E
SNIA

Advancing storage &
infermation technology

Storage Management Technical Specification,
Part 5 Filesystems

Version 1.7.0, Revision 5

Abstract: This Working Draft defines an interface between WBEM-capable clients and servers
for the secure, extensible, and interoperable management of networked storage.

Publication of this Working Draft for review and comment has been approved by the SNIA Storage
Management Initiative Technical Steering Group (SMI-TSG). This draft represents a "best effort" attempt
by the SMI-TSG to reach preliminary consensus, and it may be updated, replaced, or made obsolete at
any time. This document should not be used as reference material or cited as other than a "work in
progress.” Suggestion for revision should be directed to http://www.snia.org/feedback/.

Working Draft

9 October, 2015

REVISION HISTORY

Revision 1

Date

SCR

Com

Revisi

Date

SCR

Com

Revisi

Date

8 Sept 2014

s Incorporated and other changes
None

ments

Editorial notes and DRAFT material are displayed.

on 2

18 December 2014

s Incorporated and other changes

File Export (SMIS-170-Draft-SCR00004
- Added mandatory indications for FileShare

File System (SMIS-170-Draft-SCR00004)
- Added mandatory indications for LocalFileSystem

ments
Editorial notes and DRAFT material are displayed.

USAGE text was revised to address code.

(now included in the front matter for all SNIA specifications)

on3

20 May 2015

SCRs Incorporated and other changes

All recipes and associated text were removed.

TSG-SMIS-SCR00315.001

- Promoted the maturity level from DRAFT to EXPERIMENTAL: Updated profiles to remove SNIA_ classes
and use DMTF CIM_ classes

- Revised CIM_AssociatedPrivilege; Added CIM_UserContact, CIM_ldentity,
CIM_AccountManagementService, CIM_Assignedldentity

File Export Manipulation Profile (TSG-SMIS-SCR00317)
- Added missing figure: FileShares and Simple Identity Management in Section 5.1.3.3.
- Promoted all draft material to Experimental.

References
- Added DMTF DSP1054 v1.2.2, Indications Profile (and changed version to 1.2.2 througout book)

Annex A SMI-S Information Model
- Deleted “Most SMI-S Profiles are primarily based on the DMTF Final MOFs” per 5/22/15 TSG
meeting consensus.

Several profiles
- Changed LocalAccessAvailable LocalAccessAvailableToFS, to respond to a DMTF change.

Comments
- Editorial notes and DRAFT material were hidden.

Revision 4

Date
9 September 2015

SCRs Incorporated and other changes

Multiple profiles

- Instances of subprofile were changed to profile. (TSG meeting voice vote)

- Profile versions and related text were updated. (TSG meeting voice vote)

-- CIM/XML was changed to CIM-XML (Response to ballot comments)

- Removed instances of Experimnental within profiles already labeled as Experimental to
avoid confusion and redundancy. (Editorial change)

File Export Manipulation Profile

- Promoted to Stable (TSG-SMIS-SCR00319)

- Changed requirement to Mandatory and description for ProtocolVersions property in Tables 33-36.

- Changed requirement to Mandatory for FileSharingProtocol property in Table 34.

- Added material associated with the DMTF Simple Identity Management Profile (DS1034 rev 1.1.0
as it pertains to ACL manipulation on file shares. (TSG-SMIS-SCR00317)

File Server Manipulation Profile
- Promoted to Stable (TSG-SMIS-SCR00319)

Filesystem Profile
- Material related to ElementCapabilities (hnaming) incl 8.1.2.3: Promoted to Stable (TSG-SMIS-SCR00319)

Filesystem Manipulation Profile
- Material related to ElementCapabilities (naming) in 9.1.3.1: Promoted to Stable (TSG-SMIS-SCR00319)

NAS Head Profile
- promoted 12.1.3.8.1 to Stable (TSG-SMIS-SCR00319)

References
- Updated reference to DMTF DSP1054 Indications Profile

Self-Contained NAS Profile:
Promoted 13.1.3.1, 13.1.3. 2 (TSG-SMIS-SCR00319)

Annex A (informative) SMI-S Information Model
- DMTF’s CIM schema version changed to 2.45.0. (TSG meeting voice vote)

Comments
- Editorial notes and DRAFT material were hidden.

SMI-S 1.7.0 Revision 5 Working Draft 3

Revision 5

Date
9 October 2015

SCRs Incorporated and other changes

Multiple profiles: Addressed SMI-S 1.7.0 Revision 4 TSG ballot comments that were strictly editorial
and were approved by voice vote of the TSG.

Filesystem Quotas Profile
- Fixed queries in CIM table 173

References
- Removed DSP0214.
- Removed year from DSP1034

Comments
- Editorial notes were hidden.

Suggestion for changes or modifications to this document should be sent to the SNIA Storage Management
Initiative Technical Steering Group (SMI-TSG) at http://www.snia.org/feedback/

USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alter-
ation, and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting
permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the
following license:

BSD 3-Clause Software License
Copyright (c) 2015, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

= Redistributions of source code must retain the above copyright naotice, this list of conditions and the following
disclaimer.

= Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

= Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SMI-S 1.7.0 Revision 5 Working Draft 5

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use
of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2015 SNIA. All rights reserved. All other trademarks or registered trademarks are the
property of their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed
Management Task Force (DMTF). The CIM classes that are documented have been developed and
reviewed by both the SNIA and DMTF Technical Working Groups. However, the schema is still in
development and review in the DMTF Working Groups and Technical Committee, and subject to change.

INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying, and
promoting interoperable multi-vendor SANs through the Storage Networking Industry Association (SNIA)
organization.

CHANGES TO THE SPECIFICATION

Each publication of this specification is uniquely identified by a three-level identifier, comprised of a
version number, a release number and an update number. The current identifier for this specification is
version 1.7.0. Future publications of this specification are subject to specific constraints on the scope of
change that is permissible from one publication to the next and the degree of interoperability and
backward compatibility that should be assumed between products designed to different publications of
this standard. The SNIA has defined three levels of change to a specification:

= Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x.x). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

< Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of
the specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

= Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.X.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

Maturity Level

In addition to informative and normative content, this specification includes guidance about the maturity
of emerging material that has completed a rigorous design review but has limited implementation in
commercial products. This material is clearly delineated as described in the following sections. The
typographical convention is intended to provide a sense of the maturity of the affected material, without
altering its normative content. By recognizing the relative maturity of different sections of the standard, an
implementer should be able to make more informed decisions about the adoption and deployment of
different portions of the standard in a commercial product.

This specification has been structured to convey both the formal requirements and assumptions of the
SMI-S API and its emerging implementation and deployment lifecycle. Over time, the intent is that all
content in the specification will represent a mature and stable design, be verified by extensive
implementation experience, assure consistent support for backward compatibility, and rely solely on
content material that has reached a similar level of maturity. Unless explicitly labeled with one of the
subordinate maturity levels defined for this specification, content is assumed to satisfy these
requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three
subordinate levels of implementation maturity that identify important aspects of the content’s increasing
maturity and stability. Each subordinate maturity level is defined by its level of implementation
experience, its stability and its reliance on other emerging standards. Each subordinate maturity level is
identified by a unique typographical tagging convention that clearly distinguishes content at one maturity
model from content at another level.

SMI-S 1.7.0 Revision 5 Working Draft 7

Experimental Maturity Level

No material is included in this specification unless its initial architecture has been completed and
reviewed. Some content included in this specification has complete and reviewed design, but lacks
implementation experience and the maturity gained through implementation experience. This content is
included in order to gain wider review and to gain implementation experience. This material is referred to
as “Experimental”. It is presented here as an aid to implementers who are interested in likely future
developments within the SMI specification. The contents of an Experimental profile may change as
implementation experience is gained. There is a high likelihood that the changed content will be included
in an upcoming revision of the specification. Experimental material can advance to a higher maturity level
as soon as implementations are available. Figure 1 is a sample of the typographical convention for
Experimental content.

EXPERIMENTAL
Experimental content appears here.

EXPERIMENTAL

Figure 1 - Experimental Maturity Level Tag

Implemented Maturity Level

Profiles for which initial implementations have been completed are classified as “Implemented”. This
indicates that at least two different vendors have implemented the profile, including at least one provider
implementation. At this maturity level, the underlying architecture and modeling are stable, and changes
in future revisions will be limited to the correction of deficiencies identified through additional
implementation experience. Should the material become obsolete in the future, it must be deprecated in a
minor revision of the specification prior to its removal from subsequent releases. Figure 2 is a sample of
the typographical convention for Implemented content.

IMPLEMENTED
Implemented content appears here.

IMPLEMENTED

Figure 2 - Implemented Maturity Level Tag

Stable Maturity Level

Once content at the Implemented maturity level has garnered additional implementation experience, it
can be tagged at the Stable maturity level. Material at this maturity level has been implemented by three
different vendors, including both a provider and a client. Should material that has reached this maturity
level become obsolete, it may only be deprecated as part of a minor revision to the specification. Material
at this maturity level that has been deprecated may only be removed from the specification as part of a
major revision. A profile that has reached this maturity level is guaranteed to preserve backward
compatibility from one minor specification revision to the next. As a result, Profiles at or above the Stable

maturity level shall not rely on any content that is Experimental. Figure 3 is a sample of the typographical
convention for Implemented content.

STABLE
Stable content appears here.

STABLE

Figure 3 - Stable Maturity Level Tag

Finalized Maturity Level

Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying
the requirements for the Stable maturity level, content at the Finalized maturity level must solely depend
upon or refine material that has also reached the Finalized level. If specification content depends upon
material that is not under the control of the SNIA, and therefore not subject to its maturity level
definitions, then the external content is evaluated by the SNIA to assure that it has achieved a
comparable level of completion, stability, and implementation experience. Should material that has
reached this maturity level become obsolete, it may only be deprecated as part of a major revision to the
specification. A profile that has reached this maturity level is guaranteed to preserve backward
compatibility from one minor specification revision to the next. Over time, it is hoped that all specification
content will attain this maturity level. Accordingly, there is no special typographical convention, as there is
with the other, subordinate maturity levels. Unless content in the specification is marked with one of the
typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material

Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections
identified as “Deprecated” contain material that is obsolete and not recommended for use in new
development efforts. Existing and new implementations may still use this material, but shall move to the
newer approach as soon as possible. The maturity level of the material being deprecated determines how
long it will continue to appear in the specification. Implemented content shall be retained at least until the
next revision of the specialization, while Stable and Finalized material shall be retained until the next
major revision of the specification. Providers shall implement the deprecated elements as long as it
appears in the specification in order to achieve backward compatibility. Clients may rely on deprecated
elements, but are encouraged to use non-deprecated alternatives when possible.

Deprecated sections are documented with a reference to the last published version to include the
deprecated section as normative material and to the section in the current specification with the
replacement. Figure 4 contains a sample of the typographical convention for deprecated content.

Content that has been deprecated appears here.

Figure 4 - Deprecated Tag

SMI-S 1.7.0 Revision 5 Working Draft 9

10

Contents

AV][0 g I 1] (o] YT PPPTUPTRRN 2
(IS o) T U =2 PP T PP PUPPURTRR 15
(S o) B 1= 1 o] (T ST TR PPPPRURTRP 17
(o111 o] (o H PP TP PPPRUTTRR 25
oo} oL RSSO 27
2 NOIMALIVE REFEIEINCESeiiiiiiiiiii ettt e e s ettt e e e e s bbbt e e e e snbaeee e eneee 29
P R 1= o1 - | R PPRP PR 29
2.2 References under deVeIOPMENTuuiiiiiiiiiiiiie e e e e e e e e e e e aeaeaans 29
2.3 Oher FEfEIBNCESciiiiii ettt e e e e e e e e e e s bbb e s aeeeeaaaeeann 29
3 Terms, Definitions, Symbols, Abbreviations, and Conventions............cccccvvvvveieee e 31
T N 1= o1 - | PP P TP TP TP PPPPUPPPR 31
3.2 Terms and DefiNItIONSuuiiiiiiiiiiie et e e e e e e e e e e 31
O e TN e o o] A o (] 1= PR 33
R B 1= Y= o] £ 1 o] o SR 33
4.2 Health and Fault Management ConSideration................cciaiaoiiiiiiiiiiiiieee e 35
4.3 Cascading CONSIAEIALIONSueiiiiiiaiaiiei ettt e e ettt e e e e e e e e e e s e s sbbbbeareeeaaaaeeas 35
4.4 Methods Of the Profilecooiiii e 35
A5 USE CaSES. it iieii ittt et e e e oottt e e e ettt e e e e e e e e rr e e et e e e e e e e e e e e es 36
I O |1V I 1= =T o | £ PP PPPTTTTPPPURPPPRPN 36
5 File Export Manipulation Profileoo i 43
S0 A I T o 0] 1o o PP 43
5.2 Health and Fault Management CoNSIAErationS..........cceueeeiiiiiciiiiiiiieee e e e 50
LSTC T OF= 1= Tor=To [0 To J @0 g TS o [=T = 1o o 1SS 51
5.4 Methods Of the Profile ... e e e 51
5.5 USE S . ittt oo e e oottt e e ettt et — bbb e e e e e e e e aaaaaaeeeeeeeeeeebeaneeee 63
5.6 CIM EIBMENTS....uitiiiiiiiee ettt e e e e ettt e et e e e e s e s s s st aeeeeeeeaeeeesesanssnbasaeneeaeeesannns 64
6 File Server Manipulation Profile.......... .. e 79
L0 N B 1= o o 1o o H PP PPPRPPPR 79
6.2 Health and Fault Management CONSIAEration.............cooiiiiiiiieiiiiiie e 84
(SIRC TN @7 1-Tor-To [19 To J @Fo] 0 110 [T - Vi o] 1= 0SSR 85
6.4 Methods Of the Profile ... 85
6.5 USE CaSES .. ettt et a e e e e e e e e e e eaee et eeeenrnrereeenes 93
6.6 CIM EIBIMENTS ...ttt ettt ettt et e e e e e e e s e e bbb et e e e e e eaaeeeesaaannbasaeeeeaaaenannn 94
T File StOrage Profile ... e e et ————————— 111
2% R I =~ o 1 o) £ PSP 111
7.2 Health and Fault Management CoNSIAeration.............ooouiiiiiiiiiiieiie e 112
7.3 Cascading CoNSIAEIatiONSiuie e 112
7.4 Methods Of the Profile ... ee e 114
7.5 Client Considerations and RECIPEScccuuiriiiiiiiiiee e e e e e e e s eereeaee s 115
7.6 CIM EIBMENTS ...ttt ettt e e e e e e s e s bbbt e e et e e e e e e s e e s annnnbreeeeeeeas 115
8 Filesystem Profile ... 117
S 0 A I 1= o o] 1o o PSSR 117
8.2 Health and Fault Management ConSIderation...............covvvvuiiiiiiiiiiiiiniere e e e e e e e e eeee e eeeeanns 120
8.3 Methods Of the Profile ... 121
8.4 USE CaSES. . ittt e et ee e b e e e e e e e e e aaaeaaeeeeeeeeeanreaaae 121
ST T O 1V 1T o 4 T= o PR PSRR 121
9 Filesystem Manipulation Profile.........cccooiii oot 135
S IR B 1= Yo 1 o 1 o] o H TP TP T TP PRI 135

SMI-S 1.7.0 Revision 5 Working Draft

11

10

11

12

13

14

15

16

12

9.2 Health and Fault Management CoNSIderationsS.............ccvvvvuiirviiiiiiiiiiiieie e e e e eeaeeeeeeeeeeeanns 142

9.3 Methods Of the Profile ... 144
0.4 USE CaSES. . ittt oot e e e e e e e e e e ettt ettt —e b et b e e e e e e e e e e aeaaeaeeaeeaaaareaaae 162
S BT O 1V 1T o 4 T= o PR PSTR 163
Filesystem Performance Profile...........oo e 187
O R B =T Tod ¢ o [PP OPORPPPPRTRN 187
10.2 IMPIEMENTALION.eeiiiiiiiiii ettt e e ekt e e e e st bt e e e e anb e e e s e bbeeeeeanees 188
10.3 Methods Of the Profileoouiiiiiii e e 193
L0.4 USE CASES. . uuutieiiiiiieeeeeeie ittt ettt et e e e e e e e e e e bbb et ettt et e e e e e e o e e e bbb e e ettt e e e e e et e e a b rreee e aan 198
L10.5 CIM EIBMENIS...cciiiiiiiiiiie ettt e e e e et e e et e e e e e e e s e e s nb bbb b e eeeeeeeaeannnes 201
Filesystem QUOLAS PrOfile..........uuiiiiiiiiiiii e e e e e e s e e e e e e e e e s e nnnes 227
5 O I =TT] 1T OSSR 227
11.2 Health and Fault Management ConsiderationS............ccoooevviiiiiiieeeeceee e 230
11.3 Methods Of the Profile ... 230
N B I 0= L TP UPP PP 233
S T O 11 I 1 1= =T o £ PSSP PRRRR 239
NAS HEAA PrOFilceeeiiiiiiieie et e e e e e e e e e s e bbb e e e e e ae e e e e aannes 245
D2 R B =T Tod ¢ o [PP SOPORPPPPRTR 245
12.2 Health and Fault Management CoNSIderationsS...........coouueeeeiiiiieeeeniiiieee et eiieee e 253
12.3 Methods Of the Profile ..o 254
D24 USE CASES...uuutieiiiiiieeeee e ittt et e e e e e e e s e bbb e ettt e et e e e e e e o e e o b bR b e e te e et e e e e e e e e e e r i n e e eeen s 255
12,5 CIM EIBMENLS...coiiiiii ittt e e e et e e e e e e e s e e st bbb b e e e e e eeeaeaannes 255
Self-Contained NAS Profile ..o 263
R B0 R 0 =TT] 1T o SO PRSRR 263
13.2 Health and Fault Management ConsiderationS............ccoooevvviiiiiieeccceee e 271
13.3 Cascading CONSIAEIALIONSccoiiiiiiiiiie ittt e e e e e e e e e s bbb re e e e e e aaaae e s 272
13.4 Methods Of the Profile ... 272
R R B L O L L PSRRI 273
13.6 CIM EIBMENIS ...ttt e e e ettt e e e s st e e e e e st b e e e s e nnbbeeeennees 273
NAS Network POrt Profile ... 279
I R B 1= 2T od o] (o o O PP PP PPPP TP PP 279
0 1 0]] 1= o 4 T=T) - (o 1o OSSR 279
14.3 Health and Fault Management ConsiderationS............cccooeeviiiiiiieeeceeee e 284
14.4 Cascading CONSIAEIAtIONSccciiiiiiiiieiiii e e e e e e et e e e e e e e e e eaaeas 285
T |V 1= o T PP PP UPRPPPRPPPR 285
I B B O L L PSRRI 286
I A O 11 I 1 1= 0T o £ PSPPSR 286
HOSE FIlEeSYSIEM Profileottt e e e e e e 299
L T0 R B =2 Tod o] (o o H O PP PPPP TP PP 299
15.2 IMPIEMENTALION.eeiiiiiiiit ettt et e e e e sttt e e e et e e e e e nbe e e e ennees 301
15.3 Methods Of the Profile ... 304
L15.4 USE CaSES. . uuuuuiii ittt e e e e e e e e e e e e e et e et et e e e e e e r e nE e e e e e e eaaaeeas 305
15,5 CIM EIBMENLS...coiiiiiiiiii ittt e e e et e e e e e e e s e e st bbb b e e e e e eeeaeennnes 309
FileSystem Replication Services Profilecccooiiiiiiiiiieee e 325
G A I =TT o]) o PRSP 325
G 11]] [T 4 1T o = o PP 341
L16.3 IMELNOAS ...ttt ettt e e e e e e e e bbbt e e e e e e e e e e e e e e e e nbbbbbeaneeeaasaaann 343
G B I O L L SRR TTT 374
16.5 CIM EIBMENES...ciiiiiiiiiii ittt e e e e e e s e et e e e e e aeeeesaesanebebenneeeeeeaeannns 375

Annex A (informative) SMI-S Information Model

Annex B (Informative) State Transitions from Storage to File Sharescccoccviviveiviie e,

SMI-S 1.7.0 Revision 5

Working Draft

13

14

LI1ST OF FIGURES

Figure 1 - Experimental Maturity LEVE] TAQuuuuuurriiiiieeeeieiieiiciieiieiieee e e e ee e s s e s ssesanrrnaneerseeeeeeeeessesnnnnnnes 8
Figure 2 - Implemented Maturity LEVEI TaQcooieieeeiiieieeeeeeeee s e e e e e e e e e e e e e eee e 8
Figure 3 - Stable Maturity LEVEI TAGuuuiii ittt senne e e s 9
FIgure 4 - DepreCated TaAQoiivieeiiiiiiiiiiiess s e s e e e e e e e e e te e e et et eeaee e e s s s e e eeaeeeaaaeaeeeeesessssserseesnnennnnnnnn 9
Figure 5 - File EXPOIt INSANCEttt et e e e e e e e e e e e abbb e aeeaeaeeaeaanns 34
Figure 6 - File Export Manipulation Profile INStANCEeviviiiiiiiiiiiecce e 44
Figure 7 - Capabilities and Settings for Exported File Share Creation..............cccccuuviiieeiiiiiineniniiins 47
Figure 8 - FileShares and Simple Identity Management...........cccueveiriiiiiiieniiiiiee e 49
Figure 9 - File Server Classes and Associations (Read Only VIEW)........ccceeviiiiieeeeeiiiiieieeeeeevviiiinnn 81
Figure 10 - File Server Configuration classes and asSOCIAtioNeevviriiieiieiiiiiiie e 83
Figure 11 - File StOrage INStANCE.......cuiiiii e it ee et e e e e e e s e s s s e e e e e e e e e e s e e sn et eeareeraeeaeeseaanes 111
Figure 12 - Cascading File STOrAQgEuiii ittt e e e e e e e e e e e eanaes 113
Figure 13 - FileSYStem INSTANCEuuviiiiiiieiii e e ceer e e e e s e s e e e e e e e e e e e s e e ssntnnrreneeeeeesenanes 118
Figure 14 - LocalFileSystem Creation Instance Diagram................ceeiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeaneveneneeann 136
Figure 15 - Capabilities and Settings for Filesystem Creationccccceviiieiie e 141
Figure 16 - Filesystem Performance Profile Summary Instance Diagramccccccoeeeeiviiviiieinnnnnns 189
Figure 17 - Filesystem Quotas INStance DIagram..........ccuuiaiaiiiiiiiiiiiiiieeee e eee e e e e e e 230
Figure 18 - NAS Head Profil@S......ccc.uuuiiiiiiiiiiice et e e e e e e e e e e e e s nnnes 247
Figure 19 - NAS Head INSLANCEuuiiiiiiiiiiee ittt e e e e e e e e eeeaeaaaeeeaannes 248
Figure 20 - NAS StOrage INSANCEeeiiiiiiiiiiiee ittt e et e e e e eb e e e eneeee 250
Figure 21 - Self-Contained NAS Profiles ..o 265
Figure 22 - Self-Contain@d NAS INSTANCEuiiiiiiiiiiie et 266
Figure 23 - NAS StOrage INSANCEeeeiiiiieecii i e e e e e s e e s s e e e e ae e e s e s ansnsanraraeeereaeaeeeennnes 268
Figure 24 - NAS Support for Front-end NetwWOrk POITScooiiiiiiiiiiiiiiieiieee e 280
Figure 25 - Optional NAS TCP Interface Modelinguuveuiiiiieeeiiiiiiiiieeeee e e e 281
Figure 26 - Mandatory NAS Ethernet Port MOAelINGcoooiiiiiiiiiiiiiiieee e 282
Figure 27 - Host Filesystem Profiles and Packageccueviiiiiiiiiiiiii e 300
Figure 28 - Host Filesystem INStance Diagramc.ccoviiiiiiiiiieiiiiiiiccs s e e e e e e e e e e e eee e 301
Figure 29 - Host Filesystem support for CasCadinguueveeiiiiiiiieiiiiiee e 303
Figure 30 - Replication SErviCe DISCOVEIYcccciiiiiiiiiiiieeieiee e e e e e et st e e e e e e e e e s e s snnannreareeeaaaeeeeanes 327
Figure 31 - | Local File System RepliCAtiONccuuuiiiiiiiiiiaaa e 329
Figure 32 - Remote File System RepliCatioN...........ccccuiiiiiiiiiiice e e e 330
Figure 33 - Group INStanNCe DIagramcccoieeeeiiiiiie e s e s e s e e e e e e e aeaaeeeeeeeeeaeesrernrnnnnnne 331
Figure 34 - Associated Group and EIEMENTSuuiiiiiiiiiieiie e 332
Figure 35 - ONe-to-Many ASSOCIALIONuuuuuuirieiiieieie e e e e e e e e et ee et s e s e e e e e aeaeaaeeeeeeaeeseenne 333
Figure 36 - Sample CopyState and ProgressStatus TranSitioNS.coeaaaiiiiiiiiiiiiiiieiieeee e 336
Figure 37 - Local Replication with RepliCatioNENLILYccvivrieeiiiiiiiiiie e 337
Figure 38 - Remote replication with RepliCatioNENLItY...........ccooeiiiiiiiiiiiiiiiie e 338
Figure 39 - Multi-HOp REPHCALION ... 339
Figure 40 - SettingDefiNeSIALe.........uuiiiiiii i ——————- 339
Figure 41 - SynchronizationAspect INStance Diagramcccovuviiiiiiiiiiieei e 340
Figure 42 - FileSystem Replication Service support for Cascading..........ccovvviveviiviiiieerreeeeeeeeniinnns 342

SMI-S 1.7.0 Revision 5 Working Draft

15

Figure 43 - Cascading and Replication Groups

Figure B.1 State Transitions From LogicalDisk to FileShareccoccocieiiiiiiiii e,

16

Table 1
Table 2
Table 3
Table 4
Table 5

Table 6

Table 7

Table 8

Table 9

Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46

LIST OF TABLES

Related Profiles fOr File EXPOIT... ... ettt e e e e e e nte e e e e e e neeeeas 33
FileShare OperatioNalSTALUSoiiiiiiiii ettt ne e e s 35
CIM EIEmMENLS fOr FlE EXPOI......viiiiiiiiiiie ettt e e e e e e e e e st e e e e et e e e e e e staeeaessnntaaaeaesannns 36
SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)...........ccccoocvvieeennns 37
SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-

LTI (ol 1 L= TS g T T =) I TP RRR 38

SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (FileShare) 38
SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting)
SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)..............

SMI Referenced Properties/Methods for CIM_FileShareSettingData (FileShare)............cccoccoeeennns
SMI Referenced Properties/Methods for CIM_HostedShare............ccocoviiiiiiiiee e
SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)...........cccccoocvivveeennns
SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShareccccoociiiiinenns
SMI Referenced Properties/Methods for CIM_SharedElement ...
Related Profiles for File Export Manipulation
Operational Status for FileExport Service

FileExportManipulation METhOUScoooiiiiiiii e e e

Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettingsccc........ 53
Parameters for Extrinsic Method FileExportService.CreateExportedSharecccevcveeiiiieniiecnnee. 55
Parameters for Extrinsic Method FileExportService.ModifyExportedSharecccccovvieviiiiineeeinns 58
Parameters for Extrinsic Method FileExportService.ReleaseExportedShare............occoveeiiiiiiieennnis 60
Parameters for Extrinsic Method FileExportService.AssignPrivilegeToExportedShare 61
Parameters for Extrinsic Method AccountManagementService.CreateUserContactcccceeeueee 62
Parameters for Extrinsic Method AccountManagementService.GetUserContacts............cccccvveveeennns 63

SMI-S File Export Supported Capabilities Patterns
CIM Elements for File EXport Manipulationcceeeieiiiiiiieeniiiiiee e

SMI Referenced Properties/Methods for CIM_AccountManagementService.ccovvveerieeeeneeennne. 66
SMI Referenced Properties/Methods for CIM_Assignedldentitycccovvvieiiiiiiiee e 66

SMI Referenced Properties/Methods for CIM_AssociatedPrivilegeooooiiieiiiiiiiieieeee s 66
SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)..........cccccoecieeennns 67
SMI Referenced Properties/Methods for CIM_ConcreteDependency..........ccooveeeviveerieeeniieesseee e 68

SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration) 68
SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)..................... 68
SMI Referenced Properties/Methods for CIM_ExportedFileShareCapabilities (FES Capabilities)69
SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (FileShare Setting)............ 70
SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Pre-defined)..................... 71
SMI Referenced Properties/Methods for CIM_FileExportCapabilities (FES Configuration) 72
SMI Referenced Properties/Methods for CIM_FIle EXPOItSErviCeccueeiieiiiieieaniiiiieeee e
SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)cccccocvveiiiiennne.
SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)..........ccccccoivviiiieeiiiiiiieee e,
SMI Referenced Properties/Methods for CIM_HOSIEASEIVICEccoiiiiiiiiiiiiiiieiee e
SMI Referenced Properties/Methods for CIM_HOStedShare.............coooiiiiiiiiiiiiiieeee e
SMI Referenced Properties/Methods for CIM_ldentitycccevvveeiineennns
SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement).........ccccceeviiiiiiieiiiiiiiee s
SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)
SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShareccoocooeiiiiiiiienns
SMI Referenced Properties/Methods for CIM_ServiceAffectsElementcccooecviiieeiiiee i,

SMI-S 1.7.0 Revision 5 Working Draft

Table 47
Table 48
Table 49
Table 50
Table 51
Table 52
Table 53
Table 54
Table 55
Table 56
Table 57
Table 58
Table 59
Table 60
Table 61
Table 62

Table 63

Table 64

Table 65

Table 66

Table 67
Table 68

Table 69

Table 70

Table 71

Table 72
Table 73
Table 74
Table 75
Table 76
Table 77

Table 78
Table 79

Table 80
Table 81
Table 82
Table 83
Table 84
Table 85
Table 86

18

SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Pre-defined).................... 77
SMI Referenced Properties/Methods for CIM_SharedElement............cccooviveiiieeiniec e
SMI Referenced Properties/Methods for CIM_USErCoNtact.............eeeeiivviiieeiiiiiere e siiier e e seivenee e
Supported Profiles for File Server Manipulationccuueiiiiiiiiceeieee e
Operational Status for File Server COMPULErSYSIEIMcouuiiiiiiiiiiiiie et
Array Element Mappings for TemplateGoalSettings and SupportedGoalSettingscccccovvevvveennnee.
Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings.................

Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer
Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer
Parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer.............ccccvenee.
Parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface.............cccccccveeennns
Parameters for Extrinsic Method FileServerConfigurationService.ModifylPInterface
Parameters for Extrinsic Method FileServerConfigurationService.DeletelPInterface
CIM Elements for File Server Manipulationccccooeveiiieiniie e
SMI Referenced Properties/Methods for CIM_CIFSSettingData

SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to CIFS-
SYCyui]gTe | D= - ISR PSRRI 97

SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to DNS-
STel1 (] gTo | D= 1= OO PP PPRTPPRN 98

SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to IPInter-
TSt g [o] B L=) OO OP PRSP 98

SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NFS-
ST=l1 (] gTo | D= 1= OO PP PPRTPPR 98

SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NIS-

Y=y 1] gTo| D=1 = PR PER 99
SMI Referenced Properties/Methods for CIM_DNSSettingDatacccoovveeeiiieeiiiieiee e 99
SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-

vice to FileServerCapabilitieS)c.uii i 99

SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-
vice to FileServerConfigurationCapabilitieS)..........ccocviiiiieiiiie e 100

SMI Referenced Properties/Methods for CIM_ElementSettingData (ComputerSystem FileServer
10 FIlESEIVEISEIINGS) ..vviiiiiiiiiiee e ettt e e e e e et e e e e s st e e e e s e bbb e e e e e sasbareeaeeareeeessansbeees 100

SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to 1P-
o) (oTolo] | =y To] oTo] 1o | ISP OPUPSRT

SMI Referenced Properties/Methods for CIM_FileServerCapabilities............ccccocveiiiiniiiininienee.
SMI Referenced Properties/Methods for CIM_FileServerConfigurationCapabilities
SMI Referenced Properties/Methods for CIM_FileServerConfigurationService............ccccooveeevcieenns
SMI Referenced Properties/Methods for CIM_FileServerSettings

SMI Referenced Properties/Methods for CIM_HostedDependency

SMI Referenced Properties/Methods for CIM_HostedService (Hosting Computer System to File-
ServerConfIgUIAtIONSEIVICE)oouuuiiieeiiiiee ettt ettt ettt e e e bbb e e e e e e st b et e e e enbb e e e e e e abaeeeeean 104

SMI Referenced Properties/Methods for CIM_IPInterfaceSettingDataccccccevieiiiiieieiiiiieeenn. 104

SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to
INEEWOTKVLANL) ..tttk e et s e e s h bt e ettt e e bt e e s h e e e enb et e s e e ebs e e e nne e e nnnes 105

SMI Referenced Properties/Methods for CIM_NetWorkVLANcooiiiiiiiiiiiiiiiieee e
SMI Referenced Properties/Methods for CIM_NFSSettingData
SMI Referenced Properties/Methods for CIM_NISSettingData..........ccoocueeiiieiiiiiieieeiiieeee e

SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (CIFSettingData)............ 107
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (DNSSettingData).......... 107
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (FileServerSettings)....... 108
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (IPInterfaceSettingData) 108

Table 87 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NFSSettingData) 108
Table 88 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NISSettingData) 109
Table 89 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (ComputerSystem FileServer

1O FIlESEIVEISEIIINGS) .. tvee etttk e bttt e s b et e et s ane e e s e e e a e nnre e e nnre s
LI Lo LI [I 0% TYor= (o [=To IS (] -V [USSP
Table 91 - CIM Elements for File Storage
Table 92 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent
Table 93 - Related Profiles fOr FIlESYSEMuii it e e
Table 94 - Filesystem OperatioNalSTatUS...........eiiiiiiiiiie et ie e e esee e e e e s s e e e s s b e e e e s sntaeeeeesstaeeaeesasreees
Table 95 - CIM Elements fOr FIllESYSIEIM.........uuiii ettt e e e e saanees
Table 96 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From) 123
Table 97 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-

DilitieS t0 LOCAIFIIESYSIEIM) ...ttt e e nt e sre e e nineeen 124
Table 98 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)cccccceeevvnneee. 124
Table 99 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required) 124
Table 100 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (LocalFileSys-

L(=101) O PP U T UUPP PP 125
Table 101 - SMI Referenced Properties/Methods for CIM_FIleStorageoccoveeieiniiiiieeniieeee e 125
Table 102 - SMI Referenced Properties/Methods for CIM_FileSysStemSetting.........c.ccovvveriieeiiieeiniiienieee e 126
Table 103 - SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access Required)......... 127
Table 104 - SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)
Table 105 - SMI Referenced Properties/Methods for CIM_LocalAccessAvailableTOFSccccccoiiiiieienineee.
Table 106 - SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemSettingcccccvvee.e
Table 107 - SMI Referenced Properties/Methods for CIM_LocalFileSystem
Table 108 - SMI Referenced Properties/Methods for CIM_LogicalFile.............coiiiiiiiiiiiiieie e
Table 109 - Related Profiles for Filesystem Manipulation.............cc.ueeiiiiiiiiiei e
Table 110 - LocalFileSystem OperatiONalSTAtUS.oiveiiiiieeriii ittt e e e
Table 111 - Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modification.............. 144
Table 112 - Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings.........c..ccoccvveveeerninene. 146
Table 113 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize........................ 147
Table 114 - Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoalSettings150
Table 115 - Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem..................... 153
Table 116 - Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem..................... 158
Table 117 - Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem.................... 161
Table 118 - Filesystem Manipulation Supported CapabilitieS Patterns.cccveiiviieriiiiiieeiie e 162
Table 119 - CIM Elements for Filesystem Manipulationcccciuviiiiiiiiiiiee e e e e s 163
Table 120 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From) 166
Table 121 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabili-

LU LSES) PP UPP PP 167
Table 122 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Configuration

(0= To = o |1 1= 1) TSRS 167
Table 123 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Default)cccoveerieveiiieene 167
Table 124 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Non-Default)cccccoueeee. 168
Table 125 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesystem)......... 168
Table 126 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)......... 168
Table 127 - SMI Referenced Properties/Methods for CIM_FileSystemCapabilitiescccoovviiiiiiiieieiiens 169
Table 128 - SMI Referenced Properties/Methods for CIM_FileSystemConfigurationCapabilities........................ 169
Table 129 - SMI Referenced Properties/Methods for CIM_FileSystemConfigurationService.............ccccceeernine 172
Table 130 - SMI Referenced Properties/Methods for CIM_FileSystemSetting (Attached to FileSystem) 173
Table 131 - SMI Referenced Properties/Methods for CIM_FileSystemSetting (Predefined FS Settings) 175

SMI-S 1.7.0 Revision 5 Working Draft

Table 132
Table 133
Table 134
Table 135
Table 136
Table 137
Table 138
Table 139
Table 140
Table 141

Table 142

Table 143
Table 144
Table 145
Table 146
Table 147
Table 148
Table 149
Table 150

Table 151

Table 152
Table 153

Table 154
Table 155
Table 156

Table 157
Table 158
Table 159
Table 160
Table 161

Table 162

Table 163
Table 164
Table 165
Table 166
Table 167
Table 168

Table 169

Table 170

Table 171

20

- SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File System)........ 176
- SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Capabilities)......... 176
- SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Setting) 177
- SMI Referenced Properties/Methods for CIM_HostedFileSystem...........cccooiieiieiiiiiiiee e
- SMI Referenced Properties/Methods for CIM_HOStedSEerviCec.ooceeiieiiiiiiieeeiiiee e

- SMI Referenced Properties/Methods for CIM_LocalAccessAvailableToFS

- SMI Referenced Properties/Methods for CIM_LocalFileSysStemoccvvviieiiiiiiiiee e

- SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemCapabilities................. 180
- SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemSettingccccec... 182
- SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined FS Set-

- SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined Local Ac-

CESS SettiNgS) ..vvvevveee e
- Related Profiles for Filesystem Performance
- Summary of Element Types by Profile
- Creation, Deletion and Modification Methods in the Filesystem Performance Profile
- Summary of Statistics Support by Element

- Formulas and Calculations - Calculated Statistics for a Time Interval...........cccccooeviiiniiiiiinicnineens
- Filesystem Performance Profile Supported Capabilities Patternsccccoovieviiiiiiiiniee e

- CIM Elements for Filesystem Performance

- SMI Referenced Properties/Methods for CIM_AssociatedFileSystemStatisticsManifestCollection

(Client defined collection)

- SMI Referenced Properties/Methods for CIM_AssociatedFileSystemStatisticsManifestCollection

(Provider defined COIIECHION)oi ittt e e e et e e e e et e e e e s e nnaneaa s 204
- SMI Referenced Properties/Methods for CIM_ElementCapabilities...........ccocvveeiiiiiiiieiiiee e 205
- SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exported File Share

) - £ [PR PURRTI 205

- SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exporting Port Stats) 206
- SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Local Filesystem Stats)206
- SMI Referenced Properties/Methods for CIM_ElementStatisticalData (OTHER Element Type

StALS) coeeeiiee e
- SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

- SMI Referenced Properties/Methods for CIM_FileSystemStatisticsCapabilities............cccccevveeeennns 213
- SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined).......... 214
- SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Provider Support).....217
- SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifestCollection (Client De-

- SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifestCollection (Provider

Defined)cocovveiiieeiiieee

- SMI Referenced Properties/Methods for CIM_FileSystemStatisticSService.........c.cccovvveveeeviciveneennn.
- SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)............cccceeeeenne.
- SMI Referenced Properties/Methods for CIM_HostedCollection (Default)..............ccoceeiiiiiiienenns

- SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)

- SMI Referenced Properties/Methods for CIM_HOStEAdSEIVICEcccoviiiieeiiiiiiiee e
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined

(o0 F=Tox i o] o) ISR 224
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of predefined col-
[[=Tox (1] o) PP TP PP UPTTRTTRI 224
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collec-
L[] 1) P PP TP PO PP PRPT 224
- SMI Referenced Properties/Methods for CIM_StatisticSCollection............cooccevieiiiiiiiiei e 225

Table 172
Table 173
Table 174
Table 175
Table 176
Table 177
Table 178
Table 179
Table 180
Table 181
Table 182
Table 183
Table 184
Table 185
Table 186
Table 187
Table 188
Table 189
Table 190
Table 191
Table 192
Table 193

Table 194
Table 195

Table 196
Table 197
Table 198
Table 199
Table 200
Table 201
Table 202
Table 203
Table 204
Table 205
Table 206
Table 207
Table 208
Table 209
Table 210

Table 211
Table 212
Table 213
Table 214
Table 215
Table 216
Table 217
Table 218

SMI-S 1.7.0 Revision 5

- Related Profiles for FileSystem QUOLAS..........coi ettt e e e e aeaae e e e 227
- CIM Elements for FileSYStem QUOLAS.coiuuiiiiiieeiiie ettt 239
- SMI Referenced Properties/Methods for CIM_FSDomainldentityccccceeeiiiieieeeiiiieeee i 240
- SMI Referenced Properties/Methods for CIM_FSQuotaAppliesToElementccccceeiiiiiieeenns 240
- SMI Referenced Properties/Methods for CIM_FSQuotaAppliesToPrincipal..........ccccoocvieiiiiineenn. 240

- SMI Referenced Properties/Methods for CIM_FSQuotaAppliesToTree
- SMI Referenced Properties/Methods for CIM_FSQuotaCapabilities
- SMI Referenced Properties/Methods for CIM_FSQuotaConfigEntry
- SMI Referenced Properties/Methods for CIM_FSQuotalndication
- SMI Referenced Properties/Methods for CIM_FSQuotaManagementService
- SMI Referenced Properties/Methods for CIM_FSQuotaReportRecord

- Related Profiles for NAS Head
- InstModification Events for ComputerSystem
- InstModification Events for LogicalDisk

- Bellwether Alertindication Events for ComputerSystem

- Bellwether Alertindication Events for LOQICaIDISK..........cc.uuiiiiiiiiiiiiieiiiiece e

- Standard Messages used by NAS Head
- CIM Elements for NAS Head

- SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)..........ccc........ 257
- SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)...........cc........ 257
- SMI Referenced Properties/Methods for CIM_ConcreteComponent............occueevieriiiiieeeeianiieeee s 258

- SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to

Service)

- SMI Referenced Properties/Methods for CIM_HostedDependency

- SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

DIIIEIES) ettt 259
- SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS).........coooiiiiiiiiiiiiniieceee 259
- SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)............ 260
- SMI Referenced Properties/Methods for CIM_SystemDevice (Logical DiSKS)c.ccccevvieeiiiirennne. 261
- SMI Referenced Properties/Methods for CIM_SystemDevice (Storage EXtents)........cccccceovcvveeenn. 261

- Related Profiles for Self-contained NAS System

- InstModification Events for ComputerSystem
- InstModification Events for LogicalDisk

- Bellwether Alertindication Events for COmMpPULErSYSIEMciiiiiiiiiiiieiiiiieiee e erree e 271
- Bellwether Alertindication Events for LOQICaIDISK...........c.uuiiiiiiiiiiiiiiiiiieie e 271
- Standard Messages used DY NAS HEAMoooiiiiiiii et e e 272
- CIM Elements for Self-contained NAS SYSEM.......cocuiiiiiiiiiiieiiiee e e 273
- SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)..........cc......... 275
- SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)...........c......... 275
- SMI Referenced Properties/Methods for CIM_HostedDependencyccooeveeieeeiiiieeeeeiiciieeeeenne 276

- SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

bilities)

- SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)
- SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

- Related Profiles for NAS Network Port

- InstModification Events for NetworkPort........

- InstModification Events for ProtocolEndpoint

- Bellwether Alertindication Events for NetworkPort

- NetworkPort OperationalStatus

- ProtocolEndpoint OperationalStatus..............

Working Draft

Table 219
Table 220
Table 221
Table 222
Table 223
Table 224

Table 225

Table 226

Table 227
Table 228
Table 229
Table 230
Table 231
Table 232
Table 233
Table 234

Table 235
Table 236
Table 237
Table 238
Table 239
Table 240
Table 241
Table 242
Table 243
Table 244
Table 245
Table 246
Table 247
Table 248
Table 249
Table 250
Table 251
Table 252

Table 253

Table 254

Table 255
Table 256
Table 257
Table 258
Table 259

Table 260
Table 261

22

- Standard Messages used by NAS Head

- CIM Elements for NAS Network Port..........

- SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS)......cccooiiiiiiieiiiiienee e 288
- SMI Referenced Properties/Methods for CIM_BINdSTO (TCP)uviiiiiiiiiiiieeiiiiee e 288
- SMI Referenced Properties/Methods for CIM_BindSTOLANENAPOINtoooiiiiniiiiiieeniiieeene 289
- SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to Net-

WOTKPOI) ..o

- SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to Net-

WOTKPOI) .o

- SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to IP-

ProtocolENdpoint)ccovcvverieviiiieeiiieees
- SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

- SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)........cccevveiiiiiiiiiiniiiiieeeee
- SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)ccccee.....

- SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP).......ccocovvvvieeiniiieeniieenae
- SMI Referenced Properties/Methods for CIM_IPInterfaceSettingData.............cccceeeevviiiereeciiiveneeenne
- SMI Referenced Properties/Methods for CIM_IPProtocolENdpPOint............coooceevieiiniiiiie e
- SMI Referenced Properties/Methods for CIM_LANENAPOINt.........coooiiiiiiiiiiiiieeiee e
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to

NetwWOrkVLAN.)ooiiiiiiiie e

.. 294

- SMI Referenced Properties/Methods for CIM_NetworkPoOrt............coooviviiiiiiiieiniie e
- SMI Referenced Properties/Methods for CIM_NetwWOrkVLANcvviiiiiiiieec et

- SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

- SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)..........cccceeeeiiieeeeeenns
- SMI Referenced Properties/Methods for CIM_TCPProtoCoIENAPOINtcccveeviviiniiieiiiee e

- Related Profiles for Host Filesystem...........
- Discovery of the Filesystem Volumes.........
- Expansion of a Filesystem............ccccceeee..
- Replication of a Filesystem...........ccccccvenee.

- Quiesce a Filesystemccccceeeeenns
- Unquiesce a Filesystem

- Filesystem quiesce timeout
- Retrieve File Information...............ccccvveenn.
- CIM Elements for Host Filesystem

- SMI Referenced Properties/Methods for CIM_AllocatedReSOUICES...........ceveviiiiiiieeiiiiieie e
- SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow)..........ccccoocveeeeriiiieeeenn.
- SMI Referenced Properties/Methods for CIM_Dependency (SYStEmMS)ccceevvvveriieeiniieeeniieennnne
- SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabili-

- SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to

SEIVICE) coiiiiiiiie ettt

- SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (FilesystemConfigura-
tionService to Host Filesystem RegisteredProfile)cooiiiiiieiiiiiiie e 313

- SMI Referenced Properties/Methods for CIM_FileSystemConfigurationCapabilities........................ 314
- SMI Referenced Properties/Methods for CIM_FileSystemConfigurationService............cccocveviveennee 315
- SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources) 315
- SMI Referenced Properties/Methods for CIM_HOStedSErVICecooiuiiiiiiiiiiiieeeeieee e 316
- SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

TTTIT=YS OO

- SMI Referenced Properties/Methods for CIM_LocalFileSystem ... 316
- SMI Referenced Properties/Methods for CIM_LogicalDisk (Shadow)ccccoviviiiniieiiieeeniieee 318

Table 262 - SMI Referenced Properties/Methods for CIM_LogicalFile.............oooiiiiiiiiiiee e 319

Table 263 - SMI Referenced Properties/Methods for CIM_Logicalldentity (LogicalDisK)c.ccovcvveiiveeenineenns 320
Table 264 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)............ 320
Table 265 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources).............. 320
Table 266 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow).................... 321
Table 267 - SMI Referenced Properties/Methods for CIM_RemOoteRESOUICEScocviiiiieeiiiie e
Table 268 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent...............

Table 269 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Table 270 - SMI Referenced Properties/Methods for CIM_ServiceAffectsSElement..............coooiiiiiiiiiinennnne
Table 271 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)............. 323

Table 272 - SMI Referenced Properties/Methods for CIM_SystemDevice (LogicalDisks)

Table 273 - Related Profiles for Filesystem Replication SEIVICEScocuiviiiiiiiiiiiee e

Table 274 - Key Components
Table 275 - Comparing SyncTypes
Table 276 - CopyStatus Values
Table 277 - Indicationscoccceveeeninne
Table 278 - Extrinsic Method for Group Management
Table 279 - Extrinsic Method for Replication Management

Table 280 - Extrinsic Method for Getting Supported Capabilitiescccoviieiiiiiiiie e
Table 281 - Selected CreateElementReplica optional Parameters ..o
Table 282 - Selected CreateGroupReplica optional parameterso
Table 283 - Selected CreateListReplica optional PArametersS........cueeiiiieiiiiieiieee it

Table 284 - SyncTypes

Table 285 - Mode...............

Table 286 - Locality

Table 287 - ReplicationTypes
Table 288 - Featuresccccevvveerineennne
Table 289 - Group Features

Table 290 - Consistency

Table 291 - Operations.........cccccveeviieeennne
Table 292 - Comparison of Similar Operations
Table 293 - SettingsDefineState Operations
Table 294 - Thin Provisioning Features

Table 295 - Components

Table 296 - Default Consistency
Table 297 - Default Group Persistency
Table 298 - Copy Methodologies
Table 299 - Target Element Suppliers
Table 300 - ThinProvisioningPolicy
Table 301 - Connection Features
Table 302 - Storage Compression Features
Table 303 - CIM Elements for Filesystem Replication Services

Table 304 - SMI Referenced Properties/Methods for CIM_AlloCatedRESOUICES..........ccovcuvveveeeiiiiereeeiiiiiree e
Table 305 - SMI Referenced Properties/Methods for CIM_ElementCapabilitiesccccoviiiiiiiiiiiiieee i,
Table 306 - SMI Referenced Properties/Methods for CIM_FileSystemReplicationServiceCapabilities............... 380
Table 307 - SMI Referenced Properties/Methods for CIM_FileSystemSynchronizedcccocceeviiiiiieennenn. 382
Table 308 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForProtocolEndpoint) 385

Table 309 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForRemoteServiceAccess-

POINt) ..o

SMI-S 1.7.0 Revision 5

Working Draft

Table 310
Table 311

Table 312

Table 313
Table 314
Table 315
Table 316

Table 317
Table 318
Table 319
Table 320
Table 321
Table 322
Table 323
Table 324
Table 325
Table 326
Table 327
Table 328
Table 329

Table 330

Table 331

Table 332

Table 333

Table 334
Table 335

24

- SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources) 386
- SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and

RemoteReplicationCollection)

- SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and

Ry=T o] [Tor= i o] 1C] o U o) IR SPUPRRT 387
- SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources) 387
- SMI Referenced Properties/Methods for CIM_HOStedSErVICEecoocuiiiiiiiiiiiieeeeiiee e 388
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)............ 388
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoints to Re-

(palo] (=R ICT o] [Tor= Vo] g T@do] | T=Tox i o] o) PSPPSR 388
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources).............. 389

- SMI Referenced Properties/Methods for CIM_OrderedMemberOfCollection

- SMI Referenced Properties/Methods for CIM_ProtoColENAPOINtccvveeeiiiiiiiiieiiiieeee e

- SMI Referenced Properties/Methods for CIM_RemoteReplicationCollection

- SMI Referenced Properties/Methods for CIM_RemMOtERESOUICEScccvveiiieeriiiieriee e
- SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPointc.cccccvveveeiiciieneenn.
- SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage.............eeeeeviiiiieeeinniieeeeenne
- SMI Referenced Properties/Methods for CIM_ReplicationENtityccueiiiiiiiiiiiiiiiiee e
- SMI Referenced Properties/Methods for CIM_ReplicationGroupccovvveiiieeiniieesiie e
- SMI Referenced Properties/Methods for CIM_ReplicationServiCeccvvvveeiiiieieeiiicieie e

- SMI Referenced Properties/Methods for CIM_ReplicationSettingData
- SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

- SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-

vice and RemoteReplicatioNCOIECHION)oi it e e e 398
- SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-

Vice and REPIICAIONENTILY)veiiiiieiiiie ettt e e e b s e e 398
- SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-

Vice and REPICAIONGIOUD) ...vieureieiiiee ittt ettt e b e st e s e e st e e ann e e e nnnee 399
- SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between ReplicationGroup

and SYNCHrONIZAtIONASPECT)eeiiiiieiiit ittt e e e e st e e sbe e e s nnnenineeens 399
- SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between storage object and

YV o el (o] alV4=Vilo] gV AN o=t i RO 400
- SMI Referenced Properties/Methods for CIM_SharedSecret. ..o 400
- SMI Referenced Properties/Methods for CIM_SynchronizationASpectccccceeiiiiieeeeiiciieeeenn. 401

FOREWORD

The Filesystems part of the Storage Management Technical Specification contains Profiles and other clauses
for management of devices and programs that support filesystems. A filesystem is a specific formatting of
storage for storing and accessing files on external storage. This part describes how filesystems are
created, modified and deleted, as well as how they can be found and reported. This part also describe
modeling for how filesystems are exported for access from remote systems. The filesystem profiles use
information from other parts of the Storage Management Technical Specifications. Specifically, they
reference profiles in the Common Profiles and the Block Devices parts of the specification. This part
describes how these profiles are used in filesystem profiles.

Parts of this Standard
This standard is subdivided in the following parts:

= Storage Management Technical Specification, Part 1 Overview, 1.7.0 Rev 5

= Storage Management Technical Specification, Part 2 Common Architecture, 1.7.0 Rev 5
= Storage Management Technical Specification, Part 3 Common Profiles, 1.7.0 Rev 5

= Storage Management Technical Specification, Part 4 Block Devices, 1.7.0 Rev 5

= Storage Management Technical Specification, Part 5 Filesystems, 1.7.0 Rev 5

= Storage Management Technical Specification, Part 6 Fabric, 1.7.0 Rev 5

= Storage Management Technical Specification, Part 7 Host Elements, 1.7.0 Rev 5

= Storage Management Technical Specification, Part 8 Media Libraries, 1.7.0 Rev 5

SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage Networking
Industry Association, 4360 ArrowsWest Drive, Colorado Springs, Colorado 80907, U.S.A.

SMI-S 1.7.0 Revision 5 Working Draft 25

26

1 Scope

The Filesystems part of the Storage Management Technical Specification defines management profiles for
Autonomous (top level) profiles for programs and devices whose central function is providing support and
access to file data. In addition, it provides documentation of component profiles that deal with filesystems
and management interface functions that may be used by other autonomous profiles not included in this
part of the specification.

There is an informative annex that describes how storage is mapped from block storage to file shares
exported by the filesystem and the mechanisms involved in that establishing those mappings. This annex
is recommended for getting an overview of how the filesystem models work.

This version of the Filesystems part of the Storage Management Technical Specification includes two
autonomous profiles:

e The NAS Head Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users and gets
its storage from a SAN (array devices attached to the NAS Head device).

e The Self-Contained NAS Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users, but gets
its storage from disk drives that are internal to the NAS device (instead of externally attached arrays).

In addition to these autonomous profiles, this part of the specification defines a number of component
profiles, which are used by the autonomous NAS profiles and might also be used by other autonomous
profiles that feature filesystem elements and services. The component profiles defined in this version of
the specification include:

= The File Export (component) Profile

This component profile defines the elements used to model the exporting of filesystems or directories for any
autonomous profile that exports file data to remote systems.

« The File Export Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
the file shares (the representation of exported filesystems or directories) for any autonomous profile that
provides manipulation of exported filesystems or directories.

< The File Storage (component) Profile

This component profile defines the elements used to model the storage of filesystems on logical disks. This
profile does not have services for maintaining the mapping of filesystems to logical disks. These services are
addressed in the Filesystem Manipulation Profile.

< The Filesystem (component) Profile

This component profile defines the elements used to model filesystems and its related elements, such as
logical files, directories and information on how the filesystem is addressed when mounted to a specific
system. The services for defining and maintaining the information in the Filesystem Profile are contained in the
Filesystem Manipulation Profile.

= The Filesystem Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
filesystems and their related elements.

SMI-S 1.7.0 Revision 5 Working Draft 27

< The Filesystem Quotas (component) Profile

This component profile defines the elements used to model the elements associated with creating, maintaining
and reporting on quotas on various filesystem elements.

28

2 Normative References

2.1 General

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced

document (including any amendments) applies.

2.2 References under development

Storage Management Technical Specification, Part 2 Common Architecture, 1.7.0 Rev 5
Storage Management Technical Specification, Part 3 Common Profiles, 1.7.0 Rev 5
Storage Management Technical Specification, Part 4 Block Devices, 1.7.0 Rev 5

2.3 Other references

DMTF DSP1034 Simple Identity Management Profile 1.1.0
http://dmtf.org/sites/default/files/standards/documents/DSP1034_1.1.0.pdf

DMTF DSP1054 Indications Profile 1.2.2
http://www.dmtf.org/sites/default/files/standards/documents/DSP1054_1.2.2.pdf

MS-SMB2: Server Message Block (SMB) Protocol Versions 2 and 3
https://msdn.microsoft.com/en-us/library/cc246482.aspx

IETF ISSN: 2070-1721, Network File System (NFS) Version 4 Minor Version 1 Protocol,
https://tools.ietf.org/html/rfc5661

ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]

SMI-S 1.7.0 Revision 5 Working Draft

29

30

3 Terms, Definitions, Symbols, Abbreviations, and Conventions

3.1 General

For the purposes of this document, the terms, definitions, symbols, abbreviations, and conventions given
in Storage Management Technical Specification, Part 2 Common Architecture, 1.7.0 Rev 5 and the following

apply.
3.2 Terms and Definitions

3.2.1
CIFS
Common Internet File System

3.2.2
Directory
A subtree within a filesystem

A directory may contain files or other directories.

3.2.3
File
A logical file in a filesystem

3.24
file server
a system configuration that supports the exporting of files and files systems

Note 1 to entry: A file server may be a virtual system element.

3.25
file share
sharing protocols applied to a directory. A directory is exported to remote users through a file share

3.2.6
filesystem
a filesystem in which files are named and placed logically for storage and retrieval

3.2.7
FS quota
a quota (hard or soft limit) placed on filesystem resource usage

3.2.8
logical disk
block storage on which filesystems are built

Note 1 to entry: A logical disk would be formatted for a particular filesystem.

3.2.9
NAS
Network Attached Storage

In the context of this specification this refers to devices that serve files to a network

3.2.10
NAS head

a NAS device that gets its physical storage from one or more arrays that are externally attached to the

NAS device

SMI-S 1.7.0 Revision 5 Working Draft

31

3.2.11
NFS
Network File System

3.2.12
Self-Contained NAS
a NAS device that has its own internal (to the NAS device) storage

3.2.13

guota

a hard or soft limit defined for users, user groups or resource collections on the amount of resources that
may be consumed

32

File Export Profile

STABLE

4 File Export Profile

4.1 Description

4.1.1 Synopsis

Profile Name: File Export (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: FileShare

Scoping Class: ComputerSystem

Related Profiles: Table 336 describes the related profiles for File Export.

Table 336 - Related Profiles for File Export

Profile Name Organization Version Requirement Description
Indications DMTF 1.2.2 Mandatory See DSP1054, version
122

4.1.2 Overview

The File Export Profile is a component profile for autonomous profiles that support exporting of
filesystems. Specifically, in this release of SMI-S, this includes the NAS Head and Self-Contained NAS
Profiles. In some of these autonomous profiles the File Export is required. In others it may not be. See the
parent profile to see if this profile is required or not.

4.1.3 Implementation

Figure 5: "File Export Instance" illustrates the classes mandatory for modeling the export of File Shares
for the filesystem profiles. This profile is supported by the Self-contained NAS and the NAS Head
Profiles. Figure 5 shows the ComputerSystem that hosts the LocalFileSystem (“filesystem host”) as
different from the ComputerSystem hosting the FileShare (“File server”). While they may be different
ComputerSystems, they may also be the same ComputerSystem instance.

SMI-S 1.7.0 Revision 5 Working Draft 33

File Export Profile

ProtocolEndpoint
ProtocollFType = 4200 | 4201
('NFS" or "CIFS")
(See NAS Network Port Profile)
*
File Export SAPAvailableForFileShare—————— SAPAvailableForFileShare
fil P - T
Profile FileShare ExportedFileShareSetting -
I-FileShareSettingData-| FileShare
NFSorCIFS 11 1 NFS or CIFS
ExportedFileShareSetting
FileShareSettingData
HostedShare ElementCapabilities
ConcreteDependency
(Deprecated, Optional) 2
(For Backward Compatibility)
LogicalFile (Deprecated)
1 (for Backward Compatibility)
ComputerSystem .)
P 4 (See Filesystem Profile)
File server (Dedicated="16") FileStorage (Deprecated)
(See referencing profile) (For Backward Compatibility) EnabledLogicalElement
Capabilities
ComputerSystem LocalFilesystem
- HostedFileSystem
Filesystem Host (See Filesytem Profile) 1
(See referencing profile)

Figure 5 - File Export Instance

The referencing profile shall model any File Shares that have been exported to the network. A File Share
shall be represented as a FileShare instance with associations to the ComputerSystem that hosts the
share (via HostedShare), to the ExportedFileShareSetting (via FileShareSettingData) and to the
ProtocolEndpoint (via SAPAvailableForFileShare) through which the Share can be accessed.

NOTE In Figure 5 the FileShare shown is intended to represent a subclass of CIM_FileShare (e.g., CIFSShare or NFSShare). It is
not intended to imply that either should be represented by CIM_FileShare (which does not indicate the type of file share).

EXPERIMENTAL

The FileShare also has a SharedElement association to the LocalFileSystem on which the share is
based.

EXPERIMENTAL

The FileShare may also have an ElementCapabilities association to an EnabledLogicalUnitCapabilities to
identify naming and requested state change capabilities.

34

File Export Profile

4.1.3.1 Associations to FileShare

The SAPAvailableForFileShare is a many to many association. That is, multiple FileShares may be
exported through the same ProtocolEndpoint and multiple ProtocolEndpoints may support the same
FileShare (CIFSShare or NFSShare).

The SharedElement association between the FileShare (CIFSShare or NFSShare) and a LocalFileSystem
iSs many to one association. Zero or more FileShares may be associated to one LocalFileSystem. But
each FileShare (CIFSShare or NFSShare) shall only reference one LocalFileSystem.

The FileShareSettingData association between the FileShare (CIFSShare or NFSShare) and the
ExportedFileShareSetting is a one to one association. That is, a FileShare (CIFSShare or NFSShare)
shall have an ExportedFileShareSetting and that ExportedFileShareSetting shall be associated to exactly
one FileShare (CIFSShare or NFSShare).

4.1.3.2 Element Naming

The name of a FileShare may be changed. The existence of the EnabledLogicalElementCapabilities
instance associated to the FileShare indicates that the FileShare can be named. If
ElementNameEditSupported is set to TRUE, then the ElementName of the associated FileShare may be
modified. The ElementNameMask property provides the regular expression that expresses the limits of
the name; see 4.7.x for the class definition for EnabledLogicalElementCapabilities for details for this

property.
4.2 Health and Fault Management Consideration

The File Export Profile supports state information (e.g., OperationalStatus) on the following element of
the model:

= FileShares that are exported (See section 4.2.1)

4.2.1 OperationalStatus for FileShares

Table 2 shows FileShare operationalStatus.

Table 2 - FileShare Operational Status

OperationalStatus Description
OK FileShare is online
Error FileShare has a failure. This could be due to a filesystem failure.
Stopped FileShare is disabled
Unknown

4.3 Cascading Considerations

Not defined in this standard

4.4 Methods of the Profile

4.4.1 Extrinsic Methods of the Profile

Not defined in this standard

4.4.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

SMI-S 1.7.0 Revision 5 Working Draft 35

File Export Profile

= Getlnstance

= Associators

= AssociatorNames

< References

< ReferenceNames

= Enumeratelnstances

= EnumeratelnstanceNames

4.5 Use Cases

To list existing FileShares on the system, a client shall be able to find FileShares attached to a system
(e.g., a file server) by doing an association traversal from the ComputerSystem that represents the
system using the HostedShare association.

4.6 CIM Elements
Table 3 describes the CIM elements for File Export.

Table 3 - CIM Elements for File Export

Element Name Requirement Description

4.6.1 CIM_CIFSShare (Exported File Share) Optional Represents the CIFS sharing characteristics of a
particular file element.

4.6.2 CIM_ElementCapabilities Conditional Conditional Requirement:

(EnabledLogicalElementCapabilities to FileShare) EnabledLogicalElementCapabilities. Expressed the
ability for the file share to be named or have its state
changed.

4.6.3 CIM_EnabledLogicalElementCapabilities Optional This class is used to express the naming and

(FileShare) possible requested state change possibilities for file
shares.

4.6.4 CIM_ExportedFileShareSetting (Setting) Mandatory The configuration settings for an Exported FileShare

that is a setting for a FileShare (CIFSShare or
NFSShare) available for exporting.

4.6.5 CIM_FileShare (Exported File Share) Mandatory Represents the sharing characteristics of a particular
file element.
4.6.6 CIM_FileShareSettingData (FileShare) Mandatory Experimental. Associates a FileShare (CIFSShare or

NFSShare) and ExportedFileShareSetting elements.

4.6.7 CIM_HostedShare Mandatory Represents that a shared element is hosted by a File
Server Computer System.

4.6.8 CIM_NFSShare (Exported File Share) Optional Represents the NFS sharing characteristics of a
particular file element.

4.6.9 CIM_SAPAvailableForFileShare Mandatory Represents the association between a
ProtocolEndpoint to the file share that is being
accessed through that SAP.

4.6.10 CIM_SharedElement Mandatory Associates a FileShare (CIFSShare or NFSShare) to
the LocalFileSystem on which it is based.

36

File Export Profile

Table 3 - CIM Elements for File Export

Element Name Requirement Description

SELECT * FROM CIM_InstModification WHERE Optional CQL -Change of Status of a FileShare.
Sourcelnstance ISA CIM_FileShare AND PreviouslInstance is optional, but may be supplied by
Sourcelnstance.CIM_FileShare::OperationalStatus an implementation of the Profile.

<>
Previousinstance.CIM_FileShare::OperationalStatus

SELECT * FROM CIM_InstCreation WHERE Mandatory CQL -Creation of a FileShare element.
Sourcelnstance ISA CIM_FileShare

SELECT * FROM CIM_InstDeletion WHERE Mandatory CQL -Deletion of a FileShare element.
Sourcelnstance ISA CIM_FileShare

SELECT * FROM CIM_AlertIindication WHERE Conditional FileShare is degraded (if hardware implementation
OwningEntity = 'SNIA" AND MessagelD='"FSM16' can support).

SELECT * FROM CIM_AlertIndication WHERE Mandatory FileShare issues have been cleared (if FSM16 is
OwningEntity = 'SNIA' AND MessagelD='"FSM17’ supported).

4.6.1 CIM_CIFSShare (Exported File Share)

The CIM_CIFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may
instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 4 describes class CIM_CIFSShare (Exported File Share).

Table 4 - SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.6.5 CIM_FileShare (Exported
File Share).

ElementName Mandatory See the ElementName definition in section 4.6.5 CIM_FileShare (Exported
File Share).

Name Mandatory See the Name definition in section 4.6.5 CIM_FileShare (Exported File
Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.6.5 CIM_FileShare

(Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.6.5 CIM_FileShare
(Exported File Share).

Description N Optional See the Description definition in section 4.6.5 CIM_FileShare (Exported
File Share).

4.6.2 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to FileShare)

Experimental.

Created By: Static
Modified By: Static

SMI-S 1.7.0 Revision 5 Working Draft 37

File Export Profile

Deleted By: Static
Requirement: Optional
Table 5 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to FileShare).

Table 5 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to FileShare)

Properties Flags Requirement Description & Notes
Capabilities Mandatory The capabilities object associated with the file share.
ManagedElement Mandatory The FileShare.

4.6.3 CIM_EnabledLogicalElementCapabilities (FileShare)

Experimental.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 6 describes class CIM_EnabledLogicalElementCapabilities (FileShare).

Table 6 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (FileShare)

Properties Flags Requirement Description & Notes

InstancelD Mandatory

ElementName Mandatory The moniker for the instance.
ElementNameEditSupported Mandatory Denotes whether a file share can be named.
MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the

name. See MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content
and format for the element name. See MOF for details.

RequestedStatesSupported Optional Expresses the states to which this file share may be
changed using the RequestStateChange method. If this
property, it may be assumed that the state may not be
changed.

GetElementNameCapabilities() Conditional Conditional requirement: Required if File Export
Manipulation is implemented.

4.6.4 CIM_ExportedFileShareSetting (Setting)

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

38

File Export Profile

Table 7 describes class CIM_ExportedFileShareSetting (Setting).

Table 7 - SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting)

Properties Flags Requirement Description & Notes

InstancelD Mandatory A unique ID for the setting.

ElementName Mandatory A user-friendly name for the Setting.

FileSharingProtocol Mandatory The file sharing protocol supported by this share. NFS (2) and CIFS
(3) are the supported values.

ProtocolVersions Mandatory An array of the versions of the supported file sharing protocol. A share
may support multiple versions of the same protocol.

InitialEnabledState N Optional Valid values are '1|2|3|7|8|9' for (‘Other' | ‘Enabled’ | ‘Disabled' | 'In
Test' | 'Deferred' | '‘Quiesce’).

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is '1'.

DefaultUserldSupported | N Optional Valid values are '2|3|4' for (‘No Default User Id' | 'System-Specified
Default User Id' | 'Share-Specified Default User Id").

RootAccess N Optional Valid values are '2|3' for (‘'No Root Access' | 'Allow Root Access').

AccessPoints N Optional Valid values are '2|3|4|5' for (‘'None' | 'Service Default' | 'All' | 'Named
Points").

4.6.5 CIM_FileShare (Exported File Share)

SMI-S treats CIM_FileShare as an abstract class. It is mandatory because an implementation shall
instantiate either (or both) CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External
Deleted By: External

Requirement: Mandatory

Table 8 describes class CIM_FileShare (Exported File Share).

Table 8 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstancelD Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.

Name Mandatory This shall be an opaque string that uniquely identifies the path to the
directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is useful when
importing but less so when exporting.

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in section 4.2.1.

Description N Optional This a comment describing the file share.

4.6.6 CIM_FileShareSettingData (FileShare)

Experimental.

SMI-S 1.7.0 Revision 5

Working Draft

39

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

File Export Profile

Table 9 describes class CIM_FileShareSettingData (FileShare).

Table 9 - SMI Referenced Properties/Methods for CIM_FileShareSettingData (FileShare)

Properties

Flags

Requirement

Description & Notes

ManagedElement

Mandatory

The FileShare (CIFSShare or NFSShare).

SettingData

Mandatory

The settings define on creation of the FileShare.

4.6.7 CIM_HostedShare

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 10 describes class CIM_HostedShare.

Table 10 - SMI Referenced Properties/Methods for CIM_HostedShare

Properties Flags Requirement Description & Notes
Dependent Mandatory The Share that is hosted by a Computer System.
Antecedent Mandatory The Computer System that hosts the FileShare. This can be

the top level or non-top level system, or a virtual file server.
But it shall be a File Server (Dedicated='16").

4.6.8 CIM_NFSShare (Exported File Share)

The CIM_NFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may

instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 11 describes class CIM_NFSShare (Exported File Share).

Table 11 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.6.5 CIM_FileShare
(Exported File Share).

ElementName Mandatory See the ElementName definition in section 4.6.5

CIM_FileShare (Exported File Share).

40

File Export Profile

Table 11 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

Name Mandatory See the Name definition in section 4.6.5 CIM_FileShare
(Exported File Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.6.5
CIM_FileShare (Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.6.5
CIM_FileShare (Exported File Share).

Description N Optional See the Description definition in section 4.6.5 CIM_FileShare

(Exported File Share).

4.6.9 CIM_SAPAvailableForFileShare

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 12 describes class CIM_SAPAvailableForFileShare.

Table 12 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare

Properties Flags Requirement Description & Notes

FileShare Mandatory The file share that is made available through a SAP. In the File Export
profile, these are FileShares configured for either export.

AvailableSAP Mandatory The Service Access Point that is available to this FileShare. This shall
have a value of '4200' (NFS) or '4201' (CIFS).

4.6.10 CIM_SharedElement

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 13 describes class CIM_SharedElement.

Table 13 - SMI Referenced Properties/Methods for CIM_SharedElement

Properties Flags Requirement Description & Notes

SystemElement Mandatory The LocalFileSystem that is exporting some contained file
or directory as a FileShare.

SameElement Mandatory The FileShare (CIFSShare or NFSShare) that exposes a

contained file or directory of the LocalFileSystem as an
exported object.

STABLE

SMI-S 1.7.0 Revision 5

Working Draft

41

42

File Export Profile

STABLE

5 File Export Manipulation Profile

5.1 Description

5.1.1 Synopsis

Profile Name: File Export Manipulation (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: FileExportService

Scoping Class: File server ComputerSystem element (with Dedicated property containing "16")
Related Profiles: Table 14 describes the related profiles for File Export Manipulation.

Table 14 - Related Profiles for File Export Manipulation

Profile Name Organization Version Requirement Description

Job Control SNIA 15.0 Optional

File Export SNIA 1.7.0 Mandatory

Simple Identity DMTF 1.1.0 Mandatory See DSP1034, version 1.1.0.
Management

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2

5.1.2 Overview

The File Export Manipulation Profile is a component profile of autonomous profiles that support
filesystems. It makes use of elements of the Filesystem profiles and supports creation, modification and
deletion of FileShares that are exported by the File Export Profile. A number of other profiles also make
use of elements of the filesystem profile and will be referred to in this specification as “filesystem related
profiles” -- these include but are not limited to the Filesystem Profile, the Filesystem Manipulation Profile,
the File Export Profile, the NAS Head Profile, the Self-Contained NAS Profile, and so on.

In this release of SMI-S, the autonomous profiles that use the File Export Manipulation Profile are the
NAS Head and Self-Contained NAS Profiles.

Annex B, "(Informative) State Transitions from Storage to File Shares" describes the states that a storage
element, initially an unused LogicalDisk, goes through before it can be exported as a CIFS or NFS file
share. The Filesystem Manipulation Profile provides the methods to create the filesystem as a
LocalFileSystem and make it locally accessible at a file server ComputerSystem (associated to the file
server ComputerSystem via the LocalAccessAvailableToFS association). This profile (the File Export
Manipulation Profile) provides the methods to "Export a file share" from the file server that allows the file
server to share its contents with remote operational users. Sharing the contents of a LocalFileSystem can
be from the root directory or some contained internal directory, or some contained internal file. When a
directory (root or otherwise) is shared, all files and sub-directories of that directory are also automatically
shared (recursively). The semantics of sharing are ultimately controlled by the Authorization profiles and
by the filesystem implementation, so sharing cannot violate the access rules specified internally to the
filesystem. In addition to specifying the object (file or directory) to be shared, the filesystem
implementation shall specify the protocol to use (CIFS, NFS, or other protocol) for sharing.

File Export Manipulation Profile

SMI-S uses a FileShare (CIFSShare or NFSShare) element to represent the externally accessible file
share. A SharedElement association will exist between the FileShare (CIFSShare or NFSShare) and the
LocalFileSystem. The FileShare.Name property indicates the shared object (it is the filesystem-specific
path to the contained file or directory that is being shared). The format of Name is specific to the
filesystem type indicated by the associated FileSystemSetting.ActualFileSystemType property; the
LocalFileSystem.PathnameSeparatorString property indicates the "separator string" that may be used to
split the PathName into the components of a hierarchical path name from the root of the associated
filesystem (indicated by the LocalFileSystem).

5.1.3 Instance Diagrams

5.1.3.1 File Export Creation classes and associations
Figure 6 illustrates the constructs involved with creating a FileShare (CIFSShare or NFSShare) for a File

ComputerSystem
1 Dedicated[|="File Server” 16
1 1
1
FileExportCapabilities
FileSharingProtocols[])
/I ProtocolVersions|] HostedService
SynchronousExportMethods[] | 1 -
AsynchronousExportMethods]] | ElementCapabilities
InitialEnabledState 1 FileExpoitService HostedShare
ElementCapabilities
Characteristics={"Default’} 1 '\CAre;teEXxpo:egggare()
ElementCapabilities | odifyExportedShare()
1 ReleaseExportedShare()
. 1
1 ServiceAffectsElement
ExportedFileShareCapabilities * *
FileSharingProtocol FileShare
/I ProtocolVersions[] Name="nath to shared))
SupportedProperties[] 1| Name=painto share ExportedFileShareSetting LocalAccessAvailable
CreateGoalSettings() element 1 - -
9 * * FileSharingProtocol
1 /I ProtocolVersions[]
) InitialEnabledState
HostedAccessPoint FileShareSettingData OtherEnabledState
DefaultReadWrite
SettingsDefineCapabilities DefaultExecute
)) ExecuteSupport
SAPAvailableForFileShare 1 DefaultUserldSupported
* ConcreteDependency SharedElement— RO(.)tACC?SS
ExportedFileShareSetting (Optional) WritePolicy
AccessPoints
1 1
* ProtocolEndPoint LogicalFile LocalFileSystem
* (or Directory) 1
ProtocolIFType="Other" FileStorage
OtherTypeDescription='NFS"

or "CIFS"

Figure 6 - File Export Manipulation Profile Instance

Export Profile. This summarizes the mandatory classes and associations for this profile. Specific areas
are discussed in later sections.

The FileExportService provides configuration support for exporting elements (‘'files' and 'directories’) of a
LocalFileSystem as FileShare (CIFSShare or NFSShare) elements. A FileExportService is hosted by the

44

File Export Manipulation Profile

file server ComputerSystem that exports the directories/files (these would be the file server
ComputerSystems in the Filesystem profile that were given local access to the filesystem). FileShares
are accessed through ServiceAccessPoint(s) hosted by the file server ComputerSystem. FileShares are
associated with the FileExportService via ServiceAffectsElement and with the ServiceAccessPoint(s) via
SAPAvailableToElement.

If a filesystem-related profile supports the File Export Manipulation Profile, it shall have at least one
FileExportService element. This FileExportService shall be hosted on the top level ComputerSystem of
the File Export Profile (which shall be a file server ComputerSystem element in the filesystem related
profiles). The methods offered are CreateFileShare, ModifyFileShare, and ReleaseFileShare.

Associated to the FileExportService (via ElementCapabilities) shall be one FileExportCapabilities element
that describes the capabilities of the service. It identifies the methods supported, whether the methods
support Job Control or not, the protocols that the created file share can support, and whether or not the
file share shall be made available after creation.

For each file sharing protocol that is supported, there shall be one ExportedFileShareCapabilities
element that defines the range of capabilities supported for that particular file sharing protocol. The
ExportedFileShareCapabilities elements shall be associated via ElementCapabilities to the
FileExportService. One of the ExportedFileShareCapabilities may be identified as a default (by setting
the property ElementCapabilities.IsDefault). The default ExportedFileShareCapabilities element also
indicates the default file sharing protocol to be supported. These defaults apply if any of the extrinsic
methods of the FileExportService are invoked with a NULL value for the Capabilities parameter.

Each ExportedFileShareCapabilities element is defined by a set of ExportedFileShareSettings that are
associated to it by the SettingsDefineCapabilities association. These ExportedFileShareSettings may be
structured to indicate a range of supported and unsupported property values and shall have the same
value for the FileSharingProtocol property as the ExportedFileShareCapabilities element.

For the convenience of clients the File Export Manipulation Profile shall populate a set of “pre-defined”
ExportedFileShareSettings for each of the ExportedFileShareCapabilities. These shall be associated to
the ExportedFileShareCapabilities via the SettingsDefineCapabilities association -- the association shall
have its SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and
theSettingsDefineCapabilities.ValueRole property set to "Supported".

NOTE That they are pre-defined and therefore exist at all times does not imply that these ExportedFileShareSettings must be
made persistent by the implementation.

The ExportedFileShareCapabilities instance supports the CreateGoalSettings method, described in detail
in , "Table 16 shows methods and instances for FileExportManipulation.". This method supports
establishing one client-defined ExportedFileShareSettings (as a goal).

CreateGoalSettings takes an array of embedded SettingData elements as the input TemplateGoalSettings
and SupportedGoalSettings parameters and may generates an array of embedded SettingData elements
as the output SupportedGoalSettings parameter. However, this profile only uses a single embedded
ExportedFileShareSettings element in the input parameters (both TemplateGoalSettings and
SupportedGoalSettings) and generate a single valid embedded ExportedFileShareSettings element as
output (SupportedGoalSettings). If a client supplies a NULL ExportedFileShareSettings (i.e., the empty
string) as input to this method, the returned ExportedFileShareSettings structure shall be a default setting
for the parent ExportedFileShareCapabilities. If the input (the embedded ExportedFileShareSettings) is
not NULL, the method may return a “best fit” to the requested setting. The client may iterate on the
CreateGoalSettings method until it acquires a setting that suits its needs. This embedded settings
structure may then be used when the CreateFileShare or ModifyFileShare methods are invoked. The
details of how iterative negotiation can work are discussed in 5.4.1.1,
"ExportedFileShareCapabilities.CreateGoalSettings"”. Note that the file sharing protocol indicated by the
FileSharingProtocol property is invariant in all of these interactions. It is an error if the client changes the
FileSharingProtocol property for a Setting and submits it as a goal to the Capabilities element that
provided the original Setting.

SMI-S 1.7.0 Revision 5 Working Draft 45

File Export Manipulation Profile

Note that it is not possible to guarantee that negotiation will terminate with an agreed upon setting and
therefore a fall-back mechanism is needed. This profile does not require negotiation — an implementation
may support only a set of pre-defined correlated point settings that a client can preload and use without
modification. The implementation could also support the only settings whose properties are selectable
from an arithmetic progression or from a fixed enumeration, so that the client may construct a goal setting
that is guaranteed to be supported without negotiation.

NOTE That a client has obtained a goal setting supported by the implementation does not guarantee that a create or modify
request will succeed. Such a setting only specifies a supported static configuration not that the current dynamic environment has
the resources to implement a specific request.

Armed with the goal (the embedded ExportedFileShareSettings element), a reference to a
LocalFileSystem, and a path to a file or directory contained within that LocalFileSystem, the client can
now use the CreateFileShare method to create the file share for export. The CreateFileShare method
creates a FileShare element, and a new ExportedFileShareSettings instance as well as several
necessary associations. These associations are:

= HostedFileShare association between the FileShare and the file server ComputerSystem that hosts it.

< SharedElement association between the FileShare and the LocalFileSystem. In addition, the FileShare
element specifies the pathname for the shared element (file or directory) relative to the root of the
LocalFileSystem (using the Name property).

EXPERIMENTAL)
= FileShareSettingData to associate the FileShare to the ExportedFileShareSetting defined for it

EXPERIMENTAL

« For backward compatibility with previous releases of SMI-S:
= The file or directory of the LocalFileSystem that is being shared is represented as a LogicalFile
= A FileStorage association is created between the LogicalFile and the LocalFileSystem
= A ConcreteDependency association is created between the FileShare and the LogicalFile.

= In addition, optional parameters to the method can cause other classes to be created:

= DefaultUserld could create a Privilege (see 5 File Export Manipulation Profile of Storage Management
Technical Specification, Part 3 Common Profiles, 1.7.0 Rev 5) associated to the FileShare as
AuthorizationTarget and to a Userldentity as AuthorizationSource

< RootAccessHosts array parameter could create root access Privileges from a number of remote Host
ComputerSystems to the FileShare (also using the Simple Identity Management Profile)

= AccessPointPorts array parameter could create SAPAvailableForFileShare associations to a number of
ProtocolEndPoints representing TCP/IP ports through which access is provided to this FileShare.

To determine if the implementation supports supplying the ElementName during the creation of a
FileShare and to determine the supported methods to modify the ElementName of the existing FileShare,
invoke the method ExportedFileShareCapabilities.GetElementNameCapabilities.

The ReleaseFileShare method is straightforward -- it deletes the FileShare and the
ExportedFileShareSetting, and the associations to those elements (HostedFileShare, the
FileShareSettingData element, SharedElement, all the SAPAvailableForFileShare associations and all
Privileges that reference this FileShare as an AuthorizationTarget). Any ComputerSystem elements
created to represent remote hosts with root access to this FileShare that have no further references may

46

File Export Manipulation Profile

also be removed. A LogicalFile element associated to the LocalFileSystem via FileStorage will not
necessarily be deleted (the implementation may keep track of the other users of this element and be able
to delete it). For similar reasons, a ProtocolEndPoint created as a result of being specified in the
AccessPointPorts parameter may not be deleted. In both these cases, if the element has no associations
other than the scoping one (FileStorage to LocalFileSystem for LogicalFile and HostedAccessPoint to
ComputerSystem for ProtocolEndPoint) the provider may stop surfacing it at any time.

The ModifyFileShare method modifies an existing FileShare -- this requires a new
ExportedFileShareSetting element to be used as a goal. But not any ExportedFileShareSetting will do;
the client shall use the ExportedFileShareCapabilities.CreateGoalSettings method which would have
been used to create the file share, or an appropriate compatible ExportedFileShareCapabilities instance.
The CreateGoalSettings method is used to establish a new ExportedFileShareSetting goal (as with the
original file share creation, it may be necessary to iterate on the CreateGoalSettings method). Since only
properties controlled by Settings can be changed by ModifyFileShare, elements surfaced as a side-effect
of creating or modifying a file share (i.e., any ComputerSystems created to represent remote hosts with
root access or an ProtocolEndPoints created to represent access points for the share, or any user id
created as a default user id) cannot be deleted, though new ones can be created and/or added), the
effect of ModifyFileShare is to change some properties of the FileShare or of the associated
ExportedFileShareSetting.

5.1.3.2 Finding File Export Services, Capabilities and Pre-defined Settings

When creating a file share the first step is to determine what can be created. Figure 7 illustrates an
instance diagram showing the elements that shall exist for supporting fileshare creation.

ComputerSystem

Dedicated[]="File Server” 16

HostedService
ExportedFileShareCapabilities ElementCapabilities 1 FileExportService
1 Characteristics={"Default”}, o
ExportedFileShareCapabilities EIementC‘apabllltles CreateExportedShare()
FileSharingProtocol * ModifyExportedShare()
11 ProtocolVersions[] ReleaseExportedShare()
SupportedProperties[]
CreateGoalSettings() ElementCapabilities
SemngsDefmeCapablIltles—yi FileExportCapabilities
ExportedFileShareSetting ‘ FileSharingProtocols(]
- - /I ProtocolVersions][]
HostedAccessPoint File{ ExportedFileShareSetting SynchronousExportMethods[])
FileSharingProtocol AsynchronousExportMethodsf[] LocalAccessAvailable
InitialEnabledState
ServiceAffectsElement
. LogicalFile
ProtocolEndpoint _ConcreteDependency | (or Directory) HostedShare
ProtocollFType="Other" FileShareSettingData (Optional) "
OtherTypeDescription='NFS" (Conditional)
or "CIFS"
FileStorage
(Conditional) 1
L |
SAPAuvailableForFileShare LocalFileSystem
SharedElement
FileShare
Name="path to
LogicalFile”

Figure 7 - Capabilities and Settings for Exported File Share Creation

SMI-S 1.7.0 Revision 5 Working Draft 47

File Export Manipulation Profile

At least one FileExportService shall exist if the Filesystem Profile has implemented the File Export
Manipulation Profile. The instance(s) of this service can be found by following the HostedService
association and filtering on the target class of FileExportService.

NOTE If no service is found from the Top Level file server ComputerSystem, the client should look for other component file server
ComputerSystems that may be hosting the service. This is not recommended, but permitted.

An instance of the FileExportCapabilities shall be associated to the FileExportService via the
ElementCapabilities association. A client should follow this association (filtering on the result value of
"CIM_FileExportCapabilities”) to inspect the configuration capabilities that are supported. The client
would choose between the file sharing protocols specified in the array property FileSharingProtocol.

For each entry in the FileSharingProtocol array, there shall be one instance of
ExportedFileShareCapabilities with the same value for the FileSharingProtocol property that shall be
associated to the FileExportService using the ElementCapabilities association (filtering on the result
value of "CIM_ExportedFileShareCapabilities"). This ExportedFileShareCapabilities element shall specify
the supported capabilities for that FileSharingProtocol using a collection of ExportedFileShareSetting
elements. These ExportedFileShareSettings shall be associated with the ExportedFileShareCapabilities
via SettingsDefineCapabilities.

An implementation may support a set of pre-defined ExportedFileShareSetting that clients could use
directly if desired. The SettingsDefineCapabilities association from the ExportedFileShareCapabilities to
the pre-defined ExportedFileShareSettings shall have the PropertyPolicy property be "Correlated”, the
ValueRole property be "Supported” and the ValueRange property be "Point". Other pre-defined
combinations of property values may be specified by ExportedFileShareSetting whose
SettingsDefineCapabilities association has the PropertyPolicy be "Independent”, ValueRole property be
"Supported” and the ValueRange array property contain "Minimums", "Maximums", or "Increment". These
settings can be used by the client to compose ExportedFileShareSetting that are more likely to be directly
usable.

48

File Export Manipulation Profile

5.1.3.3 Modeling for FileShare Access Control Lists

Figure 8 illustrates the modeling for FileShare ACLs (Access Control Lists) using the DMTF Simple
Identity Management Profile.

— capl : EnabledLogicalElementCapabilities

RequestedStatesSupported : 2 (Enabled), 3 (Disabled), 6 (Offline)

cap2 : EnabledLogicalElementCapabilities
RequestedStatesSupported : 2 (Enabled), 3 (Disabled), 6 (Offline)

AccountManagementCapabilities
OperationsSupported : 4098 (Modify)
ComputerSystem
ElementCapabilities EIementCapabiIit‘ies HostedService
AccountManagementService ‘ ElementCapabilities

J—ServiceAh‘ectsElementi

Userl: UserContact User2: UserContact
UserlD : johndoe UserlD : janedoe

Assignedidentity

Assignedidentity- 1d2: Identit
: Identity
ciatedPrivilege 1d1: Identity _
]

File Export Manipulation Profile

FileShare

MemberOfCollection

OwningCollectionElement

groupl : Group
ElementName : Administrator Group

LAssignedldenlity

1d3: Identity
]

{

Simple Identity Profile

Figure 8 - FileShares and Simple Identity Management

An implementation shall support "Read" (5) and "Write" (6) for CIM_AssociatedPrivilege.Activities[]

To assign an ID with a privilege to a share, a client will invoke the method
AssignPrivilegeToExportedShare providing a list of Identities, the Share and the Activities.

Groups are optional and only shown as informational, but a client will need to know to check for Accounts,
UserContact or Group in the case an implementation has the support. If a client traverses
Assignedldentity from an ldentity, the client could receive one of these three types of instances.

The AssociatedPrivilege class contains the following properties:
e Subject

= Target

SMI-S 1.7.0 Revision 5 Working Draft 49

= UseKey

File Export Manipulation Profile

= PrivilegeGranted (shall support at least true)

e Activities

The modification and deletion of AssociatedPrivilege can be done by intrinsic methods (Modifylnstance
and Deletelnstance). The UserID property of CIM_UserContact shall be persisted by the implementation

as provided by the user when calling CIM_AccountManagementService.CreateUserContact.

5.2 Health and Fault Management Considerations

The key elements of this profile are the FileExportService and the file server ComputerSystem. For the
computer system, see 22.2.5 Computer System Operational Status in Storage Management Technical

Specification, Part 3 Common Profiles, 1.7.0 Rev 5.

5.2.1 OperationalStatus for FileExportService

Table 15 shows operational status for FileExport services.

Table 15 - Operational Status for FileExport Service

Primary OperationalStatus

Description

2"0OK” The service is running with good status

3 “Degraded” The service is operating in a degraded mode. This could be due to the health
state of the underlying file server, or of the storage being degraded or in error.

4 “Stressed” The services resources are stressed

5 “Predictive Failure”

The service might fail because some resource or component is predicted to fail

6 “Error” An error has occurred causing the service to become unavailable. Operator
intervention through SMI-S to restore the service may be possible.
6 “Error” An error has occurred causing the service to become unavailable. Automated

recovery may be in progress.

7 “Non-recoverable Error”

The service is not functioning. Operator intervention through SMI-S will not fix
the problem.

8 “Starting” The service is in process of initialization and is not yet available operationally.
9 “Stopping” The service is in process of stopping, and is not available operationally.
10 “Stopped” The service cannot be accessed operationally because it is stopped -- if this

did not happened because of operator intervention or happened in real-time,
the OperationalStatus would have been “Lost Communication” rather than
“Stopped”.

11 “In Service”

The service is offline in maintenance mode, and is not available operationally.

13 “Lost Communications”

The service cannot be accessed operationally -- if this happened because of
operator intervention it would have been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The service is stopped but in a manner that may have left it in an inconsistent
state.
15 “Dormant” The service is offline; and the reason for not being accessible is unknown.

16 “Supporting Entity in Error”

The service is in an error state, or may be OK but not accessible, because a
supporting entity is not accessible.

50

File Export Manipulation Profile

5.3 Cascading Considerations

Not Applicable.

5.4 Methods of the Profile

5.4.1 Extrinsic Methods of the Profile

Table 16 shows methods and instances for FileExportManipulation.

Table 16 - FileExportManipulation Methods

Method

Created Instances

Deleted Instances

Modified Instances

CreateExportedShare

FileShare (Export)
ExportedFileShareSetting
FileShareSettingData

HostedShare

SharedElement
SAPAvailableForFileShare
ServiceAffectsElement

LogicalFile (or Directory) (for bc to 1.1)

ProtocolEndPoint

N/A

N/A

ModifyExportedShare

ExportedFileShareSetting
FileShare (Export)

ProtocolEndPoint

ReleaseExportedShare N/A FileShare (Export) N/A
ExportedFileShareSetting
FileShareSettingData
HostedShare
SharedElement
ServiceAffectsElement
ProtocolEndPoint
LogicalFile
AssignPrivilegeToExportedShare AssociatedPrivilege N/A N/A
CreateGoalSettings N/A N/A N/A
GetElementNameCapabilities N/A N/A N/A
CreateUserContact UserContact Identity N/A N/A
GetUserContacts N/A N/A N/A

5.4.1.1 ExportedFileShareCapabilities.CreateGoalSettings

This extrinsic method of the ExportedFileShareCapabilities class validates support for a caller-proposed
ExportedFileShareSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage
of this method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings

parameters.

SMI-S 1.7.0 Revision 5

Working Draft

File Export Manipulation Profile

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
ExportedFileShareSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type
ExportedFileShareSetting. As such, these settings do not exist in the implementation but are the
responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an
appropriate error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to
this method. To assist the implementation in tracking the progress of the negotiation, the client may pass
previously returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings.
The implementation may determine that a step has not resulted in progress if the input and output values
of SupportedGoalSettings are the same. A client may infer from the same result that the
TemplateGoalSettings must be modified.

541.1.1 Client Considerations

It is important to understand that the client is acting as an agent for a human user -- either a "system"
administrator, or other entity with administrative privileges with respect to the filesystem, the filesystem
host, or the file server or the file share. During negotiation, the client will show the current state to the
user -- the SupportedGoalSettings received to date (either the latest or some subset), the
TemplateGoalSettings proposed (the most recent, but possibly more). But the administrator needs a
representation of what is available, possibly the range or sets of values that the different setting
properties can take. Some decisions are assumed to have been made already, such as the file-sharing
protocol to be used or the filesystem element to be shared or the resources allocated for providing local
access to the filesystem from the file server.

The SettingsDefineCapabilities association from the selected Capabilities element provides the
information for the client to lay out these options. "Point" settings can be identified using
ExportedFileShareSettings -- these points can be further qualified to indicate whether these are
supported (or not), and even whether they represent some ideal point in the space -- a "minimum”, or a
"maximum”, or an "optimal" point. Other settings can provide ranges for properties -- by specifying a
minimum, a maximum, and an increment an arithmetic progression of values can be specified (a
continuous range can be specified with a zero increment). Specifying a set of supported values for a
property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real
systems do not continually vary the functionality they can support. Such variations do occur -- for
instance, if a new PCMCIA card is added to a running system -- and the best way for a client to be able to
add these to the set of choices presented to a user is to subscribe to indications on new Capabilities
elements and new instances of SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following
two use cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
ExportedFileShareSetting elements that are associated to the ExportedFileShareCapabilities via SettingDefi-
nesCapabilities association with the following property values:

= SettingDefinesCapabilities.PropertyPolicy = "Correlated"
= SettingDefinesCapabilities.ValueRole = "Supported"

= SettingDefinesCapabilities.ValueRange = "Point"

52

File Export Manipulation Profile

2) Client considers canned settings that range over values specified using minimum/increment/maxi-
mum for the Setting properties. For example, these could be specified by the ExportedFileShareSet-
ting elements that are associated to the ExportedFileShareCapabilities via
SettingDefinesCapabilities association with the following property values:

= SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

= The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

54.1.1.2 Signature and Parameters of CreateGoalSettings

Table 17 describes the parameters for Extrinsic Method
ExportedFileShareCapabilities.CreateGoalSettings.

Table 17 - Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes

TemplateGoalSettings[] IN string Embeddedinstance ("ExportedFileShareSetting")

TemplateGoalSettings is a string array containing embedded
instances of class ExportedFileShareSetting, or a derived class.
This parameter specifies the client’s requirements and is used to
locate matching settings that the implementation can support.

SupportedGoalSettings[] | INOUT string Embeddedinstance ("ExportedFileShareSetting")

SupportedGoalSettings is a string array containing embedded
instances of class ExportedFileShareSetting, or a derived class.
On input, it specifies a previously returned set of Settings that
the implementation could support. On output, it specifies a new
set of Settings that the implementation can support. If the output
set is identical to the input set, both client and implementation
may conclude that this is the best match for the
TemplateGoalSettings that is available.

If the output does not match the input and the non-NULL output
does not match the non-NULL TemplateGoalSettings, then the
method shall return "Alternative Proposed".

If the output is NULL, the method shall return an “Failed”.

Normal Return

Status uint32 "Success",

"Failed",

"Timeout",

"Alternative Proposed"

Error Returns

Invalid Property Value OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination of OUT, Indication CIM_Error An invalid combination of named properties of an instance
Values parameter (either reference or embedded) has been requested.

5.4.1.2 ExportedFileShareCapabilities.GetElementNameCapabilities

This method indicates if ElementName can be specified as a part of invoking an appropriate method of
FileExportService to create a new FileShare. Additional, the returned data includes the methods that can
be used to modify the ElementName of existing FileShare.

SMI-S 1.7.0 Revision 5 Working Draft 53

File Export Manipulation Profile

uint32 GetElementNameCapabilities(
[ouT,
ValueMap { "2, "3, "4", "__.*", "32768..65535" },
Values { "ElementName can be supplied during creation",
"ElementName can be modified with InvokeMethod",
"ElementName can be modified with intrinsic method”,
"DMTF Reserved"™, "Vendor Specific" }]
uint32 SupportedFeatures[],
[OUT] string ElementNameMask,
[OUT] uintl6 MaxElementNameLen);

The parameters are:

= SupportedFeatures: This OUT parameter is an array indicating what methods can accept the element name
for creation or modification of a FileShare. For example, the value of "ElementName can be supplied during
creation" indicates the method such as CreateExportedShare() accepts the ElementName when creating a
new FileShare. An empty array indicates ElementNaming for ElementType is not supported.

< MaxElementNamelLen: This OUT parameter specifies the maximum supported ElementName length.

< ElementNameMask: This OUT parameter expresses the restrictions on ElementName. The mask is
expressed as a regular expression. See DMTF standard ABNF with the Management Profile Specification
Usage Guide, Annex C for the regular expression syntax permitted. Since the ElementNameMask can
describe the maximum length of the ElementName, any length defined in the regexp is in addition to the
restriction defined in MaxElementNameLen (causing the smaller value to be the maximum length). If NULL, it
indicates no restrictions on the ElementName.

5.4.1.3 FileExportService.CreateExportedShare

This extrinsic method creates a FileShare providing access to a contained sub-element of a
LocalFileSystem (either a LogicalFile or its sub-class Directory). A reference to the created FileShare is
returned as the output parameter TheShare. This FileShare element is hosted by the same file server
ComputerSystem that hosts the FileExportService. The LocalFileSystem whose element is exported shall
be locally accessible to the file server ComputerSystem (and need not be hosted by it), as represented by
the LocalAccessAvailableToFS association from the file server ComputerSystem to the LocalFileSystem.

The LocalFileSystem whose sub-element is being exported is specified by the input parameter Root. The
input string parameter SharedElementPath specifies a pathname from the root directory of the Root to the
sub-element to be exported. If SharedElementPath is NULL or the empty string, it specifies the root
directory of Root. The format of SharedElementPath is implementation-specific -- the most common
format is as a sequence of directory names separated by a character or short string indicated by the
FileSystemSetting.PathNameSeparatorString property.

NOTE The root directory of Root is the base from which a path to the LogicalFile being shared is specified. In the simplest and
possibly the most common case, the LogicalFile element is the root directory of Root and the path is NULL or the empty string.

The desired settings for the FileShare are specified by the Goal parameter (a string-valued
Embeddedinstance object of class ExportedFileShareSetting). An ExportedFileShareSetting element
shall be created that represents the settings of the created FileShare and will be associated via
FileShareSettingData to the FileShare. (This ExportedFileShareSetting may be identical to the Goal or
may be its equivalent). The created element shall be returned as the output Goal parameter.

The input Goal parameter can be NULL, in which case the ExportedFileShareSetting associated with the
default ExportedFileShareCapabilities of the FileExportService is used as the goal. In that case, the
following references to Goal are to the output value of the Goal parameter.

54

File Export Manipulation Profile

5.4.1.3.1 Signature and Parameters of CreateExportedShare
Table 18 shows parameters for Extrinsic Method FileExportService.CreateExportedShare.

Table 18 - Parameters for Extrinsic Method FileExportService.CreateExportedShare

Parameter Name

Qualifier

Type

Description & Notes

ElementName

IN

string

An end user relevant name for the FileShare being
created. If NULL, then a system-supplied default
name can be used.

The value shall be stored in the 'ElementName’
property for the created element.

Comment

string

An end user relevant comment for the FileShare
being created. If NULL, then a system-supplied
default comment can be used.

The value shall be stored in the 'Description’
property for the created element.

Job

OUT, REF

CIM_ConcreteJob

Reference to the job (may be null if job completed).

Root

IN, REF

LocalFileSystem

A reference indicating a LocalFileSystem element
whose sub-element is being exported. The
LocalFileSystem shall be locally available (either
explicitly or implicitly) to the file server
ComputerSystem that hosts the FileExportService.

SharedElementPath

IN, OUT

string

An opaque string representing a path to the shared
element from the root directory of the FileSystem
indicated by the Root parameter. The format of this
is as a sequence of directory names (from the
\"root\") separated by the PathNameSeparatorString
property.

Multiple paths could lead to the same element but
the access rights or other privileges could be
specific to the path. The client needs to specify the
path.

If SharedElementPath is NULL or is the empty
string, it indicates the \"root\" directory of the
filesystem indicated by Root.

The value shall be stored in the 'Name' property for
the created element.

Goal

IN, OUT, El

string

Embeddedinstance ("ExportedFileShareSetting")

The client-specified requirements for how the
specified FileShare element is to be shared or
exported by the FileExportService. This is an
element of the ExportedFileShareSetting class, or a
derived class, encoded as a string-valued
embedded object parameter. If NULL or the empty
string, the default configuration will be specified by
the FileExportService.

TheShare

OUT, REF

CIM_FileShare

If successful, this returns a reference to the created
file share.

SMI-S 1.7.0 Revision 5

Working Draft

55

56

File Export Manipulation Profile

Table 18 - Parameters for Extrinsic Method FileExportService.CreateExportedShare

Parameter Name

Qualifier

Type

Description & Notes

DefaultUserld

IN, OUT, REF,
NULL allowed

CIM_identity

A reference to a concrete derived class of
CIM_Identity that indicates the user id to use for
default access to this share. A NULL value on input
indicates that no user id is requested. A NULL value
on output indicates that no user id has been
assigned, even by default.

A default user id per share is not supported by the
CIFS Protocol so this is ignored if the Goal specifies
creating a CIFSShare.

RootAccessHosts[]

IN, OUT, URI,
NULL allowed

string

An array of strings that specify the hosts that have
root access to this Share, if the
ExportedFileShareSetting.RootAccess property is
set to 'Allow Root Access'. Each entry specifies a
host by a URI. All entries up to the first empty string
are allowed root access; the entries after the first
empty string are denied root access. If this
parameter is NULL, root access will be denied to all
hosts, effectively overriding the value of the property
ExportedFileShareSetting.RootAccess. If the first
entry is the empty string, root access will be allowed
from all hosts, and subsequent entries will be denied
root access. This property needs to be an array of
URIs because the remote host may not be known to
the provider and therefore a reference to the host
may nhot exist.

Root Access is hot supported by the CIFS Protocol
so this is ignored if the Goal specifies creating a
CIFSShare.

AccessPointPorts[]

IN, OUT, REF,
NULL allowed

CIM_ServiceAccessPoints

An array of references to the ProtocolEndpoints that
can connect to this Share, if the
ExportedFileShareSetting.AccessPoints property is
set to 'Named Ports'.

If the parameter is NULL, all access points will be
denied access, effectively overriding the value of the
property ExportedFileShareSetting.AccessPoints.

If the array has multiple entries and the first entry in
the array is NULL, all access points supported by
the service will be supported, and subsequent
entries will be denied access.

Any AccessPoints granted access via this
parameter will also be associated to this share with
SAPAvailableForFileShare. If the AccessPoint is not
already enabled it will appear in a disabled state.

The CIFS protocol does not support multiple
ProtocolEndpoints, so this is ignored if the Goal
specifies creating a CIFSShare.

Normal Return

Status

ouT

uint32

"Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

File Export Manipulation Profile

Table 18 - Parameters for Extrinsic Method FileExportService.CreateExportedShare

Parameter Name Qualifier Type Description & Notes

Error Returns

Invalid Property OUT, CIM_Error A single named property of an instance parameter
Value Indication (either reference or embedded) has an invalid value
Invalid Combination OUT, CIM_Error An invalid combination of named properties of an

of Values Indication instance parameter (either reference or embedded)

has been requested.

5.4.1.4 FileExportService.ModifyExportedShare

This extrinsic method modifies a FileShare element that is exporting a contained sub-element of a
LocalFileSystem (either a LogicalFile or its sub-class Directory). The FileShare is specified by the
reference parameter TheShare. TheShare cannot be NULL and it shall be hosted by the same file server
ComputerSystem that hosts the FileExportService. The input parameters Root and SharedElementPath
shall be NULL or shall be the same as the corresponding parameters when the FileShare was created
(i.e., these cannot be changed using this method).

The precise constraint is that the sub-element shall not be changed even if the Root and
SharedElementPath are different. For instance, this would allow a different path that leads to the same
sub-element. However, this profile does not allow this flexibility.

The new desired settings for the FileShare are specified by the input parameter Goal (a string-valued
Embeddedinstance object of class ExportedFileShareSetting). An ExportedFileShareSetting element that
represents the settings of the created FileShare (either identical to the Goal or its equivalent) will be
associated via FileShareSettingData to the FileShare. The implementation shall modify the existing
ExportedFileShareSetting. The Setting that is actually established will be returned as the output
parameter Goal.

Goal paramenter is required and cannot be NULL.

If Goal.AccessPoints="Named Points", then the non-NULL input parameter AccessPointPorts will be an
array of references to ProtocolEndpoints that provide access to this FileShare. This will be represented
by creating instances of the SAPAvailableForFileShare association between the FileShare and the
specified ProtocolEndpoint. Any existing specification of access points to the FileShare will be
overridden. If AccessPointPorts is NULL, the existing specification will not be changed.

NOTE This changes the type of the AccessPointPorts parameter from a string array to an array of references to ProtocolEndpoints
(or more generally to ServiceAccessPoints).

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this
method if the FileShare is in use and the method requires that no operations be in progress during that
execution.

NOTE The WaitTime and InUseOptions parameters are supported if the ExportedFileShareCapabilities.SupportedProperties

includes the "RequirelnUseOptions" option. This requires a change to the MOF that may not show up in this document as
enumerations are not documented in the spec.

SMI-S 1.7.0 Revision 5 Working Draft 57

54.14.1

File Export Manipulation Profile

Signature and Parameters of ModifyExportedShare

Table 19 shows parameters for Extrinsic Method FileExportService.ModifyExportedShare.

Table 19 - Parameters for Extrinsic Method FileExportService.ModifyExportedShare

Parameter Name

Qualifier

Type

Description & Notes

ElementName

IN

string

A new end-user relevant name for the FileShare being modified.
If NULL or the empty string, the existing name stored in the
'‘ElementName’ property for the created element shall not be
changed.

Comment

string

A new end-user relevant comment for the FileShare being
modified. If NULL or the empty string, the existing comment
stored in the 'Description’ property will not be changed.

Job

OUT, REF

CIM_ConcreteJo
b

Reference to the job (may be null if job completed).

Root

IN, OUT, REF

CIM_ManagedEl
ement

A reference indicating a LocalFileSystem element whose sub-
element is being exported. In the ModifyExportedSharemethod,
this shall not indicate a different filesystem from the one
indicated when the file share was created (even if the reference
is to a different instance of LocalFileSystem).

If Root is NULL on input it is ignored.

As an OUT parameter, a reference to the LocalFileSystem is
returned.

SharedElementPath

IN, OUT

string

A string representing a path to the shared element from the root
directory of the LocalFileSystem indicated by Root.

The ModifyExportedShare method cannot be used to change
the object indicated by the path, but the path itself can be
different as multiple paths could lead to the same element. Such
a change may have side-effects, for instance, the access rights
or other privileges could be specific to the path.

If SharedElementPath is NULL, it indicates no change to the
current path. If SharedElementPath consists of a single empty
string, it indicates the root directory of the FileSystem indicated
by Root.

As an OUT parameter, the current path is returned.

The value shall be stored in the 'Name' property for the created
element.

Goal

IN, OUT, El

string

Embeddedinstance ("ExportedFileShareSetting")

The client-specified requirements for how the specified
FileShare element is to be shared or exported by the
FileExportService. This is an element of the
ExportedFileShareSetting class, or a derived class, encoded as
a string-valued embedded instance parameter. If NULL or the
empty string, the current setting will be re-applied.

As an OUT parameter, the current Setting is returned.

TheShare

IN, OUT, REF

CIM_FileShare

As an IN Parameter, it specifies the share that is to be modified
or whose settings are being queried. As an OUT Parameter, this
specifies the share if the request is successful.

58

File Export Manipulation Profile

Table 19 - Parameters for Extrinsic Method FileExportService.ModifyExportedShare

Parameter Name

Qualifier

Type

Description & Notes

DefaultUserld

IN, OUT, REF,
NULL allowed,

CIM_identity

As an IN parameter, this is a reference to a concrete derived
class of CIM_ldentity that indicates the user id to use for default
access to this share. A NULL value indicates no change to the
existing user id, if one has been specified. The provider is
expected to surface this access using the Simple Identity
Management Profile. As an OUT Parameter, this returns a
reference to the current DefaultUserld.

A default user per share is not supported by the CIFS Protocol
so this is ignored if the file share is a CIFSShare.

RootAccessHosts[]

IN, OUT, URI,
NULL allowed

string

An array of strings that specify the hosts that have root access
to this Share, if the ExportedFileShareSetting.RootAccess
property is set to 'Allow Root Access'. Each entry specifies a
host by a URI. The set of hosts specified is added to the existing
set of hosts with root access.

If this parameter is NULL, root access will be denied to all hosts,
including the ones currently allowed root access, effectively
overriding the value of the property
ExportedFileShareSetting.RootAccess.

Each entry specifies a host by a URI. All entries up to the first
empty string are allowed root access; the entries after the first
empty string are denied root access.

If the first entry is the empty string, root access will continue to
be allowed from the existing hosts, and subsequent entries in
the array will be denied root access.

This property needs to be an array of URIs because the remote
host may not be known to the provider and therefore a reference
to the host may not exist.

Root Access is not supported by the CIFS Protocol so this is
ignored if the Goal specifies creating a CIFSShare.

AccessPointPorts[]

IN, OUT, REF,
NULL Allowed

CIM_ServiceAcc
essPoints

An array of references to the ProtocolEndpoints that can
connect to this Share, if the
ExportedFileShareSettings.AccessPoints property is set to
'Named Ports'. The set of access points specified in the array is
added to the existing set of access points.

If the parameter is NULL, all access points will be denied
access, effectively overriding the value of the property
ExportedFileShareSetting.AccessPoints.

If the first entry in the array is NULL, existing access points
supported by the service will be supported, and subsequent

entries in the array will be access points that are denied access.

Any AccessPoints granted access via this parameter will also be
associated to this share with SAPAvailableForFileShare. If the
AccessPoint is not already enabled it will appear in a disabled
state.

The CIFS protocol does not support multiple ProtocolEndpoints,
so this is ignored if the Goal specifies creating a CIFSShare.

InUseOptions

uintl6

An enumerated integer that specifies the action that the provider
should take if the FileShare is still in use when this request is
made. The WaitTime parameter indicates the specified time
used for this function.

This option is only relevant if the FileShare needs to be made
unavailable while the request is being executed.

SMI-S 1.7.0 Revision 5

Working Draft

59

File Export Manipulation Profile

Table 19 - Parameters for Extrinsic Method FileExportService.ModifyExportedShare

Parameter Name Qualifier Type Description & Notes

WaitTime IN uint32 An integer that indicates the time (in seconds) that the provider
needs to wait before executing this request if it cannot be done
while the FileShare is in use. If WaitTime is not zero, the method
will create a job, if supported by the provider, and return
immediately. If the provider does not support asynchronous
jobs, there is a possibility that the client could time-out before
the job is completed.

The combination of InUseOptions = '4' and WaitTime ='0' (the
default) is interpreted as 'Wait (forever) until Quiescence, then
Execute Request' and will be performed asynchronously if

possible.

Normal Return

Status ouT uint32 "Job Completed with No Error",
"Failed",

"Method Parameters Checked - Job Started"

Error Returns

Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either
Value reference or embedded) has an invalid value

Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance

of Values parameter (either reference or embedded) has been requested.

5.4.1.5 FileExportService.ReleaseExportedShare

This is an extrinsic method that will delete a FileShare specified by the parameter TheShare and delete
any associated instances and associations that are no longer needed. The deleted instances will include
the Directory (or LogicalFile) if it had been created only for the purpose of representing the shared sub-
element.

NOTE Deleting the Directory or LogicalFile deletes only the representation of the file or directory for management and does not
delete the underlying operational element

The deleted associations include HostedShare, FileShareSettingData, and any elements and
associations created to support the DefaultUserld, RootAccessHosts, and AccessPointPorts parameters.
In addition, the ExportedFileShareSetting will be deleted if appropriate.

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this
method if the FileShare is in use and the method requires that no operations be in progress during that
execution.

NOTE The WaitTime and InUseOptions parameters are supported if the ExportedFileShareCapabilities.SupportedProperties
includes the "RequirelnUseOptions" option.

5.4.1.5.1 Signature and Parameters of ReleaseExportedShare
Table 20 shows parameters for Extrinsic Method FileExportService.ReleaseExportedShare.

Table 20 - Parameters for Extrinsic Method FileExportService.ReleaseExportedShare

Parameter Name Qualifier Type Description & Notes
Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).
b
TheShare IN, OUT, REF CIM_FileShare As an IN Parameter, it specifies the share that is to be modified
or whose settings are being queried. As an OUT Parameter, this
specifies the share if the request is successful.

60

File Export Manipulation Profile

Table 20 - Parameters for Extrinsic Method FileExportService.ReleaseExportedShare

Parameter Name

Qualifier

Type

Description & Notes

InUseOptions

IN

uintl6

An enumerated integer that specifies the action that the provider
should take if the FileShare is still in use when this request is
made. The WaitTime parameter indicates the specified time
used for this function.

This option is only relevant if the FileShare needs to be made
unavailable while the request is being executed.

WaitTime

uint32

An integer that indicates the time (in seconds) that the provider
needs to wait before executing this request if it cannot be done
while the FileShare is in use. If WaitTime is not zero, the method
will create a job, if supported by the provider, and return
immediately. If the provider does not support asynchronous
jobs, there is a possibility that the client could time-out before
the job is completed.

The combination of InUseOptions = '4' and WaitTime ='0' (the
default) is interpreted as 'Wait (forever) until Quiescence, then
Execute Request' and will be performed asynchronously if
possible.

Normal Return

Status

ouT

uint32

ValueMap({}, Values{}

"Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT, Indication

CIM_Error

A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination
of Values

OUT, Indication

CIM_Error

An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

54.1.6

FileExportService.AssignPrivilegeToFileShare

This is an extrinsic method that grants the specified Identities permissions to the FileShare specified by
“TheShare”. The method creates any AssociatedPrivilege instances that are necessary to represent the
requested permissions.

Table 21 shows parameters for Extrinsic Method FileExportService.AssignPrivilegeToExportedShare.

Table 21 - Parameters for Extrinsic Method FileExportService.AssignPrivilegeToExportedShare

Parameter Name Qualifier Type Description & Notes

Identities IN, REF CIM_Identity[] The list of Identities to assign privilege to share

Activities IN uint16[] The Activities to assign to the share. The Activities are defined
in the CIM_AssociatedPrivilege.Activities property

TheShare IN, REF CIM_FileShare The FileShare to assign the privileges

Normal Return

Status ouT uint32 0 (“Completed with No Error”)

Error

1 (“Not Supported”)

SMI-S 1.7.0 Revision 5

Working Draft

61

File Export Manipulation Profile

Table 21 - Parameters for Extrinsic Method FileExportService.AssignPrivilegeToExportedShare

Parameter Name Qualifier Type Description & Notes

2 (“Failed”)

3 (“Activities Not Supported”)

4 (“Identity Not Found”)

5 (“File Share Not Found”)

5.4.1.6.1 Signature and Parameters of AccountManagementService.CreateUserContact
Table 22 shows parameters for Extrinsic Method AccountManagementService.CreateUserContact.

Table 22 - Parameters for Extrinsic Method AccountManagementService.CreateUserContact

Parameter Name Qualifier Type Description & Notes

System IN, REF CIM_ComputerSystem The scoping ComputerSystem in
which to create the UserContact

UserContactTemplate IN string UserContactTemplate is a template
for the desired UserContact to be
created.

Identities OUT, REF CIM_Identity[] Reference to the instances of

CIM_Identity when the method
returns a value of 0. These
instances may not be created as a
part of the execution of this method.
These instances may already exist
prior to the invocation of this
method.

UserContact OUT, REF CIM_UserContact Reference to the instance of
CIM_UserContact created when the
method returns a value of 0

Normal Return

Status ouT int32 0 ("Completed with No Error")

Error Return

1 (“Not Supported”)

2 (“Failed”)

5.4.1.7 AccountManagementService.GetUserContacts

This is an extrinsic method that retrieves instances of UserContact that have the specified UserID. Upon
successful completion of the method, it returns am array of UserContact instances that are already
associated to instances of Identity through Assignedlidentity.

62

54.171

File Export Manipulation Profile

Signature and Parameters of AccountManagementService.GetUserContacts

Table 23 shows parameters for Extrinsic Method AccountManagementService.GetUserContacts.

Table 23 - Parameters for Extrinsic Method AccountManagementService.GetUserContacts

Parameter Name Qualifier Type Description & Notes

UserlD IN String The UserlID for the
CIM_UserContact instances to be
retrieved

UserContacts OUT, REF CIM_UserContact[] An array of references to the
UserContact instances that have the
supplied UserID

Normal Return

Status ouT int32 0 ("Completed with No Error")

Error Return

1 (“Not Supported”)

2 (“Failed”)

5.4.2

Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic

supported are as follows:
e Getlnstance

e Associators

e AssociatorNames

e References

- ReferenceNames

- Enumeratelnstances

- EnumeratelnstanceNames

5.5

Not defined in this standard.

Use Cases

5.5.1 File Export Manipulation Supported Capabilities Patterns

operations

Table 24 lists the capabilities patterns that are formally recognized by SMI-S 1.2.0 for determining

capabilities of various implementations:

Table 24 - SMI-S File Export Supported Capabilities Patterns

FileSharingProtocols SynchronousMethods AsynchronousMethods InitialExportState
NFS, CIFS Export Creation, Export Null Any state is valid.
Modification, Export Deletion
NFS, CIFS Null Export Creation, Export Any state is valid.
Moadification, Export Deletion
NFS, CIFS Null Null Null

SMI-S 1.7.0 Revision 5

Working Draft

63

5.6

File Export Manipulation Profile

CIM Elements

Table 25 describes the CIM elements for File Export Manipulation.

Table 25 - CIM Elements for File Export Manipulation

Element Name

Requirement

Description

5.6.1 CIM_AccountManagementService

Mandatory

Creates and manages UserContacts on behalf of other
SecuritySerices

5.6.2 CIM_Assignedldentity

Mandatory

Associates an Identity to a specific ManagedElement (in
this case UserContact), whose trust and account
information is represented

5.6.1 CIM_AccountManagementService

Mandatory

Represents an entry in the access control list for the
referenced file share

5.6.4 CIM_CIFSShare (Exported File Share)

Optional

Represents the CIFS sharing characteristics of a
particular file element.

5.6.5 CIM_ConcreteDependency

Optional

Represents an association between a (CIFSShare or
NFSShare) FileShare element and the actual shared
LogicalFile or Directory on which it is based. This is
provided for backward compatibility with previous
releases of SMI-S.

5.6.6 CIM_ElementCapabilities (FES Configuration)

Mandatory

Associates the File Export Service to at least one
ExportedFileShareCapabilities element that indicates that
support is available for managing an exported FileShare
for at least one of the file sharing protocols recognized by
this profile. These include: "NFS"/2, "CIFS"/3, "DAFS"/4,
"WebDAV"/5, "HTTP"/6, or "FTP"/7.

5.6.7 CIM_ElementSettingData (FileShare Setting)

Mandatory

Associates a (CIFSShare or NFSShare) FileShare and
ExportedFileShareSetting elements.

5.6.8 CIM_ExportedFileShareCapabilities (FES
Capabilities)

Mandatory

This element represents the Capabilities of the File Export
Service for managing FileShares of a specific file sharing
protocol (and version). The file sharing protocol is
specified by the FileSharingProtocol and
ProtocolVersions properties.

5.6.9 CIM_ExportedFileShareSetting (FileShare Setting)

Mandatory

The configuration settings for an Exported FileShare; i.e.,
a setting for a FileShare available for exporting.

This setting may have been created or modified by the
extrinsic methods of this profile. Note that CIFS allows in-
band creation, modification, or deletion of FileShares;
also, some systems might define preexistent FileShares.
All of these will be surfaced.

5.6.10 CIM_ExportedFileShareSetting (Pre-defined)

Mandatory

This element represents a predefined configuration
settings for exported FileShares that is used to define a
Capabilities element associated with the
FileExportService.

5.6.11 CIM_FileExportCapabilities (FES Configuration)

Mandatory

This element represents the management capabilities of
the File Export Service.

5.6.12 CIM_FileExportService

Mandatory

The File Export Service provides the methods to create
and export file elements as shares.

5.6.13 CIM_FileShare (Exported File Share)

Mandatory

Represents the sharing characteristics of a particular file
element.

64

File Export Manipulation Profile

Table 25 - CIM Elements for File Export Manipulation

Element Name

Requirement

Description

5.6.14 CIM_FileStorage (Subelement)

Conditional

Conditional requirement: Required if parent profile is NAS
Head. or Required if parent profile is a Self-contained
NAS System.

Represents that a file or directory that is made available
for export is contained by a LocalFileSystem specified as
a dangling reference.

5.6.15 CIM_HostedService

Mandatory

Associates the File Export Service to the hosting File
Server Computer System.

5.6.16 CIM_HostedShare

Mandatory

Represents that a shared element is hosted by a
ComputerSystem.

5.6.17 CIM_ldentity

Mandatory

Represents a ManagedElement that acts as a security
principal within the scope in which it is defined and
authenticated

5.6.18 CIM_LogicalFile (Subelement)

Conditional

Conditional requirement: Required if parent profile is NAS
Head. or Required if parent profile is a Self-contained
NAS System.

A LogicalFile (or Directory subclass) that is a sub-
element of a LocalFileSystem that is made available for
export via a fileshare hosted on a ComputerSystem. This
is included for backward compatibility with previous
releases of SMI-S.

5.6.19 CIM_NFSShare (Exported File Share)

Optional

Represents the NFS sharing characteristics of a particular
file element.

5.6.20 CIM_SAPAvailableForFileShare

Mandatory

Represents the association between a
ServiceAccessPoint to the shared element that is being
accessed through that SAP.

5.6.21 CIM_ServiceAffectsElement

Mandatory

Associates the File Export Service to the elements that
the service manages (such as a FileShare configured for
exporting a LogicalFile).

5.6.22 CIM_SettingsDefineCapabilities (Pre-defined)

Optional

Represents the association between a
ExportedFileShareCapabilities and a predefined
ExportedFileShareSetting element that specifies what the
Capabilities can support.

5.6.23 CIM_SharedElement

Mandatory

Associates a (CIFSShare or NFSShare) FileShare to the
LocalFileSystem on which it is based.

5.6.24 CIM_UserContact

Mandatory

Contains the identifying information of a user

SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA CIM_FileShare

Mandatory

Creation of an exported file share.

This indication returns the newly created FileShare.

SELECT * FROM CIM_InstDeletion WHERE
Sourcelnstance ISA CIM_FileShare

Mandatory

Deletion of an exported file share.

This indication returns the model path to the deleted file
share and its unique instance id. (Question: Should this
return the pathname of the shared directory as well?)
Note that a model path is like a CIM object path but not
exactly the same.

SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_FileShare AND
Sourcelnstance.CIM_FileShare::OperationalStatus <>
Previousinstance.CIM_FileShare::OperationalStatus

Mandatory

CQL -Change of state of a FileShare.

Previouslinstance is optional, but may be supplied by an
implementation of the profile.

SMI-S 1.7.0 Revision 5

Working Draft

65

File Export Manipulation Profile

5.6.1 CIM_AccountManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 26 describes class CIM_AccountManagementService

Table 26 - SMI Referenced Properties/Methods for CIM_AccountManagementService

Properties Flags Requirement Description & Notes

CreateUserContact() Mandatory Creates a UserContact for the specified system. Upon successful
completion of the method, it returns a UserContact instance associated to
an instance of Identity through Assignedlidentity. An Identity instance may
be created by the method or may be one that already existed that
represented the user.

GetUserContacts() Mandatory Retrieves instances of UserContact that have the specified UserID. Upon
successful completion of the method, it returns an array of UserContact
instances that are already associated to instances of Identity.

5.6.2 CIM_Assignedldentity

Created By: Extrinsic CIM_AccountManagementService.CreateUserContact
Modified By: N/A

Deleted By: N/A

Requirement: Mandatory

Table 27 describes class CIM_Assignedldentity

Table 27 - SMI Referenced Properties/Methods for CIM_Assignedldentity

Properties Flags Requirement Description & Notes
IdentityInfo KEY, REF Mandatory The Identity instance referenced by this Assignedldentity
ManagedElement KEY, REF Mandatory The UserContact referenced by this Assignedldentity

5.6.3 CIM_AssociatedPrivilege

Created By: Extrinsic: CIM_FileExportService.AssignPrivilegeToExportedShare
Modified By: N/A

Deleted By: Intrinsic: Deletelnstance

Requirement: Mandatory

Table 28 describes class CIM_AssociatedPrivilege

66

Table 28 - SMI Referenced Properties/Methods for CIM_AssociatedPrivilege

Properties Requirement Description & Notes

UseKey Mandatory Used to uniquely identify an AssociatedPrivilege instances among others
with the same Subject/Target values. This field shall be populated and
persisted by the implementation.

Subject Mandatory The ManagedElement (in this case Identity) to which privileges are
granted
Target Mandatory The ManagedElement (in this case FileShare) to which privileges apply.

File Export Manipulation Profile

Table 28 - SMI Referenced Properties/Methods for CIM_AssociatedPrivilege

Properties Requirement Description & Notes

Deletelnstance() Mandatory Deletes the AssociatedPrivilege instance, for the purpose of revoking user
(identity) access to the resource (file share)

Activities]] Mandatory An enumeration indicating the activities that are granted or denied. The

values Read (5) and Write (6) must be supported.

5.6.4 CIM_CIFSShare (Exported File Share)

The CIM_CIFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may
instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External
Deleted By: External

Requirement: Optional

Table 29 describes class CIM_CIFSShare (Exported File Share).

Table 29 - SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.6.5 CIM_FileShare (Exported
File Share).

ElementName Mandatory See the ElementName definition in section 4.6.5 CIM_FileShare (Exported
File Share).

Name Mandatory See the Name definition in section 4.6.5 CIM_FileShare (Exported File
Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.6.5 CIM_FileShare
(Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.6.5 CIM_FileShare
(Exported File Share).

Description N Optional See the Description definition in section 4.6.5 CIM_FileShare (Exported
File Share).

5.6.5 CIM_ConcreteDependency

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Optional

SMI-S 1.7.0 Revision 5

Working Draft

67

File Export Manipulation Profile

Table 30 describes class CIM_ConcreteDependency.

Table 30 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Antecedent Mandatory The LogicalFile that is being shared.

Dependent Mandatory The (CIFSShare or NFSShare) Share that represents the LogicalFile
being shared.

5.6.6 CIM_ElementCapabilities (FES Configuration)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 31 describes class CIM_ElementCapabilities (FES Configuration).

Table 31 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration)

Properties

Flags

Requirement Description & Notes

Characteristics

Mandatory If this array enum includes the value
mapped to "Default", it indicates that
the ExportedFileShareCapabilities
element identified by this association
is the default to be used for any
extrinsic method of the associated
FileExportService element.

Capabilities

Mandatory The FileExportCapabilities. The
FileSharingProtocol in these
capabilities shall be 2 (NFS), 3
(CIFS), 4 (DAFS), 5 (WebDAV), 6
(HTTP) or 7 (FTP).

ManagedElement

Mandatory The FileExportService.

5.6.7 CIM_ElementSettingData (FileShare Setting)

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare

Requirement: Mandatory

Table 32 describes class CIM_ElementSettingData (FileShare Setting).

Table 32 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)

Properties

Flags

Requirement

Description & Notes

IsCurrent

N

Optional

Is always true in this version of the profile because we only support one
setting per share. However support for the other flags, specifically,
IsDefault and IsNext, could be added in future releases.

68

File Export Manipulation Profile

Table 32 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The (CIFSShare or NFSShare) FileShare used for exporting an element.
SettingData Mandatory A Setting that specifies possible configurations of the FileShare. In this

version, we default this to isCurrent="true".

5.6.8 CIM_ExportedFileShareCapabilities (FES Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Table 33 describes class ExportedFileShareCapabilities (FES Capabilities)

Table 33 - SMI Referenced Properties/Methods for CIM_ExportedFileShareCapabilities (FES Capabilities)

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for a capability of a File Export Service.

ElementName

Mandatory

A provider supplied user-Friendly Name for this Capabilities element.

FileSharingProtocol

Mandatory

This identifies the single file sharing protocol (e.g., NFS or CIFS) that this
Capabilities represents.

ProtocolVersions

Mandatory

An array of strings listing the versions of the file sharing protocol that can
be supported via these capabilities. All settings associated with this
Capabilities must have a non-empty subset of these values in the
corresponding CIM_ExportedFileShareSetting.ProtocolVersions property.
At this point there is no standard mechanism for naming versions of CIFS
or NFS.

SupportedProperties

Mandatory

This is the list of configuration properties (of ExportedFileShareSetting)
that are supported for specification at creation time by this Capabilities
element.

Properties that can appear in this array are: "DefaultReadWrite" (*2"),
"DefaultExecute" ("3"), "DefaultUserld" ("4"), "RootAccess" ("5"),
"WritePolicy" ("6"), "AccessPoints" ("7"), and "InitialEnabledState" ("8").

CASupported

Optional

This property applies to CIFS/SMB shares only. If it is true, it means that
"Continuous Availability" is supported for CIFS shares. Continuous
Availability (CA) - Client/Server mediated recovery from network and
server failure with application transparency. Like Multi-Channel |0, this
feature is somewhat analogous to capabilities available in NFSv4.

CreateGoalSettings()

Mandatory

This extrinsic method supports the creation of a ExportedFileShareSetting
that is a supported variant of a ExportedFileShareSetting passed in as an
embedded IN parameter TemplateGoalSettings[0]. The method returns
the supported ExportedFileShareSetting as an embedded OUT parameter
SupportedGoalSettings[0].

5.6.9 CIM_ExportedFileShareSetting (FileShare Setting)

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare

Requirement: Mandatory

SMI-S 1.7.0 Revision 5

Working Draft

69

File Export Manipulation Profile

Table 34 describes class ExportedFileShareSetting (FileShare Setting).

Table 34 - SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (FileShare Setting)

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique ID for the Setting.

ElementName Mandatory A client-defined user-friendly name for the Setting.
FileSharingProtocol Mandatory The file sharing protocol supported by this share. NFS (2)

and CIFS (3) are the supported values.

ProtocolVersions Mandatory An array of strings listing the versions of the file sharing
protocol that this share can support. This property shall
exist and have at least one entry. At this point there is no
standard mechanism for naming versions of CIFS or
NFS.

InitialEnabledState N Optional This indicates the enabled/disabled states initially set for
a created FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3"
("Disabled"), "7" ("In Test"), "8" ("Deferred") or "9"
("Quiesce")

Note: We need to rethink the usage of this property once
the file share has been created. Maybe it should apply to
when the file share is re-activated when the share or
system is rebooted after a shutdown. With the current
definition, neither this nor OtherEnabledState make

sense.

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is "1"
("Other").

DefaultUserldSupported N Optional Indicates whether the associated FileShare will use a

default user id to control access to the share if the id of
the importing client is not provided.

Note: The resulting access privileges shall be surfaced
using the Simple Identity Managment Profile.

Valid values are "2" ("No Default User I1d"), "3" ("System-
Specified Default User Id") or "4" ("Share-Specified
Default User 1d").

RootAccess N Optional Indicates whether the associated FileShare will support
default access privileges to administrative users from
specified hosts.

Valid values are "2" ("No Root Access") or "3" ("Allow
Root Access").

AccessPoints N Optional An enumerated value that specifies the service access
points that are available to this FileShare element by
default (to be used by clients for connections). Any
ServiceAccessPoint elements that actually connect to this
FileShare element will be associated to it by a
CIM_SAPAvailableForFileShare association.

Valid values are "2" ("None"), "3" ("Service Default"), "4"
("All") or "5" ("Named Points").

5.6.10 CIM_ExportedFileShareSetting (Pre-defined)

Created By: Static_or_External

70

Modified By: External
Deleted By: External
Requirement: Optional

File Export Manipulation Profile

Table 35 describes class ExportedFileShareSetting (Pre-defined).

Table 35 - SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Pre-defined)

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for this Setting element.

ElementName

Mandatory

A provider supplied user-friendly name for this Setting element.

FileSharingProtocol

Mandatory

The file sharing protocol to which this Setting element applies. The entries
in the ProtocolVersions property identify the specific versions of the
protocol that are supported. This profile only supports "NFS" (2) and
"CIFS" (3).

ProtocolVersions

Mandatory

An array of strings listing the versions of the file sharing protocol that this
share can support. This property shall exist and have at least one entry. At
this point there is no standard mechanism for naming versions of CIFS or
NFS.

InitialEnabledState

Optional

This indicates the enabled/disabled states initially set for a created
FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3" ("Disabled"), "7" ("In
Test"), "8" ("Deferred") or "9" ("Quiesce").

OtherEnabledState

Optional

A vendor-specific description of the initial enabled state of a created
fileshare if InitialEnabledState=1("Other").

DefaultUserldSupported

Optional

Indicates whether a FileShare created or modified by using this Setting
element will use a default user id to control access to the share if the id of
the importing client is not provided.

Note: The resulting access privileges shall be surfaced using the Simple
Identity Managment Profile.

Valid values are "2" ("No Default User Id"), "3" ("System-Specified Default
User 1d") or "4" ("Share-Specified Default User Id").

RootAccess

Optional

Indicates whether a FileShare created or modified by using this Setting
element will support default access privileges to administrative users from
specific hosts specified at creation time.

Valid values are "2" ("No Root Access") or "3" ("Allow Root Access").

AccessPoints

Optional

An enumerated value that specifies the service access points that are
available to a FileShare created or modified by using this Setting element
by default (to be used by clients for connections). These default access
points can always be overridden by the privileges explicitly defined by a
supported authorization mechanism(s). Any ServiceAccessPoints that
actually connect to this share will be associated to it by
CIM_SAPAvailableForFileShare.

Valid values are "2" ("None"), "3" ("Service Default"), "4" ("All") or "5"
("Named Points").

CASupported

Optional

This property applies to CIFS/SMB shares only. If it is true, it means that
"Continuous Availability" is supported for CIFS shares. Continuous
Availability (CA) - Client/Server mediated recovery from network and
server failure with application transparency. Like Multi-Channel 10, this
feature is somewhat analogous to capabilities available in NFSv4.

SMI-S 1.7.0 Revision 5

Working Draft

71

File Export Manipulation Profile

Table 35 - SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Pre-defined)

Properties Flags Requirement | Description & Notes

DefaultReadWrite Optional Indicates the default privileges that are supported for read and write
authorization when creating or modifying a FileShare using this Setting
element.

DefaultExecute Optional Indicates the default privileges that are supported for execute
authorization when creating or modifying a FileShare using this Setting
element.

ExecuteSupport Optional Indicates if the sharing mechanism provides specialized support for

executing a shared element when creating or modifying a FileShare using
this Setting element (for instance, does it provide paging support for text
pages).

WritePolicy Optional Indicates whether writes through a FileShare (created or modified by using
this Setting element) to the shared element will be handled synchronously
or asynchronously by default.

5.6.11 CIM_FileExportCapabilities (FES Configuration)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 36 describes class FileExportCapabilities (FES Configuration).

Table 36 - SMI Referenced Properties/Methods for CIM_FileExportCapabilities (FES Configuration)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the capabilities of a File Export
Service.

ElementName Mandatory A provider supplied user-friendly name for this Capabilities
element.

FileSharingProtocol Mandatory An array listing all the protocols for file sharing supported by

the FileExportService represented by this
FileExportCapabilities element. Duplicate entries are
permitted because the corresponding entry in the
ProtocolVersions array property indicates the supported
version of the protocol.

Each entry must correspond to an
ExportedFileShareCapabilities element associated via
ElementCapabilities to the FileExportService -- the
FileSharingProtocol and ProtocolVersion properties of that
element must match the entry.

ProtocolVersions Mandatory An array of strings listing the versions of the file sharing
protocol in the corresponding
CIM_ExportedFileShareCapabilities.ProtocolVersions
property that can be supported by this FileExportService. At
this point there is no standard mechanism for naming versions
of CIFS or NFS.

72

File Export Manipulation Profile

Table 36 - SMI Referenced Properties/Methods for CIM_FileExportCapabilities (FES Configuration)

Properties Flags Requirement | Description & Notes

SupportedSynchronousMethods N Mandatory An array listing the extrinsic methods of the FileExportService
that can be called synchronously.

Note: Every supported method shall be listed either in this
property or in the SupportedAsynchronousMethods array

property.

SupportedAsynchronousMethods N Mandatory An array listing the extrinsic methods of the FileExportService
that can be called synchronously.

Note: Every supported method shall be listed either in this
property or in the SupportedSynchronousMethods array
property.

InitialEnabledState Optional This represents the state of initialization of a FileShare on
initial creation.

CASupported Optional This property applies to CIFS/SMB shares only. If it is true, it
means that "Continuous Availability" is supported for CIFS
shares. Continuous Availability (CA) - Client/Server mediated
recovery from network and server failure with application
transparency. Like Multi-Channel 10, this feature is somewhat
analogous to capabilities available in NFSv4.

5.6.12 CIM_FileExportService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 37 describes class FileExportService.

Table 37 - SMI Referenced Properties/Methods for CIM_FileExportService

Properties Flags Requirement Description & Notes

ElementName Mandatory A provider supplied user-friendly name for this Service.

SystemCreationClassName Mandatory The CIM Class name of the Computer System hosting the
Service.

SystemName Mandatory The name of the Computer System hosting the Service.

CreationClassName Mandatory The CIM Class name of the Service.

Name Mandatory The unique name of the Service.

CreateExportedShare() Mandatory Create a FileShare element configured for exporting a file or

directory as a share.

ModifyExportedShare() Mandatory Modify the configuration of a FileShare element setup to
export a file or directory as a share.

ReleaseExportedShare() Mandatory Delete the FileShare element that is exporting a file or
directory as a share, thus releasing that element.

AssignPrivilegeToExportedShare() Mandatory Grants the specified Identities permissions to the specified
FileShare specified Creates any AssociatedPrivilege
instances that are necessary to represent the requested
permissions.

SMI-S 1.7.0 Revision 5 Working Draft

File Export Manipulation Profile

5.6.13 CIM_FileShare (Exported File Share)

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 38 describes class CIM_FileShare (Exported File Share).

Table 38 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstancelD Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.

Name Mandatory This shall be an opaque string that uniquely identifies the path to

the directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is useful
when importing but less so when exporting.

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in the Health
and Fault Management Clause.

5.6.14 CIM_FileStorage (Subelement)

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare

Requirement: Required if parent profile is NAS Head. or Required if parent profile is a Self-contained
NAS System.

Table 39 describes class CIM_FileStorage (Subelement).

Table 39 - SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)

Properties Flags Requirement Description & Notes
PartComponent Mandatory The file or directory that is made available for export.
GroupComponent Mandatory The local filesystem that contains the exported file or directory.

5.6.15 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

74

File Export Manipulation Profile

Table 40 describes class CIM_HostedService.

Table 40 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes
Antecedent Mandatory The hosting Computer System.
Dependent Mandatory The FileExportService.

5.6.16 CIM_HostedShare

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 41 describes class CIM_HostedShare.

Table 41 - SMI Referenced Properties/Methods for CIM_HostedShare

Properties Flags Requirement Description & Notes

Dependent Mandatory The CIFS or NFS share that is hosted by a Computer System.

Antecedent Mandatory The Computer System that hosts a FileShare. It may be any system, but
the system shall have Dedicated=16 (File Server).

5.6.17 CIM_lIdentity

Created By: Extrinsic: CIM_AccountManagementService.CreateUserContact
Modified By: N/A

Deleted By: N/A

Requirement: Mandatory

Table 42 describes class CIM_Identity.

Table 42 - SMI Referenced Properties/Methods for CIM_ldentity

Properties Flags Requirement Description & Notes

InstancelD Mandatory Key

5.6.18 CIM_LogicalFile (Subelement)

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare

Requirement: Required if parent profile is NAS Head. or Required if parent profile is a Self-contained
NAS System.

SMI-S 1.7.0 Revision 5 Working Draft

File Export Manipulation Profile

Table 43 describes class CIM_LogicalFile (Subelement).

Table 43 - SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory CIM Class of the Computer System that hosts the filesystem of this File.

CSName Mandatory Name of the Computer System that hosts the filesystem of this File.

FSCreationClassName Mandatory CIM Class of the LocalFileSystem on the Computer System that contains
this File.

FSName Mandatory Name of the LocalFileSystem on the Computer System that contains this
File.

CreationClassName Mandatory CIM Class of this instance of LogicalFile.

Name Mandatory Name of this LogicalFile.

5.6.19 CIM_NFSShare (Exported File Share)

The CIM_NFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may
instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 44 describes class CIM_NFSShare (Exported File Share).

Table 44 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.6.5
CIM_FileShare (Exported File Share).

ElementName Mandatory See the ElementName definition in section 4.6.5
CIM_FileShare (Exported File Share).

Name Mandatory See the Name definition in section 4.6.5 CIM_FileShare
(Exported File Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.6.5
CIM_FileShare (Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.6.5
CIM_FileShare (Exported File Share).

Description N Optional See the Description definition in section 4.6.5
CIM_FileShare (Exported File Share).

5.6.20 CIM_SAPAvailableForFileShare

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

76

File Export Manipulation Profile

Table 45 describes class CIM_SAPAvailableForFileShare.

Table 45 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare

Properties Flags Requirement Description & Notes

FileShare Mandatory The element that is made available through a SAP. In the File
Export Profile, these are (CIFSShare or NFSShare) FileShares
configured for either export.

AvailableSAP Mandatory The ProtocolEndpoint that is available to this (CIFSShare or
NFSShare) FileShare. This shall be 4200 (NFS) or 4201 (CIFS).

5.6.21 CIM_ServiceAffectsElement

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 46 describes class CIM_ServiceAffectsElement.

Table 46 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement Description & Notes

ElementEffects Mandatory In this profile, the service provides management for the
element. We allow Other to support vendor extensions. The
standard values are 1 (Other) and 5 (Manages).

OtherElementEffectsDescriptions Mandatory A description of other element effects that this association
might be exposing.

AffectedElement Mandatory The (CIFSShare or NFSShare) FileShare.

AffectingElement Mandatory The FileExportService.

5.6.22 CIM_SettingsDefineCapabilities (Pre-defined)

Created By: Static_or_External

Modified By: External
Deleted By: External

Requirement: Optional

Table 47 describes class CIM_SettingsDefineCapabilities (Pre-defined).

Table 47 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Pre-defined)

Properties Flags Requirement Description & Notes

PropertyPolicy Mandatory Used for the purpose of identifying "default” settings, as
described in 5.1.3.1

ValueRole Mandatory

ValueRange Mandatory

SMI-S 1.7.0 Revision 5

Working Draft

77

File Export Manipulation Profile

Table 47 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Pre-defined)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory An Exported FileShare Capabilities element that is defined
by a collection of ExportedFileShareSetting Settings.

PartComponent Mandatory A Exported FileShare Setting that provides a point or a
partial definition for a Exported FileShare Capabilities
element.

5.6.23 CIM_SharedElement

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 48 describes class CIM_SharedElement.

Table 48 - SMI Referenced Properties/Methods for CIM_SharedElement

Properties Flags Requirement Description & Notes

SystemElement Mandatory The LocalFileSystem that is sharing a directory or file through a FileShare
alter ego.

SameElement Mandatory The (CIFSShare or NFSShare) FileShare that is the alter ego for a

directory or file in a LocalFileSystem.

5.6.24 CIM_UserContact

Created By: Extrinsic: CIM_AccountManagementService.CreateUserContact

Modified By: N/A
Deleted By: N/A

Requirement: Mandatory
Table 49 describes class CIM_UserContact.

Table 49 - SMI Referenced Properties/Methods for CIM_UserContact

Properties Flags Requirement Description & Notes
UserlD Mandatory The login name for the user represented by UserContact. Implementations
shall persist this value exactly as provided to CreateUserContact
Name Mandatory Name that uniquely identifies the UserContact instance. Whenever
feasible, implementations should persist the value provided to
CreateUserContact
STABLE

78

STABLE

6 File Server Manipulation Profile

6.1 Description

6.1.1 Synopsis

Profile Name: File Server Manipulation (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: FileServerConfigurationService

Scoping Class: ComputerSystem

Related Profiles: Table 50 describes the supported profiles for File Server Manipulation.

Table 50 - Supported Profiles for File Server Manipulation

Profile Name Organization Version Requirement Description
Job Control SNIA 15.0 Optional
Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2

6.1.2 Overview

The File Server Manipulation Profile is a component profile of autonomous profiles that support
filesystems. It makes use of elements of the filesystem component profiles and supports creation and
deletion of Virtual File Servers and the modification of both virtual and non-virtual File Servers. A number
of other profiles also make use of elements of the Filesystem Profile and will be referred to in this
specification as “filesystem-related profiles” -- these include, but are not limited to, the Filesystem Profile,
the Filesystem Manipulation Profile, the File Export Profile, the NAS Head Profile, the Self-Contained
NAS Profile.

In this release of SMI-S, the autonomous profiles that use the File Server Manipulation Profile are the
NAS Head and Self-Contained NAS Profiles.

A File Server is a computer system that is attached to a network and provides resources to allow client
systems access to filesystem resources in the form of CIFS Shares and/or NFS Exports. A File Server
can be either a physical computer system or can be a virtual system that is hosted by a physical computer
system. A physical File Server can neither be created nor deleted but may have properties that can be
modified via configuration actions. A virtual File Server can be created, deleted, and modified via
configuration actions. The number of virtual File Servers that may be created is system dependent. This
profile models both physical and virtual File Servers. Extrinsic methods are provided for the creation and
deletion of virtual File Servers. Extrinsic methods are also provide for the modification of properties in
both physical and virtual File Servers.

This profile supports viewing and configuring the following property “areas” of a File Server:
* NFS Exports
* CIFS Shares

« Ethernet port properties including VLAN tagging.

File Server Manipulation Profile

* DNS Settings
* NIS Settings

A given implementation may choose to support a strict read only view of the File Server configuration or
may provide any combination of capabilities for modifying any and all of the above property areas for the
File Server.

Throughout this profile, the term File Server will be synonymous for “ComputerSystem with
Dedicated[]="FileServer”. The term virtual File Server describes a File Server that has its “USAGE”
property set to “Virtual File Server”. A non-virtual (physical) File Server cannot have its “USAGE" property
set to “Virtual File Server”.

The profile models a File Server from a “read only” perspective and a “configuration” perspective. The
read only perspective defines the objects and attributes that describe a File Server instance. The
configuration perspective defines the permitted actions on the File Server for creating, deleting, and
modifying instances. By providing these two perspectives, this profile takes the place of having two
separate profiles.

6.1.3 Instance Diagrams

6.1.3.1 File Server classes and associations (read-only view)

Figure 9 illustrates the constructs that are involved in defining a File Server. This summarizes the “read
only” view of the classes and associations for this profile.

80

File Server Manipulation Profile

Figure 9 - File Server Classes and Associations (Read only view)

CIFSSettingData FileServer Manipulation
(Conditional)
Enabled
Charset NFSSettingData
UseTCPOnly (Conditional)
NETBIOSName
Enabled

WINSIP Charset
Authenticat?onDomain MaximumTCPConnections NISSettingData DNSSet_ti_ngData
AuthenticationMode Port (Conditional) (Conditional)
Ssege’betms_ ieLocki NonNFSuid DomainName DomainName

sebppotunisticocking NonNFSgid ServerlP DNSServerAddresses|]
SMBSigningOnly

X UseReservedPorts
ClientsConnectAnonymously

)) OnlyRootChown
JoinDomainAnonymously
DomainControllerUser
DomainControllerPassword
CIFSDomainController

ConcreteComponent
(Conditional)
- - - — FileServerCapabilities IPInterfaceSettingData
FileServerConfigurationCapabilities (Optional)
FileServerSettingsSupported IPAddress
SynchronousMethodsSupported[] CIFSSupported AddressType
AsynchronousMethodsSupported(] NFSSupported | subnetmask
NISSupported IPv6PrefixLength
DNSSupported VLANId
NetworkVLANSupported
FileServerSettings PP MTU
(Conditional) ElementCapabilities ElementSettingData
HostLookupOrder L (Optional)
UserLoginLookupOrder ElementCapabilities NetworkVLAN
NFSCIFSAccountMapping (Conditional)
AccountMappingDomain VLANId
‘ . FileServerConfigurationService TransmissionSize
ElementSettingData
(Optional) ‘
SettingsDefineState MemberOfCollection

(Conditional) (Conditional)

HostedService

ComputerSystem -

Dedicated="FileServer” HostedAccessPoint IPProg)ctc_)IEmlipoint
(Conditional) (Optional)
‘ IPvAddress
ComponentCS IPv6Address
HostedDependency ComputerSystem SubnetMask
(Optional) PrefixLength
BindsTo J
ComputerSystem F(Condmonal)
EthernetPort

TCPProtocolEndpoint

PortNumber
l—System Device

The File Server is modeled as a ComputerSystem whose Dedicated property is set to “FileServer” (16).
There are two types of File Servers supported: Virtual File Servers and non-Virtual File Servers (which
would be a physical File Server).

A Virtual File Server will have a HostedDependency association on another top level Computer System
such as a NAS Head or Self-Contained NAS for example. This top level ComputerSystem has a
HostedService association with FileServerConfigurationService, which provides the anchor point for the
FileServerConfigurationCapabilities and FileServerCapabilities. These capabilities identify the level of
support for File Servers by an implementation. For example, if the SynchronousMethodsSupported and

SMI-S 1.7.0 Revision 5 Working Draft 81

File Server Manipulation Profile

AsynchronousMethodsSupported are empty or NULL, then the implementation is a read-only
implementation of the profile.

A File Server can also be the top level ComputerSystem. In that case, the Dedicated array would contain
“FileServer” and either “NAS Head” or “Self-contained NAS”. In this case, the File Server would be
considered a non-Virtual File Server.

A Virtual File Server is hosted on a ComputerSystem. This may be a physical control unit or some other
hardware system that has the EthernetPort through which the File Server will serve files via CIFS and/or
NFS. The HostedDependency association is used to relate the Virtual File Server with the hosting
ComputerSystem.

A non-Virtual File Server shall not have a HostedDependency association with another ComputerSystem.
Instead, if the File Server ComputerSystem is not the top level system, then it shall have a ComponentCS
association with the top level ComputerSystem.

FileServerSettings captures the settings of the File Server. It has ConcreteComponent associations with
other setting data that capture the File Server’s settings for CIFS, NFS, NIS, DNS, and its IP Interface(s).
The minimal implementation only needs to support the File Server ComputerSystem because the
FileServerSettings is conditionally supported. The FileServerCapabilities contains several booleans that
tell a client the set of File Server related features that an implementation supports. The conditional
associations associated with FileServerSettings are based on the values for these booleans.

The File Server has two separate associations with FileServerSettings. SettingsDefineState is used to
represent the current state of the File Server’s setting data while ElementSettingData is used to capture
the setting data used to initially create or modify the File Server. In the read-only case, there will be no
ElementSettingData association.

NOTE There is only an ElementSettingData between the IPInterfaceSettingData and the I|PProtocolEndpoint. The
IPProtocolEndpoint has at most one IPInterfaceSettingData and it represents the settings used to initially create or modify the
IPProtocolEndpoint. Also note that multiple (CIFS or NFS) ProtocolEndpoints may be bound to a single IPProtocolEndpoint.

The NISSettingData and DNSSettingData if present are used to resolve hosts and user names when
authenticating hosts and users.

The implementation can provide either a read-only view of the File Servers or may provide extrinsics for
configuring existing and/or new File Servers.

A client can determine if a read-only implementation is provided by inspecting the two
FileServerConfigurationCapabilities arrays SynchronousMethodsSupported and
AsynchronousmethodsSupported. If they are both empty or null, then the implementation is read-only.

82

File Server Manipulation Profile

6.1.3.2 File Server Configuration classes and associations

File Server Manipulation

FileServerConfigurationCapabilities

NISSettingData

SynchronousMethodsSupported(]
AsynchronousMethodsSupported([]
CanConfigureCIFS
CanConfigureNFS
CanConfigureNIS CIFSSettingData
CanConfigureDNS
CanConfigureNetworkVLAN

ElementCapabilities DNSSettingData

FileServerConfigurationService

SettingsDefineCapabilities

CreateFileServer() ValueRole="Default’

ModifyFileServer()
DeleteFileServer()
AddIPInterface() NFSSettingData
ModifylPInterface()
DeletelPInterface()

ElementCapabilities

- | . IPInterfaceSettingData
FileServerCapabilities

CreateGoalSettings()
FileServerSettingsSupported
CIFSSupported
NFSSupported

HostedService

NISSupported FileServerSettings
DNSSupported
NetworkVLANSupported

]
ComputerSystem ComputerSystem

% —ComponentCS
Dedicated="FileServer”

Figure 10 - File Server Configuration classes and association

Figure 10 illustrates the constructs that are involved in configuring a File Server.

The top level ComputerSystem has a HostedService association with FileServerConfigurationService that
defines the extrinsics that can be used to manage a File Server. There are 3 methods for managing a File
Server and 3 methods for managing additional IPInterfaces for a given File Server.

FileServerConfigurationCapabilities lists the extrinsics that can be called synchronously or
asychronously. It is associated with the FileServerConfigurationService via the ElementCapabilities
association. It also has several boolean properties that inform clients if the implementation is able to
configure CIFS, NFS, NIS, DNS, and VLAN Tagging.

SMI-S 1.7.0 Revision 5 Working Draft 83

File Server Manipulation Profile

In addition to the set of booleans that indicate the set of File Server features supported by the
implementation, FileServerCapabilities also provides one method CreateGoalSettings that can be used to
arrive at a set of viable SettingData instances that can be used for creating or modifying a File Server. It
also is associated with FileServerConfigurationService via ElementCapabilities. It may have associations
with SettingData instances that reflect the Default settings for the File Server. The
SettingsDefineCapabilities association (with ValueRole="Default”) is used to capture these default
SettingData instances.

Only Virtual File Servers can be created or deleted. Non-Virtual File Servers can have properties
modified, but cannot be deleted.

The extrinsic methods that create Virtual File Servers can take any combination of SettingData instances
that are used to instantiate the File Server. The implementation can remember these initial SettingData
instances via the ElementSettingData association between the File Server and FileServerSettings. After
the File Server is created, the SettingsDefineState association between the File Server and
FileServerSettings defines the actual settings of the File Server. Modifications to either a Virtual or non-
Virtual File Server will be reflected in the SettingData instances associated via the SettingsDefineState
association. A non-Virtual File Server may not have SettingData instances associated via the
ElementSettingData association.

The FileServerConfigurationCapabilities instance contains several booleans that indicate if certain
properties of the File Server can be configured or modified. For those properties that cannot be
configured/modified, attempting to instantiate or modify them via a creation/modification extrinsic shall be
an error.

If neither CIFSSettingData nor NFSSettingData are specified at creation time, and the implementation
supports either or both of them, then instances shall be created by the implementation based on the
settings in FileServerCapabilities. The “Enabled” property of the instances created will be set to “false”.

When a Virtual File Server is created or when it has additional IPInterfaces associated with it, an instance
of NetworkVLAN may be created if VLAN tagging should be associated with the IPInterface.
NetworkVLAN instances are associated with the specific IPProtocolEndpoint to capture the VLAN tag to
be used when doing I/O on that IP interface. The properties VLANid and MTU in IPInterfaceSettingData
specify the values to use when creating the NetworkVLAN instance.

6.2 Health and Fault Management Consideration

6.2.1 OperationalStatus for File Server ComputerSystem

This section describes the operational status for Virtual File Servers. Non-Virtual File Server operation
status information is covered in both the NAS Head and Self-Contained NAS Profiles.

A File Server’s operational status will be influenced by the operational status of the ComputerSystem that
is hosting it via HostedDependency. For example, if the hosting ComputerSystem is “Stopped”, then the
status of the File Server will be “Stopped”. Providers must take this into account when formulating the
status of the File Server.

Table 51 describes the operational status for File Server ComputerSystem.

84

File Server Manipulation Profile

Table 51 - Operational Status for File Server ComputerSystem

Primary OperationalStatus

Description

2“OK” The File Server is running with good status

3 “Degraded” The File Server is operating in a degraded mode. This could be due to the
health state of some component of the ComputerSystem, due to load by other
applications, or due to the health state of backend or front-end network
interfaces.

4 “Stressed” The File Server resources are stressed

5 “Predictive Failure”

The File Server might fail because some resource or component is predicted
to fail

6 “Error” An error has occurred causing the File Server to become unavailable.
Operator intervention through SMI-S to restore the service may be possible.
6 “Error” An error has occurred causing the File Server to become unavailable.

Automated recovery may be in progress.

7 “Non-recoverable Error”

The File Server is not functioning. Operator intervention through SMI-S will not
fix the problem.

8 “Starting” The File Server is in process of initialization and is not yet available
operationally.

9 “Stopping” The File Server is in process of stopping, and is not available operationally.

10 “Stopped” The File Server cannot be accessed operationally because it is stopped -- if

this did not happened because of operator intervention or happened in real-
time, the OperationalStatus would have been “Lost Communication” rather
than “Stopped”.

11 “In Service”

The File Server is offline in maintenance mode, and is not available
operationally.

13 “Lost Communications”

The File Server cannot be accessed operationally -- if this happened because
of operator intervention it would have been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The File Server is stopped but in a manner that may have left it in an
inconsistent state.
15 “Dormant” The File Server is offline; and the reason for not being accessible is unknown.

16 “Supporting Entity in Error”

The File Server is in an error state, or may be OK but not accessible, because
a supporting entity is not accessible.

6.3 Cascading Considerations

Not Applicable.

6.4 Methods of the Profile

This section describes each extrinsic method supported by this profile.

6.4.1 Extrinsic Methods

6.4.1.1

Settings.

FileSystemCapabilities.CreateGoalSettings
This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed

SMI-S 1.7.0 Revision 5

Working Draft

85

File Server Manipulation Profile

The client shall pass six array elements in the TemplateGoalSettings parameter and six array elements in
the SupportedGoalSettings parameter. Each array element represents a configurable aspect of a
FileServer. A given array element in index “y” in TemplateGoalSettings will be of the same class/type as
that in array element in index “y” in SupportedGoalSettings. As each array element in both parameters
takes an EmbeddedInstance, this implies that they do not exist in the provider’s implementation but are
the responsibility of the client to create and manage.

Any or all of the TemplateGoalSetting array elements may be the empty string to represent a NULL entry.
This method will return a default CIM_Settings subclass object in SupportedGoalSettings corresponding
to each TemplateGoalSettings array element that is an empty string.

If any of the TemplateGoalSettings array elements specify values that cannot be supported, this method
shall return an appropriate error and should return a best match in the corresponding
SupportedGoalSettings array element.

When providing Embeddedinstances as input for any of the SupportedGoalSettings array elements, the
instance should specify a previously returned CIM_Setting that the implementation could support. On
output, this same array element specifies a new CIM_Setting that the implementation can support. If the
output array element is identical to the input array element, both client and implementation may conclude
that this is the best match for that particular SupportedGoalSettings array element. If the output array
elements do not match the corresponding TemplateGoalSettings array elements and if any of the input
SupportedGoalSettings array elements do not match the output array elements provided in
SupportedGoalSettings, then the method must return "Alternative Proposed". If any of the output array
elements are empty strings (representing the fact that no valid CIM_Setting could be found), the method
must return an “Failed”.

The client and the implementation can engage in a negotiation process that may require iterative calls to
this method. As stated above, to assist the implementation in tracking the progress of the negotiation, the
client may pass previously returned values of SupportedGoalSettings array elements as new input values
of SupportedGoalSettings. The implementation may determine that a step has not resulted in progress if
the input and output values of any SupportedGoalSettings array elements are the same. A client may
infer from the same result that the TemplateGoalSettings array element(s) must be modified.

The array elements in TemplateGoalSettings and SupportedGoalSettings shall have the index -
Embeddedinstance mappings shown in Table 52.

Table 52 - Array Element Mappings for TemplateGoalSettings and SupportedGoalSettings

Array Indice EmbeddedInstance
0 FileServerSettings
1 IPInterfaceSettingData
2 CIFSSettingData
3 NFSSettingData
4 NISSettingData
5 CIM_DNSSettingData

86

File Server Manipulation Profile

Table 53 details of the method signature and return results.

Table 53 - Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings

Parameter Name

Qualifier

Type

Description & Notes

TemplateGoalSettings|]

IN

string

This contains an array of 6 elements, each of which being an
Embeddedinstance of a CIM_Setting subclass.

Each of the array elements shall contain either an empty string to
represent a “NULL” entry, or shall contain an EmbeddedInstance.

Each array element contains a specific CIM_Setting subclass as
follows:

: Embeddedinstance ("CIM_FileServerSettings")
: Embeddedinstance ("CIM_IPInterfaceSettingData")
: Embeddedinstance ("CIM_CIFSSettingData")

0
1
2
3: Embeddedinstance ("CIM_NFSSettingData")
4: EmbeddedInstance ("CIM_NISSettingData")
5

: Embeddedinstance ("CIM_DNSSettingData")

SupportedGoalSettings|[]

INOUT

string

This contains an array of 6 elements, each of which being an
EmbeddedInstance of a CIM_Setting subclass.

On input, each of the array elements shall contain an either an
empty string to represent a “NULL” entry, or shall contain an
Embeddedinstance. If it contains an EmbeddedInstance, then this
instance specifies a previously returned CIM_Setting that the
implementation could support. On output, it specifies a new
CIM_Setting that the implementation can support.

Each array element contains a specific CIM_Setting subclass as
follows:

: Embeddedinstance ("CIM_FileServerSettings")
: Embeddedinstance ("CIM_IPInterfaceSettingData")
: Embeddedinstance ("CIM_CIFSSettingData")

0
1
2
3: Embeddedinstance ("CIM_NFSSettingData")
4: Embeddedinstance ("CIM_NISSettingData")
5

: Embeddedinstance ("CIM_DNSSettingData")

Normal Return

Status

uint32

ValueMap{}, Values{}

"Success",

“Not Supported”,
“Unknown”,

"Failed",

"Timeout",

“Invalid Parameter”,
"Alternative Proposed"

Error Returns

Invalid Property Value

OUT,
Indication

CIM_Error

A single named property of an instance parameter (either reference
or embedded) has an invalid value

Invalid Combination of
Values

OuUT,
Indication

CIM_Error

An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

SMI-S 1.7.0 Revision 5

Working Draft

87

File Server Manipulation Profile

6.4.1.2 Signature and Parameters of FileServerConfigurationService.CreateFileServer

This extrinsic creates a new FileServer. The method takes several “goal’ parameters that represent
different configurable aspects of the FileServer. Each of these parameters can be NULL, an empty string,
or will contain an EmbeddedInstance.

If a given parameter is NULL or an empty string, a default instance will be selected by the provider using
the corresponding element associated to the FileServerConfigurationService by the
DefaultElementCapabilities association. This element that is used will be returned in the parameter.

When creating a new FileServer, the client can decide to what degree the new FileServer will be
configured by providing the parameters of those aspects that should be configured. For example, to
create a FileServer with a minimum configuration, the client could provide just the ElementName. The
newly created FileServer will take on the configuration defaults as specified by the elements associated
with FileServerService via the SettingsDefineCapabilities association (with ValueRole="Default”). Later,
the client may modify any of these default settings via the ModifyFileServer and ModifylPInterface
methods.

When creating a new FileServer, the client may associate a single IP Interface with the FileServer. If a
client wishes to associate more than one IP Interface with the FileServer, the AddIPInterface method
should be used. It allows the client to specify the additional IP information, Hosting ComputerSystem, and
EthernetPort for the new IP Interface.

A client may change an existing IP Interface by using the ModifylPInterface method. It allows the client to
modify the IP Interface, Hosting ComputerSystem, and/or EtheretPort.

Table 54 details the parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer.

Table 54 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name Qualifier Type Description & Notes

ElementName IN string An end user relevant name for the File Server being created.
The value shall be stored in the 'ElementName' property for the
created element. This parameter shall not be NULL or the
empty string.

Job OUT, REF CIM_Concrete | Reference to the job (may be null if job completed).
Job
TheElement OUT, REF CIM_Compute | The newly created FileServer.
rSystem
FileServerSettings IN, OUT, El, string Embeddedinstance ("CIM_FileServerSettings")
NULL allowed

The FileServerSettings for the newly created FileServer.

If NULL or the empty string, a default FileServerSettings shall
be used and returned on output.

IPInterfaceSettingData IN,OUT, El, string Embeddedinstance ("CIM_IPInterfaceSettingData")

NULL allowed . -
The IPInterfaceSettingData that specifies the IP Interface that

the FileServer will use for servicing all CIFS and NFS requests.

If NULL or the empty string, a default IPInterfaceSettingData
shall be used and returned on output.

88

File Server Manipulation Profile

Table 54 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name Qualifier Type Description & Notes
CIFSSettingData IN,OUT, El, string Embeddedinstance ("CIM_CIFSSettingData")
NULL allowed . - .
The CIFSSettingData that specifies the CIFS settings for the
FileServer being created.
If this is NULL, the FileServer shall not have CIFS enabled and
the resulting CIFSSettingData instance created shall have its
“Enabled” property set to false. The CIFSSettingData instance
will be returned on output.
NFSSettingData IN,OUT, El, string Embeddedinstance ("CIM_NFSSettingData")
NULL allowed . . .
The NFSSettingData that specifies the NFS settings for the
FileServer being created.
If this is NULL, the FileServer shall not have NFS enabled and
the resulting NFSSettingData instance created shall have its
“Enabled” property set to false. The NFSSettingData instance
will be returned on output.
DNSSettingData IN, EI, NULL string Embeddedinstance ("CIM_DNSSettingData")
allowed, . - .
The DNSSettingData that specifies the DNS settings for the
FileServer being created.
If this is NULL, the FileServer shall not have access to a DNS
server and a DNSSettingData instance shall not be instantiated
for the FileServer.
NISSettingData IN, EI, NULL string Embeddedinstance ("CIM_DNSSettingData")
allowed, . . .
The NISSettingData that specifies the NIS settings for the
FileServer being created.
If this is NULL, the FileServer shall not have access to a NIS
server and a NISSettingData instance shall not be instantiated
for the FileServer.
NASComputerSystem IN, REF CIM_Compute | Either the NAS Head or Self-contained NAS system that the
rSystem FileServer shall be a component system of.
HostingComputerSystem IN, REF CIM_Compute | The HostingComputerSystem identifies the ComputerSystem
rSystem that will host the FileServer.
EthernetPort IN, REF CIM_Ethernet The EthernetPort identifies the hardware port that the File
Port Server will use for IP mount requests.
Normal Return
Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property Value OUT, CIM_Error A single named property of an instance parameter (either
Indication reference or embedded) has an invalid value
Invalid Combination of OUT, CIM_Error An invalid combination of named properties of an instance
Values Indication parameter (either reference or embedded) has been requested.

SMI-S 1.7.0 Revision 5

Working Draft

89

File Server Manipulation Profile

6.4.1.3 Signature and Parameters of FileServerConfigurationService.ModifyFileServer

This extrinsic modifies the settings for an existing FileServer. All settings except IPInterfaceSettingData,
Hosting ComputerSystem, and EthernetPort may be modified. To modify the IPInterfaceSettingData,
Hosting ComputerSystem, and/or EthernetPort properties, use the ModifylPInterface extrinsic.

Table 55 details the parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer.

Table 55 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer

Parameter Name Qualifier Type Description & Notes

FileServer IN,OUT,REF CIM_ComputerS | The FileServer that is to be modified.
ystem

Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).
b

ElementName IN, NULL string An end user relevant name for the File Server being modified.
allowed

FileServerSettings IN, NULL string Embeddedinstance ("CIM_FileServerSettings")

allowed . - . .
If non-NULL, this specifies the new FileServerSettings for the

FileServer

If NULL, then the FileServerSettings of the FileServer shall not
be modified.

CIFSSettingData IN, NULL string Embeddedinstance ("CIM_CIFSSettingData")

allowed, . . .
IF non-NULL, this specifies the new CIFS settings for the

FileServer. If the “Enabled” property set to false, CIFS will be
disabled for the FileServer.

If NULL, then the CIFS setting of the FileServer shall not be
modified.

NFSSettingData IN, NULL string Embeddedinstance ("CIM_NFSSettingData")

allowed, . - .
IF non-NULL, this specifies the new NFS settings for the

FileServer. If the “Enabled” property set to false, NFS will be
disabled for the FileServer.

If NULL, then the NFS setting of the FileServer shall not be
modified.

DNSSettingData IN, NULL string Embeddedinstance ("CIM_DNSSettingData")

allowed, . o .
IF non-NULL, this specifies the new DNS settings for the

FileServer.

If NULL, then the DNS setting of the FileServer shall not be
modified.

NISSettingData IN, NULL string Embeddedinstance ("CIM_DNSSettingData")

allowed, . - .
IF non-NULL, this specifies the new NIS settings for the

FileServer.

If NULL, then the NIS setting of the FileServer shall not be
modified.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

90

File Server Manipulation Profile

Table 55 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer

Parameter Name Qualifier Type Description & Notes

Error Returns

Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either

Value reference or embedded) has an invalid value

Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance

of Values parameter (either reference or embedded) has been requested.

CannotModify OUT, Indication CIM_Error The FileServer is in a state in which it cannot be modified.
6.4.1.4 Signature and Parameters of FileServerConfigurationService.DeleteFileServer

This extrinsics deletes an existing FileServer.

Table 56 describes the parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer.

Table 56 - Parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer

Parameter Qualifier Type Description & Notes
Name
FileServer IN,REF CIM_ComputerS | The FileServer that is to be deleted.
ystem
Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).

b

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"
Error Returns
CannotDelete OUT, Indication CIM_Error The FileServer is in a state in which it cannot be deleted.

6.4.1.5

Signature and Parameters of FileServerConfigurationService.AddIPInterface

This extrinsic adds a new IPInterface to an existing FileServer. The FileServer will respond to requests
issued to this new IP address. The number of IP addresses that a FileServer can respond on is system
dependent and the use of CreateGoalSettings to verify a new IP address is recommended.

Table 57 describes the parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface.

Table 57 - Parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface

Parameter Qualifier Type Description & Notes
Name
FileServer IN,OUT,REF CIM_ComputerS | The FileServer to which the IPInterface will be added.
ystem
Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).
b
IPInterfaceSettingDa | IN string Embeddedinstance ("CIM_|PInterfaceSettingData")
ta
The IPInterfaceSettingData that specifies the settings of the IP
Interface to be added to the FileServer.

SMI-S 1.7.0 Revision 5

Working Draft

91

File Server Manipulation Profile

Table 57 - Parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface

Parameter Qualifier Type Description & Notes
Name
HostingComputerSy IN, REF CIM_ComputerS | The ComputerSystem that will host the File Server for the new
stem ystem IP Interface
EthernetPort IN, REF CIM_EthernetPo | The EthernetPort identifies the hardware port that the File

rt

Server will use for mount requests on the new IPAddress.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either
Value reference or embedded) has an invalid value
Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance
of Values parameter (either reference or embedded) has been requested.
6.4.1.6 Signature and Parameters of FileServerConfigurationService.ModifylPInterface

This extrinsic modifies an existing IPInterface associated with a FileServer. The IPInterfaceSettingData,

the Hosting ComputerSystem, and/or the EthernetPort may be modified.

Table 58
FileServerConfigurationService.ModifylPInterface.

92

describes

the

parameters for

Extrinsic

Table 58 - Parameters for Extrinsic Method FileServerConfigurationService.ModifylPInterface

Parameter Name Qualifier Type Description & Notes
FileServer IN,OUT,REF | CIM_ComputerS | The FileServer from which the IPInterface will be modified.
ystem
IPInterfaceSettingData IN,REF CIM_IPInterface | The IPInterfaceSettingData that is to be modified.
SettingData
This is used to identify which IPInterfaceSettingData instance to
modify.
Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).
b
NewlPInterfaceSettingData | IN, NULL string EmbeddedInstance ("CIM_IPInterfaceSettingData")
allowed
If non-NULL, the IPInterfaceSettingData that will replace an
existing IPInterfaceSettingData instance in the FileServer.
If NULL, then the IPInterfaceSettingData will not be modified.
HostingComputerSystem IN, REF, CIM_ComputerS | If non-NULL, the new ComputerSystem that will host the
NULL ystem IPInterface.
allowed)
If NULL, the current ComputerSystem hosting the IPInterface
will remain unchanged.
EthernetPort IN, REF, CIM_EthernetPo | If non-NULL, the EthernetPort identifies the new hardware port
NULL rt for the IPInterface.
allowed
If NULL, the current EthernetPort setting will not be changed.

Normal Return

Method

File Server Manipulation Profile

Table 58 - Parameters for Extrinsic Method FileServerConfigurationService.ModifylPInterface

Parameter Name Qualifier Type Description & Notes
Status uint32 "Job Completed with No Error",
"Failed”,
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property Value OUT, CIM_Error A single named property of an instance parameter (either
Indication reference or embedded) has an invalid value

6.4.1.7

Signature and Parameters of FileServerConfigurationService.DeletelPInterface

This extrinsic deletes an existing IPInterface associated with a FileServer.

Table 59

describes

the

FileServerConfigurationService.DeletelPInterface.

parameters for

Extrinsic

Table 59 - Parameters for Extrinsic Method FileServerConfigurationService.DeletelPInterface

b

Parameter Name Qualifier Type Description & Notes
FileServer IN,OUT,REF CIM_ComputerS | The FileServer from which the IPInterface will be deleted.
ystem
IPInterfaceSettingData IN,REF CIM_IPInterface | The IPInterfaceSettingData that is to be deleted.
SettingData
This is used to identify which IPInterfaceSettingData instance to
delete from the FileServer.
Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property Value OUT, Indication CIM_Error A single named property of an instance parameter (either

reference or embedded) has an invalid value

6.5 Use Cases

Not defined in this standard.

SMI-S 1.7.0 Revision 5

Working Draft

Method

93

6.6

File Server Manipulation Profile

CIM Elements

Table 60 describes the CIM elements for File Server Manipulation.

94

Table 60 - CIM Elements for File Server Manipulation

Element Name

Requirement

Description

6.6.1 CIM_CIFSSettingData Conditional Conditional requirement: CIFS shares are supported
by the provider. This class contains the CIFS settings
for the File Server.

6.6.2 CIM_ConcreteComponent (FileServerSettings to Conditional Conditional requirement: CIFS shares are supported

CIFSSettingData) by the provider. Represents the association between
a FileServerSettings and CIFSSettingData.

6.6.3 CIM_ConcreteComponent (FileServerSettings to Conditional Conditional requirement: The DNSSettingData is

DNSSettingData) supported by the provider. Represents the
association between a FileServerSettings and
DNSSettingData.

6.6.4 CIM_ConcreteComponent (FileServerSettings to Conditional Conditional requirement: There is an instance of

IPInterfaceSettingData) IPInterfaceSettingData. Represents the association
between a FileServerSettings and
IPInterfaceSettingData.

6.6.5 CIM_ConcreteComponent (FileServerSettings to Conditional Conditional requirement: NFS Exports are supported

NFSSettingData) by the provider. Represents the association between
a FileServerSettings and NFSSettingData.

6.6.6 CIM_ConcreteComponent (FileServerSettings to Conditional Conditional requirement: NIS (Network Information

NISSettingData) System)is supported by the provider. Represents the
association between a FileServerSettings and
NISSettingData.

6.6.7 CIM_DNSSettingData Conditional Conditional requirement: The DNSSettingData is
supported by the provider. This element represents
the DNS setting data to be used by a file server.

6.6.8 CIM_ElementCapabilities Mandatory This associates the File Server Configuration Service

(FileServerConfigurationService to to the Capabilities element that represents the

FileServerCapabilities) capabilities supported by all File Servers.

6.6.9 CIM_ElementCapabilities Mandatory This associates the File Server Configuration Service

(FileServerConfigurationService to to the ConfigurationCapabilities element that

FileServerConfigurationCapabilities) represents the capabilities that it supports.

6.6.10 CIM_ElementSettingData (ComputerSystem Optional Associates a File Server with the FileServerSettings

FileServer to FileServerSettings) that were used to initially create the File Server.

6.6.11 CIM_ElementSettingData (IPInterfaceSettingData Optional The IPProtocolEndpoint associated with the

to IPProtocolEndpoint) IPInterfaceSettingData.

6.6.12 CIM_FileServerCapabilities Mandatory The capabilities of the File Server.

6.6.13 CIM_FileServerConfigurationCapabilities Mandatory This element represents the management
Capabilities of the File Server Configuration Service.
If the two arrays of extrinsic methods
(SynchronousMethodsSupported and
AsynchronousMethodsSupported) are empty, then
the implementation is readonly.

6.6.14 CIM_FileServerConfigurationService Mandatory The File Server Configuration Service provides the
methods to manipulate File Servers.

6.6.15 CIM_FileServerSettings Conditional Conditional requirement: The FileServer

ComputerSystem has a FileServerSettings
associated with it. This class contains the settings for
the File Server.

File Server Manipulation Profile

Table 60 - CIM Elements for File Server Manipulation

Element Name

Requirement

Description

6.6.16 CIM_HostedDependency

Optional

Associates a Virtual File Server to the Computer
System hosting it. This association will not exist for
non-Virtual File Servers.

6.6.17 CIM_HostedService (Hosting Computer System to
FileServerConfigurationService)

Mandatory

Associates the FileServerConfigurationService with
the hosting computer system.

6.6.18 CIM_IPInterfaceSettingData

Optional

This class contains the settings for single IP
interface.

6.6.19 CIM_MemberOfCollection (The
IPProtocolEndpoint to NetworkVLAN.)

Conditional

Conditional requirement: The NetworkVLAN is
supported by the provider. Associates an
IPProtocolEndpoint to NetworkVLAN.

6.6.20 CIM_NetworkVLAN

Conditional

Conditional requirement: The NetworkVLAN is
supported by the provider. This element represents
the virtual LAN (VLAN) tag settings for an IP
interface. In the context of a file server, it represents
the VLAN information.

6.6.21 CIM_NFSSettingData

Conditional

Conditional requirement: NFS Exports are supported
by the provider. This class contains the NFS settings
for the File Server.

6.6.22 CIM_NISSettingData

Conditional

Conditional requirement: NIS (Network Information
System)is supported by the provider. This class
contains the NIS settings for the File Server.

6.6.23 CIM_SettingsDefineCapabilities (CIFSettingData)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of
a FileServer is supported. Associates
CIFSSettingData with FileServerCapabilities.

6.6.24 CIM_SettingsDefineCapabilities (DNSSettingData)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of
a FileServer is supported. Associates
DNSSSettingData with FileServerCapabilities.

6.6.25 CIM_SettingsDefineCapabilities
(FileServerSettings)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of
a FileServer is supported. Associates
FileServerSettings with FileServerCapabilities.

6.6.26 CIM_SettingsDefineCapabilities
(IPInterfaceSettingData)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of
a FileServer is supported. Associates
IPInterfaceSettingData with FileServerCapabilities.

6.6.27 CIM_SettingsDefineCapabilities (NFSSettingData)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of
a FileServer is supported. Associates
NFSSSettingData with FileServerCapabilities.

6.6.28 CIM_SettingsDefineCapabilities (NISSettingData)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of
a FileServer is supported. Associates
NISSSettingData with FileServerCapabilities.

6.6.29 CIM_SettingsDefineState (ComputerSystem
FileServer to FileServerSettings)

Conditional

Conditional requirement: The FileServer
ComputerSystem has a FileServerSettings
associated with it. The FileServer's state represented
by its FileServerSettings.

SMI-S 1.7.0 Revision 5 Working Draft

95

File Server Manipulation Profile

Table 60 - CIM Elements for File Server Manipulation

Element Name Requirement | Description

SELECT * FROM CIM_InstCreation WHERE Optional CQL -Creation of a File Server element.
Sourcelnstance ISA CIM_Computer_System AND ANY
Sourcelnstance.CIM_Computer_System::Dedicated[*] =
16

SELECT * FROM CIM_InstDeletion WHERE Optional CQL -Deletion of a File Server element.
Sourcelnstance ISA CIM_Computer_System AND ANY
Sourcelnstance.CIM_Computer_System::Dedicated[*] =
16

6.6.1 CIM_CIFSSettingData

Created By: Extrinsic: CreateFileServer

Modified By: Extrinsic: ModifyCIFS

Deleted By: Extrinsic: DeleteFileServer

Requirement: CIFS shares are supported by the provider.

Table 61 describes class CIM_CIFSSettingData.

Table 61 - SMI Referenced Properties/Methods for CIM_CIFSSettingData

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opague, unique id for the CIFSSettingData.

Enabled Mandatory This boolean indicates if CIFS is enabled on the File Server.
Charset Optional Specifies the character set to be used by the File Server when

servicing CIFS Shares. The values are 0|1|2 (‘Standard-ASCII'|'IBM-
437','IBM-850"). If absent, then "Standard-ASCII" is assumed.

UseTCPOnly Optional This boolean if set to 'true’ allows only TCP transport connections. If
‘false’, then both TCP and Netbios transport connections are allowed.
The default value is 'false'.

NETBIOSName Optional The NetBIOS name of the FileServer.
WINSIP Optional An array of IP Addresses of Windows Internet Name Servers.
AuthenticationDomain Mandatory Name of CIFS domain to which the File Server is joined. Represents

either the NTLM domain or the ActiveDirectory domain.

AuthenticationMode Mandatory Specifies if authentication is to be performed against either NTLM or
ActiveDirectory domains. Valid values are ‘NTLM' or 'ActiveDirectory'.

UseKerberos Optional Determines how ActiveDirectory authentication is performed. If ‘true’,
limit ActiveDirectory authentication to use Kerberos. Otherwise do not
limit to Kerberos only.

UseOpportunisticLocking Optional This boolean determines if opportunistic locking should be used by
CIFS FileServer. If ‘true’, enable opportunistic locking.

SMBSigningOnly Optional This boolean determines if CIFS clients are allowed to connect if they
use SMB signing for security. If ‘true’, then require clients to use SMB
signing. Otherwise, do not require.

ClientsConnectAnonymo Optional This boolean dictates if the FileServer joins the CIFS Domain

usly Controller anonymously or if a user and password are required. If
‘true’, then join anonymously. Otherwise, use DomainControllerUser
and DomainControllerPassword to join.

96

File Server Manipulation Profile

Table 61 - SMI Referenced Properties/Methods for CIM_CIFSSettingData

Properties Flags

Requirement

Description & Notes

JoinDomainAnonymously

Optional

This boolean dictates if the FileServer joins the CIFS Domain
Controller anonymously or if a user and password are required. If
‘true’, then join anonymously. Otherwise, use DomainControllerUser
and DomainControllerPassword to join.

DomainControllerUser

Optional

User name to use when the Fileserver joins the CIFS Domain
Controller.

DomainControllerPasswo
rd

Optional

Password to use when joining the CIFS Domain Controller.

CIFSDomainController

Optional

Name of the CIFS Domain Controller.

CASupported

Optional

This property applies to CIFS/SMB shares only. If it is true, it means
that "Continuous Availability" is supported for CIFS shares. Continuous
Availability (CA) - Client/Server mediated recovery from network and
server failure with application transparency. Like Multi-Channel 10, this
feature is somewhat analogous to capabilities available in NFSv4.

MultiChannelSupported

Optional

This property applies to CIFS/SMB protocol only. If it is true, it means
that "Multi-Channel" feature is supported for CIFS/SMB. Multi-Channel
(MPIO) - Provides the ability to access multiple Ethernet links as a
logical pool supporting multiple SMB sessions and providing native
bandwidth aggregation, link failover, MP1O intelligence. This feature
enables the use of multiple physical network interfaces in an SMB 2.2
client and server. This enhancement in SMB 2.2 provides capabilities
analogous to those currently available in NFSv4.

ProtocolVersions

Optional

An array of strings listing the versions of the CIFS file sharing protocol
supported by the File Server.

6.6.2 CIM_ConcreteComponent (FileServerSettings to CIFSSettingData)

Created By: External
Modified By: Static
Deleted By: External

Requirement: CIFS shares are supported by the provider.

Table 62 describes class CIM_ConcreteComponent (FileServerSettings to CIFSSettingData).

Table 62 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to CIFS-

SettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The CIFSSettingData.

6.6.3 CIM_ConcreteComponent (FileServerSettings to DNSSettingData)

Created By: External
Modified By: Static
Deleted By: External

Requirement: The DNSSettingData is supported by the provider.

SMI-S 1.7.0 Revision 5

Working Draft

97

File Server Manipulation Profile

Table 63 describes class CIM_ConcreteComponent (FileServerSettings to DNSSettingData).

Table 63 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to DNS-
SettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The DNSSettingData.

6.6.4 CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData)

Created By: External

Modified By: Static

Deleted By: External

Requirement: There is an instance of IPInterfaceSettingData.

Table 64 describes class CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData).

Table 64 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to IPInter-
faceSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The IPInterfaceSettingData.

6.6.5 CIM_ConcreteComponent (FileServerSettings to NFSSettingData)

Created By: External

Modified By: Static

Deleted By: External

Requirement: NFS Exports are supported by the provider.

Table 65 describes class CIM_ConcreteComponent (FileServerSettings to NFSSettingData).

Table 65 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NFS-
SettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The NFSSettingData.

6.6.6 CIM_ConcreteComponent (FileServerSettings to NISSettingData)

Created By: External

Modified By: Static

Deleted By: External

Requirement: NIS (Network Information System)is supported by the provider.

98

File Server Manipulation Profile

Table 66 describes class CIM_ConcreteComponent (FileServerSettings to NISSettingData).

Table 66 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NISSet-

tingData)
Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The NISSettingData.

6.6.7 CIM_DNSSettingData

Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: The DNSSettingData is supported by the provider.

Table 67 describes class CIM_DNSSettingData.

Table 67 - SMI Referenced Properties/Methods for CIM_DNSSettingData

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opague, unique id for the DNSSettingData.

DomainName Mandatory The DNS domain to use for looking up addresses.

DNSServerAddresses Mandatory The addresses of DNS servers to contact. The array specifies the
order in which the DNS servers will be contacted.

6.6.8 CIM_ElementCapabilities (FileServerConfigurationService to FileServerCapabilities)
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 68 describes class CIM_ElementCapabilities (FileServerConfigurationService to
FileServerCapabilities).

Table 68 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-
vice to FileServerCapabilities)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The File Server Configuration Service.
Capabilities Mandatory The File Server Capabilties element.

6.6.9 CIM_ElementCapabilities (FileServerConfigurationService to FileServerConfigurationCapa-
bilities)

Created By: Static

Modified By: Static

Deleted By: Static

SMI-S 1.7.0 Revision 5 Working Draft 99

File Server Manipulation Profile

Requirement: Mandatory

Table 69 describes class CIM_ElementCapabilities (FileServerConfigurationService to
FileServerConfigurationCapabilities).

Table 69 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-
vice to FileServerConfigurationCapabilities)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The File Server Configuration Service.
Capabilities Mandatory The File Server Configuration Capabilties element.

6.6.10 CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings)
Created By: External

Modified By: Static

Deleted By: External

Requirement: Optional

Table 70 describes class CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings).

Table 70 - SMI Referenced Properties/Methods for CIM_ElementSettingData (ComputerSystem FileServer
to FileServerSettings)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The File Server ComputerSystem.
SettingData Mandatory The FileServerSettings.

6.6.11 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)
Created By: External

Modified By: Static

Deleted By: External

Requirement: Optional

Table 71 describes class CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint).

Table 71 - SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to
IPProtocolEndpoint)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The IPProtocolEndpoint.
SettingData Mandatory The IPInterfaceSettingData.

6.6.12 CIM_FileServerCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

100

Requirement: Mandatory

File Server Manipulation Profile

Table 72 describes class CIM_FileServerCapabilities.

Table 72 - SMI Referenced Properties/Methods for CIM_FileServerCapabilities

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for the FileServerCapabilities element of a
File Server Configuration Service.

ElementName

Mandatory

A user-friendly name for this Capabilities element.

FileServerSettingsSupported

Mandatory

Indicates if FileServerSettings is supported for the FileServer.
FileServerSettings will be supported if the value is "true”.

CIFSSupported

Mandatory

Indicates if CIFS Shares are supported by the FileServer. CIFS
Shares will be supported if the value is "true".

NFSSupported

Mandatory

Indicates if NFS Exports are supported by the FileServer. NFS
Exports will be supported if the value is "true".

NISSupported

Mandatory

Indicates if NIS (Network Information System) is supported by the
FileServer. NIS will be supported if the value is "true".

DNSSupported

Mandatory

Indicates if DNS is supported by the FileServer. DNS will be
supported if the value is "true".

NetworkVLANSupported

Mandatory

Indicates if network VLAN Tagging is supported by the FileServer.
VLAN tagging will be supported if the value is "true".

ScaleOutSupported

Mandatory

Indicates if ScaleOut is supported by the FileServer. ScaleOut will
be supported if the value is "true".

CreateGoalSettings()

Mandatory

This extrinsic method supports the creation of a set of Settings
that are a supported variant of the Settings passed as embedded
instances via IN parameters. The method returns the supported
Settings in OUT parameters, each containing an array of
embedded instances. Many of the IN parameters are optional,
and if left NULL result in NULL being returned in the
corresponding OUT parameters.

6.6.13 CIM_FileServerConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 73 describes class CIM_FileServerConfigurationCapabilities.

Table 73 - SMI Referenced Properties/Methods for CIM_FileServerConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opagque, unique id for this element representing the
capabilities of a File Server Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

SMI-S 1.7.0 Revision 5

Working Draft

101

File Server Manipulation Profile

Table 73 - SMI Referenced Properties/Methods for CIM_FileServerConfigurationCapabilities

Properties Flags Requirement Description & Notes

SynchronousMethodsSupported N Mandatory The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called synchronously.
Note: A supported method shall be listed in this property or in
the AsynchronousMethodsSupported property or both.

AsynchronousMethodsSupported | N Mandatory The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called asynchronously.
Note: A supported method shall be listed in this property or in
the SynchronousMethodsSupported property or both.

CanConfigureCIFS Mandatory Indicates if the CIFS Settings can be configured. The settings
can be configured if the value is "true".

CanConfigureNFS Mandatory Indicates if the NFS Settings can be configured. The settings
can be configured if the value is "true".

CanConfigureNIS Mandatory Indicates if the NIS (Network Information Service) Settings can
be configured. The settings can be configured if the value is
"true".

CanConfigureDNS Mandatory Indicates if the DNS Settings can be configured. The settings
can be configured if the value is "true".

CanConfigureNetworkVLSN Mandatory Indicates if the network VLAN Tagging Settings can be
configured. The settings can be configured if the value is
"true".

6.6.14 CIM_FileServerConfigurationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 74 describes class CIM_FileServerConfigurationService.

Table 74 - SMI Referenced Properties/Methods for CIM_FileServerConfigurationService

Properties Flags Requirement | Description & Notes

ElementName Mandatory A user-friendly name for this Service.

SystemCreationClassName Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

Name Mandatory Key.

CreateFileServer() Mandatory Create a new instance of File Server.

ModifyFileServer() Mandatory Modify an existing File Server. This is used to modify
FileServerSettings, CIFSSettingData, NFSSettingData,
DNSSettingData, or NISSettingData.

DeleteFileServer() Mandatory Delete an existing File Server.

AddIPInterface() Optional Add a new IPInterface to an existing File Server.

102

File Server Manipulation Profile

Table 74 - SMI Referenced Properties/Methods for CIM_FileServerConfigurationService

Properties Flags Requirement | Description & Notes
ModifylPInterface() Optional Modify an IPInterface associated with an existing File Server.
DeletelPInterface() Optional Delete an IPInterface associated with an existing File Server.

6.6.15 CIM_FileServerSettings

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyFileServer
Deleted By: Extrinsic: DeleteFileServer
Requirement: The FileServer ComputerSystem has a FileServerSettings associated with it.

Table 75 describes class CIM_FileServerSettings.

Table 75 - SMI Referenced Properties/Methods for CIM_FileServerSettings

Properties Flags Requirement Description & Notes
InstancelD Mandatory An opague, unique id for the FileServerSettings.
HostLookupOrder Optional Specifies the services and order to use them for host lookup. An array

of elements with these values: 'DNS','NIS', 'None', or ‘UploadedFile'.
‘UploadedFile' refers to the uploaded file of host names.

UserLoginLookupOrder Optional Specifies the services and order to use them for user lookup. An array
of elements with these values: 'DNS','NIS’, 'None', or ‘UploadedFile'.
‘file' 'UploadedFile' refers to the uploaded file of user passwords.

NFSCIFSAccountMapping Optional Controls the mapping of accounts between NFS and CIFS. Valid
values are 'None', 'All', or 'Domain'. If 'None', then no account
mapping is performed. If 'All', then mapping is done for all CIFS
domains. If 'Domain’, then mapping is done for the users in the CIFS
domain specified in AccountMappingDomain.

AccountMappingDomain Optional If NFSCIFSAccountMapping = 'Domain’, then this property will
contain the name of the domain to use for NFS to CIFS account
mapping.

6.6.16 CIM_HostedDependency

Created By: Extrinsic: CreateFileServer
Modified By: Static

Deleted By: Extrinsic: DeleteFileServer
Requirement: Optional

SMI-S 1.7.0 Revision 5 Working Draft

103

File Server Manipulation Profile

Table 76 describes class CIM_HostedDependency.

Table 76 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem. A Virtual File Server
ComputerSystem is a File Server and shall have Dedicated=16 (File
Server).

Antecedent Mandatory The hosting ComputerSystem. The hosting ComputerSystem may be the
top level NAS ComputerSystem or an Multiple Computer System (non-top
level) system.

6.6.17 CIM_HostedService (Hosting Computer System to FileServerConfigurationService)
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 77 describes class CIM_HostedService (Hosting Computer System to
FileServerConfigurationService).

Table 77 - SMI Referenced Properties/Methods for CIM_HostedService (Hosting Computer System to File-
ServerConfigurationService)

Properties Flags Requirement Description & Notes
Dependent Mandatory The File Server Configuration Service.
Antecedent Mandatory The hosting ComputerSystem.

6.6.18 CIM_IPInterfaceSettingData

Created By: Extrinsic: CreateFileServer | AddIPInterface
Modified By: Extrinsic: ModifylPInterface

Deleted By: Extrinsic: DeleteFileServer | DeletelPInterface
Requirement: Optional

Table 78 describes class CIM_IPInterfaceSettingData.

Table 78 - SMI Referenced Properties/Methods for CIM_IPInterfaceSettingData

Properties Flags Requirement Description & Notes

IPAddress Mandatory The IPAddress that will be used by the File Server. This can be
either an IPv4 or IPv6 address.

AddressType Mandatory The IPAddress format. This can be either "IPv4" or "IPv6".

SubnetMask Mandatory The subnet mask that will be used by the File Server.

IPv6PrefixLength Conditional Conditional requirement: Required if the array property

CIM_IPInterfaceSettingData.AddressType contains the string
\IPv6\".'If AddressType specifies IPv6, then this specifies the prefix
length for the IPv6 address in IPAddress.

104

File Server Manipulation Profile

Table 78 - SMI Referenced Properties/Methods for CIM_IPInterfaceSettingData

Properties

Flags

Requirement

Description & Notes

VLANId

Optional

If present contains the ID of the VLAN that this IP setting will be
associated with.

MTU

Optional

If present contains the maximum transmission unit to be used for
this IP setting. If not present, then the default of 1500 will be used.

RSSCapable

Optional

This property is used to indicate whether this IPInterface is
Receive-side Scaling (RSS) capable or not. Receive-side Scaling
(RSS)- Receive-Side Scaling resolves the single-processor
bottleneck by allowing the receive side network load from a network
adapter to be shared across multiple processors. RSS enables
packet receive-processing to scale with the number of available
processors.

RDMACapable

Optional

This property is used to indicate whether this IPInterface is Remote
Direct Memory Access (RDMA) capable or not. Remote Direct
Memory Access Protocol (RDMA) - Accelerated I/O delivery model
which works by allowing application software to bypass most layers
of software and communicate directly with the hardware.

LinkSpeed

Optional

Speed of this IPInterface in bits per second.

6.6.19 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: The NetworkVLAN is supported by the provider.

Table 79 describes class CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.).

Table 79 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to
NetworkVLAN.)

Properties Flags Requirement Description & Notes
Member Mandatory The IPProtocolEndpoint.
Collection Mandatory The NetworkVLAN.

6.6.20 CIM_NetworkVLAN
Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic

Requirement: The NetworkVLAN is supported by the provider.

SMI-S 1.7.0 Revision 5

Working Draft

105

File Server Manipulation Profile

Table 80 describes class CIM_NetworkVLAN.

Table 80 - SMI Referenced Properties/Methods for CIM_NetworkVLAN

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the NetworkVLAN.

VLANId Mandatory The VLAN id that is to be associated with an IP interface. The id shall be
included in all IP packets being sent through an IP interface.

TransmissionSize Mandatory The maximum transmission unit size that is associated with an IP
Interface.

6.6.21 CIM_NFSSettingData

Created By: Extrinsic: CreateFileServer

Modified By: Extrinsic: ModifyNFS

Deleted By: Extrinsic: DeleteFileServer

Requirement: NFS Exports are supported by the provider.

Table 81 describes class CIM_NFSSettingData.

Table 81 - SMI Referenced Properties/Methods for CIM_NFSSettingData

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the NFSSettingData.

Enabled Mandatory This boolean indicates if NFS is enabled on the File Server.
Charset Optional Specifies the character set to be used by the File Server when

servicing CIFS Shares. The values are 0|1|2 (‘'Standard-
ASCII''UTF8'['1SO-8859-1"). If absent, then 'ISO-8859-1' is

assumed.

MaximumTCPConnections Optional This specifies the number of concurrent TCP connections that are
allowed for the NFS protocol. If set to 0, then TCP will be disabled
for NFS.

Port Optional The port the File Server listens for mount requests. If absent,

default to 2049.

NonNFSuid Optional User ID to use for requests from non-NFS access. If absent, default
to-1.

NonNFSgid Optional Group ID to use for requests from non-NFS access. If absent,
default to -1.

UseReservedPorts Optional This boolean specifies that the File Server will only allow NFS

mount requests from client machine TCP/IP ports less than 1024. If
‘true’, only allow mount requests from ports less than 1024.
Othewise, allow mount requests from any client port.

OnlyRootChown Optional This boolean specifies if the root user is allowed to issue chown
(change ownership) requests. If 'true’, then only let root user issue
chown request. Otherwise, allow any user to issue chown requests.

6.6.22 CIM_NISSettingData

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyFileServer

106

File Server Manipulation Profile

Deleted By: Extrinsic: DeleteFileServer
Requirement: NIS (Network Information System)is supported by the provider.

Table 82 describes class CIM_NISSettingData.

Table 82 - SMI Referenced Properties/Methods for CIM_NISSettingData

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the NISSettingData.
DomainName Mandatory NIS Domain Name.

ServerlP Mandatory An array of IP Addresses IP Addresses of NIS Servers.

6.6.23 CIM_SettingsDefineCapabilities (CIFSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 83 describes class CIM_SettingsDefineCapabilities (CIFSettingData).

Table 83 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (CIFSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The CIFSSettingData reference.

6.6.24 CIM_SettingsDefineCapabilities (DNSSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 84 describes class CIM_SettingsDefineCapabilities (DNSSettingData).

Table 84 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (DNSSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The CIFSSettingData reference.

6.6.25 CIM_SettingsDefineCapabilities (FileServerSettings)

Created By: Static
Modified By: Static

SMI-S 1.7.0 Revision 5 Working Draft 107

File Server Manipulation Profile

Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 85 describes class CIM_SettingsDefineCapabilities (FileServerSettings).

Table 85 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (FileServerSettings)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The FileServerSetting reference.

6.6.26 CIM_SettingsDefineCapabilities (IPInterfaceSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 86 describes class CIM_SettingsDefineCapabilities (IPInterfaceSettingData).

Table 86 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (IPInterfaceSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The IPInterfaceSettingData reference.

6.6.27 CIM_SettingsDefineCapabilities (NFSSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 87 describes class CIM_SettingsDefineCapabilities (NFSSettingData).

Table 87 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NFSSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The NFSSettingData reference.

6.6.28 CIM_SettingsDefineCapabilities (NISSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

108

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

File Server Manipulation Profile

Table 88 describes class CIM_SettingsDefineCapabilities (NISSettingData).

Table 88 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NISSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The NISSSettingData reference.

6.6.29 CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings)

Created By: External
Modified By: Static
Deleted By: External

Requirement: The FileServer ComputerSystem has a FileServerSettings associated with it.

Table 89 describes class CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings).

Table 89 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (ComputerSystem FileServer
to FileServerSettings)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The File Server ComputerSystem.

SettingData Mandatory The FileServerSettings.
STABLE

SMI-S 1.7.0 Revision 5

Working Draft

109

File Server Manipulation Profile

110

File Storage Profile

STABLE

7 File Storage Profile

7.1 Description

7.1.1 Synopsis

Profile Name: File Storage (Component Profile)
Version: 1.4.0

Organization: SNIA

Central Class: N/A

Scoping Class: ComputerSystem

Related Profiles: Not defined in this standard.

7.1.2 Overview

The File Storage Profile is a component profile for autonomous profiles that support filesystems.

Specifically, in this release of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles.

7.1.3 Implementation

Figure 11: "File Storage Instance" illustrates the mandatory and optional classes for the modeling of file
storage for the profiles that support filesystems. This profile is supported by the Self-contained NAS and

the NAS Head Profiles.

LocalFileSystem

HostedFileSystem

ComputerSystem File Storage
Profile

I ResidesOnExtent
(Conditional)

SystemDevice I_

——J

LogicalDisk

Figure 11 - File Storage Instance

The File Storage Profile models the mapping of filesystems to LogicalDisks. For the NAS Head and Self-
contained NAS Profiles each filesystem shall be established on one LogicalDisk. The relationship

SMI-S 1.7.0 Revision 5 Working Draft

111

File Storage Profile

between the LocalFileSystem and the LogicalDisk is represented by the ResidesOnExtent association.
This association is listed as conditional on the parent profile being either the NAS Head or the Self-
contained NAS Profile. The LogicalDisk may be a LogicalDisk as defined in the Block Services Package
or part of the parent profile.

The FileStorage Profile is a “read-only” profile. That is, the methods for creating, modifying or deleting a
LocalFileSystem are external to the File Storage Profile. The SMI-S prescribed way of performing these
functions are covered by the Filesystem Manipulation Profile.

7.2 Health and Fault Management Consideration

Not defined in this standard.

7.3 Cascading Considerations

In some cases, the parent profile does not implement Block Services Package. In this case, the parent
profile would implement a LogicalDisk that is “imported” from another profile (e.g., a Volume Management
Profile). This section discusses those cascading considerations.

7.3.1 Cascaded Resources

A File Storage profile may get its storage from the operating system (HDR Profile), a volume manager, an
Array or Storage Virtualizer. As such, there is a cascading relationship between the File Storage Profile
and the profiles (e.g., Volume Management Profiles) that provide the storage for the File Storage Profile.
Figure 12 illustrates the constructs to be used to model this cascading relationship.

112

File Storage Profile

LocalFileSystem LocalFileSystem

ComputerSystem
File Storage Profile
ResidesOnExtent .
ResidesOnExtent
SystemDevice I_ _I
——
LogicalDisk Volume Composition |Subprofile
Name="Internal Name” LogicalDisk
OtherldentifyingInfo[]="0S X"
Name="Internal Name"
T
BasedOn
1
CompositeExtent
’—BasedOnJ—BasedOn—‘
LogicalDisk LogicalDisk
Name="Internal Name” Name="Internal Name”
OtherldentifyingInfo[]="0S Y~ OtherldentifyingInfo[]="0S Z"
I —
p— »
Logicalldentity
Dependency

; "
Logicalldentity Logicalldentity | LogicalDisk
|

Cascading Subprofile | (Virtual)
MemberOfCollection Name=*0S z”

SNIA_AllocatedResources ‘ MemberofCollection
MemberOfCollection | LogicalDisk 1

| (Virtual)
SNIA_RemoteResources
| CompuierSystem ¥ Name="0S Y

(Virtual) MemberOfCollection
LogicalDisk '
(Virtual)
SystemDevice _u ”
I Name="0S X | MemberOfCollection

SAPAvailableForElement | Lo(glcaID|sk

Virtual)
RemoteServiceAccessPoint I |

L

Figure 12 - Cascading File Storage

Figure 12: "Cascading File Storage" shows two filesystems (LocalFileSystem). Both reside on one
LogicalDisk. But the LogicalDisk on the right is a composite of lower level LogicalDisks. The storage that
is imported from the remote profile are LogicalDisks at the lowest level of the Filesystem Profile. So, in
the first (left side) case, the Logicalldentity is between the LogicalDisk on which the filesystem resides to
the imported LogicalDisk (or StorageVolume). In the second case (the right side) the Logicalldentity is
between the “lowest level” LogicalDisks in Volume Composition and the imported LogicalDisks (or
StorageVolumes).

NOTE Logicalldentity is an abstract class and would be subclassed by an implementation.

The ComputerSystem in the Filesystem Profile would be the computer system that hosts the filesystem.
The “Virtual” ComputerSystem is the top level ComputerSystem of the HDR, Volume Manager, Array or
Storage Virtualizer. There shall be a Dependency association between these computer systems.
LogicalDisks (or StorageVolumes) that are in use by the Filesystem Profile would have a
MemberOfCollection association to the SNIA_AllocatedResources collection. All the LogicalDisks (or
StorageVolumes) that the Filesystem Profile can see (including the ones that are allocated) would have a
MemberOfCollection association to the SNIA_RemoteResources instance.

SMI-S 1.7.0 Revision 5 Working Draft 113

File Storage Profile

The RemoteServiceAccessPoint associated to the virtual computer system via SAPAvailableForFileShare
would be information on the management interface for the HDR, Volume Manager, Array or Storage
Virtualizer.

Table 90 provides the specific cascading information for cascading file storage.

Table 90 - Cascaded Storage

File Storage Leaf Profile Leaf Resource Association Notes
Resource
LogicalDisk Volume Management or |LogicalDisk Logicalldentity
HDR
LogicalDisk Array or Storage StorageVolume Logicalldentity
Virtualizer

7.3.2 Ownership Privileges

In support of the cascading File Storage, an implementation may assert ownership over the LogicalDisks
(or StorageVolumes) that they import. If the Volume Management implementation supports Ownership,
the File Storage implementation may assert ownership using the following Privileges:

< Activity - Execute
= ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool
e FormatQualifier - Method

NOTE HDR does not support Block Storage Resource Ownership, so this cannot be supported if the underlying profile is HDR.
DEPRECATED

7.4 Methods of the Profile

7.4.1 Extrinsic Methods of the Profile

Not defined in this standard

NOTE The methods for defining the various mappings would be handled by the Filesystem Manipulation Profile.

7.4.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

= Getlnstance

« Associators

« AssociatorNames

< References

< ReferenceNames

< Enumeratelnstances

< EnumeratelnstanceNames

114

File Storage Profile

7.5 Client Considerations and Recipes
Not defined in this standard.

7.6 CIM Elements
Table 91 describes the CIM elements for File Storage.

Table 91 - CIM Elements for File Storage

Element Name Requirement Description

7.6.1 CIM_ResidesOnExtent Conditional Conditional requirement: NAS Profiles require that
LocalFileSystems reside on one LogicalDisk. or NAS
Profiles require that LocalFileSystems reside on one
LogicalDisk. Represents the association between a local
FileSystem and the underlying LogicalDisk that it is built
on.

7.6.1 CIM_ResidesOnExtent

Created By: External
Modified By: Static
Deleted By: External

Requirement: NAS Profiles require that LocalFileSystems reside on one LogicalDisk. or NAS Profiles
require that LocalFileSystems reside on one LogicalDisk.

Table 92 describes class CIM_ResidesOnExtent.

Table 92 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Properties Flags Requirement Description & Notes

Dependent Mandatory The LocalFileSystem that is built on top of a LogicalDIsk.

Antecedent Mandatory The LogicalDIsk that underlies a LocalFileSystem.
STABLE

SMI-S 1.7.0 Revision 5 Working Draft

115

File Storage Profile

116

Filesystem Profile

STABLE

8 Filesystem Profile

8.1 Description

8.1.1 Synopsis

Profile Name: Filesystem (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: LocalFileSystem

Scoping Class: ComputerSystem

Related Profiles: Table 93 describes the related profiles for Filesystem.

Table 93 - Related Profiles for Filesystem

Profile Name Organization Version Requirement Description

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2

The Filesystem Profile is a component profile for autonomous profiles that support filesystems.
Specifically, in this release of SMI-S, this includes the NAS Head and the Self-Contained NAS Profiles. A
number of other profiles and component profiles make use of elements of the Filesystem Profile and will
be referred to in this specification as “filesystem-related profiles” -- these include but are not limited to the
Filesystem Manipulation Profile, File Export Profile, File Export Manipulation Profile, NAS Head Profile,
and so on.

The state transitions involved when an appropriate storage element is transformed into a filesystem are
described in Annex B (Informative) State Transitions from Storage to File Shares.

8.1.2 Instance Diagrams

Figure 13: "Filesystem Instance" illustrates the mandatory, optional, and conditional classes for the
modeling of filesystems for the profiles that support filesystems. This profile is supported by the Self-
contained NAS and the NAS Head Profiles. The dashed box contains the elements that this profile
supports -- the elements outside the dashed box depend on other profiles for their maintenance (creation,
deletion, and modification).There are two ComputerSystems shown outside the box that represent
different dedicated roles that could be performed by different actual computers (or could be performed by
a single computer).

SMI-S 1.7.0 Revision 5 Working Draft 117

Filesystem Profile

HostedShare
ComputerSystem |1 - FileShare
- ConcreteDependency
File Server 1 PathName="/users/me” |, — (Optional)
1 * *
SharedElement
— " Dependency’ .
LocalAccessAvailable (Conditional) File System
LocalAccessPoint="/etc/mnt”
(Conditional) LogicalFile
Fil
1 1 ileStorage
* LocalFileSystem 1
HostedDependency o .
(Optional) LocalAccessDefinitionRequired |—————ElementCapabilities
PathnameSeparatorString="/" T
1 EnabledLogicalElement
) * 1) Capabilities
EIementSlettngata ElementSettingData
(Optional) (Optional)
* * 1
LocallyAccessibleFileSystemSetting FileSystemSetting
(Optional) (Optional)
HostedFileSystem
ResidesOnExtent
1
ComputerSystem Logicalpisk
FileSystem Host

Figure 13 - Filesystem Instance

A filesystem shall be represented in the model as an instance of LocalFileSystem. A LocalFileSystem
instance shall have a ResidesOnExtent association to a LogicalDisk (shown, but outside this profile). A
client would determine the size (in bytes) of a filesystem by inspecting the size of the LogicalDisk on
which the LocalFileSystem resides.

NOTE The filesystem-related profiles build LocalFileSystems on a LogicalDisk(s). In the cases supported in this release of SMI-S,
one LocalFileSystem may be established on one LogicalDisk. In a future release, more elaborate mappings may exist between
FileSystems and one or more LogicalDisks.

The LocalFileSystem shall have a HostedFileSystem association to a ComputerSystem. Normally this will
be the top level ComputerSystem of the parent profile (typically one of the filesystem-related profiles such
as the NAS Head or the Self-Contained NAS Profile). However, if the Multiple Computer System Profile is
implemented, the HostedFileSystem may be associated to a component ComputerSystem. See 25
Multiple Computer System Profile in Storage Management Technical Specification, Part 3 Common Profiles,
1.7.0 Rev 5.

The LocalFileSystem element may also have an ElementSettingData association to the
FileSystemSetting for that filesystem. However, the FileSystemSetting and ElementSettingData are
optional in this profile.

The LocalFileSystem may also have an ElementCapabilities association to an
EnabledLogicalUnitCapabilities to identify naming and requested state change capabilities.

118

Filesystem Profile

There may be zero or more FileShare elements associated to the LocalFileSystem element via the
SharedElement association. An implementation would be required to populate only those FileShare
elements representing files (or directories) that are exported using a supported file sharing protocol (such
as CIFS or NFS). The path to the file or directory from the root of the LocalFileSystem is specified by the
FileShare.Name property.

NOTE In order to support backward compatibility with the NAS Head and Self-contained NAS Profiles in previous SMI-S releases,
the class LogicalFile (shown outside the dashed box in the figure) and two associations (ConcreteDependency outside the dashed
box and FileStorage shown inside the dashed box) must be supported. These duplicate the functionality provided by specifying
FileShare.Name, at the cost of requiring that certain LogicalFiles, but not all, be surfaced.

EXPERIMENTAL

8.1.2.1 Local Access Requirement

In addition, if the property LocalFileSystem.LocalAccessDefinitionRequired is set to true, the filesystem
must be made exportable via a file server. In that case, there shall be a LocalAccessAvailableToFS
association from the LocalFileSystem element to the file server ComputerSystem and, optionally, a
LocallyAccessibleFileSystemSettings element associated via an ElementSettingData association to the
LocalFileSystem. The LocallyAccessibleFileSystemSettings element is an instance of ScopedSettingData
and is associated to the file server ComputerSystem via a ScopedSetting association. The ScopedSetting
association indicates that this setting is constrained by the associated file server. The
LocalAccessAvailableToFS association is required but conditional on LocalAccessDefinitionRequired
being true, while the LocallyAccessibleFileSystemSettings element and the ScopedSetting association
are not required (i.e., optional).

NOTE They are still conditional on LocalAccessDefinitionRequired being true, but in this version of SMI-S, that is not represented
in the XML file.

Since LocalAccessAvailableToFS is an association, there can only be ONE instance per LocalFileSystem
for each FileServer. This is a common restriction. For each LocalAccessAvailableToFS association, there
should only be zero (if optionally not implemented) or one (if optionally implemented) instances of
LocallyAccessibleFileSystemSettings.

8.1.2.2 Directory Service Use

A filesystem needs to be supported by a directory service that resolves user and group identifiers
(referred to as UID, GID, or SID) to specific operational users and groups. The enumerated property
LocalFileSystem.DirectoryServiceUsage indicates the kind of support a filesystem requires from a
directory service -- the options include “Not Used”, “Optional”, and “Required”. If “Required”, the
filesystem will be associated to a computer system that provides infrastructure support for such identity
resolution.

The directory service may be hosted by any ComputerSystem, but it must be accessible in real-time to
the ComputerSystem that makes the filesystem available to operational users -- this is either a file server
ComputerSystem (one may already be required if LocalFileSystem.LocalAccessDefinitionRequired is
true, but it is optional otherwise) or the ComputerSystem hosting the filesystem. The directory service
may be “natively” hosted on that ComputerSystem (file server or filesystem host) or may be identified by
that ComputerSystem in some way.

The support relationship between a LocalFileSystem element and the ComputerSystem that identifies
and uses the directory service shall be represented by a Dependency association with the
ComputerSystem element as the Antecedent and the LocalFileSystem element as the Dependent.

In the instance diagram above, the Dependency association has been shown between the
LocalFileSystem and a file server ComputerSystem (with Dedicated[]="16"). A LocalFileSystem element
shall only identify one ComputerSystem for directory service access. In addition, the consistency of
filesystem security implementation requires that all the file server ComputerSystems that make a

SMI-S 1.7.0 Revision 5 Working Draft 119

Filesystem Profile

filesystem locally available must use the same directory service or use mutually consistent directory
services.

EXPERIMENTAL

8.1.2.3 Element Naming

The name of a FileSystem may be changed. The existence of the EnabledLogicalElementCapabilities
instance associated to the FileSystem indicates that the FileSystem can be named. If
ElementNameEditSupported is set to TRUE, then the ElementName of the associated FileSystem may be
modified. The ElementNameMask property provides the regular expression that expresses the limits of
the name; see 8.7.5 for the class definition for EnabledLogicalElementCapabilities for details for this

property.
8.2 Health and Fault Management Consideration

The Filesystem Profile supports state information (e.g., OperationalStatus) on the following elements of
the model:

e Local filesystems (See Table 104 - SMI Referenced Properties/Methods for CIM_HostedFileSystem
(LocalFileSystem))

8.2.1 OperationalStatus for Filesystems

Table 94 describes each filesystem OperationalStatus.

Table 94 - Filesystem OperationalStatus

Primary OperationalStatus Description
2“OK” The filesystem has good status
3 “Degraded” The filesystem is operating in a degraded mode. This could be due to the

health state of the underlying storage being degraded or in error.

4 “Stressed” The filesystem resources are stressed

5 “Predictive Failure” The filesystem might fail because some resource or component is predicted to
fail

6 “Error” An error has occurred causing the filesystem to become unavailable. Operator

intervention through SMI-S (managing the LocalFileSystem) to restore the
filesystem may be possible.

6 “Error” An error has occurred causing the filesystem to become unavailable.
Automated recovery may be in progress.

7 “Non-recoverable Error” The filesystem is not functioning. Operator intervention through SMI-S will not
fix the problem.

8 “Starting” The filesystem is in process of initialization and is not yet available
operationally.

9 “Stopping” The filesystem is in process of stopping, and is not available operationally.

10 “Stopped” The filesystem cannot be accessed operationally because it is stopped -- if this
did not happened because of operator intervention or happened in real-time,
the OperationalStatus would have been “Lost Communication” rather than
“Stopped”.

11 “In Service” The filesystem is offline in maintenance mode, and is not available
operationally.

120

Filesystem Profile

Table 94 - Filesystem OperationalStatus

Primary OperationalStatus

Description

13 “Lost Communications” The filesystem cannot be accessed operationally -- if this happened because
of operator intervention it would have been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The filesystem is stopped but in a manner that may have left it in an
inconsistent state.

15 “Dormant” The filesystem is offline; and the reason for not being accessible is unknown.

16 “Supporting Entity in Error” The filesystem is in an error state, or may be OK but not accessible, because a

supporting entity is not accessible.

8.3 Methods of the Profile

8.3.1 Extrinsic Methods of the Profile

Not defined in this standard.

8.3.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations

supported are as follows:

GetlInstance
« Associators
= AssociatorNames
< References
< ReferenceNames

e Enumeratelnstances

EnumeratelnstanceNames

8.4 Use Cases
Not defined in this standard.

8.5 CIM Elements

Table 95 describes the CIM elements for Filesystem.

Table 95 - CIM Elements for Filesystem

Element Name Requirement Description

8.5.1 CIM_Dependency (Uses Directory Services From) Conditional Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is either
"Required" or "Optional". Associates a
ComputerSystem that indicates a directory service
that supports the dependent LocalFileSystem.

8.5.2 CIM_ElementCapabilities Optional Experimental. Expressed the ability for the file

(EnabledLogicalElementCapabilities to LocalFileSystem) system to be named or have its state changed.

8.5.3 CIM_ElementSettingData (FileSystem) Optional Associates a LocalFileSystem to its
FileSystemSetting element.

SMI-S 1.7.0 Revision 5

Working Draft

121

Filesystem Profile

Table 95 - CIM Elements for Filesystem

Element Name

Requirement

Description

8.5.4 CIM_ElementSettingData (Local Access Required)

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=
true. Associates a LocalFileSystem to
LocallyAccessibleFileSystemSetting elements,
one for each file server that has local access.

8.5.5 CIM_EnabledLogicalElementCapabilities
(LocalFileSystem)

Optional

Experimental. This class is used to express the
naming and possible requested state change
possibilities for file systems.

8.5.6 CIM_FileStorage

Mandatory

Associates a LogicalFile (or Directory) to the
LocalFileSystem that contains it. This is provided
for backward compatibility with previous versions
of SMI-S.

8.5.7 CIM_FileSystemSetting

Optional

This element represents the configuration settings
of a filesystem represented by a LocalFileSystem.

8.5.8 CIM_HostedDependency (Local Access Required)

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=
true. Associates a file server ComputerSystem to
the LocallyAccessibleFileSystemSetting elements
that get scoping information from that file server.

8.5.9 CIM_HostedFileSystem (LocalFileSystem)

Mandatory

Associates a LocalFileSystem to the
ComputerSystem that hosts it.

8.5.10 CIM_LocalAccessAvailableToFS

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=
true. Associates a LocalFileSystem to a file server
ComputerSystem that can export files or
directories as shares.

8.5.11 CIM_LocallyAccessibleFileSystemSetting

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=
true. This element represents the configuration
settings of a LocalFileSystem that can be made
locally accessible (i.e., can have a file or directory
made accessible to operational users) from a file
server ComputerSystem. This Setting provides
further details on the functionality supported and
the parameters of that functionality when locally
accessible.

8.5.12 CIM_LocalFileSystem

Mandatory

Represents a filesystem in a Filesystem-related
profile.

8.5.13 CIM_LogicalFile

Mandatory

In an earlier release of SMI-S, the Filesystem-
related profiles made a limited set of LogicalFiles
(or Directory subclass) instances visible (these
were any file or directory that was exported as a
share. This element is required by the profiles to
maintain backward compatibility for clients
conforming to earlier versions of SMI-S.

SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_LocalFileSystem AND
Sourcelnstance.CIM_LocalFileSystem::OperationalStatus <>
Previousinstance.CIM_LocalFileSystem::OperationalStatus

Mandatory

CQL -Change of Status of a filesystem.
Previouslinstance is optional, but may be supplied
by an implementation of the Profile.

SELECT * FROM CIM_InstCreation WHERE Sourcelnstance
ISA CIM_LocalFileSystem

Mandatory

CQL -Creation of a LocalFileSystem element.

122

Filesystem Profile

Table 95 - CIM Elements for Filesystem

Element Name Requirement

Description

SELECT * FROM CIM_InstDeletion WHERE Sourcelnstance Mandatory
ISA CIM_LocalFileSystem

CQL -Deletion of a LocalFileSystem element.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity Optional
='SNIA" AND MessagelD="FSM13’

Filesystem available space has changed.

SELECT * FROM CIM_AlertIindication WHERE OwningEntity Mandatory
='SNIA" AND MessagelD="FSM14'

Filesystem is inaccessible.

SELECT * FROM CIM_AlertIindication WHERE OwningEntity Mandatory
='SNIA" AND MessagelD="FSM15'

Filesystem has returned to normal access.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity Mandatory
='SNIA' AND MessagelD="DRM28'

Filesystem capacity is at warning threshold

SELECT * FROM CIM_AlertIindication WHERE OwningEntity Mandatory
='SNIA" AND MessagelD="DRM29'

Filesystem capacity is critical.

SELECT * FROM CIM_Alertindication WHERE OwningEntity Mandatory
='SNIA" AND MessagelD="DRM30'

Filsystem capacity issues resolved.

8.5.1 CIM_Dependency (Uses Directory Services From)
Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if LocalFileSystem.DirectoryServiceUsage is either "Required" or "Optional".

Table 96 describes class CIM_Dependency (Uses Directory Services From).

Table 96 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s) that support

user, group and other security principal identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other security
principal identities is supported by the antecedent ComputerSystem.

8.5.2 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to LocalFileSystem)

Experimental.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

SMI-S 1.7.0 Revision 5 Working Draft

123

Filesystem Profile

Table 97 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
LocalFileSystem).

Table 97 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to LocalFileSystem)

Properties Flags Requirement Description & Notes
Capabilities Mandatory The capabilities object associated with the file system.
ManagedElement Mandatory The LocalFileSystem.

8.5.3 CIM_ElementSettingData (FileSystem)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 98 describes class CIM_ElementSettingData (FileSystem).

Table 98 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem.

SettingData Mandatory The settings established on the LocalFileSystem when first created or as
modified.

8.5.4 CIM_ElementSettingData (Local Access Required)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 99 describes class CIM_ElementSettingData (Local Access Required).

Table 99 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.

SettingData Mandatory The local access settings of the LocalFileSystem, specified when first
created or established later.

8.5.5 CIM_EnabledLogicalElementCapabilities (LocalFileSystem)
Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

124

Filesystem Profile

Table 100 describes class CIM_EnabledLogicalElementCapabilities (LocalFileSystem).

Table 100 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (Local-

FileSystem)

Properties Flags Requirement Description & Notes

InstancelD Mandatory

ElementName Mandatory The moniker for the instance.

ElementNameEditSupported Mandatory Denotes whether a file system can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name.
See MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and
format for the element name. See MOF for details.

RequestedStatesSupported Optional Expresses the states to which this file system may be changed
using the RequestStateChange method. If this property, it may
be assumed that the state may not be changed.

GetElementNameCapabilities() Conditional Conditional requirement: Required if Filesystem Manipulation
is implemented.

8.5.6 CIM_FileStorage

Created By: External
Modified By: External
Deleted By: External

Requirement: Mandatory

Table 101 describes class CIM_FileStorage.

Table 101 - SMI Referenced Properties/Methods for CIM_FileStorage

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The LocalFileSystem that contains the LogicalFile.
PartComponent Mandatory The LogicalFile contained in the LocalFileSystem.

8.5.7 CIM_FileSystemSetting

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

SMI-S 1.7.0 Revision 5

Working Draft

125

Table 102 describes class CIM_FileSystemSetting.

Filesystem Profile

Table 102 - SMI Referenced Properties/Methods for CIM_FileSystemSetting

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A user-friendly name for this FileSystemSetting element.

ActualFileSystemType Mandatory This identifies the type of filesystem that this FileSystemSetting
represents.

FilenameCaseAttributes Mandatory This specifies the support provided for using upper and lower
case characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects that
this filesystem may be used to provide and provides further
details in corresponding entries in other attributes.

NumberOfObjectsMin Mandatory This is an array that specifies the minimum number of objects of
the type specified by the corresponding entry in ObjectTypes]].

NumberOfObjectsMax Mandatory This is an array that specifies the maximum number of objects of
the type specified by the corresponding entry in ObjectTypes]].

NumberOfObjects Mandatory This is an array that specifies the expected number of objects of
the type specified by the corresponding entry in ObjectTypes]].

ObjectSize Mandatory This is an array that specifies the expected size of a typical object
of the type specified by the corresponding entry in ObjectTypes][].

ObjectSizeMin Mandatory This is an array that specifies the minimum size of an object of the
type specified by the corresponding entry in ObjectTypes[].

ObjectSizeMax Mandatory This is an array that specifies the minimum size of an object of the
type specified by the corresponding entry in ObjectTypes[].

FilenameReservedCharacterSet Optional This string or character array specifies the characters reserved
(i.e., not allowed) for use in filenames of a filesystem with this
setting.

DataExtentsSharing Optional This specifies whether a filesystem with this setting supports the
creation of data blocks (or storage extents) that are shared
between files.

CopyTarget Optional This specifies that, if possible, support should be provided for
using a filesystem created with this setting as a target of a Copy
operation.

FilenameStreamFormats Optional This is an array that specifies the stream formats (e.g., UTF-8)
supported for filenames by a filesystem with this setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3 names)
supported for filenames by a filesystem with this setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported by a
filesystem with this setting.

SupportedLockingSemantics Optional This array specifies the set of file access/locking semantics
supported by a filesystem with this setting.

SupportedAuthorizationProtocols Optional This array specifies the kind of file authorization protocols
supported by a filesystem with this setting.

SupportedAuthenticationProtocols Optional This array specifies the kind of file authentication protocols

supported by a filesystem with this setting.

126

Filesystem Profile

8.5.8 CIM_HostedDependency (Local Access Required)

Created By: External
Modified By: Static
Deleted By: External

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 103 describes class CIM_HostedDependency (Local Access Required).

Table 103 - SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access Required)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that provides the scope for the
LocallyAccessibleFileSystemSetting.

Dependent Mandatory The local access settings of the LocalFileSystem, established when first
created or as modified later, that is dependent on some information
provided by the file server that is the scoping ComputerSystem.

8.5.9 CIM_HostedFileSystem (LocalFileSystem)

Created By: External
Modified By: Static
Deleted By: External

Requirement: Mandatory

Table 104 describes class CIM_HostedFileSystem (LocalFileSystem).

Table 104 - SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The Computer System that hosts a LocalFileSystem.
PartComponent Mandatory The LocalFileSystem that represents the hosted filesystem.

8.5.10 CIM_LocalAccessAvailableToFS

Created By: External
Modified By: Static
Deleted By: External

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=2 (Required) or 3 (Required -

vendor default).

SMI-S 1.7.0 Revision 5

Working Draft 127

Filesystem Profile

Table 105 describes class CIM_LocalAccessAvailableToFS.

Table 105 - SMI Referenced Properties/Methods for CIM_LocalAccessAvailableToFS

Properties Flags Requirement Description & Notes

LocalAccessPoint Optional The name used by the file server ComputerSystem to identify the
filesystem. Sometimes referred to as a mount-point.
For many UNIX-based systems, this will be a qualified full pathname.
For Windows systems this could also be the drive letter used for the
LogicalDisk that the filesystem is resident on.

FileSystem Mandatory The LocalFileSystem that is being made available to the file server
ComputerSystem.

FileServer Mandatory The ComputerSystem that will be able to export shares from this

LocalFileSystem.

8.5.11 CIM_LocallyAccessibleFileSystemSetting

Created By: External
Modified By: External

Deleted By: External

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 106 describes class CIM_LocallyAccessibleFileSystemSetting.

Table 106 - SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for a LocallyAccessibleFileSystemSetting.

ElementName

Mandatory

A user-friendly name for this LocallyAccessibleFileSystemSetting
element.

InitialEnabledState

Optional

InitialEnabledState is an integer enumeration that indicates the
enabled/disabled states initially set for a locally accessible
filesystem (LAFS). The element functions by passing commands
onto the underlying filesystem, and so cannot indicate transitions
between requested states because those states cannot be
requested. The following text briefly summarizes the various
enabled/disabled initial states:

Enabled (2) indicates that the element will execute commands, will
process any queued commands, and will gueue new requests.

Disabled (3) indicates that the element will not execute commands
and will drop any new requests.

In Test (7) indicates that the element will be in a test state.

Deferred (8) indicates that the element will not process any
commands but will queue new requests.

Quiesce (9) indicates that the element is enabled but in a restricted
mode. The element's behavior is similar to the Enabled state, but it
only processes a restricted set of commands. All other requests are
queued.

OtherEnabledState

Optional

A string describing the element's initial enabled/disabled state
when the InitialEnabledState property is set to 1 (“Other"). This
property MUST be set to NULL when InitialEnabledState is any
value other than 1.

128

Filesystem Profile

Table 106 - SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

FailurePolicy

Optional

An enumerated value that specifies if the operation to make a
filesystem locally accessible to a scoping ComputerSystem should
be attempted one or more times in the foreground or tried
repeatedly in the background until it succeeds. The number of
attempts would be limited by the corresponding RetriesMax
property of the setting.

RetriesMax

Optional

An integer specifying the maximum number of attempts that should
be made by the scoping ComputerSystem to make a
LocalFileSystem locally accessible. A value of '0' specifies an
implementation-specific default.

RequestRetryPolicy

Optional

An enumerated value representing the policy that is supported by
the operational file server on a request to the operational filesystem
that either failed or left the file server hanging. If the request is
being performed in the foreground, the options are to try once and
fail if a timeout happens, or, to try repeatedly. If the request can be
performed in the background, the request will be tried repeatedly
until stopped.

TransmissionRetriesMax

Optional

An integer specifying the maximum number of retransmission
attempts to be made from the operational file server to the
operational filesystem when the transmission of a request fails or
makes the file server hang. A value of '0' specifies an
implementation-specific default. This is only relevant if there is a
transmission channel between the file server and the underlying
filesystem.

RetransmissionTimeoutMi
n

Optional

An integer specifying the minimum number of milliseconds that the
operational file server must wait before assuming that a request to
the operational filesystem has failed. '0' indicates an
implementation-specific default. This is only relevant if there is a
transmission channel between the operational file server and the
operational filesystem.

CachingOptions

Optional

An enumerated value that specifies if a local cache is supported by
the operational file server when accessing the underlying
operational filesystem.

BuffersSupport

Optional

An array or enumerated values that specifies the buffering
mechanisms supported by the operational file server for accessing
the underlying operational filesystem." If supported, other
properties will establish the level of support. If the property is NULL
or the empty array, buffering is not supported.

ReadBufferSizeMin

Optional

An integer specifying the minimum number of bytes that must be
allocated to each buffer used for reading. A value of '0' specifies an
implementation-specific default.

ReadBufferSizeMax

Optional

An integer specifying the maximum number of bytes that may be
allocated to each buffer used for reading. A value of '0' specifies an
implementation-specific default.

WriteBufferSizeMin

Optional

An integer specifying the minimum number of bytes that must be
allocated to each buffer used for writing. A value of '0' specifies an
implementation-specific default.

WriteBufferSizeMax

Optional

An integer specifying the maximum number of bytes that may be
allocated to each buffer used for writing. A value of '0' specifies an
implementation-specific default.

SMI-S 1.7.0 Revision 5

Working Draft

129

130

Filesystem Profile

Table 106 - SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

AttributeCaching

Optional

An array of enumerated values that specify whether attribute
caching is (or is not) supported by the operational file server when
accessing specific types of objects from the underlying operational
filesystem. The object type and the support parameters are
specified in the corresponding AttributeCachingObjects,
AttributeCachingTimeMin, and AttributeCachingTimeMax array
properties.

Object types contained by a filesystem that can be accessed
locally are represented by an entry in these arrays. The entry in the
AttributeCaching array can be 'On’, 'Off', or 'Unknown'.
Implementation of this feature requires support from other system
components, so it is quite possible that specifying 'On' may still not
result in caching behavior. 'Unknown' indicates that the access
operation will try to work with whatever options the operational file
server and filesystem can support. In all cases,
AttributeCachingTimeMin and AttributeCachingTimeMax provide
the minimum and maximum time for which the attributes can be
cached. When this Setting is used as a Goal, the client may specify
‘Unknown’, but the Setting in the created object should contain the
supported setting, whether 'On’ or 'Off".

AttributeCachingObjects

Optional

An array of enumerated values that specify the attribute caching
support provided to various object types by the operational file
server when accessing the underlying operational filesystem.
These", types represent the types of objects stored in a filesystem -
- files and directories as well as others that may be defined in the
future. The corresponding properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax provide
the supported features for the type of object. ‘None' and 'All' cannot
both be specified; if either one is specified, it must be the first entry
in the array and the entry is interpreted as the default setting for all
objects. If neither 'None' or 'All' are specified, the caching settings
for other objects are defaulted by the implementation. If '‘Rest' is
specified, the entry applies to all known object types other than the
named ones. If 'Unknown' is specified it applies to object types not
known to this application (this can happen when foreign filesystems
are made locally accessible).

AttributeCachingTimeMin

Optional

An array of integers specifying, in milliseconds, the minimum time
for which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache.
When used as a Goal, a value of '0' indicates an implementation-
specific default.

AttributeCachingTimeMax

Optional

An array of integers specifying, in milliseconds, the maximum time
for which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache.
When used as a Goal, a value of '0' indicates an implementation-
specific default.

ReadWritePolicy

Optional

An enumerated value that specifies the Read-Write policy set on
the operational filesystem and supported by the operational file
server when accessing it. 'Read Only' specifies that the access to
the operational filesystem by the operational file server is set up
solely for reading. 'Read/Write' specifies that the access to the
operational filesystem by the operational file server is set up for
both reading and writing. 'Force Read/Write' specifies that ‘Read-
Only' has been overridden by a client with write access to the
operational filesystem. This option is intended for use when the
associated filesystem has been made 'Read Only' by default, as
might happen if it were created to be the target of a
Synchronization or Mirror operation.

Filesystem Profile

Table 106 - SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes

LockPolicy Optional An enumerated value that specifies the Locking that will be
enforced on the operational filesystem by the operational file server
when accessing it. 'Enforce None' does not enforce locks. 'Enforce
Write' does not allow writes to locked files. 'Enforce Read/Write'
does not allow reads or writes to locked files.

EnableOnSystemStart Optional An enumerated value that specifies if local access from the
operational file server to the operational filesystem should be
enabled when the file server is started.

ReadWritePref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about access to elements
contained in the operational filesystem. The provider is expected to
surface this access using the CIM privilege model.

ExecutePref Optional An enumerated value that specifies if support should be provided
on the operational file server for executing elements contained in
the operational filesystem accessed through this local access point.
This may require setting up specialized paging or execution buffers
either on the operational file server or on the operational filesystem
side (as appropriate for the implementation). Note that this does not
provide any rights to actually execute any element but only
specifies support for such execution, if permitted.

RootAccessPref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about privileged access by
appropriately privileged System Administrative users on the
operational file server (‘root' or 'superuser') to the operational
filesystem and its elements. The provider is expected to surface
this access using the CIM privilege model.

Support for the privileged access might require setup at both the
operational file server as well as the operational filesystem, so
there is no guarantee that the request can be satisfied.

8.5.12 CIM_LocalFileSystem

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 107 describes class CIM_LocalFileSystem.

Table 107 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory The CIM class of the hosting ComputerSystem element.

CSName Mandatory The Name property of the hosting ComputerSystem element.

CreationClassName Mandatory The CIM class of this LocalFileSystem element.

Name Mandatory A unique name for this LocalFileSystem element in the context of
the hosting ComputerSystem.

OperationalStatus Mandatory The current operational status of the filesystem represented by
this LocalFileSystem element.

SMI-S 1.7.0 Revision 5 Working Draft

131

132

Filesystem Profile

Table 107 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement Description & Notes

Root Optional A path that specifies the "mount point" of the filesystem in an
unitary computer system that is both the host of the filesystem
and is the file server that makes it available.

BlockSize Optional The size of a block in bytes for certain filesystem types that
require a fixed block size when creating a filesystem.

FileSystemSize Optional The total current size of the filesystem in blocks.

AvailableSpace Optional The space available currently in the filesystem in blocks. NOTE:
This value is an approximation as it can vary continuously when
the filesystem is in use.

ReadOnly Optional Indicates that this is a read-only filesystem that does not allow
modifications to contained files and directories.

EncryptionMethod Optional Indicates if files are encrypted by the filesystem implementation
and the method of encryption.

CompressionMethod Optional Indicates if files are compressed by the filesystem
implementation before being stored, and the methods of
compression.

CaseSensitive Mandatory Whether this filesystem is sensitive to the case of characters in
filenames.

CasePreserved Mandatory Whether this filesystem implementation preserves the case of
characters in filenames when saving and restoring.

CodeSet Optional The codeset used in filenames by the filesystem implementation.

MaxFileNameLength Mandatory The length of the longest filename supported by the filesystem
implementation.

FileSystemType Mandatory This is a string that matches
FileSystemSetting.ActualFileSystemType property used to
create the filesystem.

NumberOfFiles Optional The actual current number of files in the filesystem. NOTE: This
value is an approximation as it can vary continuously when the
filesystem is in use.

LocalAccessDefinitionReq Mandatory This boolean property indicates whether or not this

uired

LocalFileSystem must be made locally accessible ("mounted"”)
from a file server ComputerSystem before it can be shared or
otherwise made available to operational clients.

Filesystem Profile

Table 107 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties

Flags

Requirement

Description & Notes

PathNameSeparatorString

Mandatory

This indicates the string of characters used to separate directory
components of a canonically formatted path to a file from the root
of the filesystem. This string is expected to be specific to the
ActualFileSystemType and so is vendor/implementation
dependent. However, by surfacing it we make it possible for a
client to parse a pathname into the hierarchical sequence of
directories that compose it.

DirectoryServiceUsage

Optional

This enumeration indicates whether the filesystem supports
security principal information and therefore requires support from
a file server that uses one or more directory services. If the
filesystem requires such support, there must be a concrete
subclass of Dependency between the LocalFileSystem element
and the specified file server ComputerSystem. The values
supported by this property are:

"Not Used" indicates that the filesystem will not support security
principal information and so will not require support from a
directory service.

"Optional” indicates that the filesystem may support security
principal information. If it does, it will require support from a
directory service and the Dependency association described
above must exist.

"Required" indicates that the filesystem supports security
principal information and will require support from a directory
service. The Dependency association described above must
exist.

8.5.13 CIM_LogicalFile

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

SMI-S 1.7.0 Revision 5

Working Draft

133

Table 108 describes class CIM_LogicalFile.

Filesystem Profile

Table 108 - SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory Class Name of the ComputerSystem that hosts the filesystem containing
this file.

CSName Mandatory The Name property of the ComputerSystem that hosts the filesystem
containing this file.

FSCreationClassName Mandatory Class Name of the LocalFileSystem that represents the filesystem
containing this file.

FSName Mandatory The Name property of the LocalFileSystem that represents the filesystem
containing this file.

CreationClassName Mandatory Class Name of this instance of LogicalFile that represents the file.

Name Mandatory The Name property of the LogicalFile that represents the file.

ElementName Mandatory The pathname from the root of the containing LocalFileSystem to this

LogicalFile. The root of the LocalFileSystem is indicated if this is NULL or
the empty string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of directories from
the root, the separator string is specified by the
CIM_LocalFileSystem.PathNameSeparatorString property.

STABLE

134

STABLE

9 Filesystem Manipulation Profile

9.1 Description

9.1.1 Synopsis

Profile Name: Filesystem Manipulation (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: FileSystemConfigurationService

Scoping Class: ComputerSystem

Related Profiles: Table 109 describes the related profiles for Filesystem Manipulation.

Table 109 - Related Profiles for Filesystem Manipulation

Profile Name Organization Version Requirement Description

Job Control SNIA 15.0 Optional Experimental.

Filesystem SNIA 1.7.0 Mandatory

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2
Volume Composition SNIA 1.5.0 Optional

9.1.2 Overview

The Filesystem Manipulation Profile is a component profile that provides support for configuring and
manipulating filesystems in the context of filesystem profiles (currently consisting of the NAS Head and
the Self-Contained NAS Profiles). A number of other profiles make use of elements of the Filesystem
profiles and will be referred to in this specification as “filesystem-related profiles” -- these include, but are
not limited to, the Filesystem Profile, File Export Profile, File Export Manipulation Profile, and NAS Head
Profile.

The state transitions involved when an appropriate storage element is transformed into a filesystem are
described in Annex B (Informative) State Transitions from Storage to File Shares.

9.1.3 Instance Diagrams

9.1.3.1 Filesystem Creation classes and associations

Figure 14 illustrate the constructs involved with creating a LocalFileSystem for a Filesystem Profile. This
summarizes the mandatory classes and associations for this profile. Specific areas are discussed in later
sections.

Filesystem Manipulation Profile

ComputerSystem

HostedFileSystem

Dedicated=24|25
Filesystem Host

Filesystem Manipulation Profile

FileSystemCapabilities

FileSystemCapabilities

ActualFileSystemType
SupportedProperties|[]
SupportedObjectTypes[]
CreateGoalSettings()
GetRequiredStorageSize()

SettingsDefineCapabilities

ElementCapabilities
Characteristics={"Default"}

‘ ElementCapabilities

HostedService

FileSystemConfigurationService

ElementCapabilities

CreateFileSystem()
DeleteFileSystem()
ModifyFileSystem()

ElementCapabilities

FileSystemConfigurationCapabilities

(optional)

ActualFileSystemTypesSupported[]

SynchronousMethods[]
AsynchronousMethods][]
InitialAvailability

FileSystemSetting ‘

LocallyAccessibleFileSystemCapabilities

Block Services (Read-only) J

File Export Profile

FileSystemSetting (Optional)
CreateGoalSettings()
See below ‘
SettingsDefineCapabilities
\
LocallyAccessibleFileSystemSetting HostedDependenc
(Optional) (optional)
See below
ElementSettingData '
’—ElementSettingDataﬁ (Conditional)
FileSystemSetting LocalFileSystem LocalIyAccessibIe_F_iIeSystemSetting
(Conditional)
HostedDependency
(Conditional)
Dependency
(Conditional)
I Filesystem Profile LocaIAcce_ssAvallibIe |
(Optional)
. 1 e
ResidesOnExtent)
FileStorage— LogicalFile
. . ComputerSystem
File Storage Profile
— SharedEl ! ‘ Host d’s Dedicated=16
aredElemen ostedSjpare— i
I | I ConcreteDependency File Server
Al oT(edmeSkwangoo (Optional)
LogicalDisk ‘ StoragePool FileShare

Referencing Profile

Figure 14 - LocalFileSystem Creation Instance Diagram

If a filesystem-related profile supports the Filesystem Manipulation Profile, it shall have at least one
instance of the FileSystemConfigurationService. This service shall

136

be hosted on the top

level

Filesystem Manipulation Profile

ComputerSystem of the filesystem-related profile. The methods offered are CreateFileSystem,
ModifyFileSystem, and DeleteFileSystem.

Associated to the FileSystemConfigurationService (via ElementCapabilities) shall be one instance of
FileSystemConfigurationCapabilities that describes the capabilities of the service. It identifies the
methods supported, whether the methods support Job Control or not, the types of filesystems that are
supported, and whether or not the filesystem shall be made operationally available after creation.

For each type of filesystem that can be created, there shall be one FileSystemCapabilities element that
defines the range of capabilities supported for that particular filesystem type. An ElementCapabilities
association links each FileSystemCapabilities to the FileSystemConfigurationService. One of these
FileSystemCapabilities may also be identified as a default capability (by setting “Default” as one of the
entries in the array property Characteristics of its ElementCapabilities association). This default
FileSystemCapabilities element is used when the client does not specify a goal element when requesting
the CreateFileSystem method. The default FileSystemCapabilities element implicitly indicates the default
filesystem type to be used for creation.

For the convenience of clients a Filesystem Manipulation Profile shall populate a set of “pre-defined”
FileSystemSettings for each of the FileSystemCapabilities. These shall be associated to the
FileSystemCapabilities via the SettingsDefineCapabilities association (the association must have its
SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and the
SettingsDefineCapabilities.ValueRole property must include "Supported" as an entry) and shall be for the
same filesystem type as the associated capabilities element (same value for the ActualFileSystemType
property in both classes).

NOTE That they are pre-defined and exist at all times does not imply that these FileSystemSettings must be made persistent by
the implementation -- rather it should be possible for the implementation to regenerate them if requested, though a simple re-
generating implementation may not necessarily scale.

The FileSystemCapabilities element supports three methods: CreateGoalSettings,
GetRequiredStorageSize and GetElementNameCapabilities. These methods are described in detail in
9.3.1, "Extrinsic Methods of the Profile". The basic function of the first two is to establish at least one
client-approved FileSystemSettings element (as a goal) and to determine the size of the LogicalDisk
required to support the desired filesystem.

CreateGoalSettings takes an array of embedded-instance SettingData elements as the input
TemplateGoalSettings and SupportedGoalSettings parameters and can generate an array of embedded-
instance SettingData elements as the output SupportedGoalSettings parameter. However, in this profile,
SMI-S only uses a single embedded-instance FileSystemSetting element in the input parameters (both
TemplateGoalSettings and SupportedGoalSettings) and generate a single valid embedded-instance
FileSystemSetting element as output (SupportedGoalSettings). If a client supplies a NULL (or the empty
string) FileSystemSetting as input to this method, the returned FileSystemSetting embedded-instance
shall be a default setting for the ActualFileSystemType of the FileSystemCapabilities. If the input (the
embedded-instance FileSystemSetting element) is not NULL, the method may return a “best fit” to the
requested setting. The client may iterate on this method until it acquires a setting that suits its needs.
This embedded-instance settings structure may be used when the CreateFileSystem or ModifyFileSystem
methods are invoked. The details of how iterative negotiation can work are discussed in 9.3.1.1,
"FileSystemCapabilities.CreateGoalSettings". Note that the FileSystemType remains unchanged in all of
these interactions. It is an error if the client or server changes the FileSystemType unilaterally.

NOTE It is not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back mechanism is
needed. This profile does not require negotiation -- an implementation may support only a set of pre-defined correlated point
settings that a client can preload and use without modification. The implementation could also support only settings whose
properties are selectable from an arithmetic progression or from a fixed enumeration, so that the client may construct a goal setting
that is guaranteed to be supported without negotiation.

NOTE That a client has obtained a goal setting supported by the implementation does not guarantee that a create or modify
request will succeed. Such a setting only specifies a supported static configuration not that the current dynamic environment has
the resources to implement a specific request.

SMI-S 1.7.0 Revision 5 Working Draft 137

Filesystem Manipulation Profile

After obtaining a goal FileSystemSetting, the next step is to determine the LogicalDisk size required to
support the FileSystemSetting. This is done by invoking the
FileSystemCapabilities.GetRequiredStorageSize method of this profile. The inputs are the embedded-
instance FileSystemSetting structure and an embedded-instance StorageSetting structure that describes
the quality of service the client wants for the storage (e.g., data redundancy, package redundancy, etc.).
The method returns three numbers corresponding to the StorageSetting: the expected size, the minimum
size, and a maximum usable size. The client would use these numbers in specifying or evaluating the
appropriate LogicalDisk(s) on which to create the FileSystem. The method also returns as output the
actual StorageSetting used as an EmbeddedInstance structure (assuming that these can be substituted
for the input StorageSetting).

NOTE This profile recommends that GetRequiredStorageSize() be used only if a LocalFileSystem is to be created on a single
LogicalDisk. If the intent is to use more than one LogicalDisk for the LocalFileSystem, this profile recommends using the
CreateFileSystem method to make the implementation create or select the LogicalDisks to use.

< Armed with the FileSystem goal (the embedded-instance FileSystemSetting structure) and one or more
LogicalDisks, the client can now use the CreateFileSystem method to create the filesystem. The
CreateFileSystem method creates a LocalFileSystem instance, and a new FileSystemSetting instance as well
as several necessary associations. These associations are:

= HostedFileSystem association between the LocalFileSystem and the ComputerSystem that hosts it

< ResidesOnExtent association between the filesystem and one of the LogicalDisk(s) for the filesystem data

NOTE Even when multiple LogicalDisks are created or used for the LocalFileSystem, only one LogicalDisk will have the
ResidesOnExtent association.

< ElementSettingData to associate the filesystem to the FileSystemSetting defined for it

CreateFileSystem allows LogicalDisks to be obtained from a number of StoragePools using an array of
embedded-instance StorageSettings. The CreateFileSystem implementation must use the capabilities of
the StoragePools (and the associated StorageConfigurationService) to create the necessary
LogicalDisks. The LogicalDisks used for this purpose are returned as output values for the InExtents
parameter.

To determine if the implementation supports supplying the ElementName during the creation of a file
system and to determine the supported methods to modify the ElementName of the existing file system,
invoke the method FileSystemCapabilities.GetElementNameCapabilities.

If the property FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that
CreateFileSystem method provides the optional parameters for establishing local access ("mounting")
from file server ComputerSystems, the LocalFileSystem.LocalAccessDefinitionRequired will be set to true
and the LocalFileSystem will need to be made locally accessible from the specified file server
ComputerSystems. The following elements are created:

< A LocalAccessAvailableToFS association representing local access by a file server ComputerSystem to the
LocalFileSystem from within its namespace is created using the provided (or defaulted)
LocallyAccessibleFileSystemSetting parameter (as an EmbeddedInstance parameter). This association goes
between the File Server ComputerSystem and the LocalFileSystem; its LocalAccessPoint property specifies
the local access point (or "mount-point") in the file server ComputerSystem.

= An instance of LocallyAccessibleFileSystemSetting is optionally created and associated to:
= The LocalFileSystem via an optional ElementSettingData association.

< The file server ComputerSystem via an optional HostedDependency (ScopedSetting) association (this
represents that a LocalFileSystem could be mounted on many file server ComputerSystems with different
"mount” parameters, so these parameters are specific to the pair of LocalFileSystem and file server
ComputerSystem).

138

Filesystem Manipulation Profile

< For backward compatibility with previous releases of SMI-S:
= The root directory of the LocalFileSystem is represented as a LogicalFile
= A FileStorage association is created between the LogicalFile and the LocalFileSystem

The DeleteFileSystem method is straightforward -- it deletes the LocalFileSystem and the
FileSystemSetting, and the associations to those instances (HostedFileSystem, both ElementSettingData
elements, ResidesOnExtent, LocalAccessAvailableToFS, and LocallyAccessibleFileSystemSetting). Any
created LogicalFiles associated to the LocalFileSystem via FileStorage will also be deleted as a side-
effect of deleting the LocalFileSystem (so there is no separate requirement necessary for backward
compatibility). The implementation may delete the LogicalDisk(s), however, this is not required by this
profile. If the LogicalDisk(s) are not deleted, they become available for use in another CreateFileSystem
operation.

The ModifyFileSystem method modifies an existing LocalFileSystem -- this requires a new
FileSystemSetting structure to be used as a goal. But not any FileSystemSetting structure will do -- the
client must use one created with the same FileSystemCapabilities.CreateGoalSettings method that would
have been used to create the filesystem, or an appropriate compatible FileSystemCapabilities instance.
The CreateGoalSettings method is used to establish a new FileSystemSetting goal (as with the original
filesystem creation, it may be necessary to iterate on the CreateGoalSettings method). Since only
properties controlled by Settings can be changed by ModifyFileSystem (i.e., the LogicalDisk(s) already
created cannot be changed, though new ones can be created and/or added), the effect of
ModifyFileSystem is to change some properties of the LocalFileSystem or of the associated
FileSystemSetting.

NOTE Depending on what property is being modified, it may also be necessary to invoke the GetRequiredStorageSize method to
verify that the current LogicalDisk still supports the new goals.

9.1.31.1 Dependency on support for Locally Accessible Filesystem Capabilities

Both CreateFileSystem and ModifyFileSystem need a LocallyAccessibleFileSystemSetting element for
each file server ComputerSystem. The client first obtains a LocallyAccessibleFileSystemCapabilities
element by following ElementCapabilities association from the FileSystemConfigurationService to a
LocallyAccessibleFileSystemCapabilities that is associated via ScopedCapabilities (HostedDependency)
to the File Server ComputerSystem.

NOTE It is expected that there will only be one LocallyAccessibleFileSystemCapabilities element per file server ComputerSystem.
All the variability can be found by following SettingsDefineCapabilities to LocallyAccessibleFileSystemSetting elements. It is a
requirement that the LocallyAccessibleFileSystemSettings that define the LocallyAccessibleFileSystemCapabilities be associated
via HostedDependency (ScopedSetting) to the same file server ComputerSystem as the one indicated by the HostedDependency
(ScopedCapabilities).

The client calls LocallyAccessibleFileSystemCapabilities.CreateGoalSettings() with the appropriate
parameters.to obtain an appropriate LocallyAccessibleFileSystemSetting element -- CreateGoalSettings
can be used to negotiate if necessary.

9.1.3.1.2 Dependency on support for Directory Services

A filesystem may support security principal identifiers associated with filesystem objects for access
(typically, read/write/execute) as well as for tracking usage (as would be needed for supporting user and/
or group quotas). If the filesystem supports such identifiers, it would requires support from a directory
service for validating these identifiers (relating them to accounts and other user-related information).
Operationally, computer systems (and not filesystems) are associated to directory services or configured
for directory services. Directory service configurations of computer systems are much more complex than
needed or appropriate for filesystems. This makes it easier to make the filesystem depend on a computer
system, usually a file server, for providing access to directory services for resolving security principal
identifiers.

SMI-S 1.7.0 Revision 5 Working Draft 139

Filesystem Manipulation Profile

A filesystem that requires support from a directory service will have the property DirectoryServicesUsage
of its LocalFileSystem element set to "Required”. In that case, there shall be a Dependency association
between the LocalFileSystem element and a file server ComputerSystem.element (with Dedicated="16").
The associated file server must be configured for access to directory services that it provides for the
filesystem.

NOTE If DirectoryServicesUsage is “Optional”, a client can look for the Dependency association to determine if the filesystem
supports security principal identifiers. This is not supported in this release of the profile.

9.1.3.1.3 Summary of this profile
This profile consists of the following classes, associations, and methods:

1) One LocallyAccessibleFileSystemCapabilities scoped to the file server ComputerSystem
2) ElementCapabilities association to the FileSystemConfigurationService

3) SettingsDefineCapabilities association to LocallyAccessibleFileSystemSetting

4) LocallyAccessibleFileSystemSetting for defining LocallyAccessibleFileSystemCapabilities

5) HostedDependency (ScopedSetting) association from the File Server ComputerSystem to Locally-
AccessibleFileSystemSetting

6) A HostedDependency association from the same file server ComputerSystem to the defined Locally-
AccessibleFileSystemCapabilities

7) LocallyAccessibleFileSystemCapabilities.CreateGoalSettings extrinsic method to create LocallyAc-
cessibleFileSystemSetting elements scoped to the file server ComputerSystem to use as Goals.
Note that this method is different from the method described as part of the FileSystemCapabilities
element.

8) A Dependency association from the LocalFileSystem element to a file server ComputerSystem.

140

Filesystem Manipulation Profile

9.1.3.2 Finding FileSystem Configuration Services, Capabilities and Pre-defined Settings

When creating a filesystem the first step is to determine what can be created. Figure 15 illustrates an
instance diagram showing the instances that shall exist for supporting filesystem creation.

ComputerSystem

File System Manipulation Subprofile Capabilities/Settings Hostedservice

FileSystemCapabilities

]
FileSystemCapabilities EIementC‘apabmnes FileSystemConfigurationService
ElementCapabilities

ActualFileSystemType

SupportedProperties(] SN |€a§tr§sit|2lglyi?g:]t8m()
SupportedObjectTypes[] — Pt
CreateGoalSettings() SNIA_ModifyFileSystem()

GetRequiredStorageSizes()

ElementCapabilities

FileSystemConfigurationCapabilities

SettingsDefineCapabilities

ActualFileSystemTypesSupported][]

SynchronousMethodsl[]
- " - AsynchronousMethods[]
FileSystemSetting FileSystemSetting LocalIyAcce'i:smlz_l?leS?/stemSettmg InitialAvailability
(Conditional) LocalAccessOptions

ElementSettingData
(Conditional)

|) ScopedSetting

ElementSettingData——— (Conditional)

ResidesOn Extentj FScopedCapabilitiesT EleTg:r:g%’;izl)mes—

(optional) T
LogicalDisk LocalFileSystem ComputerSystem LocallyAccessibleFileSystemCapabilities
(Conditional)
LocalAccessDefinitionRequired CreateGoalSettings()
\
‘ LocalAccessAvailable
ElementSettingData AllocatedFromStoragePool (Optional) ScopedSetting SettingsDefineCapabilities

‘ (optional) (Optional)
\
LocallyAccessibleFileSystemSetting
(optional)

StorageSetting StoragePool

Figure 15 - Capabilities and Settings for Filesystem Creation

At least one FileSystemConfigurationService shall exist if the Filesystem Profile has implemented the
Filesystem Manipulation Profile. The instance(s) of this service can be found by following the
HostedService association filtering on the target class of FileSystemConfigurationService.

NOTE If no service is found from the Top Level ComputerSystem, the client should look for component computer systems that may
be hosting the service. This is not recommended, but permitted.

An instance of the FileSystemConfigurationCapabilities shall be associated to the
FileSystemConfigurationService via the ElementCapabilities association. A client should follow this
association (filtering on the result value of "FileSystemConfigurationCapabilities") to inspect the
configuration capabilities that are supported. The client would choose between the filesystem types
specified in the array property SupportedActualFileSystemTypes.

For each entry in the SupportedActualFileSystemTypes array, there shall be one instance of
FileSystemCapabilities with the same value for the ActualFileSystemType property that shall be

SMI-S 1.7.0 Revision 5 Working Draft 141

Filesystem Manipulation Profile

associated to the FileSystemConfigurationService using the ElementCapabilities association (filtering on
the result value of FileSystemCapabilities). This FileSystemCapabilities element shall specify the
supported capabilities for that ActualFileSystemType using a collection of FileSystemSettings. These
FileSystemSettings shall be associated to the FileSystemCapabilities via SettingsDefineCapabilities.

An implementation may support a set of pre-defined FileSystemSettings that clients could use directly if
desired. The SettingsDefineCapabilities association from the FileSystemCapabilities to the pre-defined
FileSystemSettings shall have the PropertyPolicy property be "Correlated”, the ValueRole property be
"Supported" and the ValueRange property be "Point". Other pre-defined combinations of property values
may be specified by FileSystemSettings whose SettingsDefineCapabilities association has the
PropertyPolicy be "Independent", ValueRole property be "Supported” and the ValueRange array property
contain "Minimums", "Maximums", or "Increment” (see 9.3.1.1.1 for further details on the interpretation of
the ValueRange property). These settings can be used by the client to compose FileSystemSettings that
are more likely to be directly usable.

9.2 Health and Fault Management Considerations

The key element of this profile is the FileSystemConfigurationService and the hosting ComputerSystem.
The operational status of the hosting ComputerSystem should possibly be part of the referring
autonomous profile (NAS Head or SC NAS), the Filesystem Profile or in the Multiple Computer System
Profile.

9.2.1 OperationalStatus for FileSystemConfigurationService

Not defined in this standard.

9.2.2 OperationalStatus for LocalFileSystem

Table 110 describes the Operational status for LocalFileSystem.

Table 110 - LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary OperationalStatus Description
2“OK” The filesystem has good status
2“OK” 4 “Stressed” The filesystem resources are stressed
2“0OK” 5 “Predictive Failure” The filesystem might fail because some
resource or component is predicted to
fail
2“OK” 16 “Supporting Entity in Error” The filesystem may be OK, but is not

accessible because a supporting entity
is not accessible.

3 “Degraded” The filesystem is operating in a
degraded mode. This could be due to
the health state of the underlying storage
being degraded or in error.

6 “Error” An error has occurred causing the
filesystem to become unavailable.
Operator intervention through SMI-S
(managing the LocalFileSystem) to
restore the filesystem may be possible.

6 “Error” An error has occurred causing the
filesystem to become unavailable.
Automated recovery may be in progress.

142

Filesystem Manipulation Profile

Table 110 - LocalFileSystem OperationalStatus

Primary OperationalStatus

Secondary OperationalStatus

Description

6 “Error”

7 “Non-recoverable Error”

The filesystem is not functioning.
Operator intervention through SMI-S will
not fix the problem.

6 “Error”

16 “Supporting Entity in Error”

The filesystem is in an error state
because a supporting entity is not
accessible.

8 “Starting”

The filesystem is in process of
initialization and is not yet available
operationally.

9 “Stopping”

The filesystem is in process of stopping,
and is not available operationally.

10 “Stopped”

The filesystem cannot be accessed
operationally because it is stopped -- if
this did not happened because of
operator intervention or happened in
real-time, the OperationalStatus would
have been “Lost Communication” rather
than “Stopped”.

11 “In Service”

The filesystem is offline in maintenance
mode, and is not available operationally.

13 “Lost Communications”

The filesystem cannot be accessed
operationally -- if this happened because
of operator intervention it would have
been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The filesystem is stopped but in a
manner that may have left it in an
inconsistent state.

15 “Dormant” The filesystem is offline; and the reason

for not being accessible is unknown.

SMI-S 1.7.0 Revision 5

Working Draft

143

9.3

Filesystem Manipulation Profile

Methods of the Profile

9.3.1 Extrinsic Methods of the Profile

Table 111 details the filesystem manipulation methods that cause Instance Creation, Deletion or

Modification.

Table 111 - Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modification

Method

Created Instances

Deleted Instances

Modified Instances

FileSystemConfigurationService.
CreateFileSystem

LocalFileSystem
FileSystemSetting
ElementSettingData
ResidesOnExtent
HostedFileSystem

LogicalDisk(s)
StorageSetting(s) N/A StoragePool(s)
LocalAccessAvailableTo LogicalDisk(s)
FS(s)
LocallyAccessibleFileSy
stemSetting(s)
ElementSettingData(s)
HostedDependency
Dependency
LocalFileSystem
FileSystemSetting
ElementSettingData
ResidesOnExtent
HostedFileSystem
FileSystemConfigurationS LocalAccessAvailableTo N/A
ervice.DeleteFileSystem FS(s)
LocallyAccessibleFileSy
stemSetting(s)
ElementSettingData(s)
HostedDependency
Dependency
(IF REQUESTED) (if Local Access is
LogicalDisk(s) modified)
StorageSetting(s) LocalAccessAvailableTo FileSystemSetting (if
FileSystemConfigurationS LocalAccessAvailableTo FS . . ' changed) .
ervice.ModifyFileSystem FS LocallyAccessibleFileSy ResidesOnExtent (if
’ LocallyAccessibleFileSy stemSetting added)
stemSetting ElementSettingData(s)
ElementSettingData(s) HostedDependency
HostedDependency
F|IeSystemCapab_llltles.Cr N/A N/A N/A
eateGoalSettings
LocallyAccessibleFileSyss
temCapabilities.CreateGo N/A N/A N/A
alSettings
FileSystemCapabilities.Ge
tRequiredStorageSize N/A N/A N/A
GetElementNameCapabili N/A N/A N/A

ties

144

Filesystem Manipulation Profile

9.3.1.1 FileSystemCapabilities.CreateGoalSettings

This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed
FileSystemSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage of this
method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
FileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type FileSystemSetting. As
such, these settings do not exist in the implementation but are the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an
appropriate error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to
this method. To assist the implementation in tracking the progress of the negotiation, the client may pass
previously returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings.
The implementation may determine that a step has not resulted in progress if the input and output values
of SupportedGoalSettings are the same. A client may infer from the same result that the
TemplateGoalSettings must be modified.

9.3.1.1.1 Client Considerations

It is important to understand that the client is acting as an agent for a human user -- either a "system"
administrator, or other entity with administrative privileges with respect to the filesystem or the filesystem
host. During negotiation, the client will show the current state to the user, the SupportedGoalSettings
received to date (either the latest or some subset), and the TemplateGoalSettings proposed (the most
recent, but possibly more). But the administrator needs a representation of what is available, possibly the
range or sets of values that the different setting properties can take. Some decisions are assumed to
have been made already, such as the type of filesystem to be created and the number of LogicalDisks to
use and their StorageSettings. It is possible that the LogicalDisks for use by this filesystem have already
been designated by the user; if not, the StoragePool(s) from which they will be created is already
designated or will be selected by an independent process.

The SettingsDefineCapabilities association from the selected Capabilities element provides the
information for the client to lay out these options. "Point" settings can be identified using
FileSystemSettings -- these points can be further qualified to indicate whether these are supported (or
not), and even whether they represent some ideal point in the space -- a "minimum”, or a "maximum”, or
an "optimal" point. Other settings can provide ranges for properties, by specifying a minimum, a
maximum, an increment, and an arithmetic progression of values can be specified (a continuous range
can be specified with a zero increment). Specifying a set of supported values for a property that do not
follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real
systems do not continually vary the functionality they can support. Such variations do occur -- for
instance, if a new PCMCIA card is added to a running system -- and the best way for a client to be able to
add these to the set of choices presented to a user is to subscribe to indications on new Capabilities
elements and new instances of SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following
two use cases are easily covered:

SMI-S 1.7.0 Revision 5 Working Draft 145

Filesystem Manipulation Profile

1) Client considers only the canned settings that are specified exactly. The canned settings are specified by the
FileSystemSettings that are associated to the FileSystemCapabilities via SettingDefinesCapabilities associa-
tion with the following property values:

= SettingDefinesCapabilities.PropertyPolicy = "Correlated"
= SettingDefinesCapabilities.ValueRole = "Supported"
= SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maxi-
mum for the Setting properties. For example, these could be specified by the FileSystemSettings
that are associated to the FileSystemCapabilities via SettingDefinesCapabilities association with the
following property values:

= SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or “Increments”

= The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

9.3.1.1.2 Signature and Parameters of FileSystemCapabilities.CreateGoalSettings
Table 112 describes the parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings.

Table 112 - Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes

TemplateGoalSettings[] IN string EmbeddedInstance ("CIM_FileSystemSetting")

TemplateGoalSettings is a string array containing embedded
instances of class FileSystemSetting, or a derived class.
This parameter specifies the client's requirements and is
used to locate matching settings that the implementation can
support.

SupportedGoalSettings[] | INOUT string Embeddedinstance("CIM_FileSystemSetting")

SupportedGoalSettings is a string array containing
embedded instances of class FileSystemSetting, or a
derived class. On input, it specifies a previously returned set
of Settings that the implementation could support. On output,
it specifies a new set of Settings that the implementation can
support. If the output set is identical to the input set, both
client and implementation may conclude that this is the best
match for the TemplateGoalSettings that is available.

If the output does not match the input and the non-NULL
output does not match the non-NULL TemplateGoalSettings,
then the method must return "Alternative Proposed".

If the output is NULL, the method must return an “Failed”.

Normal Return

Status uint32 ValueMap({}, Values{}

"Success",

"Failed",

"Timeout",

"Alternative Proposed"

Error Returns

Invalid Property Value OuUT, CIM_Error A single named property of an instance parameter (either
Indication reference or embedded) has an invalid value
Invalid Combination of OUT, CIM_Error An invalid combination of named properties of an instance
Values Indication parameter (either reference or embedded) has been
requested.

146

Filesystem Manipulation Profile

9.3.1.2 GetRequiredStorageSize
This extrinsic method returns the minimum, expected, and maximum size for a LogicalDisk that would
support a filesystem specified by the input FileSystemGoal parameter. The caller may provide relevant
settings of the LogicalDisk via the ExtentSetting parameter. The minimum, maximum, and expected sizes
are returned as output parameters.

If the input FileSystemGoal is NULL, the implementation may return an error or use a default
FileSystemSetting associated with this FileSystemCapabilities element. The actual FileSystemSetting
used is returned as an OUT parameter.

If the input ExtentSetting parameter is NULL or is an empty array, the implementation may use a default
StorageSetting associated with the StorageConfigurationService hosted on the same ComputerSystem as
the FileSystemConfigurationService associated with this FileSystemCapabilities element. The actual
StorageSetting used is returned as an OUT parameter.

NOTE The actual FileSystemSetting and StorageSetting used are being returned as OUT parameters. This is a non-backward-
compatible change from SMI-S 1.1.

9.3.1.21 Signature and Parameters of GetRequiredStorageSize

Table 113 describes the parameters for Extrinsic Method
FileSystemCapabilities.GetRequiredStorageSize.

Table 113 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize

Parameter Name Qualifier Type Description & Notes

FileSystemGoal INOUT, El string EmbeddedInstance ("CIM_FileSystemSetting")

FileSystemGoal is an Embedded Instance element of
class CIM_FileSystemSetting, or a derived class, that
specifies the settings for the FileSystem to be created.

If NULL on input, a default for this FileSystemCapabilities
is used.

On output, this returns the actual FileSystemSetting that
was used.

ExtentSetting INOUT, EI string Embeddedinstance("CIM_StorageSetting")

ExtentSetting is an Embedded Instance element of class
CIM_StorageSetting, or a derived class, that specifies the
settings for the LogicalDisk to be used for building this
FileSystem.

If NULL on input, a default StorageSetting will be obtained
from a StorageConfigurationService hosted on the same
ComputerSystem as this FileSystemConfigurationService.
On output, this returns the actual StorageSetting that was
used.

If the output is NULL, the method must return an “Failed”.

ExpectedSize ouT uint64 An integer that indicates the size of the storage extent that
this FileSystem is expected to need. An entry value of 0
indicates that there is no expected size.

MinimumSizeAcceptable | OUT uint64 An integer that indicates the size of the smallest storage
extent that would support the specified FileSystem. A
value of 0 indicates that there is no minimum size.

MaximumSizeUsable ouT uint64 An integer that indicates the size of the largest storage
extent that would be usable for the specified FileSystem. A
value of 0 indicates that there is no maximum size.

Normal Return

SMI-S 1.7.0 Revision 5 Working Draft 147

Filesystem Manipulation Profile

Table 113 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize (Continued)

Parameter Name Qualifier Type Description & Notes
Status uint32 ValueMap{}, Values{}
"Success",
"Failed",
"Timeout"

Error Returns

Invalid Property Value OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination of OUT, Indication CIM_Error An invalid combination of named properties of an instance
Values parameter (either reference or embedded) has been
requested.

9.3.1.3 FileSystemCapabilities.GetElementNameCapabilities

This method indicates if ElementName can be specified as a part of invoking an appropriate method of
FileSystemConfigurationService to create a new file system. Additionally, the returned data includes the

met

hods that can be used to modify the ElementName of existing file systems.

uint32 GetElementNameCapabilities(

[ouT,

ValueMap { "2', "3", "4", "_.'", "32768..65535" },
Values { "ElementName can be supplied during creation",
"ElementName can be modified with InvokeMethod",
"ElementName can be modified with intrinsic method",
"DMTF Reserved", "Vendor Specific" }]

uint32 SupportedFeatures[],

[OUT] string ElementNameMask,

[OUT] uintl6 MaxElementNameLen);

The parameters are:

SupportedFeatures: This OUT parameter is an array indicating what methods can accept the element name
for creation or modification of a FileSystem. For example, the value of "ElementName can be supplied during
creation" indicates the method such as CreateFileSystem() accepts the ElementName when creating a new
FileSystem. An empty array indicates ElementNaming for ElementType is not supported.

MaxElementNameLen: This OUT parameter specifies the maximum supported ElementName length.

ElementNameMask: This OUT parameter expresses the restrictions on ElementName. The mask is
expressed as a regular expression. See DMTF standard ABNF with the Management Profile Specification
Usage Guide, Annex C for the regular expression syntax permitted. Since the ElementNameMask can
describe the maximum length of the ElementName, any length defined in the regexp is in addition to the
restriction defined in MaxElementNameLen (causing the smaller value to be the maximum length). If NULL, it
indicates no restrictions on the ElementName.

9.3.1.4 LocallyAccessibleFileSystemCapabilities.CreateGoal Settings

This extrinsic method of the LocallyAccessibleFileSystemCapabilities class validates support for a caller-
proposed LocallyAccessibleFileSystemSetting passed as the TemplateGoalSettings parameter. This
profile restricts the usage of this method to a single entry array for both TemplateGoalSettings and
SupportedGoalSettings parameters.

148

Filesystem Manipulation Profile

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
LocallyAccessibleFileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type
LocallyAccessibleFileSystemSetting. As such, these settings do not exist in the implementation but are
the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an
appropriate error and should return a best match for a SupportedGoalSettings.

The client and the implementation engage in a negotiation process that may require iterative calls to this
method. To assist the implementation in tracking the progress of the negotiation, the client may pass
previously returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings.
The implementation may determine that a step has not resulted in progress if the input and output values
of SupportedGoalSettings are the same. A client may infer from the same result that the
TemplateGoalSettings must be modified.

9.3.14.1 Client Considerations

It is important to understand that the client is acting as an agent for a human user -- either a "system"
administrator, or other entity with administrative privileges to the filesystem. During negotiation, the client
will show the current state to the user -- the SupportedGoalSettings received to date (either the latest or
some subset), the TemplateGoalSettings proposed (the most recent, but possibly more). But the
administrator needs a representation of what is available, possibly the range or sets of values that the
different setting properties can take. Some decisions are assumed to have been made already, such as
whether the local access is read-only or the file server that is going to access the filesystem.

The SettingsDefineCapabilities association from the selected Capabilities element provides the
information for the client to lay out these options. "Point" settings can be identified supported points in the
space of properties -- these points can be further qualified to indicate whether these are supported or not,
or whether they represent some ideal point in the space -- a "minimum”, or a "maximum”, or an "optimal”
point. Other settings can provide ranges for properties -- by specifying a minimum, a maximum, and an
increment an arithmetic progression of values can be specified (a continuous range can be specified with
a zero increment). Specifying a set of supported values for a property that do not follow some pattern is
possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real
systems do not continually vary the functionality they can support. Such variations do occur -- for
instance, if a new PCMCIA card is added to a running system -- and the best way for a client to be able to
add these to the set of choices presented to a user is to subscribe to indications on new Capabilities
elements and new instances of SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following
two use cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
LocallyAccessibleFileSystemSetting elements that are associated to the LocallyAccessibleFileSystemCapa-
bilities via SettingDefinesCapabilities association with the following property values:

= SettingDefinesCapabilities.PropertyPolicy = "Correlated"
= SettingDefinesCapabilities.ValueRole = "Supported"
= SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maxi-
mum for the Setting properties. For example, these could be specified by the LocallyAccessible-

SMI-S 1.7.0 Revision 5 Working Draft 149

Filesystem Manipulation Profile

FileSystemSetting elements that are associated to the LocallyAccessibleFileSystemCapabilities via
SettingDefinesCapabilities association with the following property values:

= SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"
= The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

Comparing the two CreateGoalSettings extrinsic methods of this profile, the
FileSystemCapabilities.CreateGoalSettings() can be significantly more complex than
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings(). The client can choose to implement a
simpler negotiation protocol for one -- this specification does not mandate the extent to which the client
must use this protocol.

9.3.1.4.2 Signature and Parameters of CreateGoalSettings

Table 114 describes the parameters for Extrinsic Method
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings.

Table 114 - Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoal Settings

Parameter Name Qualifier Type Description & Notes

TemplateGoalSettings[] IN string EmbeddedInstance
("CIM_LocallyAccessibleFileSystemSetting")

TemplateGoalSettings is a string array containing embedded
instances of class LocallyAccessibleFileSystemSetting, or a
derived class. This parameter specifies the client’s requirements
that is used to locate matching settings that the implementation
can support.

SupportedGoalSettings|] INOUT string Embeddedinstance("CIM_LocallyAccessibleFileSystemSetting"
)

SupportedGoalSettings is a string array containing embedded
instances of class LocallyAccessibleFileSystemSetting, or a
derived class. On input, it specifies a previously returned set of
Settings that the implementation could support. On output, it
specifies a new set of Settings that the implementation can
support. If the output set is identical to the input set, both client
and implementation may conclude that this is the best match for
the TemplateGoalSettings that is available.

If the output does not match the input and the non-NULL output
does not match the non-NULL TemplateGoalSettings, then the
method must return \"Alternative Proposed\".

If the output is NULL, the method must return an “Failed”.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",

"Failed",

"Timeout",

"Alternative Proposed"

Error Returns

Invalid Property Value OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination of OUT, Indication CIM_Error An invalid combination of named properties of an instance
Values parameter (either reference or embedded) has been requested.

150

Filesystem Manipulation Profile

9.3.1.5 FileSystemConfigurationService.CreateFileSystem

This extrinsic method creates a LocalFileSystem and returns it as the value of the parameter
TheElement. The desired settings for the LocalFileSystem are specified by the Goal parameter (a string-
valued EmbeddedInstance object of class FileSystemSetting).

filesystem vendors differ in their models for creating a filesystem. Some vendors require that the storage
element already exist; others create the storage element at the same time as the filesystem. Some
vendors require a local access point ("mount-point") that supports defining a name or pathname that
allows a file server to access the filesystem; others do not require any such object (though it could be
argued that they provide a default local access mechanism). This extrinsic method supports variant
mechanisms for specifying, at create time, storage element creation as well as local access by a file
server. The FileSystemConfigurationCapabilities associated with the FileSystemConfigurationServices
contains the property BlockStorageCreationSupport that specifies support for create-time storage
element creation; the property LocalAccessibilitySupport that specifies support for local access by a file
server at creation; the property DirectoryServerParameterSupported that specifies support for specifying
a file server that provides access to a Directory Service (if enabled separately).

To support backward compatibility with previous releases of SMI-S, an instance of Directory (a derived
class of LogicalFile) is created representing the root directory of the newly created filesystem. This
Directory element is associated to the LocalFileSystem via FileStorage.

A FileSystemSetting element that represents the settings of the LocalFileSystem (either identical to the
Goal or equivalent) shall be associated via ElementSettingData to the LocalFileSystem. The
implementation shall create a new FileSystemSetting for this purpose.

The output parameter TheElement shall contain a reference to the newly created LocalFileSystem. Even
if this operation does not complete but creates a job, an implementation may return a valid reference in
TheElement. If the job fails subsequently, it is possible for this reference to become invalid.

9.3.1.5.1 Specifying Storage Underlying the Filesystem
BlockStorageCreationSupport is an array of enumerated values that specifies if:

= An enumerated value that specifies whether the extrinsic methods may use an already existing LogicalDisk -
- this is either required, optional, or not allowed. If "Not Allowed", the Pools and ExtentSettings parameters
must be used to create LogicalDisk(s) for this LocalFileSystem and the InExtents parameter must be NULL. If
"Optional", either the Pools and ExtentSettings parameters or the InExtents parameter should be specified,
but not both. If "Required", on the InExtents parameter may be specified and the Pools and ExtentSettings
parameters must be NULL.

« (optional) An integer that specifies an upper limit to the number of storage elements that can be specified,
either as InExtents parameters or as Pools and ExtentSettings.

- (optional) An integer that specifies the number of distinct storage pools that the Pools parameters can specify
-- zero, if Pools is not supported or if there is no limit, and a specific number if there is a limit. In practice it is
expected that the value will be either zero or one.

« (optional) A truth value represented as '0’ for false and ’'1’ for true that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating that a default setting is to be used).

The storage used for creating the LocalFileSystem is specified by the InExtents parameter that must be
an array of LogicalDisks. If InExtents is NULL and BlockStorageCreationSupport indicates that Pools are
optional or required, the parameter Pools must specify an array of StoragePools from which storage may
be allocated -- the requirements for the LogicalDisks allocated from this Pool is specified in the
ExtentSettings array parameter. The Pools may use an associated StorageConfigurationService. The
LocalFileSystem is associated to one of the LogicalDisk(s) via the ResidesOnExtent association. The
other LogicalDisks extend the distinguished LogicalDisk (as modeled by the Volume Composition Profile).

SMI-S 1.7.0 Revision 5 Working Draft 151

Filesystem Manipulation Profile

9.3.1.5.2 Specifying Local Access to the Filesystem

LocalAccessibilitySupport is an enumeration that specifies whether the implementation requires a local
access specification, or makes it optional (thus using a vendor default), or does not require one ("local
access" does not have a meaning for the vendor).

The LocalFileSystem shall be hosted on the same ComputerSystem as the
FileSystemConfigurationService.

NOTE The requirement that the LocalFileSystem have the same host as the Service is too restrictive but this method can be
extended in the future with a FileSystemHost parameter (implicitly NULL in 1.2).

If LocalAccess is supported, whether optional or required, this method supports specifying one file server
ComputerSystem (the reference parameter FileServer) that is given local access to this filesystem. If
LocalAccess is optional, the FileServer parameter may be NULL. The local access name on the
FileServer is specified in the LocalAccessPoint string parameter -- if the implementation uses pathnames,
this will be formatted as a pathname (directory names separated by the PathNameSeparatorString). The
implementation could also use a differently formatted local access name (for instance, a simple name).
The settings to be used for this are specified in the LocalAccessSetting, an Embeddedlnstance element
of class LocallyAccessibleFileSystemSetting.

NOTE |If a second file server ComputerSystem is to be given local access, the ModifyFileSystem method would be used.

Corresponding to the LocalAccessPoint parameter, a LocalAccessAvailableToFS association instance
and a LocallyAccessibleFileSystemSettings element are created with the following properties and
associations:

e The LocalAccessAvailableToFS association goes between the FileServer parameter and the created
LocalFileSystem (TheElement parameter).

< The LocalAccessAvailableToFS.LocalAccessPoints property is set to the value of the LocalAccessPoint
string.

e The LocallyAccessibleFileSystemSetting element has an ElementSettingData association to the
LocalFileSystem (TheElement).

= The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

If LocalAccess is supported, the FileServer parameter should not be NULL.

NOTE If it is NULL, the implementation may leave the filesystem operationally inaccessible -- however, this can be corrected by
calling the ModifyFileSystem method. This is not an Error.

If LocalAccess is supported and the FileServer parameter is not NULL, the LocalAccessPoint string may
be NULL or the empty string. In this case, the LocalAccessSetting parameter should indicate the
implementation-specific default format. The default value that is used is returned as the OUT value of the
LocalAccessPoint parameter. It is an Error if the LocalAccessSetting parameter does not provide an
appropriate default mechanism for constructing a local access name.

The LocalAccessSetting parameter will return an EmbeddedInstance of the
LocallyAccessibleFileSystemSetting actually used on output.

9.3.1.5.3 Specifying access to Directory Services

DirectoryServerParameterSupported is a property that specifies whether the filesystem must have access
to a file server that provides access to directory services so that security principal information may be
supported. If the newly created filesystem must be able to resolve such information, the DirectoryServer
parameter must be specified to the CreateFileSystem method.

The DirectoryServer parameter specifies a file server ComputerSystem that is configured to access a
directory service that resolves security principal identifies (UIDs, GIDs, or SIDs) used by the filesystem.

152

Filesystem Manipulation Profile

This profile does not specify the configuration of any directory service (if there is one), any directory
server, or the file server that is specified by the DirectoryServer parameter. For operational efficiency
reasons, this must be a file server since security principal information such as usage and detection of
threshold violations must happen in real-time.

If the DirectoryServer is required and is specified, an association, a concrete subclass of Dependency,
shall be surfaced between the newly created LocalFileSystem element (as Dependent) and the specified
file server (as Antecedent). The CreateFileSystem method will return a reference to this file server as the
return value of the parameter. In this case, the LocalFileSystem.DirectoryServiceUsage property shall be
set to “Supported”.

Any file server that is configured with write access to a filesystem must use the same or a compatible
directory service (effectively the same) as the file server indicated by the Dependency association.

9.3.2 Signature and Parameters of CreateFileSystem

Table 115 describes the parameters for Extrinsic Method
FileSystemConfigurationService.CreateFileSystem.

Table 115 - Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
ElementName IN string An end user relevant name for the FileSystem being

created. The value shall be stored in the 'ElementName’
property for the created element. This parameter shall
not be NULL or the empty string.

Job OUT, REF CIM_ConcreteJob Reference to the job (may be null if job completed).

Goal IN, OUT, EI string EmbeddedInstance ("CIM_FileSystemSetting")

The FileSystemSetting requirements for the FileSystem.
If NULL or the empty string, a default FileSystemSetting
shall be specified by the FileSystemCapabiltiies element
associated to the FileSystemConfigurationService by the
DefaultElementCapabilities association. The actual
FileSystemSetting used is returned on output.

TheElement OUT, REF CIM_LocalFileSystem The newly created FileSystem.
InExtents[] IN, OUT, REF, CIM_LogicalDisk The LogicalDisk(s) on which the created FileSystem
NULL allowed, shall reside. If this is NULL, the Pools and

ExtentSettings parameters cannot be NULL and are
used to create LogicalDisk(s). The LogicalDisk(s)
actually used will be returned on output.

Pools[] IN, REF, NULL CIM_StoragePool An array of concrete StoragePool elements

allowed corresponding to the ExtentSettings parameter from
which to create LogicalDisks in case the InExtents
parameter is NULL. If InExtents is not NULL, this must
be NULL.

ExtentSettings[] IN, El, NULL string Embeddedinstance ("CIM_StorageSetting")

Allowed)
An array of embedded StorageSetting structures that

specify the settings to use for creating LogicalDisks if the
InExtents parameter is NULL and Pools is specified.
Each LogicalDisk will be created from the corresponding
entry in Pools, so each StorageSetting entry must be
supported by the capabilities of the corresponding Pools
entry.

SMI-S 1.7.0 Revision 5 Working Draft 153

154

Filesystem Manipulation Profile

Table 115 - Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
Sizes|[] IN, OUT, NULL uint64 An array of numbers that specifies the size in bytes of
Allowed the LogicalDisks to be created corresponding to the
Pools and ExtentSettings parameters. The sum of Sizes
should be at least as much as (or greater than) the
FileSystem size needed.
FileServer IN, OUT, REF, ComputerSystem A reference to a ComputerSystem element that will
NULL Allowed access the created LocalFileSystem and is capable of

exporting the filesystem as a file share. The local access
point with respect to the file server is specified by the
LocalAccessPoint parameter. If
FileSystemConfigurationCapabilities.LocalAccessibilityS
upport specifies that local access points are supported
but implementation-defaulted, the corresponding entry in
the LocalAccessPoint parameter should be NULL or the
empty string as the LocalAccessPoint name is
constructed as per the vendor default algorithm. A
LocalAccessAvailableToFS association is created
between the FileServer and the LocalFlleSystem. The
parameters for local access are specified by the
LocalAccessSetting parameter.

Since this filesystem has just been created, the
LocalAccessSetting can support Write privileges. If the
LocalAccessSetting entry is NULL or the empty string,
the implementation uses a default associated with the
LocallyAccessibleFileSystemCapabilities associated to
the FileServer.

If
FileSystemConfigurationCapabilities.LocalAccessibilityS
upport specifies that a local access point is required and
FileServer is NULL, no LocalAccessAvailableToFS
associations are created and the filesystem may not be
accessible. This shall not cause an Error.

On output, this parameter contains a reference to the
actual FileServer that has access to the created
LocalFileSystem.

Filesystem Manipulation Profile

Table 115 - Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier

Type

Description & Notes

LocalAccessPoint

IN, OUT, REF,
NULL Allowed

string

A string to use as a pathname in the name space of the
file server ComputerSystem. The format of the string is
vendor-dependent and it should be considered opaque
from the client’s standpoint. It could be interpreted as a
hierarchical fully-qualified name for the local access
point (say in a Unix-based operating environment), or it
could be a drive letter (as in a Windows operating
environment). A LocalAccessAvailableToFS association
is created going between the new LocalFileSystem and
the FileServer parameter. The
LocalAccessAvailableToFS.LocalAccessPoint property
will be set to this parameter.

The parameters for local access are specified by the
LocalAccessSetting parameter.

If
FileSystemConfigurationCapabilities.LocalAccessibilityS
upport specifies that local access points are required,
then LocalAccessPoint shall not be NULL or an empty
string.

If
FileSystemConfigurationCapabilities.LocalAccessibilityS
upport specifies that local access points can be vendor-
defaulted, then LocalAccessPoint can be NULL or an
empty string and the implementation shall create a name
using a vendor-specific algorithm.

If
FileSystemConfigurationCapabilities.LocalAccessibilityS
upport specifies that local access points cannot be
vendor-defaulted, then LocalAccessPoint shall not be
NULL and the implementation shall not create a default
pathname. This is an Error.

On output, this parameter contains the actual
LocalAccessPoint used (including any name created by
vendor-default).

LocalAccessSetting

IN, El, OUT,
NULL Allowed

string

EmbeddedInstance
("CIM_LocallyAccessibleFileSystemSetting")

An embedded LocallyAccessibleFileSystemSetting
element that specifies the settings to use to establish a
local access point. This element will be used to create a
LocalAccessAvailableToFS association and will be
cloned to create a LocallyAccessibleFileSystemSetting
element that is scoped via HostedDependency
(ScopedSetting) to the FileServer and associated via
ElementSettingData to the LocalFileSystem.

If a LocallyAccessibleFileSystemSetting entry is NULL
or the empty string, the implementation shall use the
default provided by the
LocallyAccessibleFileSystemCapabilities element of the
FileSystemConfigurationService that is associated to the
FileServer via CIM_Dependency. The
LocalAccessSetting may specify a Write Privilege.

The LocalAccessSetting actually used is returned as the
OUT EmbeddedInstance parameter.

SMI-S 1.7.0 Revision 5

Working Draft

155

Filesystem Manipulation Profile

Table 115 - Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
DirectoryServer IN, OUT, NULL ComputerSystem A reference to a ComputerSystem element that has
Allowed access to directory services. The newly created

filesystem can use it to support security principal
information associated with filesystem objects, such as
quotas for users and groups. This is represented by
providing a Dependency association between the
LocalFileSystem element and the ComputerSystem
indicated by this parameter. The requirements for this
parameter are further specified by
FileSystemConfigurationCapabilities.DirectoryServerPar
ameterSupported.

If DirectoryServerParameterSupported specifies 'Not
Used', or 'Supported, Defaulted to FileServer', or
'Supported, Defaulted to FileSystem host', it is an Error if
DirectoryServer is not NULL.

Otherwise, (i.e., if DirectoryServerParameterSupported
specifies 'Supported’), and if the DirectoryServer is not
NULL, the new filesystem will use the directory services
made available by the specified DirectoryServer. If
DirectoryServer is NULL, it will be defaulted to the
FileServer parameter. If the FileServer parameter is also
NULL, the DirectoryServer will be defaulted to the host
of the newly created filesystem.

On output, this parameter contains a reference to the
actual DirectoryServer if one was established.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter
Value (either reference or embedded) has an invalid value
Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an

of Values instance parameter (either reference or embedded) has

been requested.

9.3.2.1 FileSystemConfigurationService.ModifyFileSystem

This extrinsic method modifies a LocalFileSystem specified by the parameter TheElement. The desired
settings for the LocalFileSystem are specified by the Goal parameter (a string-valued Embeddedinstance
object of class FileSystemSetting).

As with CreateFileSystem, the FileSystemConfigurationCapabilities associated with the
FileSystemConfigurationService specifies support for some of the optional behaviors of this method.
BlockStorageCreationSupport indicates whether this method only uses previously existing storage
elements or if it can create them at the same time as modifying or creating the filesystem. In addition this
can specify if additional LogicalDisks can be added to the existing set of LogicalDisks and whether the
implementation limits the number of LogicalDisks underlying a filesystem. LocalAccessibilitySupport
indicates whether the implementation requires support for local access points (or if they are optional or
not required at all).

156

Filesystem Manipulation Profile

This element shall have a FileSystemSetting use ActualFileSystemType property is supported by the
FileSystemConfigurationService (as specified by the SupportedActualFileSystemTypes property of the
associated FileSystemConfigurationCapabilities). The existing LogicalDisks used by the LocalFileSystem
cannot be released by this method, but this method may add LogicalDisks. These LogicalDisks may be
specified by the InExtents parameter (if that is either required or optional) or, if InExtents is NULL (if
Pools are optional or required), the set of LogicalDisks is not changed. New LogicalDisks may also be
added by specifying an array of StoragePools in the Pools parameter and an array of StorageSettings that
can be used to create them.

If the operation would result in a change in the size of a filesystem, the ResidesOnExtent association
shall be used to determine how to implement the change. If the existing or additional LogicalDisk(s)
specified, or any additional LogicalDisks created, cannot support the goal size, an appropriate error value
shall be returned, and no action shall be taken. If the operation succeeds, the ResidesOnExtent
association shall reference the same LogicalDisk as before (however, the LogicalDisk will be built upon a
larger number of underlying LogicalDisks, as modeled by the Volume Composition Profile).

If the new Goal is different from the old FileSystemSetting element associated to the LocalFileSystem
element, then the implementation must change the setting properties of the LocalFileSystem. This may
be accomplished by modifying the old FileSystemSetting element directly, or by deleting it and then re-
creating a new FileSystemSetting element with the same Instanceld. Just like the old element, the new
FileSystemSetting element shall be associated to the LocalFileSystem element via an
ElementSettingData association.

If local access is supported, whether optional or required, any change is specified by providing the
FileServer parameter (which shall be a reference to a ComputerSystem). If a FileServer is not being
added to the set or modified or removed from the set, the FileServer parameter may be NULL.

If the specified FileServer does not duplicate a ComputerSystem that has already been specified as
having local access, this method adds it to the set. The pathname is specified by the LocalAccessPoint
string array parameter. The settings to be used for these are specified in the LocalAccessSetting, an
Embeddedinstance element of class LocallyAccessibleFileSystemSetting.

If the specified FileServer duplicates a ComputerSystem that has already been specified as having local
access, this method either modifies the local access or removes it from the set. If the LocalAccessPoint
parameter is NULL or consists of an empty string, this call removes the FileServer from the set. If the
LocalAccessPoint parameter is not NULL but specifies the current path, then this call modifies the
settings of the local access -- the new settings are specified by the LocalAccessSetting parameter. If the
LocalAccessPoint parameter is not NULL but specifies a path other than the current path, then this call
modifies the pathname as well as the settings. If this filesystem is in operational use when such a request
is made, the request may have to be suspended until the filesystem can be put into an appropriate state
for making the change.

The settings to be used for adding or modifying are specified by the LocalAccessSetting parameter, an
Embeddedinstance element of class LocallyAccessibleFileSystemSetting.

To add a local access point, a LocalAccessAvailableToFS association and a
LocallyAccessibleFileSystemSettings element are created with the following properties and associations:

< A LocalAccessAvailableToFS association goes between the FileServer parameter and the LocalFileSystem
(TheElement parameter).

< A LocalAccessAvailableToFS.LocalAccessPoint property is set to the LocalAccessPoint string.

e A LocallyAccessibleFileSystemSetting element with a ElementSettingData association to the
LocalFileSystem (TheElement parameter).

= The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

SMI-S 1.7.0 Revision 5 Working Draft 157

Filesystem Manipulation Profile

NOTE The WaitTime and InUseOptions parameters are supported if the FileSystemCapabilities.SupportedProperties includes the
"RequirelnUseOptions" option.

NOTE A client can identify all local access specifications for a filesystem by looking for the LocalAccessAvailableToFS association
from the LocalFileSystem to a file server ComputerSystem and the LocallyAccessibleFileSystemSetting associated to the
LocalFileSystem via ElementSettingData and the same file server ComputerSystem via HostedDependency (ScopedSetting).

9.3.3 Signature and Parameters of ModifyFileSystem

Table 116 describes the
FileSystemConfigurationService.ModifyFileSystem.

parameters for Extrinsic Method

Table 116 - Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter Qualifier Type Description & Notes
Name
ElementName IN, OUT string An end user relevant name for the filesystem being modified. If NULL, the
existing TheElement.ElementName property is not changed. If not NULL,
this parameter will supply a new name for the Element parameter. The
actual ElementName is returned as the output value.
Job OUT, REF CIM_Conc | Reference to the job (may be null if job completed).
reteJob
Goal IN, OUT, El | string Embeddedinstance ("CIM_FileSystemSetting")
The FileSystemSetting requirements for the filesystem specified by the
TheElement parameter. If NULL or the empty string, the settings for
TheElement will not be changed. If not NULL, this parameter will supply
new settings that replace or are merged with the current settings of
TheElement.
TheElement IN, REF CIM_Local | The LocalFileSystem element to modify.
FileSystem
InExtents[] IN, OUT, REF, | CIM_Logic | The LogicalDisk(s) used to extend the current set of LogicalDisks used for
NULL alDisk the TheElement filesystem. If this is not NULL, the Pool and ExtentSettings
allowed, must be NULL. If both this and Pool are NULL, the current set will not be
changed. The current set of LogicalDisk(s) will be returned as the output.
Pools[] IN, REF, CIM_Stora | An array of concrete storage pools corresponding to the ExtentSettings
NULL allowed | gePool array parameter. These storage pools are used to create additional
LogicalDisks to extend the TheElement filesystem. The InExtents
parameter must be NULL and the ExtentSettings parameter must not be
NULL. Otherwise, the current set of LogicalDisks is not changed.
ExtentSettings[] | IN, EI, NULL | string Embeddedinstance ("CIM_StorageSetting")
Allowed
An array of embedded StorageSetting structures that specify the settings to
use for creating additional LogicalDisks for the TheElement filesystem. The
InExtents parameter must be NULL and Pools must be specified. Each
LogicalDisk will be created from the corresponding Pool, so each
StorageSetting entry must be supported by the capabilities of the
corresponding Pool entry.
Sizes[] IN,NULL uint64 An array of numbers that specifies the size in bytes of the LogicalDisks to
Allowed

be created corresponding to the ExtentSettings array parameter.

Filesystem Manipulation Profile

Table 116 - Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter Qualifier Type Description & Notes
Name
FileServer IN, OUT, REF, | REF A reference to a ComputerSystem element representing a file server.
NULL Allowed | Computer)])
System If this parameter is NULL, no change is made to the local access

configuration. If it is not NULL, the change to the configuration consists of
the following cases:

1.) If the FileServer does not already support local access to the
TheElement, it will be added and made capable of exporting the filesystem
as file shares. The local access point is specified by the LocalAccessPoint
parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points are vendor-defaulted, the corresponding entry in the
LocalAccessPoints parameter should be NULL or the empty string as the
LocalAccessPoint name is constructed by a vendor-default algorithm.

A LocalAccessAvailableToFS association is created between the FileServer
and the TheElement. The parameters for local access are specified by the
LocalAccessSetting parameter, an EmbeddedInstance element of class
LocallyAccessibleFileSystemSetting.

If the LocalAccessSetting parameter is NULL or the empty string, the
implementation uses a default associated with the
LocallyAccessibleFileSystemCapabilities of the
FileSystemConfigurationService associated to the FileServer by
HostedDependency (ScopedSetting). At most one of the
LocalAccessSettings entries for all the file server ComputerSystems that
provide local access to this filesystem shall specify an element with Write
Privileges.

2) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is NULL or a set of empty strings, this will
remove the FileServer from the configured set. If there are existing
operational users of the TheElement filesystem, they will need to be
informed and the implementation might have to wait to reach a consistent
state before the request can be completed.

3) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is the same as the current configuration, then
this is a request to change the settings but not the local access point. The
LocalAccessSetting parameter will specify the new setting. Depending on
the precise change, the filesystem may need to suspend operations. If there
are existing operational users of the filesystem, they will need to be
informed and the implementation might have to wait to reach a consistent
state before the request can be completed.

4) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is different from the current configuration, then
this is equivalent to removing local access and then restoring it with different
settings. If there are existing operational users of the filesystem, they will
need to be informed and the implementation might have to wait to reach a
consistent state before the request can be completed. Note that existing
operational users will not be able to reconnect as the share name may have
changed.

SMI-S 1.7.0 Revision 5

Working Draft

159

Filesystem Manipulation Profile

Table 116 - Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter Qualifier
Name

Type

Description & Notes

LocalAccessPoint | IN, OUT, REF,
NULL Allowed

string

A string to use as a pathname in the name space of the file server
ComputerSystem specified by the FileServer parameter. The format of the
string is vendor-dependent and it should be considered opaque to the client.
It could be interpreted as a hierarchical fully-qualified name for the local
access point (say in a Unix-based operating environment), or it could be a
drive letter (as in a Windows operating environment). A
LocalAccessAvailableToFS association is created going between the
TheElement and the FileServer. The
LocalAccessAvailableToFS.LocalAccessPoint property will be set to the
value of this parameter.

The parameters for local access are specified by the LocalAccessSetting
parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points are required, then LocalAccessPoint shall not be
NULL or an empty string if this is a new FileServer that does not have local
access to TheElement. This is an Error.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points can be vendor-defaulted, then LocalAccessPoint
can be NULL or an empty string and the implementation shall create a
name using a vendor-specific algorithm.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points cannot be vendor-defaulted, and this is a new
FileServer that does not have local access to TheElement, then
LocalAccessPoint shall not be NULL and the implementation shall not
create a default pathname. This is an Error.

On output, this parameter contains the actual LocalAccessPoint used
(including any name created by vendor-default).

LocalAccessSettin| IN, El, OUT,
g NULL Allowed

string

Embeddedinstance ("CIM_LocallyAccessibleFileSystemSetting")

An embedded LocallyAccessibleFileSystemSetting element that specifies
the settings to use for establishing a local access point. Each entry will be
used to create or modify a LocalAccessAvailableToFS association and will
be cloned to create a LocallyAccessibleFileSystemSetting element that is
scoped via ScopedSetting (or HostedDependency) to the file server
ComputerSystem specified by the FileServer parameter. The clone will be
associated via ElementSettingData to the LocalFileSystem.

If this parameter is NULL or the empty string, and a new value is needed,
the implementation shall use the default provided by the
LocallyAccessibleFileSystemCapabilities associated to the FileServer
parameter. The LocalAccessSetting actually used is returned as the OUT
parameter.

InUseOptions N

uintl6

An enumerated integer that specifies the action to take if the filesystem is
still in operational use when this request is made. This option is only
relevant if the FileSystem needs to be made unavailable while the request is
being executed.

WaitTime IN

uint32

An integer that indicates the time in seconds to wait before performing the
request on this filesystem. The combination of InUseOptions = '4' and
WaitTime ='0' (the default) is interpreted as 'Wait (forever) until Quiescence,
then Execute Request.

160

Filesystem Manipulation Profile

Table 116 - Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter Qualifier Type Description & Notes
Name

Normal Return

Status uint32 "Job Completed with No Error”,
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property | OUT, CIM_Error | A single named property of an instance parameter (either reference or
Value Indication embedded) has an invalid value

Invalid OouT, CIM_Error | An invalid combination of named properties of an instance parameter (either
Combination of | Indication reference or embedded) has been requested.

Values

9.3.3.1 FileSystemConfigurationService.DeleteFileSystem

This is an extrinsic method that shall delete a LocalFileSystem specified by the parameter TheElement
and delete any associated elements and associations that are no longer needed. The deleted elements
include the LogicalFile/Directory and FileStorage, if they were surfaced; the LocalAccessAvailableToFS
association, the LocallyAccessibleFileSystemSetting element and its associations, ElementSettingData,
HostedDependency (ScopedSetting); HostedFileSystem, ResidesOnExtent, and any associations that
might be orphaned by the deletion of TheElement. An implementation is not required to delete or re-
allocate the LogicalDisk(s) that TheElement used.

NOTE The WaitTime and InUseOptions parameters are supported if the FileSystemCapabilities.SupportedProperties includes the
"RequirelnUseOptions" option.

9.3.4 Signature and Parameters of DeleteFileSystem

Table 117 describes the parameters for Extrinsic Method
FileSystemConfigurationService.DeleteFileSystem.

Table 117 - Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem

Parameter Qualifier Type Description & Notes
Name
Job OUT, REF CIM_ConcreteJob Reference to the job (may be null if job completed).
TheElement IN, REF CIM_LocalFileSystem | The filesystem element to delete.
InUseOptions IN uint16 An enumerated integer that specifies the action to take if

TheElement is still in use when this request is made. This
option is only relevant if the filesystem needs to be made
unavailable while the request is being executed.

WaitTime IN uint32 An integer that indicates the time in seconds to wait before
performing the request on TheElement filesystem. The
combination of InUseOptions = '4' and WaitTime ='0' (the
default) is interpreted as 'Wait (forever) until Quiescence,
then Execute Request.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

SMI-S 1.7.0 Revision 5 Working Draft 161

Filesystem Manipulation Profile

Table 117 - Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem

Parameter Qualifier Type
Name

Description & Notes

Error Returns

Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either
Value reference or embedded) has an invalid value

Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance
of Values parameter (either reference or embedded) has been
requested.

9.3.5 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

= Getlnstance

« Associators

< AssociatorNames

< References

< ReferenceNames

= Enumeratelnstances

< EnumeratelnstanceNames
9.4 Use Cases

9.4.1 Filesystem Manipulation Supported Capabilities Patterns

Table 118, “Filesystem Manipulation Supported Capabilities Patterns” lists the patterns that are formally
recognized by this version of the specification for determining capabilities of various NAS
implementations:

Table 118 - Filesystem Manipulation Supported Capabilities Patterns

Supported Supported Supported Initial
ActualFileSystem Synchronous Asynchronous Availability
Types Methods Methods
Any none none none
CreateFileSystem,
DeleteFileSystem,
Any ModifyFileSystem, none Any
CreateGoalSettings,
GetRequiredStorageSizes
CreateGoalSettings, CreateF_| leSystem,
Any GetRequiredStorageSizes DeleteFileSystem, Any
ModifyFileSystem

162

Filesystem Manipulation Profile

9.5 CIM Elements

Table 119 describes the CIM elements for Filesystem Manipulation.

Table 119 - CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

9.5.1 CIM_Dependency (Uses Directory Services From)

Conditional

Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is
either 'Required' or 'Optional’. Associates a
ComputerSystem that indicates a directory
service that supports the dependent
LocalFileSystem.

9.5.2 CIM_ElementCapabilities (FS Configuration
Capabilities)

Mandatory

In this profile, associates the Filesystem
Configuration Service to the Capabilities
element that represents the capabilities that it
supports.

9.5.3 CIM_ElementCapabilities (Local Access
Configuration Capabilities)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either 'Local Access
Required, Defaulted’ or ‘Local Access
Required, Not Defaulted'.

In this profile, associates the Filesystem
Configuration Service to the Capabilities
instance that represents the capabilities for
Local Access that it supports.

9.5.4 CIM_ElementCapabilities (Default)

Optional

This entry represents the single default
FileSystemCapabilities element for the
Filesystem Configuration Service.

9.5.5 CIM_ElementCapabilities (Non-Default)

Optional

In this profile, associates the Filesystem
Configuration Service to the
FileSystemCapabilities elements that
represent all the types of filesystems that are
not the default type of file system and can be
configured.

9.5.6 CIM_ElementSettingData (Attached to Filesystem)

Optional

Associates a FileSystemSetting element to a
LocalFileSystem. One of these association
elements is created by CreateFileSystem
when the LocalFileSystem is first created.

The profile does not specify how other
instances of this association may be surfaced
by the implementation.

9.5.7 CIM_ElementSettingData (Local Access Required)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either 'Local Access
Required, Defaulted’ or ‘Local Access
Required, Not Defaulted'. Associates a
LocalFileSystem and the
LocallyAccessibleFileSystemSetting
elements.

SMI-S 1.7.0 Revision 5 Working Draft

163

164

Filesystem Manipulation Profile

Table 119 - CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

9.5.8 CIM_FileSystemCapabilities

Mandatory

This element represents the Capabilities of the
Filesystem Configuration Service for
managing Filesystems. The Service can be
associated with multiple
FileSystemCapabilities elements, one per
ActualFileSystemType property value. For
each value that is in the array property
FileSystenConfigurationCapabilities.Supporte
dActualFileSystemTypes, there will be exactly
one corresponding FileSystemCapabilities
element with the matching
ActualFileSystemType property.

9.5.9 CIM_FileSystemConfigurationCapabilities

Mandatory

This element represents the management
Capabilities of the Filesystem Configuration
Service.

9.5.10 CIM_FileSystemConfigurationService

Mandatory

The Filesystem Configuration Service
provides the methods to manipulate file
systems.

9.5.11 CIM_FileSystemSetting (Attached to FileSystem)

Optional

This element represents the configuration
settings of a LocalFileSystem. One instance of
this class is created by the CreateFileSystem
extrinsic method when the LocalFileSystem
was created.

This profile does not specify how other
instances of this class might be created.

9.5.12 CIM_FileSystemSetting (Predefined FS Settings)

Optional

This element represents sample configuration
settings usable for creating or modifying a
LocalFileSystem. It represents "predefined”
settings supported by the
FileSystemConfigurationService and is
associated with a FileSystemCapabilities
element by a SettingsDefineCapabilities
association. The
FileSystemSetting.ActualFileSystemType
property must specify the same value as the
associated
FileSystemCapabilities.ActualFileSystemType

property.

9.5.13 CIM_HostedDependency (Attached to File
System)

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a Local Access
configuration setting to the file server
ComputerSystem that provides the
operational scope for its functionality.

Filesystem Manipulation Profile

Table 119 - CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

9.5.14 CIM_HostedDependency (Predefined Capabilities) | Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either 'Local Access
Required, Defaulted' or ‘Local Access
Required, Not Defaulted'. Associates a Local
Access Capabilities to the File Server that
provides the operational scope for its
functionality. All of the Settings associated to
the referenced Capabilities element must be
scoped by the same File Server
ComputerSystem. This scoping allows the
CreateGoalSetting method of the Capabilities
element to know which File Server provides
the scope for any Goal element that it creates.

9.5.15 CIM_HostedDependency (Predefined Setting)

Optional

Associates a predefined
LocallyAccessibleFileSystemSetting to the file
server ComputerSystem that provides the
operational scope for its functionality.

9.5.16 CIM_HostedFileSystem

Mandatory

Associates a LocalFileSystem to the
ComputerSystem that hosts it.

9.5.17 CIM_HostedService

Mandatory

In this profile, associates the Filesystem
Configuration Service to the hosting
ComputerSystem. This is expected to be the
top-level ComputerSystem of the parent
Filesystem Profile.

9.5.18 CIM_LocalAccessAvailableToFS

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a LocalFileSystem to a
File Server Computer System that can export
files or directories as shares.

9.5.19 CIM_LocalFileSystem

Mandatory

Represents a LocalFileSystem hosted by and
made available through a ComputerSystem
(usually the top-level ComputerSystem of a
Filesystem Profile).

9.5.20 CIM_LocallyAccessibleFileSystemCapabilities

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either 'Local Access
Required, Defaulted’ or ‘Local Access
Required, Not Defaulted'. The element
represents the Local Access configuration
Capabilities of the File System Configuration
Service. This class provides a
CreateGoalSettings method that will return a
LocallyAccessibleFileSystemSetting element
as an Embedddinstance that may be used for
making a filesystem locally accessible to a file
server ComputerSystem (by the methods
CreateFileSystem and ModifyFileSystem).
Since the returned EmbeddedInstance setting
element is an instance of a ScopedSetting
class, it must be associated with a
ComputerSystem via ScopedSettingData
when it is instantiated.

SMI-S 1.7.0 Revision 5

Working Draft

165

Filesystem Manipulation Profile

Table 119 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description

9.5.21 CIM_LocallyAccessibleFileSystemSetting Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. This element represents the
configuration settings of a LocalFileSystem
that has a contained file or directory that has
been made locally accessible from a file
server ComputerSystem. This Setting
provides further details on the functionality
supported and the parameters of that
functionality when locally accessible.

9.5.22 CIM_SettingsDefineCapabilities (Predefined FS Optional These Setting elements provide detailed
Settings) information about the FileSystemSettings
supported by the associated
FileSystemCapabilities element.

9.5.23 CIM_SettingsDefineCapabilities (Predefined Local Conditional Conditional requirement: Required if

Access Settings) FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either 'Local Access
Required, Defaulted’ or ‘Local Access
Required, Not Defaulted'. The Setting
elements that are associated to this
Capabilities element are scoped to the File
Server ComputerSystem that provides the
operational context for local access.

SELECT * FROM CIM_InstCreation WHERE Mandatory Creation of a LocalFileSystem element.
Sourcelnstance ISA CIM_LocalFileSystem

SELECT * FROM CIM_InstDeletion WHERE Mandatory Deletion of a LocalFileSystem element
Sourcelnstance ISA CIM_LocalFileSystem

SELECT * FROM CIM_InstModification WHERE Mandatory Modification of a LocalFileSystem element.
Sourcelnstance ISA CIM_LocalFileSystem

9.5.1 CIM_Dependency (Uses Directory Services From)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Required if LocalFileSystem.DirectoryServiceUsage is either 'Required' or 'Optional'.

Table 120 describes class CIM_Dependency (Uses Directory Services From).

Table 120 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s) that support
user, group and other security principal identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other security
principal identities is supported by the antecedent ComputerSystem.

9.5.2 CIM_ElementCapabilities (FS Configuration Capabilities)

Created By: Static
Modified By: Static

166

Filesystem Manipulation Profile

Deleted By: Static
Requirement: Mandatory

Table 121 describes class CIM_ElementCapabilities (FS Configuration Capabilities).

Table 121 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabili-

ties)
Properties Flags Requirement Description & Notes
ManagedElement Mandatory The Filesystem Configuration Service.
Capabilities Mandatory The Filesystem Configuration Capabilities element.

9.5.3 CIM_ElementCapabilities (Local Access Configuration Capabilities)
Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 122 describes class CIM_ElementCapabilities (Local Access Configuration Capabilities).

Table 122 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Configuration

Capabilities)
Properties Flags Requirement Description & Notes
ManagedElement Mandatory The Filesystem Configuration Service.
Capabilities Mandatory The Filesystem Configuration Capabilities element.

9.5.4 CIM_ElementCapabilities (Default)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 123 describes class CIM_ElementCapabilities (Default).

Table 123 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Default)

Properties Flags Requirement Description & Notes
Characteristics Optional

Capabilities Mandatory

ManagedElement Mandatory

9.5.5 CIM_ElementCapabilities (Non-Default)

Created By: Static
Modified By: Static

SMI-S 1.7.0 Revision 5 Working Draft 167

Filesystem Manipulation Profile

Deleted By: Static
Requirement: Optional

Table 124 describes class CIM_ElementCapabilities (Non-Default).

Table 124 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Non-Default)

Properties Flags Requirement Description & Notes
Capabilities Mandatory
ManagedElement Mandatory

9.5.6 CIM_ElementSettingData (Attached to Filesystem)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Optional

Table 125 describes class CIM_ElementSettingData (Attached to Filesystem).

Table 125 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesystem)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The LocalFileSystem element representing a filesystem.
SettingData Mandatory The configuration of the LocalFileSystem.

9.5.7 CIM_ElementSettingData (Local Access Required)
Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 126 describes class CIM_ElementSettingData (Local Access Required).

Table 126 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.

SettingData Mandatory The local access settings of the LocalFileSystem, specified
on creation or modification.

9.5.8 CIM_FileSystemCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

168

Filesystem Manipulation Profile

Table 127 describes class CIM_FileSystemCapabilities.

Table 127 - SMI Referenced Properties/Methods for CIM_FileSystemCapabilities

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the FileSystemCapabilities element of a
Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

ActualFileSystemType Mandatory This identifies the type of filesystem that this FileSystemCapabilities
represents.

SupportedProperties Mandatory This is the list of configuration properties (of FileSystemSetting) that are
supported for specification at creation time by this FileSystemCapabilities
element.

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a set of FileSystemSettings
that is a supported variant of an array of FileSystemSettings passed in as
an embedded IN parameter. The method returns the supported
FileSystemSetting in an array of embedded OUT parameters. This profile
only supports arrays with a single entry.

GetRequiredStorageSize() Optional This extrinsic method supports determining the storage space

requirements for a filesystem specified by the combination of a
FileSystemSetting and a StorageSetting. The StorageSetting specifies the
required redundancy, multiple Logical Disk usage, and other storage
mapping considerations, while the FileSystemSetting transforms client
quality-of-service specifications to storage resource requirements.

9.5.9 CIM_FileSystemConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 128 describes class CIM_FileSystemConfigurationCapabilities.

Table 128 - SMI Referenced Properties/Methods for CIM_FileSystemConfigurationCapabilities

Properties

Flags Requirement | Description & Notes

InstancelD

Mandatory An opaque, unique id for this element representing the

capabilities of a Filesystem Configuration Service.

ElementName

Mandatory A user-friendly name for this Capabilities element.

SupportedActualFileSystemTypes

Mandatory The Service can be associated with multiple Capabilities

elements, one per ActualFileSystemType property value. This
property lists all of the supported ActualFileSystemTypes.
Each entry in this array must have exactly one corresponding
FileSystemCapabilities element with that entry as the value of
the ActualFileSystemType property.

SupportedSynchronousMethods

N Mandatory The Service supports a number of extrinsic methods -- this

property identifies the ones that can be called synchronously.
A supported method shall be listed in this property or in the
SupportedAsynchronousMethods property or both.

SMI-S 1.7.0 Revision 5

Working Draft 169

Filesystem Manipulation Profile

Table 128 - SMI Referenced Properties/Methods for CIM_FileSystemConfigurationCapabilities

Properties

Flags

Requirement

Description & Notes

SupportedAsynchronousMethods

N

Mandatory

The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called asynchronously.
A supported method shall be listed in this property or in the
SupportedSynchronousMethods property or both.

InitialAvailability

Mandatory

This property represents the state of availability of a
LocalFileSystem on initial creation using the
FileSystemConfigurationService associated with this
Capabilities element.

LocalAccessibilitySupport

Optional

This specifies whether a LocalFileSystem created or modified
by this FileSystemConfigurationService needs to be made
locally accessible at a local access point before a file server
ComputerSystem can make it available to operational clients
or for export as a share. This is typical of some NAS and
filesystem implementations. If not specified, the default is
"Local Access Not Required".

170

Filesystem Manipulation Profile

Table 128 - SMI Referenced Properties/Methods for CIM_FileSystemConfigurationCapabilities

Properties

Flags

Requirement

Description & Notes

BlockStorageCreationSupport

Optional

BlockStorageCreationSupport is an ordered array of
enumerated values that place a number of restrictions on the
use of parameters for CreateFileSystem and
ModifyFileSystem.

1. The first entry is an enumerated value that specifies if an
already existing LogicalDIsk may be used -- this is either
required, optional, or not allowed. "Not Allowed" indicates that
the Pools and ExtentSettings parameters must be used to
create LogicalDisk(s) for this filesystem and the InExtents
parameter must be NULL. "Optional” indicates that either the
Pools and ExtentSettings parameters or the InExtents
parameter should be specified, but not both. "Required"
indicates that the InExtents parameter may be specified and
the Pools and ExtentSettings parameters must be NULL.

2. (optional) An integer that specifies an upper limit to the
number of StorageElements that can be specified, either as
InExtents parameters or as Pools and ExtentSettings.

3. (optional) An integer that specifies the number of distinct
pools that the Pools parameters can specify -- zero, if Pools is
not supported or if there is no limit, and a specific number if
there is a limit. In practice we expect that the value will be
either zero or one.

4. (optional) A boolean value, represented by '0' for false and
'1' for true, that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating that a
default setting is to be used).

SMI-S 1.7.0 Revision 5

Working Draft

171

Filesystem Manipulation Profile

Table 128 - SMI Referenced Properties/Methods for CIM_FileSystemConfigurationCapabilities

Properties

Flags

Requirement

Description & Notes

DirectoryServerParameterSupported

Optional

This enumeration indicates support for the DirectoryServer
parameter to the extrinsic method
FileSystemConfigurationService.CreateFileSystem(). The
options are:

‘Not Used' indicates that the filesystem does not support
security principal information associated with filesystem
objects. The LocalFileSystem will not be associated to a
DirectoryServer.

'Supported' indicates that the filesystem supports security
principal information associated with filesystem objects. The
LocalFileSystem will be associated to a directory server
ComputerSystem. And the DirectoryServer parameter of
CreateFileSystem is required. If it is not specified, it will be
defaulted to the FileServer parameter in the same call. If the
FileServer parameter is also not specified, the
DirectoryServer parameter will be defaulted to the host of the
FileSystemConfigurationService.

'Supported, Defaulted to FileServer' indicates that the
filesystem supports security principal information associated
with filesystem objects. The LocalFileSystem will be
associated to a directory server ComputerSystem. The
DirectoryServer parameter of CreateFileSystem is NOT
supported, but is automatically defaulted to the FileServer
parameter of the same call. If the FileServer parameter is not
specified, the DirectoryServer parameter will be defaulted to
the host of the FileSystemConfigurationService.

'Supported, Defaulted to FileSystem host' indicates that the
filesystem supports security principal information associated
with filesystem objects. The LocalFileSystem will be
associated to a directory server ComputerSystem. The
DirectoryServer parameter of CreateFileSystem is NOT
supported, but is automatically defaulted to the host of the
FileSystem created by CreateFileSystem().

9.5.10 CIM_FileSystemConfigurationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 129 describes class CIM_FileSystemConfigurationService.

Table 129 - SMI Referenced Properties/Methods for CIM_FileSystemConfigurationService

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Service.

SystemCreationClassName Mandatory The CIM Class name of the ComputerSystem hosting the Service.
SystemName Mandatory The Name property of the ComputerSystem hosting the Service.
CreationClassName Mandatory The CIM Class name of the Service.

Name Mandatory The unique name of the Service.

172

Filesystem Manipulation Profile

Table 129 - SMI Referenced Properties/Methods for CIM_FileSystemConfigurationService

Properties Flags Requirement Description & Notes

CreateFileSystem() Mandatory Creates a LocalFileSystem as specified by parameters and
Capabilities of the service and returns a reference to it. If appropriate
and supported, a Job may be created and a reference to the Job will
be returned.

ModifyFileSystem() Optional Modifies a LocalFileSystem indicated by a reference and as specified
by referenceparameters and Capabilities of the service. If appropriate
and supported, a Job may be created and a reference to the Job will
be returned.

DeleteFileSystem() Mandatory Deletes a LocalFileSystem indicated by reference. If appropriate and
supported, a Job may be created and a reference to the Job will be
returned.

9.5.11 CIM_FileSystemSetting (Attached to FileSystem)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Optional

Table 130 describes class CIM_FileSystemSetting (Attached to FileSystem).

Table 130 - SMI Referenced Properties/Methods for CIM_FileSystemSetting (Attached to FileSystem)

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opague, unique id for a FileSystemSetting element.

ElementName Mandatory A client defined user-friendly name for this FileSystemSetting
element.

ActualFileSystemType Mandatory This identifies the type of filesystem that this

FileSystemSetting represents.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents)
that are shared between files.

CopyTarget Optional This specifies if support should be provided for using the
created filesystem as a target of a Copy operation.

FilenameCaseAttributes Mandatory This specifies the support provided for using upper and lower
case characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin Optional This is an array that specifies the minimum number of objects
of the type specified by the corresponding entry in
ObjectTypes]] that will be supportable by the LocalFileSystem
configured by this FileSystemSetting element.

NumberOfObjectsMax Optional This is an array that specifies the maximum number of objects
of the type specified by the corresponding entry in
ObjectTypes|] that can be supported by the LocalFileSystem
configured by this FileSystemSetting element.

NumberOfObjects Optional This is an array that specifies the expected number of objects
of the type specified by the corresponding entry in
ObjectTypes]].

SMI-S 1.7.0 Revision 5 Working Draft 173

Filesystem Manipulation Profile

Table 130 - SMI Referenced Properties/Methods for CIM_FileSystemSetting (Attached to FileSystem)

Properties Flags Requirement Description & Notes

ObjectSize Optional This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes]].

ObjectSizeMin Optional This is an array that specifies the minimum size of an object of

the type specified by the corresponding entry in ObjectTypes|]
that will be supported by the LocalFileSystem configured by
this FileSystemSetting element.

ObjectSizeMax Optional This is an array that specifies the maximum size of an object
of the type specified by the corresponding entry in
ObjectTypes]] that can be supported by the LocalFileSystem
configured by this FileSystemSetting element.

FilenameStreamFormats Optional This is an array that specifies the stream formats (e.g., UTF-
8) supported for filenames by the LocalFileSystem configured
by this FileSystemSetting element.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by the LocalFileSystem
configured by this FileSystemSetting element.

FilenameLengthMax Optional This specifies the maximum length of a filename that will be
supported by the FileSystem configured by this
FileSystemSetting element.

FilenameReservedCharacterSet Optional This string or character array specifies the characters
reserved (i.e., not allowed) for use in filenames that will be
required by the FileSystem configured by this
FileSystemSetting element.

SupportedLockingSemantics Optional This array specifies the set of file access/locking semantics
supported by the FileSystem configured by this
FileSystemSetting element.

SupportedAuthorizationProtocols Optional This array specifies the kind of file authorization protocols
supported by the FileSystem configured by this
FileSystemSetting element.

SupportedAuthenticationProtocols Optional This array specifies the set of file authentication protocols that
can be supported by the FileSystem configured by this
FileSystemSetting element.

9.5.12 CIM_FileSystemSetting (Predefined FS Settings)
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

174

Filesystem Manipulation Profile

Table 131 describes class CIM_FileSystemSetting (Predefined FS Settings).

Table 131 - SMI Referenced Properties/Methods for CIM_FileSystemSetting (Predefined FS Settings)

Properties Flags Requirement Description & Notes
InstancelD Mandatory An opaque, unique id for this FileSystemSetting element.
ElementName Mandatory A provider supplied user-friendly name for this

FileSystemSetting element.

ActualFileSystemType Mandatory This identifies the type of filesystem that this
FileSystemSetting represents. It shall match the
corresponding property of FileSystemCapabilities.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents)
that are shared between files.

CopyTarget Optional This specifies if support should be provided for using the
created filesystem as a target of a Copy operation.

FilenameCaseAttributes Mandatory This specifies the support provided for using upper and lower
case characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin Optional This is an array that specifies the minimum number of objects
of the type specified by the corresponding entry in
ObjectTypes]] that will be supportable by a LocalFileSystem
configured by this FileSystemSetting element.

NumberOfObjectsMax Optional This is an array that specifies the maximum number of
objects of the type specified by the corresponding entry in
ObjectTypes]] that can be supported by a LocalFileSystem
configured by this FileSystemSetting element.

NumberOfObjects Optional This is an array that specifies the expected number of objects
of the type specified by the corresponding entry in
ObjectTypes]].

ObjectSize Optional This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes]].

ObjectSizeMin Optional This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes|] that will be supportable by a LocalFileSystem
configured by this FileSystemSetting element.

ObjectSizeMax Optional This is an array that specifies the maximum size of an object
of the type specified by the corresponding entry in
ObjectTypes|] that can be supported by a LocalFileSystem
configured by this FileSystemSetting element.

FilenameStreamFormats Optional This is an array that specifies the stream formats (e.g., UTF-
8) supported for filenames by a filesystem with this setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by a filesystem with this
setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported by

a filesystem with this setting.

SMI-S 1.7.0 Revision 5 Working Draft 175

Filesystem Manipulation Profile

Table 131 - SMI Referenced Properties/Methods for CIM_FileSystemSetting (Predefined FS Settings)

Properties Flags Requirement Description & Notes

FilenameReservedCharacterSet Optional This string or character array specifies the characters
reserved (i.e., not allowed) for use in filenames that will be
required by a filesystem with this setting.

SupportedLockingSemantics Optional This array specifies the set of file access/locking semantics
supported by a filesystem with this setting.

SupportedAuthorizationProtocols Optional This array specifies the kind of file authorization protocols
supported by a filesystem with this setting.

SupportedAuthenticationProtocols Optional This array specifies the kind of file authentication protocols
supported by a filesystem with this setting.

9.5.13 CIM_HostedDependency (Attached to File System)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 132 describes class CIM_HostedDependency (Attached to File System).

Table 132 - SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File System)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping File Server ComputerSystem.

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

9.5.14 CIM_HostedDependency (Predefined Capabilities)
Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 133 describes class CIM_HostedDependency (Predefined Capabilities).

Table 133 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Capabilities)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The LocallyAccessibleFileSystemCapabilities that is scoped
by the file server ComputerSystem.

9.5.15 CIM_HostedDependency (Predefined Setting)

Created By: Static
Modified By: Static

176

Filesystem Manipulation Profile

Deleted By: Static
Requirement: Optional

Table 134 describes class CIM_HostedDependency (Predefined Setting).

Table 134 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Setting)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

9.5.16 CIM_HostedFileSystem

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Mandatory

Table 135 describes class CIM_HostedFileSystem.

Table 135 - SMI Referenced Properties/Methods for CIM_HostedFileSystem

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The ComputerSystem that hosts a LocalFileSystem. The Dedicated

property must be one of 24 (NAS Head), 25 (SC NAS), 16 (File Server).

PartComponent Mandatory The hosted filesystem.

9.5.17 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 136 describes class CIM_HostedService.

Table 136 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory The Filesystem Configuration Service.

Antecedent Mandatory The hosting ComputerSystem. This can be the top level system or a
component ComputerSystem of the Multiple Computer System profile.

9.5.18 CIM_LocalAccessAvailableToFS

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem

SMI-S 1.7.0 Revision 5 Working Draft

177

Filesystem Manipulation Profile

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 137 describes class CIM_LocalAccessAvailableToFS.

Table 137 - SMI Referenced Properties/Methods for CIM_LocalAccessAvailableToFS

Properties Flags Requirement Description & Notes

LocalAccessPoint Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true. The name used by
the file server to identify the filesystem. Sometimes referred to as a mount-
point. For many UNIX-based systems, this will be a qualified full
pathname. For Windows systems this could also be the drive letter used
for the LogicalDisk that the filesystem is resident on.

FileSystem Mandatory The LocalFileSystem that is being made available to the file server
ComputerSystem.
FileServer Mandatory The file server ComputerSystem that will be able to export shares from

this LocalFileSystem.

9.5.19 CIM_LocalFileSystem

The following properties of LocalFileSystem are defined by the MOF, but the way we model
LocalFileSystem has changed significantly. The setting/configuration properties are not supported using
these properties, and so all of these are "Not Supported”. The run-time properties will be supported by a
statistics/performance profile and that has yet to be defined.

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Mandatory

Table 138 describes class CIM_LocalFileSystem.

Table 138 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement Description & Notes

LocalAccessDefinitionRequired Mandatory This boolean property indicates whether or not a
LocalFileSystem with this FileSystemSetting must be made
locally accessible ("mounted") from a file server
ComputerSystem before it can be shared or otherwise made
available to operational clients.

PathNameSeparatorString Mandatory This indicates the string of characters used to separate
directory components of a canonically formatted path to a file
from the root of the filesystem. This string is expected to be
specific to the ActualFileSystemType and so is vendor/
implementation dependent. However, by surfacing it we make
it possible for a client to parse a pathname into the hierarchical
sequence of directories that compose it.

178

Filesystem Manipulation Profile

Table 138 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement Description & Notes

DirectoryServiceUsage Optional This enumeration indicates whether the filesystem supports
security principal information and therefore requires support
from a file server that uses one or more directory services. If
the filesystem requires such support, there must be a concrete
subclass of Dependency between the LocalFileSystem
element and the specified file server ComputerSystem. The
values supported by this property are:

'‘Not Used' indicates that the filesystem will not support
security principal information and so will not require support
from a directory service.

'Optional' indicates that the filesystem may support security
principal information. If it does, it will require support from a
directory service and the Dependency association described
above must exist.

'Required' indicates that the filesystem supports security
principal information and will require support from a directory
service. The Dependency association described above must

exist.
CSCreationClassName Mandatory The CIM class name of the hosting ComputerSystem.
CSName Mandatory The Name property of the hosting ComputerSystem.
CreationClassName Mandatory The CIM class name of the this element.
Name Mandatory A unique name for this LocalFileSystem in the context of the

hosting ComputerSystem.

EnabledState Optional Current state of enablement of the LocalFileSystem.

OtherEnabledState Optional Vendor-specific state of the LocalFileSystem indicated by
EnabledState = 1("Other").

TimeOfLastStateChange Optional A timestamp indicating when the state was last changed.

RequestedState Optional Not supported.

OperationalStatus Mandatory The current operational status of the LocalFileSystem.

Root Optional A path that specifies the "mount point" of the filesystem in an

unitary computer system that is both the host of the filesystem
and is the file server that makes it available.

BlockSize Mandatory The size of a block in bytes that the implementation used as a
fixed block size when creating this filesystem.

FileSystemSize Mandatory The total current size of the filesystem in blocks.
AvailableSpace Mandatory The space available currently in the filesystem in blocks.
ReadOnly Optional Indicates that this is a read-only filesystem that does not allow

modifications.

EncryptionMethod Optional Indicates if files are encrypted and the method of encryption.

CompressionMethod Optional Indicates if files are compressed before being stored, and the
methods of compression.

CaseSensitive Optional Whether this filesystem is sensitive to the case of characters in
filenames.
CasePreserved Optional Whether this filesystem preserves the case of characters in

filenames when saving and restoring.

SMI-S 1.7.0 Revision 5 Working Draft 179

Filesystem Manipulation Profile

Table 138 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement Description & Notes

CodeSet Optional The codeset used in filenames.

MaxFileNameLength Optional The length of the longest filename supported by the
implementation.

ClusterSize Optional Not supported.

FileSystemType Optional This is a string that matches

FileSystemSetting.ActualFileSystemType property used to
create the filesystem.

Pragmatically, this property should be ignored.

NumberOfFiles Optional The actual current number of files in the filesystem. This value
is an approximation as it can vary continuously when the
filesystem is in use.

IsFixedSize Optional Indicates that the filesystem cannot be expanded or shrunk.

Resizelncrement Optional The size by which to increase the size of the filesystem when
requested.

RequestStateChange() Optional Not supported.

9.5.20 CIM_LocallyAccessibleFileSystemCapabilities
Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 139 describes class CIM_LocallyAccessibleFileSystemCapabilities.

Table 139 - SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the
CIM_LocallyAccessibleFileSystemCapabilities associated to a
Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this
CIM_LocallyAccessibleFileSystemCapabilities element.

180

Table 139 - SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemCapabilities

Filesystem Manipulation Profile

Properties

Flags

Requirement

Description & Notes

SupportedProperties

Mandatory

An array of property names of the
LocallyAccessibleFileSystemSetting that this
CIM_LocallyAccessibleFileSystemCapabilities element supports.

2 'FailurePolicy'

3 'RetriesMax'

4 'InitialEnabledState’

5 'RequestRetryPolicy'

6 'TransmissionRetriesMax'
7 'RetransmissionTimeout'
8 'CachingOptions'

9 'ReadBufferSize'

10 'WriteBufferSize'

11 'AttributeCaching’

12 'ReadWritePolicy'

13 'LockPolicy'

14 'EnableOnSystemStart'
15 'ReadWritePref'

16 'ExecutePref'

17 'RootAccessPref'.

SupportedObjectsForAttribute
Caching

Optional

If AttributeCaching is supported, this specifies the array of
objects that can be set up for caching. A subset of these entries
will become the entries of the AttributeCachingObjects property
in the Setting.

These classes represent types of objects stored in a filesystem
implementation -- files and directories as well as others that may
be defined in the future. The corresponding Setting properties,
AttributeCaching, AttributeCachingTimeMin, and
AttributeCachingTimeMax provide the supported features for the
type of object. 'None' and 'All' cannot both be specified; if either
one is specified, it must be the first entry in the array and the
entry is interpreted as the default setting for all objects. If neither
‘None' or 'All" are specified, the caching settings for other objects
are defaulted by the implementation. If 'Rest' is specified, the
entry applies to all known object types other than the named
ones. If 'Unknown' is specified it applies to object types not
known to this application (this can happen when foreign file
systems are mounted.

0 'Unknown'
1'None’
2'All

3 'Rest’

4 'File'

5 'Directory".

9.5.21 CIM_LocallyAccessibleFileSystemSetting

Created By: Extrinsic: CreateFileSystem

SMI-S 1.7.0 Revision 5

Working Draft

181

Filesystem Manipulation Profile

Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem or ModifyFileSystem
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 140 describes class CIM_LocallyAccessibleFileSystemSetting.

Table 140 - SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for a LocallyAccessibleFileSystemSetting.

ElementName

Mandatory

A user-friendly name for this LocallyAccessibleFileSystemSetting
element.

InitialEnabledState

Optional

InitialEnabledState is an integer enumeration that indicates the
enabled/disabled states initially set for a locally accessible filesystem
(LAFS). The element functions by passing commands onto the
underlying filesystem, and so cannot indicate transitions between
requested states because those states cannot be requested. The
following text briefly summarizes the various enabled/disabled initial
states:

‘Enabled’ (2) indicates that the element will execute commands, will
process any queued commands, and will queue new requests.

‘Disabled' (3) indicates that the element will not execute commands
and will drop any new requests.

‘In Test' (7) indicates that the element will be in a test state.

‘Deferred’ (8) indicates that the element will not process any
commands but will queue new requests.

'Quiesce’ (9) indicates that the element is enabled but in a restricted
mode. The element's behavior is similar to the Enabled state, but it only
processes a restricted set of commands. All other requests are
queued.

OtherEnabledState

Optional

A string describing the element's initial enabled/disabled state when
the InitialEnabledState property is set to 1 ("Other"). This property
MUST be set to NULL when InitialEnabledState is any value other than
1.

FailurePolicy

Optional

An enumerated value that specifies if the operation to make a
FileSystem locally accessible to a scoping ComputerSystem should be
attempted one or more times in the foreground or tried repeatedly in
the background until it succeeds. The number of attempts would be
limited by the corresponding RetriesMax property of the setting.

RetriesMax

Optional

An integer specifying the maximum number of attempts that should be
made by the scoping ComputerSystem to make a filesystem locally
accessible. A value of "0" specifies an implementation-specific default.

RequestRetryPolicy

Optional

An enumerated value representing the policy that is supported by the
operational file server on a request to the operational filesystem that
either failed or left the file server hanging. If the request is being
performed in the foreground, the options are to try once and fail if a
timeout happens, or, to try repeatedly. If the request can be performed
in the background, the request will be tried repeatedly until stopped.

TransmissionRetriesMax

Optional

An integer specifying the maximum number of retransmission attempts
to be made from the operational file server to the operational filesystem
when the transmission of a request fails or makes the file server hang.
A value of "0" specifies an implementation-specific default. This is only
relevant if there is a transmission channel between the file server and
the underlying filesystem.

182

Filesystem Manipulation Profile

Table 140 - SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

RetransmissionTimeoutMin

Optional

An integer specifying the minimum number of milliseconds that the
operational file server must wait before assuming that a request to the
operational filesystem has failed. "0" indicates an implementation-
specific default. This is only relevant if there is a transmission channel
between the operational file server and the operational filesystem.

CachingOptions

Optional

An enumerated value that specifies if a local cache is supported by the
operational file server when accessing the underlying operational
filesystem.

BuffersSupport

Optional

An array or enumerated values that specifies the buffering mechanisms
supported by the operational file server for accessing the underlying
operational filesystem." If supported, other properties will establish the
level of support. If the property is NULL or the empty array, buffering is
not supported.

ReadBufferSizeMin

Optional

An integer specifying the minimum number of bytes that must be
allocated to each buffer used for reading. A value of "0" specifies an
implementation-specific default.

ReadBufferSizeMax

Optional

An integer specifying the maximum number of bytes that may be
allocated to each buffer used for reading. A value of "0" specifies an
implementation-specific default.

WriteBufferSizeMin

Optional

An integer specifying the minimum number of bytes that must be
allocated to each buffer used for writing. A value of "0" specifies an
implementation-specific default.

WriteBufferSizeMax

Optional

An integer specifying the maximum number of bytes that may be
allocated to each buffer used for writing. A value of "0" specifies an
implementation-specific default.

AttributeCaching

Optional

An array of enumerated values that specify whether attribute caching is
(or is not) supported by the operational file server when accessing
specific types of objects from the underlying operational filesystem.
The object type and the support parameters are specified in the
corresponding AttributeCachingObjects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

Filesystem object types that can be accessed locally are represented
by an entry in these arrays. The entry in the AttributeCaching array can
be "On", "Off", or "Unknown". Implementation of this feature requires
support from other system components, so it is quite possible that
specifying "On" may still not result in caching behavior. "Unknown"
indicates that the access operation will try to work with whatever
options the operational file server and filesystem can support. In all
cases, AttributeCachingTimeMin and AttributeCachingTimeMax
provide the minimum and maximum time for which the attributes can be
cached. When this Setting is used as a Goal, the client may specify
"Unknown", but the Setting in the created object should contain the
supported setting, whether "On" or "Off".

SMI-S 1.7.0 Revision 5

Working Draft

183

Filesystem Manipulation Profile

Table 140 - SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

AttributeCachingObjects

Optional

An array of enumerated values that specify the attribute caching
support provided to various object types by the operational file server
when accessing the underlying operational filesystem. These", types
represent the types of objects stored in a FileSystem -- files and
directories as well as others that may be defined in the future. The
corresponding properties, AttributeCaching, AttributeCachingTimeMin,
and AttributeCachingTimeMax provide the supported features for the
type of object. "None" and "All" cannot both be specified; if either one is
specified, it must be the first entry in the array and the entry is
interpreted as the default setting for all objects. If neither "None" or "All"
are specified, the caching settings for other objects are defaulted by the
implementation. If "Rest" is specified, the entry applies to all known
object types other than the named ones. If "Unknown" is specified it
applies to object types not known to this application (this can happen
when foreign file systems are mounted.

AttributeCachingTimeMin

Optional

An array of integers specifying, in milliseconds, the minimum time for
which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache.
When used as a Goal, a value of "0" indicates an implementation-
specific default.

AttributeCachingTimeMax

Optional

An array of integers specifying, in milliseconds, the maximum time for
which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache.
When used as a Goal, a value of "0" indicates an implementation-
specific default.

ReadWritePolicy

Optional

An enumerated value that specifies the Read-Write policy set on the
operational filesystem and supported by the operational file server
when accessing it. 'Read Only' specifies that the access to the
operational filesystem by the operational file server is set up solely for
reading. 'Read/Write' specifies that the access to the operational
filesystem by the operational file server is set up for both reading and
writing. 'Force Read/Write' specifies that 'Read-Only' has been
overridden by a client with write access to the operational filesystem.
This option is intended for use when the associated FileSystem has
been made 'Read Only' by default, as might happen if it were created to
be the target of a Synchronization or Mirror operation.

LockPolicy

Optional

An enumerated value that specifies the Locking that will be enforced on
the operational filesystem by the operational file server when accessing
it. 'Enforce None' does not enforce locks. 'Enforce Write' does not allow
writes to locked files. 'Enforce Read/Write' does not allow reads or
writes to locked files.

EnableOnSystemStart

Optional

An enumerated value that specifies if local access from the operational
file server to the operational filesystem should be enabled when the file
server is started.

ReadWritePref

Optional

An instance of a CIM_Privilege, encoded as a string, that expresses
the client's expectations about access to elements contained in the
operational filesystem. The provider is expected to surface this access
using the CIM privilege model.

184

Filesystem Manipulation Profile

Table 140 - SMI Referenced Properties/Methods for CIM_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

ExecutePref

Optional

An enumerated value that specifies if support should be provided on
the operational file server for executing elements contained in the
operational filesystem accessed through this local access point. This
may require setting up specialized paging or execution buffers either on
the operational file server or on the operational filesystem side (as
appropriate for the implementation). Note that this does not provide any
rights to actually execute any element but only specifies support for
such execution, if permitted.

RootAccessPref

Optional

An instance of a CIM_Privilege, encoded as a string, that expresses
the client's expectations about privileged access by appropriately
privileged System Administrative users on the operational file server
("root" or "superuser") to the operational filesystem and its elements.
The provider is expected to surface this access using the CIM privilege
model.

Support for the privileged access might require setup at both the
operational file server as well as the operational filesystem, so there is
no guarantee that the request can be satisfied.

9.5.22 CIM_SettingsDefineCapabilities (Predefined FS Settings)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 141 describes class CIM_SettingsDefineCapabilities (Predefined FS Settings).

Table 141 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined FS Set-

tings)

Properties

Flags

Requirement

Description & Notes

PropertyPolicy

Mandatory

PropertyPolicy defines whether or not the non-null, non-key
properties of the associated FileSystemSetting element are
treated independently or as a correlated set.

ValueRole

Mandatory

ValueRole specifies the semantics of the non-null, non-key
properties of the associated FileSystemSetting element, such as
whether they are supported or unsupported, and if supported,
whether they are a default and/or an optimal value or an average
of some kind.

ValueRange

Mandatory

ValueRange specifies the semantics of the non-null, non-key
properties of the associated FileSystemSetting element, such as
whether they are point properties, or whether they represent
maximum or minimum values for the properties. If some properties
already have maximums and/or minimums specified by another
FileSystemSetting instance, this could specify increments of the
property value that are supported.

GroupComponent

Mandatory

A Filesystem Capabilities element that is defined by a collection of
filesystem settings.

PartComponent

Mandatory

A filesystem setting that provides a point or a partial definition for a
Filesystem Capabilities element.

SMI-S 1.7.0 Revision 5

Working Draft

185

Filesystem Manipulation Profile

9.5.23 CIM_SettingsDefineCapabilities (Predefined Local Access Settings)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local

Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 142 describes class CIM_SettingsDefineCapabilities (Predefined Local Access Settings).

Table 142 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined Local
Access Settings)

Properties

Flags

Requirement

Description & Notes

PropertyPolicy

Mandatory

PropertyPolicy defines whether or not the non-null, non-key properties of
the associated LocallyAccessibleFileSystemSetting instance are treated
independently or as a correlated set.

ValueRole

Mandatory

ValueRole specifies the semantics of the non-null, non-key properties of
the associated LocallyAccessibleFileSystemSetting instance, such as
whether they are supported or unsupported, and if supported, whether
they are a default and/or an optimal value or an average of some kind.

ValueRange

Mandatory

ValueRange specifies the semantics of the non-null, non-key properties of
the associated LocallyAccessibleFileSystemSetting instance, such as
whether they are point properties, or whether they represent maximum or
minimum values for the properties. If some properties already have
maximums and/or minimums specified by another
LocallyAccessibleFileSystemSetting instance, this could specify
increments of the property value that are supported.

GroupComponent

Mandatory

A Capabilities element of the filesystem that is defined by a collection of
LocallyAccessibleFileSystemSetting elements, each being scoped to the
File Server ComputerSystem with which it can be used.

PartComponent

Mandatory

A LocallyAccessibleFileSystemSetting that provides a point or a partial
definition for a LocallyAccessibleFileSystemCapabilities element.

STABLE

186

EXPERIMENTAL
10 Filesystem Performance Profile

10.1 Description

10.1.1 Synopsis

Profile Name: Filesystem Performance (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: FileSystemStatisticsService

Scoping Class: ComputerSystem

Related Profiles: Table 143 describes the related profiles for Filesystem Performance.

Table 143 - Related Profiles for Filesystem Performance

Profile Name Organization Version Requirement Description

Filesystem SNIA 1.7.0 Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementT
ypesSupported = "102" (Local Filesystem
statistics support).

File Export SNIA 1.7.0 Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementT
ypesSupported ="103" (Exported File Share
statistics support).

NAS Network Port SNIA 1.7.0 Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementT
ypesSupported = "104" (Exporting Port
statistics support).

NOTE Each of these component profiles is mandatory if the element in question is to be metered. For example, in order to keep
statistics on exported file shares, it will be necessary for File Shares to be modeled through the use of the File Export Profile.

10.1.2 Overview

The Filesystem Performance Profile defines classes and methods for managing filesystem-related
performance information. It is a component profile for use with autonomous profiles that directly support
filesystems, which in this release of SMI-S specifically includes the NAS Head and the Self-Contained
NAS Profiles.

One of the key application disciplines for managing storage is Performance Management. In order to
manage performance, a number of processes need to be in place, including the ability to measure the
performance and saturation points of components within the storage network.

There are currently no common statistics defined that can be used to manage multiple vendor filesystem-
related entities (such as File Servers) from a performance perspective. This component profile defines
specific measurements and methods to make common statistics available to client applications regarding
filesystem-related entities. Examples of such statistics include:

< The read, write and other I/O operation counts for a filesystem or a file share,

= The cumulative elapsed time required for the 1/O operations to complete,

Filesystem Performance Profile

< The number of bytes transferred per unit of time.

Particular areas related to Performance Management that can make use of the statistics provided by the
Filesystem Performance Profile include:

< Filesystem utilization (e.g., "hot-spot" and trend analyses; tracking usage efficiency by monitoring response
times and I0PS/throughput rates; identifying over-utilization and contention that is leading to performance
degradation).

- Diagnostics and problem determination (e.g., identifying bottlenecks, "point(s) of pain“, etc., especially at an
upper level within the overall "I/O operation stack").

< Tuning (e.g., determining allocation/reallocation of particular filesystems and/or file placements in the efforts
to meet overall performance goals and/or other Service Level Agreements; determining the impact of the
underlying storage and applicable network provisioning upon filesystem performance and utilization).

< Workload characterization (e.g., characterizing particular filesystem usage with possible correlation to
associated applications).

< Modeling and planning (e.g., enabling the use of empirical metrics as the input/basis for various modeling and
planning exercises related to filesystem and overall storage concerns).

Performance Measurement within the context of filesystems is the key deliverable that is the focus of this
profile. Of particular importance, the statistics provided by the Filesystem Performance Profile can help
facilitate a "top-down" approach within the areas noted above (i.e., by reflecting performance information
that is directly related to and seen by/at a "top-most" component within the overall I/O operation
processing stack).

NOTE Performance analysis is broader than simply filesystems and related entities such as File Servers. Complete analysis
requires performance information from hosts, fabric and the underlying storage systems. Theses are (or will be) addressed
separately as part of the appropriate profiles (e.g., the Block Server Performance Profile, which includes further discussion
regarding Performance Management).

The Filesystem Performance Profile provides statistics, which are associated with fundamental elements
that can comprise a filesystem-related entity (such as a NAS Head or a Self-Contained NAS). These
elements include:

= Filesystems
< Exported file shares
=< Network-interface ports used to export file shares

In order to monitor and manage the aforementioned elements, it is necessary to identify performance
counters for each of these elements and to externalize an interface so that client applications can retrieve
the counter values when they so desire. The function of this profile is to support such client applications.

The Filesystem Performance Profile augments the profiles for those autonomous profiles within this
release of SMI-S that directly support filesystems. Instead of being an isolated component profile, this
profile adds modeling constructs to existing profiles. Together these enhancements make up the
Filesystem Performance Profile (as would be registered in the Server Profile as a RegisteredProfile).

10.2 Implementation

10.2.1 Performance Additions Overview

Figure 16 provides an overview of the model. The shaded grey boxes show the new classes added by the
Filesystem Performance Profile.

188

Filesystem Performance Profile

NOTE Not all properties defined for the statistics classes are shown within Figure 16: "Filesystem Performance Profile Summary
Instance Diagram”. That is, there are additional properties (both mandatory and optional) that are included within the statistical
classes. These properties can be found in 10.5 "CIM Elements".

FilesystemStatisticsService

- . Profile Registration Profile

Name RegisteredProfile

CreationClassName
SystemName

SystemCreationClassName

SubprofileRequiresProfile RegisteredSubprofile

GetStatisticsCollection() ElementConformsToProfile RegisteredName=
CreateManifestCollection() ‘Filesystem Performance’
AddOrModifyManifest()
RemoveManifest()

MemberOfCollection
AssociatedFilesystemStatisticsManifestCollection

HostedCollection

ElementCapabilities HostedService ComputerSystem StatisticsCollection - — - -
FilesystemStatisticsManifestCollection
InstancelD
ElementName InstancelD
Samplelnterval ElementName
FilesystemStatisticsCapabilities TimeLastSampled IsDefault=True
InstancelD
ElementName MemberOfCollection
ElementsSupported[] . .
SynchronousMethodsSupport]] Fllesystem Profile - —
AsynchronousMethodsSupported]] HostedFileSystem FilesystemStorageStatisticalData
ClockTickInterval
- InstancelD
HostedAccessPoint LocalFileSystem ElementType=102
— StatisticTime
— TotallOs
HostedShare
File Export Profile SharedElement ElementStatisticalData MemberOfCollection
FilesystemStorageStatisticalData ‘ —iles Ctatictioahlanit
‘ FileSystemStatisticsManifest
FileShare Elerlrr::rg?‘lt];;el?l% FileSystemStatisticsManifest
StatisticTime
TotallOs

SAPAvailableForElement

ElementStatisticalData

N FilesystemStorageStatisticalData
ProtocolEndpoint
InstancelD
‘NFS’ or ‘CIFS’ - - — -
Elesrr::t?;lggﬁnim FilesystemStorageStatisticsManifest
Totallos - Insta1r_1ceID102 FilesystemStorageStatisticsManifest
EIementStatisticalData4 ementType=

FilesystemStatisticsManifestCollection

IncludeStatisticTime
IncludeTotallOs
IncludeReadIOs
IncludeWritelOs

InstancelD
ElementType=103
IncludeStatisticTime
IncludeTotallOs

InstancelD
ElementName
IsDefault=False

MemberOfCollection

Figure 16 - Filesystem Performance Profile Summary Instance Diagram

Figure 16: "Filesystem Performance Profile Summary Instance Diagram" shows a single instance of
StatisticsCollection for the entire profile. The ComputerSystem (i.e., the "top level" computer system
depicted within the figure) is that of the autonomous profile (e.g., a NAS Head or a Self-Contained NAS)
which utilizes the Filesystem Performance Profile.

The StatisticsCollection is the anchor point from which all statistics being kept by the profile can be found.
Statistics are defined as a FileSystemStatisticalData class, instances of which hold the statistics for
particular metered elements (e.g., filesystems and file shares). The particular type of metered element is
recorded in the instance of FileSystemStatisticalData within the ElementType property.

SMI-S 1.7.0 Revision 5 Working Draft 189

Filesystem Performance Profile

All of the statistics instances are related to the elements that they meter via the ElementStatisticalData
association (e.g., FileSystemsStatisticalData for a File Share can be found from the File Share by
traversing the ElementStatisticalData association).

All of the statistics instances kept within the profile are associated to the one StatisticsCollection
instance. Access to all of the statistics for the profile is through the StatisticsCollection. The
StatisticsCollection has a HostedCollection association to the "top level" computer system of the profile.

Note that statistics may be kept for a number of elements within the profile, including elements within
component profiles. The particular elements that are metered are:

= Local filesystem. This provides a summary of all statistics for a particular filesystem (i.e., an instance of
LocalFileSystem). For example, all file read I/O operations (ReadlOs) directed to a particular filesystem.
These statistics are kept within the FileSystemStatisticalData instances, with one for each filesystem within
the system.

< Exported file share. This provides a summary of all statistics for a particular file share that is exported (i.e.,
an instance of FileShare as described within the File Export Profile). For example, all file read 1/0 operations
(ReadlOs) directed to a particular file share that is exported to the network. These statistics are kept within
the FileSystemStatisticalData instances, with one for each FileShare within the system.

= Exporting port. This provides a summary of all statistics for a particular port through which a file share being
exported can be accessed (i.e., an instance of ProtocolEndpoint through which a FileShare can be accessed
as described within the File Export Profile). For example, all file read 1/0 operations (ReadlOs) directed to a
particular file share exporting port. These statistics are kept within the FileSystemStatisticalData instances,
with one for each file share exporting port within the system.

Finally, Figure 16: "Filesystem Performance Profile Summary Instance Diagram” illustrates the
FileSystemsStatisticsService for Bulk retrieval of all the statistics data and the creation of manifest
collections. These methods (which are provided in a manner akin to that provided by the Block Server
Performance Profile) will be discussed later. They are shown here for completeness. Associated with the
FileSystemsStatisticsService is a FileSystemStatisticsCapabilities instance that identifies the specific
capabilities implemented by the filesystem performance statistics support. Specifically, it includes an
"ElementsSupported” property that identifies the elements for which statistics are kept; the
FileSystemStatisticsCapabilities instance also identifies the various retrieval mechanisms (e.g., Extrinsic,
Association Traversal, Indications and/or Query) that are implemented (i.e., supported) by the filesystem
statistics support.

10.2.2 Summary of FileSystemStatisticsData support by Profile

Table 144 defines the Element Types (for FileSystemStatisticsData instances) that may be supported by
profile.

Table 144 - Summary of Element Types by Profile

ElementType NAS Head Self-Contained NAS
Local filesystem YES YES
Exported File Share YES YES
Exporting Port YES YES

YES means that this specification defines the element type for the profile, but actual support by any given
implementation would be implementation dependent. NO means that this specification does not specify
this element type for the profile.

190

Filesystem Performance Profile

10.2.3 Profile Registration Profile Support for the Filesystem Performance Profile

At the top of Figure 16: "Filesystem Performance Profile Summary Instance Diagram" there is a dashed
box that illustrates a part of the Profile Registration Profile for the autonomous profile (e.g., a NAS Head
or a Self-Contained NAS) that utilizes the Filesystem Performance Profile. The part illustrated represents
the particulars for the Filesystem Performance Profile. If performance support has been implemented,
then there shall be a RegisteredProfile instance for the Filesystem Performance Profile.

10.2.4 Default Manifest Collection

Associated with the instances of the StatisticsCollection shall be a provider-supplied (Default)
CIM_FileSystemManifestCollection that represents the statistics properties that are kept by the profile.
The default manifest collection is indicated by the IsDefault property (=True) of the
CIM_FileSystemManifestCollection. For each metered object (element) of the profile implementation, the
default manifest collection will have exactly one manifest that will identify which properties are included
for that metered object. If an object is not metered, then there shall not be a manifest for that element
type. If an element type (e.g., Local filesystem) is metered, then there shall be a manifest for that element

type.

10.2.5 Client Defined Manifest Collection

Manifest collections are either provider-supplied (CIM_FileSystemManifestCollection.IsDefault=True) for
the profile implementation or client-defined collections
(CIM_FilesystemManifestCollection.IsDefault=False). Client-defined collections are used to indicate the
specific statistics properties that the client would like to retrieve using the GetStatisticsCollection method.
For a discussion of provider-supplied manifest collections, see 10.2.4.

Client-defined manifest collections are a mechanism for restricting the amount of data returned on a
GetStatisticsCollection request. A client-defined manifest collection is identified by the IsDefault property
of the collection set to False. For each element type of the filesystem statistics class (e.g., Local
filesystem, exported file share, etc.), a manifest can be defined that identifies which specific properties of
the particular statistics class element type are to be returned on a GetStatisticsCollection request. Each
of the element types of the filesystem statistics class may have no or one manifest in any given manifest
collection. This is illustrated in Figure 16: "Filesystem Performance Profile Summary Instance Diagram".

In Figure 16: "Filesystem Performance Profile Summary Instance Diagram”, manifest classes are defined
for filesystems (LocalFileSystem) and exported file shares (FileShare). Each property of the manifest is a
Boolean that indicates whether the property is to be returned (true) or omitted (false).

Multiple client-defined manifest collections can be defined in the profile. Consequently, different clients or
different client applications can define different manifests for different application needs. A manifest
collection can completely omit a whole set of statistics pertaining to a particular element type; for
example, no ProtocolEndPoint statistics (i.e., filesystem performance statistics associated with the
element type of "Exporting Port", which represents a port through which a File Share can be accessed
from the network) are included within the client-defined manifest collection shown in Figure 16:
"Filesystem Performance Profile Summary Instance Diagram". Since manifest collections are "client
objects", they are named (ElementName) by the client for the client's convenience. The CIM server will
generate an instance ID to uniquely identify the manifest collection in the CIM Server.

Client-defined manifest collections are created using the CreateManifestCollection method. Manifests are
added or modified using the AddOrModifyManifest method. A manifest may be removed from the manifest
collection by using the RemoveManifests method.

NOTE Use of manifest collections is optional with the GetStatisticsCollection method. If NULL for the manifest collection is passed
on input, then all statistics instances are assumed (i.e., all available statistics will be returned).

SMI-S 1.7.0 Revision 5 Working Draft 191

Filesystem Performance Profile

10.2.6 Capabilities Support for Filesystem Performance Profile

There are two dimensions to determining what is supported with a Filesystem Performance Profile
implementation. First, there are the RegisteredProfiles supported by the autonomous profile (e.g., a NAS
Head or a Self-Contained NAS Profile) that utilizes the Filesystem Performance Profile. In order to
support statistics for a particular class of metered element, the corresponding object shall be modeled.
So, if a NAS Head (for example) has not implemented the File Export Profile, then it shall not implement
the FileSystemStatisticalData for "Exported File Share" in the Filesystem Performance Profile (and
implementation of the File Export Profile does not guarantee implementation of the
FileSystemStatisticalData for exported file shares).

Both of these dimensions are captured in the FileSystemsStatisticsCapabilities class instance. This class
instance is not created nor modified by Clients; rather, it is populated by the provider and has three
properties of interest (as discussed within the following sections). The second dimension is techniques
supported for retrieving statistics and manipulating manifest collections.

For the methods-supported properties described below (namely, SynchronousMethodsSupported and
AsynchronousMethodsSupported), any or all of the respective values can be missing (e.g., the arrays can
be NULL). If all of the methods supported are NULL, then manifest collections are not supported and
neither GetStatisticsCollection nor Query are supported for the retrieval of statistics. This leaves
enumerations or association traversals as the only methods for retrieving the statistics.

10.2.6.1 ElementsSupported

This property within the FileSystemStatisticsCapabilities class defines a list of element types for which
statistical data is available. For this release of SMI-S, the values of interest are "Local Filesystem",
"Exported File Share" and “Exporting Port”.

To be a valid implementation of the Filesystem Performance Profile, at least one of the values listed for
ElementsSupported shall be supported. ElementsSupported is an array, such that all of the values can be
identified.

10.2.6.2 SynchronousMethodsSupported

This property within the FileSystemStatisticsCapabilities class defines the synchronous mechanisms that
are supported for retrieving statistics and for defining and modifying filters for statistics retrieval. For this
release of SMI-S, the values of interest are "Exec Query", "Indications", "Query Collection",
"GetStatisticsCollection", "Manifest Creation", "Manifest Modification", and "Manifest Removal".

10.2.6.3 AsynchronousMethodsSupported

This property within the FileSystemStatisticsCapabilities class defines the asynchronous mechanisms
that are supported for retrieving statistics. For this release of SMI-S, this should be NULL.

10.2.6.4 ClockTicklInterval

An internal clocking interval for all timer counters kept in the system implementation, measured in
microseconds (i.e., the unit of measure in the timers, measured in microseconds). Time counters are
considered to be monotonically increasing counters that contain "ticks". Each tick represents one clock
tick interval.

For example, if ClockTickInterval contained a value of 32, then each time counter tick would represent 32
microseconds.

10.2.7 Health and Fault Management Consideration

Not defined in this standard.

10.2.8 Cascading Considerations

Not defined in this standard

192

Filesystem Performance Profile

10.3 Methods of the Profile
10.3.1 Extrinsic Methods of the Profile

10.3.1.1 Overview

The methods supported by this profile are summarized in Table 145 and detailed within the sections that
follow it.

Table 145 - Creation, Deletion and Modification Methods in the Filesystem Performance Profile

Method Created Instances Deleted Instances Modified
Instances
GetStatisticsCollection None None None
CreateManifestCollection FileSystemStatisticsManifestCollection | None None

AssociatedFileSystemStatisticsManife
stCollection

AddOrModifyManifest FileSystemStatisticsManifest(subclass) | None FileSystemStatistics

) Manifest(subclass)
MemberOfCollection

RemoveManifest None FileSystemStatisticsManife | None
st(subclass)

MemberOfCollection

10.3.1.2 GetStatisticsCollection

This extrinsic method retrieves statistics in a well-defined bulk format. The set of statistics returned by
this method is determined by the list of element types passed into the method and the manifests for those
types contained in the supplied manifest collection. The statistics are returned through a well-defined
array of strings that can be parsed to retrieve the desired statistics as well as limited information about
the elements that those metrics describe.

GetStatisticsCollection(

[IN (false), OUT, Description(Reference to the job(shall be null in this
version of SMI-S.)]

CIM_Concretedob REF Job,

[IN, Description(Element types for which statistics should be returned)

vValueMap { "1, *102", *103", "104'", "..', "0x8000.." },

Values { "Other™, "Local Filesystem", "Exported File Share', "Exporting Port",
"DMTF Reserved™, "Vendor Specific" }]

uintlé ElementTypes[],

[IN, Description ("An array of strings that specify the particular "Other"
element(s) when the ElementType property above includes
the ElementType value of 1 (i.e., "Other'"). Each
string within this array identifies a separate "Other”
element and duplicate string values are NOT allowed.

This property should be set to NULL when the
ElementType property does not include the value of

1.1
string OtherElementTypeDescriptions[],

[IN, Description(The manifest collection that contains the manifests which list
the metrics that should be returned for each element

type)]
CIM_FileSystemStatisticsManifestCollection REF ManifestCollection,

SMI-S 1.7.0 Revision 5 Working Draft 193

Filesystem Performance Profile

[IN, Description("'Specifies the format of the Statistics output parameter')
ValueMap { "2" } ,

Values ("CSV")]

uintl6é StatisticsFormat,

[OUT, Description(The statistics for all the elements as determined by the
Elements and ManifestCollection parameters)]

string Statistics[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported”, "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Method Parameters Checked - Job Started", "Element Not Supported", "Statistics
Format Not Supported”, "Method Reserved", "Vendor Specific"}

NOTE In this version of the standard, Job Control is not supported for the GetStatisticsCollection method. This method should
always return NULL for the Job parameter.

If the ElementTypes][] array is empty, then no data is returned. If the ElementTypes|] array is NULL, then
the ElementTypes[] parameter is ignored and all data specified in the manifest collection is returned.

If the manifest collection is empty, then no data is returned. If the manifest collection parameter is NULL,
then the default manifest collection is used. (Note: In SMI-S, a default manifest collection shall exist if the
GetStatisticalCollection method is supported).

NOTE The ElementTypes[] and ManifestCollection parameters may identify different sets of element types. The effect of this will
be for the implementation to return statistics for the element types that are in both lists (that is, the intersection of the two lists).
This intersection could be empty. In this case, no data will be returned.

For the current version of SMI-S, the only recognized value for StatisticsFormat is "CSV". The method
may support other values, but they are not specified by SMI-S (i.e., they would be vendor specific).

Given a client has an inventory of the metered objects with Statistics InstancelDs that may be used to
correlate with the FileSystemStatisticalData instances, a simple CSV format is sufficient and the most
efficient human-readable format for transferring bulk statistics. More specifically, the following rules
constrain that format and define the content of the String[] Statistics output parameter to the Get Statistics
Collection() method:

< The Statistics[] array may contain multiple statistics records per array entry. In such cases, the total length of
the concatenated record strings will not exceed 64K bytes. And a single statistics record will not span Array
entries.

= There shall be exactly one statistics record per line in the bulk Statistics parameter. A line is terminated by:
= aline-feed character

= the end of a String Array Element (i.e., a statistics record cannot overlap elements of the String[] Statistics
output parameter).

= Each statistics record shall contain the InstancelD of the FileSystemStatisticalData instance, the value map
(number) of the ElementType of the metered object, and one value for each property that the relevant
FileSystemsStatisticsManifest specifies as "true".

< Each value in a record shall be separated from the next value by a Semi-colon (*;"). This is to support
internationalization of the CSV format. A provider creating a record in this format should not include white
space between values in a record. A client reading a record it has received would ignore white-space
between values.

194

Filesystem Performance Profile

e The InstancelD value is an opaque string that shall correspond to the InstancelD property from
FileSystemStatisticalData instance.

For the convenience of client software that needs to be able to correlate InstancelDs between different
GetStatisticsCollection method invocations, the InstancelD for FileSystemStatisticalData instance shall be
unique across all instances of the FileSystemStatisticalData class. It is not sufficient that InstancelD is unique
across subclasses of FileSystemStatisticalData.

< The ElementType value shall be a decimal string representation of the Element Type number (e.g., 102" for
Local Filesystem). The StatisticTime shall be a string representation of DateTime. All other values shall be
decimal string representations of their statistical values.

< Null values shall be included in records for which a statistic is returned (specified by the manifest or by a lack
of manifest for a particular element type) but there is no meaningful value available for the statistic. A NULL
statistic is represented by placing a semi-colon (;) in the record without a value at the position where the
value would have otherwise been included. A record in which the last statistic has a NULL value shall end in
a semi-colon (;).

= The first three values in a record shall be the InstancelD, ElementType and StatisticTime values from the
FileSystemStatisticalData instance. The remaining values shall be returned in the order in which they are
defined by the MOF for the FileSystemsStatisticsManifest class or subclass the record describes.

As an additional convention, a provider should return all the records for a particular element type in
consecutive String elements, and the order of the element types should be the same as the order in which
the element types were specified in the input parameter to GetStatisticsCollection().

Example output as it might be transmitted in CIM-XML. It shows records for 5 local filesystems and 5
exported file shares, assuming that 6 statistics were specified in the FileSystemStatisticsManifest
instance for both local filesystems and exported file shares. The sixth statistic is unavailable for local
filesystems, and the fourth statistic is unavailable for exported file shares:

<METHODRESPONSE NAME="GetStatisticsCollection">
<RETURNVALUE PARAMTYPE="'uint32'">

<VALUE>

0

</VALUE>

</RETURNVALUE>

<PARAMVALUE NAME="'Statistics" PARAMTYPE="string">
<VALUE.ARRAY>

<VALUE>

LOCALFILESYSTEMSTATS1;102;20060811133015.0000010-
300;11111;22222 ;33333 ;44444 ;55555;

LOCALFILESYSTEMSTATS2;102;20060811133015.0000020-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS3;102;20060811133015.0000030-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS4;102;20060811133015.0000040-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS5;102;20060811133015.0000050-
300;11111;22222;33333;44444;55555;

</VALUE>
<VALUE>

EXPORTFILESHARESTATS1;103;20060811133015.0000100-
300;11111;22222;33333; ;55555;66666

SMI-S 1.7.0 Revision 5 Working Draft 195

Filesystem Performance Profile

EXPORTFILESHARESTATS2;103;20060811133015.0000110-
300;11111;22222;33333; ;55555;66666

EXPORTFILESHARESTATS3;103;20060811133015.0000120-
300;11111;22222;33333; ;55555;66666

EXPORTFILESHARESTATS4;103;20060811133015.0000130-
300;11111;22222;33333; ;55555;66666

EXPORTFILESHARESTATS5;103;20060811133015.0000140-
300;11111;22222;33333; ;55555 ;66666

</VALUE>

</VALUE .ARRAY>
</PARAMVALUE>
</METHODRESPONSE>

10.3.1.3 CreateManifestCollection

This extrinsic method creates a new manifest collection whose members serve as a filter for metrics
retrieved through the GetStatisticsCollection method.

CreateManifestCollection(

[IN, Description(The collection of statistics that will be filtered using the new
manifest collection)]

CIM_StatisticsCollection REF Statistics,

[IN, Description(Client-defined name for the new manifest collection)
string ElementName,

[OUT, Description(Reference to the new manifest collection)]
CIM_FileSystemManifestCollection REF ManifestCollection);

Error returns are:

{ "Ok'™, "Not Supported”, *"Unknown®, "Timeout', "Failed”, "Invalid Parameter",
"Method Reserved'", "Vendor Specific" }

10.3.1.4 AddOrModifyManifest

This is an extrinsic method that either creates or modifies a statistics manifest for this statistics service. A
client supplies a manifest collection within which the new manifest collection will be placed or an existing
manifest will be modified, the element type of the statistics that the manifest will filter, and a list of
statistics that should be returned for that element type using the GetStatisticsCollection method.

196

AddOrModifyManifest(

[IN, Description(Manifest collection that the manifest is or should be a member
of)]

CIM_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description(The element type whose statistics the manifest will filter)

vValueMap { "1*, *102*", *103", "104'", "..', "0x8000.." },

Values { "Other™, "Local Filesystem”, "Exported File Share'™, "Exporting Port",
"DMTF Reserved™, "Vendor Specific" }]
uintlé ElementType,

[IN, Description ("A string describing the type of element when the ElementType
property above is set to 1 (i.e., "Other"). This
property should be set to NULL when the ElementType
property is any value other than 1.')]

string OtherElementTypeDescription,

Filesystem Performance Profile

[IN, Description(The client-defined string that identifies the manifest created or
modified by this method)

string ElementName,

[IN, Description(The statistics that will be included by the manifest filter; that
is, the statistics that will be supplied through the
GetStatisticsCollection method)

string StatisticsList[],

[OUT, Description(The Manifest that is created or modified on the successful
execution of this method)]

CIM_FileSystemManifest REF Manifest);

Error returns are:

{ "Success", "Not Supported", "Unknown', "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Element Not Supported", "Metric not
supported”™, "ElementType Parameter Missing", "Method
Reserved™, "Vendor Specific" }

If the StatisticsList[] array is empty, then only InstancelD and ElementType will be returned when the
manifest is referenced. If the StatisticsList[] array parameter is NULL, then all supported properties is
assumed (i.e., all supported properties will be included).

NOTE This would be the FileSystemStatisticsManifest from the default manifest collection.

10.3.1.5 RemoveManifests
This is an extrinsic method that removes manifests from the manifest collection.

RemoveManifests(

[IN, Description(Manifest collection from which the manifests will be removed)]
CIM_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description(List of manifests to be removed from the manifest collection)
CIM_FileSystemStatisticsManifest REF Manifest[]):

Error returns are:

{ "Success'", "Not Supported", "Unknown', "Timeout', "Failed", "Invalid
Parameter', ''Method Reserved', "Manifest not found",
"Method Reserved', "Vendor Specific” }

10.3.2 Intrinsic Methods of this Profile

NOTE Basic Write intrinsic methods are not specified for StatisticsCollection, HostedCollection, FileSystemStatisticalData,
MemberOfCollection or ElementStatisticalData.

10.3.2.1 Deletelnstance (of a FileSystemStatisticsManifestCollection)

This will delete the FileSystemStatisticsManifestCollection where IsDefault=False, the
AssociatedFileSystemStatisticsManifestCollection association to the StatisticsCollection and all manifests
collected by the manifest collection (and the MemberOfCollection associations to the
FileSystemStatisticsManifestCollection).

10.3.2.2 Association Traversal

One of the ways of retrieving statistics is through association traversal from the StatisticsCollection to the
individual Statistics following the MemberOfCollection association. This shall be supported by all
implementations of the Filesystem Performance Profile and would be available to clients if the provider
does not support the EXEC QUERY or GetStatisticsCollection approaches.

SMI-S 1.7.0 Revision 5 Working Draft 197

Filesystem Performance Profile

10.4 Use Cases

10.4.1 Summary of Statistics Support by Element

Not all statistics properties are kept for all elements. Table 146 illustrates the statistics properties that are
kept for each of the metered elements.

Table 146 - Summary of Statistics Support by Element

Statistic Property Local Exported Exporting Other
Filesystem File Share Port
StatisticTime R R R R
TotallOs R R R R
TotalBytesTransferred R R R N
ReadlOs R R N N
WritelOs R R N N
OtherlOs R R N N
MetadataReadlOs 0] 0] N N
MetadataWritelOs)) N N
TotallOTimeCounter O e} O N
TotalldleTimeCounter (e} (e} (e} N
ReadlOTimeCounter O (e} N N
BytesRead O O N N
WritelOTimeCounter (e}) N N
BytesWritten O O N N
MetadataBytesRead O O N N
MetadataBytesWritten O O N N
PercentDurableOpens N O N N
PercentResilientOpens N O N N
PercentPersistentOpens N O N N
AverageReadResponseTime N O N N
AverageWriteResponseTime N O N N
AverageRequestResponseTime N O N N
BytesReadPerSec N O N N
TotalBytesReceived N O N N
BytesReceivedPerSec N O N N
TotalBytesSent N O N N
BytesSentPerSec N (0] N N
BytesTranferredPerSec N O N N
BytesWrittenPerSec N O N N
FilesOpenedPerSec N O N N

198

Filesystem Performance Profile

Table 146 - Summary of Statistics Support by Element

Statistic Property Local Exported Exporting Other
Filesystem File Share Port
TotalOpenFileCount N O N N
CurrentPendingRequests N O N N
ReadRequestsProcessedPerSec N O N N
TotalRequestsReceived N O N N
RequestsReceivedPerSec N O N N
TotalDurableHandleReopenCount N O N N
TotalFailedDurableHandleReopenCount N O N N
TotalFailedResilientHandleReopenCount N O N N
CurrentOpenFileCount N O N N
TotalResilientHandleReopenCount N O N N
TotalPersistentHandleReopenCount N O N N
TotalFailedPersistentHandleReopenCount N O N N
TreeConnectCount N (0] N N
WriteRequestsProcessedPerSec N O N N
TotalMetadataRequestsReceived N O N N
MetadataRequestsReceivedPerSec N O N N
AverageTimePerDataRequest N O N N
AverageBytesPerDataRequest N O N N
AverageBytesPerReadRequest N O N N
AverageBytesPerWriteRequest N O N N
AverageReadQueuelLength N O N N
AverageWriteQueuelLength N O N N
AverageDataQueuelength N O N N
DataBytesPerSec N (0] N N
DataRequestsPerSec N O N N
CurrentDataQueueLength N O N N

The legend is:
R - Required
O - Optional
N - Not specified

A complete list of definitions of the metered elements as defined by the ElementType property of
FileSystemStatisticalData is below:

SMI-S 1.7.0 Revision 5 Working Draft 199

Filesystem Performance Profile

ElementType = 1 (Other) - This is used by the provider to specify a filesystem-related metered element other
than one explicitly declared (e.g., "Local Filesystem" below) within the list of element types supported by the
Filesystem Performance Profile in this release of SMI-S. If the ElementType is "Other”, then information
describing the metered element should be provided in the "OtherElementTypeDescription" string property.

ElementType = 102 (Local Filesystem) - This is a filesystem that would be a LocalFileSystem in the
Filesystem Profile. It is a target for I/O operations that would include file 1/O operations for storing and
retrieving the contents of a file maintained by the filesystem, 1/0O operations directed to directories maintained
by the filesystem, and other I/O operations performed to manage the filesystem and its contents.

ElementType = 103 (Exported File Share) - This is a FileShare in the File Export Profile; it is a file share that
is exported to a network.

ElementType = 104 (Exporting Port) - This is a port through which a file share being exported can be
accessed. It is a ProtocolEndPoint through which a FileShare can be accessed as described within the File
Export Profile.

10.4.2 Formulas and Calculations

Tab

le 4 identifies the set of statistics that are recommended for various elements associated with

filesystems. Once collected, these metrics can be further enhanced through the definition of formulas and
calculations that create additional "derived" statistics.

Tab
stat
stat

le 147 defines a set of such derived statistics as pertain to a calculated time interval. These calculated
istics are by no means the only possible derivations but serve as examples of commonly requested
istics.

Table 147 - Formulas and Calculations - Calculated Statistics for a Time Interval

New statistic Formula
Timelnterval delta StatisticTime
I/O rate delta TotallOs / Timelnterval
1/0 average response time delta TotallOTimeCounter / delta TotallOs
Read average response time delta ReadlOTimeCounter / delta ReadlOs
Write average response time delta WritelOTimeCounter / delta WritelOs
Average Read Size delta BytesRead / delta ReadlOs
Average Write Size delta BytesWritten / delta WritelOs
% Read 100 * (delta ReadlOs / delta TotallOs)
% Write 100 * (delta WritelOs / delta TotallOs)

10.4.3 Filesystem Performance Supported Capabilities Patterns

The Filesystem Performance Profile in this release of SMI-S formally recognizes the Capabilities patterns
summarized in Table 148.

200

Filesystem Performance Profile

Table 148 - Filesystem Performance Profile Supported Capabilities Patterns

Element Supported SynchronousMethods AsynchronousMethods Supported
Supported

Any (at least one) NULL NULL

Any (at least one) Neither GetStatisticsCollection nor Exec NULL
Query

Any (at least one) GetStatisticsCollection NULL

Any (at least one) Any NULL

Any (at least one) Exec Query NULL

Any (at least one) GetStatisticsCollection, Exec Query NULL

Any (at least one) "Manifest Creation", "Manifest NULL
Modification”, and "Manifest Removal”

Any (at least one) "Indications", "Query Collection” NULL

An implementation will support GetStatisticsCollection, Query, GetStatisticsCollection and Query or
neither. But if the implementation supports GetStatisticsCollection, it shall support Synchronous
execution.

If manifest collections are supported, then ALL three methods shall be supported (creation, modification
and removal).

10.5 CIM Elements
Table 149 describes the CIM elements for Filesystem Performance.

Table 149 - CIM Elements for Filesystem Performance

Element Name Requirement Description
10.5.1 CIM_AssociatedFileSystemStatisticsManifestCollection Conditional Conditional requirement: Clients can create
(Client defined collection) manifests as identified by

CIM_FileSystemStatisticsCapabilities.Synchronou
sMethodsSupported. This is an association
between the StatisticsCollection and a client
defined manifest collection.

10.5.2 CIM_AssociatedFileSystemStatisticsManifestCollection Mandatory This is an association between the

(Provider defined collection) StatisticsCollection and a provider supplied
(predefined) manifest collection that defines the
filesystem statistics properties supported by the
profile implementation.

10.5.3 CIM_ElementCapabilities Mandatory This associates the
FileSystemStatisticsCapabilities to the
FileSystemStatisticsService.

10.5.4 CIM_ElementStatisticalData (Exported File Share Stats) Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTyp
esSupported = "103" (Exported File Share
statistics support).

This associates a FileSystemStatisticalData
instance to the exported File Share for which the
statistics are collected.

SMI-S 1.7.0 Revision 5 Working Draft 201

Filesystem Performance Profile

Table 149 - CIM Elements for Filesystem Performance

Element Name Requirement Description

10.5.5 CIM_ElementStatisticalData (Exporting Port Stats) Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTyp
esSupported ="104" (Exporting Port statistics
support).

This associates a FileSystemStatisticalData
instance to the exporting Port for which the
statistics are collected.

10.5.6 CIM_ElementStatisticalData (Local Filesystem Stats) Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTyp
esSupported = "102" (Local Filesystem statistics
support).

This associates a FileSystemStatisticalData
instance to the local filesystem for which the
statistics are collected.

10.5.7 CIM_ElementStatisticalData (OTHER Element Type Stats) Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTyp
esSupported ="1" (OTHER element type statistics
support).

This associates a FileSystemStatisticalData
instance to a provider-specified other element for
which the statistics are collected.

10.5.8 CIM_FileSystemStatisticalData Mandatory The CIM_FileSystemStatisticalData class defines
the filesystem statistics properties that may be
kept for a metered element of a system that
provides filesystem support (such as a NAS Head
or a Self-Contained NAS). Examples of such
metered elements include LocalFileSystem (Local
Filesystem) and FileShare (Exported File Share).

10.5.9 CIM_FileSystemStatisticsCapabilities Mandatory This defines the statistics capabilities supported
by the implementation of the profile.

10.5.10 CIM_FileSystemStatisticsManifest (Client Defined) Conditional Conditional requirement: Clients can modify
manifests as identified by
CIM_FileSystemStatisticsCapabilities.Synchronou
sMethodsSupported. An instance of this class
defines the filesystem statistics properties of
interest to the client for one element type.

10.5.11 CIM_FileSystemStatisticsManifest (Provider Support) Mandatory An instance of this class defines the filesystem
statistics properties supported by the profile
implementation for one element type.

10.5.12 CIM_FileSystemStatisticsManifestCollection (Client Conditional Conditional requirement: Clients can create
Defined) manifests as identified by
CIM_FileSystemStatisticsCapabilities.Synchronou
sMethodsSupported. An instance of this class
defines one client defined collection of filesystem
statistics manifests (one manifest for each
element type).

10.5.13 CIM_FileSystemStatisticsManifestCollection (Provider Mandatory An instance of this class defines the predefined
Defined) collection of default filesystem statistics manifests
(one manifest for each element type).

10.5.14 CIM_FileSystemStatisticsService Mandatory This is a Service that provides (optional) services
of bulk statistics retrieval and manifest set
manipulation methods.

202

Filesystem Performance Profile

Table 149 - CIM Elements for Filesystem Performance

Element Name Requirement Description

10.5.15 CIM_HostedCollection (Client Defined) Conditional Conditional requirement: Clients can create
manifests as identified by
CIM_FileSystemStatisticsCapabilities.Synchronou
sMethodsSupported or Clients can create
manifests as identified by
CIM_FileSystemStatisticsCapabilities.Asynchrono
usMethodsSupported. This would associate a
client defined
FileSystemStatisticsManifestCollection to the top
level system for the profile (e.g., a NAS Head).

10.5.16 CIM_HostedCollection (Default) Mandatory This would associate a default
FileSystemStatisticsManifestCollection to the top
level system for the profile (e.g., a NAS Head).

10.5.17 CIM_HostedCollection (Provider Supplied) Mandatory This would associate the StatisticsCollection to
the top level system for the profile (e.g., NAS
Head).

10.5.18 CIM_HostedService Mandatory This associates the FileSystemStatisticsService to
the ComputerSystem that hosts it.

10.5.19 CIM_MemberOfCollection (Member of client defined Conditional Conditional requirement: Clients can modify

collection) manifests as identified by

CIM_FileSystemStatisticsCapabilities.Synchronou
sMethodsSupported. This would associate
Manifests to client-defined manifest collections.

10.5.20 CIM_MemberOfCollection (Member of predefined Mandatory This would associate predefined Manifests to the
collection) default manifest collection.
10.5.21 CIM_MemberOfCollection (Member of statistics collection) Mandatory This would associate all filesystem statistics

instances to the StatisticsCollection.

10.5.22 CIM_StatisticsCollection Mandatory This would be a collection point for all filesystem
statistics that are kept for metered elements of a
system that provides filesystem support (such as
a NAS Head or a Self-Contained NAS).

10.5.1 CIM_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)

The CIM_AssociatedFileSystemStatisticsManifestCollection associates an instance of a
CIM_FileSystemStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it
applies. Client defined manifest collections identify the Manifests (statistic properties) for retrieval of
filesystem statistics.

CIM_AssociatedFileSystemStatisticsManifestCollection is not subclassed from anything.

There will be one instance of the CIM_AssociatedFileSystemStatisticsManifestCollection class, for each
client defined manifest collection that has been created.

Created By: Extrinsic: CreateManifestCollection
Modified By: Static
Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

SMI-S 1.7.0 Revision 5 Working Draft 203

Filesystem Performance Profile

Table 150 describes class CIM_AssociatedFileSystemStatisticsManifestCollection (Client defined
collection).

Table 150 - SMI Referenced Properties/Methods for CIM_AssociatedFileSystemStatisticsManifestCollec-
tion (Client defined collection)

Properties Flags Requirement Description & Notes
Statistics Mandatory The StatisticsCollection to which the manifest collection applies.
ManifestCollection Mandatory A client defined manifest collection.

10.5.2 CIM_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)

The CIM_AssociatedFileSystemStatisticsManifestCollection associates an instance of a
CIM_FileSystemsStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it
applies. The default manifest collection defines the CIM_FileSystemStatisticalData properties that are
supported by the profile implementation.

CIM_AssociatedFileSystemStatisticsManifestCollection is not subclassed from anything.

One instance of the CIM_AssociatedFileSystemsStatisticsManifestCollection shall exist for the default
manifest collection if the Filesystem Performance Profile is implemented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 151 describes class CIM_AssociatedFileSystemStatisticsManifestCollection (Provider defined
collection).

Table 151 - SMI Referenced Properties/Methods for CIM_AssociatedFileSystemStatisticsManifestCollec-
tion (Provider defined collection)

Properties Flags Requirement Description & Notes
Statistics Mandatory The StatisticsCollection to which the manifest collection applies.
ManifestCollection Mandatory The default manifest collection.

10.5.3 CIM_ElementCapabilities

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,
CIM_FileSystemsStatisticsService) and their Capabilities (e.g., CIM_FileSystemStatisticsCapabilities).
Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates
the instantiation of the CIM_ElementCapabilities association for the referenced instance of Capabilities.
ElementCapabilities describes the existence requirements and context for the referenced instance of
ManagedElement. Specifically, the ManagedElement shall exist and provides the context for the
Capabilities.

CIM_ElementCapabilities is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

204

Filesystem Performance Profile

Table 152 describes class CIM_ElementCapabilities.

Table 152 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The managed element (FileSystemStatisticsService).
Capabilities Mandatory The Capabilities instance associated with the FileSystemStatisticsService.

10.5.4 CIM_ElementStatisticalData (Exported File Share Stats)

CIM_ElementStatisticalData is an association that relates an exported File Share to its statistics. Note
that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of
FileSystemStatistics. ElementStatisticalData describes the existence requirements and context for the
FileSystemStatistics, relative to a specific File Share that is being exported.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "103"
(Exported File Share statistics support).

Table 153 describes class CIM_ElementStatisticalData (Exported File Share Stats).

Table 153 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exported File Share Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to an exported FileShare for which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
exported FileShare.

10.5.5 CIM_ElementStatisticalData (Exporting Port Stats)

CIM_ElementStatisticalData is an association that relates an exporting Port to its statistics. This exporting
Port is a ProtoEndPoint through which a file share that is being exported can be accessed. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1l). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of
FileSystemsStatistics. ElementStatisticalData describes the existence requirements and context for the
FileSystemStatistics, relative to a specific exporting Port.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "104"
(Exporting Port statistics support).

SMI-S 1.7.0 Revision 5 Working Draft 205

Filesystem Performance Profile

Table 154 describes class CIM_ElementStatisticalData (Exporting Port Stats).

Table 154 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exporting Port Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a ProtocolEndPoint port for which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
exporting Port.

10.5.6 CIM_ElementStatisticalData (Local Filesystem Stats)

CIM_ElementStatisticalData is an association that relates a local filesystem to its statistics. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of
FileSystemStatistics. ElementStatisticalData describes the existence requirements and context for the
FileSystemStatistics, relative to a specific local filesystem.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "102"
(Local Filesystem statistics support).

Table 155 describes class CIM_ElementStatisticalData (Local Filesystem Stats).

Table 155 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Local Filesystem Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a LocalFileSystem for which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
local filesystem.

10.5.7 CIM_ElementStatisticalData (OTHER Element Type Stats)

CIM_ElementStatisticalData is an association that relates a provider-specified other element to its
statistics. This other element is a filesystem-related managed element whose type is not explicitly
declared within the list of ElementTypesSupported values defined within
CIM_FileSystemStatisticsCapabilities. Information describing the metered element in this case should
also be provided in the CIM_FileSystemStatisticalData.OtherElementTypeDescription property for the
referenced instance of the FileSystemStatistics. Note that the cardinality of the ManagedElement
reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of FileSystemStatistics.
ElementStatisticalData describes the existence requirements and context for the FileSystemStatistics,
relative to the specific metered element.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static

206

Filesystem Performance Profile

Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "1"
(OTHER element type statistics support).

Table 156 describes class CIM_ElementStatisticalData (OTHER Element Type Stats).

Table 156 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (OTHER Element Type

Stats)
Properties Flags Requirement Description & Notes
ManagedElement Mandatory A reference to the provider-specified managed element for which the

Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
provider-specified managed element.

10.5.8 CIM_FileSystemStatisticalData

CIM_FileSystemStorageStatisticalData is subclassed from CIM_StatisticalData.

Instances of this class will exist for each of the metered elements if the "ElementTypesSupported"
property of the CIM_FileSystemStatisticsCapabilities indicates that the metered element is supported. For

example, if "Local Filesystem" is identified in the "ElementTypesSupported" property, then this indicates
support for metering of the local filesystem.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 157 describes class CIM_FileSystemStatisticalData.

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes

InstancelD Mandatory The InstancelD for a FileSystemStatisticalData instance shall be
unique across all instances of the FileSystemStatisticalData
class.

StatisticTime Mandatory The time that the most recent measurement was taken, relative

to the object (managed element) where the statistics were
collected. (Time stamp in CIM 2.2 specification format).

ElementType Mandatory Defines the role that the metered element (object) played for
which this statistics record was collected. This value is required
AND the current version of SMI-S specifies the following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported File Share",
"Exporting Port"}.

OtherElementTypeDescription Mandatory A string describing the type of element when the ElementType
property of this class (or any of its subclasses) is setto 1 (i.e.,
"Other"). This property should be set to NULL when the
ElementType property is any value other than 1.

TotallOs Mandatory The cumulative count of file /O operations for the object,
including metadata 1/O operations.

SMI-S 1.7.0 Revision 5 Working Draft 207

Filesystem Performance Profile

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties

Flags

Requirement

Description & Notes

TotalBytesTransferred

Conditional

Conditional requirement: This property is required if the
ElementType is 102, 103, or 104. The cumulative count of bytes
transferred for all of the file /O operations as defined in
"TotallOs" above.

Note: This is not specified for the "Other" ElementType.

ReadlOs

Conditional

Conditional requirement: This property is required if the
ElementType is 102 or 103. The cumulative count of file I/O
operations that were directed to the object and that performed a
transfer of data from the file contents.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

WritelOs

Conditional

Conditional requirement: This property is required if the
ElementType is 102 or 103. The cumulative count of file /O
operations that were directed to the object and that performed a
transfer of data to the file contents.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

OtherlOs

Conditional

Conditional requirement: This property is required if the
ElementType is 102 or 103. The cumulative count of file /O
operations that were directed to the object and that did not
perform a transfer of data either to or from the file contents. This
count excludes metadata I/ O operations (both read and write).

File "open", "close", and "lock" I/O operations are examples of
an "OtherlO" I/O operation.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

MetadataReadlOs

Optional

The cumulative count of file I/O operations that were directed to
the object and that performed a read transfer of metadata. "Get
Attributes" and "Read Directory" I/O operations are examples of
a Metadata read I/O operation.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

MetadataWritelOs

Optional

The cumulative count of file I/O operations that were directed to
the object and that performed a write transfer of metadata. "Set
Attributes" I/O operations are an example of a Metadata write I/
O operation.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

TotallOTimeCounter

Optional

The cumulative elapsed I/O operation time (number of
ClockTickIntervals) for all file /O operations as defined in
"TotallOs" above. The I/O operation response time is added to
this counter at the completion of each measured I/O operation
using ClockTickInterval units. The TotallOTimeCounter value
can be divided by the total number of I/O operations (TotallOs)
to obtain an I/O operation average response time.

Note: This is not specified for the "Other" ElementType.

TotalldleTimeCounter

Optional

The cumulative elapsed idle time using ClockTickInterval units.
That is, the cumulative number of ClockTickintervals for all idle
time within the object, with "idle time" being that time during
which no I/O operations were being processed by the object.

Note: This is not specified for the "Other" ElementType.

208

Filesystem Performance Profile

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes

ReadlOTimeCounter Optional The cumulative elapsed I/O operation time for all Read 1/0
operations (that is, the cumulative elapsed time for all Read I/0
operations as defined in "ReadlOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

BytesRead Optional The cumulative count of bytes read (that is, the cumulative
count of bytes transferred by all Read I/O operations as defined
in "ReadlOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

WritelOTimeCounter Optional The cumulative elapsed I/O operation time for all Write 1/0
operations (that is, the cumulative elapsed time for all Write 1/0
operations as defined in "WritelOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

BytesWritten Optional The cumulative count of bytes written (that is, the cumulative
count of bytes transferred by all Write 1/O operations as defined
in "WritelOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

MetadataBytesRead Optional The cumulative count of metadata bytes read (that is, the
cumulative count of bytes transferred by all Metadata read 1/0
operations as defined in "MetadataReadlOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

MetadataBytesWritten Optional The cumulative count of metadata bytes written (that is, the
cumulative count of bytes transferred by all Metadata write 1/0
operations as defined in "MetadataWritelOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

PercentDurableOpens Optional The percentage of total opens for which clients requested
durability.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

PercentResilientOpens Optional The percentage of total opens for which clients requested
resiliency.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

PercentPersistentOpens Optional The percentage of total handles for which clients requested
persistency.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

AverageReadResponseTime Optional The average number of seconds that elapse between the time
at which a read request to this share is received and the time at
which the SMB2 File Server sends the corresponding response.

Note: This is not specified for the “"Local File System",
"Exporting Port" and the "Other" ElementTypes.

SMI-S 1.7.0 Revision 5 Working Draft 209

Filesystem Performance Profile

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties

Flags

Requirement

Description & Notes

AverageWriteResponseTime

Optional

The average number of seconds that elapse between the time
at which a write request to this share is received and the time at
which the SMB2 File Server sends the corresponding response.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

AverageRequestResponseTime

Optional

The average number of seconds that elapse between the time
at which the SMB2 File Server receives a request for this share
and the time at which the SMB2 File Server sends the
corresponding response.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

BytesReadPerSec

Optional

The rate, in seconds, at which data is being read from this
share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

TotalBytesReceived

Optional

The number of bytes that have been received for requests
related to this share. This value includes application data as
well as SMB2 protocol data (such as packet headers).

Note: This is not specified for the “"Local File System",
"Exporting Port" and the "Other" ElementTypes.

BytesReceivedPerSec

Optional

The rate at which bytes are being received for requests related
to this share. This value includes application data as well as
SMB2 protocol data (such as packet headers).

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

TotalBytesSent

Optional

The number of bytes that have been sent by the SMB2 File
Server related to this share to its clients since the server started.
This value includes both data bytes and protocol bytes.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

BytesSentPerSec

Optional

The rate, in seconds, at which bytes are being sent from the
SMB2 File Server related to this share to its clients. This value
includes both data bytes and protocol bytes.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

BytesTranferredPerSec

Optional

The sum of bytes transferred/sec related to this share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

BytesWrittenPerSec

Optional

The rate, in seconds, at which data is being written to this share.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

FilesOpenedPerSec

Optional

The rate, in seconds, at which files are being opened for the
SMB2 File Server's clients on this share.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

210

Filesystem Performance Profile

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties

Flags

Requirement

Description & Notes

TotalOpenFileCount

Optional

The number of files that have been opened by the SMB2 File
Server on behalf of its clients on this share since the server
started.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

CurrentPendingRequests

Optional

The number of requests related to this share that are waiting to
be processed by the SMB2 File Server.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

ReadRequestsProcessedPerSec

Optional

Read requests processed/sec related to this share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

TotalRequestsReceived

Optional

The number of requests that have been received for this share.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

RequestsReceivedPerSec

Optional

The rate at which requests are being received for this share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

TotalDurableHandleReopenCount

Optional

The number of durable opens on this share that have been
recovered after a temporary network disconnect since the
SMB2 File Server started.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

TotalFailedDurableHandleReopenCo
unt

Optional

The number of durable opens on this share that could not be
recovered after a temporary network disconnect since the
SMB2 File Server Started.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

TotalFailedResilientHandleReopenC
ount

Optional

The number of resilient opens on this share that could not be
recovered after a temporary network disconnect since the
SMB2 File Server Started.

Note: This is not specified for the “"Local File System",
"Exporting Port" and the "Other" ElementTypes.

CurrentOpenFileCount

Optional

The number of file handles that are currently open in this share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

TotalResilientHandleReopenCount

Optional

The number of resilient opens on this share that have been
recovered after a temporary network disconnect since the
SMB2 File Server started.

Note: This is not specified for the “"Local File System",
"Exporting Port" and the "Other" ElementTypes.

TotalPersistentHandleReopenCount

Optional

The number of persistent opens on this share that have been
recovered after a temporary network disconnect since the
SMB2 File Server started.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

SMI-S 1.7.0 Revision 5

Working Draft

211

Filesystem Performance Profile

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties

Flags

Requirement

Description & Notes

TotalFailedPersistentHandleReopen
Count

Optional

The number of persistent opens on this share that could not be
recovered after a temporary network disconnect since the
SMB2 File Server Started.

Note: This is not specified for the “"Local File System",
"Exporting Port" and the "Other" ElementTypes.

TreeConnectCount

Optional

The number of tree connects to this share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

WriteRequestsProcessedPerSec

Optional

Write requests processed/sec related to this share.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

TotalMetadataRequestsReceived

Optional

The total number of metadata requests received related to this
share.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

MetadataRequestsReceivedPerSec

Optional

The rate, in seconds, at which metadata requests are being sent
to this share.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

AverageTimePerDataRequest

Optional

The average number of seconds that elapse between the time
at which a read or write request to this share is received and the
time at which the SMB2 File Server processes the request.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

AverageBytesPerDataRequest

Optional

The average number of bytes per read or write request.

Note: This is not specified for the “Local File System",
"Exporting Port" and the "Other" ElementTypes.

AverageBytesPerReadRequest

Optional

The average number of bytes per read request.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

AverageBytesPerWriteRequest

Optional

The average number of bytes per write request.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

AverageReadQueuelength

Optional

The average number of read requests that were queued for this
share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

AverageWriteQueuelLength

Optional

The average number of write requests that were queued for this
share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

AverageDataQueuelength

Optional

The average number of read and write requests that were
queued for this share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

212

Filesystem Performance Profile

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties

Flags

Requirement

Description & Notes

DataBytesPerSec

Optional

The rate, in seconds, at which data is being written to or read
from this share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

DataRequestsPerSec

Optional

The rate, in seconds, at which read or write requests are
received for this share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

CurrentDataQueueLength

Optional

The current number of read or write requests outstanding on
this share.

Note: This is not specified for the "Local File System",
"Exporting Port" and the "Other" ElementTypes.

10.5.9 CIM_FileSystemStatisticsCapabilities

An instance of the CIM_FileSystemStatisticsCapabilities class defines the specific support provided with
the filesystem statistics implementation. Note: There would be zero or one instance of this class in a
profile. There would be none if the profile did not support the Filesystem Performance Profile. There
would be exactly one instance if the profile did support the Filesystem Performance Profile.

CIM_FileSystemStatisticsCapabilities class is subclassed from CIM_Capabilities.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 158 describes class CIM_FileSystemStatisticsCapabilities.

Table 158 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsCapabilities

Properties Flags Requirement Description & Notes
InstancelD Mandatory
ElementName Mandatory
ElementTypesSupported Mandatory ValueMap { "1", "102", "103", "104"},
Values {"Other", "Local Filesystem", "Exported File
Share", "Exporting Port"}.
SynchronousMethodsSupported Mandatory This property is mandatory, but the array may be empty.

ValueMap { "2", "3", "4", "5", "6", "7", "8"},

Values {"Exec Query", "Indications”, "QueryCollection”,
"GetStatisticsCollection”, "Manifest Creation", "Manifest
Modification”, "Manifest Removal" }.

SMI-S 1.7.0 Revision 5

Working Draft

213

Filesystem Performance Profile

Table 158 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsCapabilities

Properties Flags Requirement Description & Notes
AsynchronousMethodsSupported Optional Not supported in current version of SMI-S.
ClockTickInterval Mandatory An internal clocking interval for all timers in the

subsystem, measured in microseconds (Unit of measure
in the timers, measured in microseconds).

Time counters are monotonically increasing counters
that contain "ticks". Each tick represents one
ClockTickInterval. If ClockTickInterval contained a value
of 32 then each time counter tick would represent 32
microseconds.

10.5.10CIM_FileSystemStatisticsManifest (Client Defined)

The CIM_FileSystemStatisticsManifest class is a Concrete class that defines the
CIM_FileSystemStorageStatisticalData properties that should be returned on a GetStatisticsCollection
request.

CIM_FileSystemsStatisticsManifest is subclassed from CIM_ManagedElement.

In order for a client defined instance of the CIM_FileSystemStatisticsManifest class to exist, all of the
manifest collection manipulation functions shall be identified in the "SynchronousMethodsSupported"
property of the CIM_FileSystemStatisticsCapabilities
(FileSystemStatisticsCapabilities.SynchronousMethodsSupported = "6") instance, AND a client must
have created at least ONE instance of CIM_FileSystemStatisticsManifestCollection.

Created By: Extrinsic: AddOrModifyManifest
Modified By: Extrinsic: AddOrModifyManifest
Deleted By: Extrinsic: RemoveManifests

Requirement: Clients can modify manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 159 describes class CIM_FileSystemStatisticsManifest (Client Defined).

Table 159 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes
ElementName Mandatory A Client defined string that identifies the manifest.
InstancelD Mandatory The instance Identification. Within the scope of

the instantiating Namespace, InstancelD
opaquely and uniquely identifies an instance of
this class.

ElementType Mandatory This value is required AND the current version of
SMI-S specifies the following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported
File Share", "Exporting Port"}.

OtherElementTypeDescription Mandatory A string describing the type of element when the
ElementType property of this class (or any of its
subclasses) is set to 1 (i.e., "Other"). This
property should be set to NULL when the
ElementType property is any value other than 1.

214

Filesystem Performance Profile

Table 159 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes
IncludeStatisticTime Mandatory
IncludeTotallOs Mandatory
IncludeTotalBytesTransferred Mandatory
IncludeReadlOs Mandatory
IncludeWritelOs Mandatory
IncludeOtherlOs Mandatory
IncludeMetadataReadlOs Mandatory
IncludeMetadataWritelOs Mandatory
IncludeTotallOTimeCounter Mandatory
IncludeTotalldleTimeCounter Mandatory
IncludeReadlOTimeCounter Mandatory
IncludeBytesRead Mandatory
IncludeWritelOTimeCounter Mandatory
IncludeBytesWritten Mandatory
IncludeMetadataBytesRead Mandatory
IncludeMetadataBytesWritten Mandatory
IncludePercentDurableOpens Mandatory
IncludePercentResilientOpens Mandatory
IncludePercentPersistentOpens Mandatory
IncludeAverageReadResponseTime Mandatory
IncludeAverageWriteResponseTime Mandatory
IncludeAverageRequestResponseTime Mandatory
IncludeBytesReadPerSec Mandatory
IncludeTotalBytesReceived Mandatory
IncludeBytesReceivedPerSec Mandatory
IncludeTotalBytesSent Mandatory
IncludeBytesSentPerSec Mandatory
IncludeBytesTranferredPerSec Mandatory
IncludeBytesWrittenPerSec Mandatory
IncludeFilesOpenedPerSec Mandatory
IncludeTotalOpenFileCount Mandatory
IncludeCurrentPendingRequests Mandatory
IncludeReadRequestsProcessedPerSec Mandatory
IncludeTotalRequestsReceived Mandatory
IncludeRequestsReceivedPerSec Mandatory

SMI-S 1.7.0 Revision 5 Working Draft 215

Filesystem Performance Profile

Table 159 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes
IncludeTotalDurableHandleReopenCount Mandatory
IncludeTotalFailedDurableHandleReopenCount Mandatory
IncludeTotalFailedResilientHandleReopenCount Mandatory
IncludeCurrentOpenFileCount Mandatory
IncludeTotalResilientHandleReopenCount Mandatory
IncludeTotalPersistentHandleReopenCount Mandatory
IncludeTotalFailedPersistentHandleReopenCount Mandatory
IncludeTreeConnectCount Mandatory
IncludeWriteRequestsProcessedPerSec Mandatory
IncludeTotalMetadataRequestsReceived Mandatory
IncludeMetadataRequestsReceivedPerSec Mandatory
IncludeAverageTimePerDataRequest Mandatory
IncludeAverageBytesPerDataRequest Mandatory
IncludeAverageBytesPerReadRequest Mandatory
IncludeAverageBytesPerWriteRequest Mandatory
IncludeAverageReadQueuelength Mandatory
IncludeAverageWriteQueuelLength Mandatory
IncludeAverageDataQueuelLength Mandatory
IncludeDataBytesPerSec Mandatory
IncludeDataRequestsPerSec Mandatory
IncludeCurrentDataQueuelLength Mandatory

10.5.11CIM_FileSystemStatisticsManifest (Provider Support)

The

CIM_FileSystemStatisticsManifest

class

is a

Concrete class

that

defines

the

CIM_FileSystemStatisticalData properties that are supported by the Provider. These Manifests are

established by the Provider for the default manifest collection.

CIM_FileSystemStatisticsManifest is subclassed from CIM_ManagedElement.

At least one Provider supplied instance of the CIM_FileSystemStatisticsManifest class shall exist, if the
Filesystem Performance Profile is supported.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

216

Filesystem Performance Profile

Table 160 describes class CIM_FileSystemStatisticsManifest (Provider Support).

Table 160 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes

ElementName Mandatory A Provider defined string that identifies the
manifest in the context of the Default Manifest
Collection.

InstancelD Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstancelD opaquely
and uniquely identifies an instance of this class.

ElementType Mandatory This value is required AND the current version of
SMI-S specifies the following values:

ValueMap {"1", "102", "103", "104"}
Values { "Other", "Local Filesystem", "Exported
File Share", "Exporting Port"}.

OtherElementTypeDescription Mandatory A string describing the type of element when the
ElementType property of this class (or any of its
subclasses) is set to 1 (i.e., "Other"). This property
should be set to NULL when the ElementType
property is any value other than 1.

IncludeStatisticTime Mandatory

IncludeTotallOs Mandatory

IncludeTotalBytesTransferred Mandatory

IncludeReadlOs Mandatory

IncludeWritelOs Mandatory

IncludeOtherlOs Mandatory

IncludeMetadataReadlOs Mandatory

IncludeMetadataWritelOs Mandatory

IncludeTotallOTimeCounter Mandatory

IncludeTotalldleTimeCounter Mandatory

IncludeReadlOTimeCounter Mandatory

IncludeBytesRead Mandatory

IncludeWritelOTimeCounter Mandatory

IncludeBytesWritten Mandatory

IncludeMetadataBytesRead Mandatory

IncludeMetadataBytesWritten Mandatory

IncludePercentDurableOpens Mandatory

IncludePercentResilientOpens Mandatory

IncludePercentPersistentOpens Mandatory

IncludeAverageReadResponseTime Mandatory

IncludeAverageWriteResponseTime Mandatory

IncludeAverageRequestResponseTime Mandatory

SMI-S 1.7.0 Revision 5 Working Draft 217

Filesystem Performance Profile

Table 160 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes
IncludeBytesReadPerSec Mandatory
IncludeTotalBytesReceived Mandatory
IncludeBytesReceivedPerSec Mandatory
IncludeTotalBytesSent Mandatory
IncludeBytesSentPerSec Mandatory
IncludeBytesTranferredPerSec Mandatory
IncludeBytesWrittenPerSec Mandatory
IncludeFilesOpenedPerSec Mandatory
IncludeTotalOpenFileCount Mandatory
IncludeCurrentPendingRequests Mandatory
IncludeReadRequestsProcessedPerSec Mandatory
IncludeTotalRequestsReceived Mandatory
IncludeRequestsReceivedPerSec Mandatory
IncludeTotalDurableHandleReopenCount Mandatory
IncludeTotalFailedDurableHandleReopenCount Mandatory
IncludeTotalFailedResilientHandleReopenCount Mandatory
IncludeCurrentOpenFileCount Mandatory
IncludeTotalResilientHandleReopenCount Mandatory
IncludeTotalPersistentHandleReopenCount Mandatory
IncludeTotalFailedPersistentHandleReopenCount Mandatory
IncludeTreeConnectCount Mandatory
IncludeWriteRequestsProcessedPerSec Mandatory
IncludeTotalMetadataRequestsReceived Mandatory
IncludeMetadataRequestsReceivedPerSec Mandatory
IncludeAverageTimePerDataRequest Mandatory
IncludeAverageBytesPerDataRequest Mandatory
IncludeAverageBytesPerReadRequest Mandatory
IncludeAverageBytesPerWriteRequest Mandatory
IncludeAverageReadQueuelength Mandatory
IncludeAverageWriteQueueLength Mandatory
IncludeAverageDataQueuelLength Mandatory
IncludeDataBytesPerSec Mandatory
IncludeDataRequestsPerSec Mandatory
IncludeCurrentDataQueuelLength Mandatory

218

Filesystem Performance Profile

10.5.12CIM_FileSystemStatisticsManifestCollection (Client Defined)

An instance of a client defined CIM_FileSystemStatisticsManifestCollection defines the set of Manifests
to be used in the retrieval of filesystem statistics by the GetStatisticsCollection method.

CIM_FileSystemsStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

In order for a client defined instance of the CIM_FileSystemStatisticsManifestCollection class to exist,
then all the manifest collection manipulation functions shall be identified in the
"SynchronousMethodsSupported” property of the CIM_FileSystemStatisticsCapabilities instance and a
client must have created a Manifest Collection.

Created By: Extrinsic: CreateManifestCollection
Modified By: Static
Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 161 describes class CIM_FileSystemStatisticsManifestCollection (Client Defined).

Table 161 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifestCollection (Client

Defined)

Properties Flags Requirement Description & Notes

InstancelD Mandatory

ElementName Mandatory A client defined user-friendly name for the manifest collection. It is set
during creation of the Manifest Collection through the ElementName
parameter of the CreateManifestCollection method.

IsDefault Mandatory Denotes whether or not this manifest collection is a provider defined
default manifest collection. For the client defined manifest collections this
is set to "false".

10.5.13CIM_FileSystemStatisticsManifestCollection (Provider Defined)

An instance of a default CIM_FileSystemStatisticsManifestCollection defines the set of Manifests that
define the properties supported for each ElementType supported for the implementation. It can also be
used by clients in retrieval of Filesystem statistics by the GetStatisticsCollection method.

CIM_FileSystemStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

At least ONE CIM_FileSystemStatisticsManifestCollection shall exist if the Filesystem Performance
Profile is implemented. This would be the default manifest collection that defines the properties supported
by the implementation.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SMI-S 1.7.0 Revision 5 Working Draft 219

Filesystem Performance Profile

Table 162 describes class CIM_FileSystemStatisticsManifestCollection (Provider Defined).

Table 162 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifestCollection (Provider

Defined)
Properties Flags Requirement Description & Notes
InstancelD Mandatory
ElementName Mandatory For the default manifest collection, this should be set to "DEFAULT".
IsDefault Mandatory Denotes whether or not this manifest collection is a provider defined
default manifest collection. For the default manifest collection this is
set to "true".

10.5.14CIM_FileSystemStatisticsService

The CIM_FileSystemStatisticsService class provides methods for statistics retrieval and Manifest
Collection manipulation.

The CIM_FileSystemStatisticsService class is subclassed from CIM_Service.

There shall be an instance of the CIM_FileSystemStatisticsService, if the Filesystem Performance Profile
is implemented. It is not necessary to support any methods of the service, but the service shall be
populated.

The methods that are supported can be determined from the SynchronousMethodsSupported and
AsynchronousMethodsSupported properties of the CIM_FileSystemStatisticsCapabilities.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 163 describes class CIM_FileSystemStatisticsService.

Table 163 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsService

Properties Flags Requirement Description & Notes
SystemCreationClassName Mandatory
SystemName Mandatory
CreationClassName Mandatory
Name Mandatory

220

Filesystem Performance Profile

Table 163 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsService

Properties Flags Requirement Description & Notes

GetStatisticsCollection() Conditional Conditional requirement: Clients can get statistics
collections using the GetStatisticsCollection as
identified by

CIM_FileSystemStatisticsCapabilities.SynchronousMe
thodsSupported or Clients can get statistics collections
using the GetStatisticsCollection as identified by
CIM_FileSystemStatisticsCapabilities.AsynchronousM
ethodsSupported.Support for this method is
conditional on
CIM_FileSystemStatisticsCapabilities.SynchronousMe
thodsSupported or
CIM_FileSystemStatisticsCapabilities.AsynchronousM
ethodsSupported containing '5'
(GetStatisticsCollection). This method retrieves all
statistics kept for the profile as directed by a manifest
collection.

CreateManifestCollection() Conditional Conditional requirement: Clients can create manifests
as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMe
thodsSupported or Clients can create manifests as
identified by
CIM_FileSystemStatisticsCapabilities.AsynchronousM
ethodsSupported.Support for this method is
conditional on
CIM_FileSystemStatisticsCapabilities.SynchronousMe
thodsSupported or
CIM_FileSystemStatisticsCapabilities.AsynchronousM
ethodsSupported containing '6' (Manifest Creation).
This method is used to create client defined manifest
collections.

AddOrModifyManifest() Conditional Conditional requirement: Clients can modify manifests
as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMe
thodsSupported or Clients can modify manifests as
identified by
CIM_FileSystemStatisticsCapabilities.AsynchronousM
ethodsSupported.Support for this method is
conditional on
CIM_FileSystemStatisticsCapabilities.SynchronousMe
thodsSupported or
CIM_FileSystemStatisticsCapabilities.AsynchronousM
ethodsSupported containing '7' (Manifest Modification).
This method is used to add or modify filesystem
statistics manifests in a client defined manifest
collection.

RemoveManifests() Conditional Conditional requirement: Clients can remove manifests
as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMe
thodsSupported or Clients can remove manifests as
identified by
CIM_FileSystemStatisticsCapabilities.AsynchronousM
ethodsSupported.Support for this method is
conditional on
CIM_FileSystemStatisticsCapabilities.SynchronousMe
thodsSupported or
CIM_FileSystemStatisticsCapabilities.AsynchronousM
ethodsSupported containing '8' (Manifest Removal).
This method is used to remove a filesystem statistics
manifest from a client defined manifest collection.

SMI-S 1.7.0 Revision 5 Working Draft 221

Filesystem Performance Profile

10.5.15CIM_HostedCollection (Client Defined)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Filesystem Performance Profile, it is used to associate a
client-defined FileSystemStatisticsManifestCollections to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or Clients can create manifests as
identified by CIM_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported.

Table 164 describes class CIM_HostedCollection (Client Defined).

Table 164 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)

Properties Flags Requirement Description & Notes
Antecedent Mandatory The top level ComputerSystem of the profile.
Dependent Mandatory A client defined FileSystemStatisticsManifestCollection.

10.5.16CIM_HostedCollection (Default)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Filesystem Performance Profile, it is used to associate
the default (provider-defined) FileSystemStatisticsManifestCollection to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 165 describes class CIM_HostedCollection (Default).

Table 165 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default)

Properties Flags Requirement Description & Notes
Antecedent Mandatory The top level ComputerSystem of the profile.
Dependent Mandatory The provider defined FileSystemStatisticsManifestCollection.

10.5.17CIM_HostedCollection (Provider Supplied)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Filesystem Performance Profile, it is used to associate
the StatisticsCollection to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

222

Filesystem Performance Profile

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 166 describes class CIM_HostedCollection (Provider Supplied).

Table 166 - SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)

Properties Flags Requirement Description & Notes
Antecedent Mandatory The top level ComputerSystem of the profile.
Dependent Mandatory The StatisticsCollection.

10.5.18CIM_HostedService

CIM_HostedService is an association between a Service (CIM_FileSystemStatisticsService) and the
System (ComputerSystem) on which the functionality resides. Services are weak with respect to their
hosting System. Heuristic: A Service is hosted on the System where the Filesystems or SoftwareFeatures
that implement the Service are located.

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 167 describes class CIM_HostedService.

Table 167 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes
Antecedent Mandatory The hosting System.
Dependent Mandatory The Service hosted on the System.

10.5.19CIM_MemberOfCollection (Member of client defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in a client-defined manifest
collection.

Created By: Extrinsic: AddOrModifyManifest
Modified By: Static
Deleted By: Extrinsic: RemoveManifests

Requirement: Clients can modify manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

SMI-S 1.7.0 Revision 5 Working Draft 223

Filesystem Performance Profile

Table 168 describes class CIM_MemberOfCollection (Member of client defined collection).

Table 168 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined

collection)
Properties Flags Requirement Description & Notes
Collection Mandatory A client defined manifest collection.
Member Mandatory The individual Manifest Instance that is part of the set.

10.5.20CIM_MemberOfCollection (Member of predefined collection)

This use of MemberOfCollection is to Collect all Manifests instances in the default manifest collection.
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 169 describes class CIM_MemberOfCollection (Member of predefined collection).

Table 169 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of predefined col-

lection)
Properties Flags Requirement Description & Notes
Collection Mandatory The provider defined default manifest collection.
Member Mandatory The individual Manifest Instance that is part of the set.

10.5.21CIM_MemberOfCollection (Member of statistics collection)

This use of MemberOfCollection is to collect all FileSystemStorageStatisticalData instances (in the
StatisticsCollection). Each association is created as a side effect of the metered object getting created.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 170 describes class CIM_MemberOfCollection (Member of statistics collection).

Table 170 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collec-

tion)
Properties Flags Requirement Description & Notes
Collection Mandatory The collection of all filesystem statistics data instances.
Member Mandatory The individual filesystem statistics data Instance that is part of the set.

10.5.22CIM_StatisticsCollection

The CIM_StatisticsCollection collects all filesystem statistics kept by the profile. There is one instance of
the CIM_StatisticsCollection class and all individual metered element statistics can be accessed by using
association traversal (using MemberOfCollection) from the StatisticsCollection.

CIM_StatisticsCollection is subclassed from CIM_SystemSpecificCollection.

224

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory
Table 171 describes class CIM_StatisticsCollection.

Filesystem Performance Profile

Table 171 - SMI Referenced Properties/Methods for CIM_StatisticsCollection

Properties Flags Requirement Description & Notes

InstancelD Mandatory

ElementName Mandatory

Samplelnterval Mandatory Minimum recommended polling/sampling interval for a system that
provides filesystem support (e.g., NAS Head or Self-Contained NAS). It is
set by the provider and cannot be modified.

TimeLastSampled Mandatory Time statistics table by object was last updated (Time Stamp in SMI 2.2

specification format).

EXPERIMENTAL

SMI-S 1.7.0 Revision 5

Working Draft

225

Filesystem Performance Profile

226

Filesystem Quotas Profile

EXPERIMENTAL

11 Filesystem Quotas Profile

11.1

Description

11.1.1 Synopsis

Profile Name: FileSystem Quotas (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: LocalFileSystem

Scoping Class: ComputerSystem

Related Profiles: Table 172 describes the related profiles for FileSystem Quotas.

Table 172 - Related Profiles for FileSystem Quotas

Profile Name Organization Version Requirement Description

Filesystem SNIA 1.7.0 Mandatory

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2
Job Control SNIA 15.0 Optional

11.1.2 Overview

The Filesystem Quotas Profile is intended to provide management of quotas on the use of filesystem
resources--raw space and inodes especially--by the common filesystem principals. User, group and tree
guotas are modeled. Trees means directories (rooted directory hierarchy structures) within filesystems.
Some systems allow quotas only on directories that have some special distinguishing feature, others
allow them on arbitrary directories.

Quota systems work by keeping statistics-in real time-on the space used by each monitored principal/
container pair e.g. a user and her home share. They then trigger events when filesystem writes cause the
space used by the principal to exceed some threshold. There are four common varieties of quota
thresholds:

1.

Hard. Hitting a hard quota threshold causes subsequent writes by the principal to the affected container to
fail. In POSIX, the error returned to the client is ENOSPC (no space). An indication is also thrown.

Soft. A soft threshold causes the system to issue a warning. Systems variously issue warnings via CLI,
SNMP traps, pop-up windows at the user station, audit log entries, email and other proprietary methods. This
profile provides required indications for this purpose.

Soft, with grace period. This type of quota is really a refinement of soft quotas. It functions like a soft quota
until the grace period expires, at which point it begins behaving like a hard quota.

Monitoring. When a monitoring quota is in effect, there are no thresholds, and no warnings are issued. This
type of quota is useful because the underlying system keeps track of the relevant usage statistics in real time
for all quotas. A monitoring quota permits an administrator to simply issue a command to print a quota report
instead of having to do a complete filesystem scan to get the usage information of interest.

In general, it is not possible to have a quota system that meets the above semantics without some level of
access to the data path. More loosely coupled systems may need to relax the semantics of the hard limit,

SMI-S 1.7.0 Revision 5 Working Draft 227

Filesystem Quotas Profile

for example, and may not actually trigger an event until a file is closed, for example. This profile allows
these semantic variations.

Some systems allow "default" quotas for users, groups and/or trees. A default user quota, by way of
example, is used for every user of the system who does not have a quota entry specific to them.

11.1.3 Tree Quotas

Tree quotas are quotas on directory trees with an identifiable root. Mounts and symlinks are not followed.
In other words, a directory which contains nothing but mount points and symbolic links may satisfy a very
small quota, even though the amount of data addressable by entries in the container is large.

Hard links are another matter. The policy is system-dependent, but a common behavior is that if a file or
directory is hard-linked in two separate trees with separate tree quotas, the space used is charged
against both quotas.

Pure tree quotas apply no matter which principal does the writing. There are some caveats however.

* Root on some systems is not constrained by quotas.
 An entity with sufficient privilege may not be constrained by quotas on some systems (e.g. a Windows user
with BackupOperator privilege).

Some systems may support tree quotas only on directories with certain special characteristics.
Directories may be constrained to being top-level, for example. This profile does not specify a means for
determining whether a given directory may have a tree quota set on it.

11.1.4 User Quotas

User quotas are limits on how much space a principal with a given User ID can use. They may be either
global or restricted by namespace tree, as well as by filesystem.

11.1.5 Group Quotas

Group quotas set limits on how much all the members of a group with a given Group ID can use in the
aggregate. They are not, therefore, quotas which apply to each member of a group. This follows Unix
usage. Group quotas only work on systems which have the concept of a primary group id (PGID), as the
system needs to know which group to charge writes against. As NTFS does not have the concept of a
primary group, it does not do group quotas. (Note: There is a primary group field that can be discovered
on a file in NTFS. This is for POSIX support, however, and does not always contain anything meaningful)

Group quotas may be global or applicable to a given namespace tree and/or filesystem.

11.1.6 Container Boundaries

Quotas may be system-wide, or scoped to an individual filesystem. Not all systems support both of these,
however, so provision is made for both. The SupportedPrincipalTypes array in the FSQuotaCapabilities
class distinguishes between User, Group, Tree, User-Tree and Group-Tree quotas as follows:

» User Quotas and Group quotas are described in 11.1.4 and 11.1.5.

» A Tree Quota is a limit on the storage (or other limit such as number of inodes) used by a directory tree. This
guota is not specific to a user or a group but applies to all users and groups creating files and directories
within the tree.

» A User-Tree quota is a limit on the storage used by a user within a directory tree and is applied in parallel with
the Tree Quota (both must be satisfied).

» A Group-Tree quota is a limit on the aggregate storage used by a group of users within a directory tree and is
applied in parallel with the Tree Quota (both must be satisfied).

If a Tree is configured with a Tree Quota as well as User-Tree and Group-Tree guotas, they must all be
satisfied.

228

Filesystem Quotas Profile

11.1.7 Quotatypes

Quotas are usually limits on disk space. Some systems, however, also support limits on the number of
files and/or directories.

11.1.8 Class design considerations

11.1.8.1 New Classes

This profile uses several new classes—FSDomainldentity, FSQuotaCapabilities, FSQuotaReportRecord,
FSQuotaConfigEntry, FSQuotaManagementService, and FSQuotalndication

11.1.8.1.1 FSDomainldentity

Due to the in-band nature of quota tracking, the identifier of the principal being managed needs to be
small and easily optimized. Traditional systems use Unix UIDs and GIDs, which are 32-bit quantities, or
SIDs which are short strings. To tie these into CIM, this new class is specified. Each instance contains a
string with the UID, GID or SID, respectively, in it, and enums for the type of domain and principal.

11.1.8.1.2 FSQuotaCapabilities

This Capabilities subclass lists the properties in a FSQuotaConfigEntry that are supported by the
underlying system. The client shall not attempt to set any properties which are not listed as supported in
the instance of this class associated to the service. It shall instead always populate unsupported
properties with null.

There shall exist exactly one instance of this class per FSQuotaManagementService instance.

11.1.8.1.3 FSQuotaReportRecord

When running a quota report, the underlying system generally issues a text file, each line or group of
lines representing the status of a filesystem principal with respect to one quota configuration entry. There
may be hundreds of thousands of these records, and they are not keyed, meaning that there is no way to
go back and fetch any given one of them. Therefore FSQuotaReportRecord is derived from a new
proposed abstract root class called ReportRecord, which carries the Indication qualifier. Note that this
gualifier does not mean that these classes are subclasses of CIM_Indication. It's used because it's the
only way, currently, to construct a class in CIM which does not require a key.

11.1.8.1.4 FSQuotaConfigEntry

An FSQuotaConfigEntry instance represents a single quota entry supported by the system. For example,
one FSFQuotaConfigEntry instance may specify that on filesystem “foo,” in directory “/bar,” the user “joe”
is restricted to 1GB of space, and should receive a warning at 0.97GB.

A quota entry has been defined as a complex of several classes and associations. If implementation
experience turns up performance considerations related to this, this design may need to be revisited.

Many systems do not support any method of identifying individual FSQuotaConfigEntry instances, as they
simply represent lines in a text file, and the underlying system may not care about duplicates or conflicts.
However, FSQuotaConfigEntry instances need to be modified; this corresponds to editing the
corresponding line in the file. Therefore, if the underlying system does not expose a key, one may be
created by composing the PrincipallD property, a unique reference to the FileSystem or ComputerSystem
to which the entry applies (from the association FSQuotaAppliesToElement), the TreeName property (if a
tree quota), the measured quantity type (the ResourceType property), the quota type (QuotaType
property), and its default status (the Default property). An implementation may expose the algorithm used
to compose the key so that the client may decompose it, but this is not required by this version of the
profile. Upon creation of a new quota instance, clients shall verify that no quota with the same key already
exists. Upon modification of an instance, clients shall modify all instances whose keys match that
instance key.

SMI-S 1.7.0 Revision 5 Working Draft 229

Filesystem Quotas Profile

= PrincipallD: This indicates a user by the user’s UID or SID, or a group by the group’s GID or SID, or it can be
the empty string. It is interpreted in the context of a directory service specified for the file server
ComputerSystem that is associated to the FileSystem by a Dependency association.

= InstancelD. This property is a unique identifier for this FSQuotaConfigEntry. This property shall be unique in
the presence of multiple instances of ComputerSystem and FileSystem, and multiple properties of
QuotaType, Default, ResourceType and PrincipallD. It may be constructible by the client, but this profile does
not specify this format.

11.1.8.1.5 FSQuotaManagementService

The FSQuotaManagementService provides the interface to the underlying system for most operations
which are overtly related to quotas. There shall be at most one instance of a
FSQuotaManagementService for each underlying ComputerSystem.

11.1.8.1.6 FSQuotalndication

The FSQuotalndication class provides information about threshold crossing events, meaning that a quota
has just been exceeded.

11.1.9 Instance Diagram

Figure 17 shows the Filesystem Quotas instance diagram.

System ManagedElement .
IdentityContext
HostedService FSQuotaAppliesToElement
FSQuotaManagementService FSDomainldentity
FSQuotaAppliesToPrincipal
FSQuotaReportRecord
T FSQuotaConfigEntry -‘
ElementCapabilities FSQuotaAppliesToTree
FSQuotaCapabilities LogicalFile
-(directory)

Figure 17 - Filesystem Quotas Instance Diagram

11.2 Health and Fault Management Considerations

Not defined in this standard

11.3 Methods of the Profile

All profile methods are contained in the FSQuotaManagementService.

230

Filesystem Quotas Profile

11.3.1 FindQuotaEntries

uint32 FindQuotaEntries(
IN string ldentityld,
IN ManagedElement REF Element,
IN string Tree,
IN uintl6é QuotaType,
OUT EmbeddedlInstance(**CIM_FSQuotaConfigEntry'")string QuotaEntries[],

Given a combination of inputs, FindQuotaEntries() searches the quota entry database on the managed
device for quota entries that match, and returns a list. On systems that support it, long-running queries
may return a job.

Possible quota entries are:
1) Identityld

Identityld is an optional string that can specify the UID, GID, or SID or can specify a pattern. The
following rules apply to Identityld:

a) If Identityld is NULL or the empty string, no identity-based quotas should be returned.
b) If IdentitylD is NULL, default quotas will be returned.
c) If Identityld is “*”, this matches all identity-based quotas entries.

d) Identityld may also be a specific ID, or the prefix of an ID followed by "*". Standard prefix string
matching is used to determine which entries match in this case.

2) Element

Element is an optional reference to a ManagedElement (declared as CIM_ManagedElement REF
Element). The following rules apply to Element:

a) When a ComputerSystem is passed for Element, the returned entries may be default or other entries for
both the ComputerSystem and its contained FileSystems.

b) When a FileSystem is passed in for Element, only entries pertaining to that FileSystem shall be
returned. This may include default entries applicable to that FileSystem.

c) If NULL is passed in for Element, the FSQuotaManagementService assumes that the Computer-
System it is hosted on is the Element.

Element is an optional reference to a ComputerSystem or a LocalFileSystem, but is declared as a
reference to a ManagedElement, which is the only common parent class.

3) Tree

Tree is an optional string that identifies a tree (or trees) contained within a filesystem. The following rules
apply to Tree:

a) A null or empty string indicates that no tree quota entries should be returned.

b) A “*"tree parameter matches all tree quota entries defined within the filesystem(s) indicated by
Element, if any.

c) If Tree contains a path, it matches that path only. On some systems, this may result in multiple
matches, one for the same-named tree in each of several filesystems.

SMI-S 1.7.0 Revision 5 Working Draft 231

Filesystem Quotas Profile

d) Prefix string matching may be used for the Tree parameter. E.g. the path "/x/y/*" will match tree
guotas on both "/x/y/m" and "/x/y/p".

4) QuotaType

QuotaType is an enumerated optional parameter that describes what type of quota entries should be
returned. The following rules apply to QuotaType:

a) NULL or Unknown matches any entry (i.e., it is a wildcard).
b) If Tree is specified, then entries which are pure tree quotas (not user-tree or group-tree) match.

c) If User-Tree or Group-Tree is specified, then only user-tree or group-tree quotas match.

11.3.2 DeleteQuotaEntry
uint32 DeleteQuotaEntry(IN string EntrylD);

This routine deletes a given quota entry from the managed device’s quota entry database. Recall that the
ManagedElement’s name is specified as part of a QuotaEntry’s InstancelD, above. A CIMOM managing
multiple devices may use that to find which device to address when deleting the actual entry.

11.3.3 ModifyQuotaEntry

uint32 ModifyQuotaEntry(
IN string Entryld,
IN EmbeddedInstance(""CIM_FSQuotaConfigEntry') string QuotaEntry,
OUT CIM_Job REF Job;

Given the InstancelD of an existing quota entry, ModifyQuotaEntry() replaces it with a new entry
specified as an EmbeddedInstance.

11.3.4 AddQuotaEntry

uint32 AddQuotaEntry(
IN EmbeddedInstance(""CIM_FSQuotaConfigEntry') string QuotaEntry,
OUT CIM_Job REF Job;
)
This routine adds a new quota entry to the quota entry database on the appropriate managed element.

The ConflictingEntriesUsage property in FSQuotaCapabilities (see 11 "Filesystem Quotas Profile") will
govern what happens if an entry already exists with the same combination of PrincipallD,
ManagedElement, TreeName, ResourceType, QuotaType, and Default.

11.3.5 GetQuotaReport

uint32 GetQuotaReport(
IN CIM_ManagedElement REF Element,
IN string Tree,
IN string User,
IN EmbeddedlInstance(""CIM_FSDomainldentity') string Group,
IN, OUT string Cursor,
IN, OUT uint64 NQuotas,
OUT CIM_Job REF Job,

232

Filesystem Quotas Profile

OUT EmbeddedlInstance("'CIM_FSQuotaReportRecord'™) string ReportRecs[];
)
This routine gets a quota report from a managed element. As there may be millions of records in this
report, a chunking mechanism is provided so that the client does not become overwhelmed by the
guantity of data furnished by the server.

The initial call to GetQuotaReport shall pass in NULL as a Cursor. Subsequent calls shall pass back the
cursor exactly as received from the server, without modification, as an indication of where to continue the
report from.

Clients which do not wish to use the chunking mechanism may pass a number such as 2% - 1 in NQuotas.

On many systems, the initial phase of preparing a quota report may take some time. A job is returned in
this case.

11.3.6 EnableQuotas

uint32 EnableQuotas(

IN Boolean OnOfT,

IN CIM_ManagedElement element,

OUT CIM_Job REF Job

)

This routine turns quota management on or off on a given managed element. This routine shall always be
supported when the element is a CIM_ComputerSystem. On systems that support it, the
ManagedElement may alternatively be a filesystem. If an attempt is made to change the state on an
unsupported ManagedElement, the routine shall return an appropriate error (“Operation unsupported for
individual MEs of this type”).

11.3.7 InitializeQuotas

uint32 InitializeQuotas(
IN CIM_ComputerSystem REF Server,
OUT CIM_Job REF Job);
Some systems require an explicit initialization step before quotas may be used. If this step takes some

time, a job shall be returned. Systems which do not require this step shall return “Success”.
11.4 Use Cases

Because quota management capabilities vary so widely from device to device, clients must be prepared
to receive "unsupported" errors. These can be kept to a minimum by inspecting the QuotaCapabilities of
the managed device. See the QuotaGetCapabilities routine in 11.4.1.

There are five fundamental operations on quotas:

. Initialize the quota management system
. Turn quota tracking on or off
. Add or modify a quota table entry

A W N P

. Read the quota table
5. Get a report on quota usage for one or all entries in the quota table

The QuotaManagementService class contains extrinsics for all of these things, so each task reduces to
getting the service instance and invoking the desired method.

SMI-S 1.7.0 Revision 5 Working Draft 233

Filesystem Quotas Profile

The following example code is advisory.

11.4.1 Common subroutines

In the Filesystem Quotas sample routines, the following subroutines are used (and declared inline here):

sub CIM_QuotaManagementService QuotaGetQMService(
IN REF CIM_System system);

services = Associators(system,
"CIM_HostedService",
"CIM_QuotaManagementService",
"Antecedent",
"'Dependent™,
false, false, NULL);

return services[0];

sub CIM_QuotaCapabilities QuotaGetCapabilities(
IN REF CIM_System system)

service = QuotaGetQMService(system);

caps = Associators(service,
"CIM_ElementCapabilities”,
"CIM_QuotaCapabilities",
"CIM_ManagedElement",
“"ManagedElement™,
"Capabilities",
false, false, NULL);

return caps[0];
sub boolean QuotaSupportsPrincipalType(

IN REF CIM_System system,
IN uintl6é type)

{
capabilities = QuotaGetCapabilities(system);
for(i = 0; capabilities.SupportedPrincipalTypes[i] '= NULL; ++) {
if (capabilities.SupportedPrincipalTypes[i] == type) {
return TRUE;
}
}
return FALSE;
}

234

Filesystem Quotas Profile

All of the following routines may return errors indicating that the supplied managed element is not
supported. In most cases this will be because the operation (e.g. initializing quotas) is a system-wide
operation, and cannot be done on a per-filesystem basis.

11.4.2 Initialize quotas

sub uint_16 InitializeQuotas(

}

IN REF CIM_System system)

gms = QuotaGetQMService(system);

result = gms->InitializeQuotas(system, job);

//

// See the Job Control profile for information on
// handling the job if one is returned.

//

return result;

11.4.3 Enable or disable quota tracking

/77

// enable or disable quotas

//

// See the mof for the EnableQuotas extrinsic for possible

// return values

//

sub uintl6 EnableQuotas(IN REF CIM_System system,

}

IN REF CIM_ManagedElement me,
IN boolean onoff)

gms = QuotaGetQMService(system);
result = gms->EnableQuotas(onoff, me, job);

//

// See the Job Control profile for information on
// handling the job if one is returned.

//

return result;

11.4.4 Add a quota entry
sub uintl6 AddQuotakEntry(IN REF CIM_System system,

IN REF CIM_ManagedElement me,

IN String tree,

IN REF CIM_Domainldentity principal,
IN uint64 hardlimit,

IN uint64 softlimit,

IN uint64 graceperiod,

SMI-S 1.7.0 Revision 5 Working Draft

235

Filesystem Quotas Profile

IN boolean active,
IN string restype,
IN uintl6é quotatype,
IN REF logicalfile,
IN REF me,

IN boolean default)

service = QuotaGetQMService(system);
entry = Createlnstance(“CIM_FSQuotaConfigEntry™);
entry->HardLimit = hardlimit;
entry->SoftLimit = softlimit;
entry->SoftLimitGracePeriod = graceperiod;
entry->Active = active;
switch (restype) {

case “Bytes”: entry->ResourceType = 2;

case “Files”: entry->ResourceType = 3;

case “Directories”: entry->ResourceType = 4;
case “Files+Directories”: entry->ResourceType = 5;
case “Inodes”: entry->ResourceType = 6;
default: entry->ResourceType = 0;
}
switch (quotatype) {
case “User”: entry->QuotaType = 2;
case “Group”: entry->QuotaType = 3;
case “Tree”: entry->QuotaType = 4;
default: entry->QuotaType = O;
}
if (principal = NULL) {
entry->PrincipallD = principal->PrincipallD;
else
entry->PrincipalID = NULL;
if (logicalfile = NULL) {
entry->TreeName = logicalfile->Name;
else
entry->TreeName = NULL;
entry->ManagedElement = me;
entry->Default = default;
entry->InstancelD = NULL;

result = service->AddQuotaEntry(entry, job);

//

// analyse error, if there is one: the above code
// cannot return “1” or “37, so only “27 is left.
// And that means there’s already an identical

// entry, so declare victory and move on.

//

236

Filesystem Quotas Profile

return result; // could return 0, if you prefer

11.4.5 Delete a quota entry

//
// See the mof for the DeleteQuotaEntry extrinsic for possible
// return values
//
sub uintl6 DeleteQuotaEntry(IN REF CIM_System system,
IN string entryid,
OUT REF CIM_Job job)

{
service = QuotaGetQMService(system);
result = service->DeleteQuotakEntry(entryid);
return result;

}

11.4.6 Modify a quota entry

//
// There are many ways to modify a quota entry. Here are
// a couple examples
//
sub uintl6 ModifyQuotaHardLimit(IN REF CIM_System system,
IN string entryid,
IN uint64 newlimit)

service = QuotaGetQMService(system);

entry = Getlnstance(entryid);

entry->HardLimit = newlimit;

result = service->ModifyQuotaEntry(entryid, entry, job);
//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return result;

sub uintl6 SpecificUserToDefault(IN REF CIM_System system,
IN string uid)

//

// change Alice’s quota to be the default for
// all users

//

service = QuotaGetQMService(system);

SMI-S 1.7.0 Revision 5 Working Draft 237

Filesystem Quotas Profile

//
// Need to search through all the quota entry instances
// for the given uid.
//
ges[] = Enumeratelnstances(“CIM_FSQuotaConfigEntry”,
true, false, false, false, “PrincipallD”);
foreach ge (ges[]) {
if (ge->PrincipallD == uid) {

ge->PrincipallD = NULL);

ge->Default = true;

return O;

3
return 1; // not found

}

11.4.7 Read the quota entries

//
// Warning: on some systems, this may return 10°s of
// thousands of entries

//
sub FSQuotaConfigEntry[] ReadQuotaEntries(IN REF CIM_System system)
{
service = QuotaGetQMService(system);
service->FindQuotaEntries(NULL, system, NULL, NULL, NULL,
ges[], job);
//
// See the Job Control profile for information on
// handling the job if one is returned.
//
return qges[];
¥

11.4.8 Get areport on quota usage

sub FSQuotaReportRecord[] GetQuotaReport(IN REF CIM_System system)
{
cursor = NULL;
service = QuotaGetQMService(system);
nrecs = 1000;
r = service->GetQuotaReport(system, NULL, NULL, NULL,
cursor, nrecs, job, recs[]);
<manage job>;
<do something with recs>;
whille (r '= “No more data™) {
r = service->GetQuotaReport(system, NULL, NULL, NULL,
cursor, nrecs, job, recs[]);
<manage job>;

238

Filesystem Quotas Profile

<do something with recs>;

11.5 CIM Elements

Table 173 describes the CIM elements for FileSystem Quotas.

Table 173 - CIM Elements for FileSystem Quotas

Element Name Requirement | Description

11.5.1 CIM_FSDomainldentity Mandatory A small class containing the unique ID of a user
or group in a Unix or Windows domain.

11.5.2 CIM_FSQuotaAppliesToElement Mandatory An association between a quota config entry and
a managed element.

11.5.3 CIM_FSQuotaAppliesToPrincipal Mandatory An association between a quota config entry and
a filesystem principal entity.

11.5.4 CIM_FSQuotaAppliesToTree Mandatory An association between a gquota config entry and
a directory.

11.5.5 CIM_FSQuotaCapabilities Mandatory The supported targets, quota types, resource

types and behaviors of the
FSQuotaManagementService associated to this
class instance.

11.5.6 CIM_FSQuotaConfigEntry Mandatory A single quota entry in the configuration
database.
11.5.7 CIM_FSQuotalndication Optional An indication specially referring to quota events.

Note that the threshold and current value are
passed in the parent class, in ThresholdValue and
ObservedValue.

11.5.8 CIM_FSQuotaManagementService Mandatory Quota Management Service class.

11.5.9 CIM_FSQuotaReportRecord Mandatory A class representing a single line in a quota report
generated by a call to the QuotaReport() extrinsic
of the FSQuotaManagementService.

11.5.10 CIM_ReportRecord Mandatory An abstract keyless class proposed as the root of
a tree of report record classes.

SELECT * FROM CIM_FSQuotalndication WHERE Mandatory Hard quota threshold crossed.
CIM_FSQuotalndicationWhichLimit = 2

SELECT * FROM CIM_FSQuotalndication WHERE Mandatory Soft quota threshold crossed.
CIM_FSQuotalndication::WhichLimit = 3

11.5.1 CIM_FSDomainldentity

Created By: Createlnstance_or_Static_or_External
Deleted By: Static
Requirement: Mandatory

SMI-S 1.7.0 Revision 5 Working Draft

239

Filesystem Quotas Profile

Table 174 describes class CIM_FSDomainldentity.

Table 174 - SMI Referenced Properties/Methods for CIM_FSDomainldentity

Properties Flags Requirement Description & Notes

PrincipallD Mandatory The unique ID of a principal. This may be a UID, GID or a SID.

DomainType Mandatory The type of domain the Principal belongs to. Possible values are
"Unknown", "Other", "Unix", and "Active Directory".

PrincipalType Mandatory The type of Principal represented by this identity instance. Possible values
are "Unknown", "Other", "User" and "Group".

11.5.2 CIM_FSQuotaAppliesToElement

Created By: Createlnstance
Modified By: Extrinsic_or_External
Deleted By: Deletelnstance
Requirement: Mandatory

Table 175 describes class CIM_FSQuotaAppliesToElement.

Table 175 - SMI Referenced Properties/Methods for CIM_FSQuotaAppliesToElement

11.5.3 CIM_FSQuotaAppliesToPrincipal

Properties Flags Requirement Description & Notes
Antecedent Mandatory The managed element.
Dependent Mandatory The quota config entry.

Created By: Createlnstance
Modified By: Extrinsic_or_External
Deleted By: Deletelnstance
Requirement: Mandatory

Table 176 describes class CIM_FSQuotaAppliesToPrincipal.

Table 176 - SMI Referenced Properties/Methods for CIM_FSQuotaAppliesToPrincipal

Properties Flags Requirement Description & Notes
Antecedent Mandatory The filesystem principal.
Dependent Mandatory The quota config entry.

11.5.4 CIM_FSQuotaAppliesToTree

Created By: Createlnstance
Modified By: Extrinsic_or_External
Deleted By: Deletelnstance
Requirement: Mandatory

240

Filesystem Quotas Profile

Table 177 describes class CIM_FSQuotaAppliesToTree.

Table 177 - SMI Referenced Properties/Methods for CIM_FSQuotaAppliesToTree

Properties Flags Requirement Description & Notes
Antecedent Mandatory The filesystem directory tree.
Dependent Mandatory The quota config entry.

11.5.5 CIM_FSQuotaCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 178 describes class CIM_FSQuotaCapabilities.

Table 178 - SMI Referenced Properties/Methods for CIM_FSQuotaCapabilities

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

A unique ID for the capabilities instance.

ElementName

Mandatory

A user-friendly name for the instance in the format
SystemName:ManagedElementName:Capabilities.

SupportedTargetTypes

Mandatory

The target types supported by the Service. Possible values
are "ComputerSystem" and "FileSystem".

SupportedPrincipalTypes

Mandatory

An array of the types of Principal supported by the Service.
Possible values are "User", "Group", "User-tree", "Group-
tree" and "Tree".

ConflictingEntriesUsage

Mandatory

The behavior of the system when it encounters quota entries
with duplicate keys.

SupportedResourceTypes

Mandatory

An array of resource types that may have quotas placed on
them by this Service. Possible values are"Unknown",
"Other", "Bytes", "Files", "Directories", "Files+Directories",
"Inodes" and "Blocks".

DefaultSupported

Mandatory

An array that indicates which resource types may have
default quotas set upon them by this Service. Possible
values are the same as for SupportedResourceTypes.

IsActiveSettingPerEntrySupported

Mandatory

Indicates whether quotas may be made active or inactive per
entry.

IsMonitoredSettingPerEntrySupported

Mandatory

Indicates whether quota monitoring may be turned on or off
per entry.

IsGracePeriodSupported

Mandatory

Indicates whether a grace period may be set on a quota. If it
can, then crossing over a soft threshold for more then the
period of time specified in the grace period effectively
converts the soft threshold to a hard limit, cutting off further
allocation of the resource.

11.5.6 CIM_FSQuotaConfigEntry

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External

SMI-S 1.7.0 Revision 5

Working Draft

241

Filesystem Quotas Profile

Deleted By: Extrinsic_or_External

Requirement: Mandatory

Table 179 describes class CIM_FSQuotaConfigEntry.

Table 179 - SMI Referenced Properties/Methods for CIM_FSQuotaConfigEntry

Properties Flags Requirement Description & Notes

InstancelD Mandatory A unique ID for the entry.

HardLimit Mandatory The hard limit for this quota.

SoftLimit Mandatory The soft limit for this quota.

SoftLimitGracePeriod Optional Length of the grace period, if any exists.

Active Optional Whether or not this quota is to be actively monitored. If NULL, the
system does not support activation of individual quotas.

Monitor Mandatory Whether or not this is a monitor-only quota. If this is TRUE, no
enforcement of any kind is done.

ResourceType Mandatory The type of resource being managed.

QuotaType Mandatory The type of quota to create (user, group, etc.).

TreeName Mandatory Path of the tree over which this quota is applicable, if any.

PrincipallD Mandatory The user or group being constrained by this quota, if any.

FileSystem Mandatory A The name of the FileSystem, if any, over which this quota is
monitored.

Default Mandatory Whether or not this is a default quota.

11.5.7 CIM_FSQuotalndication

Created By: External

Deleted By: Static

Requirement: Optional

Table 180 describes class CIM_FSQuotalndication.

Table 180 - SMI Referenced Properties/Methods for CIM_FSQuotalndication

Properties Flags Requirement Description & Notes

IdentitylD Mandatory The InstancelD of the FSDomainldentity involved in causing the event. If
there is none, NULL shall be passed in this property.

EntrylD Mandatory The InstancelD of the FSQuotaConfigEntry involved in causing the event.

Path Mandatory The complete path of the tree involved in causing the event. If there is
none, NULL shall be passed in this property.

WhichLimit Mandatory Either "hard" or "soft".

ResourceType Mandatory "Bytes", "Files", "Directories","Files+Directories" or "Inodes".

QuotaType Mandatory Either "user", "group" or "tree".

Limit Mandatory The limit set by the quota entry.

242

Filesystem Quotas Profile

Table 180 - SMI Referenced Properties/Methods for CIM_FSQuotalndication

Properties Flags Requirement Description & Notes

AmountUsed Optional Amount of resource actually used at the time the indication was
generated.

FileSystem Mandatory The Name of the FileSystem in which the event occurred.

11.5.8 CIM_FSQuotaManagementService
Created By: Static

Deleted By: Static
Requirement: Mandatory

Table 181 describes class CIM_FSQuotaManagementService.

Table 181 - SMI Referenced Properties/Methods for CIM_FSQuotaManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas Mandatory

sName

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

FindQuotaEntries() Mandatory Retrieve one or more quota entries based on a set of input criteria.
DeleteQuotaEntry() Mandatory Delete a specified quota entry.

ModifyQuotaEntry() Mandatory Modify a specified quota entry.

AddQuotaEntry() Mandatory Add a new quota entry.

GetQuotaReport() Mandatory Obtain a report on usage against the quota entries on a system.
EnableQuotas() Mandatory Turn quota monitoring on or off.

InitializeQuotas() Mandatory Initialize the quota reporting system.

11.5.9 CIM_FSQuotaReportRecord
Created By: Extrinsic

Deleted By: Static
Requirement: Mandatory

Table 182 describes class CIM_FSQuotaReportRecord.

Table 182 - SMI Referenced Properties/Methods for CIM_FSQuotaReportRecord

Properties Flags Requiremen | Description & Notes

t
HardLimit Optional The hard threshold associated with this quota report record, if any.
SoftLimit Optional The soft threshold associated with this quota report record, if any.

SMI-S 1.7.0 Revision 5 Working Draft

243

Filesystem Quotas Profile

Table 182 - SMI Referenced Properties/Methods for CIM_FSQuotaReportRecord

Properties Flags Requiremen | Description & Notes
t

SoftLimitGracePeriod Optional The grace period associated with the soft limit associated with this report
record, if any.

Active Optional Whether the quota associated with this report record is being actively
enforced. If not, this indicates the quota is being used for tracking
purposes only.

Monitored Optional Whether or not thresholds on this quota are being monitored. If a system
reports quotas that aren't being monitored, this value may be false.

ResourceType Mandatory The type of resource whose use is counted in this quota report record.

QuotaType Mandatory The type of Principal to which this quota applies. Possible values are
"Unknown", "Other", "User", "Group" and "Tree".

AmountUsed Mandatory The amount of resource used by the combination of Principal, Resource
type, Tree, and ManagedElement specified in the quota configuration
entry that generated this quota report record (and reported in other fields
in the record).

TreeName Optional The URI of the filesystem tree upon which the quota was set, if any.

PrincipallD Optional The FSDomainldentity for the Principal associated with this quota report
record, if any.

FileSystem Optional The name of the filesystem over which the quota entry that generated the
report record was placed, if any.

11.5.10CIM_ReportRecord

Created By: Static
Deleted By: Static

Requirement: Mandatory

EXPERIMENTAL

244

STABLE
12 NAS Head Profile

12.1 Description

12.1.1 Synopsis

Profile Name: NAS Head (Autonomous Profile)

Version: 1.7.0

Organization: SNIA

Central Class: ComputerSystem

Scoping Class: ComputerSystem

Related Profiles: Table 183 describes the related profiles for NAS Head.

Table 183 - Related Profiles for NAS Head

Profile Name Organization Version Requirement Description
Filesystem SNIA 1.7.0 Mandatory

File Storage SNIA 1.4.0 Mandatory

File Export SNIA 1.7.0 Mandatory

NAS Network Port SNIA 1.7.0 Mandatory

Access Points SNIA 1.3.0 Optional

Multiple Computer System SNIA 1.2.0 Optional

Software SNIA 1.4.0 Optional

Location SNIA 1.4.0 Optional

Extent Composition SNIA 1.6.0 Optional

Filesystem Manipulation SNIA 1.7.0 Optional

File Export Manipulation SNIA 1.7.0 Optional

File Server Manipulation SNIA 1.7.0 Optional

Filesystem Performance SNIA 1.7.0 Optional Experimental.
FileSystem Quotas SNIA 1.7.0 Optional Experimental.
Filesystem Replication Services | SNIA 1.7.0 Optional Experimental.
Job Control SNIA 1.5.0 Optional

SAS Initiator Ports SNIA 1.7.0 Optional

FC Initiator Ports SNIA 1.7.0 Optional

Device Credentials SNIA 1.3.0 Optional

Operational Power SNIA 1.7.0 Optional Experimental.
Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version 1.0.0
Physical Package SNIA 1.5.0 Mandatory

NAS Head Profile

Table 183 - Related Profiles for NAS Head

Profile Name Organization Version Requirement Description

Block Services SNIA 1.7.0 Mandatory

Health SNIA 1.2.0 Mandatory

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2

12.1.2 Overview

The NAS Head Profile exports File elements (contained in a FileSystem) as FileShares. The storage for
the FileSystem is obtained from external SAN storage, for example, a Storage Array that exports Storage
Volumes as LUNs. The storage array may also provide storage to other hosts or devices (or other NAS
Heads), and the storage on the array might be visible to other external management tools, and may be
actively managed independently.

This profile models the necessary filesystem and NAS concepts and defines how the connections to the
underlying storage is managed. The details of how a Storage Array exports storage to the NAS Head is
not covered in this profile but is covered by the Array Profile.

The NAS Head Profile reuses a significant portion of 16 Storage Virtualizer Profile in Storage Management
Technical Specification, Part 4 Block Devices, 1.7.0 Rev 5.

The NAS Head Profile and its component profiles and packages are illustrated in Figure 18: "NAS Head
Profiles".

246

NAS Head Profile

NAS Network Indicati
Ports ndications
SystemDevice
Device Credentials
HostedService
InstalledSoftwareldentity NAS Head _|
FileExport
HostedShafe Manipulation
File Export HostedService [
ComputerSystemPackage
Software File Server
Manipulation
Concreteldentity _|
File Storage
ComponentCS SBIo.ck

ervices

PhysicalPackage Package — Package

HostedFileSystem
PhysicalEIementLocaTan MF;LeiZTJT:irgn |
FileSystem
Location OwningJobElement
' 1
e i FSQuota
Multiple HostedAccessPoint Job Control
ComputerSystem CascadingDependency
ConcreteComponent
Access Points
Extent]
Composition
Cascading

Initiator Ports

12.1.3 Implementation

Figure 18 - NAS Head Profiles

12.1.3.1 Summary Instance Diagram

Figure 19: "NAS Head Instance" illustrates the mandatory classes for the NAS Head Profile. This figure
shows all the classes that are mandatory for the NAS Head Profile. Later diagrams will review specific
sections of this diagram.

SMI-S 1.7.0 Revision 5

Working Draft

247

NAS Head Profile

—_—_———e— e — — — — — 4

NAS Network Ports
I Profile

ProtocolEndPoint

ImplementationCapabilities

Ilnitiator Ports Profile (Optional)

Target
ProtocolEndpoint

l SCSIProtocolController

Initiator
ProtocolEndpoint

ProtocolControllerForEndpoint
— e e e e e e e e e e —— — —

LDeviceSAPImpI

StorageExtent
(Optional)

InitiatorTarget
LogicalUnitPath

ProtocollFType = 4200 | 4201 I
| W " NetworkPort
l (NFS"or"CIFS") DeviceSAPImplementation
e s S,
— — — — — — —— — — — — — — — — — o—
I_ SAPAvailableForElement I
File Export
Virtual File Server Profile FileShare I
C terSyst
or?gl;t?;ng; em HostedShare NFS or CIFS)
EIementS‘ettngala ‘ SNIA_ExportedFileShareSetting I
I SNIA_SharedElement ‘ I
I ConcreteDependency
(For Backward Compatibility) J
e e e | e e e e | e e e e e e e—
r HostedDependency
(Conditional) |
i SNIA_LocallyAccessibleFileSystemSettin
FileSystem _Locally, Y 9
- L LogicalFile (Conditional) |
I Profile (Directory)
SystemDevice I
l FileStorage ElementSettingData I
(For Backward Compatibility) (Conditional)
HostedShale I
SNIA_LocalAccessAvailable
l (Conditional) . FileSystemSetting
I SNIA_LocalFileSystem Elem?g;?iit:;gDatai (Optional)
I-File Storage |
Profile
ResidesOnExtent I
HostedFileSysten (Conditional)
ITBIock Services Package LogicalDisk ! StorageSetting
ElementSettingData I
L —HostedDependency—| ComputerSystem | .
SystemDevice I
AllocatedFromStoragePool
I AllocatedFromStoragePool StoragePool ElementCapabil StorageCapabilities
ElementCapabilities I
SystemDevice HostedStoragePool J
(Optional) e e e e e e e e e, e, e e e e e . -
ConcreteComponent
(Optional)

StorageExtent
(Optional)

FCPort

UsageRestriction =
‘Back-end only’

emenlationJ

L - =

248

Figure 19 - NAS Head Instance

NAS Head Profile

The NAS Head Profile closely parallels the Storage Virtualizer Profile in how it models storage. Storage is
assigned to StoragePools and LogicalDisks are allocated from those storage pools for the purpose of
holding local filesystems of the NAS.

As with the Storage Virtualizer Profile, the NAS Head StoragePools have StorageCapabilities associated
to the StoragePools via ElementCapabilities. Similarly, LogicalDisks that are allocated from those
StoragePools have StorageSettings, which are associated to the LogicalDisk via ElementSettingData.
StoragePools are hosted by a ComputerSystem that represents the NAS “top level” system, and the
StorageExtents have a SystemDevice association to the “top level” ComputerSystem.

NOTE As with Self-Contained NAS, the StoragePools may be hosted by a component ComputerSystem if the Profile has
implemented the Multiple Computer System Profile.

As with the Storage Virtualizer Profile, the “top level” ComputerSystem of the NAS Head does not (and
typically isn’'t) a real ComputerSystem. It is merely the ManagedElement upon which all aspects of the
NAS offering are scoped.

A NAS Head may implement “Virtual File Servers” in addition to, or instead of, implementing File Servers
in the Top Level ComputerSystem or one of the Multiple Computer System ComputerSystems. A Virtual
File Server shall have a HostedDependency to either the top level NAS ComputerSystem or one of the
Multiple Computer System ComputerSystems. NOTE: A Virtual File Server shall not have a
ComponentCS association to the top level NAS ComputerSystem.

As with Storage Virtualizer Profile, the NAS Head draws its storage from an open SAN. That is, the actual
disk storage is addressable independent of the NAS Head. As a result, the NAS head shall model the
Initiator ports and the StorageExtents that it acquires from the SAN. The NAS Head supports at least one
of the Initiator Ports Profiles (the dashed box at the bottom of Figure 19: "NAS Head Instance") to effect
the support for backend ports. The NAS Head includes the Block Services Package to effect the logical
storage management (the dashed box just above the Initiator Ports dashed box in Figure 19: "NAS Head
Instance").

Everything above the LogicalDisk is specific to NAS (and does not appear in the Storage Virtualizer
Profile). LocalFileSystems are created on the LogicalDisks, LogicalFiles within those LocalFileSystems
are shared (FileShare) through ProtocolEndpoints associated with NetworkPorts.

NOTE The classes and associations in the dashed boxes are from the required packages and component profiles (as indicated by
the labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with previous releases of
SMI-S. It represents a relationship between a FileShare and a Directory.

The ResidesOnExtent is conditional on the use by NAS profiles (NAS Head and Self-contained NAS) in
the File Storage Profile. In the NAS Head a LocalFileSystem shall map to a LogicalDisk.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are
only shown here to illustrate where they would show up in the model should they be implemented.

In the base NAS Head profile, the classes and associations shown in Figure 19: "NAS Head Instance"
are automatically populated based on how the NAS Head is configured. Client modification of the
configuration (including configuring storage, creating extents, local filesystems and file shares) are
functions found in component profiles of the NAS Head Profile.

EXPERIMENTAL

An instance of ImplementationCapabilities may be associated to the top level NAS Head
ComputerSystem. This Capabilities instance identifies the capacity optimization techniques supported by

SMI-S 1.7.0 Revision 5 Working Draft 249

NAS Head Profile

the implementation. An implementation may advertise that it supports “None”, "SNIA:Thin Provisioning",
"SNIA:Data Compression" or "SNIA:Data Deduplication™.

EXPERIMENTAL

12.1.3.2 NAS Storage Model

Figure 20: "NAS Storage Instance" illustrates the classes mandatory for modeling of storage for the NAS
Head Profile.

ComputerSystem

SystemDevice Block Services Package I

SystemDevice

LogicalDisk StorageSetting

ElementSettingData

[]
HostedStoragePool

AllocatedFromStoragePool

StoragePool StorageCapabilities
ElementCapabilities

ConcreteComponent

(Optional)
‘ StorageExtent
StorageExtent ptional)
(Optional)

Figure 20 - NAS Storage Instance

The NAS Head Profile uses most of the classes and associations used by the Storage Virtualizer Profile
(including those in the Block Services Package). In doing this, it leverages many of the component
profiles that are available for Storage Virtualizer Profiles. The classes and associations shown in Figure
20: "NAS Storage Instance" are the minimum mandatory for read only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled,
including the HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the
StoragePool. In addition, for NAS Heads, which get their storage from a SAN, the StorageExtents that
compose the primordial StoragePools shall also be modeled with ConcreteComponent associations to the
StoragePool to which they belong and they will be primordial.

In addition, in order for storage to be used it shall be allocated to one or more LogicalDisks. A LogicalDisk
shall have an AllocatedFromStoragePool association to the StoragePool from which it is allocated. The
LogicalDisk shall have an ElementSettingData association to the settings that were used when the
LogicalDisk was created.

For manipulation of Storage, see 5 Block Services Package of Storage Management Technical Specification,
Part 4 Block Devices, 1.7.0 Rev 5. LogicalDisks are the ElementType that is supported for storage allocation

250

NAS Head Profile

functions (e.g., CreateOrModifyElementFromStoragePool and ReturnToStoragePool), but the Block
Services methods for managing LogicalDisks are optional for the NAS Head Profile. The NAS Head
Profile also supports (optionally) the Pool manipulation functions (e.g., CreateOrModifyStoragePool and
DeleteStoragePool) of the Block Services Package.

12.1.3.3 NAS Head Use of Filesystem Profile (Mandatory)

The NAS Head Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the NAS
Head, the Filesystem Profile shall be supported. See 8 Filesystem Profile for details on this modeling.

12.1.3.4 NAS Head Use of File Storage Profile (Mandatory)

The NAS Head Profile uses the File Storage Profile for modeling of its file storage constructs. For the
NAS Head, the Filesystem Profile shall be supported. See 7 File Storage Profile for details on the file
storage modeling.

12.1.3.5 NAS Head Use of File Export Profile (Mandatory)

The NAS Head Profile uses the File Export Profile for modeling of its file export constructs. For the NAS
Head, the File Export Profile shall be supported. See 4 File Export Profile for details on this modeling.

12.1.3.6 NAS Head Use of NAS Network Ports Profile (Mandatory)

The NAS Head Profile uses the NAS Network Ports Profile for modeling of its file export constructs. For
the NAS Head, the NAS Network Ports Profile shall be supported. See 14 NAS Network Port Profile for
details on this modeling.

12.1.3.7 Indication Events

12.1.3.7.1 InstModification of ComputerSystem
Table 184 identifies the standard OperationalStatus values and the events that are being indicated.

Table 184 - InstModification Events for ComputerSystem

New OperationalStatus Event / Correlated Indications

OK The top level NAS system is fully operational.

An Error in the Top Level NAS system was corrected and the system is now fully
functional.

Self test is complete and the NAS system is fully operational

Degraded The system is running but with limitations.

Error The system is experiencing an error and is not functional.

Stopped The system has been stopped.

No contact The system status cannot be determined, due to no response from the system.
Starting The system is starting, but it not yet functional.

Stopping The system is stopping.

Lost communication The system status cannot be determined, due to communications problems.

SMI-S 1.7.0 Revision 5 Working Draft 251

NAS Head Profile

12.1.3.7.2 InstModification of LogicalDisk

EXPERIMENTAL

Table 185 identifies the standard OperationalStatus values and the events that are being indicated.

Table 185 - InstModification Events for LogicalDisk

New OperationalStatus Event / Correlated Indications
OK The logical disk is fully functional.
Degraded The logical disk is experiencing errors, but is still supporting data.

The Logical disk is rebuilding, so performance may suffer.

Error The logical disk has an error and is not usable.
Starting The logical disk is being brought online.
Dormant The logical disk is offline.

EXPERIMENTAL

EXPERIMENTAL
12.1.3.8 Bellwether Indications

12.1.3.8.1 Alertindication for ComputerSystem Bellwether

This Alertindication signals the change in status (OperationalStatus) of a ComputerSystem as a
bellwether event. It is supported by a standard message (MessagelD=FSM1). Table 186 shows the
OperationalStatus values that may signal that changes may have occurred in related elements (Implied
Indications Inhibited).

Table 186 - Bellwether Alertindication Events for ComputerSystem

New OperationalStatus Implied Indications Inhibited

OperationalStatus changes to Elements with SystemDevice associations to this
ComputerSystem (LogicalDisks, ...)

OperationalStatus changes to Elements with HostedService associations to this
ComputerSystem (FileSystemConfigurationService, FileExportService, ...)

OperationalStatus changes to FileSystems with HostedFileSystem associations to
this ComputerSystem.

OperationalStatus changes to StoragePools with HostedStoragePool associations
to this ComputerSystem.

OK, Degraded, Error, Stopped OperationalStatus changes to ProtocolEndpoints with HostedAccessPoint
associations to this ComputerSystem.

OperationalStatus changes to FileShares with HostedFileShare associations to
this ComputerSystem.

No contact, Starting, Stopping, Lost None
communication

252

NAS Head Profile

12.1.3.8.2 Alertindication for LogicalDisk Bellwether

This Alertindication signals the change in status (OperationalStatus) of a LogicalDisk as a bellwether
event. It is supported by a standard message (MessagelD=FSM3). Table 187 shows the
OperationalStatus values that may signal that changes may have occurred in related elements (Implied
Indications Inhibited).

Table 187 - Bellwether Alertindication Events for LogicalDisk

New OperationalStatus Implied Indications Inhibited
OK, Degraded, Error, Stopped OperationalStatus changes to FileSystems with ResidesOn associations to this
LogicalDisk.
Unknown None

EXPERIMENTAL

12.2 Health and Fault Management Considerations

The NAS Head supports state information (e.g., OperationalStatus) on the following elements of the
model:

< Network Ports (See 14.3.1 "OperationalStatus for Network Ports")

< Back-end Ports (See 16.3.3 "Health and Fault Management Considerations" in Storage Management
Technical Specification, Part 3 Common Profiles, 1.7.0 Rev 5)

< ComputerSystems (See 22.2.5 Computer System Operational Status in Storage Management Technical
Specification, Part 3 Common Profiles, 1.7.0 Rev 5)

= FileShares that are exported (See 4.2.1 "OperationalStatus for FileShares")
= LocalFileSystems (See 8.2.1 "OperationalStatus for Filesystems")

= ProtocolEndpoints (See 14.3.2 "OperationalStatus for ProtocolEndpoints")

SMI-S 1.7.0 Revision 5 Working Draft 253

NAS Head Profile

EXPERIMENTAL

12.2.1 Standard Messages used by this Profile

The standard messages specific to this profile are listed in Table 188.

Table 188 - Standard Messages used by NAS Head

Message ID Message Name
FSM1 ComputerSystem bellwether alert
FSM3 LogicalDisk bellwether alert
Corel2 Drive not responding
Corel3 Fan Failure
Corel4d Power Supply Failure
Core20 Drive is responding
Core21 Cooling Fan Issues Cleared
Core22 Power Supply Issues Cleared
Core23 Controller Failure
Core24 Controller Issues Cleared
DRM38 Volume or pool degraded
DRM39 Volume or pool failed
DRM40 Volume or pool issues cleared

EXPERIMENTAL

12.3 Methods of the Profile

12.3.1 Extrinsic Methods of the Profile

Not defined in this standard.

12.3.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

= Getlnstance

< Associators

« AssociatorNames

< References

< ReferenceNames

< Enumeratelnstances

< EnumeratelnstanceNames

254

NAS Head Profile

Manipulation functions are supported in component profiles of the profile.

12.4 Use Cases
Not defined in this standard.

12.5 CIM Elements
Table 189 describes the CIM elements for NAS Head.

Table 189 - CIM Elements for NAS Head

Element Name Requirement Description

12.5.1 CIM_ComputerSystem (Top Level System) Mandatory This declares that at least one computer system
entry will pre-exist. The Name property should be the
Unique identifier for the NAS Head. Associated to
RegisteredProfile.

12.5.2 CIM_ComputerSystem (Virtual File Server) Optional This represents a Virtual File Server, if one exists.

12.5.3 CIM_ConcreteComponent Optional Represents the association between a Primordial
StoragePool and the underlying StorageExtents that
compose it.

12.5.4 CIM_ElementCapabilities Optional Experimental. Associates the top level NAS Head

(ImplementationCapabilities to Service) ComputerSystem to the

CIM_ImplementationCapabilities supported by the
implementation.

12.5.5 CIM_HostedDependency Optional Associates a Virtual File Server to the Computer
System hosting it. This is required if a Virtual File
Server exists.

12.5.6 CIM_ImplementationCapabilities Optional Experimental. The capabilities of the profile
(ImplementationCapabilities) implementation.
12.5.7 CIM_LogicalDisk (LD for FS) Mandatory Represents the single Storage Extent on which the

NAS Head will build a LocalFileSystem.

12.5.8 CIM_StorageExtent (Primordial Imported Extent) Optional This StorageExtent represents the LUNs
(StorageVolumes) imported from a storage device to
the NAS Head.

12.5.9 CIM_SystemDevice (Logical Disks) Mandatory This association links all LogicalDisks to the scoping
system.
12.5.10 CIM_SystemDevice (Storage Extents) Conditional Conditional requirement: This is required if primordial

StorageExtents exist. This association links all
StorageExtents to the scoping system.

SELECT * FROM CIM_lInstModification WHERE Mandatory CQL -Change of Status of a NAS ComputerSystem
Sourcelnstance ISA CIM_ComputerSystem AND (controller).
Sourcelnstance.CIM_ComputerSystem::OperationalStat) . . .

us <> Previouslinstance is optional, but may be supplied by
PreviousInstance.CIM_ComputerSystem::OperationalSt an implementation of the Profile.

atus See 12.1.3.7.1 InstModification of ComputerSystem.
SELECT * FROM CIM_AlertIndication WHERE Optional CQL -This is a bellwether indication of a change of
OwningEntity="SNIA" and MessagelD="FSM1" Status of a NAS ComputerSystem (controller) and

related classes (LogicalDisks, Services,
ProtocolEndpoints, StoragePools, FileShares and
FileSystems).

See 12.1.3.8.1 Alertindication for ComputerSystem
Bellwether

SMI-S 1.7.0 Revision 5 Working Draft

255

NAS Head Profile

Table 189 - CIM Elements for NAS Head

Element Name Requirement Description
SELECT * FROM CIM_AlertIndication WHERE Optional CQL -This is a bellwether indication of a change of
OwningEntity="SNIA" and MessagelD="FSM3" status of a LogicalDisk.
See 12.1.3.8.2 AlertIndication for LogicalDisk
Bellwether
SELECT * FROM CIM_InstModification WHERE Mandatory CQL -Change of status of a LogicalDisk.
Sourcelnstance ISA CIM_LogicalDisk AND Previousi|) ional. b b lied b
Sourcelnstance.CIM_LogicalDisk::OperationalStatus <> re_V'OlIJS nStam?e 1S cf)prtllor::a ,ﬂut may be supplied by
Previousinstance.CIM_LogicalDisk::OperationalStatus an implementation of the Profile.
See 12.1.3.7.2 InstModification of LogicalDisk.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of supporting,
OwningEntity = 'SNIA" AND MessagelD="Corel12' indicates that a DiskDrive has failed.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of supporting,
OwningEntity = 'SNIA' AND MessagelD="Core20’ indicates that a DiskDrive has been returned to
service or has been replaced.
SELECT * FROM CIM_AlertIindication WHERE Conditional Experimental. If hardware is capable of supporting,
OwningEntity = 'SNIA" AND MessagelD="Corel3' indicates that a Fan has failed.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of supporting,
OwningEntity = 'SNIA' AND MessagelD="Core21’ indicates that a Fan has been returned to service or
has been replaced.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of supporting,
OwningEntity = 'SNIA' AND MessagelD="Core14' indicates that a PowerSupply has failed.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of supporting,
OwningEntity = 'SNIA' AND MessagelD="Core22’ indicates that a PowerSupply has been returned to
service or has been replaced.
SELECT * FROM CIM_AlertIindication WHERE Conditional Experimental. If hardware is capable of supporting,
OwningEntity = 'SNIA" AND MessagelD="Core23’ indicates that a Controller has failed.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of supporting,
OwningEntity = 'SNIA' AND MessagelD="Core24’ indicates that a Controller has been returned to
service or has been replaced.
SELECT * FROM CIM_AlertIindication WHERE Mandatory Experimental. A LogicalDisk has degraded.
OwningEntity = ‘SNIA’ AND MessagelD="DRM38’
SELECT * FROM CIM_AlertIndication WHERE Mandatory Experimental. A LogicalDisk has failed.
OwningEntity = ‘SNIA’ AND MessagelD="DRM39’
SELECT * FROM CIM_AlertIndication WHERE Mandatory Experimental. A LogicalDisk has returned to normal
OwningEntity = ‘SNIA’ AND MessagelD="DRM40’ service.

12.5.1 CIM_ComputerSystem (Top Level System)

Created By: Static
Modified By: External
Deleted By: Static
Requirement: Mandatory

Shall

be associated to

RegisteredProfile

using ElementConformsToProfile association.

The

RegisteredProfile instance shall have RegisteredName set to 'NAS Head', RegisteredOrganization set to
'SNIA’', and RegisteredVersion set to '1.6.0".

256

NAS Head Profile

Table 190 describes class CIM_ComputerSystem (Top Level System).

Table 190 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory The actual class of this object, e.g.,
Vendor_NASComputerSystem.

ElementName Mandatory User friendly name.

Name Mandatory Unique identifier for the NAS Head in a format specified by
NameFormat. For example, IP address or Vendor/Model/SerialNo.

OperationalStatus Mandatory Overall status of the NAS Head. The standard values are 2 (OK), 3
(Degraded), 6 (Error), 8 (Starting), 9 (Stopping), 10 (Stopped), 12
(No contact) or 13 (Lost Communication).

NameFormat Mandatory Format for Name property.

PrimaryOwnerContact M Optional Owner of the NAS Head.

PrimaryOwnerName M Optional Contact details for owner.

Dedicated Mandatory This shall be a NAS Head (24).

OtherldentifyingInfo C Mandatory An array of know identifiers for the NAS Head.
IdentifyingDescriptions C Mandatory An array of descriptions of the Otherldentifyinglnfo. Some of the

descriptions would be "lpv4 Address", "Ipv6 Address" or "Fully
Qualified Domain Name".

12.5.2 CIM_ComputerSystem (Virtual File Server)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 191 describes class CIM_ComputerSystem (Virtual File Server).

Table 191 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement Description & Notes

Dedicated Mandatory A Virtual File Server is a File Server (16).

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the NAS Head's Virtual File Servers (E.g.,

Vendor/Model/SerialNo+FS+Number).

OperationalStatus Mandatory Overall status of the Virtual File Server. The standard values are 2
(OK), 3 (Degraded), 6 (Error), 8 (Starting), 9 (Stopping), 10
(Stopped), 12 (No contact) or 13 (Lost Communication).

12.5.3 CIM_ConcreteComponent

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

SMI-S 1.7.0 Revision 5 Working Draft 257

NAS Head Profile

Table 192 describes class CIM_ConcreteComponent.

Table 192 - SMI Referenced Properties/Methods for CIM_ConcreteComponent

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The Primordial StoragePool that is built from the StorageExtent.
PartComponent Mandatory A StorageExtent that is part of a Primordial StoragePool.

12.5.4 CIM_ElementCapabilities (ImplementationCapabilities to Service)
Experimental. Associates the top level NAS Head ComputerSystem to
CIM_ImplementationCapabilities supported by the implementation.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 193 describes class CIM_ElementCapabilities (ImplementationCapabilities to Service).

the

Table 193 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities

to Service)
Properties Flags Requirement Description & Notes
Capabilities Mandatory The ImplementationCapabilities.
ManagedElement Mandatory The top level NAS Head ComputerSystem that has
ImplementationCapabilities.

12.5.5 CIM_HostedDependency

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 194 describes class CIM_HostedDependency.

Table 194 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem. A Virtual File Server
ComputerSystem is a File Server and shall have Dedicated=16 (File
Server).

Antecedent Mandatory The hosting ComputerSystem. The hosting ComputerSystem may be the
top level NAS ComputerSystem or an Multiple Computer System (non-top
level) system.

12.5.6 CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.

258

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

NAS Head Profile

Table 195 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

Table 195 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

bilities)
Properties Flags Requirement Description & Notes
InstancelD Mandatory An opague, unique id for the implementation capability of an
implementation.
ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.
SupportedCapacityOptimizations Mandatory This array of strings lists the capacity optimization techiques that

are supported by the implementation. Valid string values are
"none" | "SNIA:Thin Provisioning" | "SNIA:Data Compression" |
"SNIA:Data Deduplication".

12.5.7 CIM_LogicalDisk (LD for FS)

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External

Requirement: Mandatory

Table 196 describes class CIM_LogicalDisk (LD for FS).

Table 196 - SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Properties

Flags

Requirement

Description & Notes

SystemCreationClassName

Mandatory

CIM Class of the NAS Head Computer System that is the host of
this LogicalDisk.

SystemName

Mandatory

Name of the NAS Head Computer System that hosts this
LogicalDisk.

CreationClassName

Mandatory

CIM Class of this instance of LogicalDisk.

DevicelD

Mandatory

Opagque identifier for the LogicalDisk.

OperationalStatus

Mandatory

A subset of operational status that is applicable for LogicalDisks
in a NAS Head. The standard values for this are 2 (OK), 3
(Degraded), 6 (Error), 8 (Starting) or 15 (Dormant).

ExtentStatus

Mandatory

This LogicalDisk is neither imported (16) nor exported (17). The
standard values for this are 0 (Other), 1 (Unknown), 2 (None/Not
Applicable), 3 (Broken), 4 (Data Lost), 5 (Dynamic Reconfig), 6
(Exposed), 7 (Fractionally Exposed), 8 (Partially Exposed), 9
(Protection Disabled), 10 (Readying), 11 (Rebuild), 12
(Recalculate), 13 (Spare in Use), 14 (Verify In Progress) or 15
(In-Band Access Granted).

Primordial

Mandatory

This represents a Concrete Logical Disk that is not primordial.

SMI-S 1.7.0 Revision 5

Working Draft

259

NAS Head Profile

Table 196 - SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Properties Flags Requirement Description & Notes

Name Mandatory Identifier for a local LogicalDisk that will be used for a filesystem;
since this logical disk will be referenced by a client, it must have
a unique name. We cannot constrain the format here, but the
OS-specific format described in the Block Services specification
is not appropriate, so "Other" is used.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the NAS
Head. This shall be coded as "1" ("other").

12.5.8 CIM_StorageExtent (Primordial Imported Extent)

Created By: Static_or_External
Modified By: External

Deleted By: External
Requirement: Optional

Table 197 describes class CIM_StorageExtent (Primordial Imported Extent).

Table 197 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The CreationClassName for the scoping system.

SystemName Mandatory The System Name of the scoping system.

CreationClassName Mandatory CreationClassName indicates the name of the class or the
subclass.

DevicelD Mandatory An ID that uniquely names the StorageExtent in the NAS
Head.

BlockSize Mandatory The size (in bytes) of blocks.

NumberOfBlocks Mandatory The number of Blocks from the imported StorageVolume.

ExtentStatus Mandatory This shall contain ‘16’ (Imported).

OperationalStatus Mandatory Value shall be 2|3|6]8|15 (OK or Degraded or Error or
Starting or Dormant).

Name Mandatory Deprecated. Identifier for a remote LUN on a storage array;
possibly, the array ID plus LUN Node WWN.

Primordial Mandatory The StorageExtent imported from an Array is considered
primordial in the NAS Head.

12.5.9 CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External
Requirement: Mandatory

260

NAS Head Profile

Table 198 describes class CIM_SystemDevice (Logical Disks).

Table 198 - SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The Computer System that contains this device.
PartComponent Mandatory The LogicalDisk that is a part of a computer system.

12.5.10CIM_SystemDevice (Storage Extents)

Created By: Extrinsic_or_External_or_Static

Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External

Requirement: This is required if primordial StorageExtents exist.

Table 199 describes class CIM_SystemDevice (Storage Extents).

Table 199 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extents)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The Computer System that contains this device.
PartComponent Mandatory The primordial StorageExtent that is imported to a
computer system in the NAS Head.
STABLE

SMI-S 1.7.0 Revision 5

Working Draft

261

NAS Head Profile

262

STABLE

13 Self-Contained NAS Profile

13.1 Description

13.1.1 Synopsis

Profile Name: Self-contained NAS System (Autonomous Profile)

Version: 1.7.0

Organization: SNIA

Central Class: ComputerSystem

Scoping Class: ComputerSystem

Related Profiles: Table 200 describes the related profiles for Self-contained NAS System.

Table 200 - Related Profiles for Self-contained NAS System

Profile Name Organization Version Requirement Description
Filesystem SNIA 1.7.0 Mandatory

File Storage SNIA 1.4.0 Mandatory

File Export SNIA 1.7.0 Mandatory

NAS Network Port SNIA 1.7.0 Mandatory

Access Points SNIA 1.3.0 Optional

Multiple Computer System SNIA 1.2.0 Optional

Software SNIA 1.4.0 Optional

Location SNIA 1.4.0 Optional

Extent Composition SNIA 1.6.0 Optional

Filesystem Manipulation SNIA 1.7.0 Optional

File Export Manipulation SNIA 1.7.0 Optional

File Server Manipulation SNIA 1.7.0 Optional

Filesystem Performance SNIA 1.7.0 Optional Experimental.
FileSystem Quotas SNIA 1.7.0 Optional Experimental.
Filesystem Replication SNIA 1.7.0 Optional Experimental.
Services

Job Control SNIA 15.0 Optional

Disk Drive Lite SNIA 1.7.0 Optional

FC Initiator Ports SNIA 1.7.0 Optional

iSCSI Initiator Ports SNIA 1.2.0 Optional

Device Credentials SNIA 1.3.0 Optional

Operational Power SNIA 1.7.0 Optional Experimental.

Self-Contained NAS Profile

Table 200 - Related Profiles for Self-contained NAS System

Profile Name Organization Version Requirement Description

Launch In Context DMTF 1.0.0 Optional Experimental.

Physical Package SNIA 1.5.0 Mandatory

Block Services SNIA 1.7.0 Mandatory

Health SNIA 1.2.0 Mandatory

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2

13.1.2 Overview

The Self-contained NAS (SC NAS) Profile exports File elements (contained in a filesystem) as
FileShares. The storage for the filesystem is obtained from captive storage. In the simplest case, this
could be a set of directly connected disks, but it could also be a captive storage array that is not shared
with any other hosts or devices (though it could be visible to external management tools and even
actively managed independently).

This profile models the necessary filesystem and NAS concepts and defines how the connections to the
underlying storage is managed. The details of how a directly attached set of disks is used by the SC NAS
Profile is covered as part of the Disk Drive Lite Profile. The details of how an underlying Storage Array
might export storage to the SC NAS is not covered in this profile but is covered by 4 Array Profile in
Storage Management Technical Specification, Part 4 Block Devices, 1.7.0 Rev 5.

The Self-Contained NAS Profile reuses a significant portion of 4 Array Profile in Storage Management
Technical Specification, Part 4 Block Devices, 1.7.0 Rev 5.

264

Self-Contained NAS Profile

The Self-Contained NAS Profile and its component profiles and packages are illustrated in Figure 21:

"Self-Contained NAS Profiles".

1

NAS Network
Ports

SystemDevice

SystemDevice

1

InstalledSoftwareldentity

Self-Contained NAS

1

Indications

Experimental
Indications

HostedService

]

Computer System

PhysicalEle

—

Location

Initiator Ports

nentLocation

Concreteldentity
HostedShare
Software File Export
ComponentCS
ComputerSystemPackage
PhysicalPackage Package File Storage
HostedFileSystem
Multiple

—

FileSystem | |

HostedAccessPoint

ConcreteComponent

Container

—

Extent
Composition

BasedOn

1]

Device Credentials

File Export
Manipulation

HostedServic—l

File

Manipulation

Server

]

Package

Block Services

Filesystem

Manipulation OWHinj

OwningJobElement

JobElement]

—

Job Control

Access Points

FS Quota

Disk Drive
Lite

Filesystem
Performance

Filesystem
Copy Services

13.1.3 Implementation

13.1.3.1 Summary Instance Diagram
Figure 22: "Self-Contained NAS Instance" illustrates the mandatory classes of the Self-Contained NAS
Profile. This figure shows all the classes that are mandatory for the Self-contained NAS Profile. Later
diagrams will review specific sections of this diagram

SMI-S 1.7.0 Revision 5

Working Draft

Figure 21 - Self-Contained NAS Profiles

265

Self-Contained NAS Profile

—_—e—— e e e e—— e e e e e e e e E— E— E—— ——

WAS Network Port Profile

I ProtocolEndPoint
. NetworkPort I
I ProtocollFType= 4200 | 4201 DeviceSAPImplementation
(NFS" or "CIFS") I
HostedAccessPoint L
— e — —— — —— | e— c— e e e— — — —— m— o— — — o— o—
I ile Export SAPAvailableForElement I
Virtual File Server Profile FileShare
ComputerSystem I
(Optional) HostedShare NFS or CIFS] .
I T ElementSTmngData SNIA_ExportedFileShareSetting ‘ I
ConcreteDependency SNIA_SharedElement ‘
|__ QoM) s e o — —— ———— — — — —]
[. HostedDependency I
FileSystem (Conditional)
|Pr3fi|e |
— SNIA_LocallyAccessibleFileSystemSetting
LogicalFile (Conditional)
I (Directory) I
(Conditional)
SystemDevice I I
HostedAccessPoint .
ElementSettingData
FileStorage (Conditional)
(Conditional) I
HostedShare .
SNIA_LocalAccessAvailable
(Conditional) I
I SNIA_LocalFileSystem ElementSettingData | Flle?ést$$2§nlng I
(Optional) p
HostedFileSystem I File Storage I
Profile ResidesOnExtent
(Conditional) I
ComputerSystem | @ .
| HostedDependency Block Services Package
LogicalDisk
1
ElementSettingData StorageSetting
ElementCapabilities |
SystemDevice

ImplementationCapabilities

AllocatedFromStoragePool

AllocatedFromStoragePool

StoragePool

HostedStoragePool

|
ElementCapabilities
|

StorageCapabilities

266

Figure 22 - Self-Contained NAS Instance

Self-Contained NAS Profile

The Self-Contained NAS Profile closely parallels the Array Profile in how it models storage. Storage is
assigned to StoragePools and LogicalDisks are allocated from those storage pools for the purpose of
holding local filesystems of the NAS.

As with the Array Profile, the Self-contained NAS StoragePools have StorageCapabilities associated to
the StoragePools via ElementCapabilities. Similarly, LogicalDisks have StorageSettings, which are
associated to the LogicalDisk via ElementSettingData. StoragePools are hosted by a ComputerSystem
that represents the NAS “top level” system, and the LogicalDisks have a SystemDevice association to the
“top level” ComputerSystem.

NOTE As with Arrays, the StoragePools may be hosted by a component ComputerSystem if the profile has implemented the
Multiple Computer System Profile.

As with Arrays, the “top level” ComputerSystem of the Self-Contained NAS does not (and typically isn’t) a
real ComputerSystem. It is merely the ManagedElement upon which all aspects of the NAS offering are
scoped.

A Self-Contained NAS may implement “Virtual File Servers” in addition to, or instead of, implementing
File Servers in the Top Level ComputerSystem or one of the Multiple Computer System
ComputerSystems. A Virtual File Server shall have a HostedDependency to either the top level NAS
ComputerSystem or one of the Multiple Computer System ComputerSystems. NOTE: A Virtual File Server
shall not have a ComponentCS association to the top level NAS ComputerSystem.

Everything above the LogicalDisk is specific to NAS (and does not appear in the Array Profile).
LocalFileSystems are created on the LogicalDisks, LogicialFiles within those LocalFileSystems are
shared (FileShare) through ProtocolEndpoints associated with NetworkPorts.

NOTE The classes and associations in the dashed boxes are from the required packages and component profiles (as indicated by
the labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with SMI-S 1.1.0. It
represents a relationship between a FileShare and a Directory.

The ResidesOnExtent is conditional on the use by NAS profiles (NAS Head and Self-contained NAS) in
the File Storage Profile. In the Self-contained NAS a LocalFileSystem shall map to a LogicalDisk.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are
only shown here to illustrate where they would show up in the model should they be implemented.

In the base Self-Contained NAS Profile, the classes and associations shown in Figure 22: "Self-
Contained NAS Instance" are automatically populated based on how the Self-Contained NAS is
configured. Client modification of the configuration (including configuring storage, creating extents, local
filesystems and file shares) are functions found in component profiles of the profile.

EXPERIMENTAL

An instance of ImplementationCapabilities may be associated to the top level Self-contained NAS
ComputerSystem. This Capabilities instance identifies the capacity optimization techniques supported by
the implementation. An implementation may advertise that it supports “None”, "SNIA:Thin Provisioning",
"SNIA:Data Compression" or "SNIA:Data Deduplication".

EXPERIMENTAL

SMI-S 1.7.0 Revision 5 Working Draft 267

Self-Contained NAS Profile

EXPERIMENTAL

13.1.3.2 Combination Profile Considerations

Some devices combine the function of an array with the function of a Self-contained NAS. There are a
number of approaches that may be used to model such a device. One way is to present two seemly
independent profiles in the SAN (e.g., Array and SC NAS). In this case, there may be duplication of
instances. These duplicates would be recognized by clients via correlated ids.

Another approach would be to use one, shared top level ComputerSystem that reflects both the SC NAS
and the Array in its ComputerSystem.Dedicated property. In this case, care must be taken to ensure the
sharing of instances between the profiles do not conflict with their respective profile definitions.

For more information on the rules for combination profiles, see section A.6 of Annex A (normative)
Compliance with the SNIA SMI Specification in Storage Management Technical Specification, Part 2 Common
Architecture, 1.7.0 Rev 5.

EXPERIMENTAL

13.1.3.3 NAS Storage Model

Figure 23: "NAS Storage Instance" illustrates the classes mandatory for modeling of storage for the Self-
Contained NAS Profile.

ComputerSystem

Block Services Package

StorageSetting

LogicalDisk ElementSettingData

SystemDevice

AllocatedFromStoragePool

StoragePool StorageCapabilities

ElementCapabilities

HostedStoragePool

J

Figure 23 - NAS Storage Instance

The Self-Contained NAS Profile uses most of the classes and associations defined in the Array Profile
(including those in the Block Services Package). In doing this, it leverages many of the component
profiles that are available for Array profiles. The classes and associations shown in Figure 23: "NAS
Storage Instance" are the minimum mandatory classes and associations of the Block Services Package
for read only access in the base profile.

268

Self-Contained NAS Profile

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled,
including the HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the
StoragePool. In addition, in order for storage to be used it shall be allocated to one or more LogicalDisks.
A LogicalDisk shall have an AllocatedFromStoragePool association to the StoragePool from which it is
allocated. And the LogicalDisk shall have an ElementSettingData association to the settings that were
used when the LogicalDisk was created.

NOTE At this level, the model for storage is the same for both the Self-Contained NAS Profile and the NAS Head Profile. In the
case of the Self-contained NAS, storage for the StoragePools is drawn from Disk Drives. Modeling of Disk Drives is Optional (See
10 Disk Drive Lite Profile of Storage Management Technical Specification, Part 4 Block Devices, 1.7.0 Rev 5).

For manipulation of Storage, see 5 Block Services Package in the Storage Management Technical
Specification, Part 4 Block Devices, 1.7.0 Rev 5. For Self-Contained NAS, LogicalDisks are the ElementType
that is supported for storage allocation functions (e.g., CreateOrModifyElementFromStoragePool and
ReturnToStoragePool), but the Block Services methods for managing LogicalDisks are optional for the
Self-Contained NAS Profile. The Self-Contained NAS Profile also supports (optionally) the Pool
manipulation functions (e.g., CreateOrModifyStoragePool and DeleteStoragePool) of the Block Services
Package.

13.1.3.4 Self-Contained NAS Use of Filesystem Profile (Mandatory)

The Self-Contained NAS Profile uses the Filesystem Profile for modeling of its filesystem constructs. For
the Self-Contained NAS, the Filesystem Profile shall be supported. See 8 Filesystem Profile for details on
this modeling.

13.1.3.5 Self-Contained NAS Use of File Storage Profile (Mandatory)

The Self-Contained NAS Profile uses the File Storage Profile for modeling of its file storage constructs.
For the Self-Contained NAS, the Filesystem Profile shall be supported. See 7 File Storage Profile for
details on the file storage modeling.

13.1.3.6 Self-Contained NAS Use of File Export Profile (Mandatory)

The Self-Contained NAS Profile uses the File Export Profile for modeling of its file export constructs. For
the Self-Contained NAS, the File Export Profile shall be supported. See 4 File Export Profile for details on
this modeling.

13.1.3.7 Self-Contained NAS Use of NAS Network Ports Profile (Mandatory)

The Self-Contained NAS Profile uses the NAS Network Ports Profile for modeling of its file export
constructs. For the Self-Contained NAS, the NAS Network Ports Profile shall be supported. See NAS
Network Port Profile (14) for details on this modeling.

13.1.3.8 Indication Events

13.1.3.8.1 InstModification of ComputerSystem
Table 201 identifies the standard OperationalStatus values and the events that are being indicated.

Table 201 - InstModification Events for ComputerSystem

New OperationalStatus Event / Correlated Indications

OK The top level NAS system is fully operational.

An Error in the Top Level NAS system was corrected and the system is now fully
functional.

Self test is complete and the NAS system is fully operational

Degraded The system is running but with limitations.

Error The system is experiencing an error and is not functional.

SMI-S 1.7.0 Revision 5 Working Draft 269

Self-Contained NAS Profile

Table 201 - InstModification Events for ComputerSystem

New OperationalStatus Event / Correlated Indications
Stopped The system has been stopped.
No contact The system status cannot be determined, due to no response from the system.
Starting The system is starting, but it not yet functional.
Stopping The system is stopping.
Lost communication The system status cannot be determined, due to communications problems.

13.1.3.8.2 InstModification of LogicalDisk

EXPERIMENTAL

Table 202 identifies the standard OperationalStatus values and the events that are being indicated.

Table 202 - InstModification Events for LogicalDisk

New OperationalStatus Event / Correlated Indications
OK The logical disk is fully functional.
Degraded The logical disk is experiencing errors, but is still supporting data.

The Logical disk is rebuilding, so performance may suffer.

Error The logical disk has an error and is not usable.
Starting The logical disk is being brought online.
Dormant The logical disk is offline.

EXPERIMENTAL

EXPERIMENTAL
13.1.3.9 Bellwether Indications

13.1.3.9.1 Alertindication for ComputerSystem Bellwether

This Alertindication signals the change in status (OperationalStatus) of a ComputerSystem as a
bellwether event. It is supported by a standard message (MessagelD=FSM1). Table 203 shows the

270

Self-Contained NAS Profile

OperationalStatus values that may signal that changes may have occurred in related elements (Implied
Indications Inhibited).

Table 203 - Bellwether Alertindication Events for ComputerSystem

New OperationalStatus Implied Indications Inhibited

OperationalStatus changes to Elements with SystemDevice associations to this
ComputerSystem (LogicalDisks, ...)

OperationalStatus changes to Elements with HostedService associations to this
ComputerSystem (FileSystemConfigurationService, FileExportService, ...)

OperationalStatus changes to FileSystems with HostedFileSystem associations to
this ComputerSystem.

OperationalStatus changes to StoragePools with HostedStoragePool associations
to this ComputerSystem.

OK, Degraded, Error, Stopped OperationalStatus changes to ProtocolEndpoints with HostedAccessPoint
associations to this ComputerSystem.

OperationalStatus changes to FileShares with HostedFileShare associations to
this ComputerSystem.

No contact, Starting, Stopping, Lost None
communication

13.1.3.9.2 Alertindication for LogicalDisk Bellwether

This Alertindication signals the change in status (OperationalStatus) of a LogicalDisk as a bellwether
event. It is supported by a standard message (MessagelD=FSM3). Table 204 shows the
OperationalStatus values that may signal that changes may have occurred in related elements (Implied
Indications Inhibited).

Table 204 - Bellwether Alertindication Events for LogicalDisk

New OperationalStatus Implied Indications Inhibited
OK, Degraded, Error, Stopped OperationalStatus changes to FileSystems with ResidesOn associations to this
LogicalDisk.
Unknown None

EXPERIMENTAL

13.2 Health and Fault Management Considerations

Self-Contained NAS supports state information (e.g., OperationalStatus) on the following elements of the
model:

< Network Ports (See 14.3.1 "OperationalStatus for Network Ports")

= Back-end Ports (See 16.3.3 Health and Fault Management Considerations ofStorage Management Technical
Specification, Part 3 Common Profiles, 1.7.0 Rev 5)

< ComputerSystems (See 22.2.5 Computer System Operational Status of Storage Management Technical
Specification, Part 3 Common Profiles, 1.7.0 Rev 5)

= FileShares that are exported (See 4.2.1 OperationalStatus for FileShares)

« LocalFileSystems (See 8.2.1 OperationalStatus for Filesystems)

SMI-S 1.7.0 Revision 5 Working Draft 271

Self-Contained NAS Profile

< ProtocolEndpoints (See 14.3.2 OperationalStatus for ProtocolEndpoints)

< DiskDrive (See 10.3 Health and Fault Management Considerations of Storage Management Technical
Specification, Part 4 Block Devices, 1.7.0 Rev 5)

EXPERIMENTAL

13.2.1 Standard Messages used by this Profile

The standard messages specific to this profile are listed in Table 205.

Table 205 - Standard Messages used by NAS Head

Message ID Message Name

FSM1 ComputerSystem bellwether alert
FSM3 LogicalDisk bellwether alert
Corel2 Drive not responding

Corel3 Fan Failure

Corel4d Power Supply Failure

Core20 Drive is responding

Core21 Cooling Fan Issues Cleared
Core22 Power Supply Issues Cleared
Core23 Controller Failure

Core24 Controller Issues Cleared
DRM38 Volume or pool degraded
DRM39 Volume or pool failed

DRM40 Volume or pool issues cleared

EXPERIMENTAL

13.3 Cascading Considerations
Not Applicable.

13.4 Methods of the Profile

13.4.1 Extrinsic Methods of the Profile

Not defined in this standard.

13.4.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

e Getlnstance
= Associators

e AssociatorNames

272

Self-Contained NAS Profile

= References

< ReferenceNames

= Enumeratelnstances

= EnumeratelnstanceNames

Manipulation functions are supported in component profiles of the profile.

13.5
Not defined in this standard.

Use Cases

13.6
Table 206 describes the CIM elements for Self-contained NAS System.

CIM Elements

Table 206 - CIM Elements for Self-contained NAS System

Element Name Requirement Description

13.6.1 CIM_ComputerSystem (Top Level System) Mandatory This declares that at least one computer system
entry will pre-exist. The Name property should be
the Unique identifier for the Self-contained NAS
System. Associated to RegisteredProfile.

13.6.2 CIM_ComputerSystem (Virtual File Server) Optional This represents a Virtual File Server, if one exists.

13.6.3 CIM_ElementCapabilities Optional Experimental. Associates the top level Self-

(ImplementationCapabilities to Service) contained NAS ComputerSystem to the
CIM_ImplementationCapabilities supported by the
implementation.

13.6.4 CIM_HostedDependency Optional Associates a Virtual File Server to the Computer
System hosting it. This is required if a Virtual File
Server exists.

13.6.5 CIM_ImplementationCapabilities Optional Experimental. The capabilities of the profile

(ImplementationCapabilities) implementation.

13.6.6 CIM_LogicalDisk (Disk for FS) Mandatory Represents LogicalDisks used for building
LocalFileSystems.

13.6.7 CIM_SystemDevice (Logical Disks) Mandatory This association links all LogicalDisks to the
scoping system.

SELECT * FROM CIM_InstModification WHERE Mandatory CQL -Change of Status of a NAS

Sourcelnstance ISA CIM_ComputerSystem AND ComputerSystem (controller).

Sourcelnstance.CIM_ComputerSystem::OperationalStatu) . . .

s <> Previouslinstance is optional, but may be supplied

Previousinstance.CIM_ComputerSystem::OperationalStat by an implementation of the Profile.

us

SELECT * FROM CIM_AlertIndication WHERE Optional CQL -This is a bellwether indication of a change of

OwningEntity="SNIA" and MessagelD="FSM1" Status of a NAS ComputerSystem (controller) and
related classes (LogicalDisks, Services,
ProtocolEndpoints, StoragePools, FileShares and
FileSystems).
See 13.1.3.9.1 Alertindication for
ComputerSystem Bellwether

SELECT * FROM CIM_InstModification WHERE Mandatory CQL -Change of status of a LogicalDisk.

Sourcelnstance ISA CIM_LogicalDisk AND Previous|) ional. b b lied

Sourcelnstance.CIM_LogicalDisk::OperationalStatus <> brewo_us Tstance 1S optlfor':a ’P u;_lmay € Supplie

Previousinstance.CIM_LogicalDisk::OperationalStatus y an implementation of the Profile.
See 13.1.3.8.2 InstModification of LogicalDisk.

SMI-S 1.7.0 Revision 5

Working Draft

273

Self-Contained NAS Profile

Table 206 - CIM Elements for Self-contained NAS System

Element Name Requirement Description
SELECT * FROM CIM_AlertIndication WHERE Optional CQL -This is a bellwether indication of a change of
OwningEntity="SNIA" and MessagelD="FSM3" status of a LogicalDisk.
See 13.1.3.9.2 AlertIndication for LogicalDisk
Bellwether
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of
OwningEntity = 'SNIA" AND MessagelD="Corel2' supporting, indicates that a DiskDrive has failed.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of
OwningEntity = 'SNIA' AND MessagelD="Core20’ supporting, indicates that a DiskDrive has been
returned to service or has been replaced.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of
OwningEntity = 'SNIA" AND MessagelD="Corel3' supporting, indicates that a Fan has failed.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of
OwningEntity = 'SNIA" AND MessagelD="Core21’ supporting, indicates that a Fan has been returned
to service or has been replaced.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of
OwningEntity = 'SNIA" AND MessagelD="Corel14' supporting, indicates that a PowerSupply has
failed.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of
OwningEntity = 'SNIA" AND MessagelD="Core22’ supporting, indicates that a PowerSupply has
been returned to service or has been replaced.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of
OwningEntity = 'SNIA" AND MessagelD="Core23’ supporting, indicates that a Controller has failed.
SELECT * FROM CIM_AlertIndication WHERE Conditional Experimental. If hardware is capable of
OwningEntity = 'SNIA" AND MessagelD="Core24’ supporting, indicates that a Controller has been
returned to service or has been replaced.
SELECT * FROM CIM_AlertIndication WHERE Mandatory Experimental. A LogicalDisk has degraded.
OwningEntity = ‘SNIA" AND MessagelD="DRM39’
SELECT * FROM CIM_AlertIndication WHERE Mandatory Experimental. A LogicalDisk has failed.
OwningEntity = ‘SNIA’ AND MessagelD="DRM39’
SELECT * FROM CIM_AlertIindication WHERE Mandatory Experimental. A LogicalDisk has returned to
OwningEntity = ‘SNIA’ AND MessagelD="DRM40’ normal service.

13.6.1 CIM_ComputerSystem (Top Level System)

Created By: Static
Modified By: External
Deleted By: Static
Requirement: Mandatory

Shall

RegisteredProfile

be associated to

instance shall

RegisteredProfile
have RegisteredName set

using ElementConformsToProfile association.
'‘Self-contained NAS System',

to

RegisteredOrganization set to 'SNIA’', and RegisteredVersion set to '1.6.0".

274

The

Self-Contained NAS Profile

Table 207 describes class CIM_ComputerSystem (Top Level System).

Table 207 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory The actual class of this object, e.g., Vendor_NASComputerSystem.

ElementName Mandatory User-friendly name.

Name Mandatory Unique identifier for the Self-contained NAS System in a format
specified by NameFormat. For example, IP address or Vendor/Model/
SerialNo.

OperationalStatus Mandatory Overall status of the Self-contained NAS System. The standard values
are 2 (OK), 3 (Degraded), 6 (Error), 8 (Starting), 9 (Stopping), 10
(Stopped), 12 (No contact) or 13 (Lost Communication).

NameFormat Mandatory Format for Name property.

PrimaryOwnerContact M Optional Owner of the Self-contained NAS System.

PrimaryOwnerName M Optional Contact details for owner.

Dedicated Mandatory This shall indicate that this computer system is dedicated to operation
as a Self-contained NAS (25).

Otherldentifyinginfo C Mandatory An array of know identifiers for the Self-contained NAS.

IdentifyingDescriptions C Mandatory An array of descriptions of the Otherldentifyinglnfo. Some of the
descriptions would be "lpv4 Address", "Ipv6 Address" or "Fully
Qualified Domain Name".

13.6.2 CIM_ComputerSystem (Virtual File Server)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 208 describes class CIM_ComputerSystem (Virtual File Server).

Table 208 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement Description & Notes

Dedicated Mandatory A Virtual File Server is a File Server (16).

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the Self-contained NAS System's Virtual File
Servers (E.g., Vendor/Model/SerialNo+FS+Number).

OperationalStatus Mandatory Overall status of the Virtual File Server. The standard values are 2
(OK), 3 (Degraded), 6 (Error), 8 (Starting), 9 (Stopping), 10
(Stopped), 12 (No contact) or 13 (Lost Communication).

13.6.3 CIM_ElementCapabilities (ImplementationCapabilities to Service)

Experimental.

Associates

the

top level

Self-contained NAS ComputerSystem to

CIM_ImplementationCapabilities supported by the implementation.

Created By: Static

Modified By: Static

SMI-S 1.7.0 Revision 5

Working Draft

the

275

Self-Contained NAS Profile

Deleted By: Static
Requirement: Optional

13.6.4 CIM_HostedDependency

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 209 describes class CIM_HostedDependency.

Table 209 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem. A Virtual File Server
ComputerSystem is a File Server and shall have Dedicated=16 (File
Server).

Antecedent Mandatory The hosting ComputerSystem. The hosting ComputerSystem may be the
top level NAS ComputerSystem or an Multiple Computer System (non-top
level) system.

13.6.5 CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 210 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

Table 210 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

bilities)
Properties Flags Requirement | Description & Notes
InstancelD Mandatory An opaque, unique id for the implementation capability of an

implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedCapacityOptimizations Mandatory This array of strings lists the capacity optimization techiques that are
supported by the implementation. Valid string values are "none" |
"SNIA:Thin Provisioning" | "SNIA:Data Compression” | "SNIA:Data
Deduplication™.

13.6.6 CIM_LogicalDisk (Disk for FS)

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External

276

Requirement: Mandatory

Self-Contained NAS Profile

Table 211 describes class CIM_LogicalDisk (Disk for FS).

Table 211 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory CIM Class of the Self-contained NAS System Computer System that
is the host of this LogicalDisk.

SystemName Mandatory Name of the Self-contained NAS System Computer System that
hosts this LogicalDisk.

CreationClassName Mandatory CIM Class of this instance of LogicalDisk.

DevicelD Mandatory Opagque identifier for the LogicalDisk.

OperationalStatus Mandatory A subset of operational status that is applicable for LogicalDisks in a
Self-contained NAS System. The standard values for this are 2
(OK), 3 (Degraded), 6 (Error), 8 (Starting) or 15 (Dormant).

ExtentStatus Mandatory This LogicalDisk is neither imported (16) nor exported (17). The
standard values for this are 0 (Other), 1 (Unknown), 2 (None/Not
Applicable), 3 (Broken), 4 (Data Lost), 5 (Dynamic Reconfig), 6
(Exposed), 7 (Fractionally Exposed), 8 (Partially Exposed), 9
(Protection Disabled), 10 (Readying), 11 (Rebuild), 12 (Recalculate),
13 (Spare in Use), 14 (Verify In Progress) or 15 (In-Band Access
Granted).

Primordial Mandatory This represents a Concrete Logical Disk that is not primordial.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the Self-
contained NAS System. This should be coded as "1" ("other").

Name Mandatory Identifier for a local LogicalDisk that will be used for a filesystem;

since this storage extent will be referenced by a client, it needs to
have a unique name. We cannot constrain the format here, but the
OS-specific format described in the Block Services specification is
not appropriate, so "Other" is used.

13.6.7 CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static

Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External

Requirement: Mandatory

Table 212 describes class CIM_SystemDevice (Logical Disks).

Table 212 - SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The Computer System that contains this device. This shall be either the
top level NAS system or a multiple computer system non-top level system.
PartComponent Mandatory The LogicalDisk that is a part of a computer system.
STABLE

SMI-S 1.7.0 Revision 5

Working Draft

277

Self-Contained NAS Profile

278

NAS Network Port Profile

STABLE

14 NAS Network Port Profile

14.1 Description

14.1.1 Synopsis

Profile Name: NAS Network Port (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: ProtocolEndpoint

Scoping Class: ComputerSystem

Related Profiles: Table 213 describes the related profiles for NAS Network Port.

Table 213 - Related Profiles for NAS Network Port

Profile Name Organization Version Requirement Description

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2

14.1.2 Overview

The NAS Network Port Profile models ProtocolEndpoints for file access (CIFS and NFS), TCP, IP and
LAN endpoints. It also models the Network port supported by the protocol endpoints. The methods for
manipulating these elements are covered by other profiles. This profile provides basic information in the
NAS models for addressing paths for accessing the NAS implementations for the purpose of data access
(front-end ports).

14.2 Implementation

Figure 24: "NAS Support for Front-end Network Ports" illustrates the classes for modeling of front end
NetworkPorts for the NAS profiles.

SMI-S 1.7.0 Revision 5 Working Draft 279

NAS Network Port Profile

ComputerSystem

NAS Network Port

| NAS Ethernet Interface Package |

NAS TCP Interface Package NetworkPort

IPProtocolEndPoint
(Optional)

L (See NAS Ethernet Interface Section)

J

(See NAS TCP Interface Section)

HostedAccessPoint .
ElementSettingData

TCPProtocolEndPoint (Optional)
(Optional) MemUgerOfCollection
(Qonditional)
See NAS TCP Interface Section :
:) IPInterfaceSettingData {PImplementation
‘ (Optional)
gindsTo IPAddress
(Conditional) NetworkVLAN AddressType
(Optional) SubnetMask
IPv6PrefixLength
ProtocolEndPoint VLANId VLANId
TransmissionSize MTU

ProtocollFType = 4200 | 4201
('NFS" or "CIFS")

Figure 24 - NAS Support for Front-end Network Ports

The ProtocolEndpoint for NFS or CIFS shall be present and shall be associated to a ComputerSystem via
a HostedAccessPoint association. It shall also be associated to one or more NetworkPort(s) via the
DeviceSAPImplementation.

EXPERIMENTAL

The NetworkVLAN and the CIM_IPInterfaceSettingData classes are optional. And their associations to
the IPProtocolEndpoint are conditional on the existence of these optional classes.

EXPERIMENTAL

For TCP/IP Interface modeling (which is optional) see section 14.2.1

For modeling of Network ports for NAS (which is mandatory) see section 14.2.2

14.2.1 The NAS TCP Interface

Figure 25: "Optional NAS TCP Interface Modeling" illustrates the classes for the optional modeling of
TCP/IP protocol stack for the NAS profiles.

280

NAS Network Port Profile

!
ComputerSystem NAS Ethernet Interface Package
LANENdpoint
(Optional)
NetworkPort
(see NAS Ethernet Interface package)
| (see NAS Ethernet Interface package)
NAS TCP Interface Package
BindsToLANEndpoint
(Conditional)
HostedAccessPoint
(Conditional)
IPProtocolEndPoint DeviceSAPImplementation
(Optional) (Conditional)
ProtocollFType = 4096|4097|4098
BindsTo
(Conditional)
\
TCPProtocolEndPoint
L (Optional) ElementSettingData
(Optional)
ProtocollFType = 4111
L)
BindsTo MemberOfCollection
(Conditional) (Conditional)
ProtocolEndPoint NetworkVLAN IPInterfachettlngData
(Optional) (Optional)
(See NAS Network Ports) (See NAS Network Ports)
(See NAS Network Ports)

Figure 25 - Optional NAS TCP Interface Modeling

The modeling of the TCPProtocolEndpoint and IPProtocolEndpoint are optional. The associations from
(to) those classes are conditional on the existence of the classes. Like the NFS or CIFS
ProtocolEndpoint, the TCPProtocolEndpoint and IPProtocolEndpoint shall have HostedAccessPoint
associations to some ComputerSystem. Typically, this would be the same ComputerSystem that hosts the
NetworkPort. However this is not a requirement.

14.2.2 The NAS Ethernet Interface

Figure 26: "Mandatory NAS Ethernet Port Modeling" illustrates the classes for the mandatory modeling of
(front end) Network port for the NAS profiles.

SMI-S 1.7.0 Revision 5 Working Draft 281

NAS Network Port Profile

ComputerSystem SystemDevice

NAS Ethernet Interface Package

HostedAccessPoint

(Conditional) DeviceSAPImplementation NetworkPort
(Conditional)
) LANEndpoint
HostedAccessPoint (Optional)

ProtocollFType = 1|6]|9|15

DeviceSAPImplementation

ProtocolEndPoint

ProtocollFType = 4200 | 4201
('NFS" or "CIFS")

Figure 26 - Mandatory NAS Ethernet Port Modeling

The NetworkPort shall be modeled and shall have an SystemDevice association to a ComputerSystem.
The ComputerSystem in the diagram may be the top level system for the self-contained NAS or any of its
component computer systems. The ComputerSystem that hosts the NFS or CIFS ProtocolEndpoint need
not be the same ComputerSystem associated to the NetworkPort via its SystemDevice association.

The modeling of the LANENdpoint is optional. The associations from (to) this class are conditional on the
existence of the LANEndpoint. Like the NFS or CIFS ProtocolEndpoint, the LANEndpoint shall have
HostedAccessPoint associations to some ComputerSystem. Typically, this would be the same
ComputerSystem that hosts the NetworkPort. However this is not a requirement.

282

14.2.3 Indication Events

NAS Network Port Profile

14.2.3.1 InstModification of NetworkPort

EXPERIMENTAL

Table 214 identifies the standard OperationalStatus values and the events that are being indicated.

Table 214 - InstModification Events for NetworkPort

New OperationalStatus

Event / Correlated Indications

OK

An Error in the port was corrected and the Port is now online

The Port was enabled (and is online)

Self test is complete and the port is back online

Error

The port has been unplugged

The port is plugged in, but failed a self test

The port is dependent on another element that has failed (e.g., a controller).

CORRELATED INDICATION: InstModification of ComputerSystem

The port is not able to establish connections to remote system

Stopped

The port is implicitly disabled due to a physical condition in the port

The port is implicitly disabled due to a logical errors encountered on the port

The port was explicitly disabled by user action

The port was stopped due to a “parent” element (e.g., Controller) being stopped.

CORRELATED INDICATION: InstModification of ComputerSystem

In Service

The port is in self test by explicit user request

The port is in self test, due to errors encountered

EXPERIMENTAL

14.2.3.2 InstModification of ProtocolEndpoint

EXPERIMENTAL

Table 215 identifies the standard OperationalStatus values and the events that are being indicated.

SMI-S 1.7.0 Revision 5

Working Draft

283

NAS Network Port Profile

Table 215 - InstModification Events for ProtocolEndpoint

New OperationalStatus Event / Correlated Indications
OK ProtocolEndpoint is online
Error ProtocolEndpoint has a failure
Stopped ProtocolEndpoint is disabled
Unknown

EXPERIMENTAL

EXPERIMENTAL
14.2.4 Bellwether Indications

14.2.4.1 Alertindication for NetworkPort Bellwether

This Alertindication signals the change in status (OperationalStatus) of a NetworkPort as a bellwether
event. It is supported by a standard message (MessagelD=FSMO002). Table 216 shows the
OperationalStatus values that may signal that changes may have occurred in related elements (Implied
Indications Inhibited).

Table 216 - Bellwether Alertindication Events for NetworkPort

New OperationalStatus Implied Indications Inhibited

OK, Error, Stopped OperationalStatus changes to ProtocolEndpoints with DeviceSAPImplementation
associations to this NetworkPort.

OperationalStatus changes to FileShares with SAPAvailableForFileShare
associations to a ProtocolEndpoint with a DeviceSAPImplementation association
to this NetworkPort.

InService, Unknown None

EXPERIMENTAL

14.3 Health and Fault Management Considerations

The NAS Network Port Profile supports state information (e.g., OperationalStatus) on the following
elements of the model:

< Network Ports (See 14.3.1 OperationalStatus for Network Ports)

= ProtocolEndpoints (See 14.3.2 OperationalStatus for ProtocolEndpoints)

284

NAS Network Port Profile

14.3.1 OperationalStatus for Network Ports

Table 217 defines the network port OperationalStatus values supported by this standard.

Table 217 - NetworkPort Operational Status

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown

14.3.2 OperationalStatus for ProtocolEndpoints

Table 217 defines the ProtocolEndpoint OperationalStatus values supported by this standard

Table 218 - ProtocolEndpoint OperationalStatus

OperationalStatus Description
OK ProtocolEndpoint is online
Error ProtocolEndpoint has a failure
Stopped ProtocolEndpoint is disabled
Unknown

EXPERIMENTAL

14.3.3 Standard Messages used by this Profile

The standard messages specific to this profile are listed in Table 219.

Table 219 - Standard Messages used by NAS Head

Message ID Message Name

FSM002 NetworkPort bellwether alert

EXPERIMENTAL

14.4 Cascading Considerations
Not Applicable.

14.5 Methods

14.5.1 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

e Getlnstance

e Associators

SMI-S 1.7.0 Revision 5 Working Draft 285

NAS Network Port Profile

e AssociatorNames
= References
e ReferenceNames

e Enumeratelnstances

EnumeratelnstanceNames

14.5.2 Extrinsic Methods of the Profile

None. For creation of ProtocolEndpoints, see 5 File Export Manipulation Profile and 6 File Server
Manipulation Profile.

14.6 Use Cases
Not defined in this standard.

14.7 CIM Elements
Table 220 describes the CIM elements for NAS Network Port.

Table 220 - CIM Elements for NAS Network Port

Element Name Requirement Description

14.7.1 CIM_BindsTo (CIFS or NFS) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists. Associates a CIFS or
NFS ProtocolEndpoint to an underlying
TCPProtocolEndpoint. This is used in the NAS
profiles to support the TCP/IP Network protocol
stack.

14.7.2 CIM_BindsTo (TCP) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists. (See the TCP Interface
Section) Associates a TCPProtocolEndpoint to an
underlying IPProtocolEndpoint. This is used in the
NAS Profiles to support the TCP/IP Network
protocol stack.

14.7.3 CIM_BindsToLANEnNdpoint Conditional Conditional requirement: This is required if a
LANEnNdpoint exists. (See the TCP Interface
Section) Associates an IPProtocolEndpoint to an
underlying LANEndpoint in the NAS Profiles (to
support the TCP/IP Network protocol stack).

14.7.4 CIM_DeviceSAPImplementation (CIFS or NFS to Mandatory Represents the association between a CIFS or NFS

NetworkPort) ProtocolEndpoint and the NetworkPort that it
supports.

14.7.5 CIM_DeviceSAPImplementation (LANEndpoint to Conditional Conditional requirement: This is required if a

NetworkPort) LANEnNdpoint exists. (See the Ethernet Interface

Section) Associates a logical front end Port (a
NetworkPort) to the LANEndpoint that uses that
device to connect to a LAN.

14.7.6 CIM_ElementSettingData (IPInterfaceSettingDatato | Optional The IPProtocolEndpoint associated with the
IPProtocolEndpoint) IPInterfaceSettingData.
14.7.7 CIM_HostedAccessPoint (CIFS or NFS) Mandatory Represents the association between a CIFS or NFS

front end ProtocolEndpoint and the Computer
System that hosts it.

286

NAS Network Port Profile

Table 220 - CIM Elements for NAS Network Port

Element Name

Requirement

Description

14.7.8 CIM_HostedAccessPoint (IP)

Conditional

Conditional requirement: This is required if an
IPProtocolEndpoint exists. (See the TCP Interface
Section) Represents the association between a front
end IPProtocolEndpoint and the Computer System
that hosts it.

14.7.9 CIM_HostedAccessPoint (LAN)

Conditional

Conditional requirement: This is required if a
LANEnNdpoint exists. (See the Ethernet Interface
Section) Represents the association between a front
end LANEndpoint and the Computer System that
hosts it.

14.7.10 CIM_HostedAccessPoint (TCP)

Conditional

Conditional requirement: This is required if a
TCPProtocolEndpoint exists. (See the TCP
Interface Section) Represents the association
between a front end TCPProtocolEndpoint and the
Computer System that hosts it.

14.7.12 CIM_IPProtocolEndpoint

Optional

(See the TCP Interface Section) Represents the
front-end ProtocolEndpoint used to support the IP
protocol services.

14.7.13 CIM_LANEnNdpoint

Optional

(See the Ethernet Interface Section) Represents the
front-end ProtocolEndpoint used to support a Local
Area Network and its services.

14.7.14 CIM_MemberOfCollection (The IPProtocolEndpoint
to NetworkVLAN.)

Conditional

Conditional requirement: The NetworkVLAN has
been defined. Associates an IPProtocolEndpoint to
NetworkVLAN.

14.7.15 CIM_NetworkPort

Mandatory

(See the Ethernet Interface Section) Represents the
front end logical port that supports access to a local
area network.

14.7.16 CIM_NetworkVLAN

Optional

This element represents the virtual LAN (VLAN) tag
settings for an IP interface. In the context of a file
server, it represents the VLAN information.

14.7.17 CIM_ProtocolEndpoint (CIFS or NFS)

Mandatory

Represents the front-end ProtocolEndpoint used to
support NFS and CIFS services.

14.7.18 CIM_SystemDevice (Network Ports)

Mandatory

(See the Ethernet Interface section) This
association links all NetworkPorts to the scoping
system. This is used to represent both front end and
back end ports.

14.7.19 CIM_TCPProtocolEndpoint

Optional

(See the TCP Interface Section) Represents the
front-end ProtocolEndpoint used to support TCP
services.

14.7.11 CIM_IPInterfaceSettingData

Optional

This class contains the settings for single IP
interface.

SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_NetworkPort AND
Sourcelnstance.CIM_NetworkPort::OperationalStatus <>
Previousinstance.CIM_NetworkPort::OperationalStatus

Mandatory

CQL -Change of Status of a Port.

Previouslinstance is optional, but may be supplied
by an implementation of the Profile.

See 14.2.3.1 InstModification of NetworkPort.

SMI-S 1.7.0 Revision 5

Working Draft

287

NAS Network Port Profile

Table 220 - CIM Elements for NAS Network Port

Element Name Requirement Description
SELECT * FROM CIM_Alertindication WHERE Optional CQL -This is a bellwether indication of a change of
OwningEntity="SNIA" and MessagelD="FSM2" Status of a Port and related classes

(ProtocolEndpoints and FileShares).

See 14.2.4.1 Alertindication for NetworkPort
Bellwether.

SELECT * FROM CIM_InstModification WHERE Mandatory CQL -Change of Status of a ProtocolEndpoint
Sourcelnstance ISA CIM_ProtocolEndpoint AND
Sourcelnstance.CIM_ProtocolEndpoint::OperationalStatus
<>
Previousinstance.CIM_ProtocolEndpoint::OperationalStatu See 14.2.3.2 InstModification of Pr0t0c0|Endpoint_
s

Previouslinstance is optional, but may be supplied
by an implementation of the Profile.

14.7.1 CIM_BindsTo (CIFS or NFS)

Created By: External

Modified By: Static

Deleted By: External

Requirement: This is required if a TCPProtocolEndpoint exists.

Table 221 describes class CIM_BindsTo (CIFS or NFS).

Table 221 - SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ProtocolEndpoint that uses a lower level ProtocolEndpoint for
connectivity. The ProtocollFType shall be 4200 (NFS) or 4201 (CIFS) in
the referenced ProtocolEndpoint.

Antecedent Mandatory The TCPProtocolEndpoint that supports a CIFS or NFS ProtocolEndpoint.

14.7.2 CIM_BindsTo (TCP)

Created By: External

Modified By: Static

Deleted By: External

Requirement: This is required if an IPProtocolEndpoint exists.

Table 222 describes class CIM_BindsTo (TCP).

Table 222 - SMI Referenced Properties/Methods for CIM_BindsTo (TCP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The TCPProtocolEndpoint that uses an IPProtocolEndpoint for
connectivity.

Antecedent Mandatory The IPProtocolEndpoint that supports a TCPProtocolEndpoint.

14.7.3 CIM_BindsToLANEnNndpoint
Created By: External

288

NAS Network Port Profile

Modified By: External
Deleted By: External
Requirement: This is required if a LANEndpoint exists.

Table 223 describes class CIM_BindsToLANENdpoint.

Table 223 - SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Properties Flags Requirement Description & Notes

FrameType Mandatory Only supports 1="Ethernet" at this point.
Dependent Mandatory A IPProtocolEndpoint.

Antecedent Mandatory A LANEnNdpoint.

14.7.4 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 224 describes class CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort).

Table 224 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to Net-

workPort)
Properties Flags Requirement Description & Notes
Dependent Mandatory The ProtocolEndpont that supports on the NetworkPort. The

ProtocollFType shall be 4200 (NFS) or 4201 (CIFS) in the referenced
ProtocolEndpoint.

Antecedent Mandatory The NetworkPort supported by the Access Point.

14.7.5 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)

Created By: External

Modified By: Static

Deleted By: External

Requirement: This is required if a LANEndpoint exists.

Table 225 describes class CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort).

Table 225 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to Net-

workPort)
Properties Flags Requirement Description & Notes
Dependent Mandatory A LANEnNdpoint that depends on a NetworkPort for connecting to its LAN
segment.
Antecedent Mandatory The Logical network adapter device that connects to a LAN.

SMI-S 1.7.0 Revision 5 Working Draft 289

NAS Network Port Profile

14.7.6 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)
Created By: External

Modified By: Static

Deleted By: External

Requirement: Optional

Table 226 describes class CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint).

Table 226 - SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to
IPProtocolEndpoint)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The IPProtocolEndpoint.
SettingData Mandatory The IPInterfaceSettingData.

14.7.7 CIM_HostedAccessPoint (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 227 describes class CIM_HostedAccessPoint (CIFS or NFS).

Table 227 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ServiceAccessPoint hosted on the file server. The ProtocollFType
shall be 4200 (NFS) or 4201 (CIFS) in the referenced ProtocolEndpoint.

Antecedent Mandatory The Computer System hosting this Access Point. In the context of the
NAS Profiles, these are always file servers (Dedicated=16).

14.7.8 CIM_HostedAccessPoint (IP)

Created By: External

Modified By: Static

Deleted By: External

Requirement: This is required if an IPProtocolEndpoint exists.

Table 228 describes class CIM_HostedAccessPoint (IP).

Table 228 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)

Properties Flags Requirement Description & Notes
Dependent Mandatory The IPProtocolEndpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

290

NAS Network Port Profile

14.7.9 CIM_HostedAccessPoint (LAN)

Created By: External

Modified By: Static

Deleted By: External

Requirement: This is required if a LANEndpoint exists.

Table 229 describes class CIM_HostedAccessPoint (LAN).

Table 229 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)

Properties Flags Requirement Description & Notes
Dependent Mandatory The LANEnNdpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

14.7.10CIM_HostedAccessPoint (TCP)

Created By: External

Modified By: Static

Deleted By: External

Requirement: This is required if a TCPProtocolEndpoint exists.

Table 230 describes class CIM_HostedAccessPoint (TCP).

Table 230 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)

Properties Flags Requirement Description & Notes
Dependent Mandatory The TCPProtocolEndpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

14.7.11CIM_IPInterfaceSettingData

Created By: Extrinsic: CreateFileServer | AddIPInterface
Modified By: Extrinsic: ModifylPInterface

Deleted By: Extrinsic: DeleteFileServer | DeletelPInterface
Requirement: Optional

Table 231 describes class CIM_IPInterfaceSettingData.

Table 231 - SMI Referenced Properties/Methods for CIM_IPInterfaceSettingData

Properties Flags Requirement Description & Notes

IPAddress Mandatory The IPAddress that will be used by the File Server. This can be either an
IPv4 or IPv6 address.

AddressType Mandatory The IPAddress format. This can be either "IPv4" or "IPv6".

SubnetMask Conditional Conditional requirement: This is required if an ProtocollFType = 4096 or

4098. The subnet mask that will be used by the File Server.

SMI-S 1.7.0 Revision 5 Working Draft

NAS Network Port Profile

Table 231 - SMI Referenced Properties/Methods for CIM_IPInterfaceSettingData

Properties Flags Requirement Description & Notes

IPv6PrefixLength Conditional Conditional requirement: This is required if an ProtocollFType = 4097 or
4098. If AddressType specifies IPv6, then this specifies the prefix length
for the IPv6 address in IPAddress.

VLANId Optional If present contains the ID of the VLAN that this IP setting will be
associated with.

MTU Optional If present contains the maximum transmission unit to be used for this IP
setting. If not present, then the default of 1500 will be used.

14.7.12CIM_IPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 232 describes class CIM_IPProtocolEndpoint.

Table 232 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The CIM Class name of the Computer System hosting the Protocol
Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory (POSSIBLE NAS CONSTRAINT) The Format of the Name.

RequestedState Optional (DMTF Core/IP Interface).

OperationalStatus Conditional Conditional requirement: Required if parent profile is NAS Head. The

operational status of the PEP.

EnabledState Optional (DMTF Core/IP Interface).

OtherEnabledState Optional

TimeOfLastStateChange Optional

Description Conditional Conditional requirement: Required if parent profile is NAS Head. or

Required if parent profile is a Self-contained NAS System. This shall
be the IP protocol endpoints supported by the NAS Profiles.

ProtocollFType Mandatory 4096="1P v4", 4097="IP v6", and 4098 is both. (Note that 1="Other" is
not supported).

IPv4Address Conditional Conditional requirement: This is required if an ProtocollFType = 4096
or 4098. An IP v4 address in the format "A.B.C.D".

IPv6Address Conditional Conditional requirement: This is required if an ProtocollFType = 4097
or 4098. An IP v6 address.

292

NAS Network Port Profile

Table 232 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes

SubnetMask Conditional Conditional requirement: This is required if an ProtocollFType = 4096
or 4098. An IP v4 subnet mask in the format "A.B.C.D".

PrefixLength Conditional Conditional requirement: This is required if an ProtocollFType = 4097
or 4098. For an IPv6 address.

14.7.13CIM_LANEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 233 describes class CIM_LANEnNdpoint.

Table 233 - SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The CIM Class name of the Computer System hosting the Protocol
Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Conditional Conditional requirement: Required if parent profile is a Self-
contained NAS System. or Required if parent profile is NAS Head.
The unique name of the Protocol Endpoint.

NameFormat Conditional Conditional requirement: Required if parent profile is a Self-
contained NAS System. or Required if parent profile is NAS Head.
The Format of the Name.

RequestedState Optional A NAS Head option.

OperationalStatus Conditional Conditional requirement: Required if parent profile is NAS Head. The
operational status of the PEP.

EnabledState Optional A NAS Head option.

OtherEnabledState Optional A NAS Head option.

TimeOfLastStateChange Optional A NAS Head option.

Description Conditional Conditional requirement: Required if parent profile is NAS Head. This
shall be the LAN protocol endpoints supported by the NAS Head.

ProtocollFType Conditional Conditional requirement: Required if parent profile is a Self-
contained NAS System. or Required if parent profile is NAS Head.
LAN endpoints supported are: 1="Other",6="Ethernet CSMA/CD",
9="ISO 802.5 Token Ring", 15="FDDI".

OtherTypeDescription Optional If the LAN endpoint is a vendor-extension specified by "Other" and a
description.

LANID N Optional A unique id for the LAN segment to which this device is connected.
The value will be NULL if the LAN is not connected.

MACAddress Mandatory (POSSIBLE NAS CONSTRAINT) Primary Unicast address for this

LAN device.

SMI-S 1.7.0 Revision 5

Working Draft

293

NAS Network Port Profile

Table 233 - SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement Description & Notes

AliasAddresses Mandatory (POSSIBLE NAS CONSTRAINT) Other unicast addresses
supported by this device.

GroupAddresses Mandatory (POSSIBLE NAS CONSTRAINT) Multicast addresses supported by
this device.

MaxDataSize Mandatory (POSSIBLE NAS CONSTRAINT) The max size of packet supported

by this LAN device.

14.7.14CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: The NetworkVLAN has been defined.

Table 234 describes class CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.).

Table 234 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to
NetworkVLAN.)

Properties Flags Requirement Description & Notes
Member Mandatory The IPProtocolEndpoint.
Collection Mandatory The NetworkVLAN.

14.7.15CIM_NetworkPort

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 235 describes class CIM_NetworkPort.

Table 235 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Network adapter that provides a network port.
OperationalStatus Mandatory The operational status of the adapter.

SystemCreationClassName Mandatory The CIM Class name of the Computer System hosting the Network Port.
SystemName Mandatory The name of the Computer System hosting the Network Port.
CreationClassName Mandatory The CIM Class name of the Network Port.

DevicelD Mandatory A unique ID for the device (in the context of the hosting System).

Speed Optional (Fabric/Extender).

MaxSpeed Optional (Fabric/Extender).

RequestedSpeed Optional

294

NAS Network Port Profile

Table 235 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes

UsageRestriction Optional

PortType Optional (Fabric/Extender).

PortNumber Optional (Fabric/Extender) A unique number for the adapter in the context of the

hosting System.

PermanentAddress C Mandatory The hard-coded address of this port.

NetworkAddresses Conditional Conditional requirement: Required if parent profile is NAS Head. An array
of network addresses for this port.

LinkTechnology Optional (Fabric/Extender) 1="Other", 2="Ethernet", 3="IB", 4="FC", 5="FDDI",
6="ATM", 7="Token Ring", 8="Frame Relay", 9="Infrared",
10="BlueTooth", 11="Wireless LAN. The link technology supported by this

adapter.
OtherLinkTechnology Optional The vendor-specific "Other" link technology supported by this adapter.
FullDuplex Optional
AutoSense Optional
SupportedMaximumTransmi Optional
ssionUnit
ActiveMaximumTransmissio Optional
nUnit

14.7.16CIM_NetworkVLAN

Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: Optional

Table 236 describes class CIM_NetworkVLAN.

Table 236 - SMI Referenced Properties/Methods for CIM_NetworkVLAN

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the NetworkVLAN.

VLANId Mandatory The VLAN id that is to be associated with an IP interface. The id shall be
included in all IP packets being sent through an IP interface.

TransmissionSize Mandatory The maximum transmission unit size that is associated with an IP
Interface.

14.7.17CIM_ProtocolEndpoint (CIFS or NFS)

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

SMI-S 1.7.0 Revision 5 Working Draft 295

NAS Network Port Profile

Table 237 describes class CIM_ProtocolEndpoint (CIFS or NFS).

Table 237 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement | Description & Notes

SystemCreationClassName Mandatory The CIM Class name of the Computer System hosting the
Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateChange Optional

Description Mandatory This shall be one of the NFS or CIFS protocol endpoints
supported by the NAS Profiles.

ProtocollFType Mandatory This represents either NFS=4200 or CIFS=4201. Other
protocol types are specified in subclasses of
ProtocolEndpoint.

14.7.18CIM_SystemDevice (Network Ports)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External

Requirement: Mandatory

Table 238 describes class CIM_SystemDevice (Network Ports).

Table 238 - SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device. This shall be either the
top level NAS system or a multiple computer system non-top level system.

PartComponent Mandatory The NetworkPort that is a part of a computer system.

14.7.19CIM_TCPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

296

NAS Network Port Profile

Table 239 describes class CIM_TCPProtocolEndpoint.

Table 239 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The CIM Class name of the Computer System hosting the Protocol
Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Conditional Conditional requirement: Required if parent profile is a Self-contained NAS
System. or Required if parent profile is NAS Head. The Format of the
Name.

RequestedState Optional A NAS Head option.

OperationalStatus Conditional Conditional requirement: Required if parent profile is NAS Head. The
operational status of the PEP.

EnabledState Optional A NAS Head option.

OtherEnabledState Optional A NAS Head option.

TimeOfLastStateChange Optional A NAS Head option.

Description Conditional Conditional requirement: Required if parent profile is NAS Head. This shall
be the TCP protocol endpoints supported by the NAS Head.

ProtocollFType Mandatory 4111="TCP". Note that no other protocol type is supported by this
endpoint.

PortNumber Mandatory The number of the TCP Port that this element represents.

STABLE

SMI-S 1.7.0 Revision 5

Working Draft

297

NAS Network Port Profile

298

Host Filesystem Profile

EXPERIMENTAL

15 Host Filesystem Profile

15.1 Description

15.1.1 Synopsis

Profile Name: Host Filesystem (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: FileSystemConfigurationService

Scoping Class: ComputerSystem

Related Profiles: Table 240 describes the related profiles for Host Filesystem.

Table 240 - Related Profiles for Host Filesystem

Profile Name Organization Version Requirement Description

Filesystem SNIA 1.7.0 Mandatory

File Export SNIA 1.7.0 Optional

Access Points SNIA 1.3.0 Optional

Software SNIA 1.4.0 Optional

Filesystem Manipulation SNIA 1.7.0 Optional

File Export Manipulation SNIA 1.7.0 Optional

Filesystem Performance SNIA 1.7.0 Optional Experimental.

FileSystem Quotas SNIA 1.7.0 Optional Experimental.

Filesystem Replication SNIA 1.7.0 Optional Experimental.

Services

Job Control SNIA 15.0 Optional

Device Credentials SNIA 1.3.0 Optional

Health SNIA 1.2.0 Mandatory

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version 1.0.0
Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2

15.1.2 Overview

The Host Filesystem Profile is a component profile of the Base Server (host system) Profile (see 30 Base
Server Profile in the Storage Management Technical Specification, Part 3 Common Profiles, 1.7.0 Rev 5). All
references to ComputerSystem in the Host Filesystem Profile implies a single instance for a customer
server or storage system as defined in the Base Server Profile. See Annex B (Informative) Host Profile
Deployment Guidelines in the Storage Management Technical Specification, Part 7 Host Elements, 1.7.0 Rev 5
for information on the use of host profiles with Base Server profile.

A host filesystem is a filesystem that runs on an application host and gets its storage from a volume
manager or host operating systems (Host Discovered Resources) storage. The storage obtained is visible

SMI-S 1.7.0 Revision 5 Working Draft 299

Host Filesystem Profile

to external management tools and they may share their storage with other host applications. For
example, host filesystem might go to a volume manager for its storage. The volume manager provides
storage to the host filesystem, but may also supply storage to other host applications (e.g., a DataBase
manager) or to other host filesystems.

This profile defines how to model the host filesystem constructs, and how it reflects connections to and
storage from the volume manager or system below it.

The Host Filesystem Profile reuses many profiles and packages used by the NAS profiles. This is
illustrated in Figure 27: "Host Filesystem Profiles and Package".

Base Server
Experimental
HostedFileSystem Indications
Indications _l
Device Credentials
HostedService
Host File System _l
HostedService
File Export
HostedSharg Manipulation
File Export
InstalledSoftwareldentity
Concreteldentity _|
ComponentCS
— Filesystem
Manipulation
HostedFileSystem
Software
OwningJobElement
Filesystem L
FileSystem Quotas
HostedAccessPoint _|
Multiple Job Control
ComputerSystem —| Filesystem
Performance
Access Points —| File System
Copy Services

Figure 27 - Host Filesystem Profiles and Package

300

15.2 Implementation

15.2.1 Summary Instance Diagram

Host Filesystem Profile

Figure 28: "Host Filesystem Instance Diagram” illustrates the mandatory classes for the host filesystem
(and the Base Server). This figure shows all the classes that are mandatory and some of the optional
classes (identified) for the Host Filesystem Profile.

I:ile Export

I Profile (Optional)

I Filesystem

FileShare

NFS or CIFS ElementSettingData

ExportedFileShareSetting

(Optional)

SharedElement

HostedDependency

Profile
I

HostedShari

HostedFileSystem
| .

ComputerSystem

Dedicated="0"
(See Base Server)

SystemDevice

HostedService

ElementConformsToProfile

SNIA_LocalAccessAvailable
I (Conditional)

(Conditional)

LocallyAccessibleFileSystemSetting

(Conditional)

(Conditional)

LocalFileSystem

(Optional)
GetFileProperties

. ServiceAffectsElement
ResidesOnExtent

StorageExtent

ExtentDiscriminator = “SNIA:Imported”
ExtentStatus="16"

ElementSettingData—|

ElementSettingData

(Optional)

FileSystemSetting I

FileSystemConfigurationCapabilities

SupportedFeatures

Primordial="true’

FileSystemConfigurationService

ElementCapabilities

RegisteredProfile

Quiesce
Unquiesce

RegisteredProfile

RegisteredName="Base Server"
(See Profile Registration Profile)

RegisteredName="Host Filesystem" J
—ElementConformsToProfile

(See Profile Registration Profile)

ElementCapabilities

ImplementationCapabilities

\—R eferencedProfiIeQ

Figure 28 - Host Filesystem Instance Diagram

The Host Filesystem Profile draws its storage from LogicalDisks provided by a volume manager or HDR
profile. The profile models the LogicalDisks that it gets from the underlying volume manager or HDR as
StorageExtents. The association between a LocalFileSystem and the StorageExtents it resides on is
ResidesOnExtent.

The Base Server ComputerSystem may not be a real ComputerSystem. It is merely the ManagedElement
upon which all aspects of the host filesystem offering are scoped.

LocalFileSystems are created on the StorageExtents and files within those LocalFileSystems may be
shared (FileShare) with remote users. The Filesystem Profile is a required profile.

The host filesystem augments the definition of the LocalFileSystem defined in the Filesystem Profile by
adding a method (GetFileProperties). If this method is supported, the support shall be indicated in the
FileSystemCapabilities.SupportedFeatures property.

SMI-S 1.7.0 Revision 5 Working Draft 301

Host Filesystem Profile

The host filesystem also includes a FileSystemConfigurationService and a
FileSystemConfigurationCapabilities. These are the augmented instances of those defined by the
Filesystem Manipulation Profile. The Host Filesystem extends these with methods (Quiesce and
Unquiesce) and a property (SupportedFeatures). The Filesystem Manipulation Profile is optional, but the
FileSystemConfigurationService and the FileSystemConfigurationCapabilities are required by the Host
Filesystem Profile. If the Filesystem Manipulation Profile is not implemented, the Host Filesystem Profile
shall implement these two classes as defined by this profile.

In addition to the FileSystemConfigurationCapabilities, an instance of ImplementationCapabilities may be
associated to the FileSystemConfigurationService. This Capabilities instance identifies the capacity
optimization techniques supported by the implementation. An implementation may advertise that it
supports “None”, "SNIA:Thin Provisioning”, "SNIA:Data Compression” or "SNIA:Data Deduplication".

The classes and associations in the dashed boxes are from the component profiles (as indicated by the
labels on the dashed boxes).

The SharedElement association between the FileShare and the LocalFileSystem is required if FileShares
are implemented (the File Export Profile).

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are
only shown here to illustrate where they would show up in the model should they be implemented.

In the base Host Filesystem Profile, the model is automatically populated based on how the host
filesystem is configured. Client modification of the configuration (including configuring storage, creating
extents, local filesystems and file shares) are functions found in component profiles of the Host
Filesystem Profile.

15.2.2 Host Filesystem Use of Filesystem Profile (Mandatory)

The Host Filesystem Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the
host filesystem, implementation of the Filesystem Profile is mandatory. See 8 Filesystem Profile for
details on this modeling.

15.2.3 Host Filesystem Use of File Export Profile (Optional)

The Host Filesystem Profile uses the File Export Profile for modeling of its file export constructs. For the
host filesystem, implementation of the File Export Profile is optional. See 4 File Export Profile for details
on this modeling.

302

Host Filesystem Profile

15.2.4 Host Filesystem Support of Cascading

Figure 29: "Host Filesystem support for Cascading” illustrates the host filesystem support for cascading.
Support for some of the elements for cascading are mandatory. The figure illustrates stitching between
the Host Filesystem and the Volume Management or HDR Profiles.

ComputerSystem

(See Base Server)

q

SystemDevice Host Filesystem Profile

StorageExtent

Name="Internal Name”

HostedCollection

HostedCollection

Dependency

Logicalldentity

Cascading Support

AllocatedResources

RemoteResources

ComputerSystem |

(Shadow) MemberOfCollection |
LogicalDisk -
—_— (Shadow)
SystemDevice —W MemberOfCollection

—_——
SAPAvailableForElement | LogicalDisk

(Shadow)
RemoteServiceAccessPoint | I

Figure 29 - Host Filesystem support for Cascading

A host filesystem gets its storage from the operating system (HDR Profile) or a volume manager. As such,
there is a cascading relationship between the Host Filesystem Profile and the profiles (e.g., Volume
Management Profiles) that provide the storage for the host filesystem. Figure 29, “Host Filesystem
support for Cascading” illustrates the constructs to be used to model this cascading relationship.

< The Host Filesystem cascaded resources are StorageExtents (used to house filesystem data)

= The Host Filesystem obtains the storage for these from LogicalDisks in Volume Management or HDR
Profiles.

< Each StorageExtent used by the Host Filesystem maps (via Logicalldentity) to a LogicalDisk (from the
Volume Management or HDR Profile).

The embedded dashed box in the figure illustrates the classes and associations of the cascading support.
The dashed classes are shadow instances (copies cached from the Volume Management or HDR Profile).
The other classes of the cascading support represent Host Filesystem usage of those classes. For

SMI-S 1.7.0 Revision 5 Working Draft 303

Host Filesystem Profile

example, the collection AllocatedResources collects all the volume manager or HDR volumes that are
used by the Host Filesystem. The RemoteResources collection collects all LogicalDisks that the Host
Filesystem has discovered (whether used or not).

The Dependency between the Base Server ComputerSystem and the shadow ComputerSystem may
exist, even when there are no resources that are imported. This signifies that the Host Filesystem has
discovered the Volume Management or HDR Profile, but has no access to any of their LogicalDisks.

NOTE The Base Server and Shadow ComputerSystems may represent the same system.

The RemoteServiceAccessPoint is the URL of the management interface that the Host Filesystem uses
for managing the volume manager or HDR support. This may or may not be an SMI-S Server URL.
15.2.5 Health and Fault Management Consideration

The Host Filesystem Profile supports state information (e.g., OperationalStatus and HealthState) on the
following elements of the model:

< ComputerSystems (See 22 Health Package in Storage Management Technical Specification, Part 3 Common
Profiles, 1.7.0 Rev 5)

= FileShares that are exported (See 4 File Export Profile)
= LocalFileSystems (See 8 Filesystem Profile)

15.3 Methods of the Profile

15.3.1 Extrinsic Methods of the Profile

Not defined in this standard
15.3.2 Extrinsic Methods in the Filesystem Profile

15.3.2.1 GetFileProperties
uint32 GetFileProperties(

IN string DirectoryName,
IN, OUT string Handle,
IN, OUT uint64 NumberOfFiles,
IN (false), OUT Embeddedlnstance("'CIM_LogicalFile™) string FileRecs[];
):
This method gets a set of file records from a filesystem. As there may be millions of records in this report,

a chunking mechanism is provided so that the client does not become overwhelmed by the quantity of
data furnished by the server.

The DirectoryName is an optional pathname for a directory to restrict the data returned. If this parameter
is NULL, then files are returned for all files in the filesystem.

The initial call to GetFileProperties shall pass in NULL as a Handle. Subsequent calls shall pass back the
Handle exactly as received from the server, without modification, as an indication of where to continue
the report from.

The NumberOfFiles is the number of files returned in a block of FileRecs. If NULL the provider will supply
a default number (and put that number in the parameter as output).

304

Host Filesystem Profile

15.3.3 Extrinsic Methods in the Filesystem Manipulation Profile

15.3.3.1 QuiesceFileSystem
uint32 QuiesceFilesystem(

IN, Required CIM_Filesystem REF TheElement,

IN, OUT datetime TimeOut,

IN (false), OUT CIM_Job REF Job;

);
This method temporarily suspends write operations to the underlying storage extents of a filesystem
specified by TheElement.

The TimeOut parameter identifies how long the system is to hold the filesystem in a quiesced state. The
default is 30 seconds. The purpose of the timeout is to prevent a filesystem from staying in a quiesced
state due to an application failure. That is, if the application does not do an unquiesce in the timeout
period, the provider may automatically do the unquiesce.

15.3.3.2 Unquiesce a Filesystem
uint32 UnquiesceFilesystem(

IN, Required CIM_Filesystem REF TheElement;

)
This method resumes write activity to the underlying storage extents of a filesystem specified by
TheElement.

15.3.4 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

= Getlnstance

= Associators

= AssociatorNames

< References

= ReferenceNames

= Enumeratelnstances

= EnumeratelnstanceNames

15.4 Use Cases

15.4.1 Discovery of the Filesystem Volumes

Table 241 identifies the elements of the use case to discover the volumes on which a filesystem resides.

Table 241 - Discovery of the Filesystem Volumes

Use Case Element Description

Summary Given a Host Filesystem Profile, find the volumes (by their external name) on which a
filesystem resides

SMI-S 1.7.0 Revision 5 Working Draft 305

Host Filesystem Profile

Table 241 - Discovery of the Filesystem Volumes

Use Case Element

Description

Basic Course of Events

1. Find the filesystem (using its name)
2. Find the related Volumes (that the filesystem is on)
3. Locate the external names of the volumes

Alternative Paths

None

Exception Paths

None

Triggers

Discovery or rebuild of the filesystem configuration

Assumptions

None

Preconditions

The Base Server system of the profile has been discovered from profile registration and
ElementConformsToProfile.

Postconditions

A list of volumes on which the filesystems exist.

15.4.2 Expansion of a Filesystem

Table 242 identifies the elements of the use case to increase the size of a filesystem.

Table 242 - Expansion of a Filesystem

Use Case Element

Description

Summary

Increase the size of the filesystem by a certain amount.

Basic Course of Events

1. Administrator identifies the filesystem and size to increase.
2. System responds operation is complete.

Alternative Paths None

Exception Paths Failure
2a. System responds that the filesystem cannot be extended. The filesystem is left
unchanged.

Invalid state: Filesystem state does not allow expansion.

2b. System cannot support the size increase requested (size too large)

2c. System cannot support expansion of a mounted filesystem

2d. System cannot support expansion given the current configuration of partitions
2e. Filesystem is in a transient state that does not allow expansion

Triggers

Business need to increase the size of the filesystem.

Assumptions

None

Preconditions

Administrator has permission and access for the operation.

Postconditions

The filesystem size is at least the original size plus the requested increment.

15.4.3 Replication of a Filesystem

Table 243 identifies the elements of the use case to create a point in time copy of a filesystem.

306

Table 243 - Replication of a Filesystem

Use Case Element

Description

Summary

Given a filesystem, create a point in time copy of the filesystem.

Basic Course of Events

1. Administrator identifies filesystem to copy.
2. Administrator signals that the copy should be created.
3. System responds that the copy is ready.

Host Filesystem Profile

Table 243 - Replication of a Filesystem

Use Case Element

Description

Alternative Paths

Specify Storage
la. Administrator identifies where (e.g., what storage extent) and maximum space that
may be used for the copy.

Exception Paths

Failed
3. System responds that the copy could not be created.

Triggers

Business need.

Assumptions

There is no requirement that the copy increases the fault tolerance of the filesystem.

Preconditions

Filesystem available.

Postconditions

The copy is available.
The copy is self-consistent.

15.4.4 Quiesce a Filesystem

Table 244 identifies the elements of the use case to quiesce a filesystem.

Table 244 - Quiesce a Filesystem

Use Case Element

Description

Summary

Temporarily suspends write operations to the underlying storage extents of a filesystem.

Basic Course of Events

1. Administrator identifies the filesystem.
2. System responds operation is complete.

Alternative Paths

Provide timeout
la. Administrator provides a maximum quiesce timeout.

Exception Paths

Failure

2a. System responds that the write operations to the filesystem cannot be suspended.
The filesystem has the same operational state as before.

Filesystem already quiesced.

2b. System responds that the filesystem is already suspended. The filesystem has the
same operational state as before (and the request is ignored - timeout not extended)

Triggers Business need for the image of the filesystem on the underlying storage extents to be
complete and correct as of a known point in time.
Assumptions Any application that needs quiescing has been completed. (NOTE: because provider

cannot tell)

Preconditions

Administrator has permission and access for the operation.

Postconditions

The data residing on the underlying storage extents reflects the state of the filesystem at
some point in time between steps 1 and 2.

No write activity to the filesystem shall transfer to the underlying storage extents.

All future write activity should be blocked.

15.4.5 Unquiesce a Filesystem

Table 245 identifies the elements of the use case to unquiesce a filesystem.

Table 245 - Unquiesce a Filesystem

Use Case Element

Description

Summary

Resume write activity to the underlying storage extents of a filesystem.

SMI-S 1.7.0 Revision 5

Working Draft

307

Host Filesystem Profile

Table 245 - Unquiesce a Filesystem

Use Case Element

Description

Basic Course of Events

1. Administrator identifies the filesystem
2. System responds operation is complete

Alternative Paths

None

Exception Paths

None

Triggers

Business need for the quiesce operation has completed.

Assumptions

None

Preconditions

Administrator has permission and access for the operation.

Postconditions

The selected filesystem is no longer quiesced.

15.4.6 Filesystem quiesce timeout

Table 246 identifies the elements of the use case when a quiesced filesystem times out.

Table 246 - Filesystem quiesce timeout

Use Case Element

Description

Summary

Resume write activity to the underlying storage extents of a filesystem after a timeout

Basic Course of Events

1. System responds operation is complete.

Alternative Paths

None

Exception Paths

None

Triggers

The timeout has expired.

Assumptions

None

Preconditions

The filesystem is in a quiesced state.

Postconditions

The selected filesystem is no longer quiesced.

15.4.7 Retrieve File Information

Table 247 identifies the elements of the use case retrieving file information from a filesystem.

Table 247 - Retrieve File Information

Use Case Element

Description

Summary

Get available information on files in a filesystem directory.

Basic Course of Events

1. Administrator identifies the filesystem and directory.
2. System responds

Alternative Paths

None

Exception Paths

Failure
2a. System responds that the directory identified was not found.
2b. System responds that the operation is not supported at this time

Triggers

Business need for the information to support filesystem “information lifecycle
management” functions.

308

15.5

Table 248 describes the CIM elements for Host Filesystem.

Host Filesystem Profile

Table 247 - Retrieve File Information

Use Case Element

Description

Assumptions

The underlying filesystem supports the information being requested

Preconditions
supported.

Administrator has permission and access for the operation and the operation is

Postconditions
the files.

Once all data has been returned, a new operation must initiated to get information about

CIM Elements

Table 248 - CIM Elements for Host Filesystem

Element Name Requirement Description

15.5.1 CIM_AllocatedResources Mandatory This is a SystemSpecificCollection for collecting
LogicalDisks that are being used by the Host
Filesystem profile (e.g., LogicalDisks that the
filesystem is using).

15.5.2 CIM_ComputerSystem (Shadow) Mandatory ‘Top level' system that represents a Volume Manager
or Host Discovered Resources.

15.5.3 CIM_Dependency (Systems) Mandatory This associates the Volume Manager or Host
Discovered Resources System to the Host Filesystem
System.

15.5.4 CIM_ElementCapabilities (FS Configuration Mandatory Associates the Filesystem Configuration Service to the

Capabilities) Capabilities element that represents the capabilities
that it supports.

15.5.5 CIM_ElementCapabilities Optional Experimental. Associates the Host Filesystem

(ImplementationCapabilities to Service) configuration service to the
CIM_ImplementationCapabilities supported by the
implementation.

15.5.6 CIM_ElementConformsToProfile Mandatory Ties the FileSystemConfigurationService to the

(FilesystemConfigurationService to Host Filesystem registered profile for Host Filesystem.

RegisteredProfile)

15.5.7 CIM_FileSystemConfigurationCapabilities Mandatory An extension of the
FileSystemConfigurationCapabilities defined in the
Filesystem Manipulation Profile.

15.5.8 CIM_FileSystemConfigurationService Mandatory An extension of the Filesystem Configuration Service
that adds filesystem methods.

16.5.8 CIM_HostedCollection (Allocated Resources) Mandatory This would associate the AllocatedResources
collection to the Base Server system for the Host
Filesystem.

15.5.9 CIM_HostedCollection (Remote Resources) Conditional Conditional requirement: This is required if
CIM_RemoteResources is modeled. This would
associate the RemoteResources collection to the
Base Server system for the Host Filesystem.

15.5.10 CIM_HostedService Mandatory Associates the Filesystem Configuration Service to the
Base Server ComputerSystem.

15.5.11 CIM_ImplementationCapabilities Optional Experimental. The capabilities of the profile

(ImplementationCapabilities) implementation.

SMI-S 1.7.0 Revision 5

Working Draft

309

310

Host Filesystem Profile

Table 248 - CIM Elements for Host Filesystem

Element Name

Requirement

Description

15.5.13 CIM_LogicalDisk (Shadow)

Mandatory

A shadow instance of a LogicalDisk that is imported to
the Host Filesystem Profile.

15.5.12 CIM_LocalFileSystem

Mandatory

Represents an extention of the LocalFileSystem
defined in the Filesystem Profile.

15.5.14 CIM_LogicalFile

Optional

This is an output of the GetFileProperties method on
CIM_LocalFileSystem. It is never instantiated, but the
output follows this format.

15.5.15 CIM_Logicalldentity (LogicalDisk)

Mandatory

Associates a Host Filesystem StorageExtent to a
shadow instance of an (imported) LogicalDisk.

15.5.16 CIM_MemberOfCollection (Allocated
Resources)

Mandatory

This supports collecting LogicalDisks. This is required
to support the AllocatedResources collection.

15.5.17 CIM_MemberOfCollection (Remote
Resources)

Optional

This supports collecting all Shadow instances of
LogicalDisk that the Host Filesystem has available to
use. This is optional when used to support the
RemoteResources collection (the RemoteResources
collection is optional).

15.5.19 CIM_RemoteResources

Optional

This is a SystemSpecificCollection for collecting
Logical Disks that may be allocated by the Host
Filesystem Profile (e.g., LogicalDisks that may be
allocated to support a filesystem).

15.5.18 CIM_RemoteServiceAccessPoint (Shadow)

Optional

CIM_RemoteServiceAccessPoint represents the
management interface to a Shadow system.

15.5.20 CIM_ResidesOnExtent

Mandatory

Represents the association between a local
FileSystem and the underlying storage extent(s) that it
is built on.

15.5.21 CIM_SAPAvailableForElement

Conditional

Conditional requirement: This is required if
CIM_RemoteServiceAccessPoint is modeled.
Represents the association between a
RemoteServiceAccessPoint and the Shadow (Volume
Manager or Host Discovered Resources) System to
which it provides access.

15.5.22 CIM_ServiceAffectsElement

Mandatory

Associates the Filesystem Configuration Service to the
filesystems that the service manages.

15.5.23 CIM_StorageExtent (Primordial Imported
Extent)

Mandatory

Used to represent the storage imported from the OS
(Host Discovered Resources) or Volume Managers.

15.5.24 CIM_SystemDevice (LogicalDisks)

Mandatory

This association links shadow LogicalDisks to the
scoping (Shadow) system (of the Volume Manager or
Host Discovered Resources). This is used to
associate the shadow LogicalDisks with the System
that manages them.

Host Filesystem Profile

Table 248 - CIM Elements for Host Filesystem

Element Name

Requirement

Description

Sourcelnstance ISA CIM_StorageExtent AND
Sourcelnstance.CIM_StorageExtent::OperationalStat
us <>
Previousinstance.CIM_StorageExtent::OperationalSt
atus

SELECT * FROM CIM_InstModification WHERE Mandatory CQL -Change of Status of a ComputerSystem.
Sourcelnstance ISA CIM_ComputerSystem AND Previouslinstance is optional, but may be supplied by
Sourcelnstance.CIM_ComputerSystem::Operational an implementation of the Profile.

Status <>

Previousinstance.CIM_ComputerSystem::Operation

alStatus

SELECT * FROM CIM_InstModification WHERE Mandatory CQL -Change of status of a StorageExtent.

Previouslinstance is optional, but may be supplied by
an implementation of the Profile.

15.5.1 CIM_AllocatedResources

An instance of a default CIM_AllocatedResources defines the set of LogicalDisks that are allocated and

in use by the Host Filesystem Profile.

CIM_AllocatedResources is subclassed from CIM_SystemSpecificCollection.

At least one instance of the CIM_AllocatedResources shall exist for a Host Filesystem Profile and shall
be hosted by one of its ComputerSystems (typically the top level ComputerSystem.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 249 describes class CIM_AllocatedResources.

Table 249 - SMI Referenced Properties/Methods for CIM_AllocatedResources

Properties Flags Requirement Description & Notes

InstancelD Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection (e.g.,
Allocated LogicalDisks).

ElementType Mandatory The type of remote resources collected by the AllocatedResources
collection.
For this version of SMI-S, the only value supported is '7'
(LogicalDisk).

CollectionDiscriminator Mandatory An array of strings indicating the purposes of the collection of
elements. This shall contain 'SNIA:Imported Volumes'.

15.5.2 CIM_ComputerSystem (Shadow)
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SMI-S 1.7.0 Revision 5

Working Draft

311

Host Filesystem Profile

Table 250 describes class CIM_ComputerSystem (Shadow).

Table 250 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the shadow system. E.g., IP address.

ElementName Mandatory User friendly name.

Otherldentifyinginfo C Mandatory

IdentifyingDescriptions C Mandatory

OperationalStatus Mandatory Overall status of the shadow system, as seen by the Host Filesystem.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory Indicates that this computer system is dedicated to operation as a shadow
system.

PrimaryOwnerContact M Optional Contact a details for owner.

PrimaryOwnerName M Optional Owner of the shadow system.

15.5.3 CIM_Dependency (Systems)

CIM_Dependency is an association between a shadow System (Volume Manager or Host Discovered
Resources) and the Host Filesystem System (ComputerSystem). The specific nature of the dependency
is determined by associations between resources (StorageExtents) of the Host Filesystem system and
resources (LogicalDisks) of the shadow system.

CIM_Dependency is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 251 describes class CIM_Dependency (Systems).

Table 251 - SMI Referenced Properties/Methods for CIM_Dependency (Systems)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Base Server System.

Dependent Mandatory The shadow System (system of the Volume Manager or Host Discovered
Resources).

15.5.4 CIM_ElementCapabilities (FS Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

312

Host Filesystem Profile

Table 252 describes class CIM_ElementCapabilities (FS Configuration Capabilities).

Table 252 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabili-

ties)
Properties Flags Requirement Description & Notes
Capabilities Mandatory The Filesystem Configuration Capabilities element.
ManagedElement Mandatory The Filesystem Configuration Service.

15.5.5 CIM_ElementCapabilities (ImplementationCapabilities to Service)

Experimental. Associates the Host Filesystem configuration service to the
CIM_ImplementationCapabilities supported by the implementation.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 253 describes class CIM_ElementCapabilities (ImplementationCapabilities to Service).

Table 253 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities

to Service)
Properties Flags Requirement Description & Notes
Capabilities Mandatory The ImplementationCapabilities.
ManagedElement Mandatory The host FileSystemConfigurationService that has
ImplementationCapabilities.

15.5.6 CIM_ElementConformsToProfile (FilesystemConfigurationService to Host Filesystem Reg-
isteredProfile)

The CIM_ElementConformsToProfile ties FileSystemConfigurationService to the registered profile for
Host Filesystem.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 254 describes class CIM_ElementConformsToProfile (FilesystemConfigurationService to Host
Filesystem RegisteredProfile).

Table 254 - SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (FilesystemConfigura-
tionService to Host Filesystem RegisteredProfile)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A FileSystemConfigurationService instance that represents the Host
Filesystem.

ConformantStandard Mandatory RegisteredProfile instance describing the Host Filesystem profile.

SMI-S 1.7.0 Revision 5 Working Draft 313

Host Filesystem Profile

15.5.7 CIM_FileSystemConfigurationCapabilities

An extension of the FileSystemConfigurationCapabilities defined in the Filesystem Manipulation Profile.
For the base definition of this class, see 9.5.9 CIM_FileSystemConfigurationCapabilities.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 255 describes class CIM_FileSystemConfigurationCapabilities.

Table 255 - SMI Referenced Properties/Methods for CIM_FileSystemConfigurationCapabilities

Properties Flags Requirement | Description & Notes

InstancelD Mandatory See the InstancelD property in 9.5.9
CIM_FileSystemConfigurationCapabilities.

ElementName Mandatory See the ElementName property in 9.5.9
CIM_FileSystemConfigurationCapabilities.

SupportedActualFileSystemTypes Mandatory See the SupportedActualFileSystemTypes property in 9.5.9
CIM_FileSystemConfigurationCapabilities.

SupportedSynchronousMethods N Mandatory See the SupportedSynchronousMethods property in 9.5.9
CIM_FileSystemConfigurationCapabilities.

SupportedAsynchronousMethods N Mandatory See the SupportedAsynchronousMethods property in 9.5.9
CIM_FileSystemConfigurationCapabilities.

InitialAvailability Mandatory See the InitialAvailability property in 9.5.9
CIM_FileSystemConfigurationCapabilities.

LocalAccessibilitySupport Optional See the LocalAccessibilitySupport property in 9.5.9
CIM_FileSystemConfigurationCapabilities.

BlockStorageCreationSupport Optional See the BlockStorageCreationSupport property in 9.5.9
CIM_FileSystemConfigurationCapabilities.

DirectoryServerParameterSupported Optional See the DirectoryServerParameterSupported property in
9.5.9 CIM_FileSystemConfigurationCapabilities.

SupportedFeatures Mandatory This may be 'None', 'GetFileProperties' or 'Quiesce/
Unquiesce'.

15.5.8 CIM_FileSystemConfigurationService
An extension of the Filesystem Configuration Service that adds filesystem methods. For the base
definition of the FileSystemConfigurationService see9.5.10 CIM_FileSystemConfigurationService.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

314

Host Filesystem Profile

Table 256 describes class CIM_FileSystemConfigurationService.

Table 256 - SMI Referenced Properties/Methods for CIM_FileSystemConfigurationService

Properties Flags | Requirement Description & Notes

ElementName Mandatory See the ElementName property in 9.5.10
CIM_FileSystemConfigurationService.

SystemCreationClassName Mandatory See the SystemCreationClassName property in 9.5.10
CIM_FileSystemConfigurationService.

SystemName Mandatory See the SystemName property in 9.5.10
CIM_FileSystemConfigurationService.

CreationClassName Mandatory See the CreationClassName property in 9.5.10
CIM_FileSystemConfigurationService.

Name Mandatory See the Name property in 9.5.10
CIM_FileSystemConfigurationService.

Quiesce() Conditional Conditional requirement: This is required if SupportedFeatures
includes \Quiesce/Unquiesce\'.'See the method description in
15.3.3.1 QuiesceFileSystem.

Unquiesce() Conditional Conditional requirement: This is required if SupportedFeatures
includes \Quiesce/Unquiesce\'.'See the method description in
15.3.3.2 Unquiesce a Filesystem.

15.5.9 CIM_HostedCollection (Remote Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Host Filesystem Profile, it is used to associate the
Remote Resources to the Base Server Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_RemoteResources is modeled.

Table 257 describes class CIM_HostedCollection (Remote Resources).

Table 257 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes
Antecedent Mandatory
Dependent Mandatory

15.5.10CIM_HostedService
Created By: Static

Modified By: Static

Deleted By: Static
Requirement: Mandatory

SMI-S 1.7.0 Revision 5 Working Draft 315

Host Filesystem Profile

Table 258 describes class CIM_HostedService.

Table 258 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes
Dependent Mandatory The Filesystem Configuration Service.
Antecedent Mandatory The Base Server ComputerSystem.

15.5.11CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 259 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

Table 259 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

bilities)
Properties Flags Requirement Description & Notes
InstancelD Mandatory An opaque, unique id for the implementation capability of an

implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedCapacityOptimizations Mandatory This array of strings lists the capacity optimization techiques that
are supported by the implementation. Valid string values are
"none" | "SNIA:Thin Provisioning" | "SNIA:Data Compression" |
"SNIA:Data Deduplication".

15.5.12CIM_LocalFileSystem

Represents an extention of the LocalFileSystem defined in the Filesystem Profile. See 8.5.12
CIM_LocalFileSystem.

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 260 describes class CIM_LocalFileSystem.

Table 260 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement | Description & Notes
CSCreationClassName Mandatory See the CSCreationClassName property in 8.5.12 CIM_LocalFileSystem.
CSName Mandatory See the CSName property in 8.5.12 CIM_LocalFileSystem.

316

Host Filesystem Profile

Table 260 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement | Description & Notes
CreationClassName Mandatory See the CreationClassName property in 8.5.12 CIM_LocalFileSystem.
Name Mandatory See the Name property in 8.5.12 CIM_LocalFileSystem.
OperationalStatus Mandatory See the OperationalStatus property in 8.5.12 CIM_LocalFileSystem.
Root Optional See the Root property in 8.5.12 CIM_LocalFileSystem.
BlockSize Optional See the BlockSize property in 8.5.12 CIM_LocalFileSystem.
FileSystemSize Optional See the FileSystemSize property in 8.5.12 CIM_LocalFileSystem.
AvailableSpace Optional See the AvailableSpace property in 8.5.12 CIM_LocalFileSystem.
ReadOnly Optional See the ReadOnly property in 8.5.12 CIM_LocalFileSystem.
EncryptionMethod Optional See the EncryptionMethod property in 8.5.12 CIM_LocalFileSystem.
CompressionMethod Optional See the CompressionMethod property in 8.5.12 CIM_LocalFileSystem.
CaseSensitive Mandatory See the CaseSensitive property in 8.5.12 CIM_LocalFileSystem.
CasePreserved Mandatory See the CasePreserved property in 8.5.12 CIM_LocalFileSystem.
CodeSet Optional See the CodeSet property in 8.5.12 CIM_LocalFileSystem.
MaxFileNameLength Mandatory See the MaxFileNameLength property in 8.5.12 CIM_LocalFileSystem.
FileSystemType Mandatory See the FileSystemType property in 8.5.12 CIM_LocalFileSystem.
NumberOfFiles Optional See the NumberOfFiles property in 8.5.12 CIM_LocalFileSystem.
GetFileProperties() Conditional Conditional requirement: This is required if SupportedFeatures includes
\GetFileProperties\'.'See the method description in 15.3.2.1
GetFileProperties.

15.5.13CIM_LogicalDisk (Shadow)

A shadow instance of a remote LogicalDisk that is imported to the Host Fileystem profile. If the Host
Fileystem has access to the Volume Management or Host Discovered Resources profile, the data in this
class should reflect what the Host Filesystem obtains from that profile. If the Host Filesystem does not
have access to the Volume Management or Host Discovered Resources profile, then this should be filled
out as best can be done.

The properties in this class table are the properties as defined by either Volume Management, Block
Services or Host Discovered Resources. If a property is optional in any of the three profiles, then it is
defined as optional in the Shadow LogicalDisk. The only exception to this rule is the ExtentDiscriminator,
which is used by the Host Filesystem profile to distinguish the LogicalDisk from other StorageExtents.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SMI-S 1.7.0 Revision 5 Working Draft 317

Host Filesystem Profile

Table 261 describes class CIM_LogicalDisk (Shadow).

Table 261 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Shadow)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DevicelD Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory Format for name.

ExtentStatus Optional

OperationalStatus Mandatory Value shall be 0]2|3|6|8|15 (Unknown or OK or Degraded or
Error or Starting or Dormant).

BlockSize Optional

NumberOfBlocks Optional The number of blocks of capacity consumed from the parent
StoragePool.

ConsumableBlocks Optional The number of blocks usable by consumers.

IsBasedOnUnderlyingRedundancy Optional

NoSinglePointOfFailure Optional

DataRedundancy Optional

PackageRedundancy Optional

DeltaReservation Optional

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain

'SNIA:Shadow'.

15.5.14CIM_LogicalFile

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

318

Host Filesystem Profile

Table 262 describes class CIM_LogicalFile.

Table 262 - SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory Class Name of the ComputerSystem that hosts the filesystem
containing this file.

CSName Mandatory The Name property of the ComputerSystem that hosts the filesystem
containing this file.

FSCreationClassName Mandatory Class Name of the LocalFileSystem that represents the filesystem
containing this file.

FSName Mandatory The Name property of the LocalFileSystem that represents the
filesystem containing this file.

CreationClassName Mandatory Class Name of this instance of LogicalFile that represents the file.

Name Mandatory The Name property of the LogicalFile that represents the file.

ElementName Mandatory The pathname from the root of the containing LocalFileSystem to this

LogicalFile. The root of the LocalFileSystem is indicated if this is NULL
or the empty string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of directories
from the root, the separator string is specified by the
CIM_LocalFileSystem.PathNameSeparatorString property.

FileSize Optional Size of the File in bytes.

CreationDate Optional File's creation date.

LastModified Optional Time that the File was last modified.

LastAccessed Optional Time that the File was last accessed.

Readable Optional Boolean indicating that the File can be read.

Writeable Optional Boolean indicating that the File can be written.

Executable Optional Indicates the file is executable.

CompressionMethod Optional A free form string indicating the algorithm or tool used to compress the
LogicalFile.

EncryptionMethod Optional A free form string indicating the algorithm or tool used to encrypt the
LogicalFile.

InUseCount Optional The number of 'file opens' that are currently active against the File.

15.5.15CIM_Logicalldentity (LogicalDisk)

Associates local StorageExtent to a shadow instance of an (imported) LogicalDisk.
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SMI-S 1.7.0 Revision 5 Working Draft

319

Host Filesystem Profile

Table 263 describes class CIM_Logicalldentity (LogicalDisk).

Table 263 - SMI Referenced Properties/Methods for CIM_Logicalldentity (LogicalDisk)

Properties Flags Requirement Description & Notes

SystemElement Mandatory This is a reference to the shadow (imported) LogicalDisk.

SameElement Mandatory This is a reference to the Host Filesystem StorageExtent that maps to the
shadow (imported) LogicalDisk.

15.5.16CIM_MemberOfCollection (Allocated Resources)

This use of MemberOfCollection is to collect all allocated shadow LogicalDisk instances (in the
AllocatedResources collection).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 264 describes class CIM_MemberOfCollection (Allocated Resources).

Table 264 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)

Properties Flags Requirement Description & Notes
Member Mandatory
Collection Mandatory

15.5.17CIM_MemberOfCollection (Remote Resources)

This use of MemberOfCollection is to collect all shadow LogicalDisk instances (in the RemoteResources
collection). Each association (and the RemoteResources collection, itself) is created through external
means.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 265 describes class CIM_MemberOfCollection (Remote Resources).

Table 265 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)

Properties Flags Requirement Description & Notes
Member Mandatory
Collection Mandatory

15.5.18CIM_RemoteServiceAccessPoint (Shadow)

CIM_RemoteServiceAccessPoint is an instance that provides access information for accessing the actual
Shadow (Volume Manager or Host Discovered Resources) via a management interface.

320

Host Filesystem Profile

CIM_RemoteServiceAccessPoint is not subclassed from CIM_ServiceAccessPoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 266 describes class CIM_RemoteServiceAccessPoint (Shadow).

Table 266 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow)

Properties Flags Requirement | Description & Notes

SystemCreationClassName Mandatory The CIM Class name of the Computer System hosting the
management interface.

SystemName Mandatory The name of the Computer System hosting the management
interface.

CreationClassName Mandatory The CIM Class name of the management interface.

Name Mandatory The unique name of the management interface.

15.5.19CIM_RemoteResources

An instance of a default CIM_RemoteResources defines the set of shadow LogicalDisks that are available
to be used by the Host Filesystem Profile.

CIM_RemoteResources is subclassed from CIM_SystemSpecificCollection.

One instance of the CIM_RemoteResources would exist and shall be hosted by the top level
ComputerSystems of the Host Filesystem Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 267 describes class CIM_RemoteResources.

Table 267 - SMI Referenced Properties/Methods for CIM_RemoteResources

Properties Flags Requirement Description & Notes
InstancelD Mandatory
ElementName Mandatory A user-friendly name for the RemoteResources collection (e.g., Remote

Logical Disks).

ElementType Mandatory The type of remote resources collected by the RemoteResources
collection. This shall be '7' (LogicalDisk).

CollectionDiscriminator Mandatory An array of strings indicating the purposes of the collection of elements.
This shall contain 'SNIA:Imported Volumes'.

15.5.20CIM_ResidesOnExtent

Created By: External
Modified By: Static

SMI-S 1.7.0 Revision 5 Working Draft 321

Deleted By: External
Requirement: Mandatory

Host Filesystem Profile

Table 268 describes class CIM_ResidesOnExtent.

Table 268 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Properties Flags Requirement Description & Notes
Dependent Mandatory The LocalFileSystem that is built on top of a storage extent.
Antecedent Mandatory A StorageExtent that underlies a LocalFileSystem.

15.5.21CIM_SAPAvailableForElement

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is required if CIM_RemoteServiceAccessPoint is modeled.

Table 269 describes class CIM_SAPAvailableForElement.

Table 269 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

15.5.22CIM_ServiceAffectsE

Properties Flags Requirement Description & Notes
ManagedElement Mandatory Shadow System.
AvailableSAP Mandatory

lement

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Requirement: Mandatory

Table 270 describes class CIM_ServiceAffectsElement.

Table 270 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement Description & Notes

ElementEffects Mandatory In this profile, the service provides management for the element.
The standard allows Other to support vendor extensions. The
standard values are 1 (Other) and 5 (Manages).

OtherElementEffectsDescriptions Optional A description of other element effects that this association might
be exposing.

AffectedElement Mandatory The LocalFileSystem.

AffectingElement Mandatory The FileSystemConfigurationService.

15.5.23CIM_StorageExtent (Primordial Imported Extent)

Created By: Static

322

Modified By: Static
Deleted By: Static

Requirement: Mandatory

Host Filesystem Profile

Table 271 describes class CIM_StorageExtent (Primordial Imported Extent).

Table 271 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)

Properties Flags Requirement | Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DevicelD Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

ExtentStatus Mandatory This shall contain the value '16' ('Imported').

Primordial Mandatory This shall be ‘true'.

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant).

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Pool Component' and 'SNIA:Imported'.

15.5.24CIM_SystemDevice (LogicalDisks)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Table 272 describes class CIM_SystemDevice (LogicalDisks).

Table 272 - SMI Referenced Properties/Methods for CIM_SystemDevice (LogicalDisks)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The Shadow Computer System that contains this LogicalDisk.
PartComponent Mandatory The logical disk that is managed by a computer system.

EXPERIMENTAL

SMI-S 1.7.0 Revision 5

Working Draft

323

Host Filesystem Profile

324

FileSystem Replication Services Profile

EXPERIMENTAL

16 FileSystem Replication Services Profile

16.1 Description

16.1.1 Synopsis

Profile Name: Filesystem Replication Services (Component Profile)

Version: 1.7.0

Organization: SNIA

Central Class: ReplicationService

Scoping Class: ComputerSystem

Related Profiles: Table 273 describes the related profiles for Filesystem Replication Services.

Table 273 - Related Profiles for Filesystem Replication Services

Profile Name Organization | Version Requirement Description

Filesystem SNIA 1.7.0 Mandatory

File Export SNIA 1.7.0 Optional

Multiple Computer System SNIA 1.2.0 Optional

Job Control SNIA 15.0 Optional

Indications DMTF 1.2.2 Mandatory See DSP1054, version 1.2.2

16.1.2 Overview

The Filesystem Replication Services Profile, a component profile, specifies the attributes and methods to
create and manage replica of storage elements, for instance, file system. The target replica of storage
element may be from the same storage system or across a connection to a different storage system.

Two types of synchronization views are supported. A replica may be synchronized to the current view of
storage element or may be synchronized to a point-in-time view. Snapshots and clones always represent
a point-in-time view, and a mirror represents a current view.

Two copy operation modes are supported -- synchronous and asynchronous. In the synchronous mode,
the write operation to the source element is reflected to the target element before signaling the host that
a write operation is complete. In the asynchronous mode, the host is signaled as soon as the write
operation to the source element is complete; however, the write to the target element may take place at a
later time.

Filesystem Replication Services Profile supports local and remote replication. Local replication specifies
that both the source and the target element are contained in a single managed storage system, such as a
NAS array platform. Remote replication specifies the source and the target element are contained in
separate storage systems. For remote replication, the client may interact with both the source and target
storage systems, however, the client only invokes the replication methods to single ReplicationService.

Filesystem Replication Services Profile supports “copying” thinly provisioned elements. Unlike fully
provisioned elements, a thinly provisioned element has fewer actual allocated space than the advertised
capacity of the element.

SMI-S 1.7.0 Revision 5 Working Draft 325

FileSystem Replication Services Profile

FileSystem Replication Services Profile supports copy operation from and to ReplicationEntity which
represents an addressable entity without a known object model.

Throughout this profile, there are specific references to class, properties and methods pertaining to each
section. Refer to 16.5: CIM Elements for a complete list of all properties and methods, including the
description.

16.1.2.1 Key Feature
The following is a brief list of key feature of the Filesystem Replication Services:

= The ability to efficiently retrieve replication relationships

= The ability to support the different Copy Methodologies, for example, mirror, snapshot and clone.
= The ability to support the different mode, for example, synchronous and asynchronous.

< The ability to handle local and remote replication seamlessly

= The ability to specify Individual or Groups of elements to manage replication

= The ability to copy from and to undiscovered resources

= The ability to support Consistency Management

= The ability to replicate Thinly Provisioned element

16.1.2.2 Key Components

Table 274 shows a list of key classes used by Filesystem Replication Services. Refer to 16.3: Methods
and 16.5: CIM Elements for addition details on methods and properties of these classes.

Table 274 - Key Components

Class Name Notes

ReplicationService The main class for Replication Services. It contains methods for replication and
group management, for example, CreateGroup, CreateElementReplica,
CreateGroupReplica, ModifyReplicaSynchronization

FileSystemReplicationServiceCapabilities | Contains a set of properties and methods that describe the capabilities of the
service, for example, SupportedReplicationTypes, GetSupportedFeatures.

FileSystemReplicationCapabilities Contains a set of properties and methods that describe the capabilities of each
supported SupportedReplicationType.

ReplicationGroup Represents a group of elements participating in replication activities.

ReplicationSettingData Contains options to customize replication operations, for example, pairing of
group elements, TargetElementSupplier, CopyMethodology,
ThinProvisioningPolicy.

ReplicationEntity Represents information about an addressable entity without a known object
model.

FileSystemGroupSynchronized Associates source and target groups

FileSystemSynchronized Associates source and target elements.

16.1.3 Filesystem Replication Services Discovery

Figure 30 shows a diagrma of Filesystem Replication Services Discovery.

326

FileSystem Replication Services Profile

FileSystemReplicationServiceCapabilities ReplicationService

ElementCapabilities HostedService

FileSystemReplicationCapabilities ComputerSystem

ElementCapabilities

File System Host

Figure 30 - Replication Service Discovery

The ComputerSystem has a HostedService association with ReplicationService. The single instance of
the class ReplicationService and its methods provide the mechanism for the creating and managing the
replicas.

The single instance of the class FileSystemReplicationServiceCapabilities and its methods describe the
various capabilities of the service. Clients should examine the FileSystemReplicationServiceCapabilities
instance and invoke its methods to determine the specific capabilities of a replication service
implementation.

The instances of FileSystemReplicationCapabilities may be associated with ReplicationService using
ElementCapabilities. Each instance of FileSystemReplicationCapabilities should be for each supported
FileSystemReplicationServiceCapabilities.SupportedReplicationTypes.

16.1.3.1 SyncTypes
SyncTypes describe the replication policy support by the profile. The following SyncTypes are defined:

Mirror: Creates and maintains a synchronized mirror copy of the source. Write done to the source element
are reflected to the target element. The target element remains dependent on the source element.

Snapshotl: Creates a point-in-time, virtual image of the source element. The target element remains
dependent on the source element. Identical information in the source and target elements are shared via
implementation-dependent means, to achieve space savings compared to full copies. Snapshots are
commonly known as delta replicas.

Clone: Create a point-in-time, independent, copy of the source element.

Synchronized replication indicates that updates to a source element are reflected to the target element.
The mode determines whether the target element updated immediately, in the case of synchronous mode,
or some time later, in the case of asynchronous mode.

1.Industry usage of the term 'snapshot’ varies widely. In this specification, it is used to mean a 'delta snap-
shot' as defined in the SNIA Dictionary.

SMI-S 1.7.0 Revision 5 Working Draft 327

FileSystem Replication Services Profile

Table 275 compares the SyncTypes and the relationships between the source and target elements. It is a
quick reference fro the clients to determine the appropriate SyncType for the intended target results.

Table 275 - Comparing SyncTypes

. . . Tar i
Relation of LIEEES (9 Target is Target is a_get S ,
Source RO Virtual Target’s space
SyncType Target to Point-in- self- .
Reflected to . . copy of consumption
Source Time Copy contained
Target Source
Mirror Dependent Yes No Yes after Split/ NO Same as Source
Detach
Snapshot Dependent No Yes No Yes Less than Source
Clone Independent No Yes Yes No Same as Source

With respect to “Relation of Target to Source”, Dependent indicates the target element must remain
associated with the source element; Independent indicates the target element can exist without the
source element.

With respect to “Target is Virtual copy of Source”, the target element is not a “physical” copy of the source
element, instead the system holds a collection of mapping information that map the target element data to
the source element data.

16.1.3.2 Mode
The mode controls when the write operations are performed. The following modes are defined:

Synchronous: The writer waits until the write operations are committed to both the source and target
elements; or to both the source element and a target related entity, such as pointer tables.

Asynchronous: The writer waits until the write operations are committed to the source elements only. In
this mode, there can be a delay before the write operations are committed to the target elements.
16.1.4 Locality of Target Elements

Locality specifies the relationship between the source and target element. Replication Services defines
the following localities:

Local: It indicates the source and target elements are contained in a single managed system.

Remote: it indicates the source and target element are contained in separate managed systems. In this
case, the service must rely on a networking protocol for the copy operations.

The networking protocols are modeled using ProtocolEndpoint, which enables a replication service to
reach a remote element. The property ProtocolEndpoint.ProtocollFType specifies the protocol type, for
example, TCP, Fibre Channel, Other, etc.

Locality is important because it advertises the capability of replication service. For example, the property
FileSystemReplicationServiceCapabilities.SupportedReplicationType may be has values such as
“Synchronous Mirror Local” and “Synchronous Mirror Remote”.

Figure 31 illustrates the mandatory, optional and conditional classes for the modeling of local replication
instance diagram.

328

FileSystem Replication Services Profile

FileSystemReplicationServiceCapabilities |——ElementCapabilities— ReplicationService

—

ElementCapabilities
FileSystemReplicationCapabilities HostedService

ComputerSystem
ServiceAffectElement

FileSystem Host

HostedFiIeSystem;LHostedFileSystemi

LocalFileSystem FileSystem
FileSystemSynchronized

ServiceAffectElement

OrderedMemberOfCollection OrderedMemberOfCollection

| |

ReplicationGroup ReplicationGroup
FileSystemGroupSynchronized

Figure 31 - | Local File System Replication

The source element shall be represented in the model as an instance of LocalFileSystem and have a
FileSystemSynchronized association to the target element, that is, FileSystem. The association’s
property CopyState indicates the current state of the association. Meanwhile, the ReplicationService
instance shall have a ServiceAffectElement association to target replica and/or target group.

Both source element and target replica shall have a HostedFileSystem association to a ComputerSystem.
Normally it will be the top-level ComputerSystem of the parent profile (typically one of the filesystem-
related profiles such as the NAS Head or the Self-Contained NAS Profile). However, if the Multiple
Computer System Profile is implemented, the HostedFileSystem may be associated to a component
ComputerSystem. See 16: FileSystem Replication Services Profile in Storage Management Technical
Specification, Part 3 Common Profiles, 1.7.0 Rev 5.

Figure 32 illustrates the mandatory, optional and conditional classes for the modeling of remote
replication instance diagram.

SMI-S 1.7.0 Revision 5 Working Draft 329

FileSystem Replication Services Profile

FileSystemReplicationServiceCapabilities | ElementCapabilities—| ReplicationService
ElementCapabilities ‘ X int— i
pabiliti HostedService HostedAccessPoint-{ ProtocolEndpoint ot |
FileSystemReplicationCapabilities ‘ ‘ ‘ ServiceAffectElement
‘ ComputerSystem MemberOfCollection
A
‘ FileSystem Host
. RemoteReplicationCollection
HostedFileSystem 1 1
LocalFileSystem s T T —— — HostedCollections
T
|] MemberOfCollection
' |
‘ \—FiI'eSystemSynchronized Dependency ProtocolEndpoint
|
OrderedMemberOfCollection FileSystem

HostedFileSystem
ReplicationGroup . ‘ HostedAccessPoint

ReplicationGroup

FileSystemGroupSynchronize

ComputerSystem

L orderedMemberOfCollection

Shadow Model for Remote Array

—_—— e e = = O = — — —

Figure 32 - Remote File System Replication

The RemoteReplicationCollection abstracts the details of network connections to a remote system to
allow clients to focus on whether a remote system is reachable or not.

Instance of RemoteReplicationCollection may statically be created by the implementation, or clients may
be required to create such instance by invoking the extrinsic method CreateRemoteReplicationCollection.
Client subsequently can manipulate instances of RemoteReplicationCollection by invoke the intrinsic
method Modifylnstance and/or the extrinsic method AddToRemoteReplicationCollection and
RemoveFromRemoteReplicationCollection.

Each instance of RemoteReplicationCollection can have one or more paths to the remote system. As long
as one of these path to the remote system is up, the property
RemoteReplicationCollection.ConnectivityStatus indicates “UP”. As long as one connection is
functioning, there are replication operations between the local and the remote system.

Remote replication may require access information such as an RemoteServieAccessPoint instance for
the remote resource. See 16.2.2: Cascading Considerations for addition information.

16.1.5 Group

FileSystem Replication Services utilizes group of element to manage replication activities that include
more than one source or target element in a copy operation. A major advantage of using groups is that an
operation, such as fracture may be performed on the group as a whole, instead of fracturing individual
element pairs one by one. The optional ReplicationGroup class represents a collection of ordered storage
elements. An implementation may allow the target group to have more (or fewer) elements than the
source group.

Key feature of replication groups are:

< A group can be the source and/or the target of a copy operation.

330

FileSystem Replication Services Profile

< Elements of a group may be optionally declared Consistent
= A group may optionally be declared as temporary (Persistent = false).
< A group may contain zero elements (an empty group)

FileSystem Replication Services includes the methods to create and delete a group, and the methods to
add the elements or pair of elements to an existing group(s) or to remove elements from a group.

Certain copy operations such as copy one source to many target elements (one-to-many) may result in
the service creating a temporary group to keep track of all the target elements. The service may delete
the temporary group that is no longer associated with a copy operation. Deleting a temporary group does
not affect the elements associated with the group.

Figure 33 shows a diagram of the group instance. The method ReplicationService.CreateGroupReplica()
is used to copy a group of elements. The property ReplicationSettingData.Pairing determines the pairing
of the source and the target elements. Possible values are Exact Order and Optimum. Exact Order means
the first element of the source group is copied to the first element of the target group, the second element
of the source group is copied to the second element of the target group, and so on. Optimum means in
order to minimize any resource and data flow contentions, if possible, pair the source and target elements
in such as way that they are on different data paths.

See the FileSystemReplicationServiceCapabilities.GetSupportReplicationSettingData() method for
Pairing and for UnequalGroupAction Capabilities.

ReplicationGroup ReplicationGroup
FileSystemGroupSynchronized
// Source Group // Target Group
{ \
OrderedMemberOfCollection OrderedMemberOfCollection
FileSystem FileSystem

FileSystemSynchronized

Figure 33 - Group Instance Diagram
The association between ReplicationGroup and its storage elements (e.g., FileSystem) is
OrderedMemberOfCollection to maintain the order of the storage elements to facilitate pairing of the
source and the target group elements.

16.1.5.1 Composite Group
A Composite Group is a group that includes storage elements from multiple storage systems.

SMI-S 1.7.0 Revision 5 Working Draft 331

FileSystem Replication Services Profile

16.1.5.2 Consistency Group

A Consistency Group is a set of elements that have an “Application Consistent view”. Application
Consistent View is a set of the elements that collectively represent some resource in a known state.

16.1.5.2.1 Sequentially consistent

A group of target element is considered to be “sequentially consistent” if each element is updated in the
same order as the application updates the corresponding source elements. Sequentially Consistency is
also known as Dependent Write Consistency.

16.1.5.3 FileSystemGroupSynchronized Association

.FileSystem Replication Services utilizes FileSystemGroupSynchronized to associate one pair of source
and target groups or a source element to a target group for a one-to-many relationship. Within a group,
the SyncType and Mode properties of all subordinate FileSystemSynchronized associations between the
resource and the target elements shall be the same. The SyncType and Mode properties of the
FileSystemGroupSynchronized association shall also be the same as the ones of subordinate
FileSystemSynchronized associations.

Figure 34 shows the associated groups with equal number of source and target elements.

LocalFileSystem1 FileSystem3
FileSystemSynchronized

\
LocalFilesystem2 FileSystemSynchronized FileSystem4
\

Source ReplicationGroup Target ReplicationGroup

———FileSystemGroupSynchronized——

Figure 34 - Associated Group and Elements

332

FileSystem Replication Services Profile

As shown in Figure 35, one source element is associated to more than one target element.

FileSystem3

FileSystemSynchronized

FileSystemSynchronized .
‘ FileSystem4

LocalFileSystem1

Target ReplicationGroup

FileSystemGroupSynchronized

Figure 35 - One-to-Many Association

If the property ConsistencyEnabled set to true, the target elements have a sequentially consistent view at
all time. Within a group, once the connection between the individual source and target element is broken,
all subsequent copy operations to the target elements stop, therefore maintaining the consistency of the
target element.

16.1.6 State Management For Associated Replicas

Both mirror and snapshot replicas maintain stateful associational with source elements. In the case of
clone replica, the replication associations to the source elements exist while the copy operation is in
progress.

The CopyState property of the replication association identifies the state, while the ProgressStatus
property of the same association indicates the “status” of the copy operation to reach the requested
CopyState, which is indicated in the property RequestedCopyState. For example, CopyState might have a
value of “UnSynchronized”, while ProgressStatus might have a value of “Synchronizing”, also known as
“sync-in-progress”. In all cases, when creating a replica element, the desired CopyState, as reflected in
the property RequestedCopyState, is Synchronized, which indicates the replica element has the same
data as the source element. The RequestedCopyState property will contain “Not Applicable” once the
requested CopyState is achieved.

The FileSystemGroupSynchronized association between the source and target groups also includes the
CopyState property. If all values of FileSystemSynchronized.CopyState of the source and target
association are the same (i.e., Synchronized), FileSystemGroupSynchronized.CopyState will also have
the same value. On the other hand, any mismatch in the FileSystemSynchronized.CopyState values, will
render the FileSystemGroupSynchronized.CopyState property to have a value of Mixed.

Synchronized state for the Mirror and Clone SyncType indicates all data has been copied from the source
element to the target element. For the Snapshot SyncType, because the target element is a virtual point-
in-time view of the source element, the Synchronized CopyState indicates all the metadata (pointer or
mapping information) for the snapshot have been created. Synchronization for the snapshot is achieved
rapidly in comparison to synchronization of Mirror and Clone.

SMI-S 1.7.0 Revision 5 Working Draft 333

FileSystem Replication Services Profile

Unsynchronized CopyState indicates the target element is not an exact copy of the source element (or
the source’s point-in-time). The copy operation automatically continues until the synchronization between
the source element (or its point-in-time) and the target element is reached.

The Skewed CopyState is similar to the Unsynchronized CopyState except that the synchronized
relationship remains in the Skewed state until a client issues the Resync operation (the extrinsic methods
ModifyReplicaSynchronization or ModifyListSynchronization). As an example: Committing write
operations to a Snapshot target element causes the source and the target elements to become Skewed.

Unplanned states, such as Broken, Aborted or Partitioned can be entered from any other state and
generally indicate an unusual circumstance. Recovery from the Broken or Partitioned state may be
automatic once the error condition is resolved, or it may require a client to intervene with a “Resync”
operation (See 16.3.3.3: GetSupportedFeatures) or a “Resume” operation. Continuing from an Aborted
state requires a client to intervene with a “Resync” operation. In this situation, the implementation may
indicate a “Resync” operation is required by the setting the ProgressStatus to “Waiting for resync”.
Additionally, the copy operation may be temporarily stopped due to system or connection bandwidth. In
this case the ProgressStatus will be set to “Pending”. See 16.3.3.3: GetSupportedFeatures

If after the error condition is resolved, the CopyState indicates “Suspended” State, in order to resume the
copy operation it is necessary for the client to issue a “Resume” operation.

If the CopyState indicates “Invalid”, generally, it means system is unable to determine the state of the
copy operation. In this situation, the client needs to “detach” and “reestablish” the replication relationship.

Use the method FileSystemReplicationServiceCapabilities.GetSupportedCopyState to determine the
possible CopyStates. The CopyStates have been normalized in such a way that they may apply to all
SyncTypes.

Table 276 describes the supported CopyStates.

Table 276 - CopyStatus Values

CopyState value Description
Initialized The source and target elements are associated. The copy operation has not
start - no data flow.
Unsynchronized Not all the source element data has been “copy” to the target element.
Synchronized The copy operation is complete. The target element is an “extra replica” of the

source element.

Broken Replica is not valid view of the source element. OperationalStatus of replica
may indicate an Error condition. This state generally indicates an error
condition such as broken connection.

Fractured The target element was abruptly split from its source element - consistency is
not guaranteed

Split The target element was gracefully (or systematically) split from its source
element - consistency is guaranteed.

Inactive Copy operation has stopped, writes to source element will not be sent to the
target element.

Suspended Data flow between the source and target element has stopped. Writes to
source element are held until a resume operation is completed.

Failedover Reads and writes to/from the target element. Source element is not “reachable”

334

FileSystem Replication Services Profile

Table 276 - CopyStatus Values

CopyState value Description

Prepared Initialization is completed, the copy operation has started, however, the data
flow has not started.

Aborted The copy operation is aborted with the Aborted operation. Use the Resync
Replica operation to restart the copy operation

Skewed The target has been modified and is no longer synchronized with the source
element or the point-in-time view. Use the Resync Replica operation to
resynchronized the source and target element.

Mixed Applies to the CopyStatus of FileSystemGroupSynchronized. It indicates the
FileSystemSynchronized associations of the elements in the groups have
different CopyState values.

Partitioned The state of replication relationship can not be determined, for example, due to
a connection problem.

Invalid The array is unable to determine the state of the replication relationship, for
example, after the connection is restored; however, either source or target
element has an unknown status.

Restored It indicates the source element was restored from the target element.

SMI-S 1.7.0 Revision 5

Working Draft

335

FileSystem Replication Services Profile

Figure 36 shows a sample of the CopyState transitions and corresponding ProgressStatus changes. In a
steady state condition, for example, the CopyState has a value of “Synchronized” and at the same time
the ProgressStatus has a value of “Completed”.

Entry @D
InimaEzing
L 4
Inmaizeg
Camgletad
[
¥

h

Unsynchronizeo

| Synchronized |
Camplebad

Synonranizing

Resyneing
Fraciuring
¥
Fraciursd
Completad
Ditaching
Legend ¥
Exit (D
CopySizte| |Progress2tatus
—— —F —_—
Agtomatic
Transhion Cparation

Figure 36 - Sample CopyState and ProgressStatus Transitions

Depending on implementation, the clone target element detaches automatically when the target element
becomes synchronized; otherwise, the client needs to explicitly request a detach operation. See the
method FileSystemReplicationServiceCapabilities.GetSupportedFeatures in 16.3.3.3.

16.1.7 Undiscovered Resource

An undiscovered resource is any addressable entity without a known object model. General, clients
identify an undiscovered resource using one or more of the following:

WWN (World Wide Name)

= URI (Uniform Resourced Identifier)

336

FileSystem Replication Services Profile

e |P Address

< Remote ComputerSystem Objectpath

In all cases, the assumption is that the underlying implementation “knows” how to perform the copy

operation.

the FileSystem Replication Service includes the necessary methods to create and manage the instances
representing undiscovered resource. See the class ReplicationEntity (in 16.5: CIM Elements and the
method AddReplicationEntity (16.3.2.15). Also, in the replication service capabilities the absence of
“Requires full discovery of target ComputerSystem” in SupportedFeatures property indicates the service

support undiscovered resources.

Figure 37 and Figure 38 show entire instance diagram with ReplicationEntity for local and remote

replication.

FileSystemReplicationServiceCapabilities

——ElementCapabilities

ReplicationService

FileSystemReplicationCapabilities

—

ElementCapabilities

HostedService

ComputerSystem

ServiceAffectElement

FileSystem Host

ReplicationEntity

<

SystemDeviceJ;System Device

ReplicationEntity

OrderedMemberOfCollection

ReplicationGroup

FileSystemSynchronized

FileSystemGroupSynchronized

OrderedMemberOfCollection

/\

ReplicationGroup

Figure 37 - Local Replication with ReplicationEntity

SMI-S 1.7.0 Revision 5

Working Draft

337

FileSystem Replication Services Profile

FileSystemReplicationServiceCapabilities -——ElementCapabilities—— ReplicationService
ElementCapabilities . N
FileSystemReplicationCapabilities HostedService HostedAccessPoint—| ProtocolEndpoint
(ServiceAffectElement
ComputerSystem MemberOfCollection
A
FileSystem Host
. RemoteReplicationCollection
SystemDevice 1 L
ReplicationEntity HostedCollection————

l. _______________________________ 1 MemberOfCollection
L . JEndpoint | |
FileSystemnSynchronized Dependency ProtocolEndpoint |
OrderedMemberOfCollection | ReplicationEntity |
[[
| SystemDevice |

A ;
ReplicationGroup | ReplicationGroup HostedAccessPoint |
7*FI|GSVStEFY)GFOUpSyIlullunlzeul ComputerSystem :
] |

| I
[L OrderedMemberOfCollectio |
|
: Shadow Model for Remote Array |
L I

Figure 38 - Remote replication with ReplicationEntity

An instance of FileSystemSynchronized association identifies the source and target element of a copy
operation. Additionally, the FileSystemSynchronized.UndiscoveredElement property may indicate which
elements in the copy operation are “undiscovered”. The possible values are:

= SystemElement - the source element
< SyncedElement - the target element
= Both - both the source and target elements

16.1.8 Multiple-Hop Replication

In multi-hop replication, the target element of one copy operation can simultaneously be the source for
another copy operation. As shown in Figure 39, multi-hop replication involves at least three elements.

Multi-Hop Replication

TFiIeSystemSynchronizedT TFiIeSystemSynchronizedT

LocalFileSystem FileSystem FileSystem

338

// Hop 1 Target
// Hop 2 Source

// Hop 1 Target
// Hop 2 Source

// Hop 1 Target
// Hop 2 Source

FileSystem Replication Services Profile

Figure 39 - Multi-Hop Replication

If an implementation supports multi-hop replication, the supported features capabilities will indicate
“Multi-Hop element replication”. Furthermore, the implementation may need to know that the client is
planning to add additional hops in the subsequent operations. In this case, the replication capabilities
would indicate “Multi-hop requires advance notice”. in response to this capability, the client in creating the
first replica, must set the property ReplicationSettingData.Multihop appropriately (see 16.5: CIM
Elements for details on Multi-hop specification). The capabilities method GetSupportedMaximum
indicates the maximum number of hops supported by the implementation.

16.1.9 SettingDefineState Association and SynchronizationAspect Instance

The SettingDefineState associates an element (e.g. a FileSystem) or a group of elements (e.g. a
ReplicationGroup) to a SynchronizationAspect. A instance of SynchronizationAspect includes properties
for the data and time of the point-in-time copy and a reference to a source element (see Figure 40). the
association is particularly useful for Clones (targets) and Snapshot (source) that do not have a
FileSystemSynchronized association to another storage element. In the case of Clone, the
FileSystemSynchronized association is removed (generally, following the provider's restart) after the
copy operation completes. As for Snapshot, it is possible to create a point-in-time snapshot copy of an
element or a group of elements, without having a target element (using the method
CreateSynchronizationAspect). In this mode, the target elements are added at a later time (sing the
method ModifySettingDefineState). Creating a SynchronizationAspect of a Snapshot is particularly useful
when a client wants to capture a point-in-time copy at a given time; however, the client wants to create a
actual target element at a later time, perhaps when is more convenient.

If an instance of a SynchronizationAspect is associated to a group of elements, the property
“WhenPointinTime” applies to all elements of the groups, indicating the point-in-time copy of all elements
is created at the same exact time.

SettingDefineState Association

FileSystem
SettingDefineState
SynchronizationAspect
OrderedMemberOfCollection datetime WhenPointInTime
Embeddedinstance (SourceElement)

SettingDefineState

ReplicationGroup

Figure 40 - SettingDefineState

SettingDefineState may also be applied to Mirror targets; as much the property
SynchronizationAspect.WhenPointInTime would have the date and time of when the mirror relationship
was fractured (or split).

In all cases, the SettingDefineState association may not persist across the provider’'s restart.
Furthermore, an instance of a SynchronizationAspect shall be removed if the SourceEelement is deleted.

SMI-S 1.7.0 Revision 5 Working Draft 339

FileSystem Replication Services Profile

Figure 41 shows an instance diagram for a clone target element and its associated
SynchronizationAspect instance. Once the clone target element becomes synchronized, the
FileSystemSynchronized association is removed and the property SynchronizationAspect.CopyState has
a value of “Operation Completed”

Before Clone

LocalFileSystem FileSystem
FileSystemSynchronized
// Source // Target
SettingDefineState
SynchronizationAspect
// SyncStatus: Operation In progress

// WhenPointInTime
// SourceElement ObjectPath

After Clone
LocalFileSystem FileSystem
// Source // Target

SettingDefineState

SynchronizationAspect

// SyncStatus: Operation Completed
// WhenPointInTime
// SourceElement ObjectPath

Figure 41 - SynchronizationAspect Instance Diagram

16.1.10Indication

Depending on the implementation, the FileSystem Replication Services Profile generates a number of
different alert and lift cycle indications, as shown in Table 277. clients decide what indications they wish
to receive by subscribing to the appropriate indications.

Because on the large system with many copy operation in progress simultaneously, there is a potential to
receive many unwanted indications. Therefore, it is recommended for the client to subscribe to

340

FileSystem Replication Services Profile

indications that have a query that is constrained to a specific replication association. See 16.5: CIM
Elements for the indication queries.

For the file system and job indications, refer to Section 8: Filesystem Profile, Section 9: Filesystem
Manipulation Profile and Storage Management Technical Specification, Part 3 Common Profiles, 1.7.0 Rev 5

Section 23: Job Control Profile.

Table 277 - Indications

Indication

Source Of

CIM_InstCreation IS

New Job Creation
New Target Element Creation
New FileSystemSynchronized Association Creation

New FileSystemGroupSynchronized Association Creation

CIM_InstDeletion -

Job Deletion
Target Element Deletion (e.g. Snapshot)
FileSystemSynchronized Association Deletion

FileSystemGroupSynchronized Association Deletion

CIM_InstModification -

Job Progress and Status Change

Source and Target Element Status Changes
CopyState Changes

ProgressStatus Changes

ProtocolEndpoint and RemoteReplicationCollection Status Changes

CIM_Alertindication -

Error conditions, such as

= FileSystemSynchronized and FileSystemGroupSynchronized State
set to Broken

= ProtocolEndpoints.OperationalStatus set to Error

= RemoteReplicationCollection.ConnectivityStatus set to “down”

16.2 Implementation

16.2.1 Health and Fault Management Consideration

The profile uses indications to report health and fault management. In general, instance modification
indications are sent when changes in OperationalStatus and HealthState values of the following instances

indicate a fault condition:
< Source and Replica elements
< ProtocolEndpoints

< RemoteReplicationCollections

SMI-S 1.7.0 Revision 5

Working Draft

341

FileSystem Replication Services Profile

In response to a fault indication, clients can follow the RelatedElemetCausingErro association between
instance reporting the error and the faulted component.

The profile also generates alert indications when the CopyState of a replication association transitions to
the Broken state.

16.2.2 Cascading Considerations

For remote replication, the FileSystem Replication Services Profile requires a cascading provider to
perform the “stitching” of resources between cascading profile (FileSystem Replication Services Profile)
and a leaf profile (for example, NAS Head Profile), where the remote resource are contained. The
cascading provider ensures that the leaf resource represent real instances of ComputerSystem,
ProtocolEndpoint and storage objects such as FileSystem in cascading profile. Furthermore, the
cascading provider shall ensure that the state and status properties such as OperationalStatus and
CopyState have consistent values between the leaf and real resource.

The replication service relies on other profile to facilitate access to the leaf resource. For example, the
RemoteServiceAccessPoint instance identifies the necessary information to establish access to the leaf
system'’s resources.

Figure 42 illustrates the FileSystem Replication Services support for cascading.

ComputerSystem
HostedFileSystem
LocalFileSystem HostedCollection
HostedCollection
|_Cascading Support AllocatedResource RemoteResource
| FileSystemSynchronized I
| MemberOfCollection X I
K MemberOfCollection
ComputerSystem FileSystem I
Shad Shad
| (Shadow) ——HostedFileSystem (Shadow)
| r Replica of Local FileSystem I
| ResidesOnExtent ‘ ‘ I
| SystemDevice I
LogicalDisk StoragePool
Shad Shad
| (Shadow) —AllocatedFromStoragePool—| (Shadow) I
| HostedStoragePool ‘ I
| RemoteServiceAccessPoint I
| SAPAvailableForElement I
- - ==

Figure 42 - FileSystem Replication Service support for Cascading

The dashed classes are shadow of instances provided by the remote system. The collection
CIM_AllocatedResources collects all the components in use by the replication service. the collection

342

FileSystem Replication Services Profile

CIM_RemoteResources collects all component (FileSystem, FileShare, etc.) accessible to the replication
service whether used or not.

Figure 43 shows cascading support utilizing replication groups.

ComputerSystem
HostedFileSystem
(ServiceAffectsElemenT fOrderedMemberOfCoIIection—‘
ReplicationService ReplicationGroup LocalFileSystem
HostecService HostedCollection
HostedCollection | o — —l— — — — T T T T T T
FileSystemGroupSynchonized
\
AllocatedResource ReplicationGraup FileSystemSynchronized
(shadow)
RemoteResource
MemberOTColIection LOrderedMemberOfCoIIectionT
FileSystem MemberOfCollection
(Shadow)
—]
(shadow) HostedFileSystem Replica of Local FileSystem

]
- —‘ ResidesOnExtent | l

|
|
|
|
|
|
| ComputerSystem
|
|
|
|
|
|
|

. LogicalDisk StoragePool
SystemDevice (Shadow) (Shadow)
—AllocatedFromStoragePool—|
HostedStoragePool ‘
RemoteServiceAccessPoint
SAPAvailableForElement
|\ - - - _ _ - _____J

Figure 43 - Cascading and Replication Groups

16.3 Methods

The FileSystem Replication Services Profile has an umber of the extrinsic methods for group
management and replication management. Additionally, there are a number of the extrinsic methods in
the FileSystemReplicationServiceCapabilities that advertise the implemented replication service
capabilities. Also, the FileSystem Replication Services Profile is dependent on the other extrinsic
methods provided by the Filesystem Manipulation Profile for file system manipulations. Furthermore, it
relies on a number of intrinsic methods such as Modifylnstance, Deletelnstance for certain optional
capabilities.

All of the FileSystem Replication Service Profile extrinsic methods return one of the following status
codes. Depending on the error condition, a method may return additional error codes and/or throw an
appropriate exception to indicate the error encountered.

« 0: (Job) Completed with no error

SMI-S 1.7.0 Revision 5 Working Draft 343

FileSystem Replication Services Profile

1. Method not supported

4: Failed

5: Invalid Parameter

4096: Method Parameters Checked - Job Started

For the input/output parameter values, refer to the appropriate MOF files and the value maps.
Table 278 summarizes the extrinsic methods for group management (class ReplicationService)

Table 278 - Extrinsic Method for Group Management

Method Described in
CreateGroup() See 16.3.1.1
DeleteGroup() See 16.3.1.2
AddMembers() See 16.3.1.3
RemoveMembers() See 16.3.1.4

Table summarizes the extrinsic methods for replication management (class ReplicationService)

Table 279 - Extrinsic Method for Replication Management

Method Described in
CreateElementReplica() See 16.3.2.1
CreateGroupReplica() See 16.3.2.2
CreateListReplica() See 16.3.2.3
CreateGroupReplicaFromElements() See 16.3.2.4
CreateSynchronizationAspect() See 16.3.2.5
ModifyReplicaSynchronization() See 16.3.2.6
ModifyListSynchronization() See 16.3.2.7
ModifySettingsDefineState() See 16.3.2.8
ModifyListSettingsDefineState() See 16.3.2.9
GetAvailableTargetElements() See 16.3.2.10
GetPeerSystems() See 16.3.2.11
GetServiceAccessPoints() See 16.3.2.12
GetReplicationRelationships() See 16.3.2.13
GetReplicationRelationshipInstances() See 16.3.2.14
AddReplicationEntity() See 16.3.2.15
AddServiceAccessPoint() See 16.3.2.16
AddShareSecret() See 16.3.2.17
CreateRemoteReplicationCollection() See 16.3.2.18
AddToRemoteReplicationCollection() See 16.3.2.19
RemoveFromRemoteReplicationCollection() See 16.3.2.20

344

FileSystem Replication Services Profile

Table 280 - Extrinsic Method for Getting Supported Capabilities

Method Described in
ConvertSyncTypeToReplicationType() See 16.3.3.1
ConvertReplicationTypeToSyncType() See 16.3.3.2
GetSupportedFeatures() See 16.3.3.3
GetSupportedGroupFeatures() See 16.3.3.4
GetSupportedCopyStates() See 16.3.3.5
GetSupportedGroupCopyStates() See 16.3.3.6
GetSupportedWaitForCopyStates() See 16.3.3.7
GetSupportedConsistency() See 16.3.3.8
GetSupoprtedOperations() See 16.3.3.9
GetSuportedGroupOperations() See 16.3.3.10
GetSupportedListOperations() See 16.3.3.11
GetSupportedSettingsDefineStateOperations() See 16.3.3.12
GetSupportedThinPrivisioningFeatures() See 16.3.3.13
GetSupportedMaximum() See 16.3.3.14
GetDefaultConsistency() See 16.3.3.15
GetDefaultGroupPersistency() See 16.3.3.16
GetSupportedReplicationSettingData() See 16.3.3.17
GetDefaultReplicationSettingData() See 16.3.3.18
GetSupportedConnectionFeatures() See 16.3.3.19
GetSupportedStorageCompressionFeatures() See 16.3.3.20

16.3.1 Group Management Methods

16.3.1.1 CreateGroup
uint32 ReplicationService.CreateGroup(
[IN] string GroupName,

[IN] CIM_LogicalElement REF Members[],

[IN] boolean Persistent,

[IN] boolean DeleteOnEmptyElement,

[IN] boolean DeleteOnUnassociated,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[OUT] CIM_ReplicationGroup REF ReplicationGroup,

[IN, Embeddedlnstance (""CIM_ReplicationSettingData™)]
string ReplicationSettingData);

SMI-S 1.7.0 Revision 5

Working Draft

Table 280 summarizes the extrinsic methods for examining the implemented capabilities (class
FileSystemReplicationServiceCapabilities). The majority of these methods accept the ReplicationType as
an input parameter. The supplied ReplicationType must be a supported replication type corresponding to
the property FileSystemReplicationServicesCapabilities.SupportedReplicationTypes;
method returns “Not Supported” or throw a “Not Supported” exception.

the

345

FileSystem Replication Services Profile

This Method allows a client to create a new replication group. Any required associations (such as
HostedCollection) are created in addition to the instance of the group. The parameters are as follows:

GroupName: If nameable, an end user relevant name for the group being created. If NULL or not nameable,
then system assigns a name.

Members][]: List of elements to add to the group -- order is maintained. If NULL, the group will be empty -- if
empty groups are supported.

Persistent: If false, the group, not the elements associated with the group, may be deleted at the completion
of a copy operation. Use the intrinsic method Modifylnstance to change Persistencyof a group.

DeleteOnEmptyElement: If true and empty groups are allowed, the group will be deleted when the last
element is removed from the group. If empty groups are not allowed, the group will be deleted automatically
when the group becomes empty. If this parameter is not NULL, its value will be used to set the group's
DeleteOnEmptyElement property. Use the intrinsic method Modifylnstance to change this property after the
group is created.

DeleteOnUnassociated: If true, the group will be deleted when the group is no longer associated with another
group. This can happen if all synchronization associations to the individual elements of the group are
dissolved. If this parameter is not NULL, its value will be used to set the group's DeleteOnUnassociated
property. Use the intrinsic method Modifylnstance to change this property after the group is created.

ServiceAccessPoint: Reference to access point information to allow the service to create a group on a remote
system. If NULL, the group is created on the local system.

ReplicationGroup: Reference to the created group.

ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example, to
supply the “Description” for the created group.

This method returns the following additional values/statuses:

If a groups are not nameable and a name is supplied, the method return 7 (“Groups are not nameable”) or
throws an appropriate exception.

16.3.1.2 DeleteGroup

uint32 ReplicationService.DeleteGroup(
[IN, Required] CIM_ReplicationGroup REF ReplicationGroup,
[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,
[IN] boolean RemoveElements,
[IN, Embeddedinstance (""CIM_ReplicationSettingData™)]
string ReplicationSettingData);

This method allows a client to delete a replication group. All associations to the deleted group are also
removed as part of the action. The parameters are as follows:

ReplicationGroup: Reference to a replication group that the client want s to delete.

ServiceAccessPoint: Reference to access point information to allow the service to delete the group on a
remote system. If null, the group is on the local system.

RemoveElements: Delete the group even if it is not empty. If one or more elements in the group are in a
replication relationship, RemoveElements has no effect.

ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

This method returns the following addition values/statuses:

346

FileSystem Replication Services Profile

< If an element in the group is in a replication association, the method return 7 (“One or more elements in a
replication relationship”) or throws an appropriate exception.

16.3.1.3 AddMembers
uint32 ReplicationService.AddMembers()
[IN] CIM_LogicalElement REF Members[],
[IN, Required] CIM_ReplicationGroup REF ReplicationGroup,
[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,
[IN, Embeddedlnstance (""CIM_ReplicationSettingData™)]
string ReplicationSettingData);

This method allows a client to add members to an existing replication group. The parameters are as
follows:

< Members[]: An array of strings containing object references to the new elements to add to the replication
group. The new elements are added at the end of current members of the replication group. Duplicate
members are not allowed.

= ReplicationGroup: A reference to an existing replication group.

= ServiceAccessPoint: Reference to access point information to allow the service to access the group on a
remote system. If null, the group is on the local system.

< ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

16.3.1.4 RemoveMembers

uint32 ReplicationService.RemoveMembers(
[IN] CIM_LogicalElement REF Members[],
[IN] boolean DeleteOnEmptyElement,
[IN, Required] CIM_ReplicationGroup REF ReplicationGroup,
[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,
[IN, Embeddedinstance (""CIM_ReplicationSettingData™)]

string ReplicationSettingData);

This method allows a client to remove members from an existing replication group. If empty replication
groups are not supported by the implementation, deleting all members will delete the group. The
parameters are as follows:

< Members|[]: An array of strings containing object references to the elements to remove from the replication
group. Attempting to remove a member that is not in the replication group, returns an error.

< DeleteOnEmptyElement: If true and removal of the members causes the group to become empty, the group
will be deleted. Note, if empty groups are not allowed, the group will be deleted automatically when the group
becomes empty. If this parameter is not null, it overrides the group's property DeleteOnEmptyElement.

< ReplicationGroup: A reference to an existing replication group.

= ServiceAccessPoint: Reference to access point information to allow the service to access the group on a
remote system. If null, the group is on the local system.

< ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

This method returns the following additional values/statuses:

SMI-S 1.7.0 Revision 5 Working Draft 347

FileSystem Replication Services Profile

Attempting to remove a group member that is in a replication association, returns 7 (“One or more element in
a replication relationship®) or throws an appropriate exception.

16.3.2 Replication Management

16.3.2.1 CreateElementReplica

uint32 ReplicationService.CreateElementReplica(
[IN] string ElementName,
[IN, Required] uintl6 SyncType,
[IN] uintl6 Mode,
[IN, Required] CIM_LogicalElement REF SourceElement,
[IN] CIM_ServiceAccessPoint REF SourceAccessPoint,
[IN, OUT] CIM_LogicalElement REF TargetElement,
[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,
[IN, Embeddedlnstance("'CIM_ReplicationSettingData')]
string ReplicationSettingData,
[OUT] CIM_ConcreteJdob REF Job,
[OUT] CIM_Synchronized REF Synchronization,
[IN] CIM_SettingData REF TargetSettingGoal,
[IN] CIM_ResourcePool REF TargetPool,
[IN] uintl6 WaitForCopyState);

This method allows a client to create (or start a job to create) a new storage object which is a replica of
the specified source storage object (SourceElement). The parameters are as follows:

ElementName: A end user relevant name for the element being created. If null, then a system supplied name
is used. The value will be stored in the 'ElementName' property for the created element.

SyncType: Describes the type of copy that will be made. For example, Mirror, Snapshot, and Clone.
Mode: Describes whether the target elements will be updated synchronously or asynchronously.
SourceElement: The source storage object which may be a FileSystem or storage object.

SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element.

* TargetElement:

= As an input, refers to a target element to use. If a target element is not supplied, the implementation may
locate or create a suitable target element. See 16.3.3.17: GetSupportedReplicationSettingData

= As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target element.

ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data.

Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be null if job is completed).

Synchronization: Refers to the created association between the source and the target element. If a job is
created, this parameter may be null, unless the association is actually formed.

348

FileSystem Replication Services Profile

TargetSettingGoal: The definition for the FileSystemSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be null.

TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be null.

WaitForCopyState: Before returning, the method shall wait until this CopyState is reached. For example,
CopysState of Initialized means associations have been established, but there is no data flow. CopyState of
Synchronized indicates the replica is an exact copy of the source element. CopyState of UnSynchronized
means copy operation is in progress (see Figure 276 for the CopyStates).

Method Notes:

Creates a storage element of the same type as the source element.

If the TargetElement, the TargetPool, or the TargetAccessPoint are not specified, the TargetElement is
created on the system hosting the replication service, via the HostedService association. Additionally, when
required, the created TargetElement will have the applicable association to the top level ComputerSystem.
For example, if the TargetElement is a FileSystem, the created TargetElement will have a HostedFileSystem
association to the top level computer system.

Creates a FileSystemSynchronized association.

Creates HostedFileSystem, ResidesOnExtent, and ElementSettingData associations to the newly created
target element.

May create BasedOn and ReplicaPoolForStorage associations.

Table 281 shows selected optional parameters that can interact.

NOTE

Table 281 - Selected CreateElementReplica optional parameters

TargetElement TargetSettingGoal TargetPool Comment
Null Null Null Implementation locates/creates target element*
Supplied Null Null

Null Supplied Null Goal is used to locate/create target element*

Null Supplied Supplied Goal is used to locate/create target element* in the
supplied Pool

Null Null Supplied Pool is used to locate/create target element* in Pool.
Implementation determines the Goal

16.3.2.2 CreateGroupReplica
uint32 ReplicationService.CreateGroupReplica(

[IN]
[IN,
[IN]
[IN]
[IN]
[IN]
[IN,
[IN]

SMI-S 1.7.0 Revision 5

string RelationshipName,
Required] uintl6é SyncType,

uintlé Mode,

* See capabilities (Table 299, “Target Element Suppliers”) for whether implementation locates/creates target elements.

CIM_ReplicationGroup REF SourceGroup,
CIM_LogicalElement REF SourceElement,
CIM_ServiceAccessPoint REF SourceAccessPoint,
OUT] CIM_ReplicationGroup REF TargetGroup,
uint64 TargetElementCount,

Working Draft

349

FileSystem Replication Services Profile

[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

[IN] uintl6 Consistency,

[IN, EmbeddedInstance("'CIM_ReplicationSettingData'™)]
string ReplicationSettingData,

[OUT] CIM_Concretedob REF Job,

[OUT] CIM_Synchronized REF Synchronization,

[IN] CIM_SettingData REF TargetSettingGoal,

[IN] CIM_ResourcePool REF TargetPool,

[IN] uintl6 WaitForCopyState);

This method allows a client to create (or start a job to create) a new group of storage objects which are
replicas of the specified source storage or a group of source storage objects (SourceElements). The
parameters are as follows:

350

RelationshipName: A user relevent name for the relationship between the source and target groups or
between a source element and a target group (i.e., one-to-many). If null, the implementation assigns a name.
If the individual target elements require an ElementName, a name would be constructed using
RelationshipName (or ReplicationSettingData.ElementName) as prefix followed by " n" sequence number,
where n is a number beginning with 1.

If the method is expected to create the target group, and the parameter ReplicationSettingData is supplied,
the property ReplicationSettingData.ElementName may be used as the group name.

SyncType: See CreateElementReplica’s parameters (16.3.2.1)
Mode: See CreateElementReplica’s parameters (16.3.2.1)

SourceGroup: A group of source storage objects. If this parameter is not supplied, SourceElement is
required. Both SourceGroup and SourceElement shall not be supplied.

SourceElement: The source storage object. If this parameter is not supplied, SourceGroup is required. Both
SourceGroup and SourceElement shall not be supplied.

SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source elements/group.

TargetGroup:
As an input, refers to a target group to use.

As an output, refers to the created target group (i.e., the replica group). If a job is created, the target group may
not be available immediately. If TargetGroup is supplied, TargetElementCount shall be null.

TargetElementCount: This parameter applies to one-source-to-many-target elements. If TargetGroup is
supplied, this parameter shall be null.

TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target elements/group.

Consistency: This parameter overrides the default group consistency. For example, "No Consistency",
"Sequential Consistency".

ReplicationSettingData: See CreateElementReplica’s parameters (16.3.2.1)

Job: See CreateElementReplica’s parameters (16.3.2.1)

FileSystem Replication Services Profile

Synchronization: Refers to the created association between the source element (or source replication group)
and the target replication group. If a job is created, this parameter may be null, unless the association is

actually formed.
= TargetSettingGoal: See CreateElementReplica’s parameters (16.3.2.1)
< TargetPool: See CreateElementReplica’s parameters (16.3.2.1)
= WaitForCopyState: See CreateElementReplica’s parameters (16.3.2.1)
Method Notes:

= Creates storage elements of the same type as the source element(s)

- |If the TargetGroup or the TargetAccessPoint are not specified, the TargetGroup is created on the system

hosting the replication service, via the HostedService association.

= Creates FileSystemSynchronized and FileSystemGroupSynchronized associations.

< Creates HostedFileSystem, ResidesOnExtent, and ElementSettingData associations to the newly created

target elements.
< May create BasedOn and ReplicaPoolForStorage associations.
Table 282 shows selected optional parameters that can interact

Table 282 - Selected CreateGroupReplica optional parameters

TargetGroup TargetElementCount TargetSettingGoal TargetPool Comment

Null Null Null Null Implementation locates/

creates target elements*
Supplied Null Null Null
Supplied Supplied Null Null An illegal combination.

Null Supplied Null Null Implementation locates/
creates target elements*

Null Supplied Supplied Null Goal is used to locate/create
target elements

Null Supplied Supplied Supplied Goal is used to locate/create
target elements* in the
supplied Pool

Null Null Supplied Null Goal is used to locate/create
target elements

Null Null Supplied Supplied Goal is used to locate/create
target elements in the
supplied Pool

Null Null Null Supplied Pool is used to locate/create
target elements* in Pool.
Implementation determines
the Goal

NOTE * See capabilities (Table 299, “Target Element Suppliers”) for whether implementation locates/creates target elements

16.3.2.3 CreatelListReplica
uint32 ReplicationService.CreateListReplica(

SMI-S 1.7.0 Revision 5 Working Draft

351

FileSystem Replication Services Profile

[IN] string ElementNames[],

[IN, Required] uintl6 SyncType,

[IN] uintl6 Mode,

[IN, Required] CIM_LogicalElement REF SourceElements[],

[IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

[IN, OUT] CIM_LogicalElement REF TargetElements[],

[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

[IN, Embeddedlnstance('CIM_ReplicationSettingData')]
string ReplicationSettingData,

[OUT] CIM_Concretedob REF Job,

[OUT] CIM_Synchronized REF Synchronizations[],

[IN] CIM_SettingData REF TargetSettingGoal,

[IN] CIM_ResourcePool REF TargetPool,

[IN] uintl6 WaitForCopyState);

This method allows a client to create (or start a job to create) new storage objects which are a replica of
the corresponding specified source storage object (an element of the SourceElements). The parameters
are as follows:

< ElementNames: An array of end user relevant names for the elements being created. If null, then a system
supplied name is used. The value will be stored in the 'ElementName' property for the created element. The
first element of the array ElementNames is assigned to the first replica, the second element to the second
replica and so on. If there are more SourceElements entries than ElementNames, the system supplied name
is used.

= SyncType: See CreateElementReplica’s parameters (16.3.2.1)
< Mode: See CreateElementReplica’s parameters (16.3.2.1)

= SourceElements: An array of source storage objects. All the source elements shall be of the same type -- for
example, all FileSystems.

= SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element. The same SourceAccessPoint applies to all SourceElements
entries.

e TargetElements:

As an input, refers to an array of target elements to use. If specified, the elements will match one to one with
SourceElements[]. If a target elements are not supplied, the implementation may locate or create a suitable
target elements. See 16.3.3.17: GetSupportedReplicationSettingData.

As an output, refers to the created target storage elements (i.e., the replicas). If a job is created, the target
elements may not be available immediately

= TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target element. The same TargetAccessPoint applies to all TargetElements entries.

= ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data. The same ReplicationSettingData
applies to SourceElements entries.

e Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be null if job is completed).

= Synchronizations: Refers to an array of created associations between the source and the target elements. If a
job is created, this parameter may be null, unless the associations are actually formed.

352

FileSystem Replication Services Profile

TargetSettingGoal: The definition for the FileSystemSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be null. The same TargetSettingGoal applies to
all TargetElements entries.

TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be null. The same TargetPool applies to all TargetElement entries.

WaitForCopyState: Before returning, the method shall wait until this CopyState is reached for all
Synchronizations. For example, CopyState of Initialized means associations have been established, but there
is no data flow. CopyState of Synchronized indicates the replicas are an exact copy of the corresponding
source element. CopyState of UnSynchronized means copy operation is in progress (see Table 276 -:
CopysStatus Values for the CopyStates).

Method Notes:

Creates a storage elements of the same type as the source elements.

If the TargetElements, the TargetPool, or the TargetAccessPoint are not specified, the TargetElements are
created on the system hosting the replication service, via the HostedService association. Additionally, when
required, the created TargetElements will have the applicable associations to the top level ComputerSystem.
For example, if the TargetElements are FileSystem, the created TargetElements will have HostedFileSystem
associations to the top level computer system.

Creates the FileSystemSynchronized associations.

Creates HostedFileSystem, ResidesOnExtent, and ElementSettingData associations to the newly created
target elements.

May create BasedOn and ReplicaPoolForStorage associations.

Table 283 shows selected optional parameters that can interact.

Table 283 - Selected CreateListReplica optional parameters

TargetElements TargetSettingGoal TargetPool Comment
Null Null Null Implementation locates/creates target elements*
Supplied Null Null

Null Supplied Null Goal is used to locate/create target elements*

Null Supplied Supplied Goal is used to locate/create target elements* in the
supplied Pool

Null Null Supplied Pool is used to locate/create target elements* in Pool.
Implementation determines the Goal

NOTE * See capabilities (Table 299, “Target Element Suppliers”) for whether implementation locates/creates target elements

16.3.2.4 CreateGroupReplicaFromElements
uint32 ReplicationService.CreateGroupReplicaFromElements(
[IN] string RelationshipName,
[IN, Required] uintl6 SyncType,
[IN] uintl6 Mode,
[IN,OUT] CIM_ReplicationGroup REF SourceGroup,
[IN] CIM_LogicalElement REF SourceElements[],
[IN, OUT] string SourceGroupName,

SMI-S 1.7.0 Revision 5

Working Draft 353

FileSystem Replication Services Profile

[IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

[IN, OUT] CIM_ReplicationGroup REF TargetGroup,

[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

[IN] uintl6 Consistency,

[IN, Embeddedlnstance('CIM_ReplicationSettingData')]

string ReplicationSettingData,

[OUT] CIM_Concretedob REF Job,

[OUT] CIM_Synchronized REF Synchronization,

[IN] CIM_SettingData REF TargetSettingGoal,

[IN] CIM_ResourcePool REF TargetPool,

[IN] uintl6 WaitForCopyState);
This method allows a client to create (or start a job to create) a new group of storage objects which are
replicas of the specified source storage objects (SourceElements). This method combines the

functionality of CreateGroup and CreateGroupReplica in that the methods accepts a list of source
elements and creates the source group, and the target group, if not supplied.

The parameter SourceGroupName corresponds to the parameter GroupName as defined in the
CreateGroup method.

For the explanation of the parameters, see the methods CreateGroup (16.3.1.1) and CreateGroupReplica
(16.3.2.2).

16.3.2.5 CreateSynchronizationAspect

uint32 ReplicationService.CreateSynchronizationAspect(
[IN] string ElementName,
[IN, Required] uintl6 SyncType,
[IN] uintl6 Mode,
[IN] CIM_ReplicationGroup REF SourceGroup,
[IN] CIM_LogicalElement REF SourceElement,
[IN] CIM_ServiceAccessPoint REF SourceAccessPoint,
[IN] uintl6 Consistency,
[IN, Embeddedlnstance (""CIM_ReplicationSettingData™)]

string ReplicationSettingData,

[OUT] CIM_ConcreteJdob REF Job,
[OUT] CIM_SettingsDefineState REF SettingsState);

This method allows a client to create (or start a job to create) new instances of SynchronizationAspect
that are associated to the source element (or a group of source elements) via the SettingsDefineState
associations. This representation may be of a form of pointers or a series of checkpoints that keep track
of the source element data for the created point-in-time.

This method does not include a target element, however, a target element can be added subsequently
using the ModifySettingsDefineState method.

The method creates individual associations between the source elements and the instances of
SynchronizationAspect.

The parameters are as follows:

< ElementName: A end user relevant name. If null, then a system supplied default name can be used. The
value will be stored in the ElementName property of the created SynchronizationAspect.

= SyncType: See CreateElementReplica’s parameters (16.3.2.1).

354

FileSystem Replication Services Profile

< Mode: See CreateElementReplica’s parameters (16.3.2.1).
= SourceGroup: See CreateGroupReplica’s parameters in (16.3.2.2)
= SourceElement: See CreateGroupReplica’s parameters (16.3.2.2)

= SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element/group.

< Consistency: See CreateGroupReplica’s parameters (16.3.2.2)
= ReplicationSettingData: See CreateElementReplica’s parameters (16.3.2.1).
< Job: See CreateElementReplica’s parameters (16.3.2.1).

= SettingsState: Refers to the created association between the source element or group and the instance of the
SynchronizationAspect. If a job is created, this parameter may be null, unless the association is actually
formed.

Method Notes:
< May create an instance of SynchronizationAspect if an appropriate one does not exist already.

< May create ReplicaPoolForStorage associations.

16.3.2.6 ModifyReplicationSynchronization
uint32 ReplicationService.ModifyReplicaSynchronization(
[IN, Required] uintl6 Operation,
[IN, Required] CIM_Synchronized REF Synchronization,
[IN, Embeddedinstance (""CIM_ReplicationSettingData")]
string ReplicationSettingData,
[IN] CIM_Synchronized REF SyncPair[],
[OUT] CIM_ConcreteJdob REF Job,
[IN] boolean Force,
[OUT] CIM_SettingsDefineState REF SettingsState,
[IN] uintl6 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the synchronization association between
two storage objects or replication groups. The parameters are as follows:

= Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

< Synchronization: The reference to the replication association describing the elements/groups relationship that
is to be modified.

= ReplicationSettingData: See CreateElementReplica’s parameters (16.3.2.1).

= SyncPair[]: This parameter applies to AddSyncPair/RemoveSyncPair Operations. It allows a client to form a
Synchronized association between source and target elements and then add the association to existing
source and target groups. Alternatively, a client can remove a Synchronized association from source and
target groups.

= Job: See CreateElementReplica’s parameters (16.3.2.1).

< SettingsState: Reference to the association between the source or group element and an instance of
SynchronizationAspect. This parameters applies to operations such as Dissolve, which dissolves the

SMI-S 1.7.0 Revision 5 Working Draft 355

FileSystem Replication Services Profile

Synchronized relationship, but causes the SettingsDefineState association to be created. Depending on the
implementation, Deactivate may also return a SettingsState.

Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

WaitForCopyState: See CreateElementReplica’s parameters (16.3.2.1)

16.3.2.7 ModifyListSynchronization

uint32 ReplicationService.ModifyListSynchronization(
[IN, Required] uintl6 Operation,
[IN, Required] CIM_Synchronized REF Synchronization[],
[IN, Embeddedinstance (""CIM_ReplicationSettingData")]
string ReplicationSettingData,
[OUT] CIM_Concretedob REF Job,
[IN] boolean Force,
[IN] uintl6 WaitForCopyState);

This method allows a client to modify (or start a job to modify) a list of synchronization associations
between two storage objects or replication groups. The parameters are as follows:

Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

Synchronization: An array of references to the replication association describing the elements/groups
relationship that is to be modified. All elements of the this array shall of the same concrete class, i.e.,
FileSystemSynchronized or FileSystemGroupSynchronized, and shall have the same SyncType, the same
Mode, and the Operation must be valid for the ReplicationType -- SyncType, Mode, Local/Remote.

ReplicationSettingData: See CreateElementReplica’s parameters (16.3.2.1).
Job: See CreateElementReplica’s parameters (16.3.2.1).

Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

WaitForCopyState: See CreateElementReplica’s parameters (16.3.2.1). All the supplied synchronization
associations must reach at least the specified CopyState before the method returns.

16.3.2.8 ModifySettingsDefineState

356

uint32 ReplicationService._ModifySettingsDefineState(
[IN, Required] uintl6 Operation,
[IN, Required] CIM_SettingsDefineState REF SettingsState,
[IN, OUT] CIM_LogicalElement REF TargetElement,
[IN, OUT] CIM_ReplicationGroup REF TargetGroup,
[IN] uint64 TargetElementCount,
[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,
[OUT] CIM_Synchronized REF Synchronization,
[IN, Embeddedinstance (""CIM_ReplicationSettingData™)]
string ReplicationSettingData,
[OUT] CIM_Concretedob REF Job,
[IN] CIM_SettingData REF TargetSettingGoal,
[IN] CIM_ResourcePool REF TargetPool,
[IN] uintl6 WaitForCopyState);

FileSystem Replication Services Profile

This method allows a client to modify (or start a job to modify) the SettingsDefineState association
between the storage objects and SynchronizationAspect. The modification could range from introducing
the target elements, which creates new FileSystemSynchronized associations, to dissolving the
SettingsDefineState associations all together.

With the Copy To Target operation, the supplied SettingsState is deleted since an “active”
Synchronization is created to associate the source and the target elements (or groups).

The parameters are:

= Operation: This parameter describes the type of modification to be made to the related associations, for
example, Copy To Target, which initiates the copy operation from the point-in-time view to the supplied
targets.

= SettingsState: Refers to the associations between the source elements and the SynchronizationAspect
instances. If an associated source element is part of a consistency group, all members of the group shall be
paired with the appropriate target elements.

= TargetElement: If TargetElement is supplied, TargetGroup and TargetCount shall be null.
< As an input, if the point-in-time has only one source element, this parameter supplies the target element.

= As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

= TargetGroup: If TargetGroup is supplied, TargetElement and TargetElementCount shall be null.

= As an input, refers to a target group to use. If the source has only one element, the presence of a group
creates a one-to-many association between the source and the target elements. If TargetGroup is supplied,
TargetElement and TargetCount shall be null."

= As an output, refers to the created target group (i.e., the replica group). If a job is created, the target group
may not be available immediately.

= TargetElementCount: This parameter applies to one-source-to-many-target-elements. It is possible to create
multiple copies of a source element. If TargetCount is supplied, TargetElement and TargetGroup shall be null.

= TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target elements/group.

= Synchronization: The reference to the replication association describing the elements/groups relationship.
= ReplicationSettingData: See CreateElementReplica’s parameters (16.3.2.1).

« Job: See CreateElementReplica’s parameters (16.3.2.1).

= TargetSettingGoal: See CreateElementReplica’s parameters (16.3.2.1).

= TargetPool: See CreateElementReplica’s parameters (16.3.2.1).

= WaitForCopyState: See CreateElementReplica’s parameters (16.3.2.1).

16.3.2.9 ModifyListSettingsDefineState
uint32 ReplicationService _ModifyListSettingsDefineState(
[IN, Required] uintl6 Operation,
[IN, Required] CIM_SettingsDefineState REF SettingsStates[],
[IN, OUT] CIM_LogicalElement REF TargetElements[],
[IN, OUT] CIM_ReplicationGroup REF TargetGroups[],
[IN] uint64 TargetElementCount,

SMI-S 1.7.0 Revision 5 Working Draft 357

FileSystem Replication Services Profile

[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

[OUT] CIM_Synchronized REF Synchronizations[],

[IN, Embeddedinstance (""CIM_ReplicationSettingData™)]
string ReplicationSettingData,

[OUT] CIM_Concretedob REF Job,

[IN] CIM_SettingData REF TargetSettingGoal,

[IN] CIM_ResourcePool REF TargetPool,

[IN] uintl6 WaitForCopyState);

This method is similar to ReplicationService.ModifySettingsDefineState (16.3.2.8), except that it accepts
a list of SettingsDefineState associations.

16.3.2.10 GetAvailableTargetElements

uint32 ReplicationService.GetAvailableTargetElements(
[IN, Required] CIM_LogicalElement REF SourceElement,
[IN, Required] uintl6 SyncType,
[IN, Required] uintl6 Mode,
[IN, Embeddedinstance ("CIM_ReplicationSettingData™)]

string ReplicationSettingData,

[IN] CIM_ComputerSystem REF TargetComputerSystem,
[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,
[IN] CIM_SettingData REF TargetSettingGoal,
[IN] CIM_ResourcePool REF TargetPools|[],
[OUT] CIM_ConcreteJdob REF Job,
[OUT] CIM_LogicalElement REF Candidates[]);

This method allows a client to get (or start a job to get) all of the candidate target elements for the
supplied source element. If a job is started, once the job completes, examine the AffectedJobElement
associations for candidate targets. The parameters are:

SourceElement: The source storage object which may be a FileSystem or storage object.
SyncType: See CreateElementReplica’s parameters (16.3.2.1).
Mode: See CreateElementReplica’s parameters (16.3.2.1).

ReplicationSettingData: See CreateElementReplica’s parameters (16.3.2.1). The parameter is useful for
requesting a specific combination of thinly and fully provisioned elements.

TargetComputerSystem: Reference to target computer system. If this parameter and TargetAccessPoint are
null, only local targets are returned.

TargetAccessPoint: Reference to target access point information. If this parameter and
TargetComputerSystem are null, only local targets are returned.

TargetSettingGoal: Desired target StorageSetting. If null, settings of the source elements shall be used.

TargetPools[]: The storage pools for the target elements. If null, all storage pools (on the given systems) are
examined.

Job: See CreateElementReplica’s parameters (16.3.2.1).

Candidates][]: The list of the candidate target elements found.

16.3.2.11 GetPeerSystems

358

uint32 ReplicationService.GetPeerSystems(

FileSystem Replication Services Profile

[IN] uintl6 Options,
[OUT] CIM_Concretedob REF Job,
[OUT] CIM_ComputerSystem REF Systems[]):;

This method allows a client to get (or start a job to get) all of the peer systems. A peer system is a system
that is known and visible to the FileSystem Replication Service. Peer systems are discovered through
discovery services and/or implementation specific services. If a job is started, once the job completes,
examine the AffectedJobElement associations for the peer systems. The parameters are:

< Options: This parameter specifies whether to return all known peer systems or only the systems that are
currently reachable. If null, all known systems are returned, whether they are currently reachable or not.

« Job: See CreateElementReplica’s parameters (16.3.2.1).

= Systems]]: The list of peer computer systems.

16.3.2.12 GetServiceAccessPoints
uint32 ReplicationService._GetServiceAccessPoints(
[IN] CIM_ComputerSystem REF System,
[OUT] CIM_ConcreteJdob REF Job,
[OUT] CIM_ServiceAccessPoint REF ServiceAccessPoints[]);

This method allows a client to get (or start a job to get) ServiceAccessPoints associated with a peer
system. If a job is started, once the job completes, examine the AffectedJobElement associations for the
peer system’s ServiceAccessPoints. The parameters are as follows:

= System: A reference to the computer system.
= Job: See CreateElementReplica’s parameters (16.3.2.1).

= ServiceAccessPoints[]: An array of references to ServiceAccessPoints associated with the supplied system.

16.3.2.13 GetReplicationRelationships
uint32 ReplicationService.GetReplicationRelationships(
[IN] uintl6 Type,
[IN] uintl6 SyncType,
[IN] uintl6 Mode,
[IN] uintl6 Locality,
[IN] uintl6 CopyState,
[OUT] CIM_Concretedob REF Job,
[OUT] CIM_Synchronized REF Synchronizations[]);

This method allows a client to get (or start a job to get) all of the synchronization relationships known to
the processing replication service. If a job is started, once the job completes, examine the
AffectedJobElement associations for the synchronization relationships. The parameters are as follows:

e Type: The type of synchronization relationships, for example, FileSystemSynchronized or
FileSystemGroupSynchronized. If this parameter is not supplied, all such relationships are retrieved.

e SyncType: See CreateElementReplica’s parameters (16.3.2.1). If this parameter is not supplied, all
SyncTypes are retrieved.

< Mode: See CreateElementReplica’s parameters (16.3.2.1). If this parameter is not supplied, all Modes are
retrieved.

« Locality: Describes the desired locality. If this parameter is not supplied, all replication relationships are
retrieved, regardless of the locality of elements. Choices are: Local only -- Source and target elements are

SMI-S 1.7.0 Revision 5 Working Draft 359

FileSystem Replication Services Profile

contained in the same system; and Remote only -- Source and target elements are contained in two different
systems.

= CopyState: Only retrieve synchronization relationships that currently this CopyState (see Table 276). If this
parameter is not supplied, relationships are retrieved regardless of their current CopyState.

« Job: See CreateElementReplica’s parameters (16.3.2.1).

= Synchronizations[]: An array of elements found.

16.3.2.14 GetReplicationRelationshiplnstances
uint32 ReplicationService.GetReplicationRelationshiplnstances(
[IN] uintl6 Type,
[IN] uintl6 SyncType,
[IN] uintl6 Mode,
[IN] uintl6 Locality,
[IN] uintl6 CopyState,
[OUT] CIM_Concretedob REF Job,
[OUT, EmbeddedInstance(*'CIM_Synchronized™)]
string Synchronizations[]);

This method allows a client to get (or start a job to get) all of the synchronization relationship instances
known to the processing replication service. If a job is started, once the job completes, examine the
AffectedJobElement associations for the synchronization relationships.

The output parameter Synchronizations is an array of embedded instances. For the explanation of the
remaining parameters, see the method ReplicationService.GetReplicationRelationships (16.3.2.13).

16.3.2.15 AddReplicationEntity
uint32 ReplicationService_AddReplicationEntity(
[Required, IN, Embeddedlnstance("'CIM_ReplicationEntity')]
string ReplicationEntity,
[IN] boolean Persistent,
[IN] string InstanceNamespace,
[OUT] CIM_ReplicationEntity REF ReplicationEntityPath);

This method allows a client to introduce a new instance of ReplicationEntity in the specified Namespace.
The parameters are:

=« ReplicationEntity: A required parameter containing the information for the ReplicationEntity.

= Persistent: If true, the instance must persist across a Management Server reboot. If null, the value will be
based on the default value of the class in the MOF. Use the intrinsic method Modifylnstance to change the
Persistency value.

= InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace must already exist.

=< ReplicationEntityPath: A reference to the created instance.

16.3.2.16 AddServiceAccessPoint
uint32 ReplicationService.AddServiceAccessPoint(
[Required, IN, Embeddedlnstance(*'CIM_ServiceAccessPoint")]
string ServiceAccessPoint,
[IN] string InstanceNamespace,

360

FileSystem Replication Services Profile

[OUT] CIM_ServiceAccessPoint REF ServiceAccessPointPath);

This method allows a client to introduce a new instance of ServiceAccessPoint in the specified
Namespace. The parameters are:

= ServiceAccessPoint: A required parameter containing the information for the ServiceAccessPoint, or a
subclass of the class ServiceAccessPoint, for example, a RemoteServiceAccessPoint.

= InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace must already exist.

= ServiceAccessPointPath: A reference to the created instance.

16.3.2.17 AddShareSecret
uint32 ReplicationService.AddSharedSecret(
[Required, IN, Embeddedlnstance('CIM_SharedSecret™)]
string SharedSecret,
[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,
[IN] string InstanceNamespace,
[OUT] CIM_SharedSecret REF SharedSecretPath);

This method allows a client to introduce a new instance of SharedSecret in the specified Namespace and
optionally associate it to an instance of a ServiceAccessPoint. The parameters are:

= SharedSecret: A required parameter containing the information for the SharedSecret.

e ServiceAccessPoint: Associate created instance to this ServiceAccessPoint. If null, no such association is
established.

« InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace must already exist.

e SharedSecretPath: A reference to the created instance.

16.3.2.18 CreateRemoteReplicationCollection
uint32 ReplicationService. .CreateRemoteReplicationCollection(
[IN] string ElementName,
[IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],
[IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],
[IN] CIM_ComputerSystem REF RemoteComputerSystem,
[IN] boolean Active,
[IN] boolean DeleteOnUnassociated,
[OUT] CIM_Concretedob REF Job,
[OUT] CIM_ConnectivityCollection REF ConnectivityCollection);

A method to create (or start a job to create) a new instance of RemoteReplicationCollection, and
optionally supply the remote system and the paths (i.e., i.e., ProtocolEndpoints) that are used to perform
replication operations to/from the remote system. The parameters are:

< ElementName: A end user relevant name for the element being created. If NULL, then a system supplied
default name will be used. The value will be stored in the 'ElementName' property for the created element.

< LocalAccessPoints: An array of references to local ServiceAccessPoints (for example, ProtocolEndpoints)
that allow communication to the remote system.

= RemoteAccessPoints: An array of references to remote ServiceAccessPoints (for example,
ProtocolEndpoints) that allow communication to the remote system.

SMI-S 1.7.0 Revision 5 Working Draft 361

FileSystem Replication Services Profile

< RemoteComputerSystem: A reference to the remote system.

= Active: If true, the instance of RemoteReplicationCollection will be enabled and allows replication operations
to to the remote system. Use the intrinsic method Modifylnstance to change this property after the
RemoteReplicationCollection is created.

< DeleteOnUnAssociated: If true, the instance of RemoteReplicationCollection will be deleted when it is no
longer associated to a ServiceAccessPoint. Use the intrinsic method Modifylnstance to change this property
after the RemoteReplicationCollection is created.

= Job: Reference to the job (may be NULL if job is completed) doing the work.

= ConnectivityCollection: Reference to the created instance of RemoteReplicationCollection.

16.3.2.19 AddToRemoteReplicationCollection
uint32 ReplicationService.AddToRemoteReplicationCollection(
[IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],
[IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],
[IN] CIM_ComputerSystem REF RemoteComputerSystem,
[OUT] CIM_ConcreteJdob REF Job,
[Required, IN] CIM_ConnectivityCollection REF ConnectivityCollection);

A method to add (or start a job to add) additional service access points (i.e., ProtocolEndpoints) and/or
remote systems associations to an existing instance of RemoteReplicationCollection.

Generally, both AccessPoints and RemoteComputerSystem parameters are supplied to establish the
access points to a remote ComputerSystem; however, if parameter AccessPoints is NULL, then only the
RemoteComputerSystem is added for the existing AccessPoints associated to the
RemoteReplicationCollection. If RemoteComputerSystem is NULL, then only AccessPoints are added for
the existing remote ComputerSystems known to the RemoteReplicationCollection.

16.3.2.20 RemoveFromRemoteReplicationCollection
uint32 ReplicationService.RemoveFromRemoteReplicationCollection(
[IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],
[IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],
[OUT] CIM_Concretedob REF Job,
[Required, IN] CIM_ConnectivityCollection REF ConnectivityCollection);

A method to remove (or start a job to remove) service access points (i.e., ProtocolEndpoints) and/or
remote systems associations from an existing instance of RemoteReplicationCollection.

Generally, both AccessPoints and RemoteComputerSystem parameters are supplied to remove the
access points to a remote ComputerSystem; however, if parameter AccessPoints is NULL, then only the
remote ComputerSystem is removed for the existing AccessPoints associated to the
RemoteReplicationCollection. If ComputerSystem is NULL, then only AccessPoints are removed from the
existing remote ComputerSystems known to the RemoteReplicationCollection. See the method
CreateRemoteReplicationCollection for description of the parameters.

16.3.3 Capabilities Method

16.3.3.1 ConvertSyncTypeToReplicationType
uint32 FileSystemReplicationServiceCapabilities.ConvertSyncTypeToReplicationType(
[IN] uintl6 SyncType,
[IN] uintl6 Mode,
[IN] uintl6 LocalOrRemote,
[OUT] uintl6 SupportedReplicationTypes);

362

FileSystem Replication Services Profile

The majority of the methods in this class accept ReplicationType which represents a combination of
SyncType, Mode, and Local/Remote. This method accepts the supplied information and returns the
corresponding ReplicationType, which can be passed to other methods to get the additional capabilities.

Table 284, Table 285, Table 286 and Table 287 show the values for the
CovertSyncTypeToReplicationType parameters. These values also appear in the value maps in the
appropriate MOF files.

Table 284 - SyncTypes

SyncType Value
Mirror 6
Snapshot 7
Clone 8

Table 285 - Mode

Mode Value
Synchronous 2
Asynchronous 2

Table 286 - Locality

Locality Value
Local 2
Remote 3

Table 287 - ReplicationTypes

ReplicationType Value
Synchronous Mirror Local 2
Asynchronous Mirror Local 3
Synchronous Mirror Remote 4
Asynchronous Mirror Remote 5
Synchronous Snhapshot Local 6
Asynchronous Snapshot Local 7
Synchronous Snapshot Remote 8
Asynchronous Snapshot Remote 9
Synchronous Clone Local 10
Asynchronous Clone Local 11
Synchronous Clone Remote 12
Asynchronous Clone Remote 13

SMI-S 1.7.0 Revision 5 Working Draft 363

FileSystem Replication Services Profile

16.3.3.2 ConvertReplicationTypeToSyncType
uint32 FileSystemReplicationServiceCapabilities.ConvertReplicationTypeToSyncType(
[IN] uintl6 ReplicationType,
[OUT] uintl6 SyncType,
[OUT] uintl6 Mode,
[OUT] uintl6 LocalOrRemote);

This method does the opposite of the method ConvertSyncTypeToReplicationType. This method
translates ReplicationType to the corresponding SyncType, Mode, and Local/Remote.

16.3.3.3 GetSupportedFeatures
uint32 FileSystemReplicationServiceCapabilities.GetSupportedFeatures(
[IN] uintl6 ReplicationType,
[OUT] uintl6 Features[]):
For a given ReplicationType, this method returns the supported features, as listed in Table 288

Table 288 - Features

Feature Description

“Replication Groups” Elements in a replication group are supported in a
replication operation.

"Multi-hop element replication” A target element can also act as the source for another
copy operation.

“Each hop must have same SyncType® In a multi-hop replication, the new hop must have the same
SyncType as the previous hop.

“Multi-hop requires advance notice” The service needs to know when multi-hoping is intended
to allow the service to do the appropriate set up. The
parameter ReplicationSettingData specifies the number of
hops intended.

"Requires full discovery of target ComputerSystem" Provider requires the remote ComputerSystems to be
discovered. The absence of this capability indicates the
service supports undiscovered resources.

"Service suspends source I/O when necessary" Provider is able to suspend 1/O to source elements before
splitting the target elements. Otherwise, the client needs to
quiesce the application before issuing the split command.

"Targets allocated from Any storage pool” Specialized storage pools are not required for the target
elements, as long as the pool is not reserved for special
activities.

"Targets allocated from Shared storage pool" Targets are allocated from storage pools reserved for

Replication Services.

"Targets allocated from Exclusive storage pool" Targets are allocated from exclusive storage pools.

"Targets allocated from Multiple storage pools" Targets are allocated from multiple specialized, exclusive
pools.

“Targets require reserved elements” The target elements must have a specific Usage value. For

example, reserved for "Local Replica Target" (mirror),
reserved for "Delta Replica Target" (Snapshot), etc.

364

FileSystem Replication Services Profile

Table 288 - Features

Feature Description

"Target is associated to SynchronizationAspect” The target element is associated to SynchronizationAspect
via SettingsDefineState. SynchronizationAspect contains
the point-in-time timestamp and the source element
reference used to copy to the target element.

"Source is associated to SynchronizationAspect” The source element is associated to
SynchronizationAspect via the SettingsDefineState
association. SynchronizationAspect contains the point-in-
time information of the source data.

"Error recovery from Broken state Automatic" For example, if the connection between the source and
target elements is broken (CopyState = Broken or
Partitioned), once the connection is restored, the copy
operation continues automatically. If the error recovery is
not automatic, it requires manual intervention to restart the
copy operation. Use ModifyReplicaSynchronization, with
Operation set to Resume.

“Target must remain associated to source” A dependent target element must remain associated to
source element at all times.

"Remote resource requires remote CIMOM” Client is required to interact with two providers: the provider
controlling the source element and the provider controlling
the target element.

"Synchronized clone target detaches automatically" The clone target element detaches automatically when the
target element becomes synchronized; otherwise, the client
needs to explicitly request a detach operation.

"Restore operation requires fracture” The “Restore from Replica” operation requires the
synchronization relationship to be fractured after restore is
completed -- indicated in the property
Synchronized.ProgressStatus - “Requires fracture”.

"Resync operation requires activate” For the copy operation to continue, the synchronization
relationship must be activated -- indicated in the property
Synchronized.ProgressStatus - “Requires activate”.

"Copy operation requires offline source” Instrumentation requires the source element to be offline
(not-ready) to ensure data does not change before starting
the copy operation.

"Adjustable CopyPriority” Priority of copy operation versus the host I/O can be
adjusted.

16.3.3.4 GetSupportedGroupFeatures
uint32 FileSystemReplicationServiceCapabilities.GetSupportedGroupFeatures(
[IN] uintl6 ReplicationType,
[OUT] uintl6 GroupFeatures[]);

SMI-S 1.7.0 Revision 5 Working Draft 365

For a given ReplicationType, this method returns the supported replication group features, as listed

FileSystem Replication Services Profile

inTable 289.

Table 289 - Group Features

Group Features

Description

"One-to-many replication”

One source element can be copied to multiple target elements in a group.

“Many-to-many replication”

One or more elements in the source group and one or more elements in
the target group.

“Consistency enabled for all groups”

By default, all groups are Consistent

“Empty replication groups allowed”

It is possible to have a replication group with no members; otherwise, an
empty group gets deleted automatically

"Source group must have more than one element"

One members replication groups are not supported.

"Composite Groups"

A replication group can have members from different ComputerSystems.

"Multi-hop group replication”

A target replication group can also act as a source for another copy
operation.

“Each hop must have same SyncType”

The SyncType of each hop must be the same, e.g., mirror, snapshot,
clone.

"Group can only have one single relationship active

At any given time, only one relationship in the source group can be active.

“Source element can be removed from group”

A source element can be removed even when the group is associated with
another replication group.

“Target element can be removed from group”

A target element can be removed even when the group is associated with
another replication group.

"Group can persist"

The replication group can persist across the Provider reboot (group is not
temporary).

"Group is nameable"

A user friendly name can be given to a replication group (ElementName)

"Supports target element count”

It is possible to supply one source element and request more than one
target element copies.

"Synchronized clone target detaches automatically"

The clone target element detaches automatically when the target element
becomes synchronized; otherwise, the client needs to explicitly request a
detach operation

"Restore operation requires fracture"

The “Restore from Replica” operation requires the synchronization
relationship to be fractured after restore is completed -- indicated in the
property Synchronized.ProgressStatus - “Requires fracture”.

"Resync operation requires activate"

For the copy operation to continue, the synchronization relationship must
be activated -- indicated in the property Synchronized.ProgressStatus -
“Requires activate”.

"Copy operation requires offline source"

Instrumentation requires the source element to be offline (not-ready) to
ensure data does not change before starting the copy operation.

16.3.3.5 GetSupportedCopyStates
uint32 FileSystemReplicationServiceCapabilities.GetSupportedCopyStates(

[IN] uintl6 ReplicationType,

[OUT] uintl6 SupportedCopyStates[],
[OUT] boolean HostAccessible[]);

For a given ReplicationType, this method returns the supported CopyStates (see Table 276) and a parallel
array to indicate whether for a given CopyState the target element is host accessible or not (true or false).

366

FileSystem Replication Services Profile

16.3.3.6 GetSupportedGroupCopyStates
uint32 FileSystemReplicationServiceCapabilities.GetSupportedGroupCopyStates(
[IN] uintl6 ReplicationType,
[OUT] uintl6 SupportedCopyStates[]):

For a given ReplicationType, this method returns the supported replication group CopyStates (seeTable
276).

16.3.3.7 GetSupportedWaitForCopyStates
uint32 FileSystemReplicationServiceCapabilities.GetSupportedWaitForCopyStates(
[IN] uintl6 ReplicationType,
[IN] unitl6 MethodName,
[OUT] uintl6 SupportedCopyStates[]);

This method, for a given ReplicationType and method, returns the supported CopyStates that can be
specified in the method's WaitForCopyState parameter.

16.3.3.8 GetSupportedConsistency
uint32 FileSystemReplicationServiceCapabilities.GetSupportedConsistency(
[IN] uintl6 ReplicationType,
[OUT] uintl6 SupportedConsistency[]);
For a given ReplicationType, this method returns the supported Consistency, as listed in Table 290.

Table 290 - Consistency

Consistency Description

“Sequentially Consistent” Provider guarantees ordered write consistency.

16.3.3.9 GetSupoprtedOperations
uint32 FileSystemReplicationServiceCapabilities.GetSupportedOperations(
[IN] uintl6 ReplicationType,
[OUT] uintl6 SupportedOperations[]):

For a given ReplicationType this method returns the supported Operations on a FileSystemSynchronized
association that can be supplied to the ModifyReplicaSynchronization method. Table 291 shows the
possible Operations that an implementation may support.

Table 291 - Operations

Operation Description Special Consideration
"Abort" Abort the copy operation if it is possible.
"Activate Consistency" Enable consistency.
“Activate” Activate an “Inactive” or “Prepared”

FileSystemSynchronized association.

"AddSyncPair" Add source and target elements of a
FileSystemSynchronized association to the source
and target replication groups. The SyncType of the
associations must be the same.

"Deactivate Consistency" Disable consistency
“Deactivate” Stop the copy operation. Writes to source elementare | Snapshot: Writes to target element after
allowed. point-in-time is created are lost (pointers

removed)

SMI-S 1.7.0 Revision 5 Working Draft 367

FileSystem Replication Services Profile

Table 291 - Operations

Operation

Description

Special Consideration

"Detach"”

Remove the association between the source and
target elements. Detach does not delete the target
element.

“Dissolve”

Dissolve the synchronization association between two
storage objects, however, the target element
continues to exist.

Snapshot: This operation also creates a
SettingsDefineState association between the
source element and an instance of
SynchronizationAspect if the ReplicationType
supports it.

"Failover"

Enable the read and write operations from the host to
the target element. This operation useful for situations
when the source element is unavailable.

"Failback"

Switch the read/write activities from the host back to
source element. Update source element from target
element with writes to target during the failover
period.

"Fracture”

Separate the target element from the source element.

"RemoveSyncPair”

Remove the elements associated via the
FileSystemSynchronized association from the source
and the target groups.

"Resync Replica"

Resynchronize a fractured target element. Or, from a
Broken or Aborted relationship.

To continue from the Broken state, the
problem should be corrected first before
resyncing the replica. Also, to continue from
the Aborted state.

"Restore from Replica"

Copy target element to the source element

To ensure integrity of data, restoring to a
source element which is the source of
multiple copy operations, the implementation
may impose additional restrictions ranging
from not supporting the restore operation to
such a source element to preventing multiple
restore operations simultaneously. Also, after
the operation is completed, it may be
necessary to fracture the synchronization
relationship. See GetSupportedFeatures in
capabilities.

"Resume"

Continue the copy operation of a suspended
relationship.

"Reset To Sync"

Change Mode to Synchronous.

"Reset To Async"

Change Mode to Asynchronous

“Return To ResourcePool”

Delete a Snapshot target.

"Reverse Roles"

Switch the source and the target element roles.

"Split" Separate the source and the target elements in a
consistent manner.

"Suspend" Stop the copy operation in such a way that it can be
resumed.

“Unprepare” Causes the synchronization to be reinitialized and

stop in Prepared state.

368

FileSystem Replication Services Profile

Table 292 compares the action of similar Operations.

Table 292 - Comparison of Similar Operations

Operations Description

Activate vs. Resume Activate: Activates a ReplicationSynchronizes association that has a CopyState of “Inactive.”

Resume: Resumes a FileSystemSynchronized association that has a CopyState of “Suspended”.

Deactivate vs. Suspend Deactivate: Stops the copy operation. In the case of Snapshots, all writes to target element are
deleted (pointers to changed data are removed). While inactive, writes to source element will not
be committed to target element once activated.

Suspend: Stops the copy operation. All writes to target element are preserved. Once resumed,
pending writes to target element are committed.

Fracture vs. Split Fracture: Source and target elements are separated “abruptly.”

Split: Source and target elements are separated in an orderly fashion. Consistency of target
elements is maintained.

Detach vs. Dissolve Detach: The association between the source and target element must be first Fractured/Split
before it can be Detached.

Dissolve: The association can have a CopyState of Synchronized. Additionally, Dissolve can create
a SettingsDefineState association based on GetSupportedFeatures (16.3.3.3) Capabilities.

Unsynchronized vs. Unsynchronized: The source element contains data that has not been copied to the target element.
Skewed Most likely, the copy operation is in the process of updating the target element
(ProgressStatus=Synchronizing).

Skewed: The target element has been updated by a host (e.g. target of a snapshot).
Resynchronization is not automatic and requires an explicit “Resync” operation (i.e.,
ModifySynchronization)

16.3.3.10 GetSuportedGroupOperations
uint32 FileSystemReplicationServiceCapabilities.GetSupportedGroupOperations(
[IN] uintl6 ReplicationType,
[OUT] uintl6 SupportedOperations[]);

For a given ReplicationType this method returns the supported replication group Operations (see Table
290) on a FileSystemGroupSynchronized association that can be supplied to the
ModifyReplicaSynchronization method.

16.3.3.11 GetSupportedListOperations
uint32 FileSystemReplicationServiceCapabilities.GetSupportedListOperations(
[IN] uintl6 ReplicationType,
[IN] uintl6 SynchronizationType,
[OUT] uintl6 SupportedOperations[]);

For a given ReplicationType this method returns the supported replication Operations (see Table 290) on
a list of associations that can be supplied to the ModifyListSynchronization method. The parameter
SynchronizationType specifies the operations as they apply to a list of FileSystemSynchronized or
FileSystemGroupSynchronized. If SynchronizationType is not specified, FileSystemSynchronized is
assumed.

16.3.3.12 GetSupportedSettingsDefineStateOperations
uint32 FileSystemReplicationServiceCapabilities.
GetSupportedSettingsDefineStateOperations(
[IN] uintl6 ReplicationType,
[OUT] uintl6 SupportedOperations[]);

SMI-S 1.7.0 Revision 5 Working Draft 369

FileSystem Replication Services Profile

For a given ReplicationType this method returns the supported operations on a SettingsDefineState
association that can be supplied to the ModifySettingsDefineState method. Table 293 shows the list of
SettingsDefineState operations that an implementation may support.

Table 293 - SettingsDefineState Operations

SettingsDefineState Description Special Consideration
Operations
"Activate Consistency” Enable consistency
"Deactivate Consistency" Disable consistency
"Delete" Remove the SettingsDefineState association. Instance of

SynchronizationAspect may also be deleted if it is not
shared with other elements.

"Copy To Target” Introduces the target elements and forms the necessary
associations between the source and the target elements
i.e., FileSystemSynchronized and
FileSystemGroupSynchronized.

16.3.3.13 GetSupportedThinPrivisioningFeatures
uint32 FileSystemReplicationServiceCapabilities.
GetSupportedThinProvisioningFeatures(
[IN] uintl6 ReplicationType,
[OUT] uintl6 SupportedThinProvisioningFeatures[]);

For a given ReplicationType this method returns the supported features related to thin provisioning. Table
294 shows the list of the Thin Provisioning Features an implementation may support.

A client can request a specific thin provisioning policy in the ReplicationSettingData parameter of the
appropriate method call. See the property ReplicationSettingData.ThinProvisioningPolicy for the
supported options for a copy operation.

Table 294 - Thin Provisioning Features

Feature Description

"Thin provisioning is not supported" The replication service does not distinguish between thinly and fully
provisioned elements. The service treats all elements as fully
provisioned elements.

"Zeros written in unused allocated blocks of target” Applies to copying from a thinly provisioned element to a fully
provisioned element. The implementation needs to allocate “real”
storage blocks on the target side for the corresponding blocks of the
source element that are unused. The implementation then writes zeros
in the unused blocks of the target element.

"Unused allocated blocks of target are not initialized" Applies to copying from a thinly provisioned element to a fully
provisioned element. The implementation needs to allocate “real”
storage blocks on the target side for the corresponding blocks of the
source element that are unused.

16.3.3.14 GetSupportedMaximum
uint32 FileSystemReplicationServiceCapabilities.GetSupportedMaximum(
[IN] uintl6 ReplicationType,
[IN] uintl6 Component,
[OUT] uint64 MaxValue);

370

FileSystem Replication Services Profile

This method accepts a ReplicationType and a component, it then returns a static numeric value
representing the maximum number of the specified component that the service supports. A value of 0
indicates unlimited components of the given type. In all cases the maximum value is bounded by the
availability of resources on the computer system. If the information is not known, the method returns 7
which indicates "Information is not available"

Effectively, this method informs clients of the edge conditions.
Table 295 shows the list of components that can be specified

Table 295 - Components

Components Description
“Number of groups” Maximum number of groups supported by the replication service.
"Number of elements per source group" Maximum number of elements in a group that can be used as a source group.
"Number of elements per target group” Maximum number of elements in a group that can be used as a target group.

"Number of target elements per source element” | Maximum number of target elements per source element.

"Number of total source elements" Maximum number of total source elements supported by the service.

"Number of total target elements" Maximum number of total target elements supported by the source.

"Number of peer systems" Maximum number of peer systems that replication service can communicate with.
"Number of hops in multi-hop replication” Maximum number of hops in multi-hop replication the service can manage.

16.3.3.15 GetDefaultConsistency
uint32 FileSystemReplicationServiceCapabilities.GetDefaultConsistency(
[IN] uintl6 ReplicationType,
[OUT] uintl6 DefaultConsistency);

This method for a given ReplicationType, returns the default consistency value for the replication groups.
Table 296 shows the list of possible Default Consistency values that an implementation may offer.

Table 296 - Default Consistency

DefaultConsistency Description
"No default consistency" Replication groups are not declared as consistent.
"Sequentially Consistent" By default, a newly created replication group is declared to be consistent

16.3.3.16 GetDefaultGroupPersistency
uint32 FileSystemReplicationServiceCapabilities.GetDefaultGroupPersistency(
[OUT] uintl6 DefaultGroupPersistency);

This method returns the default persistency for a newly created group. Table 297 shows the list of
possible Group Persistency values that an implementation may offer.

Table 297 - Default Group Persistency

DefaultGroupPersistency Description
"No default persistency" Replication groups are not declared as persistent across the Provider
reboots.
"Persistent” By default, a newly created replication group is declared to be persistent
across the Provider reboot (group is not temporary).

SMI-S 1.7.0 Revision 5 Working Draft 371

FileSystem Replication Services Profile

16.3.3.17 GetSupportedReplicationSettingData
uint32 FileSystemReplicationServiceCapabilities.
GetSupportedReplicationSettingData(
[IN] uintl6 ReplicationType,
[IN] uintl6 PropertyName,
[OUT] uintl6 SupportedValues[]);

This method, for a given ReplicationType, returns an array of supported settings that can be utilized in an
instance of the ReplicationSettingData class. See the MOF for the ReplicationSettingData class for the
value map of the properties. Explanation of some of the properties appears below.

Table 298 shows the values for the property ReplicationSettingData.CopyMethodology.

Table 298 - Copy Methodologies

CopyMethodologies Description

"Other" A methodology not listed in this table.

"Implementation decides" Implementation determines a suitable methodology

"Full-Copy" All data is copied to the target element.

"Incremental-Copy" Only changed data is copied to the target element.

"Differential-Copy" Only the new writes are copied to the target element.

"Copy-On-Write" Affected data is copied on the first write to the source or to the target
elements.

"Copy-On-Access"” Affected data is copied on the first access to the source element.

“Delta-Update” Difference based replication where initially the source element is copied to
the target element. Then, at regular intervals, only changes to the source
element that have taken place since the previous copy operation are
incrementally updated to the target element. This copy operation is also
referred to as asynchronous mirroring.

“Snap-And-Clone* The service creates a snapshot of the source element first, then uses the
snapshot as the source of the copy operation to the target element.

Table 299 shows the values for the property ReplicationSettingData.TargetElementSuppliers.

Table 299 - Target Element Suppliers

TargetElementSuppliers Description

“Use existing” Use existing elements only. If appropriate elements are not available,
returns an error.

“Create new” Create new target elements only.

“Use and create” If appropriate elements are not available, create new target elements.

“Instrumentation decides"”

“Client must supply” Client must supply target elements.

372

FileSystem Replication Services Profile

Table 300 shows the values for the property ReplicationSettingData.ThinProvisioningPolicy.

Table 300 - ThinProvisioningPolicy

Feature Description

"Copy thin source to thin target" Thinly provisioned source element is copied to a thinly provisioned target
element.

"Copy thin source to full target" Thinly provisioned source element is copied to a fully provisioned target
element.

"Copy full source to thin target" Fully provisioned source element is copied to a thinly provisioned target
element.

"Provisioning of target same as source" Provisioning of the target element is the same as the provisioning of the

source element.

"Target pool decides provisioning of target element" In the call to the CreateElementReplica or CreateGroupReplica method,
the storage pool for the target elements is supplied. The supplied storage
pool decides the provisioning of the created target elements.

"Implementation decides provisioning of target" Vendor specific.

16.3.3.18 GetDefaultReplicationSettingData
uint32 FileSystemReplicationServiceCapabilities.GetDefaultReplicationSettingData(
[IN] uintl6 ReplicationType,
[OUT, EmbeddedObject]
string Defaultlnstance);

This method, for a given ReplicationType, returns the default ReplicationSettingData as an instance. Use
this method to determine the implementation behavior for replication settings that do not have a distinct
capability method.

16.3.3.19 GetSupportedConnectionFeatures
uint32 FileSystemReplicationServiceCapabilities.GetSupportedConnectionFeatures(
[IN] CIM_ProtocolEndpoint REF connection,
[OUT] uintl6 SupporteConnectionFeatures[]);

This method accepts a connection reference and returns specific features of that connection. Table 301
shows the list of possible Connection Features that an implementation may support.

Table 301 - Connection Features

ConnectionFeatures Description

"Unidirectional to ProtocolEndpoint" Direction of data flow to this ProtocolEndpoint, from a remote system (by
default the connection is bi-directional).

"Unidirectional from ProtocolEndpoint" Direction of data flow from this ProtocolEndpoint to a remote system (by
default the connection is bi-directional).

16.3.3.20 GetSupportedStorageCompressionFeatures
uint32 ReplicationServiceCapabilities.GetSupportedStorageCompressionFeatures(
[IN] uintl6 ReplicationType,
[OUT] uintl6 SupportedStorageCompressionFeatures[]);

For a given ReplicationType this method returns the supported features related to storage compression.
Table 302 shows the list of the Storage Compression Features an implementation may support.

SMI-S 1.7.0 Revision 5 Working Draft 373

FileSystem Replication Services Profile

Table 302 - Storage Compression Features

Feature Description

"Storage compression is not supported” The replication service does not support storage compression. Only
uncompressed elements are accepted.

"Compressed source to compressed target" The replication service supports copying from compressed source
element to compressed target element.

"Compressed source to uncompressed target" The replication service supports copying from compressed source
element to uncompressed target element.

"Uncompressed source to compressed target” The replication service supports copying from uncompressed source
element to compressed target element.

"Compression of target same as source" The source element is copied to a target with the same

compression setting as the source.

Target pool decides compression of target element" | In the call to the CreateElementReplica or CreateGroupReplica method,
the storage pool for the target elements is supplied. The supplied storage
pool decides the compression of the created target elements.

"Implementation decides compression of target” Leaves implementation to decide compression setting of

the target.

16.4 Use Cases

In general, creating and managing replicas involves the following steps:

374

Decide on the SyncType of replica (Mirror, Snapshot, Clone) and Mode (Synchronous, Asynchronous). See
16.1.3.1: SyncTypes.

Locate the hosted instance of ReplicationService. See 16.1.3: Filesystem Replication Services Discovery.

Locate the instance of FileSystemReplicationServiceCapabilities. Utilize its properties and methods to
determine the applicable capabilities offered by the implementation for the desired ReplicationType (includes
SyncType and Mode). See 16.1.3: Filesystem Replication Services Discovery.

Use the method ReplicationService.GetAvailableTargetElements to locate appropriate target elements.
Depending on the implementation, it is also possible to allow the service to locate target elements. See
16.3.2.10: GetAvailableTargetElements.

Verify StoragePools have sufficient free capacity for the target elements.

If necessary, use the ReplicationService’s group manipulation methods to create and populate source and
target groups. See 16.3: Methods.

Invoke the appropriate extrinsic method of the ReplicationService to create a replica. See 16.3: Methods.

Monitor the copy operation’s progress by examining the replication associations properties, or subscribe to
the appropriate indications -- including storage pool low space alert indications. 16.1.6: State Management
For Associated Replicas and 16.1.10: Indication.

Invoke the method ReplicationService.ModifyReplicaSynchronization to modify a replica. For example, “split”
a replica from its source element. See 16.3: Methods.

FileSystem Replication Services Profile

16.5 CIM Elements

Table 303 describes the CIM elements for Filesystem Replication Services.

Table 303 - CIM Elements for Filesystem Replication Services

Element Name

Requirement

Description

16.5.1: CIM_AllocatedResources

Optional

This is a SystemSpecificCollection for collecting
components that are being used by the FileSystem
Replication Services profile (e.g., FileSystem,
LogicalDisk, etc.) that supports Cascading.

16.5.2: CIM_ElementCapabilities

Mandatory

Associates FileSystemReplicationCapabilities and
ReplicationService, or
FileSystemReplicationServiceCapabilities and
ReplicationService.

16.5.3: CIM_FileSystemGroupSynchronized

Conditional

Experimental. Conditional requirement: Required if
groups are supported. Associates source and target
groups, or a source element to a target group.

16.5.4: CIM_FileSystemReplicationServiceCapabilities

Mandatory

Experimental. A set of properties and methods that
describe the capabilities of a replication services
provider.

16.5.5: CIM_FileSystemSynchronized

Mandatory

Experimental. Associates replica target element to
source element.

16.5.6: CIM_HostedAccessPoint (ForProtocolEndpoint)

Conditional

Conditional requirement: Required if remote
replication is supported. Associates
ProtocolEndpoint to the ComputerSystem on which
it is hosted.

16.5.7: CIM_HostedAccessPoint
(ForRemoteServiceAccessPoint)

Conditional

Conditional requirement: Required if remote
replication is supported. Associates
RemoteServiceAccessPoint to the
ComputerSystem.

16.5.8: CIM_HostedCollection (Allocated Resources)

Mandatory

This would associate the AllocatedResources
collection to the top level system for the FileSystem
Replication Services Profile using Cascading.

16.5.9: CIM_HostedCollection (Between ComputerSystem and
RemoteReplicationCollection)

Conditional

Conditional requirement: Required if groups are
supported. Associates the
RemoteReplicationCollection
(ConnectivityCollection) to the hosting System.

16.5.10: CIM_HostedCollection (Between ComputerSystem and
ReplicationGroup)

Conditional

Conditional requirement: Required if groups are
supported. Associates the replication group to the
hosting System.

16.5.11: CIM_HostedCollection (Remote Resources)

Conditional

Conditional requirement: This is required if
CIM_RemoteResources is modeled. This would
associate the RemoteResources collection to the
top level system for the Replication Services Profile
in support of Cascading.

16.5.12: CIM_HostedService

Mandatory

16.5.13: CIM_MemberOfCollection (Allocated Resources)

Optional

This supports collecting replication components.
This is required to support the AllocatedResources
collection for Cascading.

16.5.14: CIM_MemberOfCollection (ProtocolEndpoints to
RemoteReplicationCollection)

Conditional

Conditional requirement: Required if remote
replication is supported. Associates
ProtocolEndpoints to RemoteReplicationCollection
(ConnectivityCollection).

SMI-S 1.7.0 Revision 5 Working Draft

375

FileSystem Replication Services Profile

Table 303 - CIM Elements for Filesystem Replication Services

Element Name

Requirement

Description

16.5.15: CIM_MemberOfCollection (Remote Resources)

Optional

This supports collecting all Shadow instances of
components that the Replication Service has
available to use. This is optional when used to
support the RemoteResources collection (the
RemoteResources collection is optional).

16.5.16: CIM_OrderedMemberOfCollection

Conditional

Conditional requirement: Required if groups are
supported. Associates ReplicationGroup to storage
elements.

16.5.17: CIM_ProtocolEndpoint

Conditional

Conditional requirement: Required if remote
replication is supported. Special purpose endpoint
that represents connections between systems.

16.5.18: CIM_RemoteReplicationCollection

Conditional

Conditional requirement: Required if remote
replication is supported. A
RemoteReplicationCollection groups together a set
of ProtocolEndpoints of the same 'type' (i.e., class)
which are able to communicate with each other. The
ProtocolEndpoints are used by Replication Services.

16.5.19: CIM_RemoteResources

Optional

This is a SystemSpecificCollection for collecting
components that may be allocated by the
Replication Services profile (e.g., FileSystem) that
supports Cascading.

16.5.20: CIM_RemoteServiceAccessPoint

Conditional

Conditional requirement: Required if remote
replication is supported. A ServiceAccessPoint for
replication service.

16.5.21: CIM_ReplicaPoolForStorage

Optional

Associates special storage pool for Snapshots (delta
replicas) to a source element.

16.5.22: CIM_ReplicationEntity

Optional

Represents a replication entity such as an entity
known by its World Wide Name (WWN).

16.5.23: CIM_ReplicationGroup

Conditional

Experimental. Conditional requirement: Required if
groups are supported. Represents a group of
elements participating in a replication activity.

16.5.24: CIM_ReplicationService

Mandatory

Experimental. Base class for FileSystem Replication
Services. Methods are described in the Extrinsic
Methods clause.

16.5.25: CIM_ReplicationSettingData

Optional

Experimental. Contains special options for use by
methods of Replication Services.

16.5.26: CIM_SAPAvailableForElement

Conditional

Conditional requirement: Required if remote
replication is supported. This association identifies
the element that is serviced by the
ServiceAccessPoint.

16.5.27: CIM_ServiceAffectsElement (Between
ReplicationService and RemoteReplicationCollection)

Conditional

Conditional requirement: Required if remote
replication is supported. Associates Replication
Service to RemoteReplicationCollection
(ConnectivityCollection).

16.5.28: CIM_ServiceAffectsElement (Between
ReplicationService and ReplicationEntity)

Optional

Associates Replication Service to ReplicationEntity.

16.5.29: CIM_ServiceAffectsElement (Between
ReplicationService and ReplicationGroup)

Conditional

Conditional requirement: Required if groups are
supported. Associates Replication Service to
Replication Group.

376

FileSystem Replication Services Profile

Table 303 - CIM Elements for Filesystem Replication Services

Element Name

Requirement

Description

16.5.30: CIM_SettingsDefineState (Between ReplicationGroup Optional Associates a replication group to an instance of

and SynchronizationAspect) SynchronizationAspect.

16.5.31: CIM_SettingsDefineState (Between storage object and Optional Associates a storage object to an instance of

SynchronizationAspect) SynchronizationAspect.

16.5.32: CIM_SharedSecret Conditional Conditional requirement: Required if remote
replication is supported.

16.5.33: CIM_SynchronizationAspect Optional Experimental. Keeps track of the source of a copy
operation, even after FileSystemSynchronized is
removed. Also keeps track of point-in-time.

SELECT * FROM CIM_InstCreation WHERE Sourcelnstance ISA Mandatory All instance creation indications for

CIM_FileSystemSynchronized FileSystemSynchronized.

SELECT * FROM CIM_lInstCreation WHERE Sourcelnstance ISA Conditional Conditional requirement: Required if groups are

CIM_FileSystemGroupSynchronized supported. All instance creation indications for
FileSystemGroupSynchronized.

SELECT * FROM CIM_lInstCreation WHERE Sourcelnstance ISA Optional All instance creation indications for

CIM_SynchronizationAspect SynchronizationAspect.

SELECT * FROM CIM_lInstDeletion WHERE Sourcelnstance ISA Conditional Conditional requirement: Required if semi-fixed

CIM_FileSystemSynchronized AND indication filters are supported. CQL -Instance

OBJECTPATH(SourcelnstanceModelpath) = deletion indications for a specific

OBJECTPATH('string-key-of-FileSystemSynchronized’) FileSystemSynchronized.

SELECT * FROM CIM_lInstDeletion WHERE Sourcelnstance ISA Optional All instance deletion indications for

CIM_FileSystemSynchronized FileSystemSynchronized.

SELECT * FROM CIM_lInstDeletion WHERE Sourcelnstance ISA Conditional Conditional requirement: Required if groups and

CIM_FileSystemGroupSynchronized AND semi-fixed indication filters are supported. CQL -

OBJECTPATH(SourcelnstanceModelpath) = Instance deletion indications for a specific

OBJECTPATH('string-key-of-FileSystemGroupSynchronized') FileSystemGroupSynchronized.

SELECT * FROM CIM_lInstDeletion WHERE Sourcelnstance ISA Optional All instance deletion indications for

CIM_FileSystemGroupSynchronized FileSystemGroupSynchronized.

SELECT * FROM CIM_lInstDeletion WHERE Sourcelnstance ISA Optional All instance deletion indications for

CIM_SynchronizationAspect SynchronizationAspect.

SELECT * FROM CIM_InstModification WHERE Sourcelnstance Conditional Conditional requirement: Required if semi-fixed

ISA CIM_FileSystemSynchronized AND indication filters are supported. CQL -

Sourcelnstance.CIM_FileSystemSynchronized::CopyState <> Synchronization state transition for a specific replica

Previousinstance.CIM_FileSystemSynchronized::CopyState AND association.

OBJECTPATH(SourcelnstanceModelpath) =

OBJECTPATH('string-key-of-FileSystemSynchronized')

SELECT * FROM CIM_InstModification WHERE Sourcelnstance Optional CQL -Synchronization state transition for replica

ISA CIM_FileSystemSynchronized AND associations.

Sourcelnstance.CIM_FileSystemSynchronized::CopyState <>

Previousinstance.CIM_FileSystemSynchronized::CopyState

SELECT * FROM CIM_InstModification WHERE Sourcelnstance Optional CQL -Progress status transition for a specific replica

ISA CIM_FileSystemSynchronized AND association.

Sourcelnstance.CIM_FileSystemSynchronized::ProgressStatus <>

PreviousInstance.CIM_FileSystemSynchronized::ProgressStatus

AND OBJECTPATH(SourcelnstanceModelpath) =
OBJECTPATH('string-key-of-FileSystemSynchronized')
SELECT * FROM CIM_InstModification WHERE Sourcelnstance Optional CQL -Progress status transition for replica

ISA CIM_FileSystemSynchronized AND
Sourcelnstance.CIM_FileSystemSynchronized::ProgressStatus <>
Previousinstance.CIM_FileSystemSynchronized::ProgressStatus

associations.

SMI-S 1.7.0 Revision 5 Working Draft

377

FileSystem Replication Services Profile

Table 303 - CIM Elements for Filesystem Replication Services

Element Name Requirement Description

SELECT * FROM CIM_InstModification WHERE Sourcelnstance Conditional Conditional requirement: Required if groups and
ISA CIM_FileSystemGroupSynchronized AND semi-fixed indication filters are supported. CQL -
Sourcelnstance.CIM_FileSystemGroupSynchronized::CopyState Synchronization state transition for a specific

<> replication group association.

PreviousInstance.CIM_FileSystemGroupSynchronized::CopyState
AND OBJECTPATH(SourcelnstanceModelpath) =
OBJECTPATH('string-key-of-FileSystemGroupSynchronized')

SELECT * FROM CIM_InstModification WHERE Sourcelnstance Optional CQL -Synchronization state transition for replication
ISA CIM_FileSystemGroupSynchronized AND group associations.
Sourcelnstance.CIM_FileSystemGroupSynchronized::CopyState

<>

PreviousInstance.CIM_FileSystemGroupSynchronized::CopyState

SELECT * FROM CIM_AlertIndication WHERE OwningEntity = Mandatory Be notified when CopyState is set to Broken.

'SNIA' AND MessagelD="FSM4'

SELECT * FROM CIM_Alertindication WHERE OwningEntity = Mandatory Remaining pool space either below warning

'SNIA" AND MessagelD='"FSM5' threshold set for the pool or there is no remaining
space in the pool.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity = Mandatory Be notified of changes in

'SNIA" AND MessagelD='"FSM6' RemoteReplicationCollection
(ConnectivityCollections).

SELECT * FROM CIM_AlertIndication WHERE OwningEntity = Mandatory Be notified of changes in ProtocolEndpoints.

'SNIA" AND MessagelD='"FSM7"

SELECT * FROM CIM_AlertIndication WHERE OwningEntity = Conditional Be notified when CopyState is Fractured if the

'SNIA" AND MessagelD="FSM8' implementation supports this state.

SELECT * FROM CIM_Alertindication WHERE OwningEntity = Conditional Be notified when CopyState is Invalid if the

'SNIA" AND MessagelD="FSM9’ implementation supports this state.

SELECT * FROM CIM_AlertIndication WHERE OwningEntity = Mandatory Be notified when the CopyState is Inactive.

'SNIA" AND MessagelD="FSM10'

SELECT * FROM CIM_AlertIndication WHERE OwningEntity = Optional Be notified when the CopyState is Split.

'SNIA' AND MessagelD='"FSM11'

SELECT * FROM CIM_AlertIndication WHERE OwningEntity = Mandatory Be notified when the CopyState returns to a normal

'SNIA" AND MessagelD='"FSM12’ condition.

16.5.1 CIM_AllocatedResources

An instance of a default CIM_AllocatedResources defines the set of components that are allocated and in
use by the Replication Services Profile. CIM_AllocatedResources is subclassed from
CIM_SystemSpecificCollection. At least one instance of the CIM_AllocatedResources shall exist for the
Replication Services Profile and shall be hosted by one of its ComputerSystems (typically the top level
ComputerSystem.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

378

FileSystem Replication Services Profile

Table 304 describes class CIM_AllocatedResources.

Table 304 - SMI Referenced Properties/Methods for CIM_AllocatedResources

Properties Flags Requirement Description & Notes

InstancelD Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection (e.g., Allocated
FileSystem).

ElementType Mandatory The type of remote resources collected by the AllocatedResources
collection.
For this version of SMI-S, the only value supported is '2' (Any Type).

CollectionDiscriminator Mandatory Experimental. This is an array of values that shall contain one or more
values from the list: 'SNIA:Target Volumes', 'SNIA:Source Volumes',
'SNIA:Target Volume Group', 'SNIA:Source Volume Group'.

16.5.2 CIM_ElementCapabilities

Associates FileSystemReplicationCapabilities and ReplicationService.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 305 describes class CIM_ElementCapabilities.

Table 305 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes
Capabilities Mandatory
ManagedElement Mandatory

16.5.3 CIM_FileSystemGroupSynchronized

Experimental.

Requirement: Required if groups are supported.

16.5.4 CIM_FileSystemReplicationServiceCapabilities

Experimental. This class defines all of the capability properties for the replication services.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SMI-S 1.7.0 Revision 5

Working Draft

379

FileSystem Replication Services Profile

Table 306 describes class CIM_FileSystemReplicationServiceCapabilities.

Table 306 - SMI Referenced Properties/Methods for CIM_FileSystemReplicationServiceCapabilities

Properties Flags Requirement | Description & Notes

InstancelD Mandatory

ElementName Mandatory User Friendly name.

SupportedReplicationTypes Mandatory Enumeration indicating the supported SyncType/Mode/

Local or Remote combinations. Values:
2: Synchronous Mirror Local

3: Asynchronous Mirror Local

4: Synchronous Mirror Remote

5: Asynchronous Mirror Remote

6: Synchronous Snapshot Local

7: Asynchronous Snapshot Local

8: Synchronous Snapshot Remote
9: Asynchronous Snapshot Remote
10: Synchronous Clone Local

11: Asynchronous Clone Local

12: Synchronous Clone Remote

13: Asynchronous Clone Remote.

SupportedStorageObjects Mandatory Enumeration indicating the supported storage objects.
Values:
2: FileSystem
3: LogicalFile.

SupportedAsynchronousActions Mandatory Identify replication methods using job control. Values:

2: CreateElementReplica
CreateGroupReplica
CreateSynchronizationAspect

ModifyReplicaSynchronization

3:

4.

5:

6: ModifyListSynchronization
7: ModifySettingsDefineState

8: GetAvailableTargetElements
9: GetPeerSystems

10: GetReplicationRelationships
11: GetServiceAccessPoints

19: CreatelListReplica.

380

Table 306 - SMI Referenced Properties/Methods for CIM_FileSystemReplicationServiceCapabilities

FileSystem Replication Services Profile

Properties Flags Requirement | Description & Notes
SupportedSynchronousActions Mandatory Identify replication methods not using job control. Values:
2: CreateElementReplica
3: CreateGroupReplica
4: CreateSynchronizationAspect
5: ModifyReplicaSynchronization
6: ModifyListSynchronization
7: ModifySettingsDefineState
8: GetAvailableTargetElements
9: GetPeerSystems
10: GetReplicationRelationships
11: GetServiceAccessPoints
12: CreateGroup
13: DeleteGroup
14: AddMembers
15: RemoveMembers
16: AddReplicationEntity
17: AddServiceAccessPoint
18: AddSharedSecret
19: CreatelListReplica.
ConvertSyncTypeToReplicationType() Mandatory
ConvertReplicationTypeToSyncType() Mandatory
GetSupportedCopyStates() Mandatory
GetSupportedGroupCopyStates() Conditional Conditional requirement: Required if groups are
supported.
GetSupportedWaitForCopyStates() Optional
GetSupportedFeatures() Mandatory
GetSupportedGroupFeatures() Conditional Conditional requirement: Required if groups are
supported.
GetSupportedConsistency() Conditional Conditional requirement: Required if groups are
supported.
GetSupportedOperations() Mandatory
GetSupportedGroupOperations() Conditional Conditional requirement: Required if groups are
supported.
GetSupportedListOperations() Optional
GetSupportedSettingsDefineStateOperations() Optional
GetSupportedThinProvisioningFeatures() Optional
GetSupportedStorageCompressionFeatures() Optional
GetSupportedMaximum() Optional

SMI-S 1.7.0 Revision 5

Working Draft

381

FileSystem Replication Services Profile

Table 306 - SMI Referenced Properties/Methods for CIM_FileSystemReplicationServiceCapabilities

Properties Flags Requirement | Description & Notes

GetDefaultConsistency() Conditional Conditional requirement: Required if groups are
supported.

GetDefaultGroupPersistency() Conditional Conditional requirement: Required if groups are
supported.

GetSupportedReplicationSettingData() Optional

GetDefaultReplicationSettingData() Optional

GetSupportedConnectionFeatures() Optional

16.5.5 CIM_FileSystemSynchronized

Experimental. Associates replica target element to source element.

Created By: Extrinsics: CreateElementReplica, CreateGroupReplica, CreatelListReplica
Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsic: ModifyReplicaSynchronization

Requirement: Mandatory

Table 307 describes class CIM_FileSystemSynchronized.

Table 307 - SMI Referenced Properties/Methods for CIM_FileSystemSynchronized

Properties Flags Requirement Description & Notes
WhenSynced N Optional Date and time synchronization of the elements is achieved.
WhenEstablished N Optional Specifies when the association was established.
WhenSynchronized N Optional Specifies when the CopyState has a value of Synchronized.
WhenActivated N Optional Specifies when the association was activated.
WhenSuspended N Optional Specifies when the association was suspended.
SyncMaintained Mandatory Boolean indicating whether synchronization is maintained.
SyncType Mandatory Type of association between source and target groups. Values:

6: Mirror

7: Snapshot

8: Clone.
Mode Mandatory Specifies when target elements are updated. Values:

2: Synchronous

3: Asynchronous.

382

FileSystem Replication Services Profile

Table 307 - SMI Referenced Properties/Methods for CIM_FileSystemSynchronized

Properties

Flags

Requirement

Description & Notes

RequestedCopyState

Optional

Indicates the last requested or desired state for the association. Values:
4: Synchronized
6: Fractured

7: Split

8: Inactive

9: Suspended

10: Failedover

11: Prepared

12: Aborted

15: Not Applicable
16: Partitioned
17: Invalid.

ReplicaType

Optional

CopyState

Mandatory

State of association between source and target groups. Values:
2: Initialized

3: Unsynchronized

: Synchronized

: Broken

: Fractured

: Split

: Inactive

© 00 N o 0 BN

: Suspended

10: FailedOver
11: Prepared

12: Aborted

13: Skewed

14: Mixed

15: Not Applicable
16: Partitioned
17: Invalid.

SMI-S 1.7.0 Revision 5

Working Draft

383

384

FileSystem Replication Services Profile

Table 307 - SMI Referenced Properties/Methods for CIM_FileSystemSynchronized

Properties

Flags

Requirement

Description & Notes

ProgressStatus

N

Optional

Status of association between source and target groups. Values:
: Completed

: Dormant

: Initializing

: Preparing

: Synchronizing

: Resyncing

: Restoring

© 0o N o o A~ W N

: Fracturing

=
o

: Splitting

[y
[

: Failing over

=
N

: Failing back

=
w

: Aborting

=
S

: Mixed

=
[

- Not Applicable

=
(0]

: Suspending

[y
~

- Requires fracture

=
[oe]

: Requires resync

=
©

: Requires activate

N
o

: Pending
21: Detaching

22: Requires detach.

PercentSynced

Optional

Specifies the percent of the work completed to reach synchronization. For
synchronized associations (e.g. SyncType Mirror), while fractured, the
percent difference between source and target elements can derived by
subtracting PercentSynched from 100.

CopyPriority

MN

Optional

CopyPriority allows the priority of background copy engine I/O to be
managed relative to host I/O operations during a sequential background
copy operation. Values:

0: Not Managed

1: Low

2: Same (as host 1/0)
3: High

4: Urgent.

UndiscoveredElement

Optional

Specifies whether the source, the target, or both elements involved in a
copy operation are undiscovered. If NULL both source and target
elements are considered discovered. Values:

2: SystemElement
3: SyncedElement
4: Both.

FileSystem Replication Services Profile

Table 307 - SMI Referenced Properties/Methods for CIM_FileSystemSynchronized

Properties Flags Requirement Description & Notes

FailedCopyStopsHostlO | N Optional If true, the storage array tells host to stop sending data to source element
if copying to a remote element fails. To set this property initially, use
ReplicationSettingData parameter in create method. To modify this
property, use Modifylnstance intrinsic method.

CopyRecoveryMode N Optional Describes whether the copy operation continues after a broken link is
restored. If Manual, the CopyState is set to Suspended after the link is
restored. It is required to issue the Resume operation to continue. To set
this property initially, use ReplicationSettingData parameter in create
method. To modify this property, use Madifylnstance intrinsic method.
Values:

2: Automatic
3: Manual

4: Implementation decides.

ReadOnly N Optional This property specifies whether the source, the target, or both elements
are "read only" to the host. Values:

2: SystemElement
3: SyncedElement
4: Both.

SyncedElement Mandatory

SystemElement Mandatory

16.5.6 CIM_HostedAccessPoint (ForProtocolEndpoint)

Associates ProtocolEndpoint to the System on which it is hosted.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

Table 308 describes class CIM_HostedAccessPoint (ForProtocolEndpoint).

Table 308 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForProtocolEndpoint)

Properties Flags Requirement Description & Notes
Antecedent Mandatory The Hosting System.
Dependent Mandatory The access points that are hosted on this System.

16.5.7 CIM_HostedAccessPoint (ForRemoteServiceAccessPoint)
Associates RemoteServiceAccessPoint to the ComputerSystem.
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

SMI-S 1.7.0 Revision 5 Working Draft 385

FileSystem Replication Services Profile

Table 309 describes class CIM_HostedAccessPoint (ForRemoteServiceAccessPoint).

Table 309 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForRemoteServiceAccess-

Point)
Properties Flags Requirement Description & Notes
Antecedent Mandatory The Hosting System.
Dependent Mandatory The access points that are hosted on this System.

16.5.8 CIM_HostedCollection (Allocated Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Replication Services profile, it is used to associate the
Allocated Resources to the top level Computer System of the Replication Services Profile in support of
Cascading.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 310 describes class CIM_HostedCollection (Allocated Resources).

Table 310 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement Description & Notes
Antecedent Mandatory
Dependent Mandatory

16.5.9 CIM_HostedCollection (Between ComputerSystem and RemoteReplicationCollection)

Associates the RemoteReplicationCollection (ConnectivityCollection) to the hosting System.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if groups are supported.

Table 311 describes class CIM_HostedCollection (Between ComputerSystem and
RemoteReplicationCollection).

Table 311 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
RemoteReplicationCollection)

Properties Flags Requirement Description & Notes
Antecedent Mandatory
Dependent Mandatory

386

16.5.10CIM_HostedCollection (Between ComputerSystem and ReplicationGroup)

FileSystem Replication Services Profile

Associates the replication group to the hosting System.

Created By: Extrinsic: CreateGroup
Modified By: Extrinsics: DeleteGroup, RemoveMembers
Deleted By: Extrinsic: DeleteGroup
Requirement: Required if groups are supported.

Table 312 describes class CIM_HostedCollection (Between ComputerSystem and ReplicationGroup).

Table 312 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
ReplicationGroup)

Properties Flags Requirement Description & Notes
Antecedent Mandatory
Dependent Mandatory

16.5.11CIM_HostedCollection (Remote Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the FileSystem Replication Services Profile, it is used to
associate the Remote Resources to the top level Computer System of the FileSystem Replication

Services Profile that supports Cascading.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is required if CIM_RemoteResources is modeled.

Table 313 describes class CIM_HostedCollection (Remote Resources).

Table 313 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes
Antecedent Mandatory
Dependent Mandatory

16.5.12CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

SMI-S 1.7.0 Revision 5

Working Draft

387

FileSystem Replication Services Profile

Table 314 describes class CIM_HostedService.

Table 314 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes
Antecedent Mandatory The hosting System.
Dependent Mandatory The Replication Service hosted on the System.

16.5.13CIM_MemberOfCollection (Allocated Resources)

This use of MemberOfCollection is to collect all allocated shadow component instances (in the
AllocatedResources collection).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 315 describes class CIM_MemberOfCollection (Allocated Resources).

Table 315 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)

Properties Flags Requirement Description & Notes
Member Mandatory
Collection Mandatory

16.5.14CIM_MemberOfCollection (ProtocolEndpoints to RemoteReplicationCollection)

Associates ProtocolEndpoints to RemoteReplicationCollection (ConnectivityCollection).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

Table 316 describes class CIM_MemberOfCollection (ProtocolEndpoints to
RemoteReplicationCollection).

Table 316 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoints to
RemoteReplicationCollection)

Properties Flags Requirement Description & Notes
Collection Mandatory
Member Mandatory

16.5.15CIM_MemberOfCollection (Remote Resources)

This use of MemberOfCollection is to collect all shadow components (in the RemoteResources
collection). Each association (and the RemoteResources collection, itself) is created through external
means.

388

FileSystem Replication Services Profile

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 317 describes class CIM_MemberOfCollection (Remote Resources).

Table 317 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)

Properties Flags Requirement Description & Notes
Member Mandatory
Collection Mandatory

16.5.16 CIM_OrderedMemberOfCollection

Associates ReplicationGroup to storage elements.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers
Deleted By: Extrinsics: DeleteGroup, RemoveMembers
Requirement: Required if groups are supported.

Table 318 describes class CIM_OrderedMemberOfCollection.

Table 318 - SMI Referenced Properties/Methods for CIM_OrderedMemberOfCollection

Properties Flags Requirement Description & Notes
AssignedSequence Mandatory
Collection Mandatory
Member Mandatory

16.5.17CIM_ProtocolEndpoint

Special purpose endpoint that represents connections between systems.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

Table 319 describes class CIM_ProtocolEndpoint.

Table 319 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Flags Requirement Description & Notes
SystemCreationClassName Mandatory
SystemName Mandatory
CreationClassName Mandatory

SMI-S 1.7.0 Revision 5 Working Draft

389

FileSystem Replication Services Profile

Table 319 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Flags Requirement Description & Notes

Name Mandatory

ProtocollFType Mandatory Value always reflects protocol type. Values:
1: Other

6: Ethernet CSMA/CD
7:1S0O 802.3 CSMA/CD
8:1SO 802.4 Token Bus
15: FDDI

56: Fibre Channel

117: Gigabit Ethernet
4096: IPv4

4097: IPv6

4098: IPv4/IPv6

4111: TCP.
OtherTypeDescription N Optional String identifying the Other connection protocol.
OperationalStatus Mandatory An array containing the operational status of protocol end
point.

16.5.18CIM_RemoteReplicationCollection

Collects the ProtocolEndpoints/ServiceAccessPoints used by Replication Services.

Created By: Extrinsic: CreateRemoteReplicationCollection

Modified By: Extrinsics: AddToRemoteReplicationCollection, RemoveFromRemoteReplicationCollection
Deleted By: Extrinsic: Static

Requirement: Required if remote replication is supported.

Table 320 describes class CIM_RemoteReplicationCollection.

Table 320 - SMI Referenced Properties/Methods for CIM_RemoteReplicationCollection

Properties Flags Requirement Description & Notes

InstancelD Mandatory Opaque.

ElementName Optional User Friendly name.

ConnectivityStatus Mandatory An enumeration describing the current or potential connectivity

between endpoints in this collection. Values:
2: Connectivity - Up
3: No Connectivity - Down

4: Partitioned - Partial connectivity.

Active N Optional Indicates that this collection is currently active and allows
replication activities to the remote elements.

DeleteOnUnassociated N Optional If true, this instance of RemoteReplicationCollection will be
deleted when it is no longer associated with an access point.

390

16.5.19CIM_RemoteResources

FileSystem Replication Services Profile

An instance of a default CIM_RemoteResources defines the set of shadow components that are available
to be used by the Replication Services Profile that supports Cascading. CIM_RemoteResources is
subclassed from CIM_SystemSpecificCollection. One instance of the CIM_RemoteResources would exist
and shall be hosted by the top level ComputerSystems of the Replication Services Profile that supports

Cascading.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 321 describes class CIM_RemoteResources.

Table 321 - SMI Referenced Properties/Methods for CIM_RemoteResources

Properties Flags Requirement Description & Notes

InstancelD Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection (e.g.,
Remote FileSystem).

ElementType Mandatory The type of remote resources collected by the RemoteResources
collection. This shall be '2' (Any Type).

CollectionDiscriminator Mandatory Experimental. This is an array of values that shall contain one or more

values from the list: 'SNIA:Target Volumes', 'SNIA:Source Volumes',
'SNIA:Target Volume Group', 'SNIA:Source Volume Group',
'SNIA:Remote Storage Pools'.

16.5.20CIM_RemoteServiceAccessPoint

Created By: Extrinsic: Static

Modified By: Static
Deleted By: Static

Requirement: Required if remote replication is supported.

Table 322 describes class CIM_RemoteServiceAccessPoint.

Table 322 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Properties Flags Requirement Description & Notes
SystemCreationClassName Mandatory
CreationClassName Mandatory
SystemName Mandatory
Name Mandatory
ElementName Optional User Friendly name.

SMI-S 1.7.0 Revision 5

Working Draft

391

FileSystem Replication Services Profile

Table 322 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Properties

Flags

Requirement

Description & Notes

Accessinfo

Mandatory

Access or addressing information or a combination of this
information for a remote connection. This information can be a
host name, network address, or similar information.

InfoFormat

Mandatory

The format of the Management Address (i.e., Accessinfo). For
example: "Host Name", "IPv4 Address", "IPv6 Address",
"URL". See MOF for the complete list and values.

16.5.21CIM_ReplicaPoolForStorage

Associates special storage pool for Snapshots (delta replicas) to a source element.

Created By: Static

Modified By:

Static

Deleted By: Static
Requirement: Optional

Table 323 describes class CIM_ReplicaPoolForStorage.

Table 323 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage

Properties Flags Requirement Description & Notes
Antecedent Mandatory
Dependent Mandatory

16.5.22CIM_ReplicationEntity
Represents a replication entity such as an entity known by its World Wide Name (WWN).

Created By: Extrinsic: AddReplicationEntity

Modified By:

Static

Deleted By: Static
Requirement: Optional

392

FileSystem Replication Services Profile

Table 324 describes class CIM_ReplicationEntity.

Table 324 - SMI Referenced Properties/Methods for CIM_ReplicationEntity

Properties Flags Requirement | Description & Notes
InstancelD Mandatory Key.
Type Mandatory Indicates how to interpret the information appearing in EntitylD. Values:

2: StoragePool

3: StorageExtent
4: StorageVolume
5: LogicalDisk
6: Filesystem
7: WWN

8: URI

9: Objectpath

10: Encoded in EntityID.

EntitylD Mandatory An ID representing the resource identified by this entity. For example, the
WWN or the URI of an element. The property Type is to be used to
interpret the ID.

OtherTypeDescription N Optional Populated when Type has the value of Other.

Persistent MN Optional If false, the instance of this object, not the element represented by this
entity, may be deleted at the completion of a copy operation.

16.5.23CIM_ReplicationGroup

Experimental. Represents a group of elements participating in a replication activity.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers
Deleted By: Extrinsic: DeleteGroup

Requirement: Required if groups are supported.

Table 325 describes class CIM_ReplicationGroup.

Table 325 - SMI Referenced Properties/Methods for CIM_ReplicationGroup

Properties Flags Requirement | Description & Notes

InstancelD Mandatory Within the scope of an array, the InstancelD opaquely and uniquely
identifies an instance of this class.

Persistent MN Optional If false, the group, not the elements associated with the group, may be
deleted at the completion of a copy operation.

DeleteOnEmptyElement M Mandatory If true and empty groups are allowed, the group will be deleted when the
last element is removed from the group. If empty groups are not allowed,
the group will be deleted automatically when the group becomes empty.

SMI-S 1.7.0 Revision 5 Working Draft 393

FileSystem Replication Services Profile

Table 325 - SMI Referenced Properties/Methods for CIM_ReplicationGroup

Properties Flags Requirement | Description & Notes

DeleteOnUnassociated M Mandatory If true, the group will be deleted when the group is no longer associated
with another group. This can happen if all synchronization associations to
the individual elements of the group are dissolved.

ConsistentPointInTime N Optional If it is true, it means the point-in-time was created at an exact time with no
1/0 activities in such a way the data is consistent among all the elements
of the group. This property is only valid when the group is a target of a
copy operation.

16.5.24CIM_ReplicationService

Experimental. Base class for FileSystem Replication Services.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 326 describes class CIM_ReplicationService.

Table 326 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Flags Requirement | Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

CreateElementReplica() Mandatory

CreateGroupReplica() Conditional Conditional requirement: Required if groups
are supported.

CreateListReplica() Optional

CreateSynchronizationAspect() Optional

ModifyReplicaSynchronization() Mandatory

ModifyListSynchronization() Optional

ModifySettingsDefineState() Optional

CreateGroup() Conditional Conditional requirement: Required if groups
are supported.

DeleteGroup() Conditional Conditional requirement: Required if groups
are supported.

AddMembers() Conditional Conditional requirement: Required if groups
are supported.

RemoveMembers() Conditional Conditional requirement: Required if groups
are supported.

GetAvailableTargetElements() Optional

GetPeerSystems() Optional

394

FileSystem Replication Services Profile

Table 326 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Flags Requirement | Description & Notes
GetReplicationRelationships() Optional
GetServiceAccessPoints() Optional
AddReplicationEntity() Optional
AddServiceAccessPoint() Optional
AddSharedSecret() Optional
CreateGroupReplicaFromElements() Optional
GetReplicationRelationshiplnstance() Optional
ModifyListSettingsDefineState() Optional
CreateRemoteReplicationCollection() Optional
AddToRemoteReplicationCollection() Optional
RemoveFromRemoteReplicationCollection() Optional

16.5.25CIM_ReplicationSettingData

Experimental. Contains special options for use by methods of Replication Services.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Optional

Table 327 describes class CIM_ReplicationSettingData.

Table 327 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes
InstancelD Mandatory
ElementName Mandatory User Friendly name.
Pairing MN Optional Controls how source and target elements are paired. Values:
2: Instrumentation decides
3: Exact order
4: Optimum (If possible source and target elements on different adapters).
UnequalGroupsAction MN Optional Indicates what should happen if number of elements in source and target
are unequal. Values:
2: Return an error
3: Allow larger source group
4: Allow larger target group.

SMI-S 1.7.0 Revision 5

Working Draft

395

FileSystem Replication Services Profile

Table 327 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties

Flags

Requirement

Description & Notes

DesiredCopyMethodology

MN

Optional

Request specific copy methodology. Values:
1: Other

2: Instrumentation decides
3: Full-Copy

4: Incremental-Copy
5: Differential-Copy

6: Copy-On-Write

7: Copy-On-Access
8: Delta-Update

9: Snap-And-Clone.

TargetElementSupplier

MN

Optional

If target elements are not supplied, this property indicates where the target
elements should come from. Values:

1: Use existing elements

2: Create new elements

3: Use existing or Create new elements
4: Instrumentation decides

5: Client must supply.

ThinProvisioningPolicy

MN

Optional

If the target element is not supplied, this property specifies the
provisioning of the target element. Values:

2: Copy thin source to thin target

3: Copy thin source to full target

4: Copy full source to thin target

5: Provisioning of target same as source

6: Target pool decides provisioning of target element

7: Implementation decides provisioning of target.

StorageCompressionPolicy

MN

Optional

If the target element is not supplied, this property specifies the
compression of the target element. Values:

2: Copy compressed source to compressed target

3: Copy compressed source to uncompressed target
4: Copy uncompressed source to compressed target
5: Compression of target same as source

6: Target pool decides compression of target element

7: Implementation decides compression of target.

ConsistentPointinTime

MN

Optional

If it is true, it means the point-in-time to be created at an exact time with no
1/0 activities in such a way the data is consistent among all the elements
or the group.

DeltaUpdatelnterval

MN

Optional

If non-zero, it specifies the interval between the snapshots of source
element, for example, every 23 minutes (00000000002300.000000:000). If
zero or NULL, the implementation decides.

Multihop

MN

Optional

This property applies to multihop copy operation. It specifies the number of
hops the starting source (or group) element is expected to be copied.
Default is 1.

396

FileSystem Replication Services Profile

Table 327 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags | Requirement | Description & Notes

OnGroupOrListError MN Optional This property applies to group or list operations. It specifies what the
implementation should do if an error is encountered before all entries in
the group or list are processed. Default is to Stop.

2: Continue

3: Stop.

CopyPriority MN Optional This property sets the StorageSynchronized.CopyPriority property.
CopyPriority allows the priority of background copy operation to be
managed relative to host I/O operations during a sequential background
copy operation.

0: Not Managed

1: Low

2: Same (as host I/0)
3: High

4: Urgent.

FailedCopyStopsHostlO MN Optional If true, the storage array tells host to stop sending data to source element
if copying to a remote element fails.

CopyRecoveryMode MN Optional Describes whether the copy operation continues after a broken link is
restored. If Manual, the CopyState is set to Suspended after the link is
restored. It is required to issue the Resume operation to continue. Values:

2: Automatic
3: Manual

4: Implementation decides.

UnequalListsAction MN Optional Indicates what should happen if number of elements in source and target
lists are unequal. Values:

2: Return an error
3: Allow source list to be larger

4: Allow target list to be larger.

DeltaUpdateBlocks MN Optional This property applies to Delta-Update copy methodology. If non-zero, it
specifies the snapshots of source element should be created after this
number of blocks have been modified. If both DeltaUpdateBlocks and
DeltaUpdatelnterval are specified the snapshot is created based on which
criterion occurs first. If NULL or 0, the implementation decides the number
of blocks.

ReadOnly MN Optional This property specifies whether the source, the target, or both elements
should be read only to the host. Values:

2: SystemElement (source)
3: SyncedElement (target)
4: Both.

16.5.26CIM_SAPAvailableForElement

This association identifies the element that is serviced by the ProtocolEndpoint.

Created By: Static
Modified By: Static
Deleted By: Static

SMI-S 1.7.0 Revision 5 Working Draft 397

FileSystem Replication Services Profile

Requirement: Required if remote replication is supported.

Table 328 describes class CIM_SAPAvailableForElement.

Table 328 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The managed element.
AvailableSAP Mandatory The servicing protocol end point.

16.5.27CIM_ServiceAffectsElement (Between ReplicationService and RemoteReplicationCollec-
tion)

Associates Replication Service to RemoteReplicationCollection (ConnectivityCollection).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

Table 329 describes class CIM_ServiceAffectsElement (Between ReplicationService and
RemoteReplicationCollection).

Table 329 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and RemoteReplicationCollection)

Properties Flags Requirement Description & Notes
AffectingElement Mandatory Replication Service.
AffectedElement Mandatory Remote Replication Collection.

16.5.28CIM_ServiceAffectsElement (Between ReplicationService and ReplicationEntity)

Associates Replication Service to ReplicationEntity.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 330 describes class CIM_ServiceAffectsElement (Between ReplicationService and
ReplicationEntity).

Table 330 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationEntity)

Properties Flags Requirement Description & Notes
AffectingElement Mandatory Replication Service.
AffectedElement Mandatory Replication Entity.

398

FileSystem Replication Services Profile

16.5.29CIM_ServiceAffectsElement (Between ReplicationService and ReplicationGroup)

Associates Replication Service to Replication Group.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: DeleteGroup, RemoveMembers
Deleted By: Extrinsic: DeleteGroup

Requirement: Required if groups are supported.

Table 331 describes class CIM_ServiceAffectsElement (Between ReplicationService and
ReplicationGroup).

Table 331 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationGroup)

Properties Flags Requirement Description & Notes
AffectingElement Mandatory Replication Service.
AffectedElement Mandatory Replication Group.

16.5.30CIM_SettingsDefineState (Between ReplicationGroup and SynchronizationAspect)

Associates a replication group to an instance of SynchronizationAspect.

Created By: Extrinsic: CreateSynchronizationAspect

Modified By: Extrinsic

Deleted By: Extrinsics: ModifySettingsDefineState, ModifyReplicaSynchronization
Requirement: Optional

Table 332 describes class CIM_SettingsDefineState (Between ReplicationGroup and
SynchronizationAspect).

Table 332 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between ReplicationGroup
and SynchronizationAspect)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory Storage Element.
SettingData Mandatory Synchronization Aspect.

16.5.31CIM_SettingsDefineState (Between storage object and SynchronizationAspect)
Associates a storage object to an instance of SynchronizationAspect.

Created By: Static

Modified By: Static

Deleted By: Static
Requirement: Optional

SMI-S 1.7.0 Revision 5 Working Draft 399

FileSystem Replication Services Profile

Table 333 describes class CIM_SettingsDefineState (Between storage object and
SynchronizationAspect).

Table 333 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between storage object and
SynchronizationAspect)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory Storage Element.
SettingData Mandatory Synchronization Aspect.

16.5.32CIM_SharedSecret

Created By: Extrinsic: AddSharedSecret

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 334 describes class CIM_SharedSecret.

Table 334 - SMI Referenced Properties/Methods for CIM_SharedSecret

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory Key.

SystemName Mandatory Key.

ServiceCreationClassName Mandatory Key.

ServiceName Mandatory Key.

RemotelD Mandatory Key, The identity of the client as known on the remote system.
Secret Mandatory A secret.

16.5.33CIM_SynchronizationAspect

Experimental. Keeps track of source of a copy operation and point-in-time.

Created By: Extrinsics: CreateElementReplica, CreateListReplica, CreateSynchronizationAspect
Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifyReplicaSynchronization, ModifySettingsDefineState
Requirement: Optional

400

FileSystem Replication Services Profile

Table 335 describes class CIM_SynchronizationAspect.

Table 335 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

SyncType

Mandatory

Type of association between source and target elements. Values:
6: Mirror

7: Snapshot

8: Clone.

ConsistencyEnabled

Conditional

Conditional requirement: Required if groups are supported. Set to true if
consistency is enabled.

ElementName

Mandatory

An end user relevant name. The value will be stored in the ElementName
property of the created SynchronizationAspect.

ConsistencyType

Conditional

Conditional requirement: Required if group consistency is enabled.
Indicates the consistency type used by the groups. Values:

2: Sequential Consistency.

CopyStatus

Optional

Describes the status of copy operation. Values:
2: Not Applicable
3: Operation In Progress

4: Operation Completed.

CopyMethodology

Optional

Indicates the copy methodology utilized for copying. Values:
2: Implementation decides

: Full-Copy

: Incremental-Copy

: Differential-Copy

: Copy-On-Write

: Copy-On-Access

o N o o b~ W

: Delta-Update
9: Snap-And-Clone.

WhenPointInTime

Optional

SourceElement

Mandatory

Reference to the source element or the source group of a copy operation
and/or a point-in-time.

EXPERIMENTAL

SMI-S 1.7.0 Revision 5

Working Draft

401

FileSystem Replication Services Profile

402

Annex A (informative) SMI-S Information Model

This standard is based on DMTF’s CIM schema, version 2.45.0. The DMTF schema is available in the
machine-readable Managed Object Format (MOF) format. DMTF MOFs are simultaneously released both
as an "Experimental” and a "Final" version of the schema. This provides developers with early access to
experimental parts of the models. Both versions are available at

http://www.dmtf.org/standards/cim

Content marked as “Experimental” or “Implemented” may be based on DMTF’s Experimental MOFs.

Working Draft 403

http://www.dmtf.org/standards/cim/cim_schema_v2290

404

Annex B (Informative) State Transitions from Storage to File Shares

Annex B (Informative) State Transitions from Storage to File Shares

A filesystem is an abstract class that abstractly describes a hierarchical structuring of data into “files”
contained within a tree of “directories” with a single “root” directory. A LocalFileSystem is a concrete class
derived from FileSystem that implements it using one or more storage elements in which the storage
element(s) has been structured to contain information about multiple files organized into directories as
well as the content of these files. This internal organization of a LocalFileSystem, viz., what parts
represent the components of files, what parts constitute directories, what the names of these files and
directories are, how they are organized into a hierarchy, even the representation of the path to a file from
the root directory through a sequence of sub-directories etc., is called “metadata” and is stored
persistently inside the storage element(s). In addition to metadata, the internal organization contains
information about ownership of files and directories, rights of users or other entities to access files and
directories, and other attributes of files and directories. This information is sometimes included in
metadata, but sometimes referred to independently as “attribute” information and is also stored
persistently within the storage element(s). Finally, the contents of files are also stored persistently in the
storage element(s).

In filesystem-related profiles, the collection of storage elements used by a LocalFileSystem is called a
LogicalDisk(s). There are multiple formats (both open and proprietary) for structuring a LogicalDisk into a
LocalFileSystem—how the metadata, attributes, and content are stored and so on—that are referred to as
the “type” of the LocalFileSystem. The information about the type of the LocalFileSystem (and possibly
variant versions of the type) is also persistently stored in the LogicalDisk. The type of the
LocalFileSystem in this and related profiles is represented as the “FileSystemType”.

NOTE The Volume Composition Profile describes how multiple LogicalDisks can be merged into a single one. It is assumed that if
more than one storage element is used, they are composed into a single LogicalDisk using the Volume Composition Profile (see 17
Volume Composition Profile in Storage Management Technical Specification, Part 4 Block Devices, 1.7.0 Rev 5) or other profile that
similarly merges multiple storage elements into a single LogicalDisk.

A LocalFileSystem is not an autonomous entity but is a hosted component of a larger system, usually a
ComputerSystem. This is represented using the HostedFileSystem association between a
ComputerSystem and the LocalFileSystem. Since the LogicalDisk is a SystemDevice of a
ComputerSystem, it is frequently the case that the LocalFileSystem will be hosted by the same
ComputerSystem, but this is not required. It is generally the case that a LocalFileSystem will have an
independent internal name that may be used to refer to it but it is not necessary that the name be
constructed independently of the name of the LogicalDisk or the name of the hosting ComputerSystem.
Some systems require that this internal name be globally unique, but others rely on the uniqueness of the
LogicalDisk’s name or on other identifiers. In SMI-S, it is a requirement that a LocalFileSystem have a
unique Name property relative to the hosting ComputerSystem (Name being one of the key properties of
the FileSystem class).

The process by which an element of storage is finally made available as a FileShare is represented by
Figure B.1: "State Transitions From LogicalDisk to FileShare". The process begins with an unused
LogicalDisk that is owned by, or has been allocated to, the ComputerSystem for this purpose. The
operation "Create a filesystem", converts an unused LogicalDisk to a LocalFileSystem— Figure B.1:
"State Transitions From LogicalDisk to FileShare" shows the name and the ComputerSystem that has a
HostedFileSystem association to the LocalFileSystem. The other details of the LocalFileSystem are
skipped.

SMI-S 1.7.0 Revision 5 Working Draft 405

LogicalDisk

Name: /dev/sd01

Create a file system

LocalFileSystem

ASSOC(ResidesOnExtent): REF LD: /dev/sd01

Name: /dev/fs1

ASSOC(HostedFileSystem) REF CS: "FileSystem Host”
LocalAccessDefinitionRequired: truel|false
PathNameSeparatorString: “/”

Make file system locally accessible
If LocalAccessDefinitionRequired: true

LocalAccessAvailable

FileServer: REF “FileServerl” Export a file share
FileSystem: REF LFS:“/dev/fs1” If LocalAccessDefinitionRequired: false

LocalAccessPoint: “/etc/mntl”

Export a file share

FileShare

ASSOC(HostedShare): REF “FileServerl”
ASSOC(SharedElement): REF: “/dev/fs1”
PathName: “/users/kamesh”

Name: "HOMEDIR”

Figure B.1 - State Transitions From LogicalDisk to FileShare

Even after a LogicalDisk has been internally organized into a LocalFileSystem, it may not be usable by an
operational user. That's because the operational user needs a durable name (for referring to the
LocalFileSystem) that is persistently supported by the implementation. There are multiple ways in which
this problem has been solved. Since the LocalFileSystem must be hosted by a ComputerSystem and the
LocalFileSystem has a unique name, a Uniform Resource Indicator (URI) can be constructed that is
relative to the hosting ComputerSystem. However, an operational user needs to use an access path
relative to the ComputerSystem that serves files to them (i.e., relative to a File Server), and this may
differ from the hosting ComputerSystem.

Traditionally (i.e., before URIs), a LocalFileSystem was assigned a name in a hierarchical name space
maintained by the File Server ComputerSystem. This assignment was called “mounting to” the name and
the name was called the “mount-point” of the filesystem. For historical and other reasons, the hierarchical
name space most commonly used for the purpose was based on the “root filesystem” of the File Server.
This allowed a naming convention using “file path names” for objects in the namespace that could be

406

Annex B (Informative) State Transitions from Storage to File Shares

extended uniformly to the meta-data and content of the mounted filesystem (and would be represented in
the SMI Specification as a property of a Capabilities element).

If the hosting ComputerSystem and the File Server ComputerSystem are the same, or can be referenced
using a single identifier (for instance in a clustered computer system), or only one File Server can access
a LocalFileSystem, it is possible to make the Name of the LocalFileSystem be the same as the mount-
point. In that case, the act of “mounting to” the name is accomplished by default when the
LocalFileSystem is created. But this does not work for implementations that allow a LocalFileSystem
hosted by one ComputerSystem to be assigned differently named mount-points on multiple File Server
ComputerSystems. The problem increases in complexity when a File Server can have multiple network
identities (through a multiplicity of IP addresses and multiple fully-qualified domain names that map to
each IP address).

Traditionally, Unix-based uni-processor systems have not made the Name of the LocalFileSystem the
same as the mount-point. But many specialized systems follow such a policy, so whether mounting is not
managed explicitly (because it is automatically specified by the name of the LocalFileSystem) or must be
managed explicitly is a feature of an implementation.

In addition to specifying a mount-point for a LocalFileSystem, a File Server would also assign system
resources needed for working with the LocalFileSystem. These include read and write buffers of
appropriate capacity, restrictions on reading or writing (needed for systems that allow multiple mounts of
a LocalFileSystem), and other implementation-dependent resources. The specification of these resources
are explicitly manageable by some implementations and defaulted by others.

The terms “mount” and “mount-point” are also traditionally used for assigning a remote element (such as
a shared file) a name in the local name space of a ComputerSystem. These terms by themselves
appeared to be too generic for use in this specification, so the terms used are “make locally accessible”
for “mount” and “local access point” for “mount-point”. The resources to be allocated for mounting are
specified by “local access settings”.

In SMI-S, a “locally accessible filesystem” is represented by providing an association,
LocalAccessAvailableToFS, from the File Server to the LocalFileSystem. In addition to the key reference
properties, this association provides the LocalAccessPoint string array property that specifies the “local
access point”. Referring back to Figure B.1: "State Transitions From LogicalDisk to FileShare", the "Make
a filesystem locally accessible" operation creates the LocalAccessAvailableToFS association between the
File Server and the LocalFileSystem. This operation is supported in the Filesystem Manipulation Profile
by providing appropriate parameters to the CreateFileSystem and ModifyFileSystem extrinsic methods.
The LocalFileSystem element is not modified, but a new association is created. The LocalAccessPoint
property provides the access point (shown in the standard Unix format as “/etc/mnt1”).

NOTE The intent behind implementing "Make a filesystem locally accessible" with CreateFileSystem and ModifyFileSystem
methods is that it is preferable not to distinguish between implementations that implement a separate “Make Locally Accessible”
function from those that do not.

The vendor implements this operation by providing the necessary parameters to the create and modify
methods; this has the benefit that the operation does not have to be exposed separately to the
management client. However all implementations that support multiple File Servers with independent
names to access filesystems must support LocalAccessAvailableToFS as that is the only place where a
file-server-specific name for the LocalFileSystem is specified (by the LocalAccessPoint property). A
vendor that provides accessibility by default might have a FileSystem.Name property that also functions
as a path name from each file server (in one sample implementation), so it is likely that
LocalAccessAvailableToFS.LocalAccessPoint would be the same as the LocalFileSystem.Name property.
The property LocalFileSystem.LocalAccessDefinitionRequired is required to indicate that this feature is
used and that the client must examine that property to understand how a vendor implements this model.

The creation of a file share and its behavior are detailed in the related File Export and File Export
Manipulation Profiles. Figure B.1: "State Transitions From LogicalDisk to FileShare" shows the "Export a
file share" operation that creates a FileShare and an SharedElement association. The FileShare provides

SMI-S 1.7.0 Revision 5 Working Draft 407

a name “HOMEDIR” and is hosted by the File Server. The SharedElement association links to the
LocalFileSystem and also provides the pathname “/users/kamesh” to the specific user’s home directory.

NOTE Once a LocalFileSystem has been made locally accessible via a File Server, the File Server can share its contents with
remote operational users. The contents of such a filesystem can be shared all the way from the root directory at the top of the
hierarchy, or the contents of sub-tree below some contained internal directory may be shared, or a specific file contained in the
filesystem may be shared. When a directory (root or otherwise) is shared, all files and sub-directories of that directory are
automatically also shared recursively. The semantics of sharing an individual file or directory are ultimately controlled by the
implementation of the filesystem, so sharing cannot violate the access rules specified internally to the filesystem. In addition to
specifying the object (file or directory) to be shared, the File Server may specify the protocol to use for sharing and a correlatable
name by which remote users can refer to the shared object—the protocol, the unique server id, and the share name can be used to
construct a URI for the shared object. The base URI can be extended to construct a reference URI for files or subdirectories within
the shared object.

In SMI-S, there is a FileShare element created to represent the externally accessible share. This element is associated via

SharedElement to the LocalFileSystem. The FileShare element will provide the PathName string property that specifies the shared
object (the contained file or directory name).

408

	Revision History
	List of Figures
	List of Tables
	Foreword
	1 Scope
	2 Normative References
	2.1 General
	2.2 References under development
	2.3 Other references

	3 Terms, Definitions, Symbols, Abbreviations, and Conventions
	3.1 General
	3.2 Terms and Definitions

	4 File Export Profile
	4.1 Description
	4.1.1 Synopsis
	4.1.2 Overview
	4.1.3 Implementation

	4.2 Health and Fault Management Consideration
	4.2.1 OperationalStatus for FileShares

	4.3 Cascading Considerations
	4.4 Methods of the Profile
	4.4.1 Extrinsic Methods of the Profile
	4.4.2 Intrinsic Methods of the Profile

	4.5 Use Cases
	4.6 CIM Elements
	4.6.1 CIM_CIFSShare (Exported File Share)
	4.6.2 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to FileShare)
	4.6.3 CIM_EnabledLogicalElementCapabilities (FileShare)
	4.6.4 CIM_ExportedFileShareSetting (Setting)
	4.6.5 CIM_FileShare (Exported File Share)
	4.6.6 CIM_FileShareSettingData (FileShare)
	4.6.7 CIM_HostedShare
	4.6.8 CIM_NFSShare (Exported File Share)
	4.6.9 CIM_SAPAvailableForFileShare
	4.6.10 CIM_SharedElement

	5 File Export Manipulation Profile
	5.1 Description
	5.1.1 Synopsis
	5.1.2 Overview
	5.1.3 Instance Diagrams

	5.2 Health and Fault Management Considerations
	5.2.1 OperationalStatus for FileExportService

	5.3 Cascading Considerations
	5.4 Methods of the Profile
	5.4.1 Extrinsic Methods of the Profile
	5.4.2 Intrinsic Methods of the Profile

	5.5 Use Cases
	5.5.1 File Export Manipulation Supported Capabilities Patterns

	5.6 CIM Elements
	5.6.1 CIM_AccountManagementService
	5.6.2 CIM_AssignedIdentity
	5.6.3 CIM_AssociatedPrivilege
	5.6.4 CIM_CIFSShare (Exported File Share)
	5.6.5 CIM_ConcreteDependency
	5.6.6 CIM_ElementCapabilities (FES Configuration)
	5.6.7 CIM_ElementSettingData (FileShare Setting)
	5.6.8 CIM_ExportedFileShareCapabilities (FES Capabilities)
	5.6.9 CIM_ExportedFileShareSetting (FileShare Setting)
	5.6.10 CIM_ExportedFileShareSetting (Pre-defined)
	5.6.11 CIM_FileExportCapabilities (FES Configuration)
	5.6.12 CIM_FileExportService
	5.6.13 CIM_FileShare (Exported File Share)
	5.6.14 CIM_FileStorage (Subelement)
	5.6.15 CIM_HostedService
	5.6.16 CIM_HostedShare
	5.6.17 CIM_Identity
	5.6.18 CIM_LogicalFile (Subelement)
	5.6.19 CIM_NFSShare (Exported File Share)
	5.6.20 CIM_SAPAvailableForFileShare
	5.6.21 CIM_ServiceAffectsElement
	5.6.22 CIM_SettingsDefineCapabilities (Pre-defined)
	5.6.23 CIM_SharedElement
	5.6.24 CIM_UserContact

	6 File Server Manipulation Profile
	6.1 Description
	6.1.1 Synopsis
	6.1.2 Overview
	6.1.3 Instance Diagrams

	6.2 Health and Fault Management Consideration
	6.2.1 OperationalStatus for File Server ComputerSystem

	6.3 Cascading Considerations
	6.4 Methods of the Profile
	6.4.1 Extrinsic Methods

	6.5 Use Cases
	6.6 CIM Elements
	6.6.1 CIM_CIFSSettingData
	6.6.2 CIM_ConcreteComponent (FileServerSettings to CIFSSettingData)
	6.6.3 CIM_ConcreteComponent (FileServerSettings to DNSSettingData)
	6.6.4 CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData)
	6.6.5 CIM_ConcreteComponent (FileServerSettings to NFSSettingData)
	6.6.6 CIM_ConcreteComponent (FileServerSettings to NISSettingData)
	6.6.7 CIM_DNSSettingData
	6.6.8 CIM_ElementCapabilities (FileServerConfigurationService to FileServerCapabilities)
	6.6.9 CIM_ElementCapabilities (FileServerConfigurationService to FileServerConfigurationCapabilities)
	6.6.10 CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings)
	6.6.11 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)
	6.6.12 CIM_FileServerCapabilities
	6.6.13 CIM_FileServerConfigurationCapabilities
	6.6.14 CIM_FileServerConfigurationService
	6.6.15 CIM_FileServerSettings
	6.6.16 CIM_HostedDependency
	6.6.17 CIM_HostedService (Hosting Computer System to FileServerConfigurationService)
	6.6.18 CIM_IPInterfaceSettingData
	6.6.19 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)
	6.6.20 CIM_NetworkVLAN
	6.6.21 CIM_NFSSettingData
	6.6.22 CIM_NISSettingData
	6.6.23 CIM_SettingsDefineCapabilities (CIFSettingData)
	6.6.24 CIM_SettingsDefineCapabilities (DNSSettingData)
	6.6.25 CIM_SettingsDefineCapabilities (FileServerSettings)
	6.6.26 CIM_SettingsDefineCapabilities (IPInterfaceSettingData)
	6.6.27 CIM_SettingsDefineCapabilities (NFSSettingData)
	6.6.28 CIM_SettingsDefineCapabilities (NISSettingData)
	6.6.29 CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings)

	7 File Storage Profile
	7.1 Description
	7.1.1 Synopsis
	7.1.2 Overview
	7.1.3 Implementation

	7.2 Health and Fault Management Consideration
	7.3 Cascading Considerations
	7.3.1 Cascaded Resources
	7.3.2 Ownership Privileges

	7.4 Methods of the Profile
	7.4.1 Extrinsic Methods of the Profile
	7.4.2 Intrinsic Methods of the Profile

	7.5 Client Considerations and Recipes
	7.6 CIM Elements
	7.6.1 CIM_ResidesOnExtent

	8 Filesystem Profile
	8.1 Description
	8.1.1 Synopsis
	8.1.2 Instance Diagrams

	8.2 Health and Fault Management Consideration
	8.2.1 OperationalStatus for Filesystems

	8.3 Methods of the Profile
	8.3.1 Extrinsic Methods of the Profile
	8.3.2 Intrinsic Methods of the Profile

	8.4 Use Cases
	8.5 CIM Elements
	8.5.1 CIM_Dependency (Uses Directory Services From)
	8.5.2 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to LocalFileSystem)
	8.5.3 CIM_ElementSettingData (FileSystem)
	8.5.4 CIM_ElementSettingData (Local Access Required)
	8.5.5 CIM_EnabledLogicalElementCapabilities (LocalFileSystem)
	8.5.6 CIM_FileStorage
	8.5.7 CIM_FileSystemSetting
	8.5.8 CIM_HostedDependency (Local Access Required)
	8.5.9 CIM_HostedFileSystem (LocalFileSystem)
	8.5.10 CIM_LocalAccessAvailableToFS
	8.5.11 CIM_LocallyAccessibleFileSystemSetting
	8.5.12 CIM_LocalFileSystem
	8.5.13 CIM_LogicalFile

	9 Filesystem Manipulation Profile
	9.1 Description
	9.1.1 Synopsis
	9.1.2 Overview
	9.1.3 Instance Diagrams

	9.2 Health and Fault Management Considerations
	9.2.1 OperationalStatus for FileSystemConfigurationService
	9.2.2 OperationalStatus for LocalFileSystem

	9.3 Methods of the Profile
	9.3.1 Extrinsic Methods of the Profile
	9.3.2 Signature and Parameters of CreateFileSystem
	9.3.3 Signature and Parameters of ModifyFileSystem
	9.3.4 Signature and Parameters of DeleteFileSystem
	9.3.5 Intrinsic Methods of the Profile

	9.4 Use Cases
	9.4.1 Filesystem Manipulation Supported Capabilities Patterns

	9.5 CIM Elements
	9.5.1 CIM_Dependency (Uses Directory Services From)
	9.5.2 CIM_ElementCapabilities (FS Configuration Capabilities)
	9.5.3 CIM_ElementCapabilities (Local Access Configuration Capabilities)
	9.5.4 CIM_ElementCapabilities (Default)
	9.5.5 CIM_ElementCapabilities (Non-Default)
	9.5.6 CIM_ElementSettingData (Attached to Filesystem)
	9.5.7 CIM_ElementSettingData (Local Access Required)
	9.5.8 CIM_FileSystemCapabilities
	9.5.9 CIM_FileSystemConfigurationCapabilities
	9.5.10 CIM_FileSystemConfigurationService
	9.5.11 CIM_FileSystemSetting (Attached to FileSystem)
	9.5.12 CIM_FileSystemSetting (Predefined FS Settings)
	9.5.13 CIM_HostedDependency (Attached to File System)
	9.5.14 CIM_HostedDependency (Predefined Capabilities)
	9.5.15 CIM_HostedDependency (Predefined Setting)
	9.5.16 CIM_HostedFileSystem
	9.5.17 CIM_HostedService
	9.5.18 CIM_LocalAccessAvailableToFS
	9.5.19 CIM_LocalFileSystem
	9.5.20 CIM_LocallyAccessibleFileSystemCapabilities
	9.5.21 CIM_LocallyAccessibleFileSystemSetting
	9.5.22 CIM_SettingsDefineCapabilities (Predefined FS Settings)
	9.5.23 CIM_SettingsDefineCapabilities (Predefined Local Access Settings)

	10 Filesystem Performance Profile
	10.1 Description
	10.1.1 Synopsis
	10.1.2 Overview

	10.2 Implementation
	10.2.1 Performance Additions Overview
	10.2.2 Summary of FileSystemStatisticsData support by Profile
	10.2.3 Profile Registration Profile Support for the Filesystem Performance Profile
	10.2.4 Default Manifest Collection
	10.2.5 Client Defined Manifest Collection
	10.2.6 Capabilities Support for Filesystem Performance Profile
	10.2.7 Health and Fault Management Consideration
	10.2.8 Cascading Considerations

	10.3 Methods of the Profile
	10.3.1 Extrinsic Methods of the Profile
	10.3.2 Intrinsic Methods of this Profile

	10.4 Use Cases
	10.4.1 Summary of Statistics Support by Element
	10.4.2 Formulas and Calculations
	10.4.3 Filesystem Performance Supported Capabilities Patterns

	10.5 CIM Elements
	10.5.1 CIM_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)
	10.5.2 CIM_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)
	10.5.3 CIM_ElementCapabilities
	10.5.4 CIM_ElementStatisticalData (Exported File Share Stats)
	10.5.5 CIM_ElementStatisticalData (Exporting Port Stats)
	10.5.6 CIM_ElementStatisticalData (Local Filesystem Stats)
	10.5.7 CIM_ElementStatisticalData (OTHER Element Type Stats)
	10.5.8 CIM_FileSystemStatisticalData
	10.5.9 CIM_FileSystemStatisticsCapabilities
	10.5.10 CIM_FileSystemStatisticsManifest (Client Defined)
	10.5.11 CIM_FileSystemStatisticsManifest (Provider Support)
	10.5.12 CIM_FileSystemStatisticsManifestCollection (Client Defined)
	10.5.13 CIM_FileSystemStatisticsManifestCollection (Provider Defined)
	10.5.14 CIM_FileSystemStatisticsService
	10.5.15 CIM_HostedCollection (Client Defined)
	10.5.16 CIM_HostedCollection (Default)
	10.5.17 CIM_HostedCollection (Provider Supplied)
	10.5.18 CIM_HostedService
	10.5.19 CIM_MemberOfCollection (Member of client defined collection)
	10.5.20 CIM_MemberOfCollection (Member of predefined collection)
	10.5.21 CIM_MemberOfCollection (Member of statistics collection)
	10.5.22 CIM_StatisticsCollection

	11 Filesystem Quotas Profile
	11.1 Description
	11.1.1 Synopsis
	11.1.2 Overview
	11.1.3 Tree Quotas
	11.1.4 User Quotas
	11.1.5 Group Quotas
	11.1.6 Container Boundaries
	11.1.7 Quota types
	11.1.8 Class design considerations
	11.1.9 Instance Diagram

	11.2 Health and Fault Management Considerations
	11.3 Methods of the Profile
	11.3.1 FindQuotaEntries
	11.3.2 DeleteQuotaEntry
	11.3.3 ModifyQuotaEntry
	11.3.4 AddQuotaEntry
	11.3.5 GetQuotaReport
	11.3.6 EnableQuotas
	11.3.7 InitializeQuotas

	11.4 Use Cases
	11.4.1 Common subroutines
	11.4.2 Initialize quotas
	11.4.3 Enable or disable quota tracking
	11.4.4 Add a quota entry
	11.4.5 Delete a quota entry
	11.4.6 Modify a quota entry
	11.4.7 Read the quota entries
	11.4.8 Get a report on quota usage

	11.5 CIM Elements
	11.5.1 CIM_FSDomainIdentity
	11.5.2 CIM_FSQuotaAppliesToElement
	11.5.3 CIM_FSQuotaAppliesToPrincipal
	11.5.4 CIM_FSQuotaAppliesToTree
	11.5.5 CIM_FSQuotaCapabilities
	11.5.6 CIM_FSQuotaConfigEntry
	11.5.7 CIM_FSQuotaIndication
	11.5.8 CIM_FSQuotaManagementService
	11.5.9 CIM_FSQuotaReportRecord
	11.5.10 CIM_ReportRecord

	12 NAS Head Profile
	12.1 Description
	12.1.1 Synopsis
	12.1.2 Overview
	12.1.3 Implementation

	12.2 Health and Fault Management Considerations
	12.2.1 Standard Messages used by this Profile

	12.3 Methods of the Profile
	12.3.1 Extrinsic Methods of the Profile
	12.3.2 Intrinsic Methods of the Profile

	12.4 Use Cases
	12.5 CIM Elements
	12.5.1 CIM_ComputerSystem (Top Level System)
	12.5.2 CIM_ComputerSystem (Virtual File Server)
	12.5.3 CIM_ConcreteComponent
	12.5.4 CIM_ElementCapabilities (ImplementationCapabilities to Service)
	12.5.5 CIM_HostedDependency
	12.5.6 CIM_ImplementationCapabilities (ImplementationCapabilities)
	12.5.7 CIM_LogicalDisk (LD for FS)
	12.5.8 CIM_StorageExtent (Primordial Imported Extent)
	12.5.9 CIM_SystemDevice (Logical Disks)
	12.5.10 CIM_SystemDevice (Storage Extents)

	13 Self-Contained NAS Profile
	13.1 Description
	13.1.1 Synopsis
	13.1.2 Overview
	13.1.3 Implementation

	13.2 Health and Fault Management Considerations
	13.2.1 Standard Messages used by this Profile

	13.3 Cascading Considerations
	13.4 Methods of the Profile
	13.4.1 Extrinsic Methods of the Profile
	13.4.2 Intrinsic Methods of the Profile

	13.5 Use Cases
	13.6 CIM Elements
	13.6.1 CIM_ComputerSystem (Top Level System)
	13.6.2 CIM_ComputerSystem (Virtual File Server)
	13.6.3 CIM_ElementCapabilities (ImplementationCapabilities to Service)
	13.6.4 CIM_HostedDependency
	13.6.5 CIM_ImplementationCapabilities (ImplementationCapabilities)
	13.6.6 CIM_LogicalDisk (Disk for FS)
	13.6.7 CIM_SystemDevice (Logical Disks)

	14 NAS Network Port Profile
	14.1 Description
	14.1.1 Synopsis
	14.1.2 Overview

	14.2 Implementation
	14.2.1 The NAS TCP Interface
	14.2.2 The NAS Ethernet Interface
	14.2.3 Indication Events
	14.2.4 Bellwether Indications

	14.3 Health and Fault Management Considerations
	14.3.1 OperationalStatus for Network Ports
	14.3.2 OperationalStatus for ProtocolEndpoints
	14.3.3 Standard Messages used by this Profile

	14.4 Cascading Considerations
	14.5 Methods
	14.5.1 Intrinsic Methods of the Profile
	14.5.2 Extrinsic Methods of the Profile

	14.6 Use Cases
	14.7 CIM Elements
	14.7.1 CIM_BindsTo (CIFS or NFS)
	14.7.2 CIM_BindsTo (TCP)
	14.7.3 CIM_BindsToLANEndpoint
	14.7.4 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)
	14.7.5 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)
	14.7.6 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)
	14.7.7 CIM_HostedAccessPoint (CIFS or NFS)
	14.7.8 CIM_HostedAccessPoint (IP)
	14.7.9 CIM_HostedAccessPoint (LAN)
	14.7.10 CIM_HostedAccessPoint (TCP)
	14.7.11 CIM_IPInterfaceSettingData
	14.7.12 CIM_IPProtocolEndpoint
	14.7.13 CIM_LANEndpoint
	14.7.14 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)
	14.7.15 CIM_NetworkPort
	14.7.16 CIM_NetworkVLAN
	14.7.17 CIM_ProtocolEndpoint (CIFS or NFS)
	14.7.18 CIM_SystemDevice (Network Ports)
	14.7.19 CIM_TCPProtocolEndpoint

	15 Host Filesystem Profile
	15.1 Description
	15.1.1 Synopsis
	15.1.2 Overview

	15.2 Implementation
	15.2.1 Summary Instance Diagram
	15.2.2 Host Filesystem Use of Filesystem Profile (Mandatory)
	15.2.3 Host Filesystem Use of File Export Profile (Optional)
	15.2.4 Host Filesystem Support of Cascading
	15.2.5 Health and Fault Management Consideration

	15.3 Methods of the Profile
	15.3.1 Extrinsic Methods of the Profile
	15.3.2 Extrinsic Methods in the Filesystem Profile
	15.3.3 Extrinsic Methods in the Filesystem Manipulation Profile
	15.3.4 Intrinsic Methods of the Profile

	15.4 Use Cases
	15.4.1 Discovery of the Filesystem Volumes
	15.4.2 Expansion of a Filesystem
	15.4.3 Replication of a Filesystem
	15.4.4 Quiesce a Filesystem
	15.4.5 Unquiesce a Filesystem
	15.4.6 Filesystem quiesce timeout
	15.4.7 Retrieve File Information

	15.5 CIM Elements
	15.5.1 CIM_AllocatedResources
	15.5.2 CIM_ComputerSystem (Shadow)
	15.5.3 CIM_Dependency (Systems)
	15.5.4 CIM_ElementCapabilities (FS Configuration Capabilities)
	15.5.5 CIM_ElementCapabilities (ImplementationCapabilities to Service)
	15.5.6 CIM_ElementConformsToProfile (FilesystemConfigurationService to Host Filesystem RegisteredProfile)
	15.5.7 CIM_FileSystemConfigurationCapabilities
	15.5.8 CIM_FileSystemConfigurationService
	15.5.9 CIM_HostedCollection (Remote Resources)
	15.5.10 CIM_HostedService
	15.5.11 CIM_ImplementationCapabilities (ImplementationCapabilities)
	15.5.12 CIM_LocalFileSystem
	15.5.13 CIM_LogicalDisk (Shadow)
	15.5.14 CIM_LogicalFile
	15.5.15 CIM_LogicalIdentity (LogicalDisk)
	15.5.16 CIM_MemberOfCollection (Allocated Resources)
	15.5.17 CIM_MemberOfCollection (Remote Resources)
	15.5.18 CIM_RemoteServiceAccessPoint (Shadow)
	15.5.19 CIM_RemoteResources
	15.5.20 CIM_ResidesOnExtent
	15.5.21 CIM_SAPAvailableForElement
	15.5.22 CIM_ServiceAffectsElement
	15.5.23 CIM_StorageExtent (Primordial Imported Extent)
	15.5.24 CIM_SystemDevice (LogicalDisks)

	16 FileSystem Replication Services Profile
	16.1 Description
	16.1.1 Synopsis
	16.1.2 Overview
	16.1.3 Filesystem Replication Services Discovery
	16.1.4 Locality of Target Elements
	16.1.5 Group
	16.1.6 State Management For Associated Replicas
	16.1.7 Undiscovered Resource
	16.1.8 Multiple-Hop Replication
	16.1.9 SettingDefineState Association and SynchronizationAspect Instance
	16.1.10 Indication

	16.2 Implementation
	16.2.1 Health and Fault Management Consideration
	16.2.2 Cascading Considerations

	16.3 Methods
	16.3.1 Group Management Methods
	16.3.2 Replication Management
	16.3.3 Capabilities Method

	16.4 Use Cases
	16.5 CIM Elements
	16.5.1 CIM_AllocatedResources
	16.5.2 CIM_ElementCapabilities
	16.5.3 CIM_FileSystemGroupSynchronized
	16.5.4 CIM_FileSystemReplicationServiceCapabilities
	16.5.5 CIM_FileSystemSynchronized
	16.5.6 CIM_HostedAccessPoint (ForProtocolEndpoint)
	16.5.7 CIM_HostedAccessPoint (ForRemoteServiceAccessPoint)
	16.5.8 CIM_HostedCollection (Allocated Resources)
	16.5.9 CIM_HostedCollection (Between ComputerSystem and RemoteReplicationCollection)
	16.5.10 CIM_HostedCollection (Between ComputerSystem and ReplicationGroup)
	16.5.11 CIM_HostedCollection (Remote Resources)
	16.5.12 CIM_HostedService
	16.5.13 CIM_MemberOfCollection (Allocated Resources)
	16.5.14 CIM_MemberOfCollection (ProtocolEndpoints to RemoteReplicationCollection)
	16.5.15 CIM_MemberOfCollection (Remote Resources)
	16.5.16 CIM_OrderedMemberOfCollection
	16.5.17 CIM_ProtocolEndpoint
	16.5.18 CIM_RemoteReplicationCollection
	16.5.19 CIM_RemoteResources
	16.5.20 CIM_RemoteServiceAccessPoint
	16.5.21 CIM_ReplicaPoolForStorage
	16.5.22 CIM_ReplicationEntity
	16.5.23 CIM_ReplicationGroup
	16.5.24 CIM_ReplicationService
	16.5.25 CIM_ReplicationSettingData
	16.5.26 CIM_SAPAvailableForElement
	16.5.27 CIM_ServiceAffectsElement (Between ReplicationService and RemoteReplicationCollection)
	16.5.28 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationEntity)
	16.5.29 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationGroup)
	16.5.30 CIM_SettingsDefineState (Between ReplicationGroup and SynchronizationAspect)
	16.5.31 CIM_SettingsDefineState (Between storage object and SynchronizationAspect)
	16.5.32 CIM_SharedSecret
	16.5.33 CIM_SynchronizationAspect

	Annex A (informative) SMI-S Information Model
	Annex B (Informative) State Transitions from Storage to File Shares

