
SNIA Storage Management Initiative Specification
VERSION 1.0.1

Abstract

This specification documents a secure and reliable interface that allows storage management systems to
identify, classify, monitor, and control physical and logical resources in a

Storage Area Network.

Storage Networking Industry Association (SNIA)
50 California Street, Suite 1500
San Francisco, CA 94111 USA

Phone: +1.415.277.5415
http://www.snia.org

Copyright © 2003, SNIA

SNIA Storage Management Initiative Specification
ii Version 1.0.1

SNIA Storage Management Initiative Specification
INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying,
and promoting interoperable multi-vendor SANs through the SNIA organization.

DOCUMENT REVISIONS

Suggestions for revisions should be directed to td@snia.org.

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes
no warranty of any kind with regard to this specification, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this specification.

COPYRIGHT

Copyright © 2003 SNIA. All rights reserved. All other trademarks or registered trademarks are
the property of their respective owners.

Portions of the CIM V2.8 Schema are used in this document with the permission of the Distributed
Management Task Force (DMTF). The CIM V2.8 classes that are documented have been worked
through both the Storage Networking Industry Association (SNIA) and DMTF Technical Working
Groups. However, the schema is still in development and review in the DMTF Working Groups
and Technical Committee, and subject to change.

TYPOGRAPHICAL CONVENTIONS

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC2119 [http://www.ietf.org/rfc/rfc2119.txt].

USAGE
The SNIA hereby grants permission for individuals to use this document for personal use only, and
for corporations and other business entities to use this document for internal use only (including
internal copying, distribution, and display) provided that:

Document Revision History

Revision Release
Date

Principal Authors

Public Review Draft

Version 1.0.0

Version 1.0.1

15 April 2003

1 July 2003

12 September 2003

John Crandall, Brocade
Steve Jerman, Hewlett-Packard
Steve Hand, Sun Microsystems
Michael Hay, Hitachi Data Systems
Steven Peters, Hewlett-Packard
Paul von Behren, Sun Microsystems
Mike Walker, IBM
Version 1.0.1 iii

SNIA Storage Management Initiative Specification
1) Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety
with no alteration;

2) Any document, printed or electronic, in which material from this document (or any portion
hereof) is reproduced must acknowledge the SNIA copyright on that material, and must credit
the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document,
sell any or this entire document, or distribute this document to third parties. All rights not
explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be
requested by e-mailing td@snia.org please include the identity of the requesting individual and/or
company and a brief description of the purpose, nature, and scope of the requested use.
iv Version 1.0.1

SNIA Storage Management Initiative Specification
Contents
0 Foreword.. xxvii
1 Introduction..29

1.1 Preamble ..29
1.2 Business Rationale ...29
1.3 Interface Definition..29
1.4 Technology Trends ..31
1.5 Management Environment...33
1.6 Architectural Objectives ..34
1.7 Disclaimer ..35

2 Scope ...37
3 Normative References..39
4 Glossary ..41
5 Overview ...61

5.1 Base Capabilities..61
5.1.1 Object Oriented..61
5.1.2 Messaging Based ...63

5.2 Capabilities Of This Version ...65
5.2.1 Overview..65
5.2.2 Determine and monitor the configuration of a SAN..................................65
5.2.3 Monitoring the health of key resources in a SAN66
5.2.4 Monitoring the available performance of interconnections in a SAN66
5.2.5 Monitoring and controlling the zones in a SAN ..66
5.2.6 Discovering/monitoring/controlling the storage volumes in a SAN66
5.2.7 Requiring authenticated clients in a SAN..66

5.3 Operational Environment... 67
5.4 Using This Specification..68
5.5 Language Bindings ..68

6 Transport and Reference Model ..69
6.1 Introduction..69

6.1.1 Overview..69
6.1.2 Language Requirements ..69
6.1.3 Communications Requirements ...69
6.1.4 XML Message Syntax and Semantics ...69

6.2 Transport Stack ..70
6.3 Reference Model..71

6.3.1 Overview..71
6.3.2 Roles for Interface Constituents ..71

6.3.2.1 Client..71
6.3.2.2 Agent..71
6.3.2.3 CIM Server ...72
6.3.2.4 Provider..72
6.3.2.5 Lock Manager ..72
6.3.2.6 Directory Server...72

6.3.3 Cascaded Agents..72
7 Object Model ..73
Version 1.0.1 v

SNIA Storage Management Initiative Specification
7.1 Model Overview (Key Resources) ..73
7.1.1 Overview..73
7.1.2 Introduction to CIM UML Notation ..73

7.2 Techniques ...74
7.2.1 CIM Fundamentals ..74
7.2.2 Modeling Profiles ..77
7.2.3 Naming...78
7.2.4 Durable Names ..79

7.2.4.1 Overview..79
7.2.4.2 Durable Names Formation...81
7.2.4.3 Testing Equality of Durable Names...81
7.2.4.4 Standard Formats for Durable Names ...82
7.2.4.5 Case Sensitivity..84
7.2.4.6 Preferred Durable Names...84
7.2.4.7 Concatenation ..84

7.2.5 Events – CIM Indications ..85
7.2.5.1 Background..85
7.2.5.2 Using indications ...85
7.2.5.3 Indication hierarchy ...87
7.2.5.4 Agent/Provider Considerations..88
7.2.5.5 Client Considerations...89
7.2.5.6 Requirements ...90
7.2.5.7 Implementation Considerations ...90

7.2.6 Device Credentials ...90
7.2.7 Recipe Conventions ...91

7.2.7.1 Recipe Definition ...91
7.2.7.2 Recipe Pseudo Code Conventions ...91
7.2.7.3 Common Recipes ...96

7.3 Profiles ...98
7.3.1 Profile Content ...98

7.3.1.1 Profile and Subprofile Definition ..98
7.3.1.2 Format for Profile Specifications...98
7.3.1.3 Registry of Profiles and Subprofiles ..100

7.3.2 Common CIM Packages ...103
7.3.2.1 Description...103
7.3.2.2 Physical Package Package ...103
7.3.2.3 Software Package...110

7.3.3 Common Subprofiles ...113
7.3.3.1 Overview..113
7.3.3.2 Access Points Subprofile ...113
7.3.3.3 Cluster Subprofile ..116
7.3.3.4 Extra Capacity Set Subprofile..121
7.3.3.5 Disk Drive Subprofile ..126
7.3.3.6 Extent Mapping Subprofile..138
7.3.3.7 Location Subprofile ...142
7.3.3.8 Software Subprofile ...145
7.3.3.9 Copy Services Subprofile ..146
vi Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.10 Job Control Subprofile...172
7.3.3.11 Pool Manipulation, Capabilities, and Settings Subprofile178
7.3.3.12 LUN Creation Subprofile...201
7.3.3.13 Device Credentials Subprofile ...220
7.3.3.14 Backend Ports Subprofile ..225
7.3.3.15 LUN Masking and Mapping ..233

7.3.4 Fabric ...271
7.3.4.1 Fabric Profile ...271
7.3.4.2 Switch Profile ..320
7.3.4.3 Router Profile...333

7.3.5 Hosts ..349
7.3.5.1 FC HBA Profile ...349
7.3.5.2 Host Discovered Resources Profile ...361

7.3.6 Storage ...381
7.3.6.1 Array Profile ..381
7.3.6.2 In-Band Virtualization Profile ...401
7.3.6.3 Storage Library Profile ..418

7.3.7 Server Profile ...441
7.3.7.1 Description...441
7.3.7.2 Standard Dependencies..441
7.3.7.3 Profile Dependencies ...441
7.3.7.4 CIM Server Requirements ...442
7.3.7.5 Instance Diagram ...443
7.3.7.6 Durable Names and Other Correlatable IDs444
7.3.7.7 Methods ...445
7.3.7.8 Client Considerations...445
7.3.7.9 Recipes...446
7.3.7.10 Instrumentation Requirements ..455
7.3.7.11 Required CIM Elements ..456
7.3.7.12 Required Properties for CIM Elements456
7.3.7.13 Optional Subprofiles and Profiles..463

7.4 Cross Client Considerations...467
7.4.1 Overview..467

7.4.1.1 HBA model ..467
7.4.1.2 Switch Model ...468
7.4.1.3 Array Model...468
7.4.1.4 Out of band virtualization model ...470
7.4.1.5 Durable Names ..470
7.4.1.6 Fabric Topology (HBA, Switch, Array)471
7.4.1.7 Storage Connections (FC HBA, Array)476
7.4.1.8 Zoning..476
7.4.1.9 Fabric Route Discovery ...477
7.4.1.10 Durable Names ..477

7.4.2 General Recipes ...477
7.4.2.1 Indications Status ...477
7.4.2.2 Listenable Instance Notification ..478
7.4.2.3 Life Cycle Event Subscription Description478
Version 1.0.1 vii

SNIA Storage Management Initiative Specification
7.4.2.4 Subscription for alert indications ..479
7.4.2.5 Listenable Interface Modification Notification479
7.4.2.6 Subscription for alert indications ...480

8 Security ...481
8.1 Introduction..481
8.2 Background..481
8.3 Modeling Device Credentials ..482
8.4 Requirements ...482

8.4.1 General...482
8.4.2 Certificate Usage with SSL 3.0 and TLS...483

8.4.2.1 Functional Goals ..483
8.4.2.2 Requirements ...483

8.5 Instrumentation Requirements ...484
9 Service Discovery ...485

9.1 Objectives ..485
9.2 Overview..485
9.3 SLP Messages ..486
9.4 Scopes ..488
9.5 Services Definition ..488

9.5.1 Service Type ..489
9.5.2 Service Attributes ..489

9.6 User Agents (UA) ..490
9.7 Service Agents (SAs)...491
9.8 Directory Agents (DAs)...491
9.9 Service Agent Server (SA Server) ...491

9.9.1 General Information...491
9.9.2 SA Server (SAS) Implementation..492
9.9.3 SA Server (SAS) Clients..492

9.9.3.1 Description...492
9.9.3.2 SAS Client Requests – SA Server Responses492

9.9.4 SA Server Configuration ...493
9.9.4.1 Overview..493
9.9.4.2 SLP Configuration File ..493
9.9.4.3 Programmatic Configuration ...493
9.9.4.4 DHCP Configuration ...494
9.9.4.5 Scope..494

9.9.5 SA Server Discovery ...494
9.9.6 SAS Client Registration...494

9.10 ‘Standard WBEM’ Service Type Templates ...495
9.11 SLP Bibliography ..498

10 SMI-S Roles ..499
10.1 Introduction..499
10.2 SMI-S Client ..500

10.2.1 Overview..500
10.2.2 SLP Functions..500
10.2.3 CIM-XML Protocol Functions ..500
10.2.4 Security Considerations ...500
viii Version 1.0.1

SNIA Storage Management Initiative Specification
10.2.5 Lock Management Functions...500
10.3 Dedicated SMI-S Server ..500

10.3.1 Overview..500
10.3.2 SLP Functions..501
10.3.3 CIM-XML Protocol Functions ..501

10.3.3.1 General...501
10.3.3.2 Required Intrinsic Methods ...501
10.3.3.3 Required Model Support..502

10.3.4 Security Considerations ...502
10.3.5 Lock Management Functions...502

10.4 General Purpose SMI-S Server..502
10.4.1 Overview..502
10.4.2 SLP Functions..502
10.4.3 CIM-XML Protocol Functions ..503

10.4.3.1 General...503
10.4.3.2 Required Intrinsic Methods ...503
10.4.3.3 Required Model Support..503
10.4.3.4 Security Considerations ...503

10.4.4 Lock Management Functions...503
10.4.5 Provider Subrole ..503

10.4.5.1 Overview..503
10.4.5.2 Required Model Support..503

10.5 Directory Server...503
10.5.1 SLP Functions..503
10.5.2 CIM-XML Protocol Functions ..503
10.5.3 Security Considerations ...503
10.5.4 Lock Management Functions...504

10.6 Combined Roles on a Single System...504
10.6.1 Overview..504
10.6.2 General Purpose SMI-S Server as a Profile Aggregator..........................504

10.6.2.1 SLP Functions..504
10.6.2.2 CIM-XML Protocol Functions ..504
10.6.2.3 Security Considerations ...504
10.6.2.4 Lock Manager Functions ...504

11 Installation and Upgrade...505
11.1 Introduction..505
11.2 Role of the Administrator ..505
11.3 Goals ...505

11.3.1 Non-Disruptive Installation and De-installation......................................505
11.3.2 Plug-and-Play...505

11.4 Installing Device Support ..506
11.4.1 Installation ...506
11.4.2 Discovery and Initialization of Device Support506
11.4.3 Removal/Update ..507
11.4.4 Reconfiguration ...508
11.4.5 Failure ..508

11.5 Object Manager..508
Version 1.0.1 ix

SNIA Storage Management Initiative Specification
11.5.1 Installation ...508
11.5.2 Multiple CIMOMs on a Single Server...508
11.5.3 Removal/Upgrade ..509
11.5.4 Reconfiguration ...509
11.5.5 Failure ..509

11.6 Client ...509
11.6.1 Removal ...509
11.6.2 Reconfiguration ...509
11.6.3 Failure ..509

11.7 Directory Server ..509
11.7.1 Installation ...509
11.7.2 Removal/Failure...509

11.8 Management Domains ...509
11.8.1 Initial Configuration ..510
11.8.2 Reconfiguration ...510

11.9 Lock Manager ..510
A. (Informative) Futures ...511

A.1.Overview...511
A.2.HBA LUN masking and persistent binding ..511
A.3.Managed Hub Section...511
A.4.IP Storage..511
A.5.Multi-Path Modeling...511
A.6.Provider Modeling ..511
A.7.Non-Fibre Fabrics ...511
A.8.Compliance Notification ...511
A.9.Cascaded Agents ...512
A.10.Network Storage ...512
A.11.Synchronization of File System Elements through Copy Services512
A.12.Model Size Distinctions in Disk Drive ...512
A.13.Expanded Extent Mapping..512
A.14.Locking ...512
A.15.Policy Management ...513

B. (Informative) Experimental Profiles ..517
B.1.Overview ...517
B.2.Common Profiles and Subprofiles ..517
B.3.SML Subprofiles ...520
B.4.Extender Profile ..553
B.5.Management Appliance Profile...567
B.6.Out of Band Virtualizer Profile...576
B.7.JBOD Profile ...603

C. (Informative) Mapping CIM Objects to SNMP MIB Structures614
C.1.Purpose of this appendix ...614
C.2.CIM-to-MIB Mapping Overview..614
C.3.CIM-to-MIB Mapping Methodology..615
C.4.Example Mapping ...617

D. (Normative) Compliance with the SNIA SMI Specification...............................635
D.1.Compliance Statement ..635
x Version 1.0.1

SNIA Storage Management Initiative Specification
D.2.How Compliance Is Declared ...635
D.3.The Server Profile and Compliance ..635
D.4.Example ..635

E. (Informative) Optional Profiles and Subprofiles ...637
E.1.Introduction ...637
E.2. Provider Subprofile ..637
Version 1.0.1 xi

SNIA Storage Management Initiative Specification
List of Tables
Table 1. Standards Dependencies for SMI-S...39
Table 2. SLP Properties ...77
Table 3. Standardized Name Formats ..82
Table 4. Profile Components ...98
Table 5. Registry of Profiles and Subprofiles ..101
Table 6. Required CIM Elements ..106
Table 7. Required Properties for SystemPackaging ..107
Table 8. Required Properties for PhysicalPackage ..107
Table 9. Required Properties for Product ..108
Table 10. Required Properties for ProductPhysicalComponent108
Table 11. Required Properties for Container ...109
Table 12. Required Properties for ProductParentChild ...109
Table 13. Required Properties for Realizes ...109
Table 14. Required CIM Elements ..112
Table 15. Required Properties for InstalledSoftwareIdentity ..112
Table 16. Required Properties for SoftwareIdentity ..112
Table 17. Required CIM Elements ..115
Table 18. Required Properties for HostedAccessPoint..115
Table 19. Required Properties for SAPAvailableForElement115
Table 20. Required Properties for RemoteServiceAccessPoint.....................................116
Table 21. Optional Profiles or Subprofiles ..116
Table 22. OperationStatus for Component ComputerSystem..119
Table 23. Required CIM Elements ..120
Table 24. Required Properties for ComponentCS ...120
Table 25. Required Properties for ComputerSystem ...121
Table 26. Optional Profiles or Subprofiles ..121
Table 27. OperationStatus for Component ComputerSystem..123
Table 28. Required CIM Elements ..124
Table 29. Required Properties for ComputerSystem ...125
Table 30. Required Properties for ExtraCapacitySet ...125
Table 31. Required Properties for ConcreteIdentity ..126
Table 32. Required Properties of MemberOfCollection..126
Table 33. Optional Profiles or Subprofiles ..126
Table 34. Required Functional Profiles ...127
Table 35. DiskDrive Status ..128
Table 36. Required CIM Elements ..132
Table 37. Required Properties for BasedOn ..133
Table 38. Required Properties for ConcreteComponent..133
Table 39. Required Properties for Container ...134
Table 40. Required Properties for ProductParentChild ...134
Table 41. Required Properties for DeviceSoftwareIdentity...134
Table 42. Required Properties for DiskDrive ..134
Table 43. Required Properties for MediaPresent ...135
Table 44. Required Properties for PhysicalMedia ...135
Table 45. Required Properties for Realizes ...136
xii Version 1.0.1

SNIA Storage Management Initiative Specification
Table 46. Required Properties for RealizesExtent ...136
Table 47. Required Properties for SoftwareIdentity ..137
Table 48. Required Properties for StorageExtent ..138
Table 49. Optional Profiles or Subprofiles ..138
Table 50. Required Functional Profiles ...139
Table 51. Required CIM Elements ..141
Table 52. Required Properties for BasedOn ..141
Table 53. Required Properties for ConcreteComponent..141
Table 54. Required Properties for StorageExtent ..142
Table 55. Optional Profiles or Subprofiles ..142
Table 56. Required CIM Elements ..144
Table 57. Required Properties of Location ..144
Table 58. Required Properties for PhysicalElementLocation..145
Table 59. Optional Profiles or Subprofiles ..145
Table 60. Required CIM Elements ..146
Table 61. Optional Profiles or Subprofiles ..146
Table 62. Copy Services Standard Dependencies..147
Table 63. Required Functional Profiles ...147
Table 64. Name Formats..150
Table 65. Subprofile Required Classes, Associations, Methods and Indications164
Table 66. Required Properties for ElementCapabilities ..165
Table 67. Required Properties for HostedService..165
Table 68. Required Properties for StorageConfigurationService165
Table 69. Required Properties for StorageConfigurationCapabilities166
Table 70. Required Properties for StorageSynchronized...167
Table 71. Required Properties for StorageCapabilities..168
Table 72. Required Properties for ElementSettingData...171
Table 73. Required Properties for StorageSetting ...171
Table 74. Copy Services Optional Subprofiles and Profiles..172
Table 75. Job Control Services Standard Dependencies ...173
Table 76. Required Functional Profiles ...173
Table 77. Subprofile Required Classes, Associations, Methods and Indications176
Table 78. AffectedJobElement Required Properties..177
Table 79. Required Properties for ConcreteJob...177
Table 80. Required Properties for OwningJobElement ...178
Table 81. Optional Profiles or Subprofiles ..178
Table 82. Pool Manipulation, Capabilities, and Settings Standard Dependencies180
Table 83. Required Functional Profiles ...180
Table 84. Example RAID Mapping Table ...187
Table 85. Required CIM Elements ..191
Table 86. Required Properties for ElementCapabilities ..192
Table 87. Required Properties for StorageConfigurationService192
Table 88. Required Properties for StorageConfigurationCapabilities192
Table 89. Required Properties for StorageCapabilities..194
Table 90. Required Properties for ElementSettingData...197
Table 91. Required Properties for StorageSetting ...197
Table 92. Required Properties for StorageSettingWithHints...199
Version 1.0.1 xiii

SNIA Storage Management Initiative Specification
Table 93. HostedService Required Properties ...201
Table 94. Optional Profiles or Subprofiles ..201
Table 95. LUN Creation Standard Dependencies..202
Table 96. Required Functional Profiles ...202
Table 97. Required CIM Elements ..219
Table 98. Required Properties for StorageConfigurationService219
Table 99. Optional Profiles or Subprofiles ..220
Table 100. Device Credentials Standard Dependencies ..220
Table 101. Required Functional Profiles ...221
Table 102. Required CIM Elements ..223
Table 103. Required Properties for SharedSecretService..223
Table 104. Required Properties for SharedSecret..223
Table 105. SharedSecretIsShared Required Properties ...224
Table 106. HostedService Required Properties ...224
Table 107. Optional Profiles or Subprofiles ..225
Table 108. Device Credentials Standard Dependencies ..225
Table 109. Required Functional Profiles ...226
Table 110. Required CIM Elements ..228
Table 111. Required Properties for FCPort ...228
Table 112. Required Properties from ProtocolControllerForPort....................................230
Table 113. Required Properties from ProtocolControllerAccessesUnit230
Table 114. Required Properties for SCSIProtocolController ..230
Table 115. Required Properties for StorageExtent ..231
Table 116. Required Properties for SystemDevice..231
Table 117. Optional Profiles or Subprofiles ..231
Table 118. LUN Masking Standard Dependencies..233
Table 119. Required Functional Profiles ...234
Table 120. Subprofile Required Classes, Associations, Methods and Indications263
Table 121. Required Properties for AuthorizedSubject ...264
Table 122. Required Properties for AuthorizedTarget ..264
Table 123. Required Properties for ConcreteDependency...264
Table 124. Required Properties for ControllerConfigurationService265
Table 125. Required Properties for ElementSettingData...265
Table 126. Required Properties for HostedCollection...266
Table 127. Required Properties for MaskingCapabilities...266
Table 128. Required Properties for Privilege ..267
Table 129. Required Properties for PrivilegeManagementService..................................268
Table 130. Required Properties for StorageClientSettingData ..269
Table 131. Required Properties for StorageHardwareID...269
Table 132. Required Properties for StorageHardwareIDManagementService................270
Table 133. Required Properties for SystemSpecificCollection270
Table 134. Fabric Standards Dependencies ...273
Table 135. Required Functional Profiles ...273
Table 136. Durable Names Usage ...277
Table 137. Port OperationalStatus ...277
Table 138. OperationalStatus for ComputerSystem ..277
Table 139. Required CIM Elements ..280
xiv Version 1.0.1

SNIA Storage Management Initiative Specification
Table 140. Required Properties for ActiveConnection..282
Table 141. Required Properties for AdminDomain...282
Table 142. Required Properties for Component ..282
Table 143. Required Properties for ComputerSystem ...282
Table 144. Required Properties for ContainedDomain..284
Table 145. Required Properties for DeviceSAPImplementation284
Table 146. Required Properties for ElementCapabilities ..284
Table 147. Required Properties for ElementSettingData...284
Table 148. Required Properties for FCPort ...284
Table 149. HostedAccessPoint ..287
Table 150. Required Properties for HostedCollection...287
Table 151. Required Properties for ConnectivityCollection..287
Table 152. Required Properties for LogicalPortGroup..287
Table 153. Required Properties for MemberOfCollection ..288
Table 154. Required Properties for MemberOfCollection ..288
Table 155. Required Properties for ProtocolEndpoint...289
Table 156. Required Properties for SystemDevice..289
Table 157. Required Properties for Zone...289
Table 158. Required Properties for ZoneCapabilities..290
Table 159. Required Properties for ZoneMembershipSettingData..................................291
Table 160. Required Properties for ZoneSet..291
Table 161. Optional Profiles or Subprofiles ..291
Table 162. Required Functional Profiles ...292
Table 163. Required CIM Elements ..306
Table 164. Required Properties for HostedService..306
Table 165. Required Properties for ZoneService...306
Table 166. Optional Profiles or Subprofiles ..307
Table 167. Required CIM Elements ..312
Table 168. Required Properties for HostedCollection...312
Table 169. Required Properties of MemberOfCollection..312
Table 170. Required Properties for NamedAddressCollection..312
Table 171. Required Properties for ZoneService...313
Table 172. Optional Profiles or Subprofiles ..313
Table 173. Required CIM Elements ..315
Table 174. Required Properties for ControlledBy ...315
Table 175. Required Properties for DeviceSoftwareIdentity...316
Table 176. Required Properties for FCPort ...316
Table 177. Required Properties for LogicalPortGroup..318
Table 178. Required Properties of MemberOfCollection..318
Table 179. Required Properties for PortController..318
Table 180. Required Properties of ProtocolControllerForPort ..319
Table 181. Required Properties for SCSIProtocolController ..319
Table 182. Switch Standards Dependencies ..320
Table 183. Required Functional Profiles ...320
Table 184. Required CIM Elements ..323
Table 185. Required Properties for ComputerSystem ...323
Table 186. Required Properties for ElementStatisticalData ..325
Version 1.0.1 xv

SNIA Storage Management Initiative Specification
Table 187. Required Properties for FCPort ...325
Table 188. Required Properties for FCPortRateStatistics..327
Table 189. Required Properties for FCPortStatistics ...327
Table 190. Required Properties for SystemDevice..329
Table 191. Optional Profiles or Subprofiles ..329
Table 192. Required CIM Elements ..331
Table 193. Required Properties for LogicalModule ..331
Table 194. Required Properties for ModulePort..332
Table 195. Required Properties for SystemDevice..332
Table 196. Optional Profiles or Subprofiles ..332
Table 197. Router Standard Dependencies ..333
Table 198. Required Functional Profiles ...333
Table 199. Required CIM Elements ..336
Table 200. Required Properties for ComputerSystem ...337
Table 201. Required Properties for ComputerSystemPackage..340
Table 202. Required Properties for FCPort ...340
Table 203. Required Properties for LogicalDevice ...344
Table 204. Required Properties for ConcreteIdentity ..344
Table 205. Required Properties for LogicalPortGroup..344
Table 206. Required Properties of MemberOfCollection..344
Table 207. Required Properties for SCSIProtocolController ..345
Table 208. Required Properties for ProtocolControllerAccessesUnit347
Table 209. Required Properties for ProtocolControllerForUnit347
Table 210. Optional Profiles or Subprofiles ..348
Table 211. HBA Standards Dependencies...349
Table 212. Required Functional Profiles ...349
Table 213. Required CIM Elements ..352
Table 214. Required Properties for ComputerSystem ...352
Table 215. Required Properties for ControlledBy ...354
Table 216. Required Properties for ProtocolControllerForUnit354
Table 217. Required Properties for DeviceSoftware ...354
Table 218. Required Properties for ElementStatisticalData ..354
Table 219. Required Properties for FCPort ...355
Table 220. Required Properties for FCPortStatistics ...356
Table 221. Required Properties for HostedCollection...357
Table 222. Required Properties for LogicalPortGroup..357
Table 223. Required Properties of MemberOfCollection..357
Table 224. Required Properties for PortController..357
Table 225. Required Properties of ProtocolControllerForPort ..359
Table 226. Required Properties for SCSIProtocolController ..359
Table 227. Required Properties for SystemDevice..359
Table 228. Required Properties for SoftwareIdentity ..360
Table 229. Optional Profiles or Subprofiles ..360
Table 230. HostDiscoveredResources Standards Dependencies362
Table 231. Required Functional Profiles ...362
Table 232. SCSI Device Type Mapping ..366
Table 233. Required CIM Elements ..367
xvi Version 1.0.1

SNIA Storage Management Initiative Specification
Table 234. Required Properties for AdminDomain...368
Table 235. Required Properties for Component ..368
Table 236. Required Properties for DeviceSAPImplementation368
Table 237. Required Properties for FCPort ...368
Table 238. Required Properties for HostedCollection...372
Table 239. Required Properties of ProtocolControllerForPort ..372
Table 240. Required Properties for LogicalNetwork...372
Table 241. Required Properties of MemberOfCollection..372
Table 242. Requited Properties for ProtocolEndpoint ...373
Table 243. Required Properties for SystemDevice..373
Table 244. Required Properties for StorageVolume..373
Table 245. Optional Profiles or Subprofiles ..375
Table 246. Required CIM Elements ..376
Table 247. Required Properties for ProtocolControllerForPort.......................................376
Table 248. Required Properties for SCSIProtocolController ..376
Table 249. Required Properties for ProtocolControllerAccessesUnit377
Table 250. Optional Profiles or Subprofiles ..377
Table 251. Required CIM Elements ..379
Table 252. Required Properties for SCSIProtocolController ..379
Table 253. Required Properties for ProtocolControllerForUnit379
Table 254. Optional Profiles or Subprofiles ..380
Table 255. Array Standard Dependencies ...381
Table 256. Required Functional Profiles ...382
Table 257. OperationalStatus for ComputerSystem ..385
Table 258. OperationalStatus for StorageVolume ...386
Table 259. Port State/Status ...387
Table 260. Required CIM Elements ..391
Table 261. Required Properties for AllocatedFromStoragePool392
Table 262. Required Properties for ElementCapabilities ..392
Table 263. Required Properties for ElementSettingData...392
Table 264. Required Properties for ComputerSystem ...392
Table 265. Required Properties for FCPort ...394
Table 266. Required Properties from HostedStoragePool ...394
Table 267. Required Properties from ProtocolControllerForPort....................................395
Table 268. Required Properties from ProtocolControllerForUnit395
Table 269. Required Properties for SCSIProtocolController ..395
Table 270. Required Properties from StorageCapabilities ..396
Table 271. Required Properties for StoragePool ...396
Table 272. Required Properties from StorageSetting ..397
Table 273. Required Properties for StorageVolume..397
Table 274. Required Properties for SystemDevice..399
Table 275. Optional Profiles or Subprofiles ..400
Table 276. In-Band Virtualizer Standards Dependencies..401
Table 277. Required Functional Profiles ...401
Table 278. Required CIM Elements ..405
Table 279. Required Properties for AllocatedFromStoragePool407
Table 280. Required Properties for ComputerSystem ...407
Version 1.0.1 xvii

SNIA Storage Management Initiative Specification
Table 281. Required Properties for ConcreteComponent..407
Table 282. Required Properties for ElementCapabilities ..408
Table 283. Required Properties for ElementSettingData...408
Table 284. Required Properties for FCPort ...408
Table 285. Required Properties from HostedStoragePool ...410
Table 286. Required Properties for ProtocolControllerAccessesUnit410
Table 287. Required Properties from ProtocolControllerForPort....................................410
Table 288. Required Properties from ProtocolControllerForUnit412
Table 289. Required Properties for SCSIProtocolController ..412
Table 290. Required Properties from StorageCapabilities ..412
Table 291. Required Properties for StorageExtent ..414
Table 292. Required Properties for StoragePool ...414
Table 293. Required Properties from StorageSetting ..414
Table 294. Required Properties for StorageVolume..416
Table 295. Required Properties for SystemDevice..416
Table 296. Optional Profiles or Subprofiles ..417
Table 297. Storage Library Standard Dependencies..418
Table 298. Required Functional Profiles ...419
Table 299. Required CIM Elements ..428
Table 300. Required Properties for ChangerDevice ..430
Table 301. Required Properties for Chassis...430
Table 302. Required Properties for Container ...432
Table 303. Required Properties for ProtocolControllerForUnit432
Table 304. Required Properties for SCSIProtocolController ..432
Table 305. Required Properties for DeviceSoftware ...433
Table 306. Required Properties for LibraryPackage..433
Table 307. Required Properties for MediaAccessDevice ..433
Table 308. Required Properties for PackagedComponent ...434
Table 309. Required Properties for PhysicalMedia ...434
Table 310. Required Properties for PhysicalMediaInLocation..434
Table 311. Required Properties for ProductPhysicalComponent435
Table 312. Required Properties for Realizes ...435
Table 313. Required Properties for SoftwareIdentity ..435
Table 314. Required Properties for StorageLibrary...436
Table 315. Required Properties for StorageMediaLocation ..436
Table 316. Required Properties for SystemDevice..437
Table 317. Optional Profiles or Subprofiles ..437
Table 318. Required CIM Elements ..439
Table 319. Required Properties for LimitedAccessPort ..439
Table 320. Optional Profiles or Subprofiles ..440
Table 321. CIM Server Standard Dependencies..441
Table 322. Required Functional Profiles ...442
Table 323. Profile Required Classes, Associations, Methods and Indications456
Table 324. Required Properties for ObjectManager ..457
Table 325. Required Properties for System ...457
Table 326. Required Properties for HostedService..458
Table 327. Required Properties for CIMXMLCommunicationMechanism458
xviii Version 1.0.1

SNIA Storage Management Initiative Specification
Table 328. Required Properties for CommMechanismForManager................................459
Table 329. Required Properties for Namespace ...459
Table 330. Required Properties for NamespaceInManager ...460
Table 331. Required Properties for RegisteredProfile ...461
Table 332. Required Properties for RegisteredSubProfile...461
Table 333. Required Properties for ReferencedProfile..462
Table 334. Required Properties for SubProfileRequiresProfile.......................................462
Table 335. Required Properties for ElementConformsToProfile463
Table 336. CIM Server Profile Optional Subprofiles and Profiles463
Table 337. Subprofile Required Classes, Associations, Methods and Indications465
Table 338. Required Properties for ProtocolAdapter ..465
Table 339. Required Properties for CommMechanismForAdapter466
Table 340. Cross-Profile Durable Names ..470
Table 341. Cross Profile Durable Names ..477
Table 342. Message Types...487
Table 343. Required Configuration Properties for SA as DA ...493
Table 344. Required Configuration Properties for SA ..493
Table 345. Functional Profiles ...501
Table 346. Required CIM Elements ..519
Table 347. Required Properties for IsSpare ...519
Table 348. Required Properties of MemberOfCollection..519
Table 349. Required Properties for SparedSet...519
Table 350. Optional Profiles or Subprofiles ..520
Table 351. Required CIM Elements ..522
Table 352. Required Properties for InterLibraryPort...522
Table 353. Required Properties for LibraryExchange ...522
Table 354. Optional Profiles or Subprofiles ..523
Table 355. Required CIM Elements ..525
Table 356. Required Properties for DeviceServicesLocation..525
Table 357. Optional Profiles or Subprofiles ..525
Table 358. Required CIM Elements ..528
Table 359. Required Properties for FCPort ...528
Table 360. Required Properties for ProtocolControllerForPort.......................................529
Table 361. Required CIM Elements ..531
Table 362. Required Properties for DeviceServicesLocation..531
Table 363. Optional Profiles or Subprofiles ..531
Table 364. Required CIM Elements ..533
Table 365. Required Properties for ConfigurationCapacity ..533
Table 366. Required Properties for ElementCapacity ...533
Table 367. Optional Profiles or Subprofiles ..533
Table 368. Required Properties for AlertIndication ..535
Table 369. LibraryAlert Property Settings...535
Table 370. Vendor Specific Properties of LibraryAlert...536
Table 371. Variable Alert Properties for LibraryAlert ..536
Table 372. SCSI TapeAlert-based Properties ..536
Table 373. LibraryAlert AlertIndication Properties...537
Table 374. Optional Profiles or Subprofiles ..550
Version 1.0.1 xix

SNIA Storage Management Initiative Specification
Table 375. Extender Standards Dependencies...553
Table 376. Required Functional Profiles ...554
Table 377. Required CIM Elements ..557
Table 378. Required Properties for ActiveConnection for ATM559
Table 379. Required Properties for ActiveConnection for FC ..559
Table 380. Required Properties for BindsTo ...559
Table 381. Required Properties for ComputerSystem ...559
Table 382. Required Properties for DeviceSAPImplementation561
Table 383. Required Properties for FCPort ...561
Table 384. Required Properties for ForwardingService ..562
Table 385. Required Properties for ForwardsAmong..562
Table 386. Required Properties for HostedNetworkPipe ..562
Table 387. Requited Properties for IPProtocolEndpoint ...562
Table 388. Required Properties for NetworkPort ..564
Table 389. Required Properties for Network ...564
Table 390. Required Properties for NetworkPipe..565
Table 391. Requited Properties for ProtocolEndpoint ...565
Table 392. Requited Properties for TCPPrototocolEndpoint ..565
Table 393. Required Properties for SystemDevice..566
Table 394. Optional Profiles or Subprofiles ..566
Table 395. Management Appliance Standards Dependencies ...567
Table 396. Required Functional Profiles ...567
Table 397. Required CIM Elements ..571
Table 398. Required Properties for ComputerSystem ...571
Table 399. Required Properties for FCPort ...572
Table 400. Required Properties from HostedService ..572
Table 401. Required Properties from Installed SoftwareElement572
Table 402. Required Properties for LogicalPortGroup..573
Table 403. Required Properties for MemberOfCollection ..573
Table 404. Required Properties for RemoteServiceAccessPoint.....................................573
Table 405. Required Properties for ServiceAvailableToElement....................................573
Table 406. Required Properties for SoftwareElement ...574
Table 407. Optional Profiles or Subprofiles ..575
Table 408. OutofBand Virtualizer Standards Dependencies ...577
Table 409. Required Functional Profiles ...578
Table 410. Required CIM Elements ..585
Table 411. Required Properties for AllocatedFromStoragePool587
Table 412. Required Properties for BasedOn ..587
Table 413. Required Properties for Component ..587
Table 414. Required Properties for ComputerSystem - Metadata Controller587
Table 415. Required Properties for ComputerSystem - Translation Engine589
Table 416. Required Properties for ElementCapabilities ..589
Table 417. Required Properties for FCPort ...589
Table 418. Required Properties from HostedCollection..591
Table 419. Required Properties from HostedStoragePool ...591
Table 420. Required Properties from LogicalPortGroup...591
Table 421. Required Properties for MemberOfCollection ..591
xx Version 1.0.1

SNIA Storage Management Initiative Specification
Table 422. Required Properties from ProtocolControllerForPort....................................591
Table 423. Required Properties from ProtocolControllerForUnit592
Table 424. Required Properties for SCSIProtocolController ..592
Table 425. Required Properties from StorageCapabilities ..592
Table 426. Required Properties for StoragePool ...594
Table 427. Required Properties from StorageSetting ..594
Table 428. Required Properties for StorageExtent ..595
Table 429. Required Properties for StorageVolume..599
Table 430. Required Properties for SystemDevice..599
Table 431. Optional Profiles or Subprofiles ..599
Table 432. JBOD Standard Dependencies...603
Table 433. Required Functional Profiles ...603
Table 434. Required CIM Elements ..605
Table 435. Required Properties for ComputerSystem ...605
Table 436. Required Properties for ComputerSystemPackage..608
Table 437. Required Properties for FCPort ...608
Table 438. Required Properties for ConcreteIdentity ..611
Table 439. Required Properties for SCSIProtocolController ..611
Table 440. Required Properties for ProtocolControllerForUnit613
Table 441. Required Properties for SystemDevice..613
Table 442. Optional Profiles or Subprofiles ..613
Table 443. CIM/SNMP Data Type Mapping...615
Table 444. Subprofile Required Classes, Associations, Methods and Indications639
Table 445. Required Properties for Provider ...639
Table 446. Required Properties for ProviderCapabilities ..640
Table 447. Required Properties ProviderElementCapabilities ..641
Table 448. Required Properties for ClassSupportForNamespace....................................641
Table 449. Required Properties for ProviderModule...641
Table 450. Required Properties for ProviderInModule ...642
Table 451. Required Properties for IndicationFilter ..642
Table 452. Required Properties for FiltersSupported ..642
Table 453. Requried Properties for ObjectManagerIsProviderRequired.........................643
Version 1.0.1 xxi

SNIA Storage Management Initiative Specification
List of Figures
Figure 1.Interface Functions ..30
Figure 2.Large SAN Topology ..33
Figure 3.Example Client Server Distribution in a SAN ..34
Figure 4.SMI-S Modeling Conventions...61
Figure 5.Object Model/Server Relationship ..62
Figure 6.Canonical Inheritance..63
Figure 7.Sample CIM-XML Message ...64
Figure 8.Operational Environment ..67
Figure 9.Transport Stack..70
Figure 10.Reference Model ...71
Figure 11.Cluster Model ..76
Figure 12.Common Elements ..77
Figure 13.Server Profile Instance Diagram ...78
Figure 14.Volume Group Shared Across Namespaces..79
Figure 15.indications Filters Schema...86
Figure 16.Indications Schema..87
Figure 17.Physical Package Instance...104
Figure 18.Software Instance Diagram ...111
Figure 19. Access Point Instance Diagram..114
Figure 20. Cluster Instance ..118
Figure 21.Extra Capacity Set Instance Diagram..122
Figure 22.Disk Drive Instance Model..128
Figure 23.Extent Mapping Instance...140
Figure 24.Location Instance ..143
Figure 25.Instance Diagram for Copy Services...148
Figure 26.StorageSynchronized Association ...149
Figure 27.State Diagram for Snapshots ...160
Figure 28.State Diagram for Mirrors ...162
Figure 29.Job Control Subprofile Model ...174
Figure 30.Storage Configuration ...175
Figure 31.Pool Manipulation Instance Diagram..181
Figure 32.Storage Configuration ...186
Figure 33.Pool Creation - Initial State ...188
Figure 34.Pool Creation - Step 2 ...188
Figure 35.Pool Creation - Step 3 ...189
Figure 36.Pool Creation - Step 4 ...189
Figure 37.LUN Creation Instance Diagram...203
Figure 38.Storage Pool Example ...205
Figure 39.Volume Creation - Initial State ...206
Figure 40.Volume Creation - Step 1 ..206
Figure 41.Volume Creation - Step 2 ..207
Figure 42.Volume Creation - Step 3 ..207
Figure 43.DeviceCredentials Subprofile Model ..221
Figure 44.Back-end Ports Instance ..226
Figure 45.Generic System with no ConfigurationService ...235
xxii Version 1.0.1

SNIA Storage Management Initiative Specification
Figure 46.Generic System with ControllerConfiguration Service...................................235
Figure 47.Authorization and Access Rights ..237
Figure 48.ProtocolController Default and Device Override Permissions238
Figure 49.Access Denial Model...238
Figure 50.Initiator Setting Data Example ..239
Figure 51.Entire Model..240
Figure 52.Simple StorageVolume Model ..245
Figure 53.Two view/Two LogicalDevice Use Case ..246
Figure 54.Volume used in multiple views ...247
Figure 55.Use Case with a Deny Privilege ..247
Figure 56.Volumes with Different Permissions ..248
Figure 57.Fabric Instance Diagram..274
Figure 58.Zoning Instance Diagram (AdminDomain)...275
Figure 59.Zoning Instance Diagram (ComputerSystem)...276
Figure 60.Switch Instance Diagram...321
Figure 61.Switch Blade Instance Diagram ..330
Figure 62.Router Instance Diagram...334
Figure 63.FC HBA Instance Diagram ...350
Figure 64.Host Discovered Resources Instance Diagram 1...363
Figure 65.Host Discovered Resources Instance Diagram 2...363
Figure 66.Array Profile Instance Diagram...383
Figure 67.Array Packages Diagram...399
Figure 68.In Band Virtualization Overview Diagram ...402
Figure 69.In Band Virtualization System Instance ..403
Figure 70.StorageLibrary-centric Instance Diagram ...420
Figure 71.MediaAccessDevice-centric Instance Diagram...421
Figure 72.ChangerDevice-centric Instance Diagram...422
Figure 73.Physical View Instance Diagram...423
Figure 74.StorageMediaLocation Instance Diagram ...424
Figure 75.LimitedAccessPort Linkages...438
Figure 76.Server Model ...443
Figure 77.Protocol Adapter Subprofile Model ..464
Figure 78.System Diagram ..467
Figure 79.Host Bus Adapter Model ...467
Figure 80.Switch Model ..468
Figure 81.Array Instance ...469
Figure 82.Virtualization Instance ..470
Figure 83.Fabric Topology ..471
Figure 84.SA Server Configuration ...494
Figure 85.Complete Reference Model...499
Figure 86.Configuration Administration ...507
Figure 87.Reference Model with Policy Server...514
Figure 88.Policy Components..515
Figure 89.Sparing Instance ..518
Figure 90.InterLibraryPort Connection Instance Diagram ..521
Figure 91.Virtual ChangerDevices ...524
Figure 92.Instance Diagram for Fibre Channel Connection..526
Version 1.0.1 xxiii

SNIA Storage Management Initiative Specification
Figure 93.Virtual ChangerDevices Sharing a Chassis...530
Figure 94.Library Capacity Instance Diagram...532
Figure 95.Extender Instance Diagram ...555
Figure 96.Management Appliance Subprofile Diagram..568
Figure 97.Management Appliance Instance Diagram ...568
Figure 98.Out-of-band Virtualization Block Diagram...577
Figure 99.Out-of-Band Virtualization Subprofile Diagram...579
Figure 100.Metadata System Instance Diagram ..580
Figure 101.Translation Engine Instance Diagram ...582
Figure 102.Translation Engine Back-end Ports Instance...583
Figure 103.Virtualizer/Fabric Interaction Overview ...601
Figure 104.Provider Subprofile Model ..638
xxiv Version 1.0.1

SNIA Storage Management Initiative Specification
Errata/Change Log
1.0.1

1) General Changes

• General grammar and typographical clean up;

• Update object properties and property names to align with CIM Schema 2.8;

• CIM required elements updated in most Profiles.

2) Common Profile Changes

• Mark Sparing Subprofile as Experimental and relocated to informative annex.

3) Fabric Profile Changes

• Instance diagram associations corrected.

4) Array Profile Changes

• Instance diagram associations corrected.

5) SLP Changes

• Revise SCOPE requirements;

• Highlight message type extensions beyond SLP v2;

• Clarify use of multiple InteropSchemaNamespaces;

• Updated WBEM template.

6) HBA Profile

• Rename HBA Profile to FC HBA Profile to allow for future inclusion of non-fibre
prototocols;

7) Server Profile Changes

• Clarify namespace usage and terminology;

• Update instance diagram;

• Add clarification of global need for a top-level object in all discovery recipes;

• Relocate Provider Subprofile to Optional Subprofiles informative annex;

• Include Recipes.

8) Storage Profile

• Mark JBOD Subprofile as Experimental and relocated to informative annex

9) Cross Client Changes

• Replace missing recipes;

• Remove unneeded recipes.

10) Futures Changes
Version 1.0.1 xxv

SNIA Storage Management Initiative Specification
• Include Policy section.

1.0.0

1) There are many references to the CIM_ComputerSystem.Dedicated property within the specifica-
tion. With the introduction of the Server profile, these references should no longer be treated as
normative.

2) The association GeneratedStorageSetting is used in the "Pool Manipulation, Capabilities, and
Settings Subprofile" and the "LUN Creation Subprofile" in this version of the specification.
The DMTF has advised us that this association is not necessary. It will therefore be removed
in a the final version of this specification.

3) The use of the terms “Client”, “Agent”, “Object Manager”, and “CIM Server” is inconsistent.
The usage will be standardized as part of a future draft.
xxvi Version 1.0.1

SNIA Storage Management Initiative Specification Foreword

Version 1.0.1 xxvii

Clause 0: Foreword

This clause has been introduced as a placeholder. It will be required when the specification is
submitted for ANSI certification, and is included here to help minimize any future disruption of
clause numbering.

SNIA Storage Management Initiative Specification
THIS PAGE INTENTIONALLY LEFT BLANK
28 Version 1.0.1

SNIA Storage Management Initiative Specification Introduction
Clause 1: Introduction

1.1 Preamble
Storage Area Networks (SANs) are emerging as a prominent layer of IT infrastructure in
enterprise class and midrange computing environments. Applications and functions driving the
emergence of SAN technology include:

• Sharing of vast storage resources between multiple systems,

• LAN free backup,

• Remote, disaster tolerant, on-line mirroring of mission critical data,

• Clustering of fault tolerant applications and related systems around a single copy of data.

To accelerate the emergence of SANs in the market, the industry requires a standard management
interface that allows different classes of hardware and software products supplied by multiple
vendors to reliably and seamlessly interoperate for the purpose of monitoring and controlling
resources. The SNIA Storage Management Initiative (SMI) was created to develop this
specification (SMI-Specification or SMI-S), the definition of that interface. This standard provides
for heterogeneous, functionally rich, reliable, and secure monitoring/control of mission critical
global resources in complex and potentially broadly distributed multi-vendor SAN topologies. As
such, this interface overcomes the deficiencies associated with legacy management.

1.2 Business Rationale
This interface is targeted at creating broad multi-vendor management interoperability and thus
increasing customer satisfaction. To that end, this specification defines an “open” and extensible
interface that allows subsystems and devices within the global context of a SAN to be reliably and
securely managed by overlying presentation frameworks and management systems in the context
of the rapidly evolving multi-vendor market. In specific, SAN integrators (like end-users, VARs,
and SSPs) can, via this standardized SAN management interface, more flexibly select between
multiple vendors when building the hierarchy of software systems required to manage a large
SAN independent of the underlying hardware systems. Additionally, SAN integrators can more
flexibly select between alternate hardware vendors when constructing SAN configurations. Broad
adoption of the standards defined and extended in this specification will provide increased
customer satisfaction and will:

• More rapidly expand the acceptance of SAN;

• Accelerate customer acquisition of SAN technology;

• Expand the total market.

Additionally, a single common management interface allows SAN vendors and integrators to
decrease the time required to bring new more functional technology, products, and solutions to
market.

1.3 Interface Definition
This management interface allows storage management systems to reliably identify, classify,
monitor, and control physical and logical resources in a SAN. The fundamental relationship of this
interface to storage management software, presentation frameworks, user applications, SAN
Version 1.0.1 29

Introduction SNIA Storage Management Initiative Specification
physical entities (i.e., devices), SAN discovery systems, and SAN logical entities is illustrated in
Figure 1: "Interface Functions".

The diagram illustrates that functions of the interface can be distributed across multiple SAN
devices (i.e., Switches or Array Controllers) and/or software systems (i.e., Discovery Systems).
While the functionality of the interface is distributed within or across a SAN, to insure that
monitoring and control operations by clients are consistent and reliable, the state of a given
resource SHOULD NOT be simultaneously available to clients from multiple unsynchronized
sources.

Example:A request by an SRM application and a backup engine for the bandwidth
available on a given Fibre Channel path SHOULD be coordinated by a single
monitoring entity to insure information consistency. Should the SRM application
and Backup engine obtain different available bandwidth information for a given
Fibre Channel path from multiple unsynchronized sources they MAY function in
conflict and degrade the efficiency of the environment.

Satisfying this REQUIREMENT is the responsibility of parties configuring Storage and Network
management clients in conjunction with the primitives defined in the specification.

Note: Within this architecture (as depicted by the illustration above) entities like an appliance-
based volume manager MAY potentially act as both a client and a server to the interface.

Example:A Host-based volume manager wants to construct a large storage pool from
multiple SAN appliance based volumes, as well as volumes/LUNs originating
from array controllers. In this case, the host based volume manager MUST
inspect the characteristics of the volumes on both the SAN appliance and array
controller prior to allocation. Additionally, the SAN appliance (which runs a

Figure 1: Interface Functions

SMI-Interface

Objects

Application Framework

LU LU Clone LU
Snapshot OtherPortHostZone

Enclosure

Graphical Interface

CardMedia
Robot

Disk
Drive HBA Mgmt

Appliance Extender

Tape Virtual
Volume

Implementation

RAIDset Removable
Media Set FabricRouterArraySwitch

Performance Capacity Planning

Resource Allocation

Command Interface

Media Management

Volume
Management

File System Backup System

Database System

Data Migration
(HSM)Other
30 Version 1.0.1

SNIA Storage Management Initiative Specification Introduction
volume manager) MUST inspect the properties of storage devices when building
its volumes. As such, the SAN appliance in this case is both a client and server in
the management environment, depending on the action being performed.

Relative to Figure 1: "Interface Functions", examples of long-term functional requirements for the
interface to properly satisfy the needs of clients using it include:

a. Clients MUST be able to obtain sufficient information to discern the topology of the SAN;

b) Clients MUST be able to reliably identify resources that have experienced an error/fault con-
dition that has resulted in degraded/disabled operation;

c) Clients MUST be able to construct a zone of allocation around a select group of host and stor-
age resources;

d) Clients MUST be able to identify nonvolatile storage resources available to a storage manage-
ment system, to allow them to construct a storage pool of a consistent level of performance
and availability;

e) Clients MUST be able to identify third-party copy engines (and associated media libraries/
robots) available to a cooperating backup engine, allowing it to allocate an engine/library/
robot to a given backup task;

f) Clients MUST be able to dynamically allocate non-volatile storage resources;

Note: Each volume to be utilized is subject to strict availability and performance requirements. As
a result, the file system needs to inspect the properties of each volume prior to allocation.

g) Clients MUST be able to access sufficient topology and component information to allow a Stor-
age Resource Management (SRM) application like a SAN performance monitor to examine
topology and line utilization, such that performance bottlenecks can be exposed;

h) Clients MUST be able to employ appropriate data reporting and tracking to allow capacity
planning system to identify each storage pool in the SAN and then interact with the manager
of each pool to assess utilization statistics;

i) Clients MUST be provided with adequate controls for a privileged, user-written application to
restrict the use of a volume to a specific host, set of hosts, or set of controller communications
ports;

j) Clients MUST be assured of timely propagation of data concerning the health and perfor-
mance of the devices and subsystems in the SAN to fault isolation and analysis systems.

Example non-goals for this interface include:

a. Select a logical communications port over which to send/receive data;

b) Read/Write data to a volume;

c) Identify and recover from data communications errors and failures;

d) Synchronization message between two cluster nodes;

e) Log a new communications device into a network.

1.4 Technology Trends
To be broadly embraced and long lived this management interface should respect and leverage key
technology trends evolving within the industry. These include:
Version 1.0.1 31

Introduction SNIA Storage Management Initiative Specification
a. Improved Connectivity: Whether available In-band (i.e., over Fibre Channel) or available
out-of-band (i.e., over a LAN/MAN/WAN), or available over a mix of both, virtually all devices
in a SAN have (or soon will have), access to a common communications transport suitable for
carrying management information content (e.g., TCP/IP), that is used to transmit a standard-
ized encoding (e.g., CIM-XML) of recognized semantics (e.g., CIM);

b) Increased Device Manageability: Through a common, general-purpose network transport
and, where necessary, the use of proxy services through another resource (e.g. general pur-
pose computer system), devices can support a standardized management interface;

Example:A legacy array controller is incapable of running the software necessary to
implement a management server for this interface and uses a proxy server on a
SAN appliance to communicate within the management environment.

Example:An HBA is incapable of running the software necessary to implement a
management server for this interface and uses a proxy server on its host system
to communicate within the management environment.

c) XML Standardization: XML is providing management protocols with an extensible, plat-
form independent, human readable, content describable communication language for the first
time. These protocols provide appropriate abstraction – separating the definition of the object
model from the semantics/syntax of the protocol. Additionally, the transport-independent,
content-description (i.e., markup) nature of XML allows it to be utilized by both web-enabled
application and appliances;

d) Increased SAN Complexity: SANs are being configured with diverse classes of components
and widely distributed topologies. Management clients and servers in the environment need
to anticipate being widely distributed on systems, appliances and devices throughout large
SAN topologies, while maintaining real-time distributed state for logical entities. Figure 2:
32 Version 1.0.1

SNIA Storage Management Initiative Specification Introduction
"Large SAN Topology" below provides an example of a single SAN built from multiple classes
of components spanning three physical locations (i.e., Sites A, B and C). ”.

1.5 Management Environment
Clients and Servers of this interface can be widely distributed on systems, appliances, and devices
across a network that includes one or more large SAN topologies.

The configuration in Figure 3: "Example Client Server Distribution in a SAN" provides an
example client/server distribution using in-band TCP/IP communications, out of band TCP/IP
communications, or employing proxy services to bridge legacy and/or proprietary communication
interfaces. The device “Old Array Controller” is incapable of appropriate communication with
clients and servers in the management environment to provide management access (i.e., a CIM
Server). Access to the communications transport that clients and servers share for communication
is achieved via a proxy service on the host computer in the upper right hand corner of the

Figure 2: Large SAN Topology

Host A1

Host A2

Host An

Switch A1
Switch A2

Switch A3

Bridge A1

Bridge A2

Appliance A1

Appliance A2

Array A1

Array An

Vol A1

Vol An

Site - A

Host C1

Host C2

Host B1

Switch C1
Switch C2

Switch A3

Bridge C1

Bridge C2

Appliance C1

Appliance C2

Array C1

Array An

Vol C1

Vol Cn

Site - C

Network

Switch B1 Router B1

Site - B

Library

Snaps and Clones
Version 1.0.1 33

Introduction SNIA Storage Management Initiative Specification
illustration. All other clients and servers communicate via direct access to a common
communications transport.

1.6 Architectural Objectives
The following reflect architectural objectives of the interface. Some of these capabilities are not
present in the initial release of the interface, but are inherent in its architecture and intended
extensibility. They are intended to provide guidance concerning the present and future direction of
development of the SNIA Storage Management Initiative Specification.

a. Consistency: State within an object and between objects remains consistent independent of
the number of clients simultaneously exerting control, the distribution of objects in the envi-
ronment, or the management action being performed;

b) Isolation: A client that needs to execute an atomic set of management actions against one or
more objects is able to do so in isolation of other clients, who are simultaneously executing
management actions against those same objects;

c) Durability: Atomicity, consistency, and isolation are preserved independent of the failure of
any entity or communications path in the management environment;

d) Consistent Name Space: Managed objects in the SAN adhere to a consistent naming conven-
tion independent of state or reliability of any object, device, or subsystem in the SAN;

e) Distributed Security: Monitoring and control operations are secure. The architecture sup-
ports:

Figure 3: Example Client Server Distribution in a SAN

Host

WBEM Service

Host
Host

Management
Appliance

Management
Appliance

Bridge to ATMArray

Array Provider

 Legacy Array

Proprietary
Management

Service

Storage Area
Network

Host Provider

Legacy Array
Provider

Media Library

WBEM Service

Media Library
Provider

Router

Proprietary
Management

Service

General Purpose
LAN

Storage Area Network

Switch

Proprietary
Management

Service

WBEM Service

Bridge Provider

WBEM Service

HBA Provider

FileSystem
Provider

WBEM Service

Host Provider

HBA Provider

FileSystem
Provider

WBEM Service

Host Provider

HBA Provider

FileSystem
Provider

Router Provider

Switch Provider

Database Mgmt

Volume Manager

WBEM Client

WBEM Service

Host Provider

HBA Provider

SRM

WBEM Client

Data Migration
Mgmt

WBEM Service

Host Provider

HBA Provider

Discovery and
Directory Service
34 Version 1.0.1

SNIA Storage Management Initiative Specification Introduction
1) Client authentication;

2) Privacy (encryption) of the content of the messages in this protocol;

3) Client authorization;

f) Physical Interconnect Independence: The interface functions independent of any particular
SAN physical interconnect, supplier, or topology;

g) Multi-vendor Interoperability: Clients and servers should use a common communication
transport and message/transfer syntax to promote seamless plug compatibility between heter-
ogeneous multi-vendor components that implement the interface;

h) Scalability: The size, physical distribution, or heterogeneity of the SAN does not degrade the
quality or function of the management interface;

i) Vendor Unique Extension: The interface allows vendors to implement proprietary functional-
ity to distinguish their products and services in the market independent of the release of a
new version of the interface;

j) Volatility of State: This interface does not assume that objects are preserved in non-volatile
repositories. Clients and servers MAY preserve object state across failures, but are not
REQUIRED to do so;

k) Replication: This interface provides no support for the automatic replication of object state
within the management environment;

l) Functional Layering Independence: The design of this interface is independent of any func-
tional layering a vendor chooses to employ in constructing the storage management systems
(hardware and software) necessary to manage a SAN;

m) Asynchronous or Synchronous execution: Management actions MAY execute either asynchro-
nously or synchronously;

n) Events: This interface provides for the reliable asynchronous delivery of events to one or more
registered clients;

o) Cancelable Management Actions: Long running synchronous or asynchronous directives
MUST be capable of being cancelled by the client. Cancellation MUST result in the termina-
tion of work by the server and resource consumed being released;

p) Durable Reference: Object classes that persist across power cycles and need to be monitored
and controlled independent of SAN reconfiguration (i.e., logical volumes) MUST be identified
via “Durable Names” to insure consistent reference by clients;

q) Dynamic installation and reconfiguration: New clients and servers SHALL be capable of
being added to or removed from a SMI-S management environment without disrupting the
operation of other clients or servers. In most cases, clients SHOULD be capable of dynami-
cally managing new servers that have been added to a SMI-S environment.

1.7 Disclaimer
The SNIA makes no assurance or warranty about the interoperability, data integrity, reliability,
or performance of products that implement this specification.
Version 1.0.1 35

Introduction SNIA Storage Management Initiative Specification
36 Version 1.0.1

SNIA Storage Management Initiative Specification Scope
Clause 2: Scope

This Technical Specification defines the a method for the interoperable management of a
heterogeneous Storage Area Network (SAN).

This Technical Specification describes the information available to a WBEM Client from an SMI-S
compliant CIM Server.

This Technical Specification describes an object-oriented, XML-based, messaging-based interface
designed to support the specific requirements of managing devices in and through Storage Area
Networks (SANs).
Version 1.0.1 37

Scope SNIA Storage Management Initiative Specification
THIS PAGE INTENTIONALLY LEFT BLANK
38 Version 1.0.1

SNIA Storage Management Initiative Specification Normative References

Version 1.0.1 39

Clause 3: Normative References

The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

Table 1: Standards Dependencies for SMI-S

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.1 DMTF

CIM Schema 2.8 Preliminary DMTF

CIM-XML DMTF

UML OMG

SLP IETF

Key words for use in RFCs to Indicate
Requirement Levels

IETF (RFC2119)

Hypertext Transfer Protocol -- HTTP 1.0 (1.1) IETF (RFC1945, RFC2068)

An Extension to HTTP: Digest Access
Authentication

IETF (RFC2069)

Secure Sockets Layer (SSL) 3.0

The Directory: Public-key and attribute certificate
frameworks (DER encoded X.509)

May, 2000 ITU-T

Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies

November, 1996 IETF (RFC2045)

PKCS #12: Personal Information Exchange Syntax 1.0 RSA Laboratories

SNIA Storage Management Initiative Specification
THIS PAGE INTENTIONALLY LEFT BLANK
40 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary
Clause 4: Glossary

For the purposed of this document, the terms and definition presented below apply.

A
Address masking

CONTEXT [Storage System]

Address masking is a function of a host I/O controller (device driver) that filters access to certain storage
resources on the SAN. It puts the responsibility of segregating I/O paths on the individual server system
in the SAN and requires coordination of all servers to avoid access collisions. Also called Host-based
LUN Masking.

Addressable Unit

CONTEXT [Storage System]

storage addressable unit (e.g. LUN, Virtual Disk, Logical Disk, Logical Volume, Volume Set).

Agent

An Object Manager that includes the provider service for a limited set of resources.

An Agent may be embedded or hosted and can be an aggregator for multiple devices.

Aggregation

SOURCE(CIM V2.2 Specification, Appendix E Glossary)

A strong form of an association. For example, the containment relationship between a system and the
components that make up the system can be called an aggregation. An aggregation is expressed as a
Qualifier on the association class. Aggregation often implies, but does not require, that the aggregated
objects have mutual dependencies.

ATM:

CONTEXT [Network] SOURCE[SNIA]

Acronym for Asynchronous Transfer Mode.

Attributes:

A collection of tags and values describing the characteristics of a service.

Attribute Reply (AttrRply):

A reply to an Attribute Request. (optional)

Attribute Request (AttrRqst):

A request for attributes of a given type of service or attributes of a given service. (optional)
Version 1.0.1 41

Glossary SNIA Storage Management Initiative Specification
B

C
Cardinality

SOURCE (DMTF)

The number of values that may apply to an attribute for a given entity. Refer UML Standards.

CIM:

CONTEXT [Management] SOURCE[SNIA]

Acronym for Common Information Model. An object oriented description of the entities and relationships in
a business' management environment maintained by the Distributed Management Task Force.
Abbreviated CIM. CIM is divided into a Core Model and Common Models. The Core Model addresses
high-level concepts (such as systems and devices), as well as fundamental relationships (such as
dependencies). The Common Models describe specific problem domains such as computer system,
network, user or device management. The Common Models are subclasses of the Core Model and may
also be subclasses of each other.

Client

A process that issues requests for service. Formulating and issuing requests may involve multiple client
processes distributed over one or more computer systems. The collection of client processes involved in
formulating and issuing requests is known as a consumer.

Completion Semantics

Specifies how a method notifies its caller that its operations have completed. To this end, notification of
completion is accomplished in either of two ways:

Asynchronous notification: Upon return of the method, its operations may not have yet completed. The
caller is then required to employ some other mechanism to determine when the operations complete.
Events, callbacks, and polling are examples of mechanisms available to the caller in this regard.

Synchronous notification: The thread calling the method blocks until the method’s operations succeed or
fail.

Completion semantics refer to the operations executed by the method, and not the method completion
itself. For example, suppose we write a method to resync a split-mirror. We recognize that this could take
an indeterminate amount of time, so we design a method, resync(), to spawn a task to manage the set of
operations required for the resynchronization and then return to the caller. When the method, resync(),
completes and returns to the caller, the resynchronization of the mirrors will [most likely] not have
completed. So, the method has completed but its operations have not.

Consumer

CONTEXT [Storage System]

A host, identified by HBA WWN or other identifier, that is allowed access to a storage addressable unit
42 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary
Control Software

CONTEXT [Storage System]

A body of software that provides common control and management for one or more disk arrays or tape
arrays. Control software presents the arrays of disks or tapes it controls to its operating environment as
one or more virtual disks or tapes. Control software may execute in a disk controller or intelligent host bus
adapter, or in a host computer. When it executes in a disk controller or adapter, control software is often
referred to as firmware.

Concurrency Control Protocol

A set of rules for identifying and resolving resource conflicts between multiple, non-cooperating clients.
The three most common concurrency protocols are:

Lock ordering: Transactions are ordered according to the order of arrival of their operations at the
resource(s).

Optimistic ordering: Transactions proceed until they are ready to commit, whereupon a check is made to
see whether they have performed conflicting operations.

Timestamp ordering: Transactions are ordered according to the time they were initiated.

Cooperating Clients

A set of consumer processes that are aware of each other and are able to coordinate access to (and
control of) resources among themselves

D
DA Advertisements (DAAdvert):

A solicited (unicast) or unsolicited (multicast) advertisement of Directory Agent availability.

Data Invariant

A data invariant is the name given to the consistency-state of shared data. A data invariant must always be
TRUE. When the data invariant is violated, the invariant must be protected via mutual exclusion. For
example, suppose I have a list of records and a record pointer, i, that is always set to point to the last
record in the list. In this example, the invariant is the record pointer always points to the last record.

But observe what happens when I append a record to the list as follows:

(a) Add record to record[i].

(b)i += 1;

After (a) completes, but before (b) is invoked, i no longer points to the last record in the list. Now, suppose
another thread comes along and attempts to read the last record in the list. In this case, the thread will
get the penultimate record, not the last one – Because i has not yet been updated. The solution to this
problem is to serialize access to both operations using a lock or a semaphore.

BEGIN LOCK
Version 1.0.1 43

Glossary SNIA Storage Management Initiative Specification
(a) Add record to record[i].

(b)i += 1;

END LOCK

Device

a storage system that is addressable from the SAN.

DHCP:

CONTEXT [Network] SOURCE[SNIA]

Acronym for dynamic host control protocol. An Internet protocol that allows nodes to dynamically acquire
("lease") network addresses for periods of time rather than having to pre-configure them. Abbreviated
DHCP. DHCP greatly simplifies the administration of large networks, and networks in which nodes
frequently join and depart.

Directory

SOURCE (FC-GS-3)

A repository of information about objects that may be accessed via a Directory Service.

Directory Agent (DA):

CONTEXT [SLP]

In the context of SLP, a process that caches SLP service advertisements registered by Service Agents and
forwards the service advertisements to User Agents on demand.

Discovery

CONTEXT [Management]

Discovery provides information about what physical and logical SAN entities have been found within the
management domain. Enough information is provided to support the creation of correct Topology maps.
This information changes dynamically, as SAN entities are added, moved, or removed.

DLT:

CONTEXT [Tape] SOURCE[SNIA]

Acronym for Digital Linear Tape. A family of tape device and media technologies developed by Quantum
Corporation.

DRM:

CONTEXT [Management] SOURCE[SNIA]

The Disk Resource Management (DRM) Work Group is defining standard data and interfaces for the
management of disk storage facilities, as well as creating guidelines for implementing well-managed
44 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary
DMTF:

CONTEXT [Management] SOURCE[SNIA]

Distributed Management Task Force. An industry organization that develops management standards for
computer system and enterprise environments. DMTF standards include WBEM, CIM, DMI, DEN and
ARM. Abbreviated DMTF. The DMTF has a web site at www.dmtf.org.

E
Enclosure

CONTEXT [Storage System]

A box or cabinet.

Enumerate

CONTEXT [CIM] SOURCE[CIM]

This operation is used to enumerate subclasses, subclass names, instances and instance names in the
target Namespace. If successful, the method returns zero or more requested elements that meet the
required criteria.

Extent

CONTEXT [Storage Device] [Storage System] SOURCE[CIM]

A set of consecutively addressed FBA disk blocks that is allocated to consecutive addresses of a
single file.

A set of consecutively located tracks on a CKD disk that is allocated to a single file.

A set of consecutively addressed disk blocks that is part of a single virtual disk-to-member disk
array mapping. A single disk may be organized into multiple extents of different sizes, and may
have multiple (possibly) non-adjacent extents that are part of the same virtual disk-to-member
disk array mapping. This type of extent is sometimes called a logical disk.

Extrinsic Method

CONTEXT [CIM]

A method defined as part of CIM Schema. Extrinsic methods are invoked on a CIM Class (if static) or
Instance (otherwise). An extrinsic method call is represented in XML by the <METHODCALL> element,
and the response to that call represented by the <METHODRESPONSE> element. cf. Intrinsic Method
Version 1.0.1 45

Glossary SNIA Storage Management Initiative Specification
F
Fabric

CONTEXT [SAN] SOURCE (FC-GS-3)

Any interconnect between two or more Fibre Channel N_Ports, including point-to-point, loop, and Switched
Fabric.

Switched Fabric: A fabric comprised of one or more Switches

FC-GS-3

SOURCE (www.T11.org)

Fibre Channel - Generic Services 3 . Abbreviation FC-GS-3 or GS-3

NCITS Project Number 1356-D T11.3 Group

FIPS:

CONTEXT [Security] SOURCE[SNIA]

Acronym for Federal Information Processing Standard. Standards (and guidelines) produced by NIST for
government-wide use in the specification and procurement of Federal computer systems.

G
Grammar

A formal definition of the syntactic structure of a language (see syntax), normally given in terms of
production rules that specify the order of constituents and their sub-constituents in a sentence (a well-
formed string in the language). Each rule has a left-hand side symbol naming a syntactic category (e.g.
"noun-phrase" for a natural language grammar) and a right-hand side that is a sequence of zero or more
symbols. Each symbol may be either a terminal symbol or a non-terminal symbol. A terminal symbol
corresponds to one "lexeme" - a part of the sentence with no internal syntactic structure (e.g. an identifier
or an operator in a computer language). A non-terminal symbol is the left-hand side of some rule.

GS-3

SOURCE (www.T11.org)

Refer FC-GS-3

H
HBA

host bus adapter, card that contains ports for host systems.

Host

A computer running an O/S.
46 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary
HTTP

A request-reply protocol called the Hypertext Transfer Protocol, HTTP.

Hub

interconnect element that supports a ring topology.

I
Inheritance Relationship

SOURCE (DMTF)

Refer UML Standards.

Interconnect Element

Non terminal network elements (Switches, hubs, routers, directors).

Interface Definition Language (IDL)

A high-level declarative language that provides the syntax for interface declarations. Some examples of
IDLs in common usage today are:

DCE’s RPC IDL

Microsoft’s DCOM IDL (based on the DCE IDL)

OMG IDL (used to define the DOM XML interface)

DMTF MOF (an IDL-derived specification).

Intrinsic Method

CONTEXT [CIM]

 Operations made against a CIM server and a CIM Namespace independent of the implementation of the
schema defined in the server. Examples of intrinsic methods in XML include the <IMETHODCALL>
element, and the response to that call represented by the <IMETHODRESPONSE> element. cf. Extrinsic
Method

J

K

L
Language-Binding

The association of a programming language (e.g., C++, Java, C) with an interface definition language. For
example, OMG IDL supports many language bindings because it can be compiled into a variety of
Version 1.0.1 47

Glossary SNIA Storage Management Initiative Specification
programming languages (C, C++, Java, ADA, COBOL, etc.). By contrast, Microsoft’s DCOM IDL only
supports one language binding, C++. Similarly, Java IDL also supports only one language binding (Java).

Some IDLs do not support any [formal] language bindings. DMTF’s MOF, for example, is derived from
OMG’s IDL but is used as a data modeling language more in the spirit of SQL than programmatic
interfaces.

Lock Manager:

CONTEXT [Locking]

Short name for Lock Management Server.

Logical Unit Number (LUN)

CONTEXT [SCSI]

The SCSI identifier of a logical unit within a Target.

LTO:

CONTEXT [Tape]

Acronym for Linear Tape Open.

LUN Mapping

CONTEXT [Storage System]

The process of creating a disk resource and defining its external access paths, by configuring LUs (Logical
Units) from the disk array logical disk volumes - either by grouping them as a single larger LU or by
creating partitions. The “Logical Unit Number (LUN)” is then be mapped to an external ID descriptor (for
example: a SCSI Port, Target ID and LU Number). An LU may be mapped for access from multiple ports
and/or multiple target IDs, providing alternate paths for nonstop data availability.

LUN Mapping is a necessary task to be able to export the LUN to the Fabric/Server/etc. It can be done
independent of any knowledge of the intended use of the LUN. Only LUNs that are exposed via a “Port”
are available for access.

LUN Masking

CONTEXT [Storage System]

Process of configuring software in SAN nodes to determine which hosts have access to exported drives.
LUN masking can be either server-based address masking or storage based port mapping. cf. Port
Mapping

M
MAN:

CONTEXT [Network] SOURCE [SNIA]

Acronym for Metropolitan Area Network. A network that connects nodes distributed over a metropolitan
(city-wide) area as opposed to a local area (campus) or wide area (national or global). Abbreviated MAN.
48 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary
From a storage perspective, MANs are of interest because there are MANs over which block storage
protocols (e.g., ESCON, Fibre Channel) can be carried natively, whereas most WANs that extend
beyond a single metropolitan area do not currently support such protocols.

Marshalling

The set of operations by which a message is converted into a transfer syntax. In HTTP, requests and
replies are marshaled into formatted ASCI-text strings.

Method

The name of [one or more] operation(s) performed by an instance of an object class. Methods are
distinguished from operations as follows: A method is a name for one or more operations that may
execute when the method is invoked. For example, when the method, printSelf(), is called, the
operation of printing the state of the reference object is executed.

Synonyms are: Function, procedure, or subroutine. Usage of these terms should be deprecated.

In most models, a method is characterized by its name, return-type, parameters, completion semantics
(asynchronous or synchronous), and side-effects (e.g., event generation, message propagation, etc.).

Methods are specified in an IDL.

Methods are declared in source header files of a programming language (.h files, Java Interface files,
etc.,).

Methods are defined (or implemented) in source implementation files (e.g., .cpp, . java, class files).

Method specifications are language independent. Method declarations and implementations are, by
construction, language dependent.

Monitoring

Monitoring provides management information about the current state of individual logical and physical SAN
entities. This information changes dynamically, as SAN entities perform their functions, are serviced,
experience errors, etc. Monitoring can only be done on SAN entities that are known via Discovery.

N
NAA:

CONTEXT [Standards] SOURCE [SNIA]

Acronym for Network Address Authority. A four bit identifier defined in FC-PH to denote a network address
authority (i.e., an organization such as CCITT or IEEE that administers network addresses).

NDMP:

CONTEXT [Backup] SOURCE [SNIA]

Acronym for Network Data Management Protocol. A communications protocol that allows intelligent
devices on which data is stored, robotic library devices, and backup applications to intercommunicate for
the purpose of performing backups. Abbreviated NDMP.
Version 1.0.1 49

Glossary SNIA Storage Management Initiative Specification
An open standard protocol for network-based backup of NAS devices. Abbreviated NDMP. NDMP allows a
network backup application to control the retrieval of data from, and backup of, a server without third-
party software. The control and data transfer components of backup and restore are separated. NDMP is
intended to support tape drives, but can be extended to address other devices and media in the future.
The Network Data Management Task Force has a web site at HTTP://www.ndmp.org.

N_Port

CONTEXT [SAN]

Refer to Port. Node

CONTEXT [SAN] SOURCE (FC-GS-3)

A collection of Ports. A Fiber channel device with a group of ports.

SOURCE (SNIA)

An addressable entity connected to an I/O bus or network. Used primarily to refer to computers, storage
devices, and storage subsystems. The component of a node that connects to the bus or network is a port.

Non-cooperating clients

A set of consumer processes that are independent of each other, compete for resources and execute
independently of the other. User processes on a multi-user machine are non-cooperating clients with
respect to the operating system.

O
Operation

An action executed within the body of a method (AKA procedure, function, or subroutine). Operations are
distinct from methods (see Method).

Out-of-Band

CONTEXT [Fibre Channel] SOURCE [SNIA]

Transmission of management information for Fibre Channel components outside of the Fibre Channel
network, typically over Ethernet.

P
PKI:

CONTEXT [Security] SOURCE [SNIA]

Acronym for public key infrastructure. A framework established to issue, maintain, and revoke public key
certificates accommodating a variety of security technologies.

Platform

SOURCE (GS3)

Collection of Nodes.
50 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary
Port

CONTEXT [SAN]

Connection point for links.

SOURCE [FC-GS-3]

N_Port: A hardware entity that includes a Link_Control_Facility. It may act as an Originator, a Responder,
or both.

N_Port identifier: A Fabric unique address identifier by which an N_Port is uniquely known. The identifier
may be assigned by the Fabric during the initialization procedure. The identifier may also be assigned by
other procedures not defined in FC-FS.

Port_Name: As defined in FC-FS.

Port Mapping

CONTEXT [Storage System]

Function of a storage subsystem to define which hosts have access to exported drives. This configuration
authorizes specified server HBA WWNs to access the secured LU while preventing other unauthorized
servers/hosts from either seeing the secured LU or accessing the data contained on the secured LU. cf.
LUN Masking

Protocol

A set of rules that define and constrain data, operations, or both. For example, xmlCIM uses XML as its
transfer syntax, and HTTP as the request-reply protocol HTTP is layered over the TCP/IP network
protocol.

Provider

SOURCE (DMTF)

A COM server that communicates with managed objects to access data and event notifications from a
variety of sources, such as the system registry or an SNMP device. Providers forward this information to
the CIM Object Manager for integration and interpretation.

class provider : A COM server that supplies class definitions. Class providers can support data retrieval,
modification, deletion, enumeration, and query processing.

property provider : A type of provider that supports the retrieval and modification of the CIM properties.

Q

R
Relationship

SOURCE (DMTF)

Refer UML Standards.
Version 1.0.1 51

Glossary SNIA Storage Management Initiative Specification
Required Reference

SOURCE (DMTF)

Refer UML Standards.

S
SA Advertisement (SAAdvert):

Information describing a service that consists of the Service Type, Service Access Point, lifetime, and
Attributes.

SAN

CONTEXT [Fibre Channel] [Network] [Storage System]

Acronym for storage area network. (This is the normal usage in SNIA documents.)

Acronym for Server Area Network that connects one or more servers.

Acronym for System Area Network for an interconnected set of system elements.

A group of fabrics that have common leaf elements.

Scope:

CONTEXT [SLP]

A set of services, typically making up a logical administrative group.

Semantics

The meaning or behavior associated with an entity. For example, we might say the semantics of the
method, resync_mirror(), is encoded in the method name. By contrast, the semantics of the UNIX
ioctl() method is encoded in the command parameter.

Server

A process that fields and/or dispatches requests. Honoring a request may involve more than one server
process distributed over one or more computer systems. The collection of server processes that are
involved in honoring a request are known as service providers.

Service Access Point:

The network address and port number of a process offering a service.

Service Acknowledgement (SrvAck):

A reply to a SrvReg request.

Service Agent (SA):

In the context of SLP, this refers to a process working on behalf of one or more services to advertise the
services in the network.
52 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary
Service Agent Server (SAServer):

In the context of SLP, this refers to a process working on behalf of one or more Service Agents to listen on
a particular port number for SLP service requests.

Service Deregister (SrvDereg):

A request to deregister a service or some attributes of a service. (optional)

Service Register (SrvReg):

A request to register a service or some attributes of a service.

Service Reply (SrvRply):

A reply to a Service Request.

Service Request (SrvRqst):

A request for a service on the network.

SES:

CONTEXT [SCSI] SOURCE [SNIA]

Acronym for SCSI Enclosure Services. An ANSI X3T10 standard for management of environmental factors
such as temperature, power, voltage, etc. Abbreviated SES.

Service Type:

The class of a network service represented by a unique string (for example a namespace assigned by
IANA).

Service Type Reply (SrvTypeRply):

A reply to a Service Type Request. (optional)

Service Type Request (SrvTypeRqst):

A request for all types of service on the network. (optional)

Service Type Template:

A formalized, computer-readable description of a Service Type.

Service URL:

A Uniform Resource Locator for a service containing the service type name, network family, Service
Access Point, and any other information needed to contact the service.

SLP:

CONTEXT [SLP, Discovery]

Acronym for Service Location Protocol.
Version 1.0.1 53

Glossary SNIA Storage Management Initiative Specification
SNIA:

CONTEXT [Standards] SOURCE [SNIA]

Acronym for Storage Networking Industry Association. An association of producers and consumers of
storage networking products whose goal is to further storage networking technology and applications.

SNMP:

CONTEXT [Networking, Management] SOURCE [SNIA]

Acronym for Simple Network Management Protocol. An IETF protocol for monitoring and managing
systems and devices in a network. The data being monitored and managed is defined by a MIB. The
functions supported by the protocol are the request and retrieval of data, the setting or writing of data,
and traps that signal the occurrence of events.

SNMP Trap:

CONTEXT [Management] SOURCE [SNIA]

A type of SNMP message used to signal that an event has occurred.

Soft Zone

SOURCE (FC-GS-3)

 A Zone consisting of Zone Members that are made visible to each other through Client Service requests.
Typically, Soft Zones contain Zone Members that are visible to devices via Name Server exposure of
Zone Members. The Fabric does not enforce a Soft Zone. Note that well known addresses are implicitly
included in every Zone.

SPI:

CONTEXT [SCSI] SOURCE [SNIA]

Acronym for SCSI Parallel Interface. The family of SCSI standards that define the characteristics of the
parallel version of the SCSI interface. Abbreviated SPI. Several versions of SPI, known as SPI, SPI2,
SPI3, etc., have been developed. Each version provides for greater performance and functionality than
preceding ones.

SRM:

CONTEXT [Management] SOURCE [SNIA]

Acronym for storage resource management. Management of physical and logical storage resources,
including storage elements, storage devices, appliances, virtual devices, disk volume and file resources.

SSL:

CONTEXT [Security] SOURCE [SNIA]

Acronym for Secure Sockets Layer. A suite of cryptographic algorithms, protocols and procedures used to
provide security for communications used to access the world wide web. The characters "https:" at the
front of a URL cause SSL to be used to enhance communications security. More recent versions of SSL
are known as TLS (Transport Level Security) and are standardized by the Internet Engineering Task
Force (IETF)
54 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary
SSP:

CONTEXT [Business]

Acronym for Storage Service Provider.

Switch:

Fibre channel interconnect element that supports a mesh topology.

Symmetric Virtualization Appliance:

CONTEXT [Storage System] SOURCE [SNIA]

Synonym for an appliance that provides in-band virtualization. In-band virtualization appliance is the
preferred term.

Synchronous

A method that blocks the calling thread until all operations have completed or failed.

Syntax

(The structure of strings in some language. A language's syntax is described by a grammar. For example,
the syntax of a binary number could be expressed as

binary_number = bit [binary_number]

bit = "0" | "1"

Meaning that a binary number is a bit optionally followed by a binary number and a bit is a literal zero or
one digit. The meaning of the language is given by its semantics.

T
TLS:

CONTEXT [Security]

Acronym for Transport Layer Security.

Transfer Syntax

The formal rules (i.e., the protocol) governing the format (or representation) of messages as they are
transferred between clients and servers

U
UDP:

CONTEXT [Network] SOURCE [SNIA]

Acronym for User Datagram Protocol. An Internet protocol that provides connectionless datagram delivery
service to applications. Abbreviated UDP. UDP over IP adds the ability to address multiple endpoints
within a single network node to IP.
Version 1.0.1 55

Glossary SNIA Storage Management Initiative Specification
UML Standards

SOURCE (DMTF)

Appendix D of the Common Information Model (CIM) Specification, V2.0 (March 3, 1998).

Class - represented by a rectangle.

The class name either stands alone in the rectangle or is in the uppermost segment. If present, the
segment below the segment containing the name contains the properties of the class. If present, a third
region indicates the presence of methods.

Lines indicate:

Inheritance relationships (blue lines with arrows) – Otherwise known as “is-a” relationships

Aggregation/component relationships (green lines with a diamond shape at the “aggregating” end) -
Otherwise known as “has-a” relationships

Dependency and other relationships (red lines) – Some of which are “uses-a” relationships

Relationship Labels - Inheritance relationships are not specifically labeled or named, while all other
associations are named.

Cardinality - the cardinalities of the references on both sides of an association are indicated by numeric
values or an asterisk (*) at the endpoints of the association

The following cardinalities are typically used in the CIM Schema:

0..1 - Indicates an optional single-valued reference

1 - Indicates a required, single-valued reference

1..n or 1..* - Indicates either a single or multi-valued reference, that is required*, 0..n or 0..* - Indicates an
optional, single or multi-valued reference

Required Reference - the object and the association MUST exist (or be instantiated) when the other
referenced class is defined.

Weak Reference – indicated by the symbol, “w”, indicates that the referenced endpoint or class is “weak”
with respect to the other class participating in the association. This means that the referenced class is
scoped or named relative to the other class, and the identifying keys of the other class are placed as
properties in the “weak” class.

Note that this is not standard UML convention, but an added symbol in CIM diagrams.

Universal Markup Language (UML)

CONTEXT [DMTF]

Refer to UML Standards
56 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary
URL:

CONTEXT [Networking]

Uniform Resource Locator.

User Agent (UA):

CONTEXT [SLP]

In the context of SLP, a process that attempts to establish contact with one or more services. A User Agent
retrieves service information from Service Agents or Directory Agents.

V
VAR:

CONTEXT [Business]

Value Added Remarketeer.

Volume Set:

CONTEXT [Storage System]

Synonym for virtual disk.

W
WAN:

CONTEXT [Network] SOURCE [SNIA]

Acronym for Wide Area Network. A communications network that is geographically dispersed and that
includes telecommunications links.

Weak Reference

SOURCE (DMTF)

Refer UML Standards.

WBEM:

CONTEXT [Management] SOURCE [SNIA]

Acronym for Web Based Enterprise Management. Web-Based Enterprise Management is an initiative in
the DMTF. Abbreviated WBEM. It is a set of technologies that enables interoperable management of an
enterprise. WBEM consists of CIM, an XML DTD defining the tags (XML encodings) to describe the CIM
Schema and its data, and a set of HTTP operations for exchanging the XML-based information. CIM
joins the XML data description language and HTTP transport protocol with an underlying information
model, CIM to create a conceptual view of the enterprise.
Version 1.0.1 57

Glossary SNIA Storage Management Initiative Specification
W3C:

CONTEXT [Networking]

World Wide Web Consortium.

X
XML:

CONTEXT [Standards] SOURCE [SNIA]

Acronym for eXtensible Markup Language. A universal format for structured documents and data on the
World Wide Web. Abbreviated XML. The World Wide Web Consortium is responsible for the XML
specification. cf. http://www.w3.org/XML/.

XML-CIM Listener:

SOURCE [CIM Operations over HTTP Specification, Version 1.1c]

A server application that receives and processes XML-CIM Export Message requests and issues CIM
Export Message responses.

XML-CIM Server

SOURCE(DMTF)

A Server that receives and processes XML-CIM Operation Requests and issues XML-CIM Operation
Responses.

Y

Z
Zone

CONTEXT [SAN]

A group of ports and switches that allow access. Defined by a zone definition. cf. Hard Zone, Soft Zone

SOURCE [FC-GS-3]

A collection of Zone Members. Zone Members in a Zone are made aware of each other, but not made
aware of devices outside the Zone. A Zone can be defined to exist in one or more Zone Sets.

Zone Definition

SOURCE [FC-GS-3]

The parameters that define a Zone: the Zone Name, number of Zone Members, and Zone Member
definition.
58 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary
Zone Member

SOURCE [FC-GS-3]

An N_Port (or NL_Port) to be included in a Zone, as specified by its Zone Member Definition. N_Ports at
well known addresses shall not be specified as Zone Members.

Zone Member Definition

SOURCE [FC-GS-3]

The parameter by which a Zone Member is specified. A Zone Member may be specified by:

a port on a Switch, (specifically by Domain_ID and port number); or,

the device’s N_Port_Name; or,

the device’s address identifier; or,

the device’s Node_Name.

Zone Set

SOURCE (FC-GS-3)

One or more Zones that may be activated or deactivated as a group.

Zone Set Name: The name assigned to a Zone Set.

Zone Set State: The state of a Zone Set, which may be either activated or deactivated.

Active Zone Set: The Zone Set that is currently activated. Only one Zone Set may be activated at any
time.
Version 1.0.1 59

SNIA Storage Management Initiative Specification
THIS PAGE INTENTIONALLY LEFT BLANK
60 Version 1.0.1

SNIA Storage Management Initiative Specification Overview
Clause 5: Overview

5.1 Base Capabilities
To achieve the architectural objectives and support the key technological trends in “Introduction”
on page 29, this document describes an object-oriented, XML-based messaging based interface
designed to support the specific requirements of managing devices in and through Storage Area
Networks. To quickly become ubiquitous, SMI-S seeks to the greatest extent possible to leverage
existing enterprise management standards like:

• The Distributed Management Task Force (DMTF) authored Common Information Model
(CIM) and Web Based Enterprise Management (WBEM) standards;

• The standards written by ANSI on Fibre Channel and SCSI;

• The World Wide Web Consortium (W3C) for standards on XML;

• The Internet Engineering Task Force (IETF) for standards on HTTP and SLP;

• The standards emerging from the Storage Networking Industry Association (SNIA) on volume
and array management.

5.1.1 Object Oriented
A hierarchy of object classes with properties (a.k.a. attributes) and methods (a.k.a. directives)
linked via the Universal Modeling Language (UML) modeling constructs of inheritance and
associations define most of the capabilities of the SMI-S. Figure 4: "SMI-S Modeling Conventions"
provides a simple example of UML using CIM classes for reference. implementors of this
specification are encouraged to consult one of the many publicly available texts on UML or the
uml.org web site (www.uml.org) to develop an understanding of UML. A brief tutorial on UML is
provided in the introduction material on the Clause on Object Model in this specification.

Each SMI-S server in a SAN provides one or more object classes (and related instances) to clients
for monitoring and control per Figure 4: "SMI-S Modeling Conventions".

Figure 4: SMI-S Modeling Conventions

Association

Dependency ManagedSystemElement

Name: string
Description: string
Caption: string
Status: string
InstallDate: datetime

Component

Description: string
Caption: string

ManagedElement

Aggregation
(a type of association)

Inheritance

Methods
Version 1.0.1 61

Overview SNIA Storage Management Initiative Specification
In Figure 5: "Object Model/Server Relationship", a SMI-S client obtains object classes and
instances that it can use to manage the storage. At this level of discussion, we have SMI-S
conformant WBEM Clients and Servers. The WBEM Servers have providers for the various
components that are responsible for the class and association instances that allow the underlying
component implementation to be managed.

A standard object oriented interface, together with a standard interface protocol, allows WBEM
Clients to discover, monitor, and control storage and network devices, regardless of the underlying
implementation of those devices.

The goal of this document is to clearly and precisely describe the information expected to be
available to a WBEM Client from an SMI-S compliant WBEM Service. It relies upon UML
diagrams, easy-to-use tables and machine-readable CIM compliant Managed Object Format
(MOF) (through the CIM model maintained at the DMTF). This is intended to ease the task of
client implementation and to ease the task of using existing WBEM Servers. It should be noted
that the MOF Interface Description Language is a precise representation of the object model in
this specification and developers are encouraged to learn this means of expression when
implementing this interface. Programmers implementing this interface should reference MOF
representations of the object model when faced with implementation decisions.

SMI-S compliant WBEM Servers SHALL provide instances in a manner conformant to one or
more SMI-S profiles (See “Profile Content” on page 98.). The object model supporting these
instances MAY be extended by the vendor as long as it remains conformant to the relevant SMI-S
profiles. Generally, vendor unique code SHALL be REQUIRED in a WBEM client to take
advantage of vendor defined model extensions. However regardless of the presence of vendor

Figure 5: Object Model/Server Relationship

Instance provided by indicated WBEM Service

Host

Array

Array Provider

General Purpose
LAN

Storage Area Network

Switch

Proprietary
Management

Service

WBEM Service

WBEM Service

Host Provider

HBA Provider

FileSystem
Provider

LogicalDisk
D

StorageVolume
A

StorageVolume
A

StorageVolume
A

StorageVolume
A

ProtocolControllerAccessUnit
62 Version 1.0.1

SNIA Storage Management Initiative Specification Overview
extensions, a generic WBEM client MAY leverage all SMI-S features defined for a supported
profile.

Figure 6: "Canonical Inheritance" illustrates this requirement.

Figure 6: "Canonical Inheritance" illustrates that even though a Fibre Channel Switch MAY only
report instances and allow associated method execution for certain objects, it SHALL, when asked
by a client to enumerate its Object Classes report the entire hierarchy of classes in its tree.
Similarly a server that instantiates an array controller MUST report the complete set of object
classes that links it to the base canonical object of the SMI-S model. It is this single canonical root
that allows any SMI-S client to discover, map, and operate upon the complete set of objects in a
given SAN.

The object model presented in this specification is intended to facilitate interoperability but not
limit the expression of unique features that differentiate manufacturers in the market For this
reason, the object model herein only serves as a”core” to compel multi-vendor interoperability. In
the interest of gaining a competitive advantage, a given vendor’s implementation of the interface
MAY include additional object classes, properties, methods, events, and associations around this
“core”. These vendor-unique extensions to the object model may, in select cases (e.g., extrinsic
methods), require the modification of client code above and beyond that required to support the
core.

5.1.2 Messaging Based
A messaging-based interface, rather than a more traditional procedure call interface, was selected
so that platform and language independence could be achieved across the breadth of devices,
clients, and manufacturers that may implement the interface. This messaging-based environment
also eases the task of transporting management actions over different communications transports
and protocols that may emerge as the computer industry evolves. An example fragment of an SMI-
S CIM-XML message is provided in Figure 7: "Sample CIM-XML Message".

Figure 6: Canonical Inheritance

Instances reported by EnumerateInstances

Classes that must be reported by EnumerateClasses

CIM Object Manager

CIM Object Manager Providers
(See Core Model)

ManagedElement

System

(See Core Model)

(See Core Model)

LogicalElement

ManagedSystemElement

(See Core Model)

(See Core Model)
Service

Dependency

Component

*
*

*
*

HostedService

*w

SystemComponent

*

* LogicalDevice

(See Core Model)

(See Device model)
LogicalPort

(See Core Model)

EnabledLogicalElement

*
SystemDevice

*w

Component

(See Core Model)

SystemComponent
(See Core Model)

SystemDevice

(See Core Model)

Dependency
(See Core Model)

HostedService
(See Core Model)

System

Instance = Sys1

Instance = Svc1

Service

HostedService

Instance = Port1

LogicalPort

SystemDevice

Instance = Svc2

Service Instance = Port2
LogicalPort

Instance = Port3
LogicalPort
Version 1.0.1 63

Overview SNIA Storage Management Initiative Specification
Figure 7: Sample CIM-XML Message
<!DOCTYPE CIM SYSTEM HTTP://www.dmtf.org/cim-v2.dtd/>
<CIMVERSION=”2.0” DTDVersion=”2.0”>

<CLASS NAME=”ManagedSystemElement”>
<QUALIFIER NAME=”abstract”></QUALIFIER>
<PROPERTY NAME=”Caption” TYPE=”string”>

<QUALIFIER NAME=”MaxLen” TYPE=”sint32”>
<VALUE>64</VALUE>

</QUALIFIER>
</PROPERTY>
<PROPERTY NAME=”Description” TYPE=”string”></PROPERT
<PROPERTY NAME=”InstallDate” TYPE="datetime”>

<QUALIFIER NAME=”MappingStrings” TYPE=”string”>
<VALUE>MIF.DMTF|ComponentID|001.5</VALUE>

</QUALIFIER>
</PROPERTY>
<PROPERTY NAME=”Status” TYPE=”string”>

<QUALIFIER NAME=”Values” TYPE=”string” ARRAY=”T
<VALUE>OK</VALUE>
<VALUE>Error</VALUE>
64 Version 1.0.1

http://www.dmtf.org/cim-v2.dtd/

SNIA Storage Management Initiative Specification
5.2 Capabilities Of This Version

5.2.1 Overview
This clause establishes requirements for this version of the SNIA Storage Management Initiative
Specification. These requirements are stated as a prioritized list of functional capabilities that are
provided by the interface. A compliant WBEM Client MUST be able to:

a. Receive asynchronous notification that the configuration of a SAN has changed.

b) Identify the health of key resources in a SAN.

c) Receive asynchronous notification that the health of a SAN resource has changed.

d) Identify the available performance of interconnects in a SAN.

e) Receive asynchronous notification that the performance of a SAN interconnect has changed.

f) Identify the zones being enforced in a SAN.

g) Create/delete and enable/disable zones in a SAN.

h) Identify the storage volumes in a SAN.

i) Create/delete/modify storage volumes in a SAN.

j) Identify the connectivity and access rights to Storage Volumes in a SAN.

k) Create/delete and enable/disable connectivity and access rights to Storage Volumes in a SAN.

l) Require the use of authenticated clients.

5.2.2 Determine and monitor the configuration of a SAN
Functional capabilities (a) - (c) allow a client to determine and monitor the configuration of a SAN.
The configuration of a SAN consists of the “key resources in a SAN” and the interconnections
between them. Functional capabilities (a) and (b) provide a means of establishing a baseline
configuration of a SAN, and functional capability (c) reduces the need for a client to poll the key
resources in a SAN for the purpose of monitoring the configuration of the SAN.

The key resources in a SAN include:

• Hosts

• Management Appliances

• Interconnection Devices, including switches, routers, etc.

• Storage Subsystems, including virtualization systems

• Storage Volumes

• HBAs and Ports

• Links

• Media Libraries

• Tape Drives

Note: No distinction is made between older (legacy) and newer key resources in a SAN; the SNIA
Storage Management Initiative Specification supports both.
Version 1.0.1 65

SNIA Storage Management Initiative Specification
5.2.3 Monitoring the health of key resources in a SAN
Functional capabilities (d) and (e) allow a client to monitor the ongoing health of the key resources
in a SAN. Functional capability (d) provides a means of establishing a baseline “health” reading
for each key resource in a SAN, and functional capability (e) reduces the need for a client to poll
the key resources in a SAN for the purpose of monitoring their ongoing health.

5.2.4 Monitoring the available performance of interconnections in a SAN
Similarly, functional capabilities (f) and (g) allow a client to monitor the ongoing available
performance of interconnections in a SAN. Functional capability #5 provides a means of
establishing a baseline available performance reading for each interconnection in a SAN, and
functional capability (g) reduces the need for a client to poll the available performance of
interconnections in a SAN for the purpose of monitoring their ongoing health.

5.2.5 Monitoring and controlling the zones in a SAN
Functional capabilities (h) and (i) allow a client to monitor and exercise control over the zones in a
SAN. This is the only functional capability that is specific to Fibre Channel SANs. (It is recognized
that this initial version of the SNIA Storage Management Initiative Specification only handles
Fibre Channel SANs.)

5.2.6 Discovering/monitoring/controlling the storage volumes in a SAN
Functional capabilities (j) and (k) allow a client to discover, monitor and exercise control over the
storage volumes. Functional capability (j) provides a way for clients to discover existing storage
volumes in a SAN, and functional capability (k) provides a means of changing the population and/
or characteristics of storage volumes in a SAN. The storage pools within storage arrays are not
specifically handled by functional capabilities here, since any necessary handling of such storage
pools is implied by functional capability (k).

Functional capabilities (l) and (m) allow a client to discover, monitor and exercise control over the
access of storage volumes in a SAN by other systems within the SAN.

5.2.7 Requiring authenticated clients in a SAN
Functional capability (n) allows a site to require clients to be authenticated before they are able to
access Server Management Interface Specification functionality.
66 Version 1.0.1

SNIA Storage Management Initiative Specification
5.3 Operational Environment

Figure 8: "Operational Environment" illustrates activities that either clients or servers need to
account for in or to provide facilities to support:

• The discovery of constituents in the managed environment.

• The discovery of object classes as well as related associations, properties, methods,
indications, and return status codes that are provided by servers in the managed
environment.

• The security or resources and communications in the environment.

• The locking of resources in the presence of non-cooperating clients.

• The marshalling/un-marshalling of communication messages.

• The execution of basic methods that are “intrinsic” to the construction, traversal, and
management of the object model provided by the distributed servers in a SAN.

• The execution of object specific “extrinsic” methods that provide clients the ability to change
the state of entities in the SAN.

Figure 8: Operational Environment

Constituent
Discovery

Service
Interface

(SLP)

Security
Services

Communications Transport

Object Model
Discovery and

Mapping
Client

Application
Policy

Wire Protocol

Client

Server

Message Marshalling/UnMarshalling

Intrinsic Methods
(Get/Set, Enumerate
Objects,/Instances)

Extrinsic Methods
(Create ZoneSet,

Modify LUNmask)

Communications Transport

Lock
Manager
Interface

Wire Protocol

Client

Server

Message Dispatching

Communications Transport

Message Marshalling/UnMarshallingConstituent
Discovery
Service
(SLP)

Security
Services

CIM Agent
Functions

Lock Manager
Functions

Dedicated
Agent

Device

CIMOM

Device
w/
Provider
Version 1.0.1 67

SNIA Storage Management Initiative Specification
In addition, to facilitate ease of installation, startup, expansion, and upgrade requirements for
implementations are specified for the developers of clients and servers.

5.4 Using This Specification
This specification is insufficient as a single resource for the developers of SMI-S clients and
servers. Developers are encouraged to first read the DMTF specifications on CIM, CIM Operations
over HTTP, and CIM-XML as well as obtaining familiarity with UML and the IETF specification
on Service Location Protocol (SLP).

A developer implementing SMI-S clients/servers should read this specification in sequence noting
that “Object Model” on page 73 is intended principally as a reference relative to the particular
device type that is being provided or managed in a SMI-S environment.

5.5 Language Bindings
As a messaging interface this specification places no explicit requirements for syntax or grammar
on the procedure call mechanisms employed to convert SMI-S messages into semantics
consumable by modern programming languages. The syntax and grammar used to express these
semantics is left at the discretion of each SMI-S developer.

Several open-source sources are available for programmers who wish to streamline the task of
parsing SMI-S messages into traditional procedure call semantics and using these semantics to
store object instances. Consult the WBEMsource initiative (http://wbemsource.org) for current
language bindings available to implement the SMI-S interface.
68 Version 1.0.1

SNIA Storage Management Initiative Specification Transport and Reference Model
Clause 6: Transport and Reference Model

6.1 Introduction

6.1.1 Overview
The interoperable management of storage devices and network elements in a distributed storage
network requires a common transport for communicating management information between
constituents of the management system. This section of the specification details the design of this
transport, as well as the roles and responsibilities of constituents that use the common transport
(i.e., a reference model).

6.1.2 Language Requirements
To express management information across the interface a language is needed that:

• Can contain platform independent data structures.

• Is self describing and easy to debug.

• Can be extended easily for future needs.

The World Wide Web Consortium’s (W3C) Extensible Markup Language (XML) was chosen for the
language to express management information and related operations, as it meets the
requirements above.

6.1.3 Communications Requirements
Communications protocols to carry the XML based management information are needed that:

• Can take advantage of the existing ubiquitous IP protocol infrastructures.

• Can be made to traverse inter- and intra-organizational firewalls.

• Can easily be embedded in low cost devices.

The Hyper Text Transport Protocol (HTTP) was chosen for the messaging protocol and TCP was
chosen for the base transfer protocol to carry the XML management information for this interface
as it meets the requirements above.

6.1.4 XML Message Syntax and Semantics
In order to be successful, the expression of XML management information (messages) across this
interface MUST follow consistent rules for Semantics and Syntax. These rules are of sufficient
quality, extensibility, and completeness to allow their wide adoption by storage vendors and
management software vendors in the industry. In addition, to facilitate rapid adoption, existing
software that can parse, marshal, un-marshal, and interpret these XML messages should be
widely available in the market such that vendor implementations of the interface are accelerated.
The message syntax and semantics selected should:

• Be available on multiple platforms.

• Have software implementations that are Open source (i.e., collaborative code base).

• Have software implementations available in Java and C++.

• Leverage industry standards where applicable.

• Conform with W3C standards for XML use.

• Be object model independent (i.e., be able to express any object model)
Version 1.0.1 69

Transport and Reference Model SNIA Storage Management Initiative Specification
Virtually the only existing industry standard in this area is the WBEM standards CIM Operations
over HTTP and Specification for the Representation of CIM in XML as developed and maintained
by the DMTF. The WBEMsource initiative is a collaboration of open source implementations,
which can be leveraged by storage vendors to prototype, validate, and implement this interface in
products. Specifically designed for transporting object model independent management
information, the CIM-XML message syntax was chosen because it meets the requirements of the
storage industry as enumerated above. This specification augments the capabilities of CIM-XML in
the area of discovery to facilitate ease of management.

6.2 Transport Stack
The complete transport stack for this interface is illustrated below in Figure 9: "Transport Stack".
It is the primary objective of this interface to drive seamless interoperability across vendors as
communications technology and the object model underlying this interface evolves in time. Thus, it
should be noted that the transport stack has been layered such that (if required) other protocols
can be added as technology evolves. For example, should SOAP or IIOP become prominent the
content in the stack below can be expanded with minimal changes to existing product
implementations in the market.

Again, this interface uses two specifications from the DMTF to fully implement the message
syntax and semantics for this interface.

The first specification, CIM Operations over HTTP, Version 1.1 details a basic set of directives
(Semantics) needed to manage any schema over HTTP. The requirement for this basic set of
directives is common to nearly to all management frameworks (e.g., create object, delete object,
create instance, and delete instance). This class of directive is referred to in this document as
“intrinsic methods”. CIM Operations over HTTP also provides a client the ability to execute
directives that are unique to the specification of a particular object class within a schema
(example: chop <method>, apple <object-class>). This class of directive is referred to in this
specification as “extrinsic methods”.

The second specification, Specification for the Representation of CIM in XML, Version 2.1 details
the precise W3C compliant syntax and grammar for encoding CIM into XML.

While some vendors may choose alternate transfer and message protocols for unique
implementations, implementations of the transport stack elements listed above are REQUIRED
for conformance with this standard.

It should be noted that this specification places no restriction on the physical network selected to
carry this transport stack. For example, a vendor can choose to use in-band communication over
Fibre-channel as the backbone for this interface. Another vendor could exclusively (and wisely)
choose out-of-band communication over Ethernet to implement this management interface.
Additionally, select vendors could choose a mix of in-band and out-of-band physical network to
carry this transport stack.

Figure 9: Transport Stack

Transfer Protocol: TCP/IP

Messaging Protocol: http

Message Semantics: CIM operations over http

Message Syntax: xmlCIM Encoding
Object Model Independence

Transfer Protocol Independence

Message Protocol Independence
70 Version 1.0.1

SNIA Storage Management Initiative Specification Transport and Reference Model
6.3 Reference Model

6.3.1 Overview
As shown below in Figure 10: "Reference Model", the Reference Model shows all possible
constituents of the management environment in the presence of the transport stack for this
interface.

Figure 10: "Reference Model" illustrates that the transport for this interface uses CIM Operations
over HTTP with xmlCIM encoding and HTTP/TCP/IP to execute intrinsic and extrinsic methods
against the schema for this interface.

Note: It is envisioned that a more complete version of this reference model would include the Lock
Manager. However, the Lock Manager in SMI-S Release 1 is preliminary and subject to
change. As a result, it is shown as a dotted box to illustrate where the role would fit.

6.3.2 Roles for Interface Constituents

6.3.2.1 Client
A Client is the consumer of the management information in the environment. It provides an API
(language binding in Java or C++ for example) for overlying management applications (like
backup engines, graphical presentation frameworks, and volume managers) to use.

6.3.2.2 Agent
An agent is a CIM Server. It MUST implement those functional profiles, as defined in the DMTF
specifications, necessary to satisfy the SMI-S profile with which it conforms. Often, an agent only
controls only one device or subsystem and is incapable of providing support for complex intrinsic

Figure 10: Reference Model

Client

Device or
Subsystem

Agent

Proxy Model

Proprietary or
Legacy

0…n

0…n

Agent

Embedded Model

0…n

Object Manager

Proxy Model
Device

Proprietary or
Legacy

0…n

Lock
Manager

0…n

1

1
n

Provider 0..n

1

XML - CIM + CIM operations
 TCP/I

Device or
Subsystem

Device or
Subsystem

Directory
Server

0…n
Version 1.0.1 71

Transport and Reference Model SNIA Storage Management Initiative Specification
methods like schema traversal. An agent can be embedded in a device (like a Fibre Channel
Switch) or provide a proxy on a host that communicates to a device over a legacy or proprietary
interconnect (like a SCSI based array controller).

Embedding an agent directly in a device or subsystem reduces the management overhead of a
customer and eliminates the requirement for a stand-alone host (running the proxy agent) to
support the device.

Embedded agents are the desired implementation for “plug and play” support in an SMI-S
managed environment. However, proxy agents are a practical concession to the legacy devices that
are already deployed in storage networked environments. In either case, the minimum CIM
support for agents applies to either agent deployments.

6.3.2.3 CIM Server
A CIM Server is an object manager that serves management information from one or more devices
or underlying subsystems through providers. As such an Object Manager is an aggregator that
enables proxy access to devices/subsystems and can perform more complex operations like schema
traversals. An object manager typically includes a standard provider interface to which device
vendors adapt legacy or proprietary product implementations.

6.3.2.4 Provider
A provider expresses management information for a given resource such as a storage device or
subsystem exclusively to a CIM Server. The resource MAY be local to the host that runs the Object
Manager on or MAY be remotely accessed through a distributed systems interconnect.

6.3.2.5 Lock Manager
This version of the specification does not support a lock manager.

6.3.2.6 Directory Server
A directory server provides a common service for use by clients for locating services in the
management environment.

6.3.3 Cascaded Agents
This specification discusses constituents in the SMI-S environment in the context of Clients and
Servers (Agents and Object Managers). This version of the specification does not allow
constituents in a SMI-S management environment to function as both client and server.
72 Version 1.0.1

SNIA Storage Management Initiative Specification Object Model
Clause 7: Object Model

7.1 Model Overview (Key Resources)

7.1.1 Overview
The SMI-S object model is based on the Common Information Model (CIM), developed by the
DMTF. The Version 1 SMI-S Object Model is based on the 2.8 revision of the CIM schema. For a
more complete discussion of the full functionality of CIM and its modeling approach, see http://
www.dmtf.org/standards/standard_cim.php.

Readers seeking a more complete understanding of the assumptions, standards and tools that
assisted in the creation of the SMI-S object model are encouraged to review the following:

• CIM Tutorial
(http://www.dmtf.org/education/cimtutorial/index.php)

• CIM UML Diagrams and MOFs
(http://www.dmtf.org/standards/standard_cim.php)

• CIM System / Device Working Group Modeling Storage
(http://www.dmtf.org/standards/published_documents.php)

Managed Object File (MOF) is a way to describe CIM object definitions in a textual form. A MOF
can be encoded in either Unicode of UTF-8. A MOF can be used as input into an MOF editor,
parser or compiler for use in an application.

The SMI-S model is divided into several profiles, each of which describes a particular class of SAN
entity (such as disk arrays or FibreChannel Switches). These profiles allow for differences in
implementations but provide a consistent approach for clients to discover and manage SAN
resources. IN DMTF parlance, a provider is the instrumentation logic for a profile. In many
implementations, providers operate in context of a CIM Server that is the infrastructure for a
collection of providers. A WBEM client interacts with one or more WBEM Servers.

7.1.2 Introduction to CIM UML Notation
CIM diagrams use a subset of Unified Modeling Language (UML) notation.

Most classes are depicted in rectangles. The class name is in the upper part and
properties (also known as attributes or fields) are listed in the lower part. A third subdivision
added for methods, if they are included. A special type of class, called an association, is used to
describe the relationship between two or more CIM classes

Three types of lines connect classes.

The CIM documents generally follow the convention of using blue arrows for inheritance, red lines
for associations and green lines for aggregation. The color-coding makes large diagrams much easier
to read but is not a part of the UML standard.

PhysicalPackage

Inheritence

Association

Aggregation
Version 1.0.1 73

Object Model SNIA Storage Management Initiative Specification
The ends of some associations have numbers (cardinality) indicating the valid count of object
instances. Cardinality is expressed either as a single value (such as 1), or a range of values (0..1 or
1..4);“*” is shorthand for 0..n.

Some associations and aggregations are marked with a “W” at one end indicating that the identity
of this class depends on the class at the other end of the association. For example, fans may not
have worldwide unique identifiers; they are typically identified relative to a chassis.

This document uses two other UML conventions.

The UML Package symbol is used as a shortcut representing a group of classes that work
together as an entity. For example, several classes model different aspects of a disk drive. After
the initial explanation of these objects, a single disk package symbol is used to represent the entire
group of objects.

Schema diagrams include all of a profile’s classes and associations; the class hierarchy is included
and each class is depicted one time in the schema diagram. Instance diagrams also contain classes
and associations but represent a particular configuration; multiple instances of an object may be
depicted in an instance diagram. An instance may be named with an instance name followed by a
colon and a class name (underlined). For example,

represent an array and a switch – two instances of <COMPUTER SYSTEM> objects.

7.2 Techniques

7.2.1 CIM Fundamentals
This section provides a rudimentary introduction to some of the modeling techniques used in CIM,
and is intended to speed understanding of the SMI-S object model.

Associations as Classes
CIM presents relationships between objects with specialized classes called associations and
aggregations. In addition to references to the related objects, the association or aggregations may
also contain domain-related properties. For example, “ControlledBy” associates a controller and a
device. There is a many-to-many cardinality between controllers and devices (i.e., a controller may
control multiple devices and multi-path devices connect to multiple controllers); each controller/
device connection has a separate activity state. This state corresponds to the AcccessState
property of “ControlledBy” association linking the device and the controller.

Logical and Physical Views
CIM separates physical and logical views of a system component, and represents them as different
objects – the “realizes” association ties these logical and physical objects together.

Identity
Different agents may each have information about the same organic object and may need to
instantiate different model objects representing the same thing. Access control is one example: a
switch zone defines which host device ports may access a device port. The switch agent creates
partially populated port objects that are also created by the HBA and storage system agents. The
ConcreteIdentity association is used to indicate the associated object instances are the same thing.
ConcreteIdentity is also used as a language-independent alternative to multiple inheritance. For
example, a FibreChannel port inherits from a generic port and also has properties of a SCSI

DIsk1

Array: ComputerSystem Switch: ComputerSystem
74 Version 1.0.1

SNIA Storage Management Initiative Specification Object Model
controller. CIM models this as “FCPort” and “ProtocolController” objects associated by
ConcreteIdentity.

Redundancy Groups
CIM models redundancy with an object representing the group of redundant objects. The
“RedundancySet” subclass objects serve as a handle for operations on the entire group. The group
can then be used in associations to the collection as an abstract entity. For example, a spare disk is
associated with a “RedundancySet”.

Extensibility
CIM makes allowances for additional values in enumerations that were not specified in the class
Derivation by adding a property to hold arbitrary additional values for an enumeration. This
property is usually named OtherXXXX (where XXXX is the name of the enumeration property)
and specifying “other” as the value in the enumeration property indicates its use. For an example
see the ConnectorType and OtherTypeDescription properties of CIM_Slot in the CIM_Physical MOF.

Value/ValueMap Arrays
CIM uses a pair of arrays to represent enumerated types. ValueMap is an array of integers; Values
is an array of strings that map to the equivalent entry in ValueMap. For example, PrinterStatus (in
the CIM_Device MOF) is defined as follows:

 ValueMap {“1”, “2”, “3”, “4”, “5”, “6”, “7”},
 Values {“Other”, “Unknown”, “Idle”, “Printing”, “Warm-up,
 “Stopped Printing”, “Offline”},

A status value of 6 means “Stopped Printing”. A client application can automatically convert the
integer status value to a human-readable message using this information from the MOF.

Return Codes
When a class definition includes a method, the MOF includes Value/ValueMap arrays representing
the possible return codes. These values are partitioned into ranges of values; values from 0 to
0x1000 are used for return codes that may be common to various methods. Interoperable values
that are specific to a method start at 0x1001; and vendor-specific values may be defined starting at
0x8000. Here’s an example of return codes for starting a storage volume.

 ValueMap {“0”, “1”, “2”, “4”, “5”, “.”, “0x1000”,
“0x1001”, “…”, “0x8000..”},
 Values {“Success”, “Not Supported”, “Unknown”, “Time-out,
“Failed”, “Invalid Parameter”, “DMTF_Reserved”,
“Method parameters checked - job started”,
“Size not supported”,
“Method_Reserved”, "Vendor_ Specific"}]

Model Conventions
This is a summary of objects and associations that are common to multiple profiles.

ComputerSystem: Most SAN products are modeled as ComputerSystem. The term “cluster” is used
for systems with multiple loosely coupled processors; the individual processors known as
“component” ComputerSystems. A cluster is modeled with a ComputerSystem; ConcreteIdentity
associates the cluster ComputerSystem and a RedundancySet that aggregates the component
ComputerSystems. A ComputerSystem’s dedicated property describes the functions provided
Version 1.0.1 75

Object Model SNIA Storage Management Initiative Specification
by a system (e.g., host, storage system, switch).

“PhysicalPackage” represents the physical storage product. “PhysicalPackage” MAY be sub-
classed to “ChangerDevice”, but “PhysicalPackage” accommodates products deployed in multiple
chassis.

“Product” models asset information including vendor and product names. “Product” is associated
with “PhysicalPackage”.

“SoftwareElement” models firmware and optional software packages. “InstalledSoftwareElement”
associates “SoftwareElement” and “ComputerSystem”, “DeviceSoftware” associates
“SoftwareElement” and “LogicalDevice”s (a superclass of devices and ports).

“Service” models a configuration interface (for example, a switch zoning service or an array access
control service). Services typically have methods and properties describing the capabilities of the
service. A storage system may have multiple services; for example, an array may have separate
services for LUN Masking and LUN creation. A client can test for the existence of a named service
to see if the agent is providing this capability.

“LogicalDevice” (for example, FCPort) is a superclass with device subclasses (like and DiskDrive
and TapeDrive) and also intermediate nodes like Controller and FCPort. Each LogicalDevice
subclass MUST be associated to a ComputerSystem with a SystemDevice aggregation. Due to the
large number of LogicalDevice subclasses, SystemDevice aggregations are often omitted in
instance diagrams in this specification.

Figure 11: Cluster Model

ComputerSystemComputerSystem

MyCluster:
ComputerSystem

ExtraCapacitySet

ConcreteIdentity

MemberOfCollection
ComponentCS ComponentCS
76 Version 1.0.1

SNIA Storage Management Initiative Specification Object Model
The following diagram combines these common elements; this combination is used in several of the
profiles.

This specification covers many common storage models and management interfaces, but some
implementations include other objects and associations not detailed in the specification. In some
cases, these are modeled by CIM schema elements not covered by this document. When vendor-
specific capabilities are needed, they SHOULD be modeled in subclasses of CIM objects. These
subclasses MAY contain vendor-specific properties and methods and vendor-specific associations
to other classes.

7.2.2 Modeling Profiles
In addition to modeling SAN components, SMI-S servers MUST model the profiles they provide.
This information is used two ways:

• Clients can quickly determine which profiles are available

• An SLP component can query the SMI-S Server and automatically determine the appropriate
SLP Service Template information (see “Service Discovery” on page 485, and Table 2 on
page 77)

Figure 12: Common Elements

Table 2: SLP Properties

Property Name Use

SupportedRegisteredProfiles Defines the organization defining the profile, the
RegisteredProfile and RegisteredSubprofile. Setting this
to “SNIA” indicates that one of the SNIA SMI-S profiles
applies

ComputerSystem

FCPort Service

HostedServiceSystemDevice

SoftwareElement

Installed
SoftwareElement

ComputerSystemPackage

PhysicalPackage Product

ProductPhysicalComponent

*

Version 1.0.1 77

Object Model SNIA Storage Management Initiative Specification
A client can traverse the Server Profile in each SMI-S server to see which Profiles (and objects)
claim SMI-S compliance.

The RegisteredProfile describes the profiles that a CIM Server claims are supported. The
RegisteredSubprofile is used to define the optional features supported by the system being
modeled. A client can traverse the associations in the Server Profile see which Profiles and
subprofiles claim SMI-S compliance.

7.2.3 Naming
There MAY be multiple SMI-S Servers in any given storage network environment. It is not
sufficient to think of the name of an object as just the combination of its key values. The name also
serves to identify the Server that is responsible for the object. The name of an object (instance)
consists of the Namespace path and the Model path. The Namespace path provides access to a
specific SMI-S server implementation and is used to locate a particular namespace within a
Server. The Model path provides full navigation within the CIM Schema and is the concatenation
of the class name and key-qualified properties and values.

The namespace has special rules. It SHOULD uniquely identify a SMI-S Server. However, a SMI-
S Server MAY support multiple namespaces. How an implementation defines Namespaces within
a SMI-S server is not restricted. However, to easy interoperability SMI-S implementations
SHOULD manage all objects within a Profile in one Namespace.

Figure 13: Server Profile Instance Diagram

Name (InstanceID)
ElementName

ObjectManager

[Propagated Keys]
CreationClassName
Name
ClassInfo
DescriptionOfClassInfo

Namespace

[Default CommunicationMechanism = "XML over HTTP"]
CIMValidated

CIMXMLCommunictionMechanism

Namespace
InManager CommMechanismForManager

InstanceID
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes[]
AdvertiseTypeDescriptoins[]

RegisteredProfile

InstanceID
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes[]
AdvertiseTypeDescriptoins[]

RegisteredSubProfile

InstanceID
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes[]
AdvertiseTypeDescriptoins[]

RegisteredSubProfile

SubProfile
RequiresProfile

SubProfile
RequiresProfile

ManagedElement
(e.g., System)

ElementConformsToProfile

SystemHostedService

ReferencedProfile
78 Version 1.0.1

SNIA Storage Management Initiative Specification
7.2.4 Durable Names

7.2.4.1 Overview
Management applications need to read and write information about managed objects in multiple
CIM namespaces. When an object in one namespace is associated with an object in another
namespace, each namespace MAY represent some amount of information about the same managed
resource using different objects. A management application needs a way to understand when
objects in different namespaces represent the same managed resource. A unique common
identifier, referred to as a durable name, is designated as a required property for any objects
representing managed resources that might be “seen” from multiple points of view. These durable
names SHOULD be used by a management application for object coordination.

Durable names thus provide a means of reliably “stitching together” information from multiple
sources about the same managed resource in a SAN. They also provide a means of stitching
together information obtained at different points in time, such as when a managed resource is
returned to a SAN after having been removed for some period of time.

A necessary technique associated with durable names involves the use of the NameFormat
property. CIM key-value combinations are unique across all instances of a class within a single
namespace, but CIM does not fully address cases where different types of identifiers are possible
on different instances of an object. It is therefore necessary to ensure that multiple sources of
information about managed resources use the same approach for forming durable names whenever
different types of identifiers are possible.

Figure 14: Volume Group Shared Across Namespaces

Dedicated:uint16
Roles:string[];

ComputerSystem

Name [Blue System Name Space]: /dev/vg01
Name [Red System Namespace]: /dev/oracle_volumes
DeviceID string [key] = VGID = UNIQUE accross
namespaces

VolumeGroup

Dedicated:uint16
Roles:string[];

ComputerSystem

RED NAMESPACE

BLUE NAMESPACE
Version 1.0.1 79

SNIA Storage Management Initiative Specification
When different types of identifiers are possible, objects requiring durable names MUST support a
NameFormat property that selects one of a set of prescribed strings that define valid identifier
types for the class. Each valid identifier type for a class is included as a separate property of an
object. If an implementation instantiating such an object does not support certain identifier types,
then those properties MUST be left blank. For each class, a preferred order is established for
setting the NameFormat property to one of the non-blank valid identifier types, resulting in a
consistent approach for forming a durable name for the object.

Durable names are REQUIRED for the following objects:

• StorageVolume

• FCPort

• Fabric (AdminDomain)

• ComputerSystem objects with the following roles

• Host

• Management Appliance

• CIM Server

• Switch

• Router

• Bridge

• Extender

• Block Server

• Virtualization Appliance

• StorageLibrary Server

• Enclosure Service

Note that CIM keys and durable names are not tightly coupled. For some classes, they may be the
same thing, but this is not required as long as all durable names are unique and management
applications can determine when objects in different namespaces are providing information about
the same managed resource in a SAN. In the cases where CIM keys and durable names are not the
same thing, multiple CIM operations may be required to satisfy asset management use cases.

Storage Virtualization crosses different name spaces: Host virtualization layer may provide
Logical Volumes that are based on Storage Volumes exported by a Virtualization Appliance that,
in turn, may use Storage Volumes exported by RAID array. Management applications and clients
can use the durable names defined in this section for unique identification of objects that cross
name space boundaries.

The common types of information used for durable names include SCSI Device Identifiers from the
Inquiry Vital Product Data Page #83, Fibre Channel World Wide Names, Fully Qualified Domain
Names, and IP Address information. The details for each class requiring durable names are
provided in the Profiles section of this document.

An overview of the information used to form durable names for objects is as follows:
80 Version 1.0.1

SNIA Storage Management Initiative Specification
7.2.4.2 Durable Names Formation

• StorageVolume: StorageVolume.Name - Multiple valid identifier types exist and
NameFormat MUST be used. For Array and Virtualization system exported Storage
Volumes, durable names are based upon SCSI mode page information. In the case of Storage
Volumes created by Host Virtualization (LVM) that do not have VPD page 83, the Name
property and LVID (Logical Volume ID) serve as a durable name.

• FCPort: FCPort.PermanentAddress - Usually the Fibre Channel World Wide Name for the
port. See Table 148, “Required Properties for FCPort,” on page 284.

• Fabric: AdminDomain.Name - Multiple valid identifier types exist and NameFormat
MUST be used. In Fibre Channel, this name is based on World Wide Name of the principal
switch. Note that this durable name MAY change under some circumstances, such as when
the Fibre Channel fabric is partitioned or when the principal switch in a fabric fails.

• PhysicalPackage: Concatenation of PhysicalPackage properties: Manufacturer, Model, and
SerialNumber. See Table 3, “Standardized Name Formats,” on page 82 for required format of
this concatenated durable identifier.

• ComputerSystem (roles “Switch”, “Router”, “Bridge”, “Extender”, “Enclosure Service” (SES)):
ComputerSystem.Name - Multiple valid identifier types exist and NameFormat MUST be
used. Durable names are based upon a unique identifier native to the interconnect system.
For FibreChannel, this would be a Fibre Channel World Wide Name.

• ComputerSystem: (roles “Block Server”, “StorageLibrary”): ComputerSystem.Name -
Multiple valid identifier types exist and NameFormat MAY be used. Durable names are
based upon Fibre Channel World Wide Names or IP Address information. Note that when
Fibre Channel World Wide Names are used, the durable name MAY be a list of Fibre Channel
World Wide Names.

• ComputerSystem: (roles “Host”, “Virtualization Appliance”, “CIM Server”):
ComputerSystem.Name - Multiple valid identifier types exist and NameFormat MAY be
used. Durable names MUST be based upon fully-qualified domain name (DNSName) or IP
Address information (See Table 3, “Standardized Name Formats,” on page 82). Note that
these IDs MAY be administratively changed; a ComputerSystemPackage association with an
appropriate PhysicalPackage or subclass MAY be used to satisfy asset management use cases,
(see PhysicalPackage above).

• SCSI Controller: (SCSI Controller.Name) Durable names are not required for
ProtocolController objects. This is because in Fibre Channel there exists a one-to-one
relationship between ProtocolController objects and corresponding FCPort objects. Since
FCPort objects have durable names, ProtocolController object instances can be unambiguously
identified using the association to the corresponding FCPort object instance.

7.2.4.3 Testing Equality of Durable Names
For objects that do not require the use of the NameFormat property, a simple direct comparison is
sufficient, providing the format for the required durable name (identified in this section or the
specific profile) is adhered to.

For objects that do require the use of the NameFormat property, the durable names of objects
representing the same entity should compare positively, negatively, or indicate clearly when a
comparison is ambiguous. Using both the Name and NameFormat properties, the recommended
algorithm for determining equality is as follows:

Consider two managed objects A and B:

method equalsByDurableName(A,B) {
Version 1.0.1 81

SNIA Storage Management Initiative Specification
 if ((A.NameFormat eq 'Unknown') or
 (B.NameFormat eq 'Unknown'))
 {
 return AMBIGUOUS
 }
 if ((A.NameFormat eq 'Other') or
 (B.NameFormat eq 'Other'))
 {
 return AMBIGUOUS
 }
 if (A.NameFormat eq B.NameFormat) {
 if (A.Name eq B.Name) {
 return EQUAL
 } else {
 return NOT_EQUAL
 }
 } else {
 return AMBIGUOUS
 }
}

Where “eq” is a string equals operator. This reduces the possibility that a match will be missed by
a string equals comparison simply because of an incompatibility of formats rather than non-
equality of the data.

7.2.4.4 Standard Formats for Durable Names
It is important that durable names are used and formatted consistently and are based on a
standard set of allowed NameFormat strings. Also, for each NameFormat, the Name string format
need to be clearly specified to avoid ambiguous or inconsistent implementations. While each profile
MUST use the name formats defined below if they are sufficient, a specific profile MAY extend the
specification to add formats profile-specific. Standardized name formats currently defined are
shown below.

Table 3: Standardized Name Formats

Description NameFormat Format of Name

An IP interface's v4
IP address

'IPAddressV4' Four decimal bytes delimited with dots ('.')

An IP interface's v6
IP address

'IPAddressV6' ‘x:x:x:x:x:x:x:x’, where the 'x's are the uppercase
hexadecimal values of the eight 16-bit pieces of the
address.
Examples:
‘FEDC:BA98:7654:3210:FEDC:BA98:7654:321
0’, ‘1080:0:0:0:8:800:200C:417A’
Leading zeros in individual fields should not be
included and there MUST be at least one numeral in
every field. (This format is compliant with RFC
2373.) In addition, omitting groups of zeros or using
dotted decimal format for an embedded IPv4
address is prohibited.
82 Version 1.0.1

SNIA Storage Management Initiative Specification
An IP interface's
MAC

'MACAddress' Six upper case hex bytes, bytes are delimited by
colons ':'

The DNS Name of a
TCP/IP node

'DNSName' A legal DNS name (fully qualified) consisting of
strings delimited by periods.

World Wide Name 'WWN' 16 un-separated upper case hex digits (e.g.
'21000020372D3C73')

Concatenation of
Vendor,Product,Seri
alNumber

‘Vendor+Product+Serial’ 3 strings representing the vendor name, product
name within the vendor namespace, and serial
number within the model namespace. Strings are
delimited with a ‘+’ and spaces are included. Note
that Vendor and Product are fixed length: Vendor ID
is 12 bytes, Product is 16 bytes. SerialNumber is
variable length and can be up to 252 bytes in length.

The durable name
format is not known

'Unknown' 'Unknown'

A durable name
format not defined
by this specification.

'Other' free format

Logical Identifiers

VPD page 83 LU
identifier type 3h,
Association=0, NAA
0101b

VPD83NAA6
recommended format (8 bytes long) when the ID is
directly associated with a hardware component

VPD page 83 LU
identifier type 3h,
Association=0, NAA
0110b

VPD83NAA6 recommended format (16 bytes long) when IDs are
generated dynamically

VPD page 83 LU
identifier type 3h,
Association=0, NAA
0010b

VPD83NAA2

VPD page 83 LU
identifier type 3h,
Association=0, NAA
0001b

VPD83NAA1

VPD page 83 LU
identifier type 2h,
Association=0

VPD83Type2

VPD page 83 LU
identifier type 1h,
Association=0

VPD83Type1

Table 3: Standardized Name Formats (Continued)

Description NameFormat Format of Name
Version 1.0.1 83

SNIA Storage Management Initiative Specification
Note: The ‘+’ concatenation delimiter is included in the Vendor+Product+Serial name format even
though it is not necessary given that the first two strings are fixed length.

7.2.4.5 Case Sensitivity
Names and NameFormats are case sensitive and the cases provided in the table above should be
used.

7.2.4.6 Preferred Durable Names
For various reasons, some Agents and Providers may not have access to the preferred durable
name of a managed object. Because of this, each Profile defines a preferred order of alternate
durable names, if any, to maximize the possibility of a secondary match. This also helps alias
matches (when a managed object is known by multiple durable names) to be found more efficiently
if aliases matching is supported in future versions of the spec. In cases where an Agent or Provider
is unable to use any of the existing durable names defined here or in the Profile, a NameFormat of
'Other' should be used as shown above. In cases where no durable name information is known to
the Agent or Provider, both the Name and NameFormat fields may take on the value of
'Unknown'.

Note that secondary name matches using an alternate name format are not guaranteed, since this
specification does not provide mapping between alternate name formats. Use of alternate name
formats should be done with care to avoid having two CIM object instances that represent the
same underling entity.

7.2.4.7 Concatenation
Sometimes, it may be necessary to concatenate multiple formatted names to create a durable
name. In this case, both the NameFormat and the Name should contain those strings delimited
with a plus sign character '+'. If the strings being concatenated contain this delimiter character,
this character should be escaped with a backslash '\'.

VPD page 83 LU
identifier type 0h,
Association=0

VPD83Type0

VPD page 80 LU
serial Vendor +
Product + serial
number

VPD80 only if serial number refers to devices rather than
the enclosure

Standard Inquiry
Vendor + Product +
serial number +
LUN

INQVS Vendor-specific - first 8 bytes of Vendor-Specific
field

FC Node WWN NodeWWN if target has a single LUN

Table 3: Standardized Name Formats (Continued)

Description NameFormat Format of Name
84 Version 1.0.1

SNIA Storage Management Initiative Specification
7.2.5 Events – CIM Indications

7.2.5.1 Background
Indications are the mechanism used to accomplish the following functional capabilities in SMI-S
(from the list of SMI-S capabilities, clause 1.2):

• Allow a client to receive asynchronous notification that the configuration of a SAN has
changed.

• Allow a client to receive asynchronous notification that the health of a SAN resource has
degraded.

• Allow a client to receive asynchronous notification that the performance of a SAN
interconnect has degraded.

CIM Indications are described in a DMTF white paper, “Common Information Model Indications”,
which can be obtained from the education subsection of the DMTF web site (www.dmtf.org).

Indications are also used in place of non-blocking methods for long-running operations. In most
cases, the operation requested in a method completes quickly, the return status from the method
indicates the status of the operation. When a long-running operation (such as RAID volume
creation) is requested, the method return code indicates whether the operation started
successfully; an indication is sent when the operation is complete. Information on the indication is
included in the profile whenever long-running operations are implemented.

7.2.5.2 Using indications
Clients request indications to be sent to them by subscribing to the indications. Subscriptions are
stored in CIMOM as CIM object instances. A Subscription is expressed by the creation of a
IndicationSubscription association instance that references a IndicationFilter (a filter) instance, and a
Version 1.0.1 85

SNIA Storage Management Initiative Specification
IndicationHandler (a handler) instance. A Filter contains the query that selects an indication class
or classes.

Filters can be created by indication consumers (e.g. SMI-S Clients) or indication providers (e.g.
SMI-S Agents). The client would create these using CreateInstance intrinsic method.

The query property of the IndicationFilter is a string that specifies which indications are to be
delivered to the client. There is also a query language property that defines the language of the
query string. Example query strings are:

“SELECT * FROM CIM_AlertIndication”

“SELECT * FROM CIM_InstModification WHERE SourceInstance ISA CIM_ComputerSystem”

AlertIndication and InstModification are types of indications (see the following section). The first
query says to deliver all alert type indications to the client, and the second query says to deliver all
instance modification indications to the client, where the instance being modified is a
ComputerSystem (or any subclass thereof).

Figure 15: indications Filters Schema

Dependency **
Description: string
Caption: string

ManagedElement

IndicationFilter

SystemCreationClassName: string [Key]
SystemName: string [Key]
CreationClassName: string [Key]
Name: string [Key]
SourceNamespace: string
Query: string [Required]
QueryLanguage: string [Required]

IndicationHandler

SystemCreationClassName: string [Key]
SystemName: string [Key]
CreationClassName: string [Key]
Name: string [Key]
Owner: string

IndicationHandlerXMLHTTP

Destination: string [Required]

IndicationSubscription

*
*

86 Version 1.0.1

SNIA Storage Management Initiative Specification
IndicationHandler specifies the means of delivering indications to the client. The subclass
IndicationHandlerXMLHTTP provides for XML encoded indications to be sent to a specific URL,
which is specified as a property of that class.

When a client receives an indication, it may receive some information with the indication, and
then need to do additional queries to determine all of the consequences of the event. To the extent
possible, all relevant information SHOULD be put in the indication.

7.2.5.3 Indication hierarchy
Indications are grouped in three broad categories, ClassIndication, InstIndication, and
ProcessIndication (Figure 16: "Indications Schema").

A ClassIndication is delivered in response to the creation, deletion, or modification of a class, i.e.
when there are changes to the schema. SMI-S clients should not need to subscribe to
ClassIndications. An InstIndication is delivered in response to the creation, deletion, modification,
etc. of an instance. For example, an InstIndication is delivered when a new volume is created or a
zone is deleted. ProcessIndications allow for indications that are not associated with changes to
specific instances. An event can be modeled with one of three indication subclasses.

An InstIndication contains an embedded copy of the object that generated the indication. In the case
of an InstModification, there are two copies: one with the old value and the other with the new
value. These embedded copies may be full copies of the object, or they may contain only the
properties that have changed.

Figure 16: Indications Schema

A lertIndication

Indication

ClassIndication ProcessIndicationInstIndication

SNMPTrapIndication

ThresholdIndication

A lertInstIndication

InstCreation

InstDeletion

InstModif ication

InstMethodCall

InstRead
Version 1.0.1 87

SNIA Storage Management Initiative Specification
An AlertIndication is a simpler indication that contains just strings and enumerated types. One of
its properties is the path to the object generating the alert. Other properties include alert type,
severity, and description. An AlertIndication can be used to indicate changes in the health condition
or other state of a SAN.

A SNMPTrapIndication is designed to encapsulate the information from an SNMP trap in an
indication. Without a standardization process, SNMPTrapIndications are not interoperable and
SHOULD NOT be used in SMI-S agents.

In general, it is best to use InstIndication for all events that result in the creation, deletion, or
modification of instances in the SMI-S Agent.

7.2.5.4 Agent/Provider Considerations

7.2.5.4.1 Overview
As mentioned above, a SMI-S profile can be deployed as a proxy provider running in a general-
purpose CIMOM or as a SMI-S agent – a combination lightweight CIMOM and provider – used
when CIM is embedded on a device.

Considerations that apply to either deployment:

A general purpose CIMOM (and perhaps an embedded agent) allows a client to create indications
filters. The provider MUST send a return code indicating a request to create an instance of a filter
is unsupported. This allows the provider to inform clients which types of indications the provider
supports. For example, a provider that does not support SNMPTrapAlertIndications should return
unsupported for an indications filter create request.

Agents MUST persist subscription information across reboots; for CIM, the subscription
information is IndicationFilter and IndicationHandler classes.

An InstIndication subclass can only embed a single instance. A hardware configuration change may
involve many instances of objects and associations. Agents SHOULD detect and merge groups of
related hardware events and then send a single indication for an object identifying the system
using the SystemCreationClassName property. The client MUST rediscover the indicating system
to determine the impact of the change.

7.2.5.4.2 SMI-S Embedded Agent Considerations
A SMI-S Agent can minimize footprint by initializing “canned” IndicationFilter objects and
returning “unsupported” for all requests to create filter instances. A SMI-S client can determine
what indications the agent supports by enumerating these objects. A minimal embedded agent can
simply support a subset of these IndicationFilter query strings:

1) “SELECT * FROM CIM_InstIndication”

2) “SELECT * FROM CIM_AlertIndication”

The presence of an IndicationFilter object with query string 1 indicates that the agent supports
InstIndication, and similarly for the others.

The embedded agent should supply more detailed queries as described in the profile sections that
follow.

A standard implementation of indications requires the agent to accept client requests to create
indication handlers. Other aspects of SMI-S profiles do not require the agent to handle instance
creation requests (the CIM operations “Basic Read” functional group). The embedded agent
implementer has two options:
88 Version 1.0.1

SNIA Storage Management Initiative Specification
• Use the Instance Manipulation functional group rather than Basic Read. The agent MAY
treat non-indications instance creation requests as unsupported. At a minimum, the agent
MUST allow instance creation of IndicationHandlerXMLHTTP and IndicationSubscription
instances.

• If the agent wishes to provide NO instance creation, then the agent needs to provide a
backdoor for indications subscribers. For example, the agent can require customers to edit a
text file describing indications subscriptions.

If the agent opts for no indications support, it MUST assure that no IndicationFilter instances exist
in the SMI-S Agent and to return “unsupported” to requests to create instance of IndicationHandler
instances.

7.2.5.5 Client Considerations
The client needs to determine whether each target CIMOM is an embedded SMI-S agent or a
general-purpose CIMOM with a SMI-S provider. The client should try to create an instance of an
IndicationHandlerXMLHTTP. If the embedded agent does not allow the client to subscribe via CIM,
it returns unsupported. The client can then enumerate IndicationHandlerXMLHTTP instances to
determine whether they are subscribed via some non-CIM facility.

If the client can create an IndicationHandlerXMLHTTP instance, it should then try to create an
IndicationFilter instance; a return of unsupported indicates the CIMOM is an embedded agent and
supplies its own filters. In this case, the client enumerates the existing filters and creates
IndicationSubscription associations to their IndicationHandler.

The client can minimize the number of filters by using the indications schema hierarchy. For
example, subscribing to InstIndication is the same as subscribing to “InstCreation”, “InstDeletion”,
and “InstModification”.

Client needs to consider subscriptions that generate excessive events. Subscriptions to a general-
purpose CIMOM (as determined by the tests described above) should be specific to the provider –
for example “select * from CompnayCorp_InstIndication” rather than “select * from
CIM_InstIndication”.

When a client receives an “InstCreation” subclass, it needs to rediscover the indicating system to
determine the associations and other classes impacted by the configuration change. Providers
MAY opt to consolidate complex configuration changes into a single indication.

The general algorithm for client subscription is:

Look for an existing IndicationHandlerXMLHTTPs
If one exists targeting your indication listener,

Then you are already subscribed from agent persistence, exit
Else Create an IndicationHandlerXMLHTTP instance

If the response is “unsupported”,
Then quit (this provider does not support indications)

Enumerate IndicationFilters
If the desired filter instances do not exist,

Then try to create them.
If filter instance creation requests fail,

Then back off to an existing filter.
Create instances of IndicationSubscription associating the desired filters and your handler.

The client should look for status changes represented as either “AlertIndication” or as
“InstModification” with a status change. With “InstModification”, the current and previous
statuses can be compared; for example:
Version 1.0.1 89

SNIA Storage Management Initiative Specification
“select * from CompanyCorp_InstModification
 where PreviousInstance.Status <> SourceInstance.Status”

where CompanyCorp would be replaced with an appropriate, vendor-specific prefix. The DMTF
events white paper has other examples of filter queries.

The client can use indications to get information about the general health of the SAN. For
example, the class “FCPortStatistics” includes among its properties various error counts. A query
like this:

Select * FROM CIM_FCPortStatistics
WHERE PreviousInstance.ErrorFrames < SourceInstance.ErrorFrames

 generates an indication whenever the ErrorFrames count increases.

If the client is unable to create this query (i.e. if the agent doesn’t support this filter), then the
client can periodically read the “FCPortStatistics” of all the “FCPort”s in the model. This method,
however, is much more expensive in terms of communications bandwidth and load on both the
client and the server.

7.2.5.6 Requirements
SMI-S Clients MUST use the subclass IndicationHandlerXMLHTTP when creating subscriptions.

If indications are supported, then the DMTF query language MUST be supported (this is a DMTF
requirement).

7.2.5.7 Implementation Considerations
The encoding of indications is specified in “WBEM Query Language Draft”. As of June 30, 2003,
the specification is still in draft and requires DMTF membership to access. See “WBEM Query
Language Draft”, Version 2.4, DMTF, June 14, 2000,

 http://www.dmtf.org/members/review/wip/DMTF-query/DSP0104.htm

The specification for the EmbeddedObject qualifier is defined in the CIM Specification Errata
(version 2.2.2),

http://www.dmtf.org/standards/documents/WBEM/CIM_Errata/CIM_Spec_Addenda222.pdf

7.2.6 Device Credentials
The device credentials are modeled using the CIM classes “SharedSecretService” and
“SharedSecret”. The “ComputerSystem” class represents the device, and the “SharedSecret” object
contains the credentials in its properties.

A SMI-S client or application can pass the device credentials to the agent or object manager by
instantiating the “SharedSecret” object, using the CIM intrinsic method NewInstance(). The SMI-
S agent or provider uses the information from this object to talk to the device.

For more information, see “Device Credentials Subprofile” on page 220.
90 Version 1.0.1

http://www.dmtf.org/members/review/wip/DMTF-query/CIM Query Language Proposal Rev 4.htm

SNIA Storage Management Initiative Specification
7.2.7 Recipe Conventions

7.2.7.1 Recipe Definition
Recipe: A set of instructions for making something from mixing various ingredients in a
particular sequence. The set of ingredients used by a particular recipe is scoped by the particular
profile, subprofile or some other well-defined context in which that recipe is defined.

A recipe MUST specify an interoperable means for accomplishing a particular task across all
conformant implementations. However, a recipe does not necessarily specify the only set of
instructions for accomplishing that task. Nor are all tasks that may be accomplished necessarily
specified by the set of recipes defined for a particular profile or subprofile.

In order to compress the document, some recipes are implied or assumed. This would include, for
instance, that the set of available, interoperable properties are those explicitly defined by a
particular profile or subprofile. In general, any CIM intrinsic read methods on profile or subprofile
models are implied. However, CIM intrinsic write methods (Create/Delete/Modify) should not be
assumed unless explicitly listed in the profile or subprofile definition with a well defined semantic.

For a profile or subprofile, the set of all defined and implied recipes defines the REQUIRED range
of interoperable behavior across all conformant implementations. Unless specifically defined in a
recipe, other sequences of actions (even simple Create/Delete instance requests) are not
guaranteed to have the same results across multiple implementations.

Each recipe defines an interoperable series of interactions (between a SMI-S Client and a SMI-S
Server) required to manage storage devices or applications. Another goal is to list the operations
required for the CIM Client realize functionality. It is not a goal to comprehensively express the
programming logic required to implement the recipe in any particular language. In fact, recipes
are limited to the expression of CIM or SLP operations, and may simply reference or describe any
of the implementation that may be required beyond that.

7.2.7.2 Recipe Pseudo Code Conventions

7.2.7.2.1 Overview
A recipe's instructions are written using the pseudo code language defined in this section.

All recipes are prefixed with a summary narrative of the functionality being implemented. This
summary may be included explicitly as part of the recipe or reference to the appropriate narrative
that can be found elsewhere in the specification.

Note: The use of optional features (profiles or subprofiles) in recipes MUST be clearly identified.

CIM Operations and their parameters are taken directly from the CIM Operations Over HTTP
specification. It is assumed that these methods are being called on the CIM Client API. Arrays
grow in size automatically.

7.2.7.2.2 General Syntax
<condition> logical statement that evaluates to true (Boolean)

!<condition> tests for false (Boolean)

<action> unspecified list of programming logic that is not important to the understanding
of the reader for a particular recipe.

@{recipe} logic flow is contained within the specification of the recipe elsewhere in the
specification
Version 1.0.1 91

SNIA Storage Management Initiative Specification
<variable> some variable

7.2.7.2.3 CIM related variable and methods

7.2.7.2.3.1 CIM Instances and Object Names
$name represents a single instance (CIMInstance) with a given variable name

$name.property represents a property in a single instance (CIMInstance)

$name.getObjectPath()
method returns a object name, REF, to the CIM Instance

$name.getNameSpace()
method returns the namespace name for the CIM Instance or Object Name

{value1, value2 ...}
an anonymous array, comprised of selected values of a given type; an
anonymous array is an array that is not referable by a variable

Example:

 {"Joe", "Fred", "Bob", "Celma"}

$name[] represents an array of instances (CIMInstances) with a given variable name;
array are initialized by constructing an anonymous array.

Example:
Names = {"Joe", "Fred", "Bob", "Celma"}

$name-> represents an object path name (CIMObjectPath)

$name->[] represents an array of object names of a given name

$name->property
represents a property of object $name

$name[].size() returns the number of CIM instances in the array

$name->[].lengthreturns the number of CIM object names in the array

#name[].length returns the number of variable elements in the array

%name[].length returns the number of method arguments elements in the array

7.2.7.2.3.2 Extrinsic method arguments
%name represents a CIM Argument that can contain any CIM or other variable.

%name[] represents an array of CIM Arguments

7.2.7.2.3.3 Other Variables
#name neither CIM Instance nor Object Name variable. The type may be a string,

number or some other special type. Types are defined in the CIM Specification
2.2.

#name[] a non-CIM variable array

"literal” some string literal
92 Version 1.0.1

SNIA Storage Management Initiative Specification
7.2.7.2.4 Data Structure
Variables can be collected by an array. The array can be indexed by other variable (see above).

Arguments are always indexed by strings. In other words, the arguments are retrieved from the
array by name.

7.2.7.2.5 Operations
= assigns right value to left value

== test for equivalency

!= test for not equivalency

< true if the left argument is numerically less than the right argument.

> true if the left argument is numerically greater than the right argument.

<= true if the left argument is numerically less than or equal to the right argument.

>= true if the left argument is numerically greater than or equal to the right
argument.

&& condition A AND condition B

|| condition A OR condition B

+, -, *, / addition, subtraction, multiplication and division, respectively

++, -- increment and decrement a variable, respectively; placement of the operator
relative to the variable determines whether the operation is completed before or
after evaluation

Example:

#i = 1
#names[] = {"A", "B, "C"}
"B" == #names[++#i] is true
2 == #i is true

Example:

#i = 2
#names[] = {"A", "B, "C"}
"B" == #names[#i++] is true
3 == #i is true

// comments

nameof returns an Object Name given a CIM Instance. This unitary operator does
nothing in other usages.

ISA tests for the name of the CIM Instance or object name

Example: if ($SomeName-> ISA CIM_StorageVolume) {
<The Object Name is a reference to a CIM_StorageVolume >
}

Version 1.0.1 93

SNIA Storage Management Initiative Specification
7.2.7.2.6 Control Operations
The pseudocode used in this specification relies on control operators common to most high-level
languages. For example:

• for

Example:
for #x in <variable array> {
<actions>
}

• if

Example:
if (<condition>) {
<actions>
} ;
if (<condition>) {
<actions>
} else {
<alternate actions>
}

• do/while

Example:
do {
<actions>
} while (<condition>)

• continue
Within a for loop: initialize loop variable to next available value and restart loop body.
Terminate loop if no more loop variable values available. Within a do/while loop: transfer
control immediately to while test.

Example:

for #i in <array> {
if (<some condition>)

continue; // process next loop variable
 <alternative>
}

• break: interrupts the sequence of statement execution within a loop block and exits the loop
block altogether. The looping condition is not re-evaluated Statement execution starts at the
next statement outside of the loop block.

• exit
Terminate recipe instantly, including termination of any callers.

Example:
if (<unexpected condition>)
 exit
94 Version 1.0.1

SNIA Storage Management Initiative Specification
7.2.7.2.7 Functions

7.2.7.2.7.1 Function Declaration
A function definition is of the form sub functionName(), followed by the body of the function
enclosed in braces. If parameters are to be passed to a function, then are expressed as a comma-
separated list of arguments within the parentheses following the function name. Each argument is
comprised of a data type and an accompanying argument name.

Functions must be declared at the beginning of a recipe.

 sub functionName(integer nArg1, Class &cArg2) {
 <actions>
 }

7.2.7.2.7.2 Function Invocation
A function invocation is of the form &functionName(). If parameters are to be passed to a function,
then are expressed as a comma-separated list within the parentheses following the function name.

 &functionName(5, pClass)

7.2.7.2.8 Exception Handling
All operations may produce exceptions or errors. The following construct is used to test for
particular errors. Once a particular error is caught, then special exception handling logic is
processed. Only CIM Errors can be caught.

try {
<actions>

}
catch (CIM Exception) {

 <recovery actions>
 }
 The error received may also be thrown
 throw CIM Exception

7.2.7.2.9 Built-in Functions

a. boolean = compare(<variable>, <variable>)

1) Used to determine if two variables of the same type are equivalent

2) The variables must not be CIM instances or object names nor other complex data types or
structures

3) The variables must be of the same type

b) $instance = newInstance("CIM Classname")

1) Creates a CIM instance, which does not exist in the CIMOM (yet), that can be later filled
in with properties and passed to CreateInstance. The namespace is assumed to be the
same that the CIM client connected to.

c) $instance - newInstance("CIM Namespace", "CIM Classname”)

1) Variable of the above method that has the namespace name as an argument
Version 1.0.1 95

SNIA Storage Management Initiative Specification
d) boolean = contains(<test value>, <variable array>)

1) Used to test if the variable array contains a value equivalent to the test variable

2) The array must be of variables of the same types as the test variable.

3) If the equivalency is found with at least one value then the function returns true, else
false is returned.

4) If the array is not a simple, or non-CIM, data type, then the test value must be a CIM
property, $SomeInstance.SomeProperty or $SomeObjectname->SomeProperty

e) %Argument = newArgument("Argument Name", <variable>)

1) Creates a CIM Argument of a given name containing a value, CIM or non-CIM

f) $objectPath-> = newObjectPath("Class name", "NameSpace name")

1) Returns a new ObjectPath, built from the supplied arguments;

2) required to perform the EnumerateInstances and EnumerateInstanceNames
operations

7.2.7.2.10 Extrinsic method calls
<variable> = InvokeMethod ($someobjectname->, "Method Name",
 %InArguments[], %OutArguments[])

7.2.7.3 Common Recipes

7.2.7.3.1 Overview
This clause defines recipes that can be used as common functions and utilities for all recipes in
SMI-S.

7.2.7.3.2 Determine what the health of the storage device given the health of the components.
(Operational status on managed elements)

// DESCRIPTION
// Iterate every system device associated with the system. If any of the
// system devices return an operational status indicating degraded
// health or failure, then the status of the entire system is degraded.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The object name for the device, CIM_ComputerSystem, of
// interested has been previously identified and defined in the
// $Device-> variable

sub boolean systemDeviceOK ($Device->)
{

#bReturn = false
#OK = 2 // from OperationalStatus ValueMap
$SystemDevices[] = Associators(

$Device->,
“CIM_SystemDevice”,
null,
“PartComponent”,
96 Version 1.0.1

SNIA Storage Management Initiative Specification
false,
false,
{“OperationalStatus”})

for #i in $SystemDevices[]
{

if (!contains(#OK, $SystemDevices[#i].OperationStatus))
{

#bReturn = false
}

}
return #bResult

}

Version 1.0.1 97

SNIA Storage Management Initiative Specification
7.3 Profiles

7.3.1 Profile Content

7.3.1.1 Profile and Subprofile Definition
A profile is a named standard for CIM Server based management of a particular set of subsystems
for a defined set of uses. The name of the profile is scoped by its authorizing organization. All
profiles defined in this specification, except the Server Profile are scoped by SNIA. The Server
profile is scoped by DMTF. The CIM Server is expected to advertise supported profiles, (using
SLP). All parts of a profile MUST be implemented to conform to the SMI-S standard. If a profile is
implemented, then all constituent parts, except those defined in subprofiles, MUST be
implemented.

A subprofile is a named subset of a profile. The CIM Server MUST advertise supported
subprofiles, (using SLP). The name of the subprofile is scoped by its parent profile. All parts of a
subprofile MUST be implemented if any of the subprofile is implemented to conform to the SMI-S
standard. However, a subprofile MAY (or may not) be implemented. That is, a subprofile
represents an optional part of the SMI-S standard. But if it is implemented, the subprofile
prescribes its implementation and behavior.

A profile can refer to one or more subprofiles. In addition, a profile can also refer to other profiles.
That is, a profile can act as a subprofile to another profile.

Profiles and subprofiles provide a context for implementation and implementation behavior for a
subset of the CIM model. That is, classes, properties, methods and indications can be defined as
required in the context of a profile or subprofile. A profile or subprofile can add restrictions to
usage and behavior, but cannot change CIM defined characteristics. For example, if a property is
required in the CIM model, then it is required in a profile (or subprofile). On the other hand, a
profile or subprofile may define that a property is required (profile required) even if it is not
required by the general CIM model.

7.3.1.2 Format for Profile Specifications
For each profile there is a set of information that is provided to specify the characteristics and
requirements of the profile.

Note: Subprofiles are also defined using this format, but they are clearly identified as subprofiles.

Each profile is defined in subsections that are described below.

Note: Schema diagrams are logically part of a profile description. However, they can be rather
involved and cannot be easily depicted in a single diagram. As a result the reader is advised
to refer to DMTF characterizations of schema diagrams

Table 4: Profile Components

Profile Element Goal

Description A textual introduction to the CIM Subset (e.g., SAN entity) being profiled. It
provides a high-level foundation for the more detailed descriptions to follow.

Standard
Dependencies

The list of standards REQUIRED for this profile or subprofile. For subprofiles,
the subprofile inherits the standards listed in the parent profile and MUST NOT
be listed here. Only unique standards added by the subprofile MUST be listed.
98 Version 1.0.1

SNIA Storage Management Initiative Specification
Profile Dependencies The list of profiles that this profile (or subprofile) REQUIRES.

Note: Profiles that are optional features of the profile MUST NOT
be listed here. They would be listed in the "Optional
Subprofiles and Profiles" section.

CIM Server
Requirements

A list of requirements on the CIM Server that MUST be supported in order to
support the profile or subprofile.

Note: A subprofile MAY simply declare that the support required
is the same as the parent profile. If, however, a subprofile
defines requirements, the requirements MUST add to those
of the parent profile. That is, a subprofile cannot remove
requirements of its parent profile.

Instance Diagrams One or more instance diagrams to highlight common implementations that
employ this section of the Object Model. Instance diagrams also contain classes
and associations but represent a particular configuration; multiple instances of
an object may be depicted in an instance diagram.
Instance diagrams MAY include references to dependent or optional profiles or
subprofiles, but it MUST be obvious which profile or subprofile these belong to. If
a profile (or subprofile) refers to optional material, the optional material should
be enclosed in a dashed line box to indicate that it is optional.

Durable Names and
Correlatable IDs

The Durable Names and Correlatable IDs for resources exported by the profile
AND identifies the Durable Names and Correlatable IDs used by other profiles.
For the Durable Names exported by the profile, the section identifies the valid
name formats and the specific encoding of names for each name format. For
Correlatable IDs exported by the profile, the source for the ID is identified and
the conditions that would cause the ID to be reset are identified.

Methods A list of the extrinsic and intrinsic methods whose semantics are standardized.

Note: Any given implementation can implement more methods,
but the methods and semantics listed in this sections are
those upon which this specification defines
standardization.

Client Considerations A summary of the implementation concerns that are likely to be encountered by
products and services that rely on the SAN entity being described. The client
considerations also identify how items in the funcitionality ladder (See
“Capabilities Of This Version” on page 65.) are accomplished. This section also
identifies how to find any “subprofiles” required for this profile.

Recipes A set of "recipes" that sequence the CIM operations and other steps required to
accomplish particular tasks. These recipes do not define the upper bound of
what a CIM Server may support. However, they define a lower bound. That is, a
CIM implementation MUST support these recipes as prescribed to be SMI-S
compliant.

Note: A recipe that is defined as part of a subprofile is only
required if the subprofile is implemented.

Table 4: Profile Components (Continued)

Profile Element Goal
Version 1.0.1 99

SNIA Storage Management Initiative Specification
7.3.1.3 Registry of Profiles and Subprofiles
Each profile and subprofile within the SNIA Storage Management Initiative is identified by a
unique name, selected and maintained by the SNIA, to assure that SMI implementors do not

Instrumentation
Requirements

A summary of the implementation concerns that MUST be accounted for by
agent implementations (either embedded or proxy) that provide information from
one or more of the SAN entities to SMI-S clients.

Required CIM
Elements

A table listing the classes, associations, subprofile, packages, and indications
that this profile (or subprofile) MUST support. Everything listed in this section is
REQUIRED by the profile or subprofile. The section MUST NOT list optional
elements.

Required Properties
for CIM Elements

A table listing the properties and methods that this profile (or subprofile) MAY
support. Some properties are REQUIRED while others are OPTIONAL. All listed
properties are REQUIRED unless the description of the property either explicitly
states that the property is "Optional", describes that the property is used when
another property is set in a given way, or otherwise, provides special
instructions.
All properties that CIM defines explicitly (e.g., with a. Required qualifier) or
implicitly (e.g., identified as a Key) as REQUIRED are also REQUIRED by SMI-
S.
If a property can not be produced despite best efforts to do so, has a value that
is unconstrained by either the property's description or by a ValueMap qualifier,
and is not referenced in any recipe and thereby required to have meaningful
value, then the value of this property MUST be NULL. Note that there is a
distinction in CIM between NULL and an empty string or zero value;
implementers should assure that their CIM toolkits provide the capability to work
with NULL values.

Optional Subprofiles
and Profiles

A list of the profiles and subprofiles that are optional for this profile. Specifically,
if there is an optional part of the profile or subprofile, the optional part MUST be
defined as a separate profile or subprofile. Profile unique subprofiles are
documented following this section. But a Profile may also list other profiles or
"common subprofiles" as optional features.

Note: Classes, associations, methods and indications are listed by
subprofile. A class may be REQUIRED under one
subprofile, and NOT REQUIRED under another.

Note: A class, association, methods or indication can be listed as
REQUIRED even when it supports an Optional subprofile.
For example, a Disk Drive subprofile may be optional, but if
an implementation chooses to model Disk Drives, then the
“PhysicalPackage” class is REQUIRED.

Table 4: Profile Components (Continued)

Profile Element Goal
100 Version 1.0.1

SNIA Storage Management Initiative Specification
encounter any namespace collisions. The registry of these names, and a reference to their
definition within this specification, are summarized in Table 5 on page 101.

Table 5: Registry of Profiles and Subprofiles

Area Registered Profile Name Registered Subprofile Names

Fabric Fabric Zone Control
Enhanced Zoning and Enhanced Zoning
Control
FDMI

Switch Blades

Router Software
Backend Ports
LUN Mapping and Masking

Hosts FC HBA

Host Discovered Resources Initiator
Target

Storage Array Cluster
Extra Capacity Set
Software
Access Points
Location
Pool Manipulation, Capabilities and Settings
Extent Mapping
Disk Drive
Backend Ports
LUN Creation
LUN Mapping and Masking
Copy Services
Job Control
Device Credentials

In-band Virtualization System Cluster
Extra Capacity Set
Software
Access Points
Location
Pool Manipulation, Capabilities and Settings
Extent Mapping
LUN Creation
LUN Mapping and Masking
Copy Services
Job Control
Device Credentials

Storage Library Software
Access Points
Location
Limited Access Port Elements

Server Server Protocol Adapter
Version 1.0.1 101

SNIA Storage Management Initiative Specification
102 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.2 Common CIM Packages

7.3.2.1 Description
There are packages of classes and associations that are used in multiple profiles or subprofiles.
Rather than repeat the material in each of the Profile models, the information is documented once
(here) and referenced in the appropriate Profile and Subprofile models.

A “Package” is just a set subset of CIM constructs that go together to effect an aspect of the model
(e.g., physical packaging). They are NOT subprofiles, in that they are not formally recognized as
profiles or subprofiles in the CIM Server model. They are named here for reference in this
specification. The names are not recognized in the CIM Server model for profiles and subprofiles.

7.3.2.2 Physical Package Package

7.3.2.2.1 Description
CIM has a strong separation between the Physical and Logical sides of the model. A System is
'realized' using a SystemPackaging association to a PhysicalPackage (or one of it's subclasses such
as Chassis). The physical containment model can then be built up using Container associations
and subclasses (such as PackageInChassis).

The physical elements can be described as products using Product and ProductPhysicalComponent
associations. The Product instances can be built up into a hierarchy using the ProductParentChild
association.

Figure 17: "Physical Package Instance" shows an example of the use of the physical classes.

The Physical Package “package” is used in most SNIA Profiles. Specifically, it is used in the
profiles for the Switch, Routers, Extenders, HBAs, Management Appliance, JBOD, Array, Out-of-
band Virtualization, In-band Virtualization and Tape Libraries. In the context of SMI-S, it MUST
be used to hold “Product” identification information (Vendor, serial number and version) for
profiles model specific products. The Physical Package “package” is not required in Profiles that
don’t correspond to an actual vendor product (e.g., CIM Server, Fabric or Host Discovered
Resources).

In addition to defining Physical Package at the “System” level, Physical Package may also be
defined at a lower, subcomponent level. For SMI-S, Physical Package is used in the “Disk Drive”
and Logical Devices supported by Tape libraries (e.g., PhysicalTape, Tape Drive, and Changer
Device). If the subcomponents are supported by the Profile, they MUST model their physical
packaging. When subcomponents are modeled, there MUST be a container relationship between
their physical package and the containing package (e.g., the System level physical package). In
addition, there MUST be a ProductParentChild association between the subcomponent Product
and the parent Product.

The Physical Package constructs MAY also be used to model other aspects of the environment.
However, this is NOT REQUIRED. Note that each controller is realized by a card. The cards are
contained in a controller chassis. Each JBOD chassis is a separately orderable sub-product.

7.3.2.2.2 Standards Dependencies
The Physical Package “package” described here is at the CIM Schema 2.7 final level. It does not
require that Profiles be on a later schema. It operates within profiles that are at the CIM schema
2.7 final or later. The subprofile operates correctly with CIM Specification 2.2 (or later) and CIM
Operations over HTTP 1.1 (or later).

7.3.2.2.3 Profile Dependencies
The Physical Package part of the model introduces no Profile dependencies.
Version 1.0.1 103

SNIA Storage Management Initiative Specification
7.3.2.2.4 CIM Server Requirements
For the SMI-S uses of Physical Package, support for Basic Read and Association Traversal
functional profiles MUST be supported (by the base Profile CIM server).

The Physical Package does NOT REQUIRE support for extrinsic methods.

And Physical Package, as a SMI-S package, is NOT advertised.

7.3.2.2.5 Instance Diagram

7.3.2.2.6 Durable Names and Correlatable IDs
The Physical Package “package” does not add any durable names or correlatable ids to the profiles
in which it is used.

7.3.2.2.7 Methods
The Physical Package is populated by providers and is accessible to clients using basic read and
association traversal.

No extrinsics are specified on the physical package, even though the CIM Schema identifies an
extrinsic method on the PhysicalPackage class. This extrinsic MAY be implemented by any given
implementation, but it’s behavior is not specified by SMI-S.

Figure 17: Physical Package Instance

System

PhysicalPackage
(e.g., Chassis) Product

SystemPackaging

ProductPhysicalComponent

PhysicalPackage Product

ProductPhysicalComponent

Container
(e.g., PackageInChassis)

LogicalDevice
(e.g., Drive, physical tape,

device changer) Realizes

ProductParentChild

Product

ProductParentChild
104 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.2.2.8 Client Considerations

7.3.2.2.8.1 Find Asset Information
Information about a system is modeled in PhysicalPackage. PhysicalPackage may be subclassed to
Chassis; the more general PhysicalPackage is used here to accommodate device implementations
that are deployed in multiple chassis. PhysicalPackage has an associated Product with physical
asset information such as Vendor and Version.

7.3.2.2.8.2 Finding Product information for a Profile
To locate product information (Vendor, Serial number and product versions) information about a
device that is conforms to the profile, you would start with the “top-level” computer system and
traverse the SystemPackaging to the PhysicalPackage (e.g., a Chassis). From the PhysicalPackage,
the client would then traverse the ProductPhysicalComponent association to locate the Product
instance. The Vendor, Serial Number and version for the device is in the Product instance.

7.3.2.2.8.3 Finding Asset information within a Profile
There are certain subcomponents of a device that a client may be interested in locating. For
example, disk drives in an array or changer devices in a library. To locate the asset information of
these subcomponents, the client would follow the ProductParentChild association from the system
Product to lower level Products.

Alternatively, if the client is starting from a LogicalDevice, it can locate the PhysicalPackage by
following the Realizes association from the LogicalDevice. From the PhysicalPackage, the client
can find the Product information by traversing the ProductPhysicalComponent association.

7.3.2.2.9 Recipes
No recipes have been defined for this Package.

7.3.2.2.10 Instrumentation Requirements

7.3.2.2.10.1 Well Defined Subcomponents
When establishing physical packages for subcomponents (e.g., disk drives, changers, etc.) the
provider MUST populate both a Container and Realizes associations. Similarly, when establishing
the Product instances for the packages the provider MUST populate the ProductParentChild
association to the parent product.
Version 1.0.1 105

SNIA Storage Management Initiative Specification
7.3.2.2.11 Required CIM Elements

7.3.2.2.12 Required Properties for CIM Elements

7.3.2.2.12.1 SystemPackaging
Similar to the way that LogicalDevices are 'Realized' by PhysicalElements, Systems may be
assocaited with specific packaging/PhysicalElements.This association explicitly defines the
relationship between a System and its packaging.

Table 6: Required CIM Elements

Profile Classes & Associations Notes

SystemPackaging This associates a PhysicalPackage to the System it
supports. For Tape Libraries, this association is actually
subclassed to LibaryPackage. For other profiles, this
would be subclassed to ComputerSystemPackage.

PhysicalPackage (p. 107) Or a subclass of this (e.g., Chassis or Card). When
subclassed, only the PhysicalPackage properties are
required. This can be the “System” package or the
package for a subcomponent (e.g., drive)

Product (p. 107) This class holds vendor, model and serial number
information for the product in question. This can be the
“system” product or a subcomponent product (e.g., drive).

ProductPhysicalComponent (p. 108) This associates a PhysicalPackage to the Product

Container This associates a PhysicalPackage to its component
physical packages (e.g., Drives in a Storage System). This
may be subclassed (e.g., PackageInChassis), but only the
Container properties are required.

Note: This is only required if component
parts are modeled.

ProductParentChild This association aggregates subcomponent products
under higher level products.

Note: This is only required if multiple
Product instances are modeled.

Realizes This associates a logical device (e.g., Drive) to its physical
package

Note: This is only required if component
parts are modeled.

Packages

None.

Methods

None.

Package Indications

None.
106 Version 1.0.1

SNIA Storage Management Initiative Specification
This association is used in SMI-S to associate a System with its PhysicalPackages.

SystemPackaging is subclassed from Dependency

7.3.2.2.12.2 PhysicalPackage
The PhysicalPackage class represents PhysicalElements that contain or host other components.
Examples are a Rack enclosure or an adapter Card. In the context of SMI-S, PhysicalPackage is
used to model the physical aspects of the “System” and MAY be used to model Logical Devices that
are contained in the System.

PhysicalPackage is subclassed from PhysicalElement

7.3.2.2.12.3 Product
Product is a concrete class that aggregates PhysicalElements, software (SoftwareIdentity and
SoftwareFeatures), Services and/or other Products, and is acquired as a unit. Acquisition implies
an agreement between supplier and consumer that may have implications to Product licensing,
support and warranty. Non-commercial (e.g., in-house developed Products) should also be
identified as an instance of Product.

In the context of SMI-S, Product is used to convey vendor and serial number for the objects being
modeled. These can be at the “system” level (e.g., array) or at the logical device (component) level.

Table 7: Required Properties for SystemPackaging

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override The PhysicalPackage(s) that realize a
System.

Dependent ref override The System.

Table 8: Required Properties for PhysicalPackage

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name.
This property is OPTIONAL.

Name string maxlen(1024) This property is OPTIONAL

Tag string maxlen(256), key An arbitrary string that uniquely identifies
the Physical Element

CreationClassName string maxlen(256). key The name of the concrete subclass

Manufacturer string maxlen(256)

Model string maxlen(64)

SerialNumber string maxlen(64) This property is OPTIONAL

Version string maxlen(64) This property is OPTIONAL

Partnumber string maxlen(256) This property is OPTIONAL
Version 1.0.1 107

SNIA Storage Management Initiative Specification
Product is subclassed from ManagedElement.

7.3.2.2.12.4 ProductPhysicalComponent
Indicates that the referenced PhysicalElement is acquired as part of a Product.

This association is used in SMI-S to associate a Product with its PhysicalPackage.

ProductPhysicalComponent is subclassed from Component

7.3.2.2.12.5 Container
The Container association represents the relationship between a contained and a containing
PhysicalElement. A containing object MUST be a PhysicalPackage.

Table 9: Required Properties for Product

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name. Suggested use is
Vendor, Version and product name.

Name string key, maxlen(256) Commonly used Product name.

IdentifyingNumber string key, maxlen(64) Product identification such as a serial
number on software, a die number on
a hardware chip, or (for non-
commercial Products) a project
number.

Vendor string key, maxlen(256) The name of the Product's supplier, or
entity selling the Product (the
manufacturer, reseller, OEM, etc.).
Corresponds to the Vendor property
in the Product object in the DMTF
Solution Exchange Standard.

Version string key, maxlen(64) Product version information.

Table 10: Required Properties for ProductPhysicalComponent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override The Product.

PartComponent ref override The PhysicalElement that is a part of the
Product.
108 Version 1.0.1

SNIA Storage Management Initiative Specification
Container is subclassed from Component

7.3.2.2.12.6 ProductParentChild
The ProductParentChild association defines a parent child hierarchy among Products. For
example, a Product may come bundled with other Products.

ProductParentChild is not subclassed from anything

7.3.2.2.12.7 Realizes
Realizes is the association that defines the mapping between LogicalDevices and the
PhysicalElements that implement them.

In SMI-S, this class MUST be used if physical packaging is modeled for system components
(Logical Devices).

Realizes is subclassed from Dependency.

7.3.2.2.13 Optional Subprofiles
This is NOT APPLICABLE to Packages. A package MUST NOT have subprofiles.

Table 11: Required Properties for Container

Property/
Method

Type Qualifier/
Parameter

Description/Notes

PhysicalPackage ref max(1), override The PhysicalPackage that contains other
PhysicalElements, including other
Packages.

PhysicalElement ref override The PhysicalElement that is contained in
the Package.

Table 12: Required Properties for ProductParentChild

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Parent ref key The parent Product in the association.

Child ref key The child Product in the association.

Table 13: Required Properties for Realizes

Property/
Method

Type Qualifier/
Parameter

Description/Notes

PhysicalElement ref override The physical component that implements
the Device.

LogicalDevice ref override The LogicalDevice
Version 1.0.1 109

SNIA Storage Management Initiative Specification
7.3.2.3 Software Package

7.3.2.3.1 Description
The Software Package is REQUIRED as part of the Switch Profile and the FDMI Subprofile.

The Software Package is REQUIRED when it is part of the optional Software Subprofile for the
Extenders, Routers, Management Appliance, Array, Out-of-band Virtualization System and In-
band Virtualization System Profiles. The package is described here. The Software Subprofile is
defined later under Common Subprofiles.

Information on the installed software is given using the SoftwareIdentity class. This is linked to
the system using a SoftwareInstalledOnSystem association.

Software information can be associated with the “top” level ComputerSystem (if all components
are using the same software) or a component ComputerSystem if the software loaded can vary by
processor.

7.3.2.3.2 Standards Dependencies
The Software package is defined using the CIM Schema 2.8 final. As such it can be used in profiles
at 2.8 and later. It does not require that Profiles be on a later schema. It operates within profiles
that are at the CIM schema 2.8 final or later. The package operates correctly with CIM
Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

7.3.2.3.3 Profile Dependencies
The Software package introduces no Profile dependencies.

7.3.2.3.4 CIM Server Requirements
For the SMI-S uses of the Software package, support for Basic Read and Association Traversal
functional profiles MUST be supported (by the base Profile CIM server).

The Software package does NOT REQUIRE support for extrinsic methods.

As a package, the Software subprofile CANNOT be advertised.
110 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.2.3.5 Instance Diagram

7.3.2.3.6 Durable Names and Correlatable IDs
The Software Package does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.

7.3.2.3.7 Methods
The Software package is populated by providers and is accessible to clients using basic read and
association traversal.

No extrinsics are specified on the Software Package.

7.3.2.3.8 Client Considerations
See details in related profile section.

7.3.2.3.9 Recipes
See details in related profile section.

7.3.2.3.10 Instrumentation Requirements
Firmware
Firmware is modeled as SoftwareIdentity. SoftwareInstalledOnSystem is used for firmware
associated with a System.

Figure 18: Software Instance Diagram

SoftwareIdentity

InstalledSofwareIdentity

SoftwareIdentity

InstalledSoftwareIdentity

ComputerSystem

ExtraCapacitySet

MemberOfCollection

ConcreteIdentity

ComputerSystem

ComponentCS
Version 1.0.1 111

SNIA Storage Management Initiative Specification
7.3.2.3.11 Required CIM Elements

7.3.2.3.12 Required Properties for CIM Elements

7.3.2.3.12.1 InstalledSoftwareIdentity
The InstalledSoftwareIdentity association allows the identification of the ComputerSystem on which
a particular SoftwareIdentity is installed.

InstalledSoftwareIdentity is not subclassed from anything.

7.3.2.3.12.2 SoftwareIdentity
The SoftwareIdentity is used to model either software or firmware.

SoftwareIdentity is subclassed from LogicalElement.

Table 14: Required CIM Elements

Profile Classes & Associations Notes

InstalledSoftwareIdentity (p. 112)

SoftwareIdentity (p. 112)

Packages

None.

Associated Indications

None.

Table 15: Required Properties for InstalledSoftwareIdentity

Property/
Method

Type Qualifier/
Parameter

Description/Notes

System ref key The system the software is installed on.

InstalledSoftware ref key The SoftwareIdentity that is installed.

Table 16: Required Properties for SoftwareIdentity

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key The name used to identify this
SoftwareIdentity.

VersionString string Software Version should be in the form
<Major>.<Minor>.<Revision> or
<Major>.<Minor><letter><revision>.

Manufacturer string Manufacturer of this software.

BuildNumber uint16 OPTIONAL. The internal identifier for this
compilation of software, if available.
112 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.2.3.13 Optional Subprofiles
This is NOT APPLICABLE to Packages. A package MUST NOT have subprofiles.

7.3.3 Common Subprofiles

7.3.3.1 Overview
There are several subprofiles that are used in multiple profiles and deserve specific descriptive
information. The detailed descriptions of these subprofiles are described in this section to avoid
redundant descriptions in the profile sections.

7.3.3.2 Access Points Subprofile

7.3.3.2.1 Description
The Access Points subprofile is used in the Array, Out-of-Band Virtualization and In-band
Virtualization Profiles to indicate remote access points for management tools.

Most devices now have a web GUI to allow device specific configuration. This is modeled using a
RemoteServiceAccessPoint. This is linked to the managed element using a HostedAccessPoint
association. If several access points are provided (say one for each chassis), then multiple instances
of RemoteServiceAccessPoint / HostedAccessPoint would be instantiated and linked to the specific
Element by SAPAvailableForElement.

7.3.3.2.2 Standards Dependencies
The Access Point subprofile is defined using the CIM Schema 2.7 final. As such it can be used in
profiles at 2.7 and later. It does not require that Profiles be on a later schema. It operates within
profiles that are at the CIM schema 2.7 final or later. The subprofile operates correctly with CIM
Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

7.3.3.2.3 Profile Dependencies
The Access Point subprofile introduces no Profile dependencies.

7.3.3.2.4 CIM Server Requirements
For the SMI-S uses of the Access Point subprofile, support for Basic Read and Association
Traversal functional profiles MUST be supported the base Profile CIM server.

The Access Point subprofile does NOT REQUIRE support for extrinsic methods.

The Access Point subprofile is NOT advertised.

RevisionNumber uint16 OPTIONAL. This is the numeric
representation of the revision number in the
VersionString

MajorVersion uint16 OPTIONAL. This is the numeric
representation of the Major number in the
VersionString

MinorVersion uint16 OPTIONAL. This is the numeric
representation of the Minor number in the
VersionString

Table 16: Required Properties for SoftwareIdentity (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 113

SNIA Storage Management Initiative Specification
7.3.3.2.5 Instance Diagrams

There are two associations that need to be instantiated. The “HostedAccessPoint” associates the
service to the System on which it is hosted. The “ServiceAvailableToElement” associates the
service to the system (or element) that is affected by the service.

7.3.3.2.6 Durable Names and Correlatable IDs
The Access Point subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.

7.3.3.2.7 Methods
The Access Point subprofile is populated by providers and is accessible to clients using basic read
and association traversal.

No extrinsics are specified on the Access Point subprofile.

7.3.3.2.8 Client Considerations
See details in related profile section.

7.3.3.2.9 Recipes
See details in related profile section.

7.3.3.2.10 Instrumentation Requirements
See details in related profile section.

Figure 19: Access Point Instance Diagram

ComputerSystem

dedicated[x]

RemoteServiceAccessPoint

HostedAccessPoint
SAPAvailableForElement

ComputerSystem ComputerSystem

ComponentCSComponentCS

SAPAvailableForElement

RemoteServiceAccessPoint

HostedAccessPoint

RemoteServiceAccessPoint

SAPAvailableForElement

HostedAccessPoint
114 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.2.11 Required CIM Elements

7.3.3.2.12 Required Properties for CIM Elements

7.3.3.2.12.1 HostedAccessPoint
HostedAccessPoint is an association between a ServiceAccessPoint and the System on which it is
provided. The cardinality of this association is 1-to-many and is weak with respect to the System.
Each System may host many ServiceAccessPoints.

HostedAccessPoint is subclassed from Dependency.

7.3.3.2.12.2 SAPAvailableForElement
SAPAvailableForElement conveys the semantics of a Service being available for the 'use' of a
ManagedElement. To describe that use of this service is restricted or has limited availability/
applicability, then the SAPAvailableForElement association would be instantiated between the
Service and specific Processors and Chassis

SAPAvailableForElement is not subclassed from anything.

Table 17: Required CIM Elements

Profile Classes & Associations Notes

HostedAccessPoint (p. 115) Associate the RemoteServiceAccessPoint to the
System on which it is hosted.

RemoteServiceAccessPoint (p. 116) A ServiceAccessPoint for management tools

SAPAvailableForElement (p. 115) This association identifies the element that is
serviced by the RemoteServiceAccessPoint

Packages

None.

Methods

None.

Subprofile Indications

None

Table 18: Required Properties for HostedAccessPoint

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override The hosting System

Dependent ref override The SAP(s) that are hosted on this System.

Table 19: Required Properties for SAPAvailableForElement

Property/
Method

Type Qualifier/
Parameter

Description/Notes

AvailableSAP ref override The Service that is available.
Version 1.0.1 115

SNIA Storage Management Initiative Specification
7.3.3.2.12.3 RemoteServiceAccessPoint
RemoteServiceAccessPoint describes access and/or addressing information for a remote
connection, that is known to a 'local' network element. This information is scoped/contained by the
'local' network element, since this is the context in which it is 'remote'.

Why the remote access point is relevant and information on its use are described by subclassing
RemoteServiceAccessPoint, or by associating to it.

RemoteServiceAccessPoint is subclassed from ServiceAccessPoint.

7.3.3.2.13 Optional Subprofiles

7.3.3.3 Cluster Subprofile

7.3.3.3.1 Description
The Cluster Subprofile is an optional subprofile for the JBOD, Array, Out-of-Band Virtualization
and In-band Virtualization Profiles.

It is not defined for use in the Fabric, Switch, Routers, Extenders, HBA, Host Discovered
Resources, Management Appliance, Tape Library or Server profiles.

ManagedElement ref override The ManagedElement that may use the
Service.

Table 20: Required Properties for RemoteServiceAccessPoint

Property/Method Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

SystemName string key, maxlen (256)

SystemCreationClassName string key, maxlen (256)

CreationClassName string key, maxlen (256)

Name string key, maxlen (256)

AccessInfo string Management Address. For
interoperability, this should be a
URL.

InfoFormat uint16 The format of the Management
Address. For interoperability, this
MUST be “URL”.

Table 21: Optional Profiles or Subprofiles

Name Notes

None

Table 19: Required Properties for SAPAvailableForElement (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
116 Version 1.0.1

SNIA Storage Management Initiative Specification
Many profiles define a ComputerSystem as the base representation of the system being modeled.
However, the device being modeled may, in fact, be made up of multiple processing elements that
act as a cluster. This MAY be modeled using the Cluster Subprofile. Each of the elements of the
cluster would be its own ComputerSystem, but they would be collected into a ComputerSystem
that represents the system image of the collection of processors.

If the storage system consists of more than one controller then there is an instance of a
ComputerSystem representing the overall system, and each controller is linked to that instance of
ComputerSystem using ComponentCS associations.

The ‘top’ computer system would be the REQUIRED part of the profile and would be the anchor
point for key associations to other parts of the profile. It is not part of this subprofile, but is the
point where the cluster of computer systems tie into the profile.

When a Cluster subprofile is implemented, care should be taken in where “SystemDevice”
associations are attached. If the system device (e.g., FCPort) goes away if one of the component
computer systems goes away, then the device MUST be connected (via SystemDevice) to the
component ComputerSystem. On the other hand, if the system device (e.g., StorageVolume)
remains available no matter which component ComputerSystem fails or goes away, then the
SystemDevice connection should be to the “top” level ComputerSystem.

7.3.3.3.2 Standards Dependencies
The Cluster subprofile is defined using the CIM Schema 2.7 final. As such it can be used in profiles
at 2.7 and later. It does not require that Profiles be on a later schema. It will operate within
profiles that are at the CIM schema 2.7 final or later. The subprofile will operate correctly with
CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

7.3.3.3.3 Profile Dependencies
The Cluster subprofile introduces no Profile dependencies.

7.3.3.3.4 CIM Server Requirements
For the SMI-S uses of the Cluster subprofile, support for Basic Read, Indications, and Association
Traversal functional profiles MUST be supported by the CIM Server.

The Cluster subprofile does NOT REQUIRE support for extrinsic methods.

The Cluster subprofile is NOT advertised.
Version 1.0.1 117

SNIA Storage Management Initiative Specification
7.3.3.3.5 Instance Diagrams

7.3.3.3.6 Durable Names and Correlatable IDs
The Cluster subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used. While a Durable Name is defined for the top-level
ComputerSystem, for the component computer systems they are not considered Durable. The
name property of a component computer system is scoped to the top-level computer system.

7.3.3.3.7 Methods
The Cluster subprofile is populated by providers and is accessible to clients using basic read and
association traversal.

No extrinsics are specified on the Cluster subprofile.

7.3.3.3.8 Client Considerations

7.3.3.3.8.1 Finding the Top-level Computer System
// DESCRIPTION
// A client can find the top computer systems relatively easy using an
//Associators call
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// None

Associators(ObjectName=CIMObjectPath(CIM_ComputerSystem)
AssocClass=CIM_ComponentCS
ResultClass=CIM_ComputerSystem

Figure 20: Cluster Instance

ComputerSystem

ComputerSystem

dedicated[x] '

ComputerSystem

ComponentCSComponentCS

LogicalDevice

LogicalDevice

SystemDevice

SystemDevice

LogicalDevice

SystemDevice
118 Version 1.0.1

SNIA Storage Management Initiative Specification
ResultRole=GroupComponent)

7.3.3.3.8.2 Find System Status of a Component Computer System
The ‘OperationStatus’ property is available on most objects in the model and is used to indicate it’s
status. For component computer systems, the ComputerSystem instance MUST have one of the
following Main Operational Statuses and possibly one of the Subsidiary statuses.

A client MAY subscribe for Asynchronous notification of changes in status through
InstModification Indications. More details on indications are in “Events - CIM Indications”.

7.3.3.3.9 Recipes
See details in related profile section.

7.3.3.3.10 Instrumentation Requirements
See details in related profile section.

Table 22: OperationStatus for Component ComputerSystem

Main Operational
Status

Possible
Subsidiary

Operational
Status

Description

OK The computer system has a good status

OK Stressed The computer system is stressed, for example the
temperature is over limit or there is too much IO in
progress

OK Predictive Failure The computer system will probably fail sometime
soon

Degraded The computer system is operational but not at 100%
redundancy. A component has suffered a failure or
something is running slow

Error An error has occurred causing the computer system
to stop. This error may be recoverable with operator
intervention.

Error Non-recoverable error A severe error has occurred. Operator intervention is
unlikely to fix it

Error Supporting entity in error A modeled element has failed

No contact The provider knows about the computer system but
has not talked to it since last reboot

Lost communication The provider used to be able to communicate with
the computer system, but has now lost contact.

Starting The computer system is starting up

Stopping The computer system is shutting down.

Stopped The computer system is OK but shut down, the
management channel is still working.
Version 1.0.1 119

SNIA Storage Management Initiative Specification
7.3.3.3.11 Required CIM Elements

7.3.3.3.12 Required Properties for CIM Elements

7.3.3.3.12.1 ComponentCS
A ComputerSystem can aggregate another ComputerSystem. This association is used to model
multiple processors that act as a single system image for a storage system. ComponentCS
represents that unique and distinct ComputerSystems are aggregated by a higher level CS object.
However, each of the component CSs are still distinguishable entities and are only viewed as such.

ComponentCS is subclassed from SystemComponent.

7.3.3.3.12.2 ComputerSystem
In the context of the Cluster Subprofile, instances of this class represent processors that make up
the cluster that is the storage system. NOTE: The ‘top’ level ComputerSystem is REQUIRED as
part of the base profiles.

Table 23: Required CIM Elements

Profile Classes & Associations Notes

ComponentCS (p. 120) Associates the processors of the computer system
to the system

ComputerSystem (p. 120) For the processors that are clustered to make up the
system

Packages

None.

Methods

None.

SubProfile Indications

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem

To indicate the creation of a Component
ComputerSystem

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

To indicate the deletion of a Component
ComputerSystem

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Change in operational status of a Component
ComputerSystem.

Table 24: Required Properties for ComponentCS

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override The ComputerSystem that contains and/or
aggregates other Systems.

PartComponent ref override The contained (Sub)ComputerSystem.
120 Version 1.0.1

SNIA Storage Management Initiative Specification
ComputerSystem is subclassed from System.

7.3.3.3.13 Optional Subprofiles

7.3.3.4 Extra Capacity Set Subprofile

7.3.3.4.1 Description
The Extra Capacity Set Subprofile is an optional subprofile for the Array, Out-of-Band
Virtualization and In-band Virtualization Profiles.

While the Cluster subprofile defines component computer systems that make up the top-level
computer system, it does not specify the relationship among the systems. The Extra Capacity Set
subprofile is for defining specific redundancy offered by a collection of computer systems in the
configuration.

Some of the component computer systems also typically provide redundancy. This can be of several
kinds: Load balancing, fail-over, load balancing/fail-over with redundancy.

• Load balancing.
This typically means that each path to a LUN through the participating computer systems
has equal functionality and priority. This type of redundancy is shown using the
ExtraCapacitySet class with the LoadBalancedSet property set to true. Each computer
systems is associated with a ExtraCapacitySet instance with a MemberOfCollection
association. If Controllers operate as redundant pairs then there would be multiple
ExtraCapacitySet instances – one for each pair.

• Fail over.
This typically means that the paths are asymmetrical. One path with be the primary one, the
other(s) are for fail-over only and have lower access speed or whatever. In this case the
LoadBalancedSet property is set to false. The priority of different access paths is shown by the
AccessPriority property on the ProtocolControllerForUnit associations between the
StorageVolume and ProtocolController.

Table 25: Required Properties for ComputerSystem

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

OperationalStatus[] uint16 Status of the component computer
system (same encodings as the top-
level computer system)

CreationClassName string key, maxlen(256) Name of Class

Name string key, maxlen (256),
override

For component computer systems, the
provider MUST provide a unique name
using one of the NameFormats.

NameFormat string override) For component computer systems, this
should be coded as Other

Table 26: Optional Profiles or Subprofiles

Name Notes

None
Version 1.0.1 121

SNIA Storage Management Initiative Specification
• Load Balancing and Fail over
This typically means that load balancing is occurring across the ExtraCapacitySet and in the
event of a failure another computer system in the set can take over the work of the failing
computer system.

7.3.3.4.2 Standards Dependencies
The Extra Capacity Set subprofile is defined using the CIM Schema 2.7 final. As such it can be
used in profiles at 2.7 and later. It does not require that Profiles be on a later schema. It will
operate within profiles that are at the CIM schema 2.7 final or later. The subprofile will operate
correctly with CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

7.3.3.4.3 Profile Dependencies
The Extra Capacity Set subprofile introduces no Profile dependencies.

7.3.3.4.4 CIM Server Requirements
For the SMI-S uses of the Extra Capacity Set subprofile, support for Basic Read, Indications and
Association Traversal functional profiles MUST be supported by the CIM server for the Profile.

The Extra Capacity Set subprofile does NOT REQUIRE support for extrinsic methods.

The Extra Capacity Set subprofile is NOT advertised.

7.3.3.4.5 Instance Diagram

7.3.3.4.6 Durable Names and Correlatable IDs
The Extra Capacity Set subprofile does not add any durable names or correlatable ids to the
profiles (or subprofiles) in which it is used. While a Durable Name is defined for the top-level
ComputerSystem, they are not required for the collected computer systems.

Figure 21: Extra Capacity Set Instance Diagram

Com puterSys tem

ExtraCapacitySet

ConcreteIdentity

Com puterSys tem

dedicated[x]

Com puterSys tem

Mem berOfCollection Mem berOfCollection
122 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.4.7 Methods
The Extra Capacity Set subprofile is populated by providers and is accessible to clients using basic
read and association traversal.

No extrinsics are specified on the Extra Capacity Set subprofile.

7.3.3.4.8 Client Considerations

7.3.3.4.8.1 Find System Status of a Member Computer System
The ‘OperationStatus’ property is available on most objects in the model and is used to indicate it’s
status. For member computer systems, the ComputerSystem instance MUST have one of the
following Main Operational Statuses and possibly one of the Subsidiary statuses.

A client MAY subscribe for Asynchronous notification of changes in status through
InstModification Indications. More details on indications are in “Events - CIM Indications”.

Table 27: OperationStatus for Component ComputerSystem

Main Operational
Status

Possible
Subsidiary

Operational
Status

Description

OK The computer system has a good status

OK Stressed The computer system is stressed, for example the
temperature is over limit or there is too much IO in
progress

OK Predictive Failure The computer system will probably fail sometime
soon

Degraded The computer system is operational but not at 100%
redundancy. A component has suffered a failure or
something is running slow

Error An error has occurred causing the computer system
to stop. This error may be recoverable with operator
intervention.

Error Non-recoverable error A severe error has occurred. Operator intervention is
unlikely to fix it

Error Supporting entity in error A modeled element has failed

No contact The provider knows about the computer system but
has not talked to it since last reboot

Lost communication The provider used to be able to communicate with
the computer system, but has now lost contact.

Starting The computer system is starting up

Stopping The computer system is shutting down.

Stopped The computer system is OK but shut down, the
management channel is still working.
Version 1.0.1 123

SNIA Storage Management Initiative Specification
7.3.3.4.9 Recipes
See details in related profile section.

7.3.3.4.10 Instrumentation Requirements
See details in related profile section.

7.3.3.4.11 Required CIM Elements

7.3.3.4.12 Required Properties for CIM Elements

7.3.3.4.12.1 ComputerSystem
The ComputerSystem(s) in the ExtraCapacitySet are processors that support the storage system.
They are not the ‘top’ level system.

Table 28: Required CIM Elements

Profile Classes & Associations Notes

ComputerSystem (p. 124) For the processors that make up the ExtraCapacitySet

ExtraCapacitySet (p. 125) The collection of processors

ConcreteIdentity Associates the ExtraCapacitySet to the “top” level
Storage System

MemberOfCollection (p. 126) The association that ties the processors in the collection
to the ExtraCapacitySet

Packages

None.

Methods

None.

SubProfile Indications

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem

To indicate the creation of a Component
ComputerSystem

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

To indicate the deletion of a Component
ComputerSystem

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

To receive an indication on a change in operational
status of a Component ComputerSystem.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ExtraCapacitySet AND
SourceInstance.RedundancyStatus <>
PreviousInstance.RedundancyStatus

To receive an indication on a change to the redundancy
status of the ExtraCapacitySet
124 Version 1.0.1

SNIA Storage Management Initiative Specification
ComputerSystem is subclassed from System.

7.3.3.4.12.2 ExtraCapacitySet
A class derived from RedundancySet to describe that the aggregated elements have more capacity
or capability than is needed.

7.3.3.4.12.3 ConcreteIdentity
ConcreteIdentity associates two elements representing different aspects of the same underlying
entity. ConcreteIdentity is limited in its use as a concrete form of a general identity relationship.

Table 29: Required Properties for ComputerSystem

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

OperationalStatus[] uint16

CreationClassName string maxlen(256), key Name of Class

Name string maxlen(256), key Not required for the collected
computer systems, but may be
supplied.

NameFormat string override If supplied, use the same formats
as defined for the top-level
computer system.

Dedicated[] int16 Since this is a collected computer
system, this property is not
required. However, if is it used it
should refer to one or more of the
values used in the top-level
computer system

OtherDedicatedDescriptions string This is not required for SNIA
profiles, but it MUST be filled in if
“other” is specified in the Dedicated
array.

Table 30: Required Properties for ExtraCapacitySet

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key

ElementName string override, required User Friendly name

RedundancyStatus uint16 Values {"Unknown", "Other",
"Fully Redundant", "Degraded
Redundancy", "Redundancy
Lost"}

LoadBalancedSet boolean Boolean indicating whether load
balancing is supported by the
ExtraCapacitySet.
Version 1.0.1 125

SNIA Storage Management Initiative Specification
In the context of the Extra Capacity Set subprofile, this association is used to equate the
ExtraCapacitySet instance to the top-level computer system.

ConcreteIdentity is subclassed from ConcreteIdentity.

7.3.3.4.12.4 MemberOfCollection
MemberOfCollection is an aggregation used to establish membership of ManagedElements in a
Collection. In the context of the Extra Capacity Set subprofile, this association aggregates the
collected computer systems under the ExtraCapacitySet.

MemberOfCollection is not subclassed from anything.

7.3.3.4.13 Optional Subprofiles

7.3.3.5 Disk Drive Subprofile

7.3.3.5.1 Description
The Disk Drive subprofile is used in the JBOD and Array Profiles.

A disk drive is modeled as a MediaAccessDevice (DiskDrive) containing (MediaPresent) some
logical media (StorageExtent) that is realized (RealizesExtent) by some physical media. Other
classes can further refine the modeling (e.g. Product or SoftwareIdentity).

The Disk Drive subprofile ties into the rest of the Array (or JBOD) profile via a number of key
associations.

Table 31: Required Properties for ConcreteIdentity

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemElement ref key The ManagedElement (e.g., System) that is the
basis of the identity (The top-level computer
system)

SameElement ref key SameElement represents an alternate aspect of
the ManagedElement (System). That is, the
ExtraCapacitySet.

Table 32: Required Properties of MemberOfCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Collection ref key The Collection (ExtraCapacitySet) that
aggregates members (ComputerSystems).

Member ref key The aggregated member (ComputerSystem) of
the Collection.

Table 33: Optional Profiles or Subprofiles

Name Notes

None
126 Version 1.0.1

SNIA Storage Management Initiative Specification
• ConcreteComponent - To associate an extent exported by the Disk Drive to a StoragePool

• BasedOn - To associate an extent exported by the Disk Drive to another (higher level) extent
(or a Volume)

• Container - To associate the physical package of the disk drive to the physical package of the
system

• ProductParentChild - to associate the product of the disk drive to a higher level product (e.g.,
the system product).

7.3.3.5.2 Standards Dependencies
The Disk Drive subprofile is defined using the CIM Schema 2.8 Preliminary. As such it can be used
in profiles at 2.8 and later. It does not require that Profiles be on a later schema. It will operate
within profiles that are at the CIM schema 2.8 final or later. The subprofile will operate correctly
with CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

7.3.3.5.3 Profile Dependencies
The Disk Drive subprofile introduces no Profile dependencies.

7.3.3.5.4 CIM Server Requirements

7.3.3.5.4.1 Functional Profiles

7.3.3.5.4.2 Extrinsic Methods
The Disk Drive subprofile does NOT REQUIRE support for extrinsic methods.

7.3.3.5.4.3 Discovery
The Disk Drive subprofile is NOT advertised.

Table 34: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
Version 1.0.1 127

SNIA Storage Management Initiative Specification
7.3.3.5.5 Instance Diagrams

7.3.3.5.6 Durable Names and Correlatable IDs
The Disk Drive subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.

7.3.3.5.7 Methods
The Disk Drive subprofile is populated by providers and is accessible to clients using basic read
and association traversal.

No extrinsics are specified on the Disk Drive subprofile.

7.3.3.5.8 Client Considerations

7.3.3.5.8.1 Find Disk Drive Status
The status of a Disk Drive MAY be determined by the value of the OperationalStatus property.
Table 427 shows the allowed values for this property and their meanings. The table below defines
the possible states that MUST be supported for DiskDrive.OperationalStatus. The main
OperationalStatus MUST be the first element in the array.

Figure 22: Disk Drive Instance Model

Table 35: DiskDrive Status

OperationalStatus Description

OK The Drive is online

Error Drive has a failure

StorageVolume or
StorageExtent

StorageExtent DiskDrive

PhysicalMedia PhysicalPackage

MediaPresent*
*

RealizesExtent*
0..1

Realizes*
*

Basedon

*

*

PackagedComponent
Product

SoftwareIdentitty

ProductPhysicalComponent

DeviceSoftwareIdentity

StoragePool

ConcreteComponent

PhysicalPackage
(System)

Container

Product
(System)

ProductParentChild
128 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.5.9 Recipes
// DESCRIPTION
// A client can find the ‘top’ computer systems relatively easy using an
//‘Associators’ call
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. a CIM_ObjectPath to a CIM_ComputerSystem with dedicated[] =
// [“Array” , “Block Server”]

// Step 1. Get the Primordial Pool for the Array from the
// HostedStoragePool association. (This represents the unallocated
// storage on the array.) To tell which pool is the PrimordialPool, look
// for a Pool with no AllocatedFromStoragePool associations where it is
//the dependent.
$StoragePools->[] = Associators(

$StorageArray->,
“CIM_HostedStoragePool”,
“CIM_StoragePool”,
null,
null,
false,
false,
null)

for $StoragePool-> in $StoragePools->[]
{

if ($StoragePool->Primordial == TRUE)
{

$PrimordialPool-> = $StoragePool->
break;

}
}

// Step 2. Get an Enumeration of the StorageExtents that make up the
// StoragePool using the ConcreteComponent association.
$StorageExtents->[] = Associators(

$PrimordialPool->,
“CIM_ConcreteComponent”,
“CIM_StorageExtent”,
“GroupComponent”,
“PartComponent”,
false,

Stopped Drive is disabled

InService Drive is in Self Test

Table 35: DiskDrive Status

OperationalStatus Description
Version 1.0.1 129

SNIA Storage Management Initiative Specification
false,
null)

// Step 3. For each StorageExtent in the enumeration, follow the
// RealizesExtent association to the PhysicalMedia object.
for $StorageExtent-> in $StorageExtents->[]
{

$PhysicalMedia->[] = Associators(
$StorageExtent->,
“CIM_RealizesExtent”,
“CIM_PhysicalMedia”,
“StorageExtent”,
“PhysicalComponent”,
false,
false,
null)

if ($PhysicalMedia->[].length != 0)
{

// According to the schema, there should be zero or one.
$PhysicalMedium-> = $StoragePools->[0]

// Step 4. Read the ElementName property and the Capacity property on the
// PhysicalMedia.

< Disk Drive $PhysicalMedium->Tag is unused and >
 < has a capacity of $PhysicalMedium->Capacity bytes. >

} // if.
} // for.

7.3.3.5.10 Instrumentation Requirements

7.3.3.5.10.1 Required External Associations
When implementing the Disk Drive subprofile, the ConcreteComponent association to
StoragePools is REQUIRED (because LogicalStorage is required in the Profile).

The Container association to a higher level physical package is also REQUIRED (because the
PhysicalPackage for the System is required). However, in the case of the Container association, it
is possible that the Disk Drive PhysicalPackage is not directly contained in the System
PhysicalPackage. It MUST be possible for a client to traverse the container associations from the
System PhysicalPackage to the Disk Drive PhysicalPackage, even if the client is required to go
through intermediate steps (that is, intermediate physical packages).

The ProductParentChild association from the disk drive product to the higher level product is also
REQUIRED. It is not necessary for the System Product to be the next level up the
ProductParentChild association, but it MAY be.
130 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.5.10.2 Optional External Associations
The BasedOn association that ties a Disk Drive extent to a higher level extent (or volume) is only
required if the ExtentMapping subprofile is also implemented.
Version 1.0.1 131

SNIA Storage Management Initiative Specification
7.3.3.5.11 Required CIM Elements

7.3.3.5.12 Required Properties for CIM Elements

7.3.3.5.12.1 BasedOn
BasedOn is an association describing how StorageExtents can be assembled from lower level
Extents. In the context of the Disk Drive subprofile, the BasedOn association is used to associate
the extents exported by the Disk Drive to higher level storage extents (or StorageVolumes). As

Table 36: Required CIM Elements

Profile Classes & Associations Notes

BasedOn This maps the storage extent of the disk drive to
other (higher level) extents that are based on the
disk drive

ConcreteComponent This maps an extent exported by the disk drive to
a StoragePool

Container This association aggregates the disk drive
physical package to the next higher level physical
package

ProductParentChild This association aggregates the disk drive product
to the next higher level product

DeviceSoftwareIdentity (p. 134) This associates the disk drive to the firmware for
the drive.

DiskDrive (p. 134)

MediaPresent (p. 135)

PhysicalMedia (p. 135)

Realizes (p. 136)

RealizesExtent (p. 136)

SoftwareIdentity (p. 137) The firmware for the disk drive

StorageExtent The storage extent that is exported by the disk
drive

Packages

Physical Package Package (p. 103).

Methods

none.

SubProfile Indications

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_DiskDrive

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_DiskDrive
132 Version 1.0.1

SNIA Storage Management Initiative Specification
such, the based on association is only required if the Profile is also implementing the Extent
Mapping subprofile.

BasedOn is subclassed from Dependency.

7.3.3.5.12.2 ConcreteComponent
ConcreteComponent is a generic association used to establish 'part of' relationships between
ManagedElements. It is defined as a concrete subclass of the abstract Component class, to be used
in place of many specific subclasses of Component that add no semantics - i.e., that do not clarify
the type of composition, update cardinalities, or add/remove qualifiers. Note that when defining
additional semantics for Component that this class MUST NOT be subclassed.

In the context of the Disk Drive subprofile, this association ties extents exported by the disk drive
to StoragePools.

ConcreteComponent is subclassed from Component.

7.3.3.5.12.3 Container
The Container association represents the relationship between a contained and a containing
PhysicalElement. A containing object MUST be a PhysicalPackage.

Table 37: Required Properties for BasedOn

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override, key The lower level StorageExtent.

Dependent ref override, key The higher level StorageExtent.

StartingAddress uint64 StartingAddress indicates where in lower level
storage, the higher level Extent begins.

EndingAddress uint64 EndingAddress indicates where in lower level
storage, the higher level Extent ends. This
property is useful when mapping non-contiguous
Extents into a higher level grouping.

OrderIndex uint16 If there is an order to the BasedOn associations
that describe how a higher level StorageExtent
is assembled, the OrderIndex property indicates
this.

Table 38: Required Properties for ConcreteComponent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref key, override The parent element in the association (e.g., the
StoragePool).

PartComponent ref key, override The child element in the association (e.g., the
StorageExtent exported by the disk drive).
Version 1.0.1 133

SNIA Storage Management Initiative Specification
Container is subclassed from Component

7.3.3.5.12.4 ProductParentChild
The ProductParentChild association defines a parent child hierarchy among Products. For
example, a Product may come bundled with other Products.

ProductParentChild is not subclassed from anything

7.3.3.5.12.5 DeviceSoftwareIdentity
The DeviceSoftwareIdentity relationship identifies any software that is associated with a Device -
such as drivers, configuration or application software, or firmware.

DeviceSoftwareIdentity is subclassed from Dependency.

7.3.3.5.12.6 DiskDrive
Capabilities and management of a DiskDrive, a subtype of MediaAccessDevice.

Table 39: Required Properties for Container

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref max(1), override, key The PhysicalPackage that contains other
PhysicalElements, including other
Packages.

PartComponent ref override, key The PhysicalElement that is contained in
the Package.

Table 40: Required Properties for ProductParentChild

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Parent ref key The parent Product in the association.

Child ref key The child Product in the association.

Table 41: Required Properties for DeviceSoftwareIdentity

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key, override A LogicalDevice's Software Asset.

Dependent ref key, override The LogicalDevice (Disk Drive) that requires
or uses the software.

Table 42: Required Properties for DiskDrive

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Name string maxlen (256) The Name property defines the label by
which the object is known. When
subclassed, the Name property can be
overridden to be a Key property.
134 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.5.12.7 MediaPresent
Where a StorageExtent is accessed through a MediaAccessDevice, this relationship is described by
the MediaPresent association.

MediaPresent is subclassed from Dependency.

7.3.3.5.12.8 PhysicalMedia
The PhysicalMedia class represents 'sealed' Media, so that the Media can then be associated with
the PhysicalPackage using the PackagedComponent relationship.

PhysicalMedia is subclassed from PhysicalComponent.

OperationalStatus[] uint16 Indicates the current status(es) of the
element. Various health and
operational statuses are defined.

SystemCreationClassName string key,
maxlen(256)

The scoping System's
CreationClassName.

SystemName string key,
maxlen(256)

The scoping System's Name.

CreationClassName string key,
maxlen(256)

CreationClassName indicates the
name of the class or the subclass used
in the creation of an instance. When
used with the other key properties of
this class, this property allows all
instances of this class and its
subclasses to be uniquely identified.

DeviceID string key, maxlen(64) An address or other identifying
information to uniquely name the
LogicalDevice.

Table 43: Required Properties for MediaPresent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override, key Reference to MediaAccessDevice

Dependent ref override, key Reference to the StorageExtent accessed
using the MediaAccessDevice.

Table 44: Required Properties for PhysicalMedia

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Tag string maxlen(256), key An arbitrary string that uniquely
identifies the Physical Element

CreationClassName string maxlen(256). key The name of the concrete subclass

Table 42: Required Properties for DiskDrive (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 135

SNIA Storage Management Initiative Specification
7.3.3.5.12.9 Realizes
Realizes is the association that defines the mapping between LogicalDevices and the
PhysicalElements that implement them.

Realizes is subclassed from Dependency

7.3.3.5.12.10 RealizesExtent
StorageExtents can be realized by PhysicalComponents. Disks are realized by PhysicalMedia. This
relationship of Extents to PhysicalComponents is made explicit by the RealizesExtent association.
In addition, the StartingAddress of the StorageExtent on the Component is specified here.

RealizesExtent is subclassed from Realizes.

Manufacturer string maxlen(256)

Model string maxlen(64)

SKU string maxlen(64) This property is OPTIONAL.

SerialNumber string maxlen(256) This property is OPTIONAL.

Version string maxlen(64) This property is OPTIONAL.

PartNumber string maxlen(256) This property is OPTIONAL.

VendorEquipmentType string

Capacity uint64 The number of bytes that can be
read from or written to a Media. Data
compression should not be assumed,
as it would increase the value in this
property. Units ("Bytes")

Table 45: Required Properties for Realizes

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override, key The physical component that implements the
Device.

Dependent ref override, key The LogicalDevice.

Table 46: Required Properties for RealizesExtent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override, key The PhysicalComponent on which the Extent
is realized.

Dependent ref override, key The StorageExtent that is located on the
Component.

Table 44: Required Properties for PhysicalMedia (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
136 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.5.12.11 SoftwareIdentity
SoftwareIdentity class is used to model the firmware on a Disk Drive. A SoftwareIdentity object
captures the management details of a part or component.

SoftwareIdentity is subclassed from LogicalElement.

StartingAddress uint64 The starting address on the
PhysicalComponent where the StorageExtent
begins. Ending address of the StorageExtent
is determined using the NumberOfBlocks and
Block Size properties of the StorageExtent
object.
This property is OPTIONAL.

Table 47: Required Properties for SoftwareIdentity

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key The name used to identify this
SoftwareIdentity.

VersionString string Software Version should be in the form
<Major>.<Minor>.<Revision> or
<Major>.<Minor><letter><revision>.

Manufacturer string Manufacturer of this Software.

BuildNumber uint16 OPTIONAL. The internal identifier for this
compilation of software, if available.

RevisionNumber uint16 OPTIONAL. This is the numeric
representation of the revision number in the
VersionString

MajorVersion uint16 OPTIONAL. This is the numeric
representation of the Major number in the
VersionString

MinorVersion uint16 OPTIONAL. This is the numeric
representation of the Minor number in the
VersionString

Table 46: Required Properties for RealizesExtent (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 137

SNIA Storage Management Initiative Specification
7.3.3.5.12.12 StorageExtent

7.3.3.5.12.13 Optional Subprofiles

7.3.3.6 Extent Mapping Subprofile

7.3.3.6.1 Description
The Extent Mapping subprofile is used in the Array, In-band Virtualization and Out-of-band
Virtualization Profiles.

In the StoragePool mechanism storage allocation is focused on a logical usage of storage in a
device. There is little information exposed to clients about how data is laid out on underlying
extents. Storage administrators may want to know specifically which disk (or underlying extent) a
LUN is on so they can avoid locating frequently used LUNs on the same extents. The extent
mapping subprofile allows an agent to describe this information to the level of a single disk drive
or underlying extent.

7.3.3.6.2 Standards Dependencies
The Extent Mapping subprofile is defined using the CIM Schema 2.8 Preliminary. As such it can
be used in profiles at 2.8 and later. It does not require that Profiles be on a later schema. It will
operate within profiles that are at the CIM schema 2.8 final or later. The subprofile will operate
correctly with CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

7.3.3.6.3 Profile Dependencies
The Extent Mapping subprofile introduces no Profile dependencies.

Table 48: Required Properties for StorageExtent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DeviceID string maxlen(64), key unique identifying information

BlockSize uint64

NumberOfBlocks uint64

ExtentStatus[] uint16

OperationalStatus[] uint16

Table 49: Optional Profiles or Subprofiles

Name Notes

None
138 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.6.4 CIM Server Requirements

7.3.3.6.4.1 Functional Profiles

7.3.3.6.4.2 Extrinsic Methods
The Extent Mapping subprofile does NOT REQUIRE support for extrinsic methods.

7.3.3.6.4.3 Discovery
The Extent Mapping subprofile is NOT advertised.

Table 50: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

NO Indication None
Version 1.0.1 139

SNIA Storage Management Initiative Specification
7.3.3.6.5 Instance Diagrams

The instance diagram shows the extents included in the appropriate Storage Pools using the
ConcreteComponent relationship. StorageVolumes created from the pool are linked back to the
source extent using the BasedOn relationship.

The StartingAddress and EndingAddress MAY be used to locate of the data on the StorageExtent.
The OrderIndex MAY be used to order the different BasedOn relationships composing the
StorageVolume.

7.3.3.6.6 Durable Names and Correlatable IDs
No new durable identifiers are defined in this subprofile.

7.3.3.6.7 Methods
No method are defined in this subprofile

Figure 23: Extent Mapping Instance

StorageV olume

StorageEx tent

Bas edOn

StoragePool

A llocatedFromStoragePool

Conc reteComponent
140 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.6.8 Required CIM Elements

7.3.3.6.9 Required Properties for CIM Elements

7.3.3.6.9.1 BasedOn

7.3.3.6.9.2 ConcreteComponent

Table 51: Required CIM Elements

Profile Classes & Associations Notes

BasedOn (p. 141)

ConcreteComponent (p. 141)

StorageExtent (p. 142)

Packages

None.

Associated Indications

None

Table 52: Required Properties for BasedOn

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override, key StorageExtent Reference

Dependent ref override, key StorageExtent Reference

StartingAddress unit64 where in lower level storage, the higher
level Extent begins (optional)

EndingAddress unit64 where in lower level storage, the higher
level Extent ends.(Optional)

OrderIndex unit16 indicates the order to the BasedOn
associations that describes how a higher
level StorageExtent is assembled (optional)

Table 53: Required Properties for ConcreteComponent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

PartComponent ref override, key the component StorageExtent

GroupComponent ref aggregate,
override, key

the Storage Pool
Version 1.0.1 141

SNIA Storage Management Initiative Specification
7.3.3.6.9.3 StorageExtent

7.3.3.6.10 Optional Subprofiles

7.3.3.7 Location Subprofile

7.3.3.7.1 Description
Associated with product information, a PhysicalPackage may also have a location. This is
indicated using an instance of a Location class and the PhysicalElementLocation association.

The Location Subprofile is an optional subprofile of the Management Appliance, JBOD, Array,
Out-of-band Virtualization System and In-band Virtualization System.

7.3.3.7.2 Standards Dependencies
The Location subprofile is defined using the CIM Schema 2.7 final. As such it can be used in
profiles at 2.7 and later. It does not require that Profiles be on a later schema. It will operate
within profiles that are at the CIM schema 2.7 final or later. The subprofile will operate correctly
with CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

7.3.3.7.3 Profile Dependencies
The Location subprofile introduces no Profile dependencies.

7.3.3.7.4 CIM Server Requirements
For the SMI-S uses of the Location subprofile, support for Basic Read and Association Traversal
functional profiles MUST be supported by the CIM server of the parent profile.

The Location subprofile does NOT REQUIRE support for extrinsic methods.

The Location subprofile is NOT advertised.

Table 54: Required Properties for StorageExtent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Name string For virtualization systems, this
should be the Name of the
StorageVolume that is imported.

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DeviceID string maxlen(64), key unique identifying information

Table 55: Optional Profiles or Subprofiles

Name Notes

None
142 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.7.5 Instance Diagram

7.3.3.7.6 Durable Names and Correlatable IDs
The Location subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.

7.3.3.7.7 Methods
The Location subprofile is populated by providers and is accessible to clients using basic read and
association traversal.

No extrinsics are specified on the Location subprofile.

7.3.3.7.8 Client Considerations
See details in related profile section.

7.3.3.7.9 Recipes
See details in related profile section.

7.3.3.7.10 Instrumentation Requirements
See details in related profile section.

Figure 24: Location Instance

PhysicalPackage

Location

PhysicalElementLocation
Version 1.0.1 143

SNIA Storage Management Initiative Specification
7.3.3.7.11 Required CIM Elements

7.3.3.7.12 Required Properties for CIM Elements

7.3.3.7.12.1 Location
The Location class specifies the position and address of a PhysicalElement.

Location is subclassed from ManagedElement.

7.3.3.7.12.2 PhysicalElementLocation
PhysicalElementLocation associates a PhysicalElement with a Location object for inventory or
replacement purposes.

Table 56: Required CIM Elements

Profile Classes & Associations Notes

Location (p. 144)

PhysicalElementLocation (p. 144) Associates the location to product

Packages

None.

Methods

None.

SubProfile Indications

None

Table 57: Required Properties of Location

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name.
This property is OPTIONAL.

Name string key, maxlen
(256)

A free-form string defining a label for the
Location.

PhysicalPosition string key, maxlen
(256)

A free-form string indicating the placement of
a PhysicalElement.

Address maxlen (1024) A free-form string indicating a street, building
or other type of address for the
PhysicalElement's Location.
This property is OPTIONAL.
144 Version 1.0.1

SNIA Storage Management Initiative Specification
PhysicalElementLocation is subclassed from ElementLocation.

7.3.3.7.12.3 Optional Subprofiles

7.3.3.8 Software Subprofile

7.3.3.8.1 Description
The Software Subprofile is used in the Extender, Router, Management Appliance, Array, Out-of-
band Virtualization System and In-band Virtualization System Profiles.

Information on the installed controller software is given using the SoftwareIdentity class. This is
linked to the controller using an InstalledSoftwareIdentity association.

7.3.3.8.2 Standards Dependencies
The Software package is defined using the CIM Schema 2.8 final. As such it can be used in profiles
at 2.8 and later. It does not require that Profiles be on a later schema. It will operate within
profiles that are at the CIM schema 2.8 final or later. The package will operate correctly with CIM
Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

7.3.3.8.3 Profile Dependencies
The Software subprofile introduces no Profile dependencies.

7.3.3.8.4 CIM Server Requirements
For the SMI-S uses of the Software subprofile, support for Basic Read and Association Traversal
functional profiles MUST be supported by the base Profile CIM server.

The Software subprofile does NOT REQUIRE support for extrinsic methods.

The Software subprofile is NOT advertised.

7.3.3.8.5 Instance Diagram
See the Software Package Instance Diagram.

7.3.3.8.6 Durable Names and Correlatable IDs
The Software Subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.

Table 58: Required Properties for PhysicalElementLocation

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Element ref key The PhysicalElement whose Location is
specified.

PhysicalLocation ref key The PhysicalElement's Location.

Table 59: Optional Profiles or Subprofiles

Name Notes

None
Version 1.0.1 145

SNIA Storage Management Initiative Specification
7.3.3.8.7 Methods
The Software Subprofile is populated by providers and is accessible to clients using basic read and
association traversal.

No extrinsics are specified on the Software Subprofile.

7.3.3.8.8 Client Considerations
See details in related profile section.

7.3.3.8.9 Recipes
See details in related profile section.

7.3.3.8.10 Instrumentation Requirements
See details in related profile section.

7.3.3.8.11 Required CIM Elements

7.3.3.8.12 Required Properties for CIM Elements
See the Required Properties for CIM Elements for the Software Package.

7.3.3.8.13 Optional Subprofiles

7.3.3.9 Copy Services Subprofile

7.3.3.9.1 Description
The Copy Service Subprofile is an optional subprofile for the Array, Out-of-Band Virtualization
and In-band Virtualization Profiles

The copy services profile within the SMI-S object model allows vendors to express management
functionality to support clones and point-in-time snapshots of non-volatile storage. This profile
also provides support for remote replication services (either asynchronous or synchronous) for non-
volatile storage. In this release of the specification, copy services applies to volumes. While copy
services functionality is broad in scope and represents vital functionality in any enterprise storage

Table 60: Required CIM Elements

Profile Classes & Associations Notes

InstalledSoftwareIdentity (p. 112) See under Software Package

SoftwareIdentity (p. 112) See under Software Package

Packages

Software Package

Associated Indications

None.

Table 61: Optional Profiles or Subprofiles

Name Notes

None
146 Version 1.0.1

SNIA Storage Management Initiative Specification
environment and the time of this specifications publication, copy services design has principally
only been validated for use in support of volume snapshots.

Copy services are addressed by the StorageSynchronized association between two storage
elements. The model addresses the use of StorageSynchronized in the context of StorageVolumes
(Disk arrays and virtualization systems). In addition, the copy services are designed to support
synchronization of file system elements (See “Synchronization of File System Elements through
Copy Services” on page 512.). However, the specifics of this support are not addressed in this
specification.

The design for copy services is based the StorageSynchronized construct that defines the
relationship between volumes.

In addition to this construct, the design identifies the methods to support the copy services.

7.3.3.9.2 Standard Dependencies
The Copy Services subprofile is based on the following standards:

7.3.3.9.3 Profile Dependencies
The Copy Services subprofile does not require any other Profiles.

7.3.3.9.4 CIM Server Requirements

7.3.3.9.4.1 Functional Profiles

7.3.3.9.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Copy Services subprofile.

Table 62: Copy Services Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.1 DMTF

CIM Schema 2.8 Preliminary DMTF

Table 63: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

YES Basic Write Basic Read

YES Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
Version 1.0.1 147

SNIA Storage Management Initiative Specification
7.3.3.9.4.3 Discovery
The Copy Services subprofile, as currently defined, is not an advertised subprofile.

7.3.3.9.5 Instance Diagrams for Copy Services

7.3.3.9.5.1 Overview
The following diagram shows the basic model for copy services

Note: For simplicity, the StorageCapabilities, StorageSetting and ElementSettingData classes are
not shown.

The copy services subprofile REQUIRES the CIM elements shown in the dashed box in the figure.
The StorageSynchronized is the basic construct for establishing the replication relationship
between storage elements (e.g., StorageVolumes). The methods used are supported in the
StorageConfigurationService, which is hosted (HostedService) on the system that represents the
storage device that supports the service. The specific Copy Service capabilities supported are
specified in the StorageConfigurationCapabilities instance (using the properties shown in the
figure).

The following sections discuss the model constructs and define the properties involved with each.
Manipulation of these are covered in the “Methods” section.

Figure 25: Instance Diagram for Copy Services

StorageSynchronized

StorageVolume
(SourceElement)

StorageVolume
(Replica)

StorageConfigurationService

CreateReplica()
ModifySynchronization()
AttachReplica()

System
(ComputerSystem)

HostedServiceStorageConfigurationCapabilities

SupportedAsynchronousActions[]
SupportedSynchronousActions[]
SupportedStorageElementTypes[]
SupportedCopyTypes[]
InitialReplicationState ElementCapabilities
148 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.9.5.2 StorageSynchronized

The primary model construct for replication services is the StorageSynchronized association
(illustrated in Figure 29). This association is subclassed from Synchronized and is used to
represent snapshots and mirror copies of storage elements. In the context of this release of SMI-S,
the focus is on the use of StorageSynchronized to model copies of volumes. However, the actual
definition of the StorageSynchronized also accommodates a broader interpretation of the storage
elements that can be synchronized (e.g., file systems).

The StorageSynchronized association is defined as an association that “Indicates that two storage
objects were replicated at the specified point in time. If the CopyType property is set to ‘Sync’ (=3),
then synchronization of the storage object is preserved.”

The properties of the StorageSynchronized association are:

SystemElement (Key): The SystemElement represents the storage that is the source of the
replication.

SyncedElement (key): The SyncedElement represents the storage that is the target of the
replication.

CopyType: The CopyType describes the replication policy. CopyType has four values:

Async: Create and maintain an asynchronous copy of the source. Updates to the source
volume are not immediately available on the copy. The copy is done in the background.
Typically, this is used to maintain a geographically remote copy of the source volume where
the latency overhead of write synchronization would be too expensive or too slow.

Sync: Create and maintain a synchronous copy of the source. Writes done to the source
volume are reflected on the replica volume before control is returned to the host that issued
the write to the source volume.

UnSyncAssoc: Create an unsynchronized copy and maintain an association to the source.
This type of copy is generally referred to as a persistent “Snapshot” or “point in time” copy.

UnSyncUnAssoc: Create an unsynchronized copy, but do not maintain the association with
the source. This is a simple copy of a volume, where there is NO StorageSynchronized
instantiated between the source and the replica.

SyncMaintained: This property indicates whether (or not) the synchronization is being
maintained on an ongoing basis. SyncMaintained can be true for either synchronous or
asynchronous copies. SyncMaintained changes from true to false when a “fracture” service is
issued or when the relationship is “broken.” The SyncMaintained changes from false to true when
a “resync” service is invoked. The SyncMaintained is always false if the CopyType is UnSyncAssoc.
(E.g., a point in time copy).

Figure 26: StorageSynchronized Association

StorageVolume StorageV olume
(replica)

Storage Synchroniz
e d

- Copy Type
- SyncMaintained
- WhenSynced
- ReplicaType
- SyncState
Version 1.0.1 149

SNIA Storage Management Initiative Specification
WhenSynced: This property is only meaningful if SyncMaintained is false. In this case, it
indicates the time/date of the last synchronization. WhenSynced is not maintained while the
SyncMaintained is true. That is, it is not updated on every IO for an Async or Sync relationship
that has not been broken (fractured). It represents the time of the last fracture or resync issued on
the association.

Note: If the synchronization has not been established, then the value of WhenSynced is null.

Note: The properties “SyncMaintained” and “WhenSynced” are inherited from the Synchronized
class, from which StorageSynchronized is subclassed.

The following are meaningful combinations of these properties, with their common nomenclature.

Table 64: Name Formats

CopyType Sync
Maintained

When
Synced

Notes

Sync True Null or Datetime An ongoing mirror
relationship exists and
the mirror is identical to
the source

False Datetime A synchronous copy
relationship has been
fractured (split or
broken mirror). The
“whensynced” value is
the time of the last
fracture.

False Null This means the
relationship has been
establish, but not the
copy has not be
initiated.

Async True Null or Datetime An ongoing, but delayed
mirror relationship
exists. The replica may
be slightly out of date.

False Date/Time An asynchronous copy
relationship has been
fractured (split or
broken mirror). The
“whensynced” value
indicates the time of the
last fracture.

False Null This means the
relationship has been
establish, but not the
copy has not be
initiated.
150 Version 1.0.1

SNIA Storage Management Initiative Specification
In addition there are other properties that add information about the relationship:

ReplicaType: ReplicaType is an optional property for describing how the replica is maintained.
The types are Copy, before delta, after delta, log or Not Specified. This is an informational
property that backup tools might want to exploit. This is particularly useful when used in
association with Snapshots (UnSyncAssoc).

SyncState: The status property addresses the state of the copy operation represented by the
association. The state values are:

Fracture In Progress –A fracture has been requested and is in progress.

ReSync In Progress – A resync has been requested and is in progress (the replica not in
sync yet).

Restore In Progress – A restore has been requested and is in progress.

Prepare In Progress - A Prepare has been requested and is in progress.

Quiesce In Progress - A quiesce has been requested and is in progress.

UnSyncAssoc False Null This means the
relationship has been
establish, but not the
copy has not be
initiated.
A snapshot relationship
after the replica has
been modified.
NOTE: Some
implementations may
not allow this state.

False Date/Time A snapshot relationship
where the
“whensynced” value is
the time of the last
snapshot

UnSyncUnAssoc False Date/Time This state does not
actually exist. It
corresponds to the
service where a
snapshot is taken but
the relationship is not
maintained (e.g.,
logically deleted as
soon as the snapshot is
done).

Table 64: Name Formats (Continued)

CopyType Sync
Maintained

When
Synced

Notes
Version 1.0.1 151

SNIA Storage Management Initiative Specification
Fractured – The relationship has been fractured and is ready for a resync or restore request.
This status also appears for UnSyncAssoc, indicating that the point in time copy (as of the
WhenSynced date) has been completed.

Synchronized – The Async or Sync relationship is active and copying is going on.

Prepared - The association is in a Prepared state and ready to be Resync’d.

Quiesced - The association is in a quiesced state and ready to be Fractured.

Broken – The source element and the replica have gotten out of sync. Repair actions are
required to re-establish the relationship. The repair action would be a Resync or a
RestoreFromReplica.

Initialized – The relationship has been established, the copy has not been initiated.

Idle – The relationship has been established, the copy (Resync) has been initiated and
completed (for UnSyncAssoc associations).

A source object may have multiple replicas (each with their own StorageSynchronized association
and each of the same or different copy types). That is, one source can have many targets (replicas),
but one replica can have only one source.

Note: Any implementation may place a restriction on the number of replicas that can be made
from a single source. In the extreme case, the maximum number of replicas would be zero
(that is, none). This would indicate the replication is not supported for the source storage
object.

It should also be noted that the replica may, itself, be the source of another replica. That is, the
architecture allows a copy to be copied.

7.3.3.9.6 Durable Names and Correlatable IDs
Copy services uses and exports the following durable names:

• StorageVolumes (StorageVolume.name)

For StorageVolumes the Durable Name is the StorageVolume.name and the format for the name is
defined by the NameFormat property. See Table 3 on page 82 for the valid formats for
StorageVolumes.

7.3.3.9.7 Methods for Copy Services
The following extrinsic methods are part of storage configuration service that are defined to
support replication (and the StorageSynchronized association).

Create Replica: This service creates a new storage object that is a replica of the source storage
object. Based on the CopyType property, the service can be used to instantiate the replica, and to
create StorageSynchronized association between the source and the replica. When creating a
replica, a target StoragePool and a target setting can be specified. If the target setting is not
specified, a default setting is used. If the target StoragePool is not specified, the default
assumption is the same pool as the source storage object.

This service takes as input the reference to the source storage object, the StorageSetting to be
maintained for the target storage object (the replica), the target StoragePool (optional) and the
CopyType (see the CopyType property of StorageSynchronized). The output of this service is a
reference to the target storage object.

CreateReplica():
152 Version 1.0.1

SNIA Storage Management Initiative Specification
 [IN, Description ("A end user relevant name for the element being created. If NULL,

then a system supplied default name can be used. The value will be stored in the

'ElementName' property for the created element")]

 string ElementName,

[OUT, IN(false), Description(“Reference to the job (may be null if job completed).”)]

 CIM_ConcreteJob REF Job,

 [IN, Required, Description(“The source storage object.”)]

 CIM_LogicalElement REF SourceElement,

[OUT, IN(false), Description(“Reference to the created target storage element (i.e., the replica).”)]

 CIM_LogicalElement REF TargetElement,

 [IN, Description(“The definition for the StorageSetting to be maintained by the target storage
object (the replica).”)]

 CIM_StorageSetting REF TargetSettingGoal,

[IN, Description(“The underlying storage for the target element (the replica) will be drawn from
TargetPool if specified, otherwise the allocation is implementation specific.”)]

 CIM_StoragePool REF TargetPool,

[IN, Description(“CopyType describes the type of copy that will be made. Values are:

 Async: Create and maintain an asynchronous copy of the source.

 Sync: Create and maintain a synchronized copy of the source.

 UnSyncAssoc: Create an unsynchronized copy and maintain an association to the source.

 UnSyncUnAssoc: Create unassociated copy of the source element.”),

 ValueMap {“2”, “3”, “4”, “5”, “..”, “0x8000..”},

 Values {“Async”, “Sync”, “UnSyncAssoc”, “UnSyncUnAssoc”, “DMTF Reserved”, “Vendor
Specific”}]

 Uint16 CopyType

ModifySynchronization: This service specifies a modification to the StorageSynchronized
association. It takes as input a reference to the association and the type of modification desired.
The types of modification defined are: Detach, Fracture, ResyncReplica RestoreFromReplica,
Prepare, Unprepare, Quiesce, Unquiesce, ResetToSync and ResetToAsync. These types of
modifications are defined as:

Detach: This deletes a StorageSynchronized association, and effectively breaks the
relationship between a replica and its source. It does not delete the replica, but makes it a
“normal” storage object. So, detaching the replica of a StorageVolume would turn the replica
into a “normal” storage volume.

Fracture: This suspends the synchronization between the two storage objects (changes
SyncMaintained to false and sets the time/date for the time of last synchronization). The
association is not deleted (assumes there may be a future “resync”). This function is
Version 1.0.1 153

SNIA Storage Management Initiative Specification
sometimes called “breaking” or “splitting” a mirror. NOTE: FractureReplica only applies to
CopyTypes of Async or Sync. It has no meaning to an UnSyncAssoc (or UnSyncUnAssoc) type.

Resync Replica: This modification re-establishes the synchronization between the source
and the replica. If the CopyType of the association was either Sync or Async, it returns the
relationship to Sync or Async (respectively). If the copy type is UnSyncAssoc, the resync re-
derives the snapshot (e.g., take another snapshot and reset the WhenSynced value).

Restore From Replica: This modification asks that the source storage object be restored
from the replica. In effect, this reverses the copy. That is, the replica is copied back to the
source object. This has the effect of restoring the source volume to the state in the replica.

Prepare: This modification is indicates that the agent should get prepared for a Resync
action. Some implementations require this to be invoked before the ResyncReplica .

Unprepare: This modification is required clear a quiesced state if a Prepare is not followed
by a ResyncReplica.

Quiesce: This modification is indicates that the agent should get prepared for a Fracture
action. Some implementations require this to be invoked before the Fracture.

Unquiesce: This modification is required clear a quiesced state if a Quiesce is not followed by
a Fracture.

Reset To Sync: This modification changes the association to the “Sync” CopyType (e.g., from
the “Async” CopyType).

Reset To Async: This modification changes the association to the “Async” CopyType (e.g.,
from the “Sync” CopyType).

ModifySynchronization():

[IN, Description(“Operation describes the type of modification to be made to the replica. Values
are:

Detach: 'Forget' the synchronization between two storage objects. Start to treat the objects as
 independent.

Fracture: Suspend the synchronization between two storage objects. The association and
(typically) changes are remembered to allow a fast re-synchronization. This may be used
during a backup cycle to allow one of the objects to be copied while the other remains in
production.

Resync Replica: Re-establish the synchronization of a replica. If CopyJob is Sync or Async,
this negates the action of a previous Fracture operation.

Restore from Replica: Renew the contents of the original storage object from a replica.

Prepare: Place the association in a quiesced state when a prepared state is required for a
Resync.

Unprepare: Take the association out of the prepared state without issuing a Resync.

Quiesce: Place the association in a quiesced state when a quiesced state is required for a
Fracture

Unquiesce: Take the association out of the quiesced state without issuing a Fracture.

Reset To Sync: Change the CopyType to “Sync”
154 Version 1.0.1

SNIA Storage Management Initiative Specification
Reset To Async: Change the CopyType to “Async”

 ValueMap {“0”,”1”,”2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “10”, ”11”, “..”, “0x8000..”},

Values {“DMTF Reserved”, “DMTF Reserved”, “Detach”, “Fracture”, “Resync Replica”,
“Restore from Replica”, “Prepare”, “Unprepare”, “Quiesce”, “Unquiesce”, “Reset To Sync”,
“Reset To Async”, “DMTF Reserved”, “Vendor Specific”}]

 Uint16 Operation,

[OUT, IN(false), Description(“Reference to the job (may be null if job completed).”)]

 CIM_ConcreteJob REF Job,

[IN, Description(“The referenced to the StorageSynchronized association describing the storage
source/replica relationship.”)]

 CIM_StorageSynchronized REF Synchronization

AttachReplica – This function creates a StorageSynchronized relationship between two (existing)
storage volumes. Once the association is created the SyncState is set to “initialized”, “Prepared” or
“Synchronized” as defined in the StorageConfigurationCapabilities associated with the
StorageConfigurationService. There is no ConcreteJob created or returned on this method call (since
the only action effected is the creation of the association).

AttachReplica():

[IN, Description ("A end user relevant name for the element being created. If NULL,

then a system supplied default name can be used. The value will be stored in the

'ElementName' property for the created element")]

 string ElementName,

[IN, Required, Description(“The source storage object.”)]

 CIM_LogicalElement REF SourceElement,

[IN, Required, Description(“Reference to the target storage element (i.e., the replica).”)]

 CIM_LogicalElement REF TargetElement,

[IN, Required, Description(“CopyType describes the type of copy that will be made. Values are:

 Async: Create and maintain an asynchronous copy of the source.

 Sync: Create and maintain a synchronized copy of the source.

UnSyncAssoc: Create an unsynchronized copy and maintain an association to the source.

 UnSyncUnAssoc: Create unassociated copy of the source element.”),

 ValueMap {“2”, “3”, “4”, “5”, “.”, “0x8000..”},

 Values {“Async”, “Sync”, “UnSyncAssoc”, “UnSyncUnAssoc”, “DMTF Reserved”, “Vendor
Specific”}]

 Uint16 CopyType
Version 1.0.1 155

SNIA Storage Management Initiative Specification
[OUT, IN(false), Description(“Reference to the job (may be null if job completed).”)]

 CIM_ConcreteJob REF Job,

7.3.3.9.8 Client Considerations for Copy Services

7.3.3.9.8.1 Determining the Type of Copy Services Supported
Copy Services come in multiple types and variations. To support a clients ability to recognize the
functions and capabilities provided there is a StorageConfigurationCapabilities instance that is
associated with the StorageConfigurationService. A client can determine the exact support
provided by the profile in question by inspecting the following properties of the
StorageConfigurationCapabilities:

a. SupportedCopyTypes - identifies the types of copies (CopyType input to CreateReplica or
AttachReplica) that are supported.

• Async - means Asynchronous mirroring is supported

• Sync - means Synchronous mirroring is supported

• UnSyncAssoc - means Snapshots are supported and the association persists after a
snapshot is taken.

• UnSyncUnAssoc - means Snapshots are supported and the association is automatically
detached after a Resync.

b) SupportedSynchronousActions - This is an array that indicates which methods are supported
without the use of jobs. For Copy Services, the actions to look for are "Replica Creation", "Rep-
lica Attach", "Replica Synchronization".

• Replica Creation - means jobs may not be returned on CreateReplica

• Replica Attachment - means jobs may not be returned on AttachReplica

• Replica Modification - means jobs may not be returned on ModifySynchronization

c) SupportedAsynchronousActions - This is an array that indicates whether or not jobs may be
created based on the actions listed. For Copy Services, the actions to look for are "Replica Cre-
ation", "Replica Attach", "Replica Synchronization".

• Replica Creation - means jobs may be returned on CreateReplica

• Replica Attachment - means jobs may be returned on AttachReplica

• Replica Modification - means jobs may be returned on ModifySynchronization

d) SupportedStorageElementTypes - This is an array that indicates the types of storage that are
supported. For the Copy Services subprofile “StorageVolume” MUST be present

e) InitialReplicationState - indicates the initial state that results from a CreateReplica or
AttachReplica

• Initialized - means the SyncState is initialized as a result of creating a
StorageSynchronized.

• Prepared - means the SyncState is Prepared as a result of creating a
StorageSynchronized.

• Synchronized - means the SyncState is Synchronized as a result of creating a
StorageSynchronized.
156 Version 1.0.1

SNIA Storage Management Initiative Specification
By inspecting these StorageConfigurationCapabilities, the client can determine the types and
variations of copy services supported.

7.3.3.9.8.2 Creating a Copy Relationship between two existing Volumes
A client can establish a copy relationship between two existing volumes by simply issuing a
AttachReplica to create the StorageSynchronized association. Once the association is created the
SyncState is set to “initialized”, “Prepared” or “Synchronized” as defined in the
StorageConfigurationCapabilities associated with the StorageConfigurationService.

If the relationship is left in the "initialized" state, then it will be necessary to Prepare the
relationship before issuing a "Resync Replica" to effect the copy action. If the relationship is left in
the "Prepared" state, then it will be necessary to issue a "Resync Replica" to effect the copy action.
If the relationship is left in the "Synchronized" state, no action is required to effect the copy action.
It has been performed.

7.3.3.9.8.3 Creating a Point-in-Time Copy of a Volume
If the replica volume has not been created, a client could create a point in time copy by issuing the
method CreateReplica of the StorageConfigurationService passing the Source volume, a CopyType
of UnSyncAssoc or UnSyncUnAssoc. Either of these result in a point in time copy of the source
volume. In addition, the client may optionally specify the StorageSetting to be supported by the
replica.

The client gets the target volume reference as an output of the method call. In addition, if the point
in time copy is not done at the time of the response is returned, the client may get a ConcreteJob
reference to monitor completion of the copy.

If the CopyType specified was UnSyncAssoc, then a StorageSynchronized relationship is
established between the source volume and the replica. The CopyType is set to “UnSyncAssoc”, the
WhenSync value is the effective time of the copy and SyncMaintained is set to False. In addition,
the ReplicaType (if supported) identifies the type of point-in-time copy that was taken. And the
SyncState is set to “initialized”, “Prepared” or “Synchronized” as defined in the
StorageConfigurationCapabilities associated with the StorageConfigurationService.

If the relationship is left in the "initialized" state, then it will be necessary to Prepare the
relationship before issuing a "Resync Replica" to effect the copy action. If the relationship is left in
the "Prepared" state, then it will be necessary to issue a "Resync Replica" to effect the copy action.
If the relationship is left in the "Synchronized" state, no action is required to effect the copy action.
It has been performed.

7.3.3.9.8.4 Creating a Synchronous Copy of a Volume
If the replica volume has not been created, a client could create a synchronous copy on the volume
by issuing the method CreateReplica of the StorageConfiguarionService passing the Source
Volume and a CopyType of Sync. This results in a synchronous copy relationship of the source
volume. In addition, the client may optionally specify the StorageSetting to be supported by the
replicas.

The client gets the target StorageVolume reference as an output of the method call. In addition, if
the synchronous copy is not done at the time of the response is returned, the client gets a
ConcreteJob reference to monitor completion of the copy.

A StorageSynchronized relationship is established between the source volume and the replica. The
CopyType is set to “Sync”, the WhenSync value is null and SyncMaintained is set to True. In
addition, the ReplicaType (if supported) identifies the type of synchronous copy that was taken.
SyncState is set to “initialized”, “Prepared” or “Synchronized” as defined in the
StorageConfigurationCapabilities associated with the StorageConfigurationService.
Version 1.0.1 157

SNIA Storage Management Initiative Specification
If the relationship is left in the "initialized" state, then it will be necessary to Prepare the
relationship before issuing a "Resync Replica" to effect the copy action. If the relationship is left in
the "Prepared" state, then it will be necessary to issue a "Resync Replica" to effect the copy action.
If the relationship is left in the "Synchronized" state, no action is required to effect the copy action.
It has been performed.

7.3.3.9.8.5 Creating an Asynchronous Copy of a Volume
If the replica volume has not been created, a client could create an asynchronous copy on the
volume by issuing the method CreateReplica of the StorageConfiguarionService passing the
Source Volume and a CopyType of Async. This results in an asynchronous copy relationship of the
source volume. In addition, the client may optionally specify the StorageSetting to be supported by
the replicas.

The client gets the target StorageVolume reference as an output of the method call. In addition, if
the asynchronous copy is not done at the time of the response is returned, the client gets a
ConcreteJob reference to monitor completion of the copy.

A StorageSynchronized relationship is established between the source volume and the replica. The
CopyType is set to “Async”, the WhenSync value is null and SyncMaintained is set to True. In
addition, the ReplicaType (if supported) indentifies the type of asynchronous copy that was taken.
And the SyncState is set to “initialized”, “Prepared” or “Synchronized” as defined in the
StorageConfigurationCapabilities associated with the StorageConfigurationService.

If the relationship is left in the "initialized" state, then it will be necessary to Prepare the
relationship before issuing a "Resync Replica" to effect the copy action. If the relationship is left in
the "Prepared" state, then it will be necessary to issue a "Resync Replica" to effect the copy action.
If the relationship is left in the "Synchronized" state, no action is required to effect the copy action.
It has been performed.

7.3.3.9.8.6 Splitting Mirrored Volumes
A client can split a pair of mirrored volumes by issuing the Quiesce and Fracture options of the
ModifySynchronization method call. This method call only works when CopyType is “Sync” or
“Async.” In the case of an “Async” copy type, a “Prepare and Resync Replica” is implied by the
Quiesce. That is, the copies are synchronized before the fracture is effected.

Once mirrors have been split, the client has a copy with the effective time (WhenSynced) that is
the time of the Fracture.

7.3.3.9.8.7 Re-establishing the Mirrored relationship between Volumes
After a fracture has been done on mirrored volumes, the mirrored relationship can be re-
established by issuing the Resync Replica option of the ModifySynchronization method.

7.3.3.9.8.8 Getting notification of Completion of Copy Actions Initiated
A client can monitor the progress of copy methods that it has initiated by monitoring the
PercentComplete property of the ConcreteJob returned on the original copy action. The client
would do this by subscribing to the PercentComplete InstModificaiton indication.

The client can also subscribe to JobStatus, just looking for completion of the job (rather than
tracking the percent complete property). By monitoring the JobStatus, the client would get the
JobStatus (normal or abnormal end) when the indication is raised.

Note: GUIs would typically monitor PercentComplete so they can report the progress to their end
users. However, programs that are not directly interacting with end users would typically
just subscribe to the JobStatus changes.
158 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.9.8.9 Breaking Copy Relationships between Volumes
A client can delete the copy relationship between volumes by issuing the Detach option of the
ModifySynchronization method.

7.3.3.9.9 Recipes for Copy Services
None.

7.3.3.9.10 Instrumentation Requirements for Copy Services

7.3.3.9.10.1 Implementation Restrictions
The intent of the architecture for copy services is not to dictate implementations, but rather to
establish a consistent way of specifying the services that are implemented. For example, some
implementations may not support creation of Replicas as defined for CreateReplica. That is, they
may only operate on volumes that are created by the using client (or application). This would be a
valid implementation. The StorageSynchronized is supported by the AttachReplica method. All
implementations MUST supply the “Replica Modification” in the SupportedSynchronousActions or
SupportedAsynchronousActions arrays of StorageConfigurationCapabilities. An implementation
MUST also supply at least one of “Replica Creation” or “Replica Attachment” in at least one of the
same arrays. An implementation MAY supply only one of the two.

Similarly, not all implementations are expected to support all CopyTypes. This too is allowed. An
implementation MUST identify the CopyTypes supported in the
StorageConfigurationCapabilities.SupportedCopyTypes array.

For the Copy Services subprofile, implementations MUST support one and only one value in the
StorageConfigurationCapabilities.InitialReplicationState. This value MAY be “Initialized”,
“Prepared” or “Synchronized”.

For this version of the specification any implementation of the Copy Services subprofile MUST set
“StorageVolume” in the StorageConfigurationCapabilities.SupportedStorageElementTypes array.

In addition, the implementation MUST supply the Methods for which it supports job control. This
is done in the StorageConfigurationCapabilities.SupportedAsynchronousActions array.

7.3.3.9.10.2 Mapping of SyncState information
It is expected that various implementations of the copy services will have state information that
does not exactly match that of this architecture. Where possible and practical, implementations
SHOULD attempt to map to the standard architected states to enable applications that utilize
those states. However, in cases where using the architected state would be misleading, it is
RECOMMENDED that the implementation use the “Vendor Specific” state to avoid misleading
the applications.

7.3.3.9.10.3 Resync after Fracture Considerations
When a StorageSynchronized association is modified with a “fracture” request, the agent may
want to consider “remembering” changes to the source volume. Typically, a “fracture” request will
be followed by a “resync” request. This resync will go a lot faster if the device was maintaining a
change log between the fracture and the resync.
Version 1.0.1 159

SNIA Storage Management Initiative Specification
7.3.3.9.10.4 State Diagrams for Snapshot (UnSyncAssoc)
The following diagram illustrates the state changes that would be supported for Snapshots. The solid arrows
between states are application provoked state changes. The dashed arrows are automatic state
changes as a result of completion of the previous state.

Figure 27: State Diagram for Snapshots

Prepare in
progress

Prepared

Unprepare

Resync
in Progress

Idle

Restore in
Progress

Restore
FromReplica

Detach

Prepare

Initialized
Prepare

No Association

No Association

No Association

No Association

Create or
Attach Replica

Detach

ResyncReplica

Create or
AttachReplica Create or

AttachReplica

Detach
160 Version 1.0.1

SNIA Storage Management Initiative Specification
There are 3 possible ways on entering this state diagram. In any case, entry is done through
CreateReplica or AttachReplica. This is determined based on the
StorageConfigurationCapabilities.InitialReplicationState value. The Create or Attach creates a
StorageSynchronized association and puts it in either the “initialized”, “Prepared” or
“Synchronized” state. If it is put in the initialized state, a Prepare must be issued before issuing a
Resync.

Once a Prepare has finished, the state moves to Prepared. At this point, the client may issue the
Resync to drive the Snapshot. If the client decides against doing the Resync, the client SHOULD
issue an Unprepare.

After a Resync, the association is put in the ResyncInProgress state until the copy is complete.
Once the copy is complete, the association is put in the idle state.

At any point in time, except the “in progress” states, a detach may be issued to delete the
StorageSynchronized association.
Version 1.0.1 161

SNIA Storage Management Initiative Specification
7.3.3.9.10.5 State Diagrams for Mirrors (Sync or Async)
The following diagram illustrates the state changes that would be supported for Mirrors. The solid arrows
between states are application provoked state changes. The dashed arrows are automatic state
changes as a result of completion of the previous stateservices

Figure 28: State Diagram for Mirrors

Prepare in
progress

Prepared

Unprepare

ReSync in
Progress

ResyncReplica

Synchronized

Fracture in
Progress

Restore in
Progress

Fractured

RestoreFromReplica

Detach

Initialized

Prepare

Quiesced

Quiesce
Fr

ac
tu

re

Detach

Quiesce in
progress

Unqueisce

No Association

No Association

No Association

Create or
AttachReplica

Create or
AttachReplica

Detach

Create or
AttachReplica

Detach

ResyncReplica

Detach

Prepared

Pr
ep

ar
e

Prepare in
progress
162 Version 1.0.1

SNIA Storage Management Initiative Specification
There are 3 possible ways on entering this state diagram. In any case, entry is done through
CreateReplica or AttachReplica. This is determined based on the
StorageConfigurationCapabilities.InitialReplicationState value. The Create or Attach creates a
StorageSynchronized association and puts it in either the “initialized”, “Prepared” or
“Synchronized” state. If it is put in the initialized state, a Prepare must be issued before issuing a
Resync.

Once a Prepare has finished, the state moves to Prepared. At this point, the client may issue the
Resync to drive the actual copy functions. If the client decides against doing the Resync, the client
SHOULD issue an Unprepare.

After a Resync, the association is in the ResyncInProgress state until the copy is in the
“synchronized” state. For Sync copies this may take a while. Even for Async, it may take awhile.
Once the copy is Synchronized, the association is put in the “Synchronized” state.

In the case of mirrors, there is an additional state of “Quiesced”. A Quiesce is required before a
Fracture. This basically gets the mirrors in sync for the fracture. For Sync mirrors, this may be
trivial. For Async mirrors, this may be more involved.

At any point in time, except the “in progress” states, a detach may be issued to delete the
StorageSynchronized association.
Version 1.0.1 163

SNIA Storage Management Initiative Specification
7.3.3.9.11 Required CIM Elements

7.3.3.9.12 Required Properties for CIM Elements

7.3.3.9.12.1 ElementCapabilities
ElementCapabilities represents the association between ManagedElements and their Capabilities.
In the Copy Services Subprofile, the ManagedElement is the StorageConfigurationService.
ElementCapabilities describes the existence requirements and context for the referenced instance

Table 65: Subprofile Required Classes, Associations, Methods and Indications

Subprofile Class & Associations Notes

ElementCapabilities Associates the StorageConfigurationCapabilities to the
StorageConfigurationService and to associate
StorageCapabilities to the target StoragePool of a
CreateReplica.

HostedService

StorageConfigurationService

StorageConfigurationCapabilities This identifies the specific capabilities supported in the
StorageConfigurationService

StorageVolume

StorageSynchronized

StorageCapabilities (p. 168)

ElementSettingData (p. 171)

StorageSetting (p. 171)

Profile Methods Notes

CreateReplica() Creates a replica (volume), establishes the
StorageSynchronized relationship to source and
initiates the copy operation

AttachReplica() Establishes the StorageSynchronized relationship
between source and an existing replica.

ModifySynchronization() Used to modify the state of a StorageSynchroinized
relationship (e.g., Fracture, Resync, Restore, ...)

Profile Indications Notes

Creation/Deletion of StorageSynchronized SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageSyncrhonized

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageSynchronized

Change in status for StorageSynchronized SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.SyncState <>
PreviousInstance.SyncState
164 Version 1.0.1

SNIA Storage Management Initiative Specification
of ManagedElement (StorageConfigurationService). Specifically, the ManagedElement MUST
exist and provides the context for the Capabilities.

ElementCapabilities is not subclassed from anything.

7.3.3.9.12.2 HostedService
HostedService is an association between a Service and the System on which the functionality
resides. The cardinality of this association is 1-to-many. A System may host many Services.
Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the
System where the LogicalDevices or SoftwareFeatures that implement the Service are located.
The model does not represent Services hosted across multiple systems. This is modeled as an
ApplicationSystem that acts as an aggregation point for Services, that are each located on a single
host.

HostedService is subclassed from Dependency

7.3.3.9.12.3 StorageConfigurationService
The StorageConfigurationService is required for the extrinsic methods it supports (CreateReplica,
AttachReplica and ModifySynchronization).

StorageConfigurationService is subclassed from Service

Table 66: Required Properties for ElementCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ManagedElement ref key, min(1),
max(1)

The managed element
(StorageConfigurationService).

Capabilities ref key The Capabilities object associated with the
element (service).

Table 67: Required Properties for HostedService

Class
Properties

Type Qualifier/
Parameter

Notes

Antecedent ref override, max(1),
min(1)

The hosting System.

Dependent ref override, weak The Service hosted on the System.

Table 68: Required Properties for StorageConfigurationService

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

SystemCreationClassName string maxlen(256), key,
propagated

The scoping System's
CreationClassName.

SystemName string maxlen(256), key,
propagated

The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass
Version 1.0.1 165

SNIA Storage Management Initiative Specification
7.3.3.9.12.4 StorageConfigurationCapabilities
A subclass of Capabilities that defines the Capabilities of a StorageConfigurationService. An
instance of StorageConfigurationCapabilities is associated with a StorageConfigurationService
using ElementCapabilities.

StorageConfigurationCapabilities is subclassed from Capabilities

7.3.3.9.12.5 StorageSynchronized
Indicates that two Storage objects were replicated at the specified point in time. If the CopyType
property is set to 'Sync' (=3), then synchronization of the Storage objects is preserved.

For block servers, there are specific uses of StorageSynchronized. The SystemElement and the
SyncedElement are defined as StorageExtents. Specifically, these are StorageVolumes or
LogicalVolumes.

Name string maxlen(256), key,
override

CreateReplica() uint32

ModifySynchronization() uint32

AttachReplica() uint32

Table 69: Required Properties for StorageConfigurationCapabilities

Class Properties Type Qualifier/
Parameter

Notes

InstanceID uint16 key

ElementName string req

SupportedSynchronousActions[] uint16 valuemap Values {"Replica Creation", "Replica
Attachment", "Replica Modification"

SupportedAsynchronousActions[] uint16 valuemap Values {"Replica Creation", "Replica
Attachment", "Replica Modification"

SupportedStorageElementTypes[] uint16 valuemap Values {"StorageVolume"}

SupportedCopyTypes[] uint16 valuemap Values {"Async", "Sync",
"UnSyncAssoc", "UnSyncUnAssoc",
"DMTF Reserved", "Vendor Specific"}

InitialReplicationState uint16 valuemap Values {"Initialized", "Prepared",
"Synchronized"}

Table 68: Required Properties for StorageConfigurationService (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
166 Version 1.0.1

SNIA Storage Management Initiative Specification
StorageSynchronized is subclassed from Synchronized.

7.3.3.9.12.6 StorageVolume
The Copy Services does not alter the properties of Storage Volumes as supported by the parent
profile (Array, Out-of-band Virtualization and In-band Virtualization).

Table 70: Required Properties for StorageSynchronized

Class
Properties

Type Qualifier/
Parameter

Notes

WhenSynced datetime The point in time that the Elements were
synchronized.

SyncMaintained boolean Boolean indicating whether synchronization is
maintained.

SystemElement ref StorageExtent Reference. It identifies the
original storage element.

SyncedElement ref StorageExtent Reference. Identifies the replica.

CopyType uint16 CopyType describes the Replication Policy.
Values are:
 Async: create and maintain an Asynchronous
copy of the source.
 Sync: create and maintain a synchronized copy
of the source.
 UnSyncAssoc: create an unsynchronized copy
and maintain an association to the source.
 Values {"Async", "Sync", "UnSyncAssoc",
"DMTF Reserved", "Vendor Specific"}

ReplicaType uint16 This is an informational property that indicates
how the replica is being achieved. The values
are: FullCopy, BeforeDelta, AfterDelta, Log or
NotSpecified.
Values {“FullCopy”, “BeforeDelta”, “AfterDelta”,
“Log”, “DMTF Reserved”, “NotSpecified”}

SyncState uint16 This is the current state of the
StorageSynchronized association.
Values {“Fracture In Progress”, “Sync In
Progress”, “Restore In Progress”, “Prepare In
Progress”, “Prepared”, “Quiesce In Progress”,
“Quiesced”, “Fractured”, “Synchronized”,
“Initialized”, “Idle”, “DMTF Reserved”, “Vendor
Specific”}
Version 1.0.1 167

SNIA Storage Management Initiative Specification
7.3.3.9.12.7 StorageCapabilities

Table 71: Required Properties for StorageCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key InstanceID opaquely identifies a unique
instance of Capabilities. The InstanceID
MUST be unique within a namespace.

ElementName string override, required The user friendly name for this instance of
Capabilities. In addition, the user friendly
name can be used as a index property for
a search or query. (Note: ElementName
does not have to be unique within a
namespace) If the capabilities are fixed,
then this property should be used as a
means for the client application to
correlate between capabilities and device
documentation.

ElementType uint16 Enumeration indicating the type of
instance to which this StorageCapabilities
applies. Only ‘6’,
StorageConfigurationService and ‘5’
StoragePool are valid.

NoSinglePointOfFailu
re

boolean Indicates whether or not the associated
instance supports no single point of
failure. Values are: FALSE = does not
support no single point of failure, and
TRUE = supports no single point of
failure.

NoSinglePointOfFailu
reDefault

boolean Indicates the default value for the
NoSinglePointOfFailure property.

DataRedundancyMax uint16 minvalue(1) DataRedundancyMax describes the
maximum number of complete copies of
data that can be maintained. Examples
would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more
copies are maintained. Possible values
are 1 to n.

DataRedundancyMin uint16 minvalue(1) DataRedundancyMin describes the
minimum number of complete copies of
data that can be maintained. Examples
would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more
copies are maintained. Possible values
are 1 to n.
168 Version 1.0.1

SNIA Storage Management Initiative Specification
DataRedundancyDef
ault

uint16 minvalue(1) DataRedundancyDefault describes the
default number of complete copies of data
that can be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

PackageRedundancy
Max

uint16 write(true) PackageRedundancyMax describes the
maximum number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundancy
Min

uint16 write(true) PackageRedundancyMin describes the
minimum number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundancy
Default

uint16 write(true) PackageRedundancyDefault describes
the default number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

DeltaReservationMax uint16 minvalue(1)
maxvalue(100)

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies how
much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the upper limit.

DeltaReservationMin uint16 minvalue(1)
maxvalue(100)

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies how
much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the lower limit.

Table 71: Required Properties for StorageCapabilities (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 169

SNIA Storage Management Initiative Specification
DeltaReservationDef
ault

uint16 minvalue(1)
maxvalue(100)

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies how
much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the default value.

Table 71: Required Properties for StorageCapabilities (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
170 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.9.12.8 ElementSettingData

7.3.3.9.12.9 StorageSetting

Table 72: Required Properties for ElementSettingData

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ManagedElement ref key The ManagedElement.

SettingData ref key The Setting Data object associated with
the ManagedElement.

IsDefault uint16 An enumerated integer indicating that
the referenced setting is a default setting
for the element, or that this information is
unknown."),||ValueMap {"0", "1", "2"},
||Values {"Unknown", "Is Default", "Is Not
Default"}

IsCurrent uint16 An enumerated integer indicating that
the referenced setting is currently being
used in the operation of the element, or
that this information is
unknown."),||ValueMap {"0", "1", "2"},
||Values {"Unknown", "Is Current", "Is
Not Current"}

Table 73: Required Properties for StorageSetting

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key InstanceID opaquely identifies a unique
instance of SettingData. The InstanceID
MUST be unique within a namespace.

ElementName string override, required The user friendly name for this instance of
SettingData. In addition, the user friendly
name can be used as a index property for
a search of query. (Note: Name does not
have to be unique within a namespace.)

NoSinglePointOfFail
ure

boolean write(true) Indicates the desired value for No Single
Point of Failure. Possible values are false
= single point of failure, and true = no
single point of failure.

DataRedundancyMa
x

uint16 minvalue(1)
write(true)

DataRedundancyMax describes the
maximum number of complete copies of
data to be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.
Version 1.0.1 171

SNIA Storage Management Initiative Specification
7.3.3.9.13 Optional Subprofiles and Profiles

7.3.3.10 Job Control Subprofile

7.3.3.10.1 Description
In some profiles, some or all of the methods described may take some time to execute (longer than
a HTTP time-out). In this case, a mechanism is needed to allow asynchronous execution of the
method as a 'job'.

DataRedundancyMi
n

uint16 minvalue(1)
write(true)

DataRedundancyMin describes the
minimum number of complete copies of
data to be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

PackageRedundanc
yMax

uint16 write(true) PackageRedundancyMax describes the
maximum number of spindles to be used.
Package redundancy describes how
many disk spindles can fail without data
loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundanc
yMin

uint16 write(true) PackageRedundancyMin describes the
minimum number of spindles to be used.
Package redundancy describes how
many disk spindles can fail without data
loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

DeltaReservationGo
al

uint16 minvalue(1),
maxvalue(100)

Delta reservation is a number between 0
(0%) and a 100 (100%) that specifies how
much space should reserved in a replica
for caching changes. For a complete copy
this would be 100%, but it can be lower in
some implementations. Use 0 if copy
service Subprofile is not supported.

Table 74: Copy Services Optional Subprofiles and Profiles

Optional Subprofiles & Profiles Notes

Job Control This subprofile is used to support copy services that run
for a long time. The extrinsic methods support the
“ConcreteJob” output. If job control is not supported this
output is null

Table 73: Required Properties for StorageSetting (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
172 Version 1.0.1

SNIA Storage Management Initiative Specification
This subprofile defines the constructs and behavior for job control for SNIA profiles that make use
of the subprofile.

Note: The subprofile describes a specific use of the constructs and properties involved. The actual
CIM capability may be more, but this specification clearly states what clients may depend
on in SNIA profiles that implement the Job Control subprofile.

7.3.3.10.2 Standard Dependencies
The Job Control subprofile is based on the following standards:

7.3.3.10.3 Profile Dependencies
The Job Control subprofile does not require any other Profiles.

7.3.3.10.4 CIM Server Requirements

7.3.3.10.4.1 Functional Profiles

7.3.3.10.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Job Control subprofile.

7.3.3.10.4.3 Discovery
The Job Control subprofile, as currently defined, is not an advertised subprofile.

Table 75: Job Control Services Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.1 DMTF

CIM Schema 2.7 DMTF

Table 76: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

YES Basic Write Basic Read

YES Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
Version 1.0.1 173

SNIA Storage Management Initiative Specification
7.3.3.10.5 Instance Diagrams

When the job control subprofile is implemented and a client executes a method with the
“ConcreteJob” reference as an output, a reference to an instance of ConcreteJob is returned and
the return value for the method is set to “Method parameters checked - job started”.

The ConcreteJob instance allows the progress of the method to be checked, and instance
Indications can be used to subscribe for Job completion.

The associations OwningJobElement and AffectedJobElement are used to indicate the service that
'owns' the job and the element being affected by the job. The element linked by
AffectedJobElement may change through the execution of the job. For instance, for creation of a
StorageVolume it may start by pointing to a source pool and then change to the newly created
instance of StorageVolume as the method executes.

7.3.3.10.6 Durable Names and Correlatable IDs
There are no durable names or correlatable ids for Job Control.

7.3.3.10.7 Methods
Jobs are created as a result of executing methods of the parent profile. The Job Control constructs
can be read using intrinsic methods. There are no basic write intrinsic methods supported in the
Job Control subprofile.

7.3.3.10.8 Client Considerations
If the operation will take a while (longer than an HTTP timeout), a handle to a newly minted
ConcreteJob is returned. This allows the job to continue in the background. Note a few things:

• The job may be queued. You may have multiple outstanding jobs against a pool for instance.
The job status shows this.

• The job is weak to the Service (shown via OwningJobElement) and is also linked to the object
being modified/created via AffectedJobElement. For example, a job to create a StorageVolume
may start off pointing to a Pool until the Volume is instantiated at which point the association
would change to the StorageVolume.

Figure 29: Job Control Subprofile Model

Service
(e.g., StorageConfigurationService)

ConcreteJob

OwningJobElement

ManagedElement
(e.g., StorageVolume)AffectedJobElement
174 Version 1.0.1

SNIA Storage Management Initiative Specification
• These jobs do not have to get instantiated! If things happen quickly, a null can be returned as
a handle.

7.3.3.10.9 Recipes
See details in related profile section.

7.3.3.10.10 Instrumentation Requirements

7.3.3.10.10.1 OperationalStatus for Jobs
 The operationalStatus property is used to communicate that status of the job that is created. As
such, it is critical that implementations are consistent in how this property is set. The values that
MUST be supported consistently are:

• “OK” - combined with “Completed” to indicate that the job completed with no error.

• “Error” - combined with “Completed” to indicate that the job did not complete normally and
that an error occurred.

• "Stopped" implies a clean and orderly stop.

• "Completed” indicates the Job has completed its operation. This value should be combined
with either “OK” or “Error, so that a client can tell if the complete operation passed
(Completed with OK), and failure (Completed with Error).

Figure 30: Storage Configuration

Cluster

StorageSystem

StorageConfigurationService

HostedService

ConcreteJob

StoragePool

StorageVolume

AffectedJobElement

OwningJobElement

AffectedJobElement

Describes range of
capabilities of Pools/Volumes
that can be created
with the Service

StorageCapabilities

Element
Capabilities
Version 1.0.1 175

SNIA Storage Management Initiative Specification
7.3.3.10.11 Required CIM Elements

7.3.3.10.12 Required Properties for CIM Elements

7.3.3.10.12.1 AffectedJobElement
AffectedJobElement represents an association between a Job and the ManagedElement(s) that
may be affected by its execution. It may not be feasible for the Job to describe all of the affected
elements. The main purpose of this association is to provide information when a Job requires
exclusive use of the 'affected' ManagedElment(s) or when describing that side effects may result.

Table 77: Subprofile Required Classes, Associations, Methods and Indications

Subprofile Class & Associations Notes

AffectedJobElement

ConcreteJob

OwningJobElement

Subprofile Class and Associated Indications

Changes in OperationalStatus of ConcreteJob SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.JobStatus <>
PreviousInstance.JobStatus

Progress toward completion of a ConcreteJob SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.PercentComplete <>
PreviousInstance.PercentComplete

An implementation increment MAY be
100%.

Successful completion of a ConcreteJob SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.OperationalStatus ==
"Complete" AND
SourceInstance.OperationalStatus==”OK”

Failed ConcreteJob SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.OperationalStatus ==
"Error"
176 Version 1.0.1

SNIA Storage Management Initiative Specification
AffectedJobElement is not subclassed from anything

7.3.3.10.12.2 ConcreteJob
A concrete version of Job. This class represents a generic and instantiatable unit of work, such as a
batch or a print job.

ConcreteJob is subclassed from Job

Table 78: AffectedJobElement Required Properties

Class Properties Type Qualifier/
Parameter

Notes

AffectedElement ref key The ManagedElement affected by the execution of
the Job.

AffectingElement ref key The Job that is affecting the ManagedElement.

Table 79: Required Properties for ConcreteJob

Class Properties Type Qualifier/
Parameter

Notes

OperationalStatus[] uint16 Indicates the current status(es) of the
element. Various health and
operational statuses are defined.

StatusDescriptions[] string A string describing the status - used
when the OperationalStatus property is
set to 1 (\"Other\").

JobStatus string A free form string representing the
Job's status. The primary status is
reflected in the inherited
OperationalStatus property. JobStatus
provides additional, implementation-
specific details.

ElapsedTime datetime The time interval that the Job has been
executing or the total execution time if
the Job is complete.
This property is OPTIONAL.

PercentComplete uint16 The percentage of the job that has
completed at the time that this value is
requested.

DeleteOnCompletion boolean write(true) Indicates whether or not the job should
be automatically deleted upon
completion. If this property is set to
false and the job completes, then the
extrinsic method DeleteInstance MUST
be used to delete the job versus
updating this property.

ErrorCode uint16 A vendor specific error code. This is set
to zero if the job completed without
error.
Version 1.0.1 177

SNIA Storage Management Initiative Specification
7.3.3.10.12.3 OwningJobElement Properties.
OwningJobElement represents an association between a Job and the ManagedElement
responsible for the creation of the Job. This association may not be possible, given that the
execution of jobs can move between systems and that the lifecycle of the creating entity may not
persist for the total duration of the job. However, this can be very useful information when
available.

OwningJobElement is not subclassed from anything

7.3.3.10.13 Optional Subprofiles

7.3.3.11 Pool Manipulation, Capabilities, and Settings Subprofile

7.3.3.11.1 Description
Storage Pools
A StoragePool is an abstract notion of a blob of consumable storage space. A pool has certain
‘StorageCapabilities’, which indicate the range of 'Quality of Service' requirements that can be
applied to objects created from the pool. In this top-level profile, StorageCapabilities are
informational only. Refer to “Pool Manipulation, Capabilities, and Settings Subprofile” on
page 178 for details on the use of these objects.

ErrorDescription string A free form string containing the vendor
error description.

InstanceID string key InstanceID opaquely identifies a unique
instance of ConcreteJob. The
InstanceID MUST be unique within a
namespace.

Name string override,
required

The user friendly name for this instance
of Job. In addition, the user friendly
name can be used as a property for a
search or query. (Note: Name does not
have to be unique within a namespace.)

Table 80: Required Properties for OwningJobElement

Class Properties Type Qualifier/
Parameter

Notes

OwningElement ref max(1), key The ManagedElement responsible for the creation
of the Job. (e.g., StorageConfigurationService)

OwnedElement ref key The Job created by the ManagedElement.

Table 81: Optional Profiles or Subprofiles

Name Notes

None

Table 79: Required Properties for ConcreteJob (Continued)

Class Properties Type Qualifier/
Parameter

Notes
178 Version 1.0.1

SNIA Storage Management Initiative Specification
Storage pools are scoped relative to the ComputerSystem (indicated by the HostedStoragePool
association). Objects created from a pool have the same scope.

Child objects (e.g. StorageVolumes or StoragePools) created from a StoragePool are linked back to
the parent pool using an AllocatedFromStoragePool association.

There are two properties on StoragePool that describe the size of the ‘underlying’ storage.
TotalManagedStorage describes the total raw storage in the pool and RemainingManagedStorage
describes the storage currently remaining in the pool. RemainingManagedStorage plus
AllocatedFromStoragePool.SpaceConsumed from all of the StorageVolumes allocated from the
pool MUST equal TotalManagedStorage.

Primordial Pool
The Primordial Pool is a type of StoragePool. Raw storage capacity, unformatted or unprepared
capacity, is drawn from the Primordial StoragePool to create concrete StoragePools. The
Primordial StoragePool aggregates storage capacity that has not been assigned to a concrete
StoragePool. StorageVolumes are allocated from concrete StoragePools.

At least one MUST always exists on the array to represent the unallocated storage on the storage
device. The sum of TotalManagedStorage attributes for all Primordial StoragePools MUST be
equal to the total size of the raw storage of the storage system. The Primordial property MUST be
true for Primordial Pools.

Primordial Pool can be used to determine the amount of raw space left on the array, that is not
already assigned to a concrete StoragePool.

Storage Volumes
Storage Volumes are configured pieces of storage that MUST be exposed from a system through an
external interface. In the class hierarchy they are a sub class of a StorageExtent. In SCSI terms,
they are Logical Units.

StoragePools are a REQUIRED part of modeling disk storage systems (the Array, Out-of-band
Virtualization and In-band Virtualization Profiles). However, user manipulation of StoragePools is
optional and may not be supported by any given disk storage system. The Pool Manipulation,
Capabilities and Settings subprofile defines the support REQUIRED if the storage system exposes
functions for creating and modifying storage pools.

The StorageConfigurationService, in conjunction with the abstract concept of a storage pool,
allows generic clients to configure pools of storage within storage arrays without having to have
specific knowledge about the array configuration. The new service has the following methods:

• CreateOrModifyStoragePool: Create a pool of storage with some set of Capabilities defined by
the input StorageSetting. The source of the storage can be other pool(s) or storage extents.
Alternatively an existing pool can be modified.

• DeleteStoragePool: Delete a storage pool and return the freed up storage to the underlying
entities.

In addition, there is a capability to create settings for use in pool creation using the following
method (part of the StorageCapabilities class):

• CreateSetting: Creates a setting that is consistent with the StorageCapabilities and may be
modified before use in creating a StoragePool.

7.3.3.11.2 Standards Dependencies
The Pool Manipulation, Capabilities and Settings subprofile is defined using the CIM Schema 2.8
preliminary. As such it can be used in profiles at 2.8 and later. It does not require that Profiles be
Version 1.0.1 179

SNIA Storage Management Initiative Specification
on a later schema. It operates within profiles that are at the CIM schema 2.8 final or later. The
subprofile operates correctly with CIM Specification 2.2 (or later) and CIM Operations over HTTP
1.1 (or later).

The Pool Manipulation, Capabilities, and Settings subprofile is based on the following standards:

7.3.3.11.3 Profile Dependencies
The Pool Manipulation, Capabilities and Settings subprofile introduces no Profile dependencies.

7.3.3.11.4 CIM Server Requirements

7.3.3.11.4.1 Functional Profiles

7.3.3.11.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Pool Manipulation, Capabilities, and
Settings subprofile.

7.3.3.11.4.3 Discovery
The Pool Manipulation, Capabilities and Settings subprofile is NOT advertised.

Table 82: Pool Manipulation, Capabilities, and Settings Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.1 DMTF

CIM Schema 2.8 Preliminary DMTF

Table 83: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

YES Basic Write Basic Read

YES Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
180 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.11.5 Instance Diagrams

7.3.3.11.6 Durable Names and Correlatable IDs
The Pool Manipulation, Capabilities and Settings subprofile does not add any durable names or
correlatable ids to the profiles (or subprofiles) in which it is used.

7.3.3.11.7 Methods

7.3.3.11.7.1 Overview
The Pool Manipulation, Capabilities and Settings introduces a number of write intrinsic and
extrinsic methods.

7.3.3.11.7.2 StorageSetting Methods

7.3.3.11.7.2.1 Extrinsic Methods on Storage Setting
CreateSetting is a method in StorageCapabilities and is invoked in the context of a specific
StorageCapabilities instance.

Uint32 CreateSetting(

 [In] unint16 SettingType,

[Out] CIM_StorageSetting REF NewSetting)

This method on the StorageCapabilities class is used to create a StorageSetting using the
StorageCapabilities as a template. The purpose of this method is to create a StorageSetting that is

Figure 31: Pool Manipulation Instance Diagram

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

AllocatedFromStoragePool

ComputerSy stem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool

StorageSettingWithHints

Sy stemDev ice

StorageConf igurationServ ice

CreateOrModifyStoragePool()
DeleteStoragePool()

HostedServ ice

StorageConf igurationCapabilities

ElementCapabilites

StorageSetting
ElementSettingData
Version 1.0.1 181

SNIA Storage Management Initiative Specification
associated directly with the StorageCapabilities on which this method is invoked and has
properties set in line with those StorageCapabilities. The contract defined by the
StorageCapabilities MUST constrain the StorageSetting used as the Goal.

The StorageCapabilities associated with the StoragePool defines what type of storage can be
allocated. The client MUST determine what subset of the parent StoragePool capabilities to use,
albeit a Primordial StoragePool or a concrete StoragePool. The StorageSetting provided to the
StoragePool creation method defines what measure of capabilities are desired for the following
storage allocation. First, the client retrieves a StorageSetting or creates and optionally modifies an
existing StorageSetting. If no satisfactory StorageSetting exists, then the client uses this method
to create a StorageSetting.

The client has the option to have a StorageSetting generated with the default capabilities from the
StorageCapabilities. If a '2' is passed for the Setting Type parameter, the Max, Goal, and Min
setting attributes are set to the default values of the parent StorageCapabilities. Otherwise, the
new StorageSetting attributes are set to the related attributes of the parent StorageCapabilities,
e.g. Min to Min and Max to Max. If the StorageSetting requested already exists, associated to the
StorageCapabilities, then the method returns this existing StorageSetting. This type of
StorageSetting, newly created or already existing, is associated to the StorageCapabilities via the
GeneratedStorageSetting association.

Only a StorageSetting created in this manner may be modified or deleted by the client. The client
uses the NewSetting parameter to set the new StorageSetting to the values desired (using
ModifyInstance or SetProperties intrinsic methods). The StorageSetting can not be used to create
storage that is more capable than the parent StorageCapabilities. For example, the set instance
operation fails when the setting has a Max value greater (or a Min value less) than the parent
StorageCapabilities. If the storage device supports hints, then the new StorageSetting contains
the default hint values for the parent StorageCapabilities. The client can use these values as a
starting point for hint modification (using intrinsic methods). StorageSetting instances associated
with StorageVolume MAY NOT be modified or deleted directly. Once a StoragePool is created,
then the client MUST use the StorageConfigurationService to modify or delete the instance.

Once this type of StorageSetting is used as the Goal for the creation of a StoragePool, the Goal
StorageSetting is removed. A new StorageCapabilities instance, associated with the new
StoragePool, describes the StoragePool.

7.3.3.11.7.2.2 Intrinsic Methods on StorageSetting
In addition to this extrinsic, the following Intrinsic write methods are supported on
StorageSetting:

• DeleteInstance;

• ModifyInstance,

7.3.3.11.7.3 StorageConfigurationService Methods:
CreateOrModifyStoragePool

Uint32 CreateOrModifyStoragePool(
[Out] CIM_ConcreteJob ref Job,
[in] CIM_StorageSetting ref Goal,
[in,out] Uint64 Size,
[in] string InPool[],
[in] string Extent[],
[out] CIM_StoragePool ref Pool
);
182 Version 1.0.1

SNIA Storage Management Initiative Specification
This method is used to create a Pool from either a source pool or a list of storage extents. Any
required associations (such as HostedStoragePool) are created in addition to the instance of
Storage Pool. The parameters are as follows:

• Job: See “Job Control Subprofile” on page 172.

• Goal: This is the Service Level that the Pool is expected to provide. This may be a null value in
which case a default setting is used.

• Size: As an input this is the desired size of the pool. If it is not possible to create a pool of the
desired size, a return code of “Size not supported” is returned with size set to the nearest
supported size.

• InPool[]: This is an array of strings containing Object references (see 4.11.5 of the CIM Spec
for format) to source Storage Pools.

• Extent[]: This is an array of strings containing Object references (see 4.11.5 of the CIM Spec
for format) to source Storage Extents. Note that either an array of source pools or an array of
source extents should be defined, but not both.

DeleteStoragePool
 Uint32 DeleteStoragePool(

[Out] CIM_ConcreteJob ref Job,
[in] CIM_StoragePool ref Pool
);

This method is provided to allow a client to delete a previously created storage pool. All
associations to the deleted StoragePool are also removed as part of the action. In addition, the
TotalManagedStorage an d RemainingManagedStorage of the associated Primordial Storage Pool
will change accordingly.

Note: This method will be denied (“Failed”) if there are any AllocatedFromStoragePool
associations where the deleted pool is the Dependent.

Return Values
Each method has this set of defined return codes:

 ValueMap {“0”, “1”, “2”, “3”, “4”, “5”, “..”, “0x1000”,”0x1001”,
 “0x1002..0x7777”, “0x8000..”},
 Values {“Job completed with no error”, “Not Supported”, “Unknown”,
 “Timeout”, “Failed”, “Invalid Parameter”, “DMTF Reserved”,
 “Method parameters checked - job started”,
 “Size not supported”, “Method Reserved”, “Vendor Specific”}]

If the method completes immediately with no errors (and with no asynchronous execution
required), “Job completed with no error” is returned.

If the method parameters have been checked and the method is being executed asynchronously,
“Method parameters checked - job started” is returned.

If, for a Create/Modify method, the requested size is not supported then “Size not supported” is
returned and the Size parameter is set to the nearest supported size.

If one of the method parameters is incorrect (for instance invalid object paths), then “Invalid
Parameter” is returned.

“Timeout” or “Failed” may be returned if the provider has problems accessing the hardware or for
other implementation specific reasons.
Version 1.0.1 183

SNIA Storage Management Initiative Specification
A vendor may choose to extend the Value map to express vendor specific error codes not catered for
by the standard errors.

7.3.3.11.7.4 StoragePool methods
GetSupportedSizes

unit32 GetSupportedSizes(
[In] Uint16 ElementType,
[In] CIM_StorageSetting ref Goal,
[Out] Uint64 Sizes[]

This method is used to determine the possible sizes of child elements, ex. StoragePool and
StorageVolume, that can be created or modified using capacity from the StoragePool. The method
is used for storage system where only discrete sizes are possible. One of the reported sizes can be
used directly along with the Goal in the creation of a StoragePool or StorageVolume The sizes
reported may not differ from each other by a fixed size.

GetSupportedSizeRanges
unint32 GetSupportedSizeRanges(

[In] Uint16 ElementType,
[In] CIM_StorageSetting ref Goal,
[Out] Uint64 MinimumVolumeSize,
[Out] Uint64 MaximumVolumeSize,
[Out] Uint64 VolumeSizeDivisor

This method is used to determine the possible sizes of child element, ex. StoragePool, and
StorageVolume, that can be created or modified using capacity drawn from the StoragePool. The
out parameters tell the minimum element size, maximum element size, and possible sizes in that
range. This method can prove useful when the number of possible sizes is so voluminous that
reporting each discrete size would be impractical.

Both or either method may be supported by a storage subsystem, either as a decision made at
implementation time or varies depending on the state of the StoragePool. For example, when a
StoragePool is first created that allows for possible sizes to be in 1024 byte blocks, then the
GetSupportedSizeRanges method would be better to report the possible sizes. This example
StoragePool does not relocate blocks to avoid fragmentation of the capacity. As StorageVolume are
drawn from and returned to the StoragePool, the capacity becomes fragmented. In this case, the
GetSupportedSizes method is better in reporting the non-continuous regions of capacity that may
be used for element creation. Another example, there are some storage system that can only
allocate StorageVolume in whole disks and these disks need not be of a uniform size. In this case,
the storage system would only support the GetSupportedSizes method.

Return Values
Each method has this set of return codes:

ValueMap {"0", "1", "2"},
Values {"Method completed OK", "Method not supported",
 "Use <the other method name> instead"}]

If the above methods did not complete successfully, then either the method is not supported or it is
suggested to use the other method instead. The GetSupportSizes method can notify the SMI-S
client that it should use the GetSupportSizeRanges instead or the GetSupportedSizeRanges
method can notify the SMI-S client that it should use the GetSupportedSizes method instead.
184 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.11.8 Client Considerations

7.3.3.11.8.1 Storage Pools and Storage Capabilities
Capacity Management
The capacity characteristics of many storage system vary greatly in the cost and performance.
Additionally, the capacity may need to be partitioned by these and other factors. StoragePool
provide a means to aggregate this storage by characteristics determined by the storage
administrator or determined at the factory when the storage system is assembled.

A Storage Pool is an aggregation of storage suitable for configuration and allocation or
“provisioning”. However, it may have been preformatted into a form (such as a RAID group) that
makes volume creation easier.

StoragePools can be drawn from a StoragePool (the result of which is indicated with the
AllocatedFromStoragePool association).

A StoragePool has a set of capabilities held in the StorageCapabilities class that reflect the
configuration parameters that are possible for element created from this pool. The
StorageCapabilities define, in terms common across all storage system implementation, what
characteristics an administrator can expect from the storage capacity. These capabilities are
expressed in ranges. The storage implementation has the choice to delineate the capabilities and
define the ranges of these capabilities as appropriate. Some implementation may require several
narrowly defined capabilities while others may be more flexible.

The capabilities expressed by the storage system can change over time.

The number of primordial storage pools can change over time as well.

These storage capabilities are given the scope of the storage system when they are associated by
the StorageConfiguratonService or the scope of a single StoragePool. The capabilities expressed at
the service scope is equal to the union of the union of all Primordial StoragePools capabilities. The
capabilities can also be given the scope of a concrete StoragePool.

The storage administrator has the choice of any capability expressed by the storage system. The
administrator should use this opportunity to partition the capacity. Once storage elements are
drawn from the StoragePool, the administrator can be assured that the elements produced will
have the capabilities previous defined.

The model allows for automation of the allocation process. An automaton can use the capabilities
properties to search across subsystems for storage providing desired capabilities, and having done
so create StoragePools and/or storage elements as necessary. Inventories may be made of the
capacity by capabilities.
Version 1.0.1 185

SNIA Storage Management Initiative Specification
The model also provides a means by which some common characteristics of all available storage
system can be inventoried and managed. Note that the storage system will differ in other
significant ways, and these characters can also be the basis for capacity pooling decisions.

The definition of storage capabilities in this way intentionally avoids vendor specific details of
volume configuration such as RAID types. Although RAID types imply performance and
availability levels, these levels can’t be easily compared between vendor implementations -
particular in comparisons with reliability of non-RAID storage (i.e. certain virtualization
appliances). Furthermore, there are capabilities of reliability and availability other than data
redundancy. The StorageSetting class is provided by clients to describe the desired configuration
of the allocated storage. In general, the types of parameters exposed and controlled via the
StorageCapabilities/StorageSetting classes are:

• NSPOF (No Single Point of Failure). Indicates whether the pool can support storage
configured with No Single Points of Failure within the storage system. This does not include
the path from the system to the host.

• Data Redundancy. This describes the number of complete copies of data maintained.
Examples would be RAID 5 where 1 copy is maintained and mirroring where 2 or more copies
are maintained.

• Package Redundancy. This describes how many physical components (packages), like disk
spindles, can fail without data loss (including a spare, but not more than a single global
spare). Examples would be RAID5 with a Package Redundancy of 1, RAID6 with 2, RAID 6
with 2 global (to the system) spares would be 3.

Figure 32: Storage Configuration

Cluster

StorageSystem

StorageConfigurationService

HostedService

ConcreteJob

StoragePool

StorageVolume

AffectedJobElement

OwningJobElement

AffectedJobElement

Describes range of
capabilities of Pools/Volumes
that can be created
with the Service

StorageCapabilities

Element
Capabilities
186 Version 1.0.1

SNIA Storage Management Initiative Specification
• Delta Reservation. This is a number between 1 (1%) and a 100 (100%) that specifies how
much space should reserved in a replica for caching changes. For a complete copy this would
be 100%, but it can be lower in some implementations.

An example of what the Package Redundancy and Data Redundancy means in terms of RAID
levels is defined in the following table.

7.3.3.11.8.1.1 Example mapping of RAID levels to Data Redundancy, Package Redundancy

The above example was produced using generally available definitions of RAID levels. It is the
nature of RAID technology that even though the RAID Level is named the same, the storage
service provided could differ depending on the storage device implementations. Expressing the
storage service level provided in end-user terms relieves the SMI-S Client and end-user from
having to know what RAID Levels means for a particular implementation and instead defines the
storage provided in service level terms.

If a single storage device implements RAID levels that have the same package redundancy and
data redundancy, the implementor SHOULD have the SMI-S Client differentiate via
StorageSettingsWithHints. Additionally, the SMI-S Provider author can predefine
StorageCapabilities that match exactly with best practice RAID Levels, including differentiation
with StorageSettingWithHints when StorageVolume exist. In this case, the ElementName
property is used to correlate between the capability and device documentation. Alternatively, it
may sense for the capability be expressed in broader ranges for more flexible storage systems.

Storage Pool Manipulation
The StorageConfigurationService class contains methods to allow creation, modification and
deletion of a StoragePool. The capabilities of a StorageConfigurationService or StoragePool to
provide storage are indicated using the StorageCapabilities class. This class allows the Service or
Pool to advertise its capabilities (using implementation independent attributes) and a client to set
the attributes it desires. The concept of ‘hints’ is also included that allows a client to provide clues
to the system as to how it expects to use the storage for optimization purposes. For example, if the
array supports the creation of Pools that can tolerate the loss of two disks, then the ‘package
redundancy’ attribute includes 2 in its range of supported values. The client would create an
instance of StorageSetting, set ‘package redundancy’ to 2, and pass a reference to the class to the
StorageConfigurationService.CreateOrModifyStoragePool.

Pool creation works as follows.

Table 84: Example RAID Mapping Table

RAID Level Package Redundancy Data Redundancy

0 (Striping) 0 1

1 1 2

3 or 4 1 1

5 1 1

6 2 1

10 1 2

15 2 2

50 1 1

51 2 2
Version 1.0.1 187

SNIA Storage Management Initiative Specification
a. Figure 33: "Pool Creation - Initial State" shows the initial state of the array - a single ‘primor-
dial pool that advertises it’s capabilities. One can make use of the GetSupportedSizes() and
GetSupportedSizeRanges() methods to determine what sizes of pools can be created from the
primordial pool. One needs to check the StorageConfigurationCapabilities to ensure that cre-
ation of StoragePools is supported or not.

b) Next, (Figure 34: "Pool Creation - Step 2") the client uses the CreateSetting method on the
StorageCapabilities instance to create an instance of a StorageSetting. This Setting object can
be altered as desired. If the array supports StorageSettingWithHints, an instance of this sub-
class is created rather than the StorageSetting superclass.

c) Once this Setting as been altered as required, it is passed as an argument to the CreateOr-
ModifyStoragePool method in the StorageConfigurationService. (Shown in Figure 35: "Pool
Creation - Step 3")

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()
ElementCapabilities

StorageConf igurationService

CreateOrModifyStoragePool()

HostedServic
e

HostedPool

Prim ordial :
StoragePool

GetSupportedSizes()
GetSupportSizeRa nge

()

Figure 33: Pool Creation - Initial State

Figure 34: Pool Creation - Step 2

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()
ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
HostedService

HostedPool

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
188 Version 1.0.1

SNIA Storage Management Initiative Specification
d) The pool is then created. The ‘temporary’ StorageSetting is replaced with an equivalent Stor-
ageCapabilities object linked to the new pool with ElementCapabilities. (Shown in Figure 36:
"Pool Creation - Step 4")

ComputerSy stem

dedicated[x]

StorageCapabilities

CreateSetting()
ElementCapabilities

StorageConf igurationServ ice

CreateOrModifyStoragePool(NewSetting)
HostedServ ice

NewSetting:
StorageSetting

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()

HostedPool

Figure 35: Pool Creation - Step 3

Figure 36: Pool Creation - Step 4

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()
ElementCapabilities

StorageConf igurationServ ice

CreateOrModifyStoragePool(New Pool)
HostedService

Ne w Pool:
StoragePool ElementCapabilities

Ne w Capability:
StorageCapabilities

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()

HostedPool

A llocatedFromStoragePool
Version 1.0.1 189

SNIA Storage Management Initiative Specification
7.3.3.11.8.2 The CreateOrModifyStoragePool method and the Primordial Pool
The InPool array for the StorageConfigurationService.CreateOrModifyStoragePool() method
MUST always contain at least a string reference to the Primordial Pool. The InPool is therefore a
required parameter. If the Primordial Pool is passed as the only element in the InPool parameter
to the CreateOrModifyStoragePool, then the size requested is prepared to the specification of the
Goal parameter and drawn from the Primordial Pool. If the Primordial Pool is one of many Pool
passed to the method, then the Size is drawn from the Pools and/or the Extents that match the
Goal; the Primordial Pool matches all Goals possible for the device. If another Pool matches the
Goal other than the Primordial Pool, then the Size requested is drawn from the other Pool. Any
remaining Size not satisfied from the other Pool, is drawn from the Primordial Pool.

As capacity is drawn from the Primordial Pool or any Pool, then the size of the Primordial Pool
shrinks until such time as all allocated or raw storage is consumed by all children Pools of the
Primordial Pool.

7.3.3.11.9 Recipes
See Create Storage Pool and Storage Volume on array (p. 208) for an example recipe.

7.3.3.11.10 Instrumentation Requirements
See details in related profile section.
190 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.11.11 Required CIM Elements

7.3.3.11.12 Required Properties for CIM Elements

Table 85: Required CIM Elements

Profile Classes & Associations Notes

AllocatedFromStoragePool (p. 392) AllocationFromStoragePool as defined in the
Array Profile

StoragePool (p. 396) StoragePool as defined in the Array profile

ElementCapabilities (p. 192) Associates StorageConfigurationCapabilities
with StorageConfigurationService.

StorageConfigurationCapabilities (p. 192)

ElementSettingData (p. 197)

StorageSetting (p. 197)

StorageSettingWithHints (p. 199)

StorageConfigurationService (p. 192)

StorageCapabilities (p. 194)

HostedService (p. 200)

Packages

None.

Methods

CreateOrModifyStoragePool()

DeleteStoragePool()

CreateSetting()

GetSupportedSizes()

GetSupportSizeRanges()

SubProfile Indications

Creation/Deletion of StoragePool SELECT * from CIM_InstCreation where
SourceInstance ISA CIM_StoragePool

SELECT * from CIM_InstDeletion where
SourceInstance ISA CIM_StoragePool
Version 1.0.1 191

SNIA Storage Management Initiative Specification
7.3.3.11.12.1 ElementCapabilities

7.3.3.11.12.2 StorageConfigurationService

7.3.3.11.12.3 StorageConfigurationCapabilities

Table 86: Required Properties for ElementCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ManagedElement ref key, min(1),
max(1)

The managed element.

Capabilities ref key The Capabilities object associated with the
element.

Table 87: Required Properties for StorageConfigurationService

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

SystemCreationClassName string maxlen(256), key,
propagated

The scoping System's
CreationClassName.

SystemName string maxlen(256), key,
propagated

The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

Name string maxlen(256), key,
override

CreateOrModifyStoragePool() uint32 Create (or modify) a
StoragePool. A job may be
created as well.

DeleteStoragePool () uint32 Start a job to delete a
StoragePool.

Table 88: Required Properties for StorageConfigurationCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string req

InstanceID string key InstanceID opaquely identifies a unique
instance of Capabilities. The InstanceID MUST
be unique within a namespace.

SupportedStoragePo
olFeatures[]

uint16 Lists what StorageConfigurationService
methods are implemented

SupportedSynchrono
usActions[]

uint16
192 Version 1.0.1

SNIA Storage Management Initiative Specification
SupportedAsynchron
ousActions[]

uint16 Lists what actions, invoked through
StorageConfigurationService methods, may
produce Concrete jobs

SupportedStorageEle
mentTypes[]

uint16

SupportedStorageEle
mentFeatures[]

uint16 Lists was actions are support through the,
invocation of
StorageServiceService.CreateOrModifyElemen
tFromStoragePool()

Table 88: Required Properties for StorageConfigurationCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 193

SNIA Storage Management Initiative Specification
7.3.3.11.12.4 StorageCapabilities

Table 89: Required Properties for StorageCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key InstanceID opaquely identifies a unique
instance of Capabilities. The InstanceID
MUST be unique within a namespace.

ElementName string override, required The user friendly name for this instance of
Capabilities. In addition, the user friendly
name can be used as a index property for
a search or query. (Note: ElementName
does not have to be unique within a
namespace) If the capabilities are fixed,
then this property should be used as a
means for the client application to
correlate between capabilities and device
documentation.

ElementType uint16 Enumeration indicating the type of
instance to which this StorageCapabilities
applies. Only ‘6’,
StorageConfigurationService and ‘5’
StoragePool are valid.

NoSinglePointOfFailu
re

boolean Indicates whether or not the associated
instance supports no single point of
failure. Values are: FALSE = does not
support no single point of failure, and
TRUE = supports no single point of
failure.

NoSinglePointOfFailu
reDefault

boolean Indicates the default value for the
NoSinglePointOfFailure property.

DataRedundancyMax uint16 minvalue(1) DataRedundancyMax describes the
maximum number of complete copies of
data that can be maintained. Examples
would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more
copies are maintained. Possible values
are 1 to n.

DataRedundancyMin uint16 minvalue(1) DataRedundancyMin describes the
minimum number of complete copies of
data that can be maintained. Examples
would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more
copies are maintained. Possible values
are 1 to n.
194 Version 1.0.1

SNIA Storage Management Initiative Specification
DataRedundancyDef
ault

uint16 minvalue(1) DataRedundancyDefault describes the
default number of complete copies of data
that can be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

PackageRedundancy
Max

uint16 write(true) PackageRedundancyMax describes the
maximum number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundancy
Min

uint16 write(true) PackageRedundancyMin describes the
minimum number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundancy
Default

uint16 write(true) PackageRedundancyDefault describes
the default number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

DeltaReservationMax uint16 minvalue(1)
maxvalue(100)

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies how
much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the upper limit.

DeltaReservationMin uint16 minvalue(1)
maxvalue(100)

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies how
much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the lower limit.

Table 89: Required Properties for StorageCapabilities (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 195

SNIA Storage Management Initiative Specification
DeltaReservationDef
ault

uint16 minvalue(1)
maxvalue(100)

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies how
much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the default value.

Methods

CreateSetting()

Table 89: Required Properties for StorageCapabilities (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
196 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.11.12.5 ElementSettingData

7.3.3.11.12.6 StorageSetting

Table 90: Required Properties for ElementSettingData

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ManagedElement ref key The ManagedElement.

SettingData ref key The Setting Data object associated with
the ManagedElement.

IsDefault uint16 An enumerated integer indicating that
the referenced setting is a default setting
for the element, or that this information is
unknown."),||ValueMap {"0", "1", "2"},
||Values {"Unknown", "Is Default", "Is Not
Default"}

IsCurrent uint16 An enumerated integer indicating that
the referenced setting is currently being
used in the operation of the element, or
that this information is
unknown."),||ValueMap {"0", "1", "2"},
||Values {"Unknown", "Is Current", "Is
Not Current"}

Table 91: Required Properties for StorageSetting

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key InstanceID opaquely identifies a unique
instance of SettingData. The InstanceID
MUST be unique within a namespace.

ElementName string override, required The user friendly name for this instance of
SettingData. In addition, the user friendly
name can be used as a index property for
a search of query. (Note: Name does not
have to be unique within a namespace.)

NoSinglePointOfFail
ure

boolean write(true) Indicates the desired value for No Single
Point of Failure. Possible values are false
= single point of failure, and true = no
single point of failure.

DataRedundancyMa
x

uint16 minvalue(1)
write(true)

DataRedundancyMax describes the
maximum number of complete copies of
data to be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.
Version 1.0.1 197

SNIA Storage Management Initiative Specification
DataRedundancyMi
n

uint16 minvalue(1)
write(true)

DataRedundancyMin describes the
minimum number of complete copies of
data to be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

PackageRedundanc
yMax

uint16 write(true) PackageRedundancyMax describes the
maximum number of spindles to be used.
Package redundancy describes how
many disk spindles can fail without data
loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundanc
yMin

uint16 write(true) PackageRedundancyMin describes the
minimum number of spindles to be used.
Package redundancy describes how
many disk spindles can fail without data
loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

DeltaReservationMa
x

uint16 minvalue(1),
maxvalue(100)

Delta reservation is a number between 0
(0%) and a 100 (100%) that specifies how
much space should reserved in a replica
for caching changes. For a complete copy
this would be 100%, but it can be lower in
some implementations. Use 0 if copy
service Subprofile is not supported.

DeltaReservationMi
n

uint16 minvalue(1),
maxvalue(100)

DeltaReservationGo
al

uint16 minvalue(1),
maxvalue(100)

Table 91: Required Properties for StorageSetting (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
198 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.11.12.7 StorageSettingWithHints

Table 92: Required Properties for StorageSettingWithHints

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key InstanceID opaquely identifies a
unique instance of SettingData. The
InstanceID MUST be unique within a
namespace.

ElementName string override, required The user friendly name for this
instance of SettingData. In addition,
the user friendly name can be used
as a index property for a search of
query. (Note: Name does not have to
be unique within a namespace.)

NoSinglePointOfFailure boolean write(true) See description in StorageSetting
table

DataRedundancyMax uint16 write(true),
minvalue(1)

See description in StorageSetting
table

DataRedundancyMin uint16 write(true),
minvalue(1)

See description in StorageSetting
table

PackageRedundancyMax uint16 write(true) See description in StorageSetting
table

PackageRedundancyMin uint16 write(true) See description in StorageSetting
table

DataAvailabilityHint uint16 minvalue(0)
maxvalue(10)

This hint is an indication from a client
of the importance placed on data
availability. Values are 0=Don't Care
to 10=Very Important.

AccessRandomnessHint uint16 minvalue(0)
maxvalue(10)

This hint is an indication from a client
of the randomness of accesses.
Values are 0=Entirely Sequential to
10=Entirely Random.

AccessDirectionHint uint16 This hint is an indication from a client
of the direction of accesses. Values
are 0=Entirely Read to 10=Entirely
Write

AccessSizeHint[] uint16 minvalue(0)
maxvalue(10)

This hint is an indication from a client
of the optimal access sizes. Several
sizes can be specified.
Units(“Megabytes”)

AccessLatencyHint uint16 minvalue(0)
maxvalue(10)

This hint is an indication from a client
how important access latency is.
Values are 0=Don't Care to 10=Very
Important.
Version 1.0.1 199

SNIA Storage Management Initiative Specification
7.3.3.11.12.8 HostedService
 (As defined by CIM)

HostedService is an association between a Service and the System on which the functionality
resides. The cardinality of this association is 1-to-many. A System may host many Services.
Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the
System where the LogicalDevices or SoftwareFeatures that implement the Service are located.
The model does not represent Services hosted across multiple systems. This is modeled as an
ApplicationSystem that acts as an aggregation point for Services, that are each located on a single
host.

AccessBandwidthWeight uint16 minvalue(0)
maxvalue(10)

This hint is an indication from a client
of bandwidth prioritization. Values are
0=Don't Care to 10=Very Important.

StorageCostHint uint16 minvalue(0)
maxvalue(10)

This hint is an indication of the
importance the client places on the
cost of storage. Values are 0=Don't
Care to 10=Very Important. A
StorageVolume provider might
choose to place data on low cost or
high cost drives based on this
parameter.

StorageEfficiencyHint uint16 minvalue(0)
maxvalue(10)

This hint is an indication of the
importance placed on storage
efficiency by the client. Values are
0=Don't Care to 10=Very Important. A
StorageVolume provider might
choose different RAID levels based
on this hint.

DeltaReservationMax uint16 minvalue(1),
maxvalue(100)

Delta reservation is a number
between 0 (0%) and a 100 (100%)
that specifies how much space should
reserved in a replica for caching
changes. For a complete copy this
would be 100%, but it can be lower in
some implementations. Use 0 if copy
service Subprofile is not supported.

DeltaReservationMin uint16 minvalue(1),
maxvalue(100)

DeltaReservationGoal uint16 minvalue(1),
maxvalue(100)

Table 92: Required Properties for StorageSettingWithHints (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
200 Version 1.0.1

SNIA Storage Management Initiative Specification
HostedService is subclassed from Dependency

7.3.3.11.13 Optional Subprofiles

7.3.3.12 LUN Creation Subprofile

7.3.3.12.1 Description
StorageVolumes are a REQUIRED part of modeling disk storage systems (the Array, Out-of-band
Virtualization and In-band Virtualization Profiles). However, user creation of storage volumes
from pools is optional and may not be supported by a given disk storage system. The LUN Creation
subprofile defines the support REQUIRED if the storage system exposes functions for creating
storage volumes from storage pools.

The StorageConfigurationService allows generic clients to configure storage arrays with volumes
(ex. LUNs) without having to have specific knowledge about the storage system capacity . The
service has the following methods for Storage Volume manipulation:

• CreateOrModifyElementFromStoragePool: Create a StorageVolume, possibly with a specific
StorageSetting, from a source StoragePool. Note that this call is extensible to cover other
types of object (e.g. NAS file systems) in the future;

• ReturnToStoragePool: Return an Element previously created with
CreateOrModifyElementFromStoragePool to the originating StoragePool.

The StorageCapabilities instances provide the ability to create settings for use in volume creation
using the following method (part of the StorageCapabilities class):

• CreateSetting: Creates a setting that is consistent with the StorageCapabilities and may be
modified before use in creating a StorageVolume.

The StoragePool instances provide the ability to retrieve the possible sizes for the StorageVolume
creation or modification given a StorageSetting as a goal.

• GetAvailableSizes: Returns a list of discrete sizes given a goal.

• GetAvailableSizeRanges: Returns the range of possible sizes given a goal.

See Storage Pools and Storage Capabilities (p. 185)

Table 93: HostedService Required Properties

Class
Properties

Type Qualifier/
Parameter

Notes

Antecedent ref override, max(1),
min(1)

The hosting System.

Dependent ref override, weak The Service hosted on the System.

Table 94: Optional Profiles or Subprofiles

Name Notes

Job Control This subprofile is used to support copy services that run for a long time. The
extrinsic methods support the “ConcreteJob” output. If job control is not
supported this output is null
Version 1.0.1 201

SNIA Storage Management Initiative Specification
7.3.3.12.2 Standards Dependencies
The LUN Creation subprofile is defined using the CIM Schema 2.8 final. As such it can be used in
profiles at 2.8 and later. It does not require that Profiles be on a later schema. It will operate
within profiles that are at the CIM schema 2.8 final or later. The subprofile will operate correctly
with CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).The Pool
Manipulation, Capabilities, and Settings subprofile is based on the following standards:

7.3.3.12.3 Profile Dependencies
The LUN Creation subprofile introduces no Profile dependencies.

7.3.3.12.4 CIM Server Requirements

7.3.3.12.4.1 Functional Profiles

7.3.3.12.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the LUN Creation subprofile.

7.3.3.12.4.3 Discovery
The LUN Creation subprofile is NOT advertised.

Table 95: LUN Creation Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.1 DMTF

CIM Schema 2.8 Prelminary DMTF

Table 96: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

YES Basic Write Basic Read

YES Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
202 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.12.5 Instance Diagrams

7.3.3.12.6 Durable Names and Correlatable IDs
The LUN Creation subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.

7.3.3.12.7 Methods
The LUN Creation subprofile introduces a number of write intrinsic and extrinsic methods.

StorageConfigurationService Methods:

CreateOrModifyElementFromStoragePool
 Uint32 CreateOrModifyElementFromStoragePool (

[in, Values {“Unknown”, “Reserved”, “StorageVolume”,
 “StorageExtent”, “DMTF Reserved”, “Vendor Specific”},
 ValueMap{“0”,”1”,”2”,”3”,”..”,“0x8000..”}]
 Uint16 ElementType;
 [Out] CIM_ConcreteJob ref Job,
 [in] CIM_StorageSetting ref Goal,
 [in, out] Uint64 Size,
 [in] CIM_StoragePool ref InPool,
 [out, in] CIM_LogicalElement ref TheElement
);

• This method allows an Element of a type specified by the enumeration ElementType to be
created from the input Storage Pool. The parameters are as follows:

Figure 37: LUN Creation Instance Diagram

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

AllocatedFromStoragePool

ComputerSy stem

HostedStoragePool

StorageCapabilit ies

CreateSetting()

ElementCapabilit ies

AllocatedFromStoragePool

StorageSetting

Sy stemDev ice
StorageConf igurationServ ice

CreateOrModifyElementFrom StoragePool()
ReturnToStoragePool()

HostedServ ice

StorageConf igurationCapabilit ies

ElementCapabilitesElementSettingData
Version 1.0.1 203

SNIA Storage Management Initiative Specification
• ElementType: This enumeration specifies what type of object to create. At present, only
StorageVolume and StorageExtents are defined as values, however other values (such as
share) could be added in future.

• Job: See “Job Control Subprofile” on page 172.

• Goal: This is the Service Level that the Storage Volume is expected to provide. The setting
MUST be a subset of the Capabilities available from the parent Storage Pool. Goal may be a
null value, in which case the default setting for the pool is used.

• Size: As an input this is the desired size of the Storage Volume. If it is not possible to create a
volume of the desired size, a return code of “Size not supported” is returned with size set to
the nearest supported size.

• InPool: This is a reference to a source Storage Pool.

• TheElement: If a reference is passed in, then that Element is modified, else this is a reference
to the created element.

ReturnToStoragePool
 Uint32 ReturnToStoragePool (

[Out] CIM_ConcreteJob ref Job,
[in] CIM_LogicalElement ref Element
);

This method is provided to allow a client to delete a previously created element such as a Storage
Volume.

Return Values
Each method has a set of defined return codes defined below:

 ValueMap {“0”, “1”, “2”, “3”, “4”, “5”, “..”, “0x1000”,”0x1001”,
 “0x1002..0x7777”, “0x8000..”},
 Values {“Job completed with no error”, “Not Supported”, “Unknown”,
 “Timeout”, “Failed”, “Invalid Parameter”, “DMTF Reserved”,
 “Method parameters checked - job started”,
 “Size not supported”, “Method Reserved”, “Vendor Specific”}]

If the method completes immediately with no errors (and with no asynchronous execution
required), “Job completed with no error” is returned.

If the method parameters have been checked and the method is being executed asynchronously,
“Method parameters checked - job started” is returned.

If, for a Create/Modify method, the requested size is not supported then “Size not supported” is
returned and the Size parameter is set to the nearest supported size.

If one of the method parameters is incorrect (for instance invalid object paths), then “Invalid
Parameter” is returned.

“Timeout” or “Failed” may be returned if the provider has problems accessing the hardware or for
other implementation specific reasons.

A vendor may choose to extend the Value map to express vendor specific error codes not catered for
by the standard errors.
204 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.12.8 Client Considerations
Storage Volume Manipulation
The StorageConfigurationService class contains methods to allow creation, modification and
deletion of StorageVolumes. The capabilities of a StorageConfigurationService or StoragePool to
provide storage are indicated using the StorageCapabilities class. This class allows the Service or
Pool to advertise its capabilities (using implementation independent attributes) and a client to set
the attributes it desires. The concept of ‘hints’ is also included that allows a client to provide clues
to the system as to how it expects to use the storage for optimization purposes. These allow a client
to provide extra information to 'tune' a StorageVolume. If a client chooses to supply these hints
when creating a StorageVolume, the StorageSystem can either use them in determining a
matching configuration or it can choose to ignore the hints. See the Storage Pools and Storage
Capabilities (p. 185) for further details on Storage Capabilities.

When creating a StorageVolume, an instance of StorageSetting is passed as a parameter to the
StorageConfigurationService.CreateOrModifyElementFromStoragePool method. This forms an
objective for that element to attempt to meet. The current ‘service level’ being achieved is reported
via the StorageVolume class itself.

StorageVolumes are created from StoragePools via a StorageConfigurationService’s
CreateOrModifyElementFromStoragePool() method. A volume create operation may take some
period of time, however, and a Client needs to be aware that the operation is not complete until the
StorageVoume.OperationalStatus is OK. A Client may also follow the progress of the operation
using the ConcreteJob class and its properties.

The example below shows the classes and associations needed to model a single Pool with two
StorageVolumes.

Figure 38: Storage Pool Example

LUN

StorageVolume

Single controller

ComputerSystem

Pool owned by one controller,
 redundant
access through the other

StoragePool

HostedStoragePool

LUN

StorageVolume

AllocatedFromStoragePool

Current state of volume

StorageSetting

Element
Setting

Describes range of
capabilities of the Pool

StorageCapabilities

Element
Capabilities

Optional extention to publish
'hints' from the client for
 optimization

StorageSettingWithHints

SystemDevice

StorageConfigurationService

HostedService

ElementCapabilities

Describes range of
capabilities of the Service

StorageCapabilities
Version 1.0.1 205

SNIA Storage Management Initiative Specification
The methods are used as follows to create a Storage Volume.

a. Similarly to with Storage Pools, a client chooses a suitable source pool by referencing the Stor-
ageCapabilities objects and use using the GetSupportedSizes and GetSupportSizeRange()
objects. This is indicated in Figure 39: "Volume Creation - Initial State"

b) Once a suitable pool is found, a StorageSetting instance can be created using the CreateSet-
ting method on the StorageCapabilities object (see Figure 39: "Volume Creation - Initial
State"). If a suitable StorageSetting already exists it could be used instead.

c) If a new Setting is created, it is not linked back to the originating StorageCapabilities object
until it is used as an argument in a StorageConfiguration method. (see Figure 41: "Volume
Creation - Step 2")

Figure 39: Volume Creation - Initial State

ComputerSystem

dedicated[x]

StorageConf igurationService

CreateOrModifyElementFromStoragePool()
HostedServic

e

StoragePool

GetSupportedSizes()
GetSupportSizeRa nge

()

HostedPool

ElementCapabilities StorageCapabilities

CreateSetting()

Figure 40: Volume Creation - Step 1

ComputerSystem

dedicated[x]

StorageConf igurationService

CreateOrModifyElementFromStoragePool()
HostedServic

e

StoragePool

GetSupportedSizes()
GetSupportSizeRange()

HostedPool

ElementCapabilities StrorageCapabilities

Crea teSetting()
206 Version 1.0.1

SNIA Storage Management Initiative Specification
d) Once the volume has been created, the new setting is ‘snapped’ to the new volume using the
ElementSettingData association’. (see Figure 42: "Volume Creation - Step 3")

Figure 41: Volume Creation - Step 2

ComputerSystem

dedicated[x]

StorageConf igurationService

Crea teOrM odifyElementFromStora geP ool (Ne w Se tting)HostedService

StoragePool

GetSupportedSizes()
GetSupportSizeRange()

HostedPool

ElementCapabilities StorageCapabilities

CreateSetting()

Ne w Se tting:
StorageSetting

Figure 42: Volume Creation - Step 3

ComputerSy stem

dedicated[x]

StorageConf igurationServ ice

CreateOrModifyElementFromStoragePool()
HostedServ ic

e

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

HostedPool

ElementCapabilities StorageCapabilities

CreateSetting()

NewSetting:
StorageSetting

NewVolume:
StorageVolume

AllocatedFromStoragePool

ElementSettingData
Version 1.0.1 207

SNIA Storage Management Initiative Specification
7.3.3.12.9 Recipes

7.3.3.12.9.1 Create Storage Pool and Storage Volume on array
// DESCRIPTION
// The goal is to create the equivalent of a 10 GB RAID 5 Volume to
// house a tablespaces in a high-volume, transactional database.
// Records in the tablespace are about 1kB in size and reads of records
// occur much more frequently than writes. First we have to create a
// new Storage Pool to contain the volume
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. A reference to a CIM_ComputerSystem storage array is previously
// defined in the $StorageArray-> variable
// 2. The settings for the new Storage Pool and Storage Volume are
// defined in the following variables:
// #RequestedSize = 10 * 1024 * 1024 * 1024 // 10 GB
// #NoSinglePOF = true
// #DataRedundancy = 1
// #PackageRedundancy = 1
// #DeltaReservation = 30 // %

// Function StorageSettingRequirementsAreSatisfiedBy
// Determine if the storage requirements specified by required are
// met by offered.
sub boolean StorageSettingRequirementsAreSatisfiedBy($CapabilitiesOffered)
{

if(#NoSinglePOF == $CapabilitiesOffered.NoSinglePointOfFailure
&& #DataRedundancy <= $CapabilitiesOffered.DataRedundancyMax
&& #DataRedundancy >= $CapabilitiesOffered.DataRedundancyMin
&& #PackageRedundancy <= $CapabilitiesOffered.PackageRedundancyMax
&& #PackageRedundancy >= $CapabilitiesOffered.PacakageRedundancyMin)

{
return true

}
else
{

return false
}

}

// Function PoolSizeAvailable
// A return value of 0 means that no size is available
sub unit32 PoolSizeAvailable($PoolToDrawFrom->,

$StorageSetting->, #RequestedSize)

#ResultSize = 0
%InArguments[“ElementType”] = 2 // StoragePool
%InArguments[“Goal”] = $StorageSetting->
208 Version 1.0.1

SNIA Storage Management Initiative Specification
#MethodReturn = InvokeMethod(
$PoolToDrawFrom->,
“GetSupportedSizes”,
%InArguments,
%OutArguments)

if(#MethodReturn == 0)
{

 // this method is supported
#SupportedSizes[] = %OutArguments[“Sizes”]
#i = 0
#max = #SupportedSizes[].length
while(#i < #max && #RequestedSize > #ResultSize)
{

#ResultSize = #SupportedSizes[#i++]
}
if(#RequestedSize > #ResultSize)
{

// we did not find a size
#ResultSize = 0

}
}

 else if (#MethodReturn == 2)
{ // call GetSupportedSizeRange

#MethodReturn =
InvokeMethod(

$PooltoDrawFrom->,
“GetSupportedSizeRange”,
%InArguments,
%OutArguments)

if(#MethodReturn != 1 && #MethodReturn != 2)
{

// this method is supported
#MaximumVolumeSize = %OutArguments[“MaximumVolumeSize”]
#MinimumVolumeSize = %OutArguments[“MinimumVolumeSize”]
#VolumeSizeDivisor = %OutArguments[“VolumeSizeDivisor”]
if(#RequestedSize >= #MinimumVolumeSize &&
 #RequestedSize <= #MaximumVolumeSize)
{

// Rounding up using integer arthimetic
#ResultSize =

(#RequestedSize / #VolumeSizeDivisor + 1)
* #VolumeSizeDivisor

}
}

}
return #ResultSize

}

Version 1.0.1 209

SNIA Storage Management Initiative Specification
// MAIN
// Step 1. Get the configuration services and determine the service
// capabilities
$Services->[] = AssociatorNames(

$StorageArray->,
“CIM_HostedService”,
“CIM_StorageConfigurationService”,
null,
null)

// There should be only one storage configuration service
// Associated with the system
$StorageConfigurationService-> = $Services->[0]
$ServiceCapabilities[] = Associators(

$StorageConfigurationService->,
“CIM_ElementCapabilities”,
“CIM_StorageConfigurationCapabilities”,
null,
null,
false,
false,
null)

// There should be only one StorageConfigurationCapabilities instance
#SupportsPoolCreation = contains(

2, // Storage Pool Creation
$ServiceCapabilities[0].SupportedSynchronousActions[]) ||
contains(
2, // Storage Pool Creation
$ServiceCapabilities[0].SupportedAsynchronousActions[]))

#PoolCreationProducesJob = contains(
2, // Storage Pool Creation
$ServiceCapabilities[0].SupportedAsyncronousActions[])

#SupportsVolumeCreation1 = contains(
5, // Storage Element Creation
$ServiceCapabilities[0].SupportedSynchronousActions[])

#SupportsVolumeCreation2 = contains(
3, // StorageVolumeCreation
$ServiceCapabilities[0].SupportedStorageElementFeatures[])

#VolumeCreationProducesJob = contains(
5, // Storage Element Creation
$ServiceCapabilities[0].SupportedAsynchronousActions[])

if (!#SupportedVolumeCreation1 || !#SupportedVolumeCreation2)
{

<ERROR! The StoragePool can be created, but the StorageVolume
creation is not supported.>
210 Version 1.0.1

SNIA Storage Management Initiative Specification
}

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find
// all the StoragePools from which volumes might be created.
$StoragePools[] = Associators(

$StorageArray->,
“CIM_HostedStoragePool”,
“CIM_StoragePool”,
null,
null,
false,
false,
{“InstanceID”, “Primordial”})

// Step 3. For each StoragePool, follow the CIM_ElementCapabilities
// asociation to the StorageCapabilities of that pool. Compare the
// StorageCapabilities to the desired StorageSetting and find the
// best match.
$PoolToDrawFrom-> = null
for #i in $StoragePools[]
{

// If we can not create Storage Pool, then find a ‘concrete’
// Storage Pool from which to create a Storage Volume
#UsePrimordial = false
if(#SupportsPoolCreation)
{

#UsePrimordial = true
}
if ($StoragePools[#i].Primodial == #UsePrimordial)
{

$CapabilitiesOffered[] = Associators(
$StoragePools[#i].getObjectPath(),
“CIM_ElementCapabilities”,
“CIM_StorageCapabilities”,
null,
null,
false,
false,
null)

$StorageCapabilitiesOffered = $CapabilitiesOffered[0]

if(&StorageSettingRequirementsAreSatisfiedBy(
$StorageCapabilitiesOffered))

{
$PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()
break;
Version 1.0.1 211

SNIA Storage Management Initiative Specification
}
}

}

if ($PoolToDrawFrom-> == null)
{

< ERROR! Unable to find a suitable pool from which to create the volume >
}

// Step 4. Determine if the selected pool has enough space for
// another pool. Change the StorageSetting to what is desired.
// If the array supports hints, then the Storage Setting returned
// will contain default hints
// Create a setting
%InArguments[“SettingType”] = 2 // Default
#ReturnValue = InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(),
“CreateSetting”,
%InArguments,
%OutArguments)

if (#ReturnValue != 0) {
<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]
$ModifiedSetting = GetInstance(

$GeneratedStorageSetting->,
false,
false,
false,
null)

$ModifiedSetting.DeltaReservationGoal = #DeltaReservation
$ModifiedSetting.DataRedundancyGoal = #DataRedundancy
$ModifiedSetting.PackageRedundancyGoal = #PackageRedundancy
ModifyInstance(

$ModifiedSetting,
false,
NULL)

// Determine the possible size, closest to the requested size
#PossibleSize = &PoolSizeAvailable(

$PoolToDrawFrom->,
$ModifiedSetting.getObjectPath(),
#RequestedSize)

// Step 5. Register for indications on configuration jobs
If(#PoolCreationProducesJob || #VolumeCreateProducesJob)
212 Version 1.0.1

SNIA Storage Management Initiative Specification
{
%Filter = “SELECT * FROM CIM_InstModification WHERE SourceInstance ISA

CIM_ConcreteJob AND SourceInstance.OperationalStatus ==
Complete AND SourceInstance.OperationalStatus == OK”

@{Determine if Indications already exist or have to be created}
&createIndication(%Filter)

}

// Step 6. Create the Storage Pool
if(#SupportsPoolCreation)
{

%InArguments[“ElementName”] = NULL// we do not care what
// the name is

%InArguments[“Goal”] = $ModifiedSetting.getObjectPath()
%InArguments[“Size”] = #PossibleSize
%InArguments[“InExtents”] = null
%InArguments[“Pool”] = null
$InPools->[0] = $PoolToDrawFrom->
%InArguments[“InPools”] = $InPools->[]
#ReturnValue = InvokeMethod(

$StorageConfigurationService->,
“CreateOrModifyStoragePool”,
%InArguments, %OutArguments)

if(#ReturnValue != 0 || #ReturnValue != 4096)
{ // Storage Pool was not created

<ERROR! Failed >
}
$PoolToDrawFrom-> = %OutArguments[“Pool”]
$PoolCreationJob-> = %OutArguments[“Job”]

if(#PoolCreationProducesJob && $PoolCreationJob-> != null)
{

<Wait until the completion of the job
 using $PoolCreationJob-> as a filter>
}
$CapabilitiesOffered[] = Associators(

$PoolToDrawFrom->,
“CIM_ElementCapabilities”,
“CIM_StorageCapabilities”,
null,
null,
false,
false,
null)

$StorageCapabilitiesOffered = $CapabilitiesOffered[0]
}

Version 1.0.1 213

SNIA Storage Management Initiative Specification
// Step 7. Create Storage Volume.
%InArguments[“SettingType”] = 2 // “Default”
InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(),
“CreateSetting”,
%InArguments,
%OutArguments)

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]
%InArguments[“ElementType”] = 2 // Storage Volume
%InArguments[“Goal”] = $GeneratedStorageSetting->
%InArguments[“Size”] = #PossibleSize
$InPools->[0] = $PoolToDrawFrom->
%InArguments[“InPool”] = $InPools->
%InArguments[“TheElement”] = null
#ReturnValue = InvokeMethod(

$StorageConfigurationService->,
“CreateOrModifyElementFromStoragePool”,
%InArguments, %OutArguments)

if(#ReturnValue != 0 || #ReturnValue != 4096)
{ // Method no succeeded nor succeeded and create a job

<ERROR! Failed >
}
else if(#ReturnValue == 0 ||

#ReturnValue == 4096 && %OutArguments[“TheElement”] != null))
{

$CreatedVolume-> = %OutArguments[“TheElement”]
}
else // a Job was created and TheElement is null
{

<Coerse the string returned as the Job into
 a ObjectName yielding the $Job-> variable>
<Wait until the completion of the job using $Job-> as a filter>
<Once the ‘Job’ has completed, see step 5, then follow the
 AffectedJobElement association from the ‘Job’ to retrieve
 the volume that was created.>
$CreateVolumes[] = Associators(

$Job->, // Object Name coersed from %OutArguments[“Job”]
“CIM_AffectedJobElement”,
“CIM_StorageVolume”,
null,
null,
false,
false,
null)

// Only one StorageVolume will be created,
 $CreatedVolume-> = $CreatedVolume[0].getObjectPath()
}

214 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.12.9.2 Expand Storage Volume on storage array
// DESCRIPTION
// In this recipe, we attempt to expand a LUN on an array by 50%.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. A reference to the CIM_ComputerSystem that represents the array
// $StorageArray->
// 2. A reference to the particular StorageVolume we wish to expand.
// $VolumeToExpand->
// 3. It is assumed that to expand a Storage Volume there needs to be
// enough space available in the parent StoragePool to contain
// another copy of the Storage Volume whose size is equal to the
// new size requested. This is especially the case if we were
// modifying the settings as well as the size.

// Step 1. Get the configuration services and determine the service
// capabilities
$Services->[] = AssociatorNames(

$StorageArray->,
“CIM_HostedService”,
“CIM_StorageConfigurationService”,
null,
null)

// There should be only one storage configuration service
// Associated with the system
$StorageConfigurationService-> = $Services->[0]
$ServiceCapabilities[] = Associators(

$StorageArray->,
“CIM_ElementCapabilities”,
“CIM_StorageConfigurationCapabilities”,
null,
null,
false,
false,
null)

// There should be only one StorageConfigurationCapabilities instance
#SupportsVolumeModification1 = contains(

7, // Storage Element Modification
$ServiceCapabilities[0].SupportedSynchronousActions[]) ||
contains(
7, // Storage Element Modification
$ServiceCapabilities[0].SupportedAsynchronousActions[])

#SupportsVolumeModification2 = contains(
5, // StorageVolume Modification
Version 1.0.1 215

SNIA Storage Management Initiative Specification
$ServiceCapabilities[0].SupportedStorageElementFeatures[])
#VolumeModificationProducesJob = contains(

7, // Storage Element Modification
$ServiceCapabilities[0].SupportedAsynchronousActions[])

if(!#SupportedVolumeModification1 || !#SupportedVolumeModification2)
{

<ERROR! The ability to modify an existing StorageVolume must be supported
 to continue.>

}

// Step 2. Read the current size of the StorageVolume.
$Volume = GetInstance(

$VolumeToExpand->,
false,
false,
false,
{“BlockSize”, “NumberOfBlocks”})

#PreviousSize = $Volume.BlockSize * $Volume.NumberOfBlocks

// Step 3. Follow the AllocatedFromStoragePool association from the
// volume to find the pool from whence it came.
$Pools->[] = AssociatorNames(

$VolumeToExpand->,
“CIM_AllocatedFromStoragePool”,
“CIM_StoragePool”,
null,
null)

// A Storage Volume has only one Pool parent
$ParentPool-> = $Pools->[0]

// Step 4. Determine whether the desired space for which to expand the
// volume exists within the pool.
$StorageSetting->[] = AssociatorNames(

$VolumeToExpand->,
“CIM_ElementSettingData”,
“CIM_StorageSetting”,
null,
null)

$CurrentVolumeSetting-> = $StorageSetting->[0]
#SizeToExpand = 0.5 * #PreviousSize / (1024 * 1024) // in MB
#SizeToExpandTo = #PreviousSize / (1024 * 1024) + #SizeToExpand
#NewSizeAvailable =

@<Create Storage Pool and Volume on array>
&PoolSizeAvailable(

$ParentPool->,
$CurrentVolumeSetting->,
216 Version 1.0.1

SNIA Storage Management Initiative Specification
#SizeToExpand)
if (!#NewSizeAvailable)
{

< ERROR! Unable to proceed because the requested size is unavailable >
}

// Step 5. Register for indications on configuration jobs
If(#VolumeModificationProducesJob)
{

%Filter = “SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_ConcreteJob AND SourceInstance.OperationalStatus ==
Complete AND SourceInstance.OperationalStatus == OK”

@{Determine if Indications already exist or have to be created}
&createIndication(%Filter)

}

// Step 6. Modify the Storage Volume
// If there is a Job produced, wait for Job completion
%InArguments[“ElementName”] = null// we do not care what the name is
%InArguments[“ElementType”] = 2// Storage Volume
%InArguments[“Goal”] = $CurrentVolumeSetting
%InArguments[“Size”] = #SizeToExpandTo
%InArguments[“InPool”] = $ParentPool->
%InArguments[“TheElement”] = $VolumeToExpand->
#ReturnValue = InvokeMethod(

$StorageConfigurationService->
“CreateOrModifyElementFromStoragePool”
%InArguments
%OutArgument
)

if(#ReturnValue != 0 || #ReturnValue != 4096)
{ // Method succeeded or validated arguments and started a job

<ERROR! Failed >
}
else if(#ReturnValue == 0 ||

#ReturnValue == 4096 && %OutArguments[“TheElement”] != null)
{

$CreatedVolume-> = %OutArguments[“TheElement”]
}
else // a Job was created and TheElement is null
{

<Coerse the string returned as the Job into
 a ObjectName yielding the $Job-> variable>
<Wait until the completion of the job
 using $PoolCreationJob as a filter>
<Once the ‘Job’ has stopped, see step 4,then follow the
 AffectedJobElement association from the ‘Job’ to retrieve
Version 1.0.1 217

SNIA Storage Management Initiative Specification
 the volume that was created.>
$CreateVolumes[] = Associators(

$Job->, // Object Name coersed from %OutArguments[“Job”]
“CIM_AffectedJobElement”,
“CIM_StorageVolume”,
null,
null,
false,
false,
null)

// Only one StorageVolume will be created,
 $CreatedVolume-> = $CreatedVolume[0].getObjectPath()
}

// Step 7. Check the value of the “Size” out parameter. See if it is
// equal to size expected. If so, we got what we asked for and we’re done.
#SizeExpandedTo = %OutArguments[“Size”]
if (#SizeExpandedTo == #SizeToExpandTo)
{

< indicate the volume was successfully expanded >
}
else
{

if (#SizeExpandedTo <= #PreviousSize)
{

< indicate the volume was not expanded >
}
else
{

< indicate the volume was only partially expanded to #SizeExpandedTo >
}

}

7.3.3.12.9.3 Instrumentation Requirements
See details in related profile section.
218 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.12.10 Required CIM Elements

7.3.3.12.11 Required Properties for CIM Elements

7.3.3.12.11.1 StorageConfigurationService

Table 97: Required CIM Elements

Profile Classes & Associations Notes

StorageConfigurationService (p. 219)

Packages/Profiles

Pool Manipulation, Capabilities, and Settings Subprofile (p. 178)

Methods

CreateOrModifyElementFromStoragePool()

ReturnToStoragePool()

SubProfile Indications

Creation/Deletion of StorageVolume SELECT * from CIM_InstCreation where
SourceInstance ISA CIM_StorageVolume

SELECT * from CIM_InstDeletion where
SourceInstance ISA CIM_StorageVolume

Table 98: Required Properties for StorageConfigurationService

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

SystemCreationClassName string maxlen(256), key,
propagated

The scoping System's
CreationClassName.

SystemName string maxlen(256), key,
propagated

The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

Name string maxlen(256), key,
override

CreateOrModifyElementFromStora
gePool()

uint32

ReturnToStoragePool () uint32
Version 1.0.1 219

SNIA Storage Management Initiative Specification
7.3.3.12.12 Optional Subprofiles

7.3.3.13 Device Credentials Subprofile

7.3.3.13.1 Description
Many devices require a shared secret to be provided to access them. This shared secret is different
that the credentials used by the SMI-S Client for authentication with the CIM Server. This
Subprofile is used to change this device shared secrets.

The SMI-S Client must not be provided with the password, only the principle. The SMI-S Client
can use the principle to change the shared secret appropriately.

The device credentials can be exposed throughout the CIM model such that a CIM Client may
manipulate them. The credentials are modeled as shared secrets.

7.3.3.13.2 Standard Dependencies
The Device Credentials subprofile is based on the following standards:

7.3.3.13.3 Profile Dependencies
The Device Credentials subprofile does not require any other Profiles

Table 99: Optional Profiles or Subprofiles

Name Notes

Job Control Subprofile
(p. 172)

This subprofile is used to support copy services that run for a long time. The
extrinsic methods support the “ConcreteJob” output. If job control is not
supported this output is null

Table 100: Device Credentials Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.1 DMTF

CIM Schema 2.7 DMTF
220 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.13.4 CIM Server Requirements

7.3.3.13.4.1 Functional Profiles

7.3.3.13.4.2 Extrinsic Methods
The CIM Server support for extrinsic methods is NOT REQUIRED or the Device Credentials
subprofile

7.3.3.13.4.3 Discovery
The DeviceCredentials subprofile is not advertised.

7.3.3.13.5 Instance Diagrams

7.3.3.13.6 Durable Names and Correlatable IDs
There are no durable names nor correlatable ids for the Device Credentials subprofile

Table 101: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

YES Basic Write Basic Read

YES Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None

Figure 43: DeviceCredentials Subprofile Model

SharedSecre
t

IsShared

*w

1

SharedSecretService

Algorithm: string
Protocol: string

SharedSecret

RemoteID: string [key]
Secret: string
Algorithm: string
Protocol: string

1
Hosted
Service

*w

ComputerSystem

OtherIdentifyingInfo: string[]
IdentifyingDescriptions: string[]
Dedicated: uint16[]
Version 1.0.1 221

SNIA Storage Management Initiative Specification
7.3.3.13.7 Methods
ModifyInstance:

Only the SharedSecret in this SubProfile may be modified. SharedSecrets MAY NOT be created
nor deleted.

If that instance is modified then the CIM Agent attempts to authenticate again with the managed
device using the current RemoteID and Secret. If the RemoteID is changed, then the user name is
being changed. If the Secret is changed, then the pass word is being changed.

If the re-authentication fails, then the RemoteID and Secret revert back to their previous state.

7.3.3.13.8 Client Considerations
The MUST be only one shared secret per device accessible to a given CIM Client.

7.3.3.13.9 Recipes
No recipes have been defined for this subprofile.

7.3.3.13.10 Instrumentation Requirements
None.
222 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.13.11 Required CIM Elements

7.3.3.13.12 Required Properties for CIM Elements

7.3.3.13.12.1 SharedSecretService

7.3.3.13.12.2 SharedSecret.
CIM_SharedSecret is subclassed from CIM_Credential

Table 102: Required CIM Elements

Profile Classes & Associations Notes

SharedSecretService (p. 223)

SharedSecret. (p. 223)

SharedSecretIsShared (p. 224)

HostedService (p. 224)

Packages

None.

Methods

None

SubProfile Indications

None.

Table 103: Required Properties for SharedSecretService

Class Properties Type Qualifier/
Parameter

Notes

ElementName string User Friendly name

SystemCreationClass
Name

string maxlen(256),
key, propagated

The scoping System's CreationClassName.

SystemName string maxlen(256),
key, propagated

The scoping System's Name.

CreationClassName string maxlen(256),
key

The name of the concrete subclass

Name string maxlen(256),
key, override

Table 104: Required Properties for SharedSecret

Class Properties Type Qualifier/
Parameter

Notes

SystemCreationClass
Name

string maxlen(256),
key, propagated

The scoping System's CreationClassName.
Version 1.0.1 223

SNIA Storage Management Initiative Specification
7.3.3.13.12.3 SharedSecretIsShared
CIM_SharedSecretIsShared is subclassed from CIM_ManagedCredential

7.3.3.13.12.4 HostedService
 (As defined by CIM)

HostedService is an association between a Service and the System on which the functionality
resides. The cardinality of this association is 1-to-many. A System may host many Services.
Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the
System where the LogicalDevices or SoftwareFeatures that implement the Service are located.
The model does not represent Services hosted across multiple systems. This is modeled as an
ApplicationSystem that acts as an aggregation point for Services, that are each located on a single
host.

HostedService is subclassed from Dependency

SystemName string maxlen(256),
key, propagated

The scoping System's Name.

ServiceCreationClass
Name

string maxlen(256),
key, propagated

The CreationClassName of the associated
SharedSecretService

ServiceName string maxlen(256),
key, propagated

The Name of the associated SharedSecretService

RemoteID string maxlen(256),
key

The user name in the device’s shared secret

Secret string The password in the device’s shared secret. The
property MUST NOT be shown in its true form for
a SharedSecret once the SharedSecret has been
created. Instead, some printable character should
be repeated for each character in the Secret

Table 105: SharedSecretIsShared Required Properties

Class
Properties

Type Qualifier/
Parameter

Notes

Antecedent ref override, max(1),
min(1)

The credential management service.

Dependent ref override, weak The managed credential.

Table 106: HostedService Required Properties

Class
Properties

Type Qualifier/
Parameter

Notes

Antecedent ref override, max(1),
min(1)

The hosting System.

Dependent ref override, weak The Service hosted on the System.

Table 104: Required Properties for SharedSecret (Continued)

Class Properties Type Qualifier/
Parameter

Notes
224 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.13.12.5 Optional Subprofiles

7.3.3.14 Backend Ports Subprofile

7.3.3.14.1 Description
Some RAID systems provide interfaces to discover and manage the internal connections between
the RAID processors and physical disks. For example, an array may have an interface to acquire
and optimize the utilization of separate buses, loops, or fabrics to back-end storage. In this case,
the ports to individual disks can be modeled similarly to a JBOD configuration as well as the ports
on the RAID processors.

A property on FCPort called UsageRestriction is available to indicate whether the controller is
providing a front end (target) or back end (initiator) interface.

The RAID controller itself has front-end ports (connected to customer hosts or switches) and back-
end ports (connected to the internal disks). “Back-end Ports Instance” on page 226 7shows an
instance diagram for three disks (StorageExent only shown) in an array, connected by a FC loop.
The full model for the disk is shown in “Disk Drive Subprofile” on page 126.

7.3.3.14.2 Standard Dependencies
The Backend Ports subprofile is based on the following standards:

7.3.3.14.3 Profile Dependencies
The Backend Ports subprofile introduces no Profile dependencies.

Table 107: Optional Profiles or Subprofiles

Name Notes

None

Table 108: Device Credentials Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.1 DMTF

CIM Schema 2.8 Preliminary DMTF
Version 1.0.1 225

SNIA Storage Management Initiative Specification
7.3.3.14.4 CIM Server Requirements

7.3.3.14.4.1 Functional Profiles

7.3.3.14.4.2 Extrinsic Methods
The CIM Server support for extrinsic methods is NOT REQUIRED or the Backend Ports
subprofile

7.3.3.14.4.3 Discovery
The Backend Ports subprofile is not advertised.

7.3.3.14.5 Instance Diagrams

7.3.3.14.6 Durable Names and Correlatable IDs
See parent sections.

Table 109: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None

Figure 44: Back-end Ports Instance

StorageExtent

Name: //VPD pg 83 ID
DefaultAccessMode

ComputerSystem

dedicated[x] '=
'BlockServer"

"Array"

SCSIProtocolControllerFCPort
UsageRestriction =

‘Back-end only’

ProtocolControllerForPort

StorageExtent

Name: //VPD pg 83 ID
DefaultAccessMode

SCSIProtocolControllerFCPort
UsageRestriction =

‘Back-end only’

ProtocolControllerForPort

ProtocolControllerAccessesUnit

StorageExtent

Name: //VPD pg 83 ID
DefaultAccessMode

ProtocolControllerAccessesUnit ProtocolControllerAccessesUnit

SystemDevice

SystemDevice
226 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.14.7 Methods
See parent sections.

7.3.3.14.8 Client Considerations
See parent sections.

7.3.3.14.9 Recipes
See parent sections.

7.3.3.14.10 Instrumentation Requirements
See parent sections.
Version 1.0.1 227

SNIA Storage Management Initiative Specification
7.3.3.14.11 Required CIM Elements

7.3.3.14.12 Required Properties for CIM Elements

7.3.3.14.12.1 FCPort

Table 110: Required CIM Elements

Profile Classes & Associations Notes

FCPort (p. 228)

ProtocolControllerForPort (p. 230)

ProtocolControllerAccessesUnit (p. 230)

SCSIProtocolController (p. 230)

StorageExtent (p. 231)

SystemDevice (p. 231)

Packages

None.

Associated Indications

None.

Table 111: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassNa
me

string key

SystemName string key

CreationClassName string key

UsageRestriction uint16 req Usage is Backend Port

ElementName string User friendly name/caption for port.
This property is OPTIONAL.

OperationalStatus[] uint16 Status of device

DeviceID string key Opaque

PortType uint16 Used to indicate the type of the port (e.g.,
N-port/NL-port)
This property is OPTIONAL.

PermanentAddress string The WWN of the port.
This property is OPTIONAL.

NetworkAddresses[] string The Fibre Channel address of the port
This property is OPTIONAL.
228 Version 1.0.1

SNIA Storage Management Initiative Specification
Speed uint64 Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

This property is OPTIONAL.

Table 111: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 229

SNIA Storage Management Initiative Specification
7.3.3.14.12.2 ProtocolControllerForPort

7.3.3.14.12.3 ProtocolControllerAccessesUnit

7.3.3.14.12.4 SCSIProtocolController

Table 112: Required Properties from ProtocolControllerForPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key The SCSIProtocolController for this
port

Dependent ref key The port.

AccessPriority unit16 The priority of access through this
port for this ProtocolController
(optional)ProtocolControllerForPortl
(optional)

Table 113: Required Properties from ProtocolControllerAccessesUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key The protocol controller

Dependent ref key The exposed logical unit.

DeviceNumber unit16 Logical Unit Number.

TargetControllerNumb
er

TargetID
This property is OPTIONAL.

Table 114: Required Properties for SCSIProtocolController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassNam
e

string key

SystemName string key

CreationClassName string key

ElementName string User friendly name/caption
for port.
This property is OPTIONAL.

OperationalStatus[] uint16 Status of device
This property is OPTIONAL.

DeviceID string key Opaque
230 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.14.12.5 StorageExtent

7.3.3.14.12.6 SystemDevice

7.3.3.14.13 Optional Subprofiles

Table 115: Required Properties for StorageExtent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DeviceID string maxlen(64), key unique identifying information

BlockSize uint64

NumberOfBlocks uint64

ConsumableBlocks uint64

ExtentStatus[] uint16

NoSinglePointOfFailure boolean

DataRedundancy uint16

PackageRedundancy uint16 write(true)

DeltaReservation uint16

Table 116: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref System Reference

PartComponent ref LogicalDevice Reference

Table 117: Optional Profiles or Subprofiles

Name Notes

None
Version 1.0.1 231

SNIA Storage Management Initiative Specification
THIS PAGE INTENTIONALLY LEFT BLANK
232 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.15 LUN Masking and Mapping

7.3.3.15.1 Description
Many disk arrays provide an interface for the administrator to specify which initiators (Hosts or
HBA Ports, by WWN) can access what volumes, through which target ports (by WWN). The effect
is that the given volume is only visible to SCSI commands that originate from the specified
initiators through specific sets of target ports. There may also be a capability to select access rights
(read-write or read-only), and the SCSI Logical Unit Number as seen by an initiator through a
specific set of ports. The ability to limit access is called Device Masking; the ability to specify the
device address seen by particular initiators is called Device Mapping (For SCSI systems, these
terms are known as LUN Masking and LUN Mapping.)

The model described here is generalized to include access management in disks arrays,
virtualization systems, and routers used in tape libraries. The model is also generalized beyond
just SCSI and FibreChannel implementations. Many of the examples and use cases refer to LUN
masking in FibreChannel arrays, but the model is general.

7.3.3.15.2 Standard Dependencies
The LUN Masking and Mapping subprofile is based on the following standards:

7.3.3.15.3 Profile Dependencies
The LUN Masking and Mapping subprofile does not require any other Profiles.

Table 118: LUN Masking Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.1 DMTF

CIM Schema 2.8 Preliminary DMTF
Version 1.0.1 233

SNIA Storage Management Initiative Specification
7.3.3.15.4 CIM Server Requirements

7.3.3.15.4.1 Functional Profiles

7.3.3.15.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the LUN Masking and Mapping Subprofile.

7.3.3.15.4.3 Discovery
The LUN Masking and Mapping subprofile, as currently defined, is not an advertised subprofile .
Support for it can be discovered through the Server profile.

7.3.3.15.5 Instance Diagrams

7.3.3.15.5.1 Overview
Given a storage system with no LUN masking or mapping, all hosts/initiators see the same
elements when they discover a storage system. LUN masking and mapping interfaces allow an
administrator to customize the “view” of elements that are discovered. The effect is that the real
storage system appears to be a number of smaller virtual storage systems - each virtual storage
system exposing a view customized for a particular set of initiators.

The management model is built on these “views” of a storage system – each view is a subset of
components the administrator exposes to certain hosts – and the classes that model the
authorization and access rights.

The model uses three basic types of objects:

LogicalDevice, the superclass of volumes and tape drives

• ProtocolController, the superclass for controllers of various protocols - models the “view”
described above.

• ProtocolControllerForUnit associates a ProtocolController with its LogicalDevices;
the controller-relative address (such as a SCSI Logical Unit Number) is modeled as the
DeviceNumber property of ProtocolControllerForUnit.

• ProtocolControllerForPort associates a controller to one or more LogicalPorts.

• LogicalPort, the superclass of target ports for various transports.

Table 119: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

YES Basic Write Basic Read

YES Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
234 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.15.5.2 Protocol Controllers
Each ProtocolController is an implied namespace (or ‘view”) for LogicalDevices. The
ProtocolControllerForUnit.DeviceNumber property represents the name of the LogicaDevice in
the ProtocolController's namespace For SCSI protocol storage, the name is the Logical Unit
Number.

In this subprofile, the existence of an ControllerConfigurationService with a ConcreteDependency
association to a ProtocolController governs the high-level device mapping policy for that protocol
controller.

• If the service does not exist, then regardless of host port, the policy is that
ProtocolControllerForPort connects a ProtocolController associated to a LogicalPort.

• If it is present, then for a particular host port, the policy is that ProtocolControllerForPort
connects a ProtocolController to a LogicalPort only when access is explicitly granted to either
the ProtocolController or the associated LogicalPort for that particular host port.

In certain hardware implementations (such as iSCSI), it may be necessary to model a
ProtocolController that represents a single named device with multiple associated LUN Masking/
Mapping SCSIProtocolControllers. This is modeled using another ProtocolController with
AssociatedProtocolController associations to the LUN Masking/Mapping SCSIProtocolControllers.

Figure 45 and Figure 46 depict an instance diagram of a generic storage system with dual-port
access to four logical devices. Figure 45: "Generic System with no ConfigurationService" depicts
an implementation with no device masking services. All of the LogicalDevices are exposed to all
initiators with the same DeviceNumber and read-write access rights.

Figure 46: "Generic System with ControllerConfiguration Service" depicts the same configuration
in an implementation with an ControllerConfigurationService defined. In this case, access to the
ProtocolController is denied to each host port unless it is specifically granted access. The means to
grant access is discussed in “Authorization and Access Rights” on page 236.

Figure 45: Generic System with no ConfigurationService

Figure 46: Generic System with ControllerConfiguration Service

LogicalDeviceLogicalDeviceController

AuthorizationView = false

ProtocolControllerForPort
LogicalDevice

LogicalPort
LogicalDevice

ProtocolController

ProtocolControllerForPort

LogicalPort

ProtocolControllerForUnit

ProtocolControllerForUnit

LogicalDeviceLogicalDevice
ProtocolControllerForPort

LogicalDevice
LogicalPort

LogicalDevice

ProtocolController

ProtocolControllerForPort

LogicalPort

ProtocolControllerForUnit

ControllerConf igurationService

ConcreteDependency
Version 1.0.1 235

SNIA Storage Management Initiative Specification
7.3.3.15.5.3 ProtocolController Views
Device Masking limits the devices seen by particular host HBAs. For example, some hosts may see
two of four LogicalDevices, other hosts may see no LogicalDevices, and yet other hosts may only
see LogicalDevices through a subset of target ports.

Device Mapping allows the same LogicalDevice to be assigned different DeviceNumber (LUN) as
seen by different host HBAs. This would allow each of four LogicalDevices to appear to be Logical
Unit zero to four different hosts.

An initiator sees a single view (controller) through a target port. This view includes LogicalDevices
exposed with different access rights (read-write vs. read-only) and also includes “promiscuous”
LogicalDevices (that are exposed to all initiators). If the hardware supports rules to deny access to
specific initiators, then the view reflects the results of applying these rules.

An administrator can use the ControllerConfigurationService interfaces to create “views”
(SCSIProtocolControllers) of a storage system – each view exposes a subset of components that are
intended to behave as a cohesive virtual storage system. In particular,

a. a view:

1) is associated with a set of LogicalDevices;

2) MAY be exposed to zero or more host ports;

3) MAY NOT be exposed through a particular host / target port pair that is in use by
another view.

b) each LogicalDevice in a view:

1) MUST have a unique DeviceNumber (LUN);

2) MAY have different access rights;

c) a LogicalDevice MAY be in multiple views, and in each MAY be assigned:

1) the same or different DeviceNumbers (LUNs);

2) the same or different access rights;
A view MUST conform to the protocol requirements of the ProtocolController it virtualizes. For
instance, if it models SCSI hardware, then the Device Numbers assigned to devices MUST conform
to the LUN assignment rules of SCSI.

7.3.3.15.5.4 Authorization and Access Rights
. The array uses the Port WWN to authorize access and to determine the view to present to the
HBA. The Port WWN is modeled as a subclass of Identity (part of the User and Security common
model) called StorageHardwareID. The permissions are modeled with the existing Privilege class.
As used in this subprofile, AuthorizedSubject associates a Privilege with a StorageHardwareID or
a SystemSpecificCollection of StorageHardwareIDs. As used in this subprofile, AuthorizedTarget
associates a Privilege with either a ProtocolController (view) or a LogicalDevice.

An implementation is not required to model the SystemSpecificCollection; however for hardware
implementations that allow customers to name initiator collections, this collection provides a way
to model that name. Clients should be able to operate with implementations that include or omit
236 Version 1.0.1

SNIA Storage Management Initiative Specification
the SystemSpecificCollection. Throughout this section, the term “subject” refers to either a specific
StorageHardwareID or a collection of StorageHardwareIDs as appropriate.

7.3.3.15.5.5 Device Access
In this subprofile, the existence of an PrivilegeManagementService with a ConcreteDependency
association to a ProtocolController governs the high-level access control policy for that controller. If
not existent, then the policy is that all access is assumed to be granted to all connected
LogicalDevices. If present, then the policy is that access is assumed to be denied to all connected
LogicalDevices unless explicitly granted as defined by this subprofile.

Default permissions for a subject to the LogicalDevices of a ProtocolController are specified by an
AuthorizedTarget, from a Privilege for that subject, to either the ProtocolController, or to a
LogicalPort associated with that ProtocolController.

If a particular LogicalDevice is granted or denied a different set of rights for a particular subject,
there is an additional Privilege associated directly to the LogicalDevice and to the subject. For
example, a LogicalDevice with read-only permissions to certain subjects is likely to also be exposed
with read-write permissions to other subjects.

Figure 48: "ProtocolController Default and Device Override Permissions" depicts a
ProtocolController with a default subject and Privilege to the left, and a model for overriding the

Figure 47: Authorization and Access Rights

StorageVolumeStorageVolumeProtocolController
StorageVolumeLogicalDevice

ProtocolController
ForUnit

Privilege

SystemSpecificCollection

StorageHardwareID

AuthorizedTarget

AuthorizedSubject

StorageHardwareIDStorageHardwareID

MemberOfCollection

StorageHardwareID

AuthorizedSubject

* **

*

* *

*

Eiher directly
associatie
HardwareIDs
or use a
collection

LogicalPort

ProtocolController
ForPort*
Version 1.0.1 237

SNIA Storage Management Initiative Specification
default subject/Privilege for one particular LogicalDevice “Use Case with volumes with different
permissions” is a use case that includes this device override model

7.3.3.15.5.6 Rules to Deny Access
Some hardware implementations support rules to deny access to specific initiators. This type of
rule allows an administrator to expose a LogicalDevice to all initiators, then deny access to just
those HBAs on a host that do not interoperate well with the majority.

Providers should merge these deny rules into the views. The list of “deny rules” is exposed with
this model. The rights being denied can be set in Privilege.Activities. For example, an initiator
could be denied read-write access, but allowed read-only access. The collection is optional; used
when the underlying implementation exposes an interface for denying access to groups of initiator
Ids.

When PrivilegeGranted is set to false, only the values in Activities property are denied.

7.3.3.15.5.7 StorageClientSettingData
Some storage systems allow a customer (or host-side agent) to provide information about OS
hosting initiators. The storage system uses this information to provide OS-specialized behavior
(for example, SCSI responses). This information is modeled as StorageClientSettingData.
StorageClientSettingData.ClientTypes[] is an array of OS names. This array property allows a
single StorageClientSettingData instance to apply to multiple OS Types.

The instrumentation SHOULD provide a meaningful name for each StorageClientSettingData
instance; typically this will be names already exposed via existing management tools and
documentation.

StorageClientSettingData instances are not created by clients; any storage system that provides
OS type behavior advertises these instances (via EnumerateInstance and GetInstance) and

Figure 48: ProtocolController Default and Device Override Permissions

Figure 49: Access Denial Model

Log ic a lPort
v 1:S torageV olum e

Protoc o lC ont ro llerF orU n it (0)

pwwn0:
H ardwareID

H B A W W N

priv 1:P riv ilege

A c t iv it ies =R ead, W rite
P riv ilegeG ranted=t rue

A uthorizedSub jec
t

AuthorizedS ub jec
t

priv 0:P riv ilege

Ac t iv it ies =R ead
Priv ilegeG ranted=t rue

v c 1:
P ro toc olC ont ro lle r

P ro toc olC ont ro lle r
F orP ort

v 0 : S torageVolum e

A uthorizedTarge
t

AuthorizedTarge
t

v c 0 :
P ro toc olC ont ro lle r

P ro toc olC ont ro lle r
F orP ort P ro toc o lC ont ro llerF orU n it (1)

P ro toc o lC ont ro lle rF orU nit (0)

priv 2:P riv ilege

A c t iv it ies =R ead, W rite
P riv ilegeG ranted=t rue

pwwn1:
H ardwareID

H BA W W N

AuthorizedS ub jec
t

A uthorizedTarge
t

StorageVolumeStorageVolumeStorageVolumeLogicalDevice
Privilege

PrivilegeGranted=False

SystemSpecificCollection
StorageHardwareID

AuthorizedTargetAuthorizedSubject

StorageHardwareIDStorageHardwareID

MemberOfCollection
238 Version 1.0.1

SNIA Storage Management Initiative Specification
associates them (using ElementSettingData) with elements previous configured with the setting
behavior.

A client can associate StorageHardwareIDs to a StorageClientSettingData instance (when a
customer or host agent maps an initiator to an OS type). This is done by specifying the Setting
parameter to CreateStorageHardwareID). A client can also associate an StorageClientSettingData
instance to a storage system element (such as a Port, a ProtocolController, or a Volume) to request
that this element exhibit the setting-specific behavior

Figure 50: Initiator Setting Data Example

StorageClientSettingData

ClientTypes[] = "AIX",
"Solaris", "Solaris"

ElementSettingData

FCPort FCPort

ElementSettingData

StorageClientSettingData

ClientTypes[] = "Windows"

ElementSettingData

FCPort FCPort

ElementSettingData

StorageHardwareID

ID="5100123412341234"

StorageHardwareID

ID="5100123412341235"

StorageHardwareID

ID="5100123412341236"

ElementSettingData
ElementSettingData

ElementSettingData

StorageHardwareID

ID="5100123412341237"

ElementSettingData

StorageHardwareID

ID="5100123412341236"

ElementSettingData

StorageHardwareID

ID="5100123412341255"

ElementSettingData

Array:
ComputerSystem

Element
Setting
Data

Element
Setting
Data
Version 1.0.1 239

SNIA Storage Management Initiative Specification
7.3.3.15.5.8 The Entire Model

7.3.3.15.6 Durable Names and Correlatable IDs
The LUN Mapping and Masking subprofile uses the durable names/correlatable ID for ports and
logical devices as defined by the parent profile. In addition, the subprofile adds the following
durable name:

• StorageHardwareID - StorageHardwareID.StorageID and the
StorageHardwareID.IDType. The valid IDTypes are:

• "PortWWN" - 16 unseparated upper case hex digits

• "NodeWWN" - 16 unseparated upper case hex digits

• "Hostname" - 32 unseparated upper case hex digits. This corresponds to the Platform
identifier is defined in FC-GS specifications.

7.3.3.15.7 Methods

7.3.3.15.7.1 ControllerConfigurationService methods:
CreateProtocolControllerWithPorts creates a ProtocolController that is used as an
AuthorizedTarget. If multiple target ports are passed in, all expose the same view (i.e., the same
devices with the same unit numbers and permission.) This method does not create the port
instances, but does create ProtocolControllerForPort associations between the ports and the new
ProtocolController. The new ProtocolController is weak to the same System as the
ControllerConfigurationService.

Figure 51: Entire Model

Pr o to c o lCo n tr o lle rPr o to c o lCo n tr o lle r
Fo r Po r t

L o g ic a lPo r t

L o g ic a lDe v ic e
(e .g . S to r a g e V o lu me)

Pr o to c o lCo n tr o lle r
Fo r Un it

Pr iv ile g e

S y s te mS p e c if ic Co lle c tio n

S to r a g e Ha r d w a r e I
D

A u th o r iz e d Ta r g e t

A u th o r iz e d S u b je c t

S to r a g e Ha r d w a r e I
D

S to r a g e Ha r d w a r e ID

Me mb e r O f Co lle c tio n

Co n tr o lle r Co n f ig u r a tio n S e r v ic e

CIM_ Pr o to c o lCo n tr o lle r
Ma s kin g Ca p a b ilit ie s

Pr iv ile g e
Ma n a g e me n tS e r v ic e

S to r a g e Ha r d w a r e ID
Ma n a g e me n tS e r v ic e

Co mp u te r S y s te m
Ho s te d S e r v ic e

Ho s te d S e r v ic e

Ho s te d
S e r v ic e

Co n c r e te De p e n d e n c
y

Co n c r e te De p e n d e n c y

Ele me n t
Ca p a b ilit ie s

*

*

*

**

*

*

*

A u th o r iz e d S u b je c t

*

*

A u th o r iz e d Ta r g e
t

*
*

A s s o c ia te d
Pr o to c o lCo n tr o lle r

Co n c r e te De p e n d e n c y

Co n c r e te De p e n d e n c y

*

*

*

CIM_ S to r a g e Clie n t
S e ttin g Da ta

Ele me n tS e ttin g Da ta
Ho s te d Co lle c tio n
240 Version 1.0.1

SNIA Storage Management Initiative Specification
Uint32CreateProtocolControllerWithPorts(

The string to be used in the ElementName of the new
ProtocolController.

string ElementName

Array of strings containing representations of references to
instances of CIM_LogicalPort (or subclass) instances. This
is the list of target ports that are associated to the
ProtocolController. ProtocolControllerForPort associations
are created by the instrumentation associating the new
ProtocolController to these ports. If this parameter is
null, then all ports in the storage system (this Service's
'scoping' System and all its ComponentCS Systems) are
attached to the new ProtocolController.

string Ports []

The protocol type for the new ProtocolController.
Uint16 Protocol

The use of this property is not defined in SMI 1.0.
string Privileges []

The use of this property is not defined in SMI 1.0.
string Identities []

A reference to the new ProtocolController that is created.
CIM_ProtocolController REF ProtocolController

)

DeleteProtocolController deletes the ProtocolController and all associations connected directly
to this ProtocolController. If the DeleteChildrenProtocolControllers parameter is True, the
provider also deletes child ProtocolControllers (those at the dependent end of
AssociatedProtocolController associations from this ProtocolController) plus all child
ProtocolControllers' direct associations. If the DeleteLogicalUnits parameter is True, the provider
also deletes LogicalDevice instances associated via ProtocolControllerForUnit to this
ProtocolController and its children. LogicalDevice instances are only deleted when they are not
part of any ProtocolControllerForUnit associations.

Uint32DeleteProtocolController(

The ProtocolController to be deleted.
CIM_ProtocolController REF ProtocolController

If true, the management instrumentation provider will also
delete 'child' ProtocolControllers (i.e., those defined as
Dependent references in instances of
AssociatedProtocolController where this ProtocolController
is the Antecedent reference). Also, all direct associations
involving the 'child' ProtocolControllers will be removed.

boolean DeleteChildrenProtocolControllers

If true, the management instrumentation provider will also
delete LogicalDevice instances associated via
ProtocolControllerForUnit, to this ProtocolController and
its children. (Note that 'child' controllers will only be
affected if the DeleteChildrenProtocolControllers input
parameter is TRUE). LogicalDevice instances are only deleted
if there are NO remaining ProtocolControllerForUnit
associations, to other ProtocolControllers.

boolean DeleteUnits

)

AttachDevice associates a LogicalDevice subclass to a ProtocolController. The provider MUST
verify that unit numbers are unique for each initiator. When the ProtocolController is already part
Version 1.0.1 241

SNIA Storage Management Initiative Specification
of an AuthorizedTarget association, the provider should update the access configuration in the
underlying hardware when AttachDevice is called.

Uint32AttachDevice(

The ProtocolController instance.
CIM_ProtocolController REF ProtocolController

The LogicalDevice instance to attach.
CIM_LogicalDevice REF Device

The number assigned to
ProtocolControllerForUnit.DeviceNumber (if supported by the
hardware). Hardware support is indicated by
StorageMaskingCapabilities.ClientSelectableDeviceNumbers).
If the hardware does not support setting the number, but the
DeviceNumber has not been established in an existing
ProtocolControllerForDevice subclass, then this parameter's
value will be used. If the DeviceNumber has been
established, then the current number will be reused.

string DeviceNumber

)

DetachDevice removes the ProtocolControllerForDevice association subclass between the
ProtocolController and device.

Uint32DetachDevice(

The ProtocolController instance.
CIM_ProtocolController REF ProtocolController

The LogicalDevice instance to detach.
CIM_LogicalDevice REF Device

)

7.3.3.15.7.2 PrivilegeManagementService methods
AssignAccess associates a subject ManagedElement and a target ManagedElement. If necessary,
a Privilege instance is created using the settings in the method parameter.

Uint32AssignAccess(

The Subject parameter is a reference to a ManagedElement
instance that will be associated via AuthorizedSubject to
the Privilege.

CIM_ManagedElement REF Subject

The PrivilegesGranted flag in the new/existing Privilege.
boolean PrivilegeGranted

The activities granted in the new/existing Privilege.
Uint16 Activities []

The activity qualifiers set in the new/existing Privilege.
string ActivityQualifiers []

The qualifier formats set in the new/existing Privilege.
Uint16 QualifierFormats []

The Target parameter is a reference to a ManagedElement that
will be associated via AuthorizedTarget to the Privilege.

CIM_ManagedElement REF Target

 Reference to the Privilege used or created.
CIM_Privilege REF Privilege

)

242 Version 1.0.1

SNIA Storage Management Initiative Specification
RemoveAccess This method revokes all privileges or the specified Privilege for a named target/
subject. If a Privilege reference is supplied, then this method acts only on that specific Privilege,
otherwise, all Privilege instances associated with the named subject/target are affected by the
operation. If a Privilege instance is left with no target associations, it is deleted.

Uint32RemoveAccess(

The Subject parameter is a reference to a ManagedElement
instance for which privileges will be revoked.

CIM_ManagedElement REF Subject

A reference to the Privilege to be revoked.
CIM_Privilege REF Privilege

The Target parameter is a reference to a ManagedElement
associated via AuthorizedTarget to Privilege instances.

CIM_ManagedElement REF Target

)

7.3.3.15.7.3 StorageHardwareIDManagementService methods:
CreateStorageHardwareID creates a StorageHardwareID and the association
CIM_ConcreteDependency between this service and the new StorageHardwareID.

Uint32CreateStorageHardwareID(

The ElementName of the new StorageHardwareID instance.
string ElementName

StorageID is the value used by the SecurityService to
represent identity - in this case, a hardware worldwide
unique name.

string StorageID

The type of the StorageID property.
Uint16 IDType

The type of the storage ID, when IDType is 'Other'.
string OtherIDType

REF to the StorageClientSettingData containing the OSType
appropriate for this initiator. If left NULL, the
instrumentation assumes a standard OSType - i.e., that no
OS-specific behavior for this initiator is defined.

CIM_StorageClientSettingData REF Setting

REF to the new StorageHardwareID instance.
CIM_StorageHardwareID REF HardwareID

)

DeleteStorageHardwareID deletes a StorageHardwareID and the ConcreteDependency
association between the ID and the service.

Uint32DeleteStorageHardwareID(
CIM_StorageHardwareID REF HardwareID

)

7.3.3.15.8 Client Considerations

7.3.3.15.8.1 Client Discovery Algorithms

a. Creating a ProtocolController “view” with mixed permissions
A client can expose a combination of read-only and read-write units through a single
ProtocolController by associated one Privilege with a ProtocolController, and associating a
different Privilege directly to specific LogicalDevices (volumes). In order to assure that the
Version 1.0.1 243

SNIA Storage Management Initiative Specification
appropriate access is exposed in complex configurations, the client MUST associate the Privilege
with the lesser permissions (Activities[]=”Read”) to the ProtocolController and the greater
permissions (Activities[]=”Read”,Write”) with the LogicalDevices(volumes).

b) Determining the permissions of a LogicalDevice for a subject StorageHardwareID
For the case where the Privilege for the subject in question is associated directly with the
LogicalDevice, the permissions are those of the associated Privilege. For the case where a Privilege
for a particular subject is not directly associated to the LogicalDevice, then AuthorizedTarget
associations need to be chased down to Privilege instances to Subjects via AuthorizedSubject until
a match on subject is found. Privileges with PrivilegeGranted=True should be evaluated first, then
Privileges with PrivilegeGranted=False are applied.

Privilege[] = Associators(StorageHardwareID, AuthorizedSubject)
For each Privilege[i]

LogicalDevice[j] = Associators(Privilege[i],AuthorizedSubject)
If any matching LogicalDevice

Return matching Privilege[j]s
Endif

EndFor
SCSIProtocolControllers[k] = Associators(LogicalDevice, ProtocolControllerForUnit)
For each ProtocolController[k]

Privilege[i] = Associators(ProtocolController[k], AuthorizedTarget)
For each Privilege[i]

StorageHardwareID[j] = Associators(Privilege[i],AuthorizedSubject)
If any matching StorageHardwareID

Return matching Privilege[j]s
Endif

EndFor
Port[l] = Associators(ProtocolController[k], ProtocolControllerForPort)
For each Port[l]

Privilege[i] = Associators(Port[l], AuthorizedTarget)
For each Privilege[i]

StorageHardwareID[j] = Associators(Privilege[i],AuthorizedSubject)
If any matching StorageHardwareID

Return matching Privilege[j]s
Endif

EndFor
EndFor

EndFor

c) Determining which target ports a view is exposed through
Follow the ProtocolControllerForPort associations from a ProtocolController to Ports.

d) Determining which LogicalDevices (and permissions) are exposed to a subject
Follow the AuthorizedSubject associations to all Privileges with PrivilegeGranted set to True.
Follow AuthorizedTarget associations. A target LogicalDevice is exposed; for a target
ProtocolController, all LogicalDevices connected via ProtocolControllerForUnit are exposed.

e) Finding the next available SCSI Logical Unit Number
244 Version 1.0.1

SNIA Storage Management Initiative Specification
Use the algorithm above to determine exposed LogicalDevices and create a list of
ProtocolControllerForUnit.DeviceNumbers. DeviceNumbers missing from this list (up to
ProtocolController.MaxUnitsControlled) are available.

f) Finding unexposed LogicalDevices
Enumerate appropriate subclasses of LogicalDevices (for example, StorageVolume) with
SystemDevice associations to the appropriate ComputerSystem and follow
ProtocolControllerForUnit associations. If a LogicalDevice has no ProtocolControllerForUnit
association then it has not been exposed to a subject.

7.3.3.15.8.2 Use Cases

7.3.3.15.8.2.1 Overview
The first few use cases show what a client would discover in certain configurations. The
configuration consists of a single FibreChannel port array with four volumes. If the array had no
LUN masking in place, the basic components would be port, controller, and volumes as depicted in
Figure 52: "Simple StorageVolume Model"

The notation ProtocolControllerForUnit(n) is used as a shorthand for a ProtocolControllerForUnit
instance with DeviceNumber set to n

Figure 52: Simple StorageVolume Model

StorageVolum
e

StorageVolum
eSCSIProtocolController

ProtocolController
ForPort StorageVolum

eFCPort
StorageVolumeProtocolController

ForUnit
Version 1.0.1 245

SNIA Storage Management Initiative Specification
7.3.3.15.8.2.2 Use Case 1 - Two Views, DeviceNumber Overlap
In Use Case 1, there are two views, each including two LogicalDevices exposed to two different
HBAs. The HBA Port WWNs are properties of the StorageHardwareID instances. Either view
exposes Logical Unit Numbers 0 and 1; but map to different volumes.

7.3.3.15.8.2.3 Use Case 2 - Volume in multiple views
In this use case there are two initiators accessing three volumes. Initiator “A” accesses volumes 0
and 1, and initiator “B” accesses volumes 0, 1 and 2. There are two Views - one for each unique
access combination. Volumes 0 and 1 have multiple ProtocolControllerForUnit associations. Note:
there can be more than one initiator associated to the Privilege object, but all those initiators
access the same set of volumes.

Figure 53: Two view/Two LogicalDevice Use Case

FCPort

SCSIProtocolController

ProtocolControllerForPort

ProtocolControllerForPort

ProtocolController
ForUnit(0)

Priv iledge SCSIProtocolController

StorageHardw areID

AuthorizedTarget

Priv iledge

StorageHardw areID

AuthorizedTarget

AuthorizedSubject

AuthorizedSubject

StorageVolum
e

StorageVolum
e

StorageVolum
e

StorageVolume

ProtocolController
ForUnit(0)

ProtocolController
ForUnit(1)

ProtocolController
ForUnit(1)
246 Version 1.0.1

SNIA Storage Management Initiative Specification
The fact that initiator “B” wanted access to a different set of volumes than initiator “A” resulted in
the need for another Privilege instance.

7.3.3.15.8.2.4 Use Case with a Deny Privilege
A volume is exposed read-write to the world. But one particular subject is denied access. This
subject may be running a driver or OS that does not interoperate.

Figure 54: Volume used in multiple views

Figure 55: Use Case with a Deny Privilege

FCPort

v 1:StorageVolume

pwwn0:
HardwareID

priv 0: Priv iledge

Activ it ies=Read
Priv iledgeGranted=True

AuthorizedSubjec
t

v 0: StorageVolume

AuthorizedTarge
t

VC1:
SCSIProtocolController

ProtocolControllerForPort ProtocolControllerForUnit(1)

ProtocolControllerForUnit(0)

VC2:
SCSIProtocolController

AuthorizedTarge
t

pwwn1:
HardwareID

ProtocolControllerForPort

AuthorizedSubjec
t

priv 1: Priv iledge

Activ it ies=Read,W rite
Priv iledgeGranted=True

v 2:StorageVolume

ProtocolControllerForUnit(0)

ProtocolControllerForUnit(2)

ProtocolControllerForUnit(1)

Perm iss ions per ID /C trl
pwwn0:VC1:Read
pwwn1:VC2:Read/W rite

Perm iss ions per ID /C trl
pwwn0:VC1:Read
pwwn1:VC2:Read/W rite

Perm iss ions per ID /C trl
pwwn1:VC2:Read/W rite

FCPort v 0:StorageVolume

ProtocolControllerForUnit

pwwn0:
HardwareID

aci0:Priv iledge
Activ ities=Read,Write
Priv iledgeGranted=True

v c1:
SCSIProtocolController

ProtocolControllerForPort

v c0:
SCSIProtocolController

ProtocolControllerForPortProtocolControllerForUnit

aci1:Priv iledge
Activ ities=Read,Write
Priv iledgeGranted=False

AuthorizedSubjec
t

AuthorizedTarge
t

AuthorizedTarge
t

wildcard:
HardwareIDAuthorizedSubjec

t

Version 1.0.1 247

SNIA Storage Management Initiative Specification
7.3.3.15.8.2.5 Use Case with volumes with different permissions
In this use case, two hosts access two volumes. There is single path access to the volumes.

• Host A (with HBA pwwn0) has v0 as LU number 0 read-write.

• Host B (with HBA pwwn1) has v1 as LU number 0 read-write.

• Host A also has read-only access to volume v1 - and sees it as LU number 1.

7.3.3.15.9 Recipes

7.3.3.15.9.1 Recipes for General Functions

7.3.3.15.9.1.1 . Get a ControllerConfigurationService CIMObjectPath for a StorageSystem
// DESCRIPTION
// Get a ControllerConfigurationService CIMObjectPath for a
// StorageSystem
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The Storage System of interest has previously been identified
// and defined in the $StorageSystem-> variable.

// Step 1: Get the ControllerConfigurationService that is associated to
// the Storage System.
$ControllerConfigurationService->[] = AssociatorNames(

$StorageSystem->,
“CIM_HostedService”,
“CIM_ControllerConfigurationService”,
null,
null);

// Assume one ControllerConfigurationService per storage system
$ControllerConfigurationService-> = $ControllerConfigurationService->[0];

Figure 56: Volumes with Different Permissions

FCPort
v1: StorageVolume

ProtocolControllerForUnit(0)

pwwn1:
HardwareID

HBA WWN

priv0:Priviledge

Activities=Read
PriviledgeGranted=True

vc1:
SCSIProtocolController

ProtocolControllerForPort

vc0:
SCSIProtocolController

ProtocolControllerForPort ProtocolControllerForUnit(1)
priv1:Priviledge

Activities=Read,Write
PriviledgeGranted=True

AuthorizedSubject

AuthorizedTarget

v0:StorageVolume

ProtocolControllerForUnit(0)

priv2: Priviledge

Activities=Read,Write
PriviledgeGranted=True

pwwn0:
HardwareID

HBA WWN

AuthorizedSubject

AuthorizedTarget

AuthorizedSubject

AuthorizedTarget
248 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.15.9.1.2 Finding a Service

7.3.3.15.9.1.3 // DESCRIPTION
// The following is used to find the proper service associated with an

// object (usually a ComputerSystem). It returns the object path of the

// service so the client can invoke its methods.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.there is only one service of a given name for an object. Since

//Service.Name is one of the keys, this is a reasonable assumption.

sub CIMObjectPath FindService(

CIMObjectPath AnObject->,

string AServiceName)

{

CIMObjectPath $theService

// Find all services with this name that are associated to this

// object via the HostedService association

$ServiceList ->[] = AssociatorNames(

AnObjectName->,

“HostedService”, // Association Class

AServiceName, // Class name to find

“Antecedent”, // Role

“Dependent”) // ResultRole

if ($ServiceList ->[] is not empty)

$theService-> = $ServiceList ->[0]

return $theService->

}Determining the capabilities for this array

// DESCRIPTION
// Since arrays have different capabilities, ProtocolControllerMaskingCapabilities can be
// used to determine features supported. A client can then use that
Version 1.0.1 249

SNIA Storage Management Initiative Specification
// information to adjust the way it does LUN Masking to make the best
// use of the array’s features.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The CIM Object Path for the Storage system (StorageSystem) of
// interest has been identified and defined in $StorageSystem->

$Capabilities[] = Associators(
$StorageSystem->,
“ElementCapabilities”,
“ProtocolControllerMaskingCapabilities”,
“ManagedElement”,// source object role
“Capabilities”) // resulting object role

$TheCapabilities = $Capabilities[0]

// Current values uint16 values 2,3,4, which map to
// “PortWWN” , “NodeWWN” , and “Hostname”
// Only 2 (“PortWWN”) is used at present in the recipes below
#HardwareIdTypes[] = $TheCapabilities.GetProperty(“ValidHardwareIdTypes”);

// Possible values: true, false
// If false, then the storage system always grants access to
// initiators identically through all storage system ports.
// If this were set to false, then in
// ControllerConfigurationService.CreateProtocolControllerWithPorts()
// you would pass in all the Ports to the function
// Otherwise you would normally pass in a single port
$AccessControlByPorts =

$TheCapabilities.GetProperty(“AccessControlByPorts”);

// Possible values: true, false
// If true, the storage system allows the client to specify the
// DeviceNumber parameter when calling AttachDevice() on
// ProtocolController instances.
// If false, the implementation will ignore the DeviceNumber value
#ClientSelectableDeviceNumbers =

$TheCapabilities.GetProperty(“ClientSelectableDeviceNumbers”)

// Possible values: true, false
// Set to true if this storage system limits configurations
// to a single port per view. Otherwise, multiple ports can be included.
// The default is FALSE, that multiple ports may be included in a single view.
#OnePortPerView =

$TheCapabilities.GetProperty(“OnePortPerView”)
250 Version 1.0.1

SNIA Storage Management Initiative Specification
// Possible values: true, false
// Set to true if this storage system limits configurations to
// a single subject hardware ID per view. Otherwise, multiple hardware
// ID types can be used. The default is FALSE, that multiple ID types
// may be used in a single view.
#OneHardwareIDPerView =

$TheCapabilities.GetProperty(“OneHardwareIDPerView”)

// Possible values: true, false
// Set to true if this storage system supports the AttachDevice method.
#AttachDeviceSupported =

$TheCapabilities.GetProperty(“AttachDeviceSupported”)

// Possible values: true, false
// When set to false, different ProtocolContollers attached
// to a LogicalPort can expose the same unit numbers. If true,
// then this storage system requires unique unit numbers across all
// the ProtocolControllers connected to a LogicalPort.
#UniqueUnitNumbersPerPort =

$TheCapabilities.GetProperty(“UniqueUnitNumbersPerPort “)

// Possible values: true, false
// Set to true if this storage system allows a client to create
// a Privilege instance with PrivilegeGranted set to FALSE.
#PrivilegeDeniedSupported =

$TheCapabilities.GetProperty(“PrivilegeDeniedSupported”)

7.3.3.15.9.2 Define a permissions view (ProtocolController)
// DESCRIPTION
// Define a permissions view (ProtocolController)
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The name of the ProtocolController to create has previously been
// decided to be named #ControllerName.
// 2. An array of target FCPorts to expose the view through has
// previously been decided as $Port->[].
// 3. An array of target LogicalDevices to associate the view with has
// previously been decided as $LogicalDevices->[].
// 4. An array of device numbers for the LogicalDevices in this view,
/ which correspond with the values in $LogicalDevices->[], has
// previously been decided as #deviceNumbers[].

// Step 1: Get the ControllerConfigurationService that is associated to
// the Storage System.
@{Get a ControllerConfigurationService CIMObjectPath for a StorageSystem}
Version 1.0.1 251

SNIA Storage Management Initiative Specification
// Step 2: Use the ControllerConfigurationService’s
// ‘CreateProtocolController’ method to create the view (i.e. to
// create the ProtocolController object). Pass in the desired Ports
// and Controller name for the view as arguments to the extrinsic
// ‘CreateProtocolController’ method.
%InArguments[“ports”] = $Port->[];
%InArguments[“name”] = #ControllerName;
invokeMethod(

$ControllerConfigurationService->,
“CreateProtocolController”,
%InArguments[],
%OutArguments[]);

$ProtocolController-> = $OutArguments[“ProtocolController”];

// Step 3: Iterate through the LogicalDevices that will be exposed
// through this view.
for $i in $LogicalDevices->[]
{

// Step 3.1: Attach the LogicalDevice to the view by invoking
// the ControllerConfigurationService’s ‘AttachDevice’
// extrinsic method. Pass in as arguments to the method:
// the CIMObjectPath reference to the ProtocolController
// (view), the CIMObjectPath reference to the LogicalDevice,
// and the ‘DeviceNumber’ String.
$InArguments[“ProtocolController”] = $ProtocolController->;
%InArguments[“LogicalDevice”] = $LogicalDevices->[#i];
%InArguments[“DeviceNumber”] = #deviceNumbers[i];
invokeMethod(

$ControllerConfigurationService->,
“AttachDevice”,
%InArguments[],
%OutArguments[]);

}

7.3.3.15.9.3 Remove a permissions view
// DESCRIPTION
// Remove a permissions view
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The CIMObjectPath of the Controller view to be removed is
// $controller->.

// Step 1: Get the ControllerConfigurationService that is associated to
// the Storage System.
@{Get a ControllerConfigurationService CIMObjectPath for a StorageSystem}
252 Version 1.0.1

SNIA Storage Management Initiative Specification
// Step 2: Use the ControllerConfigurationService’s
// ‘DeleteProtocolController’ method to delete the view (i.e. to
// remove the ProtocolController object). Pass in the CIMObjectPath
// reference to the ProtocolController as an argument to the
// extrinsic ‘DeleteProtocolController’ method.
%InArguments[“ProtocolController”] = $controller->
invokeMethod(

$ControllerConfigurationService->,
“DeleteProtocolController”,
%InArguments[],
%OutArguments[]);

7.3.3.15.9.4 Define initiator authorization for a storage volume (read, read/write, none)
// DESCRIPTION
// This recipe will use the AuthorizationService to define which
// initiators (specified as Port HBA WWNs) are allowed access to one or
// more StorageVolumes connected to a ProtocolController. It assumes
// that the mapping of the StorageVolumes to ProtocolController has
// already been done.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. Namespace has been identified and defined in the $NameSpace
// variable
// 2. The CIM Object Path for the Storage system (ComputerSystem) of
// interest has been identified and defined in $StorageSystem->
// 3. The storage volumes to use have been identified and their CIM
// Object Paths saved as $StorageVolume->[]
// 4. The SCSIProtocolControllers have been identified and their CIM
// Object Paths saved as $ProtocolController->[]
// 5. The HBA Port WWNs have been identified and stored as strings in
// the array variable #wwns[] (format is as specified in SMIS)

// Step 1: Locate the StorageHardwareIDService for this ComputerSystem
$StorageHardwareIDService-> = FindService(

$StorageSystem->,
“StorageHardwareIDService”)

// Step 2: Create Hardware IDs for each initiator WWN. This also creates
// the association ConcreteDependency between this service and the
// new StorageHardwareID.
For #x in #wwns[]
{

%InArguments[“ID”] = #wwn[#x]
%InArguments[“IDType”] = 2 // 2 = PortWWN format
returnCode = InvokeMethod(

$StorageHardwareIDService->,
“CreateStorageHardwareID”,
Version 1.0.1 253

SNIA Storage Management Initiative Specification
%InArguments[],
%OutArguments[])

}

// Step 3: Build a list of CIM object paths for WWN StorageHardwareIDs
// just created. This is not needed if CreateStorageHardwareID
// returned StorageHardwareID object path
$StorageHardwareID[] = EnumInstances(“StorageHardwareID”, true)

// Build a set of just our WWNs
for #x in $StorageHardwareID[]
{

hwID = GetProperty($StorageHardwareID[#x], “ID”)
if (! contains(hwID, #wwns[]))
{

delete $StorageHardwareID[x]
}

}

// An alternative to steps 2 and 3 is to create the StorageHardwareIDs
// and then call CreateHardwareIDCollection and
// AddHardwareIDsToCollection to associate the StorageHardwareIDs to the
// collection via the MemberOfCollection association. The client can
// then use the SystemSpecificCollection instead of the
// StorageHardwareIDs array in the steps below.

// Step 4: Find the Controllers associated to the storage volume
$Controllers[] = Associators(

$StorageVolume->,
“ProtocolControllerForUnit”
null,
null,
“Antecedent”,
false,
false,
false,
null)

// Step 5: Find the AuthorizationService for this ComputerSystem
$AuthorizationService-> = FindService(

$StorageSystem->,
“AuthorizationService”)

// Step 6: Create a Privilege instance
$Privilege = newInstance(

“Privilege”,
#NameSpace)
254 Version 1.0.1

SNIA Storage Management Initiative Specification
// Now set the permissions
$Privilege.setProperty(

“Activities”,
[‘Read’, ‘Write’])

$Privilege.setProperty(“PrivilegeGranted”, [True])
CreateInstance($Privilege)

// Step 7: Assign access - links Privilege to Controller and
// StorageHardwareIDs (WWNs)
// We need to convert the object paths into strings for InvokeMethod()
// No way to pass array of REFs
Array #ControllersAsStrings[] = {}
for #x in $SCSIProtocolControllers->[]
{

#ControllersAsStrings.add(string($SCSIProtocolControllers->[#x]))
}

for #x in $StorageHardwareID->[]
{

%InArguments[“Subject”] = $StorageHardwareID->[#x])
%InArguments[“AccessRights”] = $Privilege->
%InArguments[“Target”] = #ControllersAsStrings[]

}

returnCode = InvokeMethod(
$AuthorizationService->,
“AssignAccess”,
%InArguments[],
%OutArguments[])

7.3.3.15.9.5 Deny initiator access for a storage volume
// DESCRIPTION
// This is a adjunct to a prior recipe. Now that we have access control
// set up. We can now use this recipe to restrict access from a
// particular initiator to a particular storage volume by creating a
// “Deny” rule. The client can then use the Client Discovery Algorithm
// to iterate through the “Allow” rules and “Deny” rules to find the
// actual permissions.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. Initiator access has already been defined for a storage volume
// (read, read/write, none) for two or more initiators
// 2. The CIM Object Path for the Storage system (ComputerSystem) of
// interest has been identified and defined in $StorageSystem->
// 3. The storage volume to use has been identified as the CIM Object
// Path saved as $StorageVolume->
// 4. The Controller(s) to deny access through have been identified as
// stored as $Controllers[]
Version 1.0.1 255

SNIA Storage Management Initiative Specification
// 5. The CIM object path of the Hardware ID representing the HBA Port
// WWN of the initiator is stored as the first element in the array
// $StorageHardwareID->[]

// Step 1: Find the AuthorizationService for this ComputerSystem
$AuthorizationService-> = FindService(

$StorageSystem->,
“AuthorizationService”)

// Step 2: Create a Privilege instance
$Privilege = newInstance(

“Privilege”,
#NameSpace)

// Now set the permissions
$Privilege.setProperty(“Activities”, [‘Read’, ‘Write’])
$Privilege.setProperty(“PrivilegeGranted”, [False])
CreateInstance($Privilege)

// Step 3: Assign access - links Privilege to Controller and
// StorageHardwareIDs (WWNs) Creates the “Deny” rule
// We need to convert the object paths into strings for InvokeMethod()
// No way to pass array of REFs
Array #ControllersAsStrings[] = {}
for #x in $SCSIProtocolControllers->[]
{

#ControllersAsStrings.add(string($SCSIProtocolControllers->[#x]))
}

for #x in $StorageHardwareID->[]
{

%InArguments[“Subject”] = $StorageHardwareID->[]
%InArguments[“AccessRights”] = $Privilege->
%InArguments[“Target”] = #ControllersAsStrings[]

}

returnCode = InvokeMethod(
$AuthorizationService->,
“AssignAccess”,
%InArguments[],
%OutArguments[])

7.3.3.15.9.6 Remove specific authorization for an initiator
// DESCRIPTION
// This recipe shows how to remove access that was assigned in another
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. authorization has already been setup for the initiator in
256 Version 1.0.1

SNIA Storage Management Initiative Specification
// question by the prior grant of access
// 2. The CIM Object Path for the Storage system (StorageSystem) of
// interest has been identified and defined in $StorageSystem->
// 3. HBA Port WWN of the initiator is known and stored in $wwn

// Step 1: Find the CIM object path to the Initiator
$StorageHardwareID[] = EnumerateInstances(“StorageHardwareID”, true)

// Go through the list to find a match for our WWN
for #x in $StorageHardwareID[]
{

#id = GetProperty($StorageHardwareID[x], “ID”)
#idType = GetProperty($StorageHardwareID[x], “IDType”)
if (#idType = 2 && #id = #wwn)
{

// Save off the object path and we’re done
$Initiator-> = $StorageHardwareID[x]->
break;

}
}

// Step 2: Get the authorization service
$AuthorizationService-> = FindService(

$StorageSystem->,
“AuthorizationService”)

// Step 3: Find the Privilege objects associated to this initiator
$Privileges[] = Associators(

$Initiator->,
“AuthorizedSubject”
null,
null,
“Antecedent”,
false,
false,
false,
null)

// Step 4: We need to convert the object paths into strings for
// InvokeMethod()
Array #PrivilegesAsStrings[] = {}
for #x in $Privileges[]
{

#PrivilegesAsStrings.add(string($Privileges->[#x]))
}

// Step 5: Find Controllers associated to each initiator
Version 1.0.1 257

SNIA Storage Management Initiative Specification
Array #ControllersAsStrings[]
Array $TheseControllers[]
for #x in $Privileges[]
{

$TheseControllers[] = Associators(
$Privilege[#x],
“AuthorizedTarget”,
null,
null,
“Antecedent”,
false,
false,
false,
null)

// Each Privilege could have multiple controllers associated
// with it,so we iterate through the list
for #y in $TheseControllers[]
{

#ControllersAsStrings.add(string($TheseControllers->[#y]))
}

}

// Step 6: Remove access for that initiator
%InArguments[“Subject”] = $Initiator->
%InArguments[“Access”] = $PrivilegesAsStrings[]
%InArguments[“Target”] = #ControllersAsStrings[]
returnCode = InvokeMethod(

$AuthorizationService->,
“RemoveAccess”,
%InArguments[],
%OutArguments[])

7.3.3.15.9.7 Set the default access for a storage volume
// DESCRIPTION
// A prior recipe shows how to set the access to a storage volume or
// volumes from a set of Initiators. This access can be overridden by
// specifying an additional Privilege object that is associated to a
// particular storage volume. The recipe below shows how to do just
// that. In this recipe, a wildcard StorageHardwareID is used. This
// would indicate that any Initiator could access this volume. By
// placing the access control on the volume, it overrides any access
// set by AssignAccess() to a ProtocolController.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. Namespace has been identified and defined in the #NameSpace
// variable
// 2. The CIM Object Path for the Storage system (StorageSystem) of
258 Version 1.0.1

SNIA Storage Management Initiative Specification
// interest has been identified and defined in $StorageSystem->
// 3. The storage volume to use has been identified as the CIM Object
// Path saved as $StorageVolume->

// Step 1: Create a wildcard StorageHardwareID (matches every initiator)
$WildcardID = newInstance(“StorageHardwareID”, #NameSpace)

// Now set the permissions
$WildcardID.setProperty(“ID”, [‘’]) // Note: zero length string
$WildcardID.setProperty(“IDType”, [‘2’]) // Port WWN
CreateInstance($WildcardID)

// Step 2: Create a Privilege object
$Privilege = newInstance(

“Privilege”,
#NameSpace)

// Now set the permissions
$Privilege.setProperty(“Activities”, [‘Read’, ‘Write’])
$Privilege.setProperty(“PrivilegeGranted”, [False])
CreateInstance($Privilege)

// Step 3: Setup the volume access
// By using the StorageVolume instead of Controllers, we override any
// access control settings via Controllers
%InArguments[“Subject”] = $WildcardID->
%InArguments[“AccessRights”] = $Privilege->
%InArguments[“Target”] = string($StorageVolume->)
returnCode = InvokeMethod(

$AuthorizationService->,
“AssignAccess”,
%InArguments[],
%OutArguments[])

7.3.3.15.9.8 Define a view for a SCSIProtocolController
// DESCRIPTION
// Define a view for a SCSIProtocolController
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The name of the SCSIProtocolController to create has previously
// been decided to be named #ControllerName.
// 2. An array of target CIM_FCPorts to expose the view through has
// previously been decided as $Port->[].
// 3. An array of target CIM_LogicalDevices to associate the view with
// has previously been decided as $LogicalDevices->[].
// 4. An array of device numbers for the LogicalDevices in this view,
// which correspond with the values in $LogicalDevices->[], has
// previously been decided as #deviceNumbers[].
Version 1.0.1 259

SNIA Storage Management Initiative Specification
// Step 1: Get the ControllerConfigurationService that is associated to
// the Storage System.
@{Get a ControllerConfigurationService CIMObjectPath for a StorageSystem}

// Step 2: Use the ControllerConfigurationService’s
// ‘CreateProtocolController’ method to create the view (i.e. to create
// the SCSIProtocolController object). Pass in the desired Ports and
// Controller name for the view as arguments to the extrinsic
// ‘CreateProtocolController’ method.
%InArguments[“ports”] = $Port->[];
%InArguments[“name”] = #ControllerName;
invokeMethod(

$ControllerConfigurationService->,
“CreateProtocolController”,
%InArguments[],
%OutArguments[]);

$SCSIProtocolController-> = $OutArguments[“SCSIProtocolController”];

// Step 3: Iterate through the LogicalDevices that will be exposed
// through this view.
for #i in $LogicalDevices->[]
{

// Step 3.1: Attach the LogicalDevice to the view by invoking
// the ControllerConfigurationService’s ‘AttachDevice’
// extrinsic method. Pass in as arguments to the method:
// the CIMObjectPath reference to the SCSIProtocolController
// (view), the CIMObjectPath reference to the LogicalDevice,
// and the ‘DeviceNumber’ String.
%InArguments[“SCSIProtocolController”] =

$SCSIProtocolController->;
%InArguments[“LogicalDevice”] = $LogicalDevices->[#i];
%InArguments[“DeviceNumber”] = #deviceNumbers[i];
invokeMethod(

$ControllerConfigurationService->,
“AttachDevice”,
%InArguments[],
%OutArguments[]);

}

7.3.3.15.9.9 Remove a SCSIProtocolController View
// DESCRIPTION
// Remove a SCSIController View
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. The CIMObjectPath of the SCSIProtocolController view to be removed is
// $controller->.
260 Version 1.0.1

SNIA Storage Management Initiative Specification
// Step 1: Get the ControllerConfigurationService that is associated to
// the Storage System.
@{Get a ControllerConfigurationService CIMObjectPath for a StorageSystem}

// Step 2: Use the ControllerConfigurationService’s
// ‘DeleteProtocolController’ method to delete the view (i.e. to
// remove the SCSIProtocolController object). Pass in the
// CIMObjectPath reference to the SCSIProtocolController as an
// argument to the extrinsic ‘DeleteProtocolController’ method.
%InArguments[“SCSIProtocolController”] = $controller->
invokeMethod(

$ControllerConfigurationService->,
“DeleteProtocolController”,
%InArguments[],
%OutArguments[]);

7.3.3.15.10 Instrumentation Requirements

• The subject can either be a single StorageHardwareID or a collection of StorageHardwareIDs.
If the underlying implementation supports initiator groups, this can be modeled with the
collection. For implementations without hardware initiator groups, the agent can simulate
them if the membership information can be persisted.

• If a PrivilegeManagementService is not present, then all access is assumed. If an
PrivilegeManagementService is present, then access MUST be specifically granted.

• A StorageHardwareID with Name set to "" is a wildcard that matches any name. This is a
zero-length (empty) string.

• If a storage system supports wildcard permissions, it MUST keep all ProtocolControllers with
explicit StorageHardwareIDs up-to-date when wildcard permissions change for the connected
ports. For example, volume X is already exposed to one PortWWN when a client exposes
volume Y through the same device port with a wildcard StorageHardwareID. The client would
create a new ProtocolController with the wildcard as the authorized subject and would attach
volume Y to this new ProtocolController. The instrumentation would also need to implicitly
add ProtocolControllerForUnit between volume Y and the existing ProtocolController.

• If all the LogicalDevices in a view share the same permissions, then the model requires an
AuthorizedTarget from the Privilege (with the permissions) to the ProtocolController or to the
Logical Port, (but not both for the same subject). The permissions apply to all the
LogicalDevices associated to the ProtocolController via ProtocolControllerForUnit. (Note that
LogicalPort is chosen when a view is has ProtocolControllerForPort associations to more than
one LogicalPort, but where not all of those LogicalPorts are intended to be accessible by the
particular subject.)

• If a view contains LogicalDevices with different permissions, the agent selects the most
restrictive Privilege as the default and uses Privilege/LogicalDevice AuthorizedTarget
associations for LogicalDevices with non-default permissions.
Version 1.0.1 261

SNIA Storage Management Initiative Specification
• A LogicalDevice may have ProtocolControllerForUnit associations to multiple
ProtocolController - this models a device shared by different subject sets. See Figure 54:
"Volume used in multiple views".

• The view controller MUST present a view consistent with the semantics of the protocol. For
example, a SCSI implementation MUST NOT overlap Logical Unit Numbers and MUST have
a Logical Unit Number 0.

• Clients may need to know the range of possible unit numbers supported by a storage system.
The agent should set ProtocolController.MaxUnitsControlled.
262 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.15.11 Required CIM Elements

Table 120: Subprofile Required Classes, Associations, Methods and Indications

Subprofile Class & Associations Notes

AuthorizedSubject (p. 264)

AuthorizedTarget (p. 264)

ConcreteDependency (p. 264)

ControllerConfigurationService (p. 265)

ElementCapabilities (p. 265)

ElementSettingData (p. 265)

HostedCollection (p. 266)

HostedService (p. 266)

LogicalDevice Properties (p. 266) (e.g., StorageVolume)

LogicalPort Properties (p. 266) (e.g., FCPort)

MemberOfCollection (p. 267) OPTIONAL

Privilege (p. 267)

PrivilegeManagementService (p. 268)

ProtocolController (p. 268) (e.g., SCSIProtocolController)

ProtocolControllerForPort (p. 268)

ProtocolControllerForUnit (p. 268)

ProtocolControllerMaskingCapabilities (p. 266)

StorageClientSettingData (p. 268)

StorageClientSettingData (p. 268)

StorageHardwareID (p. 269)

StorageHardwareIDManagementService (p. 270)

SystemSpecificCollection (p. 270)

Profile Methods Notes

CreateProtocolControllerWithPorts()

DeleteProtocolController()

AttachDevice()

DetachDevice()

AssignAccess()

RemoveAccess()

CreateStorageHardwareID
Version 1.0.1 263

SNIA Storage Management Initiative Specification
7.3.3.15.12 Required Properties for CIM Elements

7.3.3.15.12.1 AuthorizedSubject
AuthorizedSubject is an association used to tie specific Privileges to specific subjects

7.3.3.15.12.2 AuthorizedTarget
AuthorizedTarget is an association used to tie an Identity or Roles Privileges to specific target
resources.

7.3.3.15.12.3 ConcreteDependency
CIM_ConcreteDependency is a generic association used to establish dependency relationships
between ManagedElements.

DeleteStorageHardwareID

Profile Indications Notes

SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_ProtocolControllerForUnit

SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_ProtocolControllerForUnit

Table 121: Required Properties for AuthorizedSubject

Class
Properties

Type Qualifier/
Parameter

Notes

Privilege ref override The Privilege either granted or denied to an Identity or
group of Identities collected by a Role.

PrivilegedElement ref override The Subject for which Privileges are granted or denied.

Table 122: Required Properties for AuthorizedTarget

Class
Properties

Type Qualifier/
Parameter

Notes

Privilege ref The Privilege affecting the target resource.

TargetElement ref The target set of resources to which the Privilege applies.

Table 123: Required Properties for ConcreteDependency

Class
Properties

Type Qualifier/
Parameter

Notes

Antecedent ref key Antecedent represents the independent object in this
association.

Dependent ref key Dependent represents the object dependent on the
Antecedent.

Table 120: Subprofile Required Classes, Associations, Methods and Indications

Subprofile Class & Associations Notes
264 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.15.12.4 ControllerConfigurationService
ControllerConfigurationService provides methods for manipulating ProtocolControllers.

ControllerConfigurationService is subclassed from Service.

7.3.3.15.12.5 ElementCapabilities
The LUN Masking subprofile requires, but does alter ElementCapabilities.

7.3.3.15.12.6 ElementSettingData
ElementSettingData represents the association between ManagedElements and applicable setting
data. .

Table 124: Required Properties for ControllerConfigurationService

Class Properties Type Qualifier/
Parameter

Notes

SystemCreationClassName string maxlen(256),
key, propagated

The scoping System's CreationClass-
Name.

SystemName string maxlen(256),
key, propagated

The scoping System's Name.

CreationClassName string maxlen(256),
key

The name of the concrete subclass

Name string maxlen(256),
key, override

CreateProtocolControllerWithPorts ()

DeleteProtocolController()

AttachDevice()

DetachDevice()

Table 125: Required Properties for ElementSettingData

Class
Properties

Type Qualifier/
Parameter

Notes

ManagedElement ref key The managed element.

SettingData ref key The SettingData object associated with the element.
Version 1.0.1 265

SNIA Storage Management Initiative Specification
7.3.3.15.12.7 HostedCollection

7.3.3.15.12.8 HostedService
The LUN Masking subprofile requires but does not alter HostedService.

7.3.3.15.12.9 LogicalDevice Properties
The LUN Masking subprofile requires, but does alter LogicalDevice.

7.3.3.15.12.10 LogicalPort Properties
LUN Masking requires, but does not alter LogicalPort.

7.3.3.15.12.11 ProtocolControllerMaskingCapabilities
A subclass of Capabilities that defines the Masking-related Capabilities of a storage system.

ProtocolControllerMaskingCapabilities is subclassed from Capabilities

Table 126: Required Properties for HostedCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key, min(1), max(1) ComputerSystem

Dependent ref key, weak LogicalPortGroup

Table 127: Required Properties for MaskingCapabilities

Class Properties Type Qualifier/
Parameter

Notes

InstanceID string opaque, key

ElementName string override,
required

ValidHardwareIdTypes uint16 A list of the valid values for
StrorageHardwareID.IDType. ValueMap
{"2", "3", "4"}, Values {"PortWWN",
"NodeWWN", "Hostname"}]

AccessControlByPorts boolean Set to true to indicate that the associated
storage system always grants access to
initiators identically through all storage
system ports.

ClientSelectableDeviceNumb
ers

boolean Set to true if this storage system allows the
client to specify the DeviceNumber
parameter when calling AttachDevice() on
ProtocolController instances. Set to false if
the implementation does not allow unit
numbers to vary across ProtocolController.

OneHardwareIDPerView boolean Set to true if this storage system limits
configurations to a single subject hardware
ID per view.
266 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.3.15.12.12 MemberOfCollection
The LUN Masking subprofile requires but does not alter MemberOfCollection

7.3.3.15.12.13 Privilege
Privilege is the base class for all types of activities that are granted or denied by a Role or an Identity.
Whether an individual Privilege is granted or denied is defined using the PrivilegeGranted
boolean. Any Privileges not specifically granted are assumed to be denied. An explicit deny
(PrivilegeGranted = FALSE) takes precedence over any granted Privileges.

The association of Roles and Identities to Privileges is accomplished using the AuthorizedSubjects
relationship. The entities that are protected are defined using the AuthorizedTarget relationship.

Note that Privileges may be inherited through hierarchical Roles, or may overlap. For example, a
Privilege denying any instance Writes in a particular CIM Server Namespace would overlap with
a Privilege defining specific access rights at an instance level within that Namespace. In this
example, the AuthorizedSubjects are either Identities or Roles, and the AuthorizedTargets are a
Namespace in the former case, and a particular instance in the latter.

For SMI-S 1.0, the ActivityQualifiers and QualifierFormats properties are not used.

Privilege is subclassed from ManagedElement

OnePortPerView boolean Set to true if this storage system limits
configurations to a single port per view.

ProtocolController
RequiresAuthorized
Identity

boolean If true, this property indicates that at least
one Privilege/Identity pair must be specified
when CreateProtocolController() is called.

PrivilegeDenied
Supported

boolean Set to true if this storage system allows a
client to create a Privilege instance with
PrivilegeGranted set to FALSE.

UniqueUnitNumbers
PerPort

boolean When set to false, different
ProtocolContollers attached to a LogicalPort
can expose the same unit numbers. If true,
then this storage system requires unique
unit numbers across all the
ProtocolControllers connected to a
LogicalPort.

AttachDeviceSupported boolean Set to true if this storage system supports
the AttachDevice method.

Table 128: Required Properties for Privilege

Class
Properties

Type Qualifier/
Parameter

Notes

InstanceID string opaque, key

ElementName string User Friendly name

Table 127: Required Properties for MaskingCapabilities (Continued)

Class Properties Type Qualifier/
Parameter

Notes
Version 1.0.1 267

SNIA Storage Management Initiative Specification
7.3.3.15.12.14 PrivilegeManagementService
PrivilegeManagementService is subclassed from AuthorizationService

7.3.3.15.12.15 ProtocolController
The LUN Masking subprofile requires but does not alter ProtocolController

7.3.3.15.12.16 ProtocolControllerForUnit
The LUN Masking subprofile requires but does not alter ProtocolControllerForUnit.

7.3.3.15.12.17 ProtocolControllerForPort
The LUN Masking subprofile requires but does not alter ProtocolControllerForPort.

7.3.3.15.12.18 StorageClientSettingData
This class models host environment that influence the behavior of Storage Systems. For example,
a disk array has different SCSI responses for initiators configured as AIX verses HPUX. Instances

PrivilegeGranted boolean Boolean indicating whether this Privilege grants
(TRUE) or denies (FALSE) permission. The
default is to grant permission.

Activities[] uint16 An array of string values indicating the activities
that are granted or denied. These activities
apply to all entities specified in the
ActivityQualifiers array."}
Values {"0", "1", "2", "3", "4", "5", "6", "7..}
ValueMap {"Unknown", "Other", "Create",
"Delete", “Read", "Write", "Execute"}

For SMIS 1.0, “Read” and “Write” are the only
defined Activities.

Table 129: Required Properties for PrivilegeManagementService

Class Properties Type Qualifier/
Parameter

Notes

ElementName string User Friendly name

SystemCreationClassName string maxlen(256), key,
propagated

The scoping System's CreationClassName.

SystemName string maxlen(256), key,
propagated

The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete subclass

Name string maxlen(256), key,
override

AssignAccess()

RemoveAccess()

Table 128: Required Properties for Privilege (Continued)

Class
Properties

Type Qualifier/
Parameter

Notes
268 Version 1.0.1

SNIA Storage Management Initiative Specification
of this setting class are associated via ElementSettingData to device Ports, ProtocolControllers, or
Volumes instances when these elements have host awareness. These associations are created by
the provider to reflect the current configuration. A client deletes/creates these associations to
request changes in element host-awareness.

This settings class is also associated with StorageHardwareID instances when that HW ID is
configured with host information.

An instance of this setting may include several ClientType values if the storage system treats
them identically.

The storage system exposes all supported setting instances to an enumerate request; the client
uses the returned settings to determine which types are available.

StorageClientSettingData is subclassed from SettingData.

7.3.3.15.12.19 StorageHardwareID
StorageHardwareID is a hardware ID that serves as an authorization subject.

StorageHardwareID subclasses from Identity.

Table 130: Required Properties for StorageClientSettingData

Class Properties Type Qualifier/
Parameter

Notes

InstanceID string key Opaque provider-generated name

ElementName string User Friendly Name

ClientTypes[] uint16 arraytype
("indexed")

These names map to operating system and host
environment factors that influence the behavior
exposed by storage systems.
ValueMap {"0", "1", "2", "3", "4", "5", "6", "7",
"8", "9", "10", "11", "12", "13", "14", "15", "16",
"17", "18", "..", "0x8000.." },
Values {"Unknown", "Other", "Standard",
"Solaris", "HPUX", "OpenVMS", "Tru64", "Net-
ware", "Sequent", "AIX", "DGUX", "Dynix",
"Irix", "Cisco iSCSI Storage Router", "Linux",
"Microsoft Windows", "OS400", "TRESPASS",
"HI-UX", "DMTF Reserved", "Vendor Spe-
cific"}

OtherClientTypeDescriptions [] string arraytype
("indexed")

A string describing the manufacturer and OS/
Environment - used when the InitiatorTypes,
includes 'Other'.

Table 131: Required Properties for StorageHardwareID

Class Properties Type Qualifier/
Parameter

Notes

InstanceID string key

StorageID string required The hardware worldwide unique ID.
Version 1.0.1 269

SNIA Storage Management Initiative Specification
7.3.3.15.12.20 StorageHardwareIDManagementService
StorageHardwareIDManagementService provides methods for creating StorageHardwareIDs.

StorageHardwareIDManagementService is subclassed from AuthenticationService.

7.3.3.15.12.21 SystemSpecificCollection
SystemSpecificCollection represents the general concept of a collection that is scoped (or
contained) by a System. It represents a Collection that only has meaning in the context of a
System, and/or whose elements are restricted by the definition of the System. This is explicitly
described by the (required) association, HostedCollection.

In the context of LUN Mapping and Masking the collection is a collection of Logical Devices.

SystemSpecificCollection is subclassed from Collection

7.3.3.15.13 Optional Subprofiles and Profiles
There are no optional subprofiles or profiles for this subprofile.

IDType uint16 required The type of the ID property.
ValueMap {"2", "3", "4"},
Values {"PortWWN", "NodeWWN",
"Hostname"}

Table 132: Required Properties for StorageHardwareIDManagementService

Class Properties Type Qualifier/
Parameter

Notes

SystemCreationClassName string maxlen(256),
key, propagated

The scoping System's CreationClass-
Name.

SystemName string maxlen(256),
key, propagated

The scoping System's Name.

CreationClassName string maxlen(256),
key

The name of the concrete subclass

Name string maxlen(256),
key, override

CreateStorageHardwareID ()

DeleteStorageHardwareID()

Table 133: Required Properties for SystemSpecificCollection

Class Properties Type Qualifier/
Parameter

Notes

ElementName string User Friendly name

InstanceID string opaque

Table 131: Required Properties for StorageHardwareID (Continued)

Class Properties Type Qualifier/
Parameter

Notes
270 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4 Fabric

7.3.4.1 Fabric Profile

7.3.4.1.1 Description

7.3.4.1.1.1 SANS and Fabrics as AdminDomains
A SAN and Fabric are represented in CIM by AdminDomain. A SAN contains one or more Fabrics,
which are modeled as AdminDomains. The “containment” of Fabrics to SANs is through the
association ContainedDomain. AdminDomain is sub-classed from System. This is significant because
a SAN and a Fabric can be considered a group of components that operate together as a single
system and should/are managed as such. The relationship of the Fabrics in a SAN could be as
redundant fabrics, interconnected (using the same or different transports/protocols), or not
connected in any way. Even in the latter case where the Fabrics are disjoint, from an
administrative perspective they may still be managed together applying common practices
including naming across the Fabrics.

An AdminDomain in CIM is keyed by the property Name with an associated optional property
NameFormat. Typically SANs are identified (“named”) administratively and precise naming
conventions are left up to the implementation, which is then responsible for assuring that the
names are unique within the discovery of known SANs that populate the same CIM Namespace.

For Fibre Channel Fabrics, the identifier is the Fabric WWN that is based on the principal switch
and the NameFormat should indicate that it is a WWN.

7.3.4.1.1.2 Fabrics and Topology
A Fabric in CIM today minimally contains a ConnectivityCollection and its component systems.
They are associated to the Fabric by the association Component. For the purposes of this
discussion, it is assumed one models both.

ConnectivityCollection represents the foundation necessary for routing (and the reason it is defined
in the Network model). A ConnectivityCollection groups a set of ProtocolEndpoints together that are
able to communicate with each other directly. The ProtocolEndpoint is associated to the
ConnectivityCollection by MemberOfCollection. A link is represented by the association
ActiveCollection, which associates two ProtocolEndpoints, defined as a connection that is currently
carrying traffic or is configured to carry traffic.

It is important at this point to clarify the relationship (or use) of the ProtocolEndpoint versus the
use of FCPort (discussed later). A NetworkPort (from which FCPort is subclassed) is the device
that is used to represent the logical aspects of the link and data layers. The ProtocolEndpoint is
used to represent the higher network layers for routing. This is best understood when thinking
about ethernet and IP, but apply to fibre channel also. When two ProtocolEndpoints are capable of
communicating, the association ActiveConnection is used to represent the capability to
communicate and completes the picture of the topology.

One can ultimately represent multiple ConnectivityCollection (e.g. FC, IP (over FC), and IP (FC
encapsulated in IP)) for the same fibre channel fabric.

Note that in modeling SANs, Fabrics, and ConnectivityCollections, a ConnectivityCollection does not
require a Fabric, and a Fabric does not require a SAN. But a SAN requires a Fabric, and a Fabric
(for the purposes of this profile) requires a ConnectivityCollection.

The minimum set of requirements for this profile is based on ANSI T11 FC-GS.
Version 1.0.1 271

SNIA Storage Management Initiative Specification
7.3.4.1.1.3 Systems and NetworkPorts
As discussed in the previous section, a Port is associated to a device to represent the link layer. A
NetworkPort is associated to the ProtocolEndpoint by DeviceSAPImplementation and “joins” the
System and Device model to the Network model. Instantiation of DeviceSAPImplementation,
ProtocolEndpoint, and ActiveConnection is not necessary if the transceiver is not installed or the
cable connecting the port to another port is not installed since the device is not capable of
communicating.

Systems, or in this case ComputerSystem, represent the fabric elements that contain Ports. These
are typically Hosts, Switches and Storage Systems. In Fibre Channel, these are called Platforms
and Interconnect Elements. The property Dedicated in ComputerSystem allows these fabric
elements to be identified. For a host, Dedicated is set to “Not Dedicated”, for a switch, Dedicated is
set to “Switch”, and for a storage system, Dedicated is set to “Storage”. The Ports on a System are
associated by SystemDevice.

Discovery from the viewpoint of the fabric includes the end device, but often times the information
available is minimal or not available. In the case of Fibre Channel, this occurs if the platform
database is not populated. If this is the case, then discovery cannot tell whether a Fibre Channel
Node is contained within the same platform or not. When this occurs, ComputerSystem is not
instantiated and the LogicalPortGroup representing the Node and the FCPort are associated to the
AdminDomain representing the Fabric.

Additional identification information about ComputerSystem (e.g. DomainID) is placed in
OtherIdentifyInfo property.

7.3.4.1.1.4 Zoning
The zoning model is based on ANSI FC-GS-4. This model represents the management model for
defining Zone Sets, Zones, and Zone Members and “activation” of a Zone Set for a fabric. In the
following discussion it may be helpful to also define the following:

Active ZoneSet: the Zone Set currently enforced by the Fabric.

Zone Set Database: The database of the Zone Sets not enforced by the Fabric. Referred to in
this document as the Inactive Zone Sets.

Zoning Definitions: a generic term used to indicate both the above concepts.

The zoning model refers to a Zone Set as ZoneSet (p. 291), a Zone as Zone (p. 289), ZoneAlias as a
NamedAddressCollection, and Zone Member as ZoneMembershipSettingData (p. 291). ZoneSets
MUST only contain Zones associated by MemberOfCollection. Zones MUST only contain
ZoneMembershipSettingData associated by ElementSettingData or NamedAddressCollections
associated by MemberOfCollection. For more information with regards to NamedAddressCollection,
see Enhanced Zoning and Enhanced Zoning Control Subprofile (p. 307).

The class ZoneMembershipSettingData has two properties that indicate how the device was
identified to be “zoned”. They are ConnectivityMemberType (e.g. PermanentAddress for WWN,
NetworkAddress for FCID, etc.) and ConnectivityMemberID which contains the actual device
identifier.

The Active Zone Set, defined by an instance of ZoneSet with the Active property set to TRUE, MUST
only be hosted on the AdminDomain representing the Fabric. The Inactive Zone Sets, defined by an
instance of ZoneSet with the Active property set to FALSE, SHALL be hosted on either the
AdminDomain representing the Fabric as shown in the Zoning Instance Diagram (AdminDomain) (p.
275) or the ComputerSystem representing the switch as shown in the Zoning Instance Diagram
(ComputerSystem) (p. 276). The ZoneService and ZoneCapabilities are also associated to the same
System (AdminDomain or ComputerSystem) as the Inactive Zone Sets using the association
HostedService or ElementCapabilities, respectively.
272 Version 1.0.1

SNIA Storage Management Initiative Specification
ZoneService provides the configuration methods to control create Zone Sets, Zones, Zone Aliases,
and Zone Members, as well as activation of the Zone Set. This service and its methods are
described in the Zone Control Subprofile (p. 291).

7.3.4.1.2 Standard Dependencies
The Fabric Discovery Profile is based on the following standards:

7.3.4.1.3 Profile Dependencies
The Fabric Discovery Profile requires the Server Profile (p. 441).

7.3.4.1.4 CIM Server Requirements

7.3.4.1.4.1 Functional Profiles

7.3.4.1.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Fabric Discovery Profile.

7.3.4.1.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

Table 134: Fabric Standards Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF

Table 135: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
Version 1.0.1 273

SNIA Storage Management Initiative Specification
7.3.4.1.5 Instance Diagrams

7.3.4.1.5.1 Fabric Instance

Figure 57: Fabric Instance Diagram

FCPort
FCPort

FCPort

ProtocolEndpoint

ProtocolType="Fibre
Channel"

DeviceSAP
Implementation

ComputerSystem

FCPort

System
Device

ConnectivityCollection LogicalPortGroup

MemberOf
Collection

Hosted
Collection

AdminDomain

ComponentMemberOf
Collection

ComputerSystem

Dedicated="Switch"

FCPort System
Device

ComputerSystem

Dedicated="Storage"

FCPort
System
Device

LogicalPortGroup

MemberOf
Collection

Hosted
Collection

ProtocolEndpoint

ProtocolType="Fibre
Channel"

DeviceSAP
Implementation

Active
Connection

Host

Array

Switch

Fabric

AdminDomainSAN

Contained
Domain

ProtocolEndpoint

ProtocolType="Fibre
Channel"

Active
Connection

DeviceSAP
Implementation

HostedAccessPointHosted
Collection

HostedAccessPoint

HostedAccess
Point
274 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.5.2 Zoning

Figure 58: Zoning Instance Diagram (AdminDomain)

Zone

Active=FALSE

ZoneSet

Active=FALSE

ZoneService

ZoneCapabilities

Hosted
Collection

Element
Capabilities

MemberOf
CollectionElement

SettingData

ZoneMembership
SettingData

NamedAddress
Collection

Hosted
Collection

Hosted
Service

Element
SettingData

MemberOf
Collection

AdminDomainZoneSet
Active=TRUE

Zone

Active=TRUE

ZoneMembership
SettingData

MemberOf
Collection

Element
SettingData
Version 1.0.1 275

SNIA Storage Management Initiative Specification
7.3.4.1.6 Durable Names and Correlatable IDs of the Profile

7.3.4.1.6.1 Overview
For the Fibre Channel Port, the durable name is the Port WWN. It is found in
FCPort.PermanentAddress.

For the Fibre Channel Switch, the durable name is the Switch WWN. It is found in
ComputerSystem.Name for ComputerSystems.Dedicated = ”Switch”.
ComputerSystem.NameFormat is set to “WWN”.

For the Fibre Channel Node, the durable name is the Node WWN. It is found in
LogicalPortGroup.Name with NameFormat set to WWN.

For the Fabric Name, the correlatable name is the Fabric WWN that is actually the principal
switches WWN. It is found in AdminDomain.Name. AdminDomain.NameFormat is set to “WWN”.

For the Zone Member Identifier, the correlatable name is the Port WWN, the Node WWN, or the
Domain and Port. These are found in ZoneMembershipSettingData.ConnectivityMemberID with
the corresponding ConnectivityMemberType set.

7.3.4.1.6.2 Durable Names Exported
None.

Figure 59: Zoning Instance Diagram (ComputerSystem)

Zone

Active=FALSE

ZoneSet
Active=FALSE

ZoneService

ZoneCapabilities

ComputerSystem

System
Capabilities

MemberOf
Collection

Hosted
Collection

Element
SettingData

ZoneMembership
SettingData

NamedAddress
Collection

Hosted
Service

Element
SettingData

MemberOf
Collection

AdminDomainZoneSet
Active=TRUE

Hosted
Collection

Zone

Active=TRUE

ZoneMembership
SettingData

MemberOf
Collection

Element
SettingData

Hosted
Collection

Component
276 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.6.3 Correlatable IDs Supported
None.

7.3.4.1.6.4 Durable Names and Correlatable Ids

7.3.4.1.6.5 Correlatable IDs Used
None.

7.3.4.1.7 Methods
None.

7.3.4.1.8 Client Considerations

7.3.4.1.8.1 Fabric Identifier
The client needs to consider that the fabric identifier is not durable but is correlatable and may
change over time. See “Durable Names” on page 79.

7.3.4.1.8.2 FCPort OperationalStatus
OperationalStatus is the property to indicate status and state for the FCPort. The FCPort instance
has one of the following Operational Statuses.

7.3.4.1.8.3 ComputerSystem OperationalStatus
OperationalStatus is the property to indicate status and state for the ComputerSystem. The
ComputerSystem instance has one of the following Operational Statuses and possibly one of the
Subsidiary statuses.

Table 136: Durable Names Usage

Class Name Format Type Description

AdminDomain.ElementName

Table 137: Port OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 138: OperationalStatus for ComputerSystem

Operational
Status

Possible
Subsidiary

Operational
Status

Description

OK The system has a good status
Version 1.0.1 277

SNIA Storage Management Initiative Specification
7.3.4.1.9 Recipes

7.3.4.1.9.1 Determine the active Zone Set in a SAN
// DESCRIPTION
// Traverse from the fabric to all zone sets, looking for
// the active zone set
//
// PREEXISTING CONDITIONS AND ASSUMPTIONS
//
// 1. The fabric of interest (an AdminDomain) has been previously
// identified and defined in the $Fabric-> variable

$ZoneSets[] = Associators($Fabric->, “CIM_HostedCollection”, “CIM_ZoneSet”, null, null, false, false, null)

for #i in $ZoneSets[] {
 if ($ZoneSet[#i].Active) {

OK Stressed The system is stressed, for example the
temperature is over limit or there is too much
IO in progress

OK Predictive Failure The system will probably will fail sometime
soon

Degraded The system is operational but not at 100%
redundancy. A component has suffered a
failure or something is running slow

Error An error has occurred causing the system to
stop. This error may be recoverable with
operator intervention.

Error Non-recoverable error A severe error has occurred. Operator
intervention is unlikely to fix it

Error Supporting entity in error A modeled element has failed

No contact The provider knows about the array but has
not talked to it since last reboot

Lost communication The provider used to be able to communicate
with the array, but has now lost contact.

Starting The system is starting up

Stopping The system is shutting down.

Stopped The data path is OK but shut down, the
management channel is still working.

Table 138: OperationalStatus for ComputerSystem

Operational
Status

Possible
Subsidiary

Operational
Status

Description
278 Version 1.0.1

SNIA Storage Management Initiative Specification
 // <found active ZoneSet>
 // NOTE - there can be only one active ZoneSet in a fabric, though there may be none
 break
 }
}

7.3.4.1.10 Instrumentation Requirements
The agent needs to respond to physical fabric changes by adding or removing Logical elements to
the AdminDomain. Adding an element to the fabric is straightforward, however it is not always
clear when an element has been removed. The device may have been reset, or temporarily shut
down, in which case it would be an element in the fabric with an “unknown” status. The lifetime of
objects that can no longer be discovered is implementation specific.

If the agent is unable to determine the type of platform discovered (defined in FC-GS), then the
agent MUST set the ComputerSystem.Dedicated property to “Unknown”.
Version 1.0.1 279

SNIA Storage Management Initiative Specification
7.3.4.1.11 Required CIM Elements

Table 139: Required CIM Elements

Profile Classes & Associations Notes

ActiveConnection (p. 282)

AdminDomain (p. 282) Representing the fabric

AdminDomain (p. 282) Representing the SAN

Component (p. 282) Aggregates Hosts, Arrays and Switches in the AdminDomain
that represents the Fabric

ComputerSystem (p. 282)

ConnectivityCollection (p. 287) Collects the ProtocolEndpoints.

ContainedDomain (p. 284) Associates Fabric to SAN

DeviceSAPImplementation (p. 284)

ElementCapabilities (p. 284) Associates ZoneCapabilities to AdminDomain or
ComputerSystem

ElementSettingData (p. 284) Associates ZoneMembershipSettingData to the Zone or
NamedAddressCollection representing the ZoneAlias.

FCPort (p. 284)

HostedAccessPoint (p. 287) Associates the ProtocolEndpoint to the ComputerSystem
(Switch or Platform)

HostedCollection (p. 287) LogicalPortGroup to ComputerSystem

HostedCollection (p. 287) ConnectivityCollection to AdminDomain

HostedCollection (p. 287) AdminDomain or ComputerSystem to ZoneSets, Zones, and
NamedAddressCollection

LogicalPortGroup (p. 287) Fibre Channel Node

MemberOfCollection (LogicalPortGroup)
(p. 288)

FCPort to LogicalPortGroup

ProtocolEndpoint (p. 289) ProtocolEndpoint MUST be implemented when an
ActiveConnection exists. It MAY be implemented if no
ActiveConnection exists.

SystemDevice (p. 289)

Zone (p. 289)

ZoneCapabilities (p. 289) This class is optional

ZoneMembershipSettingData (p. 291)

ZoneMembershipSettingData (p. 291)

ZoneSet (p. 291)

Profile Class and Associated Indications
280 Version 1.0.1

SNIA Storage Management Initiative Specification
Creation/Deletion of FCPort “SELECT * FROM CIM_InstCreation WHERE SourceInstance
ISA CIM_FCPort”
SELECT * FROM CIM_InstDeletion WHERE SourceInstance
ISA CIM_FCPort”

Creation/Deletion of ComputerSystem “SELECT * FROM CIM_InstCreation WHERE SourceInstance
ISA CIM_ComputerSystem”
SELECT * FROM CIM_InstDeletion WHERE SourceInstance
ISA CIM_ComputerSystem”

Changes in OperationalStatus of FCPort “SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FCPort AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus”

Changes in OperationalStatus of
ComputerSystem

“SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus”

Table 139: Required CIM Elements (Continued)

Profile Classes & Associations Notes
Version 1.0.1 281

SNIA Storage Management Initiative Specification
7.3.4.1.12 Required Properties for CIM Elements

7.3.4.1.12.1 ActiveConnection

7.3.4.1.12.2 AdminDomain

7.3.4.1.12.3 Component

7.3.4.1.12.4 ComputerSystem

Table 140: Required Properties for ActiveConnection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key ProtocolEndpoint reference

Dependent ref key ProtocolEndpoint reference

Table 141: Required Properties for AdminDomain

Property/
Method

Type Qualifier/
Parameter

Description/Notes

CreationClassName string maxlen(256), key Name of Class

Name string maxlen(256), key,
override

For a Fibre Channel Fabric, it should
be WWN. For a SAN, it is
implementation dependent.

NameFormat string maxlen(64) For a Fibre Channel Fabric, it should
be “WWN”.

Table 142: Required Properties for Component

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref key AdminDomain (for Fabric) ref.

PartComponent ref key ComputerSystem ref.

Table 143: Required Properties for ComputerSystem

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string Switch Symbolic Name. For
Platform it is the Platform Label.

CreationClassName string maxlen(256), key Name of Class

OperationalStatus uint16 req

Name string maxlen(256), key For Switches, it is the FC WWN.
For Platforms, it is the Platform
Name if available.
282 Version 1.0.1

SNIA Storage Management Initiative Specification
NameFormat string (override
“nameformat”)

For Switches, “WWN”. For all
others, follow Table 3 on page 82.

OtherIdentifyingInfo[] string The DomainID is stored here (in
base 10).

IdentifyingDescriptions[] string “DomainID” is placed in the
corresponding index.

Dedicated[] int16 For a Switch, “Switch”. For a
Host. “Not Dedicated”. For
Arrays, “Storage”. For (Map
from FC-GS Name to CIM
Enumeration”)

OtherDedicatedDescriptions string A string describing how or why
the system is dedicated when the
Dedicated array includes the
value 2, \"Other\".

Table 143: Required Properties for ComputerSystem (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 283

SNIA Storage Management Initiative Specification
7.3.4.1.12.5 ContainedDomain

7.3.4.1.12.6 DeviceSAPImplementation

7.3.4.1.12.7 ElementCapabilities

7.3.4.1.12.8 ElementSettingData

7.3.4.1.12.9 FCPort

Table 144: Required Properties for ContainedDomain

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref key AdminDomain (for SAN) ref.

PartComponent ref key AdminDomain (for Fabric) ref.

Table 145: Required Properties for DeviceSAPImplementation

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key FCPort reference

Dependent ref key ProtocolEndpoint reference

Table 146: Required Properties for ElementCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ManagedElement ref AdminDomain

Capabilities ref ZoneCapabilities

Table 147: Required Properties for ElementSettingData

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ManagedElement ref key Zone or ZoneAlias.

SettingData ref key ZooneMembershipSettingData.

Table 148: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemName string key

SystemCreationClassName string key

CreationClassName string key
284 Version 1.0.1

SNIA Storage Management Initiative Specification
ElementName string Port Symbolic Name if available.
Otherwise NULL. If the underlying
implementation includes characters
that are illegal in CIM strings, then
truncate before the first of those
characters.

OperationalStatus uint16 See Table Port OperationalStatus (p.
277)

DeviceID string key,
maxlen (64)

Opaque.

Speed uint64 units ("bits per
second")

Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

PortType uint16 override “Unknown = 0, “Other” = 1,
“N” = 10, “NL” = 11, “F/NL” = 12, “Nx”
= 13, “E” = 14, “F” = 15, “FL” = 16, “B”
= 17,
“G” = 18.

OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").

LinkTechnology uint16 For FibreChannel, “FC”.

OtherLinkTechnology uint16 A string value describing
LinkTechnology when it is set to 1,
\"Other\".

PermanentAddress string maxlen (64) For FibreChannel, it is the Fibre
Channel Port WWN.

NetworkAddresses[] string maxlen (64),
arraytype
("indexed")

For Fibre Channel end device ports, it
is the Fibre Channel ID. For Switches,
it should be Null.

SupportedCOS uint16[] FC-GS Class Of Service
An array of integers indicating the
Classes of Service that are active. Not
applicable for switches (e.g. NULL).

Table 148: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 285

SNIA Storage Management Initiative Specification
SupportedFC4Types uint16[] FC-GS FC4-TYPE
An array of integers indicating the
Fibre Channel FC-4 protocols
currently running. Not applicable for
switches (e.g. NULL).

Table 148: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
286 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.12.10 HostedAccessPoint

7.3.4.1.12.11 HostedCollection

7.3.4.1.12.12 ConnectivityCollection

7.3.4.1.12.13 LogicalPortGroup

Table 149: HostedAccessPoint

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref ComputerSystem

Dependent ref ProtocolEndpoint

Table 150: Required Properties for HostedCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key, min(1), max(1) ComputerSystem

Dependent ref key, weak LogicalPortGroup

Table 151: Required Properties for ConnectivityCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceId string

ElementName Not required, can be the
Fabric WWN.

Table 152: Required Properties for LogicalPortGroup

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string Node Symbolic Name if
available. Otherwise NULL. If
the underlying
implementation includes
characters that are illegal in
CIM strings, then truncate
before the first of those
characters.

InstanceID string key Opaque

Name Node WWN.

NameFormat string “WWN”
Version 1.0.1 287

SNIA Storage Management Initiative Specification
7.3.4.1.12.14 MemberOfCollection (LogicalPortGroup)

7.3.4.1.12.15 MemberOfCollection (ConnectivityCollection)

Table 153: Required Properties for MemberOfCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Collection ref key LogicalPortGroup.

Member ref key FCPort

Table 154: Required Properties for MemberOfCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Collection ref key ConnectivityCollection

ManagedElement ref key ProtocolEndpoint.
288 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.12.16 ProtocolEndpoint

7.3.4.1.12.17 SystemDevice

7.3.4.1.12.18 Zone

7.3.4.1.12.19 ZoneCapabilities

Table 155: Required Properties for ProtocolEndpoint

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Name string key, maxlen (256)

CreationClassName string key, maxlen (256) ComputerSystem that
HostedAccessPoint is associated to.

SystemCreationClassNam
e

string key, maxlen (256)

SystemName string key, maxlen (256)

NameFormat string maxlen (256) NameFormat MUST be “WWN”

ProtocolType string maxlen (64),
valuemap {}
values {}

ProtocolType MUST be "Fibre
Channel"

Table 156: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override ComputerSystem

PartComponent ref override FCPort

Table 157: Required Properties for Zone

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key

ElementName string The Zone Name (FC-GS)

ZoneType uint16
(enum)

Default, or Protocol (FC-
GS).

ZoneSubType uint16
(enum)

FCP, VI, IP
(Optional, only required
when ZoneType=Protocol)

Active boolean This Zone is active.
Version 1.0.1 289

SNIA Storage Management Initiative Specification
Note: The ZoneCapabilities table and its properties are optional.

Table 158: Required Properties for ZoneCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key

MaxNumZoneSets uint32 If Null, it is indeterminate.

MaxNumZones uint32 If Null ,it is indeterminate.

MaxNumZoneMembers uint32 If Null, it is indeterminate.

MaxNumZoneAliases uint32 If Null, it is indeterminate.

MaxNumZonesPerZoneSet uint32 If Null, it is indeterminate.
290 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.12.20 ZoneMembershipSettingData

7.3.4.1.12.21 ZoneSet

7.3.4.1.13 Optional Subprofiles

7.3.4.1.14 Zone Control Subprofile

7.3.4.1.14.1 Description
The zoning model includes extrinsic methods for creating Zone Sets, Zones, and Zone Members
and adding Zones to Zone Sets and Zone Members to Zones. Additionally SMI-S defines intrinisics
methods for the removing of Zone Members from Zones and Zone Aliases, Zones from Zone Sets,
and deleting Zone Members, Zones, and Zone Sets.

When an Inactive ZoneSet is “Activated”, new instances representing the Active Zone Set and
Active Zones are generated from the Inactive Zone Set definition (where a switch may prune the
referenced Zone Set collapsing aliases, removes empty zones, etc.).

When a new Zone Set is “Activated”, the instances representing the previous active Zone Set no
longer exists.

Table 159: Required Properties for ZoneMembershipSettingData

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key

ConnectivityMemberType required Permanent Address (WWN), Switch
Port ID (Domain:Port in base10),
Network Address (FCID).

ConnectivityMemberID required The value of the WWN, Domain/Port, or
FCID

Table 160: Required Properties for ZoneSet

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key

ElementName string required The ZoneSet name.

Active boolean required Indicates that this ZoneSet is active and
cannot be changed.

Table 161: Optional Profiles or Subprofiles

Name Notes

Zone Control Subprofile (p. 291)

Enhanced Zoning and Enhanced Zoning
Control Subprofile (p. 307)

FDMI Subprofile (p. 313)
Version 1.0.1 291

SNIA Storage Management Initiative Specification
In the case where the Inactive Zone Sets are hosted on a switch, the client cannot know which
Inactive Zone Set was used to define the current Active Zone Set. Also if two Inactive Zone Sets
with the same name are hosted on two different switches, the definitions maybe completely
different.

7.3.4.1.14.2 Standards Dependencies
See parent sections.

7.3.4.1.14.3 Profile Dependencies
See parent sections.

7.3.4.1.14.4 CIM Server Requirements

7.3.4.1.14.4.1 Functional Profiles

7.3.4.1.14.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Fabric Discovery Profile.

7.3.4.1.14.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

7.3.4.1.14.5 Instance Diagrams
See parent sections.

7.3.4.1.14.6 Durable Names and Correlatable IDs
See parent sections.

7.3.4.1.14.7 Extrinsic Zoning Methods

7.3.4.1.14.7.1 CreateZoneSet
The method creates a ZoneSet and associates it to the AdminDomain that the ZoneService is
hosted.

CreateZoneSet (
string ZoneSetName,

Table 162: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

YES Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
292 Version 1.0.1

SNIA Storage Management Initiative Specification
[OUT] ref CIM_ZoneSet);

7.3.4.1.14.7.2 CreateZone
The method creates a Zone and associates it to AdminDomain that the ZoneService is hosted.

CreateZone (
string ZoneName,
Uint16 ZoneType,

Uint16 ZoneSubType,
[OUT] ref Zone);

7.3.4.1.14.7.3 CreateZoneMembershipSettingData
CreateZoneMembershipSettingData creates a ZoneMembershipSettingData and adds it to the
specified Zone or NamedAddressCollection. The ConnectivityMemberID is dependent upon the
ConnectivityMemberType.

For Fibre Channel, the ConnectivityMemberType of "PermanentAddress", the
ConnectivityMemberID is the NxPort WWN; for ConnectivityMemberType of "NetworkAddress",
the ConnectivityMemberID is the NXPort Address ID; for ConnectivityMemberType of
"SwitchPortID", the ConnectivityMemberID is "Domain:PortNumber".

CreateZoneMembershipSettingData (
Uint16 ConnectivityMemberType,
string ConnectivityMemberID,
ref SystemSpecificCollection,
[OUT] ref ZoneMembershipSettingData);

7.3.4.1.14.7.4 AddZone
Adds to the ZoneSet the specified Zone. Adding a Zone to a ZoneSet, extends the zone enforcement
definition of the ZoneSet to include the members of that Zone. If adding the Zone is, successful, the
Zone should be associated to the ZoneSet by MemberOfCollection.

AddZone (
[IN] CIM_ZoneSet ref ZoneSet,
[IN] CIM_Zone ref Zone,
[OUT] CIM_MemberOfCollection ref MemberOfCollection);

7.3.4.1.14.7.5 AddZoneMembershipSettingData
Adds to the Zone or NamedAddessCollection the specified ZoneMembershipSettingData

AddZoneMembershipSettingData (
[IN] CIM_SystemSpecificCollection ref SystemSpecificCollection,
[IN] CIM_ZoneMembershipSettingData ref ZoneMembershipSettingData,
[OUT] CIM_MemberOfCollection ref MemberOfCollection);

7.3.4.1.14.7.6 ActivateZoneSet
Uint32 ActivateZoneSet (

[IN] CIM_ZoneSet ref ZoneSet,
Version 1.0.1 293

SNIA Storage Management Initiative Specification
[IN] boolean Activate)

7.3.4.1.14.7.7 SessionControl
SessionControl enables an application to request a lock of the fabric to begin zoning configuration
changes.

This method allows a client to request or release a lock on the fabric for zoning configuration
changes. As described in FC-GS, in the context of Enhanced Zoning Management, management
actions to a Zone Server (e.g. write access to the Zoning Database) MUST occur only inside a GS
session. Clients executing zoning management operations MUST use fabric sessions cooperatively
if the SMI-S agent supports it. (If the value of SessionStatus is 4 ("Not Applicable") then no
cooperative session usage is possible).

Before a client executes zoning management operations (intrinsic or extrinsic methods), the client
MUST request a new session and wait for the request to be granted. To request a new session, first
wait until the property "SessionStatus" of the fabric’s CIM_ZoneService is 3 ("Ended") and the
property "RequestedSessionStatus" is 5 "No Change". Then call SessionControl with
RequestedSessionStatus = 2 ("Started"). Once zoning management operations are completed, the
client MUST release the session to enable the provider to propagate changes to the fabric, and to
allow other clients to perform management operations. To end a session and commit the changes,
call SessionControl with RequestedSessionStatus = 3 ("Ended"). To abort a sequence of zoning
management operations without updating the fabric, call SessionControl with
RequestedSessionStatus = 4 ("Terminated").

SMIS agents MUST block on calls to SessionControl until the request is fulfilled. For example, an
error may occur while committing changes to a fabric, i.e. after a call to SessionControl with
RequestedSessionStatus = 3 ("Ended"). The method cannot return until the session has ended, so
that a CIM error can be returned if a problem occurs. While the method is in progress, another
client may read the value of the RequestedSessionStatus property and see the value set by the
method currently in progress. Once the request is fulfilled, the RequestedSessionStatus property
is set to value 5 "No Change", regardless of the value in the setInstance operation.

A SMIS agent may raise an error if these client cooperation rules are not followed. For the
purposes of a SMIS agent, a series of requests from the same authenticated entity are considered
to be from a single client. An agent may verify that such a series corresponds to the sequence
described above and raise the error CIM_ERR_FAILED at any time if the sequence is violated.

Uint32 SessionControl (
[IN,
 ValueMap {"2", "3", "4"},
 Values {"Started", "Ended", "Terminated"}]
Uint16 RequestedSessionStatus;};

7.3.4.1.14.8 Intrinsic Zoning Methods

7.3.4.1.14.8.1 Removing a zone from a zone set
As seen in the instance diagram, a zone is a member of a zone set if there is a
“CIM_MemberOfCollection” association from the zone set to the zone. To remove a zone from a
zone set, delete the instance of the association “CIM_MemberOfCollection” using the intrinsic
operation deleteInstance.
294 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.14.8.2 Removing a zone alias from a zone
A zone alias is a member of a zone if there is a “CIM_MemberOfCollection” association from the
zone to the zone alias. To remove a zone alias from a zone set, delete the instance of the association
“CIM_MemberOfCollection” using the intrinsic operation deleteInstance.

7.3.4.1.14.8.3 Removing a zone member from a zone or zone alias
Zone members are represented by CIM_ZoneMembershipSettingData instances. No instance of
CIM_ZoneMembershipSettingData exists unless it is associated to a zone or zone alias by a
CIM_ElementSettingData association. However, an instance of
CIM_ZoneMembershipSettingData may be associated to more than one zone or zone alias.

Removing a zone member from a zone or zone alias is equivalent to deleting the instance of the
CIM_ElementSettingData association. Delete the instance using the intrinsic operation
deleteInstance. Clients are allowed to delete all the members of a zone or zone alias this way,
leaving the zone or zone alias empty.

If this is the last instance of a CIM_ElementSettingData association for a particular
CIM_ZoneMembershipSettingData, do not delete the instance of
CIM_ZoneMembershipSettingData; it is the provider's responsibility to clean up these structures.

7.3.4.1.14.8.4 Deleting a zone member
Zone members are represented by CIM_ZoneMembershipSettingData instances associated to
zones or zone aliases via CIM_ElementSettingData associations. To delete a zone member (and
remove it from any zones or zone aliases from which it is a member) use the CIM operation
deleteInstance to delete the instance of CIM_ZoneMembershipSettingData.

Do not delete the corresponding instances of the CIM_ElementSettingData; it is the provider's
responsibility to clean up these structures.

Clients are allowed to delete the last member in a zone alias or zone, leaving the zone or zone alias
empty.

7.3.4.1.14.8.5 Deleting a zone, zone alias, or zone set
Use the intrinsic operation deleteInstance to delete a zone, zone alias or zone set. Client are
allowed to delete zones or zone aliases that are members of collections (zones or zone sets). Clients
are allowed to delete the last member of a zone or zone set, leaving the collection empty.

A zone set or zone cannot be deleted if it is currently active (the error would be
CIM_ERR_FAILED). Some implementations may prohibit deleting zonesets, zones or zone aliases
that still have members (the error would be CIM_ERR_FAILED). When a zone, zone alias or zone
set is deleted, the client does not have to delete the corresponding instances of
CIM_MemberOfCollection or CIM_HostedCollection; it is the provider's responsibility to clean up
these structures.

7.3.4.1.14.9 Client Considerations
Many agent implementations do not allow Zone, a ZoneAlias or a Zone Set to be defined empty.
Since the methods defined in SMI-S do not support creating a Zone Set with a Zone and a Zone
with a Zone Member, the SessionControl method should be used to build a Zone Definition that is
interoperable. This is done by calling ZoneSession() to “Start” defining or updating the Zone
Definition. The client then calls the appropriate methods as necessary to build the desired Zone
Definition. For example, calling CreateZoneSet() to create a new Zone Set, CreateZone() to create a
new Zone, AddZoneToZoneSet() to add the newly created Zone to the newly created Zone Set, and
CreateZoneMembershipSettingData() to create and add a new Zone Member to the newly created
Zone. Upon completion of the new zoning definition, ZoneControl is called again to “End” the
session. The changes to the Zone Definition would then be applied to the Zone Set Database. This
Version 1.0.1 295

SNIA Storage Management Initiative Specification
set of calls would create a Zone Definition where the Zone and ZoneSet are not empty and would be
interoperable across all agent implementations.

7.3.4.1.14.10 Recipes

7.3.4.1.14.10.1 Create or delete zones Common Functions
// DESCRIPTION
//
// Common functions used by the recipes below.
//
// startSession: attempt to start fabric session if required;
// returns false if attempt fails; returns true if attempt succeeds
// or if session control is unnecessary
//
// endSession: finalize fabric session if required; returns false
// if attempt fails; returns true if attempt succeeds or if session
// control is unnecessary
//
// PREEXISTING CONDITIONS AND ASSUMPTIONS
//
// None

sub boolean startSession ($ZoneService->)
{
 $ZoneService = GetInstance($ZoneService->, false, false, false, null)

 // session statuses
 #Ended = 3
 #NotApplicable = 4

 // requested session statuses
 #Started = 2
 #NoChange = 5

 if ($ZoneService.SessionState == #NotApplicable)
 return true // no session control implemented by this agent

 if ($ZoneService.SessionState != #Ended)
 return false // fabric session is in use by another client or agent

 if ($ZoneService.RequestedSessionState != #NoChange)
 return false // another client has already requested session

 %InArguments[“RequestedSessionState”] = #Started

 #status = InvokeMethod($ZoneService->, “SessionControl”, %InArguments, %OutArguments)
 if (#status != 0) // e.g. “Failed”
 return false
296 Version 1.0.1

SNIA Storage Management Initiative Specification
 $ZoneService = GetInstance($ZoneService->, false, false, false, null)
 if ($ZoneService.SessionState != #Started)
 return false

 return true
}

sub boolean endSession ($ZoneService->) {
 $ZoneService = GetInstance($ZoneService->, false, false, false, null)

 // session statuses
 #Started = 2
 #NotApplicable = 4

 // requested session statuses
 #End = 3

 if ($ZoneService.SessionStatus == #NotApplicable){
 return true // no need for session control

 if ($ZoneService.SessionStatus != #Started)
 return false // no session started by this client

 %InArguments[“RequestedSessionState”] = #End
 #status = InvokeMethod($ZoneService, “SessionControl”, %InArguments, %OutArguments)
 if (#status != 0) // e.g. “Failed”
 return false

 // Do not wait, or even check, for SessionState to have value “Ended” as
 // a) InvokeMethod will block till done (or failed) anyway
 // b) Before the check can be made, session may already be started
 // by another client

 return true
}

7.3.4.1.14.10.2 Add new or existing Zone Member to Existing Zone
// DESCRIPTION
// Add new or existing Zone Member to Existing Zone
//
// Assume the client has already invoked some logic to determine which
// System (fabric or switch) will host the zone database and zone
// service to be used. Request and obtain a fabric session from the
// zone service. Use an extrinsic method to attempt to create a new
// instance of ZoneMembershipSettingData, associated to a zone. If
// the creation fails because an instance already exists for the
Version 1.0.1 297

SNIA Storage Management Initiative Specification
// desired zone member id, simply create an association between the
// pre-existing ZoneMembershipSettingData instance and the zone
// instance. Then close the fabric session.
//
// PREEXISTING CONDITIONS AND ASSUMPTIONS
//
// 1. The System hosting the zone database (ComputerSystem or
// AdminDomain) has been previously identified and defined in the
// $System-> variable
//
// 2. The zone member type is defined in the #ConnectivityMemberType variable
//
// 3. The zone member id of the new zone member is defined in the
// #ConnectivityMemberID variable
//
// 4. An existing zone is defined in the $Zone-> variable
//
// FUNCTIONS

// 1. Get the Zone Service and start the session

$ZoneServices->[] = AssociatorNames($System->, “CIM_HostedService”,
 “CIM_ZoneService”, null, null)

// Assumption 1 (above) guarantees there is a zone service for this
// System, Fabric Profile mandates there is no more than one zone
// service for this System
$ZoneService-> = $ZoneService->[0]

// Start the session
if (!&startSession($ZoneService->)) {
 return
}

// 2. Create or locate a ZoneMembershipSettingData
%InArguments[“ConnectivityMemberType”] = #ConnectivityMemberType
%InArguments[“ConnectivityMemberID”] = #ConnectivityMemberID
%InArguments[“SystemSpecificCollection”] = $Zone->
#status = InvokeMethod($ZoneService->, “CreateZoneMembershipSettingData”,
 %InArguments[], %OutArguments[])

// 3. Add to zone if not created as a member of the zone
// NOTE: ZoneMember output argument is set even if return status is 8 (Already_Exists)
$ZoneMember-> = %OutArguments[“ZoneMembershipSettingData”]
if (#status == 8) {
 %InArguments2[“SystemSpecificCollection”] = $Zone
 %InArguments2[“ZoneMembershipSettingData”] = $ZoneMember->
298 Version 1.0.1

SNIA Storage Management Initiative Specification
 InvokeMethod($ZoneService->, “AddZoneMembershipSettingData”,
 %InArguments2[], %OutArguments[])
}
else if (#status != 0)
 // ERROR!

// 4. End session successfully
&endSession($ZoneService->)

7.3.4.1.14.10.3 Create new Zone, add new/existing Zone Member, and add to existing ZoneSet
// DESCRIPTION
// Create new Zone, add new/existing Zone Member, and add to existing ZoneSet
//
// Assume the client has already invoked some logic to determine which
// System (fabric or switch) will host the zone database and zone
// service to be used. Request and obtain a fabric session from the
// zone service. Create a new Zone using an extrinsic method. The
// session may not be ended if any zone is empty, so add a zone member
// to the new zone. The session also may not be ended unless every
// zone is a member of at least one zone set, so add the new zone to
// an existing zone set. Then close the fabric session.
//
//
// PREEXISTING CONDITIONS AND ASSUMPTIONS
//
// 1. The System hosting the zone database (ComputerSystem or
// AdminDomain) has been previously identified and defined in the
// $System-> variable
//
// 2. The name for a new zone is defined in the #ZoneName variable
//
// 3. The type for the new zone is defined in the #ZoneType variable
//
// 4. The sub type for the new zone is defined in the #ZoneSubType
// variable
//
// 5. The zone member type is defined in the #ConnectivityMemberType variable
//
// 6. The zone member id of the new zone member is defined in the
// #ConnectivityMemberID variable
//
// 7. An existing zoneSet is defined in the $ZoneSet-> variable
//
// FUNCTIONS

// 1. Get the Zone Service and start the session
$ZoneServices->[] = AssociatorNames($System->, “CIM_HostedService”,
Version 1.0.1 299

SNIA Storage Management Initiative Specification
 “CIM_ZoneService”, null, null)

// Assumption 1 (above) guarantees there is a zone service for this
// System, Fabric Profile mandates there is no more than one zone
// service for this System
$ZoneService-> = $ZoneServices->[0]

 if (!&startSession($ZoneService->)) {
 return
}

// 2. Create a zone
%InArguments[“ZoneName”] = #ZoneName
%InArguments[“ZoneType”] = #ZoneType
%InArguments[“ZoneSubType”] = #ZoneSubType
InvokeMethod($ZoneService->, “CreateZone”, %InArguments[], %OutArguments[])
$Zone-> = $OutArguments[“Zone”]

// 3. Create or locate a ZoneMembershipSettingData
%InArguments[“ConnectivityMemberType”] = #ConnectivityMemberType
%InArguments[“ConnectivityMemberID”] = #ConnectivityMemberID
%InArguments[“SystemSpecificCollection”] = $Zone->
#status = InvokeMethod($ZoneService->, “CreateZoneMembershipSettingData”,
 %InArguments[], %OutArguments[])

// 4. Add to zone if not created as a member of the zone
$ZoneMember-> = %OutArguments[“ZoneMembershipSettingData”]

if (#status == 8) {
 %InArguments2[“SystemSpecificCollection”] = $Zone->
 %InArguments2[“ZoneMembershipSettingData”] = $ZoneMember->
 InvokeMethod($ZoneService->, “AddZoneMembershipSettingData”,
 %InArguments2[], %OutArguments[])
}
else if (#status != 0)
 // ERROR!

// 5. Add the new zone to the existing zone set
%InArguments[“ZoneSet”] = $ZoneSet->
%InArguments[“Zone”] = $Zone->
#status = InvokeMethod($ZoneService->, “AddZone”, %InArguments[], %OutArguments[])
if (#status != 0)
 // ERROR!

// 6. End Session
&endSession($ZoneService->)
300 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.14.10.4 Create new ZoneSet and add existing Zone
// DESCRIPTION
// Create new ZoneSet and add existing Zone
//
// Assume the client has already invoked some logic to determine which
// System (fabric or switch) will host the zone database and zone
// service to be used. Request and obtain a fabric session from the
// zone service. Create a new ZoneSet with a given name, using an
// extrinsic method. The session may not be ended if any ZoneSet is
// empty, so add an existing zone to the ZoneSet. Then close the
// fabric session.
//
// PREEXISTING CONDITIONS AND ASSUMPTIONS
//
// 1. The System hosting the zone database (ComputerSystem or
// AdminDomain) has been previously identified and defined in the
// $System-> variable
//
// 2. The name for the new zone set is defined in the #ZoneSetName
// variable
//
// 3. An existing zone is defined in the $Zone-> variable
//
// FUNCTIONS

// 1. Get the Zone Service and start the session

$ZoneServices->[] = AssociatorNames($System->, “CIM_HostedService”,
 “CIM_ZoneService”, null, null)
// Assumption 1 (above) guarantees there is a zone service for this
// System, Fabric Profile mandates there is no more than one zone
// service for this System
$ZoneService-> = $ZoneServices->[0]

if (!&startSession($ZoneService->)
 return
}

// 2. Create a zone set
%InArguments[“ZoneSetName”] = #ZoneSetName
#status = InvokeMethod($ZoneService->, “CreateZoneSet”, %InArguments[], %OutArguments[])
if (#status != 0)
 // ERROR!

$ZoneSet-> = %OutArguments[“ZoneSet”]
Version 1.0.1 301

SNIA Storage Management Initiative Specification
// 3. Add the existing zone to the new zone set
%InArguments[“ZoneSet”] = $ZoneSet->
%InArguments[“Zone”] = $Zone->
#status = InvokeMethod($ZoneService->, “AddZone”, %InArguments[], %OutArguments[])
if (#status != 0)
 // ERROR!

// 4. End Session
&endSession($ZoneService->)

7.3.4.1.14.10.5 Delete zone
// DESCRIPTION
// Delete Zone
//
// Try to use intrinsic delete operation to delete a Zone instance.
// Before any operations can be imposed on the zoning service, a
// session is requested and obtained from the zone service. If the
// deletion fails, this may be because the zone is active, or because
// it is not empty. In the latter case, remove all members from the
// zone by deleting the ElementSettingData association instances, and
// try the deletion again.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The object name of the zone to be deleted is defined in the
// $Zone-> variable
// 2. The object name of the zone service object for the System
// hosting the zone database is defined in the $ZoneService->
// variable

if(!&startSession($ZoneService->))
 return

try {
 DeleteInstance($Zone->)
}
catch(CIM_ERR_FAILED) {
 // Verify that Zone is not active
 $Zone = GetInstance($Zone->, false, false, false, null)
 if ($Zone.Active) {
 // tell client of its logic problem
 throw CIM_ERR_FAILED
 }

 // Failure may be caused because zone has members
 // Try to delete all zone memberships (not zone members themselves)
 $ZoneElements->[] = ReferenceNames($Zone->, “CIM_ElementSettingData”, null)
302 Version 1.0.1

SNIA Storage Management Initiative Specification
 for #i in $ZoneElements->[] {
 DeleteInstance($ZoneElements[#i])
 }

 // Try again
 DeleteInstance($Zone->)
}

&endSession($ZoneService->)

7.3.4.1.14.10.6 Delete ZoneSet
// DESCRIPTION
// Delete Zone Set
//
// Try to use intrinsic delete operation to delete a ZoneSet
// instance. Before any operations can be imposed on the zoning
// service, a session is requested and obtained from the zone service.
// The session is released when the operations are complete. If the
// deletion fails, this may be because the zone set is active, or
// because it is not empty. In the latter case, remove all zones from
// the zone set by deleting the MemberOfCollection association
// instances, and try the deletion again.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The object name of the zone set to be deleted is defined in the
// $ZoneSet-> variable
// 2. The object name of the zone service object for the system
// hosting the zone database is defined in the $ZoneService->
// variable

if (!&startSession($ZoneService->))
 return
}

try {
 DeleteInstance($ZoneSet->)
}
catch(CIM_ERR_FAILED) {
 $ZoneSet = GetInstance($ZoneSet->, false, false, false, null)
 if ($ZoneSet.Active) {
 // tell client of logic problem
 throw CIM_ERR_FAILED
 }

 // Failure may be because zoneset is not empty
Version 1.0.1 303

SNIA Storage Management Initiative Specification
 $ZoneMemberships->[] = ReferenceNames($ZoneSet->, “CIM_MemberOfCollection”, null)
 for #i in $ZoneMemberships->[] {
 DeleteInstance($ZoneMemberships->[$i])
 }

 // Try again
 DeleteInstance($ZoneSet->)
}

&endSession($ZoneService->)

7.3.4.1.14.10.7 Create ZoneMember
// DESCRIPTION
// Create a zone member based on the parameters collected by the
// CIM Client. Before any operations can be imposed on the zoning service,
// a session is requested and obtained from the zone service. The
// session is released when the operations are complete.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The fabric of interest, the AdminDomain, has been previously
// identified and defined in the $Fabric-> variable
// 2. The zone member is defined in the #ZoneMemberType variable
// 3. The zone member id of the new zone member is defined in the
// #ZoneMemberID variable
// 4. The object name of the zone member to be deleted is defined in
// the $ZoneMember-> variable
// 5. Assume that there is only one zone service per fabric

 $ZoneServices->[] = AssociatorNames(
$Fabric->,
“CIM_HostedService”,
“CIM_ZoneService”,
null,
null)

$ZoneService-> = nameof $ZoneService
if(!&startSession($ZoneService->))
 return

%InArguments[“ZoneMemberType”] = $ZoneMemberType
%InArguments[“ZonememberId”] = $ZoneMemberId
%InArguments[“SystemSpecificCollection”] = $Fabric
InvokeMethod(

$ZoneService->,
“CreateZoneAlias”,
%InArguments[],
%OutArguments[])
304 Version 1.0.1

SNIA Storage Management Initiative Specification
$ZoneMember-> = %OutArguments[“ZoneMember”]
&endSession($ZoneService->)

7.3.4.1.14.10.8 Delete ZoneMember
// DESCRIPTION
// Delete a zone member, removing it from any zones and aliases of
// which it is a member.
//
// Use the intrinsic delete operation to delete a
// ZoneMembershipSettingData instance. Before any operations can be
// imposed on the zoning service, a session is requested and obtained
// from the zone service. The session is released when the operations
// are complete.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The object name of the ZoneMembershipSettingData to be deleted is defined in the
// $ZoneMember-> variable
// 2. The object name of the zone service object for the system
// hosting the zone database is defined in the $ZoneService->
// variable

if(!&startSession($ZoneService->))
 return

DeleteInstance($ZoneMember->)
&endSession($ZoneService->)

7.3.4.1.14.11 Instrumentation Requirements
The agent MUST support the use case defined in the Client Considerations (p. 308).
Version 1.0.1 305

SNIA Storage Management Initiative Specification
7.3.4.1.14.12 Required CIM Elements

7.3.4.1.14.13 Required Properties for CIM Elements

7.3.4.1.14.14 HostedService

7.3.4.1.14.15 ZoneService

Table 163: Required CIM Elements

Profile Classes & Associations Notes

HostedService (p. 306) Associates ZoneService to the AdminDomain or
ComputerSystem

ZoneService (p. 306)

Associated Indications

Table 164: Required Properties for HostedService

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key, min(1), max(1) AdminDomain or
ComputerSystem

Dependent ref key, weak ZoneService

Table 165: Required Properties for ZoneService

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string propagated, key

CreationClassName string key

SystemName string propagated, key AdminDomain

Name string key

OperationalStatus uint16 (enum)

SessionStatus uint16 (enum)

RequestedSessionStatus

CreateZone() uint16

DeleteZone() uint16

CreateZoneSet() uint16

DeleteZoneSet() uint16

ActivateZoneSet() uint16
306 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.14.16 Optional Subprofiles

7.3.4.1.15 Enhanced Zoning and Enhanced Zoning Control Subprofile

7.3.4.1.15.1 Description
See parent sections.

7.3.4.1.15.2 Standards Dependencies
See parent sections.

7.3.4.1.15.3 Profile Dependencies
Support for the Zone Control Subprofile (p. 291) is required by the Enhanced Zoning and
Enhanced Zoning Control subprofile.

7.3.4.1.15.4 CIM Server Requirements
See parent sections.

7.3.4.1.15.5 Instance Diagrams
See parent sections.

7.3.4.1.15.6 Durable Names and Correlatable IDs
See parent sections.

7.3.4.1.15.7 Methods

7.3.4.1.15.7.1 CreateZoneAlias
The method creates a ZoneAlias and associates it to AdminDomain that the ZoneService is Hosted
on.

CreateZoneAlias (
string ZoneAliasName,
[OUT] ref ZoneAlias);

7.3.4.1.15.7.2 AddZoneAlias
Adds to the Zone the specified ZoneAlias.

AddZoneAlias (
[IN] CIM_Zone ref Zone,
[IN] CIM_ZoneAlias ref ZoneAlias,

[OUT] CIM_MemberOfCollection ref MemberOfCollection);

DeactivateZoneSet() uint16

Table 166: Optional Profiles or Subprofiles

Name Notes

None

Table 165: Required Properties for ZoneService (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 307

SNIA Storage Management Initiative Specification
7.3.4.1.15.8 Client Considerations

7.3.4.1.15.9 Recipes

7.3.4.1.15.9.1 Create a ZoneAlias
// DESCRIPTION
// Create zone alias and add new/existing zone member based on
// the parameters collected by the CIM Client.
// Before any operations can be imposed on the zoning
// service, a session is requested and obtained from the zone
// service. Create a new ZoneAlias. The session may not be ended if
// the ZoneAlias is empty, so add a zone member to the new ZoneAlias.
// The session is released when the operations are
// completed.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The system of interest,either the fabric (AdminDomain)
// or the switch (ComputerSystem), has been
// previously identified and defined in the
// $System-> variable
// 2. The name of the new zone alias is defined in the
// #ZoneAliasName variable
// 3. The zone member type is defined in the #ConnectivityMemberType
// variable
// 4. The zone member Id of the new zone member is defined in the
// #ConnectiivityMemberID variable

// 1. Get the ZoneService and start a session
$ZoneServices->[] = AssociatorNames(

$System->,
“CIM_HostedService”,
“CIM_ZoneService”, null, null)

// Assumption 1 above guarantees there is a zone service for this
// system. the fabric and switch profiles that there is no more than
// one ZoneService for this system
$ZoneService-> = $ZoneServices[0]

if(!&startSession($ZoneService->))
{

return
}

// 2. Create the ZoneAlias
%InArguments[“CollectionAlias”] = #ZoneAliasName
#status = InvokeMethod(

$ZoneService->,
308 Version 1.0.1

SNIA Storage Management Initiative Specification
“CreateZoneAlias”,
%InArguments[],
%OutArguments[])

$ZoneAlias-> = %OutArguments[“ZoneAlias”]
if(#status != 0)

// ERROR!

// 3. Create or locate a ZoneMembershipSettingData
%InArguments[“ConnectivityMemberType”] = #ConnectivityMemberType
%InArguments[“ConnectivityMemberID”] = #ConnectivityMemberID
%InArguments[“SystemSpecificCollection”] = $ZoneAlias->
#status = InvokeMethod($ZoneService->, “CreateZoneMembershipSettingData”,
 %InArguments[], %OutArguments[])

// 4. Add to zone alias if not created as a member of the zone alias
// Zone member reference is set accordingly in the output arguments.

$ZoneMember-> = %OutArguments[“ZoneMembershipSettingData”]

if (#status == 8) {
 // ZoneMembershipSettingData already exists
 %InArguments2[“SystemSpecificCollection”] = $ZoneAlias->
 %InArguments2[“ZoneMembershipSettingData”] = $ZoneMember->
 InvokeMethod($ZoneService->, “AddZoneMembershipSettingData”,
 %InArguments2[], %OutArguments[])
}
else if (#status != 0)
 // ERROR!

// 5. End the session gracefully
&endSession($ZoneService->)

7.3.4.1.15.9.2 Delete a ZoneAlias
// DESCRIPTION
// Delete a zone alias.
// Before any operations can be imposed on the zoning service, a
// session is requested and obtained from the zone service.
// The session is released when the operations are completed.
//
// if the deletion fails, it may be because the Zone Alias is not empty.
// In this case, remove all members from the alias by deleting the
// ElementSettingData associations, and try the deletion again.
//
Version 1.0.1 309

SNIA Storage Management Initiative Specification
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The system of interest,either the fabric (AdminDomain)
// or the switch (ComputerSystem), has been
// previously identified and defined in the
// $System-> variable
// 2. The object name of the zone alias to be deleted is
// defined in the $ZoneAlias-> variable

// 1. Get the zone service and start a session
$ZoneServices->[] = AssociatorNames(

$System->,
“CIM_HostedService”,
“CIM_ZoneService”,
null,
null)

// Assumption 1 above guarantees there is a zone service for this
// system. the fabric and switch profiles that there is no more than
// one ZoneService for this system
$ZoneService-> = $ZoneServices[0]

if(!&startSession($ZoneService->))
{

return
}

// 2. Attempt to delete the alias
try{

DeleteInstance($ZoneAlias->)
}catch(CIM_ERR_FAILED){

// Try to remove any zone members in the alias
// via the ElementSettingData association
$ZoneMembers->[] = referenceNames($ZoneAlias->,

“CIM_ElementSettingData”,
null)

for #j in $ZoneMembers->[] {
DeleteInstance(ZoneMembers[#j])

}
// Try again
DeleteInstance($ZoneAlias->)

}
// 3. End Session
&endSession($ZoneService->)
310 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.15.10 Instrumentation Requirements
See parent sections.
Version 1.0.1 311

SNIA Storage Management Initiative Specification
7.3.4.1.15.11 Required CIM Elements

7.3.4.1.15.12 Required Properties for CIM Elements

7.3.4.1.15.12.1 HostedCollection

7.3.4.1.15.12.2 MemberOfCollection

7.3.4.1.15.12.3 NamedAddressCollection

Table 167: Required CIM Elements

Profile Classes &
Associations

Notes

HostedCollection NamedAddressCollection hosted on System

MemberOfCollection Associates ZoneMembershipSettingData to NamedAddressCollection

NamedAddressCollection The Zone Alias

ZoneService

Packages and Subprofiles

Zone Control Subprofile (p.
291)

Associated Indications

Table 168: Required Properties for HostedCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key, min(1), max(1) AdminDomain or
ComputerSystem

Dependent ref key, weak NamedAddressCollection

Table 169: Required Properties of MemberOfCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Collection ref key NamedAddressCollection

Member ref key ZoneMembershipSettingData

Table 170: Required Properties for NamedAddressCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key REQUIRED
312 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.15.13 ZoneService
The Service responsible for defining the zone enforcement for the fabric. The ZoneService is
Hosted on an AdminDomain and defines the containment and scope of the zoning entities.

Note: The following property list includes only those properties that must be added to the pre-
existing ZoneService instance (requried by the Zone Control subprofile).

7.3.4.1.15.13.1 Optional Subprofiles

7.3.4.1.16 FDMI Subprofile

7.3.4.1.16.1 Description
The Fabric-Device Management Interface (FDMI) enables the management of devices such as
HBAs through the Fabric. The FDMI complements data in the Fabric Profile.

This profile only addresses HBA type devices. The HBA Management Interface defined by FDMI is
a subset of interface defined by the Fibre Channel HBA API specification, as exposed by the FC
HBA Profile (p. 349).

7.3.4.1.16.2 Standards Dependencies
See parent sections.

7.3.4.1.16.3 Profile Dependencies
See parent sections.

7.3.4.1.16.4 CIM Server Requirements
See parent sections.

7.3.4.1.16.5 Instance Diagrams
See parent sections.

CollectionAlias string required Zone Alias Name
FCSW ZoneAlias.Name, REQUIRED

Table 171: Required Properties for ZoneService

Property/
Method

Type Qualifier/
Parameter

Description/Notes

CreateZoneAlias() uint16

DeleteZoneAlias() uint16

Table 172: Optional Profiles or Subprofiles

Name Notes

None.

Table 170: Required Properties for NamedAddressCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 313

SNIA Storage Management Initiative Specification
7.3.4.1.16.6 Durable Names and Correlatable IDs
See parent sections.

7.3.4.1.16.7 Methods
See parent sections.

7.3.4.1.16.8 Client Considerations
See parent sections.

7.3.4.1.16.9 Recipes
See parent sections.

7.3.4.1.16.10 Instrumentation Requirements
See parent sections.
314 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.16.11 Required CIM Elements

7.3.4.1.16.12 Required Properties for CIM Elements

7.3.4.1.16.12.1 ControlledByyJMS

Table 173: Required CIM Elements

Profile Classes & Associations Notes

DeviceSoftwareIdentity (p. 316) Associates PortController to SoftwareIdentity

ControlledByyJMS (p. 315)

FCPort (p. 316)

LogicalPortGroup (p. 318)

MemberOfCollection (p. 318)

PortController (p. 318) The HBA

ProtocolControllerForPort (p. 319) OPTIONAL

SCSIProtocolController (p. 319) OPTIONAL

SystemDevice (p. 289) Associates ComputerSystem and FCPort or
SCSIProtocolController

Packages

Physical Package Package (p. 103)

Software Subprofile (p. 145)

Associated Indications

Table 174: Required Properties for ControlledBy

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key, override SoftwareIdentity

Dependent ref key, override PortController

InstanceID string required

Version string required

Manufacturer string required

Classification string required
Version 1.0.1 315

SNIA Storage Management Initiative Specification
7.3.4.1.16.12.2 DeviceSoftwareIdentity

7.3.4.1.16.12.3 FCPort

Table 175: Required Properties for DeviceSoftwareIdentity

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key, override SoftwareIdentity

Dependent ref key, override PortController

InstanceID string required

Version string required

Manufacturer string required

Classification string required

Table 176: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemName string key

SystemCreationClassName string key

CreationClassName string key

ElementName string Port Symbolic Name

OperationalStatus uint16

DeviceID string key,
maxlen (64)

Opaque

Speed uint64 units ("bits per
second")

Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

MaxSpeed uint64 Port Supported Speed from HBA API.

PortType uint16 override “Unknown = 0, “Other” = 1,
“N” = 10, “NL” = 11, “F/NL” = 12, “Nx”
= 13, “E” = 14, “F” = 15, “FL” = 16, “B”
= 17,
“G” = 18.

LinkTechnology uint16 For FibreChannel, “FC”
316 Version 1.0.1

SNIA Storage Management Initiative Specification
PermanentAddress string maxlen (64) For FibreChannel, it is the Fibre
Channel Port WWN.

NetworkAddresses[] string maxlen (64),
arraytype
("indexed")

For Fibre Channel end device ports, it
is the Fibre Channel ID. For
Switches, it should be Null.

SupportedMaximumTransm
issionUnit

uint16

Table 176: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 317

SNIA Storage Management Initiative Specification
7.3.4.1.16.12.4 LogicalPortGroup

7.3.4.1.16.12.5 MemberOfCollection

7.3.4.1.16.12.6 PortController

Table 177: Required Properties for LogicalPortGroup

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string Node Symbolic Name if
available. Otherwise NULL. If
the underlying
implementation includes
characters that are illegal in
CIM strings, then truncate
before the first of those
characters.

InstanceID string key Opaque

Name Node WWN.

NameFormat string “WWN”

Table 178: Required Properties of MemberOfCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Collection ref key The Collection that aggregates members.

Member ref key The aggregated member of the Collection.

Table 179: Required Properties for PortController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DeviceID string maxlen(64), key Opaque

ProtocolSupported uint16 The protocol used by the
Controller to access 'controlled'
Devices.
318 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.1.16.12.7 ProtocolControllerForPort

7.3.4.1.16.12.8 SCSIProtocolController

Table 180: Required Properties of ProtocolControllerForPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Dependent ref The Port

Antecedent ref The protocol controller

Table 181: Required Properties for SCSIProtocolController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DeviceID string maxlen(64), key Opaque

MaxUnitsControlled uint32 Maximum number of directly
addressable entities supported
by this Controller. A value of 0
should be used if the number is
unknown or unlimited.
Version 1.0.1 319

SNIA Storage Management Initiative Specification
7.3.4.2 Switch Profile

7.3.4.2.1 Description
The switch profile models the physical and logical aspects of a Fibre Channel fabric interconnect
element. The ComputerSystem class constitutes the core of the switch model. It is identified as a
switch using the property Dedicated set to “switch”.

If a switch is modular, for instance if the switch is comprised of multiple blades on a backplane,
LogicalModule can optionally be used to model each sub-module, and as an aggregation point for
the switch ports.

FCPort describes the logical aspects of the port link and the data layers. PhysicalConnector models
the physical aspects of a port. An instance of the FCPortStatistics class is expected for each instance
of the FCPort class. FCPortStatistics expose real time port health and traffic information.

7.3.4.2.2 Standard Dependencies
The Switch Profile is based on the following standards:

7.3.4.2.3 Profile Dependencies
The Switch Profile requires the Server Profile (p. 441).

7.3.4.2.4 CIM Server Requirements

7.3.4.2.4.1 Functional Profiles

Table 182: Switch Standards Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF

Table 183: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
320 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.2.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.

7.3.4.2.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

7.3.4.2.5 Instance Diagram

7.3.4.2.6 Durable Names and Correlatable IDs of the Profile

7.3.4.2.6.1 Durable Names Exported
See parent profile.

7.3.4.2.6.2 Correlatable IDs Used
See parent profile.

7.3.4.2.7 Methods
See parent profile.

Figure 60: Switch Instance Diagram

E le m e n t
S t a t is t ic a lD a t a

P r o d u c t

C o m p u t e r S y s t e m

D e d ic a t e d = " s w i t c h "

F C P o r t

F C P o r t S t a t is t ic s

F C P o r t

E le m e n t
S t a t is t ic a lD a t a

F C P o r t S t a t is t ic s

S o f t w a r e
I n s t a l le d O n

S y s t e m

(F i r m w a r e)
S o f t w a r e I d e n t i t y

P h y s ic a lP a c k a g e

P r o d u c t P h y s ic a l
C o m p o n e n t

S y s t e m D e v ic e

C o m p u t e r S y s t e m
P a c k a g e .

.

.

Version 1.0.1 321

SNIA Storage Management Initiative Specification
7.3.4.2.8 Client Considerations
See parent profile

7.3.4.2.9 Recipes
See parent profile

7.3.4.2.10 Instrumentation Requirements
The information about the device that is supposed to be managed by the provider running on host
(proxy agent) is implementation specific.
322 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.2.11 Required CIM Elements

7.3.4.2.12 Required Properties for CIM Elements

7.3.4.2.12.1 ComputerSystem

Table 184: Required CIM Elements

Profile Classes & Associations Notes

ComputerSystem (p. 323)

ElementStatisticalData (p. 325)

FCPort (p. 325)

FCPortRateStatistics (p. 327)

FCPortStatistics (p. 327)

SystemDevice (p. 329)

Packages

Physical Package Package (p. 103)

Software Package

Associated Indications

Creation/Deletion of ComputerSystem SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_ComputerSystem
SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_ComputerSystem

Change in status of ComputerSystem SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_ComputerSystem AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Change in status of FCPort SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_FCPort AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Table 185: Required Properties for ComputerSystem

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

OperationalStatus uint16

CreationClassName string maxlen(256), key Name of Class

Name string maxlen(256), key For Switches, it is the FC WWN.

NameFormat string override “WWN”.

OtherIdentifyingInfo[] string The DomainID is stored here in
decimal format.
Version 1.0.1 323

SNIA Storage Management Initiative Specification
IdentifyingDescription[] string “DomainID” is placed in the
corresponding index.

Dedicated[] int16 “Switch”.

Table 185: Required Properties for ComputerSystem (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
324 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.2.12.2 ElementStatisticalData

7.3.4.2.12.3 FCPort

Table 186: Required Properties for ElementStatisticalData

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ManagedElement ref The reference to the FCPort

Stats ref The reference to the FCPortStatistics.

Table 187: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemName string key

SystemCreationClassName string key

CreationClassName string key

ElementName string Port Symbolic Name

OperationalStatus uint16

DeviceID string key, maxlen (64) Opaque

Speed uint64 units ("bits per
second")

Speed of zero represents a link not
established
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

MaxSpeed uint64 The max speed of the Port in Bits per
Second using the same algorithm as
Speed.

PortType uint16 override “Unknown = 0, “Other” = 1,
“N” = 10, “NL” = 11, “F/NL” = 12, “Nx” =
13, “E” = 14, “F” = 15, “FL” = 16, “B” =
17,
“G” = 18.

OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").

PortNumber uint16 NetworkPorts are often numbered
relative to either a logical modules or a
network element.

LinkTechnology uint16 For FibreChannel, “FC”.
Version 1.0.1 325

SNIA Storage Management Initiative Specification
PermanentAddress string maxlen (64) For FibreChannel, it is the Fibre
Channel Port WWN.

NetworkAddresses[] string maxlen (64),
arraytype
("indexed")

For Fibre Channel end device ports, it
is the Fibre Channel ID. For Switches,
it should be Null.

Table 187: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
326 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.2.12.4 FCPortRateStatistics

7.3.4.2.12.5 FCPortStatistics

Table 188: Required Properties for FCPortRateStatistics

Property/
Method

Type Qualifier/
Paramete

r

Description/Notes

ElementName string required

InstanceID unit16 key

SampleInterval datetime This property is recommended

StatisticTime datetime This property is recommended

TxFrameRate uint64 This property is recommended

RxFrameRate uint64 This property is recommended

MaxTxFrameRate uint64 This property is recommended

MaxRxFrameRate uint64 This property is recommended

TxRate uint64 This property is recommended

RxRate uint64 This property is recommended

PeakTxRate uint64 This property is recommended

PeakRxRate uint64 This property is recommended

Table 189: Required Properties for FCPortStatistics

Property/
Method

Type Qualifier/
Paramete

r

Description/Notes

ElementName string required

InstanceID unit16 key

StatisticTime datetime This property is recommended

ResetSelectedStats() This property is recommended

BytesTransmitted uint64

BytesReceived uint64

PacketsTransmitted uint64

PacketsReceived uint64

LIPCount uint64 This property is recommended

NOSCount uint64 This property is recommended

ErrorFrames uint64 This property is recommended

DumpedFrames uint64 This property is recommended
Version 1.0.1 327

SNIA Storage Management Initiative Specification
LinkFailures uint64

LossOfSyncCounter uint64 This property is recommended

LossOfSignalCounter uint64 This property is recommended

PrimitiveSeqProtocolErrCount uint64

CRCErrors uint64

InvalidTransmissionWords uint64 This property is recommended

FramesTooShort uint64 This property is recommended

FramesTooLong uint64 This property is recommended

AddressErrors uint64 This property is recommended

BufferCreditNotProvided uint64 This property is recommended

DelimiterErrors uint64 This property is recommended

EncodingDisparityErrors uint64 This property is recommended

LinkResetsReceived uint64 This property is recommended

LinkResetsTransmitted uint64 This property is recommended

MulticastFramesReceived uint64 This property is recommended

MulticastFramesTransmitted uint64 This property is recommended

FBSYFrames This property is recommended

PBSYFrames This property is recommended

FRJTFrames This property is recommended

PRJTFrames This property is recommended

RXClass1Frames This property is recommended

TXClass1Frames This property is recommended

Class1FBSY This property is recommended

Class1PBSY This property is recommended

Class1FRJT This property is recommended

Class1PRJT This property is recommended

RXClass2Frames This property is recommended

TXClass2Frames This property is recommended

Class2FBSY This property is recommended

Class2PBSY This property is recommended

Table 189: Required Properties for FCPortStatistics (Continued)

Property/
Method

Type Qualifier/
Paramete

r

Description/Notes
328 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.2.12.6 SystemDevice

7.3.4.2.13 Optional Subprofiles

7.3.4.2.14 Blades Subprofile

7.3.4.2.14.1 Description
See parent sections.

7.3.4.2.14.2 Standards Dependencies
See parent sections.

7.3.4.2.14.3 Profile Dependencies
See parent sections.

Class2FRJT This property is recommended

Class2PRJT This property is recommended

RXClass3Frames This property is recommended

TXClass3Frames This property is recommended

Class3FramesDiscarded This property is recommended

RXBroadcastFrames This property is recommended

TXBroadcastFrames This property is recommended

RxOLS This property is recommended

TxOLS This property is recommended

InvalidOrderedSets This property is recommended

Table 190: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override System Reference

PartComponent ref override LogicalDevice Reference

Table 191: Optional Profiles or Subprofiles

Name Notes

Blades Subprofile (p.
329)

Table 189: Required Properties for FCPortStatistics (Continued)

Property/
Method

Type Qualifier/
Paramete

r

Description/Notes
Version 1.0.1 329

SNIA Storage Management Initiative Specification
7.3.4.2.14.4 CIM Server Requirements
See parent sections.

7.3.4.2.14.5 Instance Diagram

7.3.4.2.14.6 Durable Names and Correlatable IDs
See parent sections.

7.3.4.2.14.7 Methods
See parent sections.

7.3.4.2.14.8 Client Considerations
See parent sections.

7.3.4.2.14.9 Recipes
See parent sections.

7.3.4.2.14.10 Instrumentation Requirements
See parent sections.

Figure 61: Switch Blade Instance Diagram

Product

ComputerSystem

Dedicated="switch"

FCPort

Module
Port

FCPort

PhysicalPackage

Realizes

ProductPhysical
Component

System
Device

ComputerSystem
Package

LogicalModule
330 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.2.14.11 Required CIM Elements

7.3.4.2.14.12 Required Properties for CIM Elements

7.3.4.2.14.12.1 LogicalModule

Table 192: Required CIM Elements

Profile Classes & Associations Notes

LogicalModule (p. 331)

ModulePort (p. 332)

Realizes Associates LogicalModule to PhysicalPackage

SystemDevice (p. 332)

Packages

Physical Package Package (p. 103)

Associated Indications

Creation/Deletion of LogicalModule. “SELECT * FROM CIM_InstCreation WHERE SourceInstance
ISA CIM_LogicalModule”
“SELECT * FROM CIM_InstDeletion WHERE SourceInstance
ISA CIM_LogicalModule”
These indicaitons are RECOMENDED.

Change in status of LogicalModule “SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalModule AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus”
This indicaiton is RECOMENDED.

Table 193: Required Properties for LogicalModule

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemName string key

SystemCreationClassName string key

CreationClassName string key

ElementName string

OperationalStatus uint16

DeviceID string key, maxlen (64)

ModuleNumber uint16
Version 1.0.1 331

SNIA Storage Management Initiative Specification
7.3.4.2.14.12.2 ModulePort

7.3.4.2.14.12.3 SystemDevice

7.3.4.2.14.13 Optional Subprofiles

Table 194: Required Properties for ModulePort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref key LogicalModule

PartComponent ref key

Table 195: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override System Reference

PartComponent ref override LogicalDevice Reference

Table 196: Optional Profiles or Subprofiles

Name Notes

None
332 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.3 Router Profile

7.3.4.3.1 Description
A Router is a device that translates between different types of SCSI buses. The instance diagram
shows a system with a parallel SCSI buss and Fibre Channel buss. Devices on the parallel bus are
served to the Fibre Channel bus without changing the characteristics of the device.

7.3.4.3.2 Standard Dependencies
The Router profile is based on the following standards:

7.3.4.3.3 Profile Dependencies
The Router profile requires the Server Profile (p. 441).

7.3.4.3.4 CIM Server Requirements

7.3.4.3.4.1 Functional Profiles

7.3.4.3.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.

7.3.4.3.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

Table 197: Router Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF

Table 198: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
Version 1.0.1 333

SNIA Storage Management Initiative Specification
7.3.4.3.5 Instance Diagrams

7.3.4.3.6 Durable Names and Correlatable IDs of the Profile

7.3.4.3.6.1 Durable Names Exported
See parent sections.

7.3.4.3.6.2 Correlatable IDs Used
See parent sections.

7.3.4.3.7 Methods
See parent sections.

7.3.4.3.8 Client Considerations

7.3.4.3.8.1 Basic Design
The router model consists of 6 major groups of classes (Core, Physical, Software, SCSI buses,
source / exported devices).

The CompuerSystem class is the core of the model. It is identified as a router by the dedicated
attribute being set to “Router”. The PysicalPackage class and PortOnDevice class represent the
physical aspects of the router and served devices. These classes contain attributes that can be used
to identify the hardware. This information includes serial number, model number, and vendor
name.

The SoftwareElement class represents the product’s firmware or vendor specific utilities that are
running on the router. This class should be sub-classed for each utility.

Figure 62: Router Instance Diagram

ComputerSystem

Dedicated[x]=' 'Router'

Sof tw areElement

Installed
Sof tw areElemen

t
LogicalDevice

SCSIProtocolController

ConnectionRole = 'Server'

FCPort

ProtocolControllerForPort

SCSIProtocolController

ConnectionRole = 'Client'

ProtocolControllerAccessesUni
t

LogicalDevice

1

1

*

*

ConcreteIdentity

realizes

PhysicalPackageProduct

ProductPhysicalComponent

ComputerSystemPackage

PhysicalPackageProduct

ProductPhysicalComponent

HostedServic
e

ControllerConf iguration
Service

ProtocolControllerForUnit

LogicalPortGroup

MemberOfCollection
334 Version 1.0.1

SNIA Storage Management Initiative Specification
The SCSIProtocolController class and optionally the FCPort class represent the SCSI buses that are
part of the router. The SCSIProtocolController class near the bottom of the instance diagram is the
parallel SCSI side of the router. Note that it doesn’t have an association to a FCPort class. It has
ProtocolControllerAccessesUnit associations to the devices on the bus. The SCSI addresses of the
devices are stored in the association.

The SCSIProtocolController class near to top of the instance diagram has a ConcreteIdentity
association to a FCPort class. This indicates the FCPort is a Fibre channel SCSI port. This FC bus
connects to the SAN. This bus uses ProtocolControllerForUnit and ProtocolControllerForUnit
associations to hold the address mapping and masking. The SCSIProtocolController manages these
associations.

A LogicalDevice class represents the device on the back end bus. This class has a Realizes
association to a PhysicalPackage class to identify the hardware. The class uses a ConcreteIdentity
association to a second instance of LogicalDevice. This class represents the device as seen by the
front end port.

7.3.4.3.9 Recipes
No recipes have been defined for this profile.

7.3.4.3.10 Instrumentation Requirements
No implementation requirements have been defined for this profile.
Version 1.0.1 335

SNIA Storage Management Initiative Specification
7.3.4.3.11 Required CIM Elements

7.3.4.3.12 Required Properties for CIM Elements

Table 199: Required CIM Elements

Profile Classes & Associations Notes

ComputerSystem (p. 337)

ComputerSystemPackage (p. 340)

FCPort (p. 340)

LogicalDevice (p. 344)

ConcreteIdentity (p. 344)

LogicalPortGroup (p. 344)

MemberOfCollection (p. 344)

SCSIProtocolController (p. 345)

ProtocolControllerAccessesUnit (p. 347)

ProtocolControllerForUnit (p. 347)

Packages

Physical Package Package (p. 103)

Associated Indications

Creation/Deletion of a ComputerSystem SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem
SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

Creation/Deletion of an FCPort SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort
SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FCPort

Change in status of ComputerSystem SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Change is status of FCPort SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FCPort AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus
336 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.3.12.1 ComputerSystem

Table 200: Required Properties for ComputerSystem

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Caption string maxlen(64) Short (one line) description

Description string Longer description

ElementName string User Friendly name

OperationalStatus uint16

CreationClassName string maxlen(256), key Name of Class

Name string maxlen(256), key

NameFormat string (override
“nameformat”)

The ComputerSystem object and
its derivatives are Top-level
Objects of CIM. They provide the
scope for numerous components.
Having unique System keys is
required. A heuristic is defined to
create the ComputerSystem Name
to attempt to always generate the
same Name, independent of
discovery protocol. This prevents
inventory and management
problems where the same asset or
entity is discovered multiple times,
but cannot be resolved to a single
object. Use of the heuristic is
optional, but recommended.
The NameFormat property
identifies how the ComputerSystem
Name is generated, using a
heuristic. The heuristic is outlined,
in detail, in the CIM V2 System
Model spec. It assumes that the
documented rules are traversed in
order, to determine and assign a
Name. The NameFormat Values
list defines the precedence order
for assigning the ComputerSystem
Name. Several rules do map to the
same Value.
Note that the ComputerSystem
Name calculated using the
heuristic is the System's key value.
Other names can be assigned and
used for the ComputerSystem, that
better suit a business, using
Aliases.
Version 1.0.1 337

SNIA Storage Management Initiative Specification
OtherIdentifyingInfo[] string An array of free-form strings
providing explanations and details
behind the entries in the
OtherIdentifyingInfo array. Note,
each entry of this array is related to
the entry in OtherIdentifyingInfo
that is located at the same index.

IdentifyingDescription[] string An array of free-form strings
providing explanations and details
behind the entries in the
OtherIdentifyingInfo array. Note,
each entry of this array is related to
the entry in OtherIdentifyingInfo
that is located at the same index.

Dedicated[] int16 “blockserver” Enumeration indicating whether the
ComputerSystem is a special-
purpose System (i.e., dedicated to
a particular use), versus being
'general purpose'. For example,
one could specify that the System
is dedicated to \"Print\" (value=11)
or acts as a \"Hub\" (value=8). ||A
clarification is needed with respect
to the value 17 (\"Mobile User
Device\"). An example of a
dedicated user device is a mobile
phone or barcode scanner in a
store that communicates via radio
frequency. These systems are
quite limited in functionality and
programmability, and are not
considered 'general purpose'
computing platforms. Alternately,
an example of a mobile system that
is 'general purpose' (i.e., is NOT
dedicated) is a hand-held
computer. Although limited in its
programmability, new software can
be downloaded and its functionality
expanded by the user.

OtherDedicatedDescription string A string describing how or why the
system is dedicated when the
Dedicated array includes the value
2, \"Other\".

Table 200: Required Properties for ComputerSystem (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
338 Version 1.0.1

SNIA Storage Management Initiative Specification
ResetCapability uint16 If enabled (value = 4), the
ComputerSystem can be reset via
hardware (e.g. the power and reset
buttons). If disabled (value = 3),
hardware reset is not allowed. In
addition to Enabled and Disabled,
other Values for the property are
also defined - \"Not Implemented\"
(5), \"Other\" (1) and \"Unknown\"
(2).

Table 200: Required Properties for ComputerSystem (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 339

SNIA Storage Management Initiative Specification
7.3.4.3.12.2 ComputerSystemPackage

7.3.4.3.12.3 FCPort

Table 201: Required Properties for ComputerSystemPackage

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref The reference to the PhysicalPackage(s)
that realize a UnitaryComputerSystem.

Dependent ref The reference to the
UnitaryComputerSystem.

PlatformGUID string A Globally Unique Identifier for the System's
Package.

Table 202: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemName string key

SystemCreationClassName string key

CreationClassName string key

ElementName string

OperationalStatus uint16

DeviceID string key, maxlen (64)

Speed uint64 units ("bits per
second")

Speed of zero represents a link not
established
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

MaxSpeed uint64 The max speed of the Port in Bits per
Second.
FC-FS Port Speed Capabilities
340 Version 1.0.1

SNIA Storage Management Initiative Specification
PortType uint16 override PortType is defined to force consistent
naming of the 'type' property in
subclasses and to guarantee unique
enum values for all instances of
NetworkPort. When set to 1 (\"Other\"),
related property OtherPortType
contains a string description the of the
port's type. A range of values,
DMTF_Reserved, has been defined
that allows subclasses to override and
define their specific port types.

OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").

PortNumber uint16 NetworkPorts are often numbered
relative to either a logical modules or a
network element.

LinkTechnology uint16 An enumeration of the types of links.
When set to 1 (\"Other\"), the related
property OtherLinkTechnology
contains a string description of the
link's type.

OtherLinkTechnology uint16 A string value describing
LinkTechnology when it is set to 1,
\"Other\".

PermanentAddress string maxlen (64) PermanentAddress defines the
network address hard-coded into a
port. This hard-coded address may be
changed via firmware upgrade or
software configuration. If so, this field
should be updated when the change is
made. PermanentAddress should be
left blank if no hard-coded address
exists for the NetworkAdapter.
Port WWN (InfiniBand: Port GUID)

NetworkAddresses[] string maxlen (64),
arraytype
("indexed")

An array of strings indicating the
network addresses for the port.
FCID (InfiniBand: LIDs)
FC-FS Address Identifier

Table 202: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 341

SNIA Storage Management Initiative Specification
Speed uint64 override Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

FullDuplex boolean Boolean indicating that the port is
operating in full duplex mode.

AutoSense boolean A boolean indicating whether the
NetworkPort is capable of
automatically determining the speed or
other communications characteristics
of the attached network media.

SupportedMaximumTransm
issionUnit

uint64 The maximum transmission unit (MTU)
that can be supported."), Units
("Bytes")

ActiveMaximumTransmissio
nUnit

uint64 The active or negotiated maximum
transmission unit (MTU) that can be
supported.

PortType uint16 FC-GS Port.Type||The specific mode
currently enabled for the Port. The
values: \"N\" = Node Port, \"NL\" =
Node Port supporting FC arbitrated
loop, \"E\" = Expansion Port connecting
fabric elements (for example, FC
switches), \"F\" = Fabric (element) Port,
\"FL\" = Fabric (element) Port
supporting FC arbitrated loop, and \"B\"
= Bridge Port. PortTypes are defined in
the ANSI X3 standards. When set to 1
(\"Other\"), the related property
OtherPortType contains a string
description of the port's type.

SupportedCOS uint16[] FC-GS Class Of Service
An array of integers indicating the Fibre
Channel Classes of Service that are
supported. The active COS are
indicated in ActiveCOS.

ActiveCOS uint16[] FC-GS Class Of Service
An array of integers indicating the
Classes of Service that are active. The
Active COS is indicated in ActiveCOS.

Table 202: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
342 Version 1.0.1

SNIA Storage Management Initiative Specification
SupportedFC4Types uint16[] FC-GS FC4-TYPEs
An array of integers indicating the Fibre
Channel FC-4 protocols supported.
The protocols that are active and
running are indicated in the
ActiveFC4Types property.

ActiveFC4Types uint16[] FC-GS FC4-TYPE
An array of integers indicating the Fibre
Channel FC-4 protocols currently
running. A list of all protocols
supported is indicated in the
SupportedFC4Types property.

Table 202: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 343

SNIA Storage Management Initiative Specification
7.3.4.3.12.3.1 LogicalDevice

7.3.4.3.12.3.2 ConcreteIdentity

7.3.4.3.12.4 LogicalPortGroup

7.3.4.3.12.5 MemberOfCollection

Table 203: Required Properties for LogicalDevice

Property/
Method

Type Qualifier/
Paramete

r

Description/Notes

Antecedent ref override The physical component that implements the
Device.

Dependent ref override The LogicalDevice.

Table 204: Required Properties for ConcreteIdentity

Property/
Method

Type Qualifier/
Paramete

r

Description/Notes

Antecedent ref override

Dependent ref override

Table 205: Required Properties for LogicalPortGroup

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceName string Node Symbolic Name

SystemCreationClassName string propagated, key

SystemName string propagated, key

InstanceID string key Node WWN||FC-GS
InterconnectElement.Name,
REQUIRED

Table 206: Required Properties of MemberOfCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Collection ref key The Collection that aggregates members.

ManagedElement ref key The aggregated member of the Collection.
344 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.3.12.6 SCSIProtocolController

Table 207: Required Properties for SCSIProtocolController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Caption string maxlen(64) Short (one line) description

Description string Longer description

ElementName string User Friendly name

InstallDate datetime

OperationalStatus uint16

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's
Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DeviceID string maxlen(64), key unique identifying
information

PowerManagementSupported boolean

PowerManagementCapabilities int16[]

Availability int16

StatusInfo int16

LastErrorCode uint32

ErrorDescription string

ErrorCleared boolean

OtherIdentifyingInfo string[]

PowerOnHours uint64

TotalPowerOnHours uint64

IdentifyingDescriptions string[]

AdditionalAvailability uint16[]

MaxQuiesceTime uint64

PortNumber uint64 System level port or bus
identification number

TimeOfLastReset datetime Time of last reset of the
Controller.
Version 1.0.1 345

SNIA Storage Management Initiative Specification
ProtocolSupported uint16 The protocol used by the
Controller to access
'controlled' Devices.

MaxNumberControlled uint32 Maximum number of
directly addressable
entities supported by this
Controller. A value of 0
should be used if the
number is unknown or
unlimited.

ProtocolDescription string A free form string providing
more information related to
the ProtocolSupported by
the Controller.

ProtectionManagement uint16 An integer enumeration
indicating whether or not
the SCSIProtocolController
provides redundancy or
protection against device
failures.

MaxDataWidth uint32 Maximum data width (in
bits) supported by the
SCSIProtocolController.

MaxTransferRate uint64 Maximum transfer rate (in
Bits per Second) supported
by the
SCSIProtocolController.

ControllerTimeouts uint32 Number of
SCSIProtocolController
timeouts that have
occurred since the
TimeOfLastReset.

SignalCapabilities[] uint16 Signal capabilities that can
be supported by the
SCSIProtocolController.
For example, the Controller
may support \"Single
Ended\" and \"Differential\".
In this case, the values 3
and 4 would be written to
the SignalCapabilities
array.

Table 207: Required Properties for SCSIProtocolController (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
346 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.4.3.12.7 ProtocolControllerAccessesUnit

7.3.4.3.12.8 ProtocolControllerForUnit

Table 208: Required Properties for ProtocolControllerAccessesUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

NegotiatedSpeed unit64

NegotiatedDataWidth unit32

Dependent ref override LogicalDevice Reference

AccessState unit16

TimeOfDeviceReset datetime

NumberOfHardResets unit32

NumberOfSoftResets unit32

Antecedent ref override SCSIProtocolController Reference

SCSITimeouts unit32

SCSIRetries unit32

InitiatorId unit32

TargetId uint32

TargetLUN unit64

SCSIReservation unit16

SCSISignal unit16

MaxQueueDepth unit32

QueueDepthLimit unit32

Table 209: Required Properties for ProtocolControllerForUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

NegotiatedSpeed unit64

NegotiatedDataWidth unit32

Dependent ref override LogicalDevice Reference

AccessState unit16

TimeOfDeviceReset datetime

NumberOfHardResets unit32

NumberOfSoftResets unit32
Version 1.0.1 347

SNIA Storage Management Initiative Specification
7.3.4.3.13 Optional Subprofiles

Antecedent ref override SCSIProtocolController
Reference

DeviceNumber string Formatted as uppercase
hexadecimal digits, with a
prefix of “0x”.

Table 210: Optional Profiles or Subprofiles

Name Notes

Software Subprofile (p. 145)

Backend Ports Subprofile (p. 225)

LUN Mapping/Masking

Table 209: Required Properties for ProtocolControllerForUnit (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
348 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.5 Hosts

7.3.5.1 FC HBA Profile

7.3.5.1.1 Description
A Fibre Channel adapter used in a host system is called a Host Bus Adapter (HBA). An HBA is a
physical device that contains one or more Fibre Channel ports. A single system contains one or
more HBAs.

An HBA is represented in CIM by FCPorts associated to a ComputerSystem through the
SystemDevice association. To understand the containment to the HBAs physical implementation
the FCPorts are associated to PhysicalPackage (typically Card) through the Realizes association. If
the HBA has logical operations that apply to the HBA and not to an individual port, then the
PortController can be instantiated. The PortController is associated to the ComputerSystem through
the SystemDevice association and associated to the ports through the ProtocolControllerForUnit
association.

7.3.5.1.2 Standard Dependencies
The FC HBA profile is based on the following standards:

7.3.5.1.3 Profile Dependencies
The FC HBA profile requires the Server Profile (p. 441).

7.3.5.1.4 CIM Server Requirements

7.3.5.1.4.1 Functional Profiles

Table 211: HBA Standards Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF

Table 212: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
Version 1.0.1 349

SNIA Storage Management Initiative Specification
7.3.5.1.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.

7.3.5.1.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

7.3.5.1.5 Instance Diagrams

7.3.5.1.6 Durable Names and Correlatable IDs of the Profile

7.3.5.1.6.1 Durable Names Exported
For the Fibre Channel Port, the durable name is the Port WWN in FCPort.PermanentAddress.

7.3.5.1.6.2 Correlatable IDs Used
There are no correlatable IDs defined for this profile

7.3.5.1.7 Methods
There are no methods defined for this profile

Figure 63: FC HBA Instance Diagram

Ele men t
S ta tis tic a lDa ta

P r o d u c t

Co mp u te rS y s te m

FC P o r t FCPo r tS ta tis tic s

Me mb e rO f Co lle c tio n

P o r tC o n t r o lle r Co n tro lled B y

S o f tw a re
Ins ta lle d

O n S y s te m
(Dr iv e r)

S o f tw a r e Id e n t it y

FC P o r t
Ele me n t

S ta tis tic a lDa ta

FCPor tS ta tis tic s

L o g ic a lP o r tG r o u p

Me mb e rO f Co lle c tio n

Co n tro lle d B y

(FCo de /B IO S)
S o f tw a r e Id e n t ity

t(Firmw are)
S o f tw a r e Id e n t it y

(e .g . Ca rd)

P h y s ic a lP a c k a g e

Pro du c tPh y s ic a lCo mp on e n t

T h is re p re s e n ts th e "n o rm a l" c a s e o f o n e
n o d e p e r HB A c o m p r is in g a ll th e p o r ts o f
th e HB A . E xtre m e v a r ia t io n s in c lu d e o n e
n o d e p e r p o r t r e g a rd le s s o f th e n u m b e r o f

p o r ts o n a n HB A , a n d o n e n o d e fo r a ll
p o r ts o n th e h o s t re g a rd le s s o f th e

n u m b e r o f HB A s p re s e n t.

S y s te m
De v ic e

S y s te m
De v ic e

S y s te mDe v ic e
Ho s te d Co lle c tio n

Re a liz es

S CS IPro toc o lCo n tro lle r

Con n e c tio nRo le =”Clie n t” Pro to c o lCon tro lle rFo rPo r t

S y s te m
De v ic e

S CS IPro to c o lCo n tro lle r

Co n n ec tion Ro le =”Clien t” Pro to c o lCo n tro lle rFo rPo r t

S y s te mDe v ic e

De v ic e
S o f tw a re

Ide n tity
De v ic e

S o f tw a re
Id e n tity

De v ic e
S o f tw a re

Ide n tity
350 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.5.1.8 Client Considerations

7.3.5.1.8.1 Multiple Agents
The client does need to consider that there could be multiple SMI-S agents providing instances
unrelated to what maybe provided on the Host system, and may be unrelated to other SMI-S
agents on the host.

7.3.5.1.9 Recipes
There are no recipes defined for this profile.

7.3.5.1.10 Instrumentation Requirements
There are no instrumentation requirements defined for this profile.
Version 1.0.1 351

SNIA Storage Management Initiative Specification
7.3.5.1.11 Required CIM Elements

7.3.5.1.12 Required Properties for CIM Elements

7.3.5.1.12.1 ComputerSystem

Table 213: Required CIM Elements

Profile Classes & Associations Notes

ComputerSystem (p. 352)

ControlledBy (p. 354)

DeviceSoftware (p. 354)

ElementStatisticalData (p. 354) Associates FCPort and FCPortStatistics

FCPort (p. 355)

FCPortStatistics (p. 356)

HostedCollection (p. 357)

LogicalPortGroup (p. 357)

MemberOfCollection (p. 357)

PortController (p. 357) The HBA

PortController (p. 357)

ProtocolControllerForPort (p. 359)

SCSIProtocolController (p. 359)

SoftwareIdentity (p. 359)

SystemDevice (p. 359) Associates ComputerSystem and FCPort or
SCSIProtocolController

Packages

Physical Package Package (p. 103)

Software Subprofile (p. 145)

Associated Indications

Creation of an FCPort SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_FCPort

Change in status of FCPort SELECT * FROM CIM_InstModification WHERE SourceInstance
ISA CIM_FCPort AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Table 214: Required Properties for ComputerSystem

Property/
Method

Type Qualifier/
Parameter

Description/Notes

CreationClassName string maxlen(256), key Name of Class
352 Version 1.0.1

SNIA Storage Management Initiative Specification
Name string maxlen(256), key The name of the host, based on
NameFormat.

NameFormat string required In the Host Profile, valid NameFormats
are “IPAddressV4”, “IPAddressV6”, or
“DNSName”

Table 214: Required Properties for ComputerSystem (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 353

SNIA Storage Management Initiative Specification
7.3.5.1.12.2 ControlledBy

7.3.5.1.12.3 ProtocolControllerForUnit

7.3.5.1.12.4 DeviceSoftware

7.3.5.1.12.5 ElementStatisticalData

Table 215: Required Properties for ControlledBy

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key, override The Controller.

Dependent ref key, override The controlled Device.

Table 216: Required Properties for ProtocolControllerForUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key, override The Controller. In the Host Profile, this
refers to the PortController

Dependent ref key, override The controlled Device. In the Host
Profile, this refers to an FCPort.

Table 217: Required Properties for DeviceSoftware

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SoftwareElement ref key, override The SoftwareElement.

LogicalDevice ref key, override The LogicalDevice that requires or
uses the software. In the Host Profile,
this refers to the PortController (or
FCPort)

Purpose uint16 An enumerated integer to indicate the
role this software plays in regards to its
associated Device. For example, this
software could be driver (value=2),
firmware (6), or ROM (8).

Table 218: Required Properties for ElementStatisticalData

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ManagedElement ref For the Host Profile, this is the
FCPort

Stats ref For the Host Profile, this is the
FCPortStatistics
354 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.5.1.12.6 FCPort

Table 219: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string Port Symbolic Name

OperationalStatus[] uint16

DeviceID string key, maxlen (64) Opaque

Speed uint64 units ("bits per
second")

Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

MaxSpeed uint64 Port Supported Speed from HBA API.

PortType uint16 override “Unknown = 0, “Other” = 1,
“N” = 10, “NL” = 11, “F/NL” = 12, “Nx” =
13, “E” = 14, “F” = 15, “FL” = 16, “B” = 17,
“G” = 18.

OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").

LinkTechnology uint16 For FibreChannel, “FC”

PermanentAddress string maxlen (64) For FibreChannel, it is the Fibre Channel
Port WWN.

NetworkAddresses[] string maxlen (64),
arraytype
("indexed")

For Fibre Channel end device ports, it is
the Fibre Channel ID. For Switches, it
should be Null.
This property is OPTIONAL.

ActiveMaximumTransmissio
nUnit

uint64 The active or negotiated maximum
transmission unit (MTU) that can be
supported.
This property is OPTIONAL.

SupportedCOS uint16[] Port Supported Class of Service.
This property is OPTIONAL.

ActiveFC4Types uint16[]
Version 1.0.1 355

SNIA Storage Management Initiative Specification
7.3.5.1.12.7 FCPortStatistics

Table 220: Required Properties for FCPortStatistics

Property/
Method

Type Qualifi
er/

Param
eter

Description/Notes

ElementName string key

BytesTransmitted uint64

BytesReceived uint64

PacketsTransmitted uint64

PacketsReceived uint64

LIPCount uint64

NOSCount uint64

ErrorFrames uint64

DumpedFrames uint64

LinkFailures uint64

LossOfSyncCounter uint64

LossOfSignalCounter uint64

PrimitiveSeqProtocolErCount uint64

CRCError uint64

InvalidTransmissionWords uint64

FramesTooShort uint64

FramesTooLong uint64

AddressErrors uint64

BufferCreditNotProvided uint64

DelimiterErrors uint64

EncodingDisparity uint64

LinkResetsReceived uint64

LinkResetsTransmitted uint64

MulticastFramesReceived uint64

MulticastFramesTransmitted uint64
356 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.5.1.12.8 HostedCollection

7.3.5.1.12.9 LogicalPortGroup

7.3.5.1.12.10 MemberOfCollection

7.3.5.1.12.11 PortController

Table 221: Required Properties for HostedCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent REF key, min(1), max(1) ComputerSystem

Dependent REF key, weak LogicalPortGroup

Table 222: Required Properties for LogicalPortGroup

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string propagated,
key

SystemName string propagated, key

ElementName string Node Symbolic Name

InstanceID string key Opaque

Name Node WWN.

NameFormat string “WWN”

Table 223: Required Properties of MemberOfCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Collection REF Key The Collection that aggregates members.

ManagedElement REF Key The aggregated member of the Collection.

Table 224: Required Properties for PortController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ConnectionRole uint16 In the Host Profile, MUST
include Client (3)

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass
Version 1.0.1 357

SNIA Storage Management Initiative Specification
DeviceID string maxlen(64), key Opaque

ProtocolSupported uint16 The protocol used by the
Controller to access 'controlled'
Devices.

Table 224: Required Properties for PortController (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
358 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.5.1.12.12 ProtocolControllerForPort

7.3.5.1.12.13 SCSIProtocolController

7.3.5.1.12.14 SystemDevice

7.3.5.1.12.15 SoftwareIdentity
The SoftwareIdentity is used to model either software or firmware.

Table 225: Required Properties of ProtocolControllerForPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Dependent ref The Port

Antecedent ref The protocol controller

Table 226: Required Properties for SCSIProtocolController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ConnectionRole uint16 In the Host Profile, MUST
include Client (3)

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DeviceID string maxlen(64), key Opaque

ProtocolSupported uint16 The protocol used by the
Controller to access 'controlled'
Devices.

MaxNumberControlled uint32 Maximum number of directly
addressable entities supported
by this Controller. A value of 0
should be used if the number is
unknown or unlimited.

Table 227: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override System Reference

PartComponent ref override LogicalDevice Reference
Version 1.0.1 359

SNIA Storage Management Initiative Specification
SoftwareIdentity is subclassed from LogicalElement.

7.3.5.1.13 Optional Subprofiles

Table 228: Required Properties for SoftwareIdentity

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key The name used to identify this
SoftwareIdentity.

VersionString string Software Version should be in the form
<Major>.<Minor>.<Revision> or
<Major>.<Minor><letter><revision>.

Manufacturer string Manufacturer of this software.

Classifications string required “Driver”, “Firmware” or “FCode/BIOS”

BuildNumber uint16 OPTIONAL. The internal identifier for this
compilation of software, if available.

RevisionNumber uint16 OPTIONAL. This is the numeric
representation of the revision number in the
VersionString

MajorVersion uint16 OPTIONAL. This is the numeric
representation of the Major number in the
VersionString

MinorVersion uint16 OPTIONAL. This is the numeric
representation of the Minor number in the
VersionString

Table 229: Optional Profiles or Subprofiles

Name Notes

None.
360 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.5.2 Host Discovered Resources Profile

7.3.5.2.1 Description
Among the primary functions of a Fibre Channel Host Bus Adapter (HBA) and its supporting
software is discovery of SAN resources and presentation of those resources to the Host Operating
System. A description of the results of these functions is useful for some aspects of SAN
management:

• Determination of discrepancies between resources discovered by HBAs and the resources
provided by other SAN elements is valuable for diagnostics

• The information discovered by HBAs can provide information about SAN resources not
themselves supported by SMI-S agents

• In SANs that lack an agent for the Fabric profile, e.g., Private Arbitrated Loops and FC Direct
Attach, a client can construct a view of the fabric by integrating the discovered resources from
any available hosts

• Discovered resource information includes the identification of SAN resources as they are
presented to the Host OS

The Host Discovered Resource agent uses the SNIA HBA API Phase 1 to create a generic model of
the logical SAN and attached storage. HBA API Phase 1 is included as an appendix to the FC-MI
specification – see www.t11.org. This agent models elements also exposed by HBA, storage, and
switch agents. A client can use durable names to equate objects from different agents.

This profile is restricted to FCP (SCSI over FibreChannel) discovery. A similar approach can be
used for other protocols (such as IP over FC), but this is not described in this profile. Note that no
physical objects are represented by this profile. Since the objects in this profile are discovered
remotely through an HBA, only their logical aspects are available. In general, the objects exposed
by this agent duplicate those exposed by canonical HBA, storage, or switch agents that provide the
physical model.

The Host SAN Resources are independently instantiated for each HBA FCPort on a host. They
include its discovered (remote) FCP ports, and SCSI Targets.

The discovering FCPort and each discovered FCPort are associated by DeviceSAPImplementation to
a ProtocolEndpoint representing its FCP support (ProtocolType=other,
OtherProtocolType=”SCSIOverFC”). An instance of LogicalNetwork is created to aggregate the FCP
ProtocolEndpoint for the discovering FCPort and all its discovered FCPorts.

SCSI Targets are modeled by FCPorts with a ProtocolControllerForPort to a SCSIProtocolController
that, in turn, has at least one ProtocolControllerForUnit association to a LogicalDevice. The
SCSIProtocolController / FCPort combination represents a SCSI Port with Target capability. The
LogicalDevice in such associations represent SCSI Target Logical Units.

SCSI Initiators (HBA ports) are also modeled with a SCSIProtocolController / FCPort combination.
Initiator SCSIProtocolControllers have ProtocolControllerAccessesUnit associations to logical
units (LogicalDevice subclasses) that are mapped to the HBA host.

Target Mappings are a pairing of an OS SCSI ID and an FCPID for a Logical Unit that represents
a Logical Unit as presented to a Host Operating System. They are modeled by a LogicalDevice with
both a ProtocolControllerForUnit and a ProtocolControllerAccessesUnit association. The OS SCSI
ID is represented as attributes of the ProtocolControllerAccessesUnit association. The paired
FCPID is derived from the attributes of the ProtocolControllerForUnit association and the FCPort
to which it (indirectly) associates.
Version 1.0.1 361

SNIA Storage Management Initiative Specification
CIM requires that all LogicalDevices (including SCSIProtocolController and FCPort) be weak to a
System via a SystemDevice aggregation. It does not in general have means to discover the
containing systems for discovered FCPorts, so for each LogicalNetwork, this profile provides an
AdminDomain to aggregate discovered objects that MUST be weak to a System.

7.3.5.2.2 Standard Dependencies
The Host Discovered Resources profile is based on the following standards:

7.3.5.2.3 Profile Dependencies
The Host Discovered Resources profile requires the Server Profile (p. 441).

7.3.5.2.4 CIM Server Requirements

7.3.5.2.4.1 Functional Profiles

7.3.5.2.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.

7.3.5.2.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

7.3.5.2.5 Instance Diagrams
The first instance diagram depicts two logical networks – each contains an HBA and one of two
FCPorts in a multi-port array. Three volumes are depicted; note that volume 2 has no
ProtocolControllerAccessesUnit associations – indicating that it is not mapped to the OS hosting

Table 230: HostDiscoveredResources Standards Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF

Table 231: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
362 Version 1.0.1

SNIA Storage Management Initiative Specification
this agent. Due to the complexity of this example, some associations are missing and some are
unlabeled.

Note that all the depicted objects are instantiated by the Discovered Resources agent. The dashed
rectangles represent groups of objects that duplicate objects from other agents. For example, an
HBA agent also exposes all the objects in the “HBA1 Objects” rectangle. A client can use durable
names to “stitch together” these duplicates.

The second diagram consists of just a single HBA port, single array port and single volume. All
associations are included and labeled.

Figure 64: Host Discovered Resources Instance Diagram 1

Figure 65: Host Discovered Resources Instance Diagram 2

Array

HBA1 Objects

FCPortSCSIProtocolController

ProtocolControllerForPort

ProtocolEndpoint

DeviceSAPImplementation

FCPortSCSIProtocolController

ProtocolControllerForPort

ProtocolEndpoint

DeviceSAPImplementation

Volume1

ProtocolControllerForUnit

ProtocolControllerForUnit

Volume 3

Volume2 ProtocolControllerForUnit

ProtocolControllerAccessesUni
t

HBA 2 Objects

FCPortSCSIProtocolController

ProtocolControllerForPort

ProtocolEndpoint

DeviceSAPImplementation

ProtocolControllerAccessesUni
t

FCPortSCSIProtocolController

ProtocolControllerForPort

ProtocolEndpoint

DeviceSAPImplementation

LogicalNetw or
k

LogicalNetw or
k

AdminDomain

AdminDomain
SystemDevice

ProtocolControllerAccessesUni
t

Array

HBA1 Objects

FCPortSCSIProtocolController

ProtocolControllerForPort

ProtocolEndpoint

DeviceSAPImplementation

FCPortSCSProtocolController

ProtocolControllerForPort
ProtocolEndpoint

DeviceSAPImplementation

Volume1

ProtocolControllerForUnit

ProtocolControllerAccessesUni
t

LogicalNetw or
k

MemberOfCollection

MemberOfCollection

AdminDomain

SystemDevice

SystemDevice

SystemDevice

Component
Version 1.0.1 363

SNIA Storage Management Initiative Specification
7.3.5.2.6 Durable Names and Correlatable IDs of the Profile

7.3.5.2.6.1 Durable Names Exported
For the Fibre Channel Port, the durable name is the Port WWN in FCPort.PermanentAddress.

7.3.5.2.6.2 Correlatable IDs Used
The Host Discovered Resources profile uses FC Port WWNs and SCSI Logical Unit (volume or tape
drive) IDs.

7.3.5.2.7 Methods
There are no methods defined for this profile

7.3.5.2.8 Client Considerations
In typical configurations, the ports and logical units provided by this model duplicates those found
in storage (array or tape library) and switch agents. Although this profile has information about
storage systems and the storage network, the information is not complete. For example, this agent
may model several small arrays that are actually separate targets (ports) on a single array (or
virtual targets resulting from LUN masking/mapping). Where available, the client should use
information from an array agent to get a complete model for the array. Similarly, the logical
networks modeled by this agent may actually be zones in fabrics; the client should use information
from switch agents to get a complete fabric model.

In a non-fabric storage network (Loop or Direct Attached Storage) there is likely to be no agent for
the Fabric profile. A client may derive similar information by integrating the models presented by
Host Discovered Resource agents running on multiple hosts.

Since the storage system topology cannot be accurately inferred, storage system objects are
associated to an AdminDomain, a “virtual” ComputerSystem that represents the collection of objects
in the ConnectivityCollection. In particular, SystemDevice associates all logical units to the
AdminDomain and the AdminDomain Name property is used as the SystemName property for all
LogicalDevice subclasses.

A client associates objects between profiles using durable identifiers (as described in other
profiles). If no storage system agent is available, the model from this agent may suffice, but some
details may not be available.

Discovered storage system resources can be partitioned into two groups, objects related to a port
(FCPort, SCSIProtocolController, and ProtocolEndpoint) and logical units (StorageVolume,
TapeDrive and the ProtocolControllerForUnit association). Discovery of logical units can be
resource intensive and disruptive to the host system (consider arrays with thousands of logical
units). The agent should not allocate resources on logical unit discovery unless requested by a
client; this request is communicated by following the ProtocolControllerForUnit associations from
a SCSIProtocolController to its logical units. The client algorithm for Discovered Resources for a
specific FCPort would be

Enumerate AdminDomains
Consider just those with “HBA Discovered Resources” in Roles[] and the WWPN of the specific FCPort in

Name
Follow the Component association to the LogicalNetwork
Foreach MemberOfCollection association, follow it to a ProtocolEndpoint

Follow the DeviceSAPImplementation association to a FCPort
// This gives the client a list of PortWWNs on the network.
// If these all map to PortWWNs from array/storage agents, the
// client may opt to stop probing.
364 Version 1.0.1

SNIA Storage Management Initiative Specification
If the client wishes to also discover LUNs
 Follow the ProtocolControllerForPort Association to a SCSIProtocolController

Follow each ProtocolControllerForUnit association to logical units
If no ProtocolControllerForUnit associations are found,

This is an initiator (another HBA port)
Else

Get Instance of LogicalDevices from the ProtocolControllerForUnit association

This algorithm allows the agent to dedicate resources to LUN discovery only when requested by a
client. Note that if LUNs are not discovered, the model does not include ProtocolControllerForUnit
or ProtocolControllerAccessesUnit associations; the client determines target/initiator roles and
host/storage system topology by matching durable names with FCPorts in HBA and storage
profiles.

A client may discover more complex multipathing by integrating the HBA profiles and Host
Discovered Resources profiles from their respective agents. Here are some examples: If the client
found two FCPorts that were SystemDevices of the same ComputerSystem, and found among the
Discovered Resources of both, the same FCPort that was associated by ProtocolControllerForPort to
a SCSIProtocolController in turn associated by ProtocolControllerForUnit to a LogicalDevice, the
client would have demonstrated that the host represented by the ComputerSystem had
multipathing via two HBA ports to a single Target port. If it found two FCPorts that were
SystemDevices of the same ComputerSystem, and found among the Discovered Resources of each a
different FCPort that was associated by ProtocolControllerForPort to a SCSIProtocolController in
turn associated by ProtocolControllerForUnit with the same LogicalDevice, the client would have
demonstrated that the host represented by the ComputerSystem had multipathing via two HBA
ports and two Target ports to a single Target Logical Unit.

7.3.5.2.9 Recipes
There are no recipes defined for this profile

7.3.5.2.10 Instrumentation Requirements
The Host SAN Resources profile is based on information available through the HBA API Phase 1
discovery interfaces. Its implementation therefore may be HBA vendor independent.

The AdminDomain for the LogicalNetwork has no underlying identification. The agent should set
the AdminDomain Name property to the Port WWN of the discovering HBA port and the
NameFormat property to “FC”. This allows a client to determine which port was used to discover
the particular LogicalNetwork. The AdminDomain Roles[] array MUST contain a “HBA Discovered
Resources” entry. This allows the client to determine which AdminDomains are related to this
profile.

The agent MUST set ProtocolEndpoint properties ProtocolType=other and
OtherTypeDescription=”SCSIOverFC”. The ProtocolEndpoints for the local HBA port and its
attached remote ports are all aggregated into a LogicalNetwork. The agent MUST set
LogicalNetwork properties NetworkType=other, OtherProtocolType=”SCSIOverFC”,
Name=discovering FCPort WWN with “:SCSIOverFC” appended, and NameFormat=”Discovering
FCPort WWN with :SCSIOverFC appended".

The agent should separate LUN discovery so that a client can limit resources as described in the
algorithm under “Client Considerations”, above. In particular, the agent should not issue SCSI
“Report LUNs”, “Inquiry”, or “Read Capacity” unless a client follows ProtocolControllerForUnit
associations.
Version 1.0.1 365

SNIA Storage Management Initiative Specification
If the client does ask for ProtocolControllerForUnit associations, LogicalDevice subclasses are
instantiated for all the SCSI Logical Units reported by the “Report LUNs” command, then SCSI
Inquiry. The agent chooses the LogicalDevice subclass based in the SCSI Inquiry device type:

Note that this agent cannot determine whether a Direct Access device is a physical disk or a
virtualized volume; for consistency the agent always instantiates a StorageVolume. Other than
disks and tapes, there are many vendor-specific implementations, so s generic LogicalDevice is
instantiated.

SCSI Inquiry VPD commands are issued to get LogicalDevice durable names as described in the
array and tape library profiles. These names can be used to identify multi-path configurations;
this is modeled with multiple ProtocolControllerForUnit associations from FCPort/ProtocolController
pairs to a common LogicalDevice.

If the same logical unit is discovered on multiple LogicalNetworks, the agent MAY create a single
instance and use ProtocolControllerForUnit associations to ProtocolControllers. Logical unit objects
MAY have ProtocolControllerForUnit associations to SCSIProtocolControllers that are associated to
different AdminDomains (because they are in different LogicalNetworks). A logical unit object
MUST be associated to a single AdminDomain. The agent should pick one of the AdminDomains and
use it for SystemDevice associations and determination of the SystemName property of the logical
unit objects.

Table 232: SCSI Device Type Mapping

Peripheral Device Type LogicalDevice Subclass

Direct-access SCSI type StorageVolume

Sequential-access TapeDrive

All others LogicalDevice
366 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.5.2.11 Required CIM Elements

7.3.5.2.12 Required Properties for CIM Elements
The model exposed by this profile is discovered remotely and does not provide canonical
information about the elements. Hence, most properties are omitted.

Table 233: Required CIM Elements

Profile Classes & Associations Notes

AdminDomain (p. 368) The “virtual ComputerSystem” for LogicalDevice SystemName
attributes and SystemDevice associations

Component (p. 368) LogicalNetwork to AdminDomain

DeviceSAPImplementation (p. 368) Associates ProtocolEndpoint and FCPort

FCPort (p. 368) Used on both the initiator and target sides

HostedCollection (p. 372) LogicalPortGroup (Node) to ComputerSystem

LogicalDevice subclasses StorageVolume, TapeDrive, MediaAccessDevice depending on
SCSI Inquiry responses for whatever is discovered

LogicalNetwork (p. 372)

MemberOfCollection (p. 372) ProtocolEndpoint to LogicalNetwork

ProtocolControllerAccessesUnit Associates unit and initiator side protocol controller

ProtocolControllerForPort FCPort to SCSIProtocolController if any

ProtocolControllerForUnit Associates unit and target side protocol controller

ProtocolEndpoint (p. 373) Network aspects of an FC Port

SCSIProtocolController Used on both the initiator and target sides

SystemDevice (p. 373) Any LogicalDevice subclass to ComputerSystem (Device FCPort)

Packages

None.

Associated Indications

Creation/Deletion/Modification of
StorageVolumes (similar for other logical
units)

SELECT * FROM CIM_InstCreation
WHERE SourceInstance ISA CIM_StorageVolume
SELECT * from CIM_InstModification
WHERE SourceInstance ISA CIM_StorageVolume
SELECT * FROM CIM_InstDeletion
WHERE SourceInstance ISA CIM_StorageVolume

Creation/Deletion of ports SELECT * FROM CIM_InstCreation WHERE SourceInstance
ISA CIM_FCPort
SELECT * FROM CIM_InstDeletion WHERE SourceInstance
ISA CIM_FCPort
Version 1.0.1 367

SNIA Storage Management Initiative Specification
7.3.5.2.12.1 AdminDomain

7.3.5.2.12.2 Component

7.3.5.2.12.3 DeviceSAPImplementation

7.3.5.2.12.4 FCPort

Table 234: Required Properties for AdminDomain

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Caption string maxlen(64) Short (one line) description

Description string Longer description

ElementName string User Friendly name

OperationalStatus uint16

CreationClassName string maxlen(256), key “whatever_AdminDomain”

Name string maxlen(256), key,
override

The Port WWN of the discovering
port.

NameFormat string maxlen(64) Set to “FC” in this Profile

PrimaryOwnerName

PrimaryOwnerContact

Roles string[] Must contain an “HBA DIscovered
REsources” entry.

Table 235: Required Properties for Component

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref key In this profile, the LogicalNetwork

PartComponent ref key In this profile, an AdminDomain

Table 236: Required Properties for DeviceSAPImplementation

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key FCPort reference

Dependent ref key ProtocolEndpoint reference

Table 237: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string
368 Version 1.0.1

SNIA Storage Management Initiative Specification
OperationalStatus uint16

DeviceID string key, maxlen (64)

Speed uint64 units ("bits per
second")

Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

MaxSpeed uint64 The max speed of the Port in Bits per
Second.
FC-FS Port Speed Capabilities

PortType uint16 override PortType is defined to force consistent
naming of the 'type' property in
subclasses and to guarantee unique
enum values for all instances of
NetworkPort. When set to 1 (\"Other\"),
related property OtherPortType
contains a string description the of the
port's type. A range of values,
DMTF_Reserved, has been defined
that allows subclasses to override and
define their specific port types.

OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").

PortNumber uint64 NetworkPorts are often numbered
relative to either a logical modules or a
network element.

LinkTechnology uint16 An enumeration of the types of links.
When set to 1 (\"Other\"), the related
property OtherLinkTechnology
contains a string description of the
link's type.

OtherLinkTechnology uint16 A string value describing
LinkTechnology when it is set to 1,
\"Other\".

Table 237: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 369

SNIA Storage Management Initiative Specification
PermanentAddress string maxlen (64) PermanentAddress defines the
network address hardcoded into a port.
This 'hardcoded' address may be
changed via firmware upgrade or
software configuration. If so, this field
should be updated when the change is
made. PermanentAddress should be
left blank if no 'hardcoded' address
exists for the NetworkAdapter.||Port
WWN (InfiniBand: Port GUID)

NetworkAddresses[] string maxlen (64),
arraytype
("indexed")

An array of strings indicating the
network addresses for the port.
FCID (InfiniBand: LIDs)
FC-FS Address Identifier

Speed uint64 override Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

FullDuplex boolean Boolean indicating that the port is
operating in full duplex mode.

AutoSense boolean A boolean indicating whether the
NetworkPort is capable of
automatically determining the speed or
other communications characteristics
of the attached network media.

SupportedMaximumTransm
issionUnit

uint64 The maximum transmission unit (MTU)
that can be supported."), Units
("Bytes")

ActiveMaximumTransmissio
nUnit

uint64 The active or negotiated maximum
transmission unit (MTU) that can be
supported.

Table 237: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
370 Version 1.0.1

SNIA Storage Management Initiative Specification
PortType uint16 FC-GS Port.Type||The specific mode
currently enabled for the Port. The
values: \"N\" = Node Port, \"NL\" =
Node Port supporting FC arbitrated
loop, \"E\" = Expansion Port
connecting fabric elements (for
example, FC switches), \"F\" = Fabric
(element) Port, \"FL\" = Fabric
(element) Port supporting FC
arbitrated loop, and \"B\" = Bridge Port.
PortTypes are defined in the ANSI X3
standards. When set to 1 (\"Other\"),
the related property OtherPortType
contains a string description of the
port's type.

SupportedCOS uint16[] FC-GS Class Of Service
An array of integers indicating the
Fibre Channel Classes of Service that
are supported. The active COS are
indicated in ActiveCOS.

ActiveCOS uint16[] FC-GS Class Of Service
An array of integers indicating the
Classes of Service that are active. The
Active COS is indicated in ActiveCOS.

SupportedFC4Types uint16[] FC-GS FC4-TYPEs
An array of integers indicating the
Fibre Channel FC-4 protocols
supported. The protocols that are
active and running are indicated in the
ActiveFC4Types property.

ActiveFC4Types uint16[] FC-GS FC4-TYPE
An array of integers indicating the
Fibre Channel FC-4 protocols currently
running. A list of all protocols
supported is indicated in the
SupportedFC4Types property.

Table 237: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 371

SNIA Storage Management Initiative Specification
7.3.5.2.12.5 HostedCollection

7.3.5.2.12.6 ProtocolControllerForPort

7.3.5.2.12.7 LogicalNetwork

7.3.5.2.12.8 MemberOfCollection

Table 238: Required Properties for HostedCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent REF key, min(1), max(1) ComputerSystem

Dependent REF key, weak LogicalPortGroup

Table 239: Required Properties of ProtocolControllerForPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Dependent ref The Port

Antecedent ref The protocol controller

Table 240: Required Properties for LogicalNetwork

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceName string Node Symbolic Name

CollectionID string key Node WWN

SystemCreationClassName string propagated,key

SystemName string propagated,key

Name string Discovering FC Port WWN with
“:SCSIOverFC” appended

Name Format string Must be set to ”Discovering FCPort
WWN with :SCSIOverFC
appended"

NetworkType string Must be set to “Other”

OtherProtocolType string

Table 241: Required Properties of MemberOfCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Collection ref key The Collection that aggregates members.

ManagedElement ref key The aggregated member of the Collection.
372 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.5.2.12.9 ProtocolEndpoint

7.3.5.2.12.10 SystemDevice

7.3.5.2.12.11 StorageVolume

Table 242: Requited Properties for ProtocolEndpoint

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Name string maxlen (256)

CreationClassName string key, maxlen (256)

SystemCreationClassNam
e

string key, maxlen (256)

SystemName string key, maxlen (256)

NameFormat string maxlen (256) heuristic that ensures unique name

ProtocolType string maxlen (64) “Other” for this profile

OtherTypeDescription string maxlen (64) “SCSIOverFC” for this profile

Table 243: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override System Reference

PartComponent ref override LogicalDevice Reference

Table 244: Required Properties for StorageVolume

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Caption string maxlen(64) Short (one line) description

Description string Longer description

ElementName string User Friendly name

InstallDate datetime

Name string maxlen (256)

Status string maxlen (10)

SystemCreationClassName string maxlen(256),
key

The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's
Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass
Version 1.0.1 373

SNIA Storage Management Initiative Specification
DeviceID string maxlen(64), key unique identifying
information

Availability int16

LastErrorCode uint32

ErrorDescription string

ErrorCleared boolean

OtherIdentifyingInfo string[]

PowerOnHours uint64

TotalPowerOnHours uint64

IdentifyingDescriptions string[]

AdditionalAvailability uint16[]

MaxQuiesceTime uint64

DataOrganization uint16

Purpose string

Access uint16

ErrorMethodology string

BlockSize uint64

NumberOfBlocks uint64

ConsumableBlocks uint64

IsBasedOnUnderlyingRedundancy boolean

SequentialAccess boolean

ExtentStatus[] uint16

NoSinglePointOfFailure boolean

DataRedundancy uint16

SpindleRedundancy uint16

DeltaReservation uint16

Table 244: Required Properties for StorageVolume (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
374 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.5.2.13 Optional Subprofiles

7.3.5.2.14 Initiator Subprofile

7.3.5.2.14.1 Description
See parent sections.

7.3.5.2.14.2 Standards Dependencies
See parent sections.

7.3.5.2.14.3 Profile Dependencies
See parent sections.

7.3.5.2.14.4 CIM Server Requirements
See parent sections.

7.3.5.2.14.5 Instance Diagrams
See parent sections.

7.3.5.2.14.6 Durable Names and Correlatable IDs
See parent sections.

7.3.5.2.14.7 Methods
See parent sections.

7.3.5.2.14.8 Client Considerations
See parent sections.

7.3.5.2.14.9 Recipes
See parent sections.

7.3.5.2.14.10 Instrumentation Requirements
See parent sections.

Table 245: Optional Profiles or Subprofiles

Name Notes

Initiator Subprofile (p. 375)

Target Subprofile (p. 377)
Version 1.0.1 375

SNIA Storage Management Initiative Specification
7.3.5.2.14.11 Required CIM Elements

7.3.5.2.14.12 Required Properties for CIM Elements

7.3.5.2.14.12.1 ProtocolControllerForPort

7.3.5.2.14.12.2 SCSIProtocolController (Initiator)

Table 246: Required CIM Elements

Profile Classes & Associations Notes

ProtocolControllerForPort (p. 376)

SCSIProtocolController (Initiator) (p.
376)

SCSI aspects of an FC Port

ProtocolControllerAccessesUnit (p.
377)

Initiator ProtocolController to LogicalDevice or subclass that is
mapped into host OS

Packages

None.

Associated Indications

None

Table 247: Required Properties for ProtocolControllerForPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Dependent ref override LogicalDevice Reference

Antecedent ref override SCSIProtocolController Reference

Table 248: Required Properties for SCSIProtocolController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DeviceID string maxlen(64), key Port WWN of associated
FCPort is commonly used

ConnectionRole string Must include “client”
376 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.5.2.14.12.3 ProtocolControllerAccessesUnit

7.3.5.2.14.13 Optional Subprofiles

7.3.5.2.15 Target Subprofile

7.3.5.2.15.1 Description
See parent sections.

7.3.5.2.15.2 Standards Dependencies
See parent sections.

7.3.5.2.15.3 Profile Dependencies
See parent sections.

7.3.5.2.15.4 CIM Server Requirements
See parent sections.

7.3.5.2.15.5 Instance Diagrams
See parent sections.

7.3.5.2.15.6 Durable Names and Correlatable IDs
See parent sections.

7.3.5.2.15.7 Methods
See parent sections.

7.3.5.2.15.8 Client Considerations
See parent sections.

7.3.5.2.15.9 Recipes
See parent sections.

Table 249: Required Properties for ProtocolControllerAccessesUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Dependent ref LogicalDevice Reference

Antecedent ref SCSIProtocolController Reference

TargetId uint32 The Target ID as exposed to drivers and
applications that use the HBA driver

DeviceNumber string The SCSI Logical Unit Number as seen by this
initiator

Table 250: Optional Profiles or Subprofiles

Name Notes

None
Version 1.0.1 377

SNIA Storage Management Initiative Specification
7.3.5.2.15.10 Instrumentation Requirements
See parent sections.
378 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.5.2.15.11 Required CIM Elements

7.3.5.2.15.12 Required Properties for CIM_Elements

7.3.5.2.15.12.1 SCSIProtocolController)

7.3.5.2.15.12.2 ProtocolControllerForUnit

Table 251: Required CIM Elements

Profile Classes &
Associations

Notes

SCSIProtocolController) (p. 379) SCSI aspects of an FC Port

ProtocolControllerForUnit (p. 379) Target ProtocolController to LogicalDevice or subclass if any

Packages

None.

Associated Indications

None.

Table 252: Required Properties for SCSIProtocolController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete subclass

DeviceID string maxlen(64), key Port WWN of associated FCPort is
commonly used

ConnectionRole string Must include “server”

Table 253: Required Properties for ProtocolControllerForUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Dependent ref LogicalDevice

Antecedent ref SCSIProtocolController

DeviceNumber string Formatted as uppercase
hexadecimal digits, with a
prefix of “0x”.
Version 1.0.1 379

SNIA Storage Management Initiative Specification
7.3.5.2.15.13 Optional Subprofiles

Table 254: Optional Profiles or Subprofiles

Name Notes

None
380 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6 Storage

7.3.6.1 Array Profile

7.3.6.1.1 Description
The Array model profile describes external RAID arrays and disk storage systems. The key classes
are:

• Computer Systems that represent the array as a whole;

• Storage Volumes that are equivalent to SCSI Logical Units visible to consumers;

• StoragePools that are the allocatable/available space on the array;

• Fibre Channel ports through which the LUNs are made available.

The basic array profile provides a high level read-only ‘view’ of an array. The various subprofiles
indicated in “Array Packages Diagram” on page 399 extend this description and also enable
configuration of the array. Refer to “Optional Subprofiles” on page 399 for more information on
these optional extensions. This profile also includes the mandatory “Physical Package Package” on
page 103 that describes the physical layout of the array and includes product identification
information.

7.3.6.1.2 Standard Dependencies
The Array profile is based on the following standards:

7.3.6.1.3 Profile Dependencies
The Array profile requires the Server Profile (p. 441).

Table 255: Array Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF
Version 1.0.1 381

SNIA Storage Management Initiative Specification
7.3.6.1.4 CIM Server Requirements

7.3.6.1.4.1 Functional Profiles

7.3.6.1.4.2 Extrinsic Methods
Although there are some extrinsic methods defined within classes in this profile, they are not
needed for this Profile. However, sub profiles do require the use of Extrinsic methods.

7.3.6.1.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

Table 256: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
382 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.1.5 Instance Diagrams.

The main function of a disk array is to host storage and provide it to consumers for use. This is
modeled in CIM using the concepts of 'Storage Pool' and 'Storage Volume'

Storage Pools
A StoragePool is an abstract notion of a blob of consumable storage space. A pool has certain
‘StorageCapabilities’, which indicate the range of 'Quality of Service' requirements that can be
applied to objects created from the pool. In this top-level profile, StorageCapabilities are
informational only. Refer to “Pool Manipulation, Capabilities, and Settings Subprofile” on
page 178 for details on the use of these objects.

Storage pools are scoped relative to the ComputerSystem (indicated by the HostedStoragePool
association). Objects created from a pool have the same scope.

Child objects (e.g. StorageVolumes or StoragePools) created from a StoragePool are linked back to
the parent pool using an AllocatedFromStoragePool association.

There are two properties on StoragePool that describe the size of the ‘underlying’ storage.
TotalManagedStorage describes the total raw storage in the pool and RemainingManagedStorage
describes the storage currently remaining in the pool. RemainingManagedStorage plus
AllocatedFromStoragePool.SpaceConsumed from all of the StorageVolumes allocated from the
pool MUST equal TotalManagedStorage.

Figure 66: Array Profile Instance Diagram

ComputerSystem

FCPort

SCSIProtocolController

StorageVolume

StoragePool

ProtocolControllerForPort

ProtocolControllerForUnit

AllocatedFromStoragePool

AllocatedFromStoragePool StorageCapabilities

StorageSetting

SystemDevice

ElementCapabilities

ElementSettingData

HostedStoragePool

SystemDevice
Version 1.0.1 383

SNIA Storage Management Initiative Specification
Primordial Pool
The Primordial Pool is a specific instance of StoragePool. At least one MUST always exists on the
array to represent the unallocated storage on the storage device. The size of this Pool MUST be
equal to the total size of the allocated, raw (unformatted or unprepared) storage. The Primordial
property MUST be true for Primordial Pools.

The use of the Primordial Pool is to determine the amount of unallocated space left on the array.

Storage Volumes
Storage Volumes are configured pieces of storage that MUST be exposed from a system through an
external interface. In the class hierarchy they are a sub class of a StorageExtent. In SCSI terms,
they are Logical Units.

Storage Volumes are created from Storage Pools using the Storage Configuration Service (see
Section “LUN Creation Subprofile” on page 201).

In this profile, a StorageSetting is informational only. Refer to “LUN Creation Subprofile” on
page 201 for details on StorageSettings

7.3.6.1.6 Durable Names and Correlatable IDs of the Profile

7.3.6.1.6.1 Durable Names Exported
For StorageVolume, the durable name is the Name property. The format of this property is
available in NameFormat. The valid formats are described in Section ‘Find the Durable Name for
Volumes (p. 384)

For Fibre Channel port, the durable name is the Port WWN. It is found in
FCPort.PermanentAddress.

For the array itself (the computer system), the Name property contains a durable name. The
format of this name is defined by the NameFormat property.

7.3.6.1.6.2 Find the Durable Name for Volumes
Different implementation use different approaches to uniquely identify SCSI units (Logical
Devices). The agent SHOULD try these standard interfaces in this order to find a durable volume
name. The best name is put in the StorageVolume Name field. The NameFormat attribute of
LogicalDevice (and subclasses) identifies how the name field is generated. The client SHOULD use
the same name format to assure a consistent model.

“Inquiry-VPD page 83 data” is documented in the SCSI Primary Commands specification. It allows
a device to report a list of identifiers in a variety of formats. Identifier type 3 is an IEEE standard
that is used for device identification. The ANSI Name Address Authority (NAA) specifies the
format. When “association” is set to 0 the ID represents the logical device rather than a single port.
NAA specifies that high order 4 bits define the format used in the rest of the identifier. Other NAA
values and identifiers types MAY be used in older implementations. If the volume does not report
page 83, page 80 is a serial number; this value MUST be merged with vendor and model strings
from standard inquiry to generate a unique ID. Some vendors store a serial number in the vendor-
specific data in the standard inquiry data. The last option is a Fibre Channel WWN that may map
1-1 to a device in JBOD configurations.

Refer to Table 3, “Standardized Name Formats,” on page 82 for a complete list of the name formats
recognized by SMI-S.

7.3.6.1.6.3 Correlatable IDs Used
None.
384 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.1.7 Methods
None.

7.3.6.1.8 Client Considerations

7.3.6.1.8.1 Discovering a Disk Array
The System NameFormat attribute identifies how the Name field is generated. Disk array
ComputerSystem names MUST be one of the following network host names (NameFormat = “IP”),
node names (NameFormat = “NodeWWN”), platform IDs (NameFormat = “T11PlatformID”), or
Vendor+Model+SerialNumber (NameFormat = “VendorModelSerial”)

7.3.6.1.8.2 Find Port Information
FCPorts MUST be aggregated from ComputerSystems using SystemDevice. In an array with
multiple storage processors, ports MUST be aggregated from the component ComputerSystem;
this aggregation allows a client to see which ports are associated with a particular processor and to
understand possible single points of failure.

FCPort MUST include ProtocolControllerForPort associations to SCSIProtocolController to
indicate the SCSI device for the port. SCSIProtocolController MUST include
ProtocolControllerForUnit associations to exposed StorageVolumes.

SCSIProtocolControllers can serve as initiators (for example, a port in an HBA) or as targets (ports
in devices). A RAID array model MAY include both; they can be differentiated in two ways:

• SCSIProtocolController.ConnectionRole can be ‘Client’ (initiator) or ‘Server’ (target).

• The ProtocolControllerAccessesUnit association indicates a initiator to LU relationship.

• The ProtocolControllerForUnit association indicates a target/LU relationship.

7.3.6.1.8.3 Find System Status
The ‘OperationalStatus’ property is available on most objects in the model and is used to indicate
it’s status. For the whole array, the ComputerSystem instance MUST have one of the following
Main Operational Status values and possibly one of the Subsidiary status values. The main
OperationalStatus MUST be the first element in the array.

Table 257: OperationalStatus for ComputerSystem

Main Operational
Status

Possible
Subsidiary

Operational
Status

Description

OK The system has a good status

OK Stressed The system is stressed, for example the
temperature is over limit or there is too much
IO in progress

OK Predictive Failure The system will probably fail sometime soon

Degraded The system is operational but not at 100%
redundancy. A component has suffered a
failure or something is running slow
Version 1.0.1 385

SNIA Storage Management Initiative Specification
A client SHOULD subscribe for Asynchronous notification of changes in status through
CIM_InstModification. More details on indications are in “Events – CIM Indications” on page 85.

7.3.6.1.8.4 Find Volume Status
The status of a volume MAY be determined by looking at the values in the OperationalStatus and
ExtentStatus properties. The following table describes their possible states. ExtentStatus provides
further clarification of the main OperationalStatus.

The status described in the table below MUST be supported for StorageVolume.OperationalStatus
and StorageVolume.ExtentStatus. ExtentStatus provides a further clarification of the main
OperationalStatus. The main OperationalStatus MUST be the fist element in the array.

Error An error has occurred causing the system to
stop. This error may be recoverable with
operator intervention.

Error Non-recoverable error A severe error has occurred. Operator
intervention is unlikely to fix it

Error Supporting entity in error A modeled element has failed

No contact The provider knows about the array but has
not talked to it since last reboot

Lost communication The provider used to be able to communicate
with the array, but has now lost contact.

Starting The array is starting up

Stopping The array is shutting down.

Stopped The data path is OK but shut down, the
management channel is still working.

Table 258: OperationalStatus for StorageVolume

Operational
Status

ExtentStatus Description

OK The volume has good status

Degraded The volume is operating in a degraded mode.
There may have been a loss of redundancy.

Degraded Spare In Use The spare has been put into use. No more
spares are available.

Degraded Rebuild A spare is in use and a rebuild is in process.

Error The volume is not functioning

Error Broken The volume is not functioning but there is no
confirmed data loss

Table 257: OperationalStatus for ComputerSystem (Continued)

Main Operational
Status

Possible
Subsidiary

Operational
Status

Description
386 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.1.8.5 Find Port Status
The status of a Fibre Channel port MAY be determined by the value of the OperationalStatus
property. Table 259 shows the allowed values for this property and their meanings. The table
below defines the possible states that MUST be supported for FCPort.OperationalStatus. The
main OperationalStatus MUST be the first element in the array.

7.3.6.1.9 Recipes

7.3.6.1.9.1 Overview
The following recipes show examples of how a client MAY navigate the model and determine
information from the basic array profile. A compliant SMI-S server implementation MUST support
them. For details on the Pseudo code syntax please refer to “Recipe Conventions” on page 91.

7.3.6.1.9.2 Summarize the Pools on an array.
// DESCRIPTION
// This recipe works out the following:
// The overall size of the array, by summarizing the
// TotalManagedSpace for the primordial pools.
// The consumed space on the array. This is worked out by summing
// the space consumed by volumes.
// The Unallocated space on the array is the TotalManagedSpace -
// consumed space.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. The object name for the device, CIM_ComputerSystem, of interested
// has been previously identified and defined in the $Array->
// variable
// 2. Know the class definitions via a previous EnumerateClasses call
// so can set includeQualifiers false on the associators call for
// higher performance.

Error Data Lost The volume has broken and there is data loss

Starting The volume is in process of initialization

Dormant The volume is offline

Table 259: Port State/Status

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Table 258: OperationalStatus for StorageVolume (Continued)

Operational
Status

ExtentStatus Description
Version 1.0.1 387

SNIA Storage Management Initiative Specification
// first find the pools...
$Pools[] = Associators(

$Array->,
“CIM_HostedStoragePool”,
“CIM_StoragePool”,
“GroupComponent”,
“PartComponent”,
false,
false,
$Properties[] {“TotalManagedSpace”,”Primordial”});

// Then cycle through them and add up the managed space from the primordial pools.
#managedSpace = 0
#allocSpace = 0

for #i in $Pools->[]
{

if ($Pools->[#i]->Primordial)
#managedSpace = managedSpace + $Pools->[#i].TotalManagedSpace

$Allocs[] = references(
$Pools->[#i],
“CIM_AllocatedFromStoragePool”,
“Antecedent”,
false,
false,
null)

for #j in $Allocs
{

if ($Allocs[#j].Antecedent ISA “CIM_StorageVolume”)
#allocSpace = #allocSpace + $Allocs[#j].SpaceConsumed

}
}

// managedSpace is the total managed space and #allocSpace is the total allocated space.
// With these variables the client can determine the storage space reserved by pools and used
// in the allocated of volumes in respect to the total storage possible in this Array

7.3.6.1.9.3 List volume information
// DESCRIPTION
// This recipe will determine and access the name and volume size used
// for each volume in the array.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
388 Version 1.0.1

SNIA Storage Management Initiative Specification
// 1. The object name for the device, CIM_ComputerSystem, of interested
// has been previously identified and defined in the $Array->
// variable
// 2. Know the class definition so can set includeQualifiers false on
// the associators call.

// first find the vols
$Vols[] = Associators(

$Array->,
“CIM_SystemDevice”,
“CIM_StorageVolume”,
“GroupComponent”,
“PartComponent”,
false,
false,
$Properties[] {“ElementName”, “Name”, “NameFormat”,

“BlockSize”, “NumberOfBlocks”});

// Then cycle through and use Volume information
for #i in $Vols[]
{

#VolumeDescription $Vols[#i].ElementName
#VolumeName = $Vols[#i].Name
#NameFormat = $Vols[#i].NameFormat
#VolumeSize = $Vols[#i].BlockSize * $Vols[#i].NumberOfBlocks

}

7.3.6.1.9.4 List LUN information
// DESCRIPTION
// For each volume, get the LUN & FC Port information. Also determine the
// highest priority FC Port
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. Have a list of Volumes from the previous recipe.
// 2. Know the class definition so can set includeQualifiers false on
// the associators call.

// FUNCTION: findUnit
// return the association instance from $pcfu which has #Pc as the
// Antecedent
sub CIMInstance findUnit (int #Pc, CIMInstance$pcfu[])
{

for #i in $pcfu
{

if (compare (#i.antecedent, #pc->))
return #i

}
Error(“can’t find relevent associator”)
Version 1.0.1 389

SNIA Storage Management Initiative Specification
}

// MAIN
#first find the vols ...
for #i in $Vols[]
{

$ProCont[] = Associators(
$#i->,
“ProtocolControllerForUnit”,
“CIM_ProtocolController”,
“Dependent”,
“Antecedent”);

$pcfu[] = References(
$#i->,
“ProtocolControllerForUnit”,
“CIM_ProtocolController”,
“Dependent”,
false,
false);

for #y in $ProCont
{

$Ports[] = AssociatorsNames(
$#y->,
“ProtocolControllerForPort”,
“CIM_FCPort”,
“Antecedent”,
“Dependent”);

#luninfo = findUnit($y,$pcfu[])

// The following variables now contain the information
// “ LUN“ = #luninfo.DeviceNumber
// “Volume“ = #i.ElementName

}
}

7.3.6.1.10 Instrumentation Requirements
There are no instrumentation requirements defined for this profile.
390 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.1.11 Required CIM Elements

Table 260: Required CIM Elements

Profile Classes & Associations Notes

AllocatedFromStoragePool (p. 392)

ElementCapabilities (p. 392)

ElementSettingData (p. 392)

ComputerSystem (p. 392)

FCPort (p. 394)

HostedStoragePool (p. 394)

ProtocolControllerForPort (p. 395)

ProtocolControllerForUnit (p. 395)

SCSIProtocolController (p. 395)

StorageCapabilities (p. 396)

StoragePool (p. 396)

StorageSetting (p. 397)

StorageVolume (p. 397)

SystemDevice (p. 399)

Packages

Physical Package Package (p. 103)

Software Package (p. 110)

Associated Indications

Creation/Deletion of an Array SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem
SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

Change in operational status of an Volume SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Change in operational status of an FCPort SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FCPort AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Change in operational status of an Array SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus
Version 1.0.1 391

SNIA Storage Management Initiative Specification
7.3.6.1.12 Required Properties for CIM Elements

7.3.6.1.12.1 AllocatedFromStoragePool

7.3.6.1.12.2 ElementCapabilities

7.3.6.1.12.3 ElementSettingData

7.3.6.1.12.4 ComputerSystem

Table 261: Required Properties for AllocatedFromStoragePool

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref The StoragePool.

Dependent ref The sub pool or volume.

SpaceConsumed uint64 Space Consumed from this Pool
(in bytes).

Table 262: Required Properties for ElementCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Capabilities ref The StorageCapabilities instance

ManagedElement ref The object to which the
capabilities apply.

Table 263: Required Properties for ElementSettingData

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SettingData ref The StorageSetting instance

ManagedElement ref The StorageVolume to which the
storagesetting applies

Table 264: Required Properties for ComputerSystem

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

OperationalStatus uint16[] Status of array

CreationClassName string required,
key

Name string key The identifier for the Array (e.g.
IP address or FC world wide
name).

NameFormat string The format of the Name property.
392 Version 1.0.1

SNIA Storage Management Initiative Specification
Dedicated[] int16 “blockserver”,
“storage”

For this profile Dedicated will
always include these two values.

PrimaryOwnerContact string Optional

PrimaryOwnerName string Optional

Table 264: Required Properties for ComputerSystem (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 393

SNIA Storage Management Initiative Specification
7.3.6.1.12.5 FCPort

7.3.6.1.12.6 HostedStoragePool

Table 265: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string key

SystemName string key

CreationClass string key

ElementName string User friendly name/caption for port.

OperationalStatus[] uint16 Status of device

DeviceID string key Opaque

PortType uint16 Used to indicate the type of the port
(e.g., N-port/NL-port)
This property is OPTIONAL.

UsageRestriction uint16

PermanentAddress string The WWN of the port.

NetworkAddresses[] string The Fibre Channel address of the port.
This property is OPTIONAL.

Speed uint64 Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.
This property is OPTIONAL.

Table 266: Required Properties from HostedStoragePool

Property/
Method

Type Qualifier/
Parameter

Description/Notes

PartComponent ref The storage pool

GroupComponent ref The scoping system
394 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.1.12.7 ProtocolControllerForPort

7.3.6.1.12.8 ProtocolControllerForUnit

7.3.6.1.12.9 SCSIProtocolController

Table 267: Required Properties from ProtocolControllerForPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref The SCSIProtocolController for this
port

Dependent ref The port.

AccessPriority unit16 The priority of access through this
port for this ProtocolController.
This property is OPTIONAL.

Table 268: Required Properties from ProtocolControllerForUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref The protocol controller

Dependent ref The exposed logical unit.

DeviceNumber unit16 The Logical Unit number for this
Volume through this controller.

Table 269: Required Properties for SCSIProtocolController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string key

SystemName string key

CreationClass string key

ElementName string User friendly name/caption for port.
This property is OPTIONAL.

OperationalStatus[] uint16 Status of device.
This property is OPTIONAL.

DeviceID string key Opaque

MaxUnitsControlled uint32 Maximum number of units controlled by
this controller.
This property is OPTIONAL.
Version 1.0.1 395

SNIA Storage Management Initiative Specification
7.3.6.1.12.10 StorageCapabilities

7.3.6.1.12.11 StoragePool

Table 270: Required Properties from StorageCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key Opaque identifier

ElementName string User friendly name/
caption

ElementType uint16 Type of element this
capability applies to

NoSinglePointOfFailure boolean

NoSinglePointOfFailureDefault boolean

DataRedundancyMin uint16

DataRedundancyMax uint16

DeltaReservationDefault uint16

DeltaReservationMin uint16

DeltaReservationMax uint16

DataRedundancyDefault uint16

PackageRedundancyMin uint16

PackageRedundancyMax uint16

PackageRedundancyDefault unit16

Table 271: Required Properties for StoragePool

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

InstanceID string key Opaque identifier

PoolID string required A unique name in the context of the
System that identifies this pool.

TotalManagedSpace uint64

RemainingManagedSpace unit64

Primordial boolean defaults to false, true for the
primordial pools.
396 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.1.12.12 StorageSetting

7.3.6.1.12.13 StorageVolume

Table 272: Required Properties from StorageSetting

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key Opaque identifier

ElementName string required User friendly name/caption

DataRedundancyMin uint16

DataRedundancyMax uint16

DataRedundancyGoal uint16

DeltaReservationGoal uint16

DeltaReservationMin uint16

DeltaReservationMax uint16

PackageRedundancyMin uint16

PackageRedundancyMax uint16

PackageRedundancyGoal unit16

Table 273: Required Properties for StorageVolume

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string key

SystemName string key

CreationClass string key

ElementName string User Friendly name

Name string VPD Page 83 ID

NameFormat uint16 Format of Name property

ExtentStatus uint16[] Status of volume
(Rebuild,spare in use etc)

OperationalStatus unit16[] Current general status of
volume

DeviceID string key Opaque ID

BlockSize uint64 Block size of Volume

NumberOfBlocks uint64 NUmber of Blocks (not size
of volume is BlockSize*
NumberOFBlocks)

IsBasedOnUnderlyingRedundancy boolean
Version 1.0.1 397

SNIA Storage Management Initiative Specification
NoSinglePointOfFailure boolean Current value of
StorageSetting

DataRedundancy uint16 Current value of
StorageSetting

PackageRedundancy uint16 Current value of
StorageSetting

DeltaReservation uint16 Current value of
StorageSetting

Table 273: Required Properties for StorageVolume (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
398 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.1.12.14 SystemDevice

7.3.6.1.13 Optional Subprofiles

Table 274: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref System Reference

PartComponent ref LogicalDevice Reference

Figure 67: Array Packages Diagram

Location

Extent Mapping

Disk Drive

Backend Ports

LUN Creation Service

LUN Mapping & Masking Service

Copy Services

Array Profile

Cluster

Extra Capacity Set

Access Points

Software

Job Control

Pool Manipulation Service

Device Credentials

PhysicalPackage Package

 HostedService

HostedService

ComputerSystemPackage

HostedAccessPoint
ConcreteIdentity

ComponentCS

ConcreteComponent

Container

BasedOn

ConcreteComponent
PhysicalElementLocation

InstalledSoftwareElement

OwningJobElement

OwningJobElement

OwningJobElemen

SystemDevice

OwningJobElemen
Version 1.0.1 399

SNIA Storage Management Initiative Specification
Table 275: Optional Profiles or Subprofiles

Name Notes

Access Points Subprofile (p. 113)

Cluster Subprofile (p. 116)

Extra Capacity Set Subprofile (p. 121)

Disk Drive Subprofile (p. 126)

Extent Mapping Subprofile (p. 138)

Location Subprofile (p. 142)

Software Subprofile (p. 145)

Copy Services Subprofile (p. 146)

Job Control Subprofile (p. 172)

Pool Manipulation, Capabilities, and
Settings Subprofile (p. 178)

LUN Creation

Device Credentials Subprofile (p. 220)

LUN Mapping and Masking

Sparing Subprofile (p. 517)

Backend Ports Subprofile (p. 225)
400 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.2 In-Band Virtualization Profile

7.3.6.2.1 Description
An in-band virtualization system uses storage provided by array controllers to create a seamless
pool of storage. The virtualization system in turn allocates volumes from the pool for host systems
to use. The system sits between two fabrics. The first fabric contains the array systems used by the
virtualization system. The second fabric connects the virtualization system to the hosts systems.

The basic Virtualization System profile provides a read-only view of the system. The various
subprofiles indicated in “In Band Virtualization Overview Diagram” on page 402 extend this
description and also enable configuration. Refer to “Optional Subprofiles” on page 417 for more
information on these optional extensions. This profile also includes the mandatory “Physical
Package Package” on page 103 that describes the physical layout of the system and includes
product identification information.

7.3.6.2.2 Standard Dependencies
The In-band Virtualizer profile is based on the following standards:

7.3.6.2.3 Profile Dependencies
The In-band Virtualizer profile requires the Server Profile (p. 441).

7.3.6.2.4 CIM Server Requirements

7.3.6.2.4.1 Functional Profiles

7.3.6.2.4.2 Extrinsic Methods
Support for extrinsic methods is NOT REQUIRED for the InBandVirtualizer profile.

Table 276: In-Band Virtualizer Standards Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF

Table 277: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
Version 1.0.1 401

SNIA Storage Management Initiative Specification
7.3.6.2.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

7.3.6.2.5 Instance Diagrams

7.3.6.2.5.1 Overview
The modeling in this document is split into various sections that describe how to model particular
elements of an In-Band Virtualization System. The diagrams used in this document are 'Instance'
diagrams implying the actual classes that you implement rather than the class hierarchy
diagrams often used to show CIM models. This is felt to be easier to understand. Please refer to the
CIM Schema for information on class inheritance information and full information on the
properties and methods used.

Figure 68: In Band Virtualization Overview Diagram

Location

Extend Mapping

LUN Creation Service

LUN Mapping & Masking Service

Copy Services

In-Band Virtualization Profile

Cluster

Extra Capacity Set

Access Points

Software

Job Control

Pool Manipulation Service

Device Credentials

PhysicalPackage Package

 HostedService

HostedService

ComputerSystemPackage

HostedAccessPoint
ConcreteIdentity

ComponentCS

ConcreteComponent
PhysicalElementLocation

InstalledSoftwareElement

OwningJobElement

OwningJobElement

OwningJobElement

OwningJobElement
402 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.2.5.2 In Band Virtualization System

The Virtualization system is modeled using the ComputerSystem class with the “Dedicated”
properties set to ‘BlockServer’ and “InBandVirtualization”. The model allows the system to be a
cluster or contain redundant components, but the components act as a single system. The
ComputerSystem class and common Cluster Subprofile model this.

The StoragePool classes in the center of the diagram represents the mapping from array storage to
Volumes for host access. The pool is hosted on the ComputerSystem and services to control it are
host on the same controller. The StorageExtent at the bottom of the screen represents the storage
from external arrays used by the mapping. These StorageExtents are connected to the pool using
the ConcreteComponent association.

StorageVolumes at the upper right are the volumes created from the StoragePool and are
accessible from hosts. The associations to the SCSIProtocolController and to the FCPort indicate
ports the volume is mapped to. The StorageVolumes are described by the StorageSetting class
connected by the ElementSettingData association.

7.3.6.2.5.2.1 Controller Software
Information on the installed controller software is represented by the optional Software subprofile.
This is linked to the controller using an InstalledSoftwareElement association.

7.3.6.2.5.2.2 Device Management Access
Most devices now have a web GUI to allow device specific configuration. This is modeled using the
common subprofile “Access Point”.

7.3.6.2.5.2.3 Physical Modeling
The physical aspects of the metadata controller are represented by the Common Package “Physical
Package” and the optional subprofile “Location”. See these common sections for more details.

Figure 69: In Band Virtualization System Instance

SCSIProtocolController

ProtocolControllerForUnit

StorageVolume

LUID: //VPD pg 83 ID
DefaultAccessMode

StorageExtent

Name: //VPD pg 83 ID
DefaultAccessMode

SCSIProtocolContoller

ProtocolControllerAccessesUnit

FCPort

StoragePool

AllocatedFromStoragePool

StorageSetting

ElementSettingData

ProtocolControllerForPort

AllocatedFromStoragePool

ComputerSystem
Dedicated[x]=

'InbandVirtualization'

HostedStoragePool

ConcreteComponent

FCPort

ProtocolControllerForPort
Version 1.0.1 403

SNIA Storage Management Initiative Specification
7.3.6.2.5.2.4 Services
The system hosts services used to control the configuration of the system’s resources . These
services are optional and modeled by “LUN Creation”, “Copy Services”, and “Job Control”
subprofiles.

7.3.6.2.6 Durable Names and Correlatable IDs of the Profile

7.3.6.2.6.1 Durable Names Exported
For StorageVolume, the durable names used are the names of the volumes. The format of this
property is available in NameFormat. The valid formats are described in Section ‘“Find the
Durable Name for Volumes” on page 384

For Fibre Channel port, the durable name is the Port WWN. It is found in
FCPort.PermanentAddress.

For the system itself (the computer system), the Name property contains a durable name. The
format of this name is defined by the NameFormat property.

7.3.6.2.6.2 Correlatable IDs Used
None.

7.3.6.2.7 Methods
The methods needed by this model are part of the common subprofiles for the services and are
described there.

7.3.6.2.8 Client Considerations
None.

7.3.6.2.9 Recipes
There are no recipes defined for this profile.

7.3.6.2.10 Instrumentation Requirements
None.
404 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.2.11 Required CIM Elements

Table 278: Required CIM Elements

Profile Classes & Associations Notes

AllocatedFromStoragePool (p. 407)

ConcreteComponent (p. 407)

ComputerSystem (p. 407)

ElementCapabilities (p. 408)

ElementSettingData (p. 408)

FCPort (p. 408)

HostedStoragePool (p. 410)

ProtocolControllerAccessesUnit (p. 410)

ProtocolControllerForPort (p. 410)

ProtocolControllerForUnit (p. 412)

SCSIProtocolController (p. 412)

StorageCapabilities (p. 412)

StoragePool (p. 414)

StoragePool (p. 414)

StorageSetting (p. 414)

StorageVolume (p. 416)

SystemDevice (p. 416) (port)

SystemDevice (p. 416) (volume)

StorageExtent (p. 414)

Packages

Physical Package Package (p. 103).

Associated Indications

Creation/Deletion of a Storage Pool SELECT * FROM CIM_InstCreation
WHERE SourceInstance ISA
CIM_StoragePool
SELECT * FROM CIM_InstDeletion
WHERE SourceInstance ISA
CIM_StoragePool

Creation/Deletion of a Storage Volume SELECT * FROM CIM_InstCreation
WHERE SourceInstance ISA
CIM_StorageVolume
SELECT * FROM CIM_InstDeletion
WHERE SourceInstance ISA
CIM_StorageVolume
Version 1.0.1 405

SNIA Storage Management Initiative Specification
Creation/Deletion of an FCPort SELECT * FROM CIM_InstCreation
WHERE SourceInstance ISA CIM_FCPort
SELECT * FROM CIM_InstDeletion
WHERE SourceInstance ISA CIM_FCPort

Creation/Deletion of a Virtualizer SELECT * FROM CIM_InstCreation
WHERE SourceInstance ISA
CIM_ComputerSystem
SELECT * FROM CIM_InstDeletion
WHERE SourceInstance ISA
CIM_ComputerSystem

Change in the status of a Storage Volume SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.Operationalstatus <>
PreviousInstance.Operationalstatus

Change in the status of an FC Port SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.Operationalstatus
<> PreviousInstance.Operationalstatus

Table 278: Required CIM Elements (Continued)

Profile Classes & Associations Notes
406 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.2.12 Required Properties for CIM Elements

7.3.6.2.12.1 AllocatedFromStoragePool

7.3.6.2.12.2 ComputerSystem

7.3.6.2.12.3 ConcreteComponent

Table 279: Required Properties for AllocatedFromStoragePool

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override The reference to The
StoragePool.

Dependent ref override The reference to the logical
element that is the subsidiary
element.

SpaceConsumed uint64 Space Consumed from this Pool
(in megabytes

Table 280: Required Properties for ComputerSystem

Property/
Method

Type Qualifier/
Parameter

Description/Notes

CreationClassName string key

ElementName string User Friendly name

OperationalStatus uint16 Status of array

Name string key The identifier for the Array (e.g. IP
address or FC world wide name).

NameFormat string The format of the Name property.

Dedicated[] int16 “blockserver”,
“metadatacontroller”

The use of this ComputerSystem

PrimaryOwnerContact string Optional

PrimaryOwnerName string Optional

Table 281: Required Properties for ConcreteComponent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref key, override

PartComponent ref key, override
Version 1.0.1 407

SNIA Storage Management Initiative Specification
7.3.6.2.12.4 ElementCapabilities

7.3.6.2.12.5 ElementSettingData

7.3.6.2.12.6 FCPort

Table 282: Required Properties for ElementCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ManagedElement ref key, override

Capabilities ref key, override

Table 283: Required Properties for ElementSettingData

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ManagedElement ref key The ManagedElement.

SettingData ref key The Setting Data object associated with
the ManagedElement.

IsDefault uint16 An enumerated integer indicating that
the referenced setting is a default setting
for the element, or that this information is
unknown."),||ValueMap {"0", "1", "2"},
||Values {"Unknown", "Is Default", "Is Not
Default"}

IsCurrent uint16 An enumerated integer indicating that
the referenced setting is currently being
used in the operation of the element, or
that this information is
unknown."),||ValueMap {"0", "1", "2"},
||Values {"Unknown", "Is Current", "Is
Not Current"}

Table 284: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string key

SystemName string key

CreationClassName string key

ElementName string User friendly name/caption for port.

OperationalStatus[] uint16 Status of device

DeviceID string key Opaque
408 Version 1.0.1

SNIA Storage Management Initiative Specification
PortType uint16 Used to indicate the type of the port
(e.g. N-port/NL-port).
This property is OPTIONAL.

PermanentAddress string The WWN of the port.

NetworkAddresses[] string The Fibre Channel address of the
port.
This property is OPTIONAL.

Speed uint64 Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.
This property is OPTIONAL.

Table 284: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 409

SNIA Storage Management Initiative Specification
7.3.6.2.12.7 HostedStoragePool

7.3.6.2.12.8 ProtocolControllerAccessesUnit

7.3.6.2.12.9 ProtocolControllerForPort

Table 285: Required Properties from HostedStoragePool

Property/
Method

Type Qualifier/
Parameter

Description/Notes

PartComponent ref The storage pool

GroupComponent ref The scoping system

Table 286: Required Properties for ProtocolControllerAccessesUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

NegotiatedSpeed unit64

NegotiatedDataWidth unit32

Dependent ref override LogicalDevice Reference

AccessState unit16

TimeOfDeviceReset datetime

NumberOfHardResets unit32

NumberOfSoftResets unit32

Antecedent ref override SCSIProtocolController Reference

SCSITimeouts unit32

SCSIRetries unit32

InitiatorId unit32

TargetId uint32

TargetLUN unit64

SCSIReservation unit16

SCSISignal unit16

MaxQueueDepth unit32

QueueDepthLimit unit32

Table 287: Required Properties from ProtocolControllerForPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent REF The SCSIProtocolController for this
port
410 Version 1.0.1

SNIA Storage Management Initiative Specification
Dependent ref The port.

AccessPriority unit16 The priority of access through this
port for this ProtocolController
This property is OPTIONAL.

Table 287: Required Properties from ProtocolControllerForPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 411

SNIA Storage Management Initiative Specification
7.3.6.2.12.10 ProtocolControllerForUnit

7.3.6.2.12.11 SCSIProtocolController

7.3.6.2.12.12 StorageCapabilities

Table 288: Required Properties from ProtocolControllerForUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref The protocol controller

Dependent ref The exposed logical unit.

DeviceNumber unit16 The Logical Unit number for this
Volume through this controller.

Table 289: Required Properties for SCSIProtocolController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User friendly name/caption for
port.
This property is OPTIONAL.

OperationalStatus[] uint16 Status of device.
This property is OPTIONAL.

DeviceID string key Opaque

MaxUnitsControlled uint32 Maximum number of units
controlled by this controller
This property is OPTIONAL.

Table 290: Required Properties from StorageCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID unit16 key

ElementName string User friendly name/caption

ElementType uint16 Type of element this capability
applies to

NoSinglePointOfFailure boolean

NoSinglePointOfFailureDefault boolean

DataRedundancyMin uint16

DataRedundancyMax uint16

DataRedundancyDefault uint16

DeltaReservationMin uint16
412 Version 1.0.1

SNIA Storage Management Initiative Specification
DeltaReservationMax uint16

DeltaReservationDefault uint16

PackageRedundancyMin uint16

PackageRedundancyMax uint16

PackageRedundancyDefault unit16

Table 290: Required Properties from StorageCapabilities (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 413

SNIA Storage Management Initiative Specification
7.3.6.2.12.13 StorageExtent

7.3.6.2.12.14 StoragePool

7.3.6.2.12.15 StorageSetting

Table 291: Required Properties for StorageExtent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Name string required

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DeviceID string maxlen(64), key unique identifying information

BlockSize uint64

NumberOfBlocks uint64

ConsumableBlocks uint64

OperationalStatus unit16[]

ExtentStatus uint16[]

Table 292: Required Properties for StoragePool

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

InstanceID string key Opaque identifier

PoolID string required,
maxlen(256)

A unique name in the context of
the System that identifies this
pool.

TotalManagedSpace uint64

RemianingManagedSpace unit64

Primordial boolean defaults to false, true for the
primordial pools.

Table 293: Required Properties from StorageSetting

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceId uint16 key

ElementName string required User friendly name/caption
414 Version 1.0.1

SNIA Storage Management Initiative Specification
DataRedundancyMin uint16

DataRedundancyMax uint16

DataRedundancyGoal uint16

DeltaReservationMin uint16

DeltaReservationMax uint16

DeltaReservationGoal uint16

PackageRedundancyMin uint16

PackageRedundancyMax uint16

PackageRedundancyGoal unit16

Table 293: Required Properties from StorageSetting (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 415

SNIA Storage Management Initiative Specification
7.3.6.2.12.16 StorageVolume

7.3.6.2.12.17 SystemDevice

Table 294: Required Properties for StorageVolume

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string key

SystemName string key

CreationClassName string key

InstanceID uint16 key

ElementName string required User Friendly name

Name string VPD Page 83 ID

NameFormat uint16 Format of Name property

ExtentStatus uint16[] Status of volume (Rebuild,spare
in use etc.)

OperationalStatus unit[] Current general status of volume

DeviceID string Opaque ID

BlockSize uint64 Block size of Volume

NumberOfBlocks uint64 NUmber of Blocks (not size of
volume is BlockSize*
NumberOFBlocks)

IsBasedOnUnderlyingRedundancy boolean

NoSinglePointOfFailure boolean Current value of StorageSetting

DataRedundancy uint16 Current value of StorageSetting

PackageRedundancy uint16 Current value of StorageSetting

DeltaReservation uint16 Current value of StorageSetting

Table 295: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override System Reference

PartComponent ref override LogicalDevice Reference
416 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.2.13 Optional Subprofiles

Table 296: Optional Profiles or Subprofiles

Name Notes

Cluster Subprofile (p. 116)

Extra Capacity Set Subprofile (p. 121)

Access Points Subprofile (p. 113)

Software Subprofile (p. 145)

Location Subprofile (p. 142)

Pool Manipulation, Capabilities, and Settings
Subprofile (p. 178)

Job Control Subprofile (p. 172)

Copy Services Subprofile (p. 146)

LUN Masking and Mapping (p. 192)

LUN Creation Subprofile (p. 201)

Device Credentials Subprofile (p. 220)

Extent Mapping Subprofile (p. 138)
Version 1.0.1 417

SNIA Storage Management Initiative Specification
7.3.6.3 Storage Library Profile

7.3.6.3.1 Description
The schema for a StorageLibrary provides the classes and associations necessary to represent
various forms of removable media libraries. This profile is based upon the CIM 2.7 model and
defines the subset of classes that supply the necessary information for robotic storage libraries.

This profile further describes how the classes are to be used to satisfy various use cases and offers
suggestions to agent implementors and client application developers. Detailed descriptions of
classes are from the CIM 2.8 preliminary schema. Only the classes unique to storage libraries
are described by this Profile. Other classes that are common to multiple Profiles may be found
elsewhere in this specification.

The relevant objects for a storage library should be instantiated in the name space of the provider
(or agent) for a storage library resource. Whenever an instance of a class for a resource may exist
in multiple name spaces a Durable Name is defined to aid clients in correlating the objects across
name spaces. For storage libraries, durable names are defined for the following resources:

• FCPort

• ChangerDevice

• TapeDrive

• StorageLibrary

• MediaAccessDevice

The durable names are defined in a following subsection of this profile. All other objects do not
require durable names and have instances within a single name space.

7.3.6.3.2 Standard Dependencies
The storage library profile is based on the following standards:

7.3.6.3.3 Profile Dependencies
The storage library profile requires the Server Profile (p. 441).

Table 297: Storage Library Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF
418 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.3.4 CIM Server Requirements

7.3.6.3.4.1 Functional Profiles

7.3.6.3.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.

7.3.6.3.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

7.3.6.3.5 Instance Diagrams
None.

7.3.6.3.6 Instance Diagrams

7.3.6.3.6.1 Overview
The following instance diagrams represent five related views of the top-level storage library
profile:

a. System Level

b) MediaAccessDevice and its physical and logical relationships

c) ChangerDevice and its connections to SoftwareIdentity, ProtocolController, and
StorageMediaLocation

d) StorageMediaLocation and its relationship to PhysicalMedia and other physical classes

e) StorageMediaLocation and its required Realizes relationships.

Table 298: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
Version 1.0.1 419

SNIA Storage Management Initiative Specification
7.3.6.3.6.2 System Level View
This figure shows the required top-level components for a StorageLibrary system. Note that all
LogicalDevice subclasses MUST be associated with StorageLibrary via System Device.

7.3.6.3.6.3 MediaAccessDevice-centric View
This figure shows the required classes related to MediaAccessDevice. Though not shown in this
figure, recall that both MediaAccessDevice and ProtocolController are connected to a StorageLibrary
instance through the SystemDevice association. Note that in some libraries, notably small
autoloaders, external hosts access a library’s ChangerDevice through the ProtocolController of a
MediaAccessDevice. For such libraries, an additional ProtocolControllerForUnit association should
be instantiated between the MediaAccessDevice’s ProtocolController and the affected
ChangerDevice. ProtocolControllerForUnit is a many-to-many association, so a single

Figure 70: StorageLibrary-centric Instance Diagram

StorageLibrary

Product

Chassis

MediaAccessDevice

ChangerDevice

SystemDevice

SystemDevice

Produc tPhys i calElements

LibraryPackage

ProtocolController

SCSIProtocolController

ProtocolControl l erForUni t

TapeDrive

SystemDevice
420 Version 1.0.1

SNIA Storage Management Initiative Specification
ProtocolController can be connected to multiple LogicalDevices if this accurately represents a
library’s configuration.

Figure 71: MediaAccessDevice-centric Instance Diagram

M ed ia Ac c e s s D evic e

T a peD r ive

P hys ic a lPac k age

So ftwa re Ide n ti ty

P ro toc o lC on tro l le r

SC S IP ro toc o lC on tro l le r

R ea l i z e s

D evic eSo ftware

P ro toc o lC on tro l le rF o rUn i t
S to rage M ed iaL oc a tion

R ea l i z e s
Version 1.0.1 421

SNIA Storage Management Initiative Specification
7.3.6.3.6.4 ChangerDevice-centric View
This figure shows the required classes related to ChangerDevice.

7.3.6.3.6.5 Physical View
This figure shows important physical components of a storage library and how they relate. With
regard to StorageMediaLocation and Magazine, one of two implementation alternatives MUST be
selected:

a. Instantiate multiple Magazines associated to Chassis via Container, then instantiate Stor-
ageMediaLocations that are contained (again via Container) within each Magazine

Figure 72: ChangerDevice-centric Instance Diagram

StorageLib rary

SoftwareIdentity

ChangerDevice

SystemDevice

DeviceSoftware

ProtocolController

SCSIProtocolController

ProtocolControllerForUnit

StorageMediaLocation

Realizes

SystemDevice
422 Version 1.0.1

SNIA Storage Management Initiative Specification
b) Instantiate multiple StorageMediaLocations directly associated to Chassis via Container,
without the use of Magazines. Other optional classes, such as Panel, can also be used to group
StorageMediaLocations, but this is not required.

7.3.6.3.6.6 StorageMediaLocation Instance Diagram
This figure shows relationships between various LogicalDevices (i.e., MediaAccessDevices,
LimitedAccessPort, and ChangerDevice) and StorageMediaLocation. For each LogicalDevice that
can hold media, at least one StorageMediaLocation MUST be associated via Realizes. The figure

Figure 73: Physical View Instance Diagram

Chassis

PhysicalMedia

PhysicalTape

StorageMediaLocation

Containe
r

Pack agedCom ponen
t

PhysicalMediaInLocatio
n

Magaz ine

Containe
r

Version 1.0.1 423

SNIA Storage Management Initiative Specification
also shows how PhysicalMedia is conceptually placed “inside” a LogicalDevice by associating
PhysicalMedia with a StorageMediaLocation that Realizes a LogicalDevice.

7.3.6.3.7 Durable Names and Correlatable IDs of the Profile

7.3.6.3.7.1 Durable Names Exported
No Durable Names are exported by this profile.

7.3.6.3.7.2 Correlatable IDs Used
Different implementations use different approaches to uniquely identify the SCSI units pertinent
to Storage Media Libraries (i.e. Changer Devices and Media Access Devices). The agent should
utilize the same Durable Name techniques described for volumes in the Disk Array section. The
chosen name is stored in the Name attribute of the logical device with the corresponding setting
for the NameFormat attribute. Allowable name formats and device pairings for the storage library
profile are:

• FCPort: FCPort.PermanentAddress = Fibre Channel Port World Wide Name. NameFormat
should be set to “WWN”

• ChangerDevice.DeviceID = Vendor+Product+Serial Number+(optional instance number).
Vendor, Model and Serial number should be taken from the ChangerDevice’s associated
StorageLibrary, Product, and/or Chassis. An option instance number may be added to
uniquely denote more than one ChangerDevice “inside” a StorageLibrary

• MediaAccessDevice (or TapeDrive).DeviceID = Vendor+Product+Serial number for the
MediaAccessDevice

• StorageLibrary.Name = Vendor+Product+Serial number for the StorageLibrary and/or its
associated Product and Chassis. NameFormat should be set to “Vendor+Product+Serial”

Please refer to Table 3, “Standardized Name Formats,” on page 82 for additional information.

7.3.6.3.8 Methods
No methods have been defined for this profile.

Figure 74: StorageMediaLocation Instance Diagram

StorageMediaLocationMediaAccessDevice

ChangerDevice StorageMediaLocation

Realizes

Realizes

PhysicalMedia

PhysicalMediaInLocation

PhysicalMedia

PhysicalMediaInLocation
424 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.3.9 Client Considerations
See “Recipes” on page 425.

7.3.6.3.10 Recipes

7.3.6.3.10.1 Overview
While no pseudo-code-based recipes have been written for this profile, this section provides some
helpful information for writing management applications and suggests techniques for addressing
common use cases.

7.3.6.3.10.2 Discover a Storage Media Library
Discovery of Storage Media Libraries is achieved by looking up instances of StorageLibrary.
StorageLibrary is subclassed from System and has a corresponding Name and NameFormat
property as described above under “Durable Names and Correlatable IDs of the Profile” on
page 424. Specifically, NameFormat SHALL be set to “VendorModelSerial” and the Name SHALL
be of the form Vendor+Product+Serial

7.3.6.3.10.3 Determine Library Physical Media Capacity
The physical media capacity of a library is the number of physical media objects that may be
stored in the currently installed configuration of a Storage Media Library. This capacity may be
determined by enumerating the StorageMediaLocation instances that are associated with each of
the library’s Chassis objects.

In implementations that choose to include the Capacity subprofile, minimum and maximum slot
capacities for a Storage Library are modeled in the ConfigurationCapacity described earlier in the
section on Capacity Constraints. Since this use case relies on an optional part of the profile , it may
not be supported by each agent implementation.

7.3.6.3.10.4 Determine Physical Media Inventory
To determine the physical media inventory of a StorageLibrary, clients should discover the
Chassis instance associated with a particular StorageLibrary (via the LibraryPackage
association), and enumerate the PhyscialMedia instances associated with the Chassis through the
PackagedComponent association.

7.3.6.3.10.5 Discover Tape Library Control Type
The control mechanism to a library is either:

• SCSI Media Changer Commands directed to the library’s changer device

• Library control commands directed to a Library Control service.

If a library does not have a ProtocolController instance associated via ProtocolControllerForUnit to
the ChangerDevice then the client should conclude that an alternate mechanism for controlling the
library is required. This mechanism MAY vary but SHOULD be represented by an instance of
Service as described in the section on Software/Service View for a library’s hosted services

7.3.6.3.10.6 Determine Library Drive Capacity
The current drive capacity of a library may be determined by enumerating the MediaAccessDevice
instances through the SystemDevice association of the library.

When the optional Capacity subprofile is implemented, the number of drives discovered should be
within the range indicated by the minimum and maximum capacity attribute found on the library
Chassis’ ElementCapacity association with ConfigurationCapacity for tape drives. This bounds
check is not available if the Capacity subprofile is not implemented.
Version 1.0.1 425

SNIA Storage Management Initiative Specification
7.3.6.3.10.7 Determine Drive Data Path Technology
Clients can discover the data path protocol of each drive within a storage library by enumerating
MediaAccessDevice instances, then following the ProtocolControllerForUnit association linking a
MediaAccessDevivce with a ProtocolController. Properties within Contoller can then be queried for
more information. If the MediaAccessDevice has a fibre channel interface, an FCPort instance is
linked to its ProtocolController by a ProtocolControllerForPort association. See the “Fibre Channel
Connection Subprofile” on page 525 for more information on fibre channel connectivity.

7.3.6.3.10.8 Find asset Information
Information about the entire storage library is modeled in the Chassis instances associated with
the StorageLibrary. Chassis properties include Manufacturer, Model, Version, and Tag. Tag is an
arbitrary identifying string.

To identify asset information for the logical devices, a client should access the corresponding
logical device through the StorageLibrary object’s SystemDevice association. For each logical device
instance the client may then check for asset information from the PhysicalElement associated
through a Realizes association. Product information may also be available through the
corresponding ProductPhysicalElement/ProductPhysicalComponent aggregation.

7.3.6.3.10.9 Discovery of Mailslots, Import/Export Elements or LimitedAccessPorts in a Storage Library
Clients may determine the number of LimitedAccessPorts in a library by enumerating the
LimitedAccessPorts connected to a StorageLibrary instance via the SystemDevice association.

Note that some smaller libraries do not have the type of import/export element modelled by
LimitedAccessPort. As a result, LimitedAccessPort elements are included in an (optional) subprofile.
See “Limited Access Port Elements Subprofile” on page 437..

7.3.6.3.11 Instrumentation Requirements

7.3.6.3.11.1 Indications
Agents SHOULD be designed to support CIM indications.

7.3.6.3.11.2 Storage Inventory
To be useful to client management applications, the agent for a Storage Library resource needs to
accurately represent the required elements of a Storage Media Library and their proper state. In
order to provide consistent Storage Inventory it is important that PackagedComponent association
instances between a Storage Media Library’s Chassis and PhysicalMedia instances be maintained.

Entry and exit of PhysicalTape instances from the Storage Media Library REQUIRES updating
this set of associations. Details on this procedure vary from library to library, but, at a minimum,
require an update each time a library is powered up. Other considerations involve updates
whenever a LimitedAccessPort or InterLibraryPort changes state.

7.3.6.3.11.3 Hosted Services
It is not uncommon for libraries to include the following services:

• Web Server – typically supports administration and configuration of the library.

• SNMP Agent – for resource monitoring and management within legacy System Management
Frameworks, or even to support the SMI-S proxy agent.

• NDMP Services – NDMP may be present within the library to support the NDMP Backup
Process
426 Version 1.0.1

SNIA Storage Management Initiative Specification
As an additional out-of-band management service, client management applications would be well
served if they can locate these services via the agent’s implementation of a corresponding instance
of Service.

7.3.6.3.11.4 Media Changer Control Software
There are a variety of protocols for controlling storage libraries, the most predominant method
being the SCSI Media Changer Commands defined by the NCITS’ T10 Technical Committee. The
ability to determine the type of control software required by a library is an important use case for
clients. For this reason, it is imperative that the agent for a library resource instantiate the
appropriate subclass of ProtocolController for the ChangerDevice instances. Library vendors may
subclass ProtocolController for specifying proprietary library controllers for media changer devices.

7.3.6.3.11.5 Mixed Media Libraries
This profile fully supports mixed media style libraries. A mixed media library is a library that
supports PhysicalMedia with varying properties (e.g., DLT or LTO tapes, as well as optical media).
The StorageMediaLocation class’ MediaTypesSupported property specifies the type of media
accepted. Agent developers should implement the Container association from a MediaAccessDevice
to a StorageMediaLocation so that there is a mechanism in place for determining media and drive
compatibility.
Version 1.0.1 427

SNIA Storage Management Initiative Specification
7.3.6.3.12 Required CIM Elements

Table 299: Required CIM Elements

Profile Classes & Associations Notes

ChangerDevice (p. 430) representing the robotic arm or picker

Chassis (p. 430) representing the physical library frame

Container (p. 432) links Chassis and StorageMediaLocation

ProtocolControllerForUnit (p. 432) links ChangerDevice and ProtocolController

ProtocolControllerForUnit (p. 432) links MediaAccessDevice and ProtocolController

SCSIProtocolController (p. 432) representing a SCSI ProtocolController for
MediaAccessDevices and ChangerDevices

DeviceSoftware (p. 433) links ChangerDevice and SoftwareIdentity

DeviceSoftware (p. 433) links MediaAccessDevice and SoftwareIdentity

LibraryPackage (p. 433) links Chassis and StorageLibrary

MediaAccessDevice (p. 433) representing a tape, optical, or other drive

PackagedComponent (p. 434) links Chassis and PhysicalMedia (or PhysicalTape)

PhysicalMedia. (p. 434) representing a tape cartridge, optical platter, or other
media

PhysicalMediaInLocation (p. 434) links PhysicalMedia and StorageMediaLocation

ProductPhysicalComponent (p. 435) links Product and Chassis

Realizes (p. 435) links MediaAccessDevice and PhysicalPackage

Realizes (p. 435) links MediaAccessDevice and StorageMediaLocation

Realizes (p. 435) StorageMediaLocation and ChangerDevice

Realizes (p. 435) StorageMediaLocation and LimitedAccessPort

SoftwareIdentity (p. 435) Representing the Changer

SoftwareIdentity (p. 435) Representing the TapeDrive or MeidaAccessDevice

StorageLibrary (p. 436) representing the logical library itself

StorageMediaLocation (p. 436) representing a physical location that holds media, such
as a simple slot or Magazine, or a location within a
ChangerDevice,

SystemDevice (p. 437) links ChangerDevice and StorageLibrary

SystemDevice (p. 437) links LimitedAccessPort and StorageLibrary

SystemDevice (p. 437) links StorageLibrary and ProtocolController

SystemDevice (p. 437) links StorageLibrary and MediaAccessDevice

Packages
428 Version 1.0.1

SNIA Storage Management Initiative Specification
Physical Package Package (p. 103) For system, changer, tape drive and other media
access devices

Associated Indications

Creation/Deletion of a StorageLibrary SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageLibrary
SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageLibrary

Creation/Deletion of a PhysicalMedia SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA PhysicalMedia
SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_PhysicalMedia

Creation/Deletion of a TapeDrive SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_TapeDrive
SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_TapeDrive

Creation/Deletion of a ChangerDevice SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ChangerDevice
CIM_SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ChangerDevice

Creation/Deletion of an FCPort SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort
SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FCPort

Change in operational status of a
StorageLibrary

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageLibrary AND
PreviousInstance.OperationalStatus <>
SourceInstance.OperationalStatus

Change in operational status of a
PhysicalMedia

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_PhysicalMedia AND
PreviousInstance.OperationalStatus <>
SourceInstance.OperationalStatus

Change in operational status of a TapeDrive SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_TapeDrive AND
PreviousInstance.OperationalStatus <>
SourceInstance.OperationalStatus

Change in operational status of a
ChangerDevice

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ChangerDevice AND
PreviousInstance.OperationalStatus <>
SourceInstance.OperationalStatus

Change in operational status of an FCPort SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FCPort AND
PreviousInstance.OperationalStatus <>
SourceInstance.OperationalStatus

Table 299: Required CIM Elements (Continued)

Profile Classes & Associations Notes
Version 1.0.1 429

SNIA Storage Management Initiative Specification
7.3.6.3.13 Required Properties for CIM Elements

7.3.6.3.13.1 ChangerDevice

7.3.6.3.13.2 Chassis

Table 300: Required Properties for ChangerDevice

Property/Method Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string key The scoping System's
CreationClassName.

SystemName string key The scoping System's Name.

CreationClassName string key Indicates the name of the class
or subclass used in the creation
of an instance.

DeviceID string key

MediaFlipSupported boolean

ElementName string User friendly name

OperationalStatus uint16[] valuemap "Unknown", "Other", "OK",
"Degraded", "Stressed",
"Predictive Failure", "Error",
"Non-Recoverable Error",
"Starting", "Stopping",
"Stopped", "In Service", "No
Contact", "Lost
Communication", "Aborted",
"Dormant", "Supporting Entity in
Error", "Completed"

Caption string

Description string

Availability uint16 valuemap Values include: Other,
Unknown, Running/Full Power,
Warning, In Test, Power Off,
and Offline. See MOF for
values

Table 301: Required Properties for Chassis

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Tag string key,
maxlen(256)

An arbitrary string that uniquely identifies the
PhysicalElement. See PhysicalElement
MOF.

CreationClassName string key,
maxlen(256)

Indicates the name of the class or subclass
used in the creation of an instance
430 Version 1.0.1

SNIA Storage Management Initiative Specification
LockPresent boolean Boolean indicating whether the Frame is
protected with a lock.

SecurityBreach uint16 valuemap “Other”, “Unknown”, “No Breach”, “Breach
Attempted”, “Breach Successful”

IsLocked boolean Boolean indicating that the Frame is
currently locked

ElementName string

Manufacturer string maxlen(256) The name of the organization responsible
for producing the PhysicalElement

Model string maxlen(256) The name by which the PhysicalElement is
generally known

SerialNumber string A manufacturer-allocated number used to
identify the PhysicalElement

Table 301: Required Properties for Chassis (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 431

SNIA Storage Management Initiative Specification
7.3.6.3.13.3 Container

7.3.6.3.13.4 ProtocolControllerForUnit

7.3.6.3.13.5 SCSIProtocolController

Table 302: Required Properties for Container

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override PhysicalPackage Reference

PartComponent ref override PhysicalElement Reference

Table 303: Required Properties for ProtocolControllerForUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key, override The ProtocolController.

Dependent ref key, override The controlled Device.

DeviceNumber string Address of associated Device in context
of the antecedent ProtocolController.
Formatted as uppercase hexadecimal
digits, with a prefix of “0x”.

Table 304: Required Properties for SCSIProtocolController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string key

SystemName string key

CreationClass string key

ElementName string User friendly name/caption for port.
This property is OPTIONAL.

OperationalStatus[] uint16 Status of device.
This property is OPTIONAL.

DeviceID string key Opaque

MaxUnitsControlled uint32 Maximum number of units controlled by
this ProtocolController.
This property is OPTIONAL.
432 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.3.13.6 DeviceSoftware

7.3.6.3.13.7 LibraryPackage

7.3.6.3.13.8 MediaAccessDevice

Table 305: Required Properties for DeviceSoftware

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key, override The SoftwareIdentity.

Dependent ref key, override The LogicalDevice that requires or uses
the software.

Table 306: Required Properties for LibraryPackage

Property/
Method

Type Qualifier or
Parameter

Notes

Antecedent ref override PhysicalPackage Reference

Dependent ref override StorageLibrary Reference

Table 307: Required Properties for MediaAccessDevice

Property/
Method

Type Qualifier or
Parameter

Notes

NeedsCleaning boolean

MountCount uint64

SystemCreationClassName string key, maxlen(256)

SystemName string key, maxlen(256)

CreationClassName string key, maxlen(256)

DeviceID uint64 key

Availability uint16 valuemap Values include: Other,
Unknown, Running/Full
Power, Warning, In Test,
Power Off, and Offline. See
MOF for values

PowerOnHours uint64 counter,
units(“hours”)

TotalPowerOnHours uint64 counter,
units(“hours”)
Version 1.0.1 433

SNIA Storage Management Initiative Specification
7.3.6.3.13.9 PackagedComponent

7.3.6.3.13.10 PhysicalMedia.

7.3.6.3.13.11 PhysicalMediaInLocation

Table 308: Required Properties for PackagedComponent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override PhysicalPackage Reference

PartComponent ref override PhysicalComponent Reference

Table 309: Required Properties for PhysicalMedia

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Tag string maxlen(256), key An arbitrary string that uniquely
identifies the Physical Element

CreationClassName string key The name of the concrete subclass

Capacity uint64 units ("bytes")

MediaType uint16 valuemap See MOF file for values

MediaDescription string Additional detail related to the
MediaType enumeration.

CleanerMedia boolean

DualSided boolean

PhysicalLabels string[] One or more strings on 'labels' on the
PhysicalMedia.

Removable boolean

Replaceable boolean

HotSwappable Boolean

Table 310: Required Properties for PhysicalMediaInLocation

Property/
Method

Type Qualifier or
Parameter

Notes

Antecedent ref override StorageMediaLocation Reference

Dependent ref override PhysicalMedia Reference
434 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.3.13.12 ProductPhysicalComponent

7.3.6.3.13.13 Realizes

7.3.6.3.13.14 SoftwareIdentity
The SoftwareIdentity is used to model either software or firmware.

SoftwareIdentity is subclassed from LogicalElement.

Table 311: Required Properties for ProductPhysicalComponent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Product ref The Product

Component ref The PhysicalElement that is part of this
product

Table 312: Required Properties for Realizes

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override PhysicalElement reference

Dependent ref override LogicalDevice reference

Table 313: Required Properties for SoftwareIdentity

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string key The name used to identify this
SoftwareIdentity.

VersionString string Software Version should be in the form
<Major>.<Minor>.<Revision> or
<Major>.<Minor><letter><revision>.

Manufacturer string Manufacturer of this software.

BuildNumber uint16 OPTIONAL. The internal identifier for this
compilation of software, if available.

RevisionNumber uint16 OPTIONAL. This is the numeric
representation of the revision number in the
VersionString

MajorVersion uint16 OPTIONAL. This is the numeric
representation of the Major number in the
VersionString

MinorVersion uint16 OPTIONAL. This is the numeric
representation of the Minor number in the
VersionString
Version 1.0.1 435

SNIA Storage Management Initiative Specification
7.3.6.3.13.15 StorageLibrary

7.3.6.3.13.16 StorageMediaLocation

Table 314: Required Properties for StorageLibrary

Property/
Method

Type Qualifier/
Parameter

Description/Notes

OperationalStatus valuemap

CreationClassName string maxlen(256), key Name of Class

Name string maxlen(256), key

Automated boolean

PrimaryOwnerName string

PrimaryOwnerContact string

Caption string

Description string

ElementName string

Table 315: Required Properties for StorageMediaLocation

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Tag string key, maxlen(256) An arbitrary string that
uniquely identifies the
PhysicalElement. See
PhysicalElement MOF.

CreationClassName string key, maxlen(256) Indicated the name of the
class or subclass.

LocationType uint16 valuemap Values include "Unknown",
"Other", "Slot", "Magazine",
"MediaAccessDevice",
"InterLibrary Port", "Limited
Access Port", "Door", "Shelf",
"Vault"

LocationCoordinates string General location information
about the physical location of
the StorageMediaLocation

MediaTypesSupported uint16[] valuemap Complete list of accepted
media types. See MOF for list
of values

MediaCapacity uint32 The maximum number of
PhysicalMedia that this
StorageMediaLocation can
hold
436 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.3.13.17 SystemDevice

7.3.6.3.13.18 TapeDrive
This object inherits all of its properties for its superclass MediaAccessDevice (p. 433).

7.3.6.3.14 Optional Subprofiles

7.3.6.3.15 Limited Access Port Elements Subprofile

7.3.6.3.15.1 Description
Most libraries contain Limited Access Ports elements (a.k.a., mailslots, cartridge access ports, or
import/export elements). This subprofile defines the required classes necessary to publish
information about these common components.

7.3.6.3.15.2 Standards Dependencies
See parent sections.

7.3.6.3.15.3 Profile Dependencies
See parent sections.

7.3.6.3.15.4 CIM Server Requirements
See parent sections.

Table 316: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override System Reference

PartComponent ref override LogicalDevice Reference

Table 317: Optional Profiles or Subprofiles

Name Notes

Physical Package Package (p. 103)

Access Points Subprofile (p. 113)

Location Subprofile (p. 142)

Software Subprofile (p. 145)

Limited Access Port Elements Subprofile (p. 437) Representing an import/export element or "mail
slot"
Version 1.0.1 437

SNIA Storage Management Initiative Specification
7.3.6.3.15.5 Instance Diagrams
This figure shows the relationship between LimitedAccessPorts and other portions of the Storage
Library profile.

7.3.6.3.15.6 Durable Names and Correlatable IDs
See parent sections.

7.3.6.3.15.7 Methods
None.

7.3.6.3.15.8 Client Considerations
See parent sections.

7.3.6.3.15.9 Instrumentation Requirements
See parent sections.

Figure 75: LimitedAccessPort Linkages

StorageLibrary

L i m i ted AccessP o r t

SystemDevice

Magazine

StorageMedi aLoc at i onStorageMedi aLoc at i onStorageMedi aLoc at i onStorageMedi aLoc at i onStorageMedi aLoc at i on

PhysicalMedia

Realizes

Phys i c al Medi aInLoc at i on

Container
438 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.6.3.15.10 Required CIM Elements

7.3.6.3.15.11 Required Properties for CIM Elements

7.3.6.3.15.11.1 LimiteAccessPort

Table 318: Required CIM Elements

Profile Classes & Associations Notes

LimiteAccessPort (p. 439)

Realizes (p. 435) Connects LimitedAccessPort to
StorageMediaLocations (or
Magazines)

SystemDevice (p. 437) Connects LimitedAccessPort to
StorageLibrary

Packages

None.

Associated Indications

Creation/Deletion of a LimitedAccessPort SELECT * FROM
CIM_InstCreation WHERE
SourceInstance ISA
CIM_LimitedAccessPort
SELECT * FROM
CIM_InstDeletion WHERE
SourceInstance ISA
CIM_LimitedAccessPort

Change in operational status of a LimitedAccessPort SELECT * FROM
CIM_InstModification WHERE
SourceInstance ISA
CIM_LimitedAccessPort AND
PreviousInstance.Operational
Status <>
SourceInstance.OperationalSt
atus

Table 319: Required Properties for LimitedAccessPort

Property/Method Type Qualifier/
Parameter

Description/Notes

SystemCreationClassName string key

SystemName string key

CreationClassName string key

DeviceID string key

Extended boolean When a Port is 'Extended' its
StorageMediaLocations are
accessible to a human
operator.
Version 1.0.1 439

SNIA Storage Management Initiative Specification
7.3.6.3.15.12 Optional Subprofiles

ElementName string User friendly name

Caption string

Description string

Table 320: Optional Profiles or Subprofiles

Name Notes

None

Table 319: Required Properties for LimitedAccessPort (Continued)

Property/Method Type Qualifier/
Parameter

Description/Notes
440 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.7 Server Profile

7.3.7.1 Description
A CIM Server is anything that supports the CIM-XML protocol and supports the basic read
functional profile as defined by the CIM Operations over HTTP specification.

The Server Profile is the profile that all SMI-S Servers MUST support for compliance.

The Object Manager part of the model defines the capabilities of a CIM Object Manager based on
the communication mechanisms that it supports.

The namespace model of the Server Profile describes the namespaces managed by the Object
Manager and the type information contained within the namespace. The main information
provided in the namespace part of the model is the namespace itself and its association to the
CIM_ObjectManager.

The RegisteredProfile part of the model is used to specify the Profiles supported by the Object
Manager. It also includes the specification of subprofiles that are supported by the profile.

In this section there are references to the InteropNamespace and the use of the InteropNamespace
for finding RegisteredProfiles and other related classes associated with the Server Profile. The
InteropNamespace refers to the first namespace found in the InteropSchemaNamespace attribute
of the SLP Template.

7.3.7.2 Standard Dependencies
The CIM Server Profile is based on the following standards:

7.3.7.3 Profile Dependencies
The Server Profile does not require any other Profiles.

Table 321: CIM Server Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF
Version 1.0.1 441

SNIA Storage Management Initiative Specification
7.3.7.4 CIM Server Requirements

7.3.7.4.1 Functional Profiles

7.3.7.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.

7.3.7.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

Table 322: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
442 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.7.5 Instance Diagram

A Server is modeled as a System with a HostedService association to an ObjectManager. The
ObjectManager is subclassed from Service.

This profile REQUIRES that all namespaces supported by the Server be identified (the Namespace
class) and associated to the ObjectManager via the NamespaceInManager association

Note: All classes of the Server Profile (as shown in Figure 76: "Server Model") are in the Interop
Namespace, with the exception of the “ManagedElement” that is referenced from the
RegisteredProfile. This makes traversing the Server Profile relatively simple. The only time
a traversal may require crossing namespaces is when following the
“ElementConformsToProfile” association.

The communication protocols supported by the ObjectManager SHOULD also be identified.
Specifically, the CIMXMLCommunicationMechanism MUST be present for standard
communication support for clients. This class is associated to the ObjectManager via the
CommMechanismForManager association.

The next set of classes and associations deal with Profiles supported by the ObjectManager. A
Profile is modeled using the RegisteredProfile class. One instance is created for each

Figure 76: Server Model

Name (InstanceID)
ElementName

ObjectManager

[Propagated Keys]
CreationClassName
Name
ClassInfo
DescriptionOfClassInfo

Namespace

[Default CommunicationMechanism = "XML over HTTP"]
CIMValidated

CIMXMLCommunictionMechanism

Namespace
InManager CommMechanismForManager

InstanceID
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes[]
AdvertiseTypeDescriptoins[]

RegisteredProfile

InstanceID
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes[]
AdvertiseTypeDescriptoins[]

RegisteredSubProfile

InstanceID
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes[]
AdvertiseTypeDescriptoins[]

RegisteredSubProfile

SubProfile
RequiresProfile

SubProfile
RequiresProfile

ManagedElement
(e.g., System)

ElementConformsToProfile

SystemHostedService

ReferencedProfile
Version 1.0.1 443

SNIA Storage Management Initiative Specification
ManagedElement that is covered by a profile and is managed by the Server. The RegisteredProfile
instances can be found by enumerating RegisteredProfiles within the interop namespace. A client
would find all profiles supported by the Server by enumerating RegisteredProfiles, enumerating
RegisteredSubprofiles and subtracting the second list from the first list. This will yield the list of
Profiles supported by the ObjectManager.

For each Profile instance, the subprofiles that have been implemented (for the instance) should be
identified via the SubprofileRequiresProfile association. Subprofiles are modeled using the
RegisteredSubProfile class. However, the RegisteredVersion property of subprofiles MUST be the
same as the RegisteredVersion in the parent profile.

In addition, the ElementConformsToProfile association ties the “top-level” Profile
(RegisteredProfile) to the scoping ManagedElements. These ManagedElements are typically
ComputerSystems or AdminDomains.

A single ManagedElement may have zero or more ElementConformsToProfile associations to
RegisteredProfiles. Regardless of the number of associated RegisteredProfiles the
ManagedElement represents one set of resources. So for example, consider a ManagedElement
that is a System that supports both the Array and In-Band Virtualization Appliance profiles. If
one asks for the total amount of mapped capacity, the answer applies to both Array and
Virtualizer and is not additive.

7.3.7.6 Durable Names and Other Correlatable IDs

7.3.7.6.1 Durable Names and Other Correlatable IDs Exported
The Server Profile exports the following:

CIM Server ID - ObjectManager.Name - The Name property is used to uniquely identify a CIM
Server. The CIM Server MUST ensure that this value is globally unique. In order to ensure
uniqueness, this value MUST be constructed using the following 'preferred' algorithm:
<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ':', and where <OrgID> MUST include a
copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/
defining the name, or a registered ID that is assigned to the business entity by a recognized global
authority. (This is similar to the <Schema Name>_<Class Name> structure of Schema class
names.) In addition, to ensure uniqueness, <OrgID> MUST NOT contain a colon (':'). When using
this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and
<LocalID>.

<LocalID> is chosen by the organizational entity and SHOULD not be re-used to identify different
underlying (real-world) elements. If the above 'preferred' algorithm is not used, the defining entity
MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by
this or other providers for this instance's NameSpace.

Note: Name is semantically the same as InstanceID. In the next major version of the CIM Schema,
Name is to be renamed to InstanceID and become the only key of this class.

ProfileInstance - RegisteredProfile.InstanceID - The InstanceID property is used to uniquely
identify a Profile Instance. The Server MUST ensure that this value is globally unique. In order to
ensure uniqueness, this value MUST be constructed in the following manner: <OrgID>:<LocalID>

7.3.7.6.2 Durable Names and Other Correlatable IDs Used
None.
444 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.7.7 Methods
All Basic Read and Association Traversal methods are supported for the Server profile. However,
basic write or instance manipulation methods are NOT REQUIRED for the Server profile. The
model itself is instantiated by the CIM Server and cannot be directly modified. Indirectly, the
ObjectManager (RequestedStatus) can be modified via the StopService extrinsic method.

StopService()

The StopService method may be applied to the ObjectManager. The StopService method places the
ObjectManager in the stopped state.

Note: The StartService method is NOT supported for Object Managers.

7.3.7.8 Client Considerations

7.3.7.8.1 Using the CIM Server Model to Determine SNIA Profiles Supported
All SNIA Profiles require the implementation of the Server Profile as part of the CIM Server. This
allows a client to determine which SNIA Profiles are supported by the a proxy, embedded or
general purpose SMI-S Server. SMI-S clients can use SLP to search for services that support SNIA
profiles. Indeed, a client may restrict its search to specific types of SNIA profiles. The client would
get a response for each CIM Server service that supports a SNIA profile. From the responses, the
client should use the “service-id” to determine the unique CIM Servers it is dealing with.

For each CIM Server, the client can determine the types of entities supported by inspecting the
RegisteredProfilesSupported attribute returned for the SLP entries. This identifies the types of
entities (e.g., devices) supported by the CIM Server.

The Client may determine more detail on the support for the Profiles by going to the service
advertised for the CIM Server and inspecting the RegisteredProfiles maintained in the server
profile. This would be done by enumerating RegisteredProfiles and RegisteredSubprofiles within
the interop namespace. By inspection of the actual profile instances, the client can determine the
SNIA version (RegisteredVersion) of profile, associated namespaces and associated managed
elements (e.g., systems).

7.3.7.8.2 Using the CIM Server Model to Determine Optional Features supported
From the RegisteredProfiles within the namespace of the ObjectManager, a client can determine
the “optional features” that are supported for the profile by following the
SubprofileRequiresProfile association. This returns a set of RegisteredSubProfile instances that
represent Subprofiles of the specific Profile instance. The name of the subprofile is scoped by the
Profile. See individual Profile descriptions in this specification for the specific list of “optional
subprofiles” supported. For a given profile instance there may be zero, one or many subprofiles.
The optional subprofiles documented in this specification merely list the subprofiles that MAY be
associated with the profile (via the SubprofileRequiresProfile association).

All Subprofiles that are supported by a Profile MUST be directly associated to the Profile via the
SubprofileRequiresProfile association. All subprofiles (either direct or indirect via subprofiles)
MUST be directly attached to the Profile. For example, the Array Profile instance can support two
subprofiles: LUN Creation and Job Control. Both of these subprofiles would be directly attached to
the Array Profile instance, even though the Job Control subprofile is actually a subprofile of LUN
Creation.

Note: The RegisteredVersion property of subprofiles MUST match the RegisteredVersion
property of its parent Profile.
Version 1.0.1 445

SNIA Storage Management Initiative Specification
7.3.7.9 Recipes

7.3.7.9.1 Assumptions
For discovery recipes, the following are assumed:

a. A top-level object (class instance) exists for each Profile, and

b) the client knows what the top level object is.

The top-level object for each of the SMI-S Profiles are:

• ComputerSystem: For JBOD, Array, Virtualizers, Switches, Routers and HBAs. This is the
top-level ComputerSystem instance for the Profile (not the component ComputerSystem or
the member ComputerSystem);

• AdminDomain: For Fabric and HostDiscoveredResources;

• StorageLibrary: For Storage Libraries;

• ObjectManager: For Server.

The top-level object (class instance) is associated to the RegisteredProfile instance for the Profile
via the ElementConformsToProfile association.

Note: Other ManagedElement instances MAY be associated wo the RegisteredProfile, but the
meaning and behavior of such associations are NOT defined by SMI-S and are NOT
REQUIRED.

7.3.7.9.2 Find Servers Supporting a Given Profile
// DESCRIPTION
// A management application wishes to find all CIM Servers on a
// particular subnet that support one or more SMI-S profiles.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. Assume CIM Servers have advertised their services (SrvReg)
// 2. Assume there may (or may not) be Directory Agents in the subnet
// 3. Assume no security on SLP discovery
// 4. #DirectoryList[] is an array of directory URLs
// 5. #ServiceList[] is an array of service agent URLs
// 6. #DirectoryEntries [] is an array of directory entry Structures.
// The structure matches the “wbem” SLP Template (see Clause 5,
// section 10).

// Step 1: Set the Previous Responders List to the Null String.
#PRList = ““

// Step 2: Multicast a Service Request for a Directory Server Service.
// This is to find Directory Agents in the subnet.
//
SrvRqst (

#PRList, // The Previous Responders list
”service:directory-agent” // Service type
446 Version 1.0.1

SNIA Storage Management Initiative Specification
“DEFAULT”, // The scope
NULL, // The predicate
NULL) // SLP SPI (security token)

// Step 3: Listen for Response from Directory Agent(s)
#DirectoryList[] = DAAdvert (

BootTimestamp, // Time of last reboot of DA
URL, // The URL of the DA
ScopeList,// The scopes supported by the DA
AttrList, // The DA Attributes
SLP SPI List,// SLP SPI (SPIs the DA can verify)
Authentication Block)

// Iterate on Steps 2 & 3, until a response has been received or the client has
// reached a UA configured CONFIG_RETRY_MAX seconds. If no DA if found,
// proceed to step 4. If a DA is found, proceed to step 7.

// Step 4: Set the Previous Responders List to the Null String.
#SAPRList = ““

// Step 5: Multicast a Service Request for Service Agent Services. This
// is to find Service Agents in the subnet that are not advertised
// in a Directory.

SrvRqst (
#SAPRList, // The Previous Responders list
“service:service-agent” // Service type
“DEFAULT”, // The scope
“(Service-type=WBEM)”, // The predicate
NULL) // SLP SPI (security token)

// Step 6: Listen for Response from Service Agent(s)
#SAList[] = SAAdvert (

URL, // The URL of the SA
ScopeList,// The scopes supported by the SA
AttrList, // The SA Attributes
Authentication Block)

// Iterate on Steps 5 & 6, until a response has been received or the client has
// reached a UA configured CONFIG_RETRY_MAX seconds. If no SA if found,
// Then record an error. There are NO WBEM SAs. Otherwise proceed to
// Step 8.

//Step 7: Unicast a Service Request to each of the DAs specifying
// a query predicate to select CIM Servers that support SNIA profiles
// and listen for responses.
for #j in #DirectoryList[]
{

SrvRqst (
Version 1.0.1 447

SNIA Storage Management Initiative Specification
#PRList, // The Previous Responders list
”service:wbem”, // Service type
“DEFAULT”, // The scope
RegisteredProfilesSupported=“SNIA:*”, // The predicate
NULL) // SLP SPI (security token)

#ServiceList [#j] = SrvRply (
Count, // count of URLs
URL for each SA returned)

}
Go to Step 9.

//Step 8: Unicast a Service Request to each of the SAs specifying
// a query predicate to select CIM Servers that support SNIA profiles
// and listen for responses.
for #j in #SAList[]
{

SrvRqst (
#PRList, // The Previous Responders list
”service:wbem”, // Service type
“DEFAULT”, // The scope
RegisteredProfilesSupported=“SNIA:*”, // The predicate
NULL) // SLP SPI (security token)

#ServiceList [#j] = SrvRply (
Count, // count of URLs
URL for each SA returned)

}

// Step 9: Next retrieve the attributes of each advertisement
For #i in #ServiceList[] // for each url in list
{

AttrRqst (
#PRList, // The Previous Responders list
#ServiceList[#i],// a url from #ServiceList[]
“DEFAULT”, // The scope
NULL, // Tag list. NULL means return all attributes
NULL) // SLP SPI (security token)

#DirectoryEntries [#i] = AttrRply (attr-list)
}

// Step 10: Correlate responses to the Service Request on unique
// “service-id” to determine unique CIM Servers. The client will get
// multiple responses (one for each access point) for each CIM
// Server. At this point, the client has a list of CIM Servers that
// claim to support SNIA profiles.
448 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.7.9.3 Enumerate Profiles Supported by a Given CIM Server
// DESCRIPTION
// A management application wishes to determine the Profiles supported by
// a particular CIM Server.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. Assume the client only wants to know the “top level” profiles
// supported by the CIM Server
// 2. Assume the client has used SLP to find the CIM Servers and has a
// #DirectoryEntries [] structure
// 3. This recipe describes the operations for one of the entries in
// the #DirectoryEntries [] structure.
// 4. Assume the index into #DirectoryEntries[] for the CIM Server of
// interest is #i.

// Step 1: Get the server url for the CIM Server.
#ServerName = #DirectoryEntries[#i].service-id

// Step 2: Get the Interop Namespace for the CIM Server.
#Inamespace = #DirectoryEntries[#i].InteropSchemaNamespace[1]

// Step 3: Establish a connection to the CIM Server with
// #INameSpace. Note that the WBEM operations throughout the remainder
// of this recipe are performed with this client handle.
<Make client connection to this server using the interop namespace>

// Step 4: Get the names of all the RegisteredProfiles in the
// Interop Namespace
#ProfileName[] = EnumerateInstances(“CIM_RegisteredProfile”,
TRUE, TRUE, FALSE, FALSE,
[“RegisteredName”])

// Step 5: Get all the RegisteredSubprofiles in the Interop Namespace
#SubprofileName[] = EnumerateInstances(“CIM_RegisteredSubprofile”,
TRUE, TRUE, FALSE, FALSE,
[“RegisteredName”])

// Step 6: Subtract the list RegisteredSubprofiles from the list of
// RegisteredProfiles

#k = 0
for #i in #ProfileName[i] {

for #i in #SubprofileName[j] {
if #ProfileName[#i] != #SubProfileName[#j] {

#TempArray[#k+1]=#ProfileName[#i]
}

Version 1.0.1 449

SNIA Storage Management Initiative Specification
}
}
#ProfileName[] = #TempArray[]

7.3.7.9.4 Identify the ManagedElement Defined by a Profile
// DESCRIPTION
// A management application wishes to determine the ManagedElement that
// is defined by a particular Profile.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. Assume the client has located the profile and has its object path
// ($RegisteredProfile->)

// Step 1: Determine the ManagedElement (System) by traversing the
// ElementConformsToProfile association from the RegisteredProfile
// that is the top level Profile that applies to the System
$ManagedElement->[] = AssociatorNames (

$RegisteredProfile->,
“CIM_ElementConformsToProfile”,
“CIM_System”, // Note: substitute “CIM_AdminDomain” for Fabrics

 // or “CIM_ComputerSystem for Arrays
 // or “CIM_StorageLibrary for Libraries

 // or “CIM_ObjectManager for Servers
NULL,
NULL)

// Step 2: The object name of more than one System may be contained
// in the array returned. Examine the contents of $ManagedElement[]
// and save the name of the System of interest as $Name.

// NOTE: “Top” level object for each profile will be returned. It MUST have
// an ElementConformsToProfile association. To accommodate other
// potential ManagedElements, then it will be necessary need to throw out
// the ones that are NOT top level objects.

// NOTE: The object path for the ManagedElement MAY be in a Namespace
// that is different than the Interop Namespace. As a result, if the
// client wishes to actually access the ManagedElement, the client
// may get the namespace for the element by cracking the REF to the
// element:
#NameSpace=$Name.getNameSpace()

7.3.7.9.5 Determine the SNIA Version of a Profile
// DESCRIPTION
// A management application wishes to determine the SNIA version
450 Version 1.0.1

SNIA Storage Management Initiative Specification
// that a particular Profile supports.

//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. Assume the client only wants to know version information
// for a SNIA profile
// 2. Assume the client has already found the profile and has the
// $RegisteredProfile-> reference

// Step 1: Get the Instance of the Profile name.
$Profile = GetInstance($RegisteredProfile->)

// Step 2: Determine the SNIA Version for the Profile selected.
#SNIAVersion = $Profile.RegisteredVersion

7.3.7.9.6 Determine the Subprofile Capabilities of a Profile
// DESCRIPTION
// A management application wishes to determine the optional subprofiles
// supported by a SNIA Profile.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. Assume the client has already discovered the CIM Server that
// supports the SNIA profile
// 2. Assume the client already has a $ObjectManager-> reference for
// the CIMOM on the WBEM Server.
// 3. Assume the client already has a $RegisteredProfile-> reference
// for the profile in question.

// Step 1: Check the version of the supported profile. Based on the
// RegisteredVersion property, the client should know what functions
// are REQUIRED as part of the profile definition.
$Profile = GetInstance($RegisteredProfile->)
#ProfileVersion = $Profile.RegisteredVersion

// Step 2: For each Profile, traverse the SubProfileRequiresProfile
// association to determine what optional subprofiles are also
// supported. If the subprofile (e.g., CopyServices subprofile)
// exists for a profile, this means that the copy services are
// supported. The Copy Services also has a Version
// (RegisteredSubProfile.RegisteredVersion). The RegisteredVersion
// of the subprofile MUST match the RegisteredVersion of the profile.
// The RegisteredVersion implies a set of functional capabilities
// that are defined for that version of the subprofile.
$Subprofiles[] = Associators (

$RegisteredProfile->,
Version 1.0.1 451

SNIA Storage Management Initiative Specification
“CIM_SubProfileRequiresProfile”,
“CIM_RegisteredProfile”,
NULL, NULL, false, false, NULL)

// Step 3: Verify that each Subprofile has the same version as the
// Profile
for #i in $Subprofiles[]
{

#SubprofileVersion = $Subprofile[#i].RegisteredVersion
if (!compare(#SubprofileVersion, #ProfileVersion))
{

Error(“Subprofile version mismatch with Profile version”)
}

}

7.3.7.9.7 Find all Profiles and Subprofiles on a Server
// DESCRIPTION
// A management application wishes to list all the SNIA profiles and
// their related subprofiles for a specific CIM Server.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. Assume the client has already discovered the CIM Servers that
// support SNIA profiles

// Step 1: Get the names of all the RegisteredProfiles and their names
// in the Interop Namespace
$ProfileName[] = EnumerateInstances(“CIM_RegisteredProfile”
 true, true, false, false, {“RegisteredName”})

// Step 2: Get all the RegisteredSubprofiles in the Interop Namespace
$SubprofileName[] = EnumerateInstances(“CIM_RegisteredSubprofile”,
 true, true, false, false, {“RegisteredName”})

// Step 3: Subtract the list RegisteredSubprofiles from the list of
// RegisteredProfiles
#k = 0
for #i in #ProfileName[#i] {
 for #j in $SubprofileName[#j] {
 if ($ProfileName[#i] != $SubProfileName[#j]) {

#TempArray[#k+1]=#ProfileName[#i]
}

}
}

452 Version 1.0.1

SNIA Storage Management Initiative Specification
#ProfileName[] = #TempArray[]

// Step 4: Get the ObjectName for the Profiles
for #i in #ProfileName[] {
$Profile->[#i]=$Name.getObjectPath(#ProfileName[#i])
}

// Step 5: Get the subprofiles associated to the profiles.
for #i in $ProfileName[]
{
 $Subprofile[] = Associators(
 $ProfileName[#j].getObjectPath(),
 “CIM_SubprofileRequiresProfile”,
 “CIM_RegisteredSubprofile”,
 NULL, NULL, false, false, NULL)
}

7.3.7.9.8 Segregate a SAN Device Type
// DESCRIPTION
// A management application wishes to manage a particular type of SAN
// device, but not other devices. So the management application needs to
// isolate the particular CIM Servers that support the type of device it
// wants to manage.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. Assume CIM Servers have advertised their services (SrvReg)
// 2. Assume there are one or more Directory Agents in the subnet
// 3. Assume no security on SLP discovery
// 4. #DirectoryList[] is an array of directory URLs
// 5. #DirectoryEntries [] is an array of directory entry Structures.
// The structure matches the “wbem” SLP Template (see “Standard
// WBEM Service Type Templates”).
// 6. Assume that the device is #DesiredProfile and the device is an
// SMI-S device (a SNIA defined profile)

// Step 1: Set the Previous Responders List to the Null String.
#PRList = ““

// Step 2: Multicast a Service Request for a Directory Server Service.
// This is to find Directory Agents in the subnet.
//
SrvRqst (

#PRList, // The Previous Responders list
”service:directory-agent” // Service type
“DEFAULT”, // The scope
NULL, // The predicate
NULL) // SLP SPI (security token)
Version 1.0.1 453

SNIA Storage Management Initiative Specification
// Step 3: Listen for Response from Directory Agent(s)
#DirectoryList[] = DAAdvert (

BootTimestamp, // Time of last reboot of DA
URL, // The URL of the DA
ScopeList,// The scopes supported by the DA
AttrList, // The DA Attributes
SLP SPI List,// SLP SPI (SPIs the DA can verify)
Authentication Block)

// Iterate on Steps 2 & 3, until a response has been received or the client
// has reached a UA configured CONFIG_RETRY_MAX seconds.

// Step 4: Unicast a Service Request to each of the DAs specifying a
// query predicate to select CIM Servers that support SNIA
// #DesiredDevice profiles and listen for responses.
for #j in #DirectoryList[]
{

SrvRqst (
#DAPRList, // The Previous Responders list
“service:wbem”, // Service type
“DEFAULT”, // The scope
“RegisteredProfilesSupported=SNIA:”+#DesiredProfile+”*”,

 // The predicate
NULL) // SLP SPI (security token)

#ServiceList [#j] = SrvRply (
Count, // count of URLs
#SAPRList[])

}

// Step 5: Next retrieve the attributes of each advertisement
For #i in #ServiceList[] // for each url in list
{

AttrRqst (
#SAPRList, // The Previous Responders list
#ServiceList[#i],// a url from #ServiceList[]
“DEFAULT”, // The scope
NULL, // Tag list. NULL means return all

// attributes
NULL) // SLP SPI (security token)

#DirectoryEntries [#i] = AttrRply (#attr-list)
}

// Step 7: Correlate the responses to the Service Request on unique
// “service-id” to determine unique CIM Servers. The client will get
// multiple responses (one for each access point) for each CIM
// Server. At this point, the client has a list of CIM Servers that
454 Version 1.0.1

SNIA Storage Management Initiative Specification
// claim to support SNIA #DesiredProfile profiles.

7.3.7.10 Instrumentation Requirements

7.3.7.10.1 Use of model fields to Populate the SLP template
The data used to populate the SLP template for advertising SMI-S profiles is found in the CIM
Server profile. The SLP template fields are populated as follows:

template-url-syntax: ObjectManager.Name

service-hi-name: ObjectManager.ElementName

service-hi-description: ObjectManager.Description

service-id: ObjectManager.Name

Service-location-tcp: The location of one service access point offered by the CIM Server over
TCP transport. This attribute must provide sufficient addressing information that the CIM Server
can be addressed directly using only this attribute.

CommunicationMechanism:
ObjectManagerCommunicationMechanism.CommunicationMechanism

OtherCommunicationMechanism:
ObjectManagerCommunicationMechanism.OtherCommunicationMechanism

CIM_InteropSchemaNamespace: Namespace.Name for the InteropNamespace

ProtocolVersion: ObjectManagerCommunicationMechanism.Version

FunctionalProfilesSupported:
ObjectManagerCommunicationMechanism.FunctionalProfilesSupported

FunctionalProfileDescriptions:
ObjectManagerCommunicationMechanism.FunctionalProfileDescriptions

MultipleOperationsSupported:
ObjectManagerCommunicationMechanism.MultipleOperationsSupported

AuthenticationMechanismSupported:
ObjectManagerCommunicationMechanism.AuthenticationMechanismsSupported

OtherAuthenticationDescription:
ObjectManagerCommunicationMechanism.AuthenticationMechanismDescriptions

Namespace: Namespace.Name for each Namespace instance supported

Classinfo: Namespace.Classinfo for each Namespace instance

RegisteredProfilesSupported: The concatenation of:

• RegisteredProfile.RegisteredOrganization;

• RegisteredProfile.RegisteredName;

• RegisteredProfile.RegisteredName (where the second RegisteredName is the name of a
subprofile that is identified for SLP advertisement).
Version 1.0.1 455

SNIA Storage Management Initiative Specification
7.3.7.11 Required CIM Elements

7.3.7.12 Required Properties for CIM Elements

7.3.7.12.1 ObjectManager Class
An Object Manager is a type of CIM_Service that defines the capabilities of the CIM Server in

Table 323: Profile Required Classes, Associations, Methods and Indications

Profile Class & Associations Notes

ObjectManager This is the Object Manager service of the CIM
Server

System The System that is hosting the Object Manager
(CIM Server)

HostedService Connects the ObjectManager to the System that
is hosting the ObjectManager

CIMXMLCommunicationMechanism For SMI-S, this MUST be supported.

CommMechanismForManager This associates the ObjectManager and the
communication classes it supports

Namespace There would be one for every namespace
supported.

NamespaceInManager This osculates the namespace to the
ObjectManager

RegisteredProfile (for Profiles) A registered profile that is supported by the CIM
Server

RegisteredSubProfile(for Subprofiles) For each subprofile of a profile that is supported

ReferencedProfile Ties profiles to other profiles

SubprofileRequiresProfile Ties profiles to their subprofiles

ElementConformsToProfile Ties managed elements (e.g., Device system) to
the registered profile that applies

Profile Methods Notes

StopService() This method is RECOMENDED.

Profile Indications Notes

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA ObjectManager AND
SourceInstance.Started <>
PreviousInstance.Started

This would be used to indicate that the object
manager has been stopped
This indication is RECOMENDED.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA RegisteredProfile

This would tell the client when a new profile has
been installed on the CIM Server
This indication is RECOMENDED.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA RegisteredProfile

This would tell the client when a profile has been
dropped from a CIM Server
This indication is RECOMENDED.
456 Version 1.0.1

SNIA Storage Management Initiative Specification
which this ObjectManager class resides. Details related to communicating with the
ObjectManager, and the Manager's basic capabilities, are stored in instances of the associated
CommunicationMechanism class available through the CommMechanismForManager association.
It is assumed that Basic Read operations are supported by all ObjectManager's in order to retrieve
any additional detail.

The ObjectManager class subclasses from WEBMService

7.3.7.12.2 System Class
System represents an entity made up of component parts (defined by the SystemComponent
relationship), that operates as a 'functional whole'. Systems are top-level objects in the CIM
hierarchy, requiring no scoping or weak relationships in order to exist and have context. It should
be reasonable to uniquely name and manage a System at an enterprise level. For example, a
ComputerSystem is a kind of System that can be uniquely named and independently managed in
an enterprise. However, this is not true for the power supply (or the power supply sub-'system')
within the computer.

Note that System is a subclass of EnabledLogicalElement that allows the entire abstraction to be
functionally enabled/disabled - at a higher level than enabling/disabling its component parts.

Table 324: Required Properties for ObjectManager

ObjectManager
Properties

Type Qualifier/
Parameter

Notes

SystemCreationClassName string key, maxlen(256)

SystemName string key

CreationClassName string key

Name string key, maxlen(256)

ElementName

Description string

OperationalStatus[] uint16

StatusDescriptions[] string This MUST NOT be NULL if “Other”
is identified in OperationalStatus

Started boolean

Table 325: Required Properties for System

Class Properties Type Qualifier/
Parameter

Notes

Description string

ElementName string

OperationalStatus[] uint16

StatusDescriptions[] string This MUST NOT be NULL if “Other”
is identified in OperationalStatus

CreationClassName string key, maxlen (256)
Version 1.0.1 457

SNIA Storage Management Initiative Specification
7.3.7.12.3 HostedService Association
HostedService is an association between a Service and the System on which the functionality
resides. The cardinality of this association is 1-to-many. A System may host many Services.
Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the
System where the LogicalDevices or SoftwareFeatures that implement the Service are located.
The model does not represent Services hosted across multiple systems. This is modeled as an
ApplicationSystem that acts as an aggregation point for Services, that are each located on a single
host.

It is subclassed from Dependency.

7.3.7.12.4 CIMXMLCommunicationMechanism Class
The CIMXMLCommunicationMechanism class specializes
ObjectManagerCommunicationMechanism, adding properties specific to the CIM-XML protocol
(XML encoding and CIM Operations).

This class is subclassed from ObjectManagerCommunicationMechanism

Name string override, key,
maxlen (256)

NameFormat string maxlen (64)

Table 326: Required Properties for HostedService

Class Properties Type Qualifier/
Parameter

Notes

System ref The hosting System.

Service ref The Service hosted on the System.

Table 327: Required Properties for CIMXMLCommunicationMechanism

Class Properties Type Qualifier/
Parameter

Notes

ElementName

SystemCreationClassName string key, maxlen(256)

SystemName string key

CreationClassName string key

Name string key, maxlen(256)

OperationalStatus[] uint16

StatusDescriptions[] string This MUST NOT be NULL if “Other”
is identified in OperationalStatus

CommunicationMechanism Uint16 Req Must be 2

Table 325: Required Properties for System (Continued)

Class Properties Type Qualifier/
Parameter

Notes
458 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.7.12.5 CommMechanismForManager Association
The CommMechanismForManager is an association between an ObjectManager and an
ObjectManagerCommunicationMechanism class. The latter describes a possible encoding/protocol/
set of operations for accessing the referenced ObjectManager.

It is subclassed from ServiceAccessBySAP.

7.3.7.12.6 Namespace Class
Namespace provides a domain (in other words, a container), in which the instances [of a class] are
guaranteed to be unique per the KEY qualifier definitions. It is named relative to the
CIM_ObjectManager implementation that provides such a domain.

Namespace is subclassed from ManagedElement.

OtherCommunicationMechanis
mDescription

string This MUST NOT be NULL if “Other”
is identified in
CommunicationMechanism

FunctionalProfilesSupported[] uint16 req

FunctionalProfileDescriptions[] string This MUST NOT be NULL if “Other”
is identified in ProfilesSupported

MultipleOperationsSupported boolean req

AuthenticationMechanismsSupp
orted[]

uint16 req

AuthenticationMechanismDescri
ptions[]

string This MUST NOT be NULL if “Other”
is identified in
AuthenticationMechanismsSupporte
d

Version string req Must be 1.0, 1.1, 1.2

CIMValidated boolean req

Table 328: Required Properties for CommMechanismForManager

Class Properties Type Qualifier/
Parameter

Notes

ObjectManager ref

ObjectManagerCommunicationMe
chanism

ref

Table 329: Required Properties for Namespace

Class Properties Type Qualifier/
Parameter

Notes

SystemCreationClassName string key, maxlen(256)

Table 327: Required Properties for CIMXMLCommunicationMechanism (Continued)

Class Properties Type Qualifier/
Parameter

Notes
Version 1.0.1 459

SNIA Storage Management Initiative Specification
7.3.7.12.7 NamespaceInManager
The NamespaceInManager is an association describing the Namespaces hosted by a CIM
ObjectManager.

It is subclassed from Dependency.

7.3.7.12.8 RegisteredProfile
A RegisteredProfile describes a set of CIM Schema classes with required properties and/or
methods, necessary to manage a real-world entity or to support a usage scenario, in an
interoperable fashion. RegisteredProfiles can be defined by the DMTF or other standards
organizations. In the case of SMI-S, the SMI-S Profiles are defined by SNIA. Note that this class
should not be confused with CIM_Profile, which collects SettingData instances, to be applied as a
'configuration profile' for an element.

A RegisteredProfile is a named 'standard' for CIM-based management of a particular System,
subsystem, Service or other entity, for a specified set of uses. It is a complete, standalone
definition, as opposed to the subclass RegisteredSubProfile, which requires a scoping profile for
context.

For SNIA profiles, the uses for a RegisteredProfile or SubProfile MUST be specified in a version of
SMI-S. The name of the profile is defined and scoped by its authoring organization (e.g., SNIA).

SystemName string key, maxlen(256)

ObjectManagerCreationClassNam
e

string key, maxlen(256)

ObjectManagerName string key, maxlen(256)

CreationClassName string key, maxlen(256)

Name string key, maxlen(256)

ClassInfo string req

Table 330: Required Properties for NamespaceInManager

Class Properties Type Qualifier/
Parameter

Notes

Antecedent ref The ObjectManager containing a
Namespace

Dependent ref The Namespace in an
ObjectManager

Table 329: Required Properties for Namespace (Continued)

Class Properties Type Qualifier/
Parameter

Notes
460 Version 1.0.1

SNIA Storage Management Initiative Specification
RegisteredProfile is subclassed from ManagedElement.

7.3.7.12.9 RegisteredSubProfile
The RegisteredSubProfile class defines a SubProfile.

A subprofile is a named subset of a profile. The name of the subprofile is scoped by its parent
profile.

RegisteredSubProfile is subclassed from RegisteredProfile.

Table 331: Required Properties for RegisteredProfile

Class Properties Type Qualifier/
Parameter

Notes

InstanceID string key This is a unique value for the profile
instance

RegisteredOrganization string req, maxlen(256) This is the official name of the
organization that created the Profile.
For SMI-S profiles, this would be
SNIA.

OtherRegisteredOrganization string maxlen(256)

RegisteredName string req, maxlen(256) This is the name assigned by the
organization that created the profile

RegisteredVersion string req This is the version number of the
organization that defined the Profile.

AdvertiseTypes[] uint16 req Defines the advertisement of this
profile. If the property is null then no
advertisement is defined. A value of
1 is used to indicate “other” and a 3 is
used to indicate “SLP”

AdvertiseTypeDescriptions[] string This MUST NOT be NULL if “Other”
is identified in AdvertiseType

Table 332: Required Properties for RegisteredSubProfile

Class Properties Type Qualifier/
Parameter

Notes

InstanceID string key This is a unique value for the
subprofile instance

RegisteredOrganization string req, maxlen(256) This is the official name of the
organization that created the
subprofile. For SMI-S profiles, this
would be SNIA.

OtherRegisteredOrganization string maxlen(256)

RegisteredName string req, maxlen(256) This is the name assigned by the
organization that created the profile
(or subprofile)
Version 1.0.1 461

SNIA Storage Management Initiative Specification
7.3.7.12.10 ReferencedProfile
This association is used to define a profile that is referenced by another RegisteredProfile.

The association is subclassed from Dependency.

7.3.7.12.11 SubProfileRequiresProfile
This association is used to define the Subprofiles that are part of the defined RegisteredProfile. A
subprofile requires another RegisteredProfile for context. This association mandates the scoping
relationship between a subprofile and its scoping profile.

The association is subclassed from ReferencedProfile.

Note: This association is always between a top-level Profile and its subprofiles. This association
cannot be between subprofiles.

7.3.7.12.12 ElementConformsToProfile
The ElementConformsToProfile association defines the standards (RegisteredProfile) to which a
ManagedElement conforms. In the context of the Server Profile, it is used to identify the broadest
scope to which the standard applies. It can be used to cover all of the namespace or to apply to a
particular system.

RegisteredVersion string req This is the version number of the
organization that defined the
subprofile. It MUST be the same as
its parent profile

AdvertiseTypes[] uint16 req Should be “Not Advertised” for
subprofiles

AdvertiseTypeDescriptions[] string This field should be null

Table 333: Required Properties for ReferencedProfile

Class Properties Type Qualifier/
Parameter

Notes

Antecedent ref The RegisteredProfile that is referenced by the
Dependent Profile.

Dependent ref A RegisteredProfile that references other
profiles.

Table 334: Required Properties for SubProfileRequiresProfile

Class Properties Type Qualifier/
Parameter

Notes

Antecedent ref The RegisteredProfile that is referenced/required
by the subprofile.

Dependent ref A RegisteredSubProfile that requires a scoping
profile, for context.

Table 332: Required Properties for RegisteredSubProfile (Continued)

Class Properties Type Qualifier/
Parameter

Notes
462 Version 1.0.1

SNIA Storage Management Initiative Specification
The association is not subclassed from anything.

The ManagedElements would typically be the System of the device that is represented by the
profile.

7.3.7.13 Optional Subprofiles and Profiles

0.0.0.1 ProtocolAdapter Subprofile

7.3.7.13.0.1 Description
The Protocol Adapter model defines the protocol adapters that are supported for a CIM Server.
This model is optional for the CIM Server Profile. If implemented, the Protocol Adapter Model
MUST adhere to the “required elements” table.

7.3.7.13.0.2 Standard Dependencies
The Protocol Adapter subprofile is defined using the CIM Schema 2.7 final. As such it can be used
in profiles at 2.7 and later. It does not require that Profiles be on a later schema. It will operate
within profiles that are at the CIM schema 2.7 final or later. The subprofile will operate correctly
with CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

7.3.7.13.0.3 Subprofile Dependencies
The Protocol Adapter subprofile introduces no Profile dependencies.

7.3.7.13.0.4 CIM Server Requirements
For the SMI-S uses of the Protocol Adapter subprofile, support for Basic Read and Association
Traversal functional profiles MUST be supported (by the base Profile CIM server).

The Protocol Adapter subprofile REQUIREs support for extrinsic methods.

The Protocol Adapter subprofile is NOT advertised.

Table 335: Required Properties for ElementConformsToProfile

Class Properties Type Qualifier/
Parameter

Notes

ConformantStandard ref The RegisteredProfile to which the
ManagedElement conforms.

ManagedElement ref The ManagedElement that conforms to
the RegisteredProfile.

Table 336: CIM Server Profile Optional Subprofiles and Profiles

Optional Subprofiles & Profiles Notes

ProtocolAdapter
Version 1.0.1 463

SNIA Storage Management Initiative Specification
7.3.7.13.0.5 Instance Diagrams

7.3.7.13.0.6 Durable Names and Correlatable IDs
The Protocol Adapter subprofile does not introduce any objects that have durable names or
correlatable ids. And it does not use any durable names or correlatable ids.

7.3.7.13.0.7 Methods
StartService()

StopService()

7.3.7.13.0.8 Client Considerations
None.

7.3.7.13.0.9 Recipes
None.

7.3.7.13.0.10 Instrumentation Requirements
None.

Figure 77: Protocol Adapter Subprofile Model

[Default CommunicationMechanism = "XML over HTTP"]
WBEMProtocolVersion
CIMValidated

CIMXMLCommunictionMechanism

Name
Handle
ProtocolAdapterType
OtherProtocolAdapterType

ProtocolAdapter

CommMechanismForAdapter
464 Version 1.0.1

SNIA Storage Management Initiative Specification
7.3.7.13.0.11 Required CIM Elements

7.3.7.13.0.12 Required Properties for CIM Elements

7.3.7.13.0.12.1 ProtocolAdapter
A ProtocolAdapter is a Service of the CIM Object Manager. It is responsible for accepting incoming
requests on a particular protocol, and translating and forwarding the request to the CIM Object
Manager. It is also responsible for translating and sending the response from the CIM Object
Manager. This class is subclassed from WBEMService.

Table 337: Subprofile Required Classes, Associations, Methods and Indications

Subprofile Class & Associations Notes

ProtocolAdapter

CommMechanisForAdapter

Profile Methods Notes

StartService()

StopService()

Profile Indications Notes

Table 338: Required Properties for ProtocolAdapter

Class Properties Type Qualifier/
Parameter

Notes

OperationalStatus[] uint16

StatusDescriptions[] string This MUST NOT be NULL if “Other”
is identified in OperationalStatus

SystemCreationClassName string key, maxlen(256)

SystemName string key,mmaxlen(256)

CreationClassName string key, maxlen(256)

Started boolean

StartService()

StopService()

Name string override

Handle string req

ProtocolAdapterType uint16 req

OtherProtocolAdapterType string
Version 1.0.1 465

SNIA Storage Management Initiative Specification
7.3.7.13.0.12.2 CommMechanisForAdapter.
CommMechanismForAdapter is an association between an ObjectManager's communication
mechanism and a ProtocolAdapter that supports that mechanism to translate requests and
responses for the Object Manager.

CommMechanismForAdapter is subclassed from Dependency.

7.3.7.13.0.13 Optional Subprofiles and Profile
There are no optional subprofiles or profiles for this subprofile.

Table 339: Required Properties for CommMechanismForAdapter

Class Properties Type Qualifier/
Parameter

Notes

Antecedent ref override The specific ProtocolAdapter whose
communication mechanism with the CIM
Object Manager is described.

Dependent ref override, min(1) The encoding/protocol/set of operations that
may be used to communicate between the
Object Manager and the referenced
ProtocolAdapter.
466 Version 1.0.1

SNIA Storage Management Initiative Specification
7.4 Cross Client Considerations

7.4.1 Overview
Many client applications are required to access data from multiple profiles to perform operations.
This section describes algorithms that can be used to associate objects from different profiles to
understand connections between the profiles. The algorithms use Durable Names to match objects
from different profiles. Below are simplified instance diagrams that are used to illustrate the
algorithms.

7.4.1.1 HBA model
This model represents a simple “Host Bus Adapter”. The model includes objects that represent a
single port Fibre channel HBA. The model also includes a storage volume being accessed through
the HBA.

7.4.1.1.1 Recipes

7.4.1.1.1.1 Determine storage device health
// DESCRIPTION
// Determine the health of the storage device given the health of the
// components. (Operational status on managed elements)
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// None

Figure 78: System Diagram

Figure 79: Host Bus Adapter Model

Array Agent Switch Agent Host/HBA Agent

Client Application

Virtualization
Provider

Product

ComputerSys temPackage

StorageV olume

Dev iceId: Durable
Name

ComputerSys tem

dedicated=""

SCSIProtocolController

Connec tionRole=”Client"

FcPortLogicalPortGroup

ProtocolControllerForPortMemberOf Group

ProtocolControllerA ccessesUni
t

Sys temDev ice
Version 1.0.1 467

SNIA Storage Management Initiative Specification
// Check status on FCPorts and SCSIProtocolControllers
if (&systemDeviceOK($Device->))
{

<health of device is OK>
}

7.4.1.2 Switch Model
This model represents a two-port Fibre channel switch. The model also includes objects
representing links to remote ports the switch agent knows about, and ComputerSystems

7.4.1.3 Array Model
This is a simple model of a disk array. The array has a single controller with a single Fibre channel
port on the front end and a single parallel SCSI port for the disks. The model shows two disks that

Figure 80: Switch Model

FCPort

ComputerSystem

dedicated[x] '= 'Switch'

Product
ComputerSystemPackage

FCPortProtocolEndpointProtocolEndpoint

CIM_SystemDeviceCIM_DeviceSAPImplementationCIM_ActiveConnectionCIM_DeviceSAPImplementation

FCPort FCPortProtocolendpoint

CIM_DeviceSAPImplementationCIM_ActiveConnection

ProtocolEndpoint

CIM_DeviceSAPImplementation

ComputerSystem

dedicated[x] '= 'Unknown'

CIM_SystemDevice

ComputerSystem

dedicated[x] '= 'Unknown'

CIM_SystemDevice
468 Version 1.0.1

SNIA Storage Management Initiative Specification
are members of a single redundancy group. Part of the redundancy group is made available over
the Fibre channel as a single volume.

7.4.1.3.1 Recipes

7.4.1.3.1.1 Determine the health of the Array
// DESCRIPTION
// Determine the health of the array given the health of the
// components. (Operational status on managed elements)
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// None

$Device = GetInstance($Device->, false, false, false, null)
if (contains(2, $Device.OperationalStatus) && &systemDeviceOK($Device->))
{

<health of device is OK>
}

Figure 81: Array Instance

SCSIProtocolController

ConnectionRole=”Server”

 CIM_ComputerSystem

dedicated[x] '= 'Block
Server'

StorageVolume

DeviceId: Durable
Name

StorageVolume

DeviceId: Durable
Name

FCPort

StorageExent

BasedOn

BasedOn

ProtocolControllerForPort

SCSIProtocolController

ConnectionRole=”Client”

SystemDevice

ProtocolControllerAccessesUni
t

StorageVolume

DeviceId: Durable
Name

StorageExent

BasedOn

StorageExent

BasedOn BasedOn

RedundancySet
SystemDevice

ProtocolControllerForUnit

MemberOfCollection
Version 1.0.1 469

SNIA Storage Management Initiative Specification
7.4.1.4 Out of band virtualization model
This is a simple model of an out of band virtualization system. The system has a meta-data
controller and a single translation engine. The model also shows a single volume being used and a
single volume being served to a host.

7.4.1.5 Durable Names
Mapping objects across profiles and namespaces depends on “durable names”. Below is a table of
names used in the examples below

Figure 82: Virtualization Instance

Table 340: Cross-Profile Durable Names

Class Reference Example

FCPort Clause 3.2.3 WWN

StorageVolume Clause 3.3.4.1.4 VPD page 83 LU id

dedicated[x] =
 "meta data Controller"

ComputerSystem

StorageVolume

Name: //VPD pg 83 ID
DefaultAccessMode

StorageConfiguration
Service

ProvidesServiceT
o

ProtocolControllerAccessesUni
t

StoragePool

AllocatedFromStoragePool

SystemDevice

ControllerConfigurationService

FCPort

LogicalPortgroup

HostedCollection

SCSIProtocolController

ConnectionRole=”Server
”

ProtocolControllerForUnit

StorageVolume

LUID: //VPD pg 83 ID
DefaultAccessMode

SCSIProtocolController

ConnectionRole=”Client”

FCPort

ProtocolControllerForPort

ComputerSystem

dedicated[x] =
 "translation engine"

SystemDevice

SystemDevice

LogicalPort
Group

HostedCollection

HostedServic
e

HostedServic
e

MemberOfCollection

MemberOfCollection

Component
470 Version 1.0.1

SNIA Storage Management Initiative Specification
7.4.1.6 Fabric Topology (HBA, Switch, Array)

A map of a SAN that shows all the elements and the connections between them is very useful. To
create the map all the elements in the SAN with their Fibre channel ports are first located. Next
the ports are linked together.

To locate all the elements in a SAN, you start by locating the agents. SMI-S agents are located
using SLP. Once the agents are located, intrinsic methods are used to enumerate ComputerSystem
objects. Each ComputerSystem object represents an element in the SAN. The ComputerSystem
object’s “Dedicated” attribute can be used to identify the type of the element.

After the elements are located, Fibre channel ports for each element are discovered. For each
ComputerSystem object follow SystemDeviceFCPort objects and ProtocolController objects. For each
ProtocolController object follow the ProtocolControllerForPort associations to FCPort objects. Use the
information in the FCPort objects found to determine the Durable Name for the FCPort object. The
Durable Name is used to match the ports to objects in other profiles.

Now to link the elements’ ports together find the Switch elements. Switches know about ports on
elements logged into their ports. To find this information start by locating the ComputerSystem
objects that represents switches. Switches can be identified by the “Dedicated” attribute of the
ComputerSystem object being set to “Switch”. For each switch follow the SystemDeviceFCPort
objects that represent the ports of the switch. Next look for ActiveConnection
ActiveConnectionFCPort objects. These FCPort objects represent the ports on the other side of a
link. Use attributes from the FCPort object to determine the Durable Name. These identifiers are
then matched to identifiers found in other profiles to complete the connections.

Figure 83: Fabric Topology

Profile

Switch
Profile

ProfileComponents of a Fabric
Logical and Physical Topology Across

Storage

Host & HBA through one or more Switches in the Fabric
and its corresponding Storage Array Port (of the Logical Path)

 Between the HBA Port (of the Logical Path) Physical Path

 Switches
0 or More

DeviceSAPImplementation
SystemDevice

(Switch)
System

Computer

FC Port

SystemDevice
DeviceSAPImplementation

(Switch)
System

Computer

FC Port

ActiveConnection

EndPoint
Protocol

EndPoint
Protocol

DeviceSAPImplementation

EndPoint
Protocol

Storage Array Port
Volume Served through a
and
through an HBA Port
Volumes Accessed

 Between Logical Path

DeviceSAPImplementation

EndPoint
Protocol

ProtocolControllerForUnit ProtocolControllerForPort

FC Port Volume
Storage

Controller
SCSIProtocol

(Storage Array)
System

Computer

ProtocolControllerAccessesUnit

Volume
Storage

ProtocolControllerForPort

SystemDevice

FC Port

Controller
SCSIProtocol

(Host)
System

Computer
Version 1.0.1 471

SNIA Storage Management Initiative Specification
7.4.1.6.1 Recipes

7.4.1.6.1.1 General
Find all the switches in a SAN. Query fabric-profile agents to find the WWNs of all the device-
ports connected into the switches. Query all the device-profile agents to find the WWNs of ports on
devices. Correlate the data from the fabric-profile agents and the device-profile agents by
matching WWNs (durable names).

Preexisting conditions and assumptions:

• All agents/namespaces supporting Fabric Profile (previously identified using SLP)

• All agents/namespaces supporting Array Profile

• All agents/namespaces supporting FC HBA Profile

7.4.1.6.1.2 Map FCPorts
// DESCRIPTION
// Create a map of how elements in a SAN are connected together via Fibre-Channel ports
//
// The map is built in array $attachedFcPorts->[], where the index is a
// WWN of any device port on the SAN, and the value at that index is
// the object path of the connected switch port.
//
// First find all the switches in a SAN. Get all the FCPorts for each
// switch and get the Attached FCPorts for each Switch FCPort. Save
// these device ports in the map described above.

// PREEXISTING CONDITIONS AND ASSUMPTIONS
// 1. All agents/namespaces supporting Fabric Profile previously identified using SLP

// Do this for each CIMOM supporting Fabric Profile

switches[] = enumerateInstances(“CIM_ComputerSystem”, true, false, true, true, null)

for #i in $switches[]
{
 if (!contains(5, $switches[#i].Dedicated))
 continue // only process switches, not other computer systems

 $fcPorts->[] = AssociatorNames(
 $switches[#i].getObjectPath(),
 “CIM_SystemDevice”,
 “CIM_FCPort”,
 “GroupComponent”,
 “PartComponent”)

 for #j in $fcPorts->[]
 {
 $protocolEndpoints->[] = AssociatorNames(
472 Version 1.0.1

SNIA Storage Management Initiative Specification
 fcPorts->[#j],
 “CIM_DeviceSAPImplementation”,
 “CIM_ProtocolEndpoint”,
 “Antecedent”,
 “Dependent”);

 // NOTE - It is possible for this collection to be empty (ports that are not
 // connected). It is NOT possible for this collection to have more than one
 // element
 if ($protocolEndpoints->[].length == 0)
 continue

 $attachedProtocolEndpoints->[] = AssociatorNames(
 $protocolEndpoints->[0],
 “CIM_ActiveConnection”,
 “CIM_ProtocolEndpoint”,
 null, null) // NOTE: role & resultRole are null as the
 // direction of the association is not
 // dictated by the specification

 for #k in $attachedProtocolEndpoints->[] {
 // $attachedFcPort is either a device port or an ISLÂ’d

 // switch port from another switch. We store this result
 // (i.e. which device FCPort is connected to which switch
 // FCPort) in a suitable data structure for subsequent
 // correlation to ports discovered on devices.

 $attachedFcPorts->[] = Associators(
 $attachedProtocolEndpoints->[#k],
 “CIM_DeviceSAPImplementation”,
 “CIM_FCPort”,
 “Dependent”,
 “Antecedent”,
 false,
 false,
 [“PermanentAddress”])

 $attachedFcPort = $attachedFcPorts[0] // Exactly one member guaranteed by model
 #wwn = $attachedFcPort.PermanentAddress

 $attachedFcPorts->[#wwn] = $fcPorts->[#j]
 }
 }
}

7.4.1.6.1.3 HBA to switch paths
// DESCRIPTION
// Determine physical path from HBA to switch.
//
Version 1.0.1 473

SNIA Storage Management Initiative Specification
// For each HBA port on every host, determine the connected switch
// port. NOTE: Not every HBA port will be connected to a switch port,
// and not every switch port will be connected to a device port. Only
// the connections between HBA ports and switch ports are discovered
// by this recipe
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. All agents/namespaces supporting HBA Profile previously identified using SLP
// 2. Array $attachedFcPorts->[] is a map of how elements in a SAN are
// connected together via Fibre-Channel ports. Each index is a WWN of
// any device port on the SAN, and the value at that index is the
// connected switch port.

// Do this for each CIMOM supporting HBA Profile

$hosts[] = enumerateInstances(“CIM_ComputerSystem”)

for #i in $hosts->[]
{
 if (!contains(0, $hosts[#i].Dedicated))
 continue // only process systems that are “not dedicated”

 $fcPorts[] = Associators(
 $hosts[#i].getObjectPath(),
 “CIM_SystemDevice”,
 “CIM_FCPort”,
 “GroupComponent”,
 “PartComponent”,
 false,
 false,
 [“PermanentAddress”])

 for #j in $fcPorts[]
 {
 // Get the FCPort WWN
 #wwn = $fcPorts[#j].PermanentAddress

 // Match this device port WWN to one (or less) switch
 // ports, by using the mapping table
 $attachedSwitchPort-> = $attachedFcPorts->[#wwn]

 // Note - if there is no entry in the mapping array, this
 // port is not connected to any switch
 }
}

474 Version 1.0.1

SNIA Storage Management Initiative Specification
7.4.1.6.1.4 Determine physical path from Switch to Storage Arrays
// DESCRIPTION
// Determine physical path from Storage Arrays to Switches
//
// For each fibre-channel port on every array, determine the connected
// switch port. NOTE: This identifies the FrontEnd I/O Controllers
// (and Storage Arrays) whose ports are physically connected to
// some of the ports of some of the Switches. This recipe does not
// distinguish and does not filter the front-end FC Port from the
// back-end FC Ports.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. All agents/namespaces supporting Array Profile previously identified using SLP
// 2. Array $attachedFcPorts[] is a map of how elements in a SAN are
// connected together via Fibre-Channel ports. Each index is a WWN of
// any device port on the SAN, and the value at that index is the
// connected switch port.

// Do this for each CIMOM supporting the Array Profile

$storageArrays[] = enumerateInstances(“CIM_ComputerSystem”);

// NOTE: Some of the ports contained will be back-end ports, but they will
// have no connectivity to switches, so we won’t distinguish them
// from unconnected front-end ports

for #i in $storageArrays[]
{
 if (!contains(3, $storageArrays[#i].Dedicated))
 continue // only process systems that are dedicated “storage”

 if (!contains(15, $storageArrays[#i].Dedicated))
 continue // only process systems that are dedicated “block server”

 $fcPorts[] = Associators(
 $storageArrays[#i].getObjectPath(),

“CIM_SystemDevice”,
“CIM_FCPort”,

 “GroupComponent”,
 “PartComponent”,
 false,
 false,
 [“PermanentAddress”])

 for #j in $fcPorts[]
 {
Version 1.0.1 475

SNIA Storage Management Initiative Specification
// Get the FCPort WWN
#wwn = $fcPorts[#j].PermanentAddress

// Match this device port WWN to one (or less) switch
// ports, by using the mapping table

 $attachedSwitchPort-> = $attachedFcPorts->[#wwn]

 // Note - if there is no entry in the mapping array, this
 // port is not connected to any switch
 }
}

7.4.1.7 Storage Connections (FC HBA, Array)
The Array profile includes objects and associations that represent the serving of SCSI volumes to
the SAN. The HBA model represents the access of these volumes. To link them together locate the
StorageVolume objects and use Durable Names to link them together.

To locate the volumes being accessed through the FC HBA use SLP to find agents that support the
FC HBA profile. Use intrinsic methods to enumerate ComputerSystem objects on these agents. Use
the “Dedicated” attribute to identify “host” systems. Use other attributes to identify the correct
host. Next follow SystemDeviceProtocolController objects. The ProtocolController objects represent
the HBAs on the host. From the ProtocolController objects follow ProtocolControllerAccessesUnit
associations to StorageVolume association and its ProtocolControllerForUnit associations to
determine the SCSI address and server of the volume.

To find the array that is serving the volume use SLP to locate agents that support the array
profile. Use intrinsic methods to enumerate ComputerSystem objects from the agents. Then use the
“Dedicated” attribute to identify “Block Server” systems. Use SystemDeviceProtocolController
objects. Then follow ProtocolControllerForPort associations to find FCPort objects. Match attributes
in the FCPort object with information from the ProtocolControllerAccessesUnit attributes
associated with the HBA. When a match is found use ProtocolControllerForUnit and
UnitAccessProtocolController object to locate StorageVolume objects. The StorageVolume objects can
be matched to the StorageVolume objects from the Host/FC HBA profile using durable identifiers.

7.4.1.8 Zoning
Physical disks that are part of the storage pool are exported to consumers of virtualized storage via
the Virtualization Appliance. An administrator may wish to ensure that all physical disks in the
storage pool are not allowed direct access to the consumers of virtualized storage. At the same
time, the administrator may want to allow disks that are not part of the storage virtualization pool
access from hosts. In addition, consumers of virtualized storage may need to be selectively allowed
access to a set of virtual disks that are exported by Translation Engines and Virtualization agents
may selectively allowed access to certain disks from the pool. The controlled access can be provided
by port or LUN level zoning within the fabric.

Zone members (ports, nodes, LUNs etc.) are the elements that can be zoned together. While either
port (or node) level zoning may be used for virtualization, LUN zoning gives a higher level of
granularity. The Virtualization Appliance would have to create and activate zone sets that have
zones whose members are either ports or LUNs. The zone set may be configured such that:

Physical disks that are part of the StoragePool can be zoned out from consumers of virtualized
storage to prevent these consumers from directly accessing the disks.
476 Version 1.0.1

SNIA Storage Management Initiative Specification
All physical disks that are not part of the virtualized pool can be zoned with hosts such that these
hosts can have direct access.

Virtual disks that are exported by Translation Engines can selectively be zoned with consumers of
virtualized storage. Translation Engines would have to present a target port address for zoning.

Physical disks that should be accessible to Translation Engines can be zoned together.

The Virtualization Appliance should be allowed access to all physical storage in the storage pool.

7.4.1.9 Fabric Route Discovery
In order to load balance such that the virtual disks that are exported to consumers of virtualized
storage based on the available bandwidth or redundancy in the fabric, from the Translation
Engines to the physical storage, the virtualization appliance would have to know the routes
available in the fabric. Access to the physical disks from Translation Engines may then take place
via multiple paths based on the available routes. The virtualization appliance may wish to access
data from multiple providers in order to perform the fabric topology discovery operations to be able
to determine which HBAs, switches and storage devices exist in the fabric and how they are
connected and then determine the available routes in the fabric. Similarly, the management
application client may first want to determine the fabric topology and routes and then know the
zoning configuration to determine whether the HBA is permitted to connect to the device port or to
access its LUNs.

A topological map of a SAN that shows all the elements and the connections between them is very
useful. To create the map, all the elements in the SAN with their Fibre channel ports are first
located. Next the ports are linked together. Next the LUNs that can be accessed via the ports are
discovered. Having built the physical topology map, routes can be detected using the
ActiveConnection association between ports.

7.4.1.10 Durable Names
In order to find out the zoning constraints, the Zones of the active ZoneSet are discovered and the
ZoneMemberSettingData is discovered. The ZoneMemberID is either the port WWN or a LU ID
and hence the association is made to the zone member object.

Mapping objects across profiles and namespaces depends on “durable names”. Below is a table of
durable names used in the examples below.

7.4.2 General Recipes

7.4.2.1 Indications Status
// DESCRIPTION
// Determine if the indication subscription requested already exists. If
// not, then attempt to create the indication subscription passed in. If
// the CIM Server does not support the addition of indication, then the
// CIM Client will need to poll for these instance changes. This recipes
// does not handle the issue of providing the target URL for indications.
//

Table 341: Cross Profile Durable Names

Class Reference Example

FCPort Clause 3.2.3 WWN

StorageVolume Clause 3.3.4.1.4 VPD page 83 LU ID
Version 1.0.1 477

SNIA Storage Management Initiative Specification
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The namespace of interest has previously been identified and
// defined in the #SomeNameSpace variable
// 2. The list of filters of interest has been previously built in the
// #filters[] array. Each element is this array is the WQL filter itself

// FUNCTION: createIndication
sub createIndication ($Filter)
{

try {
<create indications as per SMIS specification>

} catch(CIM_ERROR_NOT_SUPPORTED) {
<setup this class of instances to be polled for>

}
}

// MAIN
$ExistingInstances[] = EnumerateInstances(#SomeNameSpace, “CIM_IndicationFilter”)
for #i in $ExistingInstances
{

for #j in #filters
{

if(!compare($ExistingInstances[#j].Query, #filters[#j])
{

&createIndiciation(#filters[#j])
}

}
}

7.4.2.2 Listenable Instance Notification
// DESCRIPTION
// Create an indication subscription for every indication that is
// required by the profile.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. The namespace of interest has previously been identified and
// defined in the #SomeNameSpace variable

#filters[] = <array of SMIS filters for the target profile>
@{Determine if Indications already exist or have to be created} #filters

7.4.2.3 Life Cycle Event Subscription Description
// DESCRIPTION
// Create an indication subscription for the operational status for a
// computer systems defined within a given CIM agent and namespace. This
// subscription will only be made in those CIM agents that have SAN
// devices or applications of interest defined in them. The client will
// have to determine once having received the indication, whether the
478 Version 1.0.1

SNIA Storage Management Initiative Specification
// computer system related to this indication (AlertingManagedElement
// attribute) is of interest. This recipe does not handle the target URL
// for the indication.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// None

#filter[0] = “SELECT * FROM CIM_InstModification
 WHERE SourceInstance ISA CIM_ComputerSystem
 AND SourceInstance.OperationalStatus[0] <>
 PreviousInstance.OperationalStatus[0]”
@{Determine if Indications already exist or have to be created} #filter

7.4.2.4 Subscription for alert indications
// DESCRIPTION
// Create an indication subscription for the alert indications defined
// within a given CIM agent and namespace. This subscription will only be
// made in those CIM agents that have SAN devices or applications of
// interest defined in them. The client will have to determine once having
// received the indication, whether the computer system related to this
// indication (AlertingManagedElement attribute) is of interest. Each
// specific alert indication will have also specific handling required
// for it by the CIM Client.
// NOTE: This recipe does not handle the target URL for the indication.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// None

#filter[0] = “SELECT * FROM CIM_AlertIndication”
@{Determine if Indications already exist or have to be created} #filter

7.4.2.5 Listenable Interface Modification Notification
// DESCRIPTION
// Create an indication subscription for every indication
// that isrequired by the profile
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The namespace of interest has previously been identified and
// defined in the #SomeNameSpace variable

#filters[] = <array of SMIS filters for the target profile>
@{Determine if Indications already exist or have to be created} #filters
Subscribe for Lifecycle Events where OperationalStatus Changes
// DESCRIPTION
// Create an indication subscription for the operational
// status for a computer systems defined within a given CIM agent and
// namspace. This subscription will only be made in those CIM agents
// that have SAN devices or applications of interest defined in them. The
Version 1.0.1 479

SNIA Storage Management Initiative Specification
// client will have to determine once having received the indication,
// whether the computer system related tothis indication
// (AlertingManagedElement attribute) is of interest. This recipe does
// not handle the target URL for the indication.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// None

#filter[0] = “SELECT * FROM InstModification
 WHERE SourceInstance ISA CIM_ComputerSystem
 AND SourceInstance.OperationalStatus[0] <>
 PreviousInstance.OperationalStatus[0]”
@{Determine if Indications already exist or have to be created} #filter

7.4.2.6 Subscription for alert indications
// DESCRIPTION
// Create an indication subscription for the alert
// indications defined within a given CIM agent and namspace. This
// subscription will only be made in those CIM agents that have SAN
// devices or applications of interest defined in them. The client will
// have to determine once having received the indication, whether the
// computer system related to this indication (AlertingManagedElement
// attribute) is of interest. Each specific alert indication will
// have also specific handling required for it by the CIM Client. This
// recipe does not handle the target URL for the indication.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// None

#filter[0] = “SELECT * FROM AlertIndication”
@{Determine if Indications already exist or have to be created} #filter
480 Version 1.0.1

SNIA Storage Management Initiative Specification Security
Clause 8: Security

8.1 Introduction
Security requirements can be divided into four major categories: authentication, authorization,
confidentiality, and integrity (including non-repudiation), brief definitions follow. Authentication
is verifying the identity of an entity (client or server). Authorization is deciding if an entity is
allowed to perform a given operation. Confidentiality is restricting information to only those
intended recipients. Integrity is guaranteeing that information, passed between entities, has not
been modified.

This version of the specification is primarily concerned with authentication and confidentiality.
Authorization is not covered and is implementation dependent. Valid implementations may
assume an entity to be authorized if the entity has been authenticated, or they may perform an
authorization check. Additionally, storage of and access to authorization rules, necessary for an
authorization check, is implementation Dependent. Specification of an interoperable authorization
method for this is left for future work.

Other issues not covered include threat models, protection against specific attack vectors, (such as
denial of service, replay, buffer overflow, man in the middle, etc.), topics related to key
management, and data integrity. Development of threat models, and specific attack
countermeasures required for robust security elements, such as integrity has been left for future
work.

Security concerns occur in three areas of a SMI-S implementation. First, a device, such as a
switch, may require a login before discovery or operations such as zoning can be performed. The
information needed to perform this login is generically referred to as “device credentials”. A SMI-S
server or provider needs to obtain these credentials in order to talk to the device, and they should
be provided confidentially.

Second, a SMI-S Client may need to authenticate itself to a SMI-S Server. Not all Clients may be
allowed to query the object model, and not all Clients may be allowed to perform operations on
objects in the model. Authenticating the client is the first step in determining what that Client is
allowed to do.

Thirdly, within the SMI-S implementations themselves, should developers be unaware of secure
development practices, attackers maybe able to exploit insecurely developed implementations.
(Note, potential attacks might include, but not be limited to buffer overflows, obtaining secure
information handled by the SMI-S implementation, like passwords, etc.) In an effort to increase
the general knowledge of SMI-S developers, for secure development practices, one resources is
referenced: Building Secure Software by Gary McGraw and John Viega (ISBN: 020172152X).

8.2 Background
Section 4.4 of “Specification for CIM Operations over HTTP, Version 1.1” from DMTF describes the
requirements for CIM clients and servers. The authentication methods referred to in the above
specification are described in the IETF RFCs 1945 and 2068, “Hypertext Transfer Protocol --
HTTP/1.0(1.1)” and IETF RFC 2069 “An Extension to HTTP: Digest Access Authentication””. The
Transport Layer Security Protocol Version 1.0 (TLS) is defined by IETF RFC2246. The Secure
Sockets Layer 3.0 (SSL 3.0) protocol specification can be downloaded from HTTP://
wp.netscape.com/end/ssl3/.

Section 4.4 of "Specification for CIM Operations over HTTP, Version 1.1" defines additional
requirements for HTTP authentication, above those found in HTTP 1.1 [RFC 2068], or the HTTP
authentication documents [RFC 2069, RFC 2617]. HTTP authentication generally starts with an
HTTP client request, such as "GET Request-URI" (where Request-URI is the resource requested).
Version 1.0.1 481

Security SNIA Storage Management Initiative Specification
If the client request does not include an "Authorization" header line and authentication is
required, the server responds with a "401 unauthorized" status code, and a "WWW-Authenticate"
header line. The HTTP client must then respond with the appropriate "Authorization" header line
in a subsequent request. The format of the "WWW-Authenticate" and "Authorization" header lines
varies depending on the type of authentication required: basic authentication or digest
authentication. If the authentication is successful, the HTTP server will respond with a status
code of "200 OK".

Basic authentication involves sending the user name and password in the clear, and should only
be used on a secure network, or in conjunction with a mechanism that ensures confidentiality,
such as TLS. Digest authentication sends a secure digest of the user name and password (and
other information including a nonce value), so that the password is not revealed.
"401Unauthorized" responses should not include a choice of authentication

SSL 3.0 and TLS provide for confidentiality and integrity in communication. An initial handshake
defines a session key, which is used to encrypt the data with a symmetric algorithm, such as RC4.
A keyed secure hash, such as SHA-1 is used to check message integrity. For interoperability, the
initial handshake defines the algorithms to be used for message encryption and hashing.

8.3 Modeling Device Credentials
For a complete discussion of the SMI-S requirements for modelling device credentials, see “Device
Credentials Subprofile” on page 220.

8.4 Requirements

8.4.1 General
SMI-S Servers and Clients MUST conform to section 4.4 of “Specification for CIM Operations over
HTTP, Version 1.1”. To minimize compromising user ids and passwords, implementors SHOULD
use HTTP Basic Authentication ONLY in conjunction with SSL 3.0 or TLS. In the case of clear text
CIM-XML over HTTP, implementors SHOULD utilize HTTP Digest Authentication. This
specification determines the protocol for authentication between a Client and the SMI-S Server,
but not the mechanism of authentication used by the SMI-S Server.

SSL 3.0 SHOULD be supported. In the 1.1 version of the SMI-S specification, this requirement is
expected to change to state that TLS MUST be supported. For this 1.0 version of the SMI-S
specification, if TLS is supported then SSL 3.0 MUST be supported. Appendix E of RFC 2246
describes backwards compatibility between TLS and SSL 3.0.

Clients that fail to contact an SMI-S server via HTTP on TCP port 80 should retry with HTTP over
SSL 3.0 or TLS on TCP port 443. Clients whose security policy requires use of a secure channel
should not attempt initial contact via HTTP on TCP port 80. Servers can accelerate discovery that
a secure channel is needed by responding to HTTP contacts on TCP port 80 with an HTTP
REDIRECT to the appropriate https: URL (HTTP over SSL or TLS on TCP port 443) to avoid the
need for clients to timeout the HTTP contact attempt. Clients SHOULD honor such redirects in
this situation.

Client authentication to the SMI-S Server is based on an authentication provider. A provider plug-
in allows for differing authentication schemes. Possible mechanisms include host-based
authentication, Kerberos, PKI, or other.

A SMI-S Server MAY be configured with the device credentials necessary to talk to the device. If a
SMI-S Server supports SSL 3.0 or TLS, the Client MUST use 3.0 or TLS to pass device credentials
to the SMI-S Server. When new device credentials are passed to a SMI-S Server, the device
credential information in the device MUST be updated immediately.
482 Version 1.0.1

SNIA Storage Management Initiative Specification Security
Only the SMI-S Server responsible for communicating with the device has access to the properties
of the SharedSecret object. No other SMI-S Client may read the Secret property of this object as it
MUST be implemented Write-Only.

8.4.2 Certificate Usage with SSL 3.0 and TLS

8.4.2.1 Functional Goals
SSL 3.0 and TLS are based on the use of certificates for authentication. The requirements in this
subsection apply to any SMI-S implementation that supports SSL 3.0 or TLS. These requirements
are intended to accomplish the following functional goals:

a. Require support for existing common practice for certificate usage;

b) Allow customers to enforce their own certificate usage and acceptance policies;

c) Default to facilitating interoperability where not specifically disallowed by security policy;

d) Require support for certificate acquisition from and revocation by common Public Key Infra-
structure (PKI) and Certification Authority (CA) software;

e) Allow security policy control to be restricted to security administrators.

These goals are realized by the requirements stated below, organized by functional goal.

8.4.2.2 Requirements

a. Require support for existing common practice for certificate usage.
Server certificates MUST be supported, client certificates MAY be supported. A server certificate
is presented by the server to authenticate the server to the client; likewise, a client certificate is
presented by the client to authenticate the client to the server. For public web sites offering secure
communications via SSL or TLS, server certificate usage is common, but client certificates are
rarely used.

b) Allow customers to enforce their own certificate usage and acceptance policies.
All certificates identifying SMI-S management entities and their associated private keys MUST be
replaceable by certificates from any Certification Authority (CA). All certificate acceptance policies
in clients and servers MUST be configurable. Any client or server that accepts and checks
certificates from a counterpart MUST support multiple CA root certificates and have an interface
that allows CA root certificates to be added and removed. CA root certificates are used to verify
that a certificate has been signed by a key from an acceptable certificate authority.

c) Default to facilitating interoperability where not specifically disallowed by security policy.
Interactive clients SHOULD provide a means to query the user about acceptance of a certificate
from an unrecognized certificate authority (no corresponding CA root certificate installed in
client), and accept responses allowing use of the certificate presented, or all certificates from the
issuing CA. Servers SHOULD NOT support acceptance of unrecognized certificates; it is expected
that a limited number of CAs will be acceptable for client certificates in any site that uses them.

Preconfiguring root certificates from widely used CAs is OPTIONAL, but simplifies initial
configuration of certificate-based security, as certificates from those CAs will be accepted. These
CA root certificates can be exported from widely available web browsers.

d) Require support for certificate acquisition from and revocation by common PKI/CA software.
All interfaces for certificate configuration in (b) and (c) above MUST support the following
certificate formats:
Version 1.0.1 483

Security SNIA Storage Management Initiative Specification
• DER encoded X.509
International Telecommunications Union Telecommunication Standardization Sector (ITU-
T), Recommendation X.509: Information technology - Open Systems Interconnection - The
Directory: Public-key and attribute certificate frameworks, May 2000.
Specification and technical corrigenda can be obtained from:
http://www.itu.int/ITU-T/publications/recs.html;

• Base64 encoded X.509 (often called PEM)
N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies, IETF RFC 2045, November 1996, Section 6.8.
Available at: http://www.ietf.org/rfc/rfc2045.txt;

• PKCS#12
RSA Laboratories, PKCS #12: Personal Information Exchange Syntax, Version 1.0, June
1999. Specification and Technical Corrigendum. Available at:
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-12/index.html.

All certificate validation software MUST support local certificate revocation lists, and at least one
list per CA root certificate supported. Support is REQUIRED for both DER encoded X.509 and
Base64 encoded X.509 formats, but this support MAY be provided by using one format in the
software and providing a tool to convert lists from the other format. OCSP and other means of
immediate online verification of certificate validity are OPTIONAL, as connectivity to the issuing
Certificate Authority cannot be assured.

e) Allow security policy control to be restricted to security administrators.
All certificate interfaces required above MUST support access restrictions that permit access only
by suitably privileged administrators. A suitably privileged security administrator MUST be able
to disable functionality for acceptance of unrecognized certificates described in (c)
above.

The above requirements can be satisfied via appropriate use of the readily-available OpenSSL
toolkit software (www.openssl.org). Support for PKCS#7 certificate format was deliberately
omitted from the requirements. This format is primarily used for online interaction with certificate
authorities; such functionality is not appropriate to require of all SMI-S storage management
software, and tools are readily available to convert PKCS#7 certificates to or from other certificate
formats.

8.5 Instrumentation Requirements
The SMI-S Server SHOULD securely store the device credentials local to the SMI-S Server. A
proxy SMI-S Server may need to store the credentials on disk so that they are available upon
reboot. In this case the credentials SHOULD NOT be stored in the clear, but SHOULD be
encrypted for confidentiality.

The device credentials SHOULD be transmitted securely from the SMI-S Server to the device. The
mechanism of communicating the credentials to the device is outside the scope of this specification,
but it SHOULD be over a secure channel if possible.
484 Version 1.0.1

SNIA Storage Management Initiative Specification Service Discovery
Clause 9: Service Discovery

9.1 Objectives
Service discovery in the context of SMI-S refers to the discovery of dedicated SMI-S servers,
general purpose SMI-S servers, and directory servers, and the functions they offer in an SMI-S
managed environment. The specific objectives to be addressed by the discovery architecture are:

a. Provide a mechanism that allows SMI-S clients to discover the SMI-S constituents in a stor-
age network environment so that they may communicate with these constituents using CIM
Operations over HTTP protocol. This includes:

1) Finding the address for the SMI-S constituent;

2) Finding the capabilities of the server, including communications capabilities, security
capabilities, CIM operational capabilities and the functional capabilities (CQL, Batch
operations support, etc.) ;

b) Provide a mechanism that is efficient in the amount of information exchanged with minimal
exchanges to acquire the information;

c) Provide a mechanism that accurately defines the services in the network, independent of
whether or not those services are currently available;

d) Provide a mechanism that provides information on namespaces provided and the CIM
Schema supported;

e) Provide a mechanism that allows SMI-S clients the profile(s) supported by agents and object
managers;

f) Provide a mechanism that scales to enterprise environments;

g) Utilize existing standard mechanisms to effect the SMI-S service discovery to enable rapid
deployment;

h) Provide a mechanism that allows SMI-S clients to determine the level of (SMI-S) support pro-
vided by the constituents (e.g., R1, R2, etc.

9.2 Overview
SMI-S Release 1 uses the Service Location Protocol Version 2 (SLPv2), as defined by IETF
RFC2608, for its basic discovery mechanism. SLPv2 is used to locate constituents (agents, object
managers, etc.), but complete discovery of all the services offered involves traversing the
interoperability model for the SMI-S profile supported. This clause of the SMI-S specification deals
primarily with the information discovered using SLPv2. There are references to information
discovered by traversing the interoperability model, but details on this are provided in “Dedicated
SMI-S Server” on page 500.

Note: SLPv1 is not supported in SMI-S as discovery mechanism. SMI-S requires capabilities that
were introduced in SLPv2 in order to support the discovery of SMI-S agents and object
managers. SLPv2 defines discovery protocols among three constituents:

User Agent (UA): A process that attempts to establish contact with one or more services. A User
Agent retrieves service information from Service Agents or Directory Agents. In SMI-S, a “user
agent” would be part of an SMI-S Client.

Service Agent (SA): A process working on behalf of one or more services to advertise the services.
In SMI-S, a “service agent” would be supported by SMI-S dedicated or general purpose servers.
Version 1.0.1 485

Service Discovery SNIA Storage Management Initiative Specification
Directory Agent (DA): A process that caches SLP service advertisements registered by Service
Agents and forwards the service advertisements to User Agents on demand. In SMI-S, the SLP
“Directory agent” is defined as the main function of the “directory server” role in the SMI-S
Reference Model.

SLPv2 provides a framework for client applications, represented by User Agents, to find and
utilize services, represented by Service Agents. The Directory Agent represents an optional part
that enhances the performance and scalability of the protocol by acting as a cache for all services
that have been advertised. Directory Agents also reduce the load on Service Agents, making
simpler implementations of Service Agents possible. User Agents can then query the Directory
Agent for services. Service Agents register with Directory Agents and are required to re-register as
the registrations expire. If no Directory Agent is present, User Agents MAY request service
information directly from the Service Agents.

Using SLPv2, a client can discover SMI-S servers and SLPv2 Directory Agents in the storage
network. In the case of SMI-S servers, the basic information discovered is the profiles supported
and the URL of the service. Details on the specific services provided with the profile are then found
by traversing the service structure modeled for the profile.

Using SLPv2, a “service agent” advertises its services. These advertisements have an expiration
time period. To avoid getting an advertisement deleted, a service agent MUST reregister before
the time period expires. SMI-S servers MAY deregister as part of a graceful shutdown.

Note: While SLP security topics are important their content is left for future revisions of the
SMI-S specification.

A service advertisement consists of file components:

• Service type name – describes the general type of service being advertised (ex. Printing,
faxing, etc.). The working assumption is that DMTF wants “WBEM Servers” advertised with
the service type WBEM. This is used by SMI-S servers (both dedicated and general purpose
servers).;

• Attributes – The collection of attributes describes the particular instance of the service in
more detail. For SMI-S, these would be the attributes defined by the service type template for
WBEM. The attributes are defined in “Service Attributes” on page 489;

• Service Access point – the service access point defines the point of connection that the
software client of the UA uses to connect to the service over the network.;

• Scopes – These are administrative groupings of services. The default value (“default”)
SHOULD be used for SMI-S servers. Other scopes MAY be defined by the customer, but care
must be taken when this is done. The administrator must do this correctly or SMI-S servers
will not be visible. All the SMI-S recipes assume that DEFAULT is set for scopes;

• Language – Services advertisements contain human readable strings. These are provided in
English, but may also be in other languages.

9.3 SLP Messages
SLP v2 divides the base set of SLP messages into required and optional subsets.

Note: SLP v2 also includes a new feature, an extension format. Extension messages are attached
to base messages. SMI-S does not use extensions. The discussion of messages introduces the
following terms that define the SLP services:

Attribute Reply (AttrRply): A reply to an Attribute Request. (optional)
486 Version 1.0.1

SNIA Storage Management Initiative Specification Service Discovery
Attribute Request (AttrRqst): A request for attributes of a given type of service or attributes of
a given service. (optional)

DA Advertisements (DAAdvert): A solicited (unicast) or unsolicited (multicast) advertisement
of Directory Agent availability.

SA Advertisement (SAAdvert): Information describing a service that consists of the Service
Type, Service Access Point, lifetime, and Attributes.

Service Acknowledgement (SrvAck): A reply to a SrvReg request.

Service Deregister (SrvDereg): A request to deregister a service or some attributes of a service.
(optional)

Service Register (SrvReg): A request to register a service or some attributes of a service.

Service Reply (SrvRply): A reply to a Service Request.

Service Request (SrvRqst): A request for a service on the network.

Service Type Reply (SrvTypeRply): A reply to a Service Type Request. (optional)

Service Type Request (SrvTypeRqst): A request for all types of service on the network.
(optional)

Service Agents (SAs) and User Agents (UAs) MUST support Service Request, Service Reply, and
DAAdvertisement message types. Service Agents MUST additionally support Service Registration,
SA Advertisement, and Service Acknowledgement message types. The remaining message types
MAY be supported by Service Agents and User Agents. Directory Agents (DAs) MUST support all
message types with the exception of SA Advertisement. Table 342 on page 487 lists each base
message type, its abbreviation, function code, and required/optional status.

Table 342: Message Types

Message
Type

Abbreviation Function
Code

Required (R)/
Optional (O)

DAs SAs UAs

Service Request SrvRqst 1 R R R

Service Reply SrvRply 2 R R R

Service
Registration

SrvReg 3 R R O

Service
Deregistration

SrvDereg 4 R O O

Service
Acknowledgement

SrvAck 5 R R O

Attribute Request AttrRqst 6 R R R

Attribute Reply AttrRply 7 R R R

DA Advertisement DAAdvert 8 R R R

Service Type
Request

SrvTypeRqst 9 R O O
Version 1.0.1 487

Service Discovery SNIA Storage Management Initiative Specification
Note: The requirements in this table extend the requirements defined for SLP V2. SMI-S adds
additional requirements for AttrRqst and AttrRply beyond those defined by the RFC.

9.4 Scopes
SLPv2 defines a scope as follows:

Scope: A set of services, typically making up a logical administrative group.

Scopes are sets of service instances. The primary use of Scopes is to provide the ability to create
administrative groupings of services. A set of services may be assigned a scope by network
administrators. A User Agent (UA) seeking services is configured to use one or more scopes. The
UA only discovers those services that have been configured for it to use. By configuring UAs and
Service Agents with scopes, administrators may make services available. Scopes strings are case
insensitive. The default SCOPE string is “DEFAULT”.

SMI-S does not dictate how Scopes are set. That is, scopes can be set by customers to match their
needs. However, SMI-S requires that SMI-S servers use the “default” scope as a means of making
SMI-S advertisements visible to SMI-S clients.

To be compliant with SMI-S, User Agents (SMI-S clients) and Service Agents (SMI-S servers)
MUST NOT require scope settings that get in the way of administrator use of scopes. Specifically,
this means:

• SMI-S clients and servers MUST allow an administrator to set scopes to define what is to be
searched, and,

• SMI-S clients and servers MUST allow an administrator to configure scopes, including
turning off the “default” scope.

9.5 Services Definition
Services definition uses the following terms defined in SLPv2:

Service Type Template: A formalized, computer-readable description of a Service Type. The
template defines the format of the service URL and attributes supported by the service type.

Service URL: A Uniform Resource Locator for a service containing the service type name,
network family, Service Access Point, and any other information needed to contact the service.

Services are defined by two components: the Service URL and the Service Type Template. The
Service URL defines an access point for the service and identifies a unique resource in the
network. Service URLs may be either existing generic URLs or URLs from the service: URL
scheme.

Service Type
Reply

SrvTypeRply 10 R O O

SA Advertisement SAAdvert 11 R O

Table 342: Message Types (Continued)

Message
Type

Abbreviation Function
Code

Required (R)/
Optional (O)

DAs SAs UAs
488 Version 1.0.1

SNIA Storage Management Initiative Specification Service Discovery
The second component in a Service definition is a Service Type Template. Service Type Templates
define the attributes associated with a service. These attributes, through inclusion in registrations
and queries, allow clients to differentiate between similar services.

SMI-S servers use a Service Type Template defined by DMTF for advertising “WBEM Servers”
(e.g., CIMOMs). The template name for WBEM Servers is “WBEM”.

9.5.1 Service Type
Service Type: The class of a network service represented by a unique string (for example a
namespace assigned by IANA).

The service type describes a class of services that share the same attributes (e.g., the service
printer or the service “WBEM”). DMTF is considering an SLP-based discovery mechanism that
locates “WBEM” (e.g., CIMOMs). The SMI-S design builds on the DMTF proposal.

The basic function of SLP discovery is the identification of the service offered by a constituent. In
the case of SMI-S, the service type advertised by all constituents is “WBEM.” This follows a DMTF
proposal for advertising WBEM Servers. The only exception to this is the Directory Server, which
advertises itself as a “directory-agent.” That is, SMI-S uses a standard SLP directory service. SMI-
S does not require a unique SMI-S directory server.

For other roles (SMI-S servers) the role advertises its services as a WBEM services (e.g.,
“WBEM”).

9.5.2 Service Attributes
Attributes: A collection of tags and values describing the characteristics of a service.

SMI-S servers MUST advertise a standard set of attributes. These attributes are the following:

• Service-hi-name – This is the name of the service for use in human interfaces.

• Service-hi-description – This is a description of the CIM service that is suitable for use in
human interfaces.

• Service-id – A unique id for the CIM Server that is providing the service.

• Service-location-tcp – This is a list of TCP addresses that can be used to reach the service.
NOTE: This need only be one (for CIM-XML). But it could hold others (for other
communications protocols).

• CommunicationMechanism – “cim-xml” (at least). The SMI-S server could support others, but
“cim-xml” is REQUIRED for SMI-S servers.

• OtherCommunicationMechanismDescription – used only if “other” is also specified for
CommunicationMechanism.

• CIM_InteropSchemaNamespace – The Namespace within the SMI-S server where the CIM
Interop Schema can be accessed. Each namespace provided MUST contain the complete
information and if multiple namespaces are provided they MUST contain the same
information. Even though multiple InteropSchemaNamespaces may be provided, an SMI-S
client may rely on the first namespace as the definitive namespace for accessing the Interop
Schema (including the class instances of the Server Profile).

• ProtocolVersion – The Version of the cim-xml protocol if this is the defined. This is
REQUIRED for SMI-S server.

• FunctionalProfilesSupported: Permissible values are “Unknown”, “Other”, “Basic Read”,
“Basic Write”, “Schema Manipulation”, “Instance Manipulation”, “Association Traversal”,
Version 1.0.1 489

Service Discovery SNIA Storage Management Initiative Specification
“Query Execution”, “Qualifier Declaration”, “Indications”. This defines the CIM Operation
Profiles supported by the SMI-S server. Can return multiple values.

• FunctionalProfileDescriptions - If the "other" value is used in the
FunctionalProfilesSupported attribute, this MUST be populated. If provided it MUST be
derived from the CIM_CommunicationMechanism.FunctionalProfileDescriptions property.
Use of this attribute is NOT specified by SMI-S.

• MultipleOperationsSupported – A Boolean that defines whether the SMI-S server supports
batch operations.

• AuthenticationMechanismsSupported – Permissible values are “Unknown”, “None”, “Other”,
“Basic”, “Digest”. Defines the authentication mechanism supported by the SMI-S server. Can
return multiple values.

• AuthenticationMechanismDescriptions - Defines other Authentication mechanism supported
by the SMI-S server. The value MUST be supplied if the “Other” value is set in the
AuthenticationMechanismSupported attribute. This attribute is optional. It is to be provided
only when the AuthenticationMechanismSupported attribute is “other”.

• Namespace - Namespace(s) supported on the SMI-S server. This attribute may have multiple
values (one for each namespace defined in the SMI-S server), and is literal (L) because the
namespace names may not be translated into other languages.

• Classinfo - The values are taken from the interop schema Namespace.classinfo property. The
values represent the classinfo (CIM Schema version, etc.) for the namespaces defined in the
corresponding namespace listed in the namespace attribute. Each entry in this attribute
MUST correspond to the namespace defined in the same position of the namespace attribute.
There MUST be one entry in this attribute for each entry in the namespace attribute.

• RegisteredProfilesSupported – The SMI-S profile(s) supported by the server prefixed by
“SNIA” (at least). An SMI-S server may also support other RegisteredProfiles, but it MUST
support at least one “SNIA”. In addition, this attributed can also be used to advertise
subprofiles, when subprofiles are to be advertised. The RegisteredProfilesSupported is an
array. Each entry includes a RegisteredOrganization (i.e., SNIA), a Profile name and possibly
a subprofile name. Each name is separated by a colon.

Note that a single SMI-S server can support multiple profiles. As a result, the profile attribute is
an array of values.

Additional attributes, such as specific profile services supported, model subprofiles supported and
the SMI-S release level are NOT discovered via SLP. They would be found by traversing the model
presented by the SMI-S server.

9.6 User Agents (UA)
A User Agent is a Client process working on the user’s behalf to establish contact with some
service. A User Agent retrieves service information from Service Agents (Clause Service Agents
(SAs)) or Directory Agents (Clause Directory Agents (DAs)). Further description of a Client and its
role may be found in “SMI-S Client” on page 500.

The only required feature of a User Agent is that it can issue SrvRqsts and interpret DAAdverts,
SAAdverts and SrvRply messages. If Directory Agents exist, User Agents MUST issue requests as
Directory Agents are discovered.

An SMI-S Client SHOULD act as an SLP user agent (UA) using the query functions of SLP V2 to
determine location and other attributes of the “WBEM” SLP Service Type Template defined in
section 5.10 of this specification.
490 Version 1.0.1

SNIA Storage Management Initiative Specification Service Discovery
The basic search methodology for SMI-S clients is to search for directory agents and service agents
within their scope. If all SMI-S servers are supported by a directory agent, then the search yields
nothing but directory agents. The client can then obtain a list of services (and their URLs) for
management of the SMI-S servers.

If any Service agents are not covered by a directory agent (i.e., are not within its scope), then the
client obtains service replies from those service agents.

An client would typically search for all service types available in their scope(s). This returns a list
of service types available in the network. However, an SMI-S client can be assumed to be
searching for “WBEM” service types. If a client only manages selected devices (e.g., switches or
arrays), the SMI-S client can issue a request for the specific services by using predicates on the
“RegisteredProfilesSupported” attribute.

9.7 Service Agents (SAs)
A Service Agent supports an SMI-S server process working on behalf of one or more services to
advertise the services. See “SMI-S Roles” on page 499. for further description of SMI-S servers.

Service Agents MUST accept multicast service requests and unicast service requests. SAs MAY
accept other requests (Attribute and Service Type Requests). An SA MUST reply to appropriate
SrvRqsts with SrvRply or SAAdvert messages. The SA MUST also register with all DAs as they
are discovered.

To provide for SMI-S Client discovery of SMI-S servers, a CIM Server MUST act as a Service agent
(SA) for the IETF Service Level Protocol (SLP) V2 as defined in IETF RFC 2608. The service
MUST correspond to V2 of SLP (IETF RFC 2608 and 2609) and MUST use the Service Templates
defined in “‘Standard WBEM’ Service Type Templates” on page 495 of this specification for
advertisements. An SMI-S server acting as an SA MUST provide a separate SLP advertisement
for each address/port that the CIM Server advertises.

9.8 Directory Agents (DAs)
SMI-S supports existing SLPv2 Directory Agents (without modification). That is, SMI-S makes no
assumptions on Directory Agents that are not made by SLPv2. Note that this cannot quite be said
for User Agents, which are looking for SMI-S specific services, or Service Agents, which are
advertising SMI-S specific services.

9.9 Service Agent Server (SA Server)

9.9.1 General Information
The reserved listening port for SLP is 427, the destination port for all SLP messages. Service
Agents (SAs) are required to listen for both unicast and multicast requests. A Directory Agent
(DA) MUST listen for unicast request and specific multicast DA discovery service requests. SAs
and User Agents (UAs) that perform passive DA discovery MUST listen for multicast DA
Advertisements (DAAdverts).

TCP/IP requires that a single server process per network interface control all incoming messages
to a port. That requirement necessitates a mechanism to share the SLP port (427).

Sharing the SLP port (427) is accomplished with a Service Agent Server (SA Server) process that
‘owns’ the port on behalf of all SAs, UAs and optional DA that are listening for SLP messages. The
SA Server listens for incoming messages that request advertisement information and either
answer each request or forward it to the appropriate SA. The SA Server also performs passive DA
discovery and distribute the DA addresses and scopes to the SAs and UAs that it serves.
Version 1.0.1 491

Service Discovery SNIA Storage Management Initiative Specification
A SA Server may also function as a DA if the SA Server is implemented so that it answers requests
for advertisement information rather than forwarding each request to the appropriate SA. The
combined DA/SA Server is acting as an intermediary between a SA that registered an
advertisement and a UA requesting information about the advertisement.

9.9.2 SA Server (SAS) Implementation
The RFC 2614 document describes APIs for both the C and Java languages. Both APIs are
designed for standardized access to the Service Location Protocol (SLP).

The goals of the C API are:

• Directly reflect the structure of SLP messages in API calls and return types as character
buffers and other simple data structures.

• Simplify memory management to reduce API client requirements.

• Provide API coverage of just the SLP protocol operations to reduce complexity.

• Allow incremental and asynchronous access to return values, so small memory
implementations are possible.

• Support multithreaded library calls on platforms where thread packages are available.

The Java API goals are:

• Provide complete coverage of all protocol features, including service type templates, through a
programmatic interface.

• Encourage modularity so that implementations can omit parts of the protocol that are not
needed.

• In conformance with Java’s object-oriented nature, reflect the important SLP entities as
objects and make the API itself object-oriented.

• Use flexible collection data types consistently in the API to simplify construction of
parameters and analysis of results.

• Designed for small code size to help reduce download time in networked computers.

9.9.3 SA Server (SAS) Clients

9.9.3.1 Description
An SAS Client is a Service Agent (SA), User Agent (UA), or Directory Agent (DA) that is associated
with a SA Server. The SA Server listens on the SLP port (427) and appropriately handle all
incoming messages for each SAS Client. A DA acting as a SAS Client is separately configured on
the same host as the SA Server.

9.9.3.2 SAS Client Requests – SA Server Responses
A SA Server responds when appropriate, to incoming unicast and multicast messages from SAS
Clients. The SA Server may answer with the appropriate advertisement, if available, or forward
the request on to the appropriate SAS Client. If the SA Server is also functioning as a DA, it
discards a multicast SrvRqst of “service:directory-agent” that has either a missing scope list or the
scope list does not contain a scope the Service Agent Server/DA is configured with.
492 Version 1.0.1

SNIA Storage Management Initiative Specification Service Discovery
9.9.4 SA Server Configuration

9.9.4.1 Overview
SA Servers may be configured via an individual SLP configuration file, programmatically, or a
combination of the two. DHCP may also be used obtain the scope list for a SA Server. Figure 84:
"SA Server Configuration" illustrates the various means of configuring a SA Server.

9.9.4.2 SLP Configuration File

9.9.4.2.1 If a SA Server is also functioning as a DA, the following DA configuration properties MUST be
set:

The DA attribute/value pair of “SA-Server=true” allows a query to be used when a SA Server/DA
needs to be identified. In addition, when the SA Server/DA responds to a SrvRqst message with a
DAAdvert message, the DA attribute/value pair is included.

9.9.4.2.2 The remaining DA configuration property, net.slp.DAHeartBeat, with a default of 10,800
seconds, can be set as appropriate. If a SA Server is not functioning as a DA, the following SA
configuration property MUST be set:

9.9.4.3 Programmatic Configuration
Both the C and Java language API’s provide access to SLP properties contained in the SLP
configuration file. The actual SLP configuration file is not accessed or modified via the interfaces.
Once the file is loaded into memory at the start of execution, the configuration property accessors
work on the in-memory representation.

The C language API provides the SLPGetProperty() and SLPSetProperty() functions. The
SLPGetProperty() function allows read access to the SLP configuration properties while the
SLPSetProperty() function allows modification of the configuration properties.

The SLPSetProperty() function has the following prototype:

void SLPSetProperty(const char *pcName, const char *pcValue);
The SLPSetProperty() function takes two string parameters: pcName and pcValue. The pcName
parameter contains the property name and pcValue contains the property value. The following
example uses the SLPSetProperty() function to configure a SA Server that is not functioning as a
DA:

void setSAAttributes() {
char value[80]; /* A buffer for storing the attribute string. */
value = “SA Server=true”;
SLPSetProperty(“net.slp.SAAttributes”, value);

Table 343: Required Configuration Properties for SA as DA

Keyword Data Type Value

net.slp.isDA boolean true

net.slp.DAAttributes string (SA-Server=true)

Table 344: Required Configuration Properties for SA

Keyword Data Type Value

net.slp.SAAttributes string (SA-Server=true)
Version 1.0.1 493

Service Discovery SNIA Storage Management Initiative Specification
}

9.9.4.4 DHCP Configuration
If the Service Agent Server is also functioning as a DA, its scope list may be obtained via DHCP.
Scopes discovered via DHCP take precedence over the net.slp.useScopes property in the SLP
configuration file.

9.9.4.5 Scope
A Service Agent Server is configured with a minimum scope of DEFAULT. If a Service Agent
Server is not functioning as a DA, DEFAULT is the only scope configured. If a Service Agent
Server is functioning as a DA, it may have additional scopes configured. Use of the DEFAULT
scope enables the associated SAS Clients (UAs, SAs and DA) to actively discover the Service Agent
Server using a well-known value for scope.

a. The SA Server may obtain specific configuration values via an individual SLP Configuration
file.

b) The C or Java API provides programmatic access to the configuration file properties;

c) The SA Server may obtain its scope values from a DHCP Server.

9.9.5 SA Server Discovery
“Discovery” of a SA Server by its SAS Clients is accomplished by successfully establishing the
required communication link between the two entities. There is no need for active or passive
discovery as described by SLP since both the SA Server and SAS Clients reside on the same host
system.

9.9.6 SAS Client Registration
Service Agents (SAs) that are SAS Clients register and deregister with the local SA Server using
the SrvReg/SrvDereg messages. The SA Server responds with a Service Acknowledgement
(SrvAck) message. The SA Server store a service advertisement until either its lifetime expires or
a SrvDereg message is received.

Figure 84: SA Server Configuration

SA Server

DHCP
Server1

2C or Java API

SLP
Configuration

File

3
SA Server

DHCP
Server
DHCP
Server1

2C or Java API

SLP
Configuration

File

SLP
Configuration

File

3

494 Version 1.0.1

SNIA Storage Management Initiative Specification Service Discovery
If the SA Server is also functioning as a DA, the DA registration requirement is also met. The SA
server also forwards any SA registration to other DAs that have the same scope as the SA.

9.10 ‘Standard WBEM’ Service Type Templates
Note: For each description in the template that states the value MUST be the

CIM_ClassName.PropertyName value, the format/rules for these values are defined in the
Interop Model of the CIM Schema and in the “Server Profile” section of this specification.
This SLP Template requires a minimum Schema version of 2.7 to support the required
values. Some of the optional values require CIM Schema version 2.8.

Name of submitter: "DMTF" <technical@dmtf.org>

Language of service template: en

Security Considerations:

Information about the specific CIM Server implementation or the
Operating System platform may be deemed a security risk in certain
environments. Therefore these attributes are optional but
recommended.

Template Text:

-------------------------template begins here-----------------------
template-type=wbem

template-version=1.0

template-description=
 This template describes the attributes used for advertising
 WBEM Servers.

template-url-syntax=string
The template-url-syntax MUST be the CIM_ObjectManager.Name property value.

service-hi-name=string O
This string is used as a name of the CIM service for human
interfaces. This attribute MUST be the
CIM_ObjectManager.ElementName property value.

service-hi-description=string O
This string is used as a description of the CIM service for
human interfaces.This attribute MUST be the
CIM_ObjectManager.Description property value.

service-id=string L
This attribute is set to the same value as the serviceid
Version 1.0.1 495

Service Discovery SNIA Storage Management Initiative Specification
used in the service URL registered with SLP. A User Agent can use
this attribute to discover a WBEM Server which the User Agent
discovered previously.

service-location-tcp=string L
The location of one service access point offered by the WBEM Server
over TCP transport. This attribute must provide sufficient addressing
information so that the WBEM Server can be addressed directly using
this attribute.
Example: (service-location-tcp=http://localhost:5988)

CommunicationMechanism=string L
The communication mechanism (protocol) used by the CIM Object Manager for
this service-location-tcp defined in this advertisement. This information
MUST be the CIM_ObjectManagerCommunicationMechanism.CommunicationMechanism
property value.
CIM-XML is defined in the CIM Operations over HTTP specification which can
be found at http://dmtf.org/
“Unknown”, “Other”, “cim-xml”

OtherCommunicationMechanismDescription = String L O
The other communication mechanism defined for the CIM Server in the case
the “Other” value is set in the CommunicationMechanism string.
This attribute MUST be the

CIM_ObjectManagerCommunicationMechanism.OtherCommunication
Mechanism

property value. This attribute is optional because it is only required if the
“other” value is set in CommunicationMechansim. The value returned is
a free-form string.

InteropSchemaNamespace=string L M
Namespace within the target WBEM Server where the CIM Interop Schema can be
accessed. Multiple namespaces may be provided. Each namespace provided
MUST contain the same information.

ProtocolVersion=String O L
The version of the protocol. It MUST be the
CIM_ObjectManagerCommunicationMechanism.Version property value.

FunctionalProfilesSupported=string L M
ProfilesSupported defines the CIM Operation profiles supported by the
CIM Object Manager. This attribute MUST be the
CIM_ObjectManagerCommunicationMechansim.FunctionalProfilesSupported
property value.
“Unknown”, “Other”, “Basic Read”, “Basic Write”,
“Schema Manipulation”, “Instance Manipulation”,
“Association Traversal”, “Query Execution”,
496 Version 1.0.1

SNIA Storage Management Initiative Specification Service Discovery
“Qualifier Declaration”, “Indications”

FunctionalProfileDescriptions=string L O M
Other profile description if the “other” value is set in the ProfilesSupported
attribute. This attribute is optional because it is returned only if the “other”
value is set in the ProfilesSupported attribute. If provided it MUST
be equal to the CIM_ObjectManagerCommunicationMechanism.FunctionalProfileDescriptions
property value.

MultipleOperationsSupported=Boolean
Defines whether the CIM Object Manager supports batch operations.
This attribute MUST be the
CIM_ObjectManagerCommunicationMechanism.MultipleOperationsSupported
property value.

AuthenticationMechanismsSupported=String L M
Defines the authentication mechanism supported by the CIM Object Manager.
This attributed MUST be the
CIM_ObjectManagerCommunicationMechanism.AuthenticationMechanismsSupported property value.
“Unknown”, “None”, “Other”, “Basic”, “Digest”

AuthenticationMechansimDescriptions=String L O M
Defines other Authentication mechanisms supported by the CIM Object Manager
in the case where the “Other” value is set in any of the
AuthenticationMechanismSupported attribute values. If provided, this attribute MUST be the
CIM_ObjectManagerCommunicationMechanism.AuthenticationMechansimDescriptions
property value.

Namespace=string L M O
Namespace(s) supported on the CIM Object Manager.
This attribute MUST be the
CIM_Namespace.name property value for each instance of CIM_Namespace
that exists. This attribute is optional.
NOTE: This value is literal (L) because
the namespace names MUST not be translated into other languages.

Classinfo=string M O
This attributes is optional but if used, the values MUST be the
CIM_Namespace.classinfo property value.
The values represent the classinfo (CIM Schema version, etc.) for
the namespaces defined in the corresponding namespace listed in the
Namespace attribute. Each entry in this attribute MUST correspond
to the namespace defined in the same position of the namespace
attribute. There must be one entry in this attribute for each
entry in the namespace attribute.
Version 1.0.1 497

Service Discovery SNIA Storage Management Initiative Specification
RegisteredProfilesSupported=string L M
RegisteredProfilesSupported defines the Profiles that
this WBEM Server has support for. Each entry in this
attribute MUST be in the form of
Organization:Profile Name{:Subprofile Name}
#
examples:
DMTF:CIM Server
DMTF:CIM Server:Protocol Adapter
DMTF:CIM Server:Provider Registration
The Organization MUST be the
CIM_RegisteredProfile.RegisteredOrganization property value.
The Profile Name MUST be the
CIM_RegisteredProfile.RegisteredName property value.
The subprofile Name MUST be the
CIM_RegisteredProfile.RegisteredName property value when it is
used as a Dependent in the CIM_SubProfileRequiresProfile
association for the specified Profile Name (used as the antecedent).

--------------------------template ends here------------------------

9.11 SLP Bibliography
\The following reference materials on SLP are recommended to assist in vendor implementations
of SLP processes.

Kempf, J. and P. St. Pierre. _Service Location Protocol for Enterprise Networks_. New York: John
Wiley and Sons, Inc., 1999.

Perkins, C. and E. Guttman. “DHCP Options for Service Location Protocol.” IETF RFC 2610, June
1999.

Guttman, E., C. Perkins, and J. Veizades, and M. Day. “Service Location Protocol, Version 2."
IETF RFC 2608, June 1999.

Guttman, E., C. Perkins, and J. Kempf. “Service Templates and service: Schemes.” IETF RFC
2609, June 1999.

Kempf, J. and E. Guttman. “An API for Service Location.” IETF Informational RFC 2614, June
1999.

Guttman, E. “The serviceid: URI Scheme for Service Location.” draft-guttman-svrloc-serviceid-
01.txt, IETF Informational Draft, Network Working Group, January 4, 1999
498 Version 1.0.1

SNIA Storage Management Initiative Specification SMI-S Roles
Clause 10: SMI-S Roles

10.1 Introduction
As shown in Figure 85: "Complete Reference Model" above, the complete reference model shows
the roles for the various entities of the management system. Any given host, network device or
storage device may implement one or more of these roles as described later in this clause.

Here we present a concise definition of each of these roles and the requirements on
implementations of these roles in a management system. For each of these roles, specific functions
are required to be implemented in one or more functional areas:

a. SLP Discovery Functions – the required discovery capabilities that the role performs in the
overall management system;

b) Basic CIM-XML Operations – the management model operations that the role performs;

c) Security – the security requirements that the role is expected to satisfy;

d) Lock Management Operations – the locking operations that the role is expected to perform.

The detail of these responsibilities for each of the roles is described in the following sections.

Figure 85: Complete Reference Model

Device or Subsystem

CIMxml
CIM operations over HTTP

TCP/IP

SLP
TCP/IP

SA

Lock Manager

0...n

Directory Server

0...nDirectory
Agent

BrandName Client

0...nUser
Agent

SA

Dedicated
BrandName Server

0...n SA

Dedicated
BrandName Server

0...n

0...n

Provider

General Purpose
BrandName Server

Device or Subsystem

Propr
ietary

SA

Device or Subsystem

Propr
ietary
Version 1.0.1 499

SMI-S Roles SNIA Storage Management Initiative Specification
10.2 SMI-S Client

10.2.1 Overview
The SMI-S Client role in the overall management system is performed by software that is capable
of performing management operations on the resources under management. This includes
monitoring, configuration, and control of the operations on the resources. Typical clients include
user interface consoles, complete management frameworks, and higher-level management
applications and services such as policy based management systems.

There can be zero or more SMI-S clients in the overall management system. These clients can all
coexist simultaneously and can perform independent or overlapping operations in the
management system. It is outside the scope of this specification to specify client cooperation with
other clients in any way. The semantics of the described management system is that the last
successful client operation is valid and persists in the absence of any other client operations (last
write wins).

It is expected that development kits for the management system will provide code for the required
functions implemented in clients. Consoles, frameworks and management applications can then
use this common code in order to comply with this specification. The specification of an API for this
client code, and specific language bindings for applications is outside the scope of this specification,
but is a candidate for follow-on work.

10.2.2 SLP Functions
The SMI-S Client role is required to implement SLP User Agent (UA) functionality as specified in
“User Agents (UA)” on page 490. The Client discovers all SMI-S servers within its configured scope
that are required for its operations by querying for service specific attributes that match the
criteria for those operations.

10.2.3 CIM-XML Protocol Functions
The SMI-S Client role MUST implement CIM-Client functionality as specified by CIM-XML
standard and SHOULD implement CIM-Listener functionality as specified by CIM-XML
standard.

10.2.4 Security Considerations
The SMI-S Client role MUST implement security as specified in “Security” on page 481.

10.2.5 Lock Management Functions
There are no requirements for locking in this release of the specification.

10.3 Dedicated SMI-S Server

10.3.1 Overview
The intention of the SMI-S server role in a management system is to provide device management
support in the absence of any other role. A simple management system could consist of just a SMI-
S Client and a SMI-S Server and all management functions can be performed on the underlying
resource. This means that a vendor can offer complete management for the resource by shipping a
standalone client for the resource and not depend on any other management infrastructure.
Although, at the same time, the SMI-S Server can participate in a more complex management
environment through the use of the standard mechanisms described here.

• Embedded SMI-S Server – the SMI-S Server functions are incorporated into the resource
directly and do not involve separate installation steps to become operational.
500 Version 1.0.1

SNIA Storage Management Initiative Specification SMI-S Roles
• Proxy SMI-S Server – the SMI-S Server is hosted on a system separate from the resource and
communicates with the resource via either a standard or proprietary remote protocol. This
typically involves an installation operation for the SMI-S Server and configuration for, or
independent discovery of, the desired resource.

In order to minimize the footprint on the resource or proxy hosts, the required functions of the
SMI-S Server role have purposely been scaled back from those of a typical general purpose CIM
Server running on host with more significant resources. These required functions are described in
the sections below.

10.3.2 SLP Functions
The SMI-S Server role is required to implement SLP Service Agent (SA) functionality as specified
in “Service Agents (SAs)” on page 491. Optionally, it SHOULD implement Service Agent Server
functionality or use an existing SA Server if one exists. The SMI-S Server MUST advertise service
specific attributes that allow the Client to locate it based on its profile, as defined in Section 5.10.1.

10.3.3 CIM-XML Protocol Functions

10.3.3.1 General
The SMI-S Server role MUST implement CIM-Server functionality as specified by the CIM-XML
standard.

10.3.3.2 Required Intrinsic Methods
An SMI-S Server is required to implement a set of intrinsic methods as defined for each profile.
The intrinsic methods are grouped by “functional profile” as specified in the CIM-XML standard:

Table 345: Functional Profiles

Functional Group Dependency Methods

Basic Read None GetClass
EnumerateClasses
EnumerateClassNames
GetInstance
EnumerateInstances
EnumerateInstanceNames
GetProperty

Basic Write Basic Read SetProperty

Instance Manipulation Basic Write CreateInstance
ModifyInstance
DeleteInstance

Schema Manipulation Instance Manipulation CreateClass
ModifyClass
DeleteClass

Association Traversal Basic Read Associators
AssociatorNames
References
ReferenceNames

Query Execution Basic Read ExecQuery
Version 1.0.1 501

SMI-S Roles SNIA Storage Management Initiative Specification
SMI-S Servers MUST implement intrinsic methods as specified in the “CIM Server Requirements”
section of the Profile specification.

10.3.3.3 Required Model Support
The SMI-S Server MUST implement the Server Profile as detailed in the Server Profile section
(See section 3.3.7).

10.3.4 Security Considerations
The SMI-S Server role MUST implement security as specified in “Security” on page 481.

10.3.5 Lock Management Functions
There are no requirements for locking in this release of the specification.

10.4 General Purpose SMI-S Server

10.4.1 Overview
The General Purpose SMI-S Server role in an overall management system is intended to reduce
the number of network connections needed by a Client to manage large numbers of resources. It is
also envisioned as a convenient place to perform operations across multiple resources, further off-
loading these from the Client as well.

In addition, the General Purpose SMI-S Server role can provide a hosting environment for the
plug-in instrumentation of host-based resources and management proxies for resources with
remote management protocols. These plug-ins are called providers and considered sub roles of the
General Purpose SMI-S Server (see Clause General Purpose SMI-S Server).

A General Purpose SMI-S Server is not required in a management system, but is expected to be
deployed at least as a common infrastructure for host-based resources. In any large storage
network, there may be several General Purpose SMI-S Servers (as many as one per host).
Communication between General Purpose SMI-S Servers may be standardized in the future, but
this capability is outside the scope of this specification. General Purpose SMI-S Servers may act as
a point of aggregation for multiple SMI-S Profiles as described in 5.7.1 using existing standard
mechanisms as specified here.

As General Purpose SMI-S Servers are expected to be deployed on hosts with more resources and
less footprint concerns than other managed resources, the required functions, specified below, are
more extensive that of an Dedicated SMI-S Server.

10.4.2 SLP Functions
The General Purpose SMI-S Server role is required to implement SLP Service Agent (SA)
functionality as specified in “Service Agents (SAs)” on page 491. The General Purpose SMI-S
Server MUST advertise service specific attributes that allow the Client to locate it based on the
profiles it supports, as defined in Section 5.10.1.

Qualifier Declaration Schema Manipulation GetQualifier
SetQualifier
DeleteQualifier
EnumerateQualifiers

Indication None

Table 345: Functional Profiles

Functional Group Dependency Methods
502 Version 1.0.1

SNIA Storage Management Initiative Specification SMI-S Roles
10.4.3 CIM-XML Protocol Functions

10.4.3.1 General
The General Purpose SMI-S Server role MUST implement CIM-Server functionality as specified
by the CIM-XML standard.

10.4.3.2 Required Intrinsic Methods
The General Purpose SMI-S Server is required to implement the minimum profile as specified in
CIM-XML standard. In addition, it MUST implement the intrinsic methods needed to support the
Profiles that it supports.

10.4.3.3 Required Model Support
The General Purpose SMI-S Server MUST implement the Server Profile as detailed in the Server
Profile section (See “Server Profile” on page 441.).

10.4.3.4 Security Considerations
The General Purpose SMI-S Server role MUST implement security as specified in “Security” on
page 481.

10.4.4 Lock Management Functions
There are no requirements for locking in this release of the specification.

10.4.5 Provider Subrole

10.4.5.1 Overview
A sub-role within a General Purpose SMI-S Server that can be used to provide management
support for the resource, especially useful when the resource is host-based (i.e. HBA or Host
Software) and the platform provides an CIM Server as part of its operating system.

10.4.5.2 Required Model Support
The Provider MUST implement the Provider Subprofile as detailed in the object model shown in
the Server Profile section (See “Server Profile” on page 441.).

10.5 Directory Server
The Directory Server role is used to facilitate Discovery of instances of the various roles in a
management system, but may also be used by management systems to store common
configurations, user credentials and management policies. Functions outside of Discovery are
outside the scope of this specification. The Directory Server role is optional for a compliant
management system.

10.5.1 SLP Functions
The Directory Server role is required to implement SLP Directory Agent (DA) functionality as
specified in “Directory Agents (DAs)” on page 491. The Directory registers all Agents and Object
Managers within its configured scope and allows queries for their respective service specific
attributes.

10.5.2 CIM-XML Protocol Functions
There are no additional CIM-XML requirements for this role.

10.5.3 Security Considerations
There are no additional security requirements for this role.
Version 1.0.1 503

SMI-S Roles SNIA Storage Management Initiative Specification
10.5.4 Lock Management Functions
There are no requirements for locking in this release of the specification.

10.6 Combined Roles on a Single System

10.6.1 Overview
As mentioned previously, the various roles of the management system can be deployed in different
combinations to different systems throughout the managed environment. In general, there are no
restrictions on what roles can be deployed on any given system, but some examples are given
below to illustrate typical situations.

10.6.2 General Purpose SMI-S Server as a Profile Aggregator

10.6.2.1 SLP Functions
The General Purpose SMI-S Server role MAY implement SLP User Agent (UA) functionality as
specified in “User Agents (UA)” on page 490. The General Purpose SMI-S Server discovers all
Profiles within its configured scope that are aggregated by querying for service specific attributes
that match the criteria for those aggregations.

10.6.2.2 CIM-XML Protocol Functions
The General Purpose SMI-S Server role MAY implement CIM-Client functionality as specified by
CIM-XML standard and MAY implement CIM-Listener functionality as specified by CIM-XML
standard. A General Purpose SMI-S Server MAY reflect instances and classes from the aggregated
Profiles (perhaps by delegating operations to the Dedicated SMI-S Servers), but is not required to
do so. The Profile’s Model instances SHOULD be reflected in the advertised default namespace of
the General Purpose SMI-S Server. The hierarchy of General Purpose SMI-S Servers and
Dedicated SMI-S Servers in a multi-level system needs to be reflected in the model such that it can
be administrated.

10.6.2.3 Security Considerations
There are no requirements for security for this role.

10.6.2.4 Lock Manager Functions
There are no requirements for locking in this release of the specification.
504 Version 1.0.1

SNIA Storage Management Initiative Specification Installation and Upgrade
Clause 11: Installation and Upgrade

11.1 Introduction
The interoperability of the management communications in a storage network gives customers a
choice in vendors of their management solutions, but it also can introduce ease-of-use problems
when these different vendors deploy Clients, Agents and Object Managers. In order to supply a
complete management solution, many management vendors provide not only management client
and object managers, but also other pieces of the management infrastructure (e.g., Lock Managers,
Directory Servers, Object Managers, Databases, Messaging Servers, Application Servers and even
Providers and Agents). Problems are possible when multiple vendors install/remove these
infrastructure components in the same environment and conflicts arise. One of the goals of
creating management interoperability is to reduce the time and expense end-users apply to the
management of their SANs. Thus, the management of constituents in a SMI-S environment should
be easy to install, easy to upgrade, and easy to reconfigure. Mature products using SMI-S
technology should experience seamless and nearly management free installation, upgrade, and
reconfiguration.

This clause deals with the issues of SMI-S configuration management and recommends some steps
that vendors should take to minimize the problem, leading to better customer satisfaction with the
overall management solution.

11.2 Role of the Administrator
Ultimately, a vendor’s installation software cannot make perfect decisions when conflicts arise,
and since there may be valid reasons why a customer has deployed software of similar function
from multiple vendors. In the situation where two software components are both installed that
perform the same shared function, and only one can reasonably operate without conflicts, it is up
to the administrator to resolve these conflicts and remove or disable the redundant infrastructure
component(s).

Installation software can, however, make a best effort to detect any conflicts and notify the
administrator of possible conflicts during its installation and initialization. A vendor’s installation
software SHOULD allow the administrator to install and uninstall the various infrastructure
components on an individual basis should a conflict arise. The implications of this are that vendors
are motivated to support interoperation with other vendor’s components. The advantage to the
vendor is that a customer is more likely to install a component that can demonstrate the most
interoperability with other components.

11.3 Goals

11.3.1 Non-Disruptive Installation and De-installation
Clients, Agents, Proxy Agents, Lock Managers and Directory Servers MUST be capable of being
installed and de-installed without disrupting the operation of other constituents in a SMI-S
management environment. An Object Manager independent of its providers MUST be capable of
being installed or de-installed from a SMI-S management environment without disrupting
operations. As SANs are often deployed in mission critical environments the up-time of the
solution is critical and thus, the uptime of the management backbone as a key component of the
solution is equally critical. Additionally, the installation and de-installation of SMI-S interface
constituents SHOULD NOT compromise the availability of mission critical applications.

11.3.2 Plug-and-Play
The ultimate goal of management interoperability is zero administration of the management
system itself. A customer should be able to install new storage hardware and software and have
Version 1.0.1 505

Installation and Upgrade SNIA Storage Management Initiative Specification
the new component become part of the management system automatically. The use of discovery
and default configuration parameters throughout this specification is intended to assist in
achieving this goal.

During the reconfiguration of the management system, the schema that Clients see should remain
consistent (Schema forward compatibility is ensured via CIM standard).

11.4 Installing Device Support
Manufacturers of storage hardware and software typically install their product and the
accompanying management support as an system. SMI-S software falls into one of the following
categories:

• Embedded Agent – the hardware device has an embedded SMI-S agent as an integrated
component. No other installation of software is needed to enable management of the device.

• Proxy Agent – the hardware or software comes with an Agent that is installed on a host. The
Proxy Agent needs to connect to the device and obtain unique identifying information.

• Provider - the hardware or software comes with a Provider that is installed into an Object
Manager. The provider provides the management for one or more product instances and
needs to either discover those instances or be explicitly configured to communicate with the
device.

Conflicts are possible for Proxy Agents and Providers if multiple vendors attempt to install
support for the same device. Also, when a device vendor needs to upgrade the Provider or Proxy
Agent for the device, the installation software needs to determine all of the locations of the
previous installations to insure there is not duplicate management paths to the device and thus,
insure reliable on-going operation of the device.

11.4.1 Installation
Installation software for devices needs to be able to find existing object managers that may control
the device in order to offer an administrator a choice in management constituents for the device. In
addition, the installation software may desire to find existing agents/providers that provide device
support in order to reliably upgrade that support. For these reasons, an installation software
program may want to act as a SMI-S Client during installation. This allows it to make the
automated decisions that eliminate the need for an administrator to manually configure or adjust
certain aspects of the management system.

The provider registration schema shows what device support is already installed and installation
software SHOULD consult this schema before installing new software. If the installation software
is upgrading device support from one scheme to another (for example from a proxy agent to a
provider, or a provider to an embedded agent) the installation software needs to uninstall or
disable the previous software support elements.

During installation, the installation software, acting as a Lock Aware Client may detect that some
agents are Lock Unaware and needs to deal with (warn administrator) that both Lock Aware and
Lock Unaware Agents/Object Managers could be the cause of inconsistent state in their network.

11.4.2 Discovery and Initialization of Device Support
Per the SMI-S Reference Model, vendors of Host Software, Devices, and Subsystems that are
managed via a Proxy Agent or are managed through an Object Manager (with providers) are
expected to provide a means for establishing a reliable connection between the Host Software,
Device, or Subsystem and the ProxyAgent or Object Manager. As such, a special Client with
administration/installation capability (as supplied by the vendor) is required to supply the IP
address of a device/subsystem with related authentication credentials to a Proxy Agent or Object
506 Version 1.0.1

SNIA Storage Management Initiative Specification Installation and Upgrade
Manager designated to manage the device. This administrative Client may obtain the IP address
of the device/subsystem via automated means (for example by probing through an in-band HBA, or
looking at the object model that the HBA agent already provides) or via manual means (for
example by requiring a system manager to manually input the IP address of the device/subsystem
from documentation supplied by the vendor). “Configuration Administration” on page 507,
illustrates this requirement.

11.4.3 Removal/Update
During the removal of a device support software (agent, provider, object manager), the
installation/removal software (if available) should automatically detect existing device support
software in order to shutdown and remove these in a consistent manner. This detection process
need to be cognizant that Clients may be actively using this support. device and that thus, the
device may need to be disabled for new management operations and administrated through an
orderly shut-down procedure prior to de-installation. The implementation of shutdown procedures
for components and any shutdown order dependency is outside the scope of this specification, but
may need to be considered by implementors.

During the update of device support software, installation software should automatically detect
any existing device support software in order to successfully complete the upgrade. This device
support may exist on multiple hosts. If the update includes installing a new provider, the
installation software needs to use the provider installation/upgrade method that is supported by
the existing Object Manager and need to be coded accordingly (See “Reconfiguration” on page 508.).

When a software update involves a major schema version upgrade (e.g., 2.x to 3.x), the installation
software needs to be cognizant of the effect of the schema upgrade on existing clients. For example,
it may choose to simultaneously support both versions for some period of time.

Figure 86: Configuration Administration

Object Manager

Provider
Provider

Proxy Agent

Device or
Subsystem
- IP Address -
(Vendor B)

 Device or
Subsystem
- IP Address -
(Vendor A)

Administrative
Client

(Vendor A)

Administrative
Client

(Vendor B)

IP Network

(in-band or out-band)

Supplies IP
Address
Version 1.0.1 507

Installation and Upgrade SNIA Storage Management Initiative Specification
11.4.4 Reconfiguration
When device support update requires an update of a provider, the device support installation
software should configure the new provider with the same subscriptions that exist in the old
provider before removing the old provider. This can be done via the instances of the subscriptions
in the agent or object manager that currently exist.

11.4.5 Failure
Agents can become unavailable for several reasons. This includes powering off the device and
transient network failures. If a device’s model becomes unavailable, it is recommended that
Clients do not immediately remove that device from its visualization. If the device model shows up
somewhere else, the old visualization should be updated to remove the previous occurrence. Also,
the client can keep track of how long the device was down for purposes of availability
management, etc. Clients may have to restore indication subscriptions when the device or its
proxy becomes available again. In the case of a Proxy or Embedded agent, the agent (or its host)
may go down, or the network to it could fail, but the device may still be available and that needs to
be factored in to any availability management. In the case of a provider, the provider to device
communication channel may also fail, but the device may still be available for access.

11.5 Object Manager

11.5.1 Installation
Customers are increasingly sensitive to the size of the memory footprint for management software.
The goal is to minimize the impact on hosts that are not dedicated to running management
software by making appropriate choices during installation and giving the administrator control
over these issues. It is recommended that vendors take advantage of existing object managers if
one exists, by installing a provider for device support. If an object manager does not exist, or the
device support does not work with the existing object manager (due to interface requirements, for
example) it is recommended that the vendor supply a Proxy Agent that is lightweight for device
support. Another option is to offer to install an object manager that the vendor does have provider
support for, allowing other vendors to further leverage that installation.

In band providers have a connection issue where zoning may alter the management path to the
device from a provider or proxy agent. In this case, the device support may need to be installed on
multiple hosts in the network and the vendor needs to provide some way to coordinate which
provider or proxy agent is responsible for a particular device.

Vendors SHOULD install their providers in a unique namespace for isolation and qualification
reasons. The installer then discovers (possibly via an SLP UA) the existing namespaces and insure
that the one created for the new device is truly unique.

Installation of a management appliance still needs to be able to turn off built-in providers

Lock Aware Client need to deal with (warn administrator) both Lock Aware and Lock Unaware
Agents/Object Managers could be the cause of inconsistent state in their network

11.5.2 Multiple CIMOMs on a Single Server
At installation and setup, a newly-installed CIMOM searches for an open TCP port based on a
defined list of well-known TCP port numbers. Also, a user interface is provided by the CIMOM
installation utility that allows an administrative user to manually set the TCP port number in a
persistent fashion. Both mechanisms MUST co-exist to facilitate automated installs as well as
manually configured installs.

To support discovery, the SLP Service Agent (SA) associated with a CIMOM that has just been
installed and started up registers its TCP port number along with all the other necessary
discovery information about the CIMOM. This applies to both automated port selection as well as
508 Version 1.0.1

SNIA Storage Management Initiative Specification Installation and Upgrade
manually configured installs. Clients, working through their SLP User Agent (UA), then use this
information to establish contact with the CIMOM.

11.5.3 Removal/Upgrade
In addition to the issues in 509, an Object Manager may be upgraded while keeping the same
Providers as before. Depending on the Object Manager, the Providers may have to be reinstalled
and reconfigured following such an upgrade. In this case, an administrator may need to re-run the
device support installation software and it should be able to restore the previous configuration if
possible.

11.5.4 Reconfiguration
See Clause for issues that may also be applicable to Object Managers.

11.5.5 Failure
Temporary failure of an object manager (for example, host powered off) can result in bad
installation decisions for installation software. In this case, it is advisable that the installation
software provide for manual input of additional components of the management system that the
installation software needs to be aware of.

11.6 Client

11.6.1 Removal
When Client software is removed, the removal software should go in and remove any subscriptions
for that client that exist in any agent or object manager. In addition, it should release any locks
that are held in order to clean up the lock state as well.

11.6.2 Reconfiguration
Client software can include a Listener that is configured to listen on a specific port. When this port
is reconfigured, the client should redirect any Indication Handlers in existing agent and object
managers as a result.

11.6.3 Failure
If possible, Clients should release locks before shutting down or upon unexpected failure.

11.7 Directory Server

11.7.1 Installation
The installation of more than one directory server in a management system does not impose a
significant burden for management clients and adds to the overall availability. Vendors should
recommend to administrators of their products that one or more directory servers should be
deployed in the management system. Customers may have already done this for network or
system management reasons already.

11.7.2 Removal/Failure
SLP Clients already handle failure and removal of DAs as per the specification (See “Service
Discovery” on page 485).

11.8 Management Domains
The set of agents, object managers and a lock manager that are configured with the same
LMGroup value may be considered a management domain for purposes of administration. The use
Version 1.0.1 509

Installation and Upgrade SNIA Storage Management Initiative Specification
of SLP scope is independent of the use of LMGroups for these purposes. Clients should not depend
on any relationship between LMGroups and SLP Scopes.

11.8.1 Initial Configuration
Vendors should recommend that administrators of their products use the same LMGroup value for
all agents and object managers in the same storage network (might include multiple fabrics).
Vendors should also recommend to administrators of their products that all agents and object
managers be on the same IP subnet or on connected subnets where the intervening router is
configured to allow multicast packets between the subnets (this is to allow SLP discovery
messages to flow to the entire management system).

11.8.2 Reconfiguration
Vendors of lock managers SHOULD consider producing software that can easily reconfigure
(merge or split) a lock management domain to ease the burden of this task. Splitting or merging an
LMGroup should involve bringing the old LockManager(s) down, reconfiguring the agents and
object managers with their new LMGroup value (meanwhile the clients are going directly to the

11.9 Lock Manager
This version of the specification does not include support for a lock manager.
510 Version 1.0.1

SNIA Storage Management Initiative Specification
Annex A: (Informative) Futures

A.1 Overview
The following clauses outline some of the possible expansions to the SMI standard that are being
contemplated by the development team. They are provided here for informational purposes only.
There is no assurance that any of these items will ever be refined into a future standard.

A.2 HBA LUN masking and persistent binding
This section should be refined and expanded to assure that the specification is properly integrated
with other standards for LUN masking and persistent binding (i.e., HBA API).

A.3 Managed Hub Section
The current SMI-S specification doesn’t address managed hubs as a possible SAN component. If
they continue to be of interest, the specification will need to be expanded to address any concerns
particular to managed hubs.

A.4 IP Storage
The current SMI-S specification doesn’t address IP storage. As part of the specification refinement
and completion, it will need to be expanded to appropriately address IP security and
authentication.

A.5 Multi-Path Modeling
The current specification doesn’t include support for multipathing within its array profile. The
profile and its models should be expanded to provide appropriate support and infrastructure.

A.6 Provider Modeling
Provider Modeling is emerging DMTF work that needs to be monitored.

A.7 Non-Fibre Fabrics
In future versions of this specification, it is intended that the fabric model and durable names for
ports will be extended to cover other types of connectivity, such as InfiniBand, IP networks, etc.

Although the current fabric model is specific to Fibre Channel, a best-efforts approach was taken
in defining it to allow for future extensions to include additional types of connectivity.

When the fabric model is extended for a new type of connectivity, it will be necessary to define
durable names for the ports on the new type of connectivity. For instance, the durable names for
ports on an IP network might be MAC addresses. It is expected that durable names for ports will
be connectivity specific, and may be different for each different type of connectivity.

A.8 Compliance Notification
A method is needed to allow a provider to inform clients that it complies to SMI-S’s indications
profiles. Emerging work from the DMTF Interop Workgroup relates to this problem. Rather than
offering a competing approach, SMI-S will re-evaluate this work in the near future. The Interop
work is described in the “Modeling Profiles” section.
Version 1.0.1 511

SNIA Storage Management Initiative Specification
A.9 Cascaded Agents
Support could be provided for a multi-level agent hierarchy, in which a given agent could provide a
management interface to higher-level devices while simultaneously relying on the management
interface provided by agents “below” it.

A.10 Network Storage
SMI-S should be extended to encompass the more general storage networks and incorporate a
broad range of network storage technologies (e.g., NAS, iSCSI), rather than focusing exclusively on
SANs.

A.11 Synchronization of File System Elements through Copy Services
The copy services are designed to support synchronization of file system elements. The specifics of
this support will be addressed in a future release of the specification.

A.12 Model Size Distinctions in Disk Drive
The specification should be expanded to include both the large (or detailed) model that is included
currently, and the small model that is allowed by CIM.

A.13 Expanded Extent Mapping
A future revision of the specification should support recursive extent mapping as an additional
profile.

A.14 Locking
Appropriate coordination between increasingly complex SAN fabrics including, for example,
cascaded agents, will required the development of a locking model to assure data integrity.
512 Version 1.0.1

SNIA Storage Management Initiative Specification
A.15 Policy Management

A.15.1 Policy Enhancements to Functionality Ladder

The introduction of Policy specifications to the SMI-S is intended to enable standardized policy
based storage management in an SMI-S managed environment. To this end, the Policy additions
to SMI-S are intended to enable the following capability in SMI-S:

a. Provide a mechanism for a persistent repository of policies expressed in a standard inter-
change format that can be read and acted on by the appropriate policy mechanisms in the
environment;

b) Allow SMI-S Policy clients to enter and edit storage management policy information in the
persistent repository.;

c) Allow a policy manager to get notification when policies that it processes are added or
changed;

d) Enable SMI-S agents by defining events that trigger policy actions.

A.15.2 Policy Objectives

The specific objectives of the policy specifications for SMI-S are:

• Define a mechanism that allows separation of Policy specification and Policy execution

• Define a mechanism that supports distributed policy management

• Define a mechanism that allows common interchange of Policy specification information

• Define a mechanism that standardizes “triggers” for policy based management and augments
SMI-S agents as needed to surface triggering events

• Identify methods that SMI-S Agents need in order to support a standard set of Policy Actions

• Provide a mechanism that scales to enterprise environments

• Enable one or more Policy Managers to analyze, invoke and maintain Policies in the Policy
repository (server)
Version 1.0.1 513

SNIA Storage Management Initiative Specification
A.15.3 Policy Enhancements to Reference Model

Enabling SMI-S for policy based management requires the addition of a “Policy Server” to the
reference model for SMI-S. Like other servers in the reference model, there can be many policy
servers (or none). The role of the Policy Server is to hold policy information.

A.15.4 Policy Components

The design for policy management includes the following components:

Policy Client: A Policy Client is a CIM-XML application that enters and edits policy information
in a Policy Server. (NOTE: A Policy client may or may not have a policy manager function. That is,
it is not required that the Policy client and the Policy Manager be the same application).

Policy Server: A Policy Server is a repository of Policy information. It does not take any action on
any information that is entered into the database of policy information. However, it does surface
indications to policy managers that are listening for policies that are assigned to them.

Policy Manager: A Policy Manager is a component that acts on a particular set of actions in
policies that are defined in the Policy Server. Policy management may be distributed.

Figure 87: Reference Model with Policy Server

Client

Device or
Subsystem

Agent

Proxy Model

Proprietary or
Legacy

0…n

0…n

Agent

Embedded Model

0…n

Object Manager

Proxy Model
Device

Proprietary or
Legacy

0…n

Lock
Manager

0…n

1

1
n

Provider 0..n

1

XML - CIM + CIM operations
 TCP/IP

Device or
Subsystem

Device or
Subsystem

Directory
Server

0…n

Policy
Server

0 … n
514 Version 1.0.1

SNIA Storage Management Initiative Specification
These components are illustrated in Figure 88: "Policy Components".

Figure 88: Policy Components

Policy
Client

Policy
Server

SMIS
Client

SMIS
Agent

Policy
Mgr

Policy
Mgr

Entry/Edit of Policies

Policy Read

Policy Read

Events
Version 1.0.1 515

SNIA Storage Management Initiative Specification
516 Version 1.0.1

SNIA Storage Management Initiative Specification
Annex B: (Informative) Experimental Profiles

B.1 Overview
Some of the profiles that were considered for inclusion in SMI-S version 1.0.0 failed to receive
sufficient testing to satisfy the publication requirements set forth by the SMI committee within
the SNIA. They are presented here as an aid to implementors who are interested in likely future
developments within the SMI specification. There is a high likelihood that they will be included in
an upcoming revision of the specification. The contents of an experimental subprofile MAY change
as implementation experience is gained.

B.2 Common Profiles and Subprofiles

B.2.1 Sparing Subprofile

B.2.1.1 Description

Note: This subprofile is experimental and is provided for information only. The contents of an
experimental subprofile MAY change as implementation experience is gained. Please
provide any implementation feedback to SNIA's Storage Management Initiative Technical
Steering Group (td@snia.org).

The Common Profile “Extent Mapping Subprofile” on page 138 focuses on the mapping of storage
to Volumes. This subprofile enhances that picture by modeling spares.

A spare disk is modeled with the ActsAsSpare association to a SparedSet – which has aggregation
associations to other disks.

This SparedSet object associates one or more spares with a group of active disks. The members of
this group are implementation and configuration dependent. In some cases, this group might be
the disks in a enclosure, disks in a RAID group, or disks of a particular make and model. The
cardinality on IsSpare allows multiple spares per group and also allows a spare to participate in
multiple groups.

“Sparing Instance” on page 518 shows an instance diagram for three disks (StorageExtent only
shown) with two disks participating in the SparedSet and one disk acting as the spare. The full
model for the disk is shown in “Disk Drive Subprofile” on page 126.

B.2.1.2 Standards Dependencies
This profile uses classes from the 2.8 Preliminary CIM schema.

B.2.1.3 Profile Dependencies
The sparing subprofile introduces no Profile dependencies.

B.2.1.4 CIM Server Requirements
See parent sections.
Version 1.0.1 517

SNIA Storage Management Initiative Specification
B.2.1.5 Instance Diagrams

B.2.1.6 Durable Names and Correlatable IDs
See parent sections.

B.2.1.7 Methods
See parent sections.

B.2.1.8 Client Considerations
See parent sections.

B.2.1.9 Recipes
See parent sections.

B.2.1.10 Instrumentation Requirements
See parent sections.

Figure 89: Sparing Instance

S to r a g e Ex te n tS to r a g e Ex te n tS to r a g e Ex te n t

Is S p a r e
S p a r e d S e t

M e m b e r O f C o lle c t io n
518 Version 1.0.1

SNIA Storage Management Initiative Specification
B.2.1.11 Required CIM Elements

B.2.1.12 Required Properties for CIM Elements

B.2.1.12.1 IsSpare

B.2.1.12.2 MemberOfCollection

B.2.1.12.3 SparedSet

Table 346: Required CIM Elements

Profile Classes &
Associations

Notes

IsSpare (p. 519)

MemberOfCollection (p. 519)

SparedSet (p. 519)

Packages

None.

Associated Indications

None.

Table 347: Required Properties for IsSpare

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override A ManagedElement or Collection of elements
acting as a spare.

Dependent ref override The set of elements that ARE spared.

HotStandby boolean HotStandby is a boolean indicating that the 'spare'
is operating as a hot standby.

Table 348: Required Properties of MemberOfCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Collection ref key The Collection that aggregates members.

Member ref key The aggregated member of the Collection.

Table 349: Required Properties for SparedSet

Property/
Method

Type Qualifier/
Parameter

Description/Notes

RedundancyStatus uint16 RedundancyStatus provides information
on the state of the RedundancySet.
Version 1.0.1 519

SNIA Storage Management Initiative Specification
B.2.1.13 Optional Subprofiles

This subprofile should be used with either the disk drive or extent mapping subprofiles.

B.3 SML Subprofiles

B.3.1 InterLibraryPort Connection Subprofile

B.3.1.1 Description

Note: This subprofile is experimental and is provided for information only. The contents of an
experimental subprofile MAY change as implementation experience is gained. Please
provide any implementation feedback to SNIA's Storage Management Initiative Technical
Steering Group (td@snia.org).

Support of InterLibraryPort devices, a.k.a. pass-thru ports or cartridge exchange mechanisms, is
designated as optional in this profile. However, when such a device exists the agent representing
the library should instantiate this class for each port. When one or more libraries are connected
via an Inter-Library Port and the corresponding agents are working with separate name spaces a
mechanism is required for correlating the LibraryExchange association that represents the port
connection.

B.3.1.2 Standards Dependencies
See parent sections.

B.3.1.3 Profile Dependencies
See parent sections.

B.3.1.4 CIM Server Requirements
See parent sections.

FailoverSupported uint16 The type of failover algorithms that are
supported.

Table 350: Optional Profiles or Subprofiles

Name Notes

None

Table 349: Required Properties for SparedSet (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
520 Version 1.0.1

SNIA Storage Management Initiative Specification
B.3.1.5 Instance Diagrams

B.3.1.6 Durable Names and Correlatable IDs
A Durable Name is not defined by this profile for InterLibraryPort instances and remains
unspecified. This is not an issue when associated InterLibraryPort instances are within the same
name space.

B.3.1.7 Methods
See parent sections.

B.3.1.8 Client Considerations
See parent sections.

B.3.1.9 Recipes
See parent sections.

B.3.1.10 Instrumentation Requirements
See parent sections.

Figure 90: InterLibraryPort Connection Instance Diagram

StorageLib rary

InterLib raryPort

SystemDevic
e

InterLib raryPortLib raryExchang
e

StorageLib rary

SystemDevic
e

StorageMediaLocation

PhysicalMedia

PhysicalMediaInLocatio
n

StorageMediaLocation

Realize
s

Realize
s

Magazine

Containe
rAdditional relationships

that are pos s ible} {
Version 1.0.1 521

SNIA Storage Management Initiative Specification
B.3.1.11 Required CIM Elements

B.3.1.12 Required Properties for CIM Elements

B.3.1.12.1 InterLibraryPort

B.3.1.12.2 LibraryExchange

Table 351: Required CIM Elements

Profile Classes &
Associations

Notes

InterLibraryPort (p. 522) representing a connecting port between two libraries

LibraryExchange (p. 522)

Packages

None.

Associated Indications

Creation/Deletion of
InterLibraryPorts

SELECT * FROM CIM_InstCreate WHERE SourceInstance ISA
CIM_InterLibraryPort
SELECT * FROM CIM_InstDelete WHERE SourceInstance ISA
CIM_InterLibraryPort

Changes in
OperationalStatus of
InterLibraryPorts

SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_InterLibraryPort AND PreviousInstance.OperationalStatus <>
SourceInstance.OperationalStatus

Table 352: Required Properties for InterLibraryPort

Property/
Method

Type Qualifier/
Parameter

Notes

LastAccessed datetime

ImportCount uint64 counter

ExportCount uint64 counter

Direction uint16 valuemap "Unknown", "Import", "Export", "Both
Import and Export"

Table 353: Required Properties for LibraryExchange

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key InterLibraryPort Reference

Dependent ref key InterLibraryPort Reference
522 Version 1.0.1

SNIA Storage Management Initiative Specification
B.3.1.12.3 Optional Subprofiles

B.3.2 Partitioned/Virtual Library Subprofile

B.3.2.1 Description

Note: This subprofile is experimental and is provided for information only. The contents of an
experimental subprofile MAY change as implementation experience is gained. Please
provide any implementation feedback to SNIA's Storage Management Initiative Technical
Steering Group (td@snia.org).

Many libraries allow "partitioning": the splitting up of library resources into pools used by
different clients or hosts. Partitioning may also involve "virtualization", used here to mean the
representation of a single physical ChangerDevice as multiple logical ChangerDevices that can
each be accessed or controlled independently. Each "virtual" ChangerDevice accesses its own group
of StorageMediaLocations. No methods for configuration of partitioning, virtualization, or access
control are provided in this profile. Instead, a simple model is given to allow multiple (virtual)
ChangerDevices to exist within a single StorageLibrary, where each ChangerDevice can access a
specific subset of pre-existing StorageMediaLocations within that StorageLibrary

B.3.2.2 Standards Dependencies
See parent sections.

B.3.2.3 Profile Dependencies
See parent sections.

B.3.2.4 CIM Server Requirements
See parent sections.

Table 354: Optional Profiles or Subprofiles

Name Notes

None
Version 1.0.1 523

SNIA Storage Management Initiative Specification
B.3.2.5 Instance Diagrams
In this example, three "virtual" ChangerDevices within a single StorageLibrary have orthogonal
access to three sets of Magazines or StorageMediaLocations, all contained within the Chassis.

B.3.2.6 Durable Names and Correlatable IDs
See parent sections.

B.3.2.7 Methods
None.

B.3.2.8 Client Considerations
See parent sections.

B.3.2.9 Recipes
See parent sections.

B.3.2.10 Instrumentation Requirements
See parent sections.

Figure 91: Virtual ChangerDevices

StorageLib rary Chassis
Lib raryPackag

e

Magazine

Magazine

Magazine

Containe
r

StorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocation

StorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocation

StorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocation

Containe
r

Containe
r

Containe
r

Cha ngerDevice

Cha ngerDevice

Cha ngerDevice

Containe
r

Containe
r

SystemDevic
e

SystemDevic
e

SystemDevic
e

DeviceServicesLoca tio
n

DeviceServicesLoca tio
n

DeviceServicesLoca tio
n

524 Version 1.0.1

SNIA Storage Management Initiative Specification
B.3.2.11 Required CIM Elements

B.3.2.12 Required Properties for CIM Elements

B.3.2.12.1 DeviceServicesLocation

B.3.2.13 Optional Subprofiles

B.3.3 Fibre Channel Connection Subprofile

B.3.3.1 Description

Note: This subprofile is experimental and is provided for information only. The contents of an
experimental subprofile MAY change as implementation experience is gained. Please
provide any implementation feedback to SNIA's Storage Management Initiative Technical
Steering Group (td@snia.org).

Many libraries are fibre channel connected. This means that their ChangerDevices and
MediaAccessDevices either have “natice” fibre channel interfaces, or are connected to a fibre channel
SAN through an interface controller (a.k.a a bridge or router). To represetnt this in the simplest possible
manner, a single class/association pair make up this subprofile. Referring to the instance diagram
below, an FCPort is added for every Controller (or SCSIProtocolController) related to a ChangerDevice
or MediaAccessDevice. This FCPort is connected to the Controller through ProtocolControllerForPort.
Both SCSI target parameters and fibre channel address parameters are captured by these classes.

B.3.3.2 Standards Dependencies
See the parent profile.

Table 355: Required CIM Elements

Profile Classes & Associations Notes

DeviceServicesLocation (p. 531)

Packages

None.

Associated Indications

None.

Table 356: Required Properties for DeviceServicesLocation

Property/Method Type Qualifier/
Parameter

Description/Notes

Antecedent ref key The ChangerDevice

Dependent ref key The StorageMediaLocation or
Magazine

Table 357: Optional Profiles or Subprofiles

Name Notes

None
Version 1.0.1 525

SNIA Storage Management Initiative Specification
B.3.3.3 Profile Dependencies
See the parent profile.

B.3.3.4 CIM Server Requirements

B.3.3.4.1 Functional Profiles
See the parent profile.

B.3.3.4.2 Extrinsic Methods
None.

B.3.3.4.3 Discovery
See the parent profile.

B.3.3.5 Instance Diagrams
Note that the FCPort shall not be associated with StorageLibrary directly. This allows the future
possibility of integration with the Router profile, focused on modelling internal or external router
systems, in which FCPorts whould be associated with a seperate ComputerSystem instance.

B.3.3.6 Durable Names and Correlatable IDs of the Profile

B.3.3.6.1 Durable Names Exported
None.

B.3.3.6.2 Correlatable IDs Used
FCPort: FCPort.PermanentAddress = Fibre Channel Port World Wide Name. NameFormat should
be set to “WWN”

Figure 92: Instance Diagram for Fibre Channel Connection

StorageLibrary

MediaAccessDevice

ChangerDevice

Controller

SCSIProtocolController

ControlledB
y

FCPort LogicalIdentit
y

Controller

SCSIProtocolController

FCPortLogicalIdentit
y

ControlledB
y

SystemDevic
e

SystemDevic
e

SystemDevic
e

SystemDevic
e

526 Version 1.0.1

SNIA Storage Management Initiative Specification
B.3.3.7 Methods
None.

B.3.3.8 Client Considerations
See parent profile.

B.3.3.9 Recipes
None.

B.3.3.10 Instrumentation Requirements
None.
Version 1.0.1 527

SNIA Storage Management Initiative Specification
B.3.3.11 Required CIM Elements

B.3.3.12 Required Properties for CIM Elements

B.3.3.12.1 FCPort

Table 358: Required CIM Elements

Profile Classes &
Associations

Notes

FCPort (p. 528) The fibre channel port connected to a LogicalDevice’s (SCSI) Controller

ProtocolControllerForPort (p.
529)

The connection that identifies the mapping between an FCPort and
(SCSI) Controller

Packages

None.

Associated Indications

None.

Table 359: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string Port Symbolic Name if available. Otherwise
NULL.

OperationalStatus uint16 See Table ...

DeviceID string key, maxlen (64) Opaque.

PortType uint16 override “Unknown = 0, “Other” = 1,
“N” = 10, “NL” = 11, “F/NL” = 12, “Nx” = 13,
“E” = 14, “F” = 15, “FL” = 16, “B” = 17,
“G” = 18.

OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 ("Other").

LinkTechnology uint16 For FibreChannel, “FC”.

OtherLinkTechnology string A string value describing LinkTechnology
when it is set to 1, "Other".

PermanentAddress string maxlen (64) For FibreChannel, it is the Fibre Channel
Port WWN.

NetworkAddresses[] string maxlen (64),
arraytype
("indexed")

For Fibre Channel end device ports, it is the
Fibre Channel ID. For Switches, it should be
Null.

ActiveCOS uint16[] FC-GS Class Of Service
An array of integers indicating the Classes
of Service that are active. Not applicable for
switches (e.g. NULL).
528 Version 1.0.1

SNIA Storage Management Initiative Specification
B.3.3.12.2 ProtocolControllerForPort

B.3.3.13 Optional Subprofile
None.

B.3.4 Partitioned/Virtual Library Subprofile

B.3.4.1 Description

Note: This subprofile is experimental and is provided for information only. The contents of an
experimental subprofile MAY change as implementation experience is gained. Please
provide any implementation feedback to SNIA's Storage Management Initiative Technical
Steering Group (td@snia.org).

Many libraries allow “partitioning”: the splitting up of library resources into pool used by different
clients or hosts. Partitioning may also involve “virtualization”, used here to mean the
representation of a single physical ChangerDevice as multiple logical ChangerDevices that can each
be accessed or controlled independently. Each “virtual” ChangerDevice access its own group of
StorageMediaLocations. No methods for the configuration of partitioning, virtualization, or access
control are provided in this subprofile. Instead, a simple model is given to allow multiple (virtual)
ChangerDevices to exist within a single StorageLibrary, where each ChangerDevice can access a
specific subset of pre-existing StorageMediaLocations within that StorageLibrary.

B.3.4.2 Standards Dependencies
See parent profile.

B.3.4.3 Profile Dependencies
See parent profile.

B.3.4.4 .CIM Server Requirements

B.3.4.4.1 Functional Profiles
See parent profile.

B.3.4.4.2 Extrinsic Methods
None.

ActiveFC4Types uint16[] FC-GS FC4-TYPE
An array of integers indicating the Fibre
Channel FC-4 protocols currently running.
Not applicable for switches (e.g. NULL).

Table 360: Required Properties for ProtocolControllerForPort

Property/
Method

Type Qualifier/
Parameter

Description/
Notes

SystemElement ref key The FCPort

SameElement ref key The Controller

Table 359: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 529

SNIA Storage Management Initiative Specification
B.3.4.4.3 Discovery
See parent profile.

B.3.4.5 Instance Diagrams
In this example, three “virtual” ChangerDevices within a single StorageLibrary have orthogonal
access to three sets of Magazines or StorageMediaLocations, all contined within the Chassis.

B.3.4.6 Durable Names and Correlatable IDs of the Profile

B.3.4.6.1 Durable Names Exported
See parent profile.

B.3.4.6.2 Correlatable IDs Used
See parent profile.

B.3.4.7 Methods
None.

B.3.4.8 Client Considerations
See parent profile.

B.3.4.9 Recipes
see parent profile.

B.3.4.10 Instrumentation Requirements
See parent profile.

Figure 93: Virtual ChangerDevices Sharing a Chassis

StorageLibrary ChassisLibraryPackag
e

Magazine

Magazine

Magazine

Containe
r

StorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocation

StorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocation

StorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocation

Containe
r

Containe
r

Containe
r

ChangerDevice

ChangerDevice

ChangerDevice

Containe
r

Containe
r

SystemDevic
e

SystemDevic
e

SystemDevic
e

DeviceServicesLocatio
n

DeviceServicesLocatio
n

DeviceServicesLocatio
n

530 Version 1.0.1

SNIA Storage Management Initiative Specification
B.3.4.11 Required CIM Elements

B.3.4.12 Required Properties for CIM Elements

B.3.4.12.1 DeviceServicesLocation

B.3.4.13 Optional Subprofiles

B.3.5 Library Capacity Subprofile

B.3.5.1 Description
By adding two classes (ConfigurationCapacity and ElementCapacity) servers can publish the
minimum and maximum number of slots, drives, magazines, media changers, and other elements
associated with a given StorageLibrary.

B.3.5.2 Standards Dependencies
See parent sections.

B.3.5.3 Profile Dependencies
See parent sections.

Table 361: Required CIM Elements

Profile Classes &
Associations

Notes

ChangerDevice (p. 430)

DeviceServicesLocation (p. 531) Used to specify which changers can access which sets of
StorageMediaLocations or Magazines.

Packages

None.

Associated Indications

None.

Table 362: Required Properties for DeviceServicesLocation

Property/
Method

Type Qualifier/
Parameter

Description/
Notes

Antecedent ref key The ChangerDevice

Dependent ref key The
StorageMediaLocation or
Magazine

Table 363: Optional Profiles or Subprofiles

Name Notes

None
Version 1.0.1 531

SNIA Storage Management Initiative Specification
B.3.5.4 CIM Server Requirements
See parent sections.

B.3.5.5 Instance Diagrams
The following instance diagram illustrates the use of ConfigurationCapacity and ElementCapacity
in conjunction with the basic storage library profile.

B.3.5.6 Durable Names and Correlatable IDs
See parent sections.

B.3.5.7 Methods
See parent sections.

B.3.5.8 Client Considerations
See parent sections.

B.3.5.9 Recipes
See parent sections.

B.3.5.10 Instrumentation Requirements
See parent sections.

Figure 94: Library Capacity Instance Diagram

ChassisLib raryPackag
e

StorageLib rary

ConfigurationCapacity

Name =
“TapeCoZ3400Serial12345-
Maximum Slots”

ObjectType =
“StorageMediaLocation
Slots”

OtherTypeDescription =
“Maximum slots in this
library enclosure”

MaximumCapacity = 698

ElementCapacit
y

ConfigurationCapacity

Name =
“TapeCoZ3400Serial12345-
Maximum Drives”

ObjectType =
“MediaAccessDevices
(Drives)”

OtherTypeDescription =
“Maximum drives in this
library enclosure”

MaximumCapacity = 8

ElementCapacit
y

Containe
r

Magazine

ConfigurationCapacity

Name =
“TapeCoZ3400Serial12345-
Magazine 6-Capacity”

ObjectType =
“StorageMediaLocation
Slots”

OtherTypeDescription =
“Maximum slots in this
magazine”

MaximumCapacity = 10

ElementCapacit
y

532 Version 1.0.1

SNIA Storage Management Initiative Specification
B.3.5.11 Required CIM Elements

B.3.5.12 Required Properties for CIM Elements

B.3.5.12.1 ConfigurationCapacity

B.3.5.12.2 ElementCapacity

B.3.5.13 Optional Subprofiles

B.3.6 “LibraryAlert” Events/Indications for Library Devices

Table 364: Required CIM Elements

Profile Classes &
Associations

Notes

ConfigurationCapacity (p. 533)

ElementCapacity (p. 533)

Packages

None.

Associated Indications

None.

Table 365: Required Properties for ConfigurationCapacity

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Name string key, override

ObjectType uint16 key "Other", "Processors", "Power Supplies",
… see MOF

OtherTypeDescription string maxlen (64)

MinimumCapacity uint64

MaximumCapacity uint64

Table 366: Required Properties for ElementCapacity

Property/
Method

Type Qualifier or
Parameter

Description/Notes

Capacity ref key PhysicalCapacity Reference

Element ref key PhysicalElement Reference

Table 367: Optional Profiles or Subprofiles

Name Notes

None
Version 1.0.1 533

SNIA Storage Management Initiative Specification
B.3.6.1 Description
Historically, media libraries have been managed using both SCSI and SNMP interfaces. A number
of library management standards have been defined based on these interfaces, including the
“TapeAlert” error events flags. These events alert subscribing clients to current or pending error
conditions related to a library, drives, or media. The SCSI implementation of TapeAlert is
described in the SCSI Stream Commands (SSC-2) and SCSI Media Changer Commands (SMC-2)
specifications.

In order to carry these useful asynchronous events into the WBEM/CIM domain, the TapeAlert
events have been mapped into instances of the CIM_AlertIndication class. This CIM class provides
a general means for communicating asynchronous events to subscribing clients and TapeAlert
events/indications -- hereafter referred to more generally as “LibraryAlert” indications -- shall be
specified by filling in standard values for the properties of a CIM_AlertIndication.

B.3.6.2 Standards Dependencies
See parent sections.

B.3.6.3 Profile Dependencies
See “Events – CIM Indications” on page 85. for a general discussion of events and indications in a
SMI-S environment.

B.3.6.4 CIM Server Requirements
See parent sections.

B.3.6.5 Instance Diagrams
See parent sections.

B.3.6.6 Durable Names and Correlatable IDs
See parent sections.

B.3.6.7 Methods
See parent sections.

B.3.6.8 Client Considerations
See parent sections.

B.3.6.9 Recipes
See parent sections.

B.3.6.10 Instrumentation Requirements
See parent sections.
534 Version 1.0.1

SNIA Storage Management Initiative Specification
B.3.6.11 Required Properties for CIM Elements

B.3.6.11.1 AlertIndication

For all LibraryAlert indications, the following properties of CIM_AlertIndication shall be static
and set to the values shown in Table 369 on page 535.

Table 368: Required Properties for AlertIndication

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Description string key, override

AlertType uint16 key "Other", "Processors", "Power Supplies",
… see MOF

ProbableCause string maxlen (64)

Trending uint64

SystemCreationClassNa
me

string

OtherSeverity

EventID

ProviderName

SystemName

AlertingManagedElement

OtherAlertType

PerceivedSeverity

ProbableCauseDescriptio
n

ProbableCauseDescriptio
n

Table 369: LibraryAlert Property Settings

Property Name Property type Property Value

Description string “LibraryAlert Indication”

AlertType uint16 (enumeration) 5 = “Device Alert”

ProabableCause uint16 (enumeration) 1 = “other”

Trending uint16 (enumeration) 1 = “Not Applicable”

SystemCreationClassN
ame

string “CIM_StorageLibrary”
Version 1.0.1 535

SNIA Storage Management Initiative Specification
Clients may identify a received CIM_AlertIndication as a LibraryAlert indication primarily by the
value of “LibraryAlert Indication” in the Description property. The following Query attribute on an
IndicationFilter instance should be provided by the agent for these alerts:

SELECT * FROM CIM_Alert
WHERE Description=”LibraryAlert Indication”

The following CIM_AlertIndication properties for LibraryAlert indications shall be vendor-specific
and no specification or restriction of values is made here:

A small number of CIM_AlertIndication properties for LibraryAlert indications shall have variable
values that are restricted within a small range, as follows:

The remaining CIM_AlertIndication properties for LibraryAlert indications shall have values
derived from the SCSI TapeAlert specifications: SCSI Stream Commands (SSC-2) and SCSI Media
Changer Commands (SMC-2).

Note that a small number of indications apply only to Tape libraries, while all other indications
apply generically to any library type. Those indications that are tape-specific may be identified by
the following strings in the OtherAlertType property:

Table 370: Vendor Specific Properties of LibraryAlert

Property Name Property type Property Value

OtherSeverity string specified by vendor

EventID string specified by vendor

ProviderName string specified by vendor

Table 371: Variable Alert Properties for LibraryAlert

Property Name Property type Property Value

SystemName string Name property value for the
CIM_StorageLibrary instance that is
associated with this unique indication

AlertingManagedElement string CIMInstance in string format for
element to which this indication applies:
MediaAccessDevice, StorageLibrary, or
PhysicalMedia

Table 372: SCSI TapeAlert-based Properties

Property Name Property type Property Value

OtherAlertType string “Tape snapped/cut in the drive where
media can be de-mounted.”

OtherAlertType string “Tape snapped/cut in the drive where
media cannot be de-mounted.”

OtherAlertType string “The drive is having severe trouble
reading or writing, which will be
resolved by a retension cycle.”
536 Version 1.0.1

SNIA Storage Management Initiative Specification
The remaining CIM_AlertIndication properties and values for all LibraryAlert indications are
show below. Note that the OtherAlertType property, in particular, serves to uniquely identify each
of the LibraryAlert indications.

Table 373: LibraryAlert AlertIndication Properties

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string

Read Warning “The drive is having
severe trouble
reading.”

“3” = “Degraded/
Warning”

“The drive is having
problems reading
data. No data has
been lost, but there
has been a reduction
in the performance.”

“”

Write Warning “The drive is having
severe trouble
writing.”

“4” = “Warning” “Worn out Media” “1. Discard the worn
out media”
“2. Use a new
cleaning media”

Hard Error “The drive had a hard
read or write error.”

“5” = “Warning” “Bad Media or Drive.
The operation has
stopped because an
error has occurred
while reading or
writing data that the
drive cannot correct.”

“”

Media “Media can no longer
be written/read, or
performance is
severely degraded.”

“6” = “Critical” “Bad Media” “1. Copy any data you
require from this
media.”
“2. Do not use this
media again.”
“3. Restart the
operation with a
different media.”

Read Failure “The drive can no
longer read data from
the storage media.”

“6” = “Critical” “Worn out media” “1. Replace media.”
“2. Call the drive
supplier help line.”

Write Failure “The drive can no
longer write data to
the media.”

“6” = “Critical” “The media is from a
faulty batch or the
drive is faulty: “

“1. Use known-good
media to test the
drive. “
“2. If the problem
persists, call the
media drive supplier”

Media Life “The media has
exceeded its
specified life.“

“3” = “Degraded/
Warning”

“The media has
reached the end of its
calculated useful life:
“

“1. Copy any data you
need to another
media.”
2. Discard the old
media.”
Version 1.0.1 537

SNIA Storage Management Initiative Specification
Not Data
Grade

“The cartridge is not
data-grade. Any data
you write to the media
is at risk. Replace the
cartridge with a data-
grade media.”

“3” = “Degraded/
Warning”

“The cartridge is not
data-grade. Any data
you write to the media
is at risk.”

“1. Replace the
cartridge with a data-
grade media.”

Write Protect “Write command is
attempted to a write
protected media.”

“6” = “Critical” “Replace with
writable media”

“You are trying to
write to a write
protected cartridge.
Remove the write
protection or use
another media.”

No Removal “Manual or software
unload attempted
when prevent media
removal is on.”

“2” = “Information” “Wait until drive is not
in-use”

“You cannot eject the
cartridge because the
drive is in use. Wait
until the operation is
complete before
ejecting the
cartridge.”

Cleaning
Media

“Cleaning media
loaded into drive”

“2” = “Information” “The media in the
drive is a cleaning
cartridge.”

“1. Replace this
media with writeable
media”

Unsupported
Format

“Attempted load of
unsupported media
format (e.g., DDS2 in
DDS1 drive).”

“2” = “Information” “You have tried to
load a cartridge of a
type that is not
supported by this
drive.”

“1. Insert media of a
type supported by
this drive”

Recoverable
Snapped Tape

“Tape snapped/cut in
the drive where
media can be de-
mounted.”

“6” = “Critical” “The operation has
failed because the
tape in the drive has
snapped:”

“1. Discard the old
tape.”
“2. Restart the
operation with a
different tape.”

Unrecoverable
Snapped Tape

“Tape snapped/cut in
the drive where
media cannot be de-
mounted.”

“6” = “Critical” “The operation has
failed because the
tape in the drive has
snapped:”

“1. Do not attempt to
extract the tape
cartridge.”
“2. Call the tape drive
supplier help line.”

Memory Chip
In Cartridge
Failure

“Memory chip failed
in cartridge.”

“3” = “Degraded/
Warning”

“The memory in the
media has failed,
which reduces
performance.

“Do not use the
cartridge for further
write operations.”

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
538 Version 1.0.1

SNIA Storage Management Initiative Specification
Forced Eject “Manual or forced
eject while drive
actively writing or
reading.”

“6” = “Critical” “The operation has
failed because the
media was manually
de-mounted while the
drive was actively
writing or reading.”

“”

Read Only
Format

“Media loaded that is
read-only format.”

“3” = “Degraded/
Warning”

“You have loaded a
cartridge of a type
that is read-only in
this drive. The
cartridge will appear
as write protected.”

“”

Directory
Corrupted On
Load

“Drive powered down
while loaded, or
permanent error
prevented the
directory being
updated.”

“3” = “Degraded/
Warning”

“The directory on the
cartridge has been
corrupted. File search
performance will be
degraded. “

“The directory can be
rebuilt by reading all
the data on the
cartridge.”

Nearing Media
Life

“Media may have
exceeded its
specified number of
passes.”

“2” = “Information” “The storage media is
nearing the end of its
calculated life.”

“1. Use another
storage media for
your next backup.
“2. Store this storage
media in a safe place
in case you need to
restore data from it.”

Clean Now “The drive thinks it
has a head clog or
needs cleaning.”

“6” = “Critical” “The drive needs
cleaning:”

“1. If the operation
has stopped, eject
the storage media
and clean the drive.”
“2. If the operation
has not stopped, wait
for it to finish and
then clean the drive.
Check the drive
user’s manual for
device specific
cleaning

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
Version 1.0.1 539

SNIA Storage Management Initiative Specification
Clean Periodic “The drive is ready for
a periodic cleaning.”

“3” = “Degraded/
Warning”

“The drive is due for
routine cleaning:”

“1. Wait for the
current operation to
finish.”
“2. Then use a
cleaning cartridge.
Check the drive
user’s manual for
device specific
cleaning instructions.”

Expired
Cleaning
Media

“The cleaning media
has expired.”

“6” = “Critical” “The last cleaning
cartridge used in the
drive has worn out:”

“1. Discard the worn
out cleaning
cartridge.”
“2. Wait for the
current operation to
finish.”
“3. Then use a new
cleaning cartridge.”

Invalid
Cleaning
Media

“Invalid cleaning
media type used.”

“6” = “Critical” “The last cleaning
cartridge used in the
drive was an invalid
type:”

“1. Do not use this
cleaning cartridge in
this drive.”
“2. Wait for the
current operation to
finish.”
“3. Then use a valid
cleaning cartridge.”

Retension
Requested

“The drive is having
severe trouble
reading or writing,
which will be resolved
by a retension cycle.”

“3” = “Information” “The drive has
requested a retension
operation.”

“”

Dual-Port
Interface Error

“Failure of one
interface port in a
dual-port
configuration (i.e.,
Fibre Channel)”

“3” = “Degraded/
Warning”

“A redundant
interface port on the
drive has failed.”

“”

Cooling Fan
Failure

“Fan failure inside
drive mechanism or
drive enclosure.”

“3” = “Degraded/
Warning”

“A drive cooling fan
has failed.”

“Replace cooling fan
or drive enclosure”

Power Supply
Failure

“Redundant power
supply unit failure
inside the drive
enclosure or rack
subsystem.”

“3” = “Degraded/
Warning”

 “A redundant power
supply has failed
inside the drive
enclosure.”

“Check the enclosure
user’s manual for
instructions on
replacing the failed
power supply.”

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
540 Version 1.0.1

SNIA Storage Management Initiative Specification
Power
Consumption

“Power consumption
of the drive is outside
specified range.”

“3” = “Degraded/
Warning”

“The drive power
consumption is
outside the specified
range.”

“”

Drive
Maintenance

“The drive requires
preventive
maintenance (not
cleaning).“

“3” = “Degraded/
Warning”

“Preventive
maintenance of the
drive is required.”

Check the drive users
manual for device
specific preventive
maintenance tasks or
call the drive supplier
help line.”

Hardware A “The drive has a
hardware fault that
requires reset to
recover.”

“6” = “Critical” “The drive has a
hardware fault”

“1. Eject the media or
magazine.”
“2. Reset the drive.”
“3. Restart the
operation.”

Hardware B “The drive has a
hardware fault that is
not read/write related
or requires a power
cycle to recover.”

“6” = “Critical” “The drive has a
hardware fault”

“1. Turn the drive off
and then on again.”
“2. Restart the
operation.”
“3. If the problem
persists, call the drive
supplier help line.”

Interface “The drive has
identified an interface
fault.”

“3” = “Degraded/
Warning”

“Bad cable or drive
interface.“

“1. Check the cables
and cable
connections.”
“2. Restart the
operation.”

Eject Media “Error recovery
action: Media
Ejected”

“6” = “Critical” ““ “1. Eject the media or
magazine.”
“2. Insert the media or
magazine again.”
“3. Restart the
operation.”

Download
Failure

“Firmware download
failed.”

“3” = “Degraded/
Warning”

“The firmware
download has failed
because you have
tried to use the
incorrect firmware for
this drive.”

“Obtain the correct
firmware and try
again.”

Drive Humidity “Drive humidity limits
exceeded.”

“3” = “Degraded/
Warning”

“Bad drive fan“ “Replace fan or drive
enclosure”

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
Version 1.0.1 541

SNIA Storage Management Initiative Specification
Drive
Temperature

“Drive temperature
limits exceeded.”

“3” = “Degraded/
Warning”

“Bad cooling fan“ “Replace fan or drive
enclosure”

Drive Voltage “Drive voltage limits
exceeded.”

“3” = “Degraded/
Warning”

“Bad drive power
supply“

“Check the drive
users manual for
device specific
preventive
maintenance tasks or
call the drive supplier
help line.”

Predictive
Failure

“Predictive failure of
drive hardware.”

“6” = “Critical” ““ “A hardware failure of
the drive is predicted.
Call the drive supplier
help line.”

Diagnostics
Required

“The drive may have
a hardware fault that
may be identified by
extended diagnostics
(i.e., SEND
DIAGNOSTIC
command).”

“3” = “Degrading/
Warning”

“The drive may have
a hardware fault.”

“1. Run extended
diagnostics to verify
and diagnose the
problem. Check the
drive user’s manual
for device specific
instructions on
running extended
diagnostic tests.”

Loader
Hardware A

“Loader mechanism
is having trouble
communicating with
the drive.”

“6” = “Critical” “The changer
mechanism is having
difficulty
communicating with
the drive:”

“1. Turn the
autoloader off then
on.”
“2. Restart the
operation.”
“3. If a problem
persists, call the drive
supplier help line.”

Loader Stray
Media

“Stray media left in
loader after previous
error recovery.”

“6” = “Critical” “A media has been
left in the autoloader
by a previous
hardware fault:”

“1. Insert an empty
magazine to clear the
fault.”
“2. If the fault does
not clear, turn the
autoloader off and
then on again.”
“3. If the problem
persists, call the drive
supplier help line.”

Loader
Hardware B

“Loader mechanism
has a hardware fault.”

“3“= “Degrading/
Warning”

“There is a problem
with the autoloader
mechanism.”

“”

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
542 Version 1.0.1

SNIA Storage Management Initiative Specification
Loader Door “Changer door open.” “6” = “Critical” “The operation has
failed because the
autoloader door is
open:”

“1. Clear any
obstructions from the
autoloader door.”
“2. Eject the
magazine and then
insert it again.”
“3. If the fault does
not clear, turn the
autoloader off and
then on again.”
“4. If the problem
persists, call the drive
supplier help line.”

Loader
Hardware C

“The loader
mechanism has a
hardware fault that is
not mechanically
related.”

“6” = “Critical” “The autoloader has
a hardware fault:”

“1. Turn the
autoloader off and
then on again.”
“2. Restart the
operation.”
“3. If the problem
persists, call the drive
supplier help line.
Check the autoloader
user’s manual for
device specific
instructions on
turning the device
power on and off.”

Loader
Magazine

“Loader magazine not
present.”

“6” = “Critical” “The autoloader
cannot operate
without the magazine:
“

“1. Insert the
magazine into the
autoloader.”
“2. Restart the
operation.”

Loader
Predictive
Failure

“Predictive failure of
loader mechanism
hardware”

“3” = “Degrading/
Warning”

“A hardware failure of
the changer
mechanism is
predicted. Call the
drive supplier help
line.”

Load Statistics “Drive or library
powered down with
media loaded.”

“3” = “Degrading/
Warning”

“Media statistics have
been lost at some
time in the past.”

“”

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
Version 1.0.1 543

SNIA Storage Management Initiative Specification
Media
Directory
Invalid at
Unload

“Error preventing the
media directory being
updated on unload.”

“3” = “Degrading/
Warning”

“The directory on the
media just unloaded
has been corrupted.”

“The directory can be
rebuilt by reading all
the data.”

Media System
area Write
Failure

“Write errors while
writing the system
area on unload.”

“6” = “Critical” “The media just
unloaded could not
write its system area
successfully: “

“1. Copy data to
another cartridge.”
“2. Discard the old
cartridge.”

Media System
Area Read
Failure

“Read errors while
reading the system
area on load.”

“6” = “Critical” “The media system
area could not be
read successfully at
load time: “

“1. Copy data to
another cartridge.”

No Start of
Data

“Media damaged,
bulk erased, or
incorrect format.”

“6” = “Critical” “The start of data
could not be found on
the media:”

“1. Check that you
are using the correct
format media.”
“2. Discard the media
or return the media to
your supplier.”

Loading Failure “The drive is unable
to load the media”

“6” = “Critical” “The operation has
failed because the
media cannot be
loaded and
threaded.”

“1. Remove the
cartridge, inspect it as
specified in the
product manual, and
retry the operation.”
“2. If the problem
persists, call the drive
supplier help line.”

Library
Hardware A

“Changer mechanism
is having trouble
communicating with
the internal drive”

“6” = “Critical” “The library
mechanism is having
difficulty
communicating with
the drive: “

“1. Turn the library off
then on.”
“2. Restart the
operation.”
“3. If the problem
persists, call the
library supplier help
line.”

Library
Hardware B

“Changer mechanism
has a hardware fault”

“3” = “Degrading/
Warning”

““ “There is a problem
with the library
mechanism. If
problem persists, call
the library supplier
help line.”

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
544 Version 1.0.1

SNIA Storage Management Initiative Specification
Library
Hardware C

“The changer
mechanism has a
hardware fault that
requires a reset to
recover.”

“6” = “Critical” “The library has a
hardware fault”

“1. Reset the library.”
“2. Restart the
operation. Check the
library user’s manual
for device specific
instructions on
resetting the device.”

Library
Hardware D

“The changer
mechanism has a
hardware fault that is
not mechanically
related or requires a
power cycle to
recover.”

“6” = “Critical” “The library has a
hardware fault:”

“1. Turn the library off
then on again.”
“2. Restart the
operation.”
“3. If the problem
persists, call the
library supplier help
line. Check the library
user’s manual for
device specific
instructions on
turning the device
power on and off.”

Library
Diagnostic
Required

“The changer
mechanism may have
a hardware fault
which would be
identified by extended
diagnostics.”

“3” = “Degrading/
Warning”

“The library
mechanism may have
a hardware fault.”

Run extended
diagnostics to verify
and diagnose the
problem. Check the
library user’s manual
for device specific
instructions on
running extended
diagnostic tests.”

Library
Interface

“The library has
identified an interface
fault”

“6” = “Critical” “Bad cable” “1. Check the cables
and connections.”
“2. Restart the
operation.”

Failure
Prediction

“Predictive failure of
library hardware”

“3” = “Degrading/
Warning”

““ “A hardware failure of
the library is
predicted. Call the
library supplier help
line.”

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
Version 1.0.1 545

SNIA Storage Management Initiative Specification
Library
Maintenance

“Library preventative
maintenance
required.”

“3” = “Degrading/
Warning”

““ “Preventive
maintenance of the
library is required.
Check the library
user’s manual for
device specific
preventative
maintenance tasks,
or call your library
supplier help line.”

Library
Humidity Limits

“Library humidity
limits exceeded“

“6” = “Critical” “Library humidity
range is outside the
operational
conditions”

“”

Library
Temperature
Limits

“Library temperature
limits exceeded”

“6” = “Critical” “Library temperature
is outside the
operational
conditions”

“”

Library Voltage
Limits

“Library voltage limits
exceeded”

“6” = “Critical” “Potential problem
with a power supply.”

“”

Library Stray
Media

“Stray cartridge left in
library after previous
error recovery”

“6” = “Critical” “Cartridge left in
picker or drive”

“1. Insert an empty
magazine to clear the
fault.”
“2. If the fault does
not clear, turn the
library off and then on
again.”
“3. If the problem
persists, call the
library supplier help
line.“

Library Pick
Retry

“Operation to pick a
cartridge from a slot
had to perform an
excessive number of
retries before
succeeding”

“3” = “Degrading/
Warning”

“There is a potential
problem with the
drive ejecting
cartridges or with the
library mechanism
picking a cartridge
from a slot.”

“1.Run diagnostics to
determine the health
of the Library.”
“2. If the problem
persists, call the
library supplier help
line.”

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
546 Version 1.0.1

SNIA Storage Management Initiative Specification
Library Place
Retry

“Operation to place a
cartridge in a slot had
to perform an
excessive number of
retries before
succeeding”

“3” = “Degrading/
Warning”

“Worn cartridge or
bad storage slot/
magazine”

“1. No action needs to
be taken at this time.”
“2. If the problem
persists, call the
library supplier help
line.”

Library Load
Retry

“Operation to load a
cartridge in a drive
had to perform an
excessive number of
retries before
succeeding”

“3” = “Degrading/
Warning”

“Worn cartridge or
picker”

“1. Run diagnostics to
determine the health
of the library.”

Library Door “Library door open is
preventing the library
from functioning”

“6” = “Critical” “The library has failed
because the door is
open:”

“1. Clear any
obstructions from the
library door.”
“2. Close the library
door.”
“3. If the problem
persists, call the
library supplier help
line.”

Library Mailslot “Mechanical problem
with import/export
mailslot”

“6” = “Critical” “There is a
mechanical problem
with the library media
mailslot.”

“1. Check for wedged
storage media in
import/export
mailslot”

Library
Magazine

“Library magazine not
present”

“6” = “Critical” “Administrator has
removed the library’s
magazine”

“1. Insert the
magazine into the
library.”
“2. Restart the
operation.”

Library
Security

“Library door opened
then closed during
operation”

“3” = “Degrading/
Warning”

“Administrator is
trying to remove or
insert a storage
media”

“”

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
Version 1.0.1 547

SNIA Storage Management Initiative Specification
Library
Security Mode

“Library security
mode changed”

“2” = “Information” “Administrator
changed security
mode”

“The library security
mode has been
changed. The library
has either been put
into secure mode, or
the library has exited
the secure mode.
This is for information
purposes only. No
action is required.”

Library Offline “Library manually
turned offline”

“2” = “Information” “The library has been
manually turned
offline and is
unavailable for use.”

“”

Library Drive
Offline

“Library turned
internal drive offline.”

“2” = “Information” “Drive failure” “A drive inside the
library has been
taken offline. This is
for information
purposes only. No
action is required.”

Library Scan
Retry

“Operation to scan
the bar code on a
cartridge had to
perform an excessive
number of retries
before succeeding”

“3” = “Degrading/
Warning”

“There is a potential
problem with the bar
code label or the
scanner hardware in
the library
mechanism.”

“1. No action needs to
be taken at this time.”
“2. If the problem
persists, call the
library supplier help
line.”

Library
Inventory

“Inconsistent media
inventory”

“6” = “Critical” “Media label has
changed or bad Bar
code scanner
subsystem problem.”

“1. Redo the library
inventory to correct
inconsistency.”
“2. Restart the
operation. Check the
applications user’s
manual or the
hardware user’s
manual for specific
instructions on
redoing the library
inventory.”

Library Illegal
Operation

“Illegal operation
detected”

“3” = “Degrading/
Warning”

“A library operation
has been attempted
that is invalid at this
time.”

“”

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
548 Version 1.0.1

SNIA Storage Management Initiative Specification
Dual-Port
Interface Error

“Failure of one
interface port in a
dual-port
configuration”

“3” = “Degrading/
Warning”

“A redundant
interface port on the
library has failed.”

“”

Cooling Fan
Failure

“One or more fans
inside the library have
failed. Internal flag
state only cleared
when all flags are
working again”

“3” = “Degrading/
Warning”

“Bad cooling Fan” “”

Power Supply “Redundant power
supply failure inside
the library
subsystem”

“3” = “Degrading/
Warning”

“Bad Power Supply” “A redundant power
supply has failed
inside the library.
Check the library
user’s manual for
instructions on
replacing the failed
power supply. “

Power
Consumption

“Power consumption
of one or more
devices inside the
library is outside the
specified range”

“3” = “Degrading/
Warning”

“The library power
consumption is
outside the specified
range.”

“”

Pass Through
Mechanism
Failure

“Error occurred in
pass-through
mechanism during
self test or while
attempting to transfer
a cartridge between
library modules”

“6” = “Critical” “A failure has
occurred in the
cartridge pass-
through mechanism
between two library
modules.”

“”

Cartridge in
Pass-through
Mechanism

“Cartridge left in the
pass-through
mechanism between
two library modules”

“6” = “Critical” ““ “A cartridge has been
left in the pass-
through mechanism
from a previous
hardware fault. Check
the library users
guide for instructions
on clearing this fault.”

Unreadable
barcode Labels

“Unable to read a bar
code label on a
cartridge during
library inventory/
scan”

“2” = “Information” “Bad Bar Code
Labels or Scanner”

“The library was
unable to read the bar
code on a cartridge.”

Table 373: LibraryAlert AlertIndication Properties (Continued)

Event/
Alert

Summary

CIM_AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs

OtherAlert
Type

Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
Version 1.0.1 549

SNIA Storage Management Initiative Specification
B.3.6.12 Optional Subprofiles

Table 374: Optional Profiles or Subprofiles

Name Notes

None
550 Version 1.0.1

SNIA Storage Management Initiative Specification
THIS PAGE INTENTIONALLY LEFT BLANK
Version 1.0.1 551

SNIA Storage Management Initiative Specification
552 Version 1.0.1

SNIA Storage Management Initiative Specification
B.4 Extender Profile

B.4.1 Description

Note: This profile is experimental and is provided for information only. The contents of an
experimental profile MAY change as implementation experience is gained. Please provide
any implementation feedback to SNIA's Storage Management Initiative Technical Steering
Group (td@snia.org).

A FC Extender is a network segment, consisting of 2 or more FC Extender node devices and
network pipes that connect them. A FC Extender is dedicated to connect two fabric islands across
a WAN or any other extension medium. A FC Extender node is a device that supports Fibre
Channel communication over different communication technologies.

The domain of the components of the extender is defined by Network, a subclass of an
AdminDomain, and is necessary to host the Networking.

B.4.2 FC Extender profile as a topology

The ComputerSystem class is the core of the model. It is identified as an Extender node by the
dedicated attribute being set to Extender. It has group of services FCExtenderNodeService
consisting of IPService and TCPService, or SRService subclassed from the ForwardingService.
These services represent the status/configuration of the FC Extender transport layer.

The Port group of classes contains the following classes: FCPort, EthernetPort, and ATMPort. The
FCPort class represents the connection of a FC Extender to a SAN. This class connects to other
FCPort classes to represent Fibre channel connections. This class could be replaced with other port
types to represent SANs based on other interconnect technology. The ATMPort class represents
ATM link between FC Extender nodes and the EthernetPort represents an Ethernet link.

B.4.3 FC Extender profile as a connection

The intent to view FC Extender as a connection or collection of connections is to facilitate the
connection manageability including capabilities to create, activate or delete a connection.

B.4.4 Standard Dependencies

The Extender profile is based on the following standards:

B.4.5 Profile Dependencies

The Extender profile requires the Server Profile (p. 441).

Table 375: Extender Standards Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF
Version 1.0.1 553

SNIA Storage Management Initiative Specification
B.4.6 CIM Server Requirements

B.4.6.1 Functional Profiles

B.4.6.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.

B.4.6.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

Table 376: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
554 Version 1.0.1

SNIA Storage Management Initiative Specification
B.4.7 Instance Diagrams

Figure 95: Extender Instance Diagram

FCPort

ComputerSystem
Package

Network

1

PhysicalPackage

Product

ProductPhysical
Elements

ComputerSystem
Package

ComputerSystem

Dedicated[x] = Extender

PhysicalPackage

Product

ProductPhysical
Elements

Component

NetworkPort

LinkTechnology="ATM"

TCPProtocolEndpoint

ProtocolType="TCP"

ProtocolEndpoint

ProtocolType="Fi
breChannel"

PortImplements
Endpoint

ExtenderNode

NetworkPort

LinkTechnology="ATM"

FCPort ProtocolEndpoint

ProtocolType="Fi
breChannel"

ProtocolEndpoint

ProtocolType="ATM
"

DeviceSAP
ImplementationExtenderNode

System
Device

System
Device

Active
Connection

DeviceSAP
Implementation

TCPProtocolEndpoint

ProtocolType="TCP"

ForwardingService

Forwards
Among

Forwards
Among

ProtocolEndpoint

ProtocolType="ATM"

DeviceSAP
Implementation

Active
Connection

BindsTo

BindsTo

BindsTo

BindsTo

System
Device

System
Device

ComputerSystem

Dedicated[x] = Extender

NetworkPipe

EndpointOf
Pipe

EndpointOf
Pipe

IPProtocolEndpoint

BindsTo

IPProtocolEndpoint

BindsTo

Hosted
NetworkPipe

Component
Version 1.0.1 555

SNIA Storage Management Initiative Specification
B.4.8 Durable Names and Correlatable IDs of the Profile

B.4.8.1 Durable Names Exported
There are no durable name exports defined for this profile.

B.4.8.2 Correlatable IDs Used
There are no correlatable IDs defined for this profile.

B.4.9 Methods

There are no methods defined for this profile.

B.4.10 Client Considerations

There are no implementation requirements defined for this profile.

B.4.11 Recipes

There are no recipes defined for this profile.

B.4.12 Instrumentation Requirements

There are no implementation requirements defined for this profile.
556 Version 1.0.1

SNIA Storage Management Initiative Specification
B.4.13 Required CIM Elements

Table 377: Required CIM Elements

Profile Classes &
Associations

Notes

ActiveConnetction for FC (p. 559) For FC

ActiveConnetction for ATM (p. 559) For ATM

BindsTo (p. 559)

BindsTo (p. 559) For the EntenderNodes

FCPort (p. 561)

ForwardsAmong (p. 562)

ForwardingService (p. 562)

HostedNetworkPipe (p. 562)

IPProtocolEndpoint (p. 562)

Network (p. 564)

Network (p. 564)

IPProtocolEndpoint (p. 562) For ATM Port

DeviceSAPImplementation (p. 561)

ProtocolEndPoint (p. 565) For FC

ProtocolEndPoint (p. 565) For ATM

TCPPrototocolEndpoint (p. 565)

TCPPrototocolEndpoint (p. 565)

Packages

Physical Package Package (p. 103)
Software Package (p. 110)

Associated Indications

Creation/Deletion of FCPort SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_FCPort
SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_FCPort

Creation/Deletion of
ComputerSystem

SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_ComputerSystem
SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_ComputerSystem

Creation/Deletion of
ActiveConnection

SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_ActiveConnection
SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_ActiveConnection
Version 1.0.1 557

SNIA Storage Management Initiative Specification
Creation/Deletion of ATM Port SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_Port and SourceInstance.LinkTechnology = ‘ATM’
SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_Port and SourceInstance.LinkTechnology = ‘ATM’

Change in status of
ComputerSystem

SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_ComputerSystem AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Change in status of FCPort SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_Port AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Change in status of ATM Port SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_FCPort AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus and
SourceInstance.LinkTechnology = ‘ATM’

Table 377: Required CIM Elements (Continued)

Profile Classes &
Associations

Notes
558 Version 1.0.1

SNIA Storage Management Initiative Specification
B.4.14 Required Properties for CIM Elements

B.4.14.1 ActiveConnetction for ATM

B.4.14.2 ActiveConnetction for FC

B.4.14.3 BindsTo

B.4.14.4 ComputerSystem

Table 378: Required Properties for ActiveConnection for ATM

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key ProtocolEndpoint reference to
ProtocolEndpoint.PrototcolType=”ATM”

Dependent ref key ProtocolEndpoint reference to
ProtocolEndpoint.PrototcolType=”ATM”

Table 379: Required Properties for ActiveConnection for FC

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key ProtocolEndpoint reference to
ProtocolEndpoint.PrototcolType=”ATM”

Dependent ref key ProtocolEndpoint reference to
ProtocolEndpoint.PrototcolType=”ATM”

Table 380: Required Properties for BindsTo

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key ProtocolEndpoint reference

Dependent ref key ProtocolEndpoint reference

Table 381: Required Properties for ComputerSystem

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string Switch Symbolic Name. For
Platform it is the Platform Label.

CreationClassName string maxlen(256), key Name of Class

Name string maxlen(256), key For Switches, it is the FC WWN.
For Platforms, it is the Platform
Name if available.

NameFormat string override

Dedicated int16[] “Extender”
Version 1.0.1 559

SNIA Storage Management Initiative Specification
Name string maxlen(256), key For Switches, it is the FC WWN.
For Platforms, it is the Platform
Name if available.

Table 381: Required Properties for ComputerSystem (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
560 Version 1.0.1

SNIA Storage Management Initiative Specification
B.4.14.5 DeviceSAPImplementation

B.4.14.6 FCPort

Table 382: Required Properties for DeviceSAPImplementation

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key ProtocolEndpoint reference

Dependent ref key ProtocolEndpoint reference

Table 383: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string Port Symbolic Name if available.
Otherwise NULL. If the underlying
implementation includes characters that
are illegal in CIM strings, then truncate
before the first of those characters.

OperationalStatus uint16 See Table ...

DeviceID string key, maxlen (64) Opaque.

PortType uint16 override “Unknown = 0, “Other” = 1,
“N” = 10, “NL” = 11, “F/NL” = 12, “Nx” =
13, “E” = 14, “F” = 15, “FL” = 16, “B” = 17,
“G” = 18.

OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").

LinkTechnology uint16 For FibreChannel, “FC”.

OtherLinkTechnology string A string value describing LinkTechnology
when it is set to 1, \"Other\".

PermanentAddress string maxlen (64) For FibreChannel, it is the Fibre Channel
Port WWN.

NetworkAddresses[] string maxlen (64),
arraytype
("indexed")

For Fibre Channel end device ports, it is
the Fibre Channel ID. For Switches, it
should be Null.

ActiveCOS uint16[] FC-GS Class Of Service
An array of integers indicating the
Classes of Service that are active. The
Active COS is indicated in ActiveCOS.
Not applicable for switches (e.g. NULL).

ActiveFC4Types uint16[] FC-GS FC4-TYPE
An array of integers indicating the Fibre
Channel FC-4 protocols currently
running. Not applicable for switches (e.g.
NULL).
Version 1.0.1 561

SNIA Storage Management Initiative Specification
B.4.14.7 ForwardingService

B.4.14.8 ForwardsAmong

B.4.14.9 HostedNetworkPipe

B.4.14.10 IPProtocolEndpoint

Table 384: Required Properties for ForwardingService

Property/
Method

Type Qualifier/
Parameter

Notes

SystemCreationClassName string maxlen
(256),key,propagated

SystemName; string maxlen
(256),key,propagated

CreationClassName string maxlen (256),key

Name string maxlen (256),key,override

ProtocolType unit16

OtherProtocolType string

Table 385: Required Properties for ForwardsAmong

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key ProtocolEndpoint reference

Dependent ref key ForwardingService reference

Table 386: Required Properties for HostedNetworkPipe

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key ProtocolEndpoint reference to
TCPProtocolEndpoint

Dependent ref key ProtocolEndpoint reference to
TCPProtocolEndpoint

Table 387: Requited Properties for IPProtocolEndpoint

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Name string maxlen (256)

CreationClassName string key, maxlen (256)

SystemCreationClassNam
e

string key, maxlen (256)
562 Version 1.0.1

SNIA Storage Management Initiative Specification
SystemName string key, maxlen (256)

NameFormat string maxlen (256) heuristic that ensures unique name

ProtocolType string maxlen (64),
valuemap {}
values {}

"IPv4" or “IPv6”

OtherTypeDescription string maxlen (64) used when ProtocolTYpe = "Other"

IPv4Address string

IPv6Address string

Table 387: Requited Properties for IPProtocolEndpoint (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 563

SNIA Storage Management Initiative Specification
B.4.14.11 NetworkPort

B.4.14.12 Network

Table 388: Required Properties for NetworkPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string Port Symbolic Name if available.
Otherwise NULL. If the underlying
implementation includes characters that
are illegal in CIM strings, then truncate
before the first of those characters.

OperationalStatus uint16 See Table ...

DeviceID string key, maxlen (64) Opaque.

PortType uint16 override “Unknown = 0, “Other” = 1,
“N” = 10, “NL” = 11, “F/NL” = 12, “Nx” =
13, “E” = 14, “F” = 15, “FL” = 16, “B” = 17,
“G” = 18.

OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").

LinkTechnology uint16 For FibreChannel, “FC”.

OtherLinkTechnology string A string value describing LinkTechnology
when it is set to 1, \"Other\".

PermanentAddress string maxlen (64) For FibreChannel, it is the Fibre Channel
Port WWN.

NetworkAddresses[] string maxlen (64),
arraytype
("indexed")

For Fibre Channel end device ports, it is
the Fibre Channel ID. For Switches, it
should be Null.

Table 389: Required Properties for Network

Property/
Method

Type Qualifier/
Parameter

Description/Notes

CreationClassName string maxlen(256),
key

Name of Class

Name string maxlen(256),
key, override

NameFormat string maxlen(64)
564 Version 1.0.1

SNIA Storage Management Initiative Specification
B.4.14.13 NetworkPipe

B.4.14.14 ProtocolEndPoint

B.4.14.15 TCPPrototocolEndpoint

Table 390: Required Properties for NetworkPipe

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID string

OperationalStatus unint16 (enum)

Table 391: Requited Properties for ProtocolEndpoint

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Name string maxlen (256)

CreationClassName string key, maxlen (256)

SystemCreationClassNam
e

string key, maxlen (256)

SystemName string key, maxlen (256)

NameFormat string maxlen (256) heuristic that ensures unique name

ProtocolType string maxlen (64),
valuemap {}
values {}

"IPv4", "Fibre Channel","InfiniBand",
…

OtherTypeDescription string maxlen (64) used when ProtocolTYpe = "Other"

Table 392: Requited Properties for TCPPrototocolEndpoint

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Name string maxlen (256)

CreationClassName string key, maxlen (256)

SystemCreationClassName string key, maxlen (256)

SystemName string key, maxlen (256)

NameFormat string maxlen (256) heuristic that ensures unique name

ProtocolType string maxlen (64),
valuemap {}
values {}

"IPv4" or “IPv6”

OtherTypeDescription string maxlen (64) used when ProtocolTYpe = "Other"
Version 1.0.1 565

SNIA Storage Management Initiative Specification
B.4.14.16 SystemDevice

B.4.15 Optional Subprofiles

Table 393: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override System Reference

PartComponent ref override LogicalDevice Reference

Table 394: Optional Profiles or Subprofiles

Name Notes

None
566 Version 1.0.1

SNIA Storage Management Initiative Specification
B.5 Management Appliance Profile

B.5.1 Description

Note: This profile is experimental and is provided for information only. The contents of an
experimental [profile/subprofile] MAY change as implementation experience is gained.
Please provide any implementation feedback to SNIA's Storage Management Initiative
Technical Steering Group (td@snia.org).

A Management Appliance is a computer system dedicated to running management software. In
most cases the management software is accessed remotely through Web interfaces. This model is
designed to allow for the discovery of the appliance and the applications running on it.

B.5.2 Standard Dependencies

The Management Appliance profile is based on the following standards:

B.5.3 Profile Dependencies

The Management Appliance profile relies on the following profiles.

• Server Profile (p. 441)

B.5.4 CIM Server Requirements

B.5.4.1 Functional Profiles

B.5.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.

Table 395: Management Appliance Standards Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF

Table 396: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

NO Indication None
Version 1.0.1 567

SNIA Storage Management Initiative Specification
B.5.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

B.5.5 Instance Diagrams

B.5.5.1 Overview
The basic Management appliance profile allows provides a read-only view of the system. The
various subprofiles indicated in “Management Appliance Subprofile Diagram” on page 568 extend
this description. Refer to “Optional Subprofiles” on page 575 for more information on these
optional extensions. This profile also includes the mandatory “Physical Package Package” on
page 103 that describes the physical layout of the system and includes product identification
information.

B.5.5.2 Basic Management Appliance Instance

The Management Appliance model consists of 4 major groups of classes (Core, Port, Physical, and
Software).

Figure 96: Management Appliance Subprofile Diagram

Figure 97: Management Appliance Instance Diagram

Management Appliance System

Physical Package LocationSoftware

Cluster

ComputerSystem

Dedicated[X] = "Management
Appliance"FCPort

RemoteServiceAcessPoint

HostedAccessPoint

ObjectManager

HostedService

ServiceAvailableToElement

SystemDevice

LogicalPortGroup

MemberOfCollection

Software Element

InstalledSoftwareElement
568 Version 1.0.1

SNIA Storage Management Initiative Specification
The ComputerSystem class is the core of the model. It is identified as a Management Appliance by
the Dedicated attribute being set to “Management Appliance”.

The FCPort class and LogicalPortGroup class represents the connection of the Management
Appliance to the SAN. The FcPort class connects to other FCPort classes to represent fibre channel
connections. This class could be replaced with other port types to represent SANs based on other
interconnect technology.

The SoftwareElement class represents the management utilities that are running on the
appliance. The instance diagram shows the SoftwareElement class sub-classed to represent a
CIMOM. The ObjectManager class is a subclass of CIM_SoftwareElement and represents the
CIMOM. The ObjectManagerCommunicationMechanism class contains the URL to access the
CIMOM.

The Client can get a list of available applications by locating the ComputerSystem class and
enumerating the group of SoftwareElement classes by traversing the InstalledSoftwareElement
associations.

B.5.5.3 Controller Software
Information on the installed operating system is represented by the common subprofile Software
Package. This is linked to the controller using an InstalledSoftwareElement association.

B.5.5.4 Physical Modeling
The physical aspects of the metadata controller are represented by the Common Package “Physical
Package” and the optional subprofile “Location”. See these common sections for more details.

B.5.5.5 Cluster
The Management Appliance MAY be implemented by a fault tolerate cluster. This part of the
model is described by the optional Cluster common Subprofile. See these common sections for more
details.

B.5.6 Durable Names and Correlatable IDs of the Profile

B.5.6.1 Durable Names Exported
For Fibre Channel port, the durable name is the Port WWN. It is found in
FCPort.PermanentAddress.

For the appliance itself (the computer system), the Name property contains a durable name. The
format of this name is defined by the NameFormat property.

B.5.6.2 Correlatable IDs Used

B.5.7 Methods

There are no methods defined for this profile.

B.5.8 Client Considerations

There are no client considerations defined for this profile.

B.5.9 Recipes

There are no recipes defined for this profile.
Version 1.0.1 569

SNIA Storage Management Initiative Specification
B.5.10 Instrumentation Requirements

The purpose of the Management Appliance is to be a platform to run management applications on.
Each of the applications running on the appliance should be modeled with both a SoftwareElement
class and a RemoteServiceAccessPoint. The SoftwareElement describes the application including
name, version, and other. This class if often sub classed for each type of application. The
RemoteServiceAccessPoint or ObjectManagerCommunicationMechanism class contains a network
address or URL to access the application.
570 Version 1.0.1

SNIA Storage Management Initiative Specification
B.5.11 Required CIM Elements

B.5.12 Required Properties for CIM Elements

B.5.12.1 ComputerSystem

Table 397: Required CIM Elements

Profile Classes & Associations Notes

ComputerSystem (p. 571)

FCPort (p. 572)

HostedService (p. 572)

InstalledSoftwareElement (p. 572)

LogicalPortGroup (p. 573)

MemberOfCollection (p. 573)

ObjectManager

RemoteServiceAccessPoint (p. 573)

ServiceAvailableToElement (p. 573)

SoftwareElement (p. 574)

Packages

Physical Package Package (p. 103)

Associated Indications

None.

Table 398: Required Properties for ComputerSystem

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

OperationalStatus uint16 Status of array

Name string key The identifier for the Array (eg IP
address or FC world wide name).

NameFormat string The format of the Name property.

Dedicated int16[] “blockserver”,
“metadatacontroller”

The use of this ComputerSystem

PrimaryOwnerContact string Optional

PrimaryOwnerName string Optional
Version 1.0.1 571

SNIA Storage Management Initiative Specification
B.5.12.2 FCPort

B.5.12.3 HostedService

B.5.12.4 InstalledSoftwareElement

Table 399: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User friendly name/caption for port.

OperationalStatus uint16 Status of device

DeviceID string key Opaque

PortType uint16 Used to indicate the type of the port (eg
N-port/NL-port)

PermanentAddress string The WWN of the port.

NetworkAddresses[] string The Fibre Channel address of the port
(optional)

Speed uint64 Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

Table 400: Required Properties from HostedService

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref The Computer System

Dependent ref The Service.

Table 401: Required Properties from Installed SoftwareElement

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref

Dependent ref
572 Version 1.0.1

SNIA Storage Management Initiative Specification
B.5.12.5 LogicalPortGroup

B.5.12.6 MemberOfCollection

B.5.12.7 RemoteServiceAccessPoint

B.5.12.8 ServiceAvailableToElement
ServiceAvailableToElement is not subclassed from anything.

Table 402: Required Properties for LogicalPortGroup

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceName string Node Symbolic Name

SystemCreationClassName string propagated,key

SystemName string propagated, key

InstanceID string key Node WWN||FC-GS
InterconnectElement.Name,
REQUIRED

Table 403: Required Properties for MemberOfCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Collection ref override The reference to the collection

Member ref override The reference to the member

Table 404: Required Properties for RemoteServiceAccessPoint

Property/
Method

Type Qualifier/
Parameter

Description/Notes

SystemName string key

SystemCreationClassName string key

CreationClassName string key

Name string key

AccessInfo string FCGS||InterconnectElement.Manag
ement Address

InfoFormat uint16

OtherInfoFormatDescription string

Table 405: Required Properties for ServiceAvailableToElement

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Service ref override The Service that is available.
Version 1.0.1 573

SNIA Storage Management Initiative Specification
B.5.12.9 SoftwareElement
SoftwareElement is subclassed from LogicalElement.

ManagedElement ref override The ManagedElement that may use the
Service.

Table 406: Required Properties for SoftwareElement

Property/
Method

Type Qualifier/
Parameter

Description/
Notes

Description string Longer description

ElementName string User Friendly name

OperationalStatus[] uint16

StatusDescriptions[] string

Name string key, maxlen (256),
override

The name used to
identify this
SoftwareElement.

Version string key, maxlen (64) Software Version
should be in the form
<Major>.<Minor>.<Revi
sion> or
<Major>.<Minor><letter
><revision>.

SoftwareElementState uint16 key The
SoftwareElementState
is defined in this model
to identify various states
of a SoftwareElement's
life cycle.

SoftwareElementID string key, maxlen(256) This is an identifier for
the SoftwareElement
and is designed to be
used in conjunction with
other keys to create a
unique representation of
the element.

Manufacturer string maxlen(256) Manufacturer of this
SoftwareElement.

BuildNumber string maxlen(64) The internal identifier for
this compilation of
SoftwareElement.

Table 405: Required Properties for ServiceAvailableToElement (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
574 Version 1.0.1

SNIA Storage Management Initiative Specification
B.5.13 Optional Subprofiles

SerialNumber string maxlen(64) The assigned serial
number of this
SoftwareElement.

IdentificationCode string maxlen(64) The manufacturer's
identifier for this
SoftwareElement. Often
this is a stock keeping
unit (SKU) or a part
number.

Table 407: Optional Profiles or Subprofiles

Name Notes

Location Subprofile (p. 142)

Software Subprofile (p. 145)

Cluster Subprofile (p. 116)

Table 406: Required Properties for SoftwareElement (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/
Notes
Version 1.0.1 575

SNIA Storage Management Initiative Specification
B.6 Out of Band Virtualizer Profile

B.6.1 Description

Note: This profile is experimental and is provided for information only. The contents of an experimental
profile MAY change as implementation experience is gained. Please provide any implementation
feedback to SNIA's Storage Management Initiative Technical Steering Group (td@snia.org).

The Out-of-Band Virtualization system uses storage provided by array systems to create a
seamless pool of storage. The virtualization system in turn allocates volumes from the pool for host
systems to use. The system uses a control element called a “Metadata Controller” to control the
system and maintain the mapping of array storage to host volumes. The system uses a separate
component called a “Translation engine” to execute I/Os and perform the translation in real time.
The Translation Engine may be implement as a stand-alone package or as part of other packages
(i.e. host software, HBA, or Fibre channel switch).

Below is a block diagram of an out-of-band virtualization system. At the top of the diagram are the
host systems. They perform I/O to volumes presented to them by the Translation Engines. The
host may communicate with one or more Translation Engines. The same Storage volume can be
instantiated on any or all the Translation Engines at the same time. The next component is the
Translation Engine. It is controlled by and receives translation information from the Metadata
Controller. It uses this information to redirect and perform I/Os for a host system. Off to the side,
the Meta-data Controller controls the virtualization system and provides translation information
to the translation engines but isn’t actively involved in I/O. The last component is the array
system. It is represented in its own namespace and would be supported by it’s own model and
576 Version 1.0.1

SNIA Storage Management Initiative Specification
profile. The virtualization model interfaces with the array and host system. Durable names are
used to connect them together.

B.6.2 Standard Dependencies

The Out-of-band Virtualizer profile is based on the following standards:

B.6.3 Profile Dependencies

The Out-of-band Virtualizer profile requires the Server Profile (p. 441)

Figure 98: Out-of-band Virtualization Block Diagram

Table 408: OutofBand Virtualizer Standards Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF

Meta-data
Controller

Translation
Engine

Translation
Engine...

Array Array...

Con
tro

l
Control

Data I/O

Host Host...
I/O to

Virtual Volume
Version 1.0.1 577

SNIA Storage Management Initiative Specification
B.6.4 CIM Server Requirements

B.6.4.1 Functional Profiles

B.6.4.2 Extrinsic Methods
Although there are some extrinsic methods defined within classes in this profile, they are not
needed for this Profile. However, sub profiles do require the use of Extrinsic methods.

B.6.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

B.6.5 Instance Diagrams

B.6.5.1 Overview
The modeling in this document is split into various sections that describe how to model particular
elements of a virtualization system. The diagrams used in this document are 'Instance' diagrams
implying the actual classes that you implement rather than the class hierarchy diagrams often
used to show CIM models. This is felt to be easier to understand. Please refer to the DMTF CIM
Schema for information on class inheritance information and full information on the properties
and methods used.

Table 409: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
578 Version 1.0.1

SNIA Storage Management Initiative Specification
The subprofile diagram below is split into two parts, the Meta-data Controller and the Translation
Engine. A virtualization model has one Meta-data Controller and one or more Translation Engines

Figure 99: Out-of-Band Virtualization Subprofile Diagram

Tran lation E ngineM etadata C ontro ller

M etadata S y stem

Phy sical Package

T ranslation E ngineLogical S torage

C onfigure LUNs S erv ice

LUN M app ing & M asking

C opy S erv ices

C luster

S oftw are

Access Poin t

Job C ontro l

Location
Version 1.0.1 579

SNIA Storage Management Initiative Specification
B.6.5.2 Metadata System Instance

B.6.5.2.1 Overview
The Meta-data Controller controls the virtualization system. It holds the definition of how the
array storage is mapped to host volumes and controls the translation engines. The model allows
the meta-data controller to be a cluster or contain redundant components but the components act
as a single system. The ComputerSystem class and common Cluster Subprofile model this.
Internal Communication

The FCPort near the bottom-left represents the fibre channel port used by the Meta-data
Controllers to communicate with each other or the translation engines. This port is not used for
user data transfers.

The StoragePool classes in the center of the diagram represents the mapping from array storage to
Volumes for host access. The pool is hosted on the metadata controller and services to control it are
host on the same controller. The StorageVolume at the bottom of the screen represents the storage
from external arrays used by the mapping. These Storage Volumes are connected to the pool using
the Component association.

StorageVolumes at the upper right are the volumes created from the StoragePool and are
accessible from hosts. These Volumes are connected to ports on the translation engines. The
mapping to hosts are also shown on the Meta-data controller. The StorageVolumes are described
by the StorageCapabilities class connected by the ElementsCapabilities association.

B.6.5.2.2 Controller Software
Information on the installed controller software is represented by the common Software Package.
This is linked to the controller using an InstalledSoftwareElement association.

Figure 100: Metadata System Instance Diagram

ComputerSystem

dedicated[x] '=
 'Block Server''

"MetaData Controller"

FCPort

LogicalPortgroup

HostedCollection

MemberOfCollection

StorageVolume

LUID: //VPD pg 83 ID
DefaultAccessMode

StorageExtent

Name: //VPD pg 83 ID
DefaultAccessMode

StoragePool

AllocatedFromStoragePool

StorageCapabilities

ElementCapabilities

AllocatedFrom
StoragePool

HostedStoragePool

Component
580 Version 1.0.1

SNIA Storage Management Initiative Specification
B.6.5.2.3 Device Management Tool Access
Most devices now have a web GUI to allow device specific configuration. This is modeled using the
common subprofile “Access Point”.

B.6.5.2.4 Physical Modeling
The physical aspects of the metadata controller are represented by the Common Package “Physical
Package” and the optional subprofile “Location”. See these sections for more details.

B.6.5.2.5 Services
The metadata controller hosts the services used to control the virtualization system. These
services are optional and modeled by “Configuration LUNs Service”, “Copy Services”, and “Job
Control” subprofiles. The hosted services are accessed through the metadata controller, but effects
objects on both the metadata controller and translation engine.
Version 1.0.1 581

SNIA Storage Management Initiative Specification
B.6.5.3 Translation Engine Instance

The ComputerSystem is linked to the two sets of SCSIProtocolControllers. The upper
SCSIProtocolController represents the interface to the host. Volumes linked to this
SCSIProtocolController by ProtocolControllerForUnit associations represent the storage the
translation engine is presenting to the host system. Details of the associations is described by the
“LUN Mapping and Masking” subprofile”. The StorageVolume is also linked to the StoragePools
they are allocated from. The StoragePool is defined and owned by the Meta-data Controller. The

Figure 101: Translation Engine Instance Diagram

SCSIProtocolController

role="server"

ProtocolControllerForUnit

StorageVolume

LUID: //VPD pg 83 ID
DefaultAccessMode

StorageVolume

Name: //VPD pg 83 ID
DefaultAccessMode

SCSIProtocolContoller

role="client"

ProtocolControllerAccessesUni
t

FCPort

StoragePool

A llocatedFromStoragePool

StorageCapabilities

ElementCapabilities

ProtocolControllerForPort

A llocatedFrom
StoragePool

SystemDevice

SystemDevice

ComputerSystem
Dedicated[x]=

'Translation Engine'

Dedicated[x]=
'Metadata Controller'

ComputerSystem

HostedStoragePool

Translation Engine

Component

SystemComponent

StorageExtent

BasedOn
582 Version 1.0.1

SNIA Storage Management Initiative Specification
translation engine uses the pool definition to map array storage to host volumes. Multiple
translation engines share the pools owned by the Meta-data Controller.

The Lower SCSIProtocolController with its FCPort class represent the physical port the
translation engine uses to access the array’s storage. The SystemDevice associations link the ports
to the translation engine. The SCSIProtocolController represents the logical SCSI controller that
uses the port. The PotocolControllerAccessesUnit association links the SCSIProtocolControllers to
the volumes presented by the array. This association contains information about this SCSI
connection. Durable names in the volume links this model to the volumes presented by the array
model.

B.6.6 Durable Names and Correlatable IDs of the Profile

B.6.6.1 Durable Names Exported
The StorageVolume class is used to represent storage that is used by hosts and storage from
arrays that are used by the Virtualization system. The StorageVolumes have a durable name to
link these objects across profiles.

The FCPort class is used to show both communication and SCSI ports. To model the physical links
in a SAN, these objects have a durable name.

B.6.6.2 Correlatable IDs Used
None.

B.6.7 Methods

The methods needed by this model are part of the common subprofiles for the services and are
described there.

B.6.8 Client Considerations

None.

Figure 102: Translation Engine Back-end Ports Instance

StorageExtent

Name: //VPD pg 83 ID
DefaultAccessMode

ComputerSystem

dedicated[x] '=
'BlockServer"

"Array"

SCSIProtocolControllerFCPort
UsageRestriction =

‘Back-end only’

ProtocolControllerForPort

StorageExtent

Name: //VPD pg 83 ID
DefaultAccessMode

SCSIProtocolControllerFCPort
UsageRestriction =

‘Back-end only’

ProtocolControllerForPort

ProtocolControllerAccessesUnit

StorageExtent

Name: //VPD pg 83 ID
DefaultAccessMode

ProtocolControllerAccessesUnit ProtocolControllerAccessesUnit

SystemDevice

SystemDevice
Version 1.0.1 583

SNIA Storage Management Initiative Specification
B.6.9 Recipes

There are no recipes defined for this profile.

B.6.10 Instrumentation Requirements

None.
584 Version 1.0.1

SNIA Storage Management Initiative Specification
B.6.11 Required CIM Elements

Table 410: Required CIM Elements

Profile Classes & Associations Notes

AllocatedFromStoragePool (p. 587)

BasedOn (p. 587)

Component (p. 587)

ComputerSystem- Metadata Controller (p. 587) (metadata Controller)

ComputerSystem- Translation Engine (p. 589) (translation engine)

ElementCapabilities (p. 589)

FCPort (p. 589)

HostedCollection (p. 591)

HostedStoragePool (p. 591)

LogicalPortGroup (p. 591)

MemberOfCollection (p. 591)

ProtocolControllerForPort (p. 591)

ProtocolControllerForUnit (p. 592)

SCSIProtocolController (p. 592)

StorageCapabilities (p. 592)

StoragePool (p. 594)

StorageSetting (p. 594)

StorageExtent (p. 595)

StorageVolume (p. 599)

SystemDevice (p. 599) (port)

SystemDevice (p. 599) (volume)

Packages

Physical Package Package (p. 103).

Associated Indications

Creation/Deletion of a StoragePool SELECT * FROM CIM_InstCreation
WHERE SourceInstance ISA
CIM_StoragePool
SELECT * FROM CIM_InstDeletion
WHERE SourceInstance ISA
CIM_StoragePool
Version 1.0.1 585

SNIA Storage Management Initiative Specification
Creation/Deletion of an FCPort SELECT * FROM CIM_InstCreation
WHERE SourceInstance ISA CIM_FCPort
SELECT * FROM CIM_InstDeletion
WHERE SourceInstance ISA CIM_FCPort

Creation/Deletion of a ComputerSystem SELECT * FROM CIM_InstCreation
WHERE SourceInstance ISA
CIM_ComputerSystem
SELECT * FROM CIM_InstDeletion
WHERE SourceInstance ISA
CIM_ComputerSystem

Creation/Deletion of a StorageVolume SELECT * FROM CIM_InstCreation
WHERE SourceInstance ISA
CIM_StorageVolume
SELECT * FROM CIM_InstDeletion
WHERE SourceInstance ISA
CIM_StorageVolume

Change in the status of a StoragePool SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StoragePool AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Change in the status of a StorageVolume SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.Operationalstatus <>
PreviousInstance.Operationalstatus

Change in the status of an FCPort SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.Operationalstatus
<> PreviousInstance.Operationalstatus

Table 410: Required CIM Elements (Continued)

Profile Classes & Associations Notes
586 Version 1.0.1

SNIA Storage Management Initiative Specification
B.6.12 Required Properties for CIM Elements

B.6.12.1 AllocatedFromStoragePool

B.6.12.2 BasedOn

B.6.12.3 Component

B.6.12.4 ComputerSystem- Metadata Controller

Table 411: Required Properties for AllocatedFromStoragePool

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override The reference to The
StoragePool.

Dependent ref override The reference to the logical
element that is the subsidiary
element.

SpaceConsumed uint64 Space Consumed from this Pool
(in megabytes

Table 412: Required Properties for BasedOn

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref override The reference to the source

Dependent ref override The reference to the destination

Table 413: Required Properties for Component

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override, key The reference to the collection

PartComponent ref override, key The reference to the member

Table 414: Required Properties for ComputerSystem - Metadata Controller

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

OperationalStatus uint16 Status of array

Name string key The identifier for the Array (eg IP
address or FC world wide name).

NameFormat string The format of the Name property.

Dedicated int16[] “blockserver”,
“metadatacontroller”

The use of this ComputerSystem
Version 1.0.1 587

SNIA Storage Management Initiative Specification
PrimaryOwnerContact string Optional

PrimaryOwnerName string Optional

Table 414: Required Properties for ComputerSystem - Metadata Controller (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
588 Version 1.0.1

SNIA Storage Management Initiative Specification
B.6.12.5 ComputerSystem- Translation Engine

B.6.12.6 ElementCapabilities

B.6.12.7 FCPort

Table 415: Required Properties for ComputerSystem - Translation Engine

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

OperationalStatus uint16 Status of array

Name string key The identifier for the Array (eg IP
address or FC world wide name).

NameFormat string The format of the Name property.

Dedicated int16[] “blockserver”,
“translationengine”

The use of this ComputerSystem

PrimaryOwnerContact string Optional

PrimaryOwnerName string Optional

Table 416: Required Properties for ElementCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

MangedElement ref override, key The reference to the source

Capabilities ref override, key The reference to the destination

Table 417: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User friendly name/caption for port.

OperationalStatus uint16 Status of device

DeviceID string key Opaque

PortType uint16 Used to indicate the type of the port (eg
N-port/NL-port)

PermanentAddress string The WWN of the port.

NetworkAddresses[] string The Fibre Channel address of the port
(optional)
Version 1.0.1 589

SNIA Storage Management Initiative Specification
Speed uint64 Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate..

Table 417: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
590 Version 1.0.1

SNIA Storage Management Initiative Specification
B.6.12.8 HostedCollection

B.6.12.9 HostedStoragePool

B.6.12.10 LogicalPortGroup

B.6.12.11 MemberOfCollection

B.6.12.12 ProtocolControllerForPort

Table 418: Required Properties from HostedCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key The portgroup

Dependent ref key The scoping system

Table 419: Required Properties from HostedStoragePool

Property/
Method

Type Qualifier/
Parameter

Description/Notes

PartComponent ref The storage pool

GroupComponent ref The scoping system

Table 420: Required Properties from LogicalPortGroup

Property/
Method

Type Qualifier/
Parameter

Description/Notes

InstanceID key just some random drivel to see if
things

Table 421: Required Properties for MemberOfCollection

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Collection ref override The reference to the collection

Member ref override The reference to the member

Table 422: Required Properties from ProtocolControllerForPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref The SCSIProtocolController for this
port

Dependent ref The port.

AccessPriority unit16 The priority of access through this
port for this ProtocolController
(optional)ProtocolControllerForPortl
Version 1.0.1 591

SNIA Storage Management Initiative Specification
B.6.12.13 ProtocolControllerForUnit

B.6.12.14 SCSIProtocolController

B.6.12.15 StorageCapabilities

Table 423: Required Properties from ProtocolControllerForUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref The protocol controller

Dependent ref The exposed logical unit.

DeviceNumber unit16 The Logical Unit number for this
Volume through this controller.

Table 424: Required Properties for SCSIProtocolController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User friendly name/caption for
port.

OperationalStatus uint16 Status of device

DeviceID string key Opaque

MaxUnitsControlled uint32 Maximum number of units
controlled by this controller

ConnectionRole uint16 Role of this controller (e.g.,
Initiator/Target)

ControllerNumber[] string The number by which the
Controller is known in the
system

Table 425: Required Properties from StorageCapabilities

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User friendly name/caption

ElementType uint16 Type of element this
capability applies to

InstanceID uint16 key

NoSinglePointOfFailure boolean

NoSinglePointOfFailureDefault boolean

DataRedundancyMin uint16

DataRedundancyMax uint16
592 Version 1.0.1

SNIA Storage Management Initiative Specification
DataRedundancyDefault uint16

PackageRedundancyMin uint16

PackageRedundancyMax uint16

PackageRedundancyDefault unit16

Table 425: Required Properties from StorageCapabilities (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 593

SNIA Storage Management Initiative Specification
B.6.12.16 StoragePool

B.6.12.17 StorageSetting

Table 426: Required Properties for StoragePool

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

InstanceID string key Opaque identifier

PoolID string req, maxlen(256) A unique name in the context of the
System that identifies this pool.

TotalManagedSpace uint64

AvailableManagedSpace unit64

Primordial boolean Defaults to false, true for the
primordial pools.

GetSupportedSizes () uint32 Method to get a list of supported
sizes for pool or volume creation

GetSupportedSizeRange () uint32 Method to get a range of supported
sizes for pool or volume creation

Table 427: Required Properties from StorageSetting

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string req User friendly name/caption

InstanceID uint16 key, req

DataRedundancyMin uint16

DataRedundancyMax uint16

DataRedundancyGoal uint16

PackageRedundancyM
in

uint16

PackageRedundancyM
ax

uint16

PackageRedundancyG
oal

unit16
594 Version 1.0.1

SNIA Storage Management Initiative Specification
B.6.12.18 StorageExtent

Table 428: Required Properties for StorageExtent

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Caption string maxlen(64) Short (one line)
description

Description string Longer description

ElementName string User Friendly name

InstallDate datetime

Name string maxlen (256)

SystemCreationClassName string maxlen(256), key Scoping System's
CreationClassName.

SystemName string maxlen(256), key Scoping System's Name.

CreationClassName string maxlen(256), key Name of the concrete
subclass

DeviceID string maxlen(64), key Unique identifying
information

Availability int16

LastErrorCode uint32

ErrorDescription string

ErrorCleared boolean

OtherIdentifyingInfo string[]

PowerOnHours uint64

TotalPowerOnHours uint64

IdentifyingDescriptions string[]

AdditionalAvailability uint16[]

MaxQuiesceTime uint64

DataOrganization uint16 Type of data organization
used.

Purpose string Free form string
describing the media
and/or its use.
Version 1.0.1 595

SNIA Storage Management Initiative Specification
Access uint16 Access describes
whether the media is
readable (value=1),
writable (value=2), or
both (value=3).
\"Unknown\" (0) and
\"Write Once\" (4) can
also be defined.

ErrorMethodology string ErrorMethodology is a
free-form string
describing the type of
error detection and
correction supported by
this StorageExtent.

BlockSize uint64 Size in bytes of the
blocks that form this
StorageExtent. If variable
block size, then the
maximum block size in
bytes should be
specified. If the block
size is unknown or if a
block concept is not valid
(for example, for
AggregateExtents,
Memory or LogicalDisks),
enter a 1.

NumberOfBlocks uint64 Total number of logically
contiguous blocks, of
size BlockSize, that form
this Extent. The total size
of the Extent can be
calculated by multiplying
BlockSize by
NumberOfBlocks. If the
BlockSize is 1, this
property is the total size
of the Extent.

Table 428: Required Properties for StorageExtent (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
596 Version 1.0.1

SNIA Storage Management Initiative Specification
ConsumableBlocks uint64 The maximum number of
blocks, of size BlockSize,
that are available for
consumption when
layering StorageExtents
using the BasedOn
association. This
property only has
meaning when this
StorageExtent is an
Antecedent reference in
a BasedOn relationship.
For example, a
StorageExtent could be
composed of 120 blocks.
However, the Extent itself
may use 20 blocks for
redundancy data. If
another StorageExtent is
BasedOn this Extent,
only 100 blocks would be
available to it. This
information ('100 blocks
is available for
consumption') is
indicated in the
ConsumableBlocks
property.

IsBasedOnUnderlyingRedundan
cy

boolean True indicates that the
underlying
StorageExtent(s)
participate in a
StorageRedundancyGro
up.

SequentialAccess boolean Boolean set to TRUE if
the Storage is
sequentially accessed by
a MediaAccessDevice. A
TapePartition is an
example of a sequentially
accessed StorageExtent.
StorageVolumes,
DiskPartitions and
LogicalDisks represent
randomly accessed
Extents.

Table 428: Required Properties for StorageExtent (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 597

SNIA Storage Management Initiative Specification
ExtentStatus[] uint16 StorageExtents have
additional status
information beyond that
captured in the
OperationalStatus and
other properties,
inherited from
ManagedSystemElement
. This additional
information (for example,
\"Protection Disabled\",
value=9) is captured in
the VolumeStatus
property.

NoSinglePointOfFailure boolean Indicates whether or not
there exists no single
point of failure.

DataRedundancy uint16 Number of complete
copies of data
maintained.

SpindleRedundancy uint16 How many disk spindles
can fail without data loss.

DeltaReservation uint16 Current value for Delta
reservation.

Table 428: Required Properties for StorageExtent (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
598 Version 1.0.1

SNIA Storage Management Initiative Specification
B.6.12.19 StorageVolume

B.6.12.20 SystemDevice

B.6.13 Optional Subprofiles

Table 429: Required Properties for StorageVolume

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string User Friendly name

Name string VPD Page 83 ID

NameFormat uint16 Format of Name property

ExtentStatus uint16[] Status of volume (Rebuild,spare
in use etc)

OperationalStatus unit[] Current general status of volume

DeviceID string Opaque ID

BlockSize uint64 Block size of Volume

NumberOfBlocks uint64 NUmber of Blocks (not size of
volume is BlockSize*
NumberOFBlocks)

IsBasedOnUnderlyingRedundancy boolean

NoSinglePointOfFailure boolean Current value of StorageSetting

DataRedundancy uint16 Current value of StorageSetting

PackageRedundancy uint16 Current value of StorageSetting

DeltaReservation uint16 Current value of StorageSetting

Table 430: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override System Reference

PartComponent ref override LogicalDevice Reference

Table 431: Optional Profiles or Subprofiles

Name Notes

Cluster Subprofile (p. 116)

Extra Capacity Set Subprofile (p. 121)

Access Points Subprofile (p. 113)

Software Subprofile (p. 145)
Version 1.0.1 599

SNIA Storage Management Initiative Specification
B.6.14 Cross-client Considerations

B.6.14.1 Mapping Volumes to disks (FC HBA, Virtualizer, Array)
The HBA provides volumes to host systems. The volumes are based on volumes being served by
other devices and finally can be mapped to physical disks. Between the host and the physical disk
storage systems can reorganize the data and added redundancy. This example describes how to
find the redundancy and physical disks behind a host volume.

The first step is to locate the host volume in the FC HBA profile. SLP can be used to find the
namespace for the HBA. A simple enumeration of volumes locates the volume instance. The
durable name for the volume can be determined and used to locate the source. To locate the source
SLP can be used to find all “block servers” (arrays, virtualization appliances). The source volume
can be found by enumerating the volumes on the block servers and matching the durable name to
the host volume. The AllocatedFromStoragePool and BasedOn associations can be used to
determine where the volume came from. In the case of a virtualization appliance, the
AllocatedFromStoragePool leads to a pool. In turn, all StorageExtents connected to the pool with
StoragePoolComponent could contain data from the host volume. Each Storage extent should be
followed back to the physical disks it is made of. The pool components are Volumes or
StorageExtents. If they are not volumes they can be traced back using BasedOn associations to a
volume, set of volumes, or in the case of an array to physical drives. The associations lead back to
Volumes durable names can be used again to find the namespace of the sources and associations
used to lead back to the source.

Location Subprofile (p. 142)

Pool Manipulation, Capabilities, and Settings
Subprofile (p. 178)

Job Control Subprofile (p. 172)

Copy Services Subprofile (p. 146)

LUN Masking and Mapping (p. 233)

LUN Creation Subprofile (p. 201)

Table 431: Optional Profiles or Subprofiles (Continued)

Name Notes
600 Version 1.0.1

SNIA Storage Management Initiative Specification
B.6.14.2 Virtualizer and Fabric interaction

B.6.14.3 Overview
In the case of fabric based out of band virtualization, the Virtualization Appliance may be
connected to a fabric using any media (e.g. Fibre Channel or IP) and translation engines may be
distributed in the fabric (running on fabric switches). As translation engines come up, they
register themselves with a directory service. The Virtualization Appliance can use SLP to lookup
this information to discover all the fabric hosted translation engines. The Metadata Controller
would typically be hosted on the Virtualization Appliance. Fabric management operations in
support of virtualization (such as zoning) can be performed by a management application either
through the Metadata Controller or through the fabric. In the case where the management access
point is the Metadata Controller, the Virtualization Appliance that hosts the Metadata Controller
could register its address with a directory service using SLP and with other mechanisms such as
the fabric’s platform database.

This section describes the role of fabric based zoning and fabric route discovery for virtualization.
It also discusses the approaches that can be used to associate objects from different providers and

Figure 103: Virtualizer/Fabric Interaction Overview

Client

Agent

Fabric -
Topology
Zoning
Security

AgentMetadata
Controller

AgentArray AgentTranslation
Engine
Version 1.0.1 601

SNIA Storage Management Initiative Specification
to understand the relationships between the different providers. HBAs, switches and storage
devices (e.g. storage arrays) will typically have their own agents supporting their respective
profiles and fabric services such as fabric route discovery, zoning and security. These require a
client management application to understand the cross provider associations and to traverse
through them.

For example, during fabric route discovery it is important for clients to know the logical
connectivity between switches, HBAs and storage devices. In the case of zoning, the client may
wish to know which HBA and storage device ports or LUNs are zoned together and to be able to set
up zones between HBAs and Translation Engines and between Translation Engines and physical
storage.
602 Version 1.0.1

SNIA Storage Management Initiative Specification
B.7 JBOD Profile

B.7.1 Description

The JBOD profile is intended to cover simple arrays of disk storage systems that consist only of
internal disk drives with a common power and chassis. The key classes are storage volumes
(visible to consumers), ports, and controllers.

The JBOD model is distinguished from other “Block Server” profiles by the ”JBOD” value in the
Dedicated property of ComputerSystem. That is, for JBODs the dedicated values would be “Block
Server” and “JBOD”.

B.7.2 Standard Dependencies

The JBOD profile is based on the following standards:

B.7.3 Profile Dependencies

The JBOD profile requires the Server Profile (p. 441).

B.7.4 CIM Server Requirements

B.7.4.1 Functional Profiles

B.7.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.

Table 432: JBOD Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF

Table 433: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None
Version 1.0.1 603

SNIA Storage Management Initiative Specification
B.7.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

B.7.5 Instance Diagrams

None.

B.7.6 Durable Names and Correlatable IDs of the Profile

B.7.6.1 Durable Names Exported
There are no durable names exported by this profile

B.7.6.2 Correlatable IDs Used
There are no correlatable IDs defined for this profile

B.7.7 Methods

There are no methods defined for this profile

B.7.8 Client Considerations

There are no client considerations defined for this profile

B.7.9 Recipes

There are no recipes defined for this profile

B.7.10 Instrumentation Requirements

There are no instrumentation requirements defined for this profile
604 Version 1.0.1

SNIA Storage Management Initiative Specification
B.7.11 Required CIM Elements

B.7.12 Required Properties for CIM Elemenets

B.7.12.1 ComputerSystem

Table 434: Required CIM Elements

Profile Classes & Associations Notes

ComputerSystem (p. 605)

ComputerSystemPackage (p. 608)

FCPort (p. 608)

ConcreteIdentity (p. 611)

ProtocolControllerForUnit (p. 613)

SCSIProtocolController (p. 611) (target)

ProtocolControllerForUnit (p. 613) (port)

SystemDevice (p. 613)

Packages

Physical Package Package (p. 103).

Associated Indications

Change in status of ComputerSystem SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Creation/Deletion of FC ports SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort
SELECT * FROM CIM_InstDeletion WHERE SourceInstance
ISA CIM_FCPort

Creation/Deletion of
ProtocolControllerForUnit

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit
SELECT * FROM CIM_InstDeletion WHERE SourceInstance
ISA CIM_ProtocolControllerForUnit

Table 435: Required Properties for ComputerSystem

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Caption string maxlen(64) Short (one line) description

Description string Longer description

ElementName string User Friendly name

OperationalStatus uint16

CreationClassName string maxlen(256), key Name of Class
Version 1.0.1 605

SNIA Storage Management Initiative Specification
Name string maxlen(256), key

NameFormat string (override
“nameformat”)

The ComputerSystem object and
its derivatives are Top-level
Objects of CIM. They provide the
scope for numerous components.
Having unique System keys is
required. A heuristic is defined to
create the ComputerSystem Name
to attempt to always generate the
same Name, independent of
discovery protocol. This prevents
inventory and management
problems where the same asset or
entity is discovered multiple times,
but cannot be resolved to a single
object. Use of the heuristic is
optional, but recommended.
The NameFormat property
identifies how the ComputerSystem
Name is generated, using a
heuristic. The heuristic is outlined,
in detail, in the CIM V2 System
Model spec. It assumes that the
documented rules are traversed in
order, to determine and assign a
Name. The NameFormat Values
list defines the precedence order
for assigning the ComputerSystem
Name. Several rules do map to the
same Value.
Note that the ComputerSystem
Name calculated using the heuristic
is the System's key value. Other
names can be assigned and used
for the ComputerSystem, that
better suit a business, using
Aliases.

OtherIdentifyingInfo string[] An array of free-form strings
providing explanations and details
behind the entries in the
OtherIdentifying Info array. Note,
each entry of this array is related to
the entry in OtherIdentifyingInfo
that is located at the same index.

Table 435: Required Properties for ComputerSystem (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
606 Version 1.0.1

SNIA Storage Management Initiative Specification
IdentifyingDescription string[] An array of free-form strings
providing explanations and details
behind the entries in the
OtherIdentifying Info array. Note,
each entry of this array is related to
the entry in OtherIdentifyingInfo
that is located at the same index.

Dedicated int16[] “blockserver” Enumeration indicating whether the
ComputerSystem is a special-
purpose System (ie, dedicated to a
particular use), versus being
'general purpose'. For example,
one could specify that the System
is dedicated to \"Print\" (value=11)
or acts as a \"Hub\" (value=8). ||A
clarification is needed with respect
to the value 17 (\"Mobile User
Device\"). An example of a
dedicated user device is a mobile
phone or barcode scanner in a
store that communicates via radio
frequency. These systems are
quite limited in functionality and
programmability, and are not
considered 'general purpose'
computing platforms. Alternately,
an example of a mobile system that
is 'general purpose' (i.e., is NOT
dedicated) is a hand-held
computer. Although limited in its
programmability, new software can
be downloaded and its functionality
expanded by the user.

OtherDedicatedDescription string A string describing how or why the
system is dedicated when the
Dedicated array includes the value
2, \"Other\".

ResetCapability uint16 If enabled (value = 4), the
ComputerSystem can be reset via
hardware (e.g. the power and reset
buttons). If disabled (value = 3),
hardware reset is not allowed. In
addition to Enabled and Disabled,
other Values for the property are
also defined - \"Not Implemented\"
(5), \"Other\" (1) and \"Unknown\"
(2).

Table 435: Required Properties for ComputerSystem (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 607

SNIA Storage Management Initiative Specification
B.7.12.2 ComputerSystemPackage

B.7.12.3 FCPort

Table 436: Required Properties for ComputerSystemPackage

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Antecedent ref key The reference to the PhysicalPackage(s)
that realize a UnitaryComputerSystem.

Dependent ref key The reference to the
UnitaryComputerSystem.

PlatformGUID string A Gloabally Unique Identifier for the
System's Package.

Table 437: Required Properties for FCPort

Property/
Method

Type Qualifier/
Parameter

Description/Notes

ElementName string

OperationalStatus uint16

DeviceID string key,
maxlen (64)

Speed uint64 units ("bits per
second")

Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

MaxSpeed uint64 The max speed of the Port in Bits per
Second.
FC-FS Port Speed Capabilities

PortType uint16 override

OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").

PortNumber uint64 NetworkPorts are often numbered
relative to either a logical modules or a
network element.

LinkTechnology uint16 An enumeration of the types of links.
When set to 1 (\"Other\"), the related
property OtherLinkTechnology
contains a string description of the
link's type.
608 Version 1.0.1

SNIA Storage Management Initiative Specification
OtherLinkTechnology uint16 A string value describing
LinkTechnology when it is set to 1,
\"Other\".

PermanentAddress string maxlen (64) PermanentAddress defines the
network address hardcoded into a port.
This 'hardcoded' address may be
changed via firmware upgrade or
software configuration. If so, this field
should be updated when the change is
made. PermanentAddress should be
left blank if no 'hardcoded' address
exists for the NetworkAdapter.||Port
WWN (InfiniBand: Port GUID)

NetworkAddresses[] string maxlen (64),
arraytype
("indexed")

An array of strings indicating the
network addresses for the port.
FCID (InfiniBand: LIDs)
FC-FS Address Identifier

Speed uint64 override Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

FullDuplex boolean Boolean indicating that the port is
operating in full duplex mode.

AutoSense boolean A boolean indicating whether the
NetworkPort is capable of
automatically determining the speed or
other communications characteristics
of the attached network media.

SupportedMaximumTransm
issionUnit

uint64 The maximum transmission unit (MTU)
that can be supported."), Units
("Bytes")

ActiveMaximumTransmissio
nUnit

uint64 The active or negotiated maximum
transmission unit (MTU) that can be
supported.

Table 437: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
Version 1.0.1 609

SNIA Storage Management Initiative Specification
PortType string FC-GS Port.Type
The specific mode currently enabled
for the Port. The values: \"N\" = Node
Port, \"NL\" = Node Port supporting FC
arbitrated loop, \"E\" = Expansion Port
connecting fabric elements (for
example, FC switches), \"F\" = Fabric
(element) Port, \"FL\" = Fabric
(element) Port supporting FC arbitrated
loop, and \"B\" = Bridge Port.
PortTypes are defined in the ANSI X3
standards. When set to 1 (\"Other\"),
the related property OtherPortType
contains a string description of the
port's type.
PortType is defined to force consistent
naming of the 'type' property in
subclasses and to guarantee unique
enum values for all instances of
NetworkPort. A range of values,
DMTF_Reserved, has been defined
that allows subclasses to override and
define their specific port types.

SupportedCOS uint16[] FC-GS Class Of Service
An array of integers indicating the Fibre
Channel Classes of Service that are
supported. The active COS are
indicated in ActiveCOS.

ActiveCOS uint16[] FC-GS Class Of Service
An array of integers indicating the
Classes of Service that are active. The
Active COS is indicated in ActiveCOS.

SupportedFC4Types uint16[] FC-GS FC4-TYPEs
An array of integers indicating the Fibre
Channel FC-4 protocols supported.
The protocols that are active and
running are indicated in the
ActiveFC4Types property.

ActiveFC4Types uint16[] FC-GS FC4-TYPE
An array of integers indicating the Fibre
Channel FC-4 protocols currently
running. A list of all protocols
supported is indicated in the
SupportedFC4Types property.

Table 437: Required Properties for FCPort (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
610 Version 1.0.1

SNIA Storage Management Initiative Specification
B.7.12.4 ConcreteIdentity

B.7.12.5 SCSIProtocolController

Table 438: Required Properties for ConcreteIdentity

Property/
Method

Type Qualifier/
Parameter

Description/
Notes

SystemElement ref key, req

SameElement ref key, req

Table 439: Required Properties for SCSIProtocolController

Property/
Method

Type Qualifier/
Parameter

Description/Notes

Caption string maxlen(64) Short (one line) description

Description string Longer description

ElementName string User Friendly name

InstallDate datetime

OperationalStatus uint16

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DeviceID string maxlen(64), key unique identifying information

PowerManagementSupported boolean

PowerManagementCapabilities int16[]

Availability int16

EnabledState int16

LastErrorCode uint32

ErrorDescription string

ErrorCleared boolean

OtherIdentifyingInfo string[]

PowerOnHours uint64

TotalPowerOnHours uint64

IdentifyingDescriptions string[]

AdditionalAvailability uint16[]

MaxQuiesceTime uint64
Version 1.0.1 611

SNIA Storage Management Initiative Specification
TimeOfLastReset datetime Time of last reset of the
Controller.

ProtocolSupported uint16 The protocol used by the
Controller to access
'controlled' Devices.

MaxNumberControlled uint32 Maximum number of directly
addressable entities
supported by this Controller.
A value of 0 should be used if
the number is unknown or
unlimited.

ProtocolDescription string A free form string providing
more information related to
the ProtocolSupported by the
Controller.

ProtectionManagement uint16 An integer enumeration
indicating whether or not the
SCSIProtocolController
provides redundancy or
protection against device
failures.

MaxDataWidth uint32 Maximum data width (in bits)
supported by the
SCSIProtocolController.

MaxTransferRate uint64 Maximum transfer rate (in
Bits per Second) supported
by the
SCSIProtocolController.

ControllerTimeouts uint32 Number of
SCSIProtocolController
timeouts that have occurred
since the TimeOfLastReset.

SignalCapabilities[] uint16 Signal capabilities that can be
supported by the
SCSIProtocolController. For
example, the Controller may
support \"Single Ended\" and
\"Differential\". In this case,
the values 3 and 4 would be
written to the
SignalCapabilities array.

Table 439: Required Properties for SCSIProtocolController (Continued)

Property/
Method

Type Qualifier/
Parameter

Description/Notes
612 Version 1.0.1

SNIA Storage Management Initiative Specification
B.7.12.6 ProtocolControllerForUnit

B.7.12.7 SystemDevice

B.7.13 Optional Subprofiles

Table 440: Required Properties for ProtocolControllerForUnit

Property/
Method

Type Qualifier/
Parameter

Description/Notes

NegotiatedSpeed unit64

NegotiatedDataWidth unit32

Dependent ref override LogicalDevice Reference

AccessState unit16

TimeOfDeviceReset datetime

NumberOfHardResets unit32

NumberOfSoftResets unit32

Antecedent ref override SCSIProtocolController
Reference

DeviceNumber string Formatted as uppercase
hexadecimal digits, with a
prefix of “0x”.

Table 441: Required Properties for SystemDevice

Property/
Method

Type Qualifier/
Parameter

Description/Notes

GroupComponent ref override System Reference

PartComponent ref override LogicalDevice Reference

Table 442: Optional Profiles or Subprofiles

Name Notes

Cluster Subprofile (p. 116)

Physical Package Package (p.
103)

Access Points Subprofile (p. 113)

Location Subprofile (p. 142)

Disk Drive Subprofile (p. 126)
Version 1.0.1 613

SNIA Storage Management Initiative Specification
Annex C: (Informative) Mapping CIM Objects to SNMP MIB Structures

C.1 Purpose of this appendix
In order to encourage adoption of the WBEM initiative, its associated data model (CIM), protocol
(xmlCIM), and profiles (described in previous sections of this specification), the Storage Media
Library (SML) workgroup defined a means of mapping CIM objects to SNMP MIB objects, or
“fields.” At the time of this writing, SNMP (Simple Network Management Protocol) is the
dominant non-proprietary network management protocol used by the storage devices described
above. This “CIM-to-MIB” mapping methodology has been successfully used by members of SNIA-
SML to demonstrate – at minimal cost in development time -- WBEM-based interoperability in
“plugfests” and industry demonstrations such as Storage Networking World.

Details of the SML workgroups’ “CIM-to-MIB” mapping methodology are included in this
specification in order to:

• demonstrate that a standard path of backward compatibility is obtainable between WBEM
and SNMP-based management paradigms,

• document one successful method of CIM-to-MIB mapping,

• recommend this method as the standard CIM-to-MIB mapping method in order to avoid a
proliferation of deviant “de facto standards”, and

• allow SNIA member companies outside the SML workgroup to benefit from earlier experience
and work.

C.2 CIM-to-MIB Mapping Overview
CIM is an object-based modelling schema that supports all common object-oriented principles,
including abstract class objects, instance objects, inheritance, single- and multiple-association,
aggregation, properties, methods, and qualifiers. In contrast, SNMP’s ASN.1-based modelling
schema is strictly hierarchical, involving such structures as nested parent and child nodes, and
scalar and tabular fields. While unique CIM objects are typically referenced by parent class name
(or “Creation Class Name”) and key properties, SNMP “objects” – actually singleton “fields” – are
typically referenced by an Object Identifier (OID) that points to their position in the SNMP
Management Information Base (MIB) hierarchy or “tree.” (In the case of tabular fields, additional
indexes are appended to a base OID to identify unique instances of information.)

The task of any CIM-to-MIB mapping methodology is primarily to create a one-to-one mapping
between object-oriented information and tree-based hierarchical information. Naming constraints
within the CIM and MIB domains must also be adhered to in a way that prevents ambiguities in
uniquely identifying and referencing information, particularly in the SNMP/MIB domain.

Therefore, the mapping methodology described here provides the following:

• A description of mapping CIM data – classes, instances, properties, associations – into an
SNMP format involving nodes, fields, and tables

• A naming convention in the SNMP/MIB domain that allows for unambiguous identification of
the original CIM data

• A data type mapping that allows common CIM data to be represented by existing ASN.1 data
types
614 Version 1.0.1

SNIA Storage Management Initiative Specification
C.3 CIM-to-MIB Mapping Methodology
Each subsection below specifies a method for mapping a particular CIM structure into an
equivalent SNMP MIB structure. In each case, an SNMP/MIB domain naming convention is also
called out. Finally, a select set of data type mappings between CIM and ASN.1 is made. Examples
in each subsection refer to the draft SML example MIB at the end of this appendix.

C.3.1 Mapping CIM child classes to SNMP nodes

SNMP nodes or groups can be used to CIM child classes. In this methodology, the names for such
nodes are a concatenation of the CIM class name and the word "Group." For example, the CIM
Chassis class would be represented in a MIB under a node named chassisGroup.

C.3.2 Mapping CIM properties to SNMP scalar fields

Scalar SNMP fields can be used to model CIM properties. In this methodology, the names for such
fields are a concatenation of the SNMP node name, a dash ("-") and the CIM property name. This
mapping method applies to both inherited and non-inherited properties. For example, the Name
property inherited by a StorageLibrary (sub)class from ManagedSystemElement would be
represented in a MIB under the storageLibraryGroup, and would therefore be called
storageLibrary-Name.

C.3.3 Mapping multiple instances of CIM classes to SNMP tables

SNMP tables can be used to model multiple instances of CIM classes. For example, there could be
several instances of MediaAccessDevice in a real implementation of the a storage profile. In this
methodology, these instances are grouped together in an SNMP table. Such tables then consist of
the following parts: a Table node, an Entry node, an Index field, an optional ObjectType field, and
tabular fields representing properties from CIM classes. A "number of" field is also associated with
all tables to allow applications to quickly determine the number of entries in a table and therefore
determine the number of CIM instances modeled. See the SNIA-SML MIB at the end of this
appendix for examples.

C.3.4 Grouping of multiple subclasses into a single SNMP table

In some cases, a CIM parent class has several children, each of which has few or no unique
properties. MediaAccessDevice is a good example of this case. In order to keep a MIB reasonably
sized, the multiple subclasses of MediaAccessDevice could be grouped (in a MIB) under a single
mediaAccessTypeGroup in a single mediaAccessDeviceTable. The non-CIM ObjectType field in the
MIB is then used to specify which subclass is being represented by a particular row in this table.
See the SNIA-SML MIB at the end of this appendix for examples.

C.3.5 Mapping CIM data types into SNMP types and textual conventions

Several data types defined in CIM MOFs have been mapped to SNMP data types and textual
conventions. The following mappings between CIM data types and SNMP data types have been
made:

Table 443: CIM/SNMP Data Type Mapping

CIM data type SNMP data type

string DisplayString

boolean INTEGER enumeration

datetime OCTET STRING (using CimDataType below)
Version 1.0.1 615

SNIA Storage Management Initiative Specification
The following ASN.1 "textual conventions" provide additional detail on CIM data types mapped to
SNMP data types:

UShortReal ::= INTEGER (0..'ffff'h)
-- This textual convention can be used to represent short
-- unsigned 'real' numbers. Using this variable type,
-- a 3 digit number with 2 decimal places (xxx.xx)
-- can be represented. For example, 321.45 would be
-- represented as 32145"

CimDateTime ::= OCTET STRING (SIZE (24))
-- This textual convention can be used to represent a date
-- and time using the CIM DateTime convention. The bytes are
-- as follows:

-- octets contents range
-- ====== ======== =====
-- 1-4 year 0000-9999
-- 5-6 month 01-12
-- 7-8 day 01-31
-- 9-10 hour 00-23
-- 11-12 minute 00-59
-- 13-14 second 00-59
-- 15-20 microseconds 000000-999999
-- 21 sign '+' or '-'
-- 22-24 UTC offset in minutes 000-839

-- For example, Monday, May 25, 1998, at 1:30:15 PM EST would be
-- represented as 19980525133015000000-300

-- Note that values must be zero-padded so that the entire
-- string is always the same 25-character length. Fields that
-- are not significant can be replaced with asterisk characters"

UINT64 ::= OCTET STRING (SIZE (8))
-- This textual convention can be used to represent 64-bit

enumerated values INTEGER enumeration

Uint64 OCTET STRING (using UINT64 below)

Uint32 INTEGER (using UINT32 below)

Uint64 INTEGER (using UINT16 below

uint8 INTEGER (unranged)

real32 INTEGER (using UShortReal below)

Table 443: CIM/SNMP Data Type Mapping (Continued)

CIM data type SNMP data type
616 Version 1.0.1

SNIA Storage Management Initiative Specification
-- numbers using the OCTET STRING type. SNMPv2 supports a
-- Counter64 type, but there is no C-language mapping for a
-- 64-bit variable that's much better than an array of 8 bytes

UINT32 ::= INTEGER (0..'7fffffff'h)
UINT16 ::= INTEGER (0..'ffff'h)

For CIM data types not listed here, no specific mappings have been made to SNMP for the
Minimal MIB. See the SNIA-SML MIB at the end of this appendix for examples.

C.3.6 Mapping CIM associations to SNMP index-keyed fields

Associations between CIM classes can be explicitly modeled in a MIB using tables indexes as
reference points. For example, several instances of MediaAccessDevices can be supported in a
MIB, as can several instances of SoftwareElement. Both of these classes are represented by tables
in a MIB, and both tables have their own indexes. A CIM association between SoftwareElement
and MediaAccessDevice -- called DeviceSoftware -- is modeled in a MIB by a field named
"softwareElement-DeviceSoftware-LogicalDeviceAssociationId". This MIB field holds the SNMP
table index of the MediaAccessDevice with which an instance of SoftwareElement is associated.
Note that this association is modeled as being unidirectional: from SoftwareElement to
MediaAccessDevice, not vice versa. Users of this methodology have the option of modeling
unidirectional or bidirectional associations in this way. See the SNIA-SML MIB at the end of this
appendix for examples.

C.3.7 Implied CIM associations and aggregations not in the MIB

In most cases, CIM associations and aggregations are not explicitly modeled as SNMP MIB
structures. Instead, these "implied" associations and aggregations are expected to be "filled in" by
a CIM provider supporting that profile (and MIB). For example, in the Tape Library profile,
multiple classes are connected with the CIM StorageLibrary class. In CIM, StorageLibrary, which
is a child class of System, is connected with several LogicalDevices (like MediaAccessDevice) via
the an association called SystemDevice. The SystemDevice association would not have to be
explicitly modeled in a MIB, though it is included in a CIM profile. A provider supporting this
profile should return valid information about instances of SystemDevice even though there are no
MIB fields describing the association. In short, most CIM classes modeled in a MIB are assumed to
be connected to one other -- by implicit associations or aggregations -- because they all "exist" on
the same SNMP agent. See the SNIA-SML MIB at the end of this appendix for examples.

C.3.8 Selective mapping of inherited CIM properties

As has been mentioned above, CIM child classes that are modeled in a MIB do not, in most cases,
inherit all properties or associations from their CIM parent classes. When mapping a CIM profile
to an SNMP MIB, no specifications or restrictions are made as to which properties are inherited by
particular child classes (in the MIB representation) and which are not. Users of this methodology
should include in their MIB only those CIM properties that are deemed critical to providers and
clients.

C.4 Example Mapping
The following example illustrates the SNIA-SML MIB generated using this CIM-to-MIB mapping
methodology.

-- SML MIB Rev 1.11
-- ASN.1 code created using dot2asn
Version 1.0.1 617

SNIA Storage Management Initiative Specification
-- by Jeff Bain
-- Hewlett-Packard, Storage Systems Division
-- Greeley, CO
-- jeff_bain@hp.com

SML-MIB
DEFINITIONS ::= BEGIN

IMPORTS
OBJECT-TYPE

FROM RFC-1212
enterprises

FROM RFC1155-SMI
DisplayString

FROM RFC1213-MIB
;

-- Textual Conventions

UShortReal ::= INTEGER (0..'ffff'h)
-- This textual convention can be used to represent short
-- unsigned 'real' numbers. Using this variable type,
-- a 3 digit number with 2 decimal places (xxx.xx)
-- can be represented. For example, 321.45 would be
-- represented as 32145"

CimDateTime ::= OCTET STRING (SIZE (24))
-- This textual convention can be used to represent a date
-- and time using the CIM DateTime convention. The bytes are
-- as follows:

-- octetscontents range
-- ===================
-- 1-4 year 0000-9999
-- 5-6 month 01-12
-- 7-8 day 01-31
-- 9-10 hour 00-23
-- 11-12 minute 00-59
-- 13-14 second 00-59
-- 15-20 microseconds000000-999999
-- 21 sign '+' or '-'
-- 22-24 UTC offset in minutes000-839

-- For example, Monday, May 25, 1998, at 1:30:15 PM EST would be
-- represented as 19980525133015000000-300

-- Note that values must be zero-padded so that the entire
618 Version 1.0.1

SNIA Storage Management Initiative Specification
-- string is always the same 25-character length. Fields that
-- are not significant can be replaced with asterisk characters"

UINT64 ::= OCTET STRING (SIZE (8))
-- This textual convention can be used to represent 64-bit
-- numbers using the OCTET STRING type. SNMPv2 supports a
-- Counter64 type, but there is no C-language mapping for a
-- 64-bit variable that's much better than an array of 8 bytes

UINT32 ::= INTEGER (0..'7fffffff'h)
UINT16 ::= INTEGER (0..'ffff'h)
-- MIB Fields

smlRoot OBJECT IDENTIFIER ::= { experimental 202 }

smlMibVersion OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..4))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { smlRoot 1 }

smlCimVersion OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..4))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { smlRoot 2 }

productGroup
OBJECT IDENTIFIER
::= { smlRoot 3 }

product-Name OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { productGroup 1 }

product-IdentifyingNumber OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
Version 1.0.1 619

SNIA Storage Management Initiative Specification
DESCRIPTION
"Description here"

::= { productGroup 2 }

product-Vendor OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { productGroup 3 }

product-Version OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { productGroup 4 }

chassisGroup
OBJECT IDENTIFIER

::= { smlRoot 4 }

chassis-Manufacturer OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { chassisGroup 1 }

chassis-Model OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { chassisGroup 2 }

chassis-SerialNumber OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
620 Version 1.0.1

SNIA Storage Management Initiative Specification
::= { chassisGroup 3 }

chassis-LockPresent OBJECT-TYPE
SYNTAXINTEGER {

unknown (0),
true (1),
false (2) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { chassisGroup 4 }

chassis-SecurityBreach OBJECT-TYPE
SYNTAXINTEGER {

unknown (0),
other (1),
noBreach (2),
breachAttempted (3) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { chassisGroup 5 }

chassis-IsLocked OBJECT-TYPE
SYNTAXINTEGER {

unknown (0),
true (1),
false (2) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { chassisGroup 6 }

storageLibraryGroup
OBJECT IDENTIFIER
::= { smlRoot 5 }

storageLibrary-Name OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { storageLibraryGroup 1 }
Version 1.0.1 621

SNIA Storage Management Initiative Specification
storageLibrary-Description OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { storageLibraryGroup 2 }

storageLibrary-Caption OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { storageLibraryGroup 3 }

storageLibrary-Status OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..10))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { storageLibraryGroup 4 }

storageLibrary-InstallDate OBJECT-TYPE
SYNTAXCimDateTime
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { storageLibraryGroup 5 }

mediaAccessDeviceGroup
OBJECT IDENTIFIER
::= { smlRoot 6 }

numberOfMediaAccessDevices OBJECT-TYPE
SYNTAXINTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { mediaAccessDeviceGroup 1 }

mediaAccessDeviceTable OBJECT-TYPE
SYNTAXSEQUENCE OF TableInfo-1
622 Version 1.0.1

SNIA Storage Management Initiative Specification
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"Description here"
::= { mediaAccessDeviceGroup 2 }

mediaAccessDeviceEntry OBJECT-TYPE
SYNTAXTableInfo-1
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"Description here"
INDEX { mediaAccessDeviceIndex }
::= { mediaAccessDeviceTable 1 }

TableInfo-1 ::= SEQUENCE
{

mediaAccessDeviceIndex INTEGER,
mediaAccessDeviceObjectType INTEGER,
mediaAccessDevice-Name DisplayString,
mediaAccessDevice-Status DisplayString,
mediaAccessDevice-Availability INTEGER,
mediaAccessDevice-NeedsCleaning INTEGER

}

mediaAccessDeviceIndex OBJECT-TYPE
SYNTAXINTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { mediaAccessDeviceEntry 1 }

mediaAccessDeviceObjectType OBJECT-TYPE
SYNTAXINTEGER {

unknown (0),
wormDrive (1),
magnetoOpticalDrive (2),
tapeDrive (3),
dvdDrive (4),
cdromDrive (5) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { mediaAccessDeviceEntry 2 }
Version 1.0.1 623

SNIA Storage Management Initiative Specification
mediaAccessDevice-Name OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { mediaAccessDeviceEntry 3 }

mediaAccessDevice-Status OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..10))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { mediaAccessDeviceEntry 4 }

mediaAccessDevice-Availability OBJECT-TYPE
SYNTAXINTEGER {

unknown (0),
other (1),
runningFullPower (2),
warning (3),
inTest (4),
notApplicable (5),
powerOff (6),
offLine (7),
offDuty (8),
degraded (9),
notInstalled (10),
installError (11),
powerSaveUnknown (12),
powerSaveLowPowerMode (13),
powerSaveStandby (14),
powerCycle (15),
powerSaveWarning (16),
paused (17),
notReady (18) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { mediaAccessDeviceEntry 5 }

mediaAccessDevice-NeedsCleaning OBJECT-TYPE
SYNTAXINTEGER {

unknown (0),
true (1),
624 Version 1.0.1

SNIA Storage Management Initiative Specification
false (2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { mediaAccessDeviceEntry 6 }

physicalMediaGroup
OBJECT IDENTIFIER
::= { smlRoot 7 }

numberOfPhysicalMedias OBJECT-TYPE
SYNTAXINTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaGroup 1 }

physicalMediaTable OBJECT-TYPE
SYNTAXSEQUENCE OF TableInfo-2
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaGroup 2 }

physicalMediaEntry OBJECT-TYPE
SYNTAXTableInfo-2
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"Description here"
INDEX { physicalMediaIndex }
::= { physicalMediaTable 1 }

TableInfo-2 ::= SEQUENCE
{

physicalMediaIndex INTEGER,
physicalMediaObjectType INTEGER,
physicalMedia-Removable INTEGER,
physicalMedia-Replaceable INTEGER,
physicalMedia-HotSwappable INTEGER,
physicalMedia-Capacity UINT64,
physicalMedia-MediaType INTEGER,
physicalMedia-MediaDescription DisplayString,
physicalMedia-CleanerMedia INTEGER,
Version 1.0.1 625

SNIA Storage Management Initiative Specification
physicalMedia-DualSided INTEGER,
physicalMedia-PhysicalLabel DisplayString

}

physicalMediaIndex OBJECT-TYPE
SYNTAXINTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaEntry 1 }

physicalMediaObjectType OBJECT-TYPE
SYNTAXINTEGER {

tape (0),
other (1) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaEntry 2 }

physicalMedia-Removable OBJECT-TYPE
SYNTAXINTEGER {

unknown (0),
true (1),
false (2) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaEntry 3 }

physicalMedia-Replaceable OBJECT-TYPE
SYNTAXINTEGER {

unknown (0),
true (1),
false (2) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaEntry 4 }

physicalMedia-HotSwappable OBJECT-TYPE
SYNTAXINTEGER {

unknown (0),
626 Version 1.0.1

SNIA Storage Management Initiative Specification
true (1),
false (2) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaEntry 5 }

physicalMedia-Capacity OBJECT-TYPE
SYNTAXUINT64
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaEntry 6 }

physicalMedia-MediaType OBJECT-TYPE
SYNTAXINTEGER {

unknown (0),
other (1),
tape (2),
qic (3),
ait (4),
dtf (5),
dat (6),
eightmmTape (7),
nineteenmmTape (8),
dlt (9),
halfInchMO (10),
catridgeDisk (11),
jazDisk (12),
zipDisk (13),
syQuestDisk (14),
winchesterDisk (15),
cdRom (16),
cdRomXA (17),
cdI (18),
cdRecordable (19),
dvd (20),
dvdRWPlus (21),
dvdRAM (22),
dvdROM (23),
dvdVideo (24),
divx (25),
cdRW (26),
cdDA (27),
cdPlus (28),
Version 1.0.1 627

SNIA Storage Management Initiative Specification
dvdRecordable (29),
dvdRW (30),
dvdAudio (31),
dvd5 (32),
dvd9 (33),
dvd10 (34),
dvd18 (35),
moRewriteable (36),
moWriteOnce (37),
moLIMDOW (38),
phaseChangeWO (39),
phaseChangeRewriteable (40),
phaseChangeDualRewriteable (41),
ablativeWriteOnce (42),
nearField (43),
miniQic (44),
travan (45),
eightmmMetal (46),
eightmmAdvanced (47),
nctp (48),
ltoUltrium (49),
ltoAccelis (50),
tape9Track (51),
tape18Track (52),
tape36Track (53),
magstar3590 (54),
magstarMP (55),
d2Tape (56),
dstSmall (57),
dstMedium (58),
dstLarge (59) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaEntry 7 }

physicalMedia-MediaDescription OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaEntry 8 }

physicalMedia-CleanerMedia OBJECT-TYPE
SYNTAXINTEGER {
628 Version 1.0.1

SNIA Storage Management Initiative Specification
unknown (0),
true (1),
false (2) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaEntry 9 }

physicalMedia-DualSided OBJECT-TYPE
SYNTAXINTEGER {

unknown (0),
true (1),
false (2) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaEntry 10 }

physicalMedia-PhysicalLabel OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalMediaEntry 11 }

physicalPackageGroup
OBJECT IDENTIFIER
::= { smlRoot 8 }

numberOfPhysicalPackages OBJECT-TYPE
SYNTAXINTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalPackageGroup 1 }

physicalPackageTable OBJECT-TYPE
SYNTAXSEQUENCE OF TableInfo-3
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalPackageGroup 2 }
Version 1.0.1 629

SNIA Storage Management Initiative Specification
physicalPackageEntry OBJECT-TYPE
SYNTAXTableInfo-3
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"Description here"
INDEX { physicalPackageIndex }
::= { physicalPackageTable 1 }

TableInfo-3 ::= SEQUENCE
{

physicalPackageIndex INTEGER,
physicalPackage-Manufacturer DisplayString,
physicalPackage-Model DisplayString,
physicalPackage-SerialNumber DisplayString,
physicalPackage-Realizes-MediaAccessDeviceIndex INTEGER

}

physicalPackageIndex OBJECT-TYPE
SYNTAXINTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalPackageEntry 1 }

physicalPackage-Manufacturer OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalPackageEntry 2 }

physicalPackage-Model OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalPackageEntry 3 }

physicalPackage-SerialNumber OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
630 Version 1.0.1

SNIA Storage Management Initiative Specification
DESCRIPTION
"Description here"

::= { physicalPackageEntry 4 }

physicalPackage-Realizes-MediaAccessDeviceIndex OBJECT-TYPE
SYNTAXINTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { physicalPackageEntry 5 }

softwareElementGroup
OBJECT IDENTIFIER
::= { smlRoot 9 }

numberOfSoftwareElements OBJECT-TYPE
SYNTAXINTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementGroup 1 }

softwareElementTable OBJECT-TYPE
SYNTAXSEQUENCE OF TableInfo-4
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementGroup 2 }

softwareElementEntry OBJECT-TYPE
SYNTAXTableInfo-4
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"Description here"
INDEX { softwareElementIndex }
::= { softwareElementTable 1 }

TableInfo-4 ::= SEQUENCE
{

softwareElementIndex INTEGER,
softwareElement-Name DisplayString,
softwareElement-Version DisplayString,
softwareElement-SoftwareElementID DisplayString,
Version 1.0.1 631

SNIA Storage Management Initiative Specification
softwareElement-Manufacturer DisplayString,
softwareElement-BuildNumber DisplayString,
softwareElement-SerialNumber DisplayString,
softwareElement-CodeSet DisplayString,
softwareElement-IdentificationCode DisplayString,
softwareElement-LanguageEdition DisplayString,
softwareElement-Associations OBJECT IDENTIFIER,
softwareElement-DeviceSoftware-LogicalDeviceAssociation-ObjectType INTEGER,
softwareElement-DeviceSoftware-LogicalDeviceAssociationId INTEGER

}

softwareElementIndex OBJECT-TYPE
SYNTAXINTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementEntry 1 }

softwareElement-Name OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementEntry 2 }

softwareElement-Version OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementEntry 3 }

softwareElement-SoftwareElementID OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementEntry 4 }

softwareElement-Manufacturer OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..64))
ACCESS read-only
DESCRIPTIONSTATUSmandatory
632 Version 1.0.1

SNIA Storage Management Initiative Specification
"Description here"
::= { softwareElementEntry 5 }

softwareElement-BuildNumber OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementEntry 6 }

softwareElement-SerialNumber OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementEntry 7 }

softwareElement-CodeSet OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementEntry 8 }

softwareElement-IdentificationCode OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementEntry 9 }

softwareElement-LanguageEdition OBJECT-TYPE
SYNTAXDisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementEntry 10 }

softwareElement-Associations OBJECT-TYPE
SYNTAXOBJECT IDENTIFIER
ACCESS not-accessible
STATUS mandatory
Version 1.0.1 633

SNIA Storage Management Initiative Specification
DESCRIPTION
"Description here"

::= { softwareElementEntry 11 }

softwareElement-DeviceSoftware-LogicalDeviceAssociation-ObjectType OBJECT-TYPE
SYNTAXINTEGER {

mediaAccessDevice (0),
storageLibrary (1),
other (2) }

ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementEntry 12 }

softwareElement-DeviceSoftware-LogicalDeviceAssociationId OBJECT-TYPE
SYNTAXINTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Description here"
::= { softwareElementEntry 13 }

endOfSmlMib OBJECT-TYPE
SYNTAXOBJECT IDENTIFIER
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"Description here"
::= { smlRoot 10 }

END
634 Version 1.0.1

SNIA Storage Management Initiative Specification
Annex D: (Normative) Compliance with the SNIA SMI Specification

D.1 Compliance Statement
The declaration of SMI-S compliance of a given CIM Instance within a CIM Server also declares
that any CIM Instance associated, directly or indirectly, to the first CIM Instance will also be
SMIS compliant if SMIS itself declares compliance rules for either CIM Instance or instances of
their superclasses.

D.2 How Compliance Is Declared
• The declaration of SMI-S compliance is made through the use of the server profile and the

declaration of supported profiles.

• Direct association between CIM Instances is made through instance of a CIM Association.

• Indirect association between CIM Instance is made through more than one CIM Association.

• SMI-S Compliance is assessed against CIM Instances that are directly or indirectly associated
to the CIM Instance declared as part of the declaration of supported registered profiles. These
CIM Instances comprise the compliance test set.

• All CIM Instances / CIM Classes included in the compliance test set for whom compliance
rules are defined in SMI-S or for superclasses thereof must be themselves be compliant to the
rules defined in SMI-S.

• Compliance tests on a superclass of a given CIM Instance are limited to the attributes and
behaviors defined for the superclass.

D.3 The Server Profile and Compliance
Compliance is declared by the implementation of the Server Profile. All profiles require the Server
profile. The server profile defines the means by which a SMI-S Client can determine the profiles
and subprofile support and the ComputerSystems associated. (See “Server Profile” on page 441.for
more details.)

D.4 Example
A CIM Agent for Vendor X declares compliance to the Array Profile and the Pool Manipulation,
Capabilities, and Setting Subprofile through the Server Profile. Once the association (via the
ElementConformsToProfile association) is made to from the Array Profile declaration to the
ComputerSystem that realizes the Array Profile, then compliance tests being testing compliance.
Vendor X decided to extent the StorageVolume class with additional properties. StorageVolume is
associated to the ComputerSystem via SystemDevice association. ComputerSystem,
StorageVolume, and SystemDevice are defined in SMI-S as required CIM elements (See
“SystemDevice” on page 289.).

In implementing FCPort, Vendor X decided to not provide ElementName but did provide the rest
of the required properties. Vendor X decided to not use to WWN and instead used a vendor specific
value for the PermanentAddress (See “Durable Names” on page 79.) Additionally, Vendor X added
FRUStatus to their subclass of FCPort. Vendor X also decided to model the back-end fibre channel,
but not use an SMI-S model to do so. These back-end FCPorts are associated to the
ComputerSystem via the ConsumedSystemDevice association, a subclass of SystemDevice without
properties overridden. These back-end fibre channel ports where modeled using a Vendor X
specific class, BackendFCPorts, that is not derived from FCPort. This BackendFCPorts were
associated to the ComputerSystem with the ConsumedSystemDevice.PartComponent role.
Version 1.0.1 635

SNIA Storage Management Initiative Specification
The compliance test includes FCPort because compliance declaration identified a particular
ComputerSystem the entry point into compliant CIM instantiation of the Array Profile. the
compliance test includes FCPorts as part of the test set because the SystemDevice association, also
defined as part of the profile, includes the FCPort realized in that implementation. The compliance
test also includes BackendFCPorts because the ConsumedSystemDevice association to the
ComputerSystem for these instances is a SystemDevice association.

The compliance test locates the StorageConfigurationService, StoragePools including a Primordial
StoragePool, and StorageCapabilities associated to the ComputerSystem. Vendor X's
implementation supports the creation of a StoragePool. The test attempts to create a StoragePool
given one of the sizes reported by the Primordial StoragePool.getSupportedSizes() method using
the Primordial StoragePool reference and a StorageSetting generated from one of the
StorageCapabilities.

The compliance test for Vendor X's Array Profile implementation fails because:

• FCPort.PermanentName property has a noncompliance value. Specifically, the
FCPort.PermanentAddress is required to be WWN, 16 unseperated uppercase hex digits;

• ElementName property was not provided (i.e. was null);

• the SystemDevice associations contained references to BackendFCPort in the PartComponent
property. CIM defined that the PartComponent is a LogicalDevice. Since BackendFCPort is
not a LogicalDevice, then the test failed;

• The "Size not supported" return code was returned from CreateOrModifyStoragePool even
though one of the supported sizes was used verbatim.

The compliance test for Vendor X's Array Profile implementation did not fail because:

• StorageVolume was extended;

• SystemDevice was extended.
636 Version 1.0.1

SNIA Storage Management Initiative Specification
Annex E: (Informative) Optional Profiles and Subprofiles

E.1 Introduction
Some sections of the CIM Schema are undergoing substantial review and redesign. In cases where
it is known that the model will change substantially within the likely lifetime of this specification,
components that are optional or peripheral have been relocated to this annex to avoid setting an
erroneous expectation of design stability within the developer community. As the associated
schema sections stabilize, these profiles or subprofiles will be relocated into the appropriate
sections of the body of the specification.

E.2 Provider Subprofile

E.2.1 Description

The CIM Provider model defines the capabilities of a provider and how it registers/unregisters
from a CIM Object Manager. This model is optional for the CIM Server profile, but if supported
MUST adhere to the “required elements” table.

E.2.2 Standard Dependencies

The Provider subprofile is defined using the CIM Schema 2.7 final. As such it can be used in
profiles at 2.7 and later. It does not require that Profiles be on a later schema. It will operate
within profiles that are at the CIM schema 2.7 final or later. The subprofile will operate correctly
with CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

E.2.3 Subprofile Dependencies

The Provider subprofile introduces no Profile dependencies.

E.2.4 CIM Server Requirements

For the SMI-S uses of the Provider subprofile, support for Basic Read and Association Traversal
functional profiles MUST be supported (by the base Profile CIM server).

The Provider subprofile does NOT REQUIRE support for extrinsic methods.

The Provider subprofile is NOT advertised.
Version 1.0.1 637

SNIA Storage Management Initiative Specification
E.2.5 Instance Diagrams

E.2.6 Durable Names and Correlatable IDs

The Provider subprofile does not introduce any objects that have durable names or correlatable
ids. And it does not use any durable names or correlatable ids.

E.2.7 Methods

The only methods supported for the Provider subprofile are intrinsic read methods (including
association traversal). The model is populated by the CIM Server based on its own installation and
startup procedures.

There are no extrinsic methods that are supported for the Provider Subprofile.

Figure 104: Provider Subprofile Model

[Propagated Keys]
CreationClassName
Name
ClassInfo
DescriptionOfClassInfo

Namespace

Name
Handle

ProviderModule

Name
Handle

Provider

ClassName
ProviderType[]
OtherProviderType[]
SupportedProperties[]
SupportedMethods[]

ProviderCapabilities

ClassSupportForNamespace

ProviderElementCapabilities

Name (InstanceID)
ElementName

ObjectManager

ObjectManagerIsProvider

IndicationFilter

FiltersSupported

ProviderInModule
638 Version 1.0.1

SNIA Storage Management Initiative Specification
E.2.8 Client Considerations

None.

E.2.9 Recipes

See Section 3.3.7.9.5. Step 4 of that recipe REQUIRES the Provider subprofile.

E.2.10 Instrumentation Requirements

None.

E.2.11 Required CIM Elements

E.2.12 Required Properties for CIM Elements

E.2.12.1 Provider
A CIM Provider instruments one or more aspects of the CIM Schema. A CIM_Provider operates at
the request of the CIM_ObjectManager to perform operations on CIM objects. The properties
CreationClasName, SystemCreationClassName and SystemName MAY be set to empty strings. In
this case, the CIM Object Manager MUST interpret the properties with the local system
information.

Provider is subclassed from WBEMService.

Table 444: Subprofile Required Classes, Associations, Methods and Indications

Subprofile Class & Associations Notes

Provider

ProviderCapabilities

ProviderElementCapabilities

ClassSupportForNamespace

ProviderModule

ProviderInModule

IndicationFilter

FiltersSupported

ObjectManagerIsProvider

Profile Indications Notes

Table 445: Required Properties for Provider

Class Properties Type Qualifier/
Parameter

Notes

Description string
Version 1.0.1 639

SNIA Storage Management Initiative Specification
E.2.12.2 ProviderCapabilities
This class defines the capabilities of the associated provider.

ProviderCapabilities is subclassed from Capabilities.

E.2.12.3 ProviderElementCapabilities
ProviderElementCapabilities is an association describing the Capabilities that are supported by a
Provider.

ElementName string

OperationalStatus[] uint16

StatusDescriptions[] string This MUST NOT be NULL if “Other”
is identified in OperationalStatus

SystemCreationClassName string key, maxlen(256)

SystemName string key, maxlen(256)

CreationClassName string key, maxlen(256)

Started boolean

Name string key, override

Handle string req

Table 446: Required Properties for ProviderCapabilities

Class Properties Type Qualifier/
Parameter

Notes

Description string

InstanceID string key

ElementName string req

ClassName string req

ProviderTypes[] uint16

OtherProviderTypes[] string

SupportedProperties[] string

SupportedMethods[] string

Table 445: Required Properties for Provider (Continued)

Class Properties Type Qualifier/
Parameter

Notes
640 Version 1.0.1

SNIA Storage Management Initiative Specification
ProviderElementCapabilities is subclass from ElementCapabilities.

E.2.12.4 ClassSupportForNamespace
ClassSupportForNamespace is an association describing the target Namespace for the instances of
the class listed in the referenced ProviderCapabilities.ClassName property.

ClassSupportForNamespace is subclassed from Dependency.

E.2.12.5 ProviderModule
A ProviderModule consists of one or more Provider Services. It can be enabled/disabled, which
affects the component Services.

ProviderModule is subclassed from EnabledLogicalElement.

E.2.12.6 ProviderInModule
An association describing the Providers that are contained in a ProviderModule.

Table 447: Required Properties ProviderElementCapabilities

Class Properties Type Qualifier/
Parameter

Notes

ManagedElement ref The CIM Provider.

Capabilities ref The CIM Provider's Capabilities.

Table 448: Required Properties for ClassSupportForNamespace

Class Properties Type Qualifier/
Parameter

Notes

Antecedent ref The Namespace in which the class
instances are defined.

Dependent ref The ProviderCapabilities instance
supporting the class instances.

Table 449: Required Properties for ProviderModule

Class Properties Type Qualifier/
Parameter

Notes

Description string

ElementName string

OperationalStatus[] uint16

StatusDescriptions[] string This MUST NOT be NULL if “Other”
is identified in OperationalStatus

Name string key, override

Handle string req
Version 1.0.1 641

SNIA Storage Management Initiative Specification
ProviderInModule is subclassed from Component.

E.2.12.7 IndicationFilter
IndicationFilter defines the criteria for generating an Indication and what data should be returned
in the Indication. It is derived from CIM_ManagedElement to allow modeling the dependency of
the filter on a specific service.

E.2.12.8 IndicationFilter is subclassed from ManagedElement.

E.2.12.9 FiltersSupported
FiltersSupported is an association describing the CIM IndicationFilters that are supported by a
Provider.

FiltersSupported is subclassed from Dependency.

Table 450: Required Properties for ProviderInModule

Class Properties Type Qualifier/
Parameter

Notes

GroupComponent ref The CIM ProviderModule.

PartComponent ref The CIM Providers

Table 451: Required Properties for IndicationFilter

Class Properties Type Qualifier/
Parameter

Notes

Description string

ElementName string

SystemCreationClassName string key, maxlen(256)

SystemName string key, maxlen(256)

CreationClassName string key, maxlen(256)

Name string key

Query string req

QueryLanguage string req

Table 452: Required Properties for FiltersSupported

Class Properties Type Qualifier/
Parameter

Notes

Antecedent ref The CIM IndicationFilter supported for the
CIM classes listed in ClassNames array
property of the referenced
ProviderCapabilities instance.

Dependent ref The CIM Provider Capabilities.
642 Version 1.0.1

SNIA Storage Management Initiative Specification
E.2.12.10 ObjectManagerIsProvider
This association indicates that the referenced ObjectManager acts as a Provider for the CIM
classes listed in the associated ProviderCapabilities.

ObjectManagerIsProvider is subclassed from ConcreteIdentity.

E.2.12.11 Optional Subprofiles and Profiles
There are no optional subprofiles or profiles for this subprofile.

Table 453: Requried Properties for ObjectManagerIsProviderRequired

Class Properties Type Qualifier/
Parameter

Notes

SystemElement ref SystemElement represents one aspect of the
Logical Element.

SameElement ref SameElement represents an alternate aspect
of the System entity.
Version 1.0.1 643

SNIA Storage Management Initiative Specification
644 Version 1.0.1

	Clause 0: Foreword
	Clause 1: Introduction
	1.1 Preamble
	1.2 Business Rationale
	1.3 Interface Definition
	1.4 Technology Trends
	1.5 Management Environment
	1.6 Architectural Objectives
	1.7 Disclaimer

	Clause 2: Scope
	Clause 3: Normative References
	Clause 4: Glossary
	Clause 5: Overview
	5.1 Base Capabilities
	5.1.1 Object Oriented
	5.1.2 Messaging Based

	5.2 Capabilities Of This Version
	5.2.1 Overview
	5.2.2 Determine and monitor the configuration of a SAN
	5.2.3 Monitoring the health of key resources in a SAN
	5.2.4 Monitoring the available performance of interconnections in a SAN
	5.2.5 Monitoring and controlling the zones in a SAN
	5.2.6 Discovering/monitoring/controlling the storage volumes in a SAN
	5.2.7 Requiring authenticated clients in a SAN

	5.3 Operational Environment
	5.4 Using This Specification
	5.5 Language Bindings

	Clause 6: Transport and Reference Model
	6.1 Introduction
	6.1.1 Overview
	6.1.2 Language Requirements
	6.1.3 Communications Requirements
	6.1.4 XML Message Syntax and Semantics

	6.2 Transport Stack
	6.3 Reference Model
	6.3.1 Overview
	6.3.2 Roles for Interface Constituents
	6.3.2.1 Client
	6.3.2.2 Agent
	6.3.2.3 CIM Server
	6.3.2.4 Provider
	6.3.2.5 Lock Manager
	6.3.2.6 Directory Server

	6.3.3 Cascaded Agents

	Clause 7: Object Model
	7.1 Model Overview (Key Resources)
	7.1.1 Overview
	7.1.2 Introduction to CIM UML Notation

	7.2 Techniques
	7.2.1 CIM Fundamentals
	7.2.2 Modeling Profiles
	7.2.3 Naming
	7.2.4 Durable Names
	7.2.4.1 Overview
	7.2.4.2 Durable Names Formation
	7.2.4.3 Testing Equality of Durable Names
	7.2.4.4 Standard Formats for Durable Names
	7.2.4.5 Case Sensitivity
	7.2.4.6 Preferred Durable Names
	7.2.4.7 Concatenation

	7.2.5 Events - CIM Indications
	7.2.5.1 Background
	7.2.5.2 Using indications
	7.2.5.3 Indication hierarchy
	7.2.5.4 Agent/Provider Considerations
	7.2.5.5 Client Considerations
	7.2.5.6 Requirements
	7.2.5.7 Implementation Considerations

	7.2.6 Device Credentials
	7.2.7 Recipe Conventions
	7.2.7.1 Recipe Definition
	7.2.7.2 Recipe Pseudo Code Conventions
	7.2.7.3 Common Recipes

	7.3 Profiles
	7.3.1 Profile Content
	7.3.1.1 Profile and Subprofile Definition
	7.3.1.2 Format for Profile Specifications
	7.3.1.3 Registry of Profiles and Subprofiles

	7.3.2 Common CIM Packages
	7.3.2.1 Description
	7.3.2.2 Physical Package Package
	7.3.2.3 Software Package

	7.3.3 Common Subprofiles
	7.3.3.1 Overview
	7.3.3.2 Access Points Subprofile
	7.3.3.3 Cluster Subprofile
	7.3.3.4 Extra Capacity Set Subprofile
	7.3.3.5 Disk Drive Subprofile
	7.3.3.6 Extent Mapping Subprofile
	7.3.3.7 Location Subprofile
	7.3.3.8 Software Subprofile
	7.3.3.9 Copy Services Subprofile
	7.3.3.10 Job Control Subprofile
	7.3.3.11 Pool Manipulation, Capabilities, and Settings Subprofile
	7.3.3.12 LUN Creation Subprofile
	7.3.3.13 Device Credentials Subprofile
	7.3.3.14 Backend Ports Subprofile
	7.3.3.15 LUN Masking and Mapping

	7.3.4 Fabric
	7.3.4.1 Fabric Profile
	7.3.4.2 Switch Profile
	7.3.4.3 Router Profile

	7.3.5 Hosts
	7.3.5.1 FC HBA Profile
	7.3.5.2 Host Discovered Resources Profile

	7.3.6 Storage
	7.3.6.1 Array Profile
	7.3.6.2 In-Band Virtualization Profile
	7.3.6.3 Storage Library Profile

	7.3.7 Server Profile
	7.3.7.1 Description
	7.3.7.2 Standard Dependencies
	7.3.7.3 Profile Dependencies
	7.3.7.4 CIM Server Requirements
	7.3.7.5 Instance Diagram
	7.3.7.6 Durable Names and Other Correlatable IDs
	7.3.7.7 Methods
	7.3.7.8 Client Considerations
	7.3.7.9 Recipes
	7.3.7.10 Instrumentation Requirements
	7.3.7.11 Required CIM Elements
	7.3.7.12 Required Properties for CIM Elements
	7.3.7.13 Optional Subprofiles and Profiles

	7.4 Cross Client Considerations
	7.4.1 Overview
	7.4.1.1 HBA model
	7.4.1.2 Switch Model
	7.4.1.3 Array Model
	7.4.1.4 Out of band virtualization model
	7.4.1.5 Durable Names
	7.4.1.6 Fabric Topology (HBA, Switch, Array)
	7.4.1.7 Storage Connections (FC HBA, Array)
	7.4.1.8 Zoning
	7.4.1.9 Fabric Route Discovery
	7.4.1.10 Durable Names

	7.4.2 General Recipes
	7.4.2.1 Indications Status
	7.4.2.2 Listenable Instance Notification
	7.4.2.3 Life Cycle Event Subscription Description
	7.4.2.4 Subscription for alert indications
	7.4.2.5 Listenable Interface Modification Notification
	7.4.2.6 Subscription for alert indications

	Clause 8: Security
	8.1 Introduction
	8.2 Background
	8.3 Modeling Device Credentials
	8.4 Requirements
	8.4.1 General
	8.4.2 Certificate Usage with SSL 3.0 and TLS
	8.4.2.1 Functional Goals
	8.4.2.2 Requirements

	8.5 Instrumentation Requirements

	Clause 9: Service Discovery
	9.1 Objectives
	9.2 Overview
	9.3 SLP Messages
	9.4 Scopes
	9.5 Services Definition
	9.5.1 Service Type
	9.5.2 Service Attributes

	9.6 User Agents (UA)
	9.7 Service Agents (SAs)
	9.8 Directory Agents (DAs)
	9.9 Service Agent Server (SA Server)
	9.9.1 General Information
	9.9.2 SA Server (SAS) Implementation
	9.9.3 SA Server (SAS) Clients
	9.9.3.1 Description
	9.9.3.2 SAS Client Requests - SA Server Responses

	9.9.4 SA Server Configuration
	9.9.4.1 Overview
	9.9.4.2 SLP Configuration File
	9.9.4.3 Programmatic Configuration
	9.9.4.4 DHCP Configuration
	9.9.4.5 Scope

	9.9.5 SA Server Discovery
	9.9.6 SAS Client Registration

	9.10 ‘Standard WBEM’ Service Type Templates
	9.11 SLP Bibliography

	Clause 10: SMI-S Roles
	10.1 Introduction
	10.2 SMI-S Client
	10.2.1 Overview
	10.2.2 SLP Functions
	10.2.3 CIM-XML Protocol Functions
	10.2.4 Security Considerations
	10.2.5 Lock Management Functions

	10.3 Dedicated SMI-S Server
	10.3.1 Overview
	10.3.2 SLP Functions
	10.3.3 CIM-XML Protocol Functions
	10.3.3.1 General
	10.3.3.2 Required Intrinsic Methods
	10.3.3.3 Required Model Support

	10.3.4 Security Considerations
	10.3.5 Lock Management Functions

	10.4 General Purpose SMI-S Server
	10.4.1 Overview
	10.4.2 SLP Functions
	10.4.3 CIM-XML Protocol Functions
	10.4.3.1 General
	10.4.3.2 Required Intrinsic Methods
	10.4.3.3 Required Model Support
	10.4.3.4 Security Considerations

	10.4.4 Lock Management Functions
	10.4.5 Provider Subrole
	10.4.5.1 Overview
	10.4.5.2 Required Model Support

	10.5 Directory Server
	10.5.1 SLP Functions
	10.5.2 CIM-XML Protocol Functions
	10.5.3 Security Considerations
	10.5.4 Lock Management Functions

	10.6 Combined Roles on a Single System
	10.6.1 Overview
	10.6.2 General Purpose SMI-S Server as a Profile Aggregator
	10.6.2.1 SLP Functions
	10.6.2.2 CIM-XML Protocol Functions
	10.6.2.3 Security Considerations
	10.6.2.4 Lock Manager Functions

	Clause 11: Installation and Upgrade
	11.1 Introduction
	11.2 Role of the Administrator
	11.3 Goals
	11.3.1 Non-Disruptive Installation and De-installation
	11.3.2 Plug-and-Play

	11.4 Installing Device Support
	11.4.1 Installation
	11.4.2 Discovery and Initialization of Device Support
	11.4.3 Removal/Update
	11.4.4 Reconfiguration
	11.4.5 Failure

	11.5 Object Manager
	11.5.1 Installation
	11.5.2 Multiple CIMOMs on a Single Server
	11.5.3 Removal/Upgrade
	11.5.4 Reconfiguration
	11.5.5 Failure

	11.6 Client
	11.6.1 Removal
	11.6.2 Reconfiguration
	11.6.3 Failure

	11.7 Directory Server
	11.7.1 Installation
	11.7.2 Removal/Failure

	11.8 Management Domains
	11.8.1 Initial Configuration
	11.8.2 Reconfiguration

	11.9 Lock Manager

	Annex A: (Informative) Futures
	A.1 Overview
	A.2 HBA LUN masking and persistent binding
	A.3 Managed Hub Section
	A.4 IP Storage
	A.5 Multi-Path Modeling
	A.6 Provider Modeling
	A.7 Non-Fibre Fabrics
	A.8 Compliance Notification
	A.9 Cascaded Agents
	A.10 Network Storage
	A.11 Synchronization of File System Elements through Copy Services
	A.12 Model Size Distinctions in Disk Drive
	A.13 Expanded Extent Mapping
	A.14 Locking
	A.15 Policy Management

	Annex B: (Informative) Experimental Profiles
	B.1 Overview
	B.2 Common Profiles and Subprofiles
	B.3 SML Subprofiles
	B.4 Extender Profile
	B.5 Management Appliance Profile
	B.6 Out of Band Virtualizer Profile
	B.7 JBOD Profile

	Annex C: (Informative) Mapping CIM Objects to SNMP MIB Structures
	C.1 Purpose of this appendix
	C.2 CIM-to-MIB Mapping Overview
	C.3 CIM-to-MIB Mapping Methodology
	C.4 Example Mapping

	Annex D: (Normative) Compliance with the SNIA SMI Specification
	D.1 Compliance Statement
	D.2 How Compliance Is Declared
	D.3 The Server Profile and Compliance
	D.4 Example

	Annex E: (Informative) Optional Profiles and Subprofiles
	E.1 Introduction
	E.2 Provider Subprofile

