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USAGE 
The SNIA hereby grants permission for individuals to use this document for personal use only, and for 
corporations and other business entities to use this document for internal use only (including internal copying, 
distribution, and display) provided that: 
 

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no 
alteration, and,  

 
2. Any document, printed or electronic, in which material from this document (or any portion hereof) is 

reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting 
permission for its reuse. 

 
Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this 
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved 
to SNIA. 
 
Permission to use this document for purposes other than those enumerated above may be requested by e-mailing 
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of 
the purpose, nature, and scope of the requested use. 
 
All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the 
following license: 
 

BSD 3-Clause Software License 
 
Copyright (c) 2014, The Storage Networking Industry Association. 
 
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the 
following conditions are met: 
 
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following 
disclaimer. 
 
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following 
disclaimer in the documentation and/or other materials provided with the distribution. 
 
* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be 
used to endorse or promote products derived from this software without specific prior written permission. 
 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY 
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE 
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DISCLAIMER 
The information contained in this publication is subject to change without notice. The SNIA makes no warranty of 
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability 
and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or 
consequential damages in connection with the furnishing, performance, or use of this specification. 
 
Suggestions for revisions should be directed to http://www.snia.org/feedback/. 
 
Copyright © 2017 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their 
respective owners. 
  

http://www.snia.org/feedback/
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Revision History 
Changes since version 1: 

• The former informative Consistency annex is reworded and moved to two places in the 
specification body: 

o New section 6.10 Aligned operations on fundamental data types 
o New section 10.1.1 Applications and PM Consistency in NVM.PM.FILE 

• A number of editorial fixes to make spelling, terminology, and spacing more consistent 

Changes from version 1.1 to version 1.2: 

• The former informative PM error handling annex is elaborated, improved and moved to 
the following places in the specification body: 

o New section 10.1.2 PM Error Handling. 
o New action 10.2.10 NVM.PM.FILE.CHECK_ERROR 
o New action 10.2.11 NVM.PM.FILE.CLEAR_ERROR 
o New attribute 10.3.9 NVM.PM.FILE.ERROR_EVENT_MINIMAL_CAPABILITY 
o New attribute 10.3.10 NVM.PM.FILE.ERROR_EVENT_PRECISE_CAPABILITY 
o New attribute 10.3.11 

NVM.PM.FILE.ERROR_EVENT_ERROR_UNIT_CAPABILITY 
o New attribute 10.3.12 

NVM.PM.FILE.ERROR_EVENT_MAPPED_SUPPORT_CAPABILITY 
o New attribute 10.3.12 

NVM.PM.FILE.ERROR_EVENT_LIVE_SUPPORT_CAPABILITY 
• The wording in section 10.2.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY is 

corrected to make clear that the action does not require verification of the data in the 
persistence domain, but merely requires reporting of any errors diagnosed during the 
process of writing the data to the persistence domain. 

• New section 10.2.8 NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED introduces a new 
action that indicates on a per-file basis whether the application may invoke the 
OPTIMIZED_FLUSH action or instead is required to call fsync or msync (or the 
Windows analogs).  

o Some DAX-capable file systems may require that the application call msync or 
the Windows equivalent and do not permit the application to call 
OPTIMIZED_FLUSH in its place, for some subset of the files in the file system.  

o This situation arises when the file system requires the msync system call in order 
to force updated file data or metadata to the persistence domain. For example, 
when a new page is allocated to a sparse file due to a page fault, some DAX 
filesystems do not eagerly force the allocation metadata to the persistence 
domain, but instead require an fsync or msync call to guarantee that the 
metadata is persistent. Similarly, if the filesystem is performing compression or 
encryption, it will require an fsync or msync to persist the data. 

• New section 10.2.9 NVM.PM.FILE.DEEP_FLUSH introduces a new action that provides 
improved reliability when persisting data but at a potentially higher latency cost. The 
intent of this new action is to enable DAX file systems and applications to limit the loss 
of data when normal persistence fails.  
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o ADR persistence is only probabilistic; thermal conditions or other unforeseen 
conditions may increase the time needed to flush data in the power-protected 
domain to the persistent media beyond the hold-up time of the power supply. In 
such an event, we would like to limit the scope of the damage to less than all the 
data on the persistent memory devices.  

o For example, if there are multiple file systems on the persistent memory devices, 
and some of them are not mounted when ADR fails, then the data in those file 
systems is not corrupted and can be preserved across the persistence failure. 
Similarly if a file is not open when ADR fails, and all of the data and file system 
metadata needed to access the file has been persisted, then the file is not 
corrupted and can be preserved across the persistence failure. 
The DEEP_FLUSH action provides the tool needed by file systems to force data 
and metadata to a more reliable persistence domain, so that upon recovery the 
file system can detect whether it had been mounted, and, if mounted, whether 
the it's metadata is intact. Applications can then use DEEP_FLUSH to preserve 
data that upon recovery after a persistence failure would allow the application to 
determine whether the file had been open, and thus potentially corrupted, or 
closed, and thus can be preserved. 

o Attribute 10.3.8 NVM.PM.FILE.DEEP_FLUSH_CAPABLE enables an application 
to determine if the DEEP_FLUSH action is supported. 

• A number of editorial fixes to make spelling, terminology, and spacing more consistent  
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FOREWORD 
The SNIA NVM Programming Technical Working Group was formed to address the ongoing 
proliferation of new non-volatile memory (NVM) functionality and new NVM technologies. An 
extensible NVM Programming Model is necessary to enable an industry wide community of 
NVM producers and consumers to move forward together through a number of significant 
storage and memory system architecture changes.  

This SNIA specification defines recommended behavior between various user space and 
operating system (OS) kernel components supporting NVM. This specification does not 
describe a specific API. Instead, the intent is to enable common NVM behavior to be exposed 
by multiple operating system specific interfaces. 

After establishing context, the specification describes several operational modes of NVM 
access. Each mode is described in terms of use cases, actions and attributes that inform user 
and kernel space components of functionality that is provided by a given compliant 
implementation. 
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1 Scope 
This specification is focused on the points in system software where NVM is exposed either as 
a hardware abstraction within an operating system kernel (e.g., a volume) or as a data 
abstraction (e.g., a file) to user space applications. The technology that motivates this 
specification includes flash memory packaged as solid state disks and PCI cards as well as 
other solid state non-volatile devices, including those which can be accessed as memory. 

It is not the intent to exhaustively describe or in any way deprecate existing modes of NVM 
access. The goal of the specification is to augment the existing common storage access 
models (e.g., volume and file access) to add new NVM access modes. Therefore this 
specification describes the discovery and use of capabilities of NVM media, connections to the 
NVM, and the system containing the NVM that are emerging in the industry as vendor specific 
implementations. These include: 

• supported access modes, 
• visibility in memory address space, 
• atomicity and durability, 
• recognizing, reporting, and recovering from errors and failures, 
• data granularity, and 
• capacity reclamation. 

This revision of the specification focuses on NVM behaviors that enable user and kernel space 
software to locate, access, and recover data. It does not describe behaviors that are specific to 
administrative or diagnostic tasks for NVM. There are several reasons for intentionally leaving 
administrative behavior out of scope. 
• For new types of storage programming models, the access must be defined and agreed on 

before the administration can be defined. Storage management behavior is typically 
defined in terms of how it enables and diagnoses the storage programming model. 

• Administrative tasks often require human intervention and are bound to the syntax for the 
administration. This document does not define syntax. It focuses only on the semantics of 
the programming model. 

• Defining diagnostic behaviors (e.g., wear-leveling) as vendor-agnostic is challenging across 
all vendor implementations. A common recommended behavior may not allow an approach 
optimal for certain hardware. 

 
This revision of the specification does not address sharing data across computing nodes. This 
revision of the specification assumes that sharing data between processes and threads follows 
the native OS and hardware behavior. 
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3 Definitions, abbreviations, and conventions 
For the purposes of this document, the following definitions and abbreviations apply. 

3.1 Definitions 

3.1.1 durable 
committed to a persistence domain (see 3.1.7) 

3.1.2 load and store operations 
commands to move data between CPU registers and memory 

3.1.3 memory-mapped file 
segment of virtual memory which has been assigned a direct byte-for-byte correlation with 
some portion of a file 

3.1.4 non-volatile memory 
any type of memory-based, persistent media; including flash memory packaged as solid state 
disks, PCI cards, and other solid state non-volatile devices 

3.1.5 NVM block capable driver 
driver supporting the native operating system interfaces for a block device 

3.1.6 NVM volume 
subset of one or more NVM devices, treated by software as a single logical entity  

See 4.2 NVM device models 

3.1.7 persistence domain 
location for data that is guaranteed to preserve the data contents across a restart of the device 
containing the data 

See 6.9 Persistence domain 

3.1.8 persistent memory 
storage technology with performance characteristics suitable for a load and store programming 
model 

3.1.9 programming model 
set of software interfaces that are used collectively to provide an abstraction for hardware with 
similar capabilities 
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3.2 Keywords 

In the remainder of the specification, the following keywords are used to indicate text related to 
compliance: 

3.2.1 mandatory 
a keyword indicating an item that is required to conform to the behavior defined in this 
standard 

3.2.2 may 
a keyword that indicates flexibility of choice with no implied preference; “may” is equivalent to 
“may or may not” 

3.2.3 may not 
keywords that indicate flexibility of choice with no implied preference; “may not” is equivalent to 
“may or may not” 

3.2.4 need not 
keywords indicating a feature that is not required to be implemented; “need not” is equivalent 
to “is not required to” 

3.2.5 optional 
a keyword that describes features that are not required to be implemented by this standard; 
however, if any optional feature defined in this standard is implemented, then it shall be 
implemented as defined in this standard 

3.2.6 shall 
a keyword indicating a mandatory requirement; designers are required to implement all such 
mandatory requirements to ensure interoperability with other products that conform to this 
standard 

3.2.7 should 
a keyword indicating flexibility of choice with a strongly preferred alternative 

3.3 Abbreviations 

ACID Atomicity, Consistency, Isolation, Durability 

NVM Non-Volatile Memory 

PM Persistent Memory 

SSD Solid State Disk 
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3.4 Conventions 

Representation of modes in figures 

Modes are represented by red, wavy lines in figures, as shown below: 
      
The wavy lines have labels identifying the mode name (which in turn, identifies a clause of the 
specification).  
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4 Overview of the NVM Programming Model (informative) 
4.1 How to read and use this specification 

Documentation for I/O programming typically consists of a set of OS-specific Application 
Program Interfaces (APIs). API documentation describes the syntax and behavior of the API. 
This specification intentionally takes a different approach and describes the behavior of NVM 
programming interfaces, but allows the syntax to integrate with similar operating system 
interfaces. A recommended approach for using this specification is: 

1. Determine which mode applies (read 4.3 NVM programming modes). 

2. Refer to the mode section to learn about the functionality provided by the mode and 
how it relates to native operating system APIs; the use cases provide examples. The mode 
specific section refers to other specification sections that may be of interest to the developer. 

3. Determine which mode actions and attributes relate to software objectives. 

4. Locate the vendor/OS mapping document (see 5.2) to determine which APIs map to the 
actions and attributes. 

For an example, a developer wants to update an existing application to utilize persistent 
memory hardware. The application is designed to bypass caches to assure key content is 
durable across power failures; the developer wants to learn about the persistent memory 
programming model. For this example: 

1. The NVM programming modes section identifies NVM.PM.FILE mode (see 10 
NVM.PM.FILE) as the starting point for application use of persistent memory. 

2. The NVM.PM.FILE mode text describes the general approach for accessing PM (similar 
to native memory-mapped files) and the role of PM aware file system. 

3. The NVM.PM.FILE mode identifies the NVM.PM.FILE.MAP and NVM.PM.FILE.SYNC 
actions and attributes that allow an application to discover support for optional features. 

4. The operating system vendor’s mapping document describes the mapping between 
NVM.PM.FILE.MAP/SYNC and API calls, and also provides information about supported PM-
aware file systems. 

4.2 NVM device models 

4.2.1 Overview 
This section describes device models for NVM to help readers understand how key terms in 
the programming model relate to other software and hardware. The models presented here 
generally apply across operating systems, file systems, and hardware; but there are 
differences across implementations. This specification strives to discuss the model generically, 
but mentions key exceptions.  
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One of the challenges discussing the software view of NVM is that the same terms are often 
used to mean different things. For example, between commonly used management 
applications, programming interfaces, and operating system documentation, volume may refer 
to a variety of things. Within this specification, NVM volume has a specific meaning. 

An NVM volume is a subset of one or more NVM devices, treated by software as a single 
logical entity. For the purposes of this specification, a volume is a container of storage. A 
volume may be block capable and may be persistent memory capable. The consumer of a 
volume sees its content as a set of contiguous addresses, but the unit of access for a volume 
differs across different modes and device types. Logical addressability and physical allocation 
may be different. 

In the examples in this section, “NVM block device” refers to NVM hardware that emulates a 
disk and is accessed in software by reading or writing ranges of blocks. “PM device” refers to 
NVM hardware that may be accessed via load and store operations.  

4.2.2 Block NVM example 

Consider a single drive form factor SSD where the entire SSD 
capacity is dedicated to a file system. In this case, a single NVM 
block volume maps to a single hardware device. A file system 
(not depicted) is mounted on the NVM block volume.  

The same model may apply to NVM block hardware other than an SDD (including flash on 
PCIe cards). 
4.2.3 Persistent memory example 
This example depicts a NVDIMM and PM volume. A PM-aware 
file system (not depicted) would be mounted on the PM volume.  

The same model may apply to PM hardware other than an 
NVDIMM (including SSDs, PCIe cards, etc.). 

4.2.4 NVM block volume using PM hardware 
In this example, the persistent memory implementation includes 
a driver that uses a range of persistent memory (a PM volume) 
and makes it appear to be a block NVM device in the legacy 
block stack. This emulated block device could be aggregated or 
de-aggregated like legacy block devices. In this example, the 
emulated block device is mapped 1-1 to an NVM block volume and non-PM file system. 

Note that there are other models for connecting a non-PM file system to PM hardware. 

Figure 1 Block NVM example 

Figure 2 PM example 

Figure 3 Block volume using PM HW 

NVM block volume
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PM volume

PM hardware

NVM block volume
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4.3 NVM programming modes 

4.3.1 NVM.BLOCK mode overview 
NVM.BLOCK and NVM.FILE modes are used when NVM devices provide block storage 
behavior to software (in other words, emulation of hard disks). The NVM may be exposed as a 
single or as multiple NVM volumes. Each NVM volume supporting these modes provides a 
range of logically-contiguous blocks. NVM.BLOCK mode is used by operating system 
components (for example, file systems) and by applications that are aware of block storage 
characteristics and the block addresses of application data. 

This specification does not document existing block storage software behavior; the 
NVM.BLOCK mode describes NVM extensions including: 

• Discovery and use of atomic write and discard features  
• The discovery of granularities (length or alignment characteristics) 
• Discovery and use of ability for applications or operating system components to mark 

blocks as unreadable 
 

Figure 4 NVM.BLOCK and NVM.FILE mode examples 

Application
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Application
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4.3.2 NVM.FILE mode overview 
NVM.FILE mode is used by applications that are not aware of details of block storage 
hardware or addresses. Existing applications written using native file I/O behavior should work 
unmodified with NVM.FILE mode; adding support in the application for NVM extensions may 
optimize the application. 

An application using NVM.FILE mode may or may not be using memory-mapped file I/O 
behavior. 
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The NVM.FILE mode describes NVM extensions including: 

• Discovery and use of atomic write features  
• The discovery of granularities (length or alignment characteristics) 

4.3.3 NVM.PM.VOLUME mode overview 
NVM.PM.VOLUME mode describes the behavior for operating system components (such as 
file systems) accessing persistent memory. NVM.PM.VOLUME mode provides a software 
abstraction for Persistent Memory hardware and profiles functionality for operating system 
components including: 

• the list of physical address ranges associated with each PM volume 
 

Figure 5 NVM.PM.VOLUME and NVM.PM.FILE mode examples 
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4.3.4 NVM.PM.FILE mode overview 
NVM.PM.FILE mode describes the behavior for applications accessing persistent memory. 
The commands implementing NVM.PM.FILE mode are similar to those using NVM.FILE mode, 
but NVM.PM.FILE mode may not involve I/O to the page cache. NVM.PM.FILE mode 
documents behavior including: 

• mapping PM files (or subsets of files) to virtual memory addresses 
• syncing portions of PM files to the persistence domain 
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4.4 Introduction to actions, attributes, and use cases 

4.4.1 Overview 
This specification uses four types of elements to describe NVM behavior. Use cases are the 
highest order description. They describe complete scenarios that accomplish a goal. Actions 
are more specific in that they describe an operation that represents or interacts with NVM. 
Attributes comprise information about NVM. Property Group Lists describe groups of related 
properties that may be considered attributes of a data structure or class; but the specification 
allows flexibility in the implementation. 

4.4.2 Use cases 
In general, a use case states a goal or trigger and a result. It captures the intent of an 
application and describes how actions are used to accomplish that intent. Use cases illustrate 
the use of actions and help to validate action definitions. Use cases also describe system 
behaviors that are not represented as actions. Each use case includes the following 
information: 

• a purpose and context including actors involved in the use case; 
• triggers and preconditions indicating when a use case applies; 
• inputs, outputs, events and actions that occur during the use case; 
• references to related materials or concepts including other use cases that use or extend the 

use case. 

4.4.3 Actions 
Actions are defined using the following naming convention: 

<context>.<mode>.<verb> 

The actions in this specification all have a context of “NVM”. The mode refers to one of the 
NVM models documented herein (or “COMMON” for actions used in multiple modes). The verb 
states what the action does. Examples of actions include “NVM.COMMON.GET_ATTRIBUTE” 
and “NVM.FILE.ATOMIC_WRITE”. In some cases native actions that are not explicitly 
specified by the programming model are referenced to illustrate usage. 

The description of each action includes: 

• parameters and results of the action 
• details of the action’s behavior 
• compatibility of the action with pre-existing APIs in the industry 

A number of actions involve options that can be specified each time the action is used. The 
options are given names that begin with the name of the action and end with a descriptive term 
that is unique for the action. Examples include NVM.PM.FILE.MAP_COPY_ON_WRITE and 
NVM.PM.FILE.MAP_SHARED. 
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A number of actions are optional. For each of these, there is an attribute that indicates whether 
the action is supported by the implementation in question. By convention these attributes end 
with the term “CAPABLE” such as NVM.BLOCK.ATOMIC_WRITE_CAPABLE. Supported 
options are also enumerated by attributes that end in “CAPABLE”. 

4.4.4 Attributes 
Attributes describe properties or capabilities of a system. This includes indications of which 
actions can be performed in that system and variations on the internal behavior of specific 
actions. For example attributes describe which NVM modes are supported in a system, and 
the types of atomicity guarantees available. 

In this programming model, attributes are not arbitrary key value pairs that applications can 
store for unspecified purposes. Instead the NVM attributes are intended to provide a common 
way to discover and configure certain aspects of systems based on agreed upon 
interpretations of names and values. While this can be viewed as a key value abstraction it 
does not require systems to implement a key value repository. Instead, NVM attributes are 
mapped to a system’s native means of describing and configuring those aspects associated 
with said attributes. Although this specification calls out a set of attributes, the intent is to allow 
attributes to be extended in vendor unique ways through a process that enables those 
extensions to become attributes and/or attribute values in a subsequent version of the 
specification or in a vendor’s mapping document. 

4.4.5 Property group lists 
A property group is set of property values used together in lists; typically property group 
lists are inputs or outputs to actions. The implementation may choose to implement a property 
group as a new data structure or class, use properties in existing data structures or classes, or 
other mechanisms as long as the caller can determine which collection of values represent the 
members of each list element. 



 

NVM Programming Model (NPM)  Working Draft 22 
Version 1.12a 

5 Compliance to the programming model 
5.1 Overview 

Since a programming model is intentionally abstract, proof of compliance is somewhat indirect. 
The intent is that a compliant implementation, when properly configured, can be used in such a 
way as to exhibit the behaviors described by the programming model without unnecessarily 
impacting other aspects of the implementation. 

Compliance of an implementation shall be interpreted as follows.  

5.2 Documentation of mapping to APIs 

In order to be considered compliant with this programming model, implementations must 
provide documentation of the mapping of attributes and actions in the programming model to 
their counterparts in the implementation. 

5.3 Compatibility with unspecified native actions 

Actions and attributes of the native block and file access methods that correspond to the 
modes described herein shall continue to function as defined in those native methods. This 
specification does not address unmodified native actions except in passing to illustrate their 
usage. 

5.4 Mapping to native interfaces 

Implementations are expected to provide the behaviors specified herein by mapping them as 
closely as possible to native interfaces. An implementation is not required to have a one-to-one 
mapping between actions (or attributes) and APIs – for example, an implementation may have 
an API that implements multiple actions. 

NVM Programming Model action descriptions do not enumerate all possible results of each 
action. Only those that modify programming model specific behavior are listed. The results that 
are referenced herein shall be discernible from the set of possible results returned by the 
native action in a manner that is documented with action mapping. 

Attributes with names ending in _CAPABLE are used to inform a caller whether an optional 
action or attribute is supported by the implementations. The mandatory requirement for 
_CAPABLE attributes can be met by the mapping document describing the implementation’s 
default behavior for reporting unsupported features. For example: the mapping document 
could state that if a flag with a name based on the attribute is undefined, then the 
action/attribute is not supported. 
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6 Common programming model behavior 
6.1 Overview 

This section describes behavior that is common to multiple modes and also behavior that is 
independent from the modes. 

6.2 Conformance to multiple file modes 

A single computer system may include implementations of both NVM.FILE and NVM.PM.FILE 
modes. A given file system may be accessed using either or both modes provided that the 
implementations are intended by their vendor(s) to interoperate. Each implementation shall 
specify its own mapping to the NVM Programming Model. 

A single file system implementation may include both NVM.FILE and NVM.PM.FILE modes. 
The mapping of the implementation to the NVM Programming Model must describe how the 
actions and attributes of different modes are distinguished from one another. 

Implementation specific errors may result from attempts to use NVM.PM.FILE actions on files 
that were created in NVM.FILE mode or vice versa. The mapping of each implementation to 
the NVM Programming Model shall specify any limitations related multi-mode access. 

6.3 Device state at system startup 

Prior to use, a file system is associated with one or more volumes and/or NVM devices.  

The NVM devices shall be in a state appropriate for use with file systems. For example, if 
transparent RAID is part of the solution, components implementing RAID shall be active so the 
file system sees a unified virtual device rather than individual RAID components.  

6.4 Secure erase 

Secure erase of a volume or device is an administrative act with no defined programming 
model action.  

6.5 Allocation of space 

Following native operating system behavior, this programming model does not define specific 
actions for allocating space. Most allocation behavior is hidden from the user of the file, volume 
or device. 

6.6 Interaction with I/O devices 

Interaction between Persistent Memory and I/O devices (for example, DMA) shall be 
consistent with native operating system interactions between devices and volatile memory. 
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6.7 NVM State after a media or connection failure 

There is no action defined to determine the state of NVM for circumstances such as a media or 
connection failure. Vendors may provide techniques such as redundancy algorithms to 
address this, but the behavior is outside the scope of the programming model. 

6.8 Error handling for persistent memory 

The handling of errors in memory-mapped file implementations varies across operating 
systems. Existing implementations support memory error reporting however there is not 
sufficient similarity for a uniform approach to persistent memory error handling behavior. 
Additional work is required to define an error handling approach. The following factors are to 
be taken into account when dealing with errors. 

• The application is in the best position to perform recovery as it may have access to 
additional sources of data necessary to rewrite a bad memory address. 

• Notification of a given memory error occurrence may need to be delivered to both kernel 
and user space consumers (e.g., file system and application) 

• Various hardware platforms have different capabilities to detect and report memory errors 
• Attributes and possibly actions related to error handling behavior are needed in the NVM 

Programming model 

A proposal for persistent memory error handling appears as an appendix; see Annex B. 

6.9 Persistence domain 

NVM PM hardware supports the concept of a persistence domain. Once data has reached a 
persistence domain, it may be recoverable during a process that results from a system restart. 
Recoverability depends on whether the pattern of failures affecting the system during the 
restart can be tolerated by the design and configuration of the persistence domain. 

Multiple persistence domains may exist within the same system. It is an administrative act to 
align persistence domains with volumes and/or file systems. This must be done in such a way 
that NVM Programming Model behavior is assured from the point of view of each compliant 
volume or file system. 

6.10 Aligned operations on fundamental data types 

Data alignment means putting the data at a memory offset equal to some multiple of the word 
size, which increases the system's performance due to the way the CPU handles memory 
(from Wikipedia “Data structure alignment”). Data types are fundamental when they are native 
to programming languages or libraries.  

Aligned operations on data types are usually exactly the same operations that under normal 
operation become visible to other threads/data producers atomically. They are already well-
defined for most settings: 
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• Instruction Set Architectures already define them. 
o E.g., for x86, MOV instructions with naturally aligned operands of at most 64 bits 

qualify. 

• They’re generated by known high-level language constructs, e.g.: 
o C++11 lock-free atomic<T>, C11 _Atomic(T), Java & C# volatile, OpenMP atomic 

directives. 

For optimal performance, fundamental data types fit within CPU cache lines. 

6.11 Common actions 

6.11.1 NVM.COMMON.GET_ATTRIBUTE 
Requirement: mandatory 

Get the value of one or more attributes. Implementations conforming to the specification shall 
provide the get attribute behavior, but multiple programmatic approaches may be used. 

Inputs:  
• reference to appropriate instance (for example, reference to an NVM volume) 
• attribute name 

Outputs:  
• value of attribute 

The vendor’s mapping document shall describe the possible errors reported for all applicable 
programmatic approaches. 

6.11.2 NVM.COMMON.SET_ATTRIBUTE 
Requirement: optional 

Note: at this time, no settable attributes are defined in this specification, but they may be 
added in a future revision. 

Set the value of one attribute. Implementations conforming to the specification shall provide 
the set attribute behavior, but multiple programmatic approaches may be used. 

Inputs:  
• reference to appropriate instance 
• attribute name  
• value to be assigned to the attribute 

The vendor’s mapping document shall describe the possible errors reported for all applicable 
programmatic approaches. 
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6.12 Common attributes 

6.12.1 NVM.COMMON.SUPPORTED_MODES 
Requirement: mandatory 

SUPPORTED_MODES returns a list of the modes supported by the NVM implementation. 

Possible values: NVM.BLOCK, NVM.FILE, NVM.PM.FILE, NVM.PM.VOLUME 

NVM.COMMON.SET_ATTRIBUTE is not supported for 
NVM.COMMON.SUPPORTED_MODES. 

6.12.2 NVM.COMMON.FILE_MODE  
Requirement: mandatory if NVM.FILE or NVM.PM.FILE is supported 

Returns the supported file modes (NVM.FILE and/or NVM.PM.FILE) provided by a file system. 

Target: a file path 

Output value: a list of values: “NVM.FILE” and/or “NVM.PM.FILE”  

See 6.2 Conformance to multiple file modes.  

6.13 Use cases 

6.13.1 Application determines which mode is used to access a file system  

Purpose/triggers: 
An application needs to determine whether the underlying file system conforms to NVM.FILE 
mode, NVM.PM.FILE mode, or both. 

Scope/context:  
Some actions and attributes are defined differently in NVM.FILE and NVM.PM.FILE; 
applications may need to be designed to handle these modes differently. This use case 
describes steps in an application’s initialization logic to determine the mode(s) supported by 
the implementation and set a variable indicating the preferred mode the application will use in 
subsequent actions. This application prefers to use NVM.PM.FILE behavior if both modes are 
supported. 

Success scenario:  
1)  Invoke NVM.COMMON.GET_ATTRIBUTE (NVM.COMMON.FILE_MODE) targeting a 

file path; the value returned provides information on which modes may be used to 
access the data. 

2) If the response includes “NVM.FILE”, then the actions and attributes described for the 
NVM.FILE mode are supported. Set the preferred mode for this file system to 
NVM.FILE. 
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3) If the response includes “NVM.PM.FILE”, then the actions and attributes described for 
the NVM.PM.FILE mode are supported. Set the preferred mode for this file system to 
NVM.PM.FILE. 

Outputs:  

Postconditions:  
A variable representing the preferred mode for the file system has been initialized. 

See also:  
6.2 Conformance to multiple file modes 
6.12.2 NVM.COMMON.FILE_MODE 
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7 NVM.BLOCK mode 
7.1 Overview 

NVM.BLOCK mode provides programming interfaces for NVM implementations behaving as 
block devices. The programming interfaces include the native operating system behavior for 
sending I/O commands to a block driver and adds NVM extensions. To support this mode, the 
NVM devices are supported by an NVM block capable driver that provides the command 
interface to the NVM. This specification does not document the native operating system block 
programming capability; it is limited to the NVM extensions. 

Figure 6 NVM.BLOCK mode example 

Block-aware application

NVM block capable driver

File system

NVM device NVM device

User space

Kernel space

NVM.BLOCK mode

 

Support for NVM.BLOCK mode requires that the NVM implementation support all behavior not 
covered in this section consistently with the native operating system behavior for native block 
devices. 

The NVM extensions supported by this mode include: 

• Discovery and use of atomic write and discard features  
• The discovery of granularities (length or alignment characteristics) 
• Discovery and use of per-block metadata used for verifying integrity 
• Discovery and use of ability for applications or operating system components to mark 

blocks as unreadable 
 
7.1.1 Discovery and use of atomic write features 
Atomic Write support provides applications with the capability to assure that all the data for an 
operation is written to the persistence domain or, if a failure occurs, it appears that no 
operation took place. Applications may use atomic write operations to assure consistent 
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behavior during a failure condition or to assure consistency between multiple processes 
accessing data simultaneously. 
 
7.1.2 The discovery of granularities 
Attributes are introduced to allow applications to discover granularities associated with NVM 
devices.  
 
7.1.3 Discovery and use of capability to mark blocks as unreadable 
An action (NVM.BLOCK.SCAR) is defined allowing an application to mark blocks as 
unreadable. 
 
7.1.4 NVM.BLOCK consumers: operating system and applications 
NVM.BLOCK behavior covers two types of software: NVM-aware operating system 
components and block-optimized applications.  

7.1.4.1 NVM.BLOCK operating system components 
NVM-aware operating system components use block storage and have been enhanced to take 
advantage of NVM features. Examples include file systems, logical volume managers, 
software RAID, and hibernation logic. 

7.1.4.2 Block-optimized applications 
Block-optimized applications use a hybrid behavior utilizing files and file I/O operations, but 
construct file I/O commands in order to cause drivers to issue desired block commands. 
Operating systems and file systems typically provide mechanisms to enable block-optimized 
application. The techniques are system specific, but may include: 

• A mechanism for a block-optimized application to request that the file system move data 
directly between the device and application memory, bypassing the buffering typically 
provided by the file system.  

• The operating system or file system may require the application to align requests on block 
boundaries.  

The file system and operating system may allow block-optimized applications to use memory-
mapped files. 

7.1.4.3 Mapping documentation 
NVM.BLOCK operating system components may use I/O commands restricted to kernel space 
to send I/O commands to drivers. NVM.BLOCK applications may use a constrained set of file 
I/O operations to send commands to drivers. As applicable, the implementation shall provide 
documentation mapping actions and/or attributes for all supported techniques for NVM.BLOCK 
behavior. 

The implementation shall document the steps to utilize supported capabilities for block-
optimized applications and the constraints (e.g., block alignment) compared to NVM.FILE 
behavior. 
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7.2 Actions 

7.2.1 Actions that apply across multiple modes 
The following actions apply to NVM.BLOCK mode as well as other modes. 

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1) 
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2) 

7.2.2 NVM.BLOCK.ATOMIC_WRITE 
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true 

Block-optimized applications or operating system components may use ATOMIC_WRITE to 
assure consistent behavior during a power failure condition. This specification does not specify 
the order in which this action occurs relative to other I/O operations, including other 
ATOMIC_WRITE or ATOMIC_MULTIWRITE actions. This specification does not specify when 
the data written becomes visible to other threads. 

Inputs: 
• the starting memory address  
• a reference to the block device 
• the starting block address 
• the length  
The interpretation of addresses and lengths (block or byte, alignment) should be consistent 
with native write actions. Implementations shall provide documentation on the requirements for 
specifying the starting addresses, block device, and length. 

Return values: 
• Success shall be returned if all blocks are updated in the persistence domain 
• an error shall be reported if the length exceeds ATOMIC_WRITE_MAX_DATA_LENGTH 

(see 7.3.3) 
• an error shall be reported if the starting address is not evenly divisible by 

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.4) 
• an error shall be reported if the length is not evenly divisible by 

ATOMIC_WRITE_LENGTH_GRANULARITY (see 7.3.5) 
• If anything does or will prevent all of the blocks from being updated in the persistence 

domain before completion of the operation, an error shall be reported and all the logical 
blocks affected by the operation shall contain the data that was present before the device 
server started processing the write operation (i.e., the old data, as if the atomic write 
operation had no effect). If the NVM and processor are both impacted by a power failure, 
no error will be returned since the execution context is lost. 

• the different errors described above shall be discernible by the consumer and shall be 
discernible from media errors 

Relevant attributes: 
ATOMIC_WRITE_MAX_DATA_LENGTH (see 7.3.3) 
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ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.4) 
ATOMIC_WRITE_LENGTH_GRANULARITY (see 7.3.5) 
ATOMIC_WRITE_CAPABLE (see 7.3.1) 

7.2.3 NVM.BLOCK.ATOMIC_MULTIWRITE 
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 

Block-optimized applications or operating system components may use 
ATOMIC_MULTIWRITE to assure consistent behavior during a power failure condition. This 
action allows a caller to write non-adjacent extents atomically. The caller of 
ATOMIC_MULTIWRITE provides a Property Group List (see 4.4.5) where the properties 
describe the memory and block extents (see Inputs below); all of the extents are written as a 
single atomic operation. This specification does not specify the order in which this action 
occurs relative to other I/O operations, including other ATOMIC_WRITE or 
ATOMIC_MULTIWRITE actions. This specification does not specify when the data written 
becomes visible to other threads. 

Inputs: 
A Property Group List (see 4.4.5) where the properties are: 
• memory address starting address 
• length of data to write (in bytes) 
• a reference to the device being written to 
• the starting LBA on the device 
Each property group represents an I/O. The interpretation of addresses and lengths (block or 
byte, alignment) should be consistent with native write actions. Implementations shall provide 
documentation on the requirements for specifying the ranges. 
Return values: 
• Success shall be returned if all block ranges are updated in the persistence domain 
• an error shall be reported if the block ranges overlap 
• an error shall be reported if the total size of memory input ranges exceeds 

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH (see 7.3.8) 
• an error shall be reported if the starting address in any input memory range is not evenly 

divisible by ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.9) 
• an error shall be reported if the length in any input range is not evenly divisible by 

ATOMIC_MULTIWRITE_LENGTH_GRANULARITY (see 7.3.10) 
• If anything does or will prevent all of the writes from being applied to the persistence 

domain before completion of the operation, an error shall be reported and all the logical 
blocks affected by the operation shall contain the data that was present before the device 
server started processing the write operation (i.e., the old data, as if the atomic write 
operation had no effect). If the NVM and processor are both impacted by a power failure, 
no error will be returned since the execution context is lost. 

• the different errors described above shall be discernible by the consumer 
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Relevant attributes: 
ATOMIC_MULTIWRITE_MAX_IOS (see 7.3.7) 
ATOMIC_MULTIWRITE_MAX_DATA_LENGTH (see 7.3.8) 
ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.9) 
ATOMIC_MULTIWRITE_LENGTH_GRANULARITY (see 7.3.10) 
ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) 

7.2.4 NVM.BLOCK.DISCARD_IF_YOU_CAN 
Requirement: mandatory if DISCARD_IF_YOU_CAN_CAPABLE (see 7.3.17) is true 

This action notifies the NVM device that some or all of the blocks which constitute a volume 
are no longer needed by the application. This action is a hint to the device.  

Although the application has logically discarded the data, it may later read this range. Since 
the device is not required to physically discard the data, its response is undefined: it may 
return successful response status along with unknown data (e.g., the old data, a default 
“undefined” data, or random data), or it may return an unsuccessful response status with an 
error. 
 
Inputs: a range of blocks (starting LBA and length in logical blocks) 

Status: Success indicates the request is accepted but not necessarily acted upon.  

7.2.5 NVM.BLOCK.DISCARD_IMMEDIATELY 
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 7.3.18) is true 

Requires that the data block be unmapped (see NVM.BLOCK.EXISTS 7.2.6) before the next 
READ or WRITE reference even if garbage collection of the block has not occurred yet, 

DISCARD_IMMEDIATELY commands cannot be acknowledged by the NVM device until the 
DISCARD_IMMEDIATELY has been durably written to media in a way such that upon 
recovery from a power-fail event, the block is guaranteed to remain discarded. 

Inputs: a range of blocks (starting LBA and length in logical blocks) 

The values returned by subsequent read operations are specified by the 
DISCARD_IMMEDIATELY_RETURNS (see 7.3.19) attribute. 

Status: Success indicates the request is completed. 

See also EXISTS (7.2.6), DISCARD_IMMEDIATELY_RETURNS (7.3.19), 
DISCARD_IMMEDIATELY_CAPABLE (7.3.18). 

7.2.6 NVM.BLOCK.EXISTS 
Requirement: mandatory if EXISTS_CAPABLE (see 7.3.12) is true 
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An NVM device may allocate storage through a thin provisioning mechanism or one of the 
discard actions. As a result, a block can exist in one of three states:  
• Mapped: the block has had data written to it  
• Unmapped: the block has not been written, and there is no memory allocated 
• Allocated: the block has not been written, but has memory allocated to it  

The EXISTS action allows the NVM user to determine if a block has been allocated. 

Inputs: an LBA 

Output: the state (mapped, unmapped, or allocated) for the input block 

Result: the status of the action 

7.2.7 NVM.BLOCK.SCAR 
Requirement: mandatory if SCAR_CAPABLE (see 7.3.13) is true 

This action allows an application to request that subsequent reads from any of the blocks in 
the address range will cause an error. This action uses an implementation-dependent means 
to insure that all future reads to any given block from the scarred range will cause an error until 
new data is stored to any given block in the range. A block stays scarred until it is updated by a 
write operation. 

Inputs: reference to a block volume, starting offset, length 

Outputs: status 

Relevant attributes: 

NVM.BLOCK.SCAR_CAPABLE (7.3.13) – Indicates that the SCAR action is supported. 

7.3 Attributes 

7.3.1 Attributes that apply across multiple modes 
The following attributes apply to NVM.BLOCK mode as well as other modes. 

NVM.COMMON.SUPPORTED_MODES (see 6.12.1) 

7.3.2 NVM.BLOCK.ATOMIC_WRITE_CAPABLE 
Requirement: mandatory 

This attribute indicates that the implementation is capable of the 
NVM.BLOCK.ATOMIC_WRITE action. 

7.3.3 NVM.BLOCK.ATOMIC_WRITE_MAX_DATA_LENGTH 
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true. 
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ATOMIC_WRITE_MAX_DATA_LENGTH is the maximum length of data that can be 
transferred by an ATOMIC_WRITE action. 

7.3.4 NVM.BLOCK.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY 
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true. 

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the starting 
memory address for an ATOMIC_WRITE action. Address inputs to ATOMIC_WRITE shall be 
evenly divisible by ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY. 

7.3.5 NVM.BLOCK.ATOMIC_WRITE_LENGTH_GRANULARITY 
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true. 

ATOMIC_WRITE_LENGTH_GRANULARITY is the granularity of the length of data transferred 
by an ATOMIC_WRITE action. Length inputs to ATOMIC_WRITE shall be evenly divisible by 
ATOMIC_WRITE_LENGTH_GRANULARITY. 

7.3.6 NVM.BLOCK.ATOMIC_MULTIWRITE_CAPABLE 
Requirement: mandatory 

ATOMIC_MULTIWRITE_CAPABLE indicates that the implementation is capable of the 
NVM.BLOCK.ATOMIC_MULTIWRITE action. 

7.3.7 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_IOS 
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 

ATOMIC_MULTIWRITE_MAX_IOS is the maximum length of the number of IOs (i.e., the size 
of the Property Group List) that can be transferred by an ATOMIC_MULTIWRITE action. 

7.3.8 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH 
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH is the maximum length of data that can be 
transferred by an ATOMIC_MULTIWRITE action. 

7.3.9 NVM.BLOCK.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY 
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 

ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the 
starting address of ATOMIC_MULTIWRITE inputs. Address inputs to ATOMIC_MULTIWRITE 
shall be evenly divisible by ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY. 

7.3.10 NVM.BLOCK.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY 
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 
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ATOMIC_MULTIWRITE_LENGTH_GRANULARITY is the granularity of the length of 
ATOMIC_MULTIWRITE inputs. Length inputs to ATOMIC_MULTIWRITE shall be evenly 
divisible by ATOMIC_MULTIWRITE_LENGTH_GRANULARITY. 

7.3.11 NVM.BLOCK.WRITE_ATOMICITY_UNIT 
Requirement: mandatory 

If a write is submitted of this size or less, the caller is guaranteed that if power is lost before the 
data is completely written, then the NVM device shall ensure that all the logical blocks affected 
by the operation contain the data that was present before the device server started processing 
the write operation (i.e., the old data, as if the atomic write operation had no effect). 

If the NVM device can’t assure that at least one LOGICAL_BLOCKSIZE (see 7.3.14) extent 
can be written atomically, WRITE_ATOMICITY_UNIT shall be set to zero. 

The unit is NVM.BLOCK.LOGICAL_BLOCKSIZE (see 7.3.14). 

7.3.12 NVM.BLOCK.EXISTS_CAPABLE 
Requirement: mandatory 

This attribute indicates that the implementation is capable of the NVM.BLOCK.EXISTS action. 

7.3.13 NVM.BLOCK.SCAR_CAPABLE 
Requirement: mandatory 

This attribute indicates that the implementation is capable of the NVM.BLOCK.SCAR (see 
7.2.7) action. 

7.3.14 NVM.BLOCK.LOGICAL_BLOCK_SIZE 
Requirement: mandatory 

LOGICAL_BLOCK_SIZE is the smallest unit of data (in bytes) that may be logically read or 
written from the NVM volume. 

7.3.15 NVM.BLOCK.PERFORMANCE_BLOCK_SIZE 
Requirement: mandatory 

PERFORMANCE_BLOCK_SIZE is the recommended granule (in bytes) the caller should use 
in I/O requests for optimal performance; starting addresses and lengths should be multiples of 
this attribute. For example, this attribute may help minimizing device-implemented 
read/modify/write behavior. 

7.3.16 NVM.BLOCK.ALLOCATION_BLOCK_SIZE 
Requirement: mandatory 
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ALLOCATION_BLOCK_SIZE is the recommended granule (in bytes) for allocation and 
alignment of data. Allocations smaller than this attribute (even if they are multiples of 
LOGICAL_BLOCK_SIZE) may work, but may not yield optimal lifespan. 

7.3.17 NVM.BLOCK.DISCARD_IF_YOU_CAN_CAPABLE 
Requirement: mandatory 

DISCARD_IF_YOU_CAN_CAPABLE shall be set to true if the implementation supports 
DISCARD_IF_YOU_CAN. 

7.3.18 NVM.BLOCK.DISCARD_IMMEDIATELY_CAPABLE 
Requirement: mandatory 

Returns true if the implementation supports DISCARD_IMMEDIATELY. 

7.3.19 NVM.BLOCK.DISCARD_IMMEDIATELY_RETURNS 
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 7.3.18) is true 

The value returned from read operations to blocks specified by a DISCARD_IMMEDIATELY 
action with no subsequent write operations. The possible values are: 

• A value that is returned to each read of an unmapped block (see NVM.BLOCK.EXISTS 
7.2.6) until the next write action 

• Unspecified 

7.3.20 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 
Requirement: mandatory 

FUNDAMENTAL_BLOCK_SIZE is the number of bytes that may become unavailable due to 
an error on an NVM device. 

A zero value means that the device is unable to provide a guarantee on the number of 
adjacent bytes impacted by an error. 

This attribute is relevant when the device does not support write atomicity. 

If FUNDAMENTAL_BLOCK_SIZE is smaller than LOGICAL_BLOCK_SIZE (see 7.3.14), an 
application may organize data in terms of FUNDAMENTAL_BLOCK_SIZE to avoid certain torn 
write behavior. If FUNDAMENTAL_BLOCK_SIZE is larger than LOGICAL_BLOCK_SIZE, an 
application may organize data in terms of FUNDAMENTAL_BLOCK_SIZE to assure two key 
data items do not occupy an extent that is vulnerable to errors. 
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7.4 Use cases 

7.4.1 Flash as cache use case  

Purpose/triggers:  
Use Flash based NVM as a data cache. 

Scope/context:  
Flash memory’s fast random I/O performance and non-volatile characteristic make it a good 
candidate as a Solid State Cache device (SSC). This use case is described in Figure 7 SSC in 
a storage stack. 

Figure 7 SSC in a storage stack 

 
 
A possible software application is shown in Figure 8 SSC software cache application. In this 
case, the cache manager employs the Solid State Cache to improve caching performance and 
to maintain persistence and cache coherency across power fail. 
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Figure 8 SSC software cache application 

 

It is also possible to use an enhanced SSC to perform some of the functions that the cache 
manager must normally contend with as shown in Figure 9 SSC with caching assistance. 

Figure 9 SSC with caching assistance 

 
In this use case, the Solid State Cache (SSC) provides a sparse address space that may be 
much larger than the amount of physical NVM memory and manages the cache through its 
own admission and eviction policies. The backing store is used to persist the data when the 
cache becomes full. As a result, the block state for each block of virtual storage in the cache 
must be maintained by the SSC. The SSC must also present a consistent cache interface that 
can persist the cached data across a power fail and never returns stale data. 
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In either of these cases, two important extensions to existing storage commands must be 
present: 

Eviction: An explicit eviction mechanism is required to invalidate cached data in the 
SSC to allow the cache manager to precisely control the contents of the SSC. This 
means that the SSC must insure that the eviction is durable before completing the 
request. This mechanism is generally referred to as a persistent trim. This is the 
NVM.BLOCK.DISCARD_IMMEDIATELY functionality.  
Exists: The EXISTS action allows the cache manager to determine the state of a block, 
or of a range of blocks, in the SSC. This action is used to test for the presence of data in 
the cache, or to determine which blocks in the SSC are dirty and need to be flushed to 
backing storage. This is the NVM.BLOCK.EXISTS functionality.  

The most efficient mechanism for a cache manager would be to simply read the requested 
data from the SSC which would the return either the data or an error indicated that the 
requested data was not in the cache. This approach is problematic, since most storage drivers 
and software require reads to be successful and complete by returning data - not an error. 
Device that return errors for normal read operations are usually put into an offline state by the 
system drivers. Further, the data that a read returns must be consistent from one read 
operation to the next, provided that no intervening writes occur. As a result, a two stage 
process must be used by the cache manager. The cache manager first issues an EXISTS 
action to determine if the requested data is present in the cache. Based on the result, the 
cache manager decides whether to read the data from the SSC or from the backing storage.  

Success scenario: 
The requested data is successfully read from or written to the SSC. 

See also: 
• 7.2.5 NVM.BLOCK.DISCARD_IMMEDIATELY 
• 7.2.6 NVM.BLOCK.EXISTS 
• Ptrim() + Exists(): Exposing New FTL Primitives to Applications, David Nellans, Michael 

Zappe, Jens Axboe, David Flynn, 2011 Non-Volatile Memory Workshop. See: 
http://david.nellans.org/files/NVMW-2011.pdf 

• FlashTier: a Lightweight, Consistent, and Durable Storage Cache, Mohit Saxena, 
Michael M. Swift and Yiying Zhang, University of Wisconsin-Madison. See: 
http://pages.cs.wisc.edu/~swift/papers/eurosys12_flashtier.pdf 
HEC: Improving Endurance of High Performance Flash-based Cache Devices, Jingpei 
Yang, Ned Plasson, Greg Gillis, Nisha Talagala, Swaminathan Sundararaman, Robert 
Wood, Fusion-io, Inc., SYSTOR ’13, June 30 - July 02 2013, Haifa, Israel 

• Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory, Eunji 
Lee, Hyokyung Bahn, and Sam H. Noh. See: 
https://www.usenix.org/system/files/conference/fast13/fast13-final114_0.pdf 

7.4.2 SCAR use case 

Purpose/triggers:  
Demonstrate the use of the SCAR action  

http://david.nellans.org/files/NVMW-2011.pdf
http://pages.cs.wisc.edu/%7Eswift/papers/eurosys12_flashtier.pdf
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Scope/context:  
This generic use case for SCAR involves two processes.  
• The “detect block errors process” detects errors in certain NVM blocks, and uses SCAR to 

communicate to other processes that the contents of these blocks cannot be reliably read, 
but can be safely re-written.  

• The “recover process” sees the error reported as the result of SCAR. If this process can 
regenerate the contents of the block, the application can continue with no error. 

For this use case, the “detect block errors process” is a RAID component doing a background 
scan of NVM blocks. In this case, the NVM is not in a redundant RAID configuration so block 
READ errors can’t be transparently recovered. The “recover process” is a cache component 
using the NVM as a cache for RAID volumes. Upon receipt of the SCAR error on a read, this 
component evaluates whether the block contents also reside on the cached volume; if so, it 
can copy the corresponding volume block to the NVM. This write to NVM will clear the SCAR 
error condition. 

Preconditions: 
The “detect block errors process” detected errors in certain NVM blocks, and used SCAR to 
mark these blocks. 

Success scenario: 
1. The cache manager intercepts a read request from an application 
2. The read request to the NVM cache returns a status indicating the requested blocks 

have been marked by a SCAR action 
3. The cache manager uses an implementation-specific technique and determines the 

blocks marked by a SCAR are also available on the cached volume  
4. The cache manager copies the blocks from the cached volume to the NVM 
5. The cache manager returns the requested block to the application with a status 

indicating the read succeeded 

Postconditions:  
The blocks previously marked with a SCAR action have been repaired. 

Failure Scenario: 
1. In Success Scenario step 3 or 4, the cache manager discovers the corresponding 

blocks on the volume are invalid or cannot be read.  
2. The cache manager returns a status to the application indicating the blocks cannot be 

read. 
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8 NVM.FILE mode 
8.1 Overview 

NVM.FILE mode addresses NVM-specification extensions to native file I/O behavior (the 
approach to I/O used by most applications). Support for NVM.FILE mode requires that the 
NVM solution ought to support all behavior not covered in this section consistently with the 
native operating system behavior for native block devices. 

Figure 10 NVM.FILE mode example 

NVM block capable driver

File system

Application

NVM.BLOCK mode

NVM device NVM device

User space

Kernel space

NVM.FILE mode

 

8.1.1 Discovery and use of atomic write features  
Atomic Write features in NVM.FILE mode are available to block-optimized applications (see 
7.1.4.2 Block-optimized applications). 

8.1.2 The discovery of granularities 
The NVM.FILE mode exposes the same granularity attributes as NVM.BLOCK. 

8.1.3 Relationship between native file APIs and NVM.BLOCK.DISCARD 
NVM.FILE mode does not define specific action that cause TRIM/DISCARD behavior. File 
systems may invoke NVM.BLOCK DISCARD actions when native operating system APIs 
(such as POSIX truncate or Windows SetEndOfFile). 

8.2 Actions 

8.2.1 Actions that apply across multiple modes 
The following actions apply to NVM.FILE mode as well as other modes. 

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1) 
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2) 
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8.2.2 NVM.FILE.ATOMIC_WRITE 
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 8.3.2) is true 

Block-optimized applications may use ATOMIC_WRITE to assure consistent behavior during a 
failure condition. This specification does not specify the order in which this action occurs 
relative to other I/O operations, including other ATOMIC_WRITE and ATOMIC_MULTIWRITE 
actions. This specification does not specify when the data written becomes visible to other 
threads.  

The inputs, outputs, and error conditions are similar to those for 
NVM.BLOCK.ATOMIC_WRITE, but typically the application provides file names and file 
relative block addresses rather than device name and LBA.  

Relevant attributes: 

ATOMIC_WRITE_MAX_DATA_LENGTH 
ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY 
ATOMIC_WRITE_LENGTH_GRANULARITY 
ATOMIC_WRITE_CAPABLE 

8.2.3 NVM.FILE.ATOMIC_MULTIWRITE 
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 8.3.6) is true 

Block-optimized applications may use ATOMIC_MULTIWRITE to assure consistent behavior 
during a failure condition. This action allows a caller to write non-adjacent extents atomically. 
The caller of ATOMIC_MULTIWRITE provides properties defining memory and block extents; 
all of the extents are written as a single atomic operation. This specification does not specify 
the order in which this action occurs relative to other I/O operations, including other 
ATOMIC_WRITE and ATOMIC_MULTIWRITE actions. This specification does not specify 
when the data written becomes visible to other threads. 

The inputs, outputs, and error conditions are similar to those for 
NVM.BLOCK.ATOMIC_MULTIWRITE, but typically the application provides file names and file 
relative block addresses rather than device name and LBA.  

Relevant attributes: 
ATOMIC_MULTIWRITE_MAX_IOS 
ATOMIC_MULTIWRITE_MAX_DATA_LENGTH 
ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY 
ATOMIC_MULTIWRITE_LENGTH_GRANULARITY 
ATOMIC_MULTIWRITE_CAPABLE 
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8.3 Attributes 

Some attributes share behavior with their NVM.BLOCK counterparts. NVM.FILE attributes are 
provided because the actual values may change due to the implementation of the file system. 

8.3.1 Attributes that apply across multiple modes 
The following attributes apply to NVM.FILE mode as well as other modes. 

NVM.COMMON.SUPPORTED_MODES (see 6.12.1) 
NVM.COMMON.FILE_MODE (see 6.12.2) 

8.3.2 NVM.FILE.ATOMIC_WRITE_CAPABLE 
Requirement: mandatory 

This attribute indicates that the implementation is capable of the 
NVM.BLOCK.ATOMIC_WRITE action. 

8.3.3 NVM.FILE.ATOMIC_WRITE_MAX_DATA_LENGTH 
Requirement: mandatory 

ATOMIC_WRITE_MAX_DATA_LENGTH is the maximum length of data that can be 
transferred by an ATOMIC_WRITE action. 

8.3.4 NVM.FILE.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY 
Requirement: mandatory 

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the starting 
memory address for an ATOMIC_WRITE action. Address inputs to ATOMIC_WRITE shall be 
evenly divisible by ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY. 

8.3.5 NVM.FILE.ATOMIC_WRITE_LENGTH_GRANULARITY 
Requirement: mandatory 

ATOMIC_WRITE_LENGTH_GRANULARITY is the granularity of the length of data transferred 
by an ATOMIC_WRITE action. Length inputs to ATOMIC_WRITE shall be evenly divisible by 
ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY. 

8.3.6 NVM.FILE.ATOMIC_MULTIWRITE_CAPABLE 
Requirement: mandatory 

This attribute indicates that the implementation is capable of the 
NVM.FILE.ATOMIC_MULTIWRITE action. 

8.3.7 NVM.FILE.ATOMIC_MULTIWRITE_MAX_IOS 
Requirement: mandatory 
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ATOMIC_MULTIWRITE_MAX_IOS is the maximum length of the number of IOs (i.e., the size 
of the Property Group List) that can be transferred by an ATOMIC_MULTIWRITE action. 

8.3.8 NVM.FILE.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH 
Requirement: mandatory 

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH is the maximum length of data that can be 
transferred by an ATOMIC_MULTIWRITE action. 

8.3.9 NVM.FILE.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY 
Requirement: mandatory 

ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the 
starting address of ATOMIC_MULTIWRITE inputs. Address inputs to ATOMIC_MULTIWRITE 
shall be evenly divisible by ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY. 

8.3.10 NVM.FILE.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY 
Requirement: mandatory 

ATOMIC_MULTIWRITE_LENGTH_GRANULARITY is the granularity of the length of 
ATOMIC_MULTIWRITE inputs. Length inputs to ATOMIC_MULTIWRITE shall be evenly 
divisible by ATOMIC_MULTIWRITE_LENGTH_GRANULARITY. 

8.3.11 NVM.FILE.WRITE_ATOMICITY_UNIT 
See 7.3.11 NVM.BLOCK.WRITE_ATOMICITY_UNIT 

8.3.12 NVM.FILE.LOGICAL_BLOCK_SIZE 
See 7.3.14 NVM.BLOCK.LOGICAL_BLOCK_SIZE 

8.3.13 NVM.FILE. PERFORMANCE_BLOCK_SIZE 
See 7.3.15 NVM.BLOCK.PERFORMANCE_BLOCK_SIZE 

8.3.14 NVM.FILE.LOGICAL_ALLOCATION_SIZE 
See 7.3.16 NVM.BLOCK.ALLOCATION_BLOCK_SIZE  

8.3.15 NVM.FILE.FUNDAMENTAL_BLOCK_SIZE 
See 7.3.20 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 

8.4 Use cases 

8.4.1 Block-optimized application updates record 
Update a record in a file without using a memory-mapped file 
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Purpose/triggers: 
An application using block NVM updates an existing record. The application requests that the 
file system bypass cache; the application conforms to native API requirements when 
bypassing cache – this may mean that read and write actions must use multiples of a page 
cache size. For simplicity, this application uses fixed size records. The record size is defined 
by application data considerations, not disk or page block sizes. The application factors in the 
PERFORMANCE_BLOCK_SIZE granularity to avoid device-side inefficiencies such as 
read/modify/write. 

Scope/context:  
Block NVM context; this shows basic behavior.  

Preconditions: 
- The administrator created a file and provided its name to the application; this name is 
accessible to the application – perhaps in a configuration file 
- The application has populated the contents of this file 
- The file is not in use at the start of this use case (no sharing considerations) 

Inputs: 
The content of the record, the location (relative to the file) where the record resides  

Success scenario:  
1) The application uses the native OPEN action, passing in the file name and specifying 

appropriate options to bypass the file system cache 
2) The application acquires the device’s optimal I/O granule size by using the 

GET_ATTRIBUTE action for the PERFORMANCE_BLOCK_SIZE. 
3) The application allocates sufficient memory to contain all of the blocks occupied by the 

record to be updated. 
a. The application determines the offset within the starting block of the record and uses 

the length of the block to determine the number of partial blocks.  
b. The application allocates sufficient memory for the record plus enough additional 

memory to accommodative any partial blocks.  
c. If necessary, the memory size is increased to assure that the starting address and 

length read and write actions are multiples of PERFORMANCE_BLOCK_SIZE. 
4) The application uses the native READ action to read the record by specifying the starting 

disk address and the length (the same length as the allocated memory buffer). The 
application also provides the allocated memory address; this is where the read action will 
put the record. 

5) The application updates the record in the memory buffer per the inputs 
6) The application uses the native write action to write the updated block(s) to the same disk 

location they were read from.  
7) The application uses the native file SYNC action to assure the updated blocks are written to 

the persistence domain 
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8) The application uses the native CLOSE action to clean up. 

Failure Scenario 1:  
The native read action reports a hardware error. If the unreadable block corresponds to blocks 
being updated, the application may attempt recovery (write/read/verify), or preventative 
maintenance (scar the unreadable blocks). If the unreadable blocks are needed for a 
read/modify/write update and the application lacks an alternate source; the application may 
inform the user that an unrecoverable hardware error has occurred. 

Failure Scenario 2: 
The native write action reports a hardware error. The application may be able to recover by 
rewriting the block. If the rewrite fails, the application may be able to scar the bad block and 
write to a different location. 

Postconditions: 
The record is updated. 

8.4.2 Atomic write use case 

Purpose/triggers: 
Used by a block-optimized application (see Block-optimized applications) striving for durability 
of on-disk data 

Scope/context:  
Assure a record is written to disk in a way that torn writes can be detected and rolled back (if 
necessary). If the device supports atomic writes, they will be used. If not, a double write buffer 
is used. 

Preconditions: 
The application has taken steps (based on NVM.BLOCK attributes) to assure the record being 
written has an optimal memory starting address, starting disk LBA and length. 

Success scenario: 
• Use GET_ATTRIBUTE to determine whether the device is ATOMIC_WRITE_CAPABLE 

(or ATOMIC_MULTIWRITE_CAPABLE) 
• Is so, use the appropriate atomic write action to write the record to NVM 
• If the device does not support atomic write, then 

o Write the page to the double write buffer 
o Wait for the write to complete 
o Write the page to the final destination 

• At application startup, if the device does not support atomic write 
• Scan the double write buffer and for each valid page in the buffer check if the page 

in the data file is valid too. 
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Postconditions:  
After application startup recovery steps, there are no inconsistent records on disk after a failure 
caused the application (and possibly system) to restart. 

8.4.3 Block and File Transaction Logging 

Purpose/Triggers:  
An application developer wishes to implement a transaction log that maintains data integrity 
through system crashes, system resets, and power failures. The underlying storage is block-
granular, although it may be accessed via a file system that simulates byte-granular access to 
files. 

Scope/Context:  
NVM.BLOCK or NVM.FILE (all the NVM.BLOCK attributes mentioned in the use case are also 
defined for NVM.FILE mode). 

For notational convenience, this use case will use the term “file” to apply to either a file in the 
conventional sense which is accessed through the NVM.FILE interface, or a specific subset of 
blocks residing on a block device which are accessed through the NVM.BLOCK interface.  

Inputs: 
•  A set of changes to the persistent state to be applied as a single transaction. 
• The data and log files. 

Outputs:  
• An indication of transaction commit or abort 

Postconditions:  
• If an abort indication was returned, the data was not committed and the previous 

contents have not been modified. 
• If a commit indication was returned, the data has been entirely committed. 
• After a system crash, reset, or power failure followed by system restart and execution of 

the application transaction recovery process, the data has either been entirely 
committed or the previous contents have not been modified. 

Success Scenario:  
The application transaction logic uses a log file in combination with its data file to atomically 
update the persistent state of the application. The log may implement a before-image log or a 
write-ahead log. The application transaction logic should configure itself to handle torn or 
interrupted writes to the log or data files.  

8.4.3.1 NVM.BLOCK.WRITE_ATOMICITY_UNIT >= 1 
If the NVM.BLOCK.WRITE_ATOMICITY_UNIT is one or greater, then writes of a single logical 
block cannot be torn or interrupted. 
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In this case, if the log or data record size is less than or equal to the 
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application need not handle torn or interrupted 
writes to the log or data files.  

If the log or data record size is greater than the NVM.BLOCK.LOGICAL_BLOCK_SIZE, the 
application should be prepared to detect a torn write of the record and either discard or recover 
such a torn record during the recovery process. One common way of detecting such a torn 
write is for the application to compute hash of the record and record the hash in the record. 
Upon reading the record, the application re-computes the hash and compares it with the 
recorded hash; if they do not match, the record has been torn. Another method is for the 
application to insert the transaction identifier within each logical block. Upon reading the 
record, the application compares the transaction identifiers in each logical block; if they do not 
match, the record has been torn. Another method is for the application to use the 
NVM.BLOCK.ATOMIC_WRITE action to perform the writes of the record. 

8.4.3.2 NVM.BLOCK.WRITE_ATOMICITY_UNIT = 0 
If the NVM.BLOCK.WRITE_ATOMICITY_UNIT is zero, then writes of a single logical block can 
be torn or interrupted and the application should handle torn or interrupted writes to the log or 
data files. 

In this case, if a logical block were to contain data from more than one log or data record, a 
torn or interrupted write could corrupt a previously-written record. To prevent propagating an 
error beyond the record currently being written, the application aligns the log or data records 
with the NVM.BLOCK.LOGICAL_BLOCK_SIZE and pads the record size to be an integral 
multiple of NVM.BLOCK.LOGICAL_BLOCK_SIZE. This prevents more than one record from 
residing in the same logical block and therefore a torn or interrupted write may only corrupt the 
record being written.  

8.4.3.2.1 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE >= 
NVM.BLOCK.LOGICAL_BLOCK_SIZE 

If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is greater than or equal to the 
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application should be prepared to handle an 
interrupted write. An interrupted write results when the write of a single 
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit is interrupted by a system crash, system 
reset, or power failure. As a result of an interrupted write, the NVM device may return an error 
when any of the logical blocks comprising the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 
unit are read. (See also SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html.) 
This presents a danger to the integrity of previously written records that, while residing in 
differing logical blocks, share the same fundamental block. An interrupted write may prevent 
the reading of those previously written records in addition to preventing the read of the record 
in the process of being written. 

One common way of protecting previously written records from damage due to an interrupted 
write is to align the log or data records with the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 
and pad the record size to be an integral multiple of 
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE. This prevents more than one record from 

http://www.sqlite.org/psow.html
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residing in the same fundamental block. The application should be prepared to discard or 
recover the record if the NVM device returns an error when subsequently reading the record 
during the recovery process. 

8.4.3.2.2 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE < 
NVM.BLOCK.LOGICAL_BLOCK_SIZE 

If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is less than the 
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application should be prepared to handle both 
interrupted writes and torn writes within a logical block. 

 As a result of an interrupted write, the NVM device may return an error when the logical block 
containing the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit which was being written at 
the time of the system crash, system reset, or power failure is subsequently read. The 
application should be prepared to discard or recover the record in the logical block if the NVM 
device returns an error when subsequently reading the logical block during the recovery 
process. 

A torn write results when an integral number of NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 
units are written to the NVM device but the entire NVM.BLOCK.LOGICAL_BLOCK_SIZE has 
not been written. In this case, the NVM device may not return an error when the logical block is 
read. The application should therefore be prepared to detect a torn write of a logical block and 
either discard or recover such a torn record during the recovery process. One common way of 
detecting such a torn write is for the application to compute a hash of the record and record the 
hash in the record. Upon reading the record, the application re-computes the hash and 
compares it with the recorded hash; if they do not match, a logical block within the record has 
been torn. Another method is for the application to insert the transaction identifier within each 
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit. Upon reading the record, the application 
compares the transaction identifiers in each NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 
unit; if they do not match, the logical block has been torn. 

8.4.3.2.3 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE = 0 
If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is zero, the application lacks sufficient 
information to handle torn or interrupted writes to the log or data files. 

Failure Scenarios:  
Consider the recovery of an error resulting from an interrupted write on a device where the 
NVM.BLOCK.WRITE_ATOMICITY_UNIT is zero. This error may be persistent and may be 
returned whenever the affected block is read. To repair this error, the application should be 
prepared to overwrite such a block.  

One common way of ensuring that the application will overwrite a block is by assigning it to the 
set of internal free space managed by the application, which is never read and is available to 
be allocated and overwritten at some point in the future. For example, the block may be part of 
a circular log. If the block is marked as free, the transaction log logic will eventually allocate 
and overwrite that block as records are written to the log.  
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Another common way is to record either a before-image or after-image of a data block in a log. 
During recovery after a system crash, system reset, or power failure, the application replays 
the records in the log and overwrites the data block with either the before-image contents or 
the after-image contents.  

See also: 
• SQLite.org, Atomic Commit in SQLite, http://www.sqlite.org/atomiccommit.html 
• SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html 
• SQLite.org, Write-Ahead Logging, http://www.sqlite.org/wal.html 

http://www.sqlite.org/atomiccommit.html
http://www.sqlite.org/psow.html
http://www.sqlite.org/wal.html
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9 NVM.PM.VOLUME mode 

9.1 Overview  

NVM.PM.VOLUME mode describes the behavior to be consumed by operating system 
abstractions such as file systems or pseudo-block devices that build their functionality by 
directly accessing persistent memory. NVM.PM.VOLUME mode provides a software 
abstraction (a PM volume) for persistent memory hardware and profiles functionality for 
operating system components including: 

• list of physical address ranges associated with each PM volume 
 

The PM volume provides memory mapped capability in a fashion that traditional CPU load and 
store operations are possible. This PM volume may be provided via the memory channel of the 
CPU or via a PCIe memory mapping or other methods. Note that there should not be a 
requirement for an operating system context switch for access to the PM volume. 

Figure 11 NVM.PM.VOLUME mode example 

PM  Device PM  Device PM  Device. . .

Load/store

User space

Kernel space

GET_RANGESET, ...

PM-aware kernel component

NVM PM capable driver

NVM.PM.VOLUME mode

 

9.2 Actions 

9.2.1 Actions that apply across multiple modes 
The following actions apply to NVM.PM.VOLUME mode as well as other modes.  

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1) 
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2) 

9.2.2 NVM.PM.VOLUME.GET_RANGESET 
Requirement: mandatory 
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The purpose of this action is to return a set of processor physical address ranges (and relate 
properties) representing all of the content for the identified volume. 

When interpreting the set of physical addresses as a contiguous, logical address range; the 
data underlying that logical address range will always be the same and in the same sequence 
across PM volume instantiations. 

Due to physical memory reconfiguration, the number and sizes of ranges may change in 
successive get ranges calls, however the total number of bytes in the sum of the ranges does 
not change, and the order of the bytes spanning all of the ranges does not change. The space 
defined by the list of ranges can always be addressed relative to a single base which 
represents the beginning of the first range. 

Input: a reference to the PM volume 

Returns a Property Group List (see 4.4.5) where the properties are: 

• starting physical address (byte address) 
• length (in bytes) 
• connection type – see below 
• sync type – see below 

For this revision of the specification, the following values (in text) are valid for connection type: 

• “memory”: for persistent memory attached to a system memory channel 
• “PCIe”: for persistent memory attached to a PCIe extension bus 

For this revision of the specification, the following values (in text) are valid for sync type: 

• “none”: no device-specific sync behavior is available – implies no entry to 
NVM.PM.VOLUME implementation is required for flushing 

• “VIRTUAL_ADDRESS_SYNC”: the caller needs to use VIRTUAL_ADDRESS_SYNC (see 
9.2.3) to assure sync is durable 

• “PHYSICAL_ADDRESS_SYNC”: the caller needs to use PHYSICAL_ADDRESS_SYNC 
(see 9.2.4) to assure sync is durable 

9.2.3 NVM.PM.VOLUME.VIRTUAL_ADDRESS_SYNC 
Requirement: optional 

The purpose of this action is to invoke device-specific actions to synchronize persistent 
memory content to assure durability and enable recovery by forcing data to reach the 
persistence domain. VIRTUAL_ADDRESS_SYNC is used by a caller that knows the 
addresses in the input range are virtual memory addresses.  

Input: virtual address and length (range) 

See also: PHYSICAL_ADDRESS_SYNC 
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9.2.4 NVM.PM.VOLUME.PHYSICAL_ADDRESS_SYNC 
Requirement: optional 

The purpose of this action is to synchronize persistent memory content to assure durability and 
enable recovery by forcing data to reach the persistence domain. This action is used by a 
caller that knows the addresses in the input range are physical memory addresses. 

See also: VIRTUAL_ADDRESS_SYNC 

Input: physical address and length (range) 

9.2.5 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN 
Requirement: mandatory if DISCARD_IF_YOU_CAN_CAPABLE (see 9.3.6) is true 

This action notifies the NVM device that the input range (volume offset and length) are no 
longer needed by the caller. This action may not result in any action by the device, depending 
on the implementation and the internal state of the device. This action is meant to allow the 
underlying device to optimize the data stored within the range. For example, the device can 
use this information in support of functionality like thin provisioning or wear-leveling. 

Inputs: a range of addresses (starting address and length in bytes). The address shall be a 
logical memory address offset from the beginning of the volume. 

Status: Success indicates the request is accepted but not necessarily acted upon.  

9.2.6 NVM.PM.VOLUME.DISCARD_IMMEDIATELY 
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 9.3.7) is true 

This action notifies the NVM device that the input range (volume offset and length) are no 
longer needed by the caller. Similar to DISCARD_IF_YOU_CAN, but the implementation is 
required to unmap the range before the next READ or WRITE action, even if garbage 
collection of the range has not occurred yet. 

Inputs: a range of addresses (starting address and length in bytes). The address shall be a 
logical memory address offset from the beginning of the volume. 

The values returned by subsequent read operations are specified by the 
DISCARD_IMMEDIATELY_RETURNS (see 9.3.8) attribute. 

Status: Success indicates the request is completed. 

9.2.7 NVM.PM.VOLUME.EXISTS 
Requirement: mandatory if EXISTS_CAPABLE (see9.3.9) is true 

A PM device may allocate storage through a thin provisioning mechanism or one of the discard 
actions. As a result, memory can exist in one of three states:  
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• Mapped: the range has had data written to it  
• Unmapped: the range has not been written, and there is no memory allocated 
• Allocated: the range has not been written, but has memory allocated to it  

The EXISTS action allows the NVM user to determine if a range of bytes has been allocated. 

Inputs: a range of bytes (starting byte address and length in bytes) 

Output: a Property Group List (see 4.4.5) where the properties are the starting address, length 
and state. State is a string equal to “mapped”, “unmapped”, or “allocated”. 

Result: the status of the action 

9.3 Attributes 

9.3.1 Attributes that apply across multiple modes 
The following attributes apply to NVM.PM.VOLUME mode as well as other modes. 
NVM.COMMON.SUPPORTED_MODES (see 6.12.1) 
 
9.3.2 NVM.PM.VOLUME.VOLUME_SIZE 
Requirement: mandatory 

VOLUME_SIZE is the volume size in units of bytes. This shall be the same as the sum of the 
lengths of the ranges returned by the GET_RANGESETS action. 

9.3.3 NVM.PM.VOLUME.INTERRUPTED_STORE_ATOMICITY 
Requirement: mandatory 

INTERRUPTED_STORE_ATOMICITY indicates whether the device supports power fail 
atomicity of store actions.  

A value of true indicates that after a store interrupted by reset, power loss or system crash; 
upon restart the contents of persistent memory reflect either the state before the store or the 
state after the completed store. A value of false indicates that after a store interrupted by reset, 
power loss or system crash, upon restart the contents of memory may be such that 
subsequent loads may create exceptions depending on the value of the 
FUNDAMENTAL_ERROR_RANGE attribute (see 9.3.4). 

9.3.4 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE 
Requirement: mandatory 

FUNDAMENTAL_ERROR_RANGE is the number of bytes that may become unavailable due 
to an error on an NVM device. 

This attribute is relevant when the device does not support write atomicity. 
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A zero value means that the device is unable to provide a guarantee on the number of 
adjacent bytes impacted by an error. 

A caller may organize data in terms of FUNDAMENTAL_ERROR_RANGE to avoid certain torn 
write behavior.  

9.3.5 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE_OFFSET 
Requirement: mandatory 

The number of bytes offset from the beginning of a volume range (as returned by 
GET_RANGESET) before FUNDAMENTAL_ERROR_RANGE_SIZE intervals apply. 

A fundamental error range is not required to start at a byte address evenly divisible by 
FUNDAMENTAL_ERROR_RANGE. FUNDAMENTAL_ERROR_RANGE_OFFSET shall be set 
to the difference between the starting byte address of a fundamental error range rounded 
down to a multiple of FUNDAMENTAL_ERROR_RANGE.  

Figure 12 Zero range offset example depicts an implementation where fundamental error 
ranges start at bye address zero; the implementation shall return zero for 
FUNDAMENTAL_ERROR_RANGE_OFFSET.  

Figure 12 Zero range offset example 
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Figure 13 Non-zero range offset example depicts an implementation where fundamental error 
ranges start at a non-zero offset; the implementation shall return the difference between the 
starting byte address of a fundamental error range rounded down to a multiple of 
FUNDAMENTAL_ERROR_RANGE. 

Figure 13 Non-zero range offset example 
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9.3.6 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN_CAPABLE 
Requirement: mandatory 

Returns true if the implementation supports DISCARD_IF_YOU_CAN. 
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9.3.7 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_CAPABLE 
Requirement: mandatory 

Returns true if the implementation supports DISCARD_IMMEDIATELY. 

9.3.8 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_RETURNS 
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 9.3.7) is true 

The value returned from read operations to bytes specified by a DISCARD_IMMEDIATELY 
action with no subsequent write operations. The possible values are: 

• A value that is returned to each load of bytes in an unmapped range until the next store 
action 

• Unspecified 

9.3.9 NVM.PM.VOLUME.EXISTS_CAPABLE 
Requirement: mandatory 

This attribute indicates that the implementation is capable of the NVM.PM.VOLUME.EXISTS 
action. 

9.4 Use cases 

9.4.1 Initialization steps for a PM-aware file system  

Purpose/triggers:  
Steps taken by a file system when a PM-aware volume is attached to a PM volume.  

Scope/context:  
NVM.PM.VOLUME mode 

Preconditions: 
• The administrator has defined a PM volume 
• The administrator has completed one-time steps to create a file system on the PM 

volume 

Inputs: 
• A reference to a PM volume 
• The name of a PM file system 

Success scenario: 
1. The file system issues a GET_RANGESET action to retrieve information about the 

ranges comprised by the PM volume.  
2. The file system uses the range information from GET_RANGESET to determine 

physical address range(s) and offset(s) of the file system’s primary metadata (for 
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example, the primary superblock), then loads appropriate metadata to determine no 
additional validity checking is needed. 

3. The file system sets a flag in the metadata indicating the file system is mounted by 
storing the updated status to the appropriate location 

a. If the range containing this location requires VIRTUAL_ADDRESS_SYNC or 
PHYSICAL_ADDRESS_SYNC is needed (based on GET_RANGESET’s sync 
mode property), the file system invokes the appropriate SYNC action  

Postconditions:  
The file system is usable by applications. 

9.4.2  Driver emulates a block device using PM media  

Purpose/triggers:  
The steps supporting an application write action from a driver that emulates a block device 
using PM as media.  

Scope/context:  
NVM.PM.VOLUME mode 

Preconditions: 
PM layer FUNDAMENTAL_SIZE reported to driver is cache line size.  

Inputs:  
The application provides: 

• the starting address of the memory (could be volatile) memory containing the data to 
write 

• the length of the memory range to be written,  
• an OS-specific reference to a block device (the virtual device backed by the PM 

volume),  
• the starting LBA within that block device 

Success scenario: 
1. The driver registers with the OS-specific component to be notified of errors on the PM 

volume. PM error handling is outside the scope of this specification, but may be similar to 
what is described in (and above) Figure 15 Linux Machine Check error flow with proposed 
new interface. 

2. Using information from a GET_RANGESET response, the driver splits the write operating 
into separate pieces if the target PM addresses (corresponding to application target LBAs) 
are in different ranges with different “sync type” values. For each of these pieces: 
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a. Using information from a GET_RANGESET response, the driver determines the PM 
memory address corresponding to the input starting LBA, and performs a memory 
copy operation from the callers input memory to the PM  

b. The driver then performs a platform-specific flush operation  
c. Using information from a GET_RANGESET response, the driver invokes the 

PHYSICAL_ADDRESS_SYNC or VIRTUAL_ADDRESS_SYNC action as needed 
3. No PM errors are reported by the PM error component, the driver reports that the write 

action succeeded. 

Alternative Scenario 1: 
In step 3 in the Success Scenario, the PM error component reports a PM error. The driver 
verifies that this error impacts the PM range being written and returns an error to the caller. 

Postconditions:  
The target PM range (i.e., the block device LBA range) is updated. 

See also: 
4.2.4 NVM block volume using PM hardware 
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10 NVM.PM.FILE 
10.1 Overview 

The NVM.PM.FILE mode access provides a means for user space applications to directly 
access NVM as memory. Most of the standard actions in this mode are intended to be 
implemented as APIs exported by existing file systems. An NVM.PM.FILE implementation 
behaves similarly to preexisting file system implementations, with minor exceptions. This 
section defines extensions to the file system implementation to accommodate persistent 
memory mapping and to assure interoperability with NVM.PM.FILE mode applications.  

Figure 14 NVM.PM.FILE mode example shows the context surrounding the point in a system 
(the red, wavy line) where the NVM.PM.FILE mode programming model is exposed by a PM-
aware file system. A user space application consumes the programming model as is typical for 
current file systems. This example is not intended to preclude the possibility of a user space 
PM-aware file system implementation. It does, however presume that direct load/store access 
from user space occurs within a memory-mapped file context. The PM-aware file system 
interacts with an NVM PM capable driver to achieve any non-direct-access actions needed to 
discover or configure NVM. The PM-aware file system may access NVM devices for purposes 
such as file allocation, free space or other metadata management. The PM-aware file system 
manages additional metadata that describes the mapping of NVM device memory locations 
directly into user space. 
Figure 14 NVM.PM.FILE mode example 
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Once memory mapping occurs, the behavior of the NVM.PM.FILE mode diverges from 
NVM.FILE mode because accesses to mapped memory are in the persistence domain as soon 
as they reach memory. This is represented in Figure 14 NVM.PM.FILE mode example by the 
arrow that passes through the “MMU Mappings” extension of the file system. As a result of 
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persistent memory mapping, primitive ACID properties arise from CPU and memory 
infrastructure behavior as opposed to disk drive or traditional SSD behavior. Note that writes 
may still be retained within processor resident caches or memory controller buffers before they 
reach a persistence domain. As with NMV.FILE.SYNC, the possibility remains that memory 
mapped writes may become persistent before a corresponding NVM.PM.FILE.SYNC action.  

The following actions have behaviors specific to the NVM.PM.FILE mode: 

NVM.PM.FILE.MAP – Add a subset of a PM file to application's address space for 
load/store access. 

NVM.PM.FILE.SYNC – Synchronize persistent memory content to assure durability and 
enable recovery by forcing data to reach the persistence domain. 

10.1.1 Applications and PM Consistency 
Applications (either directly or using services of a library) rely on CPU and kernel tools to 
achieve consistency of data in PM. These tools cause PM to exhibit certain data consistency 
properties enabling applications to operate correctly: 

• PM is usable as volatile (not just persistent) memory 
• Data residing in PM is consistent and durable even after a failure 

Consistency is defined relative to the application’s objectives and design. For example, an 
application can utilize a write-ahead log (see SQLite.org, Write-Ahead Logging, 
http://www.sqlite.org/wal.html); when the application starts, recovery logic uses the write-ahead 
log to determine whether store operations completed and modifies data to achieve 
consistency. Similarly, durability objectives vary with applications. For database software, 
durability typically means that once a transaction has been committed it will remain so, even in 
the event of unexpected restarts. Other applications use a checkpoint mechanism other than 
transactions to define durable data states.  

When persistence behavior is ignored, memory-mapped PM is expected to operate like volatile 
memory. Compiled code without durability expectations is expected to continue to run 
correctly.  

This includes the following: 

• Accessible through load, store, and atomic read/modify/write instructions 
• Subject to existing processor cache coherency and “uncacheable” models 

(uncacheable models do not require a cache flush instruction to assure data is 
written to memory) 

• Load, store, and atomic read/modify/write instructions retain their current semantics 
o Even when accessed from multiple threads 
o Even if locks or lock-protected data live in PM 

• Able to use existing code (e.g., sort function) on PM data 
• Applies for all data producers: CPU and, where relevant, I/O  
• “Execute In Place” capability 
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• Supports pointers to PM data structures 

At the implementation level, the behavior for fence instructions in libraries and thread visibility 
behavior is the same for data in PM as for data in volatile memory. 

Two properties assure data is consistent and durable even after failures: 

• Atomicity: some stores can’t be partly visible even after a failure 
• Strict write ordering 

EXAMPLE - This is a pseudo C language example of atomicity and strict ordering. In this 
example, msync implements NVM.PM.FILE.SYNC: 

// a, a_end in PM 
a[0] = foo(); 
msync(&(a[0]), …); 
a_end = 0; 
msync(&a_end, …); 
. . . 
n = a_end + 1; 
a[n] = foo(); 
msync(&(a[n]), …); 
a_end = n; 
msync(&a_end, …); 

For correctness of this example, the following assertions apply: 

• a[0 .. a_end] always contains valid data, even after a failure in this code. 
• a_end is written atomically to PM, so that the second store to a_end occurs no earlier than 

the store to a[n]. 

To achieve failure atomicity, aligned stores of fundamental data types (see 6.10) reach PM 
atomically. After a failure (allowed by the failure model), each such store is fully reflected in the 
resulting PM state or not at all. 

At least two facilities are useful to achieve strict ordering: 
• msync: Wait for all writes in a range to complete 
• optimization using an intra-cache-line ordering guarantee. 

To elaborate on these, msync(address_range) ensures that if any effects from code 
following the call are visible, then so are all stores to address_range (from any thread) which 
precede the call to msync .  

With intra-cache-line ordering, thread-ordered stores to a single cache line become visible in 
PM in the order in which they are issued. The term “thread-ordered” refers to certain stores 
that are already known in today’s implementations to reach coherent cache in order, such as: 

• x86 MOV 
• some C11, C++11 atomic stores 
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• Java & C# volatile stores. 
 
The CPU core and compiler do not reorder these. Within a single cache line, this order is 
normally preserved when the lines are evicted to PM. This last point is a critical consideration 
as the preservation of thread-ordered stores during eviction to PM is sometimes not 
guaranteed. 

10.1.2 PM Error Handling 
With traditional storage, applications access persistent data via read and write system calls 
that traverse the operating system’s IO stack and driver subsystem.  In contrast, applications 
accessing memory-mapped persistent data via NVM.PM.FILE.MAP do so via regular CPU 
loads and stores.  Unlike applications that explicitly invoke the operating system via read() and 
write() calls, the OS is not explicitly involved in storage IOs to memory-mapped persistent 
memory.  This difference in software architecture enables persistent-memory-based 
applications to avoid the overhead imposed by IO and driver processing, but it also implies 
some significant differences in the mechanics of error processing associated with IOs.  This 
section reviews the error-handling mechanisms that exist for traditional storage, reviews the 
mechanisms that exist for memory generally, and describes the application-level mechanisms 
that an application can use to achieve similar error-handling semantics on persistent memory-
based storage. 

When a data error occurs, there are three properties to consider.  The first property to consider 
is instruction precision.  Instruction precision refers to whether the error, as detected and 
reported, is precise with respect to the application instruction that generated the erroneous 
IO.  When an error is instruction-precise, that means that the error is reported before the 
application could continue on to the immediate next instruction after the IO.  When an error is 
imprecise, this means that error is delivered to the application some time after the 
corresponding IO was issued by the application.  Thus, when an imprecise error is delivered to 
an application, the application's state may have changed since the issuance of the IO that 
caused the error. 

The second property of data errors to consider is that of data containment.  When an IO error 
is detected, any corrective action may depend on the ability to know what data has been 
lost.  The granularity of data containment likely depends on the error detection and reporting 
capabilities of the host platform and upon the platform software, which may increase the 
granularity according to the platform software’s requirements. 

The third property to consider is whether the platform supports live reporting of memory errors, 
or whether instead the platform requires a machine restart to report errors.  It is possible that 
the platform supports both precision and data-containment, but does not support live-reporting 
of memory errors.  In such a scenario, the application does not make forward progress past 
the faulting instruction and is therefore precise.  The error, however, would be discovered 
during application restart rather than when the application had originally caused or 
encountered an error. 

The properties of an error determine the type of response an application can 



 

NVM Programming Model (NPM)  Working Draft 63 
Version 1.12a 

execute.  Broadly, there are two types of responses to an error:  real-time recovery, and 
application restart with crash recovery.  In a real-time recovery scenario, an application can 
recover from an error without backtracking and without losing any in-flight state.  In a restart-
with-crash-recovery scenario, the application is forced to validate storage state and restart its 
processing from some known, good state.  This means that state and processing subsequent 
to the errant instruction must be discarded.  Crash recovery is usually achieved via journaling 
or logging techniques. 

Data IO errors may be in some combination of the instruction-precision,  data-contained, and 
live-reporting properties.  Instruction-precise, data-contained, live-reported errors are by their 
nature real-time recoverable.  In this case, the instruction generating an error-inducing IO 
receives a fault indication and the faulting data region corresponding to the IO is 
known.  Notably, only instruction-precise, data-contained, live-reported errors are real-time 
recoverable.  Any other kind of error (imprecise, or precise and data-uncontained) will require 
that the application restart. 

10.1.2.1 Error handling with traditional storage 
 

The traditional read/write system-call based IO abstraction can experience any combination of 
the instruction-precise, data-contained errors.  If the OS detects an error in the course of 
servicing a read or write, it is reported as an error precisely at the point where the read or write 
was issued.  Further, the storage extent associated with the failure is explicitly known, since it 
was the argument to the system call.  Thus, the data failure is contained. 

For reads, this means that the program receives an error notification immediately where the 
error-inducing read was issued.  The program can handle that error immediately, potentially by 
using a data replica on a different datastore.  The program can then resume as it would have if 
the read was successful.  Thus, reads always have the properties of instruction precision and 
data containment. 

For unbuffered writes, only a subset of errors can be reported in an instruction-precise, data-
contained manner.  (Buffered writes are not considered here, since portions of software tasked 
with maintaining consistency points on persistent media must use unbuffered writes to be 
assured the operating system is not buffering the data).  Unbuffered write errors that are 
detected by the storage hardware will be interpreted by the driver, potentially retried, and if 
failure persists, the error will be reported to the application.  However, an unbuffered write 
operation alone is insufficient to ensure that data has become durable on the media (ie, all 
associated caching has been flushed) and that there have been no silent media errors.  In 
these cases, any associated errors are not surfaced at the time of the unbuffered write 
operation.  Instead, such errors are only surfaced to the application in a subsequent 
synchronization and read operation.  Just as with any other read, an error reported at that time 
is instruction-precise and data-contained with respect to the read operation.  But, since the 
error was not detected during the unbuffered write, the error is not precise with respect to the 
originating write operation. The application will be forced to backtrack or initiate its crash-
recovery algorithm.  Note, however, that because the error is precise with respect to the 
verifying read operation, the application can backtrack with local context information about 
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where exactly the error was detected.  Because verifying every unbuffered write operation 
carries a significant performance penalty, writes are usually only verified when an application 
intends to transition to new, crash-consistent state (such as completion of a journal, log 
update, or some other consistency point).  Thus, recovery would usually happen by resuming 
at the previous consistency point boundary. 

 Both the precise and imprecise error scenarios may also be data-uncontained.  For traditional 
storage, this typically involves a catastrophic failure, such as a cable disconnection, power 
loss, or serious media failure.  Such errors can be encountered during the course of an IO, but 
an application must use an administrative interface to the OS in order to classify the error and 
attempt a crash recovery.  Further, the ability to recover from this kind of crash depends 
entirely on the resilience of the application and the redundancy it uses when storing data. 

10.1.2.2 Error-handling with memory 
 

Because errors related to persistent memory are propagated and handled just as any other 
memory error, applications that use persistent memory must leverage memory-error facilities 
rather than traditional storage-error processing.  Thus, it is important to understand how 
memory-error processing works, what its limitations are, and how a host’s specific capabilities 
may affect the error-handling capability of an application. 

Whereas storage errors may be detected by IO controller hardware or by intermediary IO issue 
and completion software in an operating system, memory errors are communicated directly 
from a memory controller to a CPU.  The properties of the error reporting and recovery 
scenarios supported within a memory system vary greatly among different processor 
architectures.  Further, vendors supporting the same instruction set may support different 
error-reporting and error-recovery features depending on the class (e.g., enterprise versus 
consumer) of processor. 

 

As with storage errors, the host memory-error reporting and recovery capabilities that 
determine application recovery scenarios include instruction precision and data containment.  
Unlike storage errors, some hosts may simply crash with an unhandled exception upon 
detection of a memory error.  Other hosts may not have error-detection capabilities at all, 
resulting in propagation of memory corruption and eventually datastore corruption. 

 

Similar to the case where an IO controller might report an error condition to driver software, 
memory errors are reported via a hardware exception to a CPU.  Hardware exceptions are 
processed by the operating system.  Memory errors may be propagated to applications via an 
error signal (typically SIGBUS on POSIX systems).  Depending on the host’s error-handling 
capabilities and the features of the host’s memory system, the operating system may be able 
to service the exception immediately, or the operating system may be able to service the 
exception after a forced reboot (i.e., after a crash). 
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10.1.2.3 Application support for memory errors 
 

Applications that require the capability to handle memory errors must have some mechanism 
for detecting the host’s capability to support memory errors.  Typically, applications do not 
support memory error handling for volatile memory.  In such a case, the consistency of the 
data that the application generates is assured by organizing commits of data records at 
consistency points to some nonvolatile location, and then replay updates or roll back 
incomplete updates upon an application restart, depending upon how the application is 
organized.  Applications using persistent memory, however, likely require some mechanism to 
determine if an error occurs when attempting to create a consistency point, since the 
nonvolatile location is now in memory.  These applications also require the ability to handle an 
error when it occurs.  But an application’s ability to respond to memory errors depends on the 
following properties of the host and its operating system: 

Memory error exception support Required for crash consistency.  
Without this, data corruption in the form 
of a failed consistency point cannot be 
detected upon restart.  This refers to 
the “.MINIMAL” capability reported by 
ERROR_EVENT capabilities. 

Precise memory exception support Required for live resumption from 
errors.  Without this, an application 
must restart to determine the last valid 
consistency point and reload using that 
state.  This refers to the “.PRECISE” 
capability reported by ERROR_EVENT 
capabilities.  Platforms that support 
precise memory exceptions may still 
also experience imprecise failures in 
the case of catastrophic system failure, 
which must be detected by software via 
administrative means.  See the 
PRECISE capability definition for more 
information. 

Granularity of error containment Determines how much data could be in 
an unknown/bad state.  Applications 
should use this for constructing the 
grain of consistency points.  This refers 
to the .ERROR_UNIT property reported 
by ERROR_EVENT capabilities. 

Live exception handling capability Determines whether a host must restart 
to handle an exception.  If this property 
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is present, an application may be able 
to backtrack with local context rather 
than perform a full application restart.  
This refers to the .LIVE_SUPPORT 
capability reported by ERROR_EVENT 
capabilities. 

 

The NVM programming model provides a mechanism to get the error information, and 
standard memory-fault capabilities provide an application the ability to install a signal handler 
in response to a memory exception.   Given a host that supports precise memory exceptions, 
an application can create consistency points by performing an NVM.PM.FILE.SYNC (or 
OPTIMIZED_FLUSH) operation followed by an immediate load of the data, or by using 
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY (if available). 

If an application’s platform supports live resumption of a precise memory error, the application 
may find it desirable to resume from the point of the fault rather than discard all program state 
and fully restart from the previous consistency point.  Note, however, that because signal 
handlers are global in scope rather than local, some additional application logic is required to 
handle a memory error in a live fashion.  This is different than traditional IO, where handling an 
IO fault can be done inline and with local application context information.  This is possible with 
traditional IO because IO faults are conveyed by an explicit return value that is checkable by 
application software.  In contrast, an application that handles memory errors does so in a 
global context via a SIGBUS handler.  To get any local context about the instruction stream 
and program state that generated the error, that global SIGBUS handler will need some 
coordination with the specific context or state of the application that generated the error.  
Section 10.4.2 (Direct load access) demonstrates how one might build local-context error-
detection capabilities using signal handlers.  Section 10.1.2.1.4 more broadly describes a 
generic application’s error-handling facilities using the mechanisms provided by 
NVM.PM.FILE.  Note that some of these mechanisms do provide a return value (similar to 
traditional IO), but the complexity of modern superscalar processors implies that memory 
errors can arise outside of the invocation of these special NVM.PM.FILE operations.  
Specifically, an error could arise during any load or store to a memory-mapped location, 
whether it is a persistent location or volatile.  To handle those errors, an application must use 
traditional memory error-handling facilities (such as SIGBUS).  Further, a platform is not 
guaranteed to have an NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY operation, which 
returns an error if verification fails.  In the case that the platform relies on manual load 
operations to verify data, the application must also then be prepared to process errors using 
SIGBUS or similar facilities. 

10.1.2.4 Building blocks for handling PM Errors:  What’s Provided and how to use it 
 

As described in Section 10.2.6 and 10.3.6 (and in new actions), software has accessibility to 
the following minimal error-detection and correction actions:  NVM.PM.FILE.CHECK_ERROR, 
NVM.PM.FILE.CLEAR_ERROR, and NVM.PM.FILE.GET_ERROR_INFO.  These actions are 
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mandatory if the host has indicated support for error-handling via the 
ERROR_EVENT_MINIMAL_CAPABILITY attribute.  These actions are meant to address two 
different modes of access to PM – either via file IO using NVM.PM.FILE, or via loads and 
stores associated with a file mapped using NVM.PM.FILE.MAP.  In addition to 
NVM.PM.FILE.CHECK_ERROR and NVM.PM.FILE.CLEAR_ERROR, an implementation may 
provide support for the optional memory-mapped variants of CHECK_ERROR and 
CLEAR_ERROR (NVM.PM.FILE.MAP.CHECK_ERROR and 
NVM.PM.FILE.MAP.CLEAR_ERROR, respectively). 

The core, mandatory CHECK_ERROR and CLEAR_ERROR actions operate on file objects, 
whereas the GET_ERROR_INFO action provides information regarding memory-mapped files, 
including the virtual address information corresponding to the memory that encountered an 
error.  Note that the GET_ERROR_INFO action may behave differently on different platforms.  
For example, the ERROR_EVENT_LIVE_SUPPORT_CAPABILITY property indicates whether 
errors that would cause a machine check can be reported to software without first requiring a 
host restart.  Thus, the GET_ERROR_INFO action may refer to errors that were reported as 
the result of a previous crash, in the case that LIVE_SUPPORT is unavailable.  Those errors 
are in addition to any previously detected errors, such as permanent device failures that result 
in a region being reported as in an error condition.  When LIVE_SUPPORT is available, the 
errors reported by GET_ERROR_INFO may refer to errors that have occurred since the 
current machine-start operation (in addition to any permanent errors). 

Generally, there are two critical application use-cases to consider with respect to ensuring 
crash-consistent behavior:  initial startup, and runtime creation or modification of records.  
These cases apply whether an application uses traditional file IO using traditional media, or 
whether the application uses memory-mapped persistent memory.  In the initial startup case, 
an application must inspect the state of on-media data and determine whether the state of the 
datastore is valid.  Typically, this involves checksumming critical data structures and 
attempting to restore the last set of consistency points that are valid.  Applications commonly 
organize consistency points in a log-based structure, and depending on the organization of the 
log, the crash-recovery startup routine involves undoing or redoing the last attempted 
consistency points.  Thus, initial-startup crash-recovery involves basic sanity checking and 
restoration of valid state from what may have been an in-progress operation between 
consistency points. 

The second case to consider is when an application is attempting to detect or correct an error 
when in the midst of generating a new record.  In order to be crash consistent, an application 
may elect to organize creation of new records into individual consistency points.  As data is 
committed to any persistent media, an application must verify that the data committed has 
reached the associated persistence domain so that it could be recovered by a subsequent 
restart and initialization.  For NVM.PM.FILE, verifying persistent data involves either an 
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action on the newly created or modified 
data, or by issuing an NVM.PM.FILE.SYNC (or .OPTIMIZED_FLUSH) followed immediately by 
memory loads on the entirety of the flushed data.  Depending on the complexity of the 
consistency point (such as whether a failed verification refers to a set of inter-dependent, 
nested data structures), it may not be possible to make an alteration to the consistency point 
using alternate persistent memory locations.  Further, an application author may simply elect 
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not to attempt in-line recovery of a consistency point. Instead, the most practical thing to do 
may be to restart the application.  In such a case, the error handling effectively is reduced to 
the first case considered here:  initial startup.  The problematic consistency point will be 
discovered by the initial-startup error-handling routine, the consistency point will be discarded, 
and the application will further initialize and resume processing. 

It is important to note that in both cases, crash-consistency error handling is handled from the 
perspective of a failed LOAD or READ operation.  That is because initialization is effectively 
retrieving the stored data, and creating a consistency point is effectively verification (retrieval 
and comparison) of persistent data.  The platform may generate errors associated with WRITE 
or STORE operations (including during the originating placement of the data that is part of the 
consistency point).  Further, nothing precludes an application from using the CHECK_ERROR 
and GET_ERROR_INFO actions to attempt to handle such errors. Errors encountered outside 
of the bounds of a consistency point must force the application to engage its error handling 
routine from the perspective of the last consistency point. 

 

Figure 15- INIT_ERROR_HANDLING 

Figure 15- INIT_ERROR_HANDLING depicts how an application would do its startup 
processing and associated initialization error handling.  The organization of the steps here are 
not unique to persistent memory.  First, an application opens the file associated with the 
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datastore.  Then, the application either maps the file and proceeds to use memory loads to 
retrieve the data, or the application does a CHECK_ERROR action on the portions of the file 
as it proceeds to READ the data.  If errors are encountered, they must be reconciled.  If no 
errors are encountered, the application restores its state at the last-valid consistency point, 
which may involve undoing the partial effects of pending consistency points or redoing 
consistency points whose effects were not made global to the application.  If errors are 
encountered in that process, again, the errors must be reconciled.  After re-initializing the 
state, the application is then ready to initialize processing using its now-validated persistent 
state. 

 

Figure 16 – CONSISTENCY_PT_ERROR_HANDLING 

Figure 16 – CONSISTENCY_PT_ERROR_HANDLING depicts how an application would 
handle errors during generation of a consistency point.  Note that consistency-point error 
handling presumes that the platform has the ERROR_EVENT_LIVE_SUPPORT_CAPABILITY 
attribute.  Without live delivery of memory errors, the host will crash and restart.  In such a 
scenario, the only error-handling case that is relevant is the initialization case, since the 
application will restart and must re-initialize and detect that the partial consistency point has 
happened.  The processing mechanism is quite similar to initialization, and again, this 
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organization is not unique to persistent memory.  The key difference between this case and 
application-initialization is that the application has program-local state with which to aid in the 
recovery. 

In this consistency-point error-handling case, the application would first generate the new data 
associated with the consistency point, including any pointers referring to the data.  The 
application would then perform a sync (or flush) action with a verification operation (or 
alternatively, an OPTIMIZED_FLUSH_AND_VERIFY action).  Next, the application checks for 
errors.  If the application is using file IO, this means using the CHECK_ERROR action to fetch 
the details of any failed operations.  If the application is using memory-mapped persistent 
memory, this corresponds to receiving a SIGBUS signal and performing the 
GET_ERROR_INFO action to get the error information.  For each error, the application 
attempts to reconcile the error – depending on what exactly caused the error (ie, a data error 
or a metadata error), the application may not be able to reconcile the error, may have to 
discard the consistency point, and may ultimately have to restart the application. 
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Figure 17 - RECONCILE_ERROR_FILE_OR_MAP_WITH_CLEAR 
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Figure 18 – RECONCILE_ERROR_MAP_NOCLEAR 

Figure 17 - RECONCILE_ERROR_FILE_OR_MAP_WITH_CLEAR and Figure 18 – 
RECONCILE_ERROR_MAP_NOCLEAR depict memory-error reconciliation using file IO and 
memory-mapped access, respectively, using the minimally mandatory error-handling actions.  
Figure 17 - RECONCILE_ERROR_FILE_OR_MAP_WITH_CLEAR also applies when using 
memory-mapped files, in the case that the implementation supports 
NVM.PM.FILE.MAP.CHECK_ERROR and NVM.PM.FILE.MAP.CLEAR_ERROR. 

For both cases, whether using CLEAR_ERROR actions or using memory-mapped files without 
CLEAR_ERROR available, a successful resolution means that error recovery can proceed and 
make forward progress.  This may mean that data has been lost, but the application can 
continue recovery.  In a failure scenario, the application cannot make forward progress in 
error-recovery.  In such a case, the only way forward is to avoid the region reported, not 
attempt to re-clear the region, and discard the affected data.  Depending on the nature of the 
data being discarded, this may be a catastrophic failure for the application. 
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 The overall organization for these methods is quite similar.  In general, reconciliation attempts 
to determine if the error is relevant, if there is replica data available to use, and to potentially 
make an internal note in the application to not use the erroneous locations in the future.  The 
primary difference is that if CLEAR_ERROR is not available (e.g., the programmer is using 
memory-mapped files and the CLEAR_ERROR and CHECK_ERROR actions are not 
implemented), the programmer must take on the responsibility of additional book-keeping 
during (and after) reconciling errors, because the application must subsequently avoid regions 
that have been reported to have errors.  Specifically, the CLEAR_ERROR implementation will 
attempt to clear the error condition and assure that a subsequent access to the same region 
(whether a file region or a memory-mapped region) will not trigger the same error.  Depending 
on the nature of the error, the CLEAR_ERROR action may, internally, allocate new blocks 
and/or adjust mappings for use in this error ‘hole’ and update the underlying file structures 
accordingly.  Once the CLEAR_ERROR action has succeeded, the application must then 
replace the data that was in the region that triggered the error and verify persistent data on the 
underlying persistent media.  In contrast, when using memory-mapped access, the application 
assumes the responsibility of both data replacement and internal metadata reference updates.  
An application may choose to use the CLEAR_ERROR action upon initial start-up or during 
error-recovery, in order to aggressively discover and handle known errors before continuing 
further processing. 

As depicted in Figure 17 - RECONCILE_ERROR_FILE_OR_MAP_WITH_CLEAR, error-
recovery using file IO may require both the CLEAR_ERROR action and data replacement 
(such as when replica data is available).  Because CLEAR_ERROR and data replacement are 
separate operations and because power may fail in between the execution of those operations, 
an application performing error-recovery must use some kind of internal note-keeping to keep 
track of clears-in-progress.  This is because an error could be cleared by CLEAR_ERROR and 
then subsequently not reported (via CHECK_ERROR) after a power failure.  In order to assure 
that the application has a chance to subsequently provide replacement data to the cleared 
region, an application must keep track of the fact that an error recovery was being performed. 

As shown in Figure 17 - RECONCILE_ERROR_FILE_OR_MAP_WITH_CLEAR, reconciliation 
starts by inspecting a range that reports an error and creating a record that indicates that this 
error is in the midst of being reconciled, so that it may be resumed after a power failure.  The 
error being inspected may or may not be relevant.  For example, the error may refer to a 
location that was otherwise unused by the application.  In such a case, the application simply 
does a CLEAR_ERROR.  Completing the CLEAR_ERROR action indicates that the host has 
made this location usable again. 

If the error was relevant, the application must determine if there is a replica for the information 
available.  Recall, in this case what is being reported is an error when loading or verifying 
information.  If alternative, valid data is available, the application either loads it or reads it from 
the alternative location, and then the application invokes the CLEAR_ERROR, checks for 
success, and then replaces the data at the file location that reported the error.  After replacing 
the data, an application should also perform the equivalent of a sync action and verification 
(such as explicit data-reading), to assure that the replacement data has been placed without 
creating a new error.  If the CLEAR_ERROR action and subsequent data placement 
operations succeed, the reconcile algorithm has completed successfully.  If not, the reconcile 
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algorithm should be retried. 

In the case of a retry or if no replica data is available, the application must determine if it can 
proceed without the data that is the source of the memory error.  If so, it can simply do a 
CLEAR_ERROR, update internal state that may have referred to this now-unavailable data, 
and proceed.  If not, the reconcile algorithm has failed, and whatever is depending on it will 
also fail. 

Figure 18 – RECONCILE_ERROR_MAP_NOCLEAR depicts the same error-reconcile 
algorithm in the case where the application is using memory-mapped persistent memory and 
when the CHECK_ERROR and CLEAR_ERROR actions are not available for memory-
mapped persistent memory.  In this case, the algorithm starts by performing the 
GET_ERROR_INFO action to get detailed information about the originating error.  From this 
point, processing is nearly identical to the variant when CLEAR_ERROR is available.  As 
previously noted, the only difference is that the application must take on the role of making 
sure the application will not subsequently access the same ranges, and the application must 
do its own updates to internal reference tables to point to any replica data, rather than writing 
or storing the data after a CLEAR_ERROR action.  It is notably very important that an 
application guard against subsequent access to an error-containing range, to assure forward 
progress during error-handling situations.  For example, on systems that do not feature the 
ERROR_EVENT_LIVE_SUPPORT_CAPABILITY property, attempting to re-access the same 
error-containing region without performing a CLEAR_ERROR would trigger an endless 
access-and-crash cycle during application startup.  Thus, if CLEAR_ERROR is not available, 
the application bears the responsibility of avoiding that endless access-and-crash scenario. 

10.1.2.5 OS Platform considerations: 
To support error-detection and recovery by applications using persistent memory, the 
underlying operating system will require some modifications as compared to how errors for 
volatile memory are detected and reported.  First, the OS must enable the NVM.PM.FILE 
implementation to intercept and record errors so that it can, in turn, service the 
CHECK_ERROR and CLEAR_ERROR actions.  Secondly, in the case that the platform does 
not support live reporting and recovery of memory errors and those errors are only reported 
upon system restart, the OS must deliver those errors in a manner consistent with how they 
would be reported if the system did support live reporting and recovery. 

Existing operating systems may not connect memory error notifications to the filesystem 
layer.  However, because NVM.PM.FILE’s error-checking and error-handling capabilities 
operate on file constructs, some modification to the operating system may be required to 
facilitate the CHECK_ERROR and CLEAR_ERROR. 

Using Linux running on the Intel architecture as an example, memory errors are reported using 
Intel’s Machine Check Architecture (MCA). When the operating system enables this feature, 
the error flow on an uncorrectable error is shown by the solid red arrow (labeled ②) in Figure 
15 Linux Machine Check error flow with proposed new interface, which depicts the mcheck 
component getting notified when the bad location in PM is accessed. 
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Figure 19 - Linux Machine Check error flow with proposed new interface 

As mentioned above, sending the application a SIGBUS (a type of asynchronous event) allows 
the application to decide what to do. However, in this case, remember that the NVM.PM.FILE 
manages the PM and that the location being accessed is part of a file on that file system. So 
even if the application gets a signal preventing it from using corrupted data, a method for 
recovering from this situation must be provided. A system administrator may try to back up rest 
of the data in the file system before replacing the faulty PM, but with the error mechanism 
we’ve described so far, the backup application would be sent a SIGBUS every time it touched 
the bad location. What is needed in this case is a way for the NVM.PM.FILE implementation to 
be notified of the error so it can isolate the affected PM locations and then continue to provide 
access to the rest of the PM file system. The dashed arrows in Figure 15 show the necessary 
modification to the machine check code in Linux. On start-up, the NVM.PM.FILE 
implementation registers with the machine code to show it has responsibility for certain ranges 
of PM. Later, when the error occurs, NVM.PM.FILE gets called back by the mcheck 
component and has a chance to handle the error. 

This suggested machine check flow change enables the file system to participate in recovery 
while not eliminating the ability to signal the error to the application. Further, this suggested 
flow enables an implementation of CHECK_ERROR and CLEAR_ERROR at the filesystem 
level, allowing notification of error state to the filesystem so that errors can be reported from 
the lower levels of the operating system responsible for dealing with memory errors 

The other platform consideration is with respect to delivering memory errors after a system 
crash.  Some server hardware can detect memory errors, but it cannot resume from memory 
errors without restarting the host.  On such servers, the OS and firmware detect which areas of 
the persistent memory experienced an error on the previous boot.  To prevent applications 
from experiencing an endless access-crash-restart-access again-crash cycle, the OS must 
interact with the firmware to protect the memory regions associated with the error and then 
deliver a memory error to an application if and when it subsequently accesses those memory 
areas.  In this manner, the OS and firmware can enable the behavior depicted in Figure 15- 
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INIT_ERROR_HANDLING, wherein an application initially performs a MAP action on the PM 
file and then loads data from that mapped data.  If the host has previously crashed, then the 
OS must be modified to deliver the corresponding SIGBUS errors or to report the errors via 
GET_ERROR_INFO or CHECK_ERROR without actually letting the application access those 
memory locations.  This assurance also means that applications do not have to implement 
different initialization and recovery algorithms depending on the platform’s capabilities. 

A platform’s implementation of the NVM Programming Model may vary in complexity and may, 
in turn, affect the values of attributes such as 
NVM.PM.FILE.ERROR_EVENT_LIVE_SUPPORT_CAPABILITY.  Specifically, the 
fundamental error unit of the memory device may be smaller than the unit used by the 
operating system for memory protection (such as pages).  In such a case, the NVM 
programming implementation must choose to either report an ERROR_UNIT that is larger 
(such as the size of the memory protection unit) than the device’s error unit, or the OS must be 
modified.  Such a modification would involve maintaining memory protection of that larger 
memory-protection unit, to take an exception upon access to an erroneous region within that 
memory-protection unit, and to then internally consult the error state known about the memory 
device to determine whether the memory access should be allowed to proceed.  Effectively, 
the modified OS would trap-and-execute on every access within the memory-protection unit.  
This capability is particularly important on hosts that do not feature the LIVE_SUPPORT error-
handling property, since the OS must take the responsibility to assure a subsequent 
application access will not lead to a crash and instead will lead to delivery of memory error 
information.  Simultaneously, however, the OS must assure that non-erroneous accesses 
succeed.  In practical terms, those non-erroneous accesses that happen to be within the same 
memory protection unit may suffer performance degradation, as the OS is required to inspect 
every access within the protection unit.  This degradation should be rare, however, since errors 
are expected to be rare.  Further, administrators should be able to discover such non-fatal but 
performance-affecting errors through logs or other administrative interfaces. 

A host implementation may choose to report a ERROR_UNIT that simplifies its 
implementation, such as reporting a larger grain that is a multiple of the host’s memory 
protection unit size.  The implementer must weigh the tradeoffs of complexity versus size 
reported carefully.  Depending on the host’s characteristics, the host’s memory protection unit 
size may be unacceptably large for practical applications.  Recall that applications will use the 
ERROR_UNIT to organize their data structures (such as log structures).  Very large 
ERROR_UNIT sizes may lead to waste through internal fragmentation in the applications. 

  

 

10.2 Actions 

The following actions are mandatory for compliance with the NVM Programming Model 
NVM.PM.FILE mode. 
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10.2.1 Actions that apply across multiple modes 
The following actions apply to NVM.PM.FILE mode as well as other modes.  

NVM.COMMON.GET_ATTRIBUTE (see 6.11.1) 
NVM.COMMON.SET_ATTRIBUTE (see 6.11.2) 

10.2.2 Native file system actions 
Native actions shall apply with unmodified syntax and semantics provided that they are 
compatible with programming model specific actions. This is intended to support traditional file 
operations allowing many applications to use PM without modification. This specifically 
includes mandatory implementation of the native synchronization of mapped files. As always, 
specific implementations may choose whether or not to implement optional native operations. 

10.2.3 NVM.PM.FILE.MAP 
Requirement: mandatory 

The mandatory form of this action shall have the same syntax found in a pre-existing file 
system, preferably the operating system's native file map call. The specified subset of a PM file 
is added to application's address space for load/store access. The semantics of this action are 
unlike the native MAP action because NVM.PM.FILE.MAP causes direct load/store access. 
For example, the role of the page cache might be reduced or eliminated. This reduces or 
eliminates the consumption of volatile memory as a staging area for non-volatile data. In 
addition, by avoiding demand paging, direct access can enable greater uniformity of access 
time across volatile and non-volatile data. 

PM mapped file operation may not provide the access time and modify time behavior typical of 
native file systems. 

PM mapped file operation may not provide the normal semantics for the native file 
synchronization actions (e.g., POSIX fsync and fdatasync and Win32 FlushFileBuffers). If a file 
is mapped at the time when the native file synchronization action is invoked, the normal 
semantics apply. However if the file had been mapped, data had been written to the file 
through the map, the data had not been synchronized by use of the NVM.PM.FILE.SYNC 
action, the NVM.PM.FILE.OPTIMIZED_FLUSH action, the 
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action, or the native mapped file sync 
action, and the mapping had been removed prior to the execution of the native file 
synchronization action, the action is not required to synchronize the data written to the map. 

Requires NVM.PM.FILE.OPEN 

Inputs: align with native operating system's map 

Outputs: align with native operating system's map.  Optionally, outputs may include the result 
of NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED as described in section 10.2.8. 

Relevant Options: 
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All of the native file system options should apply. 

NVM.PM.FILE.MAP_SHARED (Mandatory) – This existing native option shall be 
supported by the NVM.PM.FILE.MAP action. This option indicates that user space 
processes other than the writer can see any changes to mapped memory immediately. 

NVM.PM.FILE.MAP_COPY_ON_WRITE (Optional)– This existing native option 
indicates that any write after mapping will cause a copy on write to volatile memory, or 
PM that is discarded during any type of restart. The copy is only visible to the writer. 
The copy is not folded back into PM during the sync command. 

Relevant Attributes: 

NVM.PM.FILE.MAP_COPY_ON_WRITE_CAPABLE (see 10.3.2) - Native operating 
system map commands make a distinction between MAP_SHARED and 
MAP_COPY_ON_WRITE. Both are supported with native semantics under the NVM 
Programming Model. This attribute indicates whether the MAP_COPY_ON_WRITE 
mapping mode is supported. All NVM.PM.FILE.MAP implementations shall support the 
MAP_SHARED option. 

Error handing for mapped ranges of persistent memory is unlike I/O, in that there is no 
acknowledgement to a load or store instruction. Instead processors equipped to detect 
memory access failures respond with machine checks. These can be routed to user threads as 
asynchronous events. With memory-mapped PM, asynchronous events are the primary means 
of discovering the failure of a load to return good data. Please refer to 
NVM.PM.FILE.GET_ERROR_INFO (section 10.2.6) for more information on error handling 
behavior. 

Depending on memory configuration, CPU memory write pipelines may effectively preclude 
application level error handling during memory accesses that result from store instructions. For 
example, errors detected during the process of flushing the CPU’s write pipeline are more 
likely to be associated with that pipeline than the NVM itself. Errors that arise within the CPU’s 
write pipeline generally do not enable application level recovery at the point of the error. As a 
result application processes may be forced to restart when these errors occur (see PM Error 
Handling Annex B). Such errors should appear in CPU event logs, leading to an administrative 
response that is outside the scope of this specification. 

Applications needing timely assurance that recently stored data is recoverable should use the 
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action to verify data from NVM after it is 
flushed (see 10.2.7). Errors during verify are handled in the manner described in this annex. 

10.2.4 NVM.PM.FILE.SYNC 
Requirement: mandatory 

The purpose of this action is to synchronize persistent memory content to assure durability and 
enable recovery by forcing data to reach the persistence domain. 
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The native file system sync action may be supported by implementations that also support 
NVM.PM.FILE.SYNC. The intent is that the semantics of NVM.PM.FILE.SYNC match native 
sync operation on memory-mapped files however because persistent memory is involved, 
NVM.PM.FILE implementations need not flush full pages. Note that writes may still be subject 
to functionality that may mask whether stored data has reached the persistence domain (such 
as caching or buffering within processors or memory controllers). NVM.PM.FILE.SYNC is 
responsible for insuring that data within the processor or memory buffers reaches the 
persistence domain.  

A number of boundary conditions can arise regarding interoperability of PM and non-PM 
implementation components. The following limitations apply: 

• The behavior of an NVM.PM.FILE.SYNC action applied to a range in a file that was not 
mapped using NVM.PM.FILE.MAP is unspecified. 

• The behavior of NVM.PM.FILE.SYNC on non-persistent memory is unspecified.  

In both the PM and non-PM modes, updates to ranges mapped as shared can and may 
become persistent in any order before a sync requires them all to become persistent. The sync 
action applied to a shared mapping does not guarantee write atomicity. The byte range 
referenced by the sync parameter may have reached a persistence domain prior to the sync 
command. The sync action guarantees only that the range referenced by the sync action will 
reach the persistence domain before the successful completion of the sync action. Any 
atomicity that is achieved is not caused by the sync action itself. 

Requires: NVM.PM.FILE.MAP 

Inputs: Align with native operating system's sync with the exception that alignment restrictions 
are relaxed. 

Outputs: Align with native operating system's sync with the addition that it shall return an error 
code. 

Users of the NVM.PM.FILE.SYNC action should be aware that for files that are mapped as 
shared, there is no requirement to buffer data on the way to the persistence domain. Although 
data may traverse a processor’s write pipeline and other buffers within memory controllers 
these are more transient than the disk I/O buffering that is common in NVM.FILE 
implementations.  

Error handling related to this action is expected to be derived from ongoing work that begins 
with Annex B (Informative) PM error handling. 

10.2.5 NVM.PM.FILE.OPTIMIZED_FLUSH 
Requirement: mandatory if NVM.PM.OPTIMIZED_FLUSH_CAPABLE is set. 

The purpose of this action is to synchronize multiple ranges of persistent memory content to 
assure persistence and enable recovery by forcing data to reach the persistence domain. This 
action has the same effect as NVM.PM.FILE.SYNC however it is intended to allow additional 
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implementation optimization by excluding options supported by sync and by allowing multiple 
byte ranges to be synchronized during a single action. Page oriented alignment constraints 
imposed by the native definition are lifted. Because of this, implementations might be able to 
use underlying persistent memory more optimally than they could with the native sync. In 
addition some implementations may enable this action to avoid context switches into kernel 
space. With the exception of these differences all of the content of the NVM.PM.FILE.SYNC 
action description also applies to NVM.PM.FILE.OPTIMIZED_FLUSH. 

Requires: NVM.PM.FILE.MAP.  OPTIMIZED_FLUSH also requires that 
NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED (see 10.2.8) has returned TRUE for the 
ranges being flushed since the most recent map call.  Otherwise data in PM may not be fully 
accessible to file system clients, depending on file system implementation. 

Inputs: Identical to NVM.PM.FILE.SYNC except that an array of byte ranges is specified and 
options are precluded. A reference to the array and the size of the array are input instead of a 
single address and length. Each element of the array contains an address and length of a 
range of bytes to be synchronized. 

Outputs: Align with native OS's sync with the addition that it shall return an error code. 

Relevant attributes: NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE – Indicates whether this 
action is supported by the NVM.PM.FILE implementation (see 10.3.5). 

NVM.PM.FILE.OPTIMIZED_FLUSH provides no guarantee of atomicity within or across the 
synchronized byte ranges. Neither does it provide any guarantee of the order in which the 
bytes within the ranges of the action reach a persistence domain.  

In the event of failure the progress of the action is indeterminate. Various byte ranges may or 
may not have reached a persistence domain. There is no indication as to which byte ranges 
may have been synchronized. 

10.2.6 NVM.PM.FILE.GET_ERROR_EVENT_INFO 
Requirement: mandatory if NVM.PM.ERROR_EVENT_CAPABLE is set. 

The purpose of this action is to provide a sufficient description of an error event to enable 
recovery decisions to be made by an application. This action is intended to originate during an 
application event handler in response to a persistent memory error. In some implementations 
this action may map to the delivery of event description information to the application at the 
start of the event handler rather than a call made by the event handler. The error information 
returned is specific to the memory error that caused the event. 

Inputs: It is assumed that implementations can extract the information output by this action 
from the event being handled. 

Outputs:  
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1 – An indication of whether or not execution of the application can be resumed from the point 
of interruption. If execution cannot be resumed then the process running the application should 
be restarted for full recovery. 

2 – An indication of error type enabling the application to determine whether an address is 
provided and the direction of data flow (load/verify vs. store) when the error was detected. 

3 – The memory mapped address and length of the byte range where data loss was detected 
by the event. 

Relevant attributes:  

NVM.PM.FILE.ERROR_EVENT_CAPABLE – Indicates whether load error event handling and 
this action are supported by the NVM.PM.FILE implementation (see 10.3.6). 

This action is used to obtain information about an error that caused a machine check involving 
memory mapped persistent memory. This is necessary because with persistent memory there 
is no opportunity to provide error information as part of a function call or I/O. The intent is to 
allow sophisticated error handling and recovery to occur before the application sees the event 
by allowing the NVM.PM.FILE implementation to handle it first. It is expected that after 
NVM.PM.FILE has completed whatever recovery is possible, the application error handler will 
be called and use the error information described here to stage subsequent recovery actions, 
some of which may occur after the application’s process is restarted. 

In some implementations the same event handler may be used for many or all memory errors. 
Therefore this action may arise from memory accesses unrelated to NVM. It is the application 
event handler’s responsibility to determine whether the memory range indicated is relevant for 
recovery. If the memory range is irrelevant then the event should be ignored other than as a 
potential trigger for a restart. 

In some systems, errors related to memory stores may not provide recovery information to the 
application unless and until load instructions attempt to access the memory locations involved. 
This can be accomplished using the NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action 
(section 10.2.7). 

For more information on the circumstances which may surround this action please refer to PM 
Error Handling Annex B. 

10.2.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY 
Requirement: mandatory if NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE is 
set. 

The purpose of this action is to synchronize multiple ranges of persistent memory content to 
assure durability and enable recovery by forcing data to reach the persistence domain. 
Furthermore, this action verifies that data was written correctly. The intent is to supply a 
mechanism whereby the application can receive data integrity assurance on writes to memory-
mapped PM prior to completion of this action. This is the PM analog of the POSIX definition of 
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synchronized I/O which clarifies that the intent of synchronized I/O data integrity completion is 
"so that an application can ensure that the data being manipulated is physically present on 
secondary mass storage devices”. 

Except for the additional verification of flushed data, this action has the same effect as 
NVM.PM.FILE.OPTIMIZED_FLUSH. 

Requires: NVM.PM.FILE.MAP 

Inputs: Identical to NVM.PM.FILE.OPTIMIZED_FLUSH. 

Outputs: Align with native OS's sync with the addition that it shall return an error code. The 
error code indicates whether or not all data in the indicated range set is readable. 

Relevant attributes:  

NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE – Indicates whether this action 
is supported by the NVM.PM.FILE implementation (see 10.3.7). 

OPTIMIZED_FLUSH_AND_VERIFY shall assure that any errors that occur during the process 
of delivering data to the persistence domain are reported prior to or during completion of the 
action.. Any errors discovered during verification should be logged for administrative attention. 
Error reporting shall occur across all data ranges specified in the action regardless of when 
they were actually flushed.  

In the event of failure the progress of the action is indeterminate.  

10.2.8 NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED 
Requirement: mandatory if NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE is set. 

The purpose of this action is to determine whether a given implementation guarantees 
persistence of specific memory ranges as a result of a flush.  References to 
NVM.PM.OPTIMIZED_FLUSH in this section should be interpreted as applying to both 
NVM.PM.OPTIMIZED_FLUSH and NVM.PM.OPTIMIZED_FLUSH_AND_VERIFY.  The 
existence of NVM.PM.FILE.OPTIMIZED_FLUSH on a platform does not imply it is always 
allowed for a given range of persistent memory.  For example, the file system exposing the 
range of persistent memory may require the control point offered by NVM.PM.FILE.SYNC in 
order to assure that data in the persistence domain is accessible to file system clients. This 
action provides a way for the application to determine if persistence is achieved correctly by 
NVM.PM.FILE.OPTIMIZED_FLUSH.  When NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED 
returns true for a memory-mapped range, the operating system is guaranteeing that 
OPTIMIZED_FLUSH’s will work correctly in the indicated ranges for the lifetime of the 
mapping. This implies an application must re-check whether OPTIMIZED_FLUSH_ALLOWED 
is true each time the persistent memory is mapped, but once mapped by a particular running 
instance of the application, the check is not required again as long as the same mapping is 
used.  An implementation of this action may provide a combined NVM.PM.FILE.MAP and 
NVM.PM.FILE.OPTIMIZED_FLUSH_ALLOWED action that is more efficient than separate 
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actions.  In some systems the result of OPTIMIZED_FLUSH_ALLOWED may be more easily 
determined at MAP time. 
 
Requires: NVM.PM.FILE.MAP 
 
Inputs: A range or set of ranges of mapped memory. 
 
Outputs: True only if NVM.PM.FILE.OPTIMIZED_FLUSH is allowed for every byte in the given 
range, false or common operating system call error otherwise. 
 
Relevant attributes:  

NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE – Indicates whether this action is supported by 
the NVM.PM.FILE implementation (see 10.3.5). 

10.2.9 NVM.PM.FILE.DEEP_FLUSH 
Requirement: mandatory if NVM.PM.FILE.DEEP_FLUSH_CAPABLE is set. 

The purpose of this action is to provide the same persistency semantics as 
NVM.PM.FILE.SYNC, but performance may be sacrificed in order to flush persistent memory 
stores to the most reliable persistence domain available to software. For example, the power-
fail safe domain on a system may include multiple layers of caches which implies a higher 
failure rate since more hardware is involved.  NVM.PM.FILE.DEEP_FLUSH could be 
implemented in this case with special cache flush operations that flush stores to the media 
rather than depending on automatic cache flushes on power failure. The result is a higher 
expected reliability at the cost of flush performance. 
 
Requires: NVM.PM.FILE.MAP 
 
Inputs: At least one range of mapped memory. 
 
Outputs: Align with native OS's sync with the addition that it shall return an error code. 

Relevant attributes:  

NVM.PM.FILE.DEEP_FLUSH_CAPABLE – Indicates whether this action is supported by the 
NVM.PM.FILE implementation (see 10.3.8). 

10.2.10 NVM.PM.FILE.CHECK_ERROR 
Requirement:  Mandatory if ERROR_EVENT_MINIMAL_CAPABILITY is set. 

The purpose of this action is to detect whether any memory in a given memory range is in an 
error condition that is unable to be corrected by the NVM.PM.FILE implementation.  The range 
may be expressed either as a file handle, offset and length or as a memory mapped start 
address and length.  The file handle form of this action is intended to be used by applications 
either during startup or when accessing PM through file IO rather than via loads and stores.  
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The memory mapped address form of this action is intended to be used by applications either 
during startup or when accessing PM through memory-mapped loads and stores.  It is 
expected that applications will use CHECK_ERROR to detect error conditions and to then 
attempt to reconcile the error condition (such as by reading replica data from another location 
or by writing data to an alternate location).  Depending on the use case, it may be appropriate 
for an application to subsequently use the CLEAR_ERROR action on the ranges reported by 
CHECK_ERROR. 

Errors reported by the CHECK_ERROR action represent a summary of known, detectable 
errors discovered by the combination of the platform firmware, the operating system driver 
software, and the NVM.PM.FILE implementation.  The CHECK_ERROR action does not 
represent a specific type of error at a specific point in the memory hierarchy; instead, 
CHECK_ERROR reports to the programmer that an error condition exists regarding a specific 
file location. 

The CHECK_ERROR action references the current state of the provided file for the range 
indicated by the offset and length, or the state of the provided mapped memory region for the 
byte range indicated when its error state was last reported to platform software.  
CHECK_ERROR may not report historical errors that may have been reported previously.  
Application software that requires historical information of previous errors or error state may 
need to consult system logs or administrative interfaces provided by the operating system. 

Requires: ERROR_EVENT_MINIMAL_CAPABILITY is set. 

The memory mapped range form of this command also requires 
ERROR_EVENT_MAPPED_SUPPORT_CAPABILITY to be set. 

Inputs:  A file descriptor corresponding to an open NVM.PM.FILE, a byte offset in to that file, 
and a length in bytes to check from that offset or a start address and length, indicating a 
previously mapped byte range to be checked. 

Outputs:  A list of error ranges where errors were encountered.  Each range in the list will 
specify an offset from the start address in the input parameter, and the length in bytes of a 
range where the error condition exists. 

10.2.11 NVM.PM.FILE.CLEAR_ERROR 
NVM.PM.FILE.CLEAR_ERROR(file, offset, length) 

Requirement:  Mandatory if ERROR_EVENT_MINIMAL_CAPABILITY is set. 

The purpose of this action is to clear an unrecoverable error condition for a given range in an 
NVM.PM.FILE instance.  Note the difference between this CLEAR_ERROR operation, which 
operates on a file, and NVM.PM.FILE.MAP.CLEAR_ERROR, which operates on mapped 
memory regions.  NVM.PM.FILE.CLEAR_ERROR is mandatory when error-handling 
capabilities are available, as it and NVM.PM.FILE.CHECK_ERROR provide the minimal 
functionality required for software to implement a failure detection and recovery algorithm.  
Note, however, that the efficacy of the CLEAR_ERROR action on various platform 
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implementations and under varying hardware failure scenarios is not specified by the 
programming model.  The CLEAR_ERROR action may fail, and software must take in to 
consideration the possibility of such a failure. 

The NVM.PM.FILE.CLEAR_ERROR action is intended to provide the application with a means 
to clear an error condition within a file.  The programmer can then subsequently replace data 
that has become inaccessible due to that error.  Note that an application may not always have 
replica replacement data available.  In such a case, the application must choose whether it 
must halt, or whether it can clear the error condition (using CLEAR_ERROR), internally note 
the error, and then provide stand-in data (such as all zeros).   In either case, however, the 
application is assured that a subsequent access to the file location will not cause the same 
error.  Because hardware can always subsequently fail, however, nothing precludes a new 
error from occurring at the same location. 

CLEAR_ERROR is meant to be used in conjunction with CHECK_ERROR.  Note, however, 
that the underlying implementation may choose to actively resolve error conditions between 
the time that they are reported by CHECK_ERROR and when an application may invoke 
CLEAR_ERROR.  For example, an implementation of the programming model that features 
support for higher availability may have replica data available that the implementation can 
automatically reorganize the underlying file extents and replace the data in a manner 
transparent to the application.  The error would, in such a case, be reported for a brief amount 
of time via CHECK_ERROR, but then would no longer be considered in an error condition.  To 
shield this complexity from application developers, the CLEAR_ERROR shall indicate success 
even if the region being cleared no longer is in an error condition; the application shall view 
such an operation as having been completed successfully, even if the underlying 
implementation did not take any action upon invocation of the CLEAR_ERROR action. 

 

CLEAR_ERROR does not perform data replacement, but it is a necessary step to ensure that 
a subsequent data replacement operation will not trigger the same error.  This property is 
fundamental to assuring forward progress of failure-recovery by applications.  After a 
CLEAR_ERROR action, an application may choose to not subsequently provide replacement 
data if it instead intends to discard that data.  Further, because data replacement is separate 
from error-clearing and because power can fail between the two operations, the programmer 
must structure the application to internally note that it is in the midst of clearing an error so that 
it can resume data-replacement after a crash. 

The CLEAR_ERROR action operates on file regions that are aligned with respect to the 
ERROR_UNIT and that are a multiple of the ERROR_UNIT. 

The CLEAR_ERROR action is provided to give applications a means to clear error conditions 
within a file, under the presumption that an application will require further access to the file in 
the future.  If the entirety of the file is no longer usable given the error state, however, an 
application may choose instead to simply delete the file.  The NVM.PM.FILE implementation 
shall not provide back ranges that are in an error state when subsequently creating a new file. 
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Requires:  ERROR_EVENT_MINIMAL_CAPABILITY is set. 

Inputs:  A file descriptor corresponding to an open NVM.PM.FILE, a byte offset in to that file, 
and a length in bytes.  The offset and length must be aligned with respect to the ERROR_UNIT 
attribute.  

Outputs:  An indicator whether the action succeeded. 

Failure Scenario:  The implementation may be unable to clear the error and then subsequently 
provide usable blocks to back the memory-mapped region affected by an error condition.  For 
example, this may happen if the underlying implementation cannot allocate any functioning, 
spare capacity, or if an unrecoverable platform error is encountered.  In the case that allocation 
fails, the application must choose whether it can continue.  Note that in such a case, 
subsequent CHECK_ERROR actions will continue to indicate failure in the affected region.  In 
the case that a CLEAR_ERROR fails, the application can choose to re-try the CLEAR_ERROR 
action (depending upon whether the implementation has provided an unambiguous indication 
that the error is permanent), or it may choose to continue on as in the case when data 
validation has failed (e.g., avoiding this region in the future). 

 

NVM.PM.FILE.MAP.CLEAR_ERROR(startAddress, length) 

Requirement:  Optional. 

The purpose of this action is to clear an unrecoverable error condition for a memory-mapped 
region that was previously mapped using NVM.PM.FILE.MAP.  Note the difference between 
this CLEAR_ERROR operation, which operates on a memory-mapped byte-addressed region, 
and NVM.PM.FILE.CLEAR_ERROR, which operates on file locations. 

The NVM.PM.FILE.MAP.CLEAR_ERROR action is intended to provide the application with a 
means to clear an error condition within a memory-mapped region.  The programmer can then 
subsequently replace data that has become inaccessible due to that error.  Note that an 
application may not always have replacement data available.  In such a case, the application 
must choose whether it must halt, or whether it can clear the error condition (using 
CLEAR_ERROR), internally note the error, and then provide stand-in data (such as all zeros).   
In either case, however, the application is assured that a subsequent access to mapped region 
will not cause the same error.  Because hardware can always subsequently fail, however, 
nothing precludes a new error from occurring at the same location. 

CLEAR_ERROR does not perform data replacement, but it is a necessary step to ensure that 
a subsequent data replacement operation will not indefinitely trigger the same error.  After a 
CLEAR_ERROR action, an application may choose to not subsequently provide replacement 
data if it instead intends to discard that data.  Further, because data replacement is separate 
from error-clearing and because power can fail between the two operations, the programmer 
must structure the application to internally note that it is in the midst of clearing an error so that 
it can resume data-replacement after a crash. 
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CLEAR_ERROR is meant to be used in conjunction with CHECK_ERROR.  Note, however, 
that the underlying implementation may choose to actively resolve error conditions between 
the time that they are reported by CHECK_ERROR and when an application may invoke 
CLEAR_ERROR.  For example, an implementation of the programming model that features 
support for higher availability may have replica data available that the implementation can 
automatically remap in to a region that is locally available to the application.  The error would, 
in such a case, be reported for a brief amount of time via CHECK_ERROR, but then would no 
longer be considered in an error condition.  To shield this complexity from application 
developers, the CLEAR_ERROR shall indicate success even if the region being cleared no 
longer is in an error condition; the application shall view such an operation as having been 
completed successfully, even if the underlying implementation did not take any action upon 
invocation of the CLEAR_ERROR action. 

The MAP.CLEAR_ERROR action operates on memory-mapped byte-addressable regions that 
are aligned with respect to the ERROR_UNIT and that are a multiple of the ERROR_UNIT. 

The CLEAR_ERROR action is provided to give applications a means to clear error conditions 
within a memory-mapped region of a file, under the presumption that an application will require 
further access to the memory-mapped file in the future.  If the entirety of the backing file is no 
longer usable given the error state, however, an application may choose instead to simply 
delete the file.  The NVM.PM.FILE implementation shall not provide back ranges that are in an 
error state when subsequently creating a new file. 

Requires:  ERROR_EVENT_MINIMAL_CAPABILITY and 
ERROR_EVENT_MAPPED_SUPPORT_CAPABILITY are set. 

Inputs:  A starting byte address and a length, corresponding to a region that has been mapped 
previously using NVM.PM.FILE.MAP.  Both the starting address and length must be aligned 
according to the ERROR_UNIT attribute.  

Outputs:  An indicator whether the action succeeded. 

Failure Scenario:  When attempting to clear the error condition and make usable blocks 
available in place of the failed blocks, the NVM.PM.FILE implementation may fail.  For 
example, this may happen if the underlying implementation cannot allocate any functioning, 
spare capacity, or if an unrecoverable platform error is encountered.  In the case that allocation 
fails, the application must choose whether it can continue.  Note that in such a case, 
subsequent CHECK_ERROR actions will continue indicate failure in the affected region.  In the 
case that a CLEAR_ERROR fails, the application can choose to re-try the CLEAR_ERROR 
action (depending upon whether the implementation has provided an unambiguous indication 
that the error is permanent), or it may choose to continue on as in the case when data 
validation has failed (e.g., avoiding this region in the future). 
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10.3 Attributes 

10.3.1 Attributes that apply across multiple modes 
The following attributes apply to NVM.PM.FILE mode as well as other modes. 

NVM.COMMON.SUPPORTED_MODES (see 6.12.1) 
NVM.COMMON.FILE_MODE (see 6.12.2) 

10.3.2 NVM.PM.FILE.MAP_COPY_ON_WRITE_CAPABLE 
Requirement: mandatory 

This attribute indicates that MAP_COPY_ON_WRITE option is supported by the 
NVM.PM.FILE.MAP action. 

10.3.3 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY 
Requirement: mandatory 

INTERRUPTED_STORE_ATOMICITY indicates whether the volume supports power fail 
atomicity of aligned store operations on fundamental data types. To achieve failure atomicity, 
aligned operations on fundamental data types reach NVM atomically. Formally “aligned 
operations on fundamental data types” is implementation defined. See 6.10. 

A value of true indicates that after an aligned store of a fundamental data type is interrupted by 
reset, power loss or system crash; upon restart the contents of persistent memory reflect either 
the state before the store or the state after the completed store. A value of false indicates that 
after a store interrupted by reset, power loss or system crash, upon restart the contents of 
memory may be such that subsequent loads may create exceptions. A value of false also 
indicates that after a store interrupted by reset, power loss or system crash; upon restart the 
contents of persistent memory may not reflect either the state before the store or the state after 
the completed store. 

The value of this attribute is true only if it’s true for all ranges in the file system. 

10.3.4 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE 
Requirement: mandatory 

FUNDAMENTAL_ERROR_RANGE is the number of bytes that may become unavailable due 
to an error on an NVM device. 

An application may organize data in terms of FUNDAMENTAL_ERROR_RANGE to assure 
two key data items are not likely to be affected by a single error. 

Unlike NVM.PM.VOLUME (see 9), NVM.PM.FILE does not associate an offset with the 
FUNDAMENTAL_ERROR_RANGE because the file system is expected to handle any volume 
mode offset transparently to the application. The value of this attribute is the maximum of the 
values for all ranges in the file system.  
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10.3.5 NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE 
Requirement: mandatory 

This attribute indicates that the OPTIMIZED_FLUSH action is supported by the NVM.PM.FILE 
implementation. 

10.3.6 NVM.PM.FILE.ERROR_EVENT_CAPABLE 
Requirement: mandatory 

This attribute indicates that the NVM.PM.FILE implementation is capable of handling error 
events in such a way that, in the event of data loss, those events are subsequently delivered to 
applications. If error event handling is supported then NVM.PM.FILE.GET_ERROR_INFO 
action shall also be supported. 

10.3.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE 
Requirement: mandatory 

This attribute indicates that the OPTIMIZED_FLUSH_AND_VERIFY action is supported by the 
NVM.PM.FILE implementation. 

10.3.8 NVM.PM.FILE.DEEP_FLUSH_CAPABLE 
Requirement: mandatory 

This attribute indicates that the DEEP_FLUSH action is supported by the NVM.PM.FILE 
implementation. 

 

10.3.9 NVM.PM.FILE.ERROR_EVENT_MINIMAL_CAPABILITY 
Requirement:  Mandatory 

This Boolean attribute indicates whether the platform has the minimal set of features to enable 
basic memory error detection and reporting to applications.  If this attribute is not present, none 
of the other ERROR_EVENT capabilities are defined.    If this attribute is present, the 
NVM.PM.FILE.GET_ERROR_INFO, NVM.PM.FILE.CHECK_ERROR, and 
NVM.PM.FILE.CLEAR_ERROR actions shall also be supported. 

10.3.10 NVM.PM.FILE.ERROR_EVENT_PRECISE_CAPABILITY 
Requirement:  Mandatory 

This Boolean attribute indicates whether the platform supports precise memory-access 
exceptions.  In this context, ‘precise’ means that the exception is immediately delivered during 
the instruction that generated the memory error.  Notably, this refers only to LOAD instructions.  
Modern superscalar processors feature caching layers that may, when storing data, generate 
errors much later in time than when the originating instruction generated the data.  Because of 
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this complexity, it is commonly not possible to report which instruction originally stored the data 
that eventually caused a memory fault (for example, on a cache eviction). 

The PRECISE property implies that the instruction stream of an application will not proceed 
past a LOAD that caused an error.  If this property is present, the application can use LOAD 
operations to validate persistent memory state and assure that data is in a crash-consistent 
state before proceeding.  Without the PRECISE property, an application cannot assume that 
the data from a LOAD is valid.  In such a case, it may be associated with a still-pending 
memory error.  Applications operating on platforms that do not support the PRECISE property 
must either employ ad-hoc mechanisms (such as timers) to attempt to force errors to be 
surfaced, or they must simply choose to operate with a reduced guarantee of crash 
consistency. 

It is important to consider that hosts featuring support for PRECISE memory exceptions may 
still experience failures that cannot be reported in an instruction-precise fashion.  For example, 
a host may employ a mechanism in its persistence domain that is meant to assure that data is 
flushed to persistent media if power is lost.  If that mechanism fails and data is not flushed to 
persistent media as intended, the state of the persistent media is indeterminate.  This is 
analogous to the case of a battery-backed storage system experiencing a failure in its battery 
unit.  Because these catastrophic failures tend to be implementation- and platform-specific in 
nature, the NVM Programming Model does not specify the manner in which they should be 
reported.  Instead, programmers should use administrative means (such as examining 
operating-system specific indications or logs) to discover such failures. 

Note that PRECISE exceptions are distinct from the capability of generating a LIVE exception.  
A host may support PRECISE exceptions (assuring that the instruction stream will not 
progress past a faulting LOAD operation) but not support LIVE exception delivery.  See the 
LIVE_SUPPORT capability for more information. 

10.3.11 NVM.PM.FILE.ERROR_EVENT_ERROR_UNIT_CAPABILITY 
Requirement:  Mandatory 

This attribute indicates, in bytes, the minimal amount of data that the platform can identify as 
being in an unusable or otherwise unknown state.  A value of 0 indicates that memory errors 
are not contained.  If errors are not contained, the application would have no choice but to treat 
the entire nonvolatile memory datastore as unreliable and must likely resume on a different 
node with replica data. 

10.3.12 NVM.PM.FILE.ERROR_EVENT_MAPPED_SUPPORT_CAPABILITY 
Requirement:  Mandatory 

This attribute indicates that the platform implements the NVM.PM.FILE.MAP.CHECK_ERROR 
andNVM.PM.FILE.MAP.CLEAR_ERROR actions.  Note that this is distinct from support for 
sending a signal or its equivalent to an application that has accessed a memory-mapped file 
and thus caused a memory-related exception or error.  The CHECK_ERROR and 
CLEAR_ERROR actions that operate on files must be implemented if the 
ERROR_EVENT_MINIMAL_CAPABILITY attribute is set.  The MAPPED_SUPPORT attribute 
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indicates that the CHECK_ERROR and CLEAR_ERROR actions, which operate on memory-
mapped file regions, are also implemented. 

10.3.13 NVM.PM.FILE.ERROR_EVENT_LIVE_SUPPORT_CAPABILITY 
Requirement:  Mandatory 

This Boolean attribute indicates whether the platform supports live delivery of memory errors.  
In this case, ‘live’ means that the error is reported without crashing the host, thus allowing an 
application to attempt to recover from a fault without restarting.  Hosts that do not feature 
LIVE_SUPPORT may still support PRECISE error delivery, meaning that the application’s 
instruction flow is not allowed to proceed past a LOAD instruction that generated a fault.  If the 
host does not feature LIVE_SUPPORT, however, the fault information must be discovered 
after a subsequent host and application restart, either via the NVM.PM.FILE.CHECK_ERROR 
action or via a memory exception that is delivered to the application upon a subsequent access 
to the memory location that caused the fault. 

Note that even if a host that features the LIVE_SUPPORT capability may not be able to deliver 
all memory faults in a ‘live’ fashion.  That is, the host may enter a state wherein it cannot 
deliver a memory exception in a live fashion (as during complex interactions with IO) and 
instead the host must crash immediately so as to maintain PRECISE memory exception 
semantics.  Thus, application that notes the LIVE_SUPPORT capability may be able to 
interpret this as being able to optimize recovery under certain circumstances.  For example, an 
application may choose to fetch a replica of data from another host and continue executing if 
the LIVE_SUPPORT capability is present, whereas the absence of this capability would imply 
that a memory fault originated during a previous execution of the application and must initiate 
its recovery routine.  But even if the LIVE_SUPPORT capability is present, application software 
must not interpret this presence as meaning that memory errors will always be reported in a 
live fashion. 

10.4 Use cases 

10.4.1 Update PM File Record 
Update a record in a PM file. 

Purpose/triggers: 
An application using persistent memory updates an existing record. For simplicity, this 
application uses fixed size records. The record size is defined by application data 
considerations. 

Scope/context:  
Persistent memory context; this use case shows basic behavior.  

Preconditions: 
• The administrator created a PM file and provided its name to the application; this name is 

accessible to the application – perhaps in a configuration file 
• The application has populated the PM file contents  
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• The PM file is not in use at the start of this use case (no sharing considerations) 

Inputs: 
The content of the record, the location (relative to the file) where the record resides  

Success scenario:  
1) The application uses the native OPEN action, passing in the file name 
2) The application uses the NVM.PM.FILE.MAP action, passing in the file descriptor returned 

by the native OPEN. Since the records are not necessarily page aligned, the application 
maps the entire file. 

3) The application registers for memory hardware exceptions 
4) The application stores the new record content to the address returned by 

NVM.PM.FILE.MAP offset by the record’s location 
5) The application uses NVM.PM.FILE.SYNC to flush the updated record to the persistence 

domain 
a. The application may simply sync the entire file 
b. Alternatively, the application may limit the range to be sync’d  

6) The application uses the native UNMAP and CLOSE actions to clean up. 

Failure Scenario:  
While reading PM content (accessing via a load operation), a memory hardware exception is 
reported. The application’s event handler is called with information about the error as 
described in NVM.PM.FILE.GET_ERROR_INFO. Based on the information provided, the 
application records the error for subsequent recovery and determines whether to restart or 
continue execution. 

Postconditions: 
The record is updated. 

10.4.2 Direct load access  

Purpose/triggers:  
An application developer wishes to retrieve data from a persistent memory-mapped file using 
direct memory load instruction access with error handling for uncorrectable errors. 

Scope/context:  
NVM.PM.FILE 

Inputs:  
• Virtual address of the data.  

Outputs:  
• Data from persistent memory if successful 
• Error code if an error was detected within the accessed memory range. 
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Preconditions: 
• The persistent memory file must be mapped into a region of virtual memory. 
• The virtual address must be within the mapped region of the file. 

Postconditions:  
• If an error was returned, the data may be unreadable. Future load accesses may 

continue to return an error until the data is overwritten to clear the error condition 
• If no error was returned, there is no postcondition. 

Success and Failure Scenarios:  
Consider the following fragment of example source code, which is simplified from the code for 
the function that reads SQLite’s transaction journal: 

retCode = pread(journalFD, magic, 8, off); 
if (retCode != SQLITE_OK) return retCode; 
 
if (memcmp(magic, journalMagic, 8) != 0) 
  return SQLITE_DONE; 

This example code reads an eight-byte magic number from the journal header into an eight-
byte buffer named magic using a standard file read call. If an error is returned from the read 
system call, the function exits with an error return code indicating that an I/O error occurred. If 
no error occurs, it then compares the contents of the magic buffer against the expected magic 
number constant named journalMagic. If the contents of the buffer do not match the expected 
magic number, the function exits with an error return code. 

An equivalent version of the function using direct memory load instruction access to a mapped 
file is: 

volatile siginfo_t errContext; 
... 
int retCode = SQLITE_OK; 
 
TRY 
{ 
    if (memcmp(journalMmapAddr + off, journalMagic, 8) != 0) 
        retCode = SQLITE_DONE; 
} 
CATCH(BUS_MCEERR_AR) 
{ 
    if ((errContext.si_code == BUS_MCEERR_AR) && 
        (errContext.si_addr >= journalMmapAddr) && 
        (errContext.si_addr < (journalMmapAddr + journalMmapSize))){ 
        retCode = SQLITE_IOERR; 
    } else { 
        signal(errContext.si_signo, SIG_DFL); 
        raise(errContext.si_signo); 
    } 
} 
ENDTRY; 
 
if (retCode != SQLITE_OK) return retCode; 
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The mapped file example compares the magic number in the header of the journal file against 
the expected magic number using the memcmp function by passing a pointer containing the 
address of the magic number in the mapped region of the file. If the contents of the magic 
number member of the file header do not match the expected magic number, the function exits 
with an error return code. 

The application-provided TRY/CATCH/ENDTRY macros implement a form of exception 
handling using POSIX sigsetjmp and siglongjmp C library functions. The TRY macro initializes 
a sigjmp_buf by calling sigsetjmp. When a SIGBUS signal is raised, the signal handler calls 
siglongjmp using the sigjmp_buf set by the sigsetjmp call in the TRY macro. Execution then 
continues in the CATCH clause. (Caution: the code in the TRY block should not call library 
functions as they are not likely to be exception-safe.) Code for the Windows platform would be 
similar except that it would use the standard Structured Exception Handling try-except 
statement catching the EXCEPTION_IN_PAGE_ERROR exception rather than application-
provided TRY/CATCH/ENDTRY macros. 

If an error occurs during the read of the magic number data from the mapped file, a SIGBUS 
signal will be raised resulting in the transfer of control to the CATCH clause. The address of 
the error is compared against the range of the memory-mapped file. In this example the error 
address is assumed to be in the process’s logical address space. If the error address is within 
the range of the memory-mapped file, the function returns an error code indication that an I/O 
error occurred. If the error address is outside the range of the memory-mapped file, the error is 
assumed to be for some other memory region such as the program text, stack, or heap, and 
the signal or exception is re-raised. This is likely to result in a fatal error for the program. 

See also: 
• Microsoft Corporation, Reading and Writing From a File View (Windows), available from  

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366801.aspx 

10.4.3 Direct store access  

Purpose/triggers:  
An application developer wishes to place data in a persistent memory-mapped file using direct 
memory store instruction access. 

Scope/context:  
NVM.PM.FILE 

Inputs: 
• Virtual address of the data.  
• The data to store. 

Outputs:  
• Error code if an error occurred. 
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Preconditions: 
• The persistent memory file must be mapped into a region of virtual memory. 
• The virtual address must be within the mapped region of the file. 

Postconditions:  
• If an error was returned, the state of the data recorded in the persistence domain is 

indeterminate.  
• If no error was returned, the specified data is either recorded in the persistence domain 

or an undiagnosed error may have occurred. 

Success and Failure Scenarios:  
Consider the following fragment of example source code, which is simplified from the code for 
the function that writes to SQLite’s transaction journal: 

ret = pwrite(journalFD, dbPgData, dbPgSize, off); 
if (ret != SQLITE_OK) return ret; 
ret = write32bits(journalFD, off + dbPgSize, cksum); 
if (ret != SQLITE_OK) return ret; 
ret = fdatasync(journalFD); 
if (ret != SQLITE_OK) return ret; 

This example code writes a page of data from the database cache to the journal using a 
standard file write call. If an error is returned from the write system call, the function exits with 
an error return code indicating that an I/O error occurred. If no error occurs, the function then 
appends the checksum of the data, again using a standard file write call. If an error is returned 
from the write system call, the function exits with an error return code indicating that an I/O 
error occurred. If no error occurs, the function then invokes the fdatasync system call to flush 
the written data from the file system buffer cache to the persistence domain. If an error is 
returned from the fdatasync system call, the function exits with an error return code indicating 
that an I/O error occurred. If no error occurs, the written data has been recorded in the 
persistence domain.  

An equivalent version of the function using direct memory store instruction access to a 
memory-mapped file is: 

memcpy(journalMmapAddr + off, dbPgData, dbPgSize); 
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off, dbPgSize); 
  
store32bits(journalMmapAddr + off + dbPgSize, cksum); 
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off + dbPgSize, 4); 
  
ret = PM_optimized_flush(dirtyLines, dirtyLinesCount); 
  
if (ret == SQLITE_OK) dirtyLinesCount = 0; 
  
return ret; 

The memory-mapped file example writes a page of data from the database cache to the 
journal using the memcpy function by passing a pointer containing the address of the page 



 

NVM Programming Model (NPM)  Working Draft 96 
Version 1.12a 

data field in the mapped region of the file. It then appends the checksum using direct stores to 
the address of the checksum field in the mapped region of the file. 

The code calls the application-provided PM_track_dirty_mem function to record the virtual 
address and size of the memory regions that it has modified. The PM_track_dirty_mem 
function constructs a list of these modified regions in the dirtyLines array. 

The function then calls the PM_optimized_flush function to flush the written data to the 
persistence domain. If an error is returned from the PM_optimized_flush call, the function exits 
with an error return code indicating that an I/O error occurred. If no error occurs, the written 
data is either recorded in the persistence domain or an undiagnosed error may have occurred. 
Note that this postcondition is weaker than the guarantee offered by the fdatasync system call 
in the original example. 

See also: 
• Microsoft Corporation, Reading and Writing From a File View (Windows), available from  

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366801.aspx 

10.4.4 Direct store access with synchronized I/O data integrity completion 

Purpose/triggers:  
An application developer wishes to place data in a persistent memory-mapped file using direct 
memory store instruction access with synchronized I/O data integrity completion. 

Scope/context:  
NVM.PM.FILE 

Inputs:  
• Virtual address of the data.  
• The data to store. 

Outputs:  
• Error code if an error occurred. 

Preconditions: 
• The persistent memory file must be mapped into a region of virtual memory. 
• The virtual address must be within the mapped region of the file. 

Postconditions:  
• If an error was returned, the state of the data recorded in the persistence domain is 

indeterminate.  
• If no error was returned, the specified data is recorded in the persistence domain. 
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Success and Failure Scenarios:  
Consider the following fragment of example source code, which is simplified from the code for 
the function that writes to SQLite’s transaction journal: 

ret = pwrite(journalFD, dbPgData, dbPgSize, off); 
if (ret != SQLITE_OK) return ret; 
ret = write32bits(journalFD, off + dbPgSize, cksum); 
if (ret != SQLITE_OK) return ret; 
 
ret = fdatasync(journalFD); 
if (ret != SQLITE_OK) return ret; 

This example code writes a page of data from the database cache to the journal using a 
standard file write call. If an error is returned from the write system call, the function exits with 
an error return code indicating that an I/O error occurred. If no error occurs, the function then 
appends the checksum of the data, again using a standard file write call. If an error is returned 
from the write system call, the function exits with an error return code indicating that an I/O 
error occurred. If no error occurs, the function then invokes the fdatasync system call to flush 
the written data from the file system buffer cache to the persistence domain. If an error is 
returned from the fdatasync system call, the function exits with an error return code indicating 
that an I/O error occurred. If no error occurs, the written data has been recorded in the 
persistence domain.  

An equivalent version of the function using direct memory store instruction access to a 
memory-mapped file is: 

memcpy(journalMmapAddr + off, dbPgData, dbPgSize); 
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off, dbPgSize); 
  
store32bits(journalMmapAddr + off + dbPgSize, cksum); 
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off + dbPgSize, 4); 
  
ret = PM_optimized_flush_and_verify(dirtyLines, dirtyLinesCount); 
  
if (ret == SQLITE_OK) dirtyLinesCount = 0; 
  
return ret; 

The memory-mapped file example writes a page of data from the database cache to the 
journal using the memcpy function by passing a pointer containing the address of the page 
data field in the mapped region of the file. It then appends the checksum using direct stores to 
the address of the checksum field in the mapped region of the file. 

The code calls the application-provided PM_track_dirty_mem function to record the virtual 
address and size of the memory regions that it has modified. The PM_track_dirty_mem 
function constructs a list of these modified regions in the dirtyLines array. 

The function then calls the PM_optimized_flush_and_verify function to flush the written data to 
the persistence domain. If an error is returned from the PM_optimized_flush_and_verify call, 
the function exits with an error return code indicating that an I/O error occurred. If no error 
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occurs, the written data has been recorded in the persistence domain. Note that this 
postcondition is equivalent to the guarantee offered by the fdatasync system call in the original 
example. 

See also: 
• Microsoft Corp, FlushFileBuffers function (Windows), 

http://msdn.microsoft.com/en-us/library/windows/desktop/aa364439.aspx 
• Oracle Corp, Synchronized I/O section in the Programming Interfaces Guide, available 

from 
http://docs.oracle.com/cd/E19683-01 /816-5042/chap7rt-57/index.html 

• The Open Group, “The Open Group Base Specification Issue 6”, section 3.373 
“Synchronized Input and Output”, available from 
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap03.html#tag_03_373 

10.4.5 Persistent Memory Transaction Logging 

Purpose/Triggers:  
An application developer wishes to implement a transaction log that maintains data integrity 
through system crashes, system resets, and power failures. The underlying storage is byte-
granular persistent memory. 

Scope/Context:  
NVM.PM.VOLUME and NVM.PM.FILE 

For notational convenience, this use case will use the term “file” to apply to either a file in the 
conventional sense which is accessed through the NVM.PM.FILE interface, or a specific 
subset of memory ranges residing on an NVM device which are accessed through the 
NVM.BLOCK interface. 

Inputs: 
•  A set of changes to the persistent state to be applied as a single transaction. 
• The data and log files. 

Outputs:  
• An indication of transaction commit or abort. 

Postconditions:  
• If an abort indication was returned, the data was not committed and the previous 

contents have not been modified. 
• If a commit indication was returned, the data has been entirely committed. 
• After a system crash, reset, or power failure followed by system restart and execution of 

the application transaction recovery process, the data has either been entirely 
committed or the previous contents have not been modified. 

http://msdn.microsoft.com/en-us/library/windows/desktop/aa364439.aspx
http://docs.oracle.com/cd/E19683-01%20/816-5042/chap7rt-57/index.html
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap03.html#tag_03_373
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Success Scenario:  
The application transaction logic uses a log file in combination with its data file to atomically 
update the persistent state of the application. The log may implement a before-image log or a 
write-ahead log. The application transaction logic should configure itself to handle torn or 
interrupted writes to the log or data files.  

Since persistent memory may be byte-granular, torn writes may occur at any point during a 
series of stores. The application should be prepared to detect a torn write of the record and 
either discard or recover such a torn record during the recovery process. One common way of 
detecting such a torn write is for the application to compute a hash of the record and record the 
hash in the record. Upon reading the record, the application re-computes the hash and 
compares it with the recorded hash; if they do not match, the record has been torn. 

10.4.5.1 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is true 
If the NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is true, then writes which are 
interrupted by a system crash, system reset, or power failure occur atomically. In other words, 
upon restart the contents of persistent memory reflect either the state before the store or the 
state after the completed store. 

In this case, the application need not handle interrupted writes to the log or data files.  

10.4.5.2 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false 
NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false, then writes which are 
interrupted by a system crash, system reset, or power failure do not occur atomically. In other 
words, upon restart the contents of persistent memory may be such that subsequent loads 
may create exceptions depending on the value of the FUNDAMENTAL_ERROR_RANGE 
attribute. 

In this case, the application should be prepared to handle an interrupted write to the log or data 
files. 

10.4.5.2.1 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE > 0 
If the NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE is greater than zero, the application 
should align the log or data records with the 
NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE and pad the record size to be an integral 
multiple of NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE. This prevents more than one 
record from residing in the same fundamental error range. The application should be prepared 
to discard or recover the record if a load returns an exception when subsequently reading the 
record during the recovery process. (See also SQLite.org, Powersafe Overwrite, 
http://www.sqlite.org/psow.html.)  

10.4.5.2.2 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE = 0 
If the NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE is zero, the application lacks sufficient 
information to handle interrupted writes to the log or data files. 

http://www.sqlite.org/psow.html
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Failure Scenarios:  
Consider the recovery of an error resulting from an interrupted write on a persistent memory 
volume or file system where the NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false. 
This error may be persistent and may be returned whenever the affected fundamental error 
range is read. To repair this error, the application should be prepared to overwrite such a 
range.  

One common way of ensuring that the application will overwrite a range is by assigning it to 
the set of internal free space managed by the application, which is never read and is available 
to be allocated and overwritten at some point in the future. For example, the range may be part 
of a circular log. If the range is marked as free, the transaction log logic will eventually allocate 
and overwrite that range as records are written to the log.  

Another common way is to record either a before-image or after-image of a data range in a log. 
During recovery after a system crash, system reset, or power failure, the application replays 
the records in the log and overwrites the data range with either the before-image contents or 
the after-image contents.  

See also: 
• SQLite.org, Atomic Commit in SQLite, http://www.sqlite.org/atomiccommit.html 
• SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html 
• SQLite.org, Write-Ahead Logging, http://www.sqlite.org/wal.html 

http://www.sqlite.org/atomiccommit.html
http://www.sqlite.org/psow.html
http://www.sqlite.org/wal.html
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Annex A  (Informative) PM pointers 
Pointers are data types that hold virtual addresses of data in memory. When applications use 
pointers with volatile memory, the value of the pointer must be re-assigned each time the 
program is run (a consequence of the memory being volatile). When applications map a file (or 
a portion of a file) residing in persistent memory to virtual addresses, it may or may not be 
assigned the same virtual address. If not, then pointers to values in that mapped memory will 
not reference the same data. There are several possible solutions to this problem: 
1) Relative pointers 
2) Regions are mapped at fixed addresses 
3) Pointers are relocated when region is remapped 

All three approaches are problematic, and involve different challenges that have not been fully 
addressed. 

None, except perhaps the third one, handles C++ vtable pointers inside persistent memory, or 
pointers to string constants, where the string physically resides in the executable, and not the 
memory-mapped file. Both of those issues are common. 

Option (1) implies that no existing pointer-containing library data structures can be stored in 
PM, since pointer representations change. Option (2) requires careful management of virtual 
addresses to ensure that memory-mapped files that may need to be accessed simultaneously 
are not assigned to the same address. It may also limit address space layout randomization. 
Option (3) presents challenges in, for example, a C language environment in which pointers 
may not be unambiguously identifiable, and where they may serve as hash table indices or the 
like. Pointer relocation would invalidate such hash tables. It may be significantly easier in the 
context of a Java-like language. 



 

NVM Programming Model (NPM)  Working Draft 102 
Version 1.12a 

Annex B (Informative) Deferred behavior 
This annex lists some behaviors that are being considered for future specifications. 

D.1  Remote sharing of NVM 
This version of the specification talks about the relationship between DMA and persistent 
memory (see 6.6 Interaction with I/O devices) which should enable a network device to access 
NVM devices. But no comprehensive approach to remote share of NVM is addressed in this 
version of the specification. 

D.2  MAP_CACHED OPTION FOR NVM.PM.FILE.MAP 
This would enable memory mapped ranges to be either cached or uncached by the CPU. 

D.3  NVM.PM.FILE.DURABLE.STORE 
This might imply that through this action things become durable and visible at the same time, 
or not visible until it is durable. Is there a special case for atomic write that, by the time the 
operation completes, it is both visible and durable? The prospective use case is an opportunity 
for someone with a hardware implementation that does not require separation of store and 
sync. This is not envisioned as the same as a file system write. It still implies a size of the 
store. The use case for NVM.FILE.DURABLE.STORE is to force access to the persistence 
domain. 

D.4  Enhanced NVM.PM.FILE.WRITE 
Add an NVM.PM.FILE.WRITE action where the only content describes error handling. 

D.5  Management-only behavior 
Several management-only behaviors have been discussed, but deferred to a future revision; 
including: 

• Secure Erase 
• Behavior enabling management application to discover PM devices (and behavior to fill 

gaps in the discovery of block NVM attributes) 
• Attribute exposing flash erase block size for management of disk partitions 

D.6  Access hints 
Allow applications to suggest how data is placed on storage 

D.7  Multi-device atomic multi-write action 
Perform an atomic write to multiple extents in different devices. 

D.8  NVM.BLOCK.DISCARD_IF_YOU_MUST action 
The text below was partially developed, before being deferred to a future revision. 
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10.4.6 NVM.BLOCK.DISCARD_IF_YOU_MUST 
Proposed new name MARK_DISCARDABLE 

Purpose - discard blocks to prevent write amplification 

This action notifies the NVM device that some or all of the blocks which constitute a volume 
are no longer needed by the application, but the NVM device should defer changes to the 
blocks as long as possible. This action is a hint to the device.  

If the data has been retained, a subsequent read shall return “success” along with the data. 
Otherwise, it shall return an error indicating the data does not exist (and the data buffer area 
for that block is undefined).  

Inputs: a range of blocks (starting LBA and length in logical blocks) 

Status: Success indicates the request is accepted but not necessarily acted upon.  

Existing implementations of TRIM may work this way. 

10.4.7 DISCARD_IF_YOU_MUST use case  

Purpose/triggers:  
An NVM device may allocate blocks of storage from a common pool of storage. The device 
may also allocate storage through a thin provisioning mechanism. In each of these cases, it is 
useful to provide a mechanism which allows an application or NVM user to notify the NVM 
storage system that some or all of the blocks which constitute the volume are no longer 
needed by the application. This allows the NVM device to return the memory allocated for the 
unused blocks to the free memory pool and make the unused blocks available for other 
consumers to use.  

DISCARD_IF_YOU_MUST operation informs the NVM device that that the specified blocks 
are no longer required. DISCARD_IF_YOU_MUST instructs the NVM device to release 
previously allocated blocks to the NVM device’s free memory pool. The NVM device releases 
the used memory to the free storage pool based on the specific implementation of that device. 
If the device cannot release the specified blocks, the DISCARD_IF_YOU_MUST operation 
returns an error. 

Scope/context: 
This use case describes the capabilities of an NVM device that the NVM consumer can 
determine.  

Inputs:  
The range to be freed.  

Success scenario: 
The operation succeeds unless an invalid region is specified or the NVM device is unable to 
free the specified region.  
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Outputs:  
The completion status.  

Postconditions: 
The specified region is erased and released to the free storage pool.  

See also:  
DISCARD_IF_YOU_CAN 

EXISTS  

D.9  Atomic write action with Isolation 
Offer alternatives to ATOMIC_WRITE and ATOMIC_MULTIWRITE that also include isolation 
with respect to other atomic write actions. Issues to consider include whether order is required, 
whether isolation applies across multiple paths, and how isolation applies to file mapped I/O. 

D.10  Atomic Sync/Flush action for PM 
The goal is a mechanism analogous to atomic writes for persistent memory. Since stored 
memory may be implicitly flushed by a file system, defining this mechanism may be more 
complex than simply defining an action. 

D.11  Hardware-assisted verify 
Future PM device implementations may provide a capability to perform the verify step of 
OPTIMIZED_FLUSH_AND_VERIFY without requiring an explicit load instruction. This 
capability may require the addition of actions and attributes in NVM.PM.VOLUME mode; this 
change is deferred until we have examples of this type of device. 
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