM 1525

volume 1526

Inputs: 1527
• A reference to a PM volume 1528
• The name of a PM file system 1529

Success scenario: 1530
1. The file system issues a GET_RANGESET action to retrieve information about the 1531

ranges comprised by the PM volume. 1532
2. The file system uses the range information from GET_RANGESET to determine 1533

physical address range(s) and offset(s) of the file system’s primary metadata (for 1534
example, the primary superblock), then loads appropriate metadata to determine no 1535
additional validity checking is needed. 1536

3. The file system sets a flag in the metadata indicating the file system is mounted by 1537
storing the updated status to the appropriate location 1538

NVM Programming Model (NPM) Working Draft 55
Version 1 Update 1

a. If the range containing this location requires VIRTUAL_ADDRESS_SYNC or 1539
PHYSICAL_ADDRESS_SYNC is needed (based on GET_RANGESET’s sync 1540
mode property), the file system invokes the appropriate SYNC action 1541

Postconditions: 1542
The file system is usable by applications. 1543

9.4.2 Driver emulates a block device using PM media 1544

Purpose/triggers: 1545
The steps supporting an application write action from a driver that emulates a block device 1546
using PM as media. 1547

Scope/context: 1548
NVM.PM.VOLUME mode 1549

Preconditions: 1550
PM layer FUNDAMENTAL_SIZE reported to driver is cache line size. 1551

Inputs: 1552
The application provides: 1553

• the starting address of the memory (could be volatile) memory containing the data to 1554
write 1555

• the length of the memory range to be written, 1556
• an OS-specific reference to a block device (the virtual device backed by the PM 1557

volume), 1558
• the starting LBA within that block device 1559

Success scenario: 1560
1. The driver registers with the OS-specific component to be notified of errors on the PM 1561

volume. PM error handling is outside the scope of this specification, but may be similar to 1562
what is described in (and above) Figure 15 Linux Machine Check error flow with proposed 1563
new interface. 1564

2. Using information from a GET_RANGESET response, the driver splits the write operating 1565
into separate pieces if the target PM addresses (corresponding to application target LBAs) 1566
are in different ranges with different “sync type” values. For each of these pieces: 1567

a. Using information from a GET_RANGESET response, the driver determines the PM 1568
memory address corresponding to the input starting LBA, and performs a memory 1569
copy operation from the callers input memory to the PM 1570

b. The driver then performs a platform-specific flush operation 1571
c. Using information from a GET_RANGESET response, the driver invokes the 1572

PHYSICAL_ADDRESS_SYNC or VIRTUAL_ADDRESS_SYNC action as needed 1573

NVM Programming Model (NPM) Working Draft 56
Version 1 Update 1

3. No PM errors are reported by the PM error component, the driver reports that the write 1574
action succeeded. 1575

Alternative Scenario 1: 1576
In step 3 in the Success Scenario, the PM error component reports a PM error. The driver 1577
verifies that this error impacts the PM range being written and returns an error to the caller. 1578

Postconditions: 1579
The target PM range (i.e., the block device LBA range) is updated. 1580

See also: 1581
4.2.4 NVM block volume using PM hardware 1582

NVM Programming Model (NPM) Working Draft 57
Version 1 Update 1

10 NVM.PM.FILE 1583

10.1 Overview 1584

The NVM.PM.FILE mode access provides a means for user space applications to directly 1585
access NVM as memory. Most of the standard actions in this mode are intended to be 1586
implemented as APIs exported by existing file systems. An NVM.PM.FILE implementation 1587
behaves similarly to preexisting file system implementations, with minor exceptions. This 1588
section defines extensions to the file system implementation to accommodate persistent 1589
memory mapping and to assure interoperability with NVM.PM.FILE mode applications. 1590

Figure 14 NVM.PM.FILE mode example shows the context surrounding the point in a system 1591
(the red, wavy line) where the NVM.PM.FILE mode programming model is exposed by a PM-1592
aware file system. A user space application consumes the programming model as is typical for 1593
current file systems. This example is not intended to preclude the possibility of a user space 1594
PM-aware file system implementation. It does, however presume that direct load/store access 1595
from user space occurs within a memory-mapped file context. The PM-aware file system 1596
interacts with an NVM PM capable driver to achieve any non-direct-access actions needed to 1597
discover or configure NVM. The PM-aware file system may access NVM devices for purposes 1598
such as file allocation, free space or other metadata management. The PM-aware file system 1599
manages additional metadata that describes the mapping of NVM device memory locations 1600
directly into user space. 1601
Figure 14 NVM.PM.FILE mode example 1602

Application

PM device PM device PM device. . .

User space

Kernel space

MMU
MappingsPM-aware file system

NVM PM capable driver

Load/store
Native file

APINVM.PM.FILE mode

 1603

Once memory mapping occurs, the behavior of the NVM.PM.FILE mode diverges from 1604
NVM.FILE mode because accesses to mapped memory are in the persistence domain as soon 1605
as they reach memory. This is represented in Figure 14 NVM.PM.FILE mode example by the 1606
arrow that passes through the “MMU Mappings” extension of the file system. As a result of 1607

NVM Programming Model (NPM) Working Draft 58
Version 1 Update 1

persistent memory mapping, primitive ACID properties arise from CPU and memory 1608
infrastructure behavior as opposed to disk drive or traditional SSD behavior. Note that writes 1609
may still be retained within processor resident caches or memory controller buffers before they 1610
reach a persistence domain. As with NMV.FILE.SYNC, the possibility remains that memory 1611
mapped writes may become persistent before a corresponding NVM.PM.FILE.SYNC action. 1612

The following actions have behaviors specific to the NVM.PM.FILE mode: 1613

NVM.PM.FILE.MAP – Add a subset of a PM file to application's address space for 1614
load/store access. 1615

NVM.PM.FILE.SYNC – Synchronize persistent memory content to assure durability and 1616
enable recovery by forcing data to reach the persistence domain. 1617

10.1.1 Applications and PM Consistency 1618
Applications (either directly or using services of a library) rely on CPU and kernel tools to 1619
achieve consistency of data in PM. These tools cause PM to exhibit certain data consistency 1620
properties enabling applications to operate correctly: 1621

• PM is usable as volatile (not just persistent) memory 1622
• Data residing in PM is consistent and durable even after a failure 1623

Consistency is defined relative to the application’s objectives and design. For example, an 1624
application can utilize a write-ahead log (see SQLite.org, Write-Ahead Logging, 1625
http://www.sqlite.org/wal.html); when the application starts, recovery logic uses the write-ahead 1626
log to determine whether store operations completed and modifies data to achieve 1627
consistency. Similarly, durability objectives vary with applications. For database software, 1628
durability typically means that once a transaction has been committed it will remain so, even in 1629
the event of unexpected restarts. Other applications use a checkpoint mechanism other than 1630
transactions to define durable data states. 1631

When persistence behavior is ignored, memory-mapped PM is expected to operate like volatile 1632
memory. Compiled code without durability expectations is expected to continue to run 1633
correctly. 1634

This includes the following: 1635

• Accessible through load, store, and atomic read/modify/write instructions 1636
• Subject to existing processor cache coherency and “uncacheable” models 1637

(uncacheable models do not require a cache flush instruction to assure data is 1638
written to memory) 1639

• Load, store, and atomic read/modify/write instructions retain their current semantics 1640
o Even when accessed from multiple threads 1641
o Even if locks or lock-protected data live in PM 1642

• Able to use existing code (e.g., sort function) on PM data 1643
• Applies for all data producers: CPU and, where relevant, I/O 1644
• “Execute In Place” capability 1645

NVM Programming Model (NPM) Working Draft 59
Version 1 Update 1

• Supports pointers to PM data structures 1646

At the implementation level, the behavior for fence instructions in libraries and thread visibility 1647
behavior is the same for data in PM as for data in volatile memory. 1648

Two properties assure data is consistent and durable even after failures: 1649

• Atomicity: some stores can’t be partly visible even after a failure 1650
• Strict write ordering 1651

EXAMPLE - This is a pseudo C language example of atomicity and strict ordering. In this 1652
example, msync implements NVM.PM.FILE.SYNC: 1653

// a, a_end in PM 1654
a[0] = foo(); 1655
msync(&(a[0]), …); 1656
a_end = 0; 1657
msync(&a_end, …); 1658
. . . 1659
n = a_end + 1; 1660
a[n] = foo(); 1661
msync(&(a[n]), …); 1662
a_end = n; 1663
msync(&a_end, …); 1664

For correctness of this example, the following assertions apply: 1665

• a[0 .. a_end] always contains valid data, even after a failure in this code. 1666
• a_end is written atomically to PM, so that the second store to a_end occurs no earlier than 1667

the store to a[n]. 1668

To achieve failure atomicity, aligned stores of fundamental data types (see 6.10) reach PM 1669
atomically. After a failure (allowed by the failure model), each such store is fully reflected in the 1670
resulting PM state or not at all. 1671

At least two facilities are useful to achieve strict ordering: 1672
• msync: Wait for all writes in a range to complete 1673
• optimization using an intra-cache-line ordering guarantee. 1674

To elaborate on these, msync(address_range) ensures that if any effects from code 1675
following the call are visible, then so are all stores to address_range (from any thread) which 1676
precede the call to msync . 1677

With intra-cache-line ordering, thread-ordered stores to a single cache line become visible in 1678
PM in the order in which they are issued. The term “thread-ordered” refers to certain stores 1679
that are already known in today’s implementations to reach coherent cache in order, such as: 1680

• x86 MOV 1681
• some C11, C++11 atomic stores 1682

NVM Programming Model (NPM) Working Draft 60
Version 1 Update 1

• Java & C# volatile stores. 1683
 1684
The CPU core and compiler do not reorder these. Within a single cache line, this order is 1685
normally preserved when the lines are evicted to PM. This last point is a critical consideration 1686
as the preservation of thread-ordered stores during eviction to PM is sometimes not 1687
guaranteed. 1688

10.2 Actions 1689

The following actions are mandatory for compliance with the NVM Programming Model 1690
NVM.PM.FILE mode. 1691

10.2.1 Actions that apply across multiple modes 1692
The following actions apply to NVM.PM.FILE mode as well as other modes. 1693

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1) 1694
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2) 1695

10.2.2 Native file system actions 1696
Native actions shall apply with unmodified syntax and semantics provided that they are 1697
compatible with programming model specific actions. This is intended to support traditional file 1698
operations allowing many applications to use PM without modification. This specifically 1699
includes mandatory implementation of the native synchronization of mapped files. As always, 1700
specific implementations may choose whether or not to implement optional native operations. 1701

10.2.3 NVM.PM.FILE.MAP 1702
Requirement: mandatory 1703

The mandatory form of this action shall have the same syntax found in a pre-existing file 1704
system, preferably the operating system's native file map call. The specified subset of a PM file 1705
is added to application's address space for load/store access. The semantics of this action are 1706
unlike the native MAP action because NVM.PM.FILE.MAP causes direct load/store access. 1707
For example, the role of the page cache might be reduced or eliminated. This reduces or 1708
eliminates the consumption of volatile memory as a staging area for non-volatile data. In 1709
addition, by avoiding demand paging, direct access can enable greater uniformity of access 1710
time across volatile and non-volatile data. 1711

PM mapped file operation may not provide the access time and modify time behavior typical of 1712
native file systems. 1713

PM mapped file operation may not provide the normal semantics for the native file 1714
synchronization actions (e.g., POSIX fsync and fdatasync and Win32 FlushFileBuffers). If a file 1715
is mapped at the time when the native file synchronization action is invoked, the normal 1716
semantics apply. However if the file had been mapped, data had been written to the file 1717
through the map, the data had not been synchronized by use of the NVM.PM.FILE.SYNC 1718
action, the NVM.PM.FILE.OPTIMIZED_FLUSH action, the 1719

NVM Programming Model (NPM) Working Draft 61
Version 1 Update 1

NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action, or the native mapped file sync 1720
action, and the mapping had been removed prior to the execution of the native file 1721
synchronization action, the action is not required to synchronize the data written to the map. 1722

Requires NVM.PM.FILE.OPEN 1723

Inputs: align with native operating system's map 1724

Outputs: align with native operating system's map 1725

Relevant Options: 1726

All of the native file system options should apply. 1727

NVM.PM.FILE.MAP_SHARED (Mandatory) – This existing native option shall be 1728
supported by the NVM.PM.FILE.MAP action. This option indicates that user space 1729
processes other than the writer can see any changes to mapped memory immediately. 1730

NVM.PM.FILE.MAP_COPY_ON_WRITE (Optional)– This existing native option 1731
indicates that any write after mapping will cause a copy on write to volatile memory, or 1732
PM that is discarded during any type of restart. The copy is only visible to the writer. 1733
The copy is not folded back into PM during the sync command. 1734

Relevant Attributes: 1735

NVM.PM.FILE.MAP_COPY_ON_WRITE_CAPABLE (see 10.3.2) - Native operating 1736
system map commands make a distinction between MAP_SHARED and 1737
MAP_COPY_ON_WRITE. Both are supported with native semantics under the NVM 1738
Programming Model. This attribute indicates whether the MAP_COPY_ON_WRITE 1739
mapping mode is supported. All NVM.PM.FILE.MAP implementations shall support the 1740
MAP_SHARED option. 1741

Error handing for mapped ranges of persistent memory is unlike I/O, in that there is no 1742
acknowledgement to a load or store instruction. Instead processors equipped to detect 1743
memory access failures respond with machine checks. These can be routed to user threads as 1744
asynchronous events. With memory-mapped PM, asynchronous events are the primary means 1745
of discovering the failure of a load to return good data. Please refer to 1746
NVM.PM.FILE.GET_ERROR_INFO (section 10.2.6) for more information on error handling 1747
behavior. 1748

Depending on memory configuration, CPU memory write pipelines may effectively preclude 1749
application level error handling during memory accesses that result from store instructions. For 1750
example, errors detected during the process of flushing the CPU’s write pipeline are more 1751
likely to be associated with that pipeline than the NVM itself. Errors that arise within the CPU’s 1752
write pipeline generally do not enable application level recovery at the point of the error. As a 1753
result application processes may be forced to restart when these errors occur (see PM Error 1754
Handling Annex B). Such errors should appear in CPU event logs, leading to an administrative 1755
response that is outside the scope of this specification. 1756

NVM Programming Model (NPM) Working Draft 62
Version 1 Update 1

Applications needing timely assurance that recently stored data is recoverable should use the 1757
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action to verify data from NVM after it is 1758
flushed (see 10.2.7). Errors during verify are handled in the manner described in this annex. 1759

10.2.4 NVM.PM.FILE.SYNC 1760
Requirement: mandatory 1761

The purpose of this action is to synchronize persistent memory content to assure durability and 1762
enable recovery by forcing data to reach the persistence domain. 1763

The native file system sync action may be supported by implementations that also support 1764
NVM.PM.FILE.SYNC. The intent is that the semantics of NVM.PM.FILE.SYNC match native 1765
sync operation on memory-mapped files however because persistent memory is involved, 1766
NVM.PM.FILE implementations need not flush full pages. Note that writes may still be subject 1767
to functionality that may mask whether stored data has reached the persistence domain (such 1768
as caching or buffering within processors or memory controllers). NVM.PM.FILE.SYNC is 1769
responsible for insuring that data within the processor or memory buffers reaches the 1770
persistence domain. 1771

A number of boundary conditions can arise regarding interoperability of PM and non-PM 1772
implementation components. The following limitations apply: 1773

• The behavior of an NVM.PM.FILE.SYNC action applied to a range in a file that was not 1774
mapped using NVM.PM.FILE.MAP is unspecified. 1775

• The behavior of NVM.PM.FILE.SYNC on non-persistent memory is unspecified. 1776

In both the PM and non-PM modes, updates to ranges mapped as shared can and may 1777
become persistent in any order before a sync requires them all to become persistent. The sync 1778
action applied to a shared mapping does not guarantee write atomicity. The byte range 1779
referenced by the sync parameter may have reached a persistence domain prior to the sync 1780
command. The sync action guarantees only that the range referenced by the sync action will 1781
reach the persistence domain before the successful completion of the sync action. Any 1782
atomicity that is achieved is not caused by the sync action itself. 1783

Requires: NVM.PM.FILE.MAP 1784

Inputs: Align with native operating system's sync with the exception that alignment restrictions 1785
are relaxed. 1786

Outputs: Align with native operating system's sync with the addition that it shall return an error 1787
code. 1788

Users of the NVM.PM.FILE.SYNC action should be aware that for files that are mapped as 1789
shared, there is no requirement to buffer data on the way to the persistence domain. Although 1790
data may traverse a processor’s write pipeline and other buffers within memory controllers 1791
these are more transient than the disk I/O buffering that is common in NVM.FILE 1792
implementations. 1793

NVM Programming Model (NPM) Working Draft 63
Version 1 Update 1

10.2.5 Error handling related to this action is expected to be derived from ongoing work 1794
that begins with Annex B (Informative) PM error 1795
handling.NVM.PM.FILE.OPTIMIZED_FLUSH 1796

Requirement: mandatory if NVM.PM.OPTIMIZED_FLUSH_CAPABLE is set. 1797

The purpose of this action is to synchronize multiple ranges of persistent memory content to 1798
assure durability and enable recovery by forcing data to reach the persistence domain. This 1799
action has the same effect as NVM.PM.FILE.SYNC however it is intended to allow additional 1800
implementation optimization by excluding options supported by sync and by allowing multiple 1801
byte ranges to be synchronized during a single action. Page oriented alignment constraints 1802
imposed by the native definition are lifted. Because of this, implementations might be able to 1803
use underlying persistent memory more optimally than they could with the native sync. In 1804
addition some implementations may enable this action to avoid context switches into kernel 1805
space. With the exception of these differences all of the content of the NVM.PM.FILE.SYNC 1806
action description also applies to NVM.PM.FILE.OPTIMIZED_FLUSH. 1807

Requires: NVM.PM.FILE.MAP 1808

Inputs: Identical to NVM.PM.FILE.SYNC except that an array of byte ranges is specified and 1809
options are precluded. A reference to the array and the size of the array are input instead of a 1810
single address and length. Each element of the array contains an address and length of a 1811
range of bytes to be synchronized. 1812

Outputs: Align with native OS's sync with the addition that it shall return an error code. 1813

Relevant attributes: NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE – Indicates whether this 1814
action is supported by the NVM.PM.FILE implementation (see 10.3.5). 1815

NVM.PM.FILE.OPTIMIZED_FLUSH provides no guarantee of atomicity within or across the 1816
synchronized byte ranges. Neither does it provide any guarantee of the order in which the 1817
bytes within the ranges of the action reach a persistence domain. 1818

In the event of failure the progress of the action is indeterminate. Various byte ranges may or 1819
may not have reached a persistence domain. There is no indication as to which byte ranges 1820
may have been synchronized. 1821

10.2.6 NVM.PM.FILE.GET_ERROR_EVENT_INFO 1822
Requirement: mandatory if NVM.PM.ERROR_EVENT_CAPABLE is set. 1823

The purpose of this action is to provide a sufficient description of an error event to enable 1824
recovery decisions to be made by an application. This action is intended to originate during an 1825
application event handler in response to a persistent memory error. In some implementations 1826
this action may map to the delivery of event description information to the application at the 1827
start of the event handler rather than a call made by the event handler. The error information 1828
returned is specific to the memory error that caused the event. 1829

NVM Programming Model (NPM) Working Draft 64
Version 1 Update 1

Inputs: It is assumed that implementations can extract the information output by this action 1830
from the event being handled. 1831

Outputs: 1832

1 – An indication of whether or not execution of the application can be resumed from the point 1833
of interruption. If execution cannot be resumed then the process running the application should 1834
be restarted for full recovery. 1835

2 – An indication of error type enabling the application to determine whether an address is 1836
provided and the direction of data flow (load/verify vs. store) when the error was detected. 1837

3 – The memory mapped address and length of the byte range where data loss was detected 1838
by the event. 1839

Relevant attributes: 1840

NVM.PM.FILE.ERROR_EVENT_CAPABLE – Indicates whether load error event handling and 1841
this action are supported by the NVM.PM.FILE implementation (see 10.3.6). 1842

This action is used to obtain information about an error that caused a machine check involving 1843
memory mapped persistent memory. This is necessary because with persistent memory there 1844
is no opportunity to provide error information as part of a function call or I/O. The intent is to 1845
allow sophisticated error handling and recovery to occur before the application sees the event 1846
by allowing the NVM.PM.FILE implementation to handle it first. It is expected that after 1847
NVM.PM.FILE has completed whatever recovery is possible, the application error handler will 1848
be called and use the error information described here to stage subsequent recovery actions, 1849
some of which may occur after the application’s process is restarted. 1850

In some implementations the same event handler may be used for many or all memory errors. 1851
Therefore this action may arise from memory accesses unrelated to NVM. It is the application 1852
event handler’s responsibility to determine whether the memory range indicated is relevant for 1853
recovery. If the memory range is irrelevant then the event should be ignored other than as a 1854
potential trigger for a restart. 1855

In some systems, errors related to memory stores may not provide recovery information to the 1856
application unless and until load instructions attempt to access the memory locations involved. 1857
This can be accomplished using the NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action 1858
(section 10.2.7). 1859

For more information on the circumstances which may surround this action please refer to PM 1860
Error Handling Annex B. 1861

NVM Programming Model (NPM) Working Draft 65
Version 1 Update 1

10.2.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY 1862
Requirement: mandatory if NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE is 1863
set. 1864

The purpose of this action is to synchronize multiple ranges of persistent memory content to 1865
assure durability and enable recovery by forcing data to reach the persistence domain. 1866
Furthermore, this action verifies that data was written correctly by verifying it. The intent is to 1867
supply a mechanism whereby the application can receive data integrity assurance on writes to 1868
memory-mapped PM prior to completion of this action. This is the PM equivalent to the POSIX 1869
definition of synchronized I/O which clarifies that the intent of synchronized I/O data integrity 1870
completion is "so that an application can ensure that the data being manipulated is physically 1871
present on secondary mass storage devices”. 1872

Except for the additional verification of flushed data, this action has the same effect as 1873
NVM.PM.FILE.OPTIMIZED_FLUSH. 1874

Requires: NVM.PM.FILE.MAP 1875

Inputs: Identical to NVM.PM.FILE.OPTIMIZED_FLUSH. 1876

Outputs: Align with native OS's sync with the addition that it shall return an error code. The 1877
error code indicates whether or not all data in the indicated range set is readable. 1878

Relevant attributes: 1879

NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE – Indicates whether this action 1880
is supported by the NVM.PM.FILE implementation (see 10.3.7). 1881

OPTIMIZED_FLUSH_AND_VERIFY shall assure that data has been verified to be readable. 1882
Any errors discovered during verification should be logged for administrative attention. 1883
Verification shall occur across all data ranges specified in the action regardless of when they 1884
were actually flushed. Verification shall complete prior to completion of the action. 1885

In the event of failure the progress of the action is indeterminate. 1886

 1887

10.3 Attributes 1888

10.3.1 Attributes that apply across multiple modes 1889
The following attributes apply to NVM.PM.FILE mode as well as other modes. 1890

NVM.COMMON.SUPPORTED_MODES (see 6.12.1) 1891
NVM.COMMON.FILE_MODE (see 6.12.2) 1892

10.3.2 NVM.PM.FILE.MAP_COPY_ON_WRITE_CAPABLE 1893
Requirement: mandatory 1894

NVM Programming Model (NPM) Working Draft 66
Version 1 Update 1

This attribute indicates that MAP_COPY_ON_WRITE option is supported by the 1895
NVM.PM.FILE.MAP action. 1896

10.3.3 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY 1897
Requirement: mandatory 1898

INTERRUPTED_STORE_ATOMICITY indicates whether the volume supports power fail 1899
atomicity of aligned store operations on fundamental data types. To achieve failure atomicity, 1900
aligned operations on fundamental data types reach NVM atomically. Formally “aligned 1901
operations on fundamental data types” is implementation defined. See 6.10. 1902

A value of true indicates that after an aligned store of a fundamental data type is interrupted by 1903
reset, power loss or system crash; upon restart the contents of persistent memory reflect either 1904
the state before the store or the state after the completed store. A value of false indicates that 1905
after a store interrupted by reset, power loss or system crash, upon restart the contents of 1906
memory may be such that subsequent loads may create exceptions. A value of false also 1907
indicates that after a store interrupted by reset, power loss or system crash; upon restart the 1908
contents of persistent memory may not reflect either the state before the store or the state after 1909
the completed store. 1910

The value of this attribute is true only if it’s true for all ranges in the file system. 1911

10.3.4 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE 1912
Requirement: mandatory 1913

FUNDAMENTAL_ERROR_RANGE is the number of bytes that may become unavailable due 1914
to an error on an NVM device. 1915

An application may organize data in terms of FUNDAMENTAL_ERROR_RANGE to assure 1916
two key data items are not likely to be affected by a single error. 1917

Unlike NVM.PM.VOLUME (see 9), NVM.PM.FILE does not associate an offset with the 1918
FUNDAMENTAL_ERROR_RANGE because the file system is expected to handle any volume 1919
mode offset transparently to the application. The value of this attribute is the maximum of the 1920
values for all ranges in the file system. 1921

10.3.5 NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE 1922
Requirement: mandatory 1923

This attribute indicates that the OPTIMIZED_FLUSH action is supported by the NVM.PM.FILE 1924
implementation. 1925

10.3.6 NVM.PM.FILE.ERROR_EVENT_CAPABLE 1926
Requirement: mandatory 1927

NVM Programming Model (NPM) Working Draft 67
Version 1 Update 1

This attribute indicates that the NVM.PM.FILE implementation is capable of handling error 1928
events in such a way that, in the event of data loss, those events are subsequently delivered to 1929
applications. If error event handling is supported then NVM.PM.FILE.GET_ERROR_INFO 1930
action shall also be supported. 1931

10.3.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE 1932
Requirement: mandatory 1933

This attribute indicates that the OPTIMIZED_FLUSH_AND_VERIFY action is supported by the 1934
NVM.PM.FILE implementation. 1935

10.4 Use cases 1936

10.4.1 Update PM File Record 1937
Update a record in a PM file. 1938

Purpose/triggers: 1939
An application using persistent memory updates an existing record. For simplicity, this 1940
application uses fixed size records. The record size is defined by application data 1941
considerations. 1942

Scope/context: 1943
Persistent memory context; this use case shows basic behavior. 1944

Preconditions: 1945
• The administrator created a PM file and provided its name to the application; this name is 1946

accessible to the application – perhaps in a configuration file 1947
• The application has populated the PM file contents 1948
• The PM file is not in use at the start of this use case (no sharing considerations) 1949

Inputs: 1950
The content of the record, the location (relative to the file) where the record resides 1951

Success scenario: 1952
1) The application uses the native OPEN action, passing in the file name 1953
2) The application uses the NVM.PM.FILE.MAP action, passing in the file descriptor returned 1954

by the native OPEN. Since the records are not necessarily page aligned, the application 1955
maps the entire file. 1956

3) The application registers for memory hardware exceptions 1957
4) The application stores the new record content to the address returned by 1958

NVM.PM.FILE.MAP offset by the record’s location 1959
5) The application uses NVM.PM.FILE.SYNC to flush the updated record to the persistence 1960

domain 1961
a. The application may simply sync the entire file 1962

NVM Programming Model (NPM) Working Draft 68
Version 1 Update 1

b. Alternatively, the application may limit the range to be sync’d 1963
6) The application uses the native UNMAP and CLOSE actions to clean up. 1964

Failure Scenario: 1965
While reading PM content (accessing via a load operation), a memory hardware exception is 1966
reported. The application’s event handler is called with information about the error as 1967
described in NVM.PM.FILE.GET_ERROR_INFO. Based on the information provided, the 1968
application records the error for subsequent recovery and determines whether to restart or 1969
continue execution. 1970

Postconditions: 1971
The record is updated. 1972

10.4.2 Direct load access 1973

Purpose/triggers: 1974
An application developer wishes to retrieve data from a persistent memory-mapped file using 1975
direct memory load instruction access with error handling for uncorrectable errors. 1976

Scope/context: 1977
NVM.PM.FILE 1978

Inputs: 1979
• Virtual address of the data. 1980

Outputs: 1981
• Data from persistent memory if successful 1982
• Error code if an error was detected within the accessed memory range. 1983

Preconditions: 1984
• The persistent memory file must be mapped into a region of virtual memory. 1985
• The virtual address must be within the mapped region of the file. 1986

Postconditions: 1987
• If an error was returned, the data may be unreadable. Future load accesses may 1988

continue to return an error until the data is overwritten to clear the error condition 1989
• If no error was returned, there is no postcondition. 1990

Success and Failure Scenarios: 1991
Consider the following fragment of example source code, which is simplified from the code for 1992
the function that reads SQLite’s transaction journal: 1993

retCode = pread(journalFD, magic, 8, off); 1994
if (retCode != SQLITE_OK) return retCode; 1995
 1996

NVM Programming Model (NPM) Working Draft 69
Version 1 Update 1

if (memcmp(magic, journalMagic, 8) != 0) 1997
 return SQLITE_DONE; 1998

This example code reads an eight-byte magic number from the journal header into an eight-1999
byte buffer named magic using a standard file read call. If an error is returned from the read 2000
system call, the function exits with an error return code indicating that an I/O error occurred. If 2001
no error occurs, it then compares the contents of the magic buffer against the expected magic 2002
number constant named journalMagic. If the contents of the buffer do not match the expected 2003
magic number, the function exits with an error return code. 2004

An equivalent version of the function using direct memory load instruction access to a mapped 2005
file is: 2006

volatile siginfo_t errContext; 2007
... 2008
int retCode = SQLITE_OK; 2009
 2010
TRY 2011
{ 2012
 if (memcmp(journalMmapAddr + off, journalMagic, 8) != 0) 2013
 retCode = SQLITE_DONE; 2014
} 2015
CATCH(BUS_MCEERR_AR) 2016
{ 2017
 if ((errContext.si_code == BUS_MCEERR_AR) && 2018
 (errContext.si_addr >= journalMmapAddr) && 2019
 (errContext.si_addr < (journalMmapAddr + journalMmapSize))){ 2020
 retCode = SQLITE_IOERR; 2021
 } else { 2022
 signal(errContext.si_signo, SIG_DFL); 2023
 raise(errContext.si_signo); 2024
 } 2025
} 2026
ENDTRY; 2027
 2028
if (retCode != SQLITE_OK) return retCode; 2029

The mapped file example compares the magic number in the header of the journal file against 2030
the expected magic number using the memcmp function by passing a pointer containing the 2031
address of the magic number in the mapped region of the file. If the contents of the magic 2032
number member of the file header do not match the expected magic number, the function exits 2033
with an error return code. 2034

The application-provided TRY/CATCH/ENDTRY macros implement a form of exception 2035
handling using POSIX sigsetjmp and siglongjmp C library functions. The TRY macro initializes 2036
a sigjmp_buf by calling sigsetjmp. When a SIGBUS signal is raised, the signal handler calls 2037
siglongjmp using the sigjmp_buf set by the sigsetjmp call in the TRY macro. Execution then 2038
continues in the CATCH clause. (Caution: the code in the TRY block should not call library 2039
functions as they are not likely to be exception-safe.) Code for the Windows platform would be 2040
similar except that it would use the standard Structured Exception Handling try-except 2041
statement catching the EXCEPTION_IN_PAGE_ERROR exception rather than application-2042
provided TRY/CATCH/ENDTRY macros. 2043

NVM Programming Model (NPM) Working Draft 70
Version 1 Update 1

If an error occurs during the read of the magic number data from the mapped file, a SIGBUS 2044
signal will be raised resulting in the transfer of control to the CATCH clause. The address of 2045
the error is compared against the range of the memory-mapped file. In this example the error 2046
address is assumed to be in the process’s logical address space. If the error address is within 2047
the range of the memory-mapped file, the function returns an error code indication that an I/O 2048
error occurred. If the error address is outside the range of the memory-mapped file, the error is 2049
assumed to be for some other memory region such as the program text, stack, or heap, and 2050
the signal or exception is re-raised. This is likely to result in a fatal error for the program. 2051

See also: 2052
• Microsoft Corporation, Reading and Writing From a File View (Windows), available from 2053

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366801.aspx 2054

10.4.3 Direct store access 2055

Purpose/triggers: 2056
An application developer wishes to place data in a persistent memory-mapped file using direct 2057
memory store instruction access. 2058

Scope/context: 2059
NVM.PM.FILE 2060

Inputs: 2061
• Virtual address of the data. 2062
• The data to store. 2063

Outputs: 2064
• Error code if an error occurred. 2065

Preconditions: 2066
• The persistent memory file must be mapped into a region of virtual memory. 2067
• The virtual address must be within the mapped region of the file. 2068

Postconditions: 2069
• If an error was returned, the state of the data recorded in the persistence domain is 2070

indeterminate. 2071
• If no error was returned, the specified data is either recorded in the persistence domain 2072

or an undiagnosed error may have occurred. 2073

Success and Failure Scenarios: 2074
Consider the following fragment of example source code, which is simplified from the code for 2075
the function that writes to SQLite’s transaction journal: 2076

ret = pwrite(journalFD, dbPgData, dbPgSize, off); 2077
if (ret != SQLITE_OK) return ret; 2078
ret = write32bits(journalFD, off + dbPgSize, cksum); 2079

NVM Programming Model (NPM) Working Draft 71
Version 1 Update 1

if (ret != SQLITE_OK) return ret; 2080
ret = fdatasync(journalFD); 2081
if (ret != SQLITE_OK) return ret; 2082

This example code writes a page of data from the database cache to the journal using a 2083
standard file write call. If an error is returned from the write system call, the function exits with 2084
an error return code indicating that an I/O error occurred. If no error occurs, the function then 2085
appends the checksum of the data, again using a standard file write call. If an error is returned 2086
from the write system call, the function exits with an error return code indicating that an I/O 2087
error occurred. If no error occurs, the function then invokes the fdatasync system call to flush 2088
the written data from the file system buffer cache to the persistence domain. If an error is 2089
returned from the fdatasync system call, the function exits with an error return code indicating 2090
that an I/O error occurred. If no error occurs, the written data has been recorded in the 2091
persistence domain. 2092

An equivalent version of the function using direct memory store instruction access to a 2093
memory-mapped file is: 2094

memcpy(journalMmapAddr + off, dbPgData, dbPgSize); 2095
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off, dbPgSize); 2096
 2097
store32bits(journalMmapAddr + off + dbPgSize, cksum); 2098
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off + dbPgSize, 4); 2099
 2100
ret = PM_optimized_flush(dirtyLines, dirtyLinesCount); 2101
 2102
if (ret == SQLITE_OK) dirtyLinesCount = 0; 2103
 2104
return ret; 2105

The memory-mapped file example writes a page of data from the database cache to the 2106
journal using the memcpy function by passing a pointer containing the address of the page 2107
data field in the mapped region of the file. It then appends the checksum using direct stores to 2108
the address of the checksum field in the mapped region of the file. 2109

The code calls the application-provided PM_track_dirty_mem function to record the virtual 2110
address and size of the memory regions that it has modified. The PM_track_dirty_mem 2111
function constructs a list of these modified regions in the dirtyLines array. 2112

The function then calls the PM_optimized_flush function to flush the written data to the 2113
persistence domain. If an error is returned from the PM_optimized_flush call, the function exits 2114
with an error return code indicating that an I/O error occurred. If no error occurs, the written 2115
data is either recorded in the persistence domain or an undiagnosed error may have occurred. 2116
Note that this postcondition is weaker than the guarantee offered by the fdatasync system call 2117
in the original example. 2118

See also: 2119
• Microsoft Corporation, Reading and Writing From a File View (Windows), available from 2120

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366801.aspx 2121

NVM Programming Model (NPM) Working Draft 72
Version 1 Update 1

10.4.4 Direct store access with synchronized I/O data integrity completion 2122

Purpose/triggers: 2123
An application developer wishes to place data in a persistent memory-mapped file using direct 2124
memory store instruction access with synchronized I/O data integrity completion. 2125

Scope/context: 2126
NVM.PM.FILE 2127

Inputs: 2128
• Virtual address of the data. 2129
• The data to store. 2130

Outputs: 2131
• Error code if an error occurred. 2132

Preconditions: 2133
• The persistent memory file must be mapped into a region of virtual memory. 2134
• The virtual address must be within the mapped region of the file. 2135

Postconditions: 2136
• If an error was returned, the state of the data recorded in the persistence domain is 2137

indeterminate. 2138
• If no error was returned, the specified data is recorded in the persistence domain. 2139

Success and Failure Scenarios: 2140
Consider the following fragment of example source code, which is simplified from the code for 2141
the function that writes to SQLite’s transaction journal: 2142

ret = pwrite(journalFD, dbPgData, dbPgSize, off); 2143
if (ret != SQLITE_OK) return ret; 2144
ret = write32bits(journalFD, off + dbPgSize, cksum); 2145
if (ret != SQLITE_OK) return ret; 2146
 2147
ret = fdatasync(journalFD); 2148
if (ret != SQLITE_OK) return ret; 2149

This example code writes a page of data from the database cache to the journal using a 2150
standard file write call. If an error is returned from the write system call, the function exits with 2151
an error return code indicating that an I/O error occurred. If no error occurs, the function then 2152
appends the checksum of the data, again using a standard file write call. If an error is returned 2153
from the write system call, the function exits with an error return code indicating that an I/O 2154
error occurred. If no error occurs, the function then invokes the fdatasync system call to flush 2155
the written data from the file system buffer cache to the persistence domain. If an error is 2156
returned from the fdatasync system call, the function exits with an error return code indicating 2157

NVM Programming Model (NPM) Working Draft 73
Version 1 Update 1

that an I/O error occurred. If no error occurs, the written data has been recorded in the 2158
persistence domain. 2159

An equivalent version of the function using direct memory store instruction access to a 2160
memory-mapped file is: 2161

memcpy(journalMmapAddr + off, dbPgData, dbPgSize); 2162
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off, dbPgSize); 2163
 2164
store32bits(journalMmapAddr + off + dbPgSize, cksum); 2165
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off + dbPgSize, 4); 2166
 2167
ret = PM_optimized_flush_and_verify(dirtyLines, dirtyLinesCount); 2168
 2169
if (ret == SQLITE_OK) dirtyLinesCount = 0; 2170
 2171
return ret; 2172

The memory-mapped file example writes a page of data from the database cache to the 2173
journal using the memcpy function by passing a pointer containing the address of the page 2174
data field in the mapped region of the file. It then appends the checksum using direct stores to 2175
the address of the checksum field in the mapped region of the file. 2176

The code calls the application-provided PM_track_dirty_mem function to record the virtual 2177
address and size of the memory regions that it has modified. The PM_track_dirty_mem 2178
function constructs a list of these modified regions in the dirtyLines array. 2179

The function then calls the PM_optimized_flush_and_verify function to flush the written data to 2180
the persistence domain. If an error is returned from the PM_optimized_flush_and_verify call, 2181
the function exits with an error return code indicating that an I/O error occurred. If no error 2182
occurs, the written data has been recorded in the persistence domain. Note that this 2183
postcondition is equivalent to the guarantee offered by the fdatasync system call in the original 2184
example. 2185

See also: 2186
• Microsoft Corp, FlushFileBuffers function (Windows), 2187

http://msdn.microsoft.com/en-us/library/windows/desktop/aa364439.aspx 2188
• Oracle Corp, Synchronized I/O section in the Programming Interfaces Guide, available 2189

from 2190
http://docs.oracle.com/cd/E19683-01 /816-5042/chap7rt-57/index.html 2191

• The Open Group, “The Open Group Base Specification Issue 6”, section 3.373 2192
“Synchronized Input and Output”, available from 2193
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap03.html#tag_03_32194
73 2195

NVM Programming Model (NPM) Working Draft 74
Version 1 Update 1

http://msdn.microsoft.com/en-us/library/windows/desktop/aa364439.aspx
http://docs.oracle.com/cd/E19683-01%20/816-5042/chap7rt-57/index.html
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap03.html%23tag_03_373
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap03.html%23tag_03_373

10.4.5 Persistent Memory Transaction Logging 2196

Purpose/Triggers: 2197
An application developer wishes to implement a transaction log that maintains data integrity 2198
through system crashes, system resets, and power failures. The underlying storage is byte-2199
granular persistent memory. 2200

Scope/Context: 2201
NVM.PM.VOLUME and NVM.PM.FILE 2202

For notational convenience, this use case will use the term “file” to apply to either a file in the 2203
conventional sense which is accessed through the NVM.PM.FILE interface, or a specific 2204
subset of memory ranges residing on an NVM device which are accessed through the 2205
NVM.BLOCK interface. 2206

Inputs: 2207
• A set of changes to the persistent state to be applied as a single transaction. 2208
• The data and log files. 2209

Outputs: 2210
• An indication of transaction commit or abort. 2211

Postconditions: 2212
• If an abort indication was returned, the data was not committed and the previous 2213

contents have not been modified. 2214
• If a commit indication was returned, the data has been entirely committed. 2215
• After a system crash, reset, or power failure followed by system restart and execution of 2216

the application transaction recovery process, the data has either been entirely 2217
committed or the previous contents have not been modified. 2218

Success Scenario: 2219
The application transaction logic uses a log file in combination with its data file to atomically 2220
update the persistent state of the application. The log may implement a before-image log or a 2221
write-ahead log. The application transaction logic should configure itself to handle torn or 2222
interrupted writes to the log or data files. 2223

Since persistent memory may be byte-granular, torn writes may occur at any point during a 2224
series of stores. The application should be prepared to detect a torn write of the record and 2225
either discard or recover such a torn record during the recovery process. One common way of 2226
detecting such a torn write is for the application to compute a hash of the record and record the 2227
hash in the record. Upon reading the record, the application re-computes the hash and 2228
compares it with the recorded hash; if they do not match, the record has been torn. 2229

NVM Programming Model (NPM) Working Draft 75
Version 1 Update 1

10.4.5.1 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is true 2230
If the NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is true, then writes which are 2231
interrupted by a system crash, system reset, or power failure occur atomically. In other words, 2232
upon restart the contents of persistent memory reflect either the state before the store or the 2233
state after the completed store. 2234

In this case, the application need not handle interrupted writes to the log or data files. 2235

10.4.5.2 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false 2236
NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false, then writes which are 2237
interrupted by a system crash, system reset, or power failure do not occur atomically. In other 2238
words, upon restart the contents of persistent memory may be such that subsequent loads 2239
may create exceptions depending on the value of the FUNDAMENTAL_ERROR_RANGE 2240
attribute. 2241

In this case, the application should be prepared to handle an interrupted write to the log or data 2242
files. 2243

10.4.5.2.1 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE > 0 2244
If the NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE is greater than zero, the application 2245
should align the log or data records with the 2246
NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE and pad the record size to be an integral 2247
multiple of NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE. This prevents more than one 2248
record from residing in the same fundamental error range. The application should be prepared 2249
to discard or recover the record if a load returns an exception when subsequently reading the 2250
record during the recovery process. (See also SQLite.org, Powersafe Overwrite, 2251
http://www.sqlite.org/psow.html.) 2252

10.4.5.2.2 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE = 0 2253
If the NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE is zero, the application lacks sufficient 2254
information to handle interrupted writes to the log or data files. 2255

Failure Scenarios: 2256
Consider the recovery of an error resulting from an interrupted write on a persistent memory 2257
volume or file system where the NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false. 2258
This error may be persistent and may be returned whenever the affected fundamental error 2259
range is read. To repair this error, the application should be prepared to overwrite such a 2260
range. 2261

One common way of ensuring that the application will overwrite a range is by assigning it to 2262
the set of internal free space managed by the application, which is never read and is available 2263
to be allocated and overwritten at some point in the future. For example, the range may be part 2264
of a circular log. If the range is marked as free, the transaction log logic will eventually allocate 2265
and overwrite that range as records are written to the log. 2266

NVM Programming Model (NPM) Working Draft 76
Version 1 Update 1

http://www.sqlite.org/psow.html

Another common way is to record either a before-image or after-image of a data range in a log. 2267
During recovery after a system crash, system reset, or power failure, the application replays 2268
the records in the log and overwrites the data range with either the before-image contents or 2269
the after-image contents. 2270

See also: 2271
• SQLite.org, Atomic Commit in SQLite, http://www.sqlite.org/atomiccommit.html 2272
• SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html 2273
• SQLite.org, Write-Ahead Logging, http://www.sqlite.org/wal.html 2274

NVM Programming Model (NPM) Working Draft 77
Version 1 Update 1

http://www.sqlite.org/atomiccommit.html
http://www.sqlite.org/psow.html
http://www.sqlite.org/wal.html

Annex A (Informative) PM pointers 2275
Pointers are data types that hold virtual addresses of data in memory. When applications use 2276
pointers with volatile memory, the value of the pointer must be re-assigned each time the 2277
program is run (a consequence of the memory being volatile). When applications map a file (or 2278
a portion of a file) residing in persistent memory to virtual addresses, it may or may not be 2279
assigned the same virtual address. If not, then pointers to values in that mapped memory will 2280
not reference the same data. There are several possible solutions to this problem: 2281
1) Relative pointers 2282
2) Regions are mapped at fixed addresses 2283
3) Pointers are relocated when region is remapped 2284

All three approaches are problematic, and involve different challenges that have not been fully 2285
addressed. 2286

None, except perhaps the third one, handles C++ vtable pointers inside persistent memory, or 2287
pointers to string constants, where the string physically resides in the executable, and not the 2288
memory-mapped file. Both of those issues are common. 2289

Option (1) implies that no existing pointer-containing library data structures can be stored in 2290
PM, since pointer representations change. Option (2) requires careful management of virtual 2291
addresses to ensure that memory-mapped files that may need to be accessed simultaneously 2292
are not assigned to the same address. It may also limit address space layout randomization. 2293
Option (3) presents challenges in, for example, a C language environment in which pointers 2294
may not be unambiguously identifiable, and where they may serve as hash table indices or the 2295
like. Pointer relocation would invalidate such hash tables. It may be significantly easier in the 2296
context of a Java-like language. 2297

NVM Programming Model (NPM) Working Draft 78
Version 1 Update 1

Annex B (Informative) PM error handling 2298
Persistent memory error handing for NVM.PM.FILE.MAP ranges is unique because unlike I/O, 2299
there is no acknowledgement to a load or store instruction. Instead processors equipped to 2300
detect memory access failures respond with machine checks. In some cases these can be 2301
routed to user threads as asynchronous events. 2302

This annex only describes the handling of errors resulting from load instructions that access 2303
memory. As will be described later in this annex, no application level recovery is enabled at the 2304
point of a store error. These errors should appear in CPU event logs, leading to an 2305
administrative response that is outside the scope of this annex. 2306

Applications needing timely assurance that recently stored data is recoverable should use the 2307
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY (see 10.2.7) action to read data back from 2308
NVM after it is flushed. Errors during verify are handled in the manner described in this annex. 2309

There are several scenarios that can arise in the handling of machine checks related to 2310
persistent memory errors while reading data from memory locations such as can occur during 2311
“load” instructions. Concepts are introduced here in an attempt to advance the state of the art 2312
in persistent memory error handling. The goal is to provide error reporting and recovery 2313
capability to applications that is equivalent to the current practice for I/O. 2314

We need several definitions to assist in reasoning about asynchronous events. 2315

- Machine check: an interrupt. In this case interrupts that result from memory errors are of 2316
specific interest. 2317

- Precise machine check – an interrupt that allows an application to resume at the interrupted 2318
instruction 2319

- Error containment – this is an indication of how well the system can determine the extent of 2320
an error. This enables a range of memory affected by an error that caused an interrupt to 2321
be returned to the application. 2322

- Real time error recovery – This refers to scenarios in which the application can continue 2323
execution after an error as opposed to being restarted. 2324

- Asynchronous event handler – This refers to code provided by an application that runs in 2325
response to an asynchronous event, in this case an event that indicates a memory error. 2326
An application’s event handler uses information about the error to determine whether 2327
execution can safely continue from within the application or whether a partial or full restart 2328
of the application is required to recover from the error. 2329

The ability to handle persistent memory errors depends on the capability of the processor and 2330
memory system. It is useful to categorize error handling capability into three levels: 2331

- No memory error detection – the lowest end systems have little or no memory error 2332
detection or correction capability such as ECC, CRC or parity. 2333

- Non-precise or uncontained memory error detection – these systems detect memory errors 2334
but they do not provide information about the location of the error and/or fail to offer enough 2335
information to resume execution from the interrupted instruction. 2336

NVM Programming Model (NPM) Working Draft 79
Version 1 Update 1

- Precise, contained memory error detection – these systems detect memory errors and 2337
report their locations in real time. These systems are also able to contain many errors more 2338
effectively. This increases the range of errors that allowing applications to continue 2339
execution rather than resetting the application or the whole system. This capability is 2340
common when using higher RAS processors. 2341

Only the last category of systems can, with appropriate operating system software 2342
enhancement, meet the error reporting goal stated above. The other two categories of systems 2343
risk scenarios where persistent memory errors are forced to repeatedly reset threads or 2344
processors, rendering them incapable of doing work. Unrecovered persistent memory errors 2345
are more problematic than volatile memory errors because they are less likely to disappear 2346
during a processor reset or application restart. 2347

Systems with precise memory error detection capability can experience a range of scenarios 2348
depending on the nature of the error. These can be categorized into three types. 2349

- Platform can’t capture error 2350
• Perhaps application or operating system dies 2351
• Perhaps hardware product include diagnostic utilities 2352

- Platform can capture error, considered fatal 2353
• Operating system crashes 2354
• Address info potentially stored by operating system or hardware/firmware 2355
• Application could use info on restart 2356

- Platform can capture error & deliver to application 2357
• Reported to application using asynchronous “event” 2358
• Example: SIGBUS on UNIX w/address info 2359

If the platform can’t capture the error then no real time recovery is possible. The system may 2360
function intermittently or not at all until diagnostics can expose the problem. The same thing 2361
happens whether the platform lacks memory error detection capability or the platform has the 2362
capability but was unable to use it due to a low probability error scenario. 2363

If the platform can capture the error but it is fatal then real time recovery is not possible, 2364
however then the system may make information about the error available after system or 2365
application restart. For this scenario, actions are proposed below to obtain error descriptions. 2366

If the platform can deliver the error to the application then real time recovery may be possible. 2367
An action is proposed below to represent the means that the application uses to obtain error 2368
information immediately after the failure. 2369

As stated at the beginning of this annex, only errors during load are addressed by this annex. 2370
As with other storage media, little or no error checking occurs during store instructions (aka 2371
writes). In addition, memory write pipelines within CPU’s effectively preclude error handling 2372
during memory accesses that result from store instructions. For example, errors detected 2373
during the process of flushing the CPU’s write pipeline are more likely to be associated with 2374
that pipeline than the NVM itself. Errors that arise within the CPU’s write pipeline are generally 2375
not contained so no application level recovery is enabled at the point of the error. 2376

NVM Programming Model (NPM) Working Draft 80
Version 1 Update 1

Continuing to analyze the real time error delivery scenario, the handling of errors on load 2377
instructions is sufficient in today’s high RAS systems to avoid the consumption of erroneous 2378
data by the application. Several enhancements are required to meet the goal of I/O-like 2379
application recoverability. 2380

Using Linux running on the Intel architecture as an example, memory errors are reported using 2381
Intel’s Machine Check Architecture (MCA). When the operating system enables this feature, 2382
the error flow on an uncorrectable error is shown by the solid red arrow (labeled ②) in Figure 2383
15 Linux Machine Check error flow with proposed new interface, which depicts the mcheck 2384
component getting notified when the bad location in PM is accessed. 2385

Figure 15 Linux Machine Check error flow with proposed new interface 2386

Application

PM device PM device PM device. . .

User space
Kernel space

MMU
MappingsPM-aware file system

Load/
store

Native file
API

mcheck
①

②

③ Legend for labeled lines:
① (proposed) NVM.PM.FILE
implementation registers with
mcheck module
② MCA reports error to
mcheck module
③ (proposed) mcheck reports
error to NVM.PM.FILE
implementation

 2387

As mentioned above, sending the application a SIGBUS (a type of asynchronous event) allows 2388
the application to decide what to do. However, in this case, remember that the NVM.PM.FILE 2389
manages the PM and that the location being accessed is part of a file on that file system. So 2390
even if the application gets a signal preventing it from using corrupted data, a method for 2391
recovering from this situation must be provided. A system administrator may try to back up rest 2392
of the data in the file system before replacing the faulty PM, but with the error mechanism 2393
we’ve described so far, the backup application would be sent a SIGBUS every time it touched 2394
the bad location. What is needed in this case is a way for the NVM.PM.FILE implementation to 2395
be notified of the error so it can isolate the affected PM locations and then continue to provide 2396
access to the rest of the PM file system. The dashed arrows in Figure 15 show the necessary 2397
modification to the machine check code in Linux. On start-up, the NVM.PM.FILE 2398
implementation registers with the machine code to show it has responsibility for certain ranges 2399
of PM. Later, when the error occurs, NVM.PM.FILE gets called back by the mcheck 2400
component and has a chance to handle the error. 2401

This suggested machine check flow change enables the file system to participate in recovery 2402
while not eliminating the ability to signal the error to the application. The application view of 2403
errors not corrected by the file system depends on whether the error handling was precise and 2404
contained. Imprecise error handling precludes resumption of the application, in which case the 2405

NVM Programming Model (NPM) Working Draft 81
Version 1 Update 1

one recovery method available besides restart is a non-local go-to. This resumes execution at 2406
an application error handling routine which, depending on the design of the application, may be 2407
able to recover from the error without resuming from the point in the code that was interrupted. 2408

Taking all of this into account, the proposed application view of persistent memory errors is as 2409
described by the NVM.PM.FILE.MAP action (section 10.2.3) and the 2410
NVM.PM.FILE.GET_ERROR_INFO action (section 10.2.6). 2411

The following actions have been proposed to provide the application with the means necessary 2412
to obtain error information after a fatal error. 2413

• PM.FILE.ERROR_CHECK(file, offset, length): Discover if range has any outstanding 2414
errors. Returns a list of errors referenced by file and offset. 2415

• PM.FILE.ERROR_CLEAR(file, offset, length): Reset error state (and data) for a range: may 2416
not succeed 2417

The following attributes have been proposed to enable application to discover the error 2418
reporting capabilities of the implementation. 2419

• NVM.PM.FILE.ERROR_CHECK_CAPABLE - System supports asking if range is in error 2420
state 2421

NVM Programming Model (NPM) Working Draft 82
Version 1 Update 1

Annex C (Informative) Deferred behavior 2422
This annex lists some behaviors that are being considered for future specifications. 2423

D.1 Remote sharing of NVM 2424

This version of the specification talks about the relationship between DMA and persistent 2425
memory (see 6.6 Interaction with I/O devices) which should enable a network device to access 2426
NVM devices. But no comprehensive approach to remote share of NVM is addressed in this 2427
version of the specification. 2428

D.2 MAP_CACHED OPTION FOR NVM.PM.FILE.MAP 2429

This would enable memory mapped ranges to be either cached or uncached by the CPU. 2430

D.3 NVM.PM.FILE.DURABLE.STORE 2431

This might imply that through this action things become durable and visible at the same time, 2432
or not visible until it is durable. Is there a special case for atomic write that, by the time the 2433
operation completes, it is both visible and durable? The prospective use case is an opportunity 2434
for someone with a hardware implementation that does not require separation of store and 2435
sync. This is not envisioned as the same as a file system write. It still implies a size of the 2436
store. The use case for NVM.FILE.DURABLE.STORE is to force access to the persistence 2437
domain. 2438

D.4 Enhanced NVM.PM.FILE.WRITE 2439

Add an NVM.PM.FILE.WRITE action where the only content describes error handling. 2440

D.5 Management-only behavior 2441

Several management-only behaviors have been discussed, but deferred to a future revision; 2442
including: 2443

• Secure Erase 2444
• Behavior enabling management application to discover PM devices (and behavior to fill 2445

gaps in the discovery of block NVM attributes) 2446
• Attribute exposing flash erase block size for management of disk partitions 2447

D.6 Access hints 2448

Allow applications to suggest how data is placed on storage 2449

D.7 Multi-device atomic multi-write action 2450

Perform an atomic write to multiple extents in different devices. 2451

D.8 NVM.BLOCK.DISCARD_IF_YOU_MUST action 2452

The text below was partially developed, before being deferred to a future revision. 2453

NVM Programming Model (NPM) Working Draft 83
Version 1 Update 1

10.4.6 NVM.BLOCK.DISCARD_IF_YOU_MUST 2454
Proposed new name MARK_DISCARDABLE 2455

Purpose - discard blocks to prevent write amplification 2456

This action notifies the NVM device that some or all of the blocks which constitute a volume 2457
are no longer needed by the application, but the NVM device should defer changes to the 2458
blocks as long as possible. This action is a hint to the device. 2459

If the data has been retained, a subsequent read shall return “success” along with the data. 2460
Otherwise, it shall return an error indicating the data does not exist (and the data buffer area 2461
for that block is undefined). 2462

Inputs: a range of blocks (starting LBA and length in logical blocks) 2463

Status: Success indicates the request is accepted but not necessarily acted upon. 2464

Existing implementations of TRIM may work this way. 2465

10.4.7 DISCARD_IF_YOU_MUST use case 2466

Purpose/triggers: 2467
An NVM device may allocate blocks of storage from a common pool of storage. The device 2468
may also allocate storage through a thin provisioning mechanism. In each of these cases, it is 2469
useful to provide a mechanism which allows an application or NVM user to notify the NVM 2470
storage system that some or all of the blocks which constitute the volume are no longer 2471
needed by the application. This allows the NVM device to return the memory allocated for the 2472
unused blocks to the free memory pool and make the unused blocks available for other 2473
consumers to use. 2474

DISCARD_IF_YOU_MUST operation informs the NVM device that that the specified blocks 2475
are no longer required. DISCARD_IF_YOU_MUST instructs the NVM device to release 2476
previously allocated blocks to the NVM device’s free memory pool. The NVM device releases 2477
the used memory to the free storage pool based on the specific implementation of that device. 2478
If the device cannot release the specified blocks, the DISCARD_IF_YOU_MUST operation 2479
returns an error. 2480

Scope/context: 2481
This use case describes the capabilities of an NVM device that the NVM consumer can 2482
determine. 2483

Inputs: 2484
The range to be freed. 2485

Success scenario: 2486
The operation succeeds unless an invalid region is specified or the NVM device is unable to 2487
free the specified region. 2488

NVM Programming Model (NPM) Working Draft 84
Version 1 Update 1

Outputs: 2489
The completion status. 2490

Postconditions: 2491
The specified region is erased and released to the free storage pool. 2492

See also: 2493
DISCARD_IF_YOU_CAN 2494

EXISTS 2495

D.9 Atomic write action with Isolation 2496

Offer alternatives to ATOMIC_WRITE and ATOMIC_MULTIWRITE that also include isolation 2497
with respect to other atomic write actions. Issues to consider include whether order is required, 2498
whether isolation applies across multiple paths, and how isolation applies to file mapped I/O. 2499

D.10 Atomic Sync/Flush action for PM 2500

The goal is a mechanism analogous to atomic writes for persistent memory. Since stored 2501
memory may be implicitly flushed by a file system, defining this mechanism may be more 2502
complex than simply defining an action. 2503

D.11 Hardware-assisted verify 2504

Future PM device implementations may provide a capability to perform the verify step of 2505
OPTIMIZED_FLUSH_AND_VERIFY without requiring an explicit load instruction. This 2506
capability may require the addition of actions and attributes in NVM.PM.VOLUME mode; this 2507
change is deferred until we have examples of this type of device. 2508

NVM Programming Model (NPM) Working Draft 85
Version 1 Update 1

	Foreword
	1 Scope
	2 References
	3 Definitions, abbreviations, and conventions
	3.1 Definitions
	3.1.1 durable
	3.1.2 load and store operations
	3.1.3 memory-mapped file
	3.1.4 non-volatile memory
	3.1.5 NVM block capable driver
	3.1.6 NVM volume
	3.1.7 persistence domain
	3.1.8 persistent memory
	3.1.9 programming model

	3.2 Keywords
	3.2.1 mandatory
	3.2.2 may
	3.2.3 may not
	3.2.4 need not
	3.2.5 optional
	3.2.6 shall
	3.2.7 should

	3.3 Abbreviations
	3.4 Conventions

	4 Overview of the NVM Programming Model (informative)
	4.1 How to read and use this specification
	4.2 NVM device models
	4.2.1 Overview
	4.2.2 Block NVM example
	4.2.3 Persistent memory example
	4.2.4 NVM block volume using PM hardware

	4.3 NVM programming modes
	4.3.1 NVM.BLOCK mode overview
	4.3.2 NVM.FILE mode overview
	4.3.3 NVM.PM.VOLUME mode overview
	4.3.4 NVM.PM.FILE mode overview

	4.4 Introduction to actions, attributes, and use cases
	4.4.1 Overview
	4.4.2 Use cases
	4.4.3 Actions
	4.4.4 Attributes
	4.4.5 Property group lists

	5 Compliance to the programming model
	5.1 Overview
	5.2 Documentation of mapping to APIs
	5.3 Compatibility with unspecified native actions
	5.4 Mapping to native interfaces

	6 Common programming model behavior
	6.1 Overview
	6.2 Conformance to multiple file modes
	6.3 Device state at system startup
	6.4 Secure erase
	6.5 Allocation of space
	6.6 Interaction with I/O devices
	6.7 NVM State after a media or connection failure
	6.8 Error handling for persistent memory
	6.9 Persistence domain
	6.10 Aligned operations on fundamental data types
	6.11 Common actions
	6.11.1 NVM.COMMON.GET_ATTRIBUTE
	6.11.2 NVM.COMMON.SET_ATTRIBUTE

	6.12 Common attributes
	6.12.1 NVM.COMMON.SUPPORTED_MODES
	6.12.2 NVM.COMMON.FILE_MODE

	6.13 Use cases
	6.13.1 Application determines which mode is used to access a file system

	7 NVM.BLOCK mode
	7.1 Overview
	7.1.1 Discovery and use of atomic write features
	7.1.2 The discovery of granularities
	7.1.3 Discovery and use of capability to mark blocks as unreadable
	7.1.4 NVM.BLOCK consumers: operating system and applications
	7.1.4.1 NVM.BLOCK operating system components
	7.1.4.2 Block-optimized applications
	7.1.4.3 Mapping documentation

	7.2 Actions
	7.2.1 Actions that apply across multiple modes
	7.2.2 NVM.BLOCK.ATOMIC_WRITE
	7.2.3 NVM.BLOCK.ATOMIC_MULTIWRITE
	7.2.4 NVM.BLOCK.DISCARD_IF_YOU_CAN
	7.2.5 NVM.BLOCK.DISCARD_IMMEDIATELY
	7.2.6 NVM.BLOCK.EXISTS
	7.2.7 NVM.BLOCK.SCAR

	7.3 Attributes
	7.3.1 Attributes that apply across multiple modes
	7.3.2 NVM.BLOCK.ATOMIC_WRITE_CAPABLE
	7.3.3 NVM.BLOCK.ATOMIC_WRITE_MAX_DATA_LENGTH
	7.3.4 NVM.BLOCK.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY
	7.3.5 NVM.BLOCK.ATOMIC_WRITE_LENGTH_GRANULARITY
	7.3.6 NVM.BLOCK.ATOMIC_MULTIWRITE_CAPABLE
	7.3.7 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_IOS
	7.3.8 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH
	7.3.9 NVM.BLOCK.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY
	7.3.10 NVM.BLOCK.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY
	7.3.11 NVM.BLOCK.WRITE_ATOMICITY_UNIT
	7.3.12 NVM.BLOCK.EXISTS_CAPABLE
	7.3.13 NVM.BLOCK.SCAR_CAPABLE
	7.3.14 NVM.BLOCK.LOGICAL_BLOCK_SIZE
	7.3.15 NVM.BLOCK.PERFORMANCE_BLOCK_SIZE
	7.3.16 NVM.BLOCK.ALLOCATION_BLOCK_SIZE
	7.3.17 NVM.BLOCK.DISCARD_IF_YOU_CAN_CAPABLE
	7.3.18 NVM.BLOCK.DISCARD_IMMEDIATELY_CAPABLE
	7.3.19 NVM.BLOCK.DISCARD_IMMEDIATELY_RETURNS
	7.3.20 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE

	7.4 Use cases
	7.4.1 Flash as cache use case
	7.4.2 SCAR use case

	8 NVM.FILE mode
	8.1 Overview
	8.1.1 Discovery and use of atomic write features
	8.1.2 The discovery of granularities
	8.1.3 Relationship between native file APIs and NVM.BLOCK.DISCARD

	8.2 Actions
	8.2.1 Actions that apply across multiple modes
	8.2.2 NVM.FILE.ATOMIC_WRITE
	8.2.3 NVM.FILE.ATOMIC_MULTIWRITE

	8.3 Attributes
	8.3.1 Attributes that apply across multiple modes
	8.3.2 NVM.FILE.ATOMIC_WRITE_CAPABLE
	8.3.3 NVM.FILE.ATOMIC_WRITE_MAX_DATA_LENGTH
	8.3.4 NVM.FILE.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY
	8.3.5 NVM.FILE.ATOMIC_WRITE_LENGTH_GRANULARITY
	8.3.6 NVM.FILE.ATOMIC_MULTIWRITE_CAPABLE
	8.3.7 NVM.FILE.ATOMIC_MULTIWRITE_MAX_IOS
	8.3.8 NVM.FILE.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH
	8.3.9 NVM.FILE.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY
	8.3.10 NVM.FILE.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY
	8.3.11 NVM.FILE.WRITE_ATOMICITY_UNIT
	8.3.12 NVM.FILE.LOGICAL_BLOCK_SIZE
	8.3.13 NVM.FILE. PERFORMANCE_BLOCK_SIZE
	8.3.14 NVM.FILE.LOGICAL_ALLOCATION_SIZE
	8.3.15 NVM.FILE.FUNDAMENTAL_BLOCK_SIZE

	8.4 Use cases
	8.4.1 Block-optimized application updates record
	8.4.2 Atomic write use case
	8.4.3 Block and File Transaction Logging
	8.4.3.1 NVM.BLOCK.WRITE_ATOMICITY_UNIT >= 1
	8.4.3.2 NVM.BLOCK.WRITE_ATOMICITY_UNIT = 0
	8.4.3.2.1 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE >= NVM.BLOCK.LOGICAL_BLOCK_SIZE
	8.4.3.2.2 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE < NVM.BLOCK.LOGICAL_BLOCK_SIZE
	8.4.3.2.3 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE = 0

	9 NVM.PM.VOLUME mode
	9.1 Overview
	9.2 Actions
	9.2.1 Actions that apply across multiple modes
	9.2.2 NVM.PM.VOLUME.GET_RANGESET
	9.2.3 NVM.PM.VOLUME.VIRTUAL_ADDRESS_SYNC
	9.2.4 NVM.PM.VOLUME.PHYSICAL_ADDRESS_SYNC
	9.2.5 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN
	9.2.6 NVM.PM.VOLUME.DISCARD_IMMEDIATELY
	9.2.7 NVM.PM.VOLUME.EXISTS

	9.3 Attributes
	9.3.1 Attributes that apply across multiple modes
	9.3.2 NVM.PM.VOLUME.VOLUME_SIZE
	9.3.3 NVM.PM.VOLUME.INTERRUPTED_STORE_ATOMICITY
	9.3.4 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE
	9.3.5 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE_OFFSET
	9.3.6 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN_CAPABLE
	9.3.7 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_CAPABLE
	9.3.8 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_RETURNS
	9.3.9 NVM.PM.VOLUME.EXISTS_CAPABLE

	9.4 Use cases
	9.4.1 Initialization steps for a PM-aware file system
	9.4.2 Driver emulates a block device using PM media

	10 NVM.PM.FILE
	10.1 Overview
	10.1.1 Applications and PM Consistency

	10.2 Actions
	10.2.1 Actions that apply across multiple modes
	10.2.2 Native file system actions
	10.2.3 NVM.PM.FILE.MAP
	10.2.4 NVM.PM.FILE.SYNC
	10.2.5 Error handling related to this action is expected to be derived from ongoing work that begins with Annex B (Informative) PM error handling.NVM.PM.FILE.OPTIMIZED_FLUSH
	10.2.6 NVM.PM.FILE.GET_ERROR_EVENT_INFO
	10.2.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY

	10.3 Attributes
	10.3.1 Attributes that apply across multiple modes
	10.3.2 NVM.PM.FILE.MAP_COPY_ON_WRITE_CAPABLE
	10.3.3 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY
	10.3.4 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE
	10.3.5 NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE
	10.3.6 NVM.PM.FILE.ERROR_EVENT_CAPABLE
	10.3.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE

	10.4 Use cases
	10.4.1 Update PM File Record
	10.4.2 Direct load access
	10.4.3 Direct store access
	10.4.4 Direct store access with synchronized I/O data integrity completion
	10.4.5 Persistent Memory Transaction Logging
	10.4.5.1 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is true
	10.4.5.2 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false
	10.4.5.2.1 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE > 0
	10.4.5.2.2 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE = 0

	Annex A (Informative) PM pointers
	Annex B (Informative) PM error handling
	Annex C (Informative) Deferred behavior
	D.1 Remote sharing of NVM
	D.2 MAP_CACHED OPTION FOR NVM.PM.FILE.MAP
	D.3 NVM.PM.FILE.DURABLE.STORE
	D.4 Enhanced NVM.PM.FILE.WRITE
	D.5 Management-only behavior
	D.6 Access hints
	D.7 Multi-device atomic multi-write action
	D.8 NVM.BLOCK.DISCARD_IF_YOU_MUST action
	10.4.6 NVM.BLOCK.DISCARD_IF_YOU_MUST
	10.4.7 DISCARD_IF_YOU_MUST use case

	D.9 Atomic write action with Isolation
	D.10 Atomic Sync/Flush action for PM
	D.11 Hardware-assisted verify

