

NVM Programming Model (NPM)
Version 1.2a

Abstract: This SNIA document defines recommended behavior for software supporting Non-
Volatile Memory (NVM).

Publication of this Working Draft for review and comment has been approved by the NVM
Programming TWG. This draft represents a “best effort” attempt by the NVM Programming TWG
to reach preliminary consensus, and it may be updated, replaced, or made obsolete at any time.
This document should not be used as reference material or cited as other than a “work in
progress.” Suggestion for revision should be directed to http://www.snia.org/feedback/.

Working Draft

Mar 22, 2017

NVM Programming Model (NPM) Working Draft 2
Version 1.12a

USAGE
The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal copying,
distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof) is

reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting
permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the
following license:

BSD 3-Clause Software License

Copyright (c) 2014, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

NVM Programming Model (NPM) Working Draft 3
Version 1.12a

DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no warranty of
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2017 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their
respective owners.

http://www.snia.org/feedback/

NVM Programming Model (NPM) Working Draft 4
Version 1.12a

Revision History
Changes since version 1:

• The former informative Consistency annex is reworded and moved to two places in the
specification body:

o New section 6.10 Aligned operations on fundamental data types
o New section 10.1.1 Applications and PM Consistency in NVM.PM.FILE

• A number of editorial fixes to make spelling, terminology, and spacing more consistent

Changes from version 1.1 to version 1.2:

• The former informative PM error handling annex is elaborated, improved and moved to
the following places in the specification body:

o New section 10.1.2 PM Error Handling.
o New action 10.2.10 NVM.PM.FILE.CHECK_ERROR
o New action 10.2.11 NVM.PM.FILE.CLEAR_ERROR
o New attribute 10.3.9 NVM.PM.FILE.ERROR_EVENT_MINIMAL_CAPABILITY
o New attribute 10.3.10 NVM.PM.FILE.ERROR_EVENT_PRECISE_CAPABILITY
o New attribute 10.3.11

NVM.PM.FILE.ERROR_EVENT_ERROR_UNIT_CAPABILITY
o New attribute 10.3.12

NVM.PM.FILE.ERROR_EVENT_MAPPED_SUPPORT_CAPABILITY
o New attribute 10.3.12

NVM.PM.FILE.ERROR_EVENT_LIVE_SUPPORT_CAPABILITY
• The wording in section 10.2.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY is

corrected to make clear that the action does not require verification of the data in the
persistence domain, but merely requires reporting of any errors diagnosed during the
process of writing the data to the persistence domain.

• New section 10.2.8 NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED introduces a new
action that indicates on a per-file basis whether the application may invoke the
OPTIMIZED_FLUSH action or instead is required to call fsync or msync (or the
Windows analogs).

o Some DAX-capable file systems may require that the application call msync or
the Windows equivalent and do not permit the application to call
OPTIMIZED_FLUSH in its place, for some subset of the files in the file system.

o This situation arises when the file system requires the msync system call in order
to force updated file data or metadata to the persistence domain. For example,
when a new page is allocated to a sparse file due to a page fault, some DAX
filesystems do not eagerly force the allocation metadata to the persistence
domain, but instead require an fsync or msync call to guarantee that the
metadata is persistent. Similarly, if the filesystem is performing compression or
encryption, it will require an fsync or msync to persist the data.

• New section 10.2.9 NVM.PM.FILE.DEEP_FLUSH introduces a new action that provides
improved reliability when persisting data but at a potentially higher latency cost. The
intent of this new action is to enable DAX file systems and applications to limit the loss
of data when normal persistence fails.

NVM Programming Model (NPM) Working Draft 5
Version 1.12a

o ADR persistence is only probabilistic; thermal conditions or other unforeseen
conditions may increase the time needed to flush data in the power-protected
domain to the persistent media beyond the hold-up time of the power supply. In
such an event, we would like to limit the scope of the damage to less than all the
data on the persistent memory devices.

o For example, if there are multiple file systems on the persistent memory devices,
and some of them are not mounted when ADR fails, then the data in those file
systems is not corrupted and can be preserved across the persistence failure.
Similarly if a file is not open when ADR fails, and all of the data and file system
metadata needed to access the file has been persisted, then the file is not
corrupted and can be preserved across the persistence failure.
The DEEP_FLUSH action provides the tool needed by file systems to force data
and metadata to a more reliable persistence domain, so that upon recovery the
file system can detect whether it had been mounted, and, if mounted, whether
the it's metadata is intact. Applications can then use DEEP_FLUSH to preserve
data that upon recovery after a persistence failure would allow the application to
determine whether the file had been open, and thus potentially corrupted, or
closed, and thus can be preserved.

o Attribute 10.3.8 NVM.PM.FILE.DEEP_FLUSH_CAPABLE enables an application
to determine if the DEEP_FLUSH action is supported.

• A number of editorial fixes to make spelling, terminology, and spacing more consistent

NVM Programming Model (NPM) Working Draft 6
Version 1.12a

Table of Contents
FOREWORD ... 10

1 SCOPE .. 11

2 REFERENCES .. 12

3 DEFINITIONS, ABBREVIATIONS, AND CONVENTIONS ... 13

3.1 DEFINITIONS .. 13

3.2 KEYWORDS .. 14

3.3 ABBREVIATIONS ... 14

3.4 CONVENTIONS ... 15

4 OVERVIEW OF THE NVM PROGRAMMING MODEL (INFORMATIVE) 16

4.1 HOW TO READ AND USE THIS SPECIFICATION ... 16

4.2 NVM DEVICE MODELS ... 16

4.3 NVM PROGRAMMING MODES ... 18

4.4 INTRODUCTION TO ACTIONS, ATTRIBUTES, AND USE CASES... 20

5 COMPLIANCE TO THE PROGRAMMING MODEL.. 22

5.1 OVERVIEW ... 22

5.2 DOCUMENTATION OF MAPPING TO APIS ... 22

5.3 COMPATIBILITY WITH UNSPECIFIED NATIVE ACTIONS .. 22

5.4 MAPPING TO NATIVE INTERFACES .. 22

6 COMMON PROGRAMMING MODEL BEHAVIOR ... 23

6.1 OVERVIEW ... 23

6.2 CONFORMANCE TO MULTIPLE FILE MODES .. 23

6.3 DEVICE STATE AT SYSTEM STARTUP ... 23

6.4 SECURE ERASE .. 23

6.5 ALLOCATION OF SPACE ... 23

6.6 INTERACTION WITH I/O DEVICES .. 23

6.7 NVM STATE AFTER A MEDIA OR CONNECTION FAILURE .. 24

NVM Programming Model (NPM) Working Draft 7
Version 1.12a

6.8 ERROR HANDLING FOR PERSISTENT MEMORY .. 24

6.9 PERSISTENCE DOMAIN .. 24

6.10 ALIGNED OPERATIONS ON FUNDAMENTAL DATA TYPES .. 24

6.11 COMMON ACTIONS .. 25

6.12 COMMON ATTRIBUTES ... 26

6.13 USE CASES ... 26

7 NVM.BLOCK MODE ... 28

7.1 OVERVIEW ... 28

7.2 ACTIONS ... 30

7.3 ATTRIBUTES .. 33

7.4 USE CASES .. 37

8 NVM.FILE MODE .. 41

8.1 OVERVIEW ... 41

8.2 ACTIONS ... 41

8.3 ATTRIBUTES .. 43

8.4 USE CASES .. 44

9 NVM.PM.VOLUME MODE .. 51

9.1 OVERVIEW ... 51

9.2 ACTIONS ... 51

9.3 ATTRIBUTES .. 54

9.4 USE CASES .. 56

10 NVM.PM.FILE... 59

10.1 OVERVIEW .. 59

10.2 ACTIONS .. 76

10.3 ATTRIBUTES ... 88

10.4 USE CASES ... 91

NVM Programming Model (NPM) Working Draft 8
Version 1.12a

ANNEX A (INFORMATIVE) PM POINTERS ... 101

ANNEX B (INFORMATIVE) DEFERRED BEHAVIOR .. 102

D.1 REMOTE SHARING OF NVM ... 102

D.2 MAP_CACHED OPTION FOR NVM.PM.FILE.MAP ... 102

D.3 NVM.PM.FILE.DURABLE.STORE ... 102

D.4 ENHANCED NVM.PM.FILE.WRITE .. 102

D.5 MANAGEMENT-ONLY BEHAVIOR ... 102

D.6 ACCESS HINTS ... 102

D.7 MULTI-DEVICE ATOMIC MULTI-WRITE ACTION ... 102

D.8 NVM.BLOCK.DISCARD_IF_YOU_MUST ACTION .. 102

D.9 ATOMIC WRITE ACTION WITH ISOLATION .. 104

D.10 ATOMIC SYNC/FLUSH ACTION FOR PM .. 104

D.11 HARDWARE-ASSISTED VERIFY .. 104

NVM Programming Model (NPM) Working Draft 9
Version 1.12a

Table of Figures
Figure 1 Block NVM example .. 17
Figure 2 PM example... 17
Figure 3 Block volume using PM HW .. 17
Figure 4 NVM.BLOCK and NVM.FILE mode examples ... 18
Figure 5 NVM.PM.VOLUME and NVM.PM.FILE mode examples ... 19
Figure 6 NVM.BLOCK mode example ... 28
Figure 7 SSC in a storage stack .. 37
Figure 8 SSC software cache application .. 38
Figure 9 SSC with caching assistance... 38
Figure 10 NVM.FILE mode example ... 41
Figure 11 NVM.PM.VOLUME mode example .. 51
Figure 12 Zero range offset example ... 55
Figure 13 Non-zero range offset example ... 55
Figure 14 NVM.PM.FILE mode example ... 59
Figure 15- INIT_ERROR_HANDLING ... 68
Figure 16 – CONSISTENCY_PT_ERROR_HANDLING .. 69
Figure 17 - RECONCILE_ERROR_FILE_OR_MAP_WITH_CLEAR 71
Figure 18 – RECONCILE_ERROR_MAP_NOCLEAR ... 72
Figure 19 - Linux Machine Check error flow with proposed new interface 75

NVM Programming Model (NPM) Working Draft 10
Version 1.12a

FOREWORD
The SNIA NVM Programming Technical Working Group was formed to address the ongoing
proliferation of new non-volatile memory (NVM) functionality and new NVM technologies. An
extensible NVM Programming Model is necessary to enable an industry wide community of
NVM producers and consumers to move forward together through a number of significant
storage and memory system architecture changes.

This SNIA specification defines recommended behavior between various user space and
operating system (OS) kernel components supporting NVM. This specification does not
describe a specific API. Instead, the intent is to enable common NVM behavior to be exposed
by multiple operating system specific interfaces.

After establishing context, the specification describes several operational modes of NVM
access. Each mode is described in terms of use cases, actions and attributes that inform user
and kernel space components of functionality that is provided by a given compliant
implementation.

Acknowledgements

The SNIA NVM Programming Technical Working Group, which developed and reviewed this
standard, would like to recognize the significant contributions made by the following members:

Organization Represented Name of Representative
EMC Bob Beauchamp
Hewlett Packard Hans Boehm
NetApp Steve Byan
Hewlett Packard Enterprise Joe Foster
Fusion-io Walt Hubis
Red Hat Jeff Moyer
Fusion-io Ned Plasson
Rougs, LLC Tony Roug
Intel Corporation Andy Rudoff
Microsoft Spencer Shepler
Fusion-io Nisha Talagata
Microsoft Tom Talpey
Hewlett Packard Enterprise Doug Voigt
Intel Corporation Paul von Behren
Vmware Paul Willmann

NVM Programming Model (NPM) Working Draft 11
Version 1.12a

1 Scope
This specification is focused on the points in system software where NVM is exposed either as
a hardware abstraction within an operating system kernel (e.g., a volume) or as a data
abstraction (e.g., a file) to user space applications. The technology that motivates this
specification includes flash memory packaged as solid state disks and PCI cards as well as
other solid state non-volatile devices, including those which can be accessed as memory.

It is not the intent to exhaustively describe or in any way deprecate existing modes of NVM
access. The goal of the specification is to augment the existing common storage access
models (e.g., volume and file access) to add new NVM access modes. Therefore this
specification describes the discovery and use of capabilities of NVM media, connections to the
NVM, and the system containing the NVM that are emerging in the industry as vendor specific
implementations. These include:

• supported access modes,
• visibility in memory address space,
• atomicity and durability,
• recognizing, reporting, and recovering from errors and failures,
• data granularity, and
• capacity reclamation.

This revision of the specification focuses on NVM behaviors that enable user and kernel space
software to locate, access, and recover data. It does not describe behaviors that are specific to
administrative or diagnostic tasks for NVM. There are several reasons for intentionally leaving
administrative behavior out of scope.
• For new types of storage programming models, the access must be defined and agreed on

before the administration can be defined. Storage management behavior is typically
defined in terms of how it enables and diagnoses the storage programming model.

• Administrative tasks often require human intervention and are bound to the syntax for the
administration. This document does not define syntax. It focuses only on the semantics of
the programming model.

• Defining diagnostic behaviors (e.g., wear-leveling) as vendor-agnostic is challenging across
all vendor implementations. A common recommended behavior may not allow an approach
optimal for certain hardware.

This revision of the specification does not address sharing data across computing nodes. This
revision of the specification assumes that sharing data between processes and threads follows
the native OS and hardware behavior.

NVM Programming Model (NPM) Working Draft 12
Version 1.12a

2 References
The following referenced documents are indispensable for the application of this document.

For references available from ANSI, contact ANSI Customer Service Department at (212) 642-
49004980 (phone), (212) 302-1286 (fax) or via the World Wide Web at http://www.ansi.org.

SPC-3 ISO/IEC 14776-453, SCSI Primary Commands – 3 [ANSI INCITS 408-
2005]
Approved standard, available from ANSI.

SBC-2 ISO/IEC 14776-322, SCSI Block Commands - 2 [T10/BSR INCITS 514]
Approved standard, available from ANSI.

ACS-2 ANSI INCITS 482-2012, Information technology - ATA/ATAPI Command
Set -2
Approved standard, available from ANSI.

NVMe 1.1 NVM Express Revision 1.1,
Approved standard, available from http://nvmexpress.org

SPC-4 SO/IEC 14776-454, SCSI Primary Commands - 4 (SPC-4) (T10/1731-D)
Under development, available from http://www.t10.org.

SBC-4 ISO/IEC 14776-324, SCSI Block Commands - 4 (SBC-4) [BSR INCITS
506]
Under development, available from http://www.t10.org.

T10 13-
064r0

T10 proposal 13-064r0, Rob Elliot, Ashish Batwara, SBC-4 SPC-5
Atomic writes
Proposal, available from http://www.t10.org.

ACS-2 r7 Information technology - ATA/ATAPI Command Set – 2 r7 (ACS-2)
Under development, available from http://www.t13.org.

Intel SPG Intel Corporation, Intel 64 and IA-32 Architectures Software Developer's
Manual Combined Volumes 3A, 3B, and 3C: System Programming
Guide, Parts 1 and 2, available from
http://download.intel.com/products/processor/manual/325384.pdf

http://nvmexpress.org/
http://download.intel.com/products/processor/manual/325384.pdf

NVM Programming Model (NPM) Working Draft 13
Version 1.12a

3 Definitions, abbreviations, and conventions
For the purposes of this document, the following definitions and abbreviations apply.

3.1 Definitions

3.1.1 durable
committed to a persistence domain (see 3.1.7)

3.1.2 load and store operations
commands to move data between CPU registers and memory

3.1.3 memory-mapped file
segment of virtual memory which has been assigned a direct byte-for-byte correlation with
some portion of a file

3.1.4 non-volatile memory
any type of memory-based, persistent media; including flash memory packaged as solid state
disks, PCI cards, and other solid state non-volatile devices

3.1.5 NVM block capable driver
driver supporting the native operating system interfaces for a block device

3.1.6 NVM volume
subset of one or more NVM devices, treated by software as a single logical entity

See 4.2 NVM device models

3.1.7 persistence domain
location for data that is guaranteed to preserve the data contents across a restart of the device
containing the data

See 6.9 Persistence domain

3.1.8 persistent memory
storage technology with performance characteristics suitable for a load and store programming
model

3.1.9 programming model
set of software interfaces that are used collectively to provide an abstraction for hardware with
similar capabilities

NVM Programming Model (NPM) Working Draft 14
Version 1.12a

3.2 Keywords

In the remainder of the specification, the following keywords are used to indicate text related to
compliance:

3.2.1 mandatory
a keyword indicating an item that is required to conform to the behavior defined in this
standard

3.2.2 may
a keyword that indicates flexibility of choice with no implied preference; “may” is equivalent to
“may or may not”

3.2.3 may not
keywords that indicate flexibility of choice with no implied preference; “may not” is equivalent to
“may or may not”

3.2.4 need not
keywords indicating a feature that is not required to be implemented; “need not” is equivalent
to “is not required to”

3.2.5 optional
a keyword that describes features that are not required to be implemented by this standard;
however, if any optional feature defined in this standard is implemented, then it shall be
implemented as defined in this standard

3.2.6 shall
a keyword indicating a mandatory requirement; designers are required to implement all such
mandatory requirements to ensure interoperability with other products that conform to this
standard

3.2.7 should
a keyword indicating flexibility of choice with a strongly preferred alternative

3.3 Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

NVM Non-Volatile Memory

PM Persistent Memory

SSD Solid State Disk

NVM Programming Model (NPM) Working Draft 15
Version 1.12a

3.4 Conventions

Representation of modes in figures

Modes are represented by red, wavy lines in figures, as shown below:

The wavy lines have labels identifying the mode name (which in turn, identifies a clause of the
specification).

NVM Programming Model (NPM) Working Draft 16
Version 1.12a

4 Overview of the NVM Programming Model (informative)
4.1 How to read and use this specification

Documentation for I/O programming typically consists of a set of OS-specific Application
Program Interfaces (APIs). API documentation describes the syntax and behavior of the API.
This specification intentionally takes a different approach and describes the behavior of NVM
programming interfaces, but allows the syntax to integrate with similar operating system
interfaces. A recommended approach for using this specification is:

1. Determine which mode applies (read 4.3 NVM programming modes).

2. Refer to the mode section to learn about the functionality provided by the mode and
how it relates to native operating system APIs; the use cases provide examples. The mode
specific section refers to other specification sections that may be of interest to the developer.

3. Determine which mode actions and attributes relate to software objectives.

4. Locate the vendor/OS mapping document (see 5.2) to determine which APIs map to the
actions and attributes.

For an example, a developer wants to update an existing application to utilize persistent
memory hardware. The application is designed to bypass caches to assure key content is
durable across power failures; the developer wants to learn about the persistent memory
programming model. For this example:

1. The NVM programming modes section identifies NVM.PM.FILE mode (see 10
NVM.PM.FILE) as the starting point for application use of persistent memory.

2. The NVM.PM.FILE mode text describes the general approach for accessing PM (similar
to native memory-mapped files) and the role of PM aware file system.

3. The NVM.PM.FILE mode identifies the NVM.PM.FILE.MAP and NVM.PM.FILE.SYNC
actions and attributes that allow an application to discover support for optional features.

4. The operating system vendor’s mapping document describes the mapping between
NVM.PM.FILE.MAP/SYNC and API calls, and also provides information about supported PM-
aware file systems.

4.2 NVM device models

4.2.1 Overview
This section describes device models for NVM to help readers understand how key terms in
the programming model relate to other software and hardware. The models presented here
generally apply across operating systems, file systems, and hardware; but there are
differences across implementations. This specification strives to discuss the model generically,
but mentions key exceptions.

NVM Programming Model (NPM) Working Draft 17
Version 1.12a

One of the challenges discussing the software view of NVM is that the same terms are often
used to mean different things. For example, between commonly used management
applications, programming interfaces, and operating system documentation, volume may refer
to a variety of things. Within this specification, NVM volume has a specific meaning.

An NVM volume is a subset of one or more NVM devices, treated by software as a single
logical entity. For the purposes of this specification, a volume is a container of storage. A
volume may be block capable and may be persistent memory capable. The consumer of a
volume sees its content as a set of contiguous addresses, but the unit of access for a volume
differs across different modes and device types. Logical addressability and physical allocation
may be different.

In the examples in this section, “NVM block device” refers to NVM hardware that emulates a
disk and is accessed in software by reading or writing ranges of blocks. “PM device” refers to
NVM hardware that may be accessed via load and store operations.

4.2.2 Block NVM example

Consider a single drive form factor SSD where the entire SSD
capacity is dedicated to a file system. In this case, a single NVM
block volume maps to a single hardware device. A file system
(not depicted) is mounted on the NVM block volume.

The same model may apply to NVM block hardware other than an SDD (including flash on
PCIe cards).
4.2.3 Persistent memory example
This example depicts a NVDIMM and PM volume. A PM-aware
file system (not depicted) would be mounted on the PM volume.

The same model may apply to PM hardware other than an
NVDIMM (including SSDs, PCIe cards, etc.).

4.2.4 NVM block volume using PM hardware
In this example, the persistent memory implementation includes
a driver that uses a range of persistent memory (a PM volume)
and makes it appear to be a block NVM device in the legacy
block stack. This emulated block device could be aggregated or
de-aggregated like legacy block devices. In this example, the
emulated block device is mapped 1-1 to an NVM block volume and non-PM file system.

Note that there are other models for connecting a non-PM file system to PM hardware.

Figure 1 Block NVM example

Figure 2 PM example

Figure 3 Block volume using PM HW

NVM block volume

SSD hardware

NVDIMMs

PM volume

PM hardware

NVM block volume

PM volume

NVM Programming Model (NPM) Working Draft 18
Version 1.12a

4.3 NVM programming modes

4.3.1 NVM.BLOCK mode overview
NVM.BLOCK and NVM.FILE modes are used when NVM devices provide block storage
behavior to software (in other words, emulation of hard disks). The NVM may be exposed as a
single or as multiple NVM volumes. Each NVM volume supporting these modes provides a
range of logically-contiguous blocks. NVM.BLOCK mode is used by operating system
components (for example, file systems) and by applications that are aware of block storage
characteristics and the block addresses of application data.

This specification does not document existing block storage software behavior; the
NVM.BLOCK mode describes NVM extensions including:

• Discovery and use of atomic write and discard features
• The discovery of granularities (length or alignment characteristics)
• Discovery and use of ability for applications or operating system components to mark

blocks as unreadable

Figure 4 NVM.BLOCK and NVM.FILE mode examples

Application

NVM block capable driver

File system

Application

NVM device NVM device

User space
Kernel space

Native file
API

NVM.BLOCK mode

NVM.FILE mode

4.3.2 NVM.FILE mode overview
NVM.FILE mode is used by applications that are not aware of details of block storage
hardware or addresses. Existing applications written using native file I/O behavior should work
unmodified with NVM.FILE mode; adding support in the application for NVM extensions may
optimize the application.

An application using NVM.FILE mode may or may not be using memory-mapped file I/O
behavior.

NVM Programming Model (NPM) Working Draft 19
Version 1.12a

The NVM.FILE mode describes NVM extensions including:

• Discovery and use of atomic write features
• The discovery of granularities (length or alignment characteristics)

4.3.3 NVM.PM.VOLUME mode overview
NVM.PM.VOLUME mode describes the behavior for operating system components (such as
file systems) accessing persistent memory. NVM.PM.VOLUME mode provides a software
abstraction for Persistent Memory hardware and profiles functionality for operating system
components including:

• the list of physical address ranges associated with each PM volume

Figure 5 NVM.PM.VOLUME and NVM.PM.FILE mode examples

Application

PM device PM device PM device. . .

User space

Kernel space

MMU
MappingsPM-aware file system

NVM PM capable driver

Load/
store

Native file
API

PM-aware kernel module

PM device

NVM.PM.VOLUME mode

NVM.PM.FILE mode

4.3.4 NVM.PM.FILE mode overview
NVM.PM.FILE mode describes the behavior for applications accessing persistent memory.
The commands implementing NVM.PM.FILE mode are similar to those using NVM.FILE mode,
but NVM.PM.FILE mode may not involve I/O to the page cache. NVM.PM.FILE mode
documents behavior including:

• mapping PM files (or subsets of files) to virtual memory addresses
• syncing portions of PM files to the persistence domain

NVM Programming Model (NPM) Working Draft 20
Version 1.12a

4.4 Introduction to actions, attributes, and use cases

4.4.1 Overview
This specification uses four types of elements to describe NVM behavior. Use cases are the
highest order description. They describe complete scenarios that accomplish a goal. Actions
are more specific in that they describe an operation that represents or interacts with NVM.
Attributes comprise information about NVM. Property Group Lists describe groups of related
properties that may be considered attributes of a data structure or class; but the specification
allows flexibility in the implementation.

4.4.2 Use cases
In general, a use case states a goal or trigger and a result. It captures the intent of an
application and describes how actions are used to accomplish that intent. Use cases illustrate
the use of actions and help to validate action definitions. Use cases also describe system
behaviors that are not represented as actions. Each use case includes the following
information:

• a purpose and context including actors involved in the use case;
• triggers and preconditions indicating when a use case applies;
• inputs, outputs, events and actions that occur during the use case;
• references to related materials or concepts including other use cases that use or extend the

use case.

4.4.3 Actions
Actions are defined using the following naming convention:

<context>.<mode>.<verb>

The actions in this specification all have a context of “NVM”. The mode refers to one of the
NVM models documented herein (or “COMMON” for actions used in multiple modes). The verb
states what the action does. Examples of actions include “NVM.COMMON.GET_ATTRIBUTE”
and “NVM.FILE.ATOMIC_WRITE”. In some cases native actions that are not explicitly
specified by the programming model are referenced to illustrate usage.

The description of each action includes:

• parameters and results of the action
• details of the action’s behavior
• compatibility of the action with pre-existing APIs in the industry

A number of actions involve options that can be specified each time the action is used. The
options are given names that begin with the name of the action and end with a descriptive term
that is unique for the action. Examples include NVM.PM.FILE.MAP_COPY_ON_WRITE and
NVM.PM.FILE.MAP_SHARED.

NVM Programming Model (NPM) Working Draft 21
Version 1.12a

A number of actions are optional. For each of these, there is an attribute that indicates whether
the action is supported by the implementation in question. By convention these attributes end
with the term “CAPABLE” such as NVM.BLOCK.ATOMIC_WRITE_CAPABLE. Supported
options are also enumerated by attributes that end in “CAPABLE”.

4.4.4 Attributes
Attributes describe properties or capabilities of a system. This includes indications of which
actions can be performed in that system and variations on the internal behavior of specific
actions. For example attributes describe which NVM modes are supported in a system, and
the types of atomicity guarantees available.

In this programming model, attributes are not arbitrary key value pairs that applications can
store for unspecified purposes. Instead the NVM attributes are intended to provide a common
way to discover and configure certain aspects of systems based on agreed upon
interpretations of names and values. While this can be viewed as a key value abstraction it
does not require systems to implement a key value repository. Instead, NVM attributes are
mapped to a system’s native means of describing and configuring those aspects associated
with said attributes. Although this specification calls out a set of attributes, the intent is to allow
attributes to be extended in vendor unique ways through a process that enables those
extensions to become attributes and/or attribute values in a subsequent version of the
specification or in a vendor’s mapping document.

4.4.5 Property group lists
A property group is set of property values used together in lists; typically property group
lists are inputs or outputs to actions. The implementation may choose to implement a property
group as a new data structure or class, use properties in existing data structures or classes, or
other mechanisms as long as the caller can determine which collection of values represent the
members of each list element.

NVM Programming Model (NPM) Working Draft 22
Version 1.12a

5 Compliance to the programming model
5.1 Overview

Since a programming model is intentionally abstract, proof of compliance is somewhat indirect.
The intent is that a compliant implementation, when properly configured, can be used in such a
way as to exhibit the behaviors described by the programming model without unnecessarily
impacting other aspects of the implementation.

Compliance of an implementation shall be interpreted as follows.

5.2 Documentation of mapping to APIs

In order to be considered compliant with this programming model, implementations must
provide documentation of the mapping of attributes and actions in the programming model to
their counterparts in the implementation.

5.3 Compatibility with unspecified native actions

Actions and attributes of the native block and file access methods that correspond to the
modes described herein shall continue to function as defined in those native methods. This
specification does not address unmodified native actions except in passing to illustrate their
usage.

5.4 Mapping to native interfaces

Implementations are expected to provide the behaviors specified herein by mapping them as
closely as possible to native interfaces. An implementation is not required to have a one-to-one
mapping between actions (or attributes) and APIs – for example, an implementation may have
an API that implements multiple actions.

NVM Programming Model action descriptions do not enumerate all possible results of each
action. Only those that modify programming model specific behavior are listed. The results that
are referenced herein shall be discernible from the set of possible results returned by the
native action in a manner that is documented with action mapping.

Attributes with names ending in _CAPABLE are used to inform a caller whether an optional
action or attribute is supported by the implementations. The mandatory requirement for
_CAPABLE attributes can be met by the mapping document describing the implementation’s
default behavior for reporting unsupported features. For example: the mapping document
could state that if a flag with a name based on the attribute is undefined, then the
action/attribute is not supported.

NVM Programming Model (NPM) Working Draft 23
Version 1.12a

6 Common programming model behavior
6.1 Overview

This section describes behavior that is common to multiple modes and also behavior that is
independent from the modes.

6.2 Conformance to multiple file modes

A single computer system may include implementations of both NVM.FILE and NVM.PM.FILE
modes. A given file system may be accessed using either or both modes provided that the
implementations are intended by their vendor(s) to interoperate. Each implementation shall
specify its own mapping to the NVM Programming Model.

A single file system implementation may include both NVM.FILE and NVM.PM.FILE modes.
The mapping of the implementation to the NVM Programming Model must describe how the
actions and attributes of different modes are distinguished from one another.

Implementation specific errors may result from attempts to use NVM.PM.FILE actions on files
that were created in NVM.FILE mode or vice versa. The mapping of each implementation to
the NVM Programming Model shall specify any limitations related multi-mode access.

6.3 Device state at system startup

Prior to use, a file system is associated with one or more volumes and/or NVM devices.

The NVM devices shall be in a state appropriate for use with file systems. For example, if
transparent RAID is part of the solution, components implementing RAID shall be active so the
file system sees a unified virtual device rather than individual RAID components.

6.4 Secure erase

Secure erase of a volume or device is an administrative act with no defined programming
model action.

6.5 Allocation of space

Following native operating system behavior, this programming model does not define specific
actions for allocating space. Most allocation behavior is hidden from the user of the file, volume
or device.

6.6 Interaction with I/O devices

Interaction between Persistent Memory and I/O devices (for example, DMA) shall be
consistent with native operating system interactions between devices and volatile memory.

NVM Programming Model (NPM) Working Draft 24
Version 1.12a

6.7 NVM State after a media or connection failure

There is no action defined to determine the state of NVM for circumstances such as a media or
connection failure. Vendors may provide techniques such as redundancy algorithms to
address this, but the behavior is outside the scope of the programming model.

6.8 Error handling for persistent memory

The handling of errors in memory-mapped file implementations varies across operating
systems. Existing implementations support memory error reporting however there is not
sufficient similarity for a uniform approach to persistent memory error handling behavior.
Additional work is required to define an error handling approach. The following factors are to
be taken into account when dealing with errors.

• The application is in the best position to perform recovery as it may have access to
additional sources of data necessary to rewrite a bad memory address.

• Notification of a given memory error occurrence may need to be delivered to both kernel
and user space consumers (e.g., file system and application)

• Various hardware platforms have different capabilities to detect and report memory errors
• Attributes and possibly actions related to error handling behavior are needed in the NVM

Programming model

A proposal for persistent memory error handling appears as an appendix; see Annex B.

6.9 Persistence domain

NVM PM hardware supports the concept of a persistence domain. Once data has reached a
persistence domain, it may be recoverable during a process that results from a system restart.
Recoverability depends on whether the pattern of failures affecting the system during the
restart can be tolerated by the design and configuration of the persistence domain.

Multiple persistence domains may exist within the same system. It is an administrative act to
align persistence domains with volumes and/or file systems. This must be done in such a way
that NVM Programming Model behavior is assured from the point of view of each compliant
volume or file system.

6.10 Aligned operations on fundamental data types

Data alignment means putting the data at a memory offset equal to some multiple of the word
size, which increases the system's performance due to the way the CPU handles memory
(from Wikipedia “Data structure alignment”). Data types are fundamental when they are native
to programming languages or libraries.

Aligned operations on data types are usually exactly the same operations that under normal
operation become visible to other threads/data producers atomically. They are already well-
defined for most settings:

NVM Programming Model (NPM) Working Draft 25
Version 1.12a

• Instruction Set Architectures already define them.
o E.g., for x86, MOV instructions with naturally aligned operands of at most 64 bits

qualify.

• They’re generated by known high-level language constructs, e.g.:
o C++11 lock-free atomic<T>, C11 _Atomic(T), Java & C# volatile, OpenMP atomic

directives.

For optimal performance, fundamental data types fit within CPU cache lines.

6.11 Common actions

6.11.1 NVM.COMMON.GET_ATTRIBUTE
Requirement: mandatory

Get the value of one or more attributes. Implementations conforming to the specification shall
provide the get attribute behavior, but multiple programmatic approaches may be used.

Inputs:
• reference to appropriate instance (for example, reference to an NVM volume)
• attribute name

Outputs:
• value of attribute

The vendor’s mapping document shall describe the possible errors reported for all applicable
programmatic approaches.

6.11.2 NVM.COMMON.SET_ATTRIBUTE
Requirement: optional

Note: at this time, no settable attributes are defined in this specification, but they may be
added in a future revision.

Set the value of one attribute. Implementations conforming to the specification shall provide
the set attribute behavior, but multiple programmatic approaches may be used.

Inputs:
• reference to appropriate instance
• attribute name
• value to be assigned to the attribute

The vendor’s mapping document shall describe the possible errors reported for all applicable
programmatic approaches.

NVM Programming Model (NPM) Working Draft 26
Version 1.12a

6.12 Common attributes

6.12.1 NVM.COMMON.SUPPORTED_MODES
Requirement: mandatory

SUPPORTED_MODES returns a list of the modes supported by the NVM implementation.

Possible values: NVM.BLOCK, NVM.FILE, NVM.PM.FILE, NVM.PM.VOLUME

NVM.COMMON.SET_ATTRIBUTE is not supported for
NVM.COMMON.SUPPORTED_MODES.

6.12.2 NVM.COMMON.FILE_MODE
Requirement: mandatory if NVM.FILE or NVM.PM.FILE is supported

Returns the supported file modes (NVM.FILE and/or NVM.PM.FILE) provided by a file system.

Target: a file path

Output value: a list of values: “NVM.FILE” and/or “NVM.PM.FILE”

See 6.2 Conformance to multiple file modes.

6.13 Use cases

6.13.1 Application determines which mode is used to access a file system

Purpose/triggers:
An application needs to determine whether the underlying file system conforms to NVM.FILE
mode, NVM.PM.FILE mode, or both.

Scope/context:
Some actions and attributes are defined differently in NVM.FILE and NVM.PM.FILE;
applications may need to be designed to handle these modes differently. This use case
describes steps in an application’s initialization logic to determine the mode(s) supported by
the implementation and set a variable indicating the preferred mode the application will use in
subsequent actions. This application prefers to use NVM.PM.FILE behavior if both modes are
supported.

Success scenario:
1) Invoke NVM.COMMON.GET_ATTRIBUTE (NVM.COMMON.FILE_MODE) targeting a

file path; the value returned provides information on which modes may be used to
access the data.

2) If the response includes “NVM.FILE”, then the actions and attributes described for the
NVM.FILE mode are supported. Set the preferred mode for this file system to
NVM.FILE.

NVM Programming Model (NPM) Working Draft 27
Version 1.12a

3) If the response includes “NVM.PM.FILE”, then the actions and attributes described for
the NVM.PM.FILE mode are supported. Set the preferred mode for this file system to
NVM.PM.FILE.

Outputs:

Postconditions:
A variable representing the preferred mode for the file system has been initialized.

See also:
6.2 Conformance to multiple file modes
6.12.2 NVM.COMMON.FILE_MODE

NVM Programming Model (NPM) Working Draft 28
Version 1.12a

7 NVM.BLOCK mode
7.1 Overview

NVM.BLOCK mode provides programming interfaces for NVM implementations behaving as
block devices. The programming interfaces include the native operating system behavior for
sending I/O commands to a block driver and adds NVM extensions. To support this mode, the
NVM devices are supported by an NVM block capable driver that provides the command
interface to the NVM. This specification does not document the native operating system block
programming capability; it is limited to the NVM extensions.

Figure 6 NVM.BLOCK mode example

Block-aware application

NVM block capable driver

File system

NVM device NVM device

User space

Kernel space

NVM.BLOCK mode

Support for NVM.BLOCK mode requires that the NVM implementation support all behavior not
covered in this section consistently with the native operating system behavior for native block
devices.

The NVM extensions supported by this mode include:

• Discovery and use of atomic write and discard features
• The discovery of granularities (length or alignment characteristics)
• Discovery and use of per-block metadata used for verifying integrity
• Discovery and use of ability for applications or operating system components to mark

blocks as unreadable

7.1.1 Discovery and use of atomic write features
Atomic Write support provides applications with the capability to assure that all the data for an
operation is written to the persistence domain or, if a failure occurs, it appears that no
operation took place. Applications may use atomic write operations to assure consistent

NVM Programming Model (NPM) Working Draft 29
Version 1.12a

behavior during a failure condition or to assure consistency between multiple processes
accessing data simultaneously.

7.1.2 The discovery of granularities
Attributes are introduced to allow applications to discover granularities associated with NVM
devices.

7.1.3 Discovery and use of capability to mark blocks as unreadable
An action (NVM.BLOCK.SCAR) is defined allowing an application to mark blocks as
unreadable.

7.1.4 NVM.BLOCK consumers: operating system and applications
NVM.BLOCK behavior covers two types of software: NVM-aware operating system
components and block-optimized applications.

7.1.4.1 NVM.BLOCK operating system components
NVM-aware operating system components use block storage and have been enhanced to take
advantage of NVM features. Examples include file systems, logical volume managers,
software RAID, and hibernation logic.

7.1.4.2 Block-optimized applications
Block-optimized applications use a hybrid behavior utilizing files and file I/O operations, but
construct file I/O commands in order to cause drivers to issue desired block commands.
Operating systems and file systems typically provide mechanisms to enable block-optimized
application. The techniques are system specific, but may include:

• A mechanism for a block-optimized application to request that the file system move data
directly between the device and application memory, bypassing the buffering typically
provided by the file system.

• The operating system or file system may require the application to align requests on block
boundaries.

The file system and operating system may allow block-optimized applications to use memory-
mapped files.

7.1.4.3 Mapping documentation
NVM.BLOCK operating system components may use I/O commands restricted to kernel space
to send I/O commands to drivers. NVM.BLOCK applications may use a constrained set of file
I/O operations to send commands to drivers. As applicable, the implementation shall provide
documentation mapping actions and/or attributes for all supported techniques for NVM.BLOCK
behavior.

The implementation shall document the steps to utilize supported capabilities for block-
optimized applications and the constraints (e.g., block alignment) compared to NVM.FILE
behavior.

NVM Programming Model (NPM) Working Draft 30
Version 1.12a

7.2 Actions

7.2.1 Actions that apply across multiple modes
The following actions apply to NVM.BLOCK mode as well as other modes.

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1)
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2)

7.2.2 NVM.BLOCK.ATOMIC_WRITE
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true

Block-optimized applications or operating system components may use ATOMIC_WRITE to
assure consistent behavior during a power failure condition. This specification does not specify
the order in which this action occurs relative to other I/O operations, including other
ATOMIC_WRITE or ATOMIC_MULTIWRITE actions. This specification does not specify when
the data written becomes visible to other threads.

Inputs:
• the starting memory address
• a reference to the block device
• the starting block address
• the length
The interpretation of addresses and lengths (block or byte, alignment) should be consistent
with native write actions. Implementations shall provide documentation on the requirements for
specifying the starting addresses, block device, and length.

Return values:
• Success shall be returned if all blocks are updated in the persistence domain
• an error shall be reported if the length exceeds ATOMIC_WRITE_MAX_DATA_LENGTH

(see 7.3.3)
• an error shall be reported if the starting address is not evenly divisible by

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.4)
• an error shall be reported if the length is not evenly divisible by

ATOMIC_WRITE_LENGTH_GRANULARITY (see 7.3.5)
• If anything does or will prevent all of the blocks from being updated in the persistence

domain before completion of the operation, an error shall be reported and all the logical
blocks affected by the operation shall contain the data that was present before the device
server started processing the write operation (i.e., the old data, as if the atomic write
operation had no effect). If the NVM and processor are both impacted by a power failure,
no error will be returned since the execution context is lost.

• the different errors described above shall be discernible by the consumer and shall be
discernible from media errors

Relevant attributes:
ATOMIC_WRITE_MAX_DATA_LENGTH (see 7.3.3)

NVM Programming Model (NPM) Working Draft 31
Version 1.12a

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.4)
ATOMIC_WRITE_LENGTH_GRANULARITY (see 7.3.5)
ATOMIC_WRITE_CAPABLE (see 7.3.1)

7.2.3 NVM.BLOCK.ATOMIC_MULTIWRITE
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true

Block-optimized applications or operating system components may use
ATOMIC_MULTIWRITE to assure consistent behavior during a power failure condition. This
action allows a caller to write non-adjacent extents atomically. The caller of
ATOMIC_MULTIWRITE provides a Property Group List (see 4.4.5) where the properties
describe the memory and block extents (see Inputs below); all of the extents are written as a
single atomic operation. This specification does not specify the order in which this action
occurs relative to other I/O operations, including other ATOMIC_WRITE or
ATOMIC_MULTIWRITE actions. This specification does not specify when the data written
becomes visible to other threads.

Inputs:
A Property Group List (see 4.4.5) where the properties are:
• memory address starting address
• length of data to write (in bytes)
• a reference to the device being written to
• the starting LBA on the device
Each property group represents an I/O. The interpretation of addresses and lengths (block or
byte, alignment) should be consistent with native write actions. Implementations shall provide
documentation on the requirements for specifying the ranges.
Return values:
• Success shall be returned if all block ranges are updated in the persistence domain
• an error shall be reported if the block ranges overlap
• an error shall be reported if the total size of memory input ranges exceeds

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH (see 7.3.8)
• an error shall be reported if the starting address in any input memory range is not evenly

divisible by ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.9)
• an error shall be reported if the length in any input range is not evenly divisible by

ATOMIC_MULTIWRITE_LENGTH_GRANULARITY (see 7.3.10)
• If anything does or will prevent all of the writes from being applied to the persistence

domain before completion of the operation, an error shall be reported and all the logical
blocks affected by the operation shall contain the data that was present before the device
server started processing the write operation (i.e., the old data, as if the atomic write
operation had no effect). If the NVM and processor are both impacted by a power failure,
no error will be returned since the execution context is lost.

• the different errors described above shall be discernible by the consumer

NVM Programming Model (NPM) Working Draft 32
Version 1.12a

Relevant attributes:
ATOMIC_MULTIWRITE_MAX_IOS (see 7.3.7)
ATOMIC_MULTIWRITE_MAX_DATA_LENGTH (see 7.3.8)
ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.9)
ATOMIC_MULTIWRITE_LENGTH_GRANULARITY (see 7.3.10)
ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6)

7.2.4 NVM.BLOCK.DISCARD_IF_YOU_CAN
Requirement: mandatory if DISCARD_IF_YOU_CAN_CAPABLE (see 7.3.17) is true

This action notifies the NVM device that some or all of the blocks which constitute a volume
are no longer needed by the application. This action is a hint to the device.

Although the application has logically discarded the data, it may later read this range. Since
the device is not required to physically discard the data, its response is undefined: it may
return successful response status along with unknown data (e.g., the old data, a default
“undefined” data, or random data), or it may return an unsuccessful response status with an
error.

Inputs: a range of blocks (starting LBA and length in logical blocks)

Status: Success indicates the request is accepted but not necessarily acted upon.

7.2.5 NVM.BLOCK.DISCARD_IMMEDIATELY
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 7.3.18) is true

Requires that the data block be unmapped (see NVM.BLOCK.EXISTS 7.2.6) before the next
READ or WRITE reference even if garbage collection of the block has not occurred yet,

DISCARD_IMMEDIATELY commands cannot be acknowledged by the NVM device until the
DISCARD_IMMEDIATELY has been durably written to media in a way such that upon
recovery from a power-fail event, the block is guaranteed to remain discarded.

Inputs: a range of blocks (starting LBA and length in logical blocks)

The values returned by subsequent read operations are specified by the
DISCARD_IMMEDIATELY_RETURNS (see 7.3.19) attribute.

Status: Success indicates the request is completed.

See also EXISTS (7.2.6), DISCARD_IMMEDIATELY_RETURNS (7.3.19),
DISCARD_IMMEDIATELY_CAPABLE (7.3.18).

7.2.6 NVM.BLOCK.EXISTS
Requirement: mandatory if EXISTS_CAPABLE (see 7.3.12) is true

NVM Programming Model (NPM) Working Draft 33
Version 1.12a

An NVM device may allocate storage through a thin provisioning mechanism or one of the
discard actions. As a result, a block can exist in one of three states:
• Mapped: the block has had data written to it
• Unmapped: the block has not been written, and there is no memory allocated
• Allocated: the block has not been written, but has memory allocated to it

The EXISTS action allows the NVM user to determine if a block has been allocated.

Inputs: an LBA

Output: the state (mapped, unmapped, or allocated) for the input block

Result: the status of the action

7.2.7 NVM.BLOCK.SCAR
Requirement: mandatory if SCAR_CAPABLE (see 7.3.13) is true

This action allows an application to request that subsequent reads from any of the blocks in
the address range will cause an error. This action uses an implementation-dependent means
to insure that all future reads to any given block from the scarred range will cause an error until
new data is stored to any given block in the range. A block stays scarred until it is updated by a
write operation.

Inputs: reference to a block volume, starting offset, length

Outputs: status

Relevant attributes:

NVM.BLOCK.SCAR_CAPABLE (7.3.13) – Indicates that the SCAR action is supported.

7.3 Attributes

7.3.1 Attributes that apply across multiple modes
The following attributes apply to NVM.BLOCK mode as well as other modes.

NVM.COMMON.SUPPORTED_MODES (see 6.12.1)

7.3.2 NVM.BLOCK.ATOMIC_WRITE_CAPABLE
Requirement: mandatory

This attribute indicates that the implementation is capable of the
NVM.BLOCK.ATOMIC_WRITE action.

7.3.3 NVM.BLOCK.ATOMIC_WRITE_MAX_DATA_LENGTH
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true.

NVM Programming Model (NPM) Working Draft 34
Version 1.12a

ATOMIC_WRITE_MAX_DATA_LENGTH is the maximum length of data that can be
transferred by an ATOMIC_WRITE action.

7.3.4 NVM.BLOCK.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true.

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the starting
memory address for an ATOMIC_WRITE action. Address inputs to ATOMIC_WRITE shall be
evenly divisible by ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY.

7.3.5 NVM.BLOCK.ATOMIC_WRITE_LENGTH_GRANULARITY
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true.

ATOMIC_WRITE_LENGTH_GRANULARITY is the granularity of the length of data transferred
by an ATOMIC_WRITE action. Length inputs to ATOMIC_WRITE shall be evenly divisible by
ATOMIC_WRITE_LENGTH_GRANULARITY.

7.3.6 NVM.BLOCK.ATOMIC_MULTIWRITE_CAPABLE
Requirement: mandatory

ATOMIC_MULTIWRITE_CAPABLE indicates that the implementation is capable of the
NVM.BLOCK.ATOMIC_MULTIWRITE action.

7.3.7 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_IOS
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true

ATOMIC_MULTIWRITE_MAX_IOS is the maximum length of the number of IOs (i.e., the size
of the Property Group List) that can be transferred by an ATOMIC_MULTIWRITE action.

7.3.8 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH is the maximum length of data that can be
transferred by an ATOMIC_MULTIWRITE action.

7.3.9 NVM.BLOCK.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true

ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the
starting address of ATOMIC_MULTIWRITE inputs. Address inputs to ATOMIC_MULTIWRITE
shall be evenly divisible by ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY.

7.3.10 NVM.BLOCK.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true

NVM Programming Model (NPM) Working Draft 35
Version 1.12a

ATOMIC_MULTIWRITE_LENGTH_GRANULARITY is the granularity of the length of
ATOMIC_MULTIWRITE inputs. Length inputs to ATOMIC_MULTIWRITE shall be evenly
divisible by ATOMIC_MULTIWRITE_LENGTH_GRANULARITY.

7.3.11 NVM.BLOCK.WRITE_ATOMICITY_UNIT
Requirement: mandatory

If a write is submitted of this size or less, the caller is guaranteed that if power is lost before the
data is completely written, then the NVM device shall ensure that all the logical blocks affected
by the operation contain the data that was present before the device server started processing
the write operation (i.e., the old data, as if the atomic write operation had no effect).

If the NVM device can’t assure that at least one LOGICAL_BLOCKSIZE (see 7.3.14) extent
can be written atomically, WRITE_ATOMICITY_UNIT shall be set to zero.

The unit is NVM.BLOCK.LOGICAL_BLOCKSIZE (see 7.3.14).

7.3.12 NVM.BLOCK.EXISTS_CAPABLE
Requirement: mandatory

This attribute indicates that the implementation is capable of the NVM.BLOCK.EXISTS action.

7.3.13 NVM.BLOCK.SCAR_CAPABLE
Requirement: mandatory

This attribute indicates that the implementation is capable of the NVM.BLOCK.SCAR (see
7.2.7) action.

7.3.14 NVM.BLOCK.LOGICAL_BLOCK_SIZE
Requirement: mandatory

LOGICAL_BLOCK_SIZE is the smallest unit of data (in bytes) that may be logically read or
written from the NVM volume.

7.3.15 NVM.BLOCK.PERFORMANCE_BLOCK_SIZE
Requirement: mandatory

PERFORMANCE_BLOCK_SIZE is the recommended granule (in bytes) the caller should use
in I/O requests for optimal performance; starting addresses and lengths should be multiples of
this attribute. For example, this attribute may help minimizing device-implemented
read/modify/write behavior.

7.3.16 NVM.BLOCK.ALLOCATION_BLOCK_SIZE
Requirement: mandatory

NVM Programming Model (NPM) Working Draft 36
Version 1.12a

ALLOCATION_BLOCK_SIZE is the recommended granule (in bytes) for allocation and
alignment of data. Allocations smaller than this attribute (even if they are multiples of
LOGICAL_BLOCK_SIZE) may work, but may not yield optimal lifespan.

7.3.17 NVM.BLOCK.DISCARD_IF_YOU_CAN_CAPABLE
Requirement: mandatory

DISCARD_IF_YOU_CAN_CAPABLE shall be set to true if the implementation supports
DISCARD_IF_YOU_CAN.

7.3.18 NVM.BLOCK.DISCARD_IMMEDIATELY_CAPABLE
Requirement: mandatory

Returns true if the implementation supports DISCARD_IMMEDIATELY.

7.3.19 NVM.BLOCK.DISCARD_IMMEDIATELY_RETURNS
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 7.3.18) is true

The value returned from read operations to blocks specified by a DISCARD_IMMEDIATELY
action with no subsequent write operations. The possible values are:

• A value that is returned to each read of an unmapped block (see NVM.BLOCK.EXISTS
7.2.6) until the next write action

• Unspecified

7.3.20 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE
Requirement: mandatory

FUNDAMENTAL_BLOCK_SIZE is the number of bytes that may become unavailable due to
an error on an NVM device.

A zero value means that the device is unable to provide a guarantee on the number of
adjacent bytes impacted by an error.

This attribute is relevant when the device does not support write atomicity.

If FUNDAMENTAL_BLOCK_SIZE is smaller than LOGICAL_BLOCK_SIZE (see 7.3.14), an
application may organize data in terms of FUNDAMENTAL_BLOCK_SIZE to avoid certain torn
write behavior. If FUNDAMENTAL_BLOCK_SIZE is larger than LOGICAL_BLOCK_SIZE, an
application may organize data in terms of FUNDAMENTAL_BLOCK_SIZE to assure two key
data items do not occupy an extent that is vulnerable to errors.

NVM Programming Model (NPM) Working Draft 37
Version 1.12a

7.4 Use cases

7.4.1 Flash as cache use case

Purpose/triggers:
Use Flash based NVM as a data cache.

Scope/context:
Flash memory’s fast random I/O performance and non-volatile characteristic make it a good
candidate as a Solid State Cache device (SSC). This use case is described in Figure 7 SSC in
a storage stack.

Figure 7 SSC in a storage stack

A possible software application is shown in Figure 8 SSC software cache application. In this
case, the cache manager employs the Solid State Cache to improve caching performance and
to maintain persistence and cache coherency across power fail.

NVM Programming Model (NPM) Working Draft 38
Version 1.12a

Figure 8 SSC software cache application

It is also possible to use an enhanced SSC to perform some of the functions that the cache
manager must normally contend with as shown in Figure 9 SSC with caching assistance.

Figure 9 SSC with caching assistance

In this use case, the Solid State Cache (SSC) provides a sparse address space that may be
much larger than the amount of physical NVM memory and manages the cache through its
own admission and eviction policies. The backing store is used to persist the data when the
cache becomes full. As a result, the block state for each block of virtual storage in the cache
must be maintained by the SSC. The SSC must also present a consistent cache interface that
can persist the cached data across a power fail and never returns stale data.

NVM Programming Model (NPM) Working Draft 39
Version 1.12a

In either of these cases, two important extensions to existing storage commands must be
present:

Eviction: An explicit eviction mechanism is required to invalidate cached data in the
SSC to allow the cache manager to precisely control the contents of the SSC. This
means that the SSC must insure that the eviction is durable before completing the
request. This mechanism is generally referred to as a persistent trim. This is the
NVM.BLOCK.DISCARD_IMMEDIATELY functionality.
Exists: The EXISTS action allows the cache manager to determine the state of a block,
or of a range of blocks, in the SSC. This action is used to test for the presence of data in
the cache, or to determine which blocks in the SSC are dirty and need to be flushed to
backing storage. This is the NVM.BLOCK.EXISTS functionality.

The most efficient mechanism for a cache manager would be to simply read the requested
data from the SSC which would the return either the data or an error indicated that the
requested data was not in the cache. This approach is problematic, since most storage drivers
and software require reads to be successful and complete by returning data - not an error.
Device that return errors for normal read operations are usually put into an offline state by the
system drivers. Further, the data that a read returns must be consistent from one read
operation to the next, provided that no intervening writes occur. As a result, a two stage
process must be used by the cache manager. The cache manager first issues an EXISTS
action to determine if the requested data is present in the cache. Based on the result, the
cache manager decides whether to read the data from the SSC or from the backing storage.

Success scenario:
The requested data is successfully read from or written to the SSC.

See also:
• 7.2.5 NVM.BLOCK.DISCARD_IMMEDIATELY
• 7.2.6 NVM.BLOCK.EXISTS
• Ptrim() + Exists(): Exposing New FTL Primitives to Applications, David Nellans, Michael

Zappe, Jens Axboe, David Flynn, 2011 Non-Volatile Memory Workshop. See:
http://david.nellans.org/files/NVMW-2011.pdf

• FlashTier: a Lightweight, Consistent, and Durable Storage Cache, Mohit Saxena,
Michael M. Swift and Yiying Zhang, University of Wisconsin-Madison. See:
http://pages.cs.wisc.edu/~swift/papers/eurosys12_flashtier.pdf
HEC: Improving Endurance of High Performance Flash-based Cache Devices, Jingpei
Yang, Ned Plasson, Greg Gillis, Nisha Talagala, Swaminathan Sundararaman, Robert
Wood, Fusion-io, Inc., SYSTOR ’13, June 30 - July 02 2013, Haifa, Israel

• Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory, Eunji
Lee, Hyokyung Bahn, and Sam H. Noh. See:
https://www.usenix.org/system/files/conference/fast13/fast13-final114_0.pdf

7.4.2 SCAR use case

Purpose/triggers:
Demonstrate the use of the SCAR action

http://david.nellans.org/files/NVMW-2011.pdf
http://pages.cs.wisc.edu/%7Eswift/papers/eurosys12_flashtier.pdf

NVM Programming Model (NPM) Working Draft 40
Version 1.12a

Scope/context:
This generic use case for SCAR involves two processes.
• The “detect block errors process” detects errors in certain NVM blocks, and uses SCAR to

communicate to other processes that the contents of these blocks cannot be reliably read,
but can be safely re-written.

• The “recover process” sees the error reported as the result of SCAR. If this process can
regenerate the contents of the block, the application can continue with no error.

For this use case, the “detect block errors process” is a RAID component doing a background
scan of NVM blocks. In this case, the NVM is not in a redundant RAID configuration so block
READ errors can’t be transparently recovered. The “recover process” is a cache component
using the NVM as a cache for RAID volumes. Upon receipt of the SCAR error on a read, this
component evaluates whether the block contents also reside on the cached volume; if so, it
can copy the corresponding volume block to the NVM. This write to NVM will clear the SCAR
error condition.

Preconditions:
The “detect block errors process” detected errors in certain NVM blocks, and used SCAR to
mark these blocks.

Success scenario:
1. The cache manager intercepts a read request from an application
2. The read request to the NVM cache returns a status indicating the requested blocks

have been marked by a SCAR action
3. The cache manager uses an implementation-specific technique and determines the

blocks marked by a SCAR are also available on the cached volume
4. The cache manager copies the blocks from the cached volume to the NVM
5. The cache manager returns the requested block to the application with a status

indicating the read succeeded

Postconditions:
The blocks previously marked with a SCAR action have been repaired.

Failure Scenario:
1. In Success Scenario step 3 or 4, the cache manager discovers the corresponding

blocks on the volume are invalid or cannot be read.
2. The cache manager returns a status to the application indicating the blocks cannot be

read.

NVM Programming Model (NPM) Working Draft 41
Version 1.12a

8 NVM.FILE mode
8.1 Overview

NVM.FILE mode addresses NVM-specification extensions to native file I/O behavior (the
approach to I/O used by most applications). Support for NVM.FILE mode requires that the
NVM solution ought to support all behavior not covered in this section consistently with the
native operating system behavior for native block devices.

Figure 10 NVM.FILE mode example

NVM block capable driver

File system

Application

NVM.BLOCK mode

NVM device NVM device

User space

Kernel space

NVM.FILE mode

8.1.1 Discovery and use of atomic write features
Atomic Write features in NVM.FILE mode are available to block-optimized applications (see
7.1.4.2 Block-optimized applications).

8.1.2 The discovery of granularities
The NVM.FILE mode exposes the same granularity attributes as NVM.BLOCK.

8.1.3 Relationship between native file APIs and NVM.BLOCK.DISCARD
NVM.FILE mode does not define specific action that cause TRIM/DISCARD behavior. File
systems may invoke NVM.BLOCK DISCARD actions when native operating system APIs
(such as POSIX truncate or Windows SetEndOfFile).

8.2 Actions

8.2.1 Actions that apply across multiple modes
The following actions apply to NVM.FILE mode as well as other modes.

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1)
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2)

NVM Programming Model (NPM) Working Draft 42
Version 1.12a

8.2.2 NVM.FILE.ATOMIC_WRITE
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 8.3.2) is true

Block-optimized applications may use ATOMIC_WRITE to assure consistent behavior during a
failure condition. This specification does not specify the order in which this action occurs
relative to other I/O operations, including other ATOMIC_WRITE and ATOMIC_MULTIWRITE
actions. This specification does not specify when the data written becomes visible to other
threads.

The inputs, outputs, and error conditions are similar to those for
NVM.BLOCK.ATOMIC_WRITE, but typically the application provides file names and file
relative block addresses rather than device name and LBA.

Relevant attributes:

ATOMIC_WRITE_MAX_DATA_LENGTH
ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY
ATOMIC_WRITE_LENGTH_GRANULARITY
ATOMIC_WRITE_CAPABLE

8.2.3 NVM.FILE.ATOMIC_MULTIWRITE
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 8.3.6) is true

Block-optimized applications may use ATOMIC_MULTIWRITE to assure consistent behavior
during a failure condition. This action allows a caller to write non-adjacent extents atomically.
The caller of ATOMIC_MULTIWRITE provides properties defining memory and block extents;
all of the extents are written as a single atomic operation. This specification does not specify
the order in which this action occurs relative to other I/O operations, including other
ATOMIC_WRITE and ATOMIC_MULTIWRITE actions. This specification does not specify
when the data written becomes visible to other threads.

The inputs, outputs, and error conditions are similar to those for
NVM.BLOCK.ATOMIC_MULTIWRITE, but typically the application provides file names and file
relative block addresses rather than device name and LBA.

Relevant attributes:
ATOMIC_MULTIWRITE_MAX_IOS
ATOMIC_MULTIWRITE_MAX_DATA_LENGTH
ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY
ATOMIC_MULTIWRITE_LENGTH_GRANULARITY
ATOMIC_MULTIWRITE_CAPABLE

NVM Programming Model (NPM) Working Draft 43
Version 1.12a

8.3 Attributes

Some attributes share behavior with their NVM.BLOCK counterparts. NVM.FILE attributes are
provided because the actual values may change due to the implementation of the file system.

8.3.1 Attributes that apply across multiple modes
The following attributes apply to NVM.FILE mode as well as other modes.

NVM.COMMON.SUPPORTED_MODES (see 6.12.1)
NVM.COMMON.FILE_MODE (see 6.12.2)

8.3.2 NVM.FILE.ATOMIC_WRITE_CAPABLE
Requirement: mandatory

This attribute indicates that the implementation is capable of the
NVM.BLOCK.ATOMIC_WRITE action.

8.3.3 NVM.FILE.ATOMIC_WRITE_MAX_DATA_LENGTH
Requirement: mandatory

ATOMIC_WRITE_MAX_DATA_LENGTH is the maximum length of data that can be
transferred by an ATOMIC_WRITE action.

8.3.4 NVM.FILE.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY
Requirement: mandatory

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the starting
memory address for an ATOMIC_WRITE action. Address inputs to ATOMIC_WRITE shall be
evenly divisible by ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY.

8.3.5 NVM.FILE.ATOMIC_WRITE_LENGTH_GRANULARITY
Requirement: mandatory

ATOMIC_WRITE_LENGTH_GRANULARITY is the granularity of the length of data transferred
by an ATOMIC_WRITE action. Length inputs to ATOMIC_WRITE shall be evenly divisible by
ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY.

8.3.6 NVM.FILE.ATOMIC_MULTIWRITE_CAPABLE
Requirement: mandatory

This attribute indicates that the implementation is capable of the
NVM.FILE.ATOMIC_MULTIWRITE action.

8.3.7 NVM.FILE.ATOMIC_MULTIWRITE_MAX_IOS
Requirement: mandatory

NVM Programming Model (NPM) Working Draft 44
Version 1.12a

ATOMIC_MULTIWRITE_MAX_IOS is the maximum length of the number of IOs (i.e., the size
of the Property Group List) that can be transferred by an ATOMIC_MULTIWRITE action.

8.3.8 NVM.FILE.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH
Requirement: mandatory

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH is the maximum length of data that can be
transferred by an ATOMIC_MULTIWRITE action.

8.3.9 NVM.FILE.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY
Requirement: mandatory

ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the
starting address of ATOMIC_MULTIWRITE inputs. Address inputs to ATOMIC_MULTIWRITE
shall be evenly divisible by ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY.

8.3.10 NVM.FILE.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY
Requirement: mandatory

ATOMIC_MULTIWRITE_LENGTH_GRANULARITY is the granularity of the length of
ATOMIC_MULTIWRITE inputs. Length inputs to ATOMIC_MULTIWRITE shall be evenly
divisible by ATOMIC_MULTIWRITE_LENGTH_GRANULARITY.

8.3.11 NVM.FILE.WRITE_ATOMICITY_UNIT
See 7.3.11 NVM.BLOCK.WRITE_ATOMICITY_UNIT

8.3.12 NVM.FILE.LOGICAL_BLOCK_SIZE
See 7.3.14 NVM.BLOCK.LOGICAL_BLOCK_SIZE

8.3.13 NVM.FILE. PERFORMANCE_BLOCK_SIZE
See 7.3.15 NVM.BLOCK.PERFORMANCE_BLOCK_SIZE

8.3.14 NVM.FILE.LOGICAL_ALLOCATION_SIZE
See 7.3.16 NVM.BLOCK.ALLOCATION_BLOCK_SIZE

8.3.15 NVM.FILE.FUNDAMENTAL_BLOCK_SIZE
See 7.3.20 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE

8.4 Use cases

8.4.1 Block-optimized application updates record
Update a record in a file without using a memory-mapped file

NVM Programming Model (NPM) Working Draft 45
Version 1.12a

Purpose/triggers:
An application using block NVM updates an existing record. The application requests that the
file system bypass cache; the application conforms to native API requirements when
bypassing cache – this may mean that read and write actions must use multiples of a page
cache size. For simplicity, this application uses fixed size records. The record size is defined
by application data considerations, not disk or page block sizes. The application factors in the
PERFORMANCE_BLOCK_SIZE granularity to avoid device-side inefficiencies such as
read/modify/write.

Scope/context:
Block NVM context; this shows basic behavior.

Preconditions:
- The administrator created a file and provided its name to the application; this name is
accessible to the application – perhaps in a configuration file
- The application has populated the contents of this file
- The file is not in use at the start of this use case (no sharing considerations)

Inputs:
The content of the record, the location (relative to the file) where the record resides

Success scenario:
1) The application uses the native OPEN action, passing in the file name and specifying

appropriate options to bypass the file system cache
2) The application acquires the device’s optimal I/O granule size by using the

GET_ATTRIBUTE action for the PERFORMANCE_BLOCK_SIZE.
3) The application allocates sufficient memory to contain all of the blocks occupied by the

record to be updated.
a. The application determines the offset within the starting block of the record and uses

the length of the block to determine the number of partial blocks.
b. The application allocates sufficient memory for the record plus enough additional

memory to accommodative any partial blocks.
c. If necessary, the memory size is increased to assure that the starting address and

length read and write actions are multiples of PERFORMANCE_BLOCK_SIZE.
4) The application uses the native READ action to read the record by specifying the starting

disk address and the length (the same length as the allocated memory buffer). The
application also provides the allocated memory address; this is where the read action will
put the record.

5) The application updates the record in the memory buffer per the inputs
6) The application uses the native write action to write the updated block(s) to the same disk

location they were read from.
7) The application uses the native file SYNC action to assure the updated blocks are written to

the persistence domain

NVM Programming Model (NPM) Working Draft 46
Version 1.12a

8) The application uses the native CLOSE action to clean up.

Failure Scenario 1:
The native read action reports a hardware error. If the unreadable block corresponds to blocks
being updated, the application may attempt recovery (write/read/verify), or preventative
maintenance (scar the unreadable blocks). If the unreadable blocks are needed for a
read/modify/write update and the application lacks an alternate source; the application may
inform the user that an unrecoverable hardware error has occurred.

Failure Scenario 2:
The native write action reports a hardware error. The application may be able to recover by
rewriting the block. If the rewrite fails, the application may be able to scar the bad block and
write to a different location.

Postconditions:
The record is updated.

8.4.2 Atomic write use case

Purpose/triggers:
Used by a block-optimized application (see Block-optimized applications) striving for durability
of on-disk data

Scope/context:
Assure a record is written to disk in a way that torn writes can be detected and rolled back (if
necessary). If the device supports atomic writes, they will be used. If not, a double write buffer
is used.

Preconditions:
The application has taken steps (based on NVM.BLOCK attributes) to assure the record being
written has an optimal memory starting address, starting disk LBA and length.

Success scenario:
• Use GET_ATTRIBUTE to determine whether the device is ATOMIC_WRITE_CAPABLE

(or ATOMIC_MULTIWRITE_CAPABLE)
• Is so, use the appropriate atomic write action to write the record to NVM
• If the device does not support atomic write, then

o Write the page to the double write buffer
o Wait for the write to complete
o Write the page to the final destination

• At application startup, if the device does not support atomic write
• Scan the double write buffer and for each valid page in the buffer check if the page

in the data file is valid too.

NVM Programming Model (NPM) Working Draft 47
Version 1.12a

Postconditions:
After application startup recovery steps, there are no inconsistent records on disk after a failure
caused the application (and possibly system) to restart.

8.4.3 Block and File Transaction Logging

Purpose/Triggers:
An application developer wishes to implement a transaction log that maintains data integrity
through system crashes, system resets, and power failures. The underlying storage is block-
granular, although it may be accessed via a file system that simulates byte-granular access to
files.

Scope/Context:
NVM.BLOCK or NVM.FILE (all the NVM.BLOCK attributes mentioned in the use case are also
defined for NVM.FILE mode).

For notational convenience, this use case will use the term “file” to apply to either a file in the
conventional sense which is accessed through the NVM.FILE interface, or a specific subset of
blocks residing on a block device which are accessed through the NVM.BLOCK interface.

Inputs:
• A set of changes to the persistent state to be applied as a single transaction.
• The data and log files.

Outputs:
• An indication of transaction commit or abort

Postconditions:
• If an abort indication was returned, the data was not committed and the previous

contents have not been modified.
• If a commit indication was returned, the data has been entirely committed.
• After a system crash, reset, or power failure followed by system restart and execution of

the application transaction recovery process, the data has either been entirely
committed or the previous contents have not been modified.

Success Scenario:
The application transaction logic uses a log file in combination with its data file to atomically
update the persistent state of the application. The log may implement a before-image log or a
write-ahead log. The application transaction logic should configure itself to handle torn or
interrupted writes to the log or data files.

8.4.3.1 NVM.BLOCK.WRITE_ATOMICITY_UNIT >= 1
If the NVM.BLOCK.WRITE_ATOMICITY_UNIT is one or greater, then writes of a single logical
block cannot be torn or interrupted.

NVM Programming Model (NPM) Working Draft 48
Version 1.12a

In this case, if the log or data record size is less than or equal to the
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application need not handle torn or interrupted
writes to the log or data files.

If the log or data record size is greater than the NVM.BLOCK.LOGICAL_BLOCK_SIZE, the
application should be prepared to detect a torn write of the record and either discard or recover
such a torn record during the recovery process. One common way of detecting such a torn
write is for the application to compute hash of the record and record the hash in the record.
Upon reading the record, the application re-computes the hash and compares it with the
recorded hash; if they do not match, the record has been torn. Another method is for the
application to insert the transaction identifier within each logical block. Upon reading the
record, the application compares the transaction identifiers in each logical block; if they do not
match, the record has been torn. Another method is for the application to use the
NVM.BLOCK.ATOMIC_WRITE action to perform the writes of the record.

8.4.3.2 NVM.BLOCK.WRITE_ATOMICITY_UNIT = 0
If the NVM.BLOCK.WRITE_ATOMICITY_UNIT is zero, then writes of a single logical block can
be torn or interrupted and the application should handle torn or interrupted writes to the log or
data files.

In this case, if a logical block were to contain data from more than one log or data record, a
torn or interrupted write could corrupt a previously-written record. To prevent propagating an
error beyond the record currently being written, the application aligns the log or data records
with the NVM.BLOCK.LOGICAL_BLOCK_SIZE and pads the record size to be an integral
multiple of NVM.BLOCK.LOGICAL_BLOCK_SIZE. This prevents more than one record from
residing in the same logical block and therefore a torn or interrupted write may only corrupt the
record being written.

8.4.3.2.1 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE >=
NVM.BLOCK.LOGICAL_BLOCK_SIZE

If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is greater than or equal to the
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application should be prepared to handle an
interrupted write. An interrupted write results when the write of a single
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit is interrupted by a system crash, system
reset, or power failure. As a result of an interrupted write, the NVM device may return an error
when any of the logical blocks comprising the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE
unit are read. (See also SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html.)
This presents a danger to the integrity of previously written records that, while residing in
differing logical blocks, share the same fundamental block. An interrupted write may prevent
the reading of those previously written records in addition to preventing the read of the record
in the process of being written.

One common way of protecting previously written records from damage due to an interrupted
write is to align the log or data records with the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE
and pad the record size to be an integral multiple of
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE. This prevents more than one record from

http://www.sqlite.org/psow.html

NVM Programming Model (NPM) Working Draft 49
Version 1.12a

residing in the same fundamental block. The application should be prepared to discard or
recover the record if the NVM device returns an error when subsequently reading the record
during the recovery process.

8.4.3.2.2 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE <
NVM.BLOCK.LOGICAL_BLOCK_SIZE

If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is less than the
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application should be prepared to handle both
interrupted writes and torn writes within a logical block.

 As a result of an interrupted write, the NVM device may return an error when the logical block
containing the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit which was being written at
the time of the system crash, system reset, or power failure is subsequently read. The
application should be prepared to discard or recover the record in the logical block if the NVM
device returns an error when subsequently reading the logical block during the recovery
process.

A torn write results when an integral number of NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE
units are written to the NVM device but the entire NVM.BLOCK.LOGICAL_BLOCK_SIZE has
not been written. In this case, the NVM device may not return an error when the logical block is
read. The application should therefore be prepared to detect a torn write of a logical block and
either discard or recover such a torn record during the recovery process. One common way of
detecting such a torn write is for the application to compute a hash of the record and record the
hash in the record. Upon reading the record, the application re-computes the hash and
compares it with the recorded hash; if they do not match, a logical block within the record has
been torn. Another method is for the application to insert the transaction identifier within each
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit. Upon reading the record, the application
compares the transaction identifiers in each NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE
unit; if they do not match, the logical block has been torn.

8.4.3.2.3 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE = 0
If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is zero, the application lacks sufficient
information to handle torn or interrupted writes to the log or data files.

Failure Scenarios:
Consider the recovery of an error resulting from an interrupted write on a device where the
NVM.BLOCK.WRITE_ATOMICITY_UNIT is zero. This error may be persistent and may be
returned whenever the affected block is read. To repair this error, the application should be
prepared to overwrite such a block.

One common way of ensuring that the application will overwrite a block is by assigning it to the
set of internal free space managed by the application, which is never read and is available to
be allocated and overwritten at some point in the future. For example, the block may be part of
a circular log. If the block is marked as free, the transaction log logic will eventually allocate
and overwrite that block as records are written to the log.

NVM Programming Model (NPM) Working Draft 50
Version 1.12a

Another common way is to record either a before-image or after-image of a data block in a log.
During recovery after a system crash, system reset, or power failure, the application replays
the records in the log and overwrites the data block with either the before-image contents or
the after-image contents.

See also:
• SQLite.org, Atomic Commit in SQLite, http://www.sqlite.org/atomiccommit.html
• SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html
• SQLite.org, Write-Ahead Logging, http://www.sqlite.org/wal.html

http://www.sqlite.org/atomiccommit.html
http://www.sqlite.org/psow.html
http://www.sqlite.org/wal.html

NVM Programming Model (NPM) Working Draft 51
Version 1.12a

9 NVM.PM.VOLUME mode

9.1 Overview

NVM.PM.VOLUME mode describes the behavior to be consumed by operating system
abstractions such as file systems or pseudo-block devices that build their functionality by
directly accessing persistent memory. NVM.PM.VOLUME mode provides a software
abstraction (a PM volume) for persistent memory hardware and profiles functionality for
operating system components including:

• list of physical address ranges associated with each PM volume

The PM volume provides memory mapped capability in a fashion that traditional CPU load and
store operations are possible. This PM volume may be provided via the memory channel of the
CPU or via a PCIe memory mapping or other methods. Note that there should not be a
requirement for an operating system context switch for access to the PM volume.

Figure 11 NVM.PM.VOLUME mode example

PM Device PM Device PM Device. . .

Load/store

User space

Kernel space

GET_RANGESET, ...

PM-aware kernel component

NVM PM capable driver

NVM.PM.VOLUME mode

9.2 Actions

9.2.1 Actions that apply across multiple modes
The following actions apply to NVM.PM.VOLUME mode as well as other modes.

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1)
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2)

9.2.2 NVM.PM.VOLUME.GET_RANGESET
Requirement: mandatory

NVM Programming Model (NPM) Working Draft 52
Version 1.12a

The purpose of this action is to return a set of processor physical address ranges (and relate
properties) representing all of the content for the identified volume.

When interpreting the set of physical addresses as a contiguous, logical address range; the
data underlying that logical address range will always be the same and in the same sequence
across PM volume instantiations.

Due to physical memory reconfiguration, the number and sizes of ranges may change in
successive get ranges calls, however the total number of bytes in the sum of the ranges does
not change, and the order of the bytes spanning all of the ranges does not change. The space
defined by the list of ranges can always be addressed relative to a single base which
represents the beginning of the first range.

Input: a reference to the PM volume

Returns a Property Group List (see 4.4.5) where the properties are:

• starting physical address (byte address)
• length (in bytes)
• connection type – see below
• sync type – see below

For this revision of the specification, the following values (in text) are valid for connection type:

• “memory”: for persistent memory attached to a system memory channel
• “PCIe”: for persistent memory attached to a PCIe extension bus

For this revision of the specification, the following values (in text) are valid for sync type:

• “none”: no device-specific sync behavior is available – implies no entry to
NVM.PM.VOLUME implementation is required for flushing

• “VIRTUAL_ADDRESS_SYNC”: the caller needs to use VIRTUAL_ADDRESS_SYNC (see
9.2.3) to assure sync is durable

• “PHYSICAL_ADDRESS_SYNC”: the caller needs to use PHYSICAL_ADDRESS_SYNC
(see 9.2.4) to assure sync is durable

9.2.3 NVM.PM.VOLUME.VIRTUAL_ADDRESS_SYNC
Requirement: optional

The purpose of this action is to invoke device-specific actions to synchronize persistent
memory content to assure durability and enable recovery by forcing data to reach the
persistence domain. VIRTUAL_ADDRESS_SYNC is used by a caller that knows the
addresses in the input range are virtual memory addresses.

Input: virtual address and length (range)

See also: PHYSICAL_ADDRESS_SYNC

NVM Programming Model (NPM) Working Draft 53
Version 1.12a

9.2.4 NVM.PM.VOLUME.PHYSICAL_ADDRESS_SYNC
Requirement: optional

The purpose of this action is to synchronize persistent memory content to assure durability and
enable recovery by forcing data to reach the persistence domain. This action is used by a
caller that knows the addresses in the input range are physical memory addresses.

See also: VIRTUAL_ADDRESS_SYNC

Input: physical address and length (range)

9.2.5 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN
Requirement: mandatory if DISCARD_IF_YOU_CAN_CAPABLE (see 9.3.6) is true

This action notifies the NVM device that the input range (volume offset and length) are no
longer needed by the caller. This action may not result in any action by the device, depending
on the implementation and the internal state of the device. This action is meant to allow the
underlying device to optimize the data stored within the range. For example, the device can
use this information in support of functionality like thin provisioning or wear-leveling.

Inputs: a range of addresses (starting address and length in bytes). The address shall be a
logical memory address offset from the beginning of the volume.

Status: Success indicates the request is accepted but not necessarily acted upon.

9.2.6 NVM.PM.VOLUME.DISCARD_IMMEDIATELY
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 9.3.7) is true

This action notifies the NVM device that the input range (volume offset and length) are no
longer needed by the caller. Similar to DISCARD_IF_YOU_CAN, but the implementation is
required to unmap the range before the next READ or WRITE action, even if garbage
collection of the range has not occurred yet.

Inputs: a range of addresses (starting address and length in bytes). The address shall be a
logical memory address offset from the beginning of the volume.

The values returned by subsequent read operations are specified by the
DISCARD_IMMEDIATELY_RETURNS (see 9.3.8) attribute.

Status: Success indicates the request is completed.

9.2.7 NVM.PM.VOLUME.EXISTS
Requirement: mandatory if EXISTS_CAPABLE (see9.3.9) is true

A PM device may allocate storage through a thin provisioning mechanism or one of the discard
actions. As a result, memory can exist in one of three states:

NVM Programming Model (NPM) Working Draft 54
Version 1.12a

• Mapped: the range has had data written to it
• Unmapped: the range has not been written, and there is no memory allocated
• Allocated: the range has not been written, but has memory allocated to it

The EXISTS action allows the NVM user to determine if a range of bytes has been allocated.

Inputs: a range of bytes (starting byte address and length in bytes)

Output: a Property Group List (see 4.4.5) where the properties are the starting address, length
and state. State is a string equal to “mapped”, “unmapped”, or “allocated”.

Result: the status of the action

9.3 Attributes

9.3.1 Attributes that apply across multiple modes
The following attributes apply to NVM.PM.VOLUME mode as well as other modes.
NVM.COMMON.SUPPORTED_MODES (see 6.12.1)

9.3.2 NVM.PM.VOLUME.VOLUME_SIZE
Requirement: mandatory

VOLUME_SIZE is the volume size in units of bytes. This shall be the same as the sum of the
lengths of the ranges returned by the GET_RANGESETS action.

9.3.3 NVM.PM.VOLUME.INTERRUPTED_STORE_ATOMICITY
Requirement: mandatory

INTERRUPTED_STORE_ATOMICITY indicates whether the device supports power fail
atomicity of store actions.

A value of true indicates that after a store interrupted by reset, power loss or system crash;
upon restart the contents of persistent memory reflect either the state before the store or the
state after the completed store. A value of false indicates that after a store interrupted by reset,
power loss or system crash, upon restart the contents of memory may be such that
subsequent loads may create exceptions depending on the value of the
FUNDAMENTAL_ERROR_RANGE attribute (see 9.3.4).

9.3.4 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE
Requirement: mandatory

FUNDAMENTAL_ERROR_RANGE is the number of bytes that may become unavailable due
to an error on an NVM device.

This attribute is relevant when the device does not support write atomicity.

NVM Programming Model (NPM) Working Draft 55
Version 1.12a

A zero value means that the device is unable to provide a guarantee on the number of
adjacent bytes impacted by an error.

A caller may organize data in terms of FUNDAMENTAL_ERROR_RANGE to avoid certain torn
write behavior.

9.3.5 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE_OFFSET
Requirement: mandatory

The number of bytes offset from the beginning of a volume range (as returned by
GET_RANGESET) before FUNDAMENTAL_ERROR_RANGE_SIZE intervals apply.

A fundamental error range is not required to start at a byte address evenly divisible by
FUNDAMENTAL_ERROR_RANGE. FUNDAMENTAL_ERROR_RANGE_OFFSET shall be set
to the difference between the starting byte address of a fundamental error range rounded
down to a multiple of FUNDAMENTAL_ERROR_RANGE.

Figure 12 Zero range offset example depicts an implementation where fundamental error
ranges start at bye address zero; the implementation shall return zero for
FUNDAMENTAL_ERROR_RANGE_OFFSET.

Figure 12 Zero range offset example

PM range

FUNDAMENTAL_RANGE_SIZE

Byte Address Zero

PM range

FUNDAMENTAL_RANGE_SIZE

PM range

FUNDAMENTAL_RANGE_SIZE

Figure 13 Non-zero range offset example depicts an implementation where fundamental error
ranges start at a non-zero offset; the implementation shall return the difference between the
starting byte address of a fundamental error range rounded down to a multiple of
FUNDAMENTAL_ERROR_RANGE.

Figure 13 Non-zero range offset example

PM range

FUNDAMENTAL_RANGE_SIZE

Byte Address Zero

PM range

FUNDAMENTAL_RANGE_SIZE

PM range

FUNDAMENTAL_RANGE_SIZENon-zero
FUNDAMENTAL

RANGE
OFFSET

9.3.6 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN_CAPABLE
Requirement: mandatory

Returns true if the implementation supports DISCARD_IF_YOU_CAN.

NVM Programming Model (NPM) Working Draft 56
Version 1.12a

9.3.7 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_CAPABLE
Requirement: mandatory

Returns true if the implementation supports DISCARD_IMMEDIATELY.

9.3.8 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_RETURNS
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 9.3.7) is true

The value returned from read operations to bytes specified by a DISCARD_IMMEDIATELY
action with no subsequent write operations. The possible values are:

• A value that is returned to each load of bytes in an unmapped range until the next store
action

• Unspecified

9.3.9 NVM.PM.VOLUME.EXISTS_CAPABLE
Requirement: mandatory

This attribute indicates that the implementation is capable of the NVM.PM.VOLUME.EXISTS
action.

9.4 Use cases

9.4.1 Initialization steps for a PM-aware file system

Purpose/triggers:
Steps taken by a file system when a PM-aware volume is attached to a PM volume.

Scope/context:
NVM.PM.VOLUME mode

Preconditions:
• The administrator has defined a PM volume
• The administrator has completed one-time steps to create a file system on the PM

volume

Inputs:
• A reference to a PM volume
• The name of a PM file system

Success scenario:
1. The file system issues a GET_RANGESET action to retrieve information about the

ranges comprised by the PM volume.
2. The file system uses the range information from GET_RANGESET to determine

physical address range(s) and offset(s) of the file system’s primary metadata (for

NVM Programming Model (NPM) Working Draft 57
Version 1.12a

example, the primary superblock), then loads appropriate metadata to determine no
additional validity checking is needed.

3. The file system sets a flag in the metadata indicating the file system is mounted by
storing the updated status to the appropriate location

a. If the range containing this location requires VIRTUAL_ADDRESS_SYNC or
PHYSICAL_ADDRESS_SYNC is needed (based on GET_RANGESET’s sync
mode property), the file system invokes the appropriate SYNC action

Postconditions:
The file system is usable by applications.

9.4.2 Driver emulates a block device using PM media

Purpose/triggers:
The steps supporting an application write action from a driver that emulates a block device
using PM as media.

Scope/context:
NVM.PM.VOLUME mode

Preconditions:
PM layer FUNDAMENTAL_SIZE reported to driver is cache line size.

Inputs:
The application provides:

• the starting address of the memory (could be volatile) memory containing the data to
write

• the length of the memory range to be written,
• an OS-specific reference to a block device (the virtual device backed by the PM

volume),
• the starting LBA within that block device

Success scenario:
1. The driver registers with the OS-specific component to be notified of errors on the PM

volume. PM error handling is outside the scope of this specification, but may be similar to
what is described in (and above) Figure 15 Linux Machine Check error flow with proposed
new interface.

2. Using information from a GET_RANGESET response, the driver splits the write operating
into separate pieces if the target PM addresses (corresponding to application target LBAs)
are in different ranges with different “sync type” values. For each of these pieces:

NVM Programming Model (NPM) Working Draft 58
Version 1.12a

a. Using information from a GET_RANGESET response, the driver determines the PM
memory address corresponding to the input starting LBA, and performs a memory
copy operation from the callers input memory to the PM

b. The driver then performs a platform-specific flush operation
c. Using information from a GET_RANGESET response, the driver invokes the

PHYSICAL_ADDRESS_SYNC or VIRTUAL_ADDRESS_SYNC action as needed
3. No PM errors are reported by the PM error component, the driver reports that the write

action succeeded.

Alternative Scenario 1:
In step 3 in the Success Scenario, the PM error component reports a PM error. The driver
verifies that this error impacts the PM range being written and returns an error to the caller.

Postconditions:
The target PM range (i.e., the block device LBA range) is updated.

See also:
4.2.4 NVM block volume using PM hardware

NVM Programming Model (NPM) Working Draft 59
Version 1.12a

10 NVM.PM.FILE
10.1 Overview

The NVM.PM.FILE mode access provides a means for user space applications to directly
access NVM as memory. Most of the standard actions in this mode are intended to be
implemented as APIs exported by existing file systems. An NVM.PM.FILE implementation
behaves similarly to preexisting file system implementations, with minor exceptions. This
section defines extensions to the file system implementation to accommodate persistent
memory mapping and to assure interoperability with NVM.PM.FILE mode applications.

Figure 14 NVM.PM.FILE mode example shows the context surrounding the point in a system
(the red, wavy line) where the NVM.PM.FILE mode programming model is exposed by a PM-
aware file system. A user space application consumes the programming model as is typical for
current file systems. This example is not intended to preclude the possibility of a user space
PM-aware file system implementation. It does, however presume that direct load/store access
from user space occurs within a memory-mapped file context. The PM-aware file system
interacts with an NVM PM capable driver to achieve any non-direct-access actions needed to
discover or configure NVM. The PM-aware file system may access NVM devices for purposes
such as file allocation, free space or other metadata management. The PM-aware file system
manages additional metadata that describes the mapping of NVM device memory locations
directly into user space.
Figure 14 NVM.PM.FILE mode example

Application

PM device PM device PM device. . .

User space

Kernel space

MMU
MappingsPM-aware file system

NVM PM capable driver

Load/store
Native file

APINVM.PM.FILE mode

Once memory mapping occurs, the behavior of the NVM.PM.FILE mode diverges from
NVM.FILE mode because accesses to mapped memory are in the persistence domain as soon
as they reach memory. This is represented in Figure 14 NVM.PM.FILE mode example by the
arrow that passes through the “MMU Mappings” extension of the file system. As a result of

NVM Programming Model (NPM) Working Draft 60
Version 1.12a

persistent memory mapping, primitive ACID properties arise from CPU and memory
infrastructure behavior as opposed to disk drive or traditional SSD behavior. Note that writes
may still be retained within processor resident caches or memory controller buffers before they
reach a persistence domain. As with NMV.FILE.SYNC, the possibility remains that memory
mapped writes may become persistent before a corresponding NVM.PM.FILE.SYNC action.

The following actions have behaviors specific to the NVM.PM.FILE mode:

NVM.PM.FILE.MAP – Add a subset of a PM file to application's address space for
load/store access.

NVM.PM.FILE.SYNC – Synchronize persistent memory content to assure durability and
enable recovery by forcing data to reach the persistence domain.

10.1.1 Applications and PM Consistency
Applications (either directly or using services of a library) rely on CPU and kernel tools to
achieve consistency of data in PM. These tools cause PM to exhibit certain data consistency
properties enabling applications to operate correctly:

• PM is usable as volatile (not just persistent) memory
• Data residing in PM is consistent and durable even after a failure

Consistency is defined relative to the application’s objectives and design. For example, an
application can utilize a write-ahead log (see SQLite.org, Write-Ahead Logging,
http://www.sqlite.org/wal.html); when the application starts, recovery logic uses the write-ahead
log to determine whether store operations completed and modifies data to achieve
consistency. Similarly, durability objectives vary with applications. For database software,
durability typically means that once a transaction has been committed it will remain so, even in
the event of unexpected restarts. Other applications use a checkpoint mechanism other than
transactions to define durable data states.

When persistence behavior is ignored, memory-mapped PM is expected to operate like volatile
memory. Compiled code without durability expectations is expected to continue to run
correctly.

This includes the following:

• Accessible through load, store, and atomic read/modify/write instructions
• Subject to existing processor cache coherency and “uncacheable” models

(uncacheable models do not require a cache flush instruction to assure data is
written to memory)

• Load, store, and atomic read/modify/write instructions retain their current semantics
o Even when accessed from multiple threads
o Even if locks or lock-protected data live in PM

• Able to use existing code (e.g., sort function) on PM data
• Applies for all data producers: CPU and, where relevant, I/O
• “Execute In Place” capability

NVM Programming Model (NPM) Working Draft 61
Version 1.12a

• Supports pointers to PM data structures

At the implementation level, the behavior for fence instructions in libraries and thread visibility
behavior is the same for data in PM as for data in volatile memory.

Two properties assure data is consistent and durable even after failures:

• Atomicity: some stores can’t be partly visible even after a failure
• Strict write ordering

EXAMPLE - This is a pseudo C language example of atomicity and strict ordering. In this
example, msync implements NVM.PM.FILE.SYNC:

// a, a_end in PM
a[0] = foo();
msync(&(a[0]), …);
a_end = 0;
msync(&a_end, …);
. . .
n = a_end + 1;
a[n] = foo();
msync(&(a[n]), …);
a_end = n;
msync(&a_end, …);

For correctness of this example, the following assertions apply:

• a[0 .. a_end] always contains valid data, even after a failure in this code.
• a_end is written atomically to PM, so that the second store to a_end occurs no earlier than

the store to a[n].

To achieve failure atomicity, aligned stores of fundamental data types (see 6.10) reach PM
atomically. After a failure (allowed by the failure model), each such store is fully reflected in the
resulting PM state or not at all.

At least two facilities are useful to achieve strict ordering:
• msync: Wait for all writes in a range to complete
• optimization using an intra-cache-line ordering guarantee.

To elaborate on these, msync(address_range) ensures that if any effects from code
following the call are visible, then so are all stores to address_range (from any thread) which
precede the call to msync .

With intra-cache-line ordering, thread-ordered stores to a single cache line become visible in
PM in the order in which they are issued. The term “thread-ordered” refers to certain stores
that are already known in today’s implementations to reach coherent cache in order, such as:

• x86 MOV
• some C11, C++11 atomic stores

NVM Programming Model (NPM) Working Draft 62
Version 1.12a

• Java & C# volatile stores.

The CPU core and compiler do not reorder these. Within a single cache line, this order is
normally preserved when the lines are evicted to PM. This last point is a critical consideration
as the preservation of thread-ordered stores during eviction to PM is sometimes not
guaranteed.

10.1.2 PM Error Handling
With traditional storage, applications access persistent data via read and write system calls
that traverse the operating system’s IO stack and driver subsystem. In contrast, applications
accessing memory-mapped persistent data via NVM.PM.FILE.MAP do so via regular CPU
loads and stores. Unlike applications that explicitly invoke the operating system via read() and
write() calls, the OS is not explicitly involved in storage IOs to memory-mapped persistent
memory. This difference in software architecture enables persistent-memory-based
applications to avoid the overhead imposed by IO and driver processing, but it also implies
some significant differences in the mechanics of error processing associated with IOs. This
section reviews the error-handling mechanisms that exist for traditional storage, reviews the
mechanisms that exist for memory generally, and describes the application-level mechanisms
that an application can use to achieve similar error-handling semantics on persistent memory-
based storage.

When a data error occurs, there are three properties to consider. The first property to consider
is instruction precision. Instruction precision refers to whether the error, as detected and
reported, is precise with respect to the application instruction that generated the erroneous
IO. When an error is instruction-precise, that means that the error is reported before the
application could continue on to the immediate next instruction after the IO. When an error is
imprecise, this means that error is delivered to the application some time after the
corresponding IO was issued by the application. Thus, when an imprecise error is delivered to
an application, the application's state may have changed since the issuance of the IO that
caused the error.

The second property of data errors to consider is that of data containment. When an IO error
is detected, any corrective action may depend on the ability to know what data has been
lost. The granularity of data containment likely depends on the error detection and reporting
capabilities of the host platform and upon the platform software, which may increase the
granularity according to the platform software’s requirements.

The third property to consider is whether the platform supports live reporting of memory errors,
or whether instead the platform requires a machine restart to report errors. It is possible that
the platform supports both precision and data-containment, but does not support live-reporting
of memory errors. In such a scenario, the application does not make forward progress past
the faulting instruction and is therefore precise. The error, however, would be discovered
during application restart rather than when the application had originally caused or
encountered an error.

The properties of an error determine the type of response an application can

NVM Programming Model (NPM) Working Draft 63
Version 1.12a

execute. Broadly, there are two types of responses to an error: real-time recovery, and
application restart with crash recovery. In a real-time recovery scenario, an application can
recover from an error without backtracking and without losing any in-flight state. In a restart-
with-crash-recovery scenario, the application is forced to validate storage state and restart its
processing from some known, good state. This means that state and processing subsequent
to the errant instruction must be discarded. Crash recovery is usually achieved via journaling
or logging techniques.

Data IO errors may be in some combination of the instruction-precision, data-contained, and
live-reporting properties. Instruction-precise, data-contained, live-reported errors are by their
nature real-time recoverable. In this case, the instruction generating an error-inducing IO
receives a fault indication and the faulting data region corresponding to the IO is
known. Notably, only instruction-precise, data-contained, live-reported errors are real-time
recoverable. Any other kind of error (imprecise, or precise and data-uncontained) will require
that the application restart.

10.1.2.1 Error handling with traditional storage

The traditional read/write system-call based IO abstraction can experience any combination of
the instruction-precise, data-contained errors. If the OS detects an error in the course of
servicing a read or write, it is reported as an error precisely at the point where the read or write
was issued. Further, the storage extent associated with the failure is explicitly known, since it
was the argument to the system call. Thus, the data failure is contained.

For reads, this means that the program receives an error notification immediately where the
error-inducing read was issued. The program can handle that error immediately, potentially by
using a data replica on a different datastore. The program can then resume as it would have if
the read was successful. Thus, reads always have the properties of instruction precision and
data containment.

For unbuffered writes, only a subset of errors can be reported in an instruction-precise, data-
contained manner. (Buffered writes are not considered here, since portions of software tasked
with maintaining consistency points on persistent media must use unbuffered writes to be
assured the operating system is not buffering the data). Unbuffered write errors that are
detected by the storage hardware will be interpreted by the driver, potentially retried, and if
failure persists, the error will be reported to the application. However, an unbuffered write
operation alone is insufficient to ensure that data has become durable on the media (ie, all
associated caching has been flushed) and that there have been no silent media errors. In
these cases, any associated errors are not surfaced at the time of the unbuffered write
operation. Instead, such errors are only surfaced to the application in a subsequent
synchronization and read operation. Just as with any other read, an error reported at that time
is instruction-precise and data-contained with respect to the read operation. But, since the
error was not detected during the unbuffered write, the error is not precise with respect to the
originating write operation. The application will be forced to backtrack or initiate its crash-
recovery algorithm. Note, however, that because the error is precise with respect to the
verifying read operation, the application can backtrack with local context information about

NVM Programming Model (NPM) Working Draft 64
Version 1.12a

where exactly the error was detected. Because verifying every unbuffered write operation
carries a significant performance penalty, writes are usually only verified when an application
intends to transition to new, crash-consistent state (such as completion of a journal, log
update, or some other consistency point). Thus, recovery would usually happen by resuming
at the previous consistency point boundary.

 Both the precise and imprecise error scenarios may also be data-uncontained. For traditional
storage, this typically involves a catastrophic failure, such as a cable disconnection, power
loss, or serious media failure. Such errors can be encountered during the course of an IO, but
an application must use an administrative interface to the OS in order to classify the error and
attempt a crash recovery. Further, the ability to recover from this kind of crash depends
entirely on the resilience of the application and the redundancy it uses when storing data.

10.1.2.2 Error-handling with memory

Because errors related to persistent memory are propagated and handled just as any other
memory error, applications that use persistent memory must leverage memory-error facilities
rather than traditional storage-error processing. Thus, it is important to understand how
memory-error processing works, what its limitations are, and how a host’s specific capabilities
may affect the error-handling capability of an application.

Whereas storage errors may be detected by IO controller hardware or by intermediary IO issue
and completion software in an operating system, memory errors are communicated directly
from a memory controller to a CPU. The properties of the error reporting and recovery
scenarios supported within a memory system vary greatly among different processor
architectures. Further, vendors supporting the same instruction set may support different
error-reporting and error-recovery features depending on the class (e.g., enterprise versus
consumer) of processor.

As with storage errors, the host memory-error reporting and recovery capabilities that
determine application recovery scenarios include instruction precision and data containment.
Unlike storage errors, some hosts may simply crash with an unhandled exception upon
detection of a memory error. Other hosts may not have error-detection capabilities at all,
resulting in propagation of memory corruption and eventually datastore corruption.

Similar to the case where an IO controller might report an error condition to driver software,
memory errors are reported via a hardware exception to a CPU. Hardware exceptions are
processed by the operating system. Memory errors may be propagated to applications via an
error signal (typically SIGBUS on POSIX systems). Depending on the host’s error-handling
capabilities and the features of the host’s memory system, the operating system may be able
to service the exception immediately, or the operating system may be able to service the
exception after a forced reboot (i.e., after a crash).

NVM Programming Model (NPM) Working Draft 65
Version 1.12a

10.1.2.3 Application support for memory errors

Applications that require the capability to handle memory errors must have some mechanism
for detecting the host’s capability to support memory errors. Typically, applications do not
support memory error handling for volatile memory. In such a case, the consistency of the
data that the application generates is assured by organizing commits of data records at
consistency points to some nonvolatile location, and then replay updates or roll back
incomplete updates upon an application restart, depending upon how the application is
organized. Applications using persistent memory, however, likely require some mechanism to
determine if an error occurs when attempting to create a consistency point, since the
nonvolatile location is now in memory. These applications also require the ability to handle an
error when it occurs. But an application’s ability to respond to memory errors depends on the
following properties of the host and its operating system:

Memory error exception support Required for crash consistency.
Without this, data corruption in the form
of a failed consistency point cannot be
detected upon restart. This refers to
the “.MINIMAL” capability reported by
ERROR_EVENT capabilities.

Precise memory exception support Required for live resumption from
errors. Without this, an application
must restart to determine the last valid
consistency point and reload using that
state. This refers to the “.PRECISE”
capability reported by ERROR_EVENT
capabilities. Platforms that support
precise memory exceptions may still
also experience imprecise failures in
the case of catastrophic system failure,
which must be detected by software via
administrative means. See the
PRECISE capability definition for more
information.

Granularity of error containment Determines how much data could be in
an unknown/bad state. Applications
should use this for constructing the
grain of consistency points. This refers
to the .ERROR_UNIT property reported
by ERROR_EVENT capabilities.

Live exception handling capability Determines whether a host must restart
to handle an exception. If this property

NVM Programming Model (NPM) Working Draft 66
Version 1.12a

is present, an application may be able
to backtrack with local context rather
than perform a full application restart.
This refers to the .LIVE_SUPPORT
capability reported by ERROR_EVENT
capabilities.

The NVM programming model provides a mechanism to get the error information, and
standard memory-fault capabilities provide an application the ability to install a signal handler
in response to a memory exception. Given a host that supports precise memory exceptions,
an application can create consistency points by performing an NVM.PM.FILE.SYNC (or
OPTIMIZED_FLUSH) operation followed by an immediate load of the data, or by using
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY (if available).

If an application’s platform supports live resumption of a precise memory error, the application
may find it desirable to resume from the point of the fault rather than discard all program state
and fully restart from the previous consistency point. Note, however, that because signal
handlers are global in scope rather than local, some additional application logic is required to
handle a memory error in a live fashion. This is different than traditional IO, where handling an
IO fault can be done inline and with local application context information. This is possible with
traditional IO because IO faults are conveyed by an explicit return value that is checkable by
application software. In contrast, an application that handles memory errors does so in a
global context via a SIGBUS handler. To get any local context about the instruction stream
and program state that generated the error, that global SIGBUS handler will need some
coordination with the specific context or state of the application that generated the error.
Section 10.4.2 (Direct load access) demonstrates how one might build local-context error-
detection capabilities using signal handlers. Section 10.1.2.1.4 more broadly describes a
generic application’s error-handling facilities using the mechanisms provided by
NVM.PM.FILE. Note that some of these mechanisms do provide a return value (similar to
traditional IO), but the complexity of modern superscalar processors implies that memory
errors can arise outside of the invocation of these special NVM.PM.FILE operations.
Specifically, an error could arise during any load or store to a memory-mapped location,
whether it is a persistent location or volatile. To handle those errors, an application must use
traditional memory error-handling facilities (such as SIGBUS). Further, a platform is not
guaranteed to have an NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY operation, which
returns an error if verification fails. In the case that the platform relies on manual load
operations to verify data, the application must also then be prepared to process errors using
SIGBUS or similar facilities.

10.1.2.4 Building blocks for handling PM Errors: What’s Provided and how to use it

As described in Section 10.2.6 and 10.3.6 (and in new actions), software has accessibility to
the following minimal error-detection and correction actions: NVM.PM.FILE.CHECK_ERROR,
NVM.PM.FILE.CLEAR_ERROR, and NVM.PM.FILE.GET_ERROR_INFO. These actions are

NVM Programming Model (NPM) Working Draft 67
Version 1.12a

mandatory if the host has indicated support for error-handling via the
ERROR_EVENT_MINIMAL_CAPABILITY attribute. These actions are meant to address two
different modes of access to PM – either via file IO using NVM.PM.FILE, or via loads and
stores associated with a file mapped using NVM.PM.FILE.MAP. In addition to
NVM.PM.FILE.CHECK_ERROR and NVM.PM.FILE.CLEAR_ERROR, an implementation may
provide support for the optional memory-mapped variants of CHECK_ERROR and
CLEAR_ERROR (NVM.PM.FILE.MAP.CHECK_ERROR and
NVM.PM.FILE.MAP.CLEAR_ERROR, respectively).

The core, mandatory CHECK_ERROR and CLEAR_ERROR actions operate on file objects,
whereas the GET_ERROR_INFO action provides information regarding memory-mapped files,
including the virtual address information corresponding to the memory that encountered an
error. Note that the GET_ERROR_INFO action may behave differently on different platforms.
For example, the ERROR_EVENT_LIVE_SUPPORT_CAPABILITY property indicates whether
errors that would cause a machine check can be reported to software without first requiring a
host restart. Thus, the GET_ERROR_INFO action may refer to errors that were reported as
the result of a previous crash, in the case that LIVE_SUPPORT is unavailable. Those errors
are in addition to any previously detected errors, such as permanent device failures that result
in a region being reported as in an error condition. When LIVE_SUPPORT is available, the
errors reported by GET_ERROR_INFO may refer to errors that have occurred since the
current machine-start operation (in addition to any permanent errors).

Generally, there are two critical application use-cases to consider with respect to ensuring
crash-consistent behavior: initial startup, and runtime creation or modification of records.
These cases apply whether an application uses traditional file IO using traditional media, or
whether the application uses memory-mapped persistent memory. In the initial startup case,
an application must inspect the state of on-media data and determine whether the state of the
datastore is valid. Typically, this involves checksumming critical data structures and
attempting to restore the last set of consistency points that are valid. Applications commonly
organize consistency points in a log-based structure, and depending on the organization of the
log, the crash-recovery startup routine involves undoing or redoing the last attempted
consistency points. Thus, initial-startup crash-recovery involves basic sanity checking and
restoration of valid state from what may have been an in-progress operation between
consistency points.

The second case to consider is when an application is attempting to detect or correct an error
when in the midst of generating a new record. In order to be crash consistent, an application
may elect to organize creation of new records into individual consistency points. As data is
committed to any persistent media, an application must verify that the data committed has
reached the associated persistence domain so that it could be recovered by a subsequent
restart and initialization. For NVM.PM.FILE, verifying persistent data involves either an
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action on the newly created or modified
data, or by issuing an NVM.PM.FILE.SYNC (or .OPTIMIZED_FLUSH) followed immediately by
memory loads on the entirety of the flushed data. Depending on the complexity of the
consistency point (such as whether a failed verification refers to a set of inter-dependent,
nested data structures), it may not be possible to make an alteration to the consistency point
using alternate persistent memory locations. Further, an application author may simply elect

NVM Programming Model (NPM) Working Draft 68
Version 1.12a

not to attempt in-line recovery of a consistency point. Instead, the most practical thing to do
may be to restart the application. In such a case, the error handling effectively is reduced to
the first case considered here: initial startup. The problematic consistency point will be
discovered by the initial-startup error-handling routine, the consistency point will be discarded,
and the application will further initialize and resume processing.

It is important to note that in both cases, crash-consistency error handling is handled from the
perspective of a failed LOAD or READ operation. That is because initialization is effectively
retrieving the stored data, and creating a consistency point is effectively verification (retrieval
and comparison) of persistent data. The platform may generate errors associated with WRITE
or STORE operations (including during the originating placement of the data that is part of the
consistency point). Further, nothing precludes an application from using the CHECK_ERROR
and GET_ERROR_INFO actions to attempt to handle such errors. Errors encountered outside
of the bounds of a consistency point must force the application to engage its error handling
routine from the perspective of the last consistency point.

Figure 15- INIT_ERROR_HANDLING

Figure 15- INIT_ERROR_HANDLING depicts how an application would do its startup
processing and associated initialization error handling. The organization of the steps here are
not unique to persistent memory. First, an application opens the file associated with the

NVM Programming Model (NPM) Working Draft 69
Version 1.12a

datastore. Then, the application either maps the file and proceeds to use memory loads to
retrieve the data, or the application does a CHECK_ERROR action on the portions of the file
as it proceeds to READ the data. If errors are encountered, they must be reconciled. If no
errors are encountered, the application restores its state at the last-valid consistency point,
which may involve undoing the partial effects of pending consistency points or redoing
consistency points whose effects were not made global to the application. If errors are
encountered in that process, again, the errors must be reconciled. After re-initializing the
state, the application is then ready to initialize processing using its now-validated persistent
state.

Figure 16 – CONSISTENCY_PT_ERROR_HANDLING

Figure 16 – CONSISTENCY_PT_ERROR_HANDLING depicts how an application would
handle errors during generation of a consistency point. Note that consistency-point error
handling presumes that the platform has the ERROR_EVENT_LIVE_SUPPORT_CAPABILITY
attribute. Without live delivery of memory errors, the host will crash and restart. In such a
scenario, the only error-handling case that is relevant is the initialization case, since the
application will restart and must re-initialize and detect that the partial consistency point has
happened. The processing mechanism is quite similar to initialization, and again, this

NVM Programming Model (NPM) Working Draft 70
Version 1.12a

organization is not unique to persistent memory. The key difference between this case and
application-initialization is that the application has program-local state with which to aid in the
recovery.

In this consistency-point error-handling case, the application would first generate the new data
associated with the consistency point, including any pointers referring to the data. The
application would then perform a sync (or flush) action with a verification operation (or
alternatively, an OPTIMIZED_FLUSH_AND_VERIFY action). Next, the application checks for
errors. If the application is using file IO, this means using the CHECK_ERROR action to fetch
the details of any failed operations. If the application is using memory-mapped persistent
memory, this corresponds to receiving a SIGBUS signal and performing the
GET_ERROR_INFO action to get the error information. For each error, the application
attempts to reconcile the error – depending on what exactly caused the error (ie, a data error
or a metadata error), the application may not be able to reconcile the error, may have to
discard the consistency point, and may ultimately have to restart the application.

NVM Programming Model (NPM) Working Draft 71
Version 1.12a

Figure 17 - RECONCILE_ERROR_FILE_OR_MAP_WITH_CLEAR

NVM Programming Model (NPM) Working Draft 72
Version 1.12a

Figure 18 – RECONCILE_ERROR_MAP_NOCLEAR

Figure 17 - RECONCILE_ERROR_FILE_OR_MAP_WITH_CLEAR and Figure 18 –
RECONCILE_ERROR_MAP_NOCLEAR depict memory-error reconciliation using file IO and
memory-mapped access, respectively, using the minimally mandatory error-handling actions.
Figure 17 - RECONCILE_ERROR_FILE_OR_MAP_WITH_CLEAR also applies when using
memory-mapped files, in the case that the implementation supports
NVM.PM.FILE.MAP.CHECK_ERROR and NVM.PM.FILE.MAP.CLEAR_ERROR.

For both cases, whether using CLEAR_ERROR actions or using memory-mapped files without
CLEAR_ERROR available, a successful resolution means that error recovery can proceed and
make forward progress. This may mean that data has been lost, but the application can
continue recovery. In a failure scenario, the application cannot make forward progress in
error-recovery. In such a case, the only way forward is to avoid the region reported, not
attempt to re-clear the region, and discard the affected data. Depending on the nature of the
data being discarded, this may be a catastrophic failure for the application.

NVM Programming Model (NPM) Working Draft 73
Version 1.12a

 The overall organization for these methods is quite similar. In general, reconciliation attempts
to determine if the error is relevant, if there is replica data available to use, and to potentially
make an internal note in the application to not use the erroneous locations in the future. The
primary difference is that if CLEAR_ERROR is not available (e.g., the programmer is using
memory-mapped files and the CLEAR_ERROR and CHECK_ERROR actions are not
implemented), the programmer must take on the responsibility of additional book-keeping
during (and after) reconciling errors, because the application must subsequently avoid regions
that have been reported to have errors. Specifically, the CLEAR_ERROR implementation will
attempt to clear the error condition and assure that a subsequent access to the same region
(whether a file region or a memory-mapped region) will not trigger the same error. Depending
on the nature of the error, the CLEAR_ERROR action may, internally, allocate new blocks
and/or adjust mappings for use in this error ‘hole’ and update the underlying file structures
accordingly. Once the CLEAR_ERROR action has succeeded, the application must then
replace the data that was in the region that triggered the error and verify persistent data on the
underlying persistent media. In contrast, when using memory-mapped access, the application
assumes the responsibility of both data replacement and internal metadata reference updates.
An application may choose to use the CLEAR_ERROR action upon initial start-up or during
error-recovery, in order to aggressively discover and handle known errors before continuing
further processing.

As depicted in Figure 17 - RECONCILE_ERROR_FILE_OR_MAP_WITH_CLEAR, error-
recovery using file IO may require both the CLEAR_ERROR action and data replacement
(such as when replica data is available). Because CLEAR_ERROR and data replacement are
separate operations and because power may fail in between the execution of those operations,
an application performing error-recovery must use some kind of internal note-keeping to keep
track of clears-in-progress. This is because an error could be cleared by CLEAR_ERROR and
then subsequently not reported (via CHECK_ERROR) after a power failure. In order to assure
that the application has a chance to subsequently provide replacement data to the cleared
region, an application must keep track of the fact that an error recovery was being performed.

As shown in Figure 17 - RECONCILE_ERROR_FILE_OR_MAP_WITH_CLEAR, reconciliation
starts by inspecting a range that reports an error and creating a record that indicates that this
error is in the midst of being reconciled, so that it may be resumed after a power failure. The
error being inspected may or may not be relevant. For example, the error may refer to a
location that was otherwise unused by the application. In such a case, the application simply
does a CLEAR_ERROR. Completing the CLEAR_ERROR action indicates that the host has
made this location usable again.

If the error was relevant, the application must determine if there is a replica for the information
available. Recall, in this case what is being reported is an error when loading or verifying
information. If alternative, valid data is available, the application either loads it or reads it from
the alternative location, and then the application invokes the CLEAR_ERROR, checks for
success, and then replaces the data at the file location that reported the error. After replacing
the data, an application should also perform the equivalent of a sync action and verification
(such as explicit data-reading), to assure that the replacement data has been placed without
creating a new error. If the CLEAR_ERROR action and subsequent data placement
operations succeed, the reconcile algorithm has completed successfully. If not, the reconcile

NVM Programming Model (NPM) Working Draft 74
Version 1.12a

algorithm should be retried.

In the case of a retry or if no replica data is available, the application must determine if it can
proceed without the data that is the source of the memory error. If so, it can simply do a
CLEAR_ERROR, update internal state that may have referred to this now-unavailable data,
and proceed. If not, the reconcile algorithm has failed, and whatever is depending on it will
also fail.

Figure 18 – RECONCILE_ERROR_MAP_NOCLEAR depicts the same error-reconcile
algorithm in the case where the application is using memory-mapped persistent memory and
when the CHECK_ERROR and CLEAR_ERROR actions are not available for memory-
mapped persistent memory. In this case, the algorithm starts by performing the
GET_ERROR_INFO action to get detailed information about the originating error. From this
point, processing is nearly identical to the variant when CLEAR_ERROR is available. As
previously noted, the only difference is that the application must take on the role of making
sure the application will not subsequently access the same ranges, and the application must
do its own updates to internal reference tables to point to any replica data, rather than writing
or storing the data after a CLEAR_ERROR action. It is notably very important that an
application guard against subsequent access to an error-containing range, to assure forward
progress during error-handling situations. For example, on systems that do not feature the
ERROR_EVENT_LIVE_SUPPORT_CAPABILITY property, attempting to re-access the same
error-containing region without performing a CLEAR_ERROR would trigger an endless
access-and-crash cycle during application startup. Thus, if CLEAR_ERROR is not available,
the application bears the responsibility of avoiding that endless access-and-crash scenario.

10.1.2.5 OS Platform considerations:
To support error-detection and recovery by applications using persistent memory, the
underlying operating system will require some modifications as compared to how errors for
volatile memory are detected and reported. First, the OS must enable the NVM.PM.FILE
implementation to intercept and record errors so that it can, in turn, service the
CHECK_ERROR and CLEAR_ERROR actions. Secondly, in the case that the platform does
not support live reporting and recovery of memory errors and those errors are only reported
upon system restart, the OS must deliver those errors in a manner consistent with how they
would be reported if the system did support live reporting and recovery.

Existing operating systems may not connect memory error notifications to the filesystem
layer. However, because NVM.PM.FILE’s error-checking and error-handling capabilities
operate on file constructs, some modification to the operating system may be required to
facilitate the CHECK_ERROR and CLEAR_ERROR.

Using Linux running on the Intel architecture as an example, memory errors are reported using
Intel’s Machine Check Architecture (MCA). When the operating system enables this feature,
the error flow on an uncorrectable error is shown by the solid red arrow (labeled ②) in Figure
15 Linux Machine Check error flow with proposed new interface, which depicts the mcheck
component getting notified when the bad location in PM is accessed.

NVM Programming Model (NPM) Working Draft 75
Version 1.12a

Figure 19 - Linux Machine Check error flow with proposed new interface

As mentioned above, sending the application a SIGBUS (a type of asynchronous event) allows
the application to decide what to do. However, in this case, remember that the NVM.PM.FILE
manages the PM and that the location being accessed is part of a file on that file system. So
even if the application gets a signal preventing it from using corrupted data, a method for
recovering from this situation must be provided. A system administrator may try to back up rest
of the data in the file system before replacing the faulty PM, but with the error mechanism
we’ve described so far, the backup application would be sent a SIGBUS every time it touched
the bad location. What is needed in this case is a way for the NVM.PM.FILE implementation to
be notified of the error so it can isolate the affected PM locations and then continue to provide
access to the rest of the PM file system. The dashed arrows in Figure 15 show the necessary
modification to the machine check code in Linux. On start-up, the NVM.PM.FILE
implementation registers with the machine code to show it has responsibility for certain ranges
of PM. Later, when the error occurs, NVM.PM.FILE gets called back by the mcheck
component and has a chance to handle the error.

This suggested machine check flow change enables the file system to participate in recovery
while not eliminating the ability to signal the error to the application. Further, this suggested
flow enables an implementation of CHECK_ERROR and CLEAR_ERROR at the filesystem
level, allowing notification of error state to the filesystem so that errors can be reported from
the lower levels of the operating system responsible for dealing with memory errors

The other platform consideration is with respect to delivering memory errors after a system
crash. Some server hardware can detect memory errors, but it cannot resume from memory
errors without restarting the host. On such servers, the OS and firmware detect which areas of
the persistent memory experienced an error on the previous boot. To prevent applications
from experiencing an endless access-crash-restart-access again-crash cycle, the OS must
interact with the firmware to protect the memory regions associated with the error and then
deliver a memory error to an application if and when it subsequently accesses those memory
areas. In this manner, the OS and firmware can enable the behavior depicted in Figure 15-

Application

PM device PM device PM device. . .

User space
Kernel space

MMU
MappingsPM-aware file system

Load/
store

Native file
API

mcheck Legend for labeled lines:
① (proposed) NVM.PM.FILE
implementation registers with
mcheck module
② MCA reports error to
mcheck module
③ (proposed) mcheck reports
error to NVM.PM.FILE
implementation

NVM Programming Model (NPM) Working Draft 76
Version 1.12a

INIT_ERROR_HANDLING, wherein an application initially performs a MAP action on the PM
file and then loads data from that mapped data. If the host has previously crashed, then the
OS must be modified to deliver the corresponding SIGBUS errors or to report the errors via
GET_ERROR_INFO or CHECK_ERROR without actually letting the application access those
memory locations. This assurance also means that applications do not have to implement
different initialization and recovery algorithms depending on the platform’s capabilities.

A platform’s implementation of the NVM Programming Model may vary in complexity and may,
in turn, affect the values of attributes such as
NVM.PM.FILE.ERROR_EVENT_LIVE_SUPPORT_CAPABILITY. Specifically, the
fundamental error unit of the memory device may be smaller than the unit used by the
operating system for memory protection (such as pages). In such a case, the NVM
programming implementation must choose to either report an ERROR_UNIT that is larger
(such as the size of the memory protection unit) than the device’s error unit, or the OS must be
modified. Such a modification would involve maintaining memory protection of that larger
memory-protection unit, to take an exception upon access to an erroneous region within that
memory-protection unit, and to then internally consult the error state known about the memory
device to determine whether the memory access should be allowed to proceed. Effectively,
the modified OS would trap-and-execute on every access within the memory-protection unit.
This capability is particularly important on hosts that do not feature the LIVE_SUPPORT error-
handling property, since the OS must take the responsibility to assure a subsequent
application access will not lead to a crash and instead will lead to delivery of memory error
information. Simultaneously, however, the OS must assure that non-erroneous accesses
succeed. In practical terms, those non-erroneous accesses that happen to be within the same
memory protection unit may suffer performance degradation, as the OS is required to inspect
every access within the protection unit. This degradation should be rare, however, since errors
are expected to be rare. Further, administrators should be able to discover such non-fatal but
performance-affecting errors through logs or other administrative interfaces.

A host implementation may choose to report a ERROR_UNIT that simplifies its
implementation, such as reporting a larger grain that is a multiple of the host’s memory
protection unit size. The implementer must weigh the tradeoffs of complexity versus size
reported carefully. Depending on the host’s characteristics, the host’s memory protection unit
size may be unacceptably large for practical applications. Recall that applications will use the
ERROR_UNIT to organize their data structures (such as log structures). Very large
ERROR_UNIT sizes may lead to waste through internal fragmentation in the applications.

10.2 Actions

The following actions are mandatory for compliance with the NVM Programming Model
NVM.PM.FILE mode.

NVM Programming Model (NPM) Working Draft 77
Version 1.12a

10.2.1 Actions that apply across multiple modes
The following actions apply to NVM.PM.FILE mode as well as other modes.

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1)
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2)

10.2.2 Native file system actions
Native actions shall apply with unmodified syntax and semantics provided that they are
compatible with programming model specific actions. This is intended to support traditional file
operations allowing many applications to use PM without modification. This specifically
includes mandatory implementation of the native synchronization of mapped files. As always,
specific implementations may choose whether or not to implement optional native operations.

10.2.3 NVM.PM.FILE.MAP
Requirement: mandatory

The mandatory form of this action shall have the same syntax found in a pre-existing file
system, preferably the operating system's native file map call. The specified subset of a PM file
is added to application's address space for load/store access. The semantics of this action are
unlike the native MAP action because NVM.PM.FILE.MAP causes direct load/store access.
For example, the role of the page cache might be reduced or eliminated. This reduces or
eliminates the consumption of volatile memory as a staging area for non-volatile data. In
addition, by avoiding demand paging, direct access can enable greater uniformity of access
time across volatile and non-volatile data.

PM mapped file operation may not provide the access time and modify time behavior typical of
native file systems.

PM mapped file operation may not provide the normal semantics for the native file
synchronization actions (e.g., POSIX fsync and fdatasync and Win32 FlushFileBuffers). If a file
is mapped at the time when the native file synchronization action is invoked, the normal
semantics apply. However if the file had been mapped, data had been written to the file
through the map, the data had not been synchronized by use of the NVM.PM.FILE.SYNC
action, the NVM.PM.FILE.OPTIMIZED_FLUSH action, the
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action, or the native mapped file sync
action, and the mapping had been removed prior to the execution of the native file
synchronization action, the action is not required to synchronize the data written to the map.

Requires NVM.PM.FILE.OPEN

Inputs: align with native operating system's map

Outputs: align with native operating system's map. Optionally, outputs may include the result
of NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED as described in section 10.2.8.

Relevant Options:

NVM Programming Model (NPM) Working Draft 78
Version 1.12a

All of the native file system options should apply.

NVM.PM.FILE.MAP_SHARED (Mandatory) – This existing native option shall be
supported by the NVM.PM.FILE.MAP action. This option indicates that user space
processes other than the writer can see any changes to mapped memory immediately.

NVM.PM.FILE.MAP_COPY_ON_WRITE (Optional)– This existing native option
indicates that any write after mapping will cause a copy on write to volatile memory, or
PM that is discarded during any type of restart. The copy is only visible to the writer.
The copy is not folded back into PM during the sync command.

Relevant Attributes:

NVM.PM.FILE.MAP_COPY_ON_WRITE_CAPABLE (see 10.3.2) - Native operating
system map commands make a distinction between MAP_SHARED and
MAP_COPY_ON_WRITE. Both are supported with native semantics under the NVM
Programming Model. This attribute indicates whether the MAP_COPY_ON_WRITE
mapping mode is supported. All NVM.PM.FILE.MAP implementations shall support the
MAP_SHARED option.

Error handing for mapped ranges of persistent memory is unlike I/O, in that there is no
acknowledgement to a load or store instruction. Instead processors equipped to detect
memory access failures respond with machine checks. These can be routed to user threads as
asynchronous events. With memory-mapped PM, asynchronous events are the primary means
of discovering the failure of a load to return good data. Please refer to
NVM.PM.FILE.GET_ERROR_INFO (section 10.2.6) for more information on error handling
behavior.

Depending on memory configuration, CPU memory write pipelines may effectively preclude
application level error handling during memory accesses that result from store instructions. For
example, errors detected during the process of flushing the CPU’s write pipeline are more
likely to be associated with that pipeline than the NVM itself. Errors that arise within the CPU’s
write pipeline generally do not enable application level recovery at the point of the error. As a
result application processes may be forced to restart when these errors occur (see PM Error
Handling Annex B). Such errors should appear in CPU event logs, leading to an administrative
response that is outside the scope of this specification.

Applications needing timely assurance that recently stored data is recoverable should use the
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action to verify data from NVM after it is
flushed (see 10.2.7). Errors during verify are handled in the manner described in this annex.

10.2.4 NVM.PM.FILE.SYNC
Requirement: mandatory

The purpose of this action is to synchronize persistent memory content to assure durability and
enable recovery by forcing data to reach the persistence domain.

NVM Programming Model (NPM) Working Draft 79
Version 1.12a

The native file system sync action may be supported by implementations that also support
NVM.PM.FILE.SYNC. The intent is that the semantics of NVM.PM.FILE.SYNC match native
sync operation on memory-mapped files however because persistent memory is involved,
NVM.PM.FILE implementations need not flush full pages. Note that writes may still be subject
to functionality that may mask whether stored data has reached the persistence domain (such
as caching or buffering within processors or memory controllers). NVM.PM.FILE.SYNC is
responsible for insuring that data within the processor or memory buffers reaches the
persistence domain.

A number of boundary conditions can arise regarding interoperability of PM and non-PM
implementation components. The following limitations apply:

• The behavior of an NVM.PM.FILE.SYNC action applied to a range in a file that was not
mapped using NVM.PM.FILE.MAP is unspecified.

• The behavior of NVM.PM.FILE.SYNC on non-persistent memory is unspecified.

In both the PM and non-PM modes, updates to ranges mapped as shared can and may
become persistent in any order before a sync requires them all to become persistent. The sync
action applied to a shared mapping does not guarantee write atomicity. The byte range
referenced by the sync parameter may have reached a persistence domain prior to the sync
command. The sync action guarantees only that the range referenced by the sync action will
reach the persistence domain before the successful completion of the sync action. Any
atomicity that is achieved is not caused by the sync action itself.

Requires: NVM.PM.FILE.MAP

Inputs: Align with native operating system's sync with the exception that alignment restrictions
are relaxed.

Outputs: Align with native operating system's sync with the addition that it shall return an error
code.

Users of the NVM.PM.FILE.SYNC action should be aware that for files that are mapped as
shared, there is no requirement to buffer data on the way to the persistence domain. Although
data may traverse a processor’s write pipeline and other buffers within memory controllers
these are more transient than the disk I/O buffering that is common in NVM.FILE
implementations.

Error handling related to this action is expected to be derived from ongoing work that begins
with Annex B (Informative) PM error handling.

10.2.5 NVM.PM.FILE.OPTIMIZED_FLUSH
Requirement: mandatory if NVM.PM.OPTIMIZED_FLUSH_CAPABLE is set.

The purpose of this action is to synchronize multiple ranges of persistent memory content to
assure persistence and enable recovery by forcing data to reach the persistence domain. This
action has the same effect as NVM.PM.FILE.SYNC however it is intended to allow additional

NVM Programming Model (NPM) Working Draft 80
Version 1.12a

implementation optimization by excluding options supported by sync and by allowing multiple
byte ranges to be synchronized during a single action. Page oriented alignment constraints
imposed by the native definition are lifted. Because of this, implementations might be able to
use underlying persistent memory more optimally than they could with the native sync. In
addition some implementations may enable this action to avoid context switches into kernel
space. With the exception of these differences all of the content of the NVM.PM.FILE.SYNC
action description also applies to NVM.PM.FILE.OPTIMIZED_FLUSH.

Requires: NVM.PM.FILE.MAP. OPTIMIZED_FLUSH also requires that
NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED (see 10.2.8) has returned TRUE for the
ranges being flushed since the most recent map call. Otherwise data in PM may not be fully
accessible to file system clients, depending on file system implementation.

Inputs: Identical to NVM.PM.FILE.SYNC except that an array of byte ranges is specified and
options are precluded. A reference to the array and the size of the array are input instead of a
single address and length. Each element of the array contains an address and length of a
range of bytes to be synchronized.

Outputs: Align with native OS's sync with the addition that it shall return an error code.

Relevant attributes: NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE – Indicates whether this
action is supported by the NVM.PM.FILE implementation (see 10.3.5).

NVM.PM.FILE.OPTIMIZED_FLUSH provides no guarantee of atomicity within or across the
synchronized byte ranges. Neither does it provide any guarantee of the order in which the
bytes within the ranges of the action reach a persistence domain.

In the event of failure the progress of the action is indeterminate. Various byte ranges may or
may not have reached a persistence domain. There is no indication as to which byte ranges
may have been synchronized.

10.2.6 NVM.PM.FILE.GET_ERROR_EVENT_INFO
Requirement: mandatory if NVM.PM.ERROR_EVENT_CAPABLE is set.

The purpose of this action is to provide a sufficient description of an error event to enable
recovery decisions to be made by an application. This action is intended to originate during an
application event handler in response to a persistent memory error. In some implementations
this action may map to the delivery of event description information to the application at the
start of the event handler rather than a call made by the event handler. The error information
returned is specific to the memory error that caused the event.

Inputs: It is assumed that implementations can extract the information output by this action
from the event being handled.

Outputs:

NVM Programming Model (NPM) Working Draft 81
Version 1.12a

1 – An indication of whether or not execution of the application can be resumed from the point
of interruption. If execution cannot be resumed then the process running the application should
be restarted for full recovery.

2 – An indication of error type enabling the application to determine whether an address is
provided and the direction of data flow (load/verify vs. store) when the error was detected.

3 – The memory mapped address and length of the byte range where data loss was detected
by the event.

Relevant attributes:

NVM.PM.FILE.ERROR_EVENT_CAPABLE – Indicates whether load error event handling and
this action are supported by the NVM.PM.FILE implementation (see 10.3.6).

This action is used to obtain information about an error that caused a machine check involving
memory mapped persistent memory. This is necessary because with persistent memory there
is no opportunity to provide error information as part of a function call or I/O. The intent is to
allow sophisticated error handling and recovery to occur before the application sees the event
by allowing the NVM.PM.FILE implementation to handle it first. It is expected that after
NVM.PM.FILE has completed whatever recovery is possible, the application error handler will
be called and use the error information described here to stage subsequent recovery actions,
some of which may occur after the application’s process is restarted.

In some implementations the same event handler may be used for many or all memory errors.
Therefore this action may arise from memory accesses unrelated to NVM. It is the application
event handler’s responsibility to determine whether the memory range indicated is relevant for
recovery. If the memory range is irrelevant then the event should be ignored other than as a
potential trigger for a restart.

In some systems, errors related to memory stores may not provide recovery information to the
application unless and until load instructions attempt to access the memory locations involved.
This can be accomplished using the NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action
(section 10.2.7).

For more information on the circumstances which may surround this action please refer to PM
Error Handling Annex B.

10.2.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY
Requirement: mandatory if NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE is
set.

The purpose of this action is to synchronize multiple ranges of persistent memory content to
assure durability and enable recovery by forcing data to reach the persistence domain.
Furthermore, this action verifies that data was written correctly. The intent is to supply a
mechanism whereby the application can receive data integrity assurance on writes to memory-
mapped PM prior to completion of this action. This is the PM analog of the POSIX definition of

NVM Programming Model (NPM) Working Draft 82
Version 1.12a

synchronized I/O which clarifies that the intent of synchronized I/O data integrity completion is
"so that an application can ensure that the data being manipulated is physically present on
secondary mass storage devices”.

Except for the additional verification of flushed data, this action has the same effect as
NVM.PM.FILE.OPTIMIZED_FLUSH.

Requires: NVM.PM.FILE.MAP

Inputs: Identical to NVM.PM.FILE.OPTIMIZED_FLUSH.

Outputs: Align with native OS's sync with the addition that it shall return an error code. The
error code indicates whether or not all data in the indicated range set is readable.

Relevant attributes:

NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE – Indicates whether this action
is supported by the NVM.PM.FILE implementation (see 10.3.7).

OPTIMIZED_FLUSH_AND_VERIFY shall assure that any errors that occur during the process
of delivering data to the persistence domain are reported prior to or during completion of the
action.. Any errors discovered during verification should be logged for administrative attention.
Error reporting shall occur across all data ranges specified in the action regardless of when
they were actually flushed.

In the event of failure the progress of the action is indeterminate.

10.2.8 NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED
Requirement: mandatory if NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE is set.

The purpose of this action is to determine whether a given implementation guarantees
persistence of specific memory ranges as a result of a flush. References to
NVM.PM.OPTIMIZED_FLUSH in this section should be interpreted as applying to both
NVM.PM.OPTIMIZED_FLUSH and NVM.PM.OPTIMIZED_FLUSH_AND_VERIFY. The
existence of NVM.PM.FILE.OPTIMIZED_FLUSH on a platform does not imply it is always
allowed for a given range of persistent memory. For example, the file system exposing the
range of persistent memory may require the control point offered by NVM.PM.FILE.SYNC in
order to assure that data in the persistence domain is accessible to file system clients. This
action provides a way for the application to determine if persistence is achieved correctly by
NVM.PM.FILE.OPTIMIZED_FLUSH. When NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED
returns true for a memory-mapped range, the operating system is guaranteeing that
OPTIMIZED_FLUSH’s will work correctly in the indicated ranges for the lifetime of the
mapping. This implies an application must re-check whether OPTIMIZED_FLUSH_ALLOWED
is true each time the persistent memory is mapped, but once mapped by a particular running
instance of the application, the check is not required again as long as the same mapping is
used. An implementation of this action may provide a combined NVM.PM.FILE.MAP and
NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED action that is more efficient than separate

NVM Programming Model (NPM) Working Draft 83
Version 1.12a

actions. In some systems the result of OPTIMIZED_FLUSH_ALLOWED may be more easily
determined at MAP time.

Requires: NVM.PM.FILE.MAP

Inputs: A range or set of ranges of mapped memory.

Outputs: True only if NVM.PM.FILE.OPTIMIZED_FLUSH is allowed for every byte in the given
range, false or common operating system call error otherwise.

Relevant attributes:

NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE – Indicates whether this action is supported by
the NVM.PM.FILE implementation (see 10.3.5).

10.2.9 NVM.PM.FILE.DEEP_FLUSH
Requirement: mandatory if NVM.PM.FILE.DEEP_FLUSH_CAPABLE is set.

The purpose of this action is to provide the same persistency semantics as
NVM.PM.FILE.SYNC, but performance may be sacrificed in order to flush persistent memory
stores to the most reliable persistence domain available to software. For example, the power-
fail safe domain on a system may include multiple layers of caches which implies a higher
failure rate since more hardware is involved. NVM.PM.FILE.DEEP_FLUSH could be
implemented in this case with special cache flush operations that flush stores to the media
rather than depending on automatic cache flushes on power failure. The result is a higher
expected reliability at the cost of flush performance.

Requires: NVM.PM.FILE.MAP

Inputs: At least one range of mapped memory.

Outputs: Align with native OS's sync with the addition that it shall return an error code.

Relevant attributes:

NVM.PM.FILE.DEEP_FLUSH_CAPABLE – Indicates whether this action is supported by the
NVM.PM.FILE implementation (see 10.3.8).

10.2.10 NVM.PM.FILE.CHECK_ERROR
Requirement: Mandatory if ERROR_EVENT_MINIMAL_CAPABILITY is set.

The purpose of this action is to detect whether any memory in a given memory range is in an
error condition that is unable to be corrected by the NVM.PM.FILE implementation. The range
may be expressed either as a file handle, offset and length or as a memory mapped start
address and length. The file handle form of this action is intended to be used by applications
either during startup or when accessing PM through file IO rather than via loads and stores.

NVM Programming Model (NPM) Working Draft 84
Version 1.12a

The memory mapped address form of this action is intended to be used by applications either
during startup or when accessing PM through memory-mapped loads and stores. It is
expected that applications will use CHECK_ERROR to detect error conditions and to then
attempt to reconcile the error condition (such as by reading replica data from another location
or by writing data to an alternate location). Depending on the use case, it may be appropriate
for an application to subsequently use the CLEAR_ERROR action on the ranges reported by
CHECK_ERROR.

Errors reported by the CHECK_ERROR action represent a summary of known, detectable
errors discovered by the combination of the platform firmware, the operating system driver
software, and the NVM.PM.FILE implementation. The CHECK_ERROR action does not
represent a specific type of error at a specific point in the memory hierarchy; instead,
CHECK_ERROR reports to the programmer that an error condition exists regarding a specific
file location.

The CHECK_ERROR action references the current state of the provided file for the range
indicated by the offset and length, or the state of the provided mapped memory region for the
byte range indicated when its error state was last reported to platform software.
CHECK_ERROR may not report historical errors that may have been reported previously.
Application software that requires historical information of previous errors or error state may
need to consult system logs or administrative interfaces provided by the operating system.

Requires: ERROR_EVENT_MINIMAL_CAPABILITY is set.

The memory mapped range form of this command also requires
ERROR_EVENT_MAPPED_SUPPORT_CAPABILITY to be set.

Inputs: A file descriptor corresponding to an open NVM.PM.FILE, a byte offset in to that file,
and a length in bytes to check from that offset or a start address and length, indicating a
previously mapped byte range to be checked.

Outputs: A list of error ranges where errors were encountered. Each range in the list will
specify an offset from the start address in the input parameter, and the length in bytes of a
range where the error condition exists.

10.2.11 NVM.PM.FILE.CLEAR_ERROR
NVM.PM.FILE.CLEAR_ERROR(file, offset, length)

Requirement: Mandatory if ERROR_EVENT_MINIMAL_CAPABILITY is set.

The purpose of this action is to clear an unrecoverable error condition for a given range in an
NVM.PM.FILE instance. Note the difference between this CLEAR_ERROR operation, which
operates on a file, and NVM.PM.FILE.MAP.CLEAR_ERROR, which operates on mapped
memory regions. NVM.PM.FILE.CLEAR_ERROR is mandatory when error-handling
capabilities are available, as it and NVM.PM.FILE.CHECK_ERROR provide the minimal
functionality required for software to implement a failure detection and recovery algorithm.
Note, however, that the efficacy of the CLEAR_ERROR action on various platform

NVM Programming Model (NPM) Working Draft 85
Version 1.12a

implementations and under varying hardware failure scenarios is not specified by the
programming model. The CLEAR_ERROR action may fail, and software must take in to
consideration the possibility of such a failure.

The NVM.PM.FILE.CLEAR_ERROR action is intended to provide the application with a means
to clear an error condition within a file. The programmer can then subsequently replace data
that has become inaccessible due to that error. Note that an application may not always have
replica replacement data available. In such a case, the application must choose whether it
must halt, or whether it can clear the error condition (using CLEAR_ERROR), internally note
the error, and then provide stand-in data (such as all zeros). In either case, however, the
application is assured that a subsequent access to the file location will not cause the same
error. Because hardware can always subsequently fail, however, nothing precludes a new
error from occurring at the same location.

CLEAR_ERROR is meant to be used in conjunction with CHECK_ERROR. Note, however,
that the underlying implementation may choose to actively resolve error conditions between
the time that they are reported by CHECK_ERROR and when an application may invoke
CLEAR_ERROR. For example, an implementation of the programming model that features
support for higher availability may have replica data available that the implementation can
automatically reorganize the underlying file extents and replace the data in a manner
transparent to the application. The error would, in such a case, be reported for a brief amount
of time via CHECK_ERROR, but then would no longer be considered in an error condition. To
shield this complexity from application developers, the CLEAR_ERROR shall indicate success
even if the region being cleared no longer is in an error condition; the application shall view
such an operation as having been completed successfully, even if the underlying
implementation did not take any action upon invocation of the CLEAR_ERROR action.

CLEAR_ERROR does not perform data replacement, but it is a necessary step to ensure that
a subsequent data replacement operation will not trigger the same error. This property is
fundamental to assuring forward progress of failure-recovery by applications. After a
CLEAR_ERROR action, an application may choose to not subsequently provide replacement
data if it instead intends to discard that data. Further, because data replacement is separate
from error-clearing and because power can fail between the two operations, the programmer
must structure the application to internally note that it is in the midst of clearing an error so that
it can resume data-replacement after a crash.

The CLEAR_ERROR action operates on file regions that are aligned with respect to the
ERROR_UNIT and that are a multiple of the ERROR_UNIT.

The CLEAR_ERROR action is provided to give applications a means to clear error conditions
within a file, under the presumption that an application will require further access to the file in
the future. If the entirety of the file is no longer usable given the error state, however, an
application may choose instead to simply delete the file. The NVM.PM.FILE implementation
shall not provide back ranges that are in an error state when subsequently creating a new file.

NVM Programming Model (NPM) Working Draft 86
Version 1.12a

Requires: ERROR_EVENT_MINIMAL_CAPABILITY is set.

Inputs: A file descriptor corresponding to an open NVM.PM.FILE, a byte offset in to that file,
and a length in bytes. The offset and length must be aligned with respect to the ERROR_UNIT
attribute.

Outputs: An indicator whether the action succeeded.

Failure Scenario: The implementation may be unable to clear the error and then subsequently
provide usable blocks to back the memory-mapped region affected by an error condition. For
example, this may happen if the underlying implementation cannot allocate any functioning,
spare capacity, or if an unrecoverable platform error is encountered. In the case that allocation
fails, the application must choose whether it can continue. Note that in such a case,
subsequent CHECK_ERROR actions will continue to indicate failure in the affected region. In
the case that a CLEAR_ERROR fails, the application can choose to re-try the CLEAR_ERROR
action (depending upon whether the implementation has provided an unambiguous indication
that the error is permanent), or it may choose to continue on as in the case when data
validation has failed (e.g., avoiding this region in the future).

NVM.PM.FILE.MAP.CLEAR_ERROR(startAddress, length)

Requirement: Optional.

The purpose of this action is to clear an unrecoverable error condition for a memory-mapped
region that was previously mapped using NVM.PM.FILE.MAP. Note the difference between
this CLEAR_ERROR operation, which operates on a memory-mapped byte-addressed region,
and NVM.PM.FILE.CLEAR_ERROR, which operates on file locations.

The NVM.PM.FILE.MAP.CLEAR_ERROR action is intended to provide the application with a
means to clear an error condition within a memory-mapped region. The programmer can then
subsequently replace data that has become inaccessible due to that error. Note that an
application may not always have replacement data available. In such a case, the application
must choose whether it must halt, or whether it can clear the error condition (using
CLEAR_ERROR), internally note the error, and then provide stand-in data (such as all zeros).
In either case, however, the application is assured that a subsequent access to mapped region
will not cause the same error. Because hardware can always subsequently fail, however,
nothing precludes a new error from occurring at the same location.

CLEAR_ERROR does not perform data replacement, but it is a necessary step to ensure that
a subsequent data replacement operation will not indefinitely trigger the same error. After a
CLEAR_ERROR action, an application may choose to not subsequently provide replacement
data if it instead intends to discard that data. Further, because data replacement is separate
from error-clearing and because power can fail between the two operations, the programmer
must structure the application to internally note that it is in the midst of clearing an error so that
it can resume data-replacement after a crash.

NVM Programming Model (NPM) Working Draft 87
Version 1.12a

CLEAR_ERROR is meant to be used in conjunction with CHECK_ERROR. Note, however,
that the underlying implementation may choose to actively resolve error conditions between
the time that they are reported by CHECK_ERROR and when an application may invoke
CLEAR_ERROR. For example, an implementation of the programming model that features
support for higher availability may have replica data available that the implementation can
automatically remap in to a region that is locally available to the application. The error would,
in such a case, be reported for a brief amount of time via CHECK_ERROR, but then would no
longer be considered in an error condition. To shield this complexity from application
developers, the CLEAR_ERROR shall indicate success even if the region being cleared no
longer is in an error condition; the application shall view such an operation as having been
completed successfully, even if the underlying implementation did not take any action upon
invocation of the CLEAR_ERROR action.

The MAP.CLEAR_ERROR action operates on memory-mapped byte-addressable regions that
are aligned with respect to the ERROR_UNIT and that are a multiple of the ERROR_UNIT.

The CLEAR_ERROR action is provided to give applications a means to clear error conditions
within a memory-mapped region of a file, under the presumption that an application will require
further access to the memory-mapped file in the future. If the entirety of the backing file is no
longer usable given the error state, however, an application may choose instead to simply
delete the file. The NVM.PM.FILE implementation shall not provide back ranges that are in an
error state when subsequently creating a new file.

Requires: ERROR_EVENT_MINIMAL_CAPABILITY and
ERROR_EVENT_MAPPED_SUPPORT_CAPABILITY are set.

Inputs: A starting byte address and a length, corresponding to a region that has been mapped
previously using NVM.PM.FILE.MAP. Both the starting address and length must be aligned
according to the ERROR_UNIT attribute.

Outputs: An indicator whether the action succeeded.

Failure Scenario: When attempting to clear the error condition and make usable blocks
available in place of the failed blocks, the NVM.PM.FILE implementation may fail. For
example, this may happen if the underlying implementation cannot allocate any functioning,
spare capacity, or if an unrecoverable platform error is encountered. In the case that allocation
fails, the application must choose whether it can continue. Note that in such a case,
subsequent CHECK_ERROR actions will continue indicate failure in the affected region. In the
case that a CLEAR_ERROR fails, the application can choose to re-try the CLEAR_ERROR
action (depending upon whether the implementation has provided an unambiguous indication
that the error is permanent), or it may choose to continue on as in the case when data
validation has failed (e.g., avoiding this region in the future).

NVM Programming Model (NPM) Working Draft 88
Version 1.12a

10.3 Attributes

10.3.1 Attributes that apply across multiple modes
The following attributes apply to NVM.PM.FILE mode as well as other modes.

NVM.COMMON.SUPPORTED_MODES (see 6.12.1)
NVM.COMMON.FILE_MODE (see 6.12.2)

10.3.2 NVM.PM.FILE.MAP_COPY_ON_WRITE_CAPABLE
Requirement: mandatory

This attribute indicates that MAP_COPY_ON_WRITE option is supported by the
NVM.PM.FILE.MAP action.

10.3.3 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY
Requirement: mandatory

INTERRUPTED_STORE_ATOMICITY indicates whether the volume supports power fail
atomicity of aligned store operations on fundamental data types. To achieve failure atomicity,
aligned operations on fundamental data types reach NVM atomically. Formally “aligned
operations on fundamental data types” is implementation defined. See 6.10.

A value of true indicates that after an aligned store of a fundamental data type is interrupted by
reset, power loss or system crash; upon restart the contents of persistent memory reflect either
the state before the store or the state after the completed store. A value of false indicates that
after a store interrupted by reset, power loss or system crash, upon restart the contents of
memory may be such that subsequent loads may create exceptions. A value of false also
indicates that after a store interrupted by reset, power loss or system crash; upon restart the
contents of persistent memory may not reflect either the state before the store or the state after
the completed store.

The value of this attribute is true only if it’s true for all ranges in the file system.

10.3.4 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE
Requirement: mandatory

FUNDAMENTAL_ERROR_RANGE is the number of bytes that may become unavailable due
to an error on an NVM device.

An application may organize data in terms of FUNDAMENTAL_ERROR_RANGE to assure
two key data items are not likely to be affected by a single error.

Unlike NVM.PM.VOLUME (see 9), NVM.PM.FILE does not associate an offset with the
FUNDAMENTAL_ERROR_RANGE because the file system is expected to handle any volume
mode offset transparently to the application. The value of this attribute is the maximum of the
values for all ranges in the file system.

NVM Programming Model (NPM) Working Draft 89
Version 1.12a

10.3.5 NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE
Requirement: mandatory

This attribute indicates that the OPTIMIZED_FLUSH action is supported by the NVM.PM.FILE
implementation.

10.3.6 NVM.PM.FILE.ERROR_EVENT_CAPABLE
Requirement: mandatory

This attribute indicates that the NVM.PM.FILE implementation is capable of handling error
events in such a way that, in the event of data loss, those events are subsequently delivered to
applications. If error event handling is supported then NVM.PM.FILE.GET_ERROR_INFO
action shall also be supported.

10.3.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE
Requirement: mandatory

This attribute indicates that the OPTIMIZED_FLUSH_AND_VERIFY action is supported by the
NVM.PM.FILE implementation.

10.3.8 NVM.PM.FILE.DEEP_FLUSH_CAPABLE
Requirement: mandatory

This attribute indicates that the DEEP_FLUSH action is supported by the NVM.PM.FILE
implementation.

10.3.9 NVM.PM.FILE.ERROR_EVENT_MINIMAL_CAPABILITY
Requirement: Mandatory

This Boolean attribute indicates whether the platform has the minimal set of features to enable
basic memory error detection and reporting to applications. If this attribute is not present, none
of the other ERROR_EVENT capabilities are defined. If this attribute is present, the
NVM.PM.FILE.GET_ERROR_INFO, NVM.PM.FILE.CHECK_ERROR, and
NVM.PM.FILE.CLEAR_ERROR actions shall also be supported.

10.3.10 NVM.PM.FILE.ERROR_EVENT_PRECISE_CAPABILITY
Requirement: Mandatory

This Boolean attribute indicates whether the platform supports precise memory-access
exceptions. In this context, ‘precise’ means that the exception is immediately delivered during
the instruction that generated the memory error. Notably, this refers only to LOAD instructions.
Modern superscalar processors feature caching layers that may, when storing data, generate
errors much later in time than when the originating instruction generated the data. Because of

NVM Programming Model (NPM) Working Draft 90
Version 1.12a

this complexity, it is commonly not possible to report which instruction originally stored the data
that eventually caused a memory fault (for example, on a cache eviction).

The PRECISE property implies that the instruction stream of an application will not proceed
past a LOAD that caused an error. If this property is present, the application can use LOAD
operations to validate persistent memory state and assure that data is in a crash-consistent
state before proceeding. Without the PRECISE property, an application cannot assume that
the data from a LOAD is valid. In such a case, it may be associated with a still-pending
memory error. Applications operating on platforms that do not support the PRECISE property
must either employ ad-hoc mechanisms (such as timers) to attempt to force errors to be
surfaced, or they must simply choose to operate with a reduced guarantee of crash
consistency.

It is important to consider that hosts featuring support for PRECISE memory exceptions may
still experience failures that cannot be reported in an instruction-precise fashion. For example,
a host may employ a mechanism in its persistence domain that is meant to assure that data is
flushed to persistent media if power is lost. If that mechanism fails and data is not flushed to
persistent media as intended, the state of the persistent media is indeterminate. This is
analogous to the case of a battery-backed storage system experiencing a failure in its battery
unit. Because these catastrophic failures tend to be implementation- and platform-specific in
nature, the NVM Programming Model does not specify the manner in which they should be
reported. Instead, programmers should use administrative means (such as examining
operating-system specific indications or logs) to discover such failures.

Note that PRECISE exceptions are distinct from the capability of generating a LIVE exception.
A host may support PRECISE exceptions (assuring that the instruction stream will not
progress past a faulting LOAD operation) but not support LIVE exception delivery. See the
LIVE_SUPPORT capability for more information.

10.3.11 NVM.PM.FILE.ERROR_EVENT_ERROR_UNIT_CAPABILITY
Requirement: Mandatory

This attribute indicates, in bytes, the minimal amount of data that the platform can identify as
being in an unusable or otherwise unknown state. A value of 0 indicates that memory errors
are not contained. If errors are not contained, the application would have no choice but to treat
the entire nonvolatile memory datastore as unreliable and must likely resume on a different
node with replica data.

10.3.12 NVM.PM.FILE.ERROR_EVENT_MAPPED_SUPPORT_CAPABILITY
Requirement: Mandatory

This attribute indicates that the platform implements the NVM.PM.FILE.MAP.CHECK_ERROR
andNVM.PM.FILE.MAP.CLEAR_ERROR actions. Note that this is distinct from support for
sending a signal or its equivalent to an application that has accessed a memory-mapped file
and thus caused a memory-related exception or error. The CHECK_ERROR and
CLEAR_ERROR actions that operate on files must be implemented if the
ERROR_EVENT_MINIMAL_CAPABILITY attribute is set. The MAPPED_SUPPORT attribute

NVM Programming Model (NPM) Working Draft 91
Version 1.12a

indicates that the CHECK_ERROR and CLEAR_ERROR actions, which operate on memory-
mapped file regions, are also implemented.

10.3.13 NVM.PM.FILE.ERROR_EVENT_LIVE_SUPPORT_CAPABILITY
Requirement: Mandatory

This Boolean attribute indicates whether the platform supports live delivery of memory errors.
In this case, ‘live’ means that the error is reported without crashing the host, thus allowing an
application to attempt to recover from a fault without restarting. Hosts that do not feature
LIVE_SUPPORT may still support PRECISE error delivery, meaning that the application’s
instruction flow is not allowed to proceed past a LOAD instruction that generated a fault. If the
host does not feature LIVE_SUPPORT, however, the fault information must be discovered
after a subsequent host and application restart, either via the NVM.PM.FILE.CHECK_ERROR
action or via a memory exception that is delivered to the application upon a subsequent access
to the memory location that caused the fault.

Note that even if a host that features the LIVE_SUPPORT capability may not be able to deliver
all memory faults in a ‘live’ fashion. That is, the host may enter a state wherein it cannot
deliver a memory exception in a live fashion (as during complex interactions with IO) and
instead the host must crash immediately so as to maintain PRECISE memory exception
semantics. Thus, application that notes the LIVE_SUPPORT capability may be able to
interpret this as being able to optimize recovery under certain circumstances. For example, an
application may choose to fetch a replica of data from another host and continue executing if
the LIVE_SUPPORT capability is present, whereas the absence of this capability would imply
that a memory fault originated during a previous execution of the application and must initiate
its recovery routine. But even if the LIVE_SUPPORT capability is present, application software
must not interpret this presence as meaning that memory errors will always be reported in a
live fashion.

10.4 Use cases

10.4.1 Update PM File Record
Update a record in a PM file.

Purpose/triggers:
An application using persistent memory updates an existing record. For simplicity, this
application uses fixed size records. The record size is defined by application data
considerations.

Scope/context:
Persistent memory context; this use case shows basic behavior.

Preconditions:
• The administrator created a PM file and provided its name to the application; this name is

accessible to the application – perhaps in a configuration file
• The application has populated the PM file contents

NVM Programming Model (NPM) Working Draft 92
Version 1.12a

• The PM file is not in use at the start of this use case (no sharing considerations)

Inputs:
The content of the record, the location (relative to the file) where the record resides

Success scenario:
1) The application uses the native OPEN action, passing in the file name
2) The application uses the NVM.PM.FILE.MAP action, passing in the file descriptor returned

by the native OPEN. Since the records are not necessarily page aligned, the application
maps the entire file.

3) The application registers for memory hardware exceptions
4) The application stores the new record content to the address returned by

NVM.PM.FILE.MAP offset by the record’s location
5) The application uses NVM.PM.FILE.SYNC to flush the updated record to the persistence

domain
a. The application may simply sync the entire file
b. Alternatively, the application may limit the range to be sync’d

6) The application uses the native UNMAP and CLOSE actions to clean up.

Failure Scenario:
While reading PM content (accessing via a load operation), a memory hardware exception is
reported. The application’s event handler is called with information about the error as
described in NVM.PM.FILE.GET_ERROR_INFO. Based on the information provided, the
application records the error for subsequent recovery and determines whether to restart or
continue execution.

Postconditions:
The record is updated.

10.4.2 Direct load access

Purpose/triggers:
An application developer wishes to retrieve data from a persistent memory-mapped file using
direct memory load instruction access with error handling for uncorrectable errors.

Scope/context:
NVM.PM.FILE

Inputs:
• Virtual address of the data.

Outputs:
• Data from persistent memory if successful
• Error code if an error was detected within the accessed memory range.

NVM Programming Model (NPM) Working Draft 93
Version 1.12a

Preconditions:
• The persistent memory file must be mapped into a region of virtual memory.
• The virtual address must be within the mapped region of the file.

Postconditions:
• If an error was returned, the data may be unreadable. Future load accesses may

continue to return an error until the data is overwritten to clear the error condition
• If no error was returned, there is no postcondition.

Success and Failure Scenarios:
Consider the following fragment of example source code, which is simplified from the code for
the function that reads SQLite’s transaction journal:

retCode = pread(journalFD, magic, 8, off);
if (retCode != SQLITE_OK) return retCode;

if (memcmp(magic, journalMagic, 8) != 0)
 return SQLITE_DONE;

This example code reads an eight-byte magic number from the journal header into an eight-
byte buffer named magic using a standard file read call. If an error is returned from the read
system call, the function exits with an error return code indicating that an I/O error occurred. If
no error occurs, it then compares the contents of the magic buffer against the expected magic
number constant named journalMagic. If the contents of the buffer do not match the expected
magic number, the function exits with an error return code.

An equivalent version of the function using direct memory load instruction access to a mapped
file is:

volatile siginfo_t errContext;
...
int retCode = SQLITE_OK;

TRY
{
 if (memcmp(journalMmapAddr + off, journalMagic, 8) != 0)
 retCode = SQLITE_DONE;
}
CATCH(BUS_MCEERR_AR)
{
 if ((errContext.si_code == BUS_MCEERR_AR) &&
 (errContext.si_addr >= journalMmapAddr) &&
 (errContext.si_addr < (journalMmapAddr + journalMmapSize))){
 retCode = SQLITE_IOERR;
 } else {
 signal(errContext.si_signo, SIG_DFL);
 raise(errContext.si_signo);
 }
}
ENDTRY;

if (retCode != SQLITE_OK) return retCode;

NVM Programming Model (NPM) Working Draft 94
Version 1.12a

The mapped file example compares the magic number in the header of the journal file against
the expected magic number using the memcmp function by passing a pointer containing the
address of the magic number in the mapped region of the file. If the contents of the magic
number member of the file header do not match the expected magic number, the function exits
with an error return code.

The application-provided TRY/CATCH/ENDTRY macros implement a form of exception
handling using POSIX sigsetjmp and siglongjmp C library functions. The TRY macro initializes
a sigjmp_buf by calling sigsetjmp. When a SIGBUS signal is raised, the signal handler calls
siglongjmp using the sigjmp_buf set by the sigsetjmp call in the TRY macro. Execution then
continues in the CATCH clause. (Caution: the code in the TRY block should not call library
functions as they are not likely to be exception-safe.) Code for the Windows platform would be
similar except that it would use the standard Structured Exception Handling try-except
statement catching the EXCEPTION_IN_PAGE_ERROR exception rather than application-
provided TRY/CATCH/ENDTRY macros.

If an error occurs during the read of the magic number data from the mapped file, a SIGBUS
signal will be raised resulting in the transfer of control to the CATCH clause. The address of
the error is compared against the range of the memory-mapped file. In this example the error
address is assumed to be in the process’s logical address space. If the error address is within
the range of the memory-mapped file, the function returns an error code indication that an I/O
error occurred. If the error address is outside the range of the memory-mapped file, the error is
assumed to be for some other memory region such as the program text, stack, or heap, and
the signal or exception is re-raised. This is likely to result in a fatal error for the program.

See also:
• Microsoft Corporation, Reading and Writing From a File View (Windows), available from

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366801.aspx

10.4.3 Direct store access

Purpose/triggers:
An application developer wishes to place data in a persistent memory-mapped file using direct
memory store instruction access.

Scope/context:
NVM.PM.FILE

Inputs:
• Virtual address of the data.
• The data to store.

Outputs:
• Error code if an error occurred.

NVM Programming Model (NPM) Working Draft 95
Version 1.12a

Preconditions:
• The persistent memory file must be mapped into a region of virtual memory.
• The virtual address must be within the mapped region of the file.

Postconditions:
• If an error was returned, the state of the data recorded in the persistence domain is

indeterminate.
• If no error was returned, the specified data is either recorded in the persistence domain

or an undiagnosed error may have occurred.

Success and Failure Scenarios:
Consider the following fragment of example source code, which is simplified from the code for
the function that writes to SQLite’s transaction journal:

ret = pwrite(journalFD, dbPgData, dbPgSize, off);
if (ret != SQLITE_OK) return ret;
ret = write32bits(journalFD, off + dbPgSize, cksum);
if (ret != SQLITE_OK) return ret;
ret = fdatasync(journalFD);
if (ret != SQLITE_OK) return ret;

This example code writes a page of data from the database cache to the journal using a
standard file write call. If an error is returned from the write system call, the function exits with
an error return code indicating that an I/O error occurred. If no error occurs, the function then
appends the checksum of the data, again using a standard file write call. If an error is returned
from the write system call, the function exits with an error return code indicating that an I/O
error occurred. If no error occurs, the function then invokes the fdatasync system call to flush
the written data from the file system buffer cache to the persistence domain. If an error is
returned from the fdatasync system call, the function exits with an error return code indicating
that an I/O error occurred. If no error occurs, the written data has been recorded in the
persistence domain.

An equivalent version of the function using direct memory store instruction access to a
memory-mapped file is:

memcpy(journalMmapAddr + off, dbPgData, dbPgSize);
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off, dbPgSize);

store32bits(journalMmapAddr + off + dbPgSize, cksum);
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off + dbPgSize, 4);

ret = PM_optimized_flush(dirtyLines, dirtyLinesCount);

if (ret == SQLITE_OK) dirtyLinesCount = 0;

return ret;

The memory-mapped file example writes a page of data from the database cache to the
journal using the memcpy function by passing a pointer containing the address of the page

NVM Programming Model (NPM) Working Draft 96
Version 1.12a

data field in the mapped region of the file. It then appends the checksum using direct stores to
the address of the checksum field in the mapped region of the file.

The code calls the application-provided PM_track_dirty_mem function to record the virtual
address and size of the memory regions that it has modified. The PM_track_dirty_mem
function constructs a list of these modified regions in the dirtyLines array.

The function then calls the PM_optimized_flush function to flush the written data to the
persistence domain. If an error is returned from the PM_optimized_flush call, the function exits
with an error return code indicating that an I/O error occurred. If no error occurs, the written
data is either recorded in the persistence domain or an undiagnosed error may have occurred.
Note that this postcondition is weaker than the guarantee offered by the fdatasync system call
in the original example.

See also:
• Microsoft Corporation, Reading and Writing From a File View (Windows), available from

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366801.aspx

10.4.4 Direct store access with synchronized I/O data integrity completion

Purpose/triggers:
An application developer wishes to place data in a persistent memory-mapped file using direct
memory store instruction access with synchronized I/O data integrity completion.

Scope/context:
NVM.PM.FILE

Inputs:
• Virtual address of the data.
• The data to store.

Outputs:
• Error code if an error occurred.

Preconditions:
• The persistent memory file must be mapped into a region of virtual memory.
• The virtual address must be within the mapped region of the file.

Postconditions:
• If an error was returned, the state of the data recorded in the persistence domain is

indeterminate.
• If no error was returned, the specified data is recorded in the persistence domain.

NVM Programming Model (NPM) Working Draft 97
Version 1.12a

Success and Failure Scenarios:
Consider the following fragment of example source code, which is simplified from the code for
the function that writes to SQLite’s transaction journal:

ret = pwrite(journalFD, dbPgData, dbPgSize, off);
if (ret != SQLITE_OK) return ret;
ret = write32bits(journalFD, off + dbPgSize, cksum);
if (ret != SQLITE_OK) return ret;

ret = fdatasync(journalFD);
if (ret != SQLITE_OK) return ret;

This example code writes a page of data from the database cache to the journal using a
standard file write call. If an error is returned from the write system call, the function exits with
an error return code indicating that an I/O error occurred. If no error occurs, the function then
appends the checksum of the data, again using a standard file write call. If an error is returned
from the write system call, the function exits with an error return code indicating that an I/O
error occurred. If no error occurs, the function then invokes the fdatasync system call to flush
the written data from the file system buffer cache to the persistence domain. If an error is
returned from the fdatasync system call, the function exits with an error return code indicating
that an I/O error occurred. If no error occurs, the written data has been recorded in the
persistence domain.

An equivalent version of the function using direct memory store instruction access to a
memory-mapped file is:

memcpy(journalMmapAddr + off, dbPgData, dbPgSize);
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off, dbPgSize);

store32bits(journalMmapAddr + off + dbPgSize, cksum);
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off + dbPgSize, 4);

ret = PM_optimized_flush_and_verify(dirtyLines, dirtyLinesCount);

if (ret == SQLITE_OK) dirtyLinesCount = 0;

return ret;

The memory-mapped file example writes a page of data from the database cache to the
journal using the memcpy function by passing a pointer containing the address of the page
data field in the mapped region of the file. It then appends the checksum using direct stores to
the address of the checksum field in the mapped region of the file.

The code calls the application-provided PM_track_dirty_mem function to record the virtual
address and size of the memory regions that it has modified. The PM_track_dirty_mem
function constructs a list of these modified regions in the dirtyLines array.

The function then calls the PM_optimized_flush_and_verify function to flush the written data to
the persistence domain. If an error is returned from the PM_optimized_flush_and_verify call,
the function exits with an error return code indicating that an I/O error occurred. If no error

NVM Programming Model (NPM) Working Draft 98
Version 1.12a

occurs, the written data has been recorded in the persistence domain. Note that this
postcondition is equivalent to the guarantee offered by the fdatasync system call in the original
example.

See also:
• Microsoft Corp, FlushFileBuffers function (Windows),

http://msdn.microsoft.com/en-us/library/windows/desktop/aa364439.aspx
• Oracle Corp, Synchronized I/O section in the Programming Interfaces Guide, available

from
http://docs.oracle.com/cd/E19683-01 /816-5042/chap7rt-57/index.html

• The Open Group, “The Open Group Base Specification Issue 6”, section 3.373
“Synchronized Input and Output”, available from
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap03.html#tag_03_373

10.4.5 Persistent Memory Transaction Logging

Purpose/Triggers:
An application developer wishes to implement a transaction log that maintains data integrity
through system crashes, system resets, and power failures. The underlying storage is byte-
granular persistent memory.

Scope/Context:
NVM.PM.VOLUME and NVM.PM.FILE

For notational convenience, this use case will use the term “file” to apply to either a file in the
conventional sense which is accessed through the NVM.PM.FILE interface, or a specific
subset of memory ranges residing on an NVM device which are accessed through the
NVM.BLOCK interface.

Inputs:
• A set of changes to the persistent state to be applied as a single transaction.
• The data and log files.

Outputs:
• An indication of transaction commit or abort.

Postconditions:
• If an abort indication was returned, the data was not committed and the previous

contents have not been modified.
• If a commit indication was returned, the data has been entirely committed.
• After a system crash, reset, or power failure followed by system restart and execution of

the application transaction recovery process, the data has either been entirely
committed or the previous contents have not been modified.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa364439.aspx
http://docs.oracle.com/cd/E19683-01%20/816-5042/chap7rt-57/index.html
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap03.html#tag_03_373

NVM Programming Model (NPM) Working Draft 99
Version 1.12a

Success Scenario:
The application transaction logic uses a log file in combination with its data file to atomically
update the persistent state of the application. The log may implement a before-image log or a
write-ahead log. The application transaction logic should configure itself to handle torn or
interrupted writes to the log or data files.

Since persistent memory may be byte-granular, torn writes may occur at any point during a
series of stores. The application should be prepared to detect a torn write of the record and
either discard or recover such a torn record during the recovery process. One common way of
detecting such a torn write is for the application to compute a hash of the record and record the
hash in the record. Upon reading the record, the application re-computes the hash and
compares it with the recorded hash; if they do not match, the record has been torn.

10.4.5.1 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is true
If the NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is true, then writes which are
interrupted by a system crash, system reset, or power failure occur atomically. In other words,
upon restart the contents of persistent memory reflect either the state before the store or the
state after the completed store.

In this case, the application need not handle interrupted writes to the log or data files.

10.4.5.2 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false
NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false, then writes which are
interrupted by a system crash, system reset, or power failure do not occur atomically. In other
words, upon restart the contents of persistent memory may be such that subsequent loads
may create exceptions depending on the value of the FUNDAMENTAL_ERROR_RANGE
attribute.

In this case, the application should be prepared to handle an interrupted write to the log or data
files.

10.4.5.2.1 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE > 0
If the NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE is greater than zero, the application
should align the log or data records with the
NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE and pad the record size to be an integral
multiple of NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE. This prevents more than one
record from residing in the same fundamental error range. The application should be prepared
to discard or recover the record if a load returns an exception when subsequently reading the
record during the recovery process. (See also SQLite.org, Powersafe Overwrite,
http://www.sqlite.org/psow.html.)

10.4.5.2.2 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE = 0
If the NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE is zero, the application lacks sufficient
information to handle interrupted writes to the log or data files.

http://www.sqlite.org/psow.html

NVM Programming Model (NPM) Working Draft 100
Version 1.12a

Failure Scenarios:
Consider the recovery of an error resulting from an interrupted write on a persistent memory
volume or file system where the NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false.
This error may be persistent and may be returned whenever the affected fundamental error
range is read. To repair this error, the application should be prepared to overwrite such a
range.

One common way of ensuring that the application will overwrite a range is by assigning it to
the set of internal free space managed by the application, which is never read and is available
to be allocated and overwritten at some point in the future. For example, the range may be part
of a circular log. If the range is marked as free, the transaction log logic will eventually allocate
and overwrite that range as records are written to the log.

Another common way is to record either a before-image or after-image of a data range in a log.
During recovery after a system crash, system reset, or power failure, the application replays
the records in the log and overwrites the data range with either the before-image contents or
the after-image contents.

See also:
• SQLite.org, Atomic Commit in SQLite, http://www.sqlite.org/atomiccommit.html
• SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html
• SQLite.org, Write-Ahead Logging, http://www.sqlite.org/wal.html

http://www.sqlite.org/atomiccommit.html
http://www.sqlite.org/psow.html
http://www.sqlite.org/wal.html

NVM Programming Model (NPM) Working Draft 101
Version 1.12a

Annex A (Informative) PM pointers
Pointers are data types that hold virtual addresses of data in memory. When applications use
pointers with volatile memory, the value of the pointer must be re-assigned each time the
program is run (a consequence of the memory being volatile). When applications map a file (or
a portion of a file) residing in persistent memory to virtual addresses, it may or may not be
assigned the same virtual address. If not, then pointers to values in that mapped memory will
not reference the same data. There are several possible solutions to this problem:
1) Relative pointers
2) Regions are mapped at fixed addresses
3) Pointers are relocated when region is remapped

All three approaches are problematic, and involve different challenges that have not been fully
addressed.

None, except perhaps the third one, handles C++ vtable pointers inside persistent memory, or
pointers to string constants, where the string physically resides in the executable, and not the
memory-mapped file. Both of those issues are common.

Option (1) implies that no existing pointer-containing library data structures can be stored in
PM, since pointer representations change. Option (2) requires careful management of virtual
addresses to ensure that memory-mapped files that may need to be accessed simultaneously
are not assigned to the same address. It may also limit address space layout randomization.
Option (3) presents challenges in, for example, a C language environment in which pointers
may not be unambiguously identifiable, and where they may serve as hash table indices or the
like. Pointer relocation would invalidate such hash tables. It may be significantly easier in the
context of a Java-like language.

NVM Programming Model (NPM) Working Draft 102
Version 1.12a

Annex B (Informative) Deferred behavior
This annex lists some behaviors that are being considered for future specifications.

D.1 Remote sharing of NVM
This version of the specification talks about the relationship between DMA and persistent
memory (see 6.6 Interaction with I/O devices) which should enable a network device to access
NVM devices. But no comprehensive approach to remote share of NVM is addressed in this
version of the specification.

D.2 MAP_CACHED OPTION FOR NVM.PM.FILE.MAP
This would enable memory mapped ranges to be either cached or uncached by the CPU.

D.3 NVM.PM.FILE.DURABLE.STORE
This might imply that through this action things become durable and visible at the same time,
or not visible until it is durable. Is there a special case for atomic write that, by the time the
operation completes, it is both visible and durable? The prospective use case is an opportunity
for someone with a hardware implementation that does not require separation of store and
sync. This is not envisioned as the same as a file system write. It still implies a size of the
store. The use case for NVM.FILE.DURABLE.STORE is to force access to the persistence
domain.

D.4 Enhanced NVM.PM.FILE.WRITE
Add an NVM.PM.FILE.WRITE action where the only content describes error handling.

D.5 Management-only behavior
Several management-only behaviors have been discussed, but deferred to a future revision;
including:

• Secure Erase
• Behavior enabling management application to discover PM devices (and behavior to fill

gaps in the discovery of block NVM attributes)
• Attribute exposing flash erase block size for management of disk partitions

D.6 Access hints
Allow applications to suggest how data is placed on storage

D.7 Multi-device atomic multi-write action
Perform an atomic write to multiple extents in different devices.

D.8 NVM.BLOCK.DISCARD_IF_YOU_MUST action
The text below was partially developed, before being deferred to a future revision.

NVM Programming Model (NPM) Working Draft 103
Version 1.12a

10.4.6 NVM.BLOCK.DISCARD_IF_YOU_MUST
Proposed new name MARK_DISCARDABLE

Purpose - discard blocks to prevent write amplification

This action notifies the NVM device that some or all of the blocks which constitute a volume
are no longer needed by the application, but the NVM device should defer changes to the
blocks as long as possible. This action is a hint to the device.

If the data has been retained, a subsequent read shall return “success” along with the data.
Otherwise, it shall return an error indicating the data does not exist (and the data buffer area
for that block is undefined).

Inputs: a range of blocks (starting LBA and length in logical blocks)

Status: Success indicates the request is accepted but not necessarily acted upon.

Existing implementations of TRIM may work this way.

10.4.7 DISCARD_IF_YOU_MUST use case

Purpose/triggers:
An NVM device may allocate blocks of storage from a common pool of storage. The device
may also allocate storage through a thin provisioning mechanism. In each of these cases, it is
useful to provide a mechanism which allows an application or NVM user to notify the NVM
storage system that some or all of the blocks which constitute the volume are no longer
needed by the application. This allows the NVM device to return the memory allocated for the
unused blocks to the free memory pool and make the unused blocks available for other
consumers to use.

DISCARD_IF_YOU_MUST operation informs the NVM device that that the specified blocks
are no longer required. DISCARD_IF_YOU_MUST instructs the NVM device to release
previously allocated blocks to the NVM device’s free memory pool. The NVM device releases
the used memory to the free storage pool based on the specific implementation of that device.
If the device cannot release the specified blocks, the DISCARD_IF_YOU_MUST operation
returns an error.

Scope/context:
This use case describes the capabilities of an NVM device that the NVM consumer can
determine.

Inputs:
The range to be freed.

Success scenario:
The operation succeeds unless an invalid region is specified or the NVM device is unable to
free the specified region.

NVM Programming Model (NPM) Working Draft 104
Version 1.12a

Outputs:
The completion status.

Postconditions:
The specified region is erased and released to the free storage pool.

See also:
DISCARD_IF_YOU_CAN

EXISTS

D.9 Atomic write action with Isolation
Offer alternatives to ATOMIC_WRITE and ATOMIC_MULTIWRITE that also include isolation
with respect to other atomic write actions. Issues to consider include whether order is required,
whether isolation applies across multiple paths, and how isolation applies to file mapped I/O.

D.10 Atomic Sync/Flush action for PM
The goal is a mechanism analogous to atomic writes for persistent memory. Since stored
memory may be implicitly flushed by a file system, defining this mechanism may be more
complex than simply defining an action.

D.11 Hardware-assisted verify
Future PM device implementations may provide a capability to perform the verify step of
OPTIMIZED_FLUSH_AND_VERIFY without requiring an explicit load instruction. This
capability may require the addition of actions and attributes in NVM.PM.VOLUME mode; this
change is deferred until we have examples of this type of device.

	Foreword
	1 Scope
	2 References
	3 Definitions, abbreviations, and conventions
	3.1 Definitions
	3.1.1 durable
	3.1.2 load and store operations
	3.1.3 memory-mapped file
	3.1.4 non-volatile memory
	3.1.5 NVM block capable driver
	3.1.6 NVM volume
	3.1.7 persistence domain
	3.1.8 persistent memory
	3.1.9 programming model

	3.2 Keywords
	3.2.1 mandatory
	3.2.2 may
	3.2.3 may not
	3.2.4 need not
	3.2.5 optional
	3.2.6 shall
	3.2.7 should

	3.3 Abbreviations
	3.4 Conventions

	4 Overview of the NVM Programming Model (informative)
	4.1 How to read and use this specification
	4.2 NVM device models
	4.2.1 Overview
	4.2.2 Block NVM example
	4.2.3 Persistent memory example
	4.2.4 NVM block volume using PM hardware

	4.3 NVM programming modes
	4.3.1 NVM.BLOCK mode overview
	4.3.2 NVM.FILE mode overview
	4.3.3 NVM.PM.VOLUME mode overview
	4.3.4 NVM.PM.FILE mode overview

	4.4 Introduction to actions, attributes, and use cases
	4.4.1 Overview
	4.4.2 Use cases
	4.4.3 Actions
	4.4.4 Attributes
	4.4.5 Property group lists

	5 Compliance to the programming model
	5.1 Overview
	5.2 Documentation of mapping to APIs
	5.3 Compatibility with unspecified native actions
	5.4 Mapping to native interfaces

	6 Common programming model behavior
	6.1 Overview
	6.2 Conformance to multiple file modes
	6.3 Device state at system startup
	6.4 Secure erase
	6.5 Allocation of space
	6.6 Interaction with I/O devices
	6.7 NVM State after a media or connection failure
	6.8 Error handling for persistent memory
	6.9 Persistence domain
	6.10 Aligned operations on fundamental data types
	6.11 Common actions
	6.11.1 NVM.COMMON.GET_ATTRIBUTE
	6.11.2 NVM.COMMON.SET_ATTRIBUTE

	6.12 Common attributes
	6.12.1 NVM.COMMON.SUPPORTED_MODES
	6.12.2 NVM.COMMON.FILE_MODE

	6.13 Use cases
	6.13.1 Application determines which mode is used to access a file system

	7 NVM.BLOCK mode
	7.1 Overview
	7.1.1 Discovery and use of atomic write features
	7.1.2 The discovery of granularities
	7.1.3 Discovery and use of capability to mark blocks as unreadable
	7.1.4 NVM.BLOCK consumers: operating system and applications
	7.1.4.1 NVM.BLOCK operating system components
	7.1.4.2 Block-optimized applications
	7.1.4.3 Mapping documentation

	7.2 Actions
	7.2.1 Actions that apply across multiple modes
	7.2.2 NVM.BLOCK.ATOMIC_WRITE
	7.2.3 NVM.BLOCK.ATOMIC_MULTIWRITE
	7.2.4 NVM.BLOCK.DISCARD_IF_YOU_CAN
	7.2.5 NVM.BLOCK.DISCARD_IMMEDIATELY
	7.2.6 NVM.BLOCK.EXISTS
	7.2.7 NVM.BLOCK.SCAR

	7.3 Attributes
	7.3.1 Attributes that apply across multiple modes
	7.3.2 NVM.BLOCK.ATOMIC_WRITE_CAPABLE
	7.3.3 NVM.BLOCK.ATOMIC_WRITE_MAX_DATA_LENGTH
	7.3.4 NVM.BLOCK.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY
	7.3.5 NVM.BLOCK.ATOMIC_WRITE_LENGTH_GRANULARITY
	7.3.6 NVM.BLOCK.ATOMIC_MULTIWRITE_CAPABLE
	7.3.7 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_IOS
	7.3.8 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH
	7.3.9 NVM.BLOCK.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY
	7.3.10 NVM.BLOCK.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY
	7.3.11 NVM.BLOCK.WRITE_ATOMICITY_UNIT
	7.3.12 NVM.BLOCK.EXISTS_CAPABLE
	7.3.13 NVM.BLOCK.SCAR_CAPABLE
	7.3.14 NVM.BLOCK.LOGICAL_BLOCK_SIZE
	7.3.15 NVM.BLOCK.PERFORMANCE_BLOCK_SIZE
	7.3.16 NVM.BLOCK.ALLOCATION_BLOCK_SIZE
	7.3.17 NVM.BLOCK.DISCARD_IF_YOU_CAN_CAPABLE
	7.3.18 NVM.BLOCK.DISCARD_IMMEDIATELY_CAPABLE
	7.3.19 NVM.BLOCK.DISCARD_IMMEDIATELY_RETURNS
	7.3.20 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE

	7.4 Use cases
	7.4.1 Flash as cache use case
	7.4.2 SCAR use case

	8 NVM.FILE mode
	8.1 Overview
	8.1.1 Discovery and use of atomic write features
	8.1.2 The discovery of granularities
	8.1.3 Relationship between native file APIs and NVM.BLOCK.DISCARD

	8.2 Actions
	8.2.1 Actions that apply across multiple modes
	8.2.2 NVM.FILE.ATOMIC_WRITE
	8.2.3 NVM.FILE.ATOMIC_MULTIWRITE

	8.3 Attributes
	8.3.1 Attributes that apply across multiple modes
	8.3.2 NVM.FILE.ATOMIC_WRITE_CAPABLE
	8.3.3 NVM.FILE.ATOMIC_WRITE_MAX_DATA_LENGTH
	8.3.4 NVM.FILE.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY
	8.3.5 NVM.FILE.ATOMIC_WRITE_LENGTH_GRANULARITY
	8.3.6 NVM.FILE.ATOMIC_MULTIWRITE_CAPABLE
	8.3.7 NVM.FILE.ATOMIC_MULTIWRITE_MAX_IOS
	8.3.8 NVM.FILE.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH
	8.3.9 NVM.FILE.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY
	8.3.10 NVM.FILE.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY
	8.3.11 NVM.FILE.WRITE_ATOMICITY_UNIT
	8.3.12 NVM.FILE.LOGICAL_BLOCK_SIZE
	8.3.13 NVM.FILE. PERFORMANCE_BLOCK_SIZE
	8.3.14 NVM.FILE.LOGICAL_ALLOCATION_SIZE
	8.3.15 NVM.FILE.FUNDAMENTAL_BLOCK_SIZE

	8.4 Use cases
	8.4.1 Block-optimized application updates record
	8.4.2 Atomic write use case
	8.4.3 Block and File Transaction Logging
	8.4.3.1 NVM.BLOCK.WRITE_ATOMICITY_UNIT >= 1
	8.4.3.2 NVM.BLOCK.WRITE_ATOMICITY_UNIT = 0
	8.4.3.2.1 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE >= NVM.BLOCK.LOGICAL_BLOCK_SIZE
	8.4.3.2.2 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE < NVM.BLOCK.LOGICAL_BLOCK_SIZE
	8.4.3.2.3 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE = 0

	9 NVM.PM.VOLUME mode
	9.1 Overview
	9.2 Actions
	9.2.1 Actions that apply across multiple modes
	9.2.2 NVM.PM.VOLUME.GET_RANGESET
	9.2.3 NVM.PM.VOLUME.VIRTUAL_ADDRESS_SYNC
	9.2.4 NVM.PM.VOLUME.PHYSICAL_ADDRESS_SYNC
	9.2.5 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN
	9.2.6 NVM.PM.VOLUME.DISCARD_IMMEDIATELY
	9.2.7 NVM.PM.VOLUME.EXISTS

	9.3 Attributes
	9.3.1 Attributes that apply across multiple modes
	9.3.2 NVM.PM.VOLUME.VOLUME_SIZE
	9.3.3 NVM.PM.VOLUME.INTERRUPTED_STORE_ATOMICITY
	9.3.4 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE
	9.3.5 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE_OFFSET
	9.3.6 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN_CAPABLE
	9.3.7 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_CAPABLE
	9.3.8 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_RETURNS
	9.3.9 NVM.PM.VOLUME.EXISTS_CAPABLE

	9.4 Use cases
	9.4.1 Initialization steps for a PM-aware file system
	9.4.2 Driver emulates a block device using PM media

	10 NVM.PM.FILE
	10.1 Overview
	10.1.1 Applications and PM Consistency
	10.1.2 PM Error Handling
	10.1.2.1 Error handling with traditional storage
	10.1.2.2 Error-handling with memory
	10.1.2.3 Application support for memory errors
	10.1.2.4 Building blocks for handling PM Errors: What’s Provided and how to use it
	10.1.2.5 OS Platform considerations:

	10.2 Actions
	10.2.1 Actions that apply across multiple modes
	10.2.2 Native file system actions
	10.2.3 NVM.PM.FILE.MAP
	10.2.4 NVM.PM.FILE.SYNC
	10.2.5 NVM.PM.FILE.OPTIMIZED_FLUSH
	10.2.6 NVM.PM.FILE.GET_ERROR_EVENT_INFO
	10.2.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY
	10.2.8 NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED
	10.2.9 NVM.PM.FILE.DEEP_FLUSH
	10.2.10 NVM.PM.FILE.CHECK_ERROR
	10.2.11 NVM.PM.FILE.CLEAR_ERROR

	10.3 Attributes
	10.3.1 Attributes that apply across multiple modes
	10.3.2 NVM.PM.FILE.MAP_COPY_ON_WRITE_CAPABLE
	10.3.3 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY
	10.3.4 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE
	10.3.5 NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE
	10.3.6 NVM.PM.FILE.ERROR_EVENT_CAPABLE
	10.3.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE
	10.3.8 NVM.PM.FILE.DEEP_FLUSH_CAPABLE
	10.3.9 NVM.PM.FILE.ERROR_EVENT_MINIMAL_CAPABILITY
	10.3.10 NVM.PM.FILE.ERROR_EVENT_PRECISE_CAPABILITY
	10.3.11 NVM.PM.FILE.ERROR_EVENT_ERROR_UNIT_CAPABILITY
	10.3.12 NVM.PM.FILE.ERROR_EVENT_MAPPED_SUPPORT_CAPABILITY
	10.3.13 NVM.PM.FILE.ERROR_EVENT_LIVE_SUPPORT_CAPABILITY

	10.4 Use cases
	10.4.1 Update PM File Record
	10.4.2 Direct load access
	10.4.3 Direct store access
	10.4.4 Direct store access with synchronized I/O data integrity completion
	10.4.5 Persistent Memory Transaction Logging
	10.4.5.1 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is true
	10.4.5.2 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false
	10.4.5.2.1 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE > 0
	10.4.5.2.2 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE = 0

	Annex A (Informative) PM pointers
	Annex B (Informative) Deferred behavior
	D.1 Remote sharing of NVM
	D.2 MAP_CACHED OPTION FOR NVM.PM.FILE.MAP
	D.3 NVM.PM.FILE.DURABLE.STORE
	D.4 Enhanced NVM.PM.FILE.WRITE
	D.5 Management-only behavior
	D.6 Access hints
	D.7 Multi-device atomic multi-write action
	D.8 NVM.BLOCK.DISCARD_IF_YOU_MUST action
	10.4.6 NVM.BLOCK.DISCARD_IF_YOU_MUST
	10.4.7 DISCARD_IF_YOU_MUST use case

	D.9 Atomic write action with Isolation
	D.10 Atomic Sync/Flush action for PM
	D.11 Hardware-assisted verify

