SNIA

Storage Networking Industry Association

SNIA Storage Management Initiative Specification

VERSION 1.0.1
Abstract

This specification documents a secure and reliable interface that allows storage management systems to
identify, classify, monitor, and control physical and logical resources in a
Storage Area Network.

Storage Networking Industry Association (SNIA)
50 California Street, Suite 1500
San Francisco, CA 94111 USA
Phone: +1.415.277.5415
http://www.snia.org

Copyright © 2003, SNIA

i

SNIA Storage Management Initiative Specification

Version 1.0.1

SNIA Storage Management Initiative Specification

Document Revision History

Revision Release Principal Authors
Date
Public Review Draft 15 April 2003 John Crandall, Brocade

Steve Jerman, Hewlett-Packard

Version 1.0.0 1 July 2003 Steve Hand, Sun Microsystems

Michael Hay, Hitachi Data Systems

Version 1.0.1 12 September 2003 Steven Peters, Hewlett-Packard

Paul von Behren, Sun Microsystems
Mike Walker, IBM

INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying,
and promoting interoperable multi-vendor SANs through the SNIA organization.

DOCUMENT REVISIONS

Suggestions for revisions should be directed to td@snia.org.

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes
no warranty of any kind with regard to this specification, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this specification.

COPYRIGHT

Copyright © 2003 SNIA. All rights reserved. All other trademarks or registered trademarks are
the property of their respective owners.

Portions of the CIM V2.8 Schema are used in this document with the permission of the Distributed
Management Task Force (DMTF). The CIM V2.8 classes that are documented have been worked
through both the Storage Networking Industry Association (SNIA) and DMTF Technical Working
Groups. However, the schema is still in development and review in the DMTF Working Groups
and Technical Committee, and subject to change.

TYPOGRAPHICAL CONVENTIONS

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC2119 [http://www.ietf.org/rfc/rfc2119.txt].

USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only, and
for corporations and other business entities to use this document for internal use only (including
internal copying, distribution, and display) provided that:

Version 1.0.1 111

v

SNIA Storage Management Initiative Specification

1) Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety
with no alteration;

2) Any document, printed or electronic, in which material from this document (or any portion
hereof) is reproduced must acknowledge the SNIA copyright on that material, and must credit
the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document,
sell any or this entire document, or distribute this document to third parties. All rights not
explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be
requested by e-mailing td@snia.org please include the identity of the requesting individual and/or
company and a brief description of the purpose, nature, and scope of the requested use.

Version 1.0.1

SNIA Storage Management Initiative Specification

e

N A W

7

Contents
FOrewWOord.....eciiceinniiiiinneicnenseennicsnissniissecsssessssssssesssessssessssssssssssassssessaess XXvii
INtroduction........eeeceeeneecnneinseeisnecnnicsnenseecsnecsnesssnssseecnne 29

1.1 Preambleooeioi e 29
1.2 Business RAtioNale.........cooceeviiiiiiiiiiiieieeeeeeeeee e 29
1.3 Interface Definition..........c.coviiiiiiiiiiiii e 29
1.4 Technology Trendsccccieiiiiiiiiieieeeeee et e 31
1.5 Management ENVIrONMENt.........ccccuiiiiiiiiiiiiieeiieieecee et 33
1.6 Architectural ODJECHIVEScccvieruiieiieiiieeieeite ettt ettt ebe e 34
1.7 DISCIAIMET ...ttt et e 35
SCOPE cevrerricrnricsnrissnicsssicssssesssssessssessssnssssssssssssssssssssses 37
Normative References.......eiiiisseinseeisenssnensenssnecsenssecsssesssssssssssssssesssessssens 39

L€ [ITT: 1 OOt 41
OVEIVIEW cuuceueiirnecinensnnnssnesssecsssecsnssssesssessssessssssssesssasssssssaaes 61

5.1 Base Capabilities.......cccuieeiierieiiieiiieeieesiie ettt ere et e et eaeeaeeenseenns 61
5.1.1 Object Oriented........cccueriiriiiiiniiniieienitesie sttt 61
5.1.2 Messaging Basedcceevuiiiiiiiiiiiiieiiee e 63

5.2 Capabilities Of ThiS VEerSIONccceeeveeiieriieiiieiieeie et e e eveeiee e ens 65
52,1 OVETVIEW.cuuiiiiiieiieeieeite ettt et ettt ettt et et e bt et e et e e st e easeeseeenseenne 65
5.2.2 Determine and monitor the configuration of @ SAN........ccceevvieriiiiiennnns 65
5.2.3 Monitoring the health of key resources in @ SANcccecveviieciieniennnnne. 66
5.2.4 Monitoring the available performance of interconnections in a SAN 66
5.2.5 Monitoring and controlling the zones in @ SANccccevviviininiinienennn 66
5.2.6 Discovering/monitoring/controlling the storage volumes in a SAN 66
5.2.7 Requiring authenticated clients in @ SAN........ccccociriiniiiineniiiceicee 66

53 Operational ENVIrONMENt.............ccioiiieiirieiieieeeceee s 67
5.4 Using This SpecifiCation..........ccccuieeriieeiiieeiieeeiee e e 68
5.5 Language Bindingsccccoeouiiiiiiiiiiiieiie et 68
Transport and Reference Modelocoeiivviiinseiissnicssnnicssnncsssnncssnncssssncsenn 69

6.1 INErOAUCTION.......eiiiiiiiei e 69
0.1.1 OVETVIEW ...ttt ettt ettt ettt ettt e et e bt e et e ebeeenseenne 69
6.1.2 Language ReqUITCMENLSc.cccceeriiieriieeiiieiienieeieeseeeieesiaeereeseaesseeseee e 69
6.1.3 Communications REqUITEMENtSc.ccevviieriieeiiieeieecie e e 69
6.1.4 XML Message Syntax and SemantiCsccceeeeevvereenerrieneenieeneeneenneenns 69

6.2 TranSport STACKccciiiiiieiieeii et e 70
6.3 Reference Model.... ..o 71
0.3.1 OVETVIEW...uuiiiiiieiieeieeiee ettt ettt ettt ettt e et et eesbe e bt e e abeeseeenseenne 71
6.3.2 Roles for Interface CONSHIUENLScevververiierieriinieieeieneeeeeeeee e 71
6.3.2.1 O 1<) 31 SRR PRRS 71

0.3.2.2 AZENL .ttt 71

6.3.2.3 CIM SEIVET ..ottt 72
6.3.2.4 PrOVIAET..couiiiiiiiiieee e 72

6.3.2.5 LOCK Manager.......ccccocuieiuiiiiieiieeieeteeee ettt 72

6.3.2.6 DITECIOTY SEIVET...ccuvieuiieeiiieiieeiieeieeete et e eiteereeseaeeteesieeebeeseaeeneeas 72

6.3.3 Cascaded AQENLS.....cccuiieiiieeeiieeciee et ete ettt aeeearees 72
ODbjJECt MO ..uuueenneenneninenrnenisnensnnssnensnnsssesssnssssesssnsssassssassssssssssssssssssssssessassssassss 73

Version 1.0.1

SNIA Storage Management Initiative Specification

7.1 Model Overview (Key RESOUICES)uvvveviieriieiiiiieiieciieeeieeeee e 73
To11 OVETVIEW .ttt ettt ettt ettt e be e et e be e et e beeeate e 73
7.1.2 Introduction to CIM UML NOtationc.cceeervenienienienennienieneeieseene 73

7.2 TECHNIGUES ...oouvieiieeiiieiieeie ettt ettt te et e b e e st e eebeesteeenseesaeenseensaennnas 74
7.2.1 CIM Fundamentalscoooeiiiiiiiiiiiiiieeeeeeeee e 74
7.2.2 Modeling Profilescccierieeiiiiiieeiieiieeie et 77
7.2.3 INAIMINZ....ceiiieiieeieeieeete et e steesteesteebeessaeebeesseeasseesssessseesseessseessaesseesseenes 78
7.2.4 DUurable NAMESc.ceevuieiiieiiieiieiie ettt sttt ees 79

7.2.4.1 OVEIVIBW ...ttt ettt ettt sb et sttt et e bt ene e 79
7.2.4.2 Durable Names FOrmation..........ccccoeceevueeienienienieneeiesceeeenene 81
7.2.4.3 Testing Equality of Durable Names............cccoceeviiiiiienieniieiceee. 81
7.2.44 Standard Formats for Durable Namesc..cccccecveveeninienenncnnne 82
7.2.4.5 CaSE SENSILIVILY ...eeevierieeieeieeeieeieeeiteete e st e et eseeebeesteeesseensaeeaneas 84
7.2.4.6 Preferred Durable Names..........cccccoeiieiiiiiieniieniieieieeeeie s 84
7247 CoNCAtENALIONocueeuiiiiiiieiieeiieieeitesit ettt 84
7.2.5 Events — CIM INAIiCAtiONScovueeiiriiniieiiniieieeeeiceieee e 85
7.2.5.1 Background..........cocooiiiiiii e 85
7.2.5.2 USING INAICALIONSeeevvieiieeiieiieeiieeiie et eiteeiie e e seeeereesaeeseneensens 85
7.2.5.3 Indication hierarchycccccovviieiiieiiieniicie e 87
7.2.54 Agent/Provider Considerations...........c.ccecereeriereenenneeneenenseeneens 88
7.2.5.5 Client Considerations.cc.eeeerueriereenieriieneenieneeseeeeeesieeeeseeens 89
7.2.5.6 REQUITCMENLS ...ecovvieeiiieeiieeeiieerieeerteeeteeeireeeaeeeeaeeessseesnaneeenenes 90
7.2.5.7 Implementation Considerationsceceeveeruerueneeneeneenennennens 90
7.2.6 Device Credentials..........coeiiiriiniiiiiiienienienteeeeeeee e 90
7.2.7 ReCIPE CONVENLIONSveeeiiieeiieeeiieeeiieenieeesteeesreeesereessneessreessseesssseesnsses 91
7.2.7.1 Recipe Definitionoc.eeeiieriieiiieiieeieee e 91
7.2.7.2 Recipe Pseudo Code Conventionsccceeeeeerveereieecueenieenveennnans 91
7.2.7.3 CommOon RECIPESoouiieiiiiieeiieiiecie ettt 96

7.3 PrOTILES ... e 98

7.3.1 Profile COntent......c.eoouiriiriiiiiiiieniieieetese e 98
7.3.1.1 Profile and Subprofile Definitionccccccvevveevieniieeciienieeienee, 98
7.3.1.2 Format for Profile Specifications...........ccccceeevervenenneneenencicnene 98
7.3.1.3 Registry of Profiles and Subprofiles..........ccocoveviiiiieniiiiiennn, 100

7.3.2 Common CIM PacKagesccceerieeiiieniieiieiieeieeieeeee et 103
7.3.2.1 DIESCIIPHION ...ttt ettt ettt et e ee 103
7.3.2.2 Physical Package Packageccccoeevieriiiiiiininiiieeceee 103
7.3.2.3 Software Package..........cccveviiiiieniieiieieceeeeeee e 110

7.3.3 Common SUbProfilesccceevieviiriininiiniiiceieeeeseeeee e 113
7.3.3.1 OVEIVIEW ...ttt sttt sttt ettt et 113
7.3.3.2 Access Points Subprofilecccecuvevieiiiiiieniieiececeee 113
7.3.3.3 Cluster SUbProfile.........coceevverieriiiiniiniciccceeeee e 116
7.3.3.4 Extra Capacity Set Subprofile...........cccoeeieiiiiiiiiiinieciieiee 121
7.3.3.5 Disk Drive Subprofile........ccccocvieeiiiieiiieeiieeeeeeeee e 126
7.3.3.6 Extent Mapping Subprofile.........cccccooeririiniininniniineieneeee 138
7.3.3.7 Location Subprofileccceevuiriiiiiiieiiciieeece e 142
7.3.3.8 Software SUbProfilecoocvieeiiiieeiiieie e 145
7.3.3.9 Copy Services SUbProfileccccoceevieviininiiiniininienecceecee 146

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.10 Job Control SUbprofile..........ccccuervieviieniieiieieeieece e 172
7.3.3.11 Pool Manipulation, Capabilities, and Settings Subprofile........... 178
7.3.3.12 LUN Creation Subprofile...........cccceevieriiinieniiieienieeeeeieeeeene 201
7.3.3.13 Device Credentials Subprofile...........cccceevieriievienieeiieieeeenne, 220
7.3.3.14 Backend Ports Subprofileccceeeeiiiiiiiiniiiieieeee e 225
7.3.3.15 LUN Masking and Mapping........cccccceeeveeriienieeneenieeieeneeeeeenees 233
T34 FaDTIC ..ot 271
7.3.4.1 Fabric Profilecccoooiieiiiieee e 271
7.3.4.2 SWitch Profilecoooeiiriiiiiiiiece e 320
7.3.4.3 Router Profile........ooooiiiiiiiiiiceeceee 333
T35 HOSES coeeiiiee ettt ettt e et e e et e e et e e e e b e e e e s b e e e e nnaaeeeannns 349
7.3.5.1 FC HBA Profile ..c..oooviiiiiiiiiiieeeeeeeceeceee s 349
7.3.5.2 Host Discovered Resources Profileccccovveiineniniinenenne 361
7.3.0 STOTAZE . .veeeveeniieeiieee ettt ettt ettt st s 381
7.3.6.1 ATTaY Profileooveiiiiieiieieee e 381
7.3.6.2 In-Band Virtualization Profileccccoeiiniiiiniiniiiiiiiiecee, 401
7.3.6.3 Storage Library Profilec..ccocoviriiniiiininiiiiccicncecee 418
7.3.7 Server Profilecc.eoiiiiiiiiiiieeece e 441
7.3.7.1 DIESCIIPHIONuviieiiieciieeieeeiie et eite ettt e ere et eete e eesseesseeesseesseans 441
7.3.7.2 Standard Dependencies...........coeevverieneriieniinienieneeienieneeeen 441
7.3.7.3 Profile Dependenciescccueecueeriieeiieniieniieiieeie et 441
7.3.7.4 CIM Server REqQUITEMENtscceevveerieeriienieeieenieeieesiee e 442
7.3.7.5 Instance DIiagramcoccoevienieeiiienienieeeeeee e 443
7.3.7.6 Durable Names and Other Correlatable IDs...........c.ccceevuvrennenee. 444
7.3.7.7 MELhOAS ...t 445
7.3.7.8 Client Considerations...........ccvueeeruveeeiiieeeiiieesieeeeeeeereeeereeesvee e 445
T.3.7.9 RECIPES .eieutieiieeiieeiie ettt ettt ettt ettt e et saeebe e s e enseenes 446
7.3.7.10 Instrumentation ReqUirements............cccoeeeeeirereencreeneeseeeneennes 455
7.3.7.11 Required CIM Elementsccccocuerervienieniniienienenicneceeeene 456
7.3.7.12 Required Properties for CIM Elementsc.cceeuverveenirennnnnne. 456
7.3.7.13 Optional Subprofiles and Profiles...........cccceevvrevveniienienirenenne. 463

7.4 Cross Client ConsSiderations............cccuveeeuieeriieeeiieeeiieeeieeesreeesneeesveeessseeenns 467
TA L OVEIVIEW ..ttt ettt sttt st sttt et sb ettt sbe bt st e bt enae s 467
7.4.1.1 HBA MOdEL ..o 467
7.4.1.2 SWitch Model........ooooiiiiieeeeeeeee e 468
7.4.1.3 Array Model........oooiioiiiiii e 468
7.4.1.4 Out of band virtualization modelcccoeevvieviiniiniieieeienee, 470
7.4.1.5 Durable Namesccecvieeiiiieiiieeciie e 470
7.4.1.6 Fabric Topology (HBA, Switch, ATray)cccccevveveriienreeniiennnnne 471
7.4.1.7 Storage Connections (FC HBA, Array).....cccceeveeveieencieenieenne, 476
TAL8 ZONINZ ittt ettt sttt 476
7.4.1.9 Fabric Route DiSCOVEIYccceeviiieniiiiiieiieeieeiie e 477
7.4.1.10 Durable Namescccceeiiiiiiiiiieiiieiieeeeee et 477
7.4.2 General RECIPESc..evuieiiriiriiiiieiicieeeetes ettt 477
7.4.2.1 Indications StatuSccceeveeiiirieriiieeieeee e 477
7.4.2.2 Listenable Instance Notificationccccceveeriiiniiiiiienieniieeeene 478
7.4.2.3 Life Cycle Event Subscription Descriptionc..cceceevevvenneee 478

Version 1.0.1 vii

SNIA Storage Management Initiative Specification

7.4.2.4 Subscription for alert indicationsccceeeeveereeecieenieeeireeneenns 479

7.4.2.5 Listenable Interface Modification Notificationcc..ccecceeueeene 479

7.4.2.6 Subscription for alert indications............cecceeeeievieniieenienieeieenne, 480

8 SECUTILY ceuvererruricssanicssanesssanessssnssnsssssssssssssssssssssnss 481
8.1 INErOAUCTION ...ttt 481
8.2 Back@round..........cocciiiiiiiiiiiiee et 481
8.3 Modeling Device Credentialsccceeeevieriieiiieniieiienie et 482
8.4 REQUITEIMENES ...cutiiiiieiiieiieeiiesiie ettt ettt ettt te et esitesbeesaeeeabeeseeesnseesaeeens 482
BA. 1 GENETAL..c..iiiiiiiiiiiiieete et 482
8.4.2 Certificate Usage with SSL 3.0 and TLS..........cccivviiiiiiniieiieeeeieee, 483
8.4.2.1 Functional Goalsc.ceccuiieiiiiiiiieeieeeeeeee e 483

8.4.2.2 REQUIICIMENLSeeiiiieniieeiiieiie et eiee et eite et aeeeaeenseesteebeeeaneenes 483

8.5 Instrumentation ReqUIrements...........cceeevviiriiiieeiiieeniie e 484
9 SErvice DISCOVETY uucvuerrsurnsensnensunnssnnssaessansssaesssesssnssssnsssasssssssasssssssssssssasssassssaesss 485
9.1 ODJECTIVES ..eenvvieniieeiieeiiesiee et et e et et e st et e eiteebeesebeesbeeesteenseenseesnbeeseesnseenses 485
9.2 OVETVIEW ..ttt ettt ettt et e sat e et e sbt e et e e saee e 485
9.3 SLP MESSAZESeevveenrieriiieiienteeteesite et ste ettt ettt et saneene e enee 486
9.4 SCOPES ettt ettt ettt st e e et e e e e 488
9.5 Services DefINItioncoc.eeiiiiiiiiiiiiiiicee e 488
0.5.1 SEIVICE TYPE ettt ettt ettt ettt st 489
0.5.2 Service AIIDULEScc.eevviriiriieiieieiteeee e 489

0.6 USEr AENtS (UA) .oiiiiiieeiieeeiee ettt et e e tee e e e e e 490
9.7 Service AZENtS (SAS) . ceouiiieiii et e 491
9.8 Directory Agents (DAS) ...c.cecuiiiieiiieiieeie ettt 491
9.9 Service Agent SErVer (SA SETVET)uiieriieeriieeiieeeiee e eeieeesieeesveeesree e 491
9.9.1 General INformation............cccueeiiiiieiiiieeeiie e 491
9.9.2 SA Server (SAS) Implementation............ceccueevuierieeriienieeiieeie e 492
9.9.3 SA Server (SAS) CHENLS......ccceeviieiiieiiieiieie ettt 492
9.9.3.1 DIESCIIPHION ...ttt ettt ettt et e eee st e e e 492

9.9.3.2 SAS Client Requests — SA Server Responsescccceecveeneennee. 492

9.9.4 SA Server Configurationcccceeeeueerieerieenieeieerieeeeeesieeneeesseeseneesees 493
9.94.1 OVETVICW ...iiiivieeeiiieeiiee et e et e et eeste e e tbeestbeesasaeessseeesaseeensseeanns 493
9.9.4.2 SLP Configuration File.........ccccoeviiiiiiiniiiiiiiiieieeieeeeeeeee 493

9.9.43 Programmatic Configurationccceevverveeeiienieenieenieeieeieenns 493
9.9.4.4 DHCP Configurationccccceeevuerieneeniennieneeieneeneeeeeeseenne 494

9.9.4.5 S COP ettt 494

0.9.5 SA Server DISCOVETY ...cccvuiiiiiieiiiieeiieeeiieesieeesteeeeteesaeeeeaeeesaeesnineeenns 494
9.9.6 SAS Client RegiStration..........c.ccecuereerierieneiiiinienieeie e 494
9.10 “Standard WBEM’ Service Type Templatescccceveveerieniienienieeiienenens 495
9.11 SLP BiblioGraphycccvieiiieiiiieiieiie ettt ettt eae e ees 498
10 SMI-S ROIES c...eeneriiinnriinnicsinniessnnncssnnicsssnicsssncssssesssssessssesssssssssssssssssssssssssssssssses 499
10.1 INErOAUCTION. ..ottt ettt 499
10.2 SMI-S CHENE ..cuieiiieiieiieeeee ettt st e ee s 500
JO.2.1 OVEIVIEW ...uviiiiiieeiieeeiie e ettt e eite e et e e seveeeeaveeeaseeesaeesasaeessseeesssesesssesensseeans 500
10.2.2 SLP FUNCHIONS ...cutiiiiiiiiieeiiesiecieeitescete ettt 500
10.2.3 CIM-XML Protocol FUNCLIONScooueeiiiiiiiiniiiiiieiecieeeeeeeee e 500
10.2.4 Security Considerationsc.ccecuereerieeieneenienieneeieeeese e 500

viil Version 1.0.1

SNIA Storage Management Initiative Specification

10.2.5 Lock Management FUNCHONS..........ccccuieeiiieriiieiieeeiee e 500
10.3 Dedicated SMI-S SETVETccc.eiiiiiiiiiiiiiieie e 500
L0.3.1 OVEIVIEW ...eiiieiiiiiiiieeie ettt ettt sttt ettt et st sbe e 500
10.3.2 SLP FUNCHONS ...coutiiiiiiiiiiiiieteeeeee e 501
10.3.3 CIM-XML Protocol FUNCLIONScooueeiiiiiiiiiiiiiieiecieeee e 501
10.3.3.1 GeNeral....coouiiiiiiiiieiieeeeeee e 501
10.3.3.2 Required Intrinsic Methodscccceeeciierieniiiiniieiieiecie s 501
10.3.3.3 Required Model SUPPOTt.......coceeveeviiriiniiiinienecicceceeceeeeee 502

10.3.4 Security CONSIAETAtIONSccveevieriieeiiieniieeiienireeieeseeeereeneeeebeesaeeeseenes 502
10.3.5 Lock Management FUNCHONS..........ccccuieriiiiiiiiienieeeciee e 502
10.4 General Purpose SMI-S Server..........coccoiiririiniiniiiineeeeeeie e 502
LO.4. 1 OVEIVIEW ...tiiieiiiiiiiieeie ettt ettt sttt ettt ettt e bt e b 502
10.4.2 SLP FUNCHONS ...coutiiiiiiiiiiiiceiteeeee et 502
10.4.3 CIM-XML Protocol FUNCLIONScccueeeiuiiiiiiieciie e 503
10.4.3.1 GeNEral....coouiiiiiiiiiieiiee e 503
10.4.3.2 Required Intrinsic Methodsc.cccceeeviienieniiienieeieeieeieeies 503
10.4.3.3 Required Model SUPPOTt.......coceeveeiiriiniiiinieniecceecseceeeeae 503
10.4.3.4 Security Considerationsccceeueeeieeruieeiieenieeeieerieeeeeeseeeeeeenne 503

10.4.4 Lock Management FUNCHONS.........cccccuieeiiieiiiiienieeeciee e 503
10.4.5 Provider SUDIOIEc.eeiiiiiiiie e 503
L0451 OVEIVIEW..utiriiiiiiieeiiieieeie ettt ettt sttt sttt s 503
10.4.5.2 Required Model SUpport........cceeeeeieeriiieeniieeniieeeiie e 503

10.5 DIFECLOTY SEIVETeiuiiiieuiiritiieeieeitenteete sttt ettt ettt sttt ae e 503
10.5.1 SLP FUNCHIONS ...cutiiiiiiiiieiiiesieeteeiteseee ettt 503
10.5.2 CIM-XML Protocol FUNCHONSccueereiriiriieiinieriieieeeeee e 503
10.5.3 Security Considerationsc.ccecuereeruerieneenienieneeieeeene e 503
10.5.4 Lock Management FUNCLIONS..........c.ceoirriieniieniieiieeieeicece e 504
10.6 Combined Roles on a Single SyStem..........cceevveeiiienieeiiienieeieeee e 504
JO.6.1 OVEIVIEW ...uviiiiiieeiieeeiie e ettt e eiteeeiteeeseveeeseveeeaseeebaeessaeessseeesaseeessseaenssaeans 504
10.6.2 General Purpose SMI-S Server as a Profile Aggregator..............c.c........ 504
10.6.2.1 SLP FUNCHONSeiiiiiiiiiiieiieiieeteteeeete et 504
10.6.2.2 CIM-XML Protocol FUNCtIONSccceeevveeeeireriireeiieeeiee e 504
10.6.2.3 Security Considerationscceeveevieerieeiieeneesiieerieeeeeeseeeseeenne 504
10.6.2.4 Lock Manager FUNCLIONSccceeeiieniieeiieiieeieenieeeee e eve e 504

11 Installation and Upgrade 505
T1.1 INtrOAUCTIONetiiiiiiiiitieieeie ettt 505
11.2 Role of the AdmMINiStratorcocuerieiieiienieierieeee e 505
T1.3 GOQIS ettt e e e e e e e abe e e earaeeaneeen 505
11.3.1 Non-Disruptive Installation and De-installation..........c...ccccecervenennenne. 505
11.3.2 Plug-and-Play.........ccccoeviiiiiiiiieiieiece et 505
11.4 Installing Device SUPPOITcc.covueriiriiiiiniinieeiert et 506
11.4.1 INStAllationcc.eevieiieniiiieiiereeeee e 506
11.4.2 Discovery and Initialization of Device Supportcccceveeevveeeciveencneenns 506
11.4.3 Removal/Updateccccooueeiiriiiieniiiieieeeeccneeeee e 507
11.4.4 RecONfIGUIAtIONooouvieiiieiiieiie ettt ettt 508
L1.4.5 FallUIC ..oveeiiiiieiiee ettt et eneas 508
11.5 ODBJeCt MANAZET.....cc.eiiuieiiiiiiiiiieriieteeteet ettt 508

Version 1.0.1

X

SNIA Storage Management Initiative Specification

11.5.1 INStAllationoc.eerieeieniieiieieseeeee e 508
11.5.2 Multiple CIMOMSs on a Single Server.........ccceveveevciieiiieeeiee e 508
11.5.3 Removal/Upgradecceeevieeiiieiieiieeiieciieeieeiee ettt 509
11.5.4 ReCONTIGUIALIONeeeiiiieiiiieeiiie ettt ettt re e e stee e beeesereeenes 509
11.5.5 FaIlUIC c.oeeeniieiieiee ettt eneas 509
L1.6 CLENLE .ottt ettt sttt et b ettt be e 509
11.6.1 ReMOVAL...coiiiiiiiiiii e 509
11.6.2 RecONfIGUIAtIONeoouvieiiiiiiieiie ettt 509
11.6.3 FallUIC ..ot 509
11,7 DIFCCLOTY SEIVET ...oivuiieiiiiiieiieeiieite ettt ettt ete et eebeeseeebeeseeesaeeseeenseas 509
11.7.1 INStallationcooeieiiieiiieiiee e e 509
11.7.2 Removal/Failure...........ccoeeieiiiiiiniiiiieeeeeeeeeeeee s 509
11.8 Management DOMAINSccccueeeiiieiiiieriiieenieeesieeesteeeieeeeireesaeeesreeeneveeenns 509
11.8.1 Initial ConfigUurationccoceeveriiriiiieniineeieneeeee e 510
11.8.2 ReCONTIGUIAtIONeoovvieiiiiiiieiieciteie ettt 510
11.9 LOCK MANAQEETccuvvieiiiiieeiie ettt e e e e e e e seeesnaeeenes 510
(INfOrmative) FULUIESc.veiiciiiciie et e 511
ALTLOVEIVIEW ..ottt ettt sttt et sb et et sbe bt e bt ebeeaee 511
A.2.HBA LUN masking and persistent binding.............cccceeeveevienireneenreeneenne. 511
A.3.Managed HUb SeCtion........cccocueiiiiiiniiniiiiiicecienceeeeeeeee e 511
ALATP SOTAZE ... veeeeiieeiiie ettt ettt ettt ettt e et e st e st e e sbee e s bt e e saneeenaneas 511
A5 Multi-Path MOd@lNG........cccuiviiiiiiieiiiriiciieeee et 511
AL6.Provider MOdEINGcc.eeiiiiiiiiiieeieeieeetee e 511
A TNON-FIbre FabriCsc.ooiiiiiiiiiiiiiiiieeieceeees e 511
A.8.Compliance NOtIfICAtIONcceeeiieriieeiieiieeie ettt 511
AL9.Cascaded AZENtS.....c..oouiiiiriiriiiieieeet e 512
AL TONEtWOTK SOTAZEoovvieiieiiiieiieeie ettt ettt 512
A.11.Synchronization of File System Elements through Copy Services 512
A.12.Model Size Distinctions in Disk DIiveccccoovieiiiiiiiniiiiiicieceeeeee, 512
A.13.Expanded EXtent Mapping.........cceeueeeuienieeiiieniieeieeseeeieesiee e eneeesvee e ens 512
ALTALOCKING ..ottt ettt ettt et b e et eestaeesbeessaesnseesneesseenees 512
A.15.Policy Managementccoocuieiiieiiieniienie ettt 513
(Informative) Experimental Profiles...........ccccceeviiiiiieniiniieieciieieccecee e 517
BLLLOVETIVIEW ..ttt ettt sttt et ettt et st e b e eaeas 517
B.2.Common Profiles and Subprofilescccccooeeviriininiiniininiinicncncnece 517
B.3.SML SUDPIOFILESooviieiiieiieeieeeee et 520
B.4.Extender Profileccccooiiiiiiiiiieieeeeeee e 553
B.5.Management Appliance Profile..........c.ccoooiiiiiiiiiiiiiiieee 567
B.6.0ut of Band Virtualizer Profile........cccocoiiiiiniiiiiiiniiiieeeeceeen 576
B.7.JBOD Profile.......coiiiiiiiiiieieeeeeeee et 603
(Informative) Mapping CIM Objects to SNMP MIB Structures...........cccceeeueene 614
C.1.Purpose of this appPendiXcccueeeiierieeiiieiieeie ettt 614
C.2.CIM-t0-MIB Mapping OVeIVIEW........ccecvreerurrerireesieeesreeeseeeeeseeesseeesseeens 614
C.3.CIM-to-MIB Mapping Methodologyccccecerieniniiniiniiniinicicniceee 615
C.A.EXaMPIE MAPPING ..ttt ettt ettt e ete et seaeebeesaeeenseenseeenseas 617
(Normative) Compliance with the SNIA SMI Specification...........ccccceevveeeunennns 635
D.1.Compliance Statementcccoveereriiiriinieiienieie et 635

Version 1.0.1

SNIA Storage Management Initiative Specification

D.2.How Compliance Is Declaredccoceevuieriieiienienieeiiecieeieeeeee e 635
D.3.The Server Profile and Compliance............ccccveeeviieeiiieciieeeieeeieeeeiee e 635
DA EXAMPIE ..ottt et et es 635
E. (Informative) Optional Profiles and Subprofilesccccoeveevieeiieniieiiciennn 637
E 1. INtrOAUCTION ..ottt s 637

E.2. Provider Subprofile

Version 1.0.1

X1

SNIA Storage Management Initiative Specification

List of Tables

Table 1. Standards Dependencies for SMI-S..........ccooiiiiiiiiiiiie e, 39
Table 2. SLP PrOPEIties ...ccccuieiiieeiieiiieeieeieeeie et ete ettt eteeeee e e ssaesbeesaaeenseessneenseas 77
Table 3. Standardized Name FOrmats..........cccccoeiieiiiiiiiiniiiieieccee et 82
Table 4. Profile COMPONENLScc.eeviiiiiiiieeiieiie ettt ettt seaeeneeas 98
Table 5. Registry of Profiles and Subprofiles............ccceevieriieriieniieiiecieeeeeieeeene 101
Table 6. Required CIM EIEMENtSccceeciiriiriiriiiiiiiiicecienesceeee e 106
Table 7. Required Properties for SystemPackagingccccceeevieviniiiieniiniiiinieee, 107
Table 8. Required Properties for PhysicalPackagecccceeviieniieiiieniinciienieeiene, 107
Table 9. Required Properties for Productcccooeeeiiiiiiiiiiiiiiceeeeeeeee 108
Table 10. Required Properties for ProductPhysicalComponentc..cccceevverienennnene. 108
Table 11. Required Properties for CONtainercccuveveeeeieeriieeieeniieeieeiee e evee e 109
Table 12. Required Properties for ProductParentChildccocoviiiiniiniiiiniincnnne. 109
Table 13. Required Properties for Realizesc.ccccveeiieiiiiiiiniiiiieeiecieeeee e 109
Table 14. Required CIM EICMENLScccveriiiiiieriiieiierie ettt 112
Table 15. Required Properties for InstalledSoftwareldentitycccccocervenerniiniinnenne 112
Table 16. Required Properties for Softwareldentitycccccceeeciiiniiiiiiiniiniiiieee, 112
Table 17. Required CIM EICMENLScccuveriiiiiieiiieiiecie et 115
Table 18. Required Properties for HostedAccessPoint............ccoocueivieiiienienieiniiee, 115
Table 19. Required Properties for SAPAvailableForElementccccooeeviiniiniennene. 115
Table 20. Required Properties for RemoteServiceAccessPoint...........cceeeveeevieniveennennne. 116
Table 21. Optional Profiles or SUbprofilesccccooerieniniiniininiiiiicnccccecee 116
Table 22. OperationStatus for Component ComputerSystem.............ccceevveerreereeeneenne. 119
Table 23. Required CIM EICMENLScccveeiieiiieiiieiieeie et 120
Table 24. Required Properties for ComponentCsSc..cocevieviiniiiniencnieneeienecene 120
Table 25. Required Properties for ComputerSyStemcc.eevveeiienieeriienieeieeniieeeeenes 121
Table 26. Optional Profiles or SUbprofilescccoovveiieiiiiiiieiieiecee e 121
Table 27. OperationStatus for Component ComputerSystem..........ccccecververerreeneennennn 123
Table 28. Required CIM EICMENLSccceeriiiiiiiiiieiieiie ettt 124
Table 29. Required Properties for ComputerSyStemcceevveerieerieeriienieereenieeeveenes 125
Table 30. Required Properties for ExtraCapacitySet.........ccceoerieniiniiniineeicnecnennenn 125
Table 31. Required Properties for Concreteldentityccoeeeevcuieiieniieenieniieiieee, 126
Table 32. Required Properties of MemberOfCollection..........ccceeeveeeeieenciieencieeecieenns 126
Table 33. Optional Profiles or SUbprofilescccocerieniriiniininiiiiccccececee 126
Table 34. Required Functional Profilesccoooiiniieiiiiniiiiiiieieeee e 127
Table 35. DISKDIIVE Statuscccuiiiiiiiiiiiieiieeie et e 128
Table 36. Required CIM EIEMENtSccccocuiriiriiriiniiienicnicercscee e 132
Table 37. Required Properties for BasedOncccueeciieiiiiiiiniiiniieiieceeeeee e 133
Table 38. Required Properties for ConcreteComponent.............eeeveeeeveeeireeencreesnveennne 133
Table 39. Required Properties for COntainerc.ccecueeeeveeiienieneniienieneeieneeseeeenne 134
Table 40. Required Properties for ProductParentChildcocoviiiiniiniiiiniincnene. 134
Table 41. Required Properties for DeviceSoftwareldentity...........ccceeeeieenciieeniieeenieenns 134
Table 42. Required Properties for DiSKDTIIVec.coccuieiiiiiiiiiiiiiiieceee e 134
Table 43. Required Properties for MediaPresent.............cooceeviiiriiiniieiieenieeieeiee 135
Table 44. Required Properties for PhysicalMediacccceeeviiieiiienciiecieecee e, 135
Table 45. Required Properties for Realizesccooeeeiieiiiiiiiiiiiiiicieeeeee e 136

Xii Version 1.0.1

SNIA Storage Management Initiative Specification

Table 46. Required Properties for RealizeSEXtent..........ccocuvevveeiiinieicieenieeieeeeeen, 136
Table 47. Required Properties for Softwareldentityccceecvieeeiieeiiieeiiiecie e 137
Table 48. Required Properties for StorageEXtentccceevieeriieiieeiiienieeeeie e 138
Table 49. Optional Profiles or SUbprofilesccooveeiieiiiniiieiicieceeeeee e 138
Table 50. Required Functional Profilescccoeeiiieiiiiiiiieieceeeeeee e 139
Table 51. Required CIM EICMENLScccveiiiiiiieiiieiieie ettt 141
Table 52. Required Properties for BasedOncccceeeiieviiiiieniieiiieiecieeeeeee e 141
Table 53. Required Properties for ConcreteComponent...........cocoeeeeveereenreeceeneeniennenn 141
Table 54. Required Properties for StorageEXtentccceevieeviieiiieriienieeieeie e 142
Table 55. Optional Profiles or SUbprofilescccooveeiieiiiiiiiiiieiiecee e 142
Table 56. Required CIM EIEMENtScccecuiriiriiiiiniiiieicnecieresceeeecre e 144
Table 57. Required Properties of LoCationccccevveeiienieiieeniiecie e 144
Table 58. Required Properties for PhysicalElementLocation..............ccceeeveeevienueennnennee. 145
Table 59. Optional Profiles or SUbprofilesccccooerieniiiiniiiiniiiiccccccecee 145
Table 60. Required CIM EI@MENLtSccceeriiiiiiiniieiieriie ettt 146
Table 61. Optional Profiles or SUbprofilesccoovveeiieiiiniiieiiicieceeeeee e 146
Table 62. Copy Services Standard Dependencies..........coccecereeveeiinienieniieneenienecnienn 147
Table 63. Required Functional Profilesccooieriieiiiiniiiiieieciecece e 147
Table 64. Name FOrMAatS........cciiiiiiiiieieiieie ettt 150
Table 65. Subprofile Required Classes, Associations, Methods and Indications.......... 164
Table 66. Required Properties for ElementCapabilitiescccceevvevienenienennieniennenne 165
Table 67. Required Properties for HoStedService.........oovuvrviimnieniiiniieniieiieeie e 165
Table 68. Required Properties for StorageConfigurationServicec.ccoceeveeveeneenenne. 165
Table 69. Required Properties for StorageConfigurationCapabilitiescccueenenee. 166
Table 70. Required Properties for StorageSynchronized.............ccoovvevviienieniieniennnnne. 167
Table 71. Required Properties for StorageCapabilities..........ccccovveveiviiniineeiicneenennne. 168
Table 72. Required Properties for ElementSettingData............ccccooeviiiiniininnenienenn 171
Table 73. Required Properties for StorageSettingccccccveveeeiiinieiiieeniecieeieeeeeeen, 171
Table 74. Copy Services Optional Subprofiles and Profiles.........c..cccccecivieicniinennene. 172
Table 75. Job Control Services Standard Dependenciescccceeveeriienienieenieennnenne 173
Table 76. Required Functional Profilesccooieiiieiieniiiiiiiiccieeeeceeeeee e 173
Table 77. Subprofile Required Classes, Associations, Methods and Indications.......... 176
Table 78. AffectedJobElement Required Properties...........ccoeeeriiiniieiieenienieeiieee, 177
Table 79. Required Properties for ConcreteJob...........cocvevieriiiiiieniieiiecieeeeeee e 177
Table 80. Required Properties for OwningJobElementcccccocveviiviiniininnicniennenn. 178
Table 81. Optional Profiles or SUbprofilesccooviveiieiiiiiiiiiieee e 178
Table 82. Pool Manipulation, Capabilities, and Settings Standard Dependencies........ 180
Table 83. Required Functional Profilescccoooiiiiiiiiiniiiiiieeeeeee e 180
Table 84. Example RAID Mapping Table........cccoocveviieniiiiiiiiiieieceeeeeeee e 187
Table 85. Required CIM EICMENLSccceeriiiiiieiiieiieie ettt 191
Table 86. Required Properties for ElementCapabilitiescccceeceviineniinennicnicnnenne. 192
Table 87. Required Properties for StorageConfigurationServicec..ccoceevververuennene. 192
Table 88. Required Properties for StorageConfigurationCapabilitiesccoeeeuneenee 192
Table 89. Required Properties for StorageCapabilities..........ccccevvereiviiniineericneenennne 194
Table 90. Required Properties for ElementSettingData............ccccooiviiiiniininnenienenne 197
Table 91. Required Properties for StorageSettingccccveeveveeerieeeiieencieeeee e 197
Table 92. Required Properties for StorageSettingWithHints...........ccccooceviniiiincnnne 199

Version 1.0.1 Xiil

SNIA Storage Management Initiative Specification

Table 93. HostedService Required Propertiesccceeveevierieeniienieeiienieereeeee e 201
Table 94. Optional Profiles or SUbprofilescccvveviiieiiiiiiiieeeeee e 201
Table 95. LUN Creation Standard Dependencies............ccoceevieeeiienieenieeniienieeiee e 202
Table 96. Required Functional Profilescccoeieriieiiieiiiiiiiiiecieceece e 202
Table 97. Required CIM EIEMENtScc.ccevuiiiiiieiiieeieeeieecee et 219
Table 98. Required Properties for StorageConfigurationServiceccoceevververeennnene 219
Table 99. Optional Profiles or SUbprofilescccoovveeiieiiiniiiiiieciecee e 220
Table 100. Device Credentials Standard Dependenciescoeevverienenieneenienecnnenn 220
Table 101. Required Functional Profilescccoeoieniiiiiiiiiiiiieiecieciece e 221
Table 102. Required CIM EICMENLScccveriieiiieiiieiieie ettt 223
Table 103. Required Properties for SharedSecretService..........covveverviiniineniicneenennenn. 223
Table 104. Required Properties for SharedSecret...........ocovevvvieiiiiiiiiienieeiecieeeee 223
Table 105. SharedSecretlsShared Required Propertiesccoceeeveerieecieenieeccieenieeeenne, 224
Table 106. HostedService Required Propertiescoceeeevveriinieniicneenenieneeieeecene 224
Table 107. Optional Profiles or SUbprofilescccooieeiiieiiiniiiiiiiecee e 225
Table 108. Device Credentials Standard Dependenciescocvevcveeviienieeiieeneeeneenne. 225
Table 109. Required Functional Profilescccoooiiiiiiiiiiiiiiiieeceeee e 226
Table 110. Required CIM EIEMENLSccceeriiiiiieniiieiieie ettt 228
Table 111. Required Properties for FCPOItcccveeviieniiiiiiiecieeeeceeee e 228
Table 112. Required Properties from ProtocolControllerForPort.............ccccoerieniencne 230
Table 113. Required Properties from ProtocolControllerAccessesUnit..........cccceueeneeee. 230
Table 114. Required Properties for SCSIProtocolControllercoevvvevieecrienieennenne. 230
Table 115. Required Properties for StorageEXtentccccoceveeviniiiniincniineniicnicee 231
Table 116. Required Properties for SystemDeviICe.........ccuevvvieriieiiinieeieeiieeieeiee e 231
Table 117. Optional Profiles or SUbprofilescccooveviieiiiiiiiiiiciecee e 231
Table 118. LUN Masking Standard Dependencies..........c.cccceveevieeiiinienenieneenienecnnenn 233
Table 119. Required Functional Profilesccocieriiiiiieiiiiiiiiieiececeeee e 234
Table 120. Subprofile Required Classes, Associations, Methods and Indications.......... 263
Table 121. Required Properties for AuthorizedSubject..........cccccovveniiiiniiininicnicncnnene. 264
Table 122. Required Properties for AuthorizedTargetccccevvveviiviinieninienienenene 264
Table 123. Required Properties for ConcreteDependency...........cccueeveevvienieecreeneeeneenne. 264
Table 124. Required Properties for ControllerConfigurationService............cccceeueeeennnne. 265
Table 125. Required Properties for ElementSettingData...........ccccooiviininiininneniennen 265
Table 126. Required Properties for HostedCollection.............ccceeevieriieriieniieeieeiieeee, 266
Table 127. Required Properties for MaskingCapabilities..........c.cccoceeviriiniencnicnennene. 266
Table 128. Required Properties for Privilegecccoocvveeiieniiiiiiiiiiiieieceeeeee e 267
Table 129. Required Properties for PrivilegeManagementService..........ccoceveeveeneennnne. 268
Table 130. Required Properties for StorageClientSettingDataccccecerverernieneennenne. 269
Table 131. Required Properties for StorageHardwareID............cccoveeviiniinieicniencnnene. 269
Table 132. Required Properties for StorageHardwareIDManagementService................ 270
Table 133. Required Properties for SystemSpecificCollectionc..ccccevveverviinicnnene. 270
Table 134. Fabric Standards Dependenciesccceevveeiierieeieeniieniieiieceeeee e 273
Table 135. Required Functional Profilescccoeeiiiiiiiiiiiiieiieceeeeeee e 273
Table 136. Durable Names USAZEcc.cecuerieriiriinieiiniienieeiesie ettt 277
Table 137. Port OperationalStatuscccueerieiiiienieiieeieeie e 277
Table 138. OperationalStatus for ComputerSYStemMcccveevcieeerieeerieeeie e 277
Table 139. Required CIM EICMENLSccceeviiriiniiriiniieieeicriecicreescee et 280

X1v Version 1.0.1

SNIA Storage Management Initiative Specification

Table 140. Required Properties for ActiveConnection...........ccc.eeeveereeerieenieecreeneeeneennes 282
Table 141. Required Properties for AdminDomain...........cccceeevieeeiieniieencieecee e, 282
Table 142. Required Properties for COmponentccceeecueerieerieenieenieeniesieeiee e 282
Table 143. Required Properties for ComputerSyStemceevveerieenieerieenieeieenieeeveennes 282
Table 144. Required Properties for ContainedDomain.............ccceeevuvieriiieenciieeniee e 284
Table 145. Required Properties for DeviceSAPImplementation...........c.cccoceeverieniennnene. 284
Table 146. Required Properties for ElementCapabilitiescccceeveeeriienieeireenieeneenne. 284
Table 147. Required Properties for ElementSettingData............ccccoceviiiiniininninicnene. 284
Table 148. Required Properties for FCPOItcccueiiieiiiiiieieciececeeeeee e 284
Table 149. HOStedACCESSPOINEoc.eiiiiiiiiieieeieeeeeee e e 287
Table 150. Required Properties for HostedCollection.........c..cccerveneriiinicneenicnicnienene 287
Table 151. Required Properties for ConnectivityCollection...........ccceeeeverienernieniennenne. 287
Table 152. Required Properties for LogicalPortGroup..........ccccueevvverieecieenieecreenieereenne 287
Table 153. Required Properties for MemberOfCollectioncccceevveviinienienicnennnene. 288
Table 154. Required Properties for MemberOfCollectionccceeeveeviienieeiieniennnnne. 288
Table 155. Required Properties for ProtocolEndpoint............cccceevvveviieriieniiniiieniieeieenne, 289
Table 156. Required Properties for SystemDevice..........coceeeeviriininiiinicneeicnecenne 289
Table 157. Required Properties for Zone...........cccvevieeiienieiiiieiieeieeieece e 289
Table 158. Required Properties for ZoneCapabilities..........ccceecveeriieriieriienieeiieeie e 290
Table 159. Required Properties for ZoneMembershipSettingData...........c..cccceevvenienne 291
Table 160. Required Properties for ZoneSet..........cccoeevievieiiiiiniiiiiiiecieeie e 291
Table 161. Optional Profiles or SUbprofilescccoovieiieiiiiiiiiiieciecece e 291
Table 162. Required Functional Profilesccoooiiiiiiiiiiiiiieeeeee e 292
Table 163. Required CIM EI@MENLtScceeriiiiiiiniieiieiie ettt 306
Table 164. Required Properties for HOStedService.........oovuvvviirnieniiiniieniieiiecieeieeeeeen 306
Table 165. Required Properties for ZoneService.........cooevveveriinieneriineenieeienecenenne 306
Table 166. Optional Profiles or SUbprofilesccooiveiieiiiniiiiiiiieceeeeee e 307
Table 167. Required CIM EICMENLScccveriiiiiieriiieiieiie et 312
Table 168. Required Properties for HostedCollection.........c..cccerieneriiniineeiicnicniennene. 312
Table 169. Required Properties of MemberOfCollection............cccevcueeviienieeiiienieenenne. 312
Table 170. Required Properties for NamedAddressCollection.............cceeeveeeveenneennnennee. 312
Table 171. Required Properties for ZoneService.........oovvvererienieneniineinieeieneceeneene 313
Table 172. Optional Profiles or SUbprofilesccooiieiieiiiniiiiiiiiecee e 313
Table 173. Required CIM EICMENLScccveriieiiieriiieiieie ettt 315
Table 174. Required Properties for ControlledBycocoviviiiiniiiniininiinecccicee 315
Table 175. Required Properties for DeviceSoftwareldentity..........cccoceeverieniniieniennenne. 316
Table 176. Required Properties for FCPOItcccveeviieriiiiiiiecieeeece e 316
Table 177. Required Properties for LogicalPortGroup...........coceevevveniencneenennieneennenn 318
Table 178. Required Properties of MemberOfCollection............ccceecueeviieniieiiienieenenne. 318
Table 179. Required Properties for PortController............ccccceevvveeiiinieniienieeieeieeee, 318
Table 180. Required Properties of ProtocolControllerForPort.............cccoeveeiiiniinennene. 319
Table 181. Required Properties for SCSIProtocolControllercoceeverieniinieniennenne. 319
Table 182. Switch Standards Dependenciescccveeeiiieriieeiiieeiiee et 320
Table 183. Required Functional Profilesccooiiiiiiiiiiiiiiiiiieeeeeee e 320
Table 184. Required CIM EI@MENLtScceeviiiiiiiiiieiieie ettt 323
Table 185. Required Properties for ComputerSyStemcceeeeveeeciieeniiieeniieerieeeveeens 323
Table 186. Required Properties for ElementStatisticalDatacccccoceeverieniininicnenne. 325

Version 1.0.1

XV

SNIA Storage Management Initiative Specification

Table 187. Required Properties for FCPOItcccveeeiieriiiiiiiecieceece e 325
Table 188. Required Properties for FCPortRateStatiStics..........cccveevvveeeiieeniieeeiee e 327
Table 189. Required Properties for FCPOrtStatistics..........covevieeiiienieeriienieeieeiie e 327
Table 190. Required Properties for SystemDEVICE.........cccueevvierrieeiiiriieeieeieeeie e 329
Table 191. Optional Profiles or SUbprofilescccvveviiieiiiiiiiieeeece e 329
Table 192. Required CIM EI@MENLSccceeriiiiiieiiieiieiie ettt 331
Table 193. Required Properties for LogicalModulecccoevviriiiniiiiieniecieeiie e, 331
Table 194. Required Properties for ModulePort............cccooiiiiiiiiiiiiiiieee 332
Table 195. Required Properties for SystemDevViICe.........ccueevvieriieiiiniieiieeiie e 332
Table 196. Optional Profiles or SUbprofilescccooveeiieiiiiiiiiiiiciecee e 332
Table 197. Router Standard Dependencies...........coceveevueeieniinienieniiieniceeieseeee e 333
Table 198. Required Functional Profilescccooiiiiiiiiieiiiiiiiiiecieeeceeeee e 333
Table 199. Required CIM EICMENLScccveriieiiieiiieiieiie e eve e 336
Table 200. Required Properties for ComputerSystemcccoeevueeiinienienienennieneenienn 337
Table 201. Required Properties for ComputerSystemPackage..........cccccceevveeciienieennenne. 340
Table 202. Required Properties for FCPOItcccvieeiieriiiiiiiicieeeeceeee e 340
Table 203. Required Properties for LogicalDeviceccoceerieeiiienieeiiienieeieeieeeeene 344
Table 204. Required Properties for Concreteldentityccoeeeeeciiinieiiieenienieeiieee, 344
Table 205. Required Properties for LogicalPortGroup..........ccccueevvverieecieenieecreenieeveenne 344
Table 206. Required Properties of MemberOfCollection...........ccceceveeveniinennienicnnenne. 344
Table 207. Required Properties for SCSIProtocolControllercoceevevieniriieniennenne. 345
Table 208. Required Properties for ProtocolControllerAccessesUnitccccueveeenenee. 347
Table 209. Required Properties for ProtocolControllerForUnitccccvveniiiinicnnenne. 347
Table 210. Optional Profiles or SUbprofilesccooiieiieiiiiiiiiiiieceeeee e 348
Table 211. HBA Standards Dependencies...........ccccueerueeeiieriienieeniienieeieeseeeveesnee e 349
Table 212. Required Functional Profilesccoooiiiiiiiiiiiiiiieeeeeee e 349
Table 213. Required CIM EI@MENLSccceeriiiiiieiiieiieiie ettt 352
Table 214. Required Properties for ComputerSyStemceevveerivereeeriienieeireenieeereennes 352
Table 215. Required Properties for ControlledBycocoeviviiiiniiiniininiieeicicee 354
Table 216. Required Properties for ProtocolControllerForUnitcccevveveinieniennenne. 354
Table 217. Required Properties for DeviceSoftwarecceeveeiieriieniieeniieeieeieeeeee, 354
Table 218. Required Properties for ElementStatisticalDatacccccoceeveriininncnicnnnne 354
Table 219. Required Properties for FCPOItcocviiiiiiiiiiiiiccieeeceee e 355
Table 220. Required Properties for FCPOrtStatistics..........covvevviieriienieeriienieereeseeeveene 356
Table 221. Required Properties for HostedCollection.........cc.cecuerieneriinicneeiicnicnienene 357
Table 222. Required Properties for LogicalPortGroup..........ceceeevievieicieenienieeieee 357
Table 223. Required Properties of MemberOfCollection............ccceeeeveeviieniienienieenenne. 357
Table 224. Required Properties for PortController............ccoeeveriininiiniineeicnicienne 357
Table 225. Required Properties of ProtocolControllerForPort.............ccocoevviiiniincnnene. 359
Table 226. Required Properties for SCSIProtocolControllerceeevevieeirienveennenne. 359
Table 227. Required Properties for SystemDevice..........coceveeviriininiiiniineeienecenne 359
Table 228. Required Properties for Softwareldentityccccoceeeeiiinieiiiiiniiniieieee, 360
Table 229. Optional Profiles or SUbprofilescccvveviiieiiiiiiiieceece e 360
Table 230. HostDiscoveredResources Standards Dependencies..........ccccceveveeienecnenne. 362
Table 231. Required Functional Profilesccoooieniieiiieiiiiiieieciececeeeee e 362
Table 232. SCSI Device TYPe MapPingccc.eeecveeeiieeriiieeeiieesieeesieeeeeesveeesseeesveeenns 366
Table 233. Required CIM EICMENtScccocuiriiriiriiniiieiiceciereeseceeeece e 367

Xvi Version 1.0.1

SNIA Storage Management Initiative Specification

Table 234. Required Properties for AdminDomain............ccceevveeeiienieenieenieenieeieeeeeenn 368
Table 235. Required Properties for COMpPONEntcccuveeeveeeriieenieeeieeeiieeeee e 368
Table 236. Required Properties for DeviceSAPImplementation...........c..cccceevevieniennene. 368
Table 237. Required Properties for FCPOItcccueeviieriiiiieiicieeeecieee e 368
Table 238. Required Properties for HostedCollection.............cccvveeeiieecieeecieeniie e 372
Table 239. Required Properties of ProtocolControllerForPort.............cocevveiiiniinennene. 372
Table 240. Required Properties for LogicalNetwork............ccoeeveeiiinieiiieeniienieeieeeeen, 372
Table 241. Required Properties of MemberOfCollection...........ccccoceveeviniincnnienicnnenne. 372
Table 242. Requited Properties for ProtocolEndpoint............ccceeevivevieeriienieniiienieeieenne, 373
Table 243. Required Properties for SystemDEVICe.........cccuevvvieriieeiieriieeieeiieeee e 373
Table 244. Required Properties for StorageVolume...........ccccceverieniniiniineniicnecniennne 373
Table 245. Optional Profiles or SUbprofilesccooiieiiiiiiniiiiiiiiecee e 375
Table 246. Required CIM EICMENLSccceeviieiiieiiieiieie ettt 376
Table 247. Required Properties for ProtocolControllerForPort............cccccoveniiiiinicnnenne. 376
Table 248. Required Properties for SCSIProtocolControllercoceeverveniinieniennenne. 376
Table 249. Required Properties for ProtocolControllerAccessesUnitcccccueveeenneeee. 377
Table 250. Optional Profiles or SUbprofilesccccooerieniriiniiiiniiiiciceccececee 377
Table 251. Required CIM EI@MENLScccveiiiiiiieiiieiieie et 379
Table 252. Required Properties for SCSIProtocolControllercoevveerieeirienieennenne. 379
Table 253. Required Properties for ProtocolControllerForUnitcccevieniiiiniinnenne. 379
Table 254. Optional Profiles or SUbprofilescccooiveiieiiiiiiiiiiiecee e 380
Table 255. Array Standard Dependenciesccveevieriieriieiiienie e 381
Table 256. Required Functional Profilesc.ccoooiiiiiiiiiiiiiieceee e 382
Table 257. OperationalStatus for ComputerSYStemcccveereeeiienierieeienieeiee e 385
Table 258. OperationalStatus for StorageVolumecccoeevvevieeiiiiieiiieeieeieeeeee e 386
Table 259. POrt State/STatUSeevieeiiieiieiie ettt ettt e 387
Table 260. Required CIM EIEMENLSccceeiiiiiiiiniieiieiie et 391
Table 261. Required Properties for AllocatedFromStoragePoolc.ccccveevieiiennnne. 392
Table 262. Required Properties for ElementCapabilitiesccccecerieviniinennienicnenne. 392
Table 263. Required Properties for ElementSettingData............ccccooeviivinienennenienenne. 392
Table 264. Required Properties for ComputerSyStemcceevveerieerieeriienieereeniieereenes 392
Table 265. Required Properties for FCPOTTcociviiiiiiiiiiiiicccccece 394
Table 266. Required Properties from HostedStoragePool.............ccoovveiiiniiniieniennene, 394
Table 267. Required Properties from ProtocolControllerForPort.............cccoveeiiiniennnne. 395
Table 268. Required Properties from ProtocolControllerForUnit.........c.cccceveiiinienne. 395
Table 269. Required Properties for SCSIProtocolControllercoceeverieneniieniennenne. 395
Table 270. Required Properties from StorageCapabilitiescccccveevierieeirieneeeneenne. 396
Table 271. Required Properties for StoragePoolcoceviiiiniininiiniiicicnceee 396
Table 272. Required Properties from StorageSettingccoeeveeceievieiiiienieeieenieeene 397
Table 273. Required Properties for StorageVolume............cccoevvvevciiiniiniiieiienieeieee, 397
Table 274. Required Properties for SystemDevice..........coceveeviriiniiiiinicnecienecenne 399
Table 275. Optional Profiles or SUbprofilesccooiveiieiiiiiiiiiiiiee e, 400
Table 276. In-Band Virtualizer Standards Dependencies..........ccceecveevciveenciieencieeenieenns 401
Table 277. Required Functional Profilesccoooioiiiiiiiiiiiiiceeeee e 401
Table 278. Required CIM EI@MENLtScceeriiiiiieniieiieiie et 405
Table 279. Required Properties for AllocatedFromStoragePoolcccccvvvvvvvennnennee. 407
Table 280. Required Properties for ComputerSystemcccoceeveriinienenienennieneenienn 407

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 281. Required Properties for ConcreteComponent.............cc.eeeeereveerreenveenneennnennn. 407
Table 282. Required Properties for ElementCapabilitiescccceeeveeeciiienciiecciie e 408
Table 283. Required Properties for ElementSettingData............ccccociniininiininnenienenne. 408
Table 284. Required Properties for FCPOItcccveeeiieriiiiiiieciecieceeee e 408
Table 285. Required Properties from HostedStoragePoolccccveeviiieiiieiniieeieens 410
Table 286. Required Properties for ProtocolControllerAccessesUnitccccceveeennene. 410
Table 287. Required Properties from ProtocolControllerForPort.............ccccoveeieniennenne. 410
Table 288. Required Properties from ProtocolControllerForUnit.........c..coccveiiinienene. 412
Table 289. Required Properties for SCSIProtocolControllercceevveevieeiiienieenenne. 412
Table 290. Required Properties from StorageCapabilitiescccccueevrierieeirienieeneenne. 412
Table 291. Required Properties for StorageEXtentccccoceveeviniiiniencnicnenienicee 414
Table 292. Required Properties for StoragePoolccceveiieiiiiiiiiiiiiiieieeeee 414
Table 293. Required Properties from StorageSettingcceecveevivereeerieeniencreenieereenes 414
Table 294. Required Properties for StorageVolume............ccceeeerieniiiiniininicnecncnnnn 416
Table 295. Required Properties for SystemDevViICe.........cccuevvuieriieiiiniieiiieieeieeiee e 416
Table 296. Optional Profiles or SUbprofilescccoeveeiieiieiiiiieciecee e 417
Table 297. Storage Library Standard Dependencies...........cccceeevverviineeneniicneenieneennenn 418
Table 298. Required Functional Profilesccoooiiniiiiiieiiiiiiiiieieciee e 419
Table 299. Required CIM EICMENLScccveriiiiiiiiiiieiierie ettt 428
Table 300. Required Properties for ChangerDevicecoceeveriiniiiiniinieicnicneeene 430
Table 301. Required Properties for Chassis...........cccueeeuierieiiiieniieeiieieecie e 430
Table 302. Required Properties for CONtainerccuvevveeeiierieeeieeriieeie e eve e 432
Table 303. Required Properties for ProtocolControllerForUnitcccevvevviiinicnnene. 432
Table 304. Required Properties for SCSIProtocolControllercoceeverienirnieniennenne. 432
Table 305. Required Properties for DeviceSoftwarecceeeeeeiieriienieenienieeieeeee, 433
Table 306. Required Properties for LibraryPackage...........ccccovoieeiiiiiiiniiiniiiiieieeee 433
Table 307. Required Properties for MediaAccessDeVICeccueevierierieeniieeiieiieeeene 433
Table 308. Required Properties for PackagedComponent.............ccccceeevuverieecreenneenneenne. 434
Table 309. Required Properties for PhysicalMediaccoceeiiiiiiiiiiniiiieeeeee 434
Table 310. Required Properties for PhysicalMedialnLocation..........c..cccceeveevienieniennnene. 434
Table 311. Required Properties for ProductPhysicalComponentc.ccccceeeveenirennnne. 435
Table 312. Required Properties for Realizesccooeeeeieiiiiiiiiiiiiiiceeeeee e 435
Table 313. Required Properties for Softwareldentitycccooceeeciiiniiiiiiininniiiieee, 435
Table 314. Required Properties for Storagelibrary..........ccecvevieeiiiiniieiieeiieeieeieeeeen 436
Table 315. Required Properties for StorageMedialocationc.cccceeieneenicniinennnene. 436
Table 316. Required Properties for SystemDevViICe.........cccuevvuieriieiiiniieiiieiieeieeiee e 437
Table 317. Optional Profiles or SUbprofilesccooveeiieiiiniiiiiicieccee e 437
Table 318. Required CIM EICMENtSccccecuiriiriiriiiiiiieiciecicneescee et 439
Table 319. Required Properties for Limited AccessPOrtcocvveiiiiiieiiieieeieeieee, 439
Table 320. Optional Profiles or SUbprofilescccoovveiieiiiiiiiiiecieceeeeee e 440
Table 321. CIM Server Standard Dependencies..........ccccoeevuerienieeiiinieneniieneenieeienieenne 441
Table 322. Required Functional Profilesccociiniiiiiieniiiiiiiieciieeceeeee e 442
Table 323. Profile Required Classes, Associations, Methods and Indications................ 456
Table 324. Required Properties for ObjectManagerccccceeevveriineenicneenennieneenenn 457
Table 325. Required Properties for SyStemccceeeieriiiiiieniieiieiecieeee e 457
Table 326. Required Properties for HostedService.........ccovvviieniiiiiiiiiciieeiie e 458
Table 327. Required Properties for CIMXMLCommunicationMechanism.................... 458

Xviil Version 1.0.1

SNIA Storage Management Initiative Specification

Table 328. Required Properties for CommMechanismForManager.............cccceeueeeennenne. 459
Table 329. Required Properties for NameSPacececvvveeevieeiiieeniieeiee e eeree e 459
Table 330. Required Properties for NamespaceInManagercccceceeveenieeieneeniennnene. 460
Table 331. Required Properties for RegisteredProfile..........cccoovevviiiiiiciiiniiiieciee, 461
Table 332. Required Properties for RegisteredSubProfile..........c.cccovvveviiieiciieeniieeiees 461
Table 333. Required Properties for ReferencedProfile............ccoeoviiiieiiiniiiiiiieeee, 462
Table 334. Required Properties for SubProfileRequiresProfile.............ccccoeveiinienennnne. 462
Table 335. Required Properties for ElementConformsToProfilecccccoceveriiiniencne 463
Table 336. CIM Server Profile Optional Subprofiles and Profiles...........c.cccecveeirennenne. 463
Table 337. Subprofile Required Classes, Associations, Methods and Indications.......... 465
Table 338. Required Properties for ProtocolAdapterccoooveeiieiiiniieniiiiieeeeee 465
Table 339. Required Properties for CommMechanismForAdapter...........coceeevvenennnene. 466
Table 340. Cross-Profile Durable Namescccooceererienieienieieeceeieee e 470
Table 341. Cross Profile Durable Namescccocceeiiiiiiiiiiiiiieiieciceee e 477
Table 342. MESSAZE TYPES....eeeiieiiieiieiieeieesite ettt ettt et e et esebeebeessbeeseesnseenne 487
Table 343. Required Configuration Properties for SA as DAcccoevveviieiienieeienne, 493
Table 344. Required Configuration Properties for SAcccociiiiiiniininiinicricee 493
Table 345. Functional Profiles...........ccoeiiiiiiiiiiiniiiiieeeceee e 501
Table 346. Required CIM EICMENLSccveriiiiiiiiiieiieie ettt 519
Table 347. Required Properties for ISSParecoccveeveriiniiiicniiniiicnccecsecee 519
Table 348. Required Properties of MemberOfCollection...........cccevcueeviieniieiiieninenenne. 519
Table 349. Required Properties for SparedSet...........cccvevieiiiiiniiiiiiiriecieeeeee e, 519
Table 350. Optional Profiles or SUbprofilesccccooerieniriiniiiiniiiiccnceccecee 520
Table 351. Required CIM EI@MENLSccceeiiiiiiieiiieiieniie et 522
Table 352. Required Properties for InterLibraryPort...........cccoeeveeiieiieiiiieniecieeiieee, 522
Table 353. Required Properties for LibraryExchangeccoccoooiiiiiiininiiini 522
Table 354. Optional Profiles or SUbprofilesccooiveiieiiiiiiiiiiieceeeeee e 523
Table 355. Required CIM EICMENLScccveriiiiiieriiieiieie ettt 525
Table 356. Required Properties for DeviceServicesLocation............coceeverveneeneeneennenne. 525
Table 357. Optional Profiles or SUbprofilescccoovveiieiiiniiiiiiiee e 525
Table 358. Required CIM EICMENLScccveriiiiiieriiieiierie ettt 528
Table 359. Required Properties for FCPOITc..cociviiiiiiiiiiiniccccccce 528
Table 360. Required Properties for ProtocolControllerForPort............ccccevveviinienienncnn. 529
Table 361. Required CIM EICMENLSccveriieiiiiriiieiieie et 531
Table 362. Required Properties for DeviceServicesLocation............coceevervenernieneennenne 531
Table 363. Optional Profiles or Subprofilescccooiveiieiiiiiiiiiie e 531
Table 364. Required CIM EICMENLSccveviiiiiieriiieiieie ettt 533
Table 365. Required Properties for ConfigurationCapacityccccceceevervenerneeneennennn 533
Table 366. Required Properties for ElementCapacityccccceevivenieeniienieeiieniieeeeenne 533
Table 367. Optional Profiles or SUbprofilescccoovveiieiiiniieiiecieceeeeee e 533
Table 368. Required Properties for AlertIndicationc.cceeveeriiiiieniiienienieeieee 535
Table 369. LibraryAlert Property Settings.........cceecueerieeiienieiiieiieeie et 535
Table 370. Vendor Specific Properties of LibraryAlert.........ccccvveeiieeciieniieenieeeieeenee 536
Table 371. Variable Alert Properties for LibraryAlertccccovvveniiviniininicnicnennne. 536
Table 372. SCSI TapeAlert-based Propertiescueeueerieerieeiieenieeieesiie e 536
Table 373. LibraryAlert Alertindication Properties..........cccocuveeviieeiieeciiieeeiieeeiee e 537
Table 374. Optional Profiles or SUbprofilesccccocerieniriiniiiiniiinicicececcecee 550

Version 1.0.1

Table 375.
Table 376.
Table 377.
Table 378.
Table 379.
Table 380.
Table 381.
Table 382.
Table 383.
Table 384.
Table 385.
Table 386.
Table 387.
Table 388.
Table 389.
Table 390.
Table 391.
Table 392.
Table 393.
Table 394.
Table 395.
Table 396.
Table 397.
Table 398.
Table 399.
Table 400.
Table 401.
Table 402.
Table 403.
Table 404.
Table 405.
Table 406.
Table 407.
Table 408.
Table 409.
Table 410.
Table 411.
Table 412.
Table 413.
Table 414.
Table 415.
Table 416.
Table 417.
Table 418.
Table 419.
Table 420.
Table 421.

XX

SNIA Storage Management Initiative Specification

Extender Standards Dependencies...........cccveevieeiieriieniienieeieeee e 553
Required Functional Profilesccccceeeiiieriiieiiieeieeceeeeeee e 554
Required CIM ELEmentscccceeviieiiieiieiieeieeieeeie et 557
Required Properties for ActiveConnection for ATMcccoeevvvvvieevieennnen. 559
Required Properties for ActiveConnection for FCcccooovviviiieiiieennen. 559
Required Properties for BindsTococieviieriieniieieiecieeeeeee e 559
Required Properties for ComputerSystemcccveeeruieeriiieeniiieeniieeieeeeeenn 559
Required Properties for DeviceSAPImplementation...........cccccoceeverienennnene 561
Required Properties for FCPOItc.ccovieiiiiiiiiiecieceee e 561
Required Properties for ForwardingServiceccoceevverieeciienieeieeniieeene, 562
Required Properties for ForwardSAmong...........cccocceeveeniiniiienieiieeiee 562
Required Properties for HostedNetworkPipeccoeceeviivciienienieeiiee, 562
Requited Properties for IPProtocolEndpointc.ccceevveeiiienieeieeniiennnnne, 562
Required Properties for NetworkPortcoccoeviiiiiiiiiiiieeeeee 564
Required Properties for Networkcccoveiiiiiiiiieiiinieeieeecee e 564
Required Properties for NetworkPipe.........ccoccveviieiiiniiiiieieceeee e 565
Requited Properties for ProtocolEndpoint...........ccoeceeviiiiiiniiiiiinieeiceee 565
Requited Properties for TCPPrototocolEndpointc..ccccevvenienienienennnene. 565
Required Properties for SystemDEViICe.........cccviervieriieriienieeiierieereeiee e 566
Optional Profiles or SUbprofilesc.ccocerieviriiniininiciccnecccceecee 566
Management Appliance Standards Dependencies...........coccevveveevienieniennnene 567
Required Functional Profilescccoevieriieriiiiieiecieeieeeee e 567
Required CIM EICMENtSccccoviriiriiiiiiiiiieienecieeenieeeeeseee e 571
Required Properties for ComputerSystemccceecveerieriiienieeiiienieeieeieenne 571
Required Properties for FCPOTtccceeeviiiiiiiiiiiiie e 572
Required Properties from HostedServicecocovevveniinenicnecncnicnennne 572
Required Properties from Installed SoftwareElementccccoeeeninienncee 572
Required Properties for LogicalPortGroup........cccveeeeieeriveeniieeniieeiee e 573
Required Properties for MemberOfCollectioncoceeveriinienicnienennnene. 573
Required Properties for RemoteServiceAccessPoint...........ccceeveevieeieenen. 573
Required Properties for ServiceAvailableToElement............cccccccevvverivennennne 573
Required Properties for SoftwareElement............cccceecveniiiiniiniincnicnennne. 574
Optional Profiles or SUbprofilesccooieeiiiiiiiiiiiiieeee e 575
OutofBand Virtualizer Standards Dependenciescccceeveveeeiieniiecieennnnnne. 577
Required Functional Profilesccccooviiiiiiiiiiiiiiiiee e 578
Required CIM ELEmEntscccceeviieriieiieiieeieeieeeie e 585
Required Properties for AllocatedFromStoragePoolccccccveevieiiennnnne. 587
Required Properties for BasedOnccccoooveviiiiniininiiniinceceeieee 587
Required Properties for Componentcoccueeeueerieeieenieeiieenie e 587
Required Properties for ComputerSystem - Metadata Controller 587
Required Properties for ComputerSystem - Translation Engine 589
Required Properties for ElementCapabilitiesccccocueeviieniieiiienieeiienine 589
Required Properties for FCPOTtccceeeiiiieiieeieecee e 589
Required Properties from HostedCollection..........c..ccceeeeriinienieneenenicnene 591
Required Properties from HostedStoragePool............ccccoeveeiiiniiiiienieee, 591
Required Properties from LogicalPortGroup..........cccccveeevveeecieencieenieeeeen, 591
Required Properties for MemberOfCollectionccoceeverieniinicnienennnene 591

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 422. Required Properties from ProtocolControllerForPort.............ccceveeiiniennnnn. 591
Table 423. Required Properties from ProtocolControllerForUnit............ccccveevvieennennn. 592
Table 424. Required Properties for SCSIProtocolControllercoceevevieniiiieniennenne. 592
Table 425. Required Properties from StorageCapabilitiesccccceueeviierieeirieneeeneenne. 592
Table 426. Required Properties for StoragePoolccceeeeviieiiiiiciiieeeeeece e, 594
Table 427. Required Properties from StorageSettingcceeeeeeievieiiieenienieeniieene 594
Table 428. Required Properties for StorageEXtentc.cccceeveveeviienieeriienieeieeeee e 595
Table 429. Required Properties for StorageVolume...........cccceeverieniniiniinenicnecnicnnnn 599
Table 430. Required Properties for SystemDevViICe.........cccuevvuierieriiinieiiieiieeieeiee e 599
Table 431. Optional Profiles or SUbprofilescccooveeiieiiiiiiiiiiiieceeeeeee e 599
Table 432. JBOD Standard Dependencies............coeeuerieneriiniinieniineeieneesieeeeseeeeeene 603
Table 433. Required Functional Profilescceoieniieiiieniiiiiiieicceceeee e 603
Table 434. Required CIM EICMENLScceeviieiiieriiieiierie ettt 605
Table 435. Required Properties for ComputerSystemccoeeveeiinienienienennieneennenn 605
Table 436. Required Properties for ComputerSystemPackage...........cccceevveeciienieennenne. 608
Table 437. Required Properties for FCPOItcccveeeiiiriiiiiiiecieeieece e 608
Table 438. Required Properties for Concreteldentitycccceeerveneiniiniinenicnicnennnn 611
Table 439. Required Properties for SCSIProtocolControllerccoceeverieneriieniennenne. 611
Table 440. Required Properties for ProtocolControllerForUnitcccevcvevieniiniennne. 613
Table 441. Required Properties for SystemDevice..........cocueveeviiriiniiiiiniineeienecenne 613
Table 442. Optional Profiles or SUbprofilescccooiieiieiiiniiiiiiiecee e 613
Table 443. CIM/SNMP Data Type Mapping.........cccceeeveeeueerieenieenieeeieereesveesseesseesseennns 615
Table 444. Subprofile Required Classes, Associations, Methods and Indications.......... 639
Table 445. Required Properties for Providerccccueeiieniiiiiieniiiiieieceeeeee e 639
Table 446. Required Properties for ProviderCapabilities...........cccceevierciienieeiienieennnen, 640
Table 447. Required Properties ProviderElementCapabilitiescccccccerverernienicnnene 641
Table 448. Required Properties for ClassSupportForNamespace............cccceeeveeruveennennee. 641
Table 449. Required Properties for ProviderModule............ccccceeviiiiieiiiiiniicieeiiee, 641
Table 450. Required Properties for ProviderInModulecccoociiiiiiiiiiinniiiiiee 642
Table 451. Required Properties for IndicationFilterccccovveviiiiniinininiiiciicee 642
Table 452. Required Properties for FiltersSupportedcccoocvveviieriieiiienieeiieieereenne, 642
Table 453. Requried Properties for ObjectManagerIsProviderRequired......................... 643

Version 1.0.1

XX1

SNIA Storage Management Initiative Specification

List of Figures

Figure 1.Interface FUNCHONScc.eiiiiiiiiiiiiiiieieceeeeeee e 30
Figure 2.1.arge SAN TOPOIOZY ..eeeuiiieiiieiiieeeite ettt 33
Figure 3.Example Client Server Distribution in @ SANcccccocevviriininiinincnicnecieeen 34
Figure 4.SMI-S Modeling CONVENtIONS........ecuerierierieniieieeiienieete st see et eeees 61
Figure 5.0bject Model/Server Relationshipccocccveevieiiiiiiiniiciccieceece e 62
Figure 6.Canonical INheritance...........cocoveiviiriiniiiiiiiiiiiccecece e 63
Figure 7.Sample CIM-XML MESSAZEceoeeueruieriiriiniieieeiienieeie sttt siee et see e eeees 64
Figure 8.Operational ENvIronmentcoceoiiieiiiiiiiiiiinicieiececteeeete e 67
Figure 9.Transport STACK.......cccoviiiiriiiiiiiee et 70
Figure 10.Reference Modelcocooviiiiiiiiiiiiiiieeeeeee s 71
Figure 11.CIUSter MOdE]coioiiiiiiiiiieieee et 76
Figure 12.Common EICMENLSc.ccoviiiiiiiniiiiiiieieicceceeceee e 77
Figure 13.Server Profile Instance Diagramccccooevvieniininiiiniiniiicncciceesceeeee 78
Figure 14.Volume Group Shared Across Namespaces.........cccveeeeevueerieerreenieesreeneeeneenens 79
Figure 15.indications Filters Schema..........cc.cocccoiiniiiiiniiiiniiicce e 86
Figure 16.Indications SCheMA..........cceivuiiiiiiiiiiiieieieeeeee e 87
Figure 17.Physical Package INStance..........cccceouevieriiiienieieciecee e 104
Figure 18.Software Instance DIiagramcccccecverieiiriiniiiiniineeeeeeeeeeeeve e 111
Figure 19. Access Point Instance Diagram..........c.cccceeevueerieniiienieeiieieeie e 114
Figure 20. Cluster INStAnCeoooueiiiiiiiiiieiiieeeeeee e 118
Figure 21.Extra Capacity Set Instance Diagram...........cccccoeevuiniiniiiinieniniienicnecicnene 122
Figure 22.Disk Drive Instance Model............cocoviiiiiiiniiiiniiiiceeesee e 128
Figure 23.Extent Mapping INStancCe..........cccueevieriieeiieiiienie ettt 140
Figure 24.1.0cation INSTANCEcceeiiiiiiiiieiieeie ettt 143
Figure 25.Instance Diagram for COpy SeTVICES........ceviriirirriirienieiienienieeiesieenieeie s 148
Figure 26.StorageSynchronized ASSOCIAtIONcvueeruirieriieriieierieeie e 149
Figure 27.State Diagram for Snapshotsccccecveriiiiriiniiiinicccceeeceene 160
Figure 28.State Diagram for MIITOTScc.eevuiiiiriiiienieieeieceecee e 162
Figure 29.Job Control Subprofile Model...........ccccooiiiiriiniiiiiieieeeceeeecee e 174
Figure 30.Storage Configurationcccceeeviriiinienienieneeieetese et 175
Figure 31.Pool Manipulation Instance Diagram...........cccecevieneriieniinenienieienieseeenn 181
Figure 32.Storage Configurationcccccveeeiiiieriiieeeiieeeiee et eee e e eve e e svee e s 186
Figure 33.Pool Creation - Initial Statecoceeviiriiiiiiiiniiiniceceecceeeeee e 188
Figure 34. P00l Creation = STEP 2ovuiiviiiiiriieieeieesieeie ettt sttt 188
Figure 35.P00l Creation - SteP 3ooioiiiieiiieeiie ettt e e 189
Figure 36.P00l Creation - STEP 4coviviiriirieiietenieeeneesteete ettt 189
Figure 37.LUN Creation Instance Diagram...........ccccecueveevierieneniieniinenieneeiesieenee e 203
Figure 38.Storage Pool EXamplecccoooiiiiiiiiiiiieeee et 205
Figure 39.Volume Creation - Initial Statecccoceeviriiniiiiniiniicecceeeeceeene 206
Figure 40.Volume Creation - SteP 1....ccoeviiiiiiiiiiiieeiieeeeeeeeeeee e 206
Figure 41.Volume Creation = STEP 2eeecuiieeiiieeeiieeeieeeeieeeevee e e eseeeesreeeereeesveeeenaee s 207
Figure 42.Volume Creation - STEP 3couiiiiiiiiiiierieieiteseeeeetese et 207
Figure 43.DeviceCredentials Subprofile Modelc.cccoooviiiiiiiiiiiiiiieeieeeeeee 221
Figure 44.Back-end Ports INStANCEococuiiiiiiiiiiieeciie et 226
Figure 45.Generic System with no ConfigurationServicecoceevevieneriieniencrnenens 235

XXii Version 1.0.1

SNIA Storage Management Initiative Specification

Figure 46.Generic System with ControllerConfiguration Service.........c..ccecceververeenee. 235
Figure 47.Authorization and Access Rightscccooevviieiiiiiiiiiiieeeeeeeee e 237
Figure 48.ProtocolController Default and Device Override Permissionsc...c...... 238
Figure 49.Access Denial Model..........oooiiiiiiiiiiiiiieieceeeeeeee e 238
Figure 50.Initiator Setting Data EXamplec.cccooviieiiieeiiiieiieceeceeeee e 239
Figure ST.Entire MOdel......c..ooiiiiiiiiiiiiiiieceee ettt 240
Figure 52.Simple StorageVolume Modelcccoevviieiiiniiiniieiecieeeeee e 245
Figure 53.Two view/Two LogicalDevice Use Case.........ccceevveriinieriinienenieneenienienens 246
Figure 54.Volume used in multiple VIEWSccceevieriiniiiieniiniiiienceeeeieee e 247
Figure 55.Use Case with a Deny Privile@eccoevieviieiiiiniieiieiieeeeeeeeieeee e 247
Figure 56.Volumes with Different Permissionscccccevviieiieiiiiiiienieeieenie e 248
Figure 57.Fabric Instance Diagram............cccceeieriiiiinieniiiiiieicceesiceeseee e 274
Figure 58.Zoning Instance Diagram (AdminDomain)............cceceveevirieneeneniieneenieneans 275
Figure 59.Zoning Instance Diagram (ComputerSyStem).........cocuevvererieneenuenieneenennens 276
Figure 60.Switch Instance Diagram............cccceviriieriiniiiiiinieiieieneeesteeete e 321
Figure 61.Switch Blade Instance Diagramcoceevierieiniiiiiiiiinicieeieeeeeee 330
Figure 62.Router Instance DIiagrami.........cccccoeiiiiiiiiiiiiieniieeiteiese e 334
Figure 63.FC HBA Instance DIiagramccccoeeererieniinieniinieiieniceeseieeee s 350
Figure 64.Host Discovered Resources Instance Diagram L.........cccceccevveviiiiinieneniencnne 363
Figure 65.Host Discovered Resources Instance Diagram 2............ccooceevieiiienienieenieenne 363
Figure 66.Array Profile Instance Diagram...........ccoceeveriiinieniiniiniiniiieccieeeseeesene 383
Figure 67.Array Packages Diagrami..........cccoooeiiiiiiiiiiiniiiiiiiccccceeeeeee e 399
Figure 68.In Band Virtualization Overview Diagramc..ccoceevveniininiinieicnecncnnenn. 402
Figure 69.In Band Virtualization System Instance..........ccccoeceveevenienenienieneneeneenn 403
Figure 70.StorageLibrary-centric Instance Diagramccccoeceeveeienienieenienieneeieneens 420
Figure 71.MediaAccessDevice-centric Instance Diagram...........ccccoevveviiiiiiieniinieennenne 421
Figure 72.ChangerDevice-centric Instance Diagram...........cccoeeevierienienieneenenienennenn 422
Figure 73.Physical View Instance Diagram.............ccoceveeveriininiieniinienieceieeeee 423
Figure 74.StorageMedialLocation Instance Diagramcccceeceeveiviniineenieneenenicnens 424
Figure 75.LimitedAccessPort LINKages.........ccoeevverieriiiinieieeiereeececceeeseeie 438
Figure 76.Server MOdeloo.iiiiiiiiieieeee e 443
Figure 77.Protocol Adapter Subprofile Modelc.ccoeeiiniiniiiiniiinccee 464
Figure 78.System DIagramcccooieviiiiiniiiiiieniieie sttt 467
Figure 79.Host Bus Adapter Model..........coooiiiiiiiiiiiiieeeeeeeeeeeee e 467
Figure 80.Switch MOdelccooiiiiiiiiiiii e 468
Figure 81.A1ray INSTANCEcc.eiiiiiiiiiiiiiiieeee et 469
Figure 82.Virtualization INSTANCEceeoieriieiiiiieiiiierieeeeeee e 470
Figure 83.Fabric TOPOLOZYcoouiiiiiiiieiieee ettt 471
Figure 84.SA Server Configurationcoceevuerieririenieninienieeesitee e 494
Figure 85.Complete Reference Model...........cooueeiiiieiiiiiniiiieieeece e 499
Figure 86.Configuration AdminiStrationccccoeeveriineniienienenieneeeeeeeeeee e 507
Figure 87.Reference Model with Policy Server.........cccooiviiiiiiiniininiiniiiececceene 514
Figure 88.Policy COMPONENLS......ccuueieieiiieiiieeiieeeiieeeieeerteeeeereeeiveeeteeesereeeesreeeseveeennsees 515
Figure 89.Sparing INStanCecoveviiriiiiiiiiiiiieneceeeceee et 518
Figure 90.InterLibraryPort Connection Instance Diagramccoceeveviinieniennenennnene. 521
Figure 91.Virtual ChangerDeVICEScccviiiiiiiiiiiiieeiie ettt 524
Figure 92.Instance Diagram for Fibre Channel Connection..........cccccecveveevueneenennicnncens 526

Version 1.0.1

Xx1il

SNIA Storage Management Initiative Specification

Figure 93.Virtual ChangerDevices Sharing @ Chassis.........cccceeeveveerierieneenienieneeiencens 530
Figure 94.Library Capacity Instance Diagram...........ccceeevieeviieenieeeiieeeiieeevee e 532
Figure 95.Extender Instance DIagramcccccoceeveriinienienienieiienceieeeeeese e 555
Figure 96.Management Appliance Subprofile Diagram............cccoecveeerieniiieiienienciiennnenns 568
Figure 97.Management Appliance Instance Diagramccceevveeeevienciieenciieenieeeeenenn 568
Figure 98.0ut-of-band Virtualization Block Diagram............cccceeveviiniininieniencnienene 577
Figure 99.0ut-of-Band Virtualization Subprofile Diagram...........c.ccccceevvveviieiienrennnnne. 579
Figure 100.Metadata System Instance Diagramcoceoceeviiniininiiinieniniencciceicnene 580
Figure 101.Translation Engine Instance Diagramcceeceeveiieiiienieeiiienieeieenee e 582
Figure 102.Translation Engine Back-end Ports Instance............ccccoooeeveriinienenienennnene. 583
Figure 103.Virtualizer/Fabric Interaction OVErvVIEWc.ccecevveveriinienienieneeienienens 601
Figure 104.Provider Subprofile Model..........ccccooiiniiiiiiiniiiinieceeeeeeseee e 638

XX1V

Version 1.0.1

SNIA Storage Management Initiative Specification

Errata/Change Log
1.0.1
1) General Changes
* General grammar and typographical clean up;
« Update object properties and property names to align with CIM Schema 2.8;
* CIM required elements updated in most Profiles.
2) Common Profile Changes
« Mark Sparing Subprofile as Experimental and relocated to informative annex.
3) Fabric Profile Changes
» Instance diagram associations corrected.
4) Array Profile Changes
» Instance diagram associations corrected.
5) SLP Changes
* Revise SCOPE requirements;
+ Highlight message type extensions beyond SLP v2;
« Clarify use of multiple InteropSchemaNamespaces;
« Updated WBEM template.
6) HBA Profile

. Rename HBA Profile to FC HBA Profile to allow for future inclusion of non-fibre
prototocols;

7) Server Profile Changes
» Clarify namespace usage and terminology;
+ Update instance diagram;
* Add clarification of global need for a top-level object in all discovery recipes;
+ Relocate Provider Subprofile to Optional Subprofiles informative annex;
* Include Recipes.
8) Storage Profile
« Mark JBOD Subprofile as Experimental and relocated to informative annex
9) Cross Client Changes
+ Replace missing recipes;
« Remove unneeded recipes.

10) Futures Changes

Version 1.0.1 XXV

SNIA Storage Management Initiative Specification

* Include Policy section.

1.0.0

1) There are many references to the CIM_ComputerSystem.Dedicated property within the specifica-
tion. With the introduction of the Server profile, these references should no longer be treated as
normative.

2) The association GeneratedStorageSetting is used in the "Pool Manipulation, Capabilities, and
Settings Subprofile" and the "LUN Creation Subprofile" in this version of the specification.
The DMTF has advised us that this association is not necessary. It will therefore be removed
in a the final version of this specification.

3) The use of the terms “Client”, “Agent”, “Object Manager”, and “CIM Server” is inconsistent.
The usage will be standardized as part of a future draft.

XXVi Version 1.0.1

SNIA Storage Management Initiative Specification Foreword

Clause 0: Foreword

This clause has been introduced as a placeholder. It will be required when the specification is
submitted for ANSI certification, and is included here to help minimize any future disruption of
clause numbering.

Version 1.0.1 XXVil

SNIA Storage Management Initiative Specification

THIS PAGE INTENTIONALLY LEFT BLANK

28 Version 1.0.1

SNIA Storage Management Initiative Specification Introduction

1.1

1.2

1.3

Clause 1: Introduction

Preamble

Storage Area Networks (SANs) are emerging as a prominent layer of IT infrastructure in
enterprise class and midrange computing environments. Applications and functions driving the
emergence of SAN technology include:

« Sharing of vast storage resources between multiple systems,

« LAN free backup,

. Remote, disaster tolerant, on-line mirroring of mission critical data,

e Clustering of fault tolerant applications and related systems around a single copy of data.

To accelerate the emergence of SANs in the market, the industry requires a standard management
interface that allows different classes of hardware and software products supplied by multiple
vendors to reliably and seamlessly interoperate for the purpose of monitoring and controlling
resources. The SNIA Storage Management Initiative (SMI) was created to develop this
specification (SMI-Specification or SMI-S), the definition of that interface. This standard provides
for heterogeneous, functionally rich, reliable, and secure monitoring/control of mission critical
global resources in complex and potentially broadly distributed multi-vendor SAN topologies. As
such, this interface overcomes the deficiencies associated with legacy management.

Business Rationale

This interface is targeted at creating broad multi-vendor management interoperability and thus
increasing customer satisfaction. To that end, this specification defines an “open” and extensible
interface that allows subsystems and devices within the global context of a SAN to be reliably and
securely managed by overlying presentation frameworks and management systems in the context
of the rapidly evolving multi-vendor market. In specific, SAN integrators (like end-users, VARs,
and SSPs) can, via this standardized SAN management interface, more flexibly select between
multiple vendors when building the hierarchy of software systems required to manage a large
SAN independent of the underlying hardware systems. Additionally, SAN integrators can more
flexibly select between alternate hardware vendors when constructing SAN configurations. Broad
adoption of the standards defined and extended in this specification will provide increased
customer satisfaction and will:

* More rapidly expand the acceptance of SAN;
« Accelerate customer acquisition of SAN technology;
+ Expand the total market.

Additionally, a single common management interface allows SAN vendors and integrators to
decrease the time required to bring new more functional technology, products, and solutions to
market.

Interface Definition

This management interface allows storage management systems to reliably identify, classify,
monitor, and control physical and logical resources in a SAN. The fundamental relationship of this
interface to storage management software, presentation frameworks, user applications, SAN

Version 1.0.1 29

Introduction SNIA Storage Management Initiative Specification

physical entities (i.e., devices), SAN discovery systems, and SAN logical entities is illustrated in
Figure 1:"Interface Functions".

Figure 1: Interface Functions

‘ Command Interface i=‘ Graphical Interface ‘

Application Framework
|Media Management - | Other ' Data(HNgf\Jﬂr)ation |
| Performance — | Capacity Planning ’ | Maxglgu:n?ent Database System |
Resource Allocation ' | File System ' Backup System
SMl-Interface
Objects

LU Clone — UETEE HARIE Zone Host Port Other
Snapshot Volume
RAIDset Removable Switch Arra Router Fabric
Media Set Y
Media Disk Mgmt E
Robot Drive HBA Appliance Extender Enclosure Card
Implementation

The diagram illustrates that functions of the interface can be distributed across multiple SAN
devices (i.e., Switches or Array Controllers) and/or software systems (i.e., Discovery Systems).
While the functionality of the interface is distributed within or across a SAN, to insure that
monitoring and control operations by clients are consistent and reliable, the state of a given
resource SHOULD NOT be simultaneously available to clients from multiple unsynchronized
sources.

Example:A request by an SRM application and a backup engine for the bandwidth
available on a given Fibre Channel path SHOULD be coordinated by a single
monitoring entity to insure information consistency. Should the SRM application
and Backup engine obtain different available bandwidth information for a given
Fibre Channel path from multiple unsynchronized sources they MAY function in
conflict and degrade the efficiency of the environment.

Satisfying this REQUIREMENT is the responsibility of parties configuring Storage and Network
management clients in conjunction with the primitives defined in the specification.

Note: Within this architecture (as depicted by the illustration above) entities like an appliance-
based volume manager MAY potentially act as both a client and a server to the interface.

Example:A Host-based volume manager wants to construct a large storage pool from
multiple SAN appliance based volumes, as well as volumes/LUNs originating
from array controllers. In this case, the host based volume manager MUST
inspect the characteristics of the volumes on both the SAN appliance and array
controller prior to allocation. Additionally, the SAN appliance (which runs a

30 Version 1.0.1

SNIA Storage Management Initiative Specification Introduction

volume manager) MUST inspect the properties of storage devices when building
its volumes. As such, the SAN appliance in this case is both a client and server in
the management environment, depending on the action being performed.

Relative to Figure 1:"Interface Functions", examples of long-term functional requirements for the
interface to properly satisfy the needs of clients using it include:

a.

b)

¢)

d)

f)

Clients MUST be able to obtain sufficient information to discern the topology of the SAN;

Clients MUST be able to reliably identify resources that have experienced an error/fault con-
dition that has resulted in degraded/disabled operation;

Clients MUST be able to construct a zone of allocation around a select group of host and stor-
age resources;

Clients MUST be able to identify nonvolatile storage resources available to a storage manage-
ment system, to allow them to construct a storage pool of a consistent level of performance
and availability;

Clients MUST be able to identify third-party copy engines (and associated media libraries/
robots) available to a cooperating backup engine, allowing it to allocate an engine/library/
robot to a given backup task;

Clients MUST be able to dynamically allocate non-volatile storage resources;

Note: Each volume to be utilized is subject to strict availability and performance requirements. As

g)

h)

1)

)

a result, the file system needs to inspect the properties of each volume prior to allocation.

Clients MUST be able to access sufficient topology and component information to allow a Stor-
age Resource Management (SRM) application like a SAN performance monitor to examine
topology and line utilization, such that performance bottlenecks can be exposed;

Clients MUST be able to employ appropriate data reporting and tracking to allow capacity
planning system to identify each storage pool in the SAN and then interact with the manager
of each pool to assess utilization statistics;

Clients MUST be provided with adequate controls for a privileged, user-written application to
restrict the use of a volume to a specific host, set of hosts, or set of controller communications
ports;

Clients MUST be assured of timely propagation of data concerning the health and perfor-
mance of the devices and subsystems in the SAN to fault isolation and analysis systems.

Example non-goals for this interface include:

a.
b)
¢)
d)
e)

1.4

Select a logical communications port over which to send/receive data;
Read/Write data to a volume;

Identify and recover from data communications errors and failures;
Synchronization message between two cluster nodes;

Log a new communications device into a network.

Technology Trends

To be broadly embraced and long lived this management interface should respect and leverage key
technology trends evolving within the industry. These include:

Version 1.0.1

31

Introduction

32

b)

SNIA Storage Management Initiative Specification

Improved Connectivity: Whether available In-band (i.e., over Fibre Channel) or available
out-of-band (i.e., over a LAN/MAN/WAN), or available over a mix of both, virtually all devices
in a SAN have (or soon will have), access to a common communications transport suitable for
carrying management information content (e.g., TCP/IP), that is used to transmit a standard-
ized encoding (e.g., CIM-XML) of recognized semantics (e.g., CIM);

Increased Device Manageability: Through a common, general-purpose network transport
and, where necessary, the use of proxy services through another resource (e.g. general pur-
pose computer system), devices can support a standardized management interface;

Example:A legacy array controller is incapable of running the software necessary to

implement a management server for this interface and uses a proxy server on a
SAN appliance to communicate within the management environment.

Example:An HBA is incapable of running the software necessary to implement a

¢)

d)

management server for this interface and uses a proxy server on its host system
to communicate within the management environment.

XML Standardization: XML is providing management protocols with an extensible, plat-
form independent, human readable, content describable communication language for the first
time. These protocols provide appropriate abstraction — separating the definition of the object
model from the semantics/syntax of the protocol. Additionally, the transport-independent,
content-description (i.e., markup) nature of XML allows it to be utilized by both web-enabled
application and appliances;

Increased SAN Complexity: SANs are being configured with diverse classes of components
and widely distributed topologies. Management clients and servers in the environment need
to anticipate being widely distributed on systems, appliances and devices throughout large
SAN topologies, while maintaining real-time distributed state for logical entities. Figure 2:

Version 1.0.1

SNIA Storage Management Initiative Specification Introduction

"Large SAN Topology" below provides an example of a single SAN built from multiple classes
of components spanning three physical locations (i.e., Sites A, B and C). ”.

Figure 2: Large SAN Topology

Site - B

11
11
e = Library

Appliance A1 =
Appliance A2

Bridge C2

Appliance C2

Sn,
5)
053, Array An
Ogo/o
/7@8
o

0©

Vol Cn

1.5 Management Environment

Clients and Servers of this interface can be widely distributed on systems, appliances, and devices
across a network that includes one or more large SAN topologies.

The configuration in Figure 3: "Example Client Server Distribution in a SAN" provides an
example client/server distribution using in-band TCP/IP communications, out of band TCP/IP
communications, or employing proxy services to bridge legacy and/or proprietary communication
interfaces. The device “Old Array Controller” is incapable of appropriate communication with
clients and servers in the management environment to provide management access (i.e., a CIM
Server). Access to the communications transport that clients and servers share for communication
is achieved via a proxy service on the host computer in the upper right hand corner of the

Version 1.0.1 33

Introduction SNIA Storage Management Initiative Specification

illustration. All other clients and servers communicate via direct access to a common
communications transport.

Figure 3: Example Client Server Distribution in a SAN

Host P ‘
Host Host | Database Mgmt |
[jmom——————— I |
I WBEM Service I WBEM Service | ' X ! i |
o J: fmmmm o - i \WBEM Service | | Volume Manager |
| F\'\:eSysdtem | @) o | F"Liz;t::n | } FileSystem Legacy Array } oo :
Lo Provder | (S | | Provider Provider | | WBEMClent |
: i) J— | L T I
j__Host Provider 1 Host Provider | | Host Provider | Router Provider |
! : | HBA Provider | e ! Management
| HBAProvider | | PATrovider ! HBA Provider Switch Provider | Appliance

} WBEM Service |
Area Network [
Storage Area Networl ——

= |
} HBA Provider |
switeh } VU A~) iz

| Proprietary |

! Management | Management
L___Sevice | Appliance

Legacy Array
I Proprietary |
| Management }
! Service !

- Array Bridge to ATM

— Router
"
e | | -
T } Proprietary | } WBEM Service } } WBEM Service }
Media Library ! Management | P v - '
| | | !

Service

Storage Area

Network

| MediaLibrary |
| Provider !

1.6 Architectural Objectives

The following reflect architectural objectives of the interface. Some of these capabilities are not
present in the initial release of the interface, but are inherent in its architecture and intended
extensibility. They are intended to provide guidance concerning the present and future direction of
development of the SNIA Storage Management Initiative Specification.

a. Consistency: State within an object and between objects remains consistent independent of
the number of clients simultaneously exerting control, the distribution of objects in the envi-
ronment, or the management action being performed;

b) Isolation: A client that needs to execute an atomic set of management actions against one or
more objects is able to do so in isolation of other clients, who are simultaneously executing
management actions against those same objects;

¢) Durability: Atomicity, consistency, and isolation are preserved independent of the failure of
any entity or communications path in the management environment;

d) Consistent Name Space: Managed objects in the SAN adhere to a consistent naming conven-
tion independent of state or reliability of any object, device, or subsystem in the SAN;

e) Distributed Security: Monitoring and control operations are secure. The architecture sup-
ports:

34 Version 1.0.1

SNIA Storage Management Initiative Specification Introduction

1) Client authentication;
2) Privacy (encryption) of the content of the messages in this protocol;
3) Client authorization;

f) Physical Interconnect Independence: The interface functions independent of any particular
SAN physical interconnect, supplier, or topology;

g) Multi-vendor Interoperability: Clients and servers should use a common communication
transport and message/transfer syntax to promote seamless plug compatibility between heter-
ogeneous multi-vendor components that implement the interface;

h) Scalability: The size, physical distribution, or heterogeneity of the SAN does not degrade the
quality or function of the management interface;

i) Vendor Unique Extension: The interface allows vendors to implement proprietary functional-
ity to distinguish their products and services in the market independent of the release of a
new version of the interface;

j) Volatility of State: This interface does not assume that objects are preserved in non-volatile
repositories. Clients and servers MAY preserve object state across failures, but are not
REQUIRED to do so;

k) Replication: This interface provides no support for the automatic replication of object state
within the management environment;

I) Functional Layering Independence: The design of this interface is independent of any func-
tional layering a vendor chooses to employ in constructing the storage management systems
(hardware and software) necessary to manage a SAN;

m) Asynchronous or Synchronous execution: Management actions MAY execute either asynchro-
nously or synchronously;

n) Events: This interface provides for the reliable asynchronous delivery of events to one or more
registered clients;

0) Cancelable Management Actions: Long running synchronous or asynchronous directives
MUST be capable of being cancelled by the client. Cancellation MUST result in the termina-
tion of work by the server and resource consumed being released;

p) Durable Reference: Object classes that persist across power cycles and need to be monitored
and controlled independent of SAN reconfiguration (i.e., logical volumes) MUST be identified
via “Durable Names” to insure consistent reference by clients;

q) Dynamic installation and reconfiguration: New clients and servers SHALL be capable of
being added to or removed from a SMI-S management environment without disrupting the
operation of other clients or servers. In most cases, clients SHOULD be capable of dynami-
cally managing new servers that have been added to a SMI-S environment.

1.7 Disclaimer

The SNIA makes no assurance or warranty about the interoperability, data integrity, reliability,
or performance of products that implement this specification.

Version 1.0.1 35

Introduction SNIA Storage Management Initiative Specification

36 Version 1.0.1

SNIA Storage Management Initiative Specification Scope

Clause 2: Scope

This Technical Specification defines the a method for the interoperable management of a
heterogeneous Storage Area Network (SAN).

This Technical Specification describes the information available to a WBEM Client from an SMI-S
compliant CIM Server.

This Technical Specification describes an object-oriented, XML-based, messaging-based interface
designed to support the specific requirements of managing devices in and through Storage Area
Networks (SANSs).

Version 1.0.1 37

Scope SNIA Storage Management Initiative Specification

THIS PAGE INTENTIONALLY LEFT BLANK

38 Version 1.0.1

SNIA Storage Management Initiative Specification Normative References

Clause 3: Normative References

The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

Table 1: Standards Dependencies for SMI-S

Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.1 DMTF
CIM Schema 2.8 Preliminary DMTF
CIM-XML DMTF
UML OMG
SLP IETF
Key words for use in RFCs to Indicate IETF (RFC2119)
Requirement Levels
Hypertext Transfer Protocol -- HTTP 1.0 (1.1) IETF (RFC1945, RFC2068)
An Extension to HTTP: Digest Access IETF (RFC2069)
Authentication
Secure Sockets Layer (SSL) 3.0
The Directory: Public-key and attribute certificate May, 2000 ITU-T

frameworks (DER encoded X.509)

Multipurpose Internet Mail Extensions (MIME) Part | November, 1996 IETF (RFC2045)
One: Format of Internet Message Bodies

PKCS #12: Personal Information Exchange Syntax | 1.0 RSA Laboratories

Version 1.0.1 39

SNIA Storage Management Initiative Specification

THIS PAGE INTENTIONALLY LEFT BLANK

40 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary

Clause 4: Glossary

For the purposed of this document, the terms and definition presented below apply.

A

Address masking
CONTEXT [Storage System]

Address masking is a function of a host I/O controller (device driver) that filters access to certain storage
resources on the SAN. It puts the responsibility of segregating 1/0 paths on the individual server system
in the SAN and requires coordination of all servers to avoid access collisions. Also called_Host-based
LUN Masking.

Addressable Unit
CONTEXT [Storage System]
storage addressable unit (e.g. LUN, Virtual Disk, Logical Disk, Logical Volume, Volume Set).
Agent
An Object Manager that includes the provider service for a limited set of resources.
An Agent may be embedded or hosted and can be an aggregator for multiple devices.
Aggregation
SOURCE(CIM V2.2 Specification, Appendix E Glossary)

A strong form of an association. For example, the containment relationship between a system and the
components that make up the system can be called an aggregation. An aggregation is expressed as a
Qualifier on the association class. Aggregation often implies, but does not require, that the aggregated
objects have mutual dependencies.

ATM:
CONTEXT [Network] SOURCE[SNIA]

Acronym for Asynchronous Transfer Mode.
Attributes:

A collection of tags and values describing the characteristics of a service.
Attribute Reply (AttrRply):

A reply to an Attribute Request. (optional)
Attribute Request (AttrRgst):

A request for attributes of a given type of service or attributes of a given service. (optional)

Version 1.0.1 41

Glossary SNIA Storage Management Initiative Specification

I

C

Cardinality
SOURCE (DMTF)
The number of values that may apply to an attribute for a given entity. Refer UML Standards.
CIM:
CONTEXT [Management] SOURCE[SNIA]

Acronym for Common Information Model. An object oriented description of the entities and relationships in
a business' management environment maintained by the Distributed Management Task Force.
Abbreviated CIM. CIM is divided into a Core Model and Common Models. The Core Model addresses
high-level concepts (such as systems and devices), as well as fundamental relationships (such as
dependencies). The Common Models describe specific problem domains such as computer system,
network, user or device management. The Common Models are subclasses of the Core Model and may
also be subclasses of each other.

Client

A process that issues requests for service. Formulating and issuing requests may involve multiple client
processes distributed over one or more computer systems. The collection of client processes involved in
formulating and issuing requests is known as a consumer.

Completion Semantics

Specifies how a method notifies its caller that its operations have completed. To this end, notification of
completion is accomplished in either of two ways:

Asynchronous notification: Upon return of the method, its operations may not have yet completed. The
caller is then required to employ some other mechanism to determine when the operations complete.
Events, callbacks, and polling are examples of mechanisms available to the caller in this regard.

Synchronous notification: The thread calling the method blocks until the method’s operations succeed or
fail.

Completion semantics refer to the operations executed by the method, and not the method completion
itself. For example, suppose we write a method to resync a split-mirror. We recognize that this could take
an indeterminate amount of time, so we design a method, resync(), to spawn a task to manage the set of
operations required for the resynchronization and then return to the caller. When the method, resync(),
completes and returns to the caller, the resynchronization of the mirrors will [most likely] not have
completed. So, the method has completed but its operations have not.

Consumer
CONTEXT [Storage System]

A host, identified by HBA WWN or other identifier, that is allowed access to a storage addressable unit

42 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary

Control Software
CONTEXT [Storage System]

A body of software that provides common control and management for one or more disk arrays or tape
arrays. Control software presents the arrays of disks or tapes it controls to its operating environment as
one or more virtual disks or tapes. Control software may execute in a disk controller or intelligent host bus
adapter, or in a host computer. When it executes in a disk controller or adapter, control software is often
referred to as firmware.

Concurrency Control Protocol

A set of rules for identifying and resolving resource conflicts between multiple, non-cooperating clients.
The three most common concurrency protocols are:

Lock ordering: Transactions are ordered according to the order of arrival of their operations at the
resource(s).

Optimistic ordering: Transactions proceed until they are ready to commit, whereupon a check is made to
see whether they have performed conflicting operations.

Timestamp ordering: Transactions are ordered according to the time they were initiated.
Cooperating Clients

A set of consumer processes that are aware of each other and are able to coordinate access to (and
control of) resources among themselves

D

DA Advertisements (DAAdvert):
A solicited (unicast) or unsolicited (multicast) advertisement of Directory Agent availability.
Data Invariant

A data invariant is the name given to the consistency-state of shared data. A data invariant must always be
TRUE. When the data invariant is violated, the invariant must be protected via mutual exclusion. For
example, suppose | have a list of records and a record pointer, i, that is always set to point to the last
record in the list. In this example, the invariant is the record pointer always points to the last record.

But observe what happens when | append a record to the list as follows:
(a) Add record to record]i].
(b)i +=1;

After (a) completes, but before (b) is invoked, i no longer points to the last record in the list. Now, suppose
another thread comes along and attempts to read the last record in the list. In this case, the thread will
get the penultimate record, not the last one — Because i has not yet been updated. The solution to this

problem is to serialize access to both operations using a lock or a semaphore.

BEGIN LOCK

Version 1.0.1 43

Glossary SNIA Storage Management Initiative Specification

(a) Add record to record]i].
(b)i +=1;
END LOCK
Device
a storage system that is addressable from the SAN.
DHCP:
CONTEXT [Network] SOURCE[SNIA]

Acronym for dynamic host control protocol. An Internet protocol that allows nodes to dynamically acquire
("lease") network addresses for periods of time rather than having to pre-configure them. Abbreviated
DHCP. DHCP greatly simplifies the administration of large networks, and networks in which nodes
frequently join and depart.

Directory
SOURCE (FC-GS-3)
A repository of information about objects that may be accessed via a Directory Service.
Directory Agent (DA):
CONTEXT [SLP]

In the context of SLP, a process that caches SLP service advertisements registered by Service Agents and
forwards the service advertisements to User Agents on demand.

Discovery
CONTEXT [Management]

Discovery provides information about what physical and logical SAN entities have been found within the
management domain. Enough information is provided to support the creation of correct Topology maps.
This information changes dynamically, as SAN entities are added, moved, or removed.

DLT:
CONTEXT [Tape] SOURCE[SNIA]

Acronym for Digital Linear Tape. A family of tape device and media technologies developed by Quantum
Corporation.

DRM:

CONTEXT [Management] SOURCE[SNIA]

The Disk Resource Management (DRM) Work Group is defining standard data and interfaces for the
management of disk storage facilities, as well as creating guidelines for implementing well-managed

44 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary

DMTF:
CONTEXT [Management] SOURCE[SNIA]

Distributed Management Task Force. An industry organization that develops management standards for
computer system and enterprise environments. DMTF standards include WBEM, CIM, DMI, DEN and
ARM. Abbreviated DMTF. The DMTF has a web site at www.dmtf.org.

E

Enclosure
CONTEXT [Storage System]
A box or cabinet.
Enumerate
CONTEXT [CIM] SOURCE[CIM]

This operation is used to enumerate subclasses, subclass names, instances and instance names in the
target Namespace. If successful, the method returns zero or more requested elements that meet the
required criteria.

Extent

CONTEXT [Storage Device] [Storage System] SOURCE[CIM]

A set of consecutively addressed FBA disk blocks that is allocated to consecutive addresses of a
single file.

A set of consecutively located tracks on a CKD disk that is allocated to a single file.

A set of consecutively addressed disk blocks that is part of a single virtual disk-to-member disk
array mapping. A single disk may be organized into multiple extents of different sizes, and may
have multiple (possibly) non-adjacent extents that are part of the same virtual disk-to-member
disk array mapping. This type of extent is sometimes called a logical disk.

Extrinsic Method
CONTEXT [CIM]

A method defined as part of CIM Schema. Extrinsic methods are invoked on a CIM Class (if static) or
Instance (otherwise). An extrinsic method call is represented in XML by the <METHODCALL> element,
and the response to that call represented by the <METHODRESPONSE> element. cf. Intrinsic Method

Version 1.0.1 45

Glossary SNIA Storage Management Initiative Specification

F

Fabric
CONTEXT [SAN] SOURCE (FC-GS-3)

Any interconnect between two or more Fibre Channel N_Ports, including point-to-point, loop, and Switched
Fabric.

Switched Fabric: A fabric comprised of one or more Switches
FC-GS-3
SOURCE (www.T11.0rg)
Fibre Channel - Generic Services 3 . Abbreviation FC-GS-3 or GS-3
NCITS Project Number 1356-D T11.3 Group
FIPS:
CONTEXT [Security] SOURCE[SNIA]

Acronym for Federal Information Processing Standard. Standards (and guidelines) produced by NIST for
government-wide use in the specification and procurement of Federal computer systems.

G

Grammar

A formal definition of the syntactic structure of a language (see syntax), normally given in terms of
production rules that specify the order of constituents and their sub-constituents in a sentence (a well-
formed string in the language). Each rule has a left-hand side symbol naming a syntactic category (e.g.
"noun-phrase” for a natural language grammar) and a right-hand side that is a sequence of zero or more
symbols. Each symbol may be either a terminal symbol or a non-terminal symbol. A terminal symbol
corresponds to one "lexeme" - a part of the sentence with no internal syntactic structure (e.g. an identifier
or an operator in a computer language). A non-terminal symbol is the left-hand side of some rule.

GS-3
SOURCE (www.T11.0rg)
Refer FC-GS-3

H

HBA
host bus adapter, card that contains ports for host systems.
Host

A computer running an O/S.

46 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary

HTTP
A request-reply protocol called the Hypertext Transfer Protocol, HTTP.
Hub

interconnect element that supports a ring topology.

|

Inheritance Relationship
SOURCE (DMTF)
Refer UML Standards.
Interconnect Element
Non terminal network elements (Switches, hubs, routers, directors).
Interface Definition Language (IDL)

A high-level declarative language that provides the syntax for interface declarations. Some examples of
IDLs in common usage today are:

DCE’s RPC IDL

Microsoft's DCOM IDL (based on the DCE IDL)

OMG IDL (used to define the DOM XML interface)

DMTF MOF (an IDL-derived specification).
Intrinsic Method

CONTEXT [CIM]

Operations made against a CIM server and a CIM Namespace independent of the implementation of the
schema defined in the server. Examples of intrinsic methods in XML include the <IMETHODCALL>
element, and the response to that call represented by the <IMETHODRESPONSE> element. cf. Extrinsic
Method

= =N I~

Language-Binding

The association of a programming language (e.g., C++, Java, C) with an interface definition language. For
example, OMG IDL supports many language bindings because it can be compiled into a variety of

Version 1.0.1 47

Glossary SNIA Storage Management Initiative Specification

programming languages (C, C++, Java, ADA, COBOL, etc.). By contrast, Microsoft's DCOM IDL only
supports one language binding, C++. Similarly, Java IDL also supports only one language binding (Java).

Some IDLs do not support any [formal] language bindings. DMTF’s MOF, for example, is derived from
OMG’s IDL but is used as a data modeling language more in the spirit of SQL than programmatic
interfaces.

Lock Manager:
CONTEXT [Locking]
Short name for Lock Management Server.
Logical Unit Number (LUN)
CONTEXT [SCSI]
The SCSI identifier of a logical unit within a Target.
LTO:
CONTEXT [Tape]
Acronym for Linear Tape Open.
LUN Mapping
CONTEXT [Storage System]

The process of creating a disk resource and defining its external access paths, by configuring LUs (Logical
Units) from the disk array logical disk volumes - either by grouping them as a single larger LU or by
creating partitions. The “Logical Unit Number (LUN)” is then be mapped to an external ID descriptor (for
example: a SCSI Port, Target ID and LU Number). An LU may be mapped for access from multiple ports
and/or multiple target IDs, providing alternate paths for nonstop data availability.

LUN Mapping is a necessary task to be able to export the LUN to the Fabric/Server/etc. It can be done
independent of any knowledge of the intended use of the LUN. Only LUNs that are exposed via a “Port”
are available for access.

LUN Masking
CONTEXT [Storage System]

Process of configuring software in SAN nodes to determine which hosts have access to exported drives.
LUN masking can be either server-based address masking or storage based port mapping. cf. Port
Mapping

M

MAN:
CONTEXT [Network] SOURCE [SNIA]

Acronym for Metropolitan Area Network. A network that connects nodes distributed over a metropolitan
(city-wide) area as opposed to a local area (campus) or wide area (national or global). Abbreviated MAN.

48 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary

From a storage perspective, MANs are of interest because there are MANs over which block storage
protocols (e.g., ESCON, Fibre Channel) can be carried natively, whereas most WANSs that extend
beyond a single metropolitan area do not currently support such protocols.

Marshalling

The set of operations by which a message is converted into a transfer syntax. In HTTP, requests and
replies are marshaled into formatted ASCI-text strings.

Method

The name of [one or more] operation(s) performed by an instance of an object class. Methods are
distinguished from operations as follows: A method is a name for one or more operations that may
execute when the method is invoked. For example, when the method, printself (), is called, the
operation of printing the state of the reference object is executed.

Synonyms are: Function, procedure, or subroutine. Usage of these terms should be deprecated.

In most models, a method is characterized by its name, return-type, parameters, completion semantics
(asynchronous or synchronous), and side-effects (e.g., event generation, message propagation, etc.).

Methods are specified in an IDL.

Methods are declared in source header files of a programming language (.h files, Java Interface files,
etc.,).

Methods are defined (or implemented) in source implementation files (e.g., .cpp, . java, class files).

Method specifications are language independent. Method declarations and implementations are, by
construction, language dependent.

Monitoring

Monitoring provides management information about the current state of individual logical and physical SAN
entities. This information changes dynamically, as SAN entities perform their functions, are serviced,
experience errors, etc. Monitoring can only be done on SAN entities that are known via Discovery.

N

NAA:
CONTEXT [Standards] SOURCE [SNIA]

Acronym for Network Address Authority. A four bit identifier defined in FC-PH to denote a network address
authority (i.e., an organization such as CCITT or IEEE that administers network addresses).

NDMP:
CONTEXT [Backup] SOURCE [SNIA]

Acronym for Network Data Management Protocol. A communications protocol that allows intelligent
devices on which data is stored, robotic library devices, and backup applications to intercommunicate for
the purpose of performing backups. Abbreviated NDMP.

Version 1.0.1 49

Glossary SNIA Storage Management Initiative Specification

An open standard protocol for network-based backup of NAS devices. Abbreviated NDMP. NDMP allows a
network backup application to control the retrieval of data from, and backup of, a server without third-
party software. The control and data transfer components of backup and restore are separated. NDMP is
intended to support tape drives, but can be extended to address other devices and media in the future.
The Network Data Management Task Force has a web site at HTTP://www.ndmp.org.

N_Port
CONTEXT [SAN]
Refer to Port. Node
CONTEXT [SAN] SOURCE (FC-GS-3)
A collection of Ports. A Fiber channel device with a group of ports.
SOURCE (SNIA)

An addressable entity connected to an I/O bus or network. Used primarily to refer to computers, storage
devices, and storage subsystems. The component of a node that connects to the bus or network is a port.

Non-cooperating clients

A set of consumer processes that are independent of each other, compete for resources and execute
independently of the other. User processes on a multi-user machine are non-cooperating clients with
respect to the operating system.

(0)

Operation

An action executed within the body of a method (AKA procedure, function, or subroutine). Operations are
distinct from methods (see Method).

Out-of-Band
CONTEXT [Fibre Channel] SOURCE [SNIA]

Transmission of management information for Fibre Channel components outside of the Fibre Channel
network, typically over Ethernet.

P

PKI:
CONTEXT [Security] SOURCE [SNIA]

Acronym for public key infrastructure. A framework established to issue, maintain, and revoke public key
certificates accommodating a variety of security technologies.

Platform
SOURCE (GS3)

Collection of Nodes.

50 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary

Port
CONTEXT [SAN]
Connection point for links.

SOURCE [FC-GS-3]

N_Port: A hardware entity that includes a Link_Control_Facility. It may act as an Originator, a Responder,
or both.

N_Port identifier: A Fabric unique address identifier by which an N_Port is uniquely known. The identifier

may be assigned by the Fabric during the initialization procedure. The identifier may also be assigned by
other procedures not defined in FC-FS.

Port_Name: As defined in FC-FS.
Port Mapping

CONTEXT [Storage System]

Function of a storage subsystem to define which hosts have access to exported drives. This configuration
authorizes specified server HBA WWNs to access the secured LU while preventing other unauthorized

servers/hosts from either seeing the secured LU or accessing the data contained on the secured LU. cf.
LUN Masking

Protocol

A set of rules that define and constrain data, operations, or both. For example, xmICIM uses XML as its
transfer syntax, and HTTP as the request-reply protocol HTTP is layered over the TCP/IP network
protocol.

Provider

SOURCE (DMTF)

A COM server that communicates with managed objects to access data and event notifications from a

variety of sources, such as the system registry or an SNMP device. Providers forward this information to
the CIM Object Manager for integration and interpretation.

class provider : A COM server that supplies class definitions. Class providers can support data retrieval,
modification, deletion, enumeration, and query processing.

property provider : A type of provider that supports the retrieval and modification of the CIM properties.

Q

=~

Relationship
SOURCE (DMTF)

Refer UML Standards.

Version 1.0.1 51

Glossary SNIA Storage Management Initiative Specification

Required Reference
SOURCE (DMTF)

Refer UML Standards.

S

SA Advertisement (SAAdvert):

Information describing a service that consists of the Service Type, Service Access Point, lifetime, and
Attributes.

SAN

CONTEXT [Fibre Channel] [Network] [Storage System]
Acronym for storage area network. (This is the normal usage in SNIA documents.)
Acronym for Server Area Network that connects one or more servers.
Acronym for System Area Network for an interconnected set of system elements.

A group of fabrics that have common leaf elements.
Scope:
CONTEXT [SLP]
A set of services, typically making up a logical administrative group.
Semantics

The meaning or behavior associated with an entity. For example, we might say the semantics of the
method, resync mirror (), is encoded in the method name. By contrast, the semantics of the UNIX
ioctl () method is encoded in the command parameter.

Server

A process that fields and/or dispatches requests. Honoring a request may involve more than one server
process distributed over one or more computer systems. The collection of server processes that are
involved in honoring a request are known as service providers.

Service Access Point:

The network address and port number of a process offering a service.
Service Acknowledgement (SrvAck):

A reply to a SrvReg request.
Service Agent (SA):

In the context of SLP, this refers to a process working on behalf of one or more services to advertise the
services in the network.

52 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary

Service Agent Server (SAServer):

In the context of SLP, this refers to a process working on behalf of one or more Service Agents to listen on
a particular port number for SLP service requests.

Service Deregister (SrvDereg):

A request to deregister a service or some attributes of a service. (optional)
Service Register (SrvReg):

A request to register a service or some attributes of a service.
Service Reply (SrvRply):

A reply to a Service Request.
Service Request (SrvRqst):

A request for a service on the network.
SES:

CONTEXT [SCSI] SOURCE [SNIA]

Acronym for SCSI Enclosure Services. An ANSI X3T10 standard for management of environmental factors
such as temperature, power, voltage, etc. Abbreviated SES.

Service Type:

The class of a network service represented by a unique string (for example a namespace assigned by
IANA).

Service Type Reply (SrvTypeRply):

A reply to a Service Type Request. (optional)
Service Type Request (SrvTypeRqst):

A request for all types of service on the network. (optional)
Service Type Template:

A formalized, computer-readable description of a Service Type.
Service URL:

A Uniform Resource Locator for a service containing the service type name, network family, Service
Access Point, and any other information needed to contact the service.

SLP:
CONTEXT [SLP, Discovery]

Acronym for Service Location Protocol.

Version 1.0.1 53

Glossary SNIA Storage Management Initiative Specification

SNIA:
CONTEXT [Standards] SOURCE [SNIA]

Acronym for Storage Networking Industry Association. An association of producers and consumers of
storage networking products whose goal is to further storage networking technology and applications.

SNMP:
CONTEXT [Networking, Management] SOURCE [SNIA]

Acronym for Simple Network Management Protocol. An IETF protocol for monitoring and managing
systems and devices in a network. The data being monitored and managed is defined by a MIB. The
functions supported by the protocol are the request and retrieval of data, the setting or writing of data,
and traps that signal the occurrence of events.

SNMP Trap:
CONTEXT [Management] SOURCE [SNIA]
A type of SNMP message used to signal that an event has occurred.
Soft Zone
SOURCE (FC-GS-3)

A Zone consisting of Zone Members that are made visible to each other through Client Service requests.
Typically, Soft Zones contain Zone Members that are visible to devices via Name Server exposure of
Zone Members. The Fabric does not enforce a Soft Zone. Note that well known addresses are implicitly
included in every Zone.

SPI:
CONTEXT [SCSI] SOURCE [SNIA]

Acronym for SCSI Parallel Interface. The family of SCSI standards that define the characteristics of the
parallel version of the SCSI interface. Abbreviated SPI. Several versions of SPI, known as SPI, SPI2,
SPI3, etc., have been developed. Each version provides for greater performance and functionality than
preceding ones.

SRM:
CONTEXT [Management] SOURCE [SNIA]

Acronym for storage resource management. Management of physical and logical storage resources,
including storage elements, storage devices, appliances, virtual devices, disk volume and file resources.

SSL:
CONTEXT [Security] SOURCE [SNIA]

Acronym for Secure Sockets Layer. A suite of cryptographic algorithms, protocols and procedures used to
provide security for communications used to access the world wide web. The characters "https:" at the
front of a URL cause SSL to be used to enhance communications security. More recent versions of SSL
are known as TLS (Transport Level Security) and are standardized by the Internet Engineering Task
Force (IETF)

54 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary

SSP:
CONTEXT [Business]
Acronym for Storage Service Provider.
Switch:
Fibre channel interconnect element that supports a mesh topology.
Symmetric Virtualization Appliance:
CONTEXT [Storage System] SOURCE [SNIA]

Synonym for an appliance that provides in-band virtualization. In-band virtualization appliance is the
preferred term.

Synchronous
A method that blocks the calling thread until all operations have completed or failed.
Syntax

(The structure of strings in some language. A language's syntax is described by a grammar. For example,
the syntax of a binary number could be expressed as

binary_number = bit [binary_number]
bit = I|0|l | |l1|l

Meaning that a binary number is a bit optionally followed by a binary number and a bit is a literal zero or
one digit. The meaning of the language is given by its semantics.

T

TLS:
CONTEXT [Security]
Acronym for Transport Layer Security.
Transfer Syntax

The formal rules (i.e., the protocol) governing the format (or representation) of messages as they are
transferred between clients and servers

U

UDP:
CONTEXT [Network] SOURCE [SNIA]

Acronym for User Datagram Protocol. An Internet protocol that provides connectionless datagram delivery
service to applications. Abbreviated UDP. UDP over IP adds the ability to address multiple endpoints
within a single network node to IP.

Version 1.0.1 55

Glossary SNIA Storage Management Initiative Specification

UML Standards
SOURCE (DMTF)
Appendix D of the Common Information Model (CIM) Specification, V2.0 (March 3, 1998).
Class - represented by a rectangle.

The class name either stands alone in the rectangle or is in the uppermost segment. If present, the
segment below the segment containing the name contains the properties of the class. If present, a third
region indicates the presence of methods.

Lines indicate:
Inheritance relationships (blue lines with arrows) — Otherwise known as “is-a” relationships

Aggregation/component relationships (green lines with a diamond shape at the “aggregating” end) -
Otherwise known as “has-a” relationships

Dependency and other relationships (red lines) — Some of which are “uses-a” relationships

Relationship Labels - Inheritance relationships are not specifically labeled or named, while all other
associations are named.

Cardinality - the cardinalities of the references on both sides of an association are indicated by numeric
values or an asterisk (*) at the endpoints of the association

The following cardinalities are typically used in the CIM Schema:
0..1 - Indicates an optional single-valued reference
1 - Indicates a required, single-valued reference

1..n or 1..* - Indicates either a single or multi-valued reference, that is required*, 0..n or 0..* - Indicates an
optional, single or multi-valued reference

Required Reference - the object and the association MUST exist (or be instantiated) when the other
referenced class is defined.

Weak Reference — indicated by the symbol, “w”, indicates that the referenced endpoint or class is “weak”
with respect to the other class participating in the association. This means that the referenced class is
scoped or named relative to the other class, and the identifying keys of the other class are placed as
properties in the “weak” class.

Note that this is not standard UML convention, but an added symbol in CIM diagrams.
Universal Markup Language (UML)
CONTEXT [DMTF]

Refer to UML Standards

56 Version 1.0.1

SNIA Storage Management Initiative Specification Glossary

URL:
CONTEXT [Networking]
Uniform Resource Locator.
User Agent (UA):
CONTEXT [SLP]

In the context of SLP, a process that attempts to establish contact with one or more services. A User Agent
retrieves service information from Service Agents or Directory Agents.

\Y%

VAR:
CONTEXT [Business]
Value Added Remarketeer.
Volume Set:
CONTEXT [Storage System]

Synonym for virtual disk.

w

WAN:
CONTEXT [Network] SOURCE [SNIA]

Acronym for Wide Area Network. A communications network that is geographically dispersed and that
includes telecommunications links.

Weak Reference
SOURCE (DMTF)
Refer UML Standards.
WBEM:
CONTEXT [Management] SOURCE [SNIA]

Acronym for Web Based Enterprise Management. Web-Based Enterprise Management is an initiative in
the DMTF. Abbreviated WBEM. It is a set of technologies that enables interoperable management of an
enterprise. WBEM consists of CIM, an XML DTD defining the tags (XML encodings) to describe the CIM
Schema and its data, and a set of HTTP operations for exchanging the XML-based information. CIM
joins the XML data description language and HTTP transport protocol with an underlying information
model, CIM to create a conceptual view of the enterprise.

Version 1.0.1 57

Glossary SNIA Storage Management Initiative Specification

W3cC:
CONTEXT [Networking]

World Wide Web Consortium.

X

XML:
CONTEXT [Standards] SOURCE [SNIA]

Acronym for eXtensible Markup Language. A universal format for structured documents and data on the
World Wide Web. Abbreviated XML. The World Wide Web Consortium is responsible for the XML
specification. cf. http://www.w3.org/XML/.

XML-CIM Listener:
SOURCE [CIM Operations over HTTP Specification, Version 1.1c]

A server application that receives and processes XML-CIM Export Message requests and issues CIM
Export Message responses.

XML-CIM Server
SOURCE(DMTF)

A Server that receives and processes XML-CIM Operation Requests and issues XML-CIM Operation
Responses.

<

Z

Zone
CONTEXT [SAN]
A group of ports and switches that allow access. Defined by a zone definition. cf. Hard Zone, Soft Zone
SOURCE [FC-GS-3]

A collection of Zone Members. Zone Members in a Zone are made aware of each other, but not made
aware of devices outside the Zone. A Zone can be defined to exist in one or more Zone Sets.

Zone Definition
SOURCE [FC-GS-3]

The parameters that define a Zone: the Zone Name, number of Zone Members, and Zone Member
definition.

58 Version 1.0.1

SNIA Storage Management Initiative Specification

Zone Member

SOURCE [FC-GS-3]

Glossary

An N_Port (or NL_Port) to be included in a Zone, as specified by its Zone Member Definition. N_Ports at

well known addresses shall not be specified as Zone Members.

Zone Member Definition

SOURCE [FC-GS-3]

The parameter by which a Zone Member is specified. A Zone Member may be specified by:

a port on a Switch, (specifically by Domain_ID and port number); or,
the device’s N_Port_Name; or,
the device’s address identifier; or,
the device’s Node_Name.
Zone Set
SOURCE (FC-GS-3)
One or more Zones that may be activated or deactivated as a group.
Zone Set Name: The name assigned to a Zone Set.

Zone Set State: The state of a Zone Set, which may be either activated or deactivated.

Active Zone Set: The Zone Set that is currently activated. Only one Zone Set may be activated at any

time.

Version 1.0.1

59

SNIA Storage Management Initiative Specification

THIS PAGE INTENTIONALLY LEFT BLANK

60 Version 1.0.1

SNIA Storage Management Initiative Specification Overview

Clause 5: Overview

5.1 Base Capabilities

To achieve the architectural objectives and support the key technological trends in “Introduction”
on page 29, this document describes an object-oriented, XML-based messaging based interface
designed to support the specific requirements of managing devices in and through Storage Area
Networks. To quickly become ubiquitous, SMI-S seeks to the greatest extent possible to leverage
existing enterprise management standards like:

* The Distributed Management Task Force (DMTF) authored Common Information Model
(CIM) and Web Based Enterprise Management (WBEM) standards;

« The standards written by ANSI on Fibre Channel and SCSI;
* The World Wide Web Consortium (W3C) for standards on XML;
+ The Internet Engineering Task Force (IETF) for standards on HTTP and SLP;

* The standards emerging from the Storage Networking Industry Association (SNIA) on volume
and array management.

5.1.1 Object Oriented

A hierarchy of object classes with properties (a.k.a. attributes) and methods (a.k.a. directives)
linked via the Universal Modeling Language (UML) modeling constructs of inheritance and
associations define most of the capabilities of the SMI-S. Figure 4:"SMI-S Modeling Conventions"
provides a simple example of UML using CIM classes for reference. implementors of this
specification are encouraged to consult one of the many publicly available texts on UML or the
uml.org web site (www.uml.org) to develop an understanding of UML. A brief tutorial on UML is
provided in the introduction material on the Clause on Object Model in this specification.

Each SMI-S server in a SAN provides one or more object classes (and related instances) to clients
for monitoring and control per Figure 4:"SMI-S Modeling Conventions".

Figure 4: SMI-S Modeling Conventions

ManagedElement

Description: string
| Caption: string

—

Dependency ManagedSystemElement Component

Name: string

Description: string
Caption: string
Status: string
InstallDate: datetime

Version 1.0.1 61

Overview

SNIA Storage Management Initiative Specification

Figure 5: Object Model/Server Relationship

|
. 1 N —————

I FileSystem | B -

} Provider } ——_

poo————————— - - ’

I Host Provider | LogicalDisk
| g

|] D

| HBA Provider |

Storage Area Network
[]

Switch
| Proprietary |
| Management |
I

Instance provided by indicated WBEM Service

62

In Figure 5: "Object Model/Server Relationship", a SMI-S client obtains object classes and
instances that it can use to manage the storage. At this level of discussion, we have SMI-S
conformant WBEM Clients and Servers. The WBEM Servers have providers for the various
components that are responsible for the class and association instances that allow the underlying
component implementation to be managed.

A standard object oriented interface, together with a standard interface protocol, allows WBEM
Clients to discover, monitor, and control storage and network devices, regardless of the underlying
implementation of those devices.

The goal of this document is to clearly and precisely describe the information expected to be
available to a WBEM Client from an SMI-S compliant WBEM Service. It relies upon UML
diagrams, easy-to-use tables and machine-readable CIM compliant Managed Object Format
(MOF) (through the CIM model maintained at the DMTF). This is intended to ease the task of
client implementation and to ease the task of using existing WBEM Servers. It should be noted
that the MOF Interface Description Language is a precise representation of the object model in
this specification and developers are encouraged to learn this means of expression when
implementing this interface. Programmers implementing this interface should reference MOF
representations of the object model when faced with implementation decisions.

SMI-S compliant WBEM Servers SHALL provide instances in a manner conformant to one or
more SMI-S profiles (See “Profile Content” on page 98.). The object model supporting these
instances MAY be extended by the vendor as long as it remains conformant to the relevant SMI-S
profiles. Generally, vendor unique code SHALL be REQUIRED in a WBEM client to take
advantage of vendor defined model extensions. However regardless of the presence of vendor

Version 1.0.1

SNIA Storage Management Initiative Specification Overview

extensions, a generic WBEM client MAY leverage all SMI-S features defined for a supported
profile.

Figure 6:"Canonical Inheritance" illustrates this requirement.

Figure 6: Canonical Inheritance

Classes that must be reported by EnumerateClasses

CIM Object Manager

*
CIM Object Manager Providers . |D Component

(See Core Model)
(See Core Model)

i |

SystemComponent
* (See Core Model)
(See Core Model) T

*
SystemDevice

(See Core Model)
LogicalElement

(See Core Model)

mDe pendenc)
| System SystemComponent.

Instance = Sys1 EnabledLogicalElement

(See Core Model)

(See Core Model)

HostedService SystemDevice ?
‘ HostedService

LogicalPort ‘ * ‘ (See Core Model)

Service ‘ Instance = Port1 ‘ Service System LogicalDevice
Instance =Sve1 ||
Instance = Svc: (See Core Model (See Core Model) (See Core Model)

)
A
LogicalPort W ~ wx
Service Instance = Port2
[HostedService SystemDevice

Instance = Svc2
LogicalPort
Instance = Port3 LogicalPort

Instances reported by Enumeratelnstances (See Device model)

Figure 6: "Canonical Inheritance" illustrates that even though a Fibre Channel Switch MAY only
report instances and allow associated method execution for certain objects, it SHALL, when asked
by a client to enumerate its Object Classes report the entire hierarchy of classes in its tree.
Similarly a server that instantiates an array controller MUST report the complete set of object
classes that links it to the base canonical object of the SMI-S model. It is this single canonical root

that allows any SMI-S client to discover, map, and operate upon the complete set of objects in a
given SAN.

The object model presented in this specification is intended to facilitate interoperability but not
limit the expression of unique features that differentiate manufacturers in the market For this
reason, the object model herein only serves as a”core” to compel multi-vendor interoperability. In
the interest of gaining a competitive advantage, a given vendor’s implementation of the interface
MAY include additional object classes, properties, methods, events, and associations around this
“core”. These vendor-unique extensions to the object model may, in select cases (e.g., extrinsic
methods), require the modification of client code above and beyond that required to support the
core.

5.1.2 Messaging Based

A messaging-based interface, rather than a more traditional procedure call interface, was selected
so that platform and language independence could be achieved across the breadth of devices,
clients, and manufacturers that may implement the interface. This messaging-based environment
also eases the task of transporting management actions over different communications transports
and protocols that may emerge as the computer industry evolves. An example fragment of an SMI-
S CIM-XML message is provided in Figure 7:"Sample CIM-XML Message".

Version 1.0.1 63

Overview SNIA Storage Management Initiative Specification

Figure 7: Sample CIM-XML Message
<!DOCTYPE CIM SYSTEM HTTP://www.dmtf.org/cim-v2.dtd/>
<CIMVERSION="2.0” DTDVersion="2.0">
<CLASS NAME="ManagedSystemElement”>
<QUALIFIER NAME="abstract”></QUALIFIER>
<PROPERTY NAME="Caption” TYPE="string”>
<QUALIFIER NAME="MaxLen” TYPE="sint32">
<VALUE>64</VALUE>
</QUALIFIER>
</PROPERTY>
<PROPERTY NAME="Description” TYPE="string”></PROPER'
<PROPERTY NAME="InstallDate” TYPE="datetime”>
<QUALIFIER NAME="MappingStrings” TYPE="string”>
<VALUE>MIF.DMTF|ComponentID|001.5</VALUE>
</QUALIFIER>
</PROPERTY>
<PROPERTY NAME="Status” TYPE=""string”>
<QUALIFIER NAME="Values” TYPE="string” ARRAY=""1
<VALUE>OK</VALUE>
<VALUE>Error</VALUE>

64 Version 1.0.1

http://www.dmtf.org/cim-v2.dtd/

SNIA Storage Management Initiative Specification

5.2 Capabilities Of This Version

5.2.1 Overview

This clause establishes requirements for this version of the SNIA Storage Management Initiative
Specification. These requirements are stated as a prioritized list of functional capabilities that are
provided by the interface. A compliant WBEM Client MUST be able to:

a. Receive asynchronous notification that the configuration of a SAN has changed.

b) Identify the health of key resources in a SAN.

¢) Receive asynchronous notification that the health of a SAN resource has changed.

d) Identify the available performance of interconnects in a SAN.

e) Receive asynchronous notification that the performance of a SAN interconnect has changed.
f) Identify the zones being enforced in a SAN.

g) Create/delete and enable/disable zones in a SAN.

h) Identify the storage volumes in a SAN.

1) Create/delete/modify storage volumes in a SAN.

j) Identify the connectivity and access rights to Storage Volumes in a SAN.

k) Create/delete and enable/disable connectivity and access rights to Storage Volumes in a SAN.

1) Require the use of authenticated clients.

5.2.2 Determine and monitor the configuration of a SAN

Functional capabilities (a) - (c) allow a client to determine and monitor the configuration of a SAN.
The configuration of a SAN consists of the “key resources in a SAN” and the interconnections
between them. Functional capabilities (a) and (b) provide a means of establishing a baseline
configuration of a SAN, and functional capability (c) reduces the need for a client to poll the key
resources in a SAN for the purpose of monitoring the configuration of the SAN.

The key resources in a SAN include:

« Hosts

+ Management Appliances

« Interconnection Devices, including switches, routers, etc.
» Storage Subsystems, including virtualization systems

« Storage Volumes

- HBAs and Ports

+ Links

» Media Libraries

e Tape Drives

Note: No distinction is made between older (legacy) and newer key resources in a SAN; the SNIA
Storage Management Initiative Specification supports both.

Version 1.0.1 65

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

66

SNIA Storage Management Initiative Specification

Monitoring the health of key resources in a SAN

Functional capabilities (d) and (e) allow a client to monitor the ongoing health of the key resources
in a SAN. Functional capability (d) provides a means of establishing a baseline “health” reading
for each key resource in a SAN, and functional capability (e) reduces the need for a client to poll
the key resources in a SAN for the purpose of monitoring their ongoing health.

Monitoring the available performance of interconnections in a SAN

Similarly, functional capabilities (f) and (g) allow a client to monitor the ongoing available
performance of interconnections in a SAN. Functional capability #5 provides a means of
establishing a baseline available performance reading for each interconnection in a SAN, and
functional capability (g) reduces the need for a client to poll the available performance of
interconnections in a SAN for the purpose of monitoring their ongoing health.

Monitoring and controlling the zones in a SAN

Functional capabilities (h) and (i) allow a client to monitor and exercise control over the zones in a
SAN. This is the only functional capability that is specific to Fibre Channel SANs. (It is recognized
that this initial version of the SNIA Storage Management Initiative Specification only handles
Fibre Channel SANSs.)

Discovering/monitoring/controlling the storage volumes in a SAN

Functional capabilities (j) and (k) allow a client to discover, monitor and exercise control over the
storage volumes. Functional capability (j) provides a way for clients to discover existing storage
volumes in a SAN, and functional capability (k) provides a means of changing the population and/
or characteristics of storage volumes in a SAN. The storage pools within storage arrays are not
specifically handled by functional capabilities here, since any necessary handling of such storage
pools is implied by functional capability (k).

Functional capabilities (I) and (m) allow a client to discover, monitor and exercise control over the
access of storage volumes in a SAN by other systems within the SAN.

Requiring authenticated clients in a SAN

Functional capability (n) allows a site to require clients to be authenticated before they are able to
access Server Management Interface Specification functionality.

Version 1.0.1

SNIA Storage Management Initiative Specification

5.3

Operational Environment

Figure 8: Operational Environment

Object Model Lock :
DichoveW and Manager A Cllif:ttion
Mapping Interface pflzolicy

Constituent| Intrinsic Methods | EXtrinsic Methods .
Discovery | (Get/Set, Enumerate | (Create ZoneSet, Security

Service | Opjects,/Instances) | Modify LUNmask) Services

Interface

(SLP)

Message Marshalling/UnMarshalling

Communications Transport

Client
‘Wire Protocol i
Server

Communications Transport
Constituent Message Marshalling/UnMarshalling Security
Discovery Services
Service Message Dispatching
(SLP) Lock Manager CIM Agent
Functions Functions
Dedicated| : i [cmom
Agent | :

Figure 8: "Operational Environment" illustrates activities that either clients or servers need to
account for in or to provide facilities to support:

Version 1.0.1

The discovery of constituents in the managed environment.

The discovery of object classes as well as related associations, properties, methods,
indications, and return status codes that are provided by servers in the managed
environment.

The security or resources and communications in the environment.
The locking of resources in the presence of non-cooperating clients.
The marshalling/un-marshalling of communication messages.

The execution of basic methods that are “intrinsic” to the construction, traversal, and
management of the object model provided by the distributed servers in a SAN.

The execution of object specific “extrinsic” methods that provide clients the ability to change
the state of entities in the SAN.

67

5.4

5.5

68

SNIA Storage Management Initiative Specification

In addition, to facilitate ease of installation, startup, expansion, and upgrade requirements for
implementations are specified for the developers of clients and servers.

Using This Specification

This specification is insufficient as a single resource for the developers of SMI-S clients and
servers. Developers are encouraged to first read the DMTF specifications on CIM, CIM Operations
over HTTP, and CIM-XML as well as obtaining familiarity with UML and the IETF specification
on Service Location Protocol (SLP).

A developer implementing SMI-S clients/servers should read this specification in sequence noting
that “Object Model” on page 73 is intended principally as a reference relative to the particular
device type that is being provided or managed in a SMI-S environment.

Language Bindings

As a messaging interface this specification places no explicit requirements for syntax or grammar
on the procedure call mechanisms employed to convert SMI-S messages into semantics
consumable by modern programming languages. The syntax and grammar used to express these
semantics is left at the discretion of each SMI-S developer.

Several open-source sources are available for programmers who wish to streamline the task of
parsing SMI-S messages into traditional procedure call semantics and using these semantics to
store object instances. Consult the WBEMsource initiative (http://wbemsource.org) for current
language bindings available to implement the SMI-S interface.

Version 1.0.1

SNIA Storage Management Initiative Specification Transport and Reference Model

6.1

6.1.1

6.1.2

6.1.3

6.1.4

Clause 6: Transport and Reference Model

Introduction

Overview

The interoperable management of storage devices and network elements in a distributed storage
network requires a common transport for communicating management information between
constituents of the management system. This section of the specification details the design of this
transport, as well as the roles and responsibilities of constituents that use the common transport
(i.e., a reference model).

Language Requirements

To express management information across the interface a language is needed that:
+ Can contain platform independent data structures.

+ Is self describing and easy to debug.

+ Can be extended easily for future needs.

The World Wide Web Consortium’s (W3C) Extensible Markup Language (XML) was chosen for the
language to express management information and related operations, as it meets the
requirements above.

Communications Requirements

Communications protocols to carry the XML based management information are needed that:
« Can take advantage of the existing ubiquitous IP protocol infrastructures.

+ Can be made to traverse inter- and intra-organizational firewalls.

» Can easily be embedded in low cost devices.

The Hyper Text Transport Protocol (HTTP) was chosen for the messaging protocol and TCP was
chosen for the base transfer protocol to carry the XML management information for this interface
as it meets the requirements above.

XML Message Syntax and Semantics

In order to be successful, the expression of XML management information (messages) across this
interface MUST follow consistent rules for Semantics and Syntax. These rules are of sufficient
quality, extensibility, and completeness to allow their wide adoption by storage vendors and
management software vendors in the industry. In addition, to facilitate rapid adoption, existing
software that can parse, marshal, un-marshal, and interpret these XML messages should be
widely available in the market such that vendor implementations of the interface are accelerated.
The message syntax and semantics selected should:

* Be available on multiple platforms.

+ Have software implementations that are Open source (i.e., collaborative code base).
+ Have software implementations available in Java and C++.

» Leverage industry standards where applicable.

* Conform with W3C standards for XML use.

+ Be object model independent (i.e., be able to express any object model)

Version 1.0.1 69

Transport and Reference Model SNIA Storage Management Initiative Specification

6.2

Virtually the only existing industry standard in this area is the WBEM standards CIM Operations
over HTTP and Specification for the Representation of CIM in XML as developed and maintained
by the DMTF. The WBEMsource initiative is a collaboration of open source implementations,
which can be leveraged by storage vendors to prototype, validate, and implement this interface in
products. Specifically designed for transporting object model independent management
information, the CIM-XML message syntax was chosen because it meets the requirements of the
storage industry as enumerated above. This specification augments the capabilities of CIM-XML in
the area of discovery to facilitate ease of management.

Transport Stack

The complete transport stack for this interface is illustrated below in Figure 9: "Transport Stack".
It is the primary objective of this interface to drive seamless interoperability across vendors as
communications technology and the object model underlying this interface evolves in time. Thus, it
should be noted that the transport stack has been layered such that (if required) other protocols
can be added as technology evolves. For example, should SOAP or IIOP become prominent the
content in the stack below can be expanded with minimal changes to existing product
implementations in the market.

Figure 9: Transport Stack

Message Syntax: xmICIM Encoding

Object Model Independence I

Message Semantics: CIM operations over http

TVIessage Protocol Independencla
Messaging Protocol: http —~r

Transfer Protocol Independence I

Transfer Protocol: TCP/IP ~

70

Again, this interface uses two specifications from the DMTF to fully implement the message
syntax and semantics for this interface.

The first specification, CIM Operations over HTTP, Version 1.1 details a basic set of directives
(Semantics) needed to manage any schema over HTTP. The requirement for this basic set of
directives is common to nearly to all management frameworks (e.g., create object, delete object,
create instance, and delete instance). This class of directive is referred to in this document as
“intrinsic methods”. CIM Operations over HTTP also provides a client the ability to execute
directives that are unique to the specification of a particular object class within a schema
(example: chop <method>, apple <object-class>). This class of directive is referred to in this
specification as “extrinsic methods”.

The second specification, Specification for the Representation of CIM in XML, Version 2.1 details
the precise W3C compliant syntax and grammar for encoding CIM into XML.

While some vendors may choose alternate transfer and message protocols for unique
implementations, implementations of the transport stack elements listed above are REQUIRED
for conformance with this standard.

It should be noted that this specification places no restriction on the physical network selected to
carry this transport stack. For example, a vendor can choose to use in-band communication over
Fibre-channel as the backbone for this interface. Another vendor could exclusively (and wisely)
choose out-of-band communication over Ethernet to implement this management interface.
Additionally, select vendors could choose a mix of in-band and out-of-band physical network to
carry this transport stack.

Version 1.0.1

SNIA Storage Management Initiative Specification Transport and Reference Model

6.3 Reference Model
6.3.1 Overview
As shown below in Figure 10: "Reference Model", the Reference Model shows all possible
constituents of the management environment in the presence of the transport stack for this
interface.
Figure 10: Reference Model
{ Lock |
' Client Directory
: Manager Server
E_ _____________ 0..n; 0...n 0...n
XML-CIM + CIM oIperations
TCP/
Ag;ent Ag;nt Object Manager
Device or m 0...n
0...n Subsystem 0..n 1
1 Proprietary or Proprietary or
1, e Embedded Model Legacy |
Devi .
Subsystem (Devics or
Proxy Model Proxy Model
Figure 10: "Reference Model" illustrates that the transport for this interface uses CIM Operations
over HTTP with xmICIM encoding and HTTP/TCP/IP to execute intrinsic and extrinsic methods
against the schema for this interface.
Note: It is envisioned that a more complete version of this reference model would include the Lock
Manager. However, the Lock Manager in SMI-S Release 1 is preliminary and subject to
change. As a result, it is shown as a dotted box to illustrate where the role would fit.
6.3.2 Roles for Interface Constituents
6.3.2.1 Client
A Client 1s the consumer of the management information in the environment. It provides an API
(language binding in Java or C++ for example) for overlying management applications (like
backup engines, graphical presentation frameworks, and volume managers) to use.
6.3.2.2 Agent

An agent is a CIM Server. It MUST implement those functional profiles, as defined in the DMTF
specifications, necessary to satisfy the SMI-S profile with which it conforms. Often, an agent only
controls only one device or subsystem and is incapable of providing support for complex intrinsic

Version 1.0.1 71

Transport and Reference Model SNIA Storage Management Initiative Specification

6.3.2.3

6.3.2.4

6.3.2.5

6.3.2.6

6.3.3

72

methods like schema traversal. An agent can be embedded in a device (like a Fibre Channel
Switch) or provide a proxy on a host that communicates to a device over a legacy or proprietary
interconnect (like a SCSI based array controller).

Embedding an agent directly in a device or subsystem reduces the management overhead of a
customer and eliminates the requirement for a stand-alone host (running the proxy agent) to
support the device.

Embedded agents are the desired implementation for “plug and play” support in an SMI-S
managed environment. However, proxy agents are a practical concession to the legacy devices that
are already deployed in storage networked environments. In either case, the minimum CIM
support for agents applies to either agent deployments.

CIM Server

A CIM Server is an object manager that serves management information from one or more devices
or underlying subsystems through providers. As such an Object Manager is an aggregator that
enables proxy access to devices/subsystems and can perform more complex operations like schema
traversals. An object manager typically includes a standard provider interface to which device
vendors adapt legacy or proprietary product implementations.

Provider

A provider expresses management information for a given resource such as a storage device or
subsystem exclusively to a CIM Server. The resource MAY be local to the host that runs the Object
Manager on or MAY be remotely accessed through a distributed systems interconnect.

Lock Manager
This version of the specification does not support a lock manager.

Directory Server

A directory server provides a common service for use by clients for locating services in the
management environment.

Cascaded Agents

This specification discusses constituents in the SMI-S environment in the context of Clients and
Servers (Agents and Object Managers). This version of the specification does not allow
constituents in a SMI-S management environment to function as both client and server.

Version 1.0.1

SNIA Storage Management Initiative Specification Object Model

Clause 7: Object Model

7.1 Model Overview (Key Resources)

7.1.1 Overview

The SMI-S object model is based on the Common Information Model (CIM), developed by the
DMTPF. The Version 1 SMI-S Object Model is based on the 2.8 revision of the CIM schema. For a
more complete discussion of the full functionality of CIM and its modeling approach, see http:/
www.dmtf.org/standards/standard_cim.php.

Readers seeking a more complete understanding of the assumptions, standards and tools that
assisted in the creation of the SMI-S object model are encouraged to review the following:

e CIM Tutorial
(http://www.dmtf . org/education/cimtutorial/index.php)

« CIM UML Diagrams and MOFs
(http://www.dmtf org/standards/standard _cim.php)

+ CIM System / Device Working Group Modeling Storage
(http://www.dmtf.org/standards/published documents.php)

Managed Object File (MOF) is a way to describe CIM object definitions in a textual form. A MOF
can be encoded in either Unicode of UTF-8. A MOF can be used as input into an MOF editor,
parser or compiler for use in an application.

The SMI-S model is divided into several profiles, each of which describes a particular class of SAN
entity (such as disk arrays or FibreChannel Switches). These profiles allow for differences in
implementations but provide a consistent approach for clients to discover and manage SAN
resources. IN DMTF parlance, a provider is the instrumentation logic for a profile. In many
implementations, providers operate in context of a CIM Server that is the infrastructure for a
collection of providers. A WBEM client interacts with one or more WBEM Servers.

7.1.2 Introduction to CIM UML Notation
CIM diagrams use a subset of Unified Modeling Language (UML) notation.

PhysicalPackage

Most classes are depicted in rectangles. The class name is in the upper part and
properties (also known as attributes or fields) are listed in the lower part. A third subdivision
added for methods, if they are included. A special type of class, called an association, is used to
describe the relationship between two or more CIM classes

Three types of lines connect classes.

4 Inheritence
Association
Aggregation

The CIM documents generally follow the convention of using blue arrows for inheritanee, red lines
for associations and lines for . The color-coding makes large diagrams much easier
to read but is not a part of the UML standard.

Version 1.0.1 73

Object Model SNIA Storage Management Initiative Specification

7.2

7.2.1

74

The ends of some associations have numbers (cardinality) indicating the valid count of object
instances. Cardinality is expressed either as a single value (such as 1), or a range of values (0..1 or
1..4);*” is shorthand for O..n.

Some associations and aggregations are marked with a “W” at one end indicating that the identity
of this class depends on the class at the other end of the association. For example, fans may not
have worldwide unique identifiers; they are typically identified relative to a chassis.

This document uses two other UML conventions.

Disk1
The UML Package symbol is used as a shortcut representing a group of classes that work
together as an entity. For example, several classes model different aspects of a disk drive. After
the initial explanation of these objects, a single disk package symbol is used to represent the entire
group of objects.

Schema diagrams include all of a profile’s classes and associations; the class hierarchy is included
and each class is depicted one time in the schema diagram. Instance diagrams also contain classes
and associations but represent a particular configuration; multiple instances of an object may be
depicted in an instance diagram. An instance may be named with an instance name followed by a
colon and a class name (underlined). For example,

Array: ComputerSystem Switch: ComputerSystem

represent an array and a switch — two instances of <COMPUTER SYSTEM> objects.

Techniques

CIM Fundamentals

This section provides a rudimentary introduction to some of the modeling techniques used in CIM,
and is intended to speed understanding of the SMI-S object model.

Associations as Classes

CIM presents relationships between objects with specialized classes called associations and
aggregations. In addition to references to the related objects, the association or aggregations may
also contain domain-related properties. For example, “ControlledBy” associates a controller and a
device. There is a many-to-many cardinality between controllers and devices (i.e., a controller may
control multiple devices and multi-path devices connect to multiple controllers); each controller/
device connection has a separate activity state. This state corresponds to the AcccessState
property of “ControlledBy” association linking the device and the controller.

Logical and Physical Views

CIM separates physical and logical views of a system component, and represents them as different
objects — the “realizes” association ties these logical and physical objects together.

Identity

Different agents may each have information about the same organic object and may need to
instantiate different model objects representing the same thing. Access control is one example: a
switch zone defines which host device ports may access a device port. The switch agent creates
partially populated port objects that are also created by the HBA and storage system agents. The
Concreteldentity association is used to indicate the associated object instances are the same thing.
Concreteldentity is also used as a language-independent alternative to multiple inheritance. For
example, a FibreChannel port inherits from a generic port and also has properties of a SCSI

Version 1.0.1

SNIA Storage Management Initiative Specification Object Model

controller. CIM models this as “FCPort” and “ProtocolController” objects associated by
Concreteldentity.

Redundancy Groups

CIM models redundancy with an object representing the group of redundant objects. The
“RedundancySet” subclass objects serve as a handle for operations on the entire group. The group
can then be used in associations to the collection as an abstract entity. For example, a spare disk is
associated with a “RedundancySet”.

Extensibility

CIM makes allowances for additional values in enumerations that were not specified in the class
Derivation by adding a property to hold arbitrary additional values for an enumeration. This
property is usually named OtherXXXX (where XXXX is the name of the enumeration property)
and specifying “other” as the value in the enumeration property indicates its use. For an example
see the ConnectorType and OtherTypeDescription properties of CIM_Slot in the CIM_Physical MOF.

Value/ValueMap Arrays

CIM uses a pair of arrays to represent enumerated types. ValueMap is an array of integers; Values
is an array of strings that map to the equivalent entry in ValueMap. For example, PrinterStatus (in
the CIM_Device MOF) is defined as follows:

ValueMap {“l”, 542”, “3”, “4’7’ “575, “6”, “7”},
Values {“Other”, “Unknown”, “Idle”, “Printing”, “Warm-up,
“Stopped Printing”, “Offline”},

A status value of 6 means “Stopped Printing”. A client application can automatically convert the
integer status value to a human-readable message using this information from the MOF.

Return Codes

When a class definition includes a method, the MOF includes Value/ValueMap arrays representing
the possible return codes. These values are partitioned into ranges of values; values from 0 to
0x1000 are used for return codes that may be common to various methods. Interoperable values
that are specific to a method start at 0x1001; and vendor-specific values may be defined starting at
0x8000. Here’s an example of return codes for starting a storage volume.

ValueMap {“07, 17, “27, “4” «5” “” “0x1000”,
“0x10017, «...”, “0x8000..”},
Values {“Success”, “Not Supported”, “Unknown”, “Time-out,
“Failed”, “Invalid Parameter”, “DMTF_Reserved”,
“Method parameters checked - job started”,
“Size not supported”,
“Method_Reserved”, "Vendor Specific"}]
Model Conventions

This is a summary of objects and associations that are common to multiple profiles.

ComputerSystem: Most SAN products are modeled as ComputerSystem. The term “cluster” is used
for systems with multiple loosely coupled processors; the individual processors known as
“component” ComputerSystems. A cluster is modeled with a ComputerSystem; Concreteldentity
associates the cluster ComputerSystem and a RedundancySet that aggregates the component
ComputerSystems. A ComputerSystem’s dedicated property describes the functions provided

Version 1.0.1 75

Object Model SNIA Storage Management Initiative Specification

76

by a system (e.g., host, storage system, switch).

Figure 11: Cluster Model
(Concreteldentityw

MyCluster: ExtraCapacitySet
ComputerSystem

MemberOfCollection

ComponentCS ComponentCS

ComputerSystem ComputerSystem

“PhysicalPackage” represents the physical storage product. “PhysicalPackage” MAY be sub-
classed to “ChangerDevice”, but “PhysicalPackage” accommodates products deployed in multiple
chassis.

“Product” models asset information including vendor and product names. “Product” is associated
with “PhysicalPackage”.

“SoftwareElement” models firmware and optional software packages. “InstalledSoftwareElement”
associates “SoftwareElement” and “ComputerSystem”, “DeviceSoftware” associates
“SoftwareElement” and “LogicalDevice”s (a superclass of devices and ports).

“Service” models a configuration interface (for example, a switch zoning service or an array access
control service). Services typically have methods and properties describing the capabilities of the
service. A storage system may have multiple services; for example, an array may have separate
services for LUN Masking and LUN creation. A client can test for the existence of a named service
to see if the agent is providing this capability.

“LogicalDevice” (for example, FCPort) is a superclass with device subclasses (like and DiskDrive
and TapeDrive) and also intermediate nodes like Controller and FCPort. Each LogicalDevice
subclass MUST be associated to a ComputerSystem with a SystemDevice aggregation. Due to the
large number of LogicalDevice subclasses, SystemDevice aggregations are often omitted in
instance diagrams in this specification.

Version 1.0.1

SNIA Storage Management Initiative Specification Object Model

The following diagram combines these common elements; this combination is used in several of the

profiles.
Figure 12: Common Elements
’—ProductPhysicaIComponent*‘
PhysicalPackage Product SoftwareElement
\
ComputerSystemPackage
\ | Installed
ComputerSystem SoftwareElement
‘ .
SystemDevice Hosted‘Serwce
*
FCPort Service

This specification covers many common storage models and management interfaces, but some
implementations include other objects and associations not detailed in the specification. In some
cases, these are modeled by CIM schema elements not covered by this document. When vendor-
specific capabilities are needed, they SHOULD be modeled in subclasses of CIM objects. These
subclasses MAY contain vendor-specific properties and methods and vendor-specific associations
to other classes.

7.2.2 Modeling Profiles

In addition to modeling SAN components, SMI-S servers MUST model the profiles they provide.
This information is used two ways:

« Clients can quickly determine which profiles are available

* An SLP component can query the SMI-S Server and automatically determine the appropriate
SLP Service Template information (see “Service Discovery” on page 485, and Table 2 on

page 77)
Table 2: SLP Properties
Property Name Use
SupportedRegisteredProfiles Defines the organization defining the profile, the

RegisteredProfile and RegisteredSubprofile. Setting this
to “SNIA” indicates that one of the SNIA SMI-S profiles
applies

Version 1.0.1 77

Object Model SNIA Storage Management Initiative Specification

A client can traverse the Server Profile in each SMI-S server to see which Profiles (and objects)
claim SMI-S compliance.

Figure 13: Server Profile Instance Diagram
ObjectManager

HostedService System

Name (InstancelD)
ElementName

— NamespaceJ |—CommMechanismForManager—

InManager
Namespace
CIMXMLCommunictionMechanism
[Propagated Keys]
CreationClassName [Default CommunicationMechanism = "XML over HTTP"]
Name ClIMValidated
ClasslInfo

DescriptionOfClassInfo

ManagedElement
(e.g., System)
ReferencedProfile
ElementConformsToProfile
RegisteredProfile

InstancelD

RegisteredOrganization

OtherRegisteredOrganization

RegisteredName

RegisteredVersion

AdvertiseTypes|]

AdvertiseTypeDescriptoins[]

SubProfile SubProfile
RequiresProfile RequiresProfile
RegisteredSubProfile RegisteredSubProfile

InstancelD InstancelD
RegisteredOrganization RegisteredOrganization
OtherRegisteredOrganization OtherRegisteredOrganization
RegisteredName RegisteredName
RegisteredVersion RegisteredVersion
AdvertiseTypes[] AdvertiseTypes|]
AdvertiseTypeDescriptoins[] AdvertiseTypeDescriptoins[]

7.2.3

78

The RegisteredProfile describes the profiles that a CIM Server claims are supported. The
RegisteredSubprofile is used to define the optional features supported by the system being
modeled. A client can traverse the associations in the Server Profile see which Profiles and
subprofiles claim SMI-S compliance.

Naming

There MAY be multiple SMI-S Servers in any given storage network environment. It is not
sufficient to think of the name of an object as just the combination of its key values. The name also
serves to identify the Server that is responsible for the object. The name of an object (instance)
consists of the Namespace path and the Model path. The Namespace path provides access to a
specific SMI-S server implementation and is used to locate a particular namespace within a
Server. The Model path provides full navigation within the CIM Schema and is the concatenation
of the class name and key-qualified properties and values.

The namespace has special rules. It SHOULD uniquely identify a SMI-S Server. However, a SMI-
S Server MAY support multiple namespaces. How an implementation defines Namespaces within
a SMI-S server is not restricted. However, to easy interoperability SMI-S implementations
SHOULD manage all objects within a Profile in one Namespace.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.2.4 Durable Names

7.2.4.1 Overview

Management applications need to read and write information about managed objects in multiple
CIM namespaces. When an object in one namespace is associated with an object in another
namespace, each namespace MAY represent some amount of information about the same managed
resource using different objects. A management application needs a way to understand when
objects in different namespaces represent the same managed resource. A unique common
identifier, referred to as a durable name, is designated as a required property for any objects
representing managed resources that might be “seen” from multiple points of view. These durable
names SHOULD be used by a management application for object coordination.

Figure 14: Volume Group Shared Across Namespaces

ComputerSystem

-
| |
| |Dedicated:uint16 l
| Roles:string[]; |
| |
| |

BLUE NAMESPACE

VolumeGroup

Name [Blue System Name Space]: /dev/ivg01

Name [Red System Namespace]: /dev/oracle_volumes
DevicelD string [key] = VGID = UNIQUE accross
namespaces

RED NAMESPACE

ComputerSystem

Roles:string[];

I
I
I
Dedicated:uint16 |
I
I

Durable names thus provide a means of reliably “stitching together” information from multiple
sources about the same managed resource in a SAN. They also provide a means of stitching
together information obtained at different points in time, such as when a managed resource is
returned to a SAN after having been removed for some period of time.

A necessary technique associated with durable names involves the use of the NameFormat
property. CIM key-value combinations are unique across all instances of a class within a single
namespace, but CIM does not fully address cases where different types of identifiers are possible
on different instances of an object. It is therefore necessary to ensure that multiple sources of
information about managed resources use the same approach for forming durable names whenever
different types of identifiers are possible.

Version 1.0.1 79

80

SNIA Storage Management Initiative Specification

When different types of identifiers are possible, objects requiring durable names MUST support a
NameFormat property that selects one of a set of prescribed strings that define valid identifier
types for the class. Each valid identifier type for a class is included as a separate property of an
object. If an implementation instantiating such an object does not support certain identifier types,
then those properties MUST be left blank. For each class, a preferred order is established for
setting the NameFormat property to one of the non-blank valid identifier types, resulting in a
consistent approach for forming a durable name for the object.

Durable names are REQUIRED for the following objects:
- StorageVolume
+ FCPort
+ Fabric (AdminDomain)
« ComputerSystem objects with the following roles
*+ Host
« Management Appliance
+ CIM Server
* Switch
* Router
+ Bridge
+ Extender
* Block Server
» Virtualization Appliance
- StoragelLibrary Server
» Enclosure Service

Note that CIM keys and durable names are not tightly coupled. For some classes, they may be the
same thing, but this is not required as long as all durable names are unique and management
applications can determine when objects in different namespaces are providing information about
the same managed resource in a SAN. In the cases where CIM keys and durable names are not the
same thing, multiple CIM operations may be required to satisfy asset management use cases.

Storage Virtualization crosses different name spaces: Host virtualization layer may provide
Logical Volumes that are based on Storage Volumes exported by a Virtualization Appliance that,
in turn, may use Storage Volumes exported by RAID array. Management applications and clients
can use the durable names defined in this section for unique identification of objects that cross
name space boundaries.

The common types of information used for durable names include SCSI Device Identifiers from the
Inquiry Vital Product Data Page #83, Fibre Channel World Wide Names, Fully Qualified Domain
Names, and IP Address information. The details for each class requiring durable names are
provided in the Profiles section of this document.

An overview of the information used to form durable names for objects is as follows:

Version 1.0.1

SNIA Storage Management Initiative Specification

7.2.4.2

7.2.4.3

Version 1.0.1

Durable Names Formation

StorageVolume: StorageVolume.Name - Multiple valid identifier types exist and
NameFormat MUST be used. For Array and Virtualization system exported Storage
Volumes, durable names are based upon SCSI mode page information. In the case of Storage
Volumes created by Host Virtualization (LVM) that do not have VPD page 83, the Name
property and LVID (Logical Volume ID) serve as a durable name.

ECPort: FCPort.PermanentAddress - Usually the Fibre Channel World Wide Name for the
port. See Table 148, “Required Properties for FCPort,” on page 284.

Fabric: AdminDomain.Name - Multiple valid identifier types exist and NameFormat
MUST be used. In Fibre Channel, this name is based on World Wide Name of the principal
switch. Note that this durable name MAY change under some circumstances, such as when
the Fibre Channel fabric is partitioned or when the principal switch in a fabric fails.

PhysicalPackage: Concatenation of PhysicalPackage properties: Manufacturer, Model, and
SerialNumber. See Table 3, “Standardized Name Formats,” on page 82 for required format of
this concatenated durable identifier.

ComputerSystem (roles “Switch”, “Router”, “Bridge”, “Extender”, “Enclosure Service” (SES)):
ComputerSystem.Name - Multiple valid identifier types exist and NameFormat MUST be
used. Durable names are based upon a unique identifier native to the interconnect system.
For FibreChannel, this would be a Fibre Channel World Wide Name.

ComputerSystem: (roles “Block Server”, “StorageLibrary”’): ComputerSystem.Name
Multiple valid identifier types exist and NameFormat MAY be used. Durable names are
based upon Fibre Channel World Wide Names or IP Address information. Note that when
Fibre Channel World Wide Names are used, the durable name MAY be a list of Fibre Channel
World Wide Names.

ComputerSystem: (roles “Host”, “Virtualization Appliance”, “CIM Server”):
ComputerSystem.Name - Multiple valid identifier types exist and NameFormat MAY be
used. Durable names MUST be based upon fully-qualified domain name (DNSName) or IP
Address information (See Table 3, “Standardized Name Formats,” on page 82). Note that
these IDs MAY be administratively changed; a ComputerSystemPackage association with an
appropriate PhysicalPackage or subclass MAY be used to satisfy asset management use cases,
(see PhysicalPackage above).

SCSI _ Controller: (SCSI Controller.Name) Durable names are not required for
ProtocolController objects. This is because in Fibre Channel there exists a one-to-one
relationship between ProtocolController objects and corresponding FCPort objects. Since
FCPort objects have durable names, ProtocolController object instances can be unambiguously
identified using the association to the corresponding FCPort object instance.

Testing Equality of Durable Names

For objects that do not require the use of the NameFormat property, a simple direct comparison is
sufficient, providing the format for the required durable name (identified in this section or the
specific profile) is adhered to.

For objects that do require the use of the NameFormat property, the durable names of objects
representing the same entity should compare positively, negatively, or indicate clearly when a
comparison is ambiguous. Using both the Name and NameFormat properties, the recommended
algorithm for determining equality is as follows:

Consider two managed objects A and B:

method equalsByDurableName(A,B) {

81

SNIA Storage Management Initiative Specification

if ((A.NameFormat eq 'Unknown') or
(B.NameFormat eq 'Unknown'))

{
return AMBIGUOUS

¥
if ((A.NameFormat eq 'Other') or
(B.NameFormat eq 'Other'))

{
return AMBIGUOUS

}

if (A.NameFormat eq B.NameFormat) {
if (A.Name eq B.Name) {

return EQUAL

}else {

return NOT_EQUAL

}

} else {

return AMBIGUOUS

}
}

Where “eq” is a string equals operator. This reduces the possibility that a match will be missed by
a string equals comparison simply because of an incompatibility of formats rather than non-
equality of the data.

7.2.4.4 Standard Formats for Durable Names

It is important that durable names are used and formatted consistently and are based on a
standard set of allowed NameFormat strings. Also, for each NameFormat, the Name string format
need to be clearly specified to avoid ambiguous or inconsistent implementations. While each profile
MUST use the name formats defined below if they are sufficient, a specific profile MAY extend the
specification to add formats profile-specific. Standardized name formats currently defined are
shown below.

Table 3: Standardized Name Formats

Description NameFormat Format of Name
An IP interface's v4 | 'IPAddressV4' Four decimal bytes delimited with dots ('.")
IP address
An IP interface's v6 | 'IPAddressV6' xaxaxaxix:x:x:x', where the 'x's are the uppercase
IP address hexadecimal values of the eight 16-bit pieces of the
address.
Examples:

‘FEDC:BA98:7654:3210:FEDC:BA98:7654:321
0’, “1080:0:0:0:8:800:200C:417A

Leading zeros in individual fields should not be
included and there MUST be at least one numeral in
every field. (This format is compliant with RFC
2373.) In addition, omitting groups of zeros or using
dotted decimal format for an embedded IPv4
address is prohibited.

82 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 3: Standardized Name Formats (Continued)

Description NameFormat Format of Name
An IP interface's 'MACAddress' Six upper case hex bytes, bytes are delimited by
MAC colons "'
The DNS Name ofa | 'DNSName' A legal DNS name (fully qualified) consisting of
TCP/IP node strings delimited by periods.
World Wide Name 'WWN' 16 un-separated upper case hex digits (e.qg.

'21000020372D3C73)

Concatenation of ‘Vendor+Product+Serial’ 3 strings representing the vendor name, product

Vendor,Product,Seri
alNumber

name within the vendor namespace, and serial
number within the model namespace. Strings are
delimited with a '+’ and spaces are included. Note
that Vendor and Product are fixed length: Vendor ID
is 12 bytes, Product is 16 bytes. SerialNumber is

variable length and can be up to 252 bytes in length.

The durable name 'Unknown’ 'Unknown'
format is not known
A durable name 'Other’ free format

format not defined
by this specification.

Logical Identifiers

VPD page 83 LU
identifier type 3h,
Association=0, NAA
0101b

VPD83NAAG

recommended format (8 bytes long) when the ID is
directly associated with a hardware component

VPD page 83 LU
identifier type 3h,
Association=0, NAA
0110b

VPD83NAAG recommended format (16 bytes long) when IDs are
generated dynamically

VPD page 83 LU
identifier type 3h,
Association=0, NAA
0010b

VPD83NAA2

VPD page 83 LU
identifier type 3h,
Association=0, NAA
0001b

VPD83NAA1

VPD page 83 LU
identifier type 2h,
Association=0

VPD83Type2

VPD page 83 LU
identifier type 1h,
Association=0

VPD83Type1

Version 1.0.1

83

SNIA Storage Management Initiative Specification

Table 3: Standardized Name Formats (Continued)

Description NameFormat Format of Name

VPD page 83 LU VPD83Typel
identifier type Oh,
Association=0

VPD page 80 LU VPD80 only if serial number refers to devices rather than
serial Vendor + the enclosure

Product + serial
number

Standard Inquiry INQVS Vendor-specific - first 8 bytes of Vendor-Specific
Vendor + Product + field

serial number +
LUN

FC Node WWN NodeWWN if target has a single LUN

7.2.4.5

7.2.4.6

7.2.4.7

84

Note: The ‘+’ concatenation delimiter is included in the Vendor+Product+Serial name format even
though it is not necessary given that the first two strings are fixed length.

Case Sensitivity

Names and NameFormats are case sensitive and the cases provided in the table above should be
used.

Preferred Durable Names

For various reasons, some Agents and Providers may not have access to the preferred durable
name of a managed object. Because of this, each Profile defines a preferred order of alternate
durable names, if any, to maximize the possibility of a secondary match. This also helps alias
matches (when a managed object is known by multiple durable names) to be found more efficiently
if aliases matching is supported in future versions of the spec. In cases where an Agent or Provider
1s unable to use any of the existing durable names defined here or in the Profile, a NameFormat of
'Other' should be used as shown above. In cases where no durable name information is known to
the Agent or Provider, both the Name and NameFormat fields may take on the value of
"Unknown'.

Note that secondary name matches using an alternate name format are not guaranteed, since this
specification does not provide mapping between alternate name formats. Use of alternate name
formats should be done with care to avoid having two CIM object instances that represent the
same underling entity.

Concatenation

Sometimes, it may be necessary to concatenate multiple formatted names to create a durable
name. In this case, both the NameFormat and the Name should contain those strings delimited
with a plus sign character '+'. If the strings being concatenated contain this delimiter character,
this character should be escaped with a backslash "\'.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.2.5 Events — CIM Indications

7.2.5.1 Background

Indications are the mechanism used to accomplish the following functional capabilities in SMI-S
(from the list of SMI-S capabilities, clause 1.2):

+ Allow a client to receive asynchronous notification that the configuration of a SAN has
changed.

« Allow a client to receive asynchronous notification that the health of a SAN resource has
degraded.

« Allow a client to receive asynchronous notification that the performance of a SAN
interconnect has degraded.

CIM Indications are described in a DMTF white paper, “Common Information Model Indications”,
which can be obtained from the education subsection of the DMTF web site (www.dmtf.org).

Indications are also used in place of non-blocking methods for long-running operations. In most
cases, the operation requested in a method completes quickly, the return status from the method
indicates the status of the operation. When a long-running operation (such as RAID volume
creation) is requested, the method return code indicates whether the operation started
successfully; an indication is sent when the operation is complete. Information on the indication is
included in the profile whenever long-running operations are implemented.

7.2.5.2 Using indications

Clients request indications to be sent to them by subscribing to the indications. Subscriptions are
stored in CIMOM as CIM object instances. A Subscription is expressed by the creation of a
IndicationSubscription association instance that references a IndicationFilter (a filter) instance, and a

Version 1.0.1 85

86

SNIA Storage Management Initiative Specification

IndicationHandler (a handler) instance. A Filter contains the query that selects an indication class
or classes.

Figure 15: indications Filters Schema

*
ManagedElement

Dependency | *

Description: string
Caption: string

*

IndicationFilter IndicationHandler

SystemCreationClassName: string [Key]
SystemName: string [Key]
CreationClassName: string [Key]

SystemCreationClassName: string [Key]
SystemName: string [Key]
CreationClassName: string [Key]

Name: string [Key] Name: string [Key]

SourceNamespace: string Owner: string

Query: string [Required] * A

QueryLanguage: string [Required]
*

IndicationSubscription

IndicationHandlerXMLHTTP

Destination: string [Required]

Filters can be created by indication consumers (e.g. SMI-S Clients) or indication providers (e.g.
SMI-S Agents). The client would create these using Createlnstance intrinsic method.

The query property of the IndicationFilter is a string that specifies which indications are to be
delivered to the client. There is also a query language property that defines the language of the
query string. Example query strings are:

“SELECT * FROM CIM_AlertIndication”
“SELECT * FROM CIM InstModification WHERE SourcelInstance ISA CIM ComputerSystem”

AlertIndication and InstModification are types of indications (see the following section). The first
query says to deliver all alert type indications to the client, and the second query says to deliver all
instance modification indications to the client, where the instance being modified is a
ComputerSystem (or any subclass thereof).

Version 1.0.1

SNIA Storage Management Initiative Specification

7.2.5.3

IndicationHandler specifies the means of delivering indications to the client. The subclass
IndicationHandlerXMLHTTP provides for XML encoded indications to be sent to a specific URL,
which is specified as a property of that class.

When a client receives an indication, it may receive some information with the indication, and
then need to do additional queries to determine all of the consequences of the event. To the extent
possible, all relevant information SHOULD be put in the indication.

Indication hierarchy

Indications are grouped in three broad categories, Classindication, Instindication, and
Processlindication (Figure 16: "Indications Schema").

Figure 16: Indications Schema
Indication
Fr 1
ClassIndication Instindication Processindication
A A
InstCreation SNMPTrapindication
InstDeletion Alertindication
A
InstModification ThresholdIndication
InstMethodCall Alertinstindication
InstRead

A Classindication is delivered in response to the creation, deletion, or modification of a class, 1i.e.
when there are changes to the schema. SMI-S clients should not need to subscribe to
Classlindications. An InstIndication is delivered in response to the creation, deletion, modification,
etc. of an instance. For example, an Instindication is delivered when a new volume is created or a
zone 1s deleted. Processindications allow for indications that are not associated with changes to
specific instances. An event can be modeled with one of three indication subclasses.

An Instindication contains an embedded copy of the object that generated the indication. In the case
of an InstModification, there are two copies: one with the old value and the other with the new
value. These embedded copies may be full copies of the object, or they may contain only the
properties that have changed.

Version 1.0.1 87

7.2.5.4

7.2.5.4.1

7.2.5.4.2

88

SNIA Storage Management Initiative Specification

An Alertindication is a simpler indication that contains just strings and enumerated types. One of
its properties is the path to the object generating the alert. Other properties include alert type,
severity, and description. An Alertindication can be used to indicate changes in the health condition
or other state of a SAN.

A SNMPTraplndication is designed to encapsulate the information from an SNMP trap in an
indication. Without a standardization process, SNMPTraplndications are not interoperable and
SHOULD NOT be used in SMI-S agents.

In general, it is best to use Instindication for all events that result in the creation, deletion, or
modification of instances in the SMI-S Agent.

Agent/Provider Considerations

Overview

As mentioned above, a SMI-S profile can be deployed as a proxy provider running in a general-
purpose CIMOM or as a SMI-S agent — a combination lightweight CIMOM and provider — used
when CIM is embedded on a device.

Considerations that apply to either deployment:

A general purpose CIMOM (and perhaps an embedded agent) allows a client to create indications
filters. The provider MUST send a return code indicating a request to create an instance of a filter
is unsupported. This allows the provider to inform clients which types of indications the provider
supports. For example, a provider that does not support SNMPTrapAlertindications should return
unsupported for an indications filter create request.

Agents MUST persist subscription information across reboots; for CIM, the subscription
information is IndicationFilter and IndicationHandler classes.

An Instindication subclass can only embed a single instance. A hardware configuration change may
involve many instances of objects and associations. Agents SHOULD detect and merge groups of
related hardware events and then send a single indication for an object identifying the system
using the SystemCreationClassName property. The client MUST rediscover the indicating system
to determine the impact of the change.

SMI-S Embedded Agent Considerations

A SMI-S Agent can minimize footprint by initializing “canned” IndicationFilter objects and
returning “unsupported” for all requests to create filter instances. A SMI-S client can determine
what indications the agent supports by enumerating these objects. A minimal embedded agent can
simply support a subset of these IndicationFilter query strings:

1) “SELECT * FROM CIM_InstIndication”
2) “SELECT * FROM CIM_AlertIndication”

The presence of an IndicationFilter object with query string 1 indicates that the agent supports
Instindication, and similarly for the others.

The embedded agent should supply more detailed queries as described in the profile sections that
follow.

A standard implementation of indications requires the agent to accept client requests to create
indication handlers. Other aspects of SMI-S profiles do not require the agent to handle instance
creation requests (the CIM operations “Basic Read” functional group). The embedded agent
implementer has two options:

Version 1.0.1

SNIA Storage Management Initiative Specification

7.2.5.5

* Use the Instance Manipulation functional group rather than Basic Read. The agent MAY
treat non-indications instance creation requests as unsupported. At a minimum, the agent
MUST allow instance creation of IndicationHandlerXMLHTTP and IndicationSubscription
instances.

« If the agent wishes to provide NO instance creation, then the agent needs to provide a
backdoor for indications subscribers. For example, the agent can require customers to edit a
text file describing indications subscriptions.

If the agent opts for no indications support, it MUST assure that no IndicationFilter instances exist
in the SMI-S Agent and to return “unsupported” to requests to create instance of IndicationHandler
instances.

Client Considerations

The client needs to determine whether each target CIMOM is an embedded SMI-S agent or a
general-purpose CIMOM with a SMI-S provider. The client should try to create an instance of an
IndicationHandlerXMLHTTP. If the embedded agent does not allow the client to subscribe via CIM,
it returns unsupported. The client can then enumerate IndicationHandlerXMLHTTP instances to
determine whether they are subscribed via some non-CIM facility.

If the client can create an IndicationHandlerXMLHTTP instance, it should then try to create an
IndicationFilter instance; a return of unsupported indicates the CIMOM is an embedded agent and
supplies its own filters. In this case, the client enumerates the existing filters and creates
IndicationSubscription associations to their IndicationHandler.

The client can minimize the number of filters by using the indications schema hierarchy. For
example, subscribing to Instindication is the same as subscribing to “InstCreation”, “InstDeletion”,
and “InstModification”.

Client needs to consider subscriptions that generate excessive events. Subscriptions to a general-
purpose CIMOM (as determined by the tests described above) should be specific to the provider —
for example “select * from CompnayCorp_InstIndication” rather than “select * from
CIM InstIndication”.

When a client receives an “InstCreation” subclass, it needs to rediscover the indicating system to
determine the associations and other classes impacted by the configuration change. Providers
MAY opt to consolidate complex configuration changes into a single indication.

The general algorithm for client subscription is:

Look for an existing IndicationHandlerXMLHTTPs

If one exists targeting your indication listener,
Then you are already subscribed from agent persistence, exit
Else Create an IndicationHandlerXMLHTTP instance

If the response is “unsupported”,
Then quit (this provider does not support indications)

Enumerate IndicationFilters
If the desired filter instances do not exist,
Then try to create them.
If filter instance creation requests fail,
Then back off to an existing filter.
Create instances of IndicationSubscription associating the desired filters and your handler.
The client should look for status changes represented as either “AlertIndication” or as
“InstModification” with a status change. With “InstModification”, the current and previous
statuses can be compared; for example:

Version 1.0.1 89

7.2.5.6

7.2.5.7

7.2.6

90

SNIA Storage Management Initiative Specification

“select * from CompanyCorp_InstModification
where PreviousInstance.Status <> Sourcelnstance.Status”

where CompanyCorp would be replaced with an appropriate, vendor-specific prefix. The DMTF
events white paper has other examples of filter queries.

The client can use indications to get information about the general health of the SAN. For

example, the class “FCPortStatistics” includes among its properties various error counts. A query
like this:

Select * FROM CIM_FCPortStatistics
WHERE Previouslnstance.ErrorFrames < Sourcelnstance ErrorFrames

generates an indication whenever the ErrorFrames count increases.

If the client is unable to create this query (i.e. if the agent doesn’t support this filter), then the
client can periodically read the “FCPortStatistics” of all the “FCPort”s in the model. This method,
however, is much more expensive in terms of communications bandwidth and load on both the
client and the server.

Requirements
SMI-S Clients MUST use the subclass IndicationHandlerXMLHTTP when creating subscriptions.

If indications are supported, then the DMTF query language MUST be supported (this is a DMTF
requirement).

Implementation Considerations

The encoding of indications is specified in “WBEM Query Language Draft”. As of June 30, 2003,
the specification is still in draft and requires DMTF membership to access. See “WBEM Query
Language Draft”, Version 2.4, DMTF, June 14, 2000,

http://www.dmtf.org/members/review/wip/DMTF-query/DSP0104.htm

The specification for the EmbeddedObject qualifier is defined in the CIM Specification Errata
(version 2.2.2),

http://www.dmtf.org/standards/documents/WBEM/CIM_Errata/CIM_Spec_Addenda222.pdf

Device Credentials

The device credentials are modeled using the CIM classes “SharedSecretService” and
“SharedSecret”. The “ComputerSystem” class represents the device, and the “SharedSecret” object
contains the credentials in its properties.

A SMI-S client or application can pass the device credentials to the agent or object manager by
instantiating the “SharedSecret” object, using the CIM intrinsic method NewInstance (). The SMI-
S agent or provider uses the information from this object to talk to the device.

For more information, see “Device Credentials Subprofile” on page 220.

Version 1.0.1

http://www.dmtf.org/members/review/wip/DMTF-query/CIM Query Language Proposal Rev 4.htm

SNIA Storage Management Initiative Specification

7.2.7

7.2.7.1

7.2.7.2

7.2.7.2.1

7.2.7.2.2

Recipe Conventions

Recipe Definition

Recipe: A set of instructions for making something from mixing various ingredients in a
particular sequence. The set of ingredients used by a particular recipe is scoped by the particular
profile, subprofile or some other well-defined context in which that recipe is defined.

A recipe MUST specify an interoperable means for accomplishing a particular task across all
conformant implementations. However, a recipe does not necessarily specify the only set of
instructions for accomplishing that task. Nor are all tasks that may be accomplished necessarily
specified by the set of recipes defined for a particular profile or subprofile.

In order to compress the document, some recipes are implied or assumed. This would include, for
instance, that the set of available, interoperable properties are those explicitly defined by a
particular profile or subprofile. In general, any CIM intrinsic read methods on profile or subprofile
models are implied. However, CIM intrinsic write methods (Create/Delete/Modify) should not be
assumed unless explicitly listed in the profile or subprofile definition with a well defined semantic.

For a profile or subprofile, the set of all defined and implied recipes defines the REQUIRED range
of interoperable behavior across all conformant implementations. Unless specifically defined in a
recipe, other sequences of actions (even simple Create/Delete instance requests) are not
guaranteed to have the same results across multiple implementations.

Each recipe defines an interoperable series of interactions (between a SMI-S Client and a SMI-S
Server) required to manage storage devices or applications. Another goal is to list the operations
required for the CIM Client realize functionality. It is not a goal to comprehensively express the
programming logic required to implement the recipe in any particular language. In fact, recipes
are limited to the expression of CIM or SLP operations, and may simply reference or describe any
of the implementation that may be required beyond that.

Recipe Pseudo Code Conventions

Overview
A recipe's instructions are written using the pseudo code language defined in this section.

All recipes are prefixed with a summary narrative of the functionality being implemented. This
summary may be included explicitly as part of the recipe or reference to the appropriate narrative
that can be found elsewhere in the specification.

Note: The use of optional features (profiles or subprofiles) in recipes MUST be clearly identified.

CIM Operations and their parameters are taken directly from the CIM Operations Over HTTP
specification. It is assumed that these methods are being called on the CIM Client API. Arrays
grow in size automatically.

General Syntax

<condition> logical statement that evaluates to true (Boolean)
I<condition> tests for false (Boolean)
<action> unspecified list of programming logic that is not important to the understanding

of the reader for a particular recipe.

@{recipe} logic flow is contained within the specification of the recipe elsewhere in the
specification

Version 1.0.1 91

SNIA Storage Management Initiative Specification

<variable> some variable
7.2.7.2.3 CIM related variable and methods
7.2.7.2.3.1 CIM Instances and Object Names
$name represents a single instance (CIMInstance) with a given variable name

$name.property represents a property in a single instance (CIMInstance)

$name.getObjectPath()
method returns a object name, REF, to the CIM Instance

$name.getNameSpace()
method returns the namespace name for the CIM Instance or Object Name

{valuel, value2 ...}
an anonymous array, comprised of selected values of a given type; an
anonymous array is an array that is not referable by a variable

Example:
{"Joe", "Fred", "BOb", ncelman}

$namel] represents an array of instances (CIMInstances) with a given variable name;
array are initialized by constructing an anonymous array.

Example:

Names = {"Joe", "Fred", "Bob", "Celma"}
$name-> represents an object path name (CIMObjectPath)
$name->[] represents an array of object names of a given name

$name->property
represents a property of object $name

$name][].size() returns the number of CIM instances in the array
$name->[].lengthreturns the number of CIM object names in the array
#name|[].length returns the number of variable elements in the array

%name|[].length returns the number of method arguments elements in the array

7.2.7.2.3.2 Extrinsic method arguments
%name represents a CIM Argument that can contain any CIM or other variable.
%namel] represents an array of CIM Arguments
7.2.7.2.3.3 Other Variables
#name neither CIM Instance nor Object Name variable. The type may be a string,
number or some other special type. Types are defined in the CIM Specification
2.2.
#name(] a non-CIM variable array
"literal” some string literal

92 Version 1.0.1

SNIA Storage Management Initiative Specification

7.2.7.2.4 Data Structure

Variables can be collected by an array. The array can be indexed by other variable (see above).

Arguments are always indexed by strings. In other words, the arguments are retrieved from the

array by name.

7.2.7.2.5 Operations

1=

<

>

<=

>=

&&

|l

+9 CI) /

++, -

Example:
#H=1

assigns right value to left value

test for equivalency

test for not equivalency

true if the left argument is numerically less than the right argument.

true if the left argument is numerically greater than the right argument.

true if the left argument is numerically less than or equal to the right argument.

true if the left argument is numerically greater than or equal to the right
argument.

condition A AND condition B
condition A OR condition B
addition, subtraction, multiplication and division, respectively

increment and decrement a variable, respectively; placement of the operator
relative to the variable determines whether the operation is completed before or
after evaluation

#names[] — {”A", "B, ncn}

"B" == #names[++#i] is true

2 ==#iis true

Example:
#Hi=2

#names[] — {”A", "B, "C"}

"B" == #names[#i++] is true

3 ==#iis true

1

nameof

ISA

comments

returns an Object Name given a CIM Instance. This unitary operator does
nothing in other usages.

tests for the name of the CIM Instance or object name

Example: if ($SomeName-> ISA CIM_StorageVolume) {
<The Object Name is a reference to a CIM_StorageVolume >

}

Version 1.0.1

93

7.2.7.2.6

94

SNIA Storage Management Initiative Specification

Control Operations

The pseudocode used in this specification relies on control operators common to most high-level
languages. For example:

. for

Example:
for #x in <variable array> {

<actions>

}

. if

Example:
if (<condition>) {
<actions>
}s
if (<condition>) {
<actions>

} else {
<alternate actions>

}
. do/while

Example:
do {

<actions>
} while (<condition>)

e continue
Within a for loop: initialize loop variable to next available value and restart loop body.
Terminate loop if no more loop variable values available. Within a do/while loop: transfer
control immediately to while test.

Example:

for #i in <array> {
if (<some condition>)
continue; // process next loop variable

<alternative>

* break: interrupts the sequence of statement execution within a loop block and exits the loop
block altogether. The looping condition is not re-evaluated Statement execution starts at the
next statement outside of the loop block.

. exit
Terminate recipe instantly, including termination of any callers.
Example:

if (unexpected condition>)
exit

Version 1.0.1

SNIA Storage Management Initiative Specification

7.2.7.2.7 Functions

7.2.7.2.7.1 Function Declaration

A function definition is of the form sub functionName(), followed by the body of the function
enclosed in braces. If parameters are to be passed to a function, then are expressed as a comma-
separated list of arguments within the parentheses following the function name. Each argument is
comprised of a data type and an accompanying argument name.

Functions must be declared at the beginning of a recipe.

sub functionName(integer nArgl, Class &cArg2) {

<actions>

}

7.2.7.2.7.2 Function Invocation

A function invocation is of the form &functionName(). If parameters are to be passed to a function,
then are expressed as a comma-separated list within the parentheses following the function name.

&functionName(5, pClass)

7.2.7.2.8 Exception Handling

All operations may produce exceptions or errors. The following construct is used to test for
particular errors. Once a particular error is caught, then special exception handling logic is
processed. Only CIM Errors can be caught.

try {

<actions>

catch (CIM Exception) {

<recovery actions>

}

The error received may also be thrown
throw CIM Exception

7.2.7.2.9 Built-in Functions
a. boolean = compare(<variable>, <variable>)
1) Used to determine if two variables of the same type are equivalent

2) The variables must not be CIM instances or object names nor other complex data types or
structures

3) The variables must be of the same type
b) $instance = newInstance("CIM Classname")
1) Creates a CIM instance, which does not exist in the CIMOM (yet), that can be later filled
in with properties and passed to CreateInstance. The namespace is assumed to be the
same that the CIM client connected to.

¢) $instance - newInstance("CIM Namespace", "CIM Classname”)

1) Variable of the above method that has the namespace name as an argument

Version 1.0.1 95

SNIA Storage Management Initiative Specification

d) boolean = contains(<test value>, <variable array>)
1) Used to test if the variable array contains a value equivalent to the test variable
2) The array must be of variables of the same types as the test variable.

3) If the equivalency is found with at least one value then the function returns true, else
false is returned.

4) If the array is not a simple, or non-CIM, data type, then the test value must be a CIM
property, $Somelnstance.SomeProperty or $SomeObjectname->SomeProperty

e) %Argument = newArgument("Argument Name", <variable>)

1) Creates a CIM Argument of a given name containing a value, CIM or non-CIM
f) $objectPath-> = newObjectPath("Class name", "NameSpace name")

1) Returns a new ObjectPath, built from the supplied arguments;

2) required to perform the EnumerateInstances and EnumerateInstanceNames
operations

7.2.7.2.10 Extrinsic method calls
<variable> = InvokeMethod ($someobjectname->, "Method Name",
Y%InArguments[], %OutArguments[])

7.2.7.3 Common Recipes

7.2.7.3.1 Overview

This clause defines recipes that can be used as common functions and utilities for all recipes in
SMI-S.

7.2.7.3.2 Determine what the health of the storage device given the health of the components.
(Operational status on managed elements)

// DESCRIPTION

// Tterate every system device associated with the system. If any of the
// system devices return an operational status indicating degraded

// health or failure, then the status of the entire system is degraded.

/!

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//'1. The object name for the device, CIM_ComputerSystem, of

I interested has been previously identified and defined in the

/ $Device-> variable

sub boolean systemDeviceOK ($Device->)
{
#bReturn = false
#OK =2 // from OperationalStatus ValueMap
$SystemDevices[] = Associators(
$Device->,
“CIM_SystemDevice”,
null,

“PartComponent”,

96 Version 1.0.1

SNIA Storage Management Initiative Specification

false,

false,

{“OperationalStatus”})
for #i in $SystemDevices[]

{
if (!contains(#OK, $SystemDevices[#i].OperationStatus))
{
#bReturn = false
¥
}
return #bResult

Version 1.0.1

97

7.3
7.3.1

7.3.1.1

7.3.1.2

SNIA Storage Management Initiative Specification

Profiles
Profile Content

Profile and Subprofile Definition

A profile is a named standard for CIM Server based management of a particular set of subsystems
for a defined set of uses. The name of the profile is scoped by its authorizing organization. All
profiles defined in this specification, except the Server Profile are scoped by SNIA. The Server
profile is scoped by DMTF. The CIM Server is expected to advertise supported profiles, (using
SLP). All parts of a profile MUST be implemented to conform to the SMI-S standard. If a profile is
implemented, then all constituent parts, except those defined in subprofiles, MUST be
implemented.

A subprofile is a named subset of a profile. The CIM Server MUST advertise supported
subprofiles, (using SLP). The name of the subprofile is scoped by its parent profile. All parts of a
subprofile MUST be implemented if any of the subprofile is implemented to conform to the SMI-S
standard. However, a subprofile MAY (or may not) be implemented. That is, a subprofile
represents an optional part of the SMI-S standard. But if it is implemented, the subprofile
prescribes its implementation and behavior.

A profile can refer to one or more subprofiles. In addition, a profile can also refer to other profiles.
That is, a profile can act as a subprofile to another profile.

Profiles and subprofiles provide a context for implementation and implementation behavior for a
subset of the CIM model. That is, classes, properties, methods and indications can be defined as
required in the context of a profile or subprofile. A profile or subprofile can add restrictions to
usage and behavior, but cannot change CIM defined characteristics. For example, if a property is
required in the CIM model, then it is required in a profile (or subprofile). On the other hand, a
profile or subprofile may define that a property is required (profile required) even if it is not
required by the general CIM model.

Format for Profile Specifications

For each profile there is a set of information that is provided to specify the characteristics and
requirements of the profile.

Note: Subprofiles are also defined using this format, but they are clearly identified as subprofiles.

Each profile is defined in subsections that are described below.

Note: Schema diagrams are logically part of a profile description. However, they can be rather
involved and cannot be easily depicted in a single diagram. As a result the reader is advised
to refer to DMTF characterizations of schema diagrams

Table 4: Profile Components

Profile Element Goal

Description A textual introduction to the CIM Subset (e.g., SAN entity) being profiled. It

provides a high-level foundation for the more detailed descriptions to follow.

Standard The list of standards REQUIRED for this profile or subprofile. For subprofiles,
Dependencies the subprofile inherits the standards listed in the parent profile and MUST NOT

be listed here. Only unique standards added by the subprofile MUST be listed.

98

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 4: Profile Components (Continued)

Profile Element

Goal

Profile Dependencies

The list of profiles that this profile (or subprofile) REQUIRES.

Note: Profiles that are optional features of the profile MUST NOT
be listed here. They would be listed in the "Optional
Subprofiles and Profiles" section.

CIM Server
Requirements

A list of requirements on the CIM Server that MUST be supported in order to
support the profile or subprofile.

Note: A subprofile MAY simply declare that the support required
is the same as the parent profile. If, however, a subprofile
defines requirements, the requirements MUST add to those
of the parent profile. That is, a subprofile cannot remove
requirements of its parent profile.

Instance Diagrams

One or more instance diagrams to highlight common implementations that
employ this section of the Object Model. Instance diagrams also contain classes
and associations but represent a particular configuration; multiple instances of
an object may be depicted in an instance diagram.

Instance diagrams MAY include references to dependent or optional profiles or
subprofiles, but it MUST be obvious which profile or subprofile these belong to. If
a profile (or subprofile) refers to optional material, the optional material should
be enclosed in a dashed line box to indicate that it is optional.

Durable Names and
Correlatable IDs

The Durable Names and Correlatable IDs for resources exported by the profile
AND identifies the Durable Names and Correlatable IDs used by other profiles.
For the Durable Names exported by the profile, the section identifies the valid
name formats and the specific encoding of names for each name format. For
Correlatable IDs exported by the profile, the source for the ID is identified and
the conditions that would cause the ID to be reset are identified.

Methods

A list of the extrinsic and intrinsic methods whose semantics are standardized.

Note: Any given implementation can implement more methods,
but the methods and semantics listed in this sections are
those upon which this specification defines
standardization.

Client Considerations

A summary of the implementation concerns that are likely to be encountered by
products and services that rely on the SAN entity being described. The client
considerations also identify how items in the funcitionality ladder (See
“Capabilities Of This Version” on page 65.) are accomplished. This section also
identifies how to find any “subprofiles” required for this profile.

Recipes

A set of "recipes" that sequence the CIM operations and other steps required to
accomplish particular tasks. These recipes do not define the upper bound of
what a CIM Server may support. However, they define a lower bound. That is, a
CIM implementation MUST support these recipes as prescribed to be SMI-S
compliant.

Note: A recipe that is defined as part of a subprofile is only
required if the subprofile is implemented.

Version 1.0.1

99

SNIA Storage Management Initiative Specification

Table 4: Profile Components (Continued)

Profile Element Goal

Instrumentation A summary of the implementation concerns that MUST be accounted for by

Requirements agent implementations (either embedded or proxy) that provide information from
one or more of the SAN entities to SMI-S clients.

Required CIM A table listing the classes, associations, subprofile, packages, and indications

Elements that this profile (or subprofile) MUST support. Everything listed in this section is
REQUIRED by the profile or subprofile. The section MUST NOT list optional
elements.

Required Properties A table listing the properties and methods that this profile (or subprofile) MAY
for CIM Elements support. Some properties are REQUIRED while others are OPTIONAL. All listed
properties are REQUIRED unless the description of the property either explicitly
states that the property is "Optional", describes that the property is used when
another property is set in a given way, or otherwise, provides special
instructions.

All properties that CIM defines explicitly (e.g., with a. Required qualifier) or
implicitly (e.g., identified as a Key) as REQUIRED are also REQUIRED by SMI-
S.

If a property can not be produced despite best efforts to do so, has a value that
is unconstrained by either the property's description or by a ValueMap qualifier,
and is not referenced in any recipe and thereby required to have meaningful
value, then the value of this property MUST be NULL. Note that there is a
distinction in CIM between NULL and an empty string or zero value;
implementers should assure that their CIM toolkits provide the capability to work
with NULL values.

Optional Subprofiles A list of the profiles and subprofiles that are optional for this profile. Specifically,
and Profiles if there is an optional part of the profile or subprofile, the optional part MUST be
defined as a separate profile or subprofile. Profile unique subprofiles are
documented following this section. But a Profile may also list other profiles or
"common subprofiles" as optional features.

Note: Classes, associations, methods and indications are listed by
subprofile. A class may be REQUIRED under one
subprofile, and NOT REQUIRED under another.

Note: A class, association, methods or indication can be listed as
REQUIRED even when it supports an Optional subprofile.
For example, a Disk Drive subprofile may be optional, but if
an implementation chooses to model Disk Drives, then the
“PhysicalPackage” class is REQUIRED.

7.3.1.3 Registry of Profiles and Subprofiles

Each profile and subprofile within the SNIA Storage Management Initiative is identified by a
unique name, selected and maintained by the SNIA, to assure that SMI implementors do not

100 Version 1.0.1

SNIA Storage Management Initiative Specification

encounter any namespace collisions. The registry of these names, and a reference to their
definition within this specification, are summarized in Table 5 on page 101.

Table 5: Registry of Profiles and Subprofiles

Area Registered Profile Name Registered Subprofile Names

Fabric Fabric Zone Control

Enhanced Zoning and Enhanced Zoning
Control

FDMI

Switch Blades

Router Software
Backend Ports
LUN Mapping and Masking

Hosts FC HBA

Host Discovered Resources Initiator
Target

Storage Array Cluster

Extra Capacity Set
Software

Access Points

Location

Pool Manipulation, Capabilities and Settings
Extent Mapping

Disk Drive

Backend Ports

LUN Creation

LUN Mapping and Masking
Copy Services

Job Control

Device Credentials

In-band Virtualization System Cluster

Extra Capacity Set
Software

Access Points

Location

Pool Manipulation, Capabilities and Settings
Extent Mapping

LUN Creation

LUN Mapping and Masking
Copy Services

Job Control

Device Credentials

Storage Library Software

Access Points

Location

Limited Access Port Elements

Server Server Protocol Adapter

Version 1.0.1 101

SNIA Storage Management Initiative Specification

102 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.2 Common CIM Packages

7.3.2.1 Description

There are packages of classes and associations that are used in multiple profiles or subprofiles.
Rather than repeat the material in each of the Profile models, the information is documented once
(here) and referenced in the appropriate Profile and Subprofile models.

A “Package” is just a set subset of CIM constructs that go together to effect an aspect of the model
(e.g., physical packaging). They are NOT subprofiles, in that they are not formally recognized as
profiles or subprofiles in the CIM Server model. They are named here for reference in this
specification. The names are not recognized in the CIM Server model for profiles and subprofiles.

7.3.2.2 Physical Package Package

7.3.2.2.1 Description

CIM has a strong separation between the Physical and Logical sides of the model. A System is
'realized' using a SystemPackaging association to a PhysicalPackage (or one of it's subclasses such
as Chassis). The physical containment model can then be built up using Container associations
and subclasses (such as PackagelnChassis).

The physical elements can be described as products using Product and ProductPhysical Component
associations. The Product instances can be built up into a hierarchy using the ProductParentChild
association.

Figure 17: "Physical Package Instance" shows an example of the use of the physical classes.

The Physical Package “package” is used in most SNIA Profiles. Specifically, it is used in the
profiles for the Switch, Routers, Extenders, HBAs, Management Appliance, JBOD, Array, Out-of-
band Virtualization, In-band Virtualization and Tape Libraries. In the context of SMI-S, it MUST
be used to hold “Product” identification information (Vendor, serial number and version) for
profiles model specific products. The Physical Package “package” is not required in Profiles that
don’t correspond to an actual vendor product (e.g., CIM Server, Fabric or Host Discovered
Resources).

In addition to defining Physical Package at the “System” level, Physical Package may also be
defined at a lower, subcomponent level. For SMI-S, Physical Package is used in the “Disk Drive”
and Logical Devices supported by Tape libraries (e.g., PhysicalTape, Tape Drive, and Changer
Device). If the subcomponents are supported by the Profile, they MUST model their physical
packaging. When subcomponents are modeled, there MUST be a container relationship between
their physical package and the containing package (e.g., the System level physical package). In
addition, there MUST be a ProductParentChild association between the subcomponent Product
and the parent Product.

The Physical Package constructs MAY also be used to model other aspects of the environment.
However, this is NOT REQUIRED. Note that each controller is realized by a card. The cards are
contained in a controller chassis. Each JBOD chassis is a separately orderable sub-product.

7.3.2.2.2 Standards Dependencies

The Physical Package “package” described here is at the CIM Schema 2.7 final level. It does not
require that Profiles be on a later schema. It operates within profiles that are at the CIM schema
2.7 final or later. The subprofile operates correctly with CIM Specification 2.2 (or later) and CIM
Operations over HTTP 1.1 (or later).

7.3.2.2.3 Profile Dependencies
The Physical Package part of the model introduces no Profile dependencies.

Version 1.0.1 103

7.3.2.2.4

7.3.2.2.5

SNIA Storage Management Initiative Specification

CIM Server Requirements

For the SMI-S uses of Physical Package, support for Basic Read and Association Traversal
functional profiles MUST be supported (by the base Profile CIM server).

The Physical Package does NOT REQUIRE support for extrinsic methods.
And Physical Package, as a SMI-S package, is NOT advertised.

Instance Diagram

Figure 17: Physical Package Instance

System
r—— __________|
| Product
| SystemPackaging |
| ProductParentChild |
| PhysicalPackage |
| (e.g., Chassis) Product
| ProductPhysicalComponent |
Container .
| (e.g., PackagelnChassis) ProductParentChild |
e éﬁg;calﬁesvif; tape PhysicalPackage Product |
g., Drive, phy pe. ! Realizes
device changer) |
| ProductPhysicalComponent |
- -

7.3.2.2.6

7.3.2.2.7

104

Durable Names and Correlatable IDs

The Physical Package “package” does not add any durable names or correlatable ids to the profiles
in which it is used.

Methods
The Physical Package is populated by providers and is accessible to clients using basic read and
association traversal.

No extrinsics are specified on the physical package, even though the CIM Schema identifies an
extrinsic method on the PhysicalPackage class. This extrinsic MAY be implemented by any given
implementation, but it’s behavior is not specified by SMI-S.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.2.2.8 Client Considerations

7.3.2.2.8.1 Find Asset Information

Information about a system is modeled in PhysicalPackage. PhysicalPackage may be subclassed to
Chassis; the more general PhysicalPackage is used here to accommodate device implementations
that are deployed in multiple chassis. PhysicalPackage has an associated Product with physical
asset information such as Vendor and Version.

7.3.2.2.8.2 Finding Product information for a Profile
To locate product information (Vendor, Serial number and product versions) information about a
device that is conforms to the profile, you would start with the “top-level” computer system and
traverse the SystemPackaging to the PhysicalPackage (e.g., a Chassis). From the PhysicalPackage,
the client would then traverse the ProductPhysicalComponent association to locate the Product
instance. The Vendor, Serial Number and version for the device is in the Product instance.

7.3.2.2.8.3 Finding Asset information within a Profile

There are certain subcomponents of a device that a client may be interested in locating. For
example, disk drives in an array or changer devices in a library. To locate the asset information of
these subcomponents, the client would follow the ProductParentChild association from the system
Product to lower level Products.

Alternatively, if the client is starting from a LogicalDevice, it can locate the PhysicalPackage by
following the Realizes association from the LogicalDevice. From the PhysicalPackage, the client
can find the Product information by traversing the ProductPhysical Component association.

7.3.2.2.9 Recipes
No recipes have been defined for this Package.

7.3.2.2.10 Instrumentation Requirements

7.3.2.2.10.1 Well Defined Subcomponents

When establishing physical packages for subcomponents (e.g., disk drives, changers, etc.) the
provider MUST populate both a Container and Realizes associations. Similarly, when establishing
the Product instances for the packages the provider MUST populate the ProductParentChild
association to the parent product.

Version 1.0.1 105

SNIA Storage Management Initiative Specification

7.3.2.2.11 Required CIM Elements

Table 6: Required CIM Elements

Profile Classes & Associations Notes

SystemPackaging This associates a PhysicalPackage to the System it
supports. For Tape Libraries, this association is actually
subclassed to LibaryPackage. For other profiles, this
would be subclassed to ComputerSystemPackage.

PhysicalPackage (p. 107) Or a subclass of this (e.g., Chassis or Card). When
subclassed, only the PhysicalPackage properties are
required. This can be the “System” package or the
package for a subcomponent (e.g., drive)

Product (p. 107) This class holds vendor, model and serial number
information for the product in question. This can be the
“system” product or a subcomponent product (e.g., drive).

ProductPhysicalComponent (p. 108) This associates a PhysicalPackage to the Product

Container This associates a PhysicalPackage to its component
physical packages (e.g., Drives in a Storage System). This
may be subclassed (e.g., PackagelnChassis), but only the
Container properties are required.

Note: This is only required if component
parts are modeled.

ProductParentChild This association aggregates subcomponent products
under higher level products.

Note: This is only required if multiple
Product instances are modeled.

Realizes This associates a logical device (e.g., Drive) to its physical
package

Note: This is only required if component
parts are modeled.

Packages
None.
Methods
None.
Package Indications
None.
7.3.2.2.12 Required Properties for CIM Elements

7.3.2.2.12.1 SystemPackaging

Similar to the way that LogicalDevices are 'Realized' by PhysicalElements, Systems may be
assocaited with specific packaging/PhysicalElements.This association explicitly defines the
relationship between a System and its packaging.

106 Version 1.0.1

SNIA Storage Management Initiative Specification

This association is used in SMI-S to associate a System with its PhysicalPackages.

SystemPackaging is subclassed from Dependency

Table 7: Required Properties for SystemPackaging

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref override The PhysicalPackage(s) that realize a
System.
Dependent ref override The System.

7.3.2.212.2 PhysicalPackage

The PhysicalPackage class represents PhysicalElements that contain or host other components.
Examples are a Rack enclosure or an adapter Card. In the context of SMI-S, PhysicalPackage is
used to model the physical aspects of the “System” and MAY be used to model Logical Devices that
are contained in the System.

PhysicalPackage is subclassed from PhysicalElement

Table 8: Required Properties for PhysicalPackage

Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string User Friendly name.
This property is OPTIONAL.
Name string maxlen(1024) This property is OPTIONAL
Tag string maxlen(256), key | An arbitrary string that uniquely identifies
the Physical Element
CreationClassName string maxlen(256). key | The name of the concrete subclass
Manufacturer string maxlen(256)
Model string maxlen(64)
SerialNumber string maxlen(64) This property is OPTIONAL
Version string maxlen(64) This property is OPTIONAL
Partnumber string maxlen(256) This property is OPTIONAL

7.3.2.2.12.3 Product

Product is a concrete class that aggregates PhysicalElements, software (Softwareldentity and
SoftwareFeatures), Services and/or other Products, and is acquired as a unit. Acquisition implies
an agreement between supplier and consumer that may have implications to Product licensing,
support and warranty. Non-commercial (e.g., in-house developed Products) should also be
identified as an instance of Product.

In the context of SMI-S, Product is used to convey vendor and serial number for the objects being
modeled. These can be at the “system” level (e.g., array) or at the logical device (component) level.

Version 1.0.1 107

SNIA Storage Management Initiative Specification

Product is subclassed from ManagedElement.

Table 9: Required Properties for Product

Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string User Friendly name. Suggested use is
Vendor, Version and product name.
Name string key, maxlen(256) Commonly used Product name.
IdentifyingNumber string key, maxlen(64) Product identification such as a serial

number on software, a die number on
a hardware chip, or (for non-
commercial Products) a project
number.

Vendor string key, maxlen(256) The name of the Product's supplier, or
entity selling the Product (the
manufacturer, reseller, OEM, etc.).
Corresponds to the Vendor property
in the Product object in the DMTF
Solution Exchange Standard.

Version string key, maxlen(64) Product version information.

7.3.2.2.12.4 ProductPhysical Component
Indicates that the referenced PhysicalElement is acquired as part of a Product.

This association is used in SMI-S to associate a Product with its PhysicalPackage.

ProductPhysicalComponent is subclassed from Component

Table 10: Required Properties for ProductPhysicalComponent

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref override The Product.
PartComponent ref override The PhysicalElement that is a part of the
Product.

7.3.2.2.12.5 Container

The Container association represents the relationship between a contained and a containing
PhysicalElement. A containing object MUST be a PhysicalPackage.

108 Version 1.0.1

SNIA Storage Management Initiative Specification

Container is subclassed from Component

Table 11: Required Properties for Container

Property/ Type Qualifier/ Description/Notes
Method Parameter
PhysicalPackage ref max(1), override The PhysicalPackage that contains other
PhysicalElements, including other
Packages.
PhysicalElement ref override The PhysicalElement that is contained in
the Package.

7.3.2.2.12.6 ProductParentChild

The ProductParentChild association defines a parent child hierarchy among Products. For
example, a Product may come bundled with other Products.

ProductParentChild is not subclassed from anything

Table 12: Required Properties for ProductParentChild

Property/ Type Qualifier/ Description/Notes
Method Parameter
Parent ref key The parent Product in the association.
Child ref key The child Product in the association.

7.3.2.2.12.7 Realizes

Realizes 1s the association that defines the mapping between LogicalDevices and the
PhysicalElements that implement them.

In SMI-S, this class MUST be used if physical packaging is modeled for system components
(Logical Devices).

Realizes 1s subclassed from Dependency.

Table 13: Required Properties for Realizes

Property/ Type Qualifier/ Description/Notes
Method Parameter
PhysicalElement ref override The physical component that implements
the Device.
LogicalDevice ref override The LogicalDevice
7.3.2.2.13 Optional Subprofiles

This is NOT APPLICABLE to Packages. A package MUST NOT have subprofiles.

Version 1.0.1 109

7.3.2.3

7.3.2.3.1

7.3.2.3.2

7.3.2.3.3

7.3.2.3.4

110

SNIA Storage Management Initiative Specification

Software Package

Description
The Software Package is REQUIRED as part of the Switch Profile and the FDMI Subprofile.

The Software Package is REQUIRED when it is part of the optional Software Subprofile for the
Extenders, Routers, Management Appliance, Array, Out-of-band Virtualization System and In-
band Virtualization System Profiles. The package is described here. The Software Subprofile is
defined later under Common Subprofiles.

Information on the installed software is given using the Softwareldentity class. This is linked to
the system using a SoftwareInstalledOnSystem association.

Software information can be associated with the “top” level ComputerSystem (if all components
are using the same software) or a component ComputerSystem if the software loaded can vary by
processor.

Standards Dependencies

The Software package is defined using the CIM Schema 2.8 final. As such it can be used in profiles
at 2.8 and later. It does not require that Profiles be on a later schema. It operates within profiles
that are at the CIM schema 2.8 final or later. The package operates correctly with CIM
Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

Profile Dependencies

The Software package introduces no Profile dependencies.

CIM Server Requirements

For the SMI-S uses of the Software package, support for Basic Read and Association Traversal
functional profiles MUST be supported (by the base Profile CIM server).

The Software package does NOT REQUIRE support for extrinsic methods.

As a package, the Software subprofile CANNOT be advertised.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.2.3.5 Instance Diagram

Figure 18: Software Instance Diagram

ComputerSystem

InstalledSoftwareldentity
\

Softwareldentity

Concreteldentity

ExtraCapacitySet

ComponentCS

MemberOfCollection

ComputerSystem

InstalledSofwareldentity

Softwareldentity

7.3.2.3.6 Durable Names and Correlatable IDs

The Software Package does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.

7.3.2.3.7 Methods

The Software package is populated by providers and is accessible to clients using basic read and
association traversal.

No extrinsics are specified on the Software Package.

7.3.2.3.8 Client Considerations
See details in related profile section.

7.3.2.3.9 Recipes

See details in related profile section.

7.3.2.3.10 Instrumentation Requirements
Firmware

Firmware is modeled as Softwareldentity. SoftwarelnstalledOnSystem is used for firmware
associated with a System.

Version 1.0.1 111

SNIA Storage Management Initiative Specification

7.3.2.3.11 Required CIM Elements

Table 14: Required CIM Elements

Profile Classes & Associations Notes

InstalledSoftwareldentity (p. 112)

Softwareldentity (p. 112)

Packages
None.
Associated Indications
None.
7.3.2.3.12 Required Properties for CIM Elements

7.3.2.3.12.1 InstalledSoftwareldentity

The InstalledSoftwareldentity association allows the identification of the ComputerSystem on which
a particular Softwareldentity is installed.

InstalledSoftwareldentity is not subclassed from anything.

Table 15: Required Properties for InstalledSoftwareldentity

Property/ Type Qualifier/ Description/Notes
Method Parameter
System ref key The system the software is installed on.
InstalledSoftware ref key The Softwareldentity that is installed.

7.3.2.3.12.2 Softwareldentity

The Softwareldentity is used to model either software or firmware.

Softwareldentity is subclassed from LogicalElement.

Table 16: Required Properties for Softwareldentity

Property/ Type Qualifier/ Description/Notes
Method Parameter
InstancelD string key The name used to identify this

Softwareldentity.

VersionString string Software Version should be in the form
<Major>.<Minor>.<Revision> or
<Major>.<Minor><letter><revision>.

Manufacturer string Manufacturer of this software.

BuildNumber uint16 OPTIONAL. The internal identifier for this
compilation of software, if available.

112 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 16: Required Properties for Softwareldentity (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
RevisionNumber uint16 OPTIONAL. This is the numeric

representation of the revision number in the
VersionString

MaijorVersion uint16 OPTIONAL. This is the numeric

representation of the Major number in the
VersionString

MinorVersion uint16 OPTIONAL. This is the numeric

representation of the Minor number in the
VersionString

7.3.2.3.13

7.3.3

7.3.3.1

7.3.3.2

7.3.3.2.1

7.3.3.2.2

7.3.3.2.3

7.3.3.2.4

Optional Subprofiles
This is NOT APPLICABLE to Packages. A package MUST NOT have subprofiles.

Common Subprofiles

Overview

There are several subprofiles that are used in multiple profiles and deserve specific descriptive
information. The detailed descriptions of these subprofiles are described in this section to avoid
redundant descriptions in the profile sections.

Access Points Subprofile

Description

The Access Points subprofile is used in the Array, Out-of-Band Virtualization and In-band
Virtualization Profiles to indicate remote access points for management tools.

Most devices now have a web GUI to allow device specific configuration. This is modeled using a
RemoteServiceAccessPoint. This is linked to the managed element using a HostedAccessPoint
association. If several access points are provided (say one for each chassis), then multiple instances
of RemoteServiceAccessPoint / HostedAccessPoint would be instantiated and linked to the specific
Element by SAPAvailableForElement.

Standards Dependencies

The Access Point subprofile is defined using the CIM Schema 2.7 final. As such it can be used in
profiles at 2.7 and later. It does not require that Profiles be on a later schema. It operates within
profiles that are at the CIM schema 2.7 final or later. The subprofile operates correctly with CIM
Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

Profile Dependencies

The Access Point subprofile introduces no Profile dependencies.

CIM Server Requirements

For the SMI-S uses of the Access Point subprofile, support for Basic Read and Association
Traversal functional profiles MUST be supported the base Profile CIM server.

The Access Point subprofile does NOT REQUIRE support for extrinsic methods.

The Access Point subprofile is NOT advertised.

Version 1.0.1 113

SNIA Storage Management Initiative Specification

7.3.3.2.5 Instance Diagrams

Figure 19: Access Point Instance Diagram

SAPAvailableForElement

[~ 1
ComputerSystem | |
dedicated[X]) |

| ‘ HostedAccessPoint
| SAPAuvailableForElement |

|

ComponentCS ComponentCS | RemoteServiceAccessPoint |
| HostedAccessPoint |
ComputerSystem ComputerSystem | |
| | |
| SAPAvailableForElement |
| |
| RemoteServiceAccessPoint |
| |
| |
;-IostedAccessPointi RemoteServiceAccessPoint |
1 |
| |

There are two associations that need to be instantiated. The “HostedAccessPoint” associates the
service to the System on which it is hosted. The “ServiceAvailableToElement” associates the
service to the system (or element) that is affected by the service.

7.3.3.2.6 Durable Names and Correlatable IDs

The Access Point subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.

7.3.3.2.7 Methods

The Access Point subprofile is populated by providers and is accessible to clients using basic read
and association traversal.

No extrinsics are specified on the Access Point subprofile.

7.3.3.2.8 Client Considerations

See details in related profile section.

7.3.3.2.9 Recipes
See details in related profile section.

7.3.3.2.10 Instrumentation Requirements

See details in related profile section.

114 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.2.11 Required CIM Elements

Table 17: Required CIM Elements

Profile Classes & Associations Notes

HostedAccessPoint (p. 115) Associate the RemoteServiceAccessPoint to the
System on which it is hosted.

RemoteServiceAccessPoint (p. 116) A ServiceAccessPoint for management tools
SAPAvailableForElement (p. 115) This association identifies the element that is
serviced by the RemoteServiceAccessPoint
Packages
None.
Methods
None.
Subprofile Indications
None
7.3.3.2.12 Required Properties for CIM Elements

7.3.3.2.12.1 HostedAccessPoint

HostedAccessPoint is an association between a ServiceAccessPoint and the System on which it is
provided. The cardinality of this association is 1-to-many and is weak with respect to the System.
Each System may host many ServiceAccessPoints.

HostedAccessPoint is subclassed from Dependency.

Table 18: Required Properties for HostedAccessPoint

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref override The hosting System
Dependent ref override The SAP(s) that are hosted on this System.

7.3.3.2.12.2 SAPAvailableForElement

SAPAvailableForElement conveys the semantics of a Service being available for the 'use' of a
ManagedElement. To describe that use of this service is restricted or has limited availability/
applicability, then the SAPAvailableForElement association would be instantiated between the
Service and specific Processors and Chassis

SAPAvailableForElement is not subclassed from anything.

Table 19: Required Properties for SAPAvailableForElement

Property/ Type Qualifier/ Description/Notes
Method Parameter
AvailableSAP ref override The Service that is available.

Version 1.0.1 115

SNIA Storage Management Initiative Specification

Table 19: Required Properties for SAPAvailableForElement (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement ref override The ManagedElement that may use the
Service.

7.3.3.2.12.3 RemoteServiceAccessPoint

RemoteServiceAccessPoint describes access and/or addressing information for a remote
connection, that is known to a 'local' network element. This information is scoped/contained by the
'local' network element, since this is the context in which it is 'remote'.

Why the remote access point is relevant and information on its use are described by subclassing
RemoteServiceAccessPoint, or by associating to it.

RemoteServiceAccessPoint is subclassed from ServiceAccessPoint.

Table 20: Required Properties for RemoteServiceAccessPoint

Property/Method Type Qualifier/ Description/Notes
Parameter

ElementName string User Friendly name

SystemName string key, maxlen (256)

SystemCreationClassName string key, maxlen (256)

CreationClassName string key, maxlen (256)

Name string key, maxlen (256)

Accesslnfo string Management Address. For
interoperability, this should be a
URL.

InfoFormat uint16 The format of the Management
Address. For interoperability, this
MUST be “URL".

7.3.3.2.13 Optional Subprofiles

Table 21: Optional Profiles or Subprofiles

Name Notes
None
7.3.3.3 Cluster Subprofile
7.3.3.3.1 Description

The Cluster Subprofile is an optional subprofile for the JBOD, Array, Out-of-Band Virtualization
and In-band Virtualization Profiles.

It is not defined for use in the Fabric, Switch, Routers, Extenders, HBA, Host Discovered
Resources, Management Appliance, Tape Library or Server profiles.

116 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.3.2

7.3.3.3.3

7.3.3.3.4

Many profiles define a ComputerSystem as the base representation of the system being modeled.
However, the device being modeled may, in fact, be made up of multiple processing elements that
act as a cluster. This MAY be modeled using the Cluster Subprofile. Each of the elements of the
cluster would be its own ComputerSystem, but they would be collected into a ComputerSystem
that represents the system image of the collection of processors.

If the storage system consists of more than one controller then there is an instance of a
ComputerSystem representing the overall system, and each controller is linked to that instance of
ComputerSystem using ComponentCS associations.

The ‘top’ computer system would be the REQUIRED part of the profile and would be the anchor
point for key associations to other parts of the profile. It is not part of this subprofile, but is the
point where the cluster of computer systems tie into the profile.

When a Cluster subprofile is implemented, care should be taken in where “SystemDevice”
associations are attached. If the system device (e.g., FCPort) goes away if one of the component
computer systems goes away, then the device MUST be connected (via SystemDevice) to the
component ComputerSystem. On the other hand, if the system device (e.g., StorageVolume)
remains available no matter which component ComputerSystem fails or goes away, then the
SystemDevice connection should be to the “top” level ComputerSystem.

Standards Dependencies

The Cluster subprofile is defined using the CIM Schema 2.7 final. As such it can be used in profiles
at 2.7 and later. It does not require that Profiles be on a later schema. It will operate within
profiles that are at the CIM schema 2.7 final or later. The subprofile will operate correctly with
CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

Profile Dependencies

The Cluster subprofile introduces no Profile dependencies.

CIM Server Requirements

For the SMI-S uses of the Cluster subprofile, support for Basic Read, Indications, and Association
Traversal functional profiles MUST be supported by the CIM Server.

The Cluster subprofile does NOT REQUIRE support for extrinsic methods.

The Cluster subprofile is NOT advertised.

Version 1.0.1 117

SNIA Storage Management Initiative Specification

7.3.3.3.5 Instance Diagrams
Figure 20: Cluster Instance
ComputerSystem
SystemDevice
dedicated[x] '
LogicalDevice
| ComponentCS ComponentCS |
SystemDevlice ComputerSystem ComputerSystem | SystemDevice
LogicalDevice | | LogicalDevice

7.3.3.3.6 Durable Names and Correlatable IDs

The Cluster subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used. While a Durable Name is defined for the top-level
ComputerSystem, for the component computer systems they are not considered Durable. The
name property of a component computer system is scoped to the top-level computer system.

7.3.3.3.7 Methods

The Cluster subprofile is populated by providers and is accessible to clients using basic read and
association traversal.

No extrinsics are specified on the Cluster subprofile.

7.3.3.3.8 Client Considerations

7.3.3.3.8.1 Finding the Top-level Computer System

118

// DESCRIPTION

/I A client can find the top computer systems relatively easy using an
//Associators call

/1

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// None

Associators(ObjectName=CIMObjectPath(CIM_ComputerSystem)

AssocClass=CIM_ComponentCS
ResultClass=CIM_ComputerSystem

Version 1.0.1

SNIA Storage Management Initiative Specification

ResultRole=GroupComponent)

7.3.3.3.8.2 Find System Status of a Component Computer System

The ‘OperationStatus’ property is available on most objects in the model and is used to indicate it’s
status. For component computer systems, the ComputerSystem instance MUST have one of the
following Main Operational Statuses and possibly one of the Subsidiary statuses.

Table 22: OperationStatus for Component ComputerSystem

Main Operational Possible Description
Status Subsidiary
Operational
Status
OK The computer system has a good status
OK Stressed The computer system is stressed, for example the
temperature is over limit or there is too much 10 in
progress
OK Predictive Failure The computer system will probably fail sometime
soon
Degraded The computer system is operational but not at 100%

redundancy. A component has suffered a failure or
something is running slow

Error An error has occurred causing the computer system
to stop. This error may be recoverable with operator
intervention.

Error Non-recoverable error A severe error has occurred. Operator intervention is
unlikely to fix it

Error Supporting entity in error | A modeled element has failed

No contact The provider knows about the computer system but
has not talked to it since last reboot

Lost communication The provider used to be able to communicate with
the computer system, but has now lost contact.

Starting The computer system is starting up
Stopping The computer system is shutting down.
Stopped The computer system is OK but shut down, the

management channel is still working.

A client MAY subscribe for Asynchronous notification of changes in status through
InstModification Indications. More details on indications are in “Events - CIM Indications”.

7.3.3.3.9 Recipes
See details in related profile section.

7.3.3.3.10 Instrumentation Requirements
See details in related profile section.

Version 1.0.1 119

SNIA Storage Management Initiative Specification

7.3.3.3.11 Required CIM Elements
Table 23: Required CIM Elements
Profile Classes & Associations Notes
ComponentCS (p. 120) Associates the processors of the computer system
to the system
ComputerSystem (p. 120) For the processors that are clustered to make up the
system
Packages
None.
Methods
None.
SubProfile Indications
SELECT * FROM CIM_InstCreation WHERE To indicate the creation of a Component
Sourcelnstance ISA CIM_ComputerSystem ComputerSystem
SELECT * FROM CIM_InstDeletion WHERE To indicate the deletion of a Component
Sourcelnstance ISA CIM_ComputerSystem ComputerSystem
SELECT * FROM CIM_InstModification WHERE | Change in operational status of a Component
Sourcelnstance ISA CIM_ComputerSystem ComputerSystem.
AND Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus

7.3.3.3.12

7.3.3.3.12

Required Properties for CIM Elements

A ComponentCS

A ComputerSystem can aggregate another ComputerSystem. This association is used to model
multiple processors that act as a single system image for a storage system. ComponentCS
represents that unique and distinct ComputerSystems are aggregated by a higher level CS object.
However, each of the component CSs are still distinguishable entities and are only viewed as such.

ComponentCS is subclassed from SystemComponent.

Table 24: Required Properties for ComponentCS

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref override The ComputerSystem that contains and/or
aggregates other Systems.
PartComponent ref override The contained (Sub)ComputerSystem.
7.3.3.3.12.2 ComputerSystem

120

In the context of the Cluster Subprofile, instances of this class represent processors that make up
the cluster that is the storage system. NOTE: The ‘top’ level ComputerSystem is REQUIRED as
part of the base profiles.

Version 1.0.1

SNIA Storage Management Initiative Specification

ComputerSystem is subclassed from System.

Table 25: Required Properties for ComputerSystem

Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string User Friendly name
OperationalStatus|] uint16 Status of the component computer

system (same encodings as the top-
level computer system)

CreationClassName string key, maxlen(256) Name of Class
Name string key, maxlen (256), For component computer systems, the
override provider MUST provide a unique name

using one of the NameFormats.

NameFormat

string override) For component computer systems, this
should be coded as Other

7.3.3.3.13

Optional Subprofiles

Table 26: Optional Profiles or Subprofiles

Name Notes
None
7.3.3.4 Extra Capacity Set Subprofile
7.3.3.4.1 Description

The Extra Capacity Set Subprofile is an optional subprofile for the Array, Out-of-Band
Virtualization and In-band Virtualization Profiles.

While the Cluster subprofile defines component computer systems that make up the top-level
computer system, it does not specify the relationship among the systems. The Extra Capacity Set
subprofile is for defining specific redundancy offered by a collection of computer systems in the
configuration.

Some of the component computer systems also typically provide redundancy. This can be of several
kinds: Load balancing, fail-over, load balancing/fail-over with redundancy.

Version 1.0.1

Load balancing.

This typically means that each path to a LUN through the participating computer systems
has equal functionality and priority. This type of redundancy is shown wusing the
ExtraCapacitySet class with the LoadBalancedSet property set to true. Each computer
systems 1s associated with a ExtraCapacitySet instance with a MemberOfCollection
association. If Controllers operate as redundant pairs then there would be multiple
ExtraCapacitySet instances — one for each pair.

Fail over.

This typically means that the paths are asymmetrical. One path with be the primary one, the
other(s) are for fail-over only and have lower access speed or whatever. In this case the
LoadBalancedSet property is set to false. The priority of different access paths is shown by the
AccessPriority property on the ProtocolControllerForUnit associations between the
StorageVolume and ProtocolController.

121

SNIA Storage Management Initiative Specification

* Load Balancing and Fail over
This typically means that load balancing is occurring across the ExtraCapacitySet and in the
event of a failure another computer system in the set can take over the work of the failing
computer system.

7.3.3.4.2 Standards Dependencies
The Extra Capacity Set subprofile is defined using the CIM Schema 2.7 final. As such it can be
used in profiles at 2.7 and later. It does not require that Profiles be on a later schema. It will
operate within profiles that are at the CIM schema 2.7 final or later. The subprofile will operate
correctly with CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).
7.3.3.4.3 Profile Dependencies
The Extra Capacity Set subprofile introduces no Profile dependencies.
7.3.3.4.4 CIM Server Requirements
For the SMI-S uses of the Extra Capacity Set subprofile, support for Basic Read, Indications and
Association Traversal functional profiles MUST be supported by the CIM server for the Profile.
The Extra Capacity Set subprofile does NOT REQUIRE support for extrinsic methods.
The Extra Capacity Set subprofile is NOT advertised.
7.3.3.4.5 Instance Diagram
Figure 21: Extra Capacity Set Instance Diagram
ComputerSystem
dedicated[x]
Concreteldentity
ExtraCapacitySet
MemberOfCollection MemberOfCollection
ComputerSystem ComputerSystem
7.3.3.4.6 Durable Names and Correlatable IDs
The Extra Capacity Set subprofile does not add any durable names or correlatable ids to the
profiles (or subprofiles) in which it is used. While a Durable Name is defined for the top-level
ComputerSystem, they are not required for the collected computer systems.
122 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.4.7 Methods

The Extra Capacity Set subprofile is populated by providers and is accessible to clients using basic
read and association traversal.

No extrinsics are specified on the Extra Capacity Set subprofile.
7.3.3.4.8 Client Considerations

7.3.3.4.8.1 Find System Status of a Member Computer System

The ‘OperationStatus’ property is available on most objects in the model and is used to indicate it’s
status. For member computer systems, the ComputerSystem instance MUST have one of the
following Main Operational Statuses and possibly one of the Subsidiary statuses.

Table 27: OperationStatus for Component ComputerSystem

Main Operational Possible Description
Status Subsidiary
Operational
Status
OK The computer system has a good status
OK Stressed The computer system is stressed, for example the
temperature is over limit or there is too much 10 in
progress
OK Predictive Failure The computer system will probably fail sometime
soon
Degraded The computer system is operational but not at 100%

redundancy. A component has suffered a failure or
something is running slow

Error An error has occurred causing the computer system
to stop. This error may be recoverable with operator
intervention.

Error Non-recoverable error A severe error has occurred. Operator intervention is

unlikely to fix it

Error Supporting entity in error | A modeled element has failed

No contact The provider knows about the computer system but
has not talked to it since last reboot

Lost communication The provider used to be able to communicate with
the computer system, but has now lost contact.

Starting The computer system is starting up

Stopping The computer system is shutting down.

Stopped The computer system is OK but shut down, the

management channel is still working.

A client MAY subscribe for Asynchronous notification of changes in status through
InstModification Indications. More details on indications are in “Events - CIM Indications”.

Version 1.0.1 123

7.3.3.4.9 Recipes

See details in related profile section.

7.3.3.4.10 Instrumentation Requirements

See details in related profile section.

7.3.3.4.11 Required CIM Elements

SNIA Storage Management Initiative Specification

Table 28: Required CIM Elements

Profile Classes & Associations

Notes

ComputerSystem (p. 124)

For the processors that make up the ExtraCapacitySet

ExtraCapacitySet (p. 125)

The collection of processors

Concreteldentity

Associates the ExtraCapacitySet to the “top” level
Storage System

MemberOfCollection (p. 126)

The association that ties the processors in the collection
to the ExtraCapacitySet

Packages

None.

Methods

None.

SubProfile Indications

SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA CIM_ComputerSystem

To indicate the creation of a Component
ComputerSystem

SELECT * FROM CIM_InstDeletion WHERE
Sourcelnstance ISA CIM_ComputerSystem

To indicate the deletion of a Component
ComputerSystem

SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_ComputerSystem AND
Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus

To receive an indication on a change in operational
status of a Component ComputerSystem.

SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_ExtraCapacitySet AND
Sourcelnstance.RedundancyStatus <>
Previouslinstance.RedundancyStatus

To receive an indication on a change to the redundancy
status of the ExtraCapacitySet

7.3.3.4.12

7.3.3.4.12.1 ComputerSystem

The ComputerSystem(s) in the ExtraCapacitySet are processors that support the storage system.

They are not the ‘top’ level system.

124

Required Properties for CIM Elements

Version 1.0.1

SNIA Storage Management Initiative Specification

ComputerSystem is subclassed from System.

Table 29: Required Properties for ComputerSystem

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

ElementName

string

User Friendly name

OperationalStatus]]

uint16

CreationClassName

string

maxlen(256), key

Name of Class

Name

string

maxlen(256), key

Not required for the collected
computer systems, but may be
supplied.

NameFormat

string

override

If supplied, use the same formats
as defined for the top-level
computer system.

Dedicated][]

int16

Since this is a collected computer
system, this property is not
required. However, if is it used it
should refer to one or more of the
values used in the top-level
computer system

OtherDedicatedDescriptions

string

This is not required for SNIA
profiles, but it MUST be filled in if
“other” is specified in the Dedicated
array.

7.3.3.4.12.2

A class derived from RedundancySet to describe that the aggregated elements have more capacity

ExtraCapacitySet

or capability than is needed.

Table 30: Required Properties for ExtraCapacitySet

Property/ Type Qualifier/ Description/Notes
Method Parameter

InstancelD string key

ElementName string override, required User Friendly name

RedundancyStatus uint16 Values {"Unknown", "Other",
"Fully Redundant", "Degraded
Redundancy", "Redundancy
Lost"}

LoadBalancedSet boolean Boolean indicating whether load
balancing is supported by the
ExtraCapacitySet.

7.3.3.4.12.3

Concreteldentity

Concreteldentity associates two elements representing different aspects of the same underlying
entity. Concreteldentity is limited in its use as a concrete form of a general identity relationship.

Version 1.0.1 125

SNIA Storage Management Initiative Specification

In the context of the Extra Capacity Set subprofile, this association is used to equate the
ExtraCapacitySet instance to the top-level computer system.

Concreteldentity is subclassed from Concreteldentity.

Table 31: Required Properties for Concreteldentity

Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemElement ref key The ManagedElement (e.g., System) that is the
basis of the identity (The top-level computer
system)
SameElement ref key SameElement represents an alternate aspect of

the ManagedElement (System). That is, the
ExtraCapacitySet.

7.3.3.4.12.4 MemberOfCollection

MemberOfCollection is an aggregation used to establish membership of ManagedElements in a
Collection. In the context of the Extra Capacity Set subprofile, this association aggregates the
collected computer systems under the ExtraCapacitySet.

MemberOfCollection is not subclassed from anything.

Table 32: Required Properties of MemberOfCollection

Property/ Type Qualifier/ Description/Notes
Method Parameter
Collection ref key The Collection (ExtraCapacitySet) that

aggregates members (ComputerSystems).

Member ref key The aggregated member (ComputerSystem) of

the Collection.

7.3.3.4.13 Optional Subprofiles
Table 33: Optional Profiles or Subprofiles
Name Notes
None
7.3.3.5 Disk Drive Subprofile
7.3.3.5.1 Description

126

The Disk Drive subprofile is used in the JBOD and Array Profiles.

A disk drive is modeled as a MediaAccessDevice (DiskDrive) containing (MediaPresent) some
logical media (StorageExtent) that is realized (RealizesExtent) by some physical media. Other
classes can further refine the modeling (e.g. Product or Softwareldentity).

The Disk Drive subprofile ties into the rest of the Array (or JBOD) profile via a number of key
associations.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.5.2

ConcreteComponent - To associate an extent exported by the Disk Drive to a StoragePool

BasedOn - To associate an extent exported by the Disk Drive to another (higher level) extent

(or a Volume)

Container - To associate the physical package of the disk drive to the physical package of the

system

ProductParentChild - to associate the product of the disk drive to a higher level product (e.g.,

the system product).

Standards Dependencies

The Disk Drive subprofile is defined using the CIM Schema 2.8 Preliminary. As such it can be used
in profiles at 2.8 and later. It does not require that Profiles be on a later schema. It will operate
within profiles that are at the CIM schema 2.8 final or later. The subprofile will operate correctly

with CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

7.3.3.5.3

Profile Dependencies

The Disk Drive subprofile introduces no Profile dependencies.

7.3.3.5.4

7.3.3.5.4.1

7.3.3.5.4.2

CIM Server Requirements

Functional Profiles

Table 34: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation
YES Indication None

Extrinsic Methods

The Disk Drive subprofile does NOT REQUIRE support for extrinsic methods.

7.3.3.5.4.3

Discovery

The Disk Drive subprofile is NOT advertised.

Version 1.0.1

127

SNIA Storage Management Initiative Specification

7.3.3.5.5 Instance Diagrams
Figure 22: Disk Drive Instance Model
StoragePool StorageVolume or
StorageExtent
| ConcreteComponent Basedon
| StorageExtent DiskDrive Softwareldentitty
MediaPresent—, DeviceSoftwareldentity
| . ~
| RealizesExtent Realizes
L 0.1 1 *
| PhysicalMedia PhysicalPackage Product
PackagedComponent ProductPhysicalComponent
| Container ProductParentChild
PhysicalPackage Product
(System) (System)
7.3.3.5.6 Durable Names and Correlatable IDs
The Disk Drive subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.
7.3.3.5.7 Methods
The Disk Drive subprofile is populated by providers and is accessible to clients using basic read
and association traversal.
No extrinsics are specified on the Disk Drive subprofile.
7.3.3.5.8 Client Considerations
7.3.3.5.8.1 Find Disk Drive Status

The status of a Disk Drive MAY be determined by the value of the OperationalStatus property.
Table 427 shows the allowed values for this property and their meanings. The table below defines
the possible states that MUST be supported for DiskDrive.OperationalStatus. The main
OperationalStatus MUST be the first element in the array.

Table 35: DiskDrive Status

OperationalStatus

Description

OK

The Drive is online

Error

Drive has a failure

128

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 35: DiskDrive Status

OperationalStatus Description
Stopped Drive is disabled
InService Drive is in Self Test
7.3.3.5.9 Recipes
// DESCRIPTION

Version 1.0.1

/I A client can find the ‘top’ computer systems relatively easy using an
//*Associators’ call

/1

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//'1. aCIM_ObjectPath to a CIM_ComputerSystem with dedicated[] =
/ [“Array”, “Block Server”]

// Step 1. Get the Primordial Pool for the Array from the
// HostedStoragePool association. (This represents the unallocated
// storage on the array.) To tell which pool is the PrimordialPool, look
// for a Pool with no AllocatedFromStoragePool associations where it is
//the dependent.
$StoragePools->[] = Associators(

$StorageArray->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null,

null,

false,

false,

null)
for $StoragePool-> in $StoragePools->[]
{

if ($StoragePool->Primordial == TRUE)

{

$PrimordialPool-> = $StoragePool->
break;

// Step 2. Get an Enumeration of the StorageExtents that make up the
/1 StoragePool using the ConcreteComponent association.
$StorageExtents->[] = Associators(

$PrimordialPool->,

“CIM_ConcreteComponent”,

“CIM_StorageExtent”,

“GroupComponent”,

“PartComponent”,

false,

129

7.3.3.5.10

SNIA Storage Management Initiative Specification

false,
null)

// Step 3. For each StorageExtent in the enumeration, follow the
// RealizesExtent association to the PhysicalMedia object.
for $StorageExtent-> in $StorageExtents->[]
{
$PhysicalMedia->[] = Associators(
$StorageExtent->,
“CIM_RealizesExtent”,
“CIM_PhysicalMedia”,
“StorageExtent”,
“Physical Component”,
false,
false,
null)
if ($PhysicalMedia->[].length != 0)

f
1

// According to the schema, there should be zero or one.
$PhysicalMedium-> = §StoragePools->[0]

// Step 4. Read the ElementName property and the Capacity property on the
// PhysicalMedia.
< Disk Drive $PhysicalMedium->Tag is unused and >

< has a capacity of $PhysicalMedium->Capacity bytes. >

} 1t
} 1/ for.

Instrumentation Requirements

7.3.3.5.10.1 Required External Associations

130

When implementing the Disk Drive subprofile, the ConcreteComponent association to
StoragePools is REQUIRED (because LogicalStorage is required in the Profile).

The Container association to a higher level physical package is also REQUIRED (because the
PhysicalPackage for the System is required). However, in the case of the Container association, it
is possible that the Disk Drive PhysicalPackage is not directly contained in the System
PhysicalPackage. It MUST be possible for a client to traverse the container associations from the
System PhysicalPackage to the Disk Drive PhysicalPackage, even if the client is required to go
through intermediate steps (that is, intermediate physical packages).

The ProductParentChild association from the disk drive product to the higher level product is also
REQUIRED. It is not necessary for the System Product to be the next level up the
ProductParentChild association, but it MAY be.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.5.10.2 Optional External Associations

The BasedOn association that ties a Disk Drive extent to a higher level extent (or volume) is only
required if the ExtentMapping subprofile is also implemented.

Version 1.0.1 131

7.3.3.5.11 Required CIM Elements

SNIA Storage Management Initiative Specification

Table 36: Required CIM Elements

Profile Classes & Associations

Notes

BasedOn This maps the storage extent of the disk drive to
other (higher level) extents that are based on the
disk drive

ConcreteComponent This maps an extent exported by the disk drive to
a StoragePool

Container This association aggregates the disk drive

physical package to the next higher level physical
package

ProductParentChild

This association aggregates the disk drive product
to the next higher level product

DeviceSoftwareldentity (p. 134)

This associates the disk drive to the firmware for
the drive.

DiskDrive (p. 134)

MediaPresent (p. 135)

PhysicalMedia (p. 135)

Realizes (p. 136)

RealizesExtent (p. 136)

Softwareldentity (p. 137)

The firmware for the disk drive

StorageExtent The storage extent that is exported by the disk
drive
Packages
Physical Package Package (p. 103).
Methods

none.

SubProfile Indications

SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA CIM_DiskDrive

SELECT * FROM CIM_InstDeletion WHERE
Sourcelnstance ISA CIM_DiskDrive

7.3.3.5.12 Required Properties for CIM Elements

7.3.3.5.12.1 BasedOn

BasedOn is an association describing how StorageExtents can be assembled from lower level
Extents. In the context of the Disk Drive subprofile, the BasedOn association is used to associate
the extents exported by the Disk Drive to higher level storage extents (or StorageVolumes). As

132

Version 1.0.1

SNIA Storage Management Initiative Specification

such, the based on association is only required if the Profile is also implementing the Extent
Mapping subprofile.

BasedOn is subclassed from Dependency.

Table 37: Required Properties for BasedOn

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref override, key The lower level StorageExtent.
Dependent ref override, key The higher level StorageExtent.
StartingAddress uint64 StartingAddress indicates where in lower level

storage, the higher level Extent begins.

EndingAddress uint64 EndingAddress indicates where in lower level
storage, the higher level Extent ends. This
property is useful when mapping non-contiguous
Extents into a higher level grouping.

Orderindex uint16 If there is an order to the BasedOn associations
that describe how a higher level StorageExtent
is assembled, the Orderindex property indicates
this.

7.3.3.5.12.2 ConcreteComponent

ConcreteComponent is a generic association used to establish 'part of relationships between
ManagedElements. It is defined as a concrete subclass of the abstract Component class, to be used
in place of many specific subclasses of Component that add no semantics - i.e., that do not clarify
the type of composition, update cardinalities, or add/remove qualifiers. Note that when defining
additional semantics for Component that this class MUST NOT be subclassed.

In the context of the Disk Drive subprofile, this association ties extents exported by the disk drive
to StoragePools.

ConcreteComponent is subclassed from Component.

Table 38: Required Properties for ConcreteComponent

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref key, override The parent element in the association (e.g., the
StoragePool).
PartComponent ref key, override The child element in the association (e.g., the
StorageExtent exported by the disk drive).

7.3.3.5.12.3 Container

The Container association represents the relationship between a contained and a containing
PhysicalElement. A containing object MUST be a PhysicalPackage.

Version 1.0.1 133

SNIA Storage Management Initiative Specification

Container is subclassed from Component

Table 39: Required Properties for Container

Property/ Type Qualifier/ Description/Notes
Method Parameter

GroupComponent ref max(1), override, key | The PhysicalPackage that contains other
PhysicalElements, including other
Packages.

PartComponent ref override, key The PhysicalElement that is contained in
the Package.

7.3.3.5.12.4 ProductParentChild

The ProductParentChild association defines a parent child hierarchy among Products. For
example, a Product may come bundled with other Products.

ProductParentChild is not subclassed from anything

Table 40: Required Properties for ProductParentChild

Property/ Type Qualifier/ Description/Notes
Method Parameter
Parent ref key The parent Product in the association.
Child ref key The child Product in the association.
7.3.3.5.125 DeviceSoftwareldentity

The DeviceSoftwareldentity relationship identifies any software that is associated with a Device -
such as drivers, configuration or application software, or firmware.

DeviceSoftwareldentity is subclassed from Dependency.

Table 41: Required Properties for DeviceSoftwareldentity

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key, override A LogicalDevice's Software Asset.
Dependent ref key, override The LogicalDevice (Disk Drive) that requires
or uses the software.
7.3.3.5.12.6 DiskDrive

Capabilities and management of a DiskDrive, a subtype of MediaAccessDevice.

Table 42: Required Properties for DiskDrive

Property/ Type Qualifier/ Description/Notes
Method Parameter
Name string maxlen (256) The Name property defines the label by

which the object is known. When
subclassed, the Name property can be
overridden to be a Key property.

134

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 42: Required Properties for DiskDrive (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
OperationalStatus|[] uint16 Indicates the current status(es) of the
element. Various health and
operational statuses are defined.
SystemCreationClassName string key, The scoping System's
maxlen(256) CreationClassName.
SystemName string key, The scoping System's Name.
maxlen(256)
CreationClassName string key, CreationClassName indicates the
maxlen(256) name of the class or the subclass used
in the creation of an instance. When
used with the other key properties of
this class, this property allows all
instances of this class and its
subclasses to be uniquely identified.
DevicelD string key, maxlen(64) | An address or other identifying
information to uniquely name the
LogicalDevice.

7.3.3.5.12.7 MediaPresent

Where a StorageExtent is accessed through a MediaAccessDevice, this relationship is described by

the MediaPresent association.

MediaPresent is subclassed from Dependency.

Table 43: Required Properties for MediaPresent

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref override, key Reference to MediaAccessDevice
Dependent ref override, key Reference to the StorageExtent accessed
using the MediaAccessDevice.

7.3.3.5.12.8 PhysicalMedia

The PhysicalMedia class represents 'sealed' Media, so that the Media can then be associated with
the PhysicalPackage using the PackagedComponent relationship.

PhysicalMedia is subclassed from PhysicalComponent.

Table 44: Required Properties for PhysicalMedia

Property/ Type Qualifier/ Description/Notes
Method Parameter
Tag string maxlen(256), key An arbitrary string that uniquely
identifies the Physical Element
CreationClassName string maxlen(256). key The name of the concrete subclass

Version 1.0.1

135

SNIA Storage Management Initiative Specification

Table 44: Required Properties for PhysicalMedia (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter

Manufacturer string maxlen(256)

Model string maxlen(64)

SKU string maxlen(64) This property is OPTIONAL.
SerialNumber string maxlen(256) This property is OPTIONAL.
Version string maxlen(64) This property is OPTIONAL.
PartNumber string maxlen(256) This property is OPTIONAL.

VendorEquipmentType string

Capacity uint64 The number of bytes that can be
read from or written to a Media. Data
compression should not be assumed,
as it would increase the value in this
property. Units ("Bytes")

7.3.3.5.12.9 Realizes

Realizes 1s the association that defines the mapping between LogicalDevices and the
PhysicalElements that implement them.

Realizes is subclassed from Dependency

Table 45: Required Properties for Realizes

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref override, key The physical component that implements the
Device.
Dependent ref override, key The LogicalDevice.

7.3.3.5.12.10 RealizesExtent

StorageExtents can be realized by PhysicalComponents. Disks are realized by PhysicalMedia. This
relationship of Extents to PhysicalComponents is made explicit by the RealizesExtent association.
In addition, the StartingAddress of the StorageExtent on the Component is specified here.

RealizesExtent is subclassed from Realizes.

Table 46: Required Properties for RealizesExtent

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref override, key The PhysicalComponent on which the Extent
is realized.
Dependent ref override, key The StorageExtent that is located on the
Component.

136 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 46: Required Properties for RealizesExtent (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
StartingAddress uint64 The starting address on the

PhysicalComponent where the StorageExtent
begins. Ending address of the StorageExtent
is determined using the NumberOfBlocks and
Block Size properties of the StorageExtent
object.

This property is OPTIONAL.

7.3.3.5.12.11 Softwareldentity

Softwareldentity class is used to model the firmware on a Disk Drive. A Softwareldentity object
captures the management details of a part or component.

Softwareldentity is subclassed from LogicalElement.

Table 47: Required Properties for Softwareldentity

Property/ Type Qualifier/ Description/Notes
Method Parameter
InstancelD string key The name used to identify this

Softwareldentity.

VersionString string Software Version should be in the form
<Major>.<Minor>.<Revision> or
<Major>.<Minor><letter><revision>.

Manufacturer string Manufacturer of this Software.

BuildNumber uint16 OPTIONAL. The internal identifier for this
compilation of software, if available.

RevisionNumber uint16 OPTIONAL. This is the numeric
representation of the revision number in the
VersionString

MajorVersion uint16 OPTIONAL. This is the numeric
representation of the Major number in the
VersionString

MinorVersion uint16 OPTIONAL. This is the numeric
representation of the Minor number in the
VersionString

Version 1.0.1 137

SNIA Storage Management Initiative Specification

7.3.3.5.12.12 StorageExtent

Table 48: Required Properties for StorageExtent

Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DevicelD string maxlen(64), key unique identifying information

BlockSize uint64

NumberOfBlocks uint64

ExtentStatus][] uint16

OperationalStatus|] uint16

7.3.3.5.12.13 Optional Subprofiles

Table 49: Optional Profiles or Subprofiles

Name Notes
None
7.3.3.6 Extent Mapping Subprofile
7.3.3.6.1 Description

7.3.3.6.2

7.3.3.6.3

138

The Extent Mapping subprofile is used in the Array, In-band Virtualization and Out-of-band
Virtualization Profiles.

In the StoragePool mechanism storage allocation is focused on a logical usage of storage in a
device. There is little information exposed to clients about how data is laid out on underlying
extents. Storage administrators may want to know specifically which disk (or underlying extent) a
LUN is on so they can avoid locating frequently used LUNs on the same extents. The extent
mapping subprofile allows an agent to describe this information to the level of a single disk drive
or underlying extent.

Standards Dependencies

The Extent Mapping subprofile is defined using the CIM Schema 2.8 Preliminary. As such it can
be used in profiles at 2.8 and later. It does not require that Profiles be on a later schema. It will
operate within profiles that are at the CIM schema 2.8 final or later. The subprofile will operate
correctly with CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

Profile Dependencies

The Extent Mapping subprofile introduces no Profile dependencies.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.6.4

7.3.3.6.4.1

7.3.3.6.4.2

The Extent Mapping subprofile does NOT REQUIRE support for extrinsic methods.

7.3.3.6.4.3

CIM Server Requirements

Functional Profiles

Table 50: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation
NO Indication None

Extrinsic Methods

Discovery

The Extent Mapping subprofile is NOT advertised.

Version 1.0.1

139

SNIA Storage Management Initiative Specification

7.3.3.6.5 Instance Diagrams

Figure 23: Extent Mapping Instance

StorageVolume

———AllocatedFromStoragePool

[——— — ——— —_——— —

StoragePool

BasedOn

ConcreteComponent

StorageExtent

The instance diagram shows the extents included in the appropriate Storage Pools using the
ConcreteComponent relationship. StorageVolumes created from the pool are linked back to the
source extent using the BasedOn relationship.

The StartingAddress and EndingAddress MAY be used to locate of the data on the StorageExtent.
The OrderIndex MAY be used to order the different BasedOn relationships composing the
StorageVolume.

7.3.3.6.6 Durable Names and Correlatable IDs
No new durable identifiers are defined in this subprofile.

7.3.3.6.7 Methods
No method are defined in this subprofile

140 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.6.8 Required CIM Elements

Table 51: Required CIM Elements

Profile Classes & Associations Notes

BasedOn (p. 141)

ConcreteComponent (p. 141)

StorageExtent (p. 142)

Packages
None.
Associated Indications
None
7.3.3.6.9 Required Properties for CIM Elements

7.3.3.6.9.1 BasedOn

Table 52: Required Properties for BasedOn

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref override, key StorageExtent Reference
Dependent ref override, key StorageExtent Reference
StartingAddress unit64 where in lower level storage, the higher

level Extent begins (optional)

EndingAddress unite4 where in lower level storage, the higher
level Extent ends.(Optional)

Orderindex unit16 indicates the order to the BasedOn
associations that describes how a higher
level StorageExtent is assembled (optional)

7.3.3.6.9.2 ConcreteComponent

Table 53: Required Properties for ConcreteComponent

Property/ Type Qualifier/ Description/Notes
Method Parameter
PartComponent ref override, key the component StorageExtent
GroupComponent ref aggregate, the Storage Pool
override, key

Version 1.0.1 141

SNIA Storage Management Initiative Specification

7.3.3.6.9.3 StorageExtent

Table 54: Required Properties for StorageExtent

Property/ Type Qualifier/ Description/Notes
Method Parameter

Name string For virtualization systems, this
should be the Name of the
StorageVolume that is imported.

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.
SystemName string maxlen(256), key The scoping System's Name.
CreationClassName string maxlen(256), key The name of the concrete
subclass
DevicelD string maxlen(64), key unique identifying information
7.3.3.6.10 Optional Subprofiles

Table 55: Optional Profiles or Subprofiles

Name Notes
None
7.3.3.7 Location Subprofile
7.3.3.7.1 Description

Associated with product information, a PhysicalPackage may also have a location. This is
indicated using an instance of a Location class and the PhysicalElementLocation association.

The Location Subprofile is an optional subprofile of the Management Appliance, JBOD, Array,
Out-of-band Virtualization System and In-band Virtualization System.

7.3.3.7.2 Standards Dependencies

The Location subprofile is defined using the CIM Schema 2.7 final. As such it can be used in
profiles at 2.7 and later. It does not require that Profiles be on a later schema. It will operate
within profiles that are at the CIM schema 2.7 final or later. The subprofile will operate correctly
with CIM Specification 2.2 (or later) and CIM Operations over HT'TP 1.1 (or later).

7.3.3.7.3 Profile Dependencies

The Location subprofile introduces no Profile dependencies.

7.3.3.7.4 CIM Server Requirements

For the SMI-S uses of the Location subprofile, support for Basic Read and Association Traversal
functional profiles MUST be supported by the CIM server of the parent profile.

The Location subprofile does NOT REQUIRE support for extrinsic methods.

The Location subprofile is NOT advertised.

142 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.7.5 Instance Diagram
Figure 24: Location Instance
PhysicalPackage
r]
| PhysicalElementLocation |
| Location |
7.3.3.7.6 Durable Names and Correlatable IDs

The Location subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.

7.3.3.7.7 Methods

The Location subprofile is populated by providers and is accessible to clients using basic read and
association traversal.

No extrinsics are specified on the Location subprofile.

7.3.3.7.8 Client Considerations
See details in related profile section.

7.3.3.7.9 Recipes

See details in related profile section.

7.3.3.7.10 Instrumentation Requirements
See details in related profile section.

Version 1.0.1 143

SNIA Storage Management Initiative Specification

7.3.3.7.11 Required CIM Elements

Table 56: Required CIM Elements

Profile Classes & Associations Notes

Location (p. 144)

PhysicalElementLocation (p. 144) Associates the location to product
Packages

None.
Methods

None.

SubProfile Indications

None

7.3.3.7.12 Required Properties for CIM Elements

7.3.3.7.12.1 Location
The Location class specifies the position and address of a PhysicalElement.

Location is subclassed from ManagedElement.

Table 57: Required Properties of Location

Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string User Friendly name.
This property is OPTIONAL.

Name string key, maxlen A free-form string defining a label for the
(256) Location.

PhysicalPosition string key, maxlen A free-form string indicating the placement of
(256) a PhysicalElement.

Address maxlen (1024) A free-form string indicating a street, building

or other type of address for the
PhysicalElement's Location.
This property is OPTIONAL.

7.3.3.7.12.2 PhysicalElementLocation

PhysicalElementLocation associates a PhysicalElement with a Location object for inventory or
replacement purposes.

144 Version 1.0.1

SNIA Storage Management Initiative Specification

PhysicalElementLocation is subclassed from ElementLocation.

Table 58: Required Properties for PhysicalElementLocation

Property/ Type Qualifier/ Description/Notes
Method Parameter
Element ref key The PhysicalElement whose Location is
specified.
PhysicalLocation ref key The PhysicalElement's Location.

7.3.3.7.12.3 Optional Subprofiles

Table 59: Optional Profiles or Subprofiles

Name Notes
None
7.3.3.8 Software Subprofile
7.3.3.8.1 Description

7.3.3.8.2

7.3.3.8.3

7.3.3.8.4

7.3.3.8.5

7.3.3.8.6

The Software Subprofile is used in the Extender, Router, Management Appliance, Array, Out-of-
band Virtualization System and In-band Virtualization System Profiles.

Information on the installed controller software is given using the Softwareldentity class. This is
linked to the controller using an InstalledSoftwareldentity association.

Standards Dependencies

The Software package is defined using the CIM Schema 2.8 final. As such it can be used in profiles
at 2.8 and later. It does not require that Profiles be on a later schema. It will operate within
profiles that are at the CIM schema 2.8 final or later. The package will operate correctly with CIM
Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).

Profile Dependencies

The Software subprofile introduces no Profile dependencies.

CIM Server Requirements

For the SMI-S uses of the Software subprofile, support for Basic Read and Association Traversal
functional profiles MUST be supported by the base Profile CIM server.

The Software subprofile does NOT REQUIRE support for extrinsic methods.

The Software subprofile is NOT advertised.

Instance Diagram

See the Software Package Instance Diagram.

Durable Names and Correlatable IDs

The Software Subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.

Version 1.0.1 145

SNIA Storage Management Initiative Specification

7.3.3.8.7 Methods

The Software Subprofile is populated by providers and is accessible to clients using basic read and
association traversal.

No extrinsics are specified on the Software Subprofile.

7.3.3.8.8 Client Considerations

See details in related profile section.

7.3.3.8.9 Recipes

See details in related profile section.

7.3.3.8.10 Instrumentation Requirements

See details in related profile section.

7.3.3.8.11 Required CIM Elements

Table 60: Required CIM Elements

Profile Classes & Associations Notes
InstalledSoftwareldentity (p. 112) See under Software Package
Softwareldentity (p. 112) See under Software Package

Packages

Software Package

Associated Indications

None.
7.3.3.8.12 Required Properties for CIM Elements
See the Required Properties for CIM Elements for the Software Package.
7.3.3.8.13 Optional Subprofiles
Table 61: Optional Profiles or Subprofiles
Name Notes
None
7.3.3.9 Copy Services Subprofile
7.3.3.9.1 Description

146

The Copy Service Subprofile is an optional subprofile for the Array, Out-of-Band Virtualization
and In-band Virtualization Profiles

The copy services profile within the SMI-S object model allows vendors to express management
functionality to support clones and point-in-time snapshots of non-volatile storage. This profile
also provides support for remote replication services (either asynchronous or synchronous) for non-
volatile storage. In this release of the specification, copy services applies to volumes. While copy
services functionality is broad in scope and represents vital functionality in any enterprise storage

Version 1.0.1

SNIA Storage Management Initiative Specification

environment and the time of this specifications publication, copy services design has principally
only been validated for use in support of volume snapshots.

Copy services are addressed by the StorageSynchronized association between two storage
elements. The model addresses the use of StorageSynchronized in the context of StorageVolumes
(Disk arrays and virtualization systems). In addition, the copy services are designed to support
synchronization of file system elements (See “Synchronization of File System Elements through
Copy Services” on page 512.). However, the specifics of this support are not addressed in this
specification.

The design for copy services is based the StorageSynchronized construct that defines the
relationship between volumes.

In addition to this construct, the design identifies the methods to support the copy services.

7.3.3.9.2

Standard Dependencies

The Copy Services subprofile is based on the following standards:

Table 62: Copy Services Standard Dependencies

Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.1 DMTF
CIM Schema 2.8 Preliminary DMTF
7.3.3.9.3 Profile Dependencies

The Copy Services subprofile does not require any other Profiles.

7.3.3.9.4

7.3.3.9.4.1

7.3.3.9.4.2

The CIM Server MUST support extrinsic methods for the Copy Services subprofile.

Version 1.0.1

CIM Server Requirements

Functional Profiles

Table 63: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

YES Basic Write Basic Read

YES Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation
YES Indication None

Extrinsic Methods

147

SNIA Storage Management Initiative Specification

7.3.3.9.4.3 Discovery
The Copy Services subprofile, as currently defined, is not an advertised subprofile.

7.3.3.9.5 Instance Diagrams for Copy Services

7.3.3.9.5.1 Overview
The following diagram shows the basic model for copy services

Figure 25: Instance Diagram for Copy Services

System
(ComputerSystem)
| StorageConfigurationCapabilities HostedService |
SupportedAsynchronousActionsl] ‘ |
| SupportedSynchronousActions][] StorageConfigurationService

| SupportedStorageElementTypes|[] - |

SupportedCopyTypes|[] — CreateReplica()
| InitialReplicationState ElementCapabilities ModifySynchronization() |

AttachReplica()
StorageVolume StorageVolume |

| (SourceElement) (Replica)
| StorageSynchronized |
—_— — — — —_— —_—— —— —— —— —— —— ——— ———

Note: For simplicity, the StorageCapabilities, StorageSetting and ElementSettingData classes are
not shown.

The copy services subprofile REQUIRES the CIM elements shown in the dashed box in the figure.
The StorageSynchronized is the basic construct for establishing the replication relationship
between storage elements (e.g., StorageVolumes). The methods used are supported in the
StorageConfigurationService, which is hosted (HostedService) on the system that represents the
storage device that supports the service. The specific Copy Service capabilities supported are
specified in the StorageConfigurationCapabilities instance (using the properties shown in the
figure).

The following sections discuss the model constructs and define the properties involved with each.
Manipulation of these are covered in the “Methods” section.

148 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.9.5.2 StorageSynchronized

Figure 26: StorageSynchronized Association

StorageVolume StorageSynchroniz StorageVolume
ed (replica)

- Copy Type I—

- SyncMaintained

- WhenSynced

- ReplicaType

- SyncState

The primary model construct for replication services is the StorageSynchronized association
(illustrated in Figure 29). This association is subclassed from Synchronized and is used to
represent snapshots and mirror copies of storage elements. In the context of this release of SMI-S,
the focus is on the use of StorageSynchronized to model copies of volumes. However, the actual
definition of the StorageSynchronized also accommodates a broader interpretation of the storage
elements that can be synchronized (e.g., file systems).

The StorageSynchronized association is defined as an association that “Indicates that two storage
objects were replicated at the specified point in time. If the CopyType property is set to ‘Sync’ (=3),
then synchronization of the storage object is preserved.”

The properties of the StorageSynchronized association are:

SystemElement (Key): The SystemElement represents the storage that is the source of the
replication.

SyncedElement (key): The SyncedElement represents the storage that is the target of the
replication.

CopyType: The CopyType describes the replication policy. CopyType has four values:

Async: Create and maintain an asynchronous copy of the source. Updates to the source
volume are not immediately available on the copy. The copy is done in the background.
Typically, this is used to maintain a geographically remote copy of the source volume where
the latency overhead of write synchronization would be too expensive or too slow.

Sync: Create and maintain a synchronous copy of the source. Writes done to the source
volume are reflected on the replica volume before control is returned to the host that issued
the write to the source volume.

UnSyncAssoc: Create an unsynchronized copy and maintain an association to the source.
This type of copy is generally referred to as a persistent “Snapshot” or “point in time” copy.

UnSyncUnAssoc: Create an unsynchronized copy, but do not maintain the association with
the source. This is a simple copy of a volume, where there is NO StorageSynchronized
instantiated between the source and the replica.

SyncMaintained: This property indicates whether (or not) the synchronization is being
maintained on an ongoing basis. SyncMaintained can be true for either synchronous or
asynchronous copies. SyncMaintained changes from true to false when a “fracture” service is
issued or when the relationship is “broken.” The SyncMaintained changes from false to true when
a “resync” service is invoked. The SyncMaintained is always false if the CopyType is UnSyncAssoc.
(E.g., a point in time copy).

Version 1.0.1 149

SNIA Storage Management Initiative Specification

WhenSynced: This property is only meaningful if SyncMaintained is false. In this case, it
indicates the time/date of the last synchronization. WhenSynced is not maintained while the
SyncMaintained is true. That is, it is not updated on every 10 for an Async or Sync relationship
that has not been broken (fractured). It represents the time of the last fracture or resync issued on
the association.

Note: If the synchronization has not been established, then the value of WhenSynced is null.

Note: The properties “SyncMaintained” and “WhenSynced” are inherited from the Synchronized
class, from which StorageSynchronized is subclassed.

The following are meaningful combinations of these properties, with their common nomenclature.

Table 64: Name Formats

CopyType Sync When Notes
Maintained Synced
Sync True Null or Datetime An ongoing mirror

relationship exists and
the mirror is identical to
the source

False Datetime A synchronous copy
relationship has been
fractured (split or
broken mirror). The
“whensynced” value is
the time of the last
fracture.

False Null This means the
relationship has been
establish, but not the
copy has not be
initiated.

Async

True Null or Datetime An ongoing, but delayed
mirror relationship
exists. The replica may
be slightly out of date.

False Date/Time An asynchronous copy
relationship has been
fractured (split or
broken mirror). The
“‘whensynced” value
indicates the time of the
last fracture.

False Null This means the
relationship has been
establish, but not the
copy has not be
initiated.

150

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 64: Name Formats (Continued)

CopyType Sync When Notes
Maintained Synced

UnSyncAssoc False Null This means the
relationship has been
establish, but not the
copy has not be
initiated.

A snapshot relationship
after the replica has
been modified.
NOTE: Some
implementations may
not allow this state.

False Date/Time A snapshot relationship
where the
“whensynced” value is
the time of the last
snapshot

UnSyncUnAssoc False Date/Time This state does not
actually exist. It
corresponds to the
service where a
snapshot is taken but
the relationship is not
maintained (e.g.,
logically deleted as
soon as the snapshot is
done).

In addition there are other properties that add information about the relationship:

ReplicaType: ReplicaType is an optional property for describing how the replica is maintained.
The types are Copy, before delta, after delta, log or Not Specified. This is an informational
property that backup tools might want to exploit. This is particularly useful when used in
association with Snapshots (UnSyncAssoc).

SyncState: The status property addresses the state of the copy operation represented by the
association. The state values are:

Fracture In Progress —A fracture has been requested and is in progress.

ReSync In Progress — A resync has been requested and is in progress (the replica not in
sync yet).

Restore In Progress — A restore has been requested and is in progress.
Prepare In Progress - A Prepare has been requested and is in progress.

Quiesce In Progress - A quiesce has been requested and is in progress.

Version 1.0.1 151

7.3.3.9.6

7.3.3.9.7

152

SNIA Storage Management Initiative Specification

Fractured — The relationship has been fractured and is ready for a resync or restore request.
This status also appears for UnSyncAssoc, indicating that the point in time copy (as of the
WhenSynced date) has been completed.

Synchronized — The Async or Sync relationship is active and copying is going on.
Prepared - The association is in a Prepared state and ready to be Resync’d.
Quiesced - The association is in a quiesced state and ready to be Fractured.

Broken — The source element and the replica have gotten out of sync. Repair actions are
required to re-establish the relationship. The repair action would be a Resync or a
RestoreFromReplica.

Initialized — The relationship has been established, the copy has not been initiated.

Idle - The relationship has been established, the copy (Resync) has been initiated and
completed (for UnSyncAssoc associations).

A source object may have multiple replicas (each with their own StorageSynchronized association
and each of the same or different copy types). That is, one source can have many targets (replicas),
but one replica can have only one source.

Note: Any implementation may place a restriction on the number of replicas that can be made
from a single source. In the extreme case, the maximum number of replicas would be zero
(that is, none). This would indicate the replication is not supported for the source storage
object.

It should also be noted that the replica may, itself, be the source of another replica. That is, the
architecture allows a copy to be copied.

Durable Names and Correlatable IDs

Copy services uses and exports the following durable names:
« StorageVolumes (StorageVolume.name)

For StorageVolumes the Durable Name is the StorageVolume.name and the format for the name is
defined by the NameFormat property. See Table 3 on page 82 for the valid formats for
StorageVolumes.

Methods for Copy Services

The following extrinsic methods are part of storage configuration service that are defined to
support replication (and the StorageSynchronized association).

Create Replica: This service creates a new storage object that is a replica of the source storage
object. Based on the CopyType property, the service can be used to instantiate the replica, and to
create StorageSynchronized association between the source and the replica. When creating a
replica, a target StoragePool and a target setting can be specified. If the target setting is not
specified, a default setting is used. If the target StoragePool is not specified, the default
assumption is the same pool as the source storage object.

This service takes as input the reference to the source storage object, the StorageSetting to be
maintained for the target storage object (the replica), the target StoragePool (optional) and the
CopyType (see the CopyType property of StorageSynchronized). The output of this service is a
reference to the target storage object.

CreateReplica():

Version 1.0.1

SNIA Storage Management Initiative Specification

[IN, Description ("A end user relevant name for the element being created. If NULL,
then a system supplied default name can be used. The value will be stored in the
'ElementName' property for the created element") |

string ElementName,

[OUT, IN(false), Description(“Reference to the job (may be null if job completed).”)]
CIM_ConcretedJob REF Job,

[IN, Required, Description(“The source storage object.”)]
CIM_LogicalElement REF SourceElement,

[OUT, IN(false), Description(“Reference to the created target storage element (i.e., the replica).”)]
CIM_LogicalElement REF TargetElement,

[IN, Description(“The definition for the StorageSetting to be maintained by the target storage
object (the replica).”)]

CIM_StorageSetting REF TargetSettingGoal,

[IN, Description(“The underlying storage for the target element (the replica) will be drawn from
TargetPool if specified, otherwise the allocation is implementation specific.”)]

CIM_StoragePool REF TargetPool,

[IN, Description(“CopyType describes the type of copy that will be made. Values are:
Async: Create and maintain an asynchronous copy of the source.

Sync: Create and maintain a synchronized copy of the source.

UnSyncAssoc: Create an unsynchronized copy and maintain an association to the source.
UnSyncUnAssoc: Create unassociated copy of the source element.”),

ValueMap {“2”, “3”, “4”, “5”, “..”, “0x8000..”},

Values {“Async”, “Sync”, “UnSyncAssoc”’, “UnSyncUnAssoc”, “DMTF Reserved”’, “Vendor
Specific’}]

Uint16 CopyType

ModifySynchronization: This service specifies a modification to the StorageSynchronized
association. It takes as input a reference to the association and the type of modification desired.
The types of modification defined are: Detach, Fracture, ResyncReplica RestoreFromReplica,
Prepare, Unprepare, Quiesce, Unquiesce, ResetToSync and ResetToAsync. These types of
modifications are defined as:

Detach: This deletes a StorageSynchronized association, and effectively breaks the
relationship between a replica and its source. It does not delete the replica, but makes it a
“normal” storage object. So, detaching the replica of a StorageVolume would turn the replica
into a “normal” storage volume.

Fracture: This suspends the synchronization between the two storage objects (changes
SyncMaintained to false and sets the time/date for the time of last synchronization). The
association is not deleted (assumes there may be a future “resync”). This function is

Version 1.0.1 153

154

SNIA Storage Management Initiative Specification

sometimes called “breaking” or “splitting” a mirror. NOTE: FractureReplica only applies to
CopyTypes of Async or Sync. It has no meaning to an UnSyncAssoc (or UnSyncUnAssoc) type.

Resync Replica: This modification re-establishes the synchronization between the source
and the replica. If the CopyType of the association was either Sync or Async, it returns the
relationship to Sync or Async (respectively). If the copy type is UnSyncAssoc, the resync re-
derives the snapshot (e.g., take another snapshot and reset the WhenSynced value).

Restore From Replica: This modification asks that the source storage object be restored
from the replica. In effect, this reverses the copy. That is, the replica is copied back to the
source object. This has the effect of restoring the source volume to the state in the replica.

Prepare: This modification is indicates that the agent should get prepared for a Resync
action. Some implementations require this to be invoked before the ResyncReplica .

Unprepare: This modification is required clear a quiesced state if a Prepare is not followed
by a ResyncReplica.

Quiesce: This modification is indicates that the agent should get prepared for a Fracture
action. Some implementations require this to be invoked before the Fracture.

Unquiesce: This modification is required clear a quiesced state if a Quiesce is not followed by
a Fracture.

Reset To Sync: This modification changes the association to the “Sync” CopyType (e.g., from
the “Async” CopyType).

Reset To Async: This modification changes the association to the “Async” CopyType (e.g.,
from the “Sync” CopyType).

ModifySynchronization():

[IN, Description(“Operation describes the type of modification to be made to the replica. Values

are:

Detach: 'Forget' the synchronization between two storage objects. Start to treat the objects as
independent.

Fracture: Suspend the synchronization between two storage objects. The association and
(typically) changes are remembered to allow a fast re-synchronization. This may be used
during a backup cycle to allow one of the objects to be copied while the other remains in
production.

Resync Replica: Re-establish the synchronization of a replica. If CopydJob is Sync or Async,
this negates the action of a previous Fracture operation.

Restore from Replica: Renew the contents of the original storage object from a replica.

Prepare: Place the association in a quiesced state when a prepared state is required for a
Resync.

Unprepare: Take the association out of the prepared state without issuing a Resync.

Quiesce: Place the association in a quiesced state when a quiesced state is required for a
Fracture

Unquiesce: Take the association out of the quiesced state without issuing a Fracture.

Reset To Sync: Change the CopyType to “Sync”

Version 1.0.1

SNIA Storage Management Initiative Specification

Reset To Async: Change the CopyType to “Async”
ValueMap {“07’,771”,772”, “877’ “47,, “577, “6”, “7”’ “8”’ “9”, “10”, ”11”, ““”, “OXSOOO‘.”},

Values {“DMTF Reserved”, “DMTF Reserved”, “Detach”, “Fracture”, “Resync Replica”,

“Restore from Replica”, “Prepare”, “Unprepare”’, “Quiesce”, “Unquiesce”, “Reset To Sync”,
“Reset To Async”, “DMTF Reserved”, “Vendor Specific”}]

Uint16 Operation,

[OUT, IN(false), Description(“Reference to the job (may be null if job completed).”)]
CIM_ConcretedJob REF Job,

[IN, Description(“The referenced to the StorageSynchronized association describing the storage
source/replica relationship.”)]

CIM_StorageSynchronized REF Synchronization

AttachReplica — This function creates a StorageSynchronized relationship between two (existing)
storage volumes. Once the association is created the SyncState is set to “initialized”, “Prepared” or
“Synchronized” as defined in the StorageConfigurationCapabilities associated with the
StorageConfigurationService. There is no Concretedob created or returned on this method call (since
the only action effected is the creation of the association).

AttachReplica():

[IN, Description ("A end user relevant name for the element being created. If NULL,

then a system supplied default name can be used. The value will be stored in the

'ElementName' property for the created element") |

string ElementName,

[IN, Required, Description(“The source storage object.”)]

CIM_LogicalElement REF SourceElement,

[IN, Required, Description(“Reference to the target storage element (i.e., the replica).”)]

CIM_LogicalElement REF TargetElement,

[IN, Required, Description(“CopyType describes the type of copy that will be made. Values are:
Async: Create and maintain an asynchronous copy of the source.

Sync: Create and maintain a synchronized copy of the source.
UnSyncAssoc: Create an unsynchronized copy and maintain an association to the source.

UnSyncUnAssoc: Create unassociated copy of the source element.”),

ValueMap {“257’ “3”’ “4”, “5’7, “‘”, “OXSOOO..”},

Values {“Async”, “Sync”, “UnSyncAssoc”, “UnSyncUnAssoc”, “DMTF Reserved”, “Vendor
Specific”’}]

Uint16 CopyType

Version 1.0.1 155

SNIA Storage Management Initiative Specification

[OUT, IN(false), Description(“Reference to the job (may be null if job completed).”)]
CIM_ConcretedJob REF Job,

Client Considerations for Copy Services

Determining the Type of Copy Services Supported

Copy Services come in multiple types and variations. To support a clients ability to recognize the
functions and capabilities provided there is a StorageConfigurationCapabilities instance that is
associated with the StorageConfigurationService. A client can determine the exact support
provided by the profile in question by inspecting the following properties of the
StorageConfigurationCapabilities:

7.3.3.9.8
7.3.3.9.8.1
a.
b)
c)
d)
e)
156

SupportedCopyTypes - identifies the types of copies (CopyType input to CreateReplica or
AttachReplica) that are supported.

* Async - means Asynchronous mirroring is supported
* Sync - means Synchronous mirroring is supported

+ UnSyncAssoc - means Snapshots are supported and the association persists after a
snapshot is taken.

*+ UnSyncUnAssoc - means Snapshots are supported and the association is automatically
detached after a Resync.

SupportedSynchronousActions - This is an array that indicates which methods are supported
without the use of jobs. For Copy Services, the actions to look for are "Replica Creation", "Rep-
lica Attach", "Replica Synchronization".

« Replica Creation - means jobs may not be returned on CreateReplica
» Replica Attachment - means jobs may not be returned on AttachReplica
« Replica Modification - means jobs may not be returned on ModifySynchronization

SupportedAsynchronousActions - This is an array that indicates whether or not jobs may be
created based on the actions listed. For Copy Services, the actions to look for are "Replica Cre-
ation", "Replica Attach", "Replica Synchronization".

« Replica Creation - means jobs may be returned on CreateReplica
* Replica Attachment - means jobs may be returned on AttachReplica
« Replica Modification - means jobs may be returned on ModifySynchronization

SupportedStorageElementTypes - This is an array that indicates the types of storage that are
supported. For the Copy Services subprofile “StorageVolume” MUST be present

InitialReplicationState - indicates the initial state that results from a CreateReplica or
AttachReplica

* Initialized - means the SyncState 1is 1initialized as a result of creating a
StorageSynchronized.

+ Prepared - means the SyncState is Prepared as a result of creating a
StorageSynchronized.

* Synchronized - means the SyncState is Synchronized as a result of creating a
StorageSynchronized.

Version 1.0.1

SNIA Storage Management Initiative Specification

By inspecting these StorageConfigurationCapabilities, the client can determine the types and
variations of copy services supported.

7.3.3.9.8.2 Creating a Copy Relationship between two existing Volumes

A client can establish a copy relationship between two existing volumes by simply issuing a
AttachReplica to create the StorageSynchronized association. Once the association is created the
SyncState 1is set to “initialized”, “Prepared” or “Synchronized” as defined in the
StorageConfigurationCapabilities associated with the StorageConfigurationService.

If the relationship is left in the "initialized" state, then it will be necessary to Prepare the
relationship before issuing a "Resync Replica" to effect the copy action. If the relationship is left in
the "Prepared" state, then it will be necessary to issue a "Resync Replica" to effect the copy action.
If the relationship is left in the "Synchronized" state, no action is required to effect the copy action.
It has been performed.

7.3.3.9.8.3 Creating a Point-in-Time Copy of a Volume

If the replica volume has not been created, a client could create a point in time copy by issuing the
method CreateReplica of the StorageConfigurationService passing the Source volume, a CopyType
of UnSyncAssoc or UnSyncUnAssoc. Either of these result in a point in time copy of the source
volume. In addition, the client may optionally specify the StorageSetting to be supported by the
replica.

The client gets the target volume reference as an output of the method call. In addition, if the point
in time copy is not done at the time of the response is returned, the client may get a Concretedob
reference to monitor completion of the copy.

If the CopyType specified was UnSyncAssoc, then a StorageSynchronized relationship is
established between the source volume and the replica. The CopyType is set to “UnSyncAssoc”, the
WhenSync value is the effective time of the copy and SyncMaintained is set to False. In addition,
the ReplicaType (if supported) identifies the type of point-in-time copy that was taken. And the
SyncState 1is set to “initialized”, “Prepared” or “Synchronized” as defined in the
StorageConfigurationCapabilities associated with the StorageConfigurationService.

If the relationship is left in the "initialized" state, then it will be necessary to Prepare the
relationship before issuing a "Resync Replica" to effect the copy action. If the relationship is left in
the "Prepared" state, then it will be necessary to issue a "Resync Replica" to effect the copy action.
If the relationship is left in the "Synchronized" state, no action is required to effect the copy action.
It has been performed.

7.3.3.9.8.4 Creating a Synchronous Copy of a Volume

If the replica volume has not been created, a client could create a synchronous copy on the volume
by issuing the method CreateReplica of the StorageConfiguarionService passing the Source
Volume and a CopyType of Sync. This results in a synchronous copy relationship of the source
volume. In addition, the client may optionally specify the StorageSetting to be supported by the
replicas.

The client gets the target StorageVolume reference as an output of the method call. In addition, if
the synchronous copy is not done at the time of the response is returned, the client gets a
ConcreteJob reference to monitor completion of the copy.

A StorageSynchronized relationship is established between the source volume and the replica. The
CopyType 1s set to “Sync”, the WhenSync value is null and SyncMaintained is set to True. In
addition, the ReplicaType (if supported) identifies the type of synchronous copy that was taken.
SyncState 1is set to “initialized”, “Prepared” or “Synchronized” as defined in the
StorageConfigurationCapabilities associated with the StorageConfigurationService.

Version 1.0.1 157

7.3.3.9.8.5

7.3.3.9.8.6

7.3.3.9.8.7

7.3.3.9.8.8

158

SNIA Storage Management Initiative Specification

If the relationship is left in the "initialized" state, then it will be necessary to Prepare the
relationship before issuing a "Resync Replica" to effect the copy action. If the relationship is left in
the "Prepared" state, then it will be necessary to issue a "Resync Replica" to effect the copy action.
If the relationship is left in the "Synchronized" state, no action is required to effect the copy action.
It has been performed.

Creating an Asynchronous Copy of a Volume

If the replica volume has not been created, a client could create an asynchronous copy on the
volume by issuing the method CreateReplica of the StorageConfiguarionService passing the
Source Volume and a CopyType of Async. This results in an asynchronous copy relationship of the
source volume. In addition, the client may optionally specify the StorageSetting to be supported by
the replicas.

The client gets the target StorageVolume reference as an output of the method call. In addition, if
the asynchronous copy is not done at the time of the response is returned, the client gets a
ConcreteJob reference to monitor completion of the copy.

A StorageSynchronized relationship is established between the source volume and the replica. The
CopyType is set to “Async”, the WhenSync value is null and SyncMaintained is set to True. In
addition, the ReplicaType (f supported) indentifies the type of asynchronous copy that was taken.
And the SyncState is set to “Initialized”, “Prepared” or “Synchronized” as defined in the
StorageConfigurationCapabilities associated with the StorageConfigurationService.

If the relationship is left in the "initialized" state, then it will be necessary to Prepare the
relationship before issuing a "Resync Replica" to effect the copy action. If the relationship is left in
the "Prepared" state, then it will be necessary to issue a "Resync Replica" to effect the copy action.
If the relationship is left in the "Synchronized" state, no action is required to effect the copy action.
It has been performed.

Splitting Mirrored Volumes

A client can split a pair of mirrored volumes by issuing the Quiesce and Fracture options of the
ModifySynchronization method call. This method call only works when CopyType is “Sync” or
“Async.” In the case of an “Async” copy type, a “Prepare and Resync Replica” is implied by the
Quiesce. That is, the copies are synchronized before the fracture is effected.

Once mirrors have been split, the client has a copy with the effective time (WhenSynced) that is
the time of the Fracture.

Re-establishing the Mirrored relationship between Volumes

After a fracture has been done on mirrored volumes, the mirrored relationship can be re-
established by issuing the Resync Replica option of the ModifySynchronization method.

Getting notification of Completion of Copy Actions Initiated

A client can monitor the progress of copy methods that it has initiated by monitoring the
PercentComplete property of the ConcretedJob returned on the original copy action. The client
would do this by subscribing to the PercentComplete InstModificaiton indication.

The client can also subscribe to JobStatus, just looking for completion of the job (rather than
tracking the percent complete property). By monitoring the JobStatus, the client would get the
JobStatus (normal or abnormal end) when the indication is raised.

Note: GUIs would typically monitor PercentComplete so they can report the progress to their end
users. However, programs that are not directly interacting with end users would typically
just subscribe to the JobStatus changes.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.9.8.9 Breaking Copy Relationships between Volumes

A client can delete the copy relationship between volumes by issuing the Detach option of the
ModifySynchronization method.

7.3.3.9.9 Recipes for Copy Services
None.

7.3.3.9.10 Instrumentation Requirements for Copy Services

7.3.3.9.10.1 Implementation Restrictions

The intent of the architecture for copy services is not to dictate implementations, but rather to
establish a consistent way of specifying the services that are implemented. For example, some
implementations may not support creation of Replicas as defined for CreateReplica. That is, they
may only operate on volumes that are created by the using client (or application). This would be a
valid implementation. The StorageSynchronized is supported by the AttachReplica method. All
implementations MUST supply the “Replica Modification” in the SupportedSynchronousActions or
SupportedAsynchronousActions arrays of StorageConfigurationCapabilities. An implementation
MUST also supply at least one of “Replica Creation” or “Replica Attachment” in at least one of the
same arrays. An implementation MAY supply only one of the two.

Similarly, not all implementations are expected to support all CopyTypes. This too is allowed. An
implementation MUST identify the CopyTypes supported in the
StorageConfigurationCapabilities.SupportedCopyTypes array.

For the Copy Services subprofile, implementations MUST support one and only one value in the
StorageConfigurationCapabilities.InitialReplicationState. This value MAY be “Initialized”,
“Prepared” or “Synchronized”.

For this version of the specification any implementation of the Copy Services subprofile MUST set
“StorageVolume” in the StorageConfigurationCapabilities.SupportedStorageElementTypes array.

In addition, the implementation MUST supply the Methods for which it supports job control. This
is done in the StorageConfigurationCapabilities.SupportedAsynchronousActions array.

7.3.3.9.10.2 Mapping of SyncState information

It is expected that various implementations of the copy services will have state information that
does not exactly match that of this architecture. Where possible and practical, implementations
SHOULD attempt to map to the standard architected states to enable applications that utilize
those states. However, in cases where using the architected state would be misleading, it is
RECOMMENDED that the implementation use the “Vendor Specific” state to avoid misleading
the applications.

7.3.3.9.10.3 Resync after Fracture Considerations

When a StorageSynchronized association is modified with a “fracture” request, the agent may
want to consider “remembering” changes to the source volume. Typically, a “fracture” request will
be followed by a “resync” request. This resync will go a lot faster if the device was maintaining a
change log between the fracture and the resync.

Version 1.0.1 159

SNIA Storage Management Initiative Specification

7.3.3.9.10.4 State Diagrams for Snapshot (UnSyncAssoc)

The following diagram illustrates the state changes that would be supported for Snapshots. The solid arrows
between states are application provoked state changes. The dashed arrows are automatic state
changes as a result of completion of the previous state.

Figure 27: State Diagram for Snapshots

Createor

AttachReplica Createor

AttachReplica

Preparein
progress

Initialized

Detach
Prepared
ResyncReplica
Createor
AttachReplica
. Hegine Prepare
inProgress

Restore
FromReplica

Restorein

Progress Detach

160 Version 1.0.1

SNIA Storage Management Initiative Specification

There are 3 possible ways on entering this state diagram. In any case, entry is done through
CreateReplica or AttachReplica. This is determined based on the
StorageConfigurationCapabilities.InitialReplicationState value. The Create or Attach creates a
StorageSynchronized association and puts it in either the “initialized”, “Prepared” or
“Synchronized” state. If it is put in the initialized state, a Prepare must be issued before issuing a
Resync.

Once a Prepare has finished, the state moves to Prepared. At this point, the client may issue the
Resync to drive the Snapshot. If the client decides against doing the Resync, the client SHOULD
issue an Unprepare.

After a Resync, the association is put in the ResyncInProgress state until the copy is complete.
Once the copy is complete, the association is put in the idle state.

At any point in time, except the “in progress” states, a detach may be issued to delete the
StorageSynchronized association.

Version 1.0.1 161

SNIA Storage Management Initiative Specification

7.3.3.9.10.5 State Diagrams for Mirrors (Sync or Async)

The following diagram illustrates the state changes that would be supported for Mirrors. The solid arrows
between states are application provoked state changes. The dashed arrows are automatic state
changes as a result of completion of the previous stateservices

Figure 28: State Diagram for Mirrors

Create or
AttachReplica

Create or
AttachRepliga

g \

Prepare in

9 progress /
A s

Initialized

AttachReplica

P ~~\
s . \‘\
— A&/ ReSyncin % ResyncReplica
7~ \, Progress
/ / ---- Prepared
7 Unqueisce \
v

Fracturein /

Progress / \ Jp——— .

--------- \‘." Preparein
progress

Quiesce in “-,/ —
progress

.
\
\

Quiesced

Detach

/" 0 A\ .
(e esperonupte

7
7

162 Version 1.0.1

SNIA Storage Management Initiative Specification

There are 3 possible ways on entering this state diagram. In any case, entry is done through
CreateReplica or AttachReplica. This is determined based on the
StorageConfigurationCapabilities.InitialReplicationState value. The Create or Attach creates a
StorageSynchronized association and puts it in either the “initialized”, “Prepared” or
“Synchronized” state. If it is put in the initialized state, a Prepare must be issued before issuing a
Resync.

Once a Prepare has finished, the state moves to Prepared. At this point, the client may issue the
Resynec to drive the actual copy functions. If the client decides against doing the Resync, the client
SHOULD issue an Unprepare.

After a Resync, the association is in the ResyncInProgress state until the copy is in the
“synchronized” state. For Sync copies this may take a while. Even for Async, it may take awhile.
Once the copy is Synchronized, the association is put in the “Synchronized” state.

In the case of mirrors, there is an additional state of “Quiesced”. A Quiesce is required before a
Fracture. This basically gets the mirrors in sync for the fracture. For Sync mirrors, this may be
trivial. For Async mirrors, this may be more involved.

At any point in time, except the “in progress” states, a detach may be issued to delete the
StorageSynchronized association.

Version 1.0.1 163

7.3.3.9.11 Required CIM Elements

SNIA Storage Management Initiative Specification

Table 65: Subprofile Required Classes, Associations, Methods and Indications

Subprofile Class & Associations

Notes

ElementCapabilities

Associates the StorageConfigurationCapabilities to the
StorageConfigurationService and to associate
StorageCapabilities to the target StoragePool of a
CreateReplica.

HostedService

StorageConfigurationService

StorageConfigurationCapabilities

This identifies the specific capabilities supported in the
StorageConfigurationService

StorageVolume

StorageSynchronized

StorageCapabilities (p. 168)

ElementSettingData (p. 171)

StorageSetting (p. 171)

Profile Methods

Notes

CreateReplica()

Creates a replica (volume), establishes the
StorageSynchronized relationship to source and
initiates the copy operation

AttachReplica()

Establishes the StorageSynchronized relationship
between source and an existing replica.

ModifySynchronization()

Used to modify the state of a StorageSynchroinized
relationship (e.g., Fracture, Resync, Restore, ...)

Profile Indications

Notes

Creation/Deletion of StorageSynchronized

SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA CIM_StorageSyncrhonized

SELECT * FROM CIM_InstDeletion WHERE
Sourcelnstance ISA CIM_StorageSynchronized

Change in status for StorageSynchronized

SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_StorageSynchronized AND
Sourcelnstance.SyncState <>
Previouslnstance.SyncState

7.3.3.9.12 Required Properties for CIM Elements

7.3.3.9.12.1 ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities.
In the Copy Services Subprofile, the ManagedElement is the StorageConfigurationService.
ElementCapabilities describes the existence requirements and context for the referenced instance

164 Version 1.0.1

SNIA Storage Management Initiative Specification

of ManagedElement (StorageConfigurationService). Specifically, the ManagedElement MUST
exist and provides the context for the Capabilities.

ElementCapabilities is not subclassed from anything.

Table 66: Required Properties for ElementCapabilities

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement ref key, min(1), The managed element
max(1) (StorageConfigurationService).
Capabilities ref key The Capabilities object associated with the
element (service).

7.3.3.9.12.2 HostedService

HostedService is an association between a Service and the System on which the functionality
resides. The cardinality of this association is 1-to-many. A System may host many Services.
Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the
System where the LogicalDevices or SoftwareFeatures that implement the Service are located.
The model does not represent Services hosted across multiple systems. This is modeled as an
ApplicationSystem that acts as an aggregation point for Services, that are each located on a single
host.

HostedService is subclassed from Dependency

Table 67: Required Properties for HostedService

Class Type Qualifier/ Notes
Properties Parameter
Antecedent ref override, max(1), The hosting System.
min(1)
Dependent ref override, weak The Service hosted on the System.

7.3.3.9.12.3 StorageConfigurationService

The StorageConfigurationService is required for the extrinsic methods it supports (CreateReplica,
AttachReplica and ModifySynchronization).

StorageConfigurationService is subclassed from Service

Table 68: Required Properties for StorageConfigurationService

Property/ Type Qualifier/ Description/Notes
Method Parameter

ElementName string User Friendly name

SystemCreationClassName string maxlen(256), key, The scoping System's
propagated CreationClassName.

SystemName string maxlen(256), key, The scoping System's Name.
propagated

CreationClassName string maxlen(256), key The name of the concrete

subclass

Version 1.0.1 165

SNIA Storage Management Initiative Specification

Table 68: Required Properties for StorageConfigurationService (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
Name string maxlen(256), key,
override
CreateReplica() uint32
ModifySynchronization() uint32
AttachReplica() uint32

7.3.3.9.12.4 StorageConfigurationCapabilities

A subclass of Capabilities that defines the Capabilities of a StorageConfigurationService. An
instance of StorageConfigurationCapabilities is associated with a StorageConfigurationService
using ElementCapabilities.

StorageConfigurationCapabilities is subclassed from Capabilities

Table 69: Required Properties for StorageConfigurationCapabilities

Class Properties Type Qualifier/ Notes
Parameter

InstancelD uint16 key

ElementName string req

SupportedSynchronousActions] uint16 valuemap Values {"Replica Creation", "Replica
Attachment", "Replica Modification"

SupportedAsynchronousActions]] uint16 valuemap Values {"Replica Creation", "Replica
Attachment”, "Replica Modification"

SupportedStorageElementTypes]] uint16 valuemap Values {"StorageVolume"}

SupportedCopyTypes|] uint16 valuemap Values {"Async", "Sync",
"UnSyncAssoc", "UnSyncUnAssoc",
"DMTF Reserved", "Vendor Specific"}

InitialReplicationState uint16 valuemap Values {"Initialized", "Prepared",
"Synchronized"}

7.3.3.9.12.5 StorageSynchronized

Indicates that two Storage objects were replicated at the specified point in time. If the CopyType
property is set to 'Sync' (=3), then synchronization of the Storage objects is preserved.

For block servers, there are specific uses of StorageSynchronized. The SystemElement and the
SyncedElement are defined as StorageExtents. Specifically, these are StorageVolumes or

LogicalVolumes.

166

Version 1.0.1

SNIA Storage Management Initiative Specification

StorageSynchronized is subclassed from Synchronized.

Table 70: Required Properties for StorageSynchronized

Class Type Qualifier/ Notes
Properties Parameter

WhenSynced datetime The point in time that the Elements were
synchronized.

SyncMaintained boolean Boolean indicating whether synchronization is
maintained.

SystemElement ref StorageExtent Reference. It identifies the
original storage element.

SyncedElement ref StorageExtent Reference. Identifies the replica.

CopyType uint16 CopyType describes the Replication Policy.
Values are:

Async: create and maintain an Asynchronous
copy of the source.

Sync: create and maintain a synchronized copy
of the source.

UnSyncAssoc: create an unsynchronized copy
and maintain an association to the source.
Values {"Async", "Sync", "UnSyncAssoc",
"DMTF Reserved", "Vendor Specific"}

ReplicaType uint16 This is an informational property that indicates
how the replica is being achieved. The values

are: FullCopy, BeforeDelta, AfterDelta, Log or

NotSpecified.

Values {*FullCopy”, “BeforeDelta”, “AfterDelta”,
“Log”, “DMTF Reserved”, “NotSpecified”}

SyncState uint16 This is the current state of the
StorageSynchronized association.

Values {“Fracture In Progress”, “Sync In

"« ” o«

Progress”, “Restore In Progress”, “Prepare In
Progress”, “Prepared”, “Quiesce In Progress”,
Synchronized”,

“Quiesced”, “Fractured”, “
“Initialized”, “Idle”, “DMTF Reserved”, “Vendor
Specific”}

7.3.3.9.12.6 StorageVolume

The Copy Services does not alter the properties of Storage Volumes as supported by the parent
profile (Array, Out-of-band Virtualization and In-band Virtualization).

Version 1.0.1 167

SNIA Storage Management Initiative Specification

7.3.3.9.12.7 StorageCapabilities

Table 71: Required Properties for StorageCapabilities

Property/ Type Qualifier/ Description/Notes
Method Parameter
InstancelD string key InstancelD opaquely identifies a unique

instance of Capabilities. The InstancelD
MUST be unique within a namespace.

ElementName string override, required The user friendly name for this instance of
Capabilities. In addition, the user friendly
name can be used as a index property for
a search or query. (Note: ElementName
does not have to be unique within a
namespace) If the capabilities are fixed,
then this property should be used as a
means for the client application to
correlate between capabilities and device
documentation.

ElementType uint16 Enumeration indicating the type of
instance to which this StorageCapabilities
applies. Only ‘6’,
StorageConfigurationService and ‘5’
StoragePool are valid.

NoSinglePointOfFailu | boolean Indicates whether or not the associated
re instance supports no single point of
failure. Values are: FALSE = does not
support no single point of failure, and
TRUE = supports no single point of

failure.
NoSinglePointOfFailu | boolean Indicates the default value for the
reDefault NoSinglePointOfFailure property.
DataRedundancyMax | uint16 minvalue(1) DataRedundancyMax describes the

maximum number of complete copies of
data that can be maintained. Examples
would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more
copies are maintained. Possible values
are 1ton.

DataRedundancyMin | uint16 minvalue(1) DataRedundancyMin describes the
minimum number of complete copies of
data that can be maintained. Examples
would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more
copies are maintained. Possible values
are 1ton.

168 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 71: Required Properties for StorageCapabilities (Continued)

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

DataRedundancyDef
ault

uint16

minvalue(1)

DataRedundancyDefault describes the
default number of complete copies of data
that can be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

PackageRedundancy
Max

uint16

write(true)

PackageRedundancyMax describes the
maximum number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundancy
Min

uint16

write(true)

PackageRedundancyMin describes the
minimum number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundancy
Default

uint16

write(true)

PackageRedundancyDefault describes
the default number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

DeltaReservationMax

uint16

minvalue(1)
maxvalue(100)

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies how
much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the upper limit.

DeltaReservationMin

uint16

minvalue(1)
maxvalue(100)

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies how
much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the lower limit.

Version 1.0.1

169

SNIA Storage Management Initiative Specification

Table 71: Required Properties for StorageCapabilities (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
DeltaReservationDef | uint16 minvalue(1) Delta reservation is a number between 1
ault maxvalue(100) (1%) and a 100 (100%) that specifies how

much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the default value.

170 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.9.12.8 ElementSettingData

Table 72: Required Properties for ElementSettingData

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

ManagedElement ref

key

The ManagedElement.

SettingData ref

key

The Setting Data object associated with
the ManagedElement.

IsDefault uint16

An enumerated integer indicating that
the referenced setting is a default setting
for the element, or that this information is
unknown."),||ValueMap {"0", "1", "2"},
||Values {"Unknown", "Is Default", "Is Not
Default"}

IsCurrent uint16

An enumerated integer indicating that
the referenced setting is currently being
used in the operation of the element, or
that this information is
unknown."),||ValueMap {"0", "1", "2"},
[[Values {"Unknown", "Is Current", "Is
Not Current"}

7.3.3.9.12.9 StorageSetting

Table 73: Required Properties for StorageSetting

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

InstancelD string

key

InstancelD opaquely identifies a unique
instance of SettingData. The InstancelD
MUST be unique within a namespace.

ElementName string

override, required

The user friendly name for this instance of
SettingData. In addition, the user friendly
name can be used as a index property for
a search of query. (Note: Name does not
have to be unique within a namespace.)

NoSinglePointOfFail | boolean

ure

write(true)

Indicates the desired value for No Single
Point of Failure. Possible values are false
= single point of failure, and true = no
single point of failure.

DataRedundancyMa | uint16

X

minvalue(1)
write(true)

DataRedundancyMax describes the
maximum number of complete copies of
data to be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

Version 1.0.1

171

SNIA Storage Management Initiative Specification

Table 73: Required Properties for StorageSetting (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
DataRedundancyMi | uint16 minvalue(1) DataRedundancyMin describes the
n write(true) minimum number of complete copies of

data to be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

PackageRedundanc | uint16 write(true) PackageRedundancyMax describes the
yMax maximum number of spindles to be used.
Package redundancy describes how
many disk spindles can fail without data
loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundanc | uint16 write(true) PackageRedundancyMin describes the
yMin minimum number of spindles to be used.
Package redundancy describes how
many disk spindles can fail without data
loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

DeltaReservationGo | uint16 minvalue(1), Delta reservation is a number between 0
al maxvalue(100) (0%) and a 100 (100%) that specifies how
much space should reserved in a replica
for caching changes. For a complete copy
this would be 100%, but it can be lower in
some implementations. Use 0 if copy
service Subprofile is not supported.

7.3.3.9.13 Optional Subprofiles and Profiles

Table 74: Copy Services Optional Subprofiles and Profiles

Optional Subprofiles & Profiles Notes

Job Control This subprofile is used to support copy services that run
for a long time. The extrinsic methods support the
“ConcretedJob” output. If job control is not supported this
output is null

7.3.3.10 Job Control Subprofile

7.3.3.10.1 Description

In some profiles, some or all of the methods described may take some time to execute (longer than
a HTTP time-out). In this case, a mechanism is needed to allow asynchronous execution of the
method as a 'job'.

172 Version 1.0.1

SNIA Storage Management Initiative Specification

This subprofile defines the constructs and behavior for job control for SNIA profiles that make use
of the subprofile.

Note: The subprofile describes a specific use of the constructs and properties involved. The actual
CIM capability may be more, but this specification clearly states what clients may depend

7.3.3.10.2

on in SNIA profiles that implement the Job Control subprofile.

Standard Dependencies

The Job Control subprofile is based on the following standards:

Table 75: Job Control Services Standard Dependencies

Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.1 DMTF
CIM Schema 2.7 DMTF
7.3.3.10.3 Profile Dependencies

The Job Control subprofile does not require any other Profiles.

7.3.3.10.4 CIM Server Requirements
7.3.3.10.4.1 Functional Profiles
Table 76: Required Functional Profiles
Profile Required Functional Group Dependency
YES Basic Read None
YES Basic Write Basic Read
YES Instance Manipulation Basic Write
NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read
NO Query Execution Basic Read
NO Qualifier Declaration Schema Manipulation
YES Indication None
7.3.3.10.4.2 Extrinsic Methods

The CIM Server MUST support extrinsic methods for the Job Control subprofile.

7.3.3.10.4.3

Discovery

The Job Control subprofile, as currently defined, is not an advertised subprofile.

Version 1.0.1

173

7.3.3.10.5

SNIA Storage Management Initiative Specification

Instance Diagrams

Figure 29: Job Control Subprofile Model

Service
(e.g., StorageConfigurationService)

OwningJobElement

ConcreteJob ManagedElement
AffectedJobEIement—I— (e.g., StorageVolume)

7.3.3.10.6

7.3.3.10.7

7.3.3.10.8

174

When the job control subprofile is implemented and a client executes a method with the
“ConcretedJob” reference as an output, a reference to an instance of Concretedob is returned and
the return value for the method is set to “Method parameters checked - job started”.

The ConcretedJob instance allows the progress of the method to be checked, and instance
Indications can be used to subscribe for Job completion.

The associations OwningJobElement and AffectedJobElement are used to indicate the service that
'owns' the job and the element being affected by the job. The element linked by
AffectedJobElement may change through the execution of the job. For instance, for creation of a
StorageVolume it may start by pointing to a source pool and then change to the newly created
instance of StorageVolume as the method executes.

Durable Names and Correlatable IDs
There are no durable names or correlatable ids for Job Control.

Methods

Jobs are created as a result of executing methods of the parent profile. The Job Control constructs
can be read using intrinsic methods. There are no basic write intrinsic methods supported in the
Job Control subprofile.

Client Considerations

If the operation will take a while (longer than an HTTP timeout), a handle to a newly minted
Concretedob is returned. This allows the job to continue in the background. Note a few things:

+ The job may be queued. You may have multiple outstanding jobs against a pool for instance.
The job status shows this.

+ The job is weak to the Service (shown via OwningJobElement) and is also linked to the object
being modified/created via AffectedJobElement. For example, a job to create a StorageVolume
may start off pointing to a Pool until the Volume is instantiated at which point the association
would change to the StorageVolume.

Version 1.0.1

SNIA Storage Management Initiative Specification

» These jobs do not have to get instantiated! If things happen quickly, a null can be returned as

a handle.
Figure 30: Storage Configuration
StorageSystem
Cluster
StorageConfigurationService
HostedService
Element
N .
Capabilities } StoragePool |
OwningJobElement ! |
[
_——— — — — [
| | |
[
[
StorageCapabilities AffectedJT)bElement L I
ConcreteJob |
Describes range of
capabilities of Pools/Volumes
that can be created
with the Service
AffectedJobElement StorageVolume

7.3.3.10.9 Recipes

See details in related profile section.
7.3.3.10.10 Instrumentation Requirements

7.3.3.10.10.1 OperationalStatus for Jobs

The operationalStatus property is used to communicate that status of the job that is created. As
such, it is critical that implementations are consistent in how this property is set. The values that
MUST be supported consistently are:

« “OK” - combined with “Completed” to indicate that the job completed with no error.

* “Error” - combined with “Completed” to indicate that the job did not complete normally and
that an error occurred.

* "Stopped" implies a clean and orderly stop.

» "Completed” indicates the Job has completed its operation. This value should be combined
with either “OK” or “Error, so that a client can tell if the complete operation passed
(Completed with OK), and failure (Completed with Error).

Version 1.0.1 175

SNIA Storage Management Initiative Specification

7.3.3.10.11 Required CIM Elements
Table 77: Subprofile Required Classes, Associations, Methods and Indications
Subprofile Class & Associations Notes
AffectedJobElement
ConcreteJob

OwningJobElement

Subprofile Class and Associated Indications

Changes in OperationalStatus of ConcreteJob

WHERE Sourcelnstance ISA
CIM_ConcreteJob AND
Sourcelnstance.JobStatus <>
Previouslnstance.JobStatus

SELECT * FROM CIM_InstModification

Progress toward completion of a ConcreteJob

WHERE Sourcelnstance ISA
CIM_ConcreteJob AND

100%.

SELECT * FROM CIM_InstModification

Sourcelnstance.PercentComplete <>
Previouslnstance.PercentComplete

An implementation increment MAY be

Successful completion of a ConcreteJob

WHERE Sourcelnstance ISA
CIM_ConcreteJob AND

"Complete" AND

SELECT * FROM CIM_InstModification

Sourcelnstance.OperationalStatus ==

Sourcelnstance.OperationalStatus=="0OK”

Failed ConcretedJob

WHERE Sourcelnstance ISA
CIM_ConcreteJob AND

"Error"

SELECT * FROM CIM_InstModification

Sourcelnstance.OperationalStatus ==

7.3.3.10.12

7.3.3.10.12.1

Required Properties for CIM Elements

AffectedJobElement

AffectedJobElement represents an association between a Job and the ManagedElement(s) that
may be affected by its execution. It may not be feasible for the Job to describe all of the affected
elements. The main purpose of this association is to provide information when a Job requires
exclusive use of the 'affected' ManagedElment(s) or when describing that side effects may result.

176

Version 1.0.1

SNIA Storage Management Initiative Specification

AffectedJobElement is not subclassed from anything

Table 78: AffectedJobElement Required Properties

Class Properties Type Qualifier/ Notes
Parameter
AffectedElement ref key The ManagedElement affected by the execution of
the Job.
AffectingElement ref key The Job that is affecting the ManagedElement.

7.3.3.10.12.2 Concretedob

A concrete version of Job. This class represents a generic and instantiatable unit of work, such as a
batch or a print job.

Concretedob is subclassed from Job

Table 79: Required Properties for ConcreteJob

Class Properties Type Qualifier/ Notes
Parameter

OperationalStatus|[] uint16 Indicates the current status(es) of the
element. Various health and
operational statuses are defined.

StatusDescriptions]] string A string describing the status - used
when the OperationalStatus property is
set to 1 (\"Other\").

JobStatus string A free form string representing the
Job's status. The primary status is
reflected in the inherited
OperationalStatus property. JobStatus
provides additional, implementation-
specific details.

ElapsedTime datetime The time interval that the Job has been
executing or the total execution time if
the Job is complete.

This property is OPTIONAL.

PercentComplete uint16 The percentage of the job that has
completed at the time that this value is
requested.

DeleteOnCompletion boolean write(true) Indicates whether or not the job should

be automatically deleted upon
completion. If this property is set to
false and the job completes, then the
extrinsic method Deletelnstance MUST
be used to delete the job versus
updating this property.

ErrorCode uint16 A vendor specific error code. This is set
to zero if the job completed without
error.

Version 1.0.1 177

SNIA Storage Management Initiative Specification

Table 79: Required Properties for ConcreteJob (Continued)

Class Properties Type Qualifier/ Notes
Parameter

ErrorDescription string A free form string containing the vendor
error description.

InstancelD string key InstancelD opaquely identifies a unique
instance of ConcreteJob. The
InstancelD MUST be unique within a

namespace.
Name string override, The user friendly name for this instance
required of Job. In addition, the user friendly

name can be used as a property for a
search or query. (Note: Name does not
have to be unique within a namespace.)

7.3.3.10.12.3 OwningJobElement Properties.

OwningJobElement represents an association between a dJob and the ManagedElement
responsible for the creation of the Job. This association may not be possible, given that the
execution of jobs can move between systems and that the lifecycle of the creating entity may not
persist for the total duration of the job. However, this can be very useful information when
available.

OwningdJobElement is not subclassed from anything

Table 80: Required Properties for OwningJobElement

Class Properties Type Qualifier/ Notes
Parameter
OwningElement ref max(1), key The ManagedElement responsible for the creation

of the Job. (e.g., StorageConfigurationService)

OwnedElement ref key The Job created by the ManagedElement.

7.3.3.10.13 Optional Subprofiles

Table 81: Optional Profiles or Subprofiles

Name Notes
None
7.3.3.11 Pool Manipulation, Capabilities, and Settings Subprofile
7.3.3.11.1 Description

Storage Pools

A StoragePool is an abstract notion of a blob of consumable storage space. A pool has certain
‘StorageCapabilities’, which indicate the range of 'Quality of Service' requirements that can be
applied to objects created from the pool. In this top-level profile, StorageCapabilities are
informational only. Refer to “Pool Manipulation, Capabilities, and Settings Subprofile” on
page 178 for details on the use of these objects.

178 Version 1.0.1

SNIA Storage Management Initiative Specification

Storage pools are scoped relative to the ComputerSystem (indicated by the HostedStoragePool
association). Objects created from a pool have the same scope.

Child objects (e.g. StorageVolumes or StoragePools) created from a StoragePool are linked back to
the parent pool using an AllocatedFromStoragePool association.

There are two properties on StoragePool that describe the size of the ‘underlying’ storage.
TotalManagedStorage describes the total raw storage in the pool and RemainingManagedStorage
describes the storage currently remaining in the pool. RemainingManagedStorage plus
AllocatedFromStoragePool.SpaceConsumed from all of the StorageVolumes allocated from the
pool MUST equal TotalManagedStorage.

Primordial Pool

The Primordial Pool is a type of StoragePool. Raw storage capacity, unformatted or unprepared
capacity, is drawn from the Primordial StoragePool to create concrete StoragePools. The
Primordial StoragePool aggregates storage capacity that has not been assigned to a concrete
StoragePool. StorageVolumes are allocated from concrete StoragePools.

At least one MUST always exists on the array to represent the unallocated storage on the storage
device. The sum of TotalManagedStorage attributes for all Primordial StoragePools MUST be
equal to the total size of the raw storage of the storage system. The Primordial property MUST be
true for Primordial Pools.

Primordial Pool can be used to determine the amount of raw space left on the array, that is not
already assigned to a concrete StoragePool.

Storage Volumes

Storage Volumes are configured pieces of storage that MUST be exposed from a system through an
external interface. In the class hierarchy they are a sub class of a StorageExtent. In SCSI terms,
they are Logical Units.

StoragePools are a REQUIRED part of modeling disk storage systems (the Array, Out-of-band
Virtualization and In-band Virtualization Profiles). However, user manipulation of StoragePools is
optional and may not be supported by any given disk storage system. The Pool Manipulation,
Capabilities and Settings subprofile defines the support REQUIRED if the storage system exposes
functions for creating and modifying storage pools.

The StorageConfigurationService, in conjunction with the abstract concept of a storage pool,
allows generic clients to configure pools of storage within storage arrays without having to have
specific knowledge about the array configuration. The new service has the following methods:

» CreateOrModifyStoragePool: Create a pool of storage with some set of Capabilities defined by
the input StorageSetting. The source of the storage can be other pool(s) or storage extents.
Alternatively an existing pool can be modified.

« DeleteStoragePool: Delete a storage pool and return the freed up storage to the underlying
entities.

In addition, there is a capability to create settings for use in pool creation using the following
method (part of the StorageCapabilities class):

* CreateSetting: Creates a setting that is consistent with the StorageCapabilities and may be
modified before use in creating a StoragePool.

7.3.3.11.2 Standards Dependencies

The Pool Manipulation, Capabilities and Settings subprofile is defined using the CIM Schema 2.8
preliminary. As such it can be used in profiles at 2.8 and later. It does not require that Profiles be

Version 1.0.1 179

SNIA Storage Management Initiative Specification

on a later schema. It operates within profiles that are at the CIM schema 2.8 final or later. The
subprofile operates correctly with CIM Specification 2.2 (or later) and CIM Operations over HTTP
1.1 (or later).

The Pool Manipulation, Capabilities, and Settings subprofile is based on the following standards:

Table 82: Pool Manipulation, Capabilities, and Settings Standard Dependencies

Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.1 DMTF
CIM Schema 2.8 Preliminary DMTF

7.3.3.11.3 Profile Dependencies

The Pool Manipulation, Capabilities and Settings subprofile introduces no Profile dependencies.

7.3.3.11.4 CIM Server Requirements
7.3.3.11.4.1 Functional Profiles
Table 83: Required Functional Profiles
Profile Required Functional Group Dependency
YES Basic Read None
YES Basic Write Basic Read
YES Instance Manipulation Basic Write
NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read
NO Query Execution Basic Read
NO Qualifier Declaration Schema Manipulation
YES Indication None
7.3.3.11.4.2 Extrinsic Methods

The CIM Server MUST support extrinsic methods for the Pool Manipulation, Capabilities, and
Settings subprofile.

7.3.3.11.4.3
The Pool Manipulation, Capabilities and Settings subprofile is NOT advertised.

Discovery

180 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.11.5 Instance Diagrams

Figure 31: Pool Manipulation Instance Diagram

-F—_————————— — — — —
ComputerSy stem I HostedService
| StorageConfigurationService
CreateOrModify StoragePool()
SystemDevice | DeleteStoragePool()
! I
HostedStoragePool ElementCapabilites
StorageSetting StorageVolume StorageConfigurationCapabilities

—ElementSettingDat

DurableName:
VPD pg 83 ID |

StorageSettingWithHints

AllocatedFromStoragePool———

StoragePool

GetSupportedSizes() _
’7 GetSupportedSizeRange() ElementCapabilities____

StorageCapabilities

AllocatedFromStoragePool

CreateSetting()

7.3.3.11.6 Durable Names and Correlatable IDs

The Pool Manipulation, Capabilities and Settings subprofile does not add any durable names or
correlatable ids to the profiles (or subprofiles) in which it is used.

7.3.3.11.7 Methods

7.3.3.11.7.1 Overview

The Pool Manipulation, Capabilities and Settings introduces a number of write intrinsic and
extrinsic methods.

7.3.3.11.7.2 StorageSetting Methods

7.3.3.11.7.2.1 Extrinsic Methods on Storage Setting

CreateSetting is a method in StorageCapabilities and is invoked in the context of a specific
StorageCapabilities instance.

Uint32 CreateSetting(
[In] unint16 SettingType,
[Out] CIM_StorageSetting REF NewSetting)

This method on the StorageCapabilities class is used to create a StorageSetting using the
StorageCapabilities as a template. The purpose of this method is to create a StorageSetting that is

Version 1.0.1 181

SNIA Storage Management Initiative Specification

associated directly with the StorageCapabilities on which this method is invoked and has
properties set in line with those StorageCapabilities. The contract defined by the
StorageCapabilities MUST constrain the StorageSetting used as the Goal.

The StorageCapabilities associated with the StoragePool defines what type of storage can be
allocated. The client MUST determine what subset of the parent StoragePool capabilities to use,
albeit a Primordial StoragePool or a concrete StoragePool. The StorageSetting provided to the
StoragePool creation method defines what measure of capabilities are desired for the following
storage allocation. First, the client retrieves a StorageSetting or creates and optionally modifies an
existing StorageSetting. If no satisfactory StorageSetting exists, then the client uses this method
to create a StorageSetting.

The client has the option to have a StorageSetting generated with the default capabilities from the
StorageCapabilities. If a '2' is passed for the Setting Type parameter, the Max, Goal, and Min
setting attributes are set to the default values of the parent StorageCapabilities. Otherwise, the
new StorageSetting attributes are set to the related attributes of the parent StorageCapabilities,
e.g. Min to Min and Max to Max. If the StorageSetting requested already exists, associated to the
StorageCapabilities, then the method returns this existing StorageSetting. This type of
StorageSetting, newly created or already existing, is associated to the StorageCapabilities via the
GeneratedStorageSetting association.

Only a StorageSetting created in this manner may be modified or deleted by the client. The client
uses the NewSetting parameter to set the new StorageSetting to the values desired (using
ModifyInstance or SetProperties intrinsic methods). The StorageSetting can not be used to create
storage that is more capable than the parent StorageCapabilities. For example, the set instance
operation fails when the setting has a Max value greater (or a Min value less) than the parent
StorageCapabilities. If the storage device supports hints, then the new StorageSetting contains
the default hint values for the parent StorageCapabilities. The client can use these values as a
starting point for hint modification (using intrinsic methods). StorageSetting instances associated
with StorageVolume MAY NOT be modified or deleted directly. Once a StoragePool is created,
then the client MUST use the StorageConfigurationService to modify or delete the instance.

Once this type of StorageSetting is used as the Goal for the creation of a StoragePool, the Goal
StorageSetting is removed. A new StorageCapabilities instance, associated with the new
StoragePool, describes the StoragePool.

7.3.3.11.7.2.2 Intrinsic Methods on StorageSetting

In addition to this extrinsic, the following Intrinsic write methods are supported on
StorageSetting:

* Deletelnstance;

+ ModifyInstance,

7.3.3.11.7.3 StorageConfigurationService Methods:

182

CreateOrModifyStoragePool
Uint32 CreateOrModifyStoragePool(

[Out] CIM_ConcreteJob ref Job,
[in] CIM_StorageSetting ref Goal,
[in,out] Uint64 Size,

[in] string InPool[],

[in] string Extent([],

[out] CIM_StoragePool ref Pool

)

s

Version 1.0.1

SNIA Storage Management Initiative Specification

This method is used to create a Pool from either a source pool or a list of storage extents. Any
required associations (such as HostedStoragePool) are created in addition to the instance of
Storage Pool. The parameters are as follows:

« Job: See “Job Control Subprofile” on page 172.

» Goal: This is the Service Level that the Pool is expected to provide. This may be a null value in
which case a default setting is used.

+ Size: As an input this is the desired size of the pool. If it is not possible to create a pool of the
desired size, a return code of “Size not supported” is returned with size set to the nearest
supported size.

* InPool[]: This is an array of strings containing Object references (see 4.11.5 of the CIM Spec
for format) to source Storage Pools.

« Extent[]: This is an array of strings containing Object references (see 4.11.5 of the CIM Spec
for format) to source Storage Extents. Note that either an array of source pools or an array of
source extents should be defined, but not both.

DeleteStoragePool

Uint32 DeleteStoragePool(

[Out] CIM_ConcreteJob ref Job,
[in] CIM_StoragePool ref Pool
);
This method is provided to allow a client to delete a previously created storage pool. All
associations to the deleted StoragePool are also removed as part of the action. In addition, the
TotalManagedStorage an d RemainingManagedStorage of the associated Primordial Storage Pool
will change accordingly.

Note: This method will be denied (“Failed”) if there are any AllocatedFromStoragePool
associations where the deleted pool is the Dependent.

Return Values

Each method has this set of defined return codes:

ValueMap {07, 17, “27, «“37, “4” «5” <« “0x1000”,”0x1001”,
“0x1002..0x7777”, “0x8000..”},

Values {“Job completed with no error”, “Not Supported”, “Unknown”,
“Timeout”, “Failed”, “Invalid Parameter”, “DMTF Reserved”,
“Method parameters checked - job started”,

“Size not supported”, “Method Reserved”, “Vendor Specific”’}]

If the method completes immediately with no errors (and with no asynchronous execution
required), “Job completed with no error” is returned.

If the method parameters have been checked and the method is being executed asynchronously,
“Method parameters checked - job started” is returned.

If, for a Create/Modify method, the requested size is not supported then “Size not supported” is
returned and the Size parameter is set to the nearest supported size.

If one of the method parameters is incorrect (for instance invalid object paths), then “Invalid
Parameter” is returned.

“Timeout” or “Failed” may be returned if the provider has problems accessing the hardware or for
other implementation specific reasons.

Version 1.0.1 183

SNIA Storage Management Initiative Specification

A vendor may choose to extend the Value map to express vendor specific error codes not catered for
by the standard errors.

7.3.3.11.7.4 StoragePool methods

184

GetSupportedSizes
unit32 GetSupportedSizes(

[In] Uint16 ElementType,

[In] CIM_StorageSetting ref Goal,

[Out] Uint64 Sizes]
This method is used to determine the possible sizes of child elements, ex. StoragePool and
StorageVolume, that can be created or modified using capacity from the StoragePool. The method
is used for storage system where only discrete sizes are possible. One of the reported sizes can be
used directly along with the Goal in the creation of a StoragePool or StorageVolume The sizes
reported may not differ from each other by a fixed size.

GetSupportedSizeRanges
unint32 GetSupportedSizeRanges(

[In] Uint16 ElementType,

[In] CIM_StorageSetting ref Goal,

[Out] Uint64 Minimum VolumeSize,

[Out] Uint64 MaximumVolumeSize,

[Out] Uint64 VolumeSizeDivisor
This method is used to determine the possible sizes of child element, ex. StoragePool, and
StorageVolume, that can be created or modified using capacity drawn from the StoragePool. The
out parameters tell the minimum element size, maximum element size, and possible sizes in that
range. This method can prove useful when the number of possible sizes is so voluminous that
reporting each discrete size would be impractical.

Both or either method may be supported by a storage subsystem, either as a decision made at
implementation time or varies depending on the state of the StoragePool. For example, when a
StoragePool is first created that allows for possible sizes to be in 1024 byte blocks, then the
GetSupportedSizeRanges method would be better to report the possible sizes. This example
StoragePool does not relocate blocks to avoid fragmentation of the capacity. As StorageVolume are
drawn from and returned to the StoragePool, the capacity becomes fragmented. In this case, the
GetSupportedSizes method is better in reporting the non-continuous regions of capacity that may
be used for element creation. Another example, there are some storage system that can only
allocate StorageVolume in whole disks and these disks need not be of a uniform size. In this case,
the storage system would only support the GetSupportedSizes method.

Return Values

Each method has this set of return codes:

ValueMap {HOH’ lllll, "2"},
Values {"Method completed OK", "Method not supported",
"Use <the other method name> instead"}]

If the above methods did not complete successfully, then either the method is not supported or it is
suggested to use the other method instead. The GetSupportSizes method can notify the SMI-S
client that it should use the GetSupportSizeRanges instead or the GetSupportedSizeRanges
method can notify the SMI-S client that it should use the GetSupportedSizes method instead.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.11.8 Client Considerations

7.3.3.11.8.1 Storage Pools and Storage Capabilities

Capacity Management

The capacity characteristics of many storage system vary greatly in the cost and performance.
Additionally, the capacity may need to be partitioned by these and other factors. StoragePool
provide a means to aggregate this storage by characteristics determined by the storage
administrator or determined at the factory when the storage system is assembled.

A Storage Pool is an aggregation of storage suitable for configuration and allocation or
“provisioning”. However, it may have been preformatted into a form (such as a RAID group) that
makes volume creation easier.

StoragePools can be drawn from a StoragePool (the result of which is indicated with the
AllocatedFromStoragePool association).

A StoragePool has a set of capabilities held in the StorageCapabilities class that reflect the
configuration parameters that are possible for element created from this pool. The
StorageCapabilities define, in terms common across all storage system implementation, what
characteristics an administrator can expect from the storage capacity. These capabilities are
expressed in ranges. The storage implementation has the choice to delineate the capabilities and
define the ranges of these capabilities as appropriate. Some implementation may require several
narrowly defined capabilities while others may be more flexible.

The capabilities expressed by the storage system can change over time.
The number of primordial storage pools can change over time as well.

These storage capabilities are given the scope of the storage system when they are associated by
the StorageConfiguratonService or the scope of a single StoragePool. The capabilities expressed at
the service scope is equal to the union of the union of all Primordial StoragePools capabilities. The
capabilities can also be given the scope of a concrete StoragePool.

The storage administrator has the choice of any capability expressed by the storage system. The
administrator should use this opportunity to partition the capacity. Once storage elements are
drawn from the StoragePool, the administrator can be assured that the elements produced will
have the capabilities previous defined.

The model allows for automation of the allocation process. An automaton can use the capabilities
properties to search across subsystems for storage providing desired capabilities, and having done
so create StoragePools and/or storage elements as necessary. Inventories may be made of the
capacity by capabilities.

Version 1.0.1 185

SNIA Storage Management Initiative Specification

The model also provides a means by which some common characteristics of all available storage
system can be inventoried and managed. Note that the storage system will differ in other
significant ways, and these characters can also be the basis for capacity pooling decisions.

Figure 32: Storage Configuration
StorageSystem
Cluster
StorageConfigurationService
HostedService
Element
S .
Capabilities } StoragePool |
OwningJobElement [!
[
_——V — — — I
| | |
[
\
StorageCapabilities AffectedJ(l)bEIement N]
ConcreteJob I,
Describes range of
capabilities of Pools/Volumes
that can be created
with the Service |
AffectedJobElement StorageVolume

The definition of storage capabilities in this way intentionally avoids vendor specific details of
volume configuration such as RAID types. Although RAID types imply performance and
availability levels, these levels can’t be easily compared between vendor implementations -
particular in comparisons with reliability of non-RAID storage (i.e. certain virtualization
appliances). Furthermore, there are capabilities of reliability and availability other than data
redundancy. The StorageSetting class is provided by clients to describe the desired configuration
of the allocated storage. In general, the types of parameters exposed and controlled via the
StorageCapabilities/StorageSetting classes are:

« NSPOF (No Single Point of Failure). Indicates whether the pool can support storage
configured with No Single Points of Failure within the storage system. This does not include
the path from the system to the host.

+ Data Redundancy. This describes the number of complete copies of data maintained.
Examples would be RAID 5 where 1 copy is maintained and mirroring where 2 or more copies
are maintained.

» Package Redundancy. This describes how many physical components (packages), like disk
spindles, can fail without data loss (including a spare, but not more than a single global
spare). Examples would be RAID5 with a Package Redundancy of 1, RAID6 with 2, RAID 6
with 2 global (to the system) spares would be 3.

186 Version 1.0.1

SNIA Storage Management Initiative Specification

+ Delta Reservation. This is a number between 1 (1%) and a 100 (100%) that specifies how
much space should reserved in a replica for caching changes. For a complete copy this would
be 100%, but it can be lower in some implementations.

An example of what the Package Redundancy and Data Redundancy means in terms of RAID
levels is defined in the following table.

7.3.3.11.8.1.1 Example mapping of RAID levels to Data Redundancy, Package Redundancy

Table 84: Example RAID Mapping Table

RAID Level Package Redundancy Data Redundancy
0 (Striping) 0 1
1 1 2
3or4 1 1
5 1 1
6 2 1
10 1 2
15 2 2
50 1 1
51 2 2

The above example was produced using generally available definitions of RAID levels. It is the
nature of RAID technology that even though the RAID Level is named the same, the storage
service provided could differ depending on the storage device implementations. Expressing the
storage service level provided in end-user terms relieves the SMI-S Client and end-user from
having to know what RAID Levels means for a particular implementation and instead defines the
storage provided in service level terms.

If a single storage device implements RAID levels that have the same package redundancy and
data redundancy, the implementor SHOULD have the SMI-S Client differentiate via
StorageSettingsWithHints. Additionally, the SMI-S Provider author can predefine
StorageCapabilities that match exactly with best practice RAID Levels, including differentiation
with StorageSettingWithHints when StorageVolume exist. In this case, the ElementName
property is used to correlate between the capability and device documentation. Alternatively, it
may sense for the capability be expressed in broader ranges for more flexible storage systems.

Storage Pool Manipulation

The StorageConfigurationService class contains methods to allow creation, modification and
deletion of a StoragePool. The capabilities of a StorageConfigurationService or StoragePool to
provide storage are indicated using the StorageCapabilities class. This class allows the Service or
Pool to advertise its capabilities (using implementation independent attributes) and a client to set
the attributes it desires. The concept of ‘hints’ is also included that allows a client to provide clues
to the system as to how it expects to use the storage for optimization purposes. For example, if the
array supports the creation of Pools that can tolerate the loss of two disks, then the ‘package
redundancy’ attribute includes 2 in its range of supported values. The client would create an
instance of StorageSetting, set ‘package redundancy’ to 2, and pass a reference to the class to the
StorageConfigurationService.CreateOrModifyStoragePool.

Pool creation works as follows.

Version 1.0.1 187

SNIA Storage Management Initiative Specification

a. Figure 33:"Pool Creation - Initial State" shows the initial state of the array - a single ‘primor-
dial pool that advertises it’s capabilities. One can make use of the GetSupportedSizes() and
GetSupportedSizeRanges() methods to determine what sizes of pools can be created from the
primordial pool. One needs to check the StorageConfigurationCapabilities to ensure that cre-
ation of StoragePools is supported or not.

Figure 33: Pool Creation - Initial State

ComputerSystem StorageConfigurationService
HostedServic
e .
dedicated|x] CreateOrModifyStoragePool()
HostedPool
Primordial:
StoragePool StorageCapabilities
GetSupportedSizes() ElementCapabilties ~ | -
GetSupportSizeRange CreateSetting()
0

b) Next, (Figure 34: "Pool Creation - Step 2") the client uses the CreateSetting method on the
StorageCapabilities instance to create an instance of a StorageSetting. This Setting object can
be altered as desired. If the array supports StorageSettingWithHints, an instance of this sub-
class is created rather than the StorageSetting superclass.

Figure 34: Pool Creation - Step 2

ComputerSystem StorageConfigurationService
HostedService
dedicated]x] CreateOrModifyStoragePool()
HostedPool
Primordial:
StoragePool StorageCapabilities
. El tCapabilities |
GetSupportedSizes() ementL-apabilities CreateSetting()
GetSupportSizeRange()

¢) Once this Setting as been altered as required, it is passed as an argument to the CreateOr-
ModifyStoragePool method in the StorageConfigurationService. (Shown in Figure 35: "Pool
Creation - Step 3")

188 Version 1.0.1

SNIA Storage Management Initiative Specification

ComputerSy stem
HostedService
dedicated[x]
HostedPool
Primordial:
StoragePool
GetSupportedSizes()
GetSupportSizeRange()
d)

Figure 35: Pool Creation - Step 3

StorageConfigurationService

CreateOrModifyStoragePool(NewSetting)

ElementCapabilitie

StorageCapabilities

CreateSetting()

NewSetting:
StorageSetting

The pool is then created. The ‘temporary’ StorageSetting is replaced with an equivalent Stor-

ageCapabilities object linked to the new pool with ElementCapabilities. (Shown in Figure 36:
"Pool Creation - Step 4")

Figure 36: Pool Creation - Step 4

ComputerSystem

dedicated[x]

Version 1.0.1

HostedPool

StorageConfigurationService

HostedService

CreateOrModifyStoragePool(New Pool)

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()

StorageCapabilities

ElementCapabilities ~ |

CreateSetting()

AllocatedFromStoragePool

New Pool:
StoragePool

|__ElementCapabilities __|

New Capability:
StorageCapabilities

189

SNIA Storage Management Initiative Specification

7.3.3.11.8.2 The CreateOrModifyStoragePool method and the Primordial Pool

7.3.3.11.9

7.3.3.11.10

190

The InPool array for the StorageConfigurationService.CreateOrModifyStoragePool() method
MUST always contain at least a string reference to the Primordial Pool. The InPool is therefore a
required parameter. If the Primordial Pool is passed as the only element in the InPool parameter
to the CreateOrModifyStoragePool, then the size requested is prepared to the specification of the
Goal parameter and drawn from the Primordial Pool. If the Primordial Pool is one of many Pool
passed to the method, then the Size is drawn from the Pools and/or the Extents that match the
Goal; the Primordial Pool matches all Goals possible for the device. If another Pool matches the
Goal other than the Primordial Pool, then the Size requested is drawn from the other Pool. Any
remaining Size not satisfied from the other Pool, is drawn from the Primordial Pool.

As capacity is drawn from the Primordial Pool or any Pool, then the size of the Primordial Pool
shrinks until such time as all allocated or raw storage is consumed by all children Pools of the
Primordial Pool.

Recipes

See Create Storage Pool and Storage Volume on array (p. 208) for an example recipe.

Instrumentation Requirements

See details in related profile section.

Version 1.0.1

7.3.3.11.11

SNIA Storage Management Initiative Specification

Required CIM Elements

Table 85: Required CIM Elements

Profile Classes & Associations

Notes

AllocatedFromStoragePool (p. 392)

AllocationFromStoragePool as defined in the
Array Profile

StoragePool (p. 396)

StoragePool as defined in the Array profile

ElementCapabilities (p. 192)

Associates StorageConfigurationCapabilities
with StorageConfigurationService.

StorageConfigurationCapabilities (p. 192)

ElementSettingData (p. 197)

StorageSetting (p. 197)

StorageSettingWithHints (p. 199)

StorageConfigurationService (p. 192)

StorageCapabilities (p. 194)

HostedService (p. 200)

Packages

None.

Methods

CreateOrModifyStoragePool()

DeleteStoragePool()

CreateSetting()

GetSupportedSizes()

GetSupportSizeRanges()

SubProfile Indications

Creation/Deletion of StoragePool

SELECT * from CIM_InstCreation where
Sourcelnstance ISA CIM_StoragePool

SELECT * from CIM_InstDeletion where
Sourcelnstance ISA CIM_StoragePool

7.3.3.11.12

Required Properties for CIM Elements

Version 1.0.1

191

SNIA Storage Management Initiative Specification

7.3.3.11.12.1 ElementCapabilities
Table 86: Required Properties for ElementCapabilities
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement ref key, min(1), The managed element.
max(1)
Capabilities ref key The Capabilities object associated with the
element.

7.3.3.11.12.2 StorageConfigurationService

Table 87: Required Properties for StorageConfigurationService

Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string User Friendly name
SystemCreationClassName string maxlen(256), key, The scoping System's
propagated CreationClassName.
SystemName string maxlen(256), key, The scoping System's Name.
propagated
CreationClassName string maxlen(256), key The name of the concrete
subclass
Name string maxlen(256), key,
override
CreateOrModifyStoragePool() uint32 Create (or modify) a
StoragePool. A job may be
created as well.
DeleteStoragePool () uint32 Start a job to delete a
StoragePool.
7.3.3.11.12.3 StorageConfigurationCapabilities
Table 88: Required Properties for StorageConfigurationCapabilities
Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string req
InstancelD string key InstancelD opaquely identifies a unique
instance of Capabilities. The InstancelD MUST
be unique within a namespace.
SupportedStoragePo | uint16 Lists what StorageConfigurationService
olFeatures]] methods are implemented
SupportedSynchrono | uint16
usActions]]

192 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 88: Required Properties for StorageConfigurationCapabilities

Property/ Type Qualifier/ Description/Notes
Method Parameter

SupportedAsynchron | uint16 Lists what actions, invoked through

ousActions]] StorageConfigurationService methods, may
produce Concrete jobs

SupportedStorageEle | uint16

mentTypes|]

SupportedStorageEle | uint16 Lists was actions are support through the,

mentFeatures|] invocation of
StorageServiceService.CreateOrModifyElemen
tFromStoragePool()

Version 1.0.1

193

SNIA Storage Management Initiative Specification

7.3.3.11.12.4 StorageCapabilities

Table 89: Required Properties for StorageCapabilities

Property/ Type Qualifier/ Description/Notes
Method Parameter
InstancelD string key InstancelD opaquely identifies a unique

instance of Capabilities. The InstancelD
MUST be unique within a namespace.

ElementName string override, required The user friendly name for this instance of
Capabilities. In addition, the user friendly
name can be used as a index property for
a search or query. (Note: ElementName
does not have to be unique within a
namespace) If the capabilities are fixed,
then this property should be used as a
means for the client application to
correlate between capabilities and device
documentation.

ElementType uint16 Enumeration indicating the type of
instance to which this StorageCapabilities
applies. Only ‘6’,
StorageConfigurationService and ‘5’
StoragePool are valid.

NoSinglePointOfFailu | boolean Indicates whether or not the associated
re instance supports no single point of
failure. Values are: FALSE = does not
support no single point of failure, and
TRUE = supports no single point of

failure.
NoSinglePointOfFailu | boolean Indicates the default value for the
reDefault NoSinglePointOfFailure property.
DataRedundancyMax | uint16 minvalue(1) DataRedundancyMax describes the

maximum number of complete copies of
data that can be maintained. Examples
would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more
copies are maintained. Possible values
are 1ton.

DataRedundancyMin | uint16 minvalue(1) DataRedundancyMin describes the
minimum number of complete copies of
data that can be maintained. Examples
would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more
copies are maintained. Possible values
are 1ton.

194 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 89: Required Properties for StorageCapabilities (Continued)

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

DataRedundancyDef
ault

uint16

minvalue(1)

DataRedundancyDefault describes the
default number of complete copies of data
that can be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

PackageRedundancy
Max

uint16

write(true)

PackageRedundancyMax describes the
maximum number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundancy
Min

uint16

write(true)

PackageRedundancyMin describes the
minimum number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundancy
Default

uint16

write(true)

PackageRedundancyDefault describes
the default number of spindles that can be
used. Package redundancy describes
how many disk spindles can fail without
data loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

DeltaReservationMax

uint16

minvalue(1)
maxvalue(100)

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies how
much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the upper limit.

DeltaReservationMin

uint16

minvalue(1)
maxvalue(100)

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies how
much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the lower limit.

Version 1.0.1

195

SNIA Storage Management Initiative Specification

Table 89: Required Properties for StorageCapabilities (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter

DeltaReservationDef | uint16 minvalue(1) Delta reservation is a number between 1

ault maxvalue(100) (1%) and a 100 (100%) that specifies how
much space should be reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the default value.

Methods
CreateSetting()

196

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.11.12.,5 ElementSettingData

Table 90: Required Properties for ElementSettingData

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

ManagedElement ref

key

The ManagedElement.

SettingData ref

key

The Setting Data object associated with
the ManagedElement.

IsDefault uint16

An enumerated integer indicating that
the referenced setting is a default setting
for the element, or that this information is
unknown."),||ValueMap {"0", "1", "2"},
||Values {"Unknown", "Is Default", "Is Not
Default"}

IsCurrent uint16

An enumerated integer indicating that
the referenced setting is currently being
used in the operation of the element, or
that this information is
unknown."),||ValueMap {"0", "1", "2"},
[[Values {"Unknown", "Is Current", "Is
Not Current"}

7.3.3.11.12.6 StorageSetting

Table 91: Required Properties for StorageSetting

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

InstancelD string

key

InstancelD opaquely identifies a unique
instance of SettingData. The InstancelD
MUST be unique within a namespace.

ElementName string

override, required

The user friendly name for this instance of
SettingData. In addition, the user friendly
name can be used as a index property for
a search of query. (Note: Name does not
have to be unique within a namespace.)

NoSinglePointOfFail | boolean

ure

write(true)

Indicates the desired value for No Single
Point of Failure. Possible values are false
= single point of failure, and true = no
single point of failure.

DataRedundancyMa | uint16

X

minvalue(1)
write(true)

DataRedundancyMax describes the
maximum number of complete copies of
data to be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

Version 1.0.1

197

SNIA Storage Management Initiative Specification

Table 91: Required Properties for StorageSetting (Continued)

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

DataRedundancyMi
n

uint16

minvalue(1)
write(true)

DataRedundancyMin describes the
minimum number of complete copies of
data to be maintained. Examples would
be RAID 5 where 1 copy is maintained
and RAID 1 where 2 or more copies are
maintained. Possible values are 1 to n.

PackageRedundanc
yMax

uint16

write(true)

PackageRedundancyMax describes the
maximum number of spindles to be used.
Package redundancy describes how
many disk spindles can fail without data
loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

PackageRedundanc
yMin

uint16

write(true)

PackageRedundancyMin describes the
minimum number of spindles to be used.
Package redundancy describes how
many disk spindles can fail without data
loss including, at most, one spare.
Examples would be RAID5 with a
Package Redundancy of 1, RAID6 with 2.
Possible values are 0 to n.

DeltaReservationMa
X

uint16

minvalue(1),
maxvalue(100)

Delta reservation is a number between 0
(0%) and a 100 (100%) that specifies how
much space should reserved in a replica
for caching changes. For a complete copy
this would be 100%, but it can be lower in
some implementations. Use 0 if copy
service Subprofile is not supported.

DeltaReservationMi
n

uint16

minvalue(1),
maxvalue(100)

DeltaReservationGo
al

uint16

minvalue(1),
maxvalue(100)

Version 1.0.1

SNIA Storage Management Initiative Specification

maxvalue(10)

7.3.3.11.12.7 StorageSettingWithHints
Table 92: Required Properties for StorageSettingWithHints
Property/ Type Qualifier/ Description/Notes
Method Parameter

InstancelD string key InstancelD opaquely identifies a
unique instance of SettingData. The
InstancelD MUST be unique within a
namespace.

ElementName string override, required The user friendly name for this
instance of SettingData. In addition,
the user friendly name can be used
as a index property for a search of
query. (Note: Name does not have to
be unique within a namespace.)

NoSinglePointOfFailure boolean write(true) See description in StorageSetting
table

DataRedundancyMax uint16 write(true), See description in StorageSetting

minvalue(1) table

DataRedundancyMin uint16 write(true), See description in StorageSetting

minvalue(1) table

PackageRedundancyMax | uint16 write(true) See description in StorageSetting
table

PackageRedundancyMin uint16 write(true) See description in StorageSetting
table

DataAvailabilityHint uint16 minvalue(0) This hint is an indication from a client

maxvalue(10) of the importance placed on data
availability. Values are 0=Don't Care
to 10=Very Important.

AccessRandomnessHint uint16 minvalue(0) This hint is an indication from a client

maxvalue(10) of the randomness of accesses.
Values are 0=Entirely Sequential to
10=Entirely Random.

AccessDirectionHint uint16 This hint is an indication from a client
of the direction of accesses. Values
are 0=Entirely Read to 10=Entirely
Write

AccessSizeHint][] uint16 minvalue(0) This hint is an indication from a client

maxvalue(10) of the optimal access sizes. Several
sizes can be specified.
Units(“Megabytes”)
AccesslLatencyHint uint16 minvalue(0) This hint is an indication from a client

how important access latency is.
Values are 0=Don't Care to 10=Very
Important.

Version 1.0.1

199

SNIA Storage Management Initiative Specification

Table 92: Required Properties for StorageSettingWithHints (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
AccessBandwidthWeight uint16 minvalue(0) This hint is an indication from a client
maxvalue(10) of bandwidth prioritization. Values are
0=Don't Care to 10=Very Important.
StorageCostHint uint16 minvalue(0) This hint is an indication of the
maxvalue(10) importance the client places on the

cost of storage. Values are 0=Don't
Care to 10=Very Important. A
StorageVolume provider might
choose to place data on low cost or
high cost drives based on this

parameter.
StorageEfficiencyHint uint16 minvalue(0) This hint is an indication of the
maxvalue(10) importance placed on storage

efficiency by the client. Values are
0=Don't Care to 10=Very Important. A
StorageVolume provider might
choose different RAID levels based

on this hint.
DeltaReservationMax uint16 minvalue(1), Delta reservation is a number
maxvalue(100) between 0 (0%) and a 100 (100%)

that specifies how much space should
reserved in a replica for caching
changes. For a complete copy this
would be 100%, but it can be lower in
some implementations. Use 0 if copy
service Subprofile is not supported.

DeltaReservationMin uint16 minvalue(1),
maxvalue(100)

DeltaReservationGoal uint16 minvalue(1),
maxvalue(100)

7.3.3.11.12.8 HostedService
(As defined by CIM)

HostedService 1s an association between a Service and the System on which the functionality
resides. The cardinality of this association is 1-to-many. A System may host many Services.
Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the
System where the LogicalDevices or SoftwareFeatures that implement the Service are located.
The model does not represent Services hosted across multiple systems. This 1s modeled as an
ApplicationSystem that acts as an aggregation point for Services, that are each located on a single
host.

200 Version 1.0.1

SNIA Storage Management Initiative Specification

HostedService is subclassed from Dependency

Table 93: HostedService Required Properties

Class Type Qualifier/ Notes
Properties Parameter
Antecedent ref override, max(1), The hosting System.
min(1)
Dependent ref override, weak The Service hosted on the System.

7.3.3.11.13 Optional Subprofiles

Table 94: Optional Profiles or Subprofiles

Name Notes

Job Control This subprofile is used to support copy services that run for a long time. The
extrinsic methods support the “ConcreteJob” output. If job control is not
supported this output is null

7.3.3.12 LUN Creation Subprofile

7.3.3.12.1 Description

StorageVolumes are a REQUIRED part of modeling disk storage systems (the Array, Out-of-band
Virtualization and In-band Virtualization Profiles). However, user creation of storage volumes
from pools is optional and may not be supported by a given disk storage system. The LUN Creation
subprofile defines the support REQUIRED if the storage system exposes functions for creating
storage volumes from storage pools.

The StorageConfigurationService allows generic clients to configure storage arrays with volumes
(ex. LUNSs) without having to have specific knowledge about the storage system capacity . The
service has the following methods for Storage Volume manipulation:

+ CreateOrModifyElementFromStoragePool: Create a StorageVolume, possibly with a specific
StorageSetting, from a source StoragePool. Note that this call is extensible to cover other
types of object (e.g. NAS file systems) in the future;

+ ReturnToStoragePool: Return an Element previously created with
CreateOrModifyElementFromStoragePool to the originating StoragePool.

The StorageCapabilities instances provide the ability to create settings for use in volume creation
using the following method (part of the StorageCapabilities class):

« CreateSetting: Creates a setting that is consistent with the StorageCapabilities and may be
modified before use in creating a StorageVolume.

The StoragePool instances provide the ability to retrieve the possible sizes for the StorageVolume
creation or modification given a StorageSetting as a goal.

« GetAvailableSizes: Returns a list of discrete sizes given a goal.
« GetAvailableSizeRanges: Returns the range of possible sizes given a goal.

See Storage Pools and Storage Capabilities (p. 185)

Version 1.0.1 201

SNIA Storage Management Initiative Specification

7.3.3.12.2 Standards Dependencies

The LUN Creation subprofile is defined using the CIM Schema 2.8 final. As such it can be used in
profiles at 2.8 and later. It does not require that Profiles be on a later schema. It will operate
within profiles that are at the CIM schema 2.8 final or later. The subprofile will operate correctly
with CIM Specification 2.2 (or later) and CIM Operations over HTTP 1.1 (or later).The Pool
Manipulation, Capabilities, and Settings subprofile is based on the following standards:

Table 95: LUN Creation Standard Dependencies

Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.1 DMTF
CIM Schema 2.8 Prelminary DMTF
7.3.3.12.3 Profile Dependencies

The LUN Creation subprofile introduces no Profile dependencies.

7.3.3.12.4 CIM Server Requirements
7.3.3.12.4.1 Functional Profiles
Table 96: Required Functional Profiles
Profile Required Functional Group Dependency
YES Basic Read None
YES Basic Write Basic Read
YES Instance Manipulation Basic Write
NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read
NO Query Execution Basic Read
NO Qualifier Declaration Schema Manipulation
YES Indication None
7.3.3.12.4.2 Extrinsic Methods

The CIM Server MUST support extrinsic methods for the LUN Creation subprofile.

7.3.3.12.4.3

Discovery

The LUN Creation subprofile is NOT advertised.

202

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.12.5 Instance Diagrams
Figure 37: LUN Creation Instance Diagram
ComputerSy stem : HostedService |
| StorageConfigurationService |
SystemDevice
| CreateOrModify ElementFrom StoragePool() |
ReturnToStoragePool()
HostedStoragePool StorageVolume |
|
| DurableName: ElementSettingData Element?apabnnes |
VPD pg831D
| StorageConfigurationCapabilities |
StorageSetting
| AllocatedFrom StoragePool |
| StoragePool ,—EIementCapabiIitieHl |
| GetSupportedSizes() |
| GetSupportedSizeRange() StorageCapabilities
AIIocatedFromStoragePozll CreateSetting() |
7.3.3.12.6 Durable Names and Correlatable IDs

The LUN Creation subprofile does not add any durable names or correlatable ids to the profiles (or
subprofiles) in which it is used.

7.3.3.12.7 Methods

The LUN Creation subprofile introduces a number of write intrinsic and extrinsic methods.

StorageConfigurationService Methods:

CreateOrModifyElementFromStoragePool
Uint32 CreateOrModifyElementFromStoragePool (
[in, Values {“Unknown”, “Reserved”, “StorageVolume”,
“StorageExtent”, “DMTF Reserved”, “Vendor Specific”},
ValueMap{“07,717,72”,737,”..”,“0x8000..”}]
Uint16 ElementType;
[Out] CIM_ConcreteJob ref Job,
[in] CIM_StorageSetting ref Goal,
[in, out] Uint64 Size,
[in] CIM_ StoragePool ref InPool,
[out, in] CIM_LogicalElement ref TheElement
);
e This method allows an Element of a type specified by the enumeration ElementType to be
created from the input Storage Pool. The parameters are as follows:

Version 1.0.1 203

SNIA Storage Management Initiative Specification

+ ElementType: This enumeration specifies what type of object to create. At present, only
StorageVolume and StorageExtents are defined as values, however other values (such as
share) could be added in future.

« Job: See “Job Control Subprofile” on page 172.

* Goal: This is the Service Level that the Storage Volume is expected to provide. The setting
MUST be a subset of the Capabilities available from the parent Storage Pool. Goal may be a
null value, in which case the default setting for the pool is used.

+ Size: As an input this is the desired size of the Storage Volume. If it is not possible to create a
volume of the desired size, a return code of “Size not supported” is returned with size set to
the nearest supported size.

* InPool: This is a reference to a source Storage Pool.

+ TheElement: If a reference is passed in, then that Element is modified, else this is a reference
to the created element.

ReturnToStoragePool

Uint32 ReturnToStoragePool (
[Out] CIM_ConcreteJob ref Job,
[in] CIM_LogicalElement ref Element

);
This method is provided to allow a client to delete a previously created element such as a Storage
Volume.

Return Values

Each method has a set of defined return codes defined below:

ValueMap {07, “17, “27, “3”, “4”, «5”,«..”, “0x1000”,70x1001”,
“0x1002..0x7777”, “0x8000..”},

Values {“Job completed with no error”, “Not Supported”, “Unknown”,
“Timeout”, “Failed”, “Invalid Parameter”, “DMTF Reserved”,
“Method parameters checked - job started”,

“Size not supported”, “Method Reserved”, “Vendor Specific”’}]

If the method completes immediately with no errors (and with no asynchronous execution
required), “Job completed with no error” is returned.

If the method parameters have been checked and the method is being executed asynchronously,
“Method parameters checked - job started” is returned.

If, for a Create/Modify method, the requested size is not supported then “Size not supported” is
returned and the Size parameter is set to the nearest supported size.

If one of the method parameters is incorrect (for instance invalid object paths), then “Invalid
Parameter” is returned.

“Timeout” or “Failed” may be returned if the provider has problems accessing the hardware or for
other implementation specific reasons.

A vendor may choose to extend the Value map to express vendor specific error codes not catered for
by the standard errors.

204 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.12.8 Client Considerations

Storage Volume Manipulation

The StorageConfigurationService class contains methods to allow creation, modification and
deletion of StorageVolumes. The capabilities of a StorageConfigurationService or StoragePool to
provide storage are indicated using the StorageCapabilities class. This class allows the Service or
Pool to advertise its capabilities (using implementation independent attributes) and a client to set
the attributes it desires. The concept of ‘hints’ is also included that allows a client to provide clues
to the system as to how it expects to use the storage for optimization purposes. These allow a client
to provide extra information to 'tune' a StorageVolume. If a client chooses to supply these hints
when creating a StorageVolume, the StorageSystem can either use them in determining a
matching configuration or it can choose to ignore the hints. See the Storage Pools and Storage
Capabilities (p. 185) for further details on Storage Capabilities.

Figure 38: Storage Pool Example

raageVolume
StorageVolume StorageSetting

Element
LUN Setting Current state of volume

StorageSettingWithHints

AIIocatedFromStoragePooIJ
Optional extention to publish

'hints' from the client for

optimization
StorageCapabilities StoragePool
A L Element
Describes range of Capabilities] Pool owned by one controller,
capabilities of the Pool redundant SystemDevice
access through the other
StorageCapabilities

Describes range of HostedStoragePool
capabilities of the Service

ElementCapabilities

I
StorageConfigurationService ComputerSystem

HostedService

Single controller

When creating a StorageVolume, an instance of StorageSetting is passed as a parameter to the
StorageConfigurationService.CreateOrModifyElementFromStoragePool method. This forms an
objective for that element to attempt to meet. The current ‘service level being achieved is reported
via the StorageVolume class itself.

StorageVolumes are created from StoragePools via a StorageConfigurationService’s
CreateOrModifyElementFromStoragePool() method. A volume create operation may take some
period of time, however, and a Client needs to be aware that the operation is not complete until the
StorageVoume.OperationalStatus is OK. A Client may also follow the progress of the operation
using the ConcreteJob class and its properties.

The example below shows the classes and associations needed to model a single Pool with two
StorageVolumes.

Version 1.0.1 205

SNIA Storage Management Initiative Specification

The methods are used as follows to create a Storage Volume.

a. Similarly to with Storage Pools, a client chooses a suitable source pool by referencing the Stor-
ageCapabilities objects and use using the GetSupportedSizes and GetSupportSizeRange()
objects. This is indicated in Figure 39: "Volume Creation - Initial State"

Figure 39: Volume Creation - Initial State

ComputerSystem StorageConfigurationService
HostedServic
e

CreateOrModifyElementFromStoragePool()

dedicated[x]
HostedPool
StoragePool st Canabilt
. ElementCapabilities — oragetapabllities
GetSupportedSizes() :
GetSupportSizeRange CreateSetting()
0

b) Once a suitable pool is found, a StorageSetting instance can be created using the CreateSet-
ting method on the StorageCapabilities object (see Figure 39: "Volume Creation - Initial
State"). If a suitable StorageSetting already exists it could be used instead.

Figure 40: Volume Creation - Step 1

ComputerSystem StorageConfigurationService
HostedServic
e :
dedicatedx] CreateOrModifyElementFromStoragePool()
HostedPool
StoragePool -
ElementCapabilities —| StrorageCapabilities
GetSupportedSizes() CreateSetting()
GetSupportSizeRange()

c¢) If anew Setting is created, it is not linked back to the originating StorageCapabilities object
until it is used as an argument in a StorageConfiguration method. (see Figure 41: "Volume
Creation - Step 2")

206 Version 1.0.1

SNIA Storage Management Initiative Specification

Figure 41: Volume Creation - Step 2

ComputerSystem StorageConfigurationService

HostedService

CreateOrM odifyElementFromStoragePool(New Setting)
dedicated[x]

HostedPool

StoragePool
StorageCapabilities

ElementCapabilities —]

GetSupportedSizes() CreateSetting()
GetSupportSizeRange()

New Setting:
StorageSetting

d) Once the volume has been created, the new setting is ‘snapped’ to the new volume using the
ElementSettingData association’. (see Figure 42: "Volume Creation - Step 3")

Figure 42: Volume Creation - Step 3

ComputerSy stem StorageConfigurationService
HostedServic
e CreateOrModify ElementFromStoragePool()
dedicated[x]
HostedPool
StoragePool -
| _ElementCapabilities| StorageCapabilities
GetSupportedSizes() -
GetSupportedSizeRange() CreateSetting()
AllocatedFrom StoragePool
NewVolume: NewSetting:

StorageVolume StorageSetting

ElementSettingData|

Version 1.0.1 207

7.3.3.12.9

7.3.3.12.9.1

208

SNIA Storage Management Initiative Specification

Recipes

Create Storage Pool and Storage Volume on array
// DESCRIPTION
// The goal is to create the equivalent of a 10 GB RAID 5 Volume to
// house a tablespaces in a high-volume, transactional database.
// Records in the tablespace are about 1kB in size and reads of records
// occur much more frequently than writes. First we have to create a
/I new Storage Pool to contain the volume
/
// PRE-EXISTING CONDITIONS AND ASSUMPTION
//'1. Areference to a CIM_ComputerSystem storage array is previously
/ defined in the $StorageArray-> variable

//'2. The settings for the new Storage Pool and Storage Volume are

/ defined in the following variables:

/ #RequestedSize =10 * 1024 * 1024 * 1024/ 10 GB
I #NoSinglePOF = true

/! #DataRedundancy =1

/ #PackageRedundancy = 1

I #DeltaReservation =30// %

// Function StorageSettingRequirementsAreSatisfiedBy
/I Determine if the storage requirements specified by required are
// met by offered.
sub boolean StorageSettingRequirementsAreSatisfiedBy($CapabilitiesOffered)
{
if(#NoSinglePOF == $CapabilitiesOffered.NoSinglePointOfFailure
&& #DataRedundancy <= $CapabilitiesOffered. DataRedundancyMax
&& #DataRedundancy >= $CapabilitiesOffered. DataRedundancyMin
&& #PackageRedundancy <= $CapabilitiesOffered.PackageRedundancyMax
&& #PackageRedundancy >= $CapabilitiesOffered.PacakageRedundancyMin)

{

return true
}
else
{

return false
}

// Function PoolSizeAvailable

/I A return value of 0 means that no size is available

sub unit32 PoolSizeAvailable($PoolToDrawFrom->,
$StorageSetting->, #RequestedSize)

#ResultSize = 0

%InArguments[“ElementType”] = 2 // StoragePool
%InArguments[“Goal”] = $StorageSetting->

Version 1.0.1

SNIA Storage Management Initiative Specification

#MethodReturn = InvokeMethod(
$PoolToDrawFrom->,
“GetSupportedSizes”,
%InArguments,
%OutArguments)
if(#MethodReturn == 0)
{
// this method is supported
#SupportedSizes[] = %OutArguments[“Sizes”]
#i=0
#max = #SupportedSizes[].length
while(#i < #max && #RequestedSize > #ResultSize)

{
#ResultSize = #SupportedSizes[#i++]
}
if(#RequestedSize > #ResultSize)
{
// we did not find a size
#ResultSize =0
}

}
else if (#MethodReturn == 2)

{// call GetSupportedSizeRange

#MethodReturn =
InvokeMethod(
$PooltoDrawFrom->,
“GetSupportedSizeRange”,
%InArguments,
%OutArguments)
if(#MethodReturn != 1 && #MethodReturn != 2)
{
// this method is supported
#MaximumVolumeSize = %OutArguments|[“MaximumVolumeSize™’]
#MinimumVolumeSize = %OutArguments[“Minimum VolumeSize”]
#VolumeSizeDivisor = %OutArguments[“VolumeSizeDivisor”]
if(#RequestedSize >= #MinimumVolumeSize &&
#RequestedSize <= #Maximum VolumeSize)
{
// Rounding up using integer arthimetic
#ResultSize =
(#RequestedSize / #VolumeSizeDivisor + 1)
* #VolumeSizeDivisor
}
b

}

return #ResultSize

Version 1.0.1 209

210

SNIA Storage Management Initiative Specification

/I MAIN
// Step 1. Get the configuration services and determine the service
/1 capabilities
$Services->[] = AssociatorNames(
$StorageArray->,
“CIM_HostedService”,
“CIM_StorageConfigurationService”,
null,
null)

// There should be only one storage configuration service
/I Associated with the system
$StorageConfigurationService-> = $Services->[0]
$ServiceCapabilities[] = Associators(
$StorageConfigurationService->,
“CIM_ElementCapabilities”,
“CIM_StorageConfigurationCapabilities”,
null,
null,
false,
false,
null)

// There should be only one StorageConfigurationCapabilities instance
#SupportsPoolCreation = contains(
2, // Storage Pool Creation
$ServiceCapabilities[0].SupportedSynchronousActions[]) ||
contains(
2, // Storage Pool Creation
$ServiceCapabilities[0].Supported AsynchronousActions[]))
#PoolCreationProducesJob = contains(
2, // Storage Pool Creation
$ServiceCapabilities[0].Supported AsyncronousActions[])
#SupportsVolumeCreation1 = contains(
5, // Storage Element Creation
$ServiceCapabilities[0].SupportedSynchronousActions[])
#Supports VolumeCreation2 = contains(
3, // Storage VolumeCreation
$ServiceCapabilities[0].SupportedStorageElementFeatures[])
#VolumeCreationProducesJob = contains(
5, // Storage Element Creation
$ServiceCapabilities[0].Supported AsynchronousActions[])
if (1#SupportedVolumeCreation1 || !#Supported VolumeCreation2)
{
<ERROR! The StoragePool can be created, but the StorageVolume

creation is not supported.>

Version 1.0.1

SNIA Storage Management Initiative Specification

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find
/1 all the StoragePools from which volumes might be created.
$StoragePools[] = Associators(

$StorageArray->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null,

null,

false,

false,

{“InstancelD”, “Primordial”})

// Step 3. For each StoragePool, follow the CIM_ElementCapabilities
/ asociation to the StorageCapabilities of that pool. Compare the
/ StorageCapabilities to the desired StorageSetting and find the
/1 best match.
$PoolToDrawFrom-> = null
for #i in $StoragePools[]
{
// If we can not create Storage Pool, then find a ‘concrete’
// Storage Pool from which to create a Storage Volume
#UsePrimordial = false
if(#SupportsPoolCreation)

{
#UsePrimordial = true
}
if ($StoragePools[#i].Primodial == #UsePrimordial)
{

$CapabilitiesOffered[] = Associators(
$StoragePools[#i].getObjectPath(),
“CIM_ElementCapabilities”,
“CIM_StorageCapabilities”,
null,
null,
false,
false,
null)

$StorageCapabilitiesOffered = $CapabilitiesOffered[0]

if(&StorageSettingRequirementsAreSatisfiedBy(
$StorageCapabilitiesOffered))

$PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()
break;

Version 1.0.1 211

212

SNIA Storage Management Initiative Specification

if ($PoolToDrawFrom-> == null)

{
< ERROR! Unable to find a suitable pool from which to create the volume >
}
// Step 4. Determine if the selected pool has enough space for
/ another pool. Change the StorageSetting to what is desired.
I If the array supports hints, then the Storage Setting returned
/1 will contain default hints

// Create a setting
%InArguments[“SettingType”] = 2 // Default
#ReturnValue = InvokeMethod(
$StorageCapabilitiesOffered.getObjectPath(),
“CreateSetting”,
%InArguments,
%OutArguments)

if (#ReturnValue !=0) {
<ERROR! Unable to create storage setting >

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]
$ModifiedSetting = GetInstance(
$GeneratedStorageSetting->,
false,
false,
false,
null)
$ModifiedSetting.DeltaReservationGoal = #DeltaReservation
$ModifiedSetting. DataRedundancyGoal = #DataRedundancy
$ModifiedSetting. PackageRedundancyGoal = #PackageRedundancy
ModifyInstance(
$ModifiedSetting,
false,
NULL)
// Determine the possible size, closest to the requested size
#PossibleSize = &PoolSizeAvailable(
$PoolToDrawFrom->,
$ModifiedSetting.getObjectPath(),
#RequestedSize)

// Step 5. Register for indications on configuration jobs
If(#PoolCreationProducesJob || #VolumeCreateProducesJob)

Version 1.0.1

SNIA Storage Management Initiative Specification

{
%PFilter = “SELECT * FROM CIM_InstModification WHERE Sourcelnstance ISA
CIM_ConcreteJob AND Sourcelnstance.OperationalStatus ==
Complete AND Sourcelnstance.OperationalStatus == OK”
@{Determine if Indications already exist or have to be created}
&createlndication(%Filter)
b

// Step 6. Create the Storage Pool
if(#SupportsPoolCreation)

{

Version 1.0.1

%InArguments[“ElementName”] = NULL// we do not care what
// the name is

%InArguments[“Goal”] = $ModifiedSetting.getObjectPath()

Y%InArguments[“Size”] = #PossibleSize

%InArguments[“InExtents”] = null

%InArguments[“Pool”] = null

$InPools->[0] = $PoolToDrawFrom->

%InArguments[“InPools”] = $InPools->[]

#ReturnValue = InvokeMethod(
$StorageConfigurationService->,
“CreateOrModifyStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 || #ReturnValue !=4096)

{ // Storage Pool was not created
<ERROR! Failed >

}

$PoolToDrawFrom-> = %OutArguments[“Pool”]

$PoolCreationJob-> = %OutArguments[“Job”]

if(#PoolCreationProducesJob && $PoolCreationJob-> != null)
{
<Wait until the completion of the job
using $PoolCreationJob-> as a filter>
}
$CapabilitiesOffered[] = Associators(
$PoolToDrawFrom->,
“CIM_ElementCapabilities”,
“CIM_StorageCapabilities”,
null,
null,
false,
false,
null)
$StorageCapabilitiesOffered = $CapabilitiesOffered[0]

213

SNIA Storage Management Initiative Specification

// Step 7. Create Storage Volume.
%InArguments[“SettingType”] = 2 // “Default”
InvokeMethod(
$StorageCapabilitiesOffered.getObjectPath(),
“CreateSetting”,
%InArguments,
%OutArguments)
$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]
%InArguments[“ElementType”] = 2 // Storage Volume
%InArguments[“Goal”] = $GeneratedStorageSetting->
%InArguments[“Size”] = #PossibleSize
$InPools->[0] = $PoolToDrawFrom->
%InArguments[“InPool”] = $InPools->
%InArguments[“TheElement”] = null
#ReturnValue = InvokeMethod(
$StorageConfigurationService->,
“CreateOrModifyElementFromStoragePool”,
%InArguments, %OutArguments)
if(#ReturnValue != 0 || #ReturnValue !=4096)
{ // Method no succeeded nor succeeded and create a job
<ERROR! Failed >
}
else if(#ReturnValue == 0 ||
#ReturnValue == 4096 && %OutArguments[“TheElement”] != null))

{
$CreatedVolume-> = %OutArguments[“TheElement”]
H
else // a Job was created and TheElement is null
{

<Coerse the string returned as the Job into
a ObjectName yielding the $Job-> variable>
<Wait until the completion of the job using $Job-> as a filter>
<Once the ‘Job’ has completed, see step 5, then follow the
AffectedJobElement association from the ‘Job’ to retrieve
the volume that was created.>
$CreateVolumes[] = Associators(
$Job->, // Object Name coersed from %OutArguments[“Job”]
“CIM_ AffectedJobElement”,
“CIM_StorageVolume”,
null,
null,
false,
false,
null)
// Only one StorageVolume will be created,
$Created Volume-> = $Created Volume[0].getObjectPath()

214 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.12.9.2 Expand Storage Volume on storage array
// DESCRIPTION
// In this recipe, we attempt to expand a LUN on an array by 50%.

I

// PRE-EXISTING CONDITIONS AND ASSUMPTION

/1.
I
/2.
1
/3.
I
1
I
I

A reference to the CIM_ComputerSystem that represents the array

$StorageArray->

A reference to the particular StorageVolume we wish to expand.
$VolumeToExpand->

It is assumed that to expand a Storage Volume there needs to be
enough space available in the parent StoragePool to contain
another copy of the Storage Volume whose size is equal to the
new size requested. This is especially the case if we were

modifying the settings as well as the size.

// Step 1. Get the configuration services and determine the service

I

capabilities

$Services->[] = AssociatorNames(

$StorageArray->,
“CIM_HostedService”,
“CIM_StorageConfigurationService”,
null,

null)

// There should be only one storage configuration service

/I Associated with the system

$StorageConfigurationService-> = $Services->[0]

$ServiceCapabilities[] = Associators(

$StorageArray->,
“CIM_ElementCapabilities”,
“CIM_StorageConfigurationCapabilities”,
null,

null,

false,

false,

null)

// There should be only one StorageConfigurationCapabilities instance

#Supports VolumeModification1 = contains(

7, // Storage Element Modification
$ServiceCapabilities[0]. SupportedSynchronousActions[]) ||
contains(

7, // Storage Element Modification
$ServiceCapabilities[0].Supported AsynchronousActions[])

#Supports VolumeModification2 = contains(

Version 1.0.1

5, // StorageVolume Modification

215

216

SNIA Storage Management Initiative Specification

$ServiceCapabilities[0].SupportedStorageElementFeatures[])
#VolumeModificationProducesJob = contains(
7, // Storage Element Modification
$ServiceCapabilities[0].SupportedAsynchronousActions[])
if(!1#Supported VolumeModification1 || !#Supported VolumeModification2)
{
<ERROR! The ability to modify an existing StorageVolume must be supported

to continue.>

// Step 2. Read the current size of the StorageVolume.
$Volume = Getlnstance(
$VolumeToExpand->,
false,
false,
false,
{“BlockSize”, “NumberOfBlocks™})
#PreviousSize = $Volume.BlockSize * $Volume NumberOfBlocks

// Step 3. Follow the AllocatedFromStoragePool association from the
/ volume to find the pool from whence it came.
$Pools->[] = AssociatorNames(

$VolumeToExpand->,

“CIM_ AllocatedFromStoragePool”,

“CIM_StoragePool”,

null,

null)

/I A Storage Volume has only one Pool parent
$ParentPool-> = §Pools->[0]

// Step 4. Determine whether the desired space for which to expand the
/ volume exists within the pool.
$StorageSetting->[] = AssociatorNames(

$VolumeToExpand->,

“CIM_ElementSettingData”,

“CIM_StorageSetting”,

null,

null)
$CurrentVolumeSetting-> = $StorageSetting->[0]
#SizeToExpand = 0.5 * #PreviousSize / (1024 * 1024) // in MB
#SizeToExpandTo = #PreviousSize / (1024 * 1024) + #SizeToExpand
#NewSizeAvailable =

@<Create Storage Pool and Volume on array>

&PoolSizeAvailable(
$ParentPool->,

$CurrentVolumeSetting->,

Version 1.0.1

SNIA Storage Management Initiative Specification

Version 1.0.1

#SizeToExpand)
if (1#NewSizeAvailable)
{
< ERROR! Unable to proceed because the requested size is unavailable >
}

// Step 5. Register for indications on configuration jobs
If(#VolumeModificationProducesJob)

{
Y%Filter = “SELECT * FROM CIM_ InstModification WHERE Sourcelnstance ISA
CIM_ConcreteJob AND Sourcelnstance.OperationalStatus ==
Complete AND Sourcelnstance.OperationalStatus == OK”
@{Determine if Indications already exist or have to be created}
&createlndication(%Filter)
}

// Step 6. Modify the Storage Volume
// If there is a Job produced, wait for Job completion
%InArguments[“ElementName”] = null// we do not care what the name is
%InArguments[“ElementType”] = 2// Storage Volume
%InArguments[“Goal”] = $CurrentVolumeSetting
%InArguments[“Size”] = #SizeToExpandTo
%InArguments[“InPool”] = $ParentPool->
%InArguments[“TheElement”] = $VolumeToExpand->
#ReturnValue = InvokeMethod(
$StorageConfigurationService->
“CreateOrModifyElementFromStoragePool”
%InArguments
%OutArgument
)
if(#ReturnValue != 0 || #ReturnValue != 4096)
{ // Method succeeded or validated arguments and started a job
<ERROR! Failed >
b
else if(#ReturnValue == 0 ||
#ReturnValue == 4096 && %OutArguments[“TheElement”] != null)

{
$CreatedVolume-> = %OutArguments[“TheElement”]
H
else // a Job was created and TheElement is null
{

<Coerse the string returned as the Job into

a ObjectName yielding the $Job-> variable>

<Wait until the completion of the job

using $PoolCreationJob as a filter>

<Once the ‘Job’ has stopped, see step 4,then follow the

AffectedJobElement association from the ‘Job’ to retrieve

217

SNIA Storage Management Initiative Specification

the volume that was created.>
$CreateVolumes[] = Associators(
$Job->, // Object Name coersed from %OutArguments[*“Job”]
“CIM_AftectedJobElement”,
“CIM_StorageVolume”,
null,
null,
false,
false,
null)
// Only one StorageVolume will be created,
$CreatedVolume-> = $Created Volume[0].getObjectPath()

/I Step 7. Check the value of the “Size” out parameter. See if it is

/ equal to size expected. If so, we got what we asked for and we’re done.
#SizeExpandedTo = %OutArguments[“Size”]

if (#SizeExpandedTo == #SizeToExpandTo)

{
< indicate the volume was successfully expanded >
H
else
{
if (#SizeExpandedTo <= #PreviousSize)
{
< indicate the volume was not expanded >
}
else
{
< indicate the volume was only partially expanded to #SizeExpandedTo >
}
H

7.3.3.12.9.3 Instrumentation Requirements

See details in related profile section.

218 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.12.10 Required CIM Elements

Table 97: Required CIM Elements

Profile Classes & Associations

Notes

StorageConfigurationService (p. 219)

Packages/Profiles

Pool Manipulation, Capabilities, and Settings Subprofile (p. 178)

Methods

CreateOrModifyElementFromStoragePool()

ReturnToStoragePool()

SubProfile Indications

Creation/Deletion of StorageVolume

SELECT * from CIM_InstCreation where
Sourcelnstance ISA CIM_StorageVolume

SELECT * from CIM_InstDeletion where
Sourcelnstance ISA CIM_StorageVolume

7.3.3.12.11 Required Properties for CIM Elements

7.3.3.12.11.1 StorageConfigurationService

Table 98: Required Properties for StorageConfigurationService

Property/ Type Qualifier/ Description/Notes
Method Parameter

ElementName string User Friendly name

SystemCreationClassName string maxlen(256), key, The scoping System's
propagated CreationClassName.

SystemName string maxlen(256), key, The scoping System's Name.
propagated

CreationClassName string maxlen(256), key The name of the concrete

subclass

Name string maxlen(256), key,
override

CreateOrModifyElementFromStora | uint32

gePool()

ReturnToStoragePool () uint32

Version 1.0.1

219

SNIA Storage Management Initiative Specification

7.3.3.12.12 Optional Subprofiles

Table 99: Optional Profiles or Subprofiles

Name Notes

Job Control Subprofile | This subprofile is used to support copy services that run for a long time. The
(p. 172) extrinsic methods support the “ConcreteJob” output. If job control is not
supported this output is null

7.3.3.13 Device Credentials Subprofile

7.3.3.13.1 Description

Many devices require a shared secret to be provided to access them. This shared secret is different
that the credentials used by the SMI-S Client for authentication with the CIM Server. This
Subprofile is used to change this device shared secrets.

The SMI-S Client must not be provided with the password, only the principle. The SMI-S Client
can use the principle to change the shared secret appropriately.

The device credentials can be exposed throughout the CIM model such that a CIM Client may
manipulate them. The credentials are modeled as shared secrets.

7.3.3.13.2 Standard Dependencies

The Device Credentials subprofile is based on the following standards:

Table 100: Device Credentials Standard Dependencies

Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.1 DMTF
CIM Schema 2.7 DMTF
7.3.3.13.3 Profile Dependencies

The Device Credentials subprofile does not require any other Profiles

220 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.13.4 CIM Server Requirements
7.3.3.13.4.1 Functional Profiles
Table 101: Required Functional Profiles
Profile Required Functional Group Dependency
YES Basic Read None
YES Basic Write Basic Read
YES Instance Manipulation Basic Write
NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read
NO Query Execution Basic Read
NO Qualifier Declaration Schema Manipulation
YES Indication None
7.3.3.13.4.2 Extrinsic Methods
The CIM Server support for extrinsic methods is NOT REQUIRED or the Device Credentials
subprofile
7.3.3.13.4.3 Discovery

The DeviceCredentials subprofile is not advertised.

7.3.3.13.5 Instance Diagrams

Figure 43: DeviceCredentials Subprofile Model

ComputerSystem
SharedSecretService
OtherldentifyingIinfo: string[] 1 Hosted wk
Iden_tifyingDe_scriptions: string[] Service Algorithm: string
Dedicated: uint16][] Protocol: string 1
SharedSecre
t
IsShared
SharedSecret
*W

RemotelD: string [key]
Secret: string
Algorithm: string
Protocol: string

Durable Names and Correlatable IDs
There are no durable names nor correlatable ids for the Device Credentials subprofile

7.3.3.13.6

Version 1.0.1 221

7.3.3.13.7

7.3.3.13.8

7.3.3.13.9

7.3.3.13.10

222

SNIA Storage Management Initiative Specification

Methods
ModifyInstance:

Only the SharedSecret in this SubProfile may be modified. SharedSecrets MAY NOT be created
nor deleted.

If that instance is modified then the CIM Agent attempts to authenticate again with the managed
device using the current RemotelID and Secret. If the RemotelD is changed, then the user name is
being changed. If the Secret is changed, then the pass word is being changed.

If the re-authentication fails, then the RemoteID and Secret revert back to their previous state.

Client Considerations

The MUST be only one shared secret per device accessible to a given CIM Client.

Recipes
No recipes have been defined for this subprofile.

Instrumentation Requirements

None.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.13.11 Required CIM Elements

Table 102: Required CIM Elements

Profile Classes & Associations Notes

SharedSecretService (p. 223)

SharedSecret. (p. 223)

SharedSecretlsShared (p. 224)

HostedService (p. 224)

Packages
None.
Methods
None
SubProfile Indications
None.

7.3.3.13.12 Required Properties for CIM Elements
7.3.3.13.12.1 SharedSecretService

Table 103: Required Properties for SharedSecretService

Class Properties Type Qualifier/ Notes
Parameter

ElementName string User Friendly name
SystemCreationClass string maxlen(256), The scoping System's CreationClassName.
Name key, propagated
SystemName string maxlen(256), The scoping System's Name.

key, propagated
CreationClassName string maxlen(256), The name of the concrete subclass

key
Name string maxlen(256),

key, override

7.3.3.13.12.2 SharedSecret.
CIM_SharedSecret is subclassed from CIM_Credential

Table 104: Required Properties for SharedSecret

Class Properties Type Qualifier/ Notes
Parameter
SystemCreationClass string maxlen(256), The scoping System's CreationClassName.
Name key, propagated

Version 1.0.1 223

SNIA Storage Management Initiative Specification

Table 104: Required Properties for SharedSecret (Continued)

Class Properties Type Qualifier/ Notes
Parameter
SystemName string maxlen(256), The scoping System's Name.
key, propagated
ServiceCreationClass string maxlen(256), The CreationClassName of the associated
Name key, propagated | SharedSecretService
ServiceName string maxlen(256), The Name of the associated SharedSecretService
key, propagated
RemotelD string maxlen(256), The user name in the device’s shared secret
key
Secret string The password in the device’s shared secret. The
property MUST NOT be shown in its true form for
a SharedSecret once the SharedSecret has been
created. Instead, some printable character should
be repeated for each character in the Secret
7.3.3.13.12.3 SharedSecretlsShared

CIM_SharedSecretIsShared is subclassed from CIM_ManagedCredential

Table 105: SharedSecretIsShared Required Properties

Class Type Qualifier/ Notes
Properties Parameter
Antecedent ref override, max(1), The credential management service.
min(1)
Dependent ref override, weak The managed credential.
7.3.3.13.12.4 HostedService

(As defined by CIM)

HostedService 1s an association between a Service and the System on which the functionality
resides. The cardinality of this association is 1-to-many. A System may host many Services.
Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the
System where the LogicalDevices or SoftwareFeatures that implement the Service are located.
The model does not represent Services hosted across multiple systems. This 1s modeled as an
ApplicationSystem that acts as an aggregation point for Services, that are each located on a single

host.

HostedService is subclassed from Dependency

Table 106: HostedService Required Properties

Class Type Qualifier/ Notes
Properties Parameter
Antecedent ref override, max(1), The hosting System.
min(1)
Dependent ref override, weak The Service hosted on the System.

224

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.13.12.5 Optional Subprofiles

Table 107: Optional Profiles or Subprofiles

Name Notes
None
7.3.3.14 Backend Ports Subprofile
7.3.3.14.1 Description

Some RAID systems provide interfaces to discover and manage the internal connections between
the RAID processors and physical disks. For example, an array may have an interface to acquire
and optimize the utilization of separate buses, loops, or fabrics to back-end storage. In this case,
the ports to individual disks can be modeled similarly to a JBOD configuration as well as the ports
on the RAID processors.

A property on FCPort called UsageRestriction is available to indicate whether the controller is
providing a front end (target) or back end (initiator) interface.

The RAID controller itself has front-end ports (connected to customer hosts or switches) and back-
end ports (connected to the internal disks). “Back-end Ports Instance” on page 226 7shows an
instance diagram for three disks (StorageExent only shown) in an array, connected by a FC loop.
The full model for the disk is shown in “Disk Drive Subprofile” on page 126.

7.3.3.14.2 Standard Dependencies
The Backend Ports subprofile is based on the following standards:

Table 108: Device Credentials Standard Dependencies

Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.1 DMTF
CIM Schema 2.8 Preliminary DMTF
7.3.3.14.3 Profile Dependencies

The Backend Ports subprofile introduces no Profile dependencies.

Version 1.0.1 225

7.3.3.14.4

7.3.3.14.4

7.3.3.14.4

7.3.3.14.4

7.3.3.14.5

SNIA Storage Management Initiative Specification

CIM Server Requirements
1 Functional Profiles
Table 109: Required Functional Profiles
Profile Required Functional Group Dependency
YES Basic Read None
NO Basic Write Basic Read
NO Instance Manipulation Basic Write
NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read
NO Query Execution Basic Read
NO Qualifier Declaration Schema Manipulation
YES Indication None
2 Extrinsic Methods
The CIM Server support for extrinsic methods is NOT REQUIRED or the Backend Ports
subprofile
3 Discovery

The Backend Ports subprofile is not advertised.

Instance Diagrams

Figure 44: Back-end Ports Instance

ComputerSystem I

dedicated[x] '= I

SystemDevice

'BlciikSer\I{er" | SystemDevice ProtocolControllerForPort ProtocolControllerForPort [
rray’ |

| FCPort SCSIProtocolController FCPort SCSIProtocolController I
| UsageRestriction = UsageRestriction = |
I Back-end only ‘Back-end only’ |
| ProtocolControllerAccessesUnit ProtocolControllerAccessesUnit Fﬁ'otocoIOTntroIIerAccessesUnit |
| StorageExtent StorageExtent |
I StorageExtent |

I Name: //VPD pg 83 ID Name: //VPD pg 83 ID
Name: //VPD pg 83 ID DefaultAccessMode DefaultAccessMode I
| DefaultAccessMode I

7.3.3.14.6 Durable Names and Correlatable IDs

226

See parent sections.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.14.7 Methods

See parent sections.

7.3.3.14.8 Client Considerations

See parent sections.

7.3.3.14.9 Recipes
See parent sections.

7.3.3.14.10 Instrumentation Requirements

See parent sections.

Version 1.0.1

227

SNIA Storage Management Initiative Specification

7.3.3.14.11 Required CIM Elements

Table 110: Required CIM Elements

Profile Classes & Associations Notes

FCPort (p. 228)

ProtocolControllerForPort (p. 230)

ProtocolControllerAccessesUnit (p. 230)

SCSIProtocolController (p. 230)

StorageExtent (p. 231)

SystemDevice (p. 231)

Packages

None.

Associated Indications

None.

7.3.3.14.12 Required Properties for CIM Elements
7.3.3.14.12.1 FCPort

Table 111: Required Properties for FCPort

Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemCreationClassNa | string key

me

SystemName string key

CreationClassName string key

UsageRestriction uint16 req Usage is Backend Port

ElementName string User friendly name/caption for port.
This property is OPTIONAL.

OperationalStatus([] uint16 Status of device

DevicelD string key Opaque

PortType uint16 Used to indicate the type of the port (e.g.,
N-port/NL-port)
This property is OPTIONAL.

PermanentAddress string The WWN of the port.
This property is OPTIONAL.

NetworkAddresses]] string The Fibre Channel address of the port
This property is OPTIONAL.

228 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 111: Required Properties for FCPort (Continued)

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

Speed

uint64

Speed of zero represents a link not
established.

1Gb is 1062500000 bps

2Gb is 2125000000 bps

4Gb is 4250000000 bps)

10Gb single channel variants are
10518750000 bps

10Gb four channel variants are
12750000000 bps

This is the raw bit rate.

This property is OPTIONAL.

Version 1.0.1

229

SNIA Storage Management Initiative Specification

7.3.3.14.12.2 ProtocolControllerForPort

Table 112: Required Properties from ProtocolControllerForPort

Property/ Type Qualifier/ Description/Notes
Method Parameter

Antecedent ref key The SCSIProtocolController for this
port

Dependent ref key The port.

AccessPriority unit16 The priority of access through this
port for this ProtocolController
(optional)ProtocolControllerForPortl
(optional)

7.3.3.14.12.3 ProtocolControllerAccessesUnit

Table 113: Required Properties from ProtocolControllerAccessesUnit

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key The protocol controller
Dependent ref key The exposed logical unit.
DeviceNumber unit16 Logical Unit Number.
TargetControllerNumb TargetID
er This property is OPTIONAL.

7.3.3.14.12.4 SCSIProtocolController

Table 114: Required Properties for SCSIProtocolController

Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemCreationClassNam | string key
e
SystemName string key
CreationClassName string key
ElementName string User friendly name/caption
for port.
This property is OPTIONAL.
OperationalStatus(] uint16 Status of device
This property is OPTIONAL.
DevicelD string key Opaque

230 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.14.12.5 StorageExtent

Table 115: Required Properties for StorageExtent

Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DevicelD string maxlen(64), key unique identifying information

BlockSize uint64

NumberOfBlocks uint64

ConsumableBlocks uint64

ExtentStatus|] uint16

NoSinglePointOfFailure boolean

DataRedundancy uint16

PackageRedundancy uint16 write(true)

DeltaReservation uint16

7.3.3.14.12.6 SystemDevice

Table 116: Required Properties for SystemDevice

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref System Reference
PartComponent ref LogicalDevice Reference

7.3.3.14.13 Optional Subprofiles

Table 117: Optional Profiles or Subprofiles

Name Notes

None

Version 1.0.1 231

SNIA Storage Management Initiative Specification

THIS PAGE INTENTIONALLY LEFT BLANK

232 Version 1.0.1

SNIA Storage Management Initiative Specification

The LUN Masking and Mapping subprofile does not require any other Profiles.

Version 1.0.1

7.3.3.15 LUN Masking and Mapping
7.3.3.15.1 Description
Many disk arrays provide an interface for the administrator to specify which initiators (Hosts or
HBA Ports, by WWN) can access what volumes, through which target ports (by WWN). The effect
is that the given volume is only visible to SCSI commands that originate from the specified
initiators through specific sets of target ports. There may also be a capability to select access rights
(read-write or read-only), and the SCSI Logical Unit Number as seen by an initiator through a
specific set of ports. The ability to limit access is called Device Masking; the ability to specify the
device address seen by particular initiators is called Device Mapping (For SCSI systems, these
terms are known as LUN Masking and LUN Mapping.)
The model described here is generalized to include access management in disks arrays,
virtualization systems, and routers used in tape libraries. The model is also generalized beyond
just SCSI and FibreChannel implementations. Many of the examples and use cases refer to LUN
masking in FibreChannel arrays, but the model is general.
7.3.3.15.2 Standard Dependencies
The LUN Masking and Mapping subprofile is based on the following standards:
Table 118: LUN Masking Standard Dependencies
Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.1 DMTF
CIM Schema 2.8 Preliminary DMTF
7.3.3.15.3 Profile Dependencies

233

7.3.3.15.4 CIM Server Requirements

7.3.3.15.4.1 Functional Profiles

SNIA Storage Management Initiative Specification

Table 119: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

YES Basic Write Basic Read

YES Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation

YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation

YES Indication None

7.3.3.15.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the LUN Masking and Mapping Subprofile.

7.3.3.15.4.3 Discovery

The LUN Masking and Mapping subprofile, as currently defined, is not an advertised subprofile .
Support for it can be discovered through the Server profile.

7.3.3.15.5 Instance Diagrams

7.3.3.15.5.1 Overview

Given a storage system with no LUN masking or mapping, all hosts/initiators see the same
elements when they discover a storage system. LUN masking and mapping interfaces allow an
administrator to customize the “view” of elements that are discovered. The effect is that the real
storage system appears to be a number of smaller virtual storage systems - each virtual storage
system exposing a view customized for a particular set of initiators.

The management model is built on these “views” of a storage system — each view is a subset of
components the administrator exposes to certain hosts — and the classes that model the
authorization and access rights.

The model uses three basic types of objects:

LogicalDevice, the superclass of volumes and tape drives

+ ProtocolController, the superclass for controllers of various protocols - models the “view”
described above.

+ ProtocolControllerForUnit associates a ProtocolController with its LogicalDevices;
the controller-relative address (such as a SCSI Logical Unit Number) is modeled as the
DeviceNumber property of ProtocolControllerForUnit.

+ ProtocolControllerForPort associates a controller to one or more LogicalPorts.

+ LogicalPort, the superclass of target ports for various transports.

234

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.15.5.2 Protocol Controllers

Each ProtocolController is an implied namespace (or ‘view”) for LogicalDevices. The
ProtocolControllerForUnit.DeviceNumber property represents the name of the LogicaDevice in
the ProtocolController's namespace For SCSI protocol storage, the name i1s the Logical Unit
Number.

In this subprofile, the existence of an ControllerConfigurationService with a ConcreteDependency
association to a ProtocolController governs the high-level device mapping policy for that protocol
controller.

« If the service does not exist, then regardless of host port, the policy is that
ProtocolControllerForPort connects a ProtocolController associated to a LogicalPort.

« If it is present, then for a particular host port, the policy is that ProtocolControllerForPort
connects a ProtocolController to a LogicalPort only when access is explicitly granted to either
the ProtocolController or the associated LogicalPort for that particular host port.

In certain hardware implementations (such as 1SCSI), it may be necessary to model a
ProtocolController that represents a single named device with multiple associated LUN Masking/
Mapping SCSIProtocolControllers. This is modeled using another ProtocolController with
AssociatedProtocolController associations to the LUN Masking/Mapping SCSIProtocolControllers.

Figure 45 and Figure 46 depict an instance diagram of a generic storage system with dual-port
access to four logical devices. Figure 45: "Generic System with no ConfigurationService" depicts
an implementation with no device masking services. All of the LogicalDevices are exposed to all
initiators with the same DeviceNumber and read-write access rights.

Figure 45: Generic System with no ConfigurationService

1
’—ProtocoIControIIerForPort*‘ ProtocolControllerForUnit [| ogicalDevice
\ \ A
: LI
LogicalPort ProtocolController ‘
\
|]

ProtocolControllerForU nit:l"
L

\— ProtocolControllerForPort J

Figure 46: "Generic System with ControllerConfiguration Service" depicts the same configuration
in an implementation with an ControllerConfigurationService defined. In this case, access to the
ProtocolController is denied to each host port unless it is specifically granted access. The means to
grant access is discussed in “Authorization and Access Rights” on page 236.

Figure 46: Generic System with ControllerConfiguration Service

ControllerConfigurationService

T
ConcreteDependency

ProtocolControllerForPort —| | —|| LogicalDevice

LogicalPort ProtocolController

ProtocolControllerForUnit

I—ProtocoIControII-:-;rForPort _ l !

Version 1.0.1 235

SNIA Storage Management Initiative Specification

7.3.3.15.5.3 ProtocolController Views

Device Masking limits the devices seen by particular host HBAs. For example, some hosts may see
two of four LogicalDevices, other hosts may see no LogicalDevices, and yet other hosts may only
see LogicalDevices through a subset of target ports.

Device Mapping allows the same LogicalDevice to be assigned different DeviceNumber (LUN) as
seen by different host HBAs. This would allow each of four LogicalDevices to appear to be Logical
Unit zero to four different hosts.

An initiator sees a single view (controller) through a target port. This view includes LogicalDevices
exposed with different access rights (read-write vs. read-only) and also includes “promiscuous”
LogicalDevices (that are exposed to all initiators). If the hardware supports rules to deny access to
specific initiators, then the view reflects the results of applying these rules.

An administrator can use the ControllerConfigurationService interfaces to create “views”
(SCSIProtocolControllers) of a storage system — each view exposes a subset of components that are
intended to behave as a cohesive virtual storage system. In particular,

a. aview:
1) 1is associated with a set of LogicalDevices;
2) MAY be exposed to zero or more host ports;

3) MAY NOT be exposed through a particular host / target port pair that is in use by
another view.

b) each LogicalDevice in a view:
1) MUST have a unique DeviceNumber (LUN);
2) MAY have different access rights;

¢) a LogicalDevice MAY be in multiple views, and in each MAY be assigned:
1) the same or different DeviceNumbers (LUNs);

2) the same or different access rights;
A view MUST conform to the protocol requirements of the ProtocolController it virtualizes. For
instance, if it models SCSI hardware, then the Device Numbers assigned to devices MUST conform
to the LUN assignment rules of SCSI.

7.3.3.15.5.4 Authorization and Access Rights

236

. The array uses the Port WWN to authorize access and to determine the view to present to the
HBA. The Port WWN is modeled as a subclass of Identity (part of the User and Security common
model) called StorageHardwarelD. The permissions are modeled with the existing Privilege class.
As used in this subprofile, AuthorizedSubject associates a Privilege with a StorageHardwarelD or
a SystemSpecificCollection of StorageHardwarelDs. As used in this subprofile, AuthorizedTarget
associates a Privilege with either a ProtocolController (view) or a LogicalDevice.

An implementation is not required to model the SystemSpecificCollection; however for hardware
implementations that allow customers to name initiator collections, this collection provides a way
to model that name. Clients should be able to operate with implementations that include or omit

Version 1.0.1

SNIA Storage Management Initiative Specification

the SystemSpecificCollection. Throughout this section, the term “subject” refers to either a specific
StorageHardwarelD or a collection of StorageHardwarelDs as appropriate.

Figure 47: Authorization and Access Rights

StorageHardwarelD { StorageHardwarelD
Eiher directly
associatie
HardwarelDs | -
orusea \
collection MemberOfCollection

O
AuthorizedSubject SystemSpecificCollection

AuthorizedSubjectJ

S

Privilege

*]
ProtocolController AuthorizedTarget ———
W] ForPort *‘ ‘ . ProtocolController, - -
* ForUnit LogicalDevice
LogicalPort ProtocolController '

7.3.3.15.5.5 Device Access

In this subprofile, the existence of an PrivilegeManagementService with a ConcreteDependency
association to a ProtocolController governs the high-level access control policy for that controller. If
not existent, then the policy is that all access is assumed to be granted to all connected
LogicalDevices. If present, then the policy is that access is assumed to be denied to all connected
LogicalDevices unless explicitly granted as defined by this subprofile.

Default permissions for a subject to the LogicalDevices of a ProtocolController are specified by an
AuthorizedTarget, from a Privilege for that subject, to either the ProtocolController, or to a
LogicalPort associated with that ProtocolController.

If a particular LogicalDevice is granted or denied a different set of rights for a particular subject,
there is an additional Privilege associated directly to the LogicalDevice and to the subject. For
example, a LogicalDevice with read-only permissions to certain subjects is likely to also be exposed
with read-write permissions to other subjects.

Figure 48: "ProtocolController Default and Device Override Permissions" depicts a
ProtocolController with a default subject and Privilege to the left, and a model for overriding the

Version 1.0.1 237

SNIA Storage Management Initiative Specification

default subject/Privilege for one particular LogicalDevice “Use Case with volumes with different
permissions” is a use case that includes this device override model

Figure 48: ProtocolController Default and Device Override Permissions

AuthorizedTarge
t 1
1—ProtocoIControIIerForUnit(S—)—I priv 0:Privilege
vcO: Activities=Read
ProtocolController v 0:StorageVolume PrivilegeGranted=true
I AutnorizedSubjec
T i Al t
ProtocolController I_AuthonzedTarge_l I_ t
ForPort ProtocolControllerForUnit(1) - . .
] priv 1:Privilege pwwno:
LogicalPort — . HardwarelD
Activities=Read,Write
v 1:StorageVolume PrivilegeGranted=true HBAWWN
ProtocolController AuthorizedSubjec
FOI’!:’OI't ProtocolControllerForUnit(0) t
vel: priv2:Privilege pwwn1:
HardwarelD
ProtocolController AuthorizedTarge Activities=Read,Write
t PrivilegeGranted=true HBAWWN

7.3.3.15.5.6 Rules to Deny Access

Some hardware implementations support rules to deny access to specific initiators. This type of
rule allows an administrator to expose a LogicalDevice to all initiators, then deny access to just
those HBAs on a host that do not interoperate well with the majority.

Providers should merge these deny rules into the views. The list of “deny rules” is exposed with
this model. The rights being denied can be set in Privilege.Activities. For example, an initiator
could be denied read-write access, but allowed read-only access. The collection is optional; used
when the underlying implementation exposes an interface for denying access to groups of initiator
Ids.

When PrivilegeGranted is set to false, only the values in Activities property are denied.

Figure 49: Access Denial Model

r MemberOfCollection —, ’7 AuthorizedSubjectT ’—AuthorizedTargetﬁ

LogicalDevice

StorageHardwarelD SystemSpecificCollection Privilege

PrivilegeGranted=False

7.3.3.15.5.7 StorageClientSettingData

238

Some storage systems allow a customer (or host-side agent) to provide information about OS
hosting initiators. The storage system uses this information to provide OS-specialized behavior
(for example, SCSI responses). This information is modeled as StorageClientSettingData.
StorageClientSettingData.ClientTypes|[] is an array of OS names. This array property allows a
single StorageClientSettingData instance to apply to multiple OS Types.

The instrumentation SHOULD provide a meaningful name for each StorageClientSettingData
instance; typically this will be names already exposed via existing management tools and
documentation.

StorageClientSettingData instances are not created by clients; any storage system that provides
OS type behavior advertises these instances (via Enumeratelnstance and Getlnstance) and

Version 1.0.1

SNIA Storage Management Initiative Specification

associates them (using ElementSettingData) with elements previous configured with the setting
behavior.

A client can associate StorageHardwareIlDs to a StorageClientSettingData instance (when a
customer or host agent maps an initiator to an OS type). This is done by specifying the Setting
parameter to CreateStorageHardwarelD). A client can also associate an StorageClientSettingData
Instance to a storage system element (such as a Port, a ProtocolController, or a Volume) to request
that this element exhibit the setting-specific behavior

Figure 50: Initiator Setting Data Example
3 StorageHardwerel D StorageHardwarelD
S ID='5100123412341237" StorageHard | D=5100123412341255"
il oy Lestiliakosloseiiin ID2 5100123124126 |
ID='5100123412341234] BementSetti BementSettingData
BemertSetingDeta BementSettingDeta
BermentSettingDat
BementSettingDeta | |
StorageClientSettingDeta StorageClientSettingDeta
Cliert Types[[2AIX., E'Sgtm Bemert | GiertTy pesf]=2\Windons”
"Solaris" "Solaris” E— |rg—‘ ’7 Setting—
Dia Deia
Aray:
| | el | |
HementSattingDat HlementSettingDeta HementSettingDat: Bement SettingData
l | l |
FCPort FCRort FCPort FCRurt

Version 1.0.1 239

SNIA Storage Management Initiative Specification

7.3.3.15.5.8 The Entire Model

AuthorizedSubject

Figure 51: Entire Model

— | StorageHardw arelD N

ConcreteDependency — StorageHardw arelD
|| ManagementService

T T ,—
1 T
T

MemberOfCollection

ConcreteDependency

SystemSpecificCollection CIM_ProtocolController
* MaskingCapabilities |
AuthorizedSubject
* . Privilege
Privilege
g * ConcreteDependenc — ManagementService Hosted
LogicalPort) y Service
*| * AuthorizedTarge
t * Element
AuthorizedTarget Capabilities
* Prot Controll * | LogicalDevice |
rotocolController
{ ProtocolController (e.qg. StorageVolume)
ForPort * * | HostedService
ProtocolController *
Associated ForUnit
ProtocolController ConcreteD nden
oncretebepende Cly ——HostedService ——
ComputerSystem

CIM_StorageClient
SettingData

ControllerConfigurationService

l ElementSettingData —]

HostedCollection

7.3.3.15.6

7.3.3.15.7

Durable Names and Correlatable IDs

The LUN Mapping and Masking subprofile uses the durable names/correlatable ID for ports and
logical devices as defined by the parent profile. In addition, the subprofile adds the following
durable name:

+ StorageHardwarelD - StorageHardwarelD.StoragelD and the
StorageHardwarelD.IDType. The valid IDTypes are:

« "PortWWN" - 16 unseparated upper case hex digits
« "NodeWWN" - 16 unseparated upper case hex digits

+ "Hostname" - 32 unseparated upper case hex digits. This corresponds to the Platform
identifier is defined in FC-GS specifications.

Methods

7.3.3.15.7.1 ControllerConfigurationService methods:

240

CreateProtocolControllerWithPorts creates a ProtocolController that is used as an
AuthorizedTarget. If multiple target ports are passed in, all expose the same view (i.e., the same
devices with the same unit numbers and permission.) This method does not create the port
instances, but does create ProtocolControllerForPort associations between the ports and the new
ProtocolController. The new ProtocolController is weak to the same System as the
ControllerConfigurationService.

Version 1.0.1

SNIA Storage Management Initiative Specification

Uint32CreateProtocolControllerWithPorts (

The string to be used in the ElementName of the new
ProtocolController.
string ElementName

Array of strings containing representations of references to
instances of CIM LogicalPort (or subclass) instances. This
is the list of target ports that are associated to the
ProtocolController. ProtocolControllerForPort associations
are created by the instrumentation associating the new
ProtocolController to these ports. If this parameter is
null, then all ports in the storage system (this Service's
'scoping' System and all its ComponentCS Systems) are
attached to the new ProtocolController.

string Ports []

The protocol type for the new ProtocolController.
Uintl6 Protocol

The use of this property is not defined in SMI 1.0.
string Privileges []

The use of this property is not defined in SMI 1.0.
string Identities []

A reference to the new ProtocolController that is created.
CIM ProtocolController REF ProtocolController

DeleteProtocolController deletes the ProtocolController and all associations connected directly
to this ProtocolController. If the DeleteChildrenProtocolControllers parameter is True, the
provider also deletes child ProtocolControllers (those at the dependent end of
AssociatedProtocolController associations from this ProtocolController) plus all child
ProtocolControllers' direct associations. If the DeleteLogicalUnits parameter is True, the provider
also deletes LogicalDevice instances associated via ProtocolControllerForUnit to this
ProtocolController and its children. LogicalDevice instances are only deleted when they are not
part of any ProtocolControllerForUnit associations.

Uint32DeleteProtocolController (

The ProtocolController to be deleted.
CIM ProtocolController REF ProtocolController

If true, the management instrumentation provider will also

delete 'child' ProtocolControllers (i.e., those defined as

Dependent references in instances of

AssociatedProtocolController where this ProtocolController

is the Antecedent reference). Also, all direct associations

involving the 'child' ProtocolControllers will be removed.
boolean DeleteChildrenProtocolControllers

If true, the management instrumentation provider will also
delete LogicalDevice instances associated via
ProtocolControllerForUnit, to this ProtocolController and
its children. (Note that 'child' controllers will only be
affected if the DeleteChildrenProtocolControllers input
parameter is TRUE). LogicalDevice instances are only deleted
if there are NO remaining ProtocolControllerForUnit
associations, to other ProtocolControllers.

boolean DeleteUnits

)

AttachDevice associates a LogicalDevice subclass to a ProtocolController. The provider MUST
verify that unit numbers are unique for each initiator. When the ProtocolController is already part

Version 1.0.1 241

SNIA Storage Management Initiative Specification

of an AuthorizedTarget association, the provider should update the access configuration in the
underlying hardware when AttachDevice is called.

Uint32AttachDevice (

The ProtocolController instance.

CIM ProtocolController REF ProtocolController
The LogicalDevice instance to attach.

CIM LogicalDevice REF Device
The number assigned to
ProtocolControllerForUnit.DeviceNumber (if supported by the
hardware). Hardware support is indicated by
StorageMaskingCapabilities.ClientSelectableDeviceNumbers) .
If the hardware does not support setting the number, but the
DeviceNumber has not been established in an existing
ProtocolControllerForDevice subclass, then this parameter's
value will be used. If the DeviceNumber has been
established, then the current number will be reused.

string DeviceNumber

DetachDevice removes the ProtocolControllerForDevice association subclass between the
ProtocolController and device.

Uint32DetachDevice (

The ProtocolController instance.
CIM ProtocolController REF ProtocolController

The LogicalDevice instance to detach.
CIM LogicalDevice REF Device

7.3.3.15.7.2 PrivilegeManagementService methods

AssignAccess associates a subject ManagedElement and a target ManagedElement. If necessary,
a Privilege instance is created using the settings in the method parameter.

Uint32AssignAccess (

The Subject parameter is a reference to a ManagedElement

instance that will be associated via AuthorizedSubject to

the Privilege.
CIM ManagedElement REF Subject

The PrivilegesGranted flag in the new/existing Privilege.
boolean PrivilegeGranted

The activities granted in the new/existing Privilege.
Uintl6 Activities []

The activity qualifiers set in the new/existing Privilege.
string ActivityQualifiers []

The qualifier formats set in the new/existing Privilege.
Uintl6 QualifierFormats []

The Target parameter is a reference to a ManagedElement that

will be associated via AuthorizedTarget to the Privilege.
CIM ManagedElement REF Target

Reference to the Privilege used or created.
CIM Privilege REF Privilege

242 Version 1.0.1

SNIA Storage Management Initiative Specification

RemoveAccess This method revokes all privileges or the specified Privilege for a named target/
subject. If a Privilege reference is supplied, then this method acts only on that specific Privilege,
otherwise, all Privilege instances associated with the named subject/target are affected by the
operation. If a Privilege instance is left with no target associations, it is deleted.

Uint32RemoveAccess (

The Subject parameter is a reference to a ManagedElement
instance for which privileges will be revoked.
CIM ManagedElement REF Subject
A reference to the Privilege to be revoked.
CIM Privilege REF Privilege
The Target parameter is a reference to a ManagedElement
associated via AuthorizedTarget to Privilege instances.
CIM ManagedElement REF Target

7.3.3.15.7.3 StorageHardwareIDManagementService methods:

CreateStorageHardwareID creates a StorageHardwareID and the association
CIM_ConcreteDependency between this service and the new StorageHardwarelD.

Uint32CreateStorageHardwarelID (
The ElementName of the new StorageHardwareID instance.
string ElementName

StorageID is the value used by the SecurityService to
represent identity - in this case, a hardware worldwide
unique name.
string StoragelD
The type of the StoragelID property.
Uintl6 IDType
The type of the storage ID, when IDType is 'Other'.
string OtherIDType
REF to the StorageClientSettingData containing the OSType
appropriate for this initiator. If left NULL, the
instrumentation assumes a standard OSType - i.e., that no
OS-specific behavior for this initiator is defined.
CIM StorageClientSettingData REF Setting
REF to the new StorageHardwareID instance.
CIM StorageHardwareID REF HardwareID

)

DeleteStorageHardwarelID deletes a StorageHardwareID and the ConcreteDependency
association between the ID and the service.

Uint32DeleteStorageHardwareID(
CIM_StorageHardwareID REF HardwarelD

7.3.3.15.8 Client Considerations

7.3.3.15.8.1 Client Discovery Algorithms

a. Creating a ProtocolController “view” with mixed permissions

A client can expose a combination of read-only and read-write units through a single
ProtocolController by associated one Privilege with a ProtocolController, and associating a
different Privilege directly to specific LogicalDevices (volumes). In order to assure that the

Version 1.0.1 243

244

SNIA Storage Management Initiative Specification

appropriate access is exposed in complex configurations, the client MUST associate the Privilege
with the lesser permissions (Activities[]J="Read”) to the ProtocolController and the greater

-

permissions (Activities[]="Read”,Write”) with the LogicalDevices(volumes).

b) Determining the permissions of a LogicalDevice for a subject StorageHardwareID

For the case where the Privilege for the subject in question is associated directly with the
LogicalDevice, the permissions are those of the associated Privilege. For the case where a Privilege
for a particular subject is not directly associated to the LogicalDevice, then AuthorizedTarget
associations need to be chased down to Privilege instances to Subjects via AuthorizedSubject until
a match on subject is found. Privileges with PrivilegeGranted=True should be evaluated first, then
Privileges with PrivilegeGranted=False are applied.

Privilege[] = Associators(StorageHardwarelD, AuthorizedSubject)
For each Privilegel[i]
LogicalDevice[j] = Associators(Privilege[i],AuthorizedSubject)
If any matching LogicalDevice
Return matching Privilege[j]s
Endif
EndFor
SCSIProtocolControllers[k] = Associators(LogicalDevice, ProtocolControllerForUnit)
For each ProtocolController[k]
Privilege[i] = Associators(ProtocolController[k], Authorized Target)
For each Privilege[i]
StorageHardwarelID[j] = Associators(Privilege[i],AuthorizedSubject)
If any matching StorageHardwarelD
Return matching Privilege[j]s
Endif
EndFor
Port[1] = Associators(ProtocolController[k], ProtocolControllerForPort)
For each Port[1]
Privilege[i] = Associators(Port[1], AuthorizedTarget)
For each Privilege[i]
StorageHardwarelID[j] = Associators(Privilege[i],AuthorizedSubject)
If any matching StorageHardwarelD
Return matching Privilege[j]s
Endif
EndFor
EndFor
EndFor

¢) Determining which target ports a view is exposed through
Follow the ProtocolControllerForPort associations from a ProtocolController to Ports.

d) Determining which LogicalDevices (and permissions) are exposed to a subject

Follow the AuthorizedSubject associations to all Privileges with PrivilegeGranted set to True.
Follow AuthorizedTarget associations. A target LogicalDevice is exposed; for a target
ProtocolController, all LogicalDevices connected via ProtocolControllerForUnit are exposed.

e) Finding the next available SCSI Logical Unit Number

Version 1.0.1

SNIA Storage Management Initiative Specification

Use the algorithm above to determine exposed LogicalDevices and create a list of
ProtocolControllerForUnit.DeviceNumbers. DeviceNumbers missing from this list (up to
ProtocolController.MaxUnitsControlled) are available.

f) Finding unexposed LogicalDevices

Enumerate appropriate subclasses of LogicalDevices (for example, StorageVolume) with
SystemDevice associations to the appropriate ComputerSystem and follow
ProtocolControllerForUnit associations. If a LogicalDevice has no ProtocolControllerForUnit
association then it has not been exposed to a subject.

7.3.3.15.8.2 Use Cases

7.3.3.15.8.2.1 Overview

The first few use cases show what a client would discover in certain configurations. The
configuration consists of a single FibreChannel port array with four volumes. If the array had no
LUN masking in place, the basic components would be port, controller, and volumes as depicted in
Figure 52: "Simple StorageVolume Model"

The notation ProtocolControllerForUnit(n) is used as a shorthand for a ProtocolControllerForUnit
instance with DeviceNumber set to n

Figure 52: Simple StorageVolume Model

ProtocolController [

ForPort | Proto;ol(&oqtroller | StorageVolume
orUni
FCPort SCSIProtocolControllef — T H

—

Version 1.0.1 245

SNIA Storage Management Initiative Specification

7.3.3.15.8.2.2 Use Case 1 - Two Views, DeviceNumber Overlap

In Use Case 1, there are two views, each including two LogicalDevices exposed to two different
HBAs. The HBA Port WWNs are properties of the StorageHardwarelID instances. Either view
exposes Logical Unit Numbers 0 and 1; but map to different volumes.

Figure 53: Two view/Two LogicalDevice Use Case

St Hard D StorageVolume
orageriardw are ProtocolController M 9
ForUnit(0)

I ProtocolController H T

AuthorizedSubject ForUnit(1) T
Priviledge SCSIProtocolController
|—AuthorizedTarget J | ProtocolController
ProtocolControllerForPort ForUnit(0)

StorageHardw arelD | FCPort |

ProtocolController
] ForUnit(1)

T ProtocolControllerForPort
AuthorizedSubject |

Priviledge SCSIProtocolController
|—AuthorizedTarget J

7.3.3.15.8.2.3 Use Case 2 - Volume in multiple views

In this use case there are two initiators accessing three volumes. Initiator “A” accesses volumes 0
and 1, and initiator “B” accesses volumes 0, 1 and 2. There are two Views - one for each unique
access combination. Volumes 0 and 1 have multiple ProtocolControllerForUnit associations. Note:
there can be more than one initiator associated to the Privilege object, but all those initiators
access the same set of volumes.

246 Version 1.0.1

SNIA Storage Management

Initiative Specification

The fact that initiator “B” wanted access to a different set of volumes than initiator “A” resulted in
the need for another Privilege instance.

AuthorizedTarge

t

VC1:

Figure 54: Volume used in multiple views

priv 0:Priviledge

AuthorizedSubjec

Activities=Read
PriviledgeGranted=True

t

pwwnO:
HardwarelD

ProtocolControllerForPort

I

FCPort

P

ProtocolControllerForPort
|
VC2:
SCSIProtocolControlle

SCSIProtocolControllef———
ProtocolControllerF orUnit(Q)

v 0:StorageVolume

PermissionsperlD/Ctrl
pwwn0:VC1:Read

rotocolControllerForUnit(1)

ProtocolControllerForU ni’((G)-)—|

v 1:StorageVolume

ProtocolControllerForUnit(1)

AuthorizedTarge
t

]

ProtocolControllerForUnit(2)

v 2:StorageVolume

_—

— |

1 pwwn1:VC2:Read/Write

PermissionsperlD/Ctrl
pwwn0:VC1:Read
pwwn1:VC2:Read/Write

PermissionsperlD/Ctrl
pwwn1:VC2:Read/Write

priv 1:Priviledge

AuthorizedSubjec

Activities=Read,Write
| PriviledgeGranted=True

S t J—

pwwn1:
HardwarelD

7.3.3.15.8.2.4 Use Case with a Deny Privilege

A volume 1s exposed read-write to the world. But one particular subject is denied access. This
subject may be running a driver or OS that does not interoperate.

Figure 55: Use Case with a Deny Privilege

vcO:
SCSIProtocolController

t

ProtocolControllerForPor

FCPort

ProtocolControllerForPor

ProtocolControllerForUnit

AuthorizedTarge

aciO:Priviledge

Activities=Read, Write
PriviledgeGranted=True

LAuthorizedSubjec_

t

v 0:StorageVolume

tProtocoIControIIerForU nit

vcl:
SCSIProtocolController

t

AuthorizedTarge

AuthorizedSubjec
t

wildcard:
HardwarelD

pwwnO:
HardwarelD

aci1:Priviledge

Activities=Read,Write
PriviledgeGranted=False

Version 1.0.1

247

7.3.3.15.8.2.5

SNIA Storage Management Initiative Specification

Use Case with volumes with different permissions

In this use case, two hosts access two volumes. There is single path access to the volumes.

+ Host A (with HBA pwwnO) has v0 as LU number 0 read-write.

Host B (with HBA pwwnl) has v1 as LU number 0 read-write.

+ Host A also has read-only access to volume v1 - and sees it as LU number 1.

Figure 56: Volumes with Different Permissions

vcO:
SCSIProtocolController

FCPort

ProtocolControllerForPort

ProtocolControllerForUnit(1)

ProtocolControllerForUnit(0)—
— (0)

AuthorizedTarget———————

priv0:Priviledge

Activities=Read

PriviledgeGranted=True

v0:StorageVolume
\—AuthorizedSubject
‘ AuthorizedSubject ‘
AuthorizedTarget *‘
L priv1:Priviledge pwwnO:
HardwarelD
v1: StorageVolume Activities=Read,Write
9 PriviledgeGranted=True HBA WWN

—

ProtocolControllerForPort ProtocolControllerForUnit(0)

vel:
SCSIProtocolController

—— AuthorizedSubject—‘

— priv2: Priviledge pwwn1:
AuthorizedT t HardwarelD
Y OHZ? arge Activities=Read,Write

PriviledgeGranted=True HBA WWN

Recipes

// DESCRIPTION
// Get a ControllerConfigurationService CIMObjectPath for a
// StorageSystem

Recipes for General Functions

. Get a ControllerConfigurationService CIMObjectPath for a StorageSystem

// PRE-EXISTING CONDITIONS AND ASSUMPTION

The Storage System of interest has previously been identified

and defined in the $StorageSystem-> variable.

/I Step 1: Get the ControllerConfigurationService that is associated to

the Storage System.

$ControllerConfigurationService->[] = AssociatorNames(

$StorageSystem->,
“CIM_HostedService”,

“CIM_ControllerConfigurationService”,

null,
null);

/I Assume one ControllerConfigurationService per storage system

$ControllerConfigurationService-> = $ControllerConfigurationService->[0];

7.3.3.15.9
7.3.3.15.9.1
7.3.3.156.9.1.1
1l
/1.
1l
1l
248

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.15.9.1.2 Finding a Service

7.3.3.15.9.1.3 // DESCRIPTION
/I The following is used to find the proper service associated with an

// object (usually a ComputerSystem). It returns the object path of the
I service so the client can invoke its methods.

I

/I PRE-EXISTING CONDITIONS AND ASSUMPTION

/[1.there is only one service of a given name for an object. Since

/[Service.Name is one of the keys, this is a reasonable assumption.

sub CIMObjectPath FindService(
CIMObjectPath AnObject->,
string AServiceName)

{
CIMODbjectPath $theService

// Find all services with this name that are associated to this
/l object via the HostedService association

$ServiceList ->[| = AssociatorNames(

AnObjectName->,

“HostedService”, // Association Class

AServiceName, // Class name to find

“Antecedent”, // Role

“Dependent”) // ResultRole

if ($ServiceList ->[] is not empty)

$theService-> = $ServiceList ->[0]

return $theService->
tDetermining the capabilities for this array

// DESCRIPTION
// Since arrays have different capabilities, ProtocolControllerMaskingCapabilities can be

// used to determine features supported. A client can then use that

Version 1.0.1 249

SNIA Storage Management Initiative Specification

// information to adjust the way it does LUN Masking to make the best
// use of the array’s features.

/1

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//'1. The CIM Object Path for the Storage system (StorageSystem) of

/ interest has been identified and defined in $StorageSystem->

$Capabilities[] = Associators(
$StorageSystem->,
“ElementCapabilities”,
“ProtocolControllerMaskingCapabilities”,
“ManagedElement”,// source object role
“Capabilities”) // resulting object role
$TheCapabilities = $Capabilities[0]

// Current values uintl6 values 2,3,4, which map to

/1 “PortWWN” | “NodeWWN” | and “Hostname”

// Only 2 (“PortWWN™) is used at present in the recipes below
#HardwareldTypes[] = $TheCapabilities.GetProperty(“ValidHardwareId Types”);

// Possible values: true, false

// If false, then the storage system always grants access to

// initiators identically through all storage system ports.

// If this were set to false, then in

// ControllerConfigurationService.CreateProtocolControllerWithPorts()

// 'you would pass in all the Ports to the function

// Otherwise you would normally pass in a single port

$AccessControlByPorts =
$TheCapabilities.GetProperty(“AccessControlByPorts™);

// Possible values: true, false

/I If true, the storage system allows the client to specify the

// DeviceNumber parameter when calling AttachDevice() on

// ProtocolController instances.

// If false, the implementation will ignore the DeviceNumber value
#ClientSelectableDeviceNumbers =

$TheCapabilities.GetProperty(“ClientSelectableDeviceNumbers™)

// Possible values: true, false
// Set to true if this storage system limits configurations
// to a single port per view. Otherwise, multiple ports can be included.
// The default is FALSE, that multiple ports may be included in a single view.
#OnePortPerView =
$TheCapabilities.GetProperty(“OnePortPerView”)

250 Version 1.0.1

SNIA Storage Management Initiative Specification

// Possible values: true, false

// Set to true if this storage system limits configurations to

// a single subject hardware ID per view. Otherwise, multiple hardware

//' 1D types can be used. The default is FALSE, that multiple ID types

// may be used in a single view.

#OneHardwareIDPerView =
$TheCapabilities.GetProperty(“OneHardwareIDPerView”)

// Possible values: true, false

/I Set to true if this storage system supports the AttachDevice method.

#AttachDeviceSupported =
$TheCapabilities.GetProperty(“AttachDeviceSupported”)

// Possible values: true, false

// When set to false, different ProtocolContollers attached

// to a LogicalPort can expose the same unit numbers. If true,

// then this storage system requires unique unit numbers across all

// the ProtocolControllers connected to a LogicalPort.

#UniqueUnitNumbersPerPort =
$TheCapabilities.GetProperty(“UniqueUnitNumbersPerPort)

// Possible values: true, false

// Set to true if this storage system allows a client to create

// a Privilege instance with PrivilegeGranted set to FALSE.

#PrivilegeDeniedSupported =
$TheCapabilities.GetProperty(“PrivilegeDeniedSupported™)

7.3.3.15.9.2 Define a permissions view (ProtocolController)
// DESCRIPTION
// Define a permissions view (ProtocolController)
/1
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The name of the ProtocolController to create has previously been
/1 decided to be named #ControllerName.
//2. An array of target FCPorts to expose the view through has
I previously been decided as $Port->[].
//'3. An array of target LogicalDevices to associate the view with has
/ previously been decided as $LogicalDevices->[].
/4. An array of device numbers for the LogicalDevices in this view,
/ which correspond with the values in $LogicalDevices->[], has

/ previously been decided as #deviceNumbers|[].

// Step 1: Get the ControllerConfigurationService that is associated to
I the Storage System.
@{Get a ControllerConfigurationService CIMObjectPath for a StorageSystem }

Version 1.0.1 251

SNIA Storage Management Initiative Specification

// Step 2: Use the ControllerConfigurationService’s

/ ‘CreateProtocolController’ method to create the view (i.c. to
/1 create the ProtocolController object). Pass in the desired Ports
/ and Controller name for the view as arguments to the extrinsic
/ ‘CreateProtocolController’ method.

%InArguments[“ports”] = $Port->[];
%InArguments[‘“name”] = #ControllerName;
invokeMethod(
$ControllerConfigurationService->,
“CreateProtocolController”,
%InArguments|],
%OutArguments|]);

$ProtocolController-> = $OutArguments[“ProtocolController’];

// Step 3: Iterate through the LogicalDevices that will be exposed

/ through this view.
for $i in $LogicalDevices->]]
{
// Step 3.1: Attach the LogicalDevice to the view by invoking
/I the ControllerConfigurationService’s ‘AttachDevice’
// extrinsic method. Pass in as arguments to the method:
/" the CIMObjectPath reference to the ProtocolController
/I (view), the CIMObjectPath reference to the LogicalDevice,
// and the ‘DeviceNumber’ String.
$InArguments[“ProtocolController”’] = $ProtocolController->;
%InArguments[“LogicalDevice”] = $LogicalDevices->[#i];
%InArguments[“DeviceNumber”] = #deviceNumbers[i];
invokeMethod(
$ControllerConfigurationService->,
“AttachDevice”,
Y%InArguments| |,
%OutArguments|]);
H

7.3.3.15.9.3 Remove a permissions view
// DESCRIPTION
// Remove a permissions view
//
// PRE-EXISTING CONDITIONS AND ASSUMPTION
//'1. The CIMObjectPath of the Controller view to be removed is

// $controller->.
// Step 1: Get the ControllerConfigurationService that is associated to

I the Storage System.
@{Get a ControllerConfigurationService CIMObjectPath for a StorageSystem }

252 Version 1.0.1

SNIA Storage Management Initiative Specification

// Step 2: Use the ControllerConfigurationService’s

/ ‘DeleteProtocolController’ method to delete the view (i.e. to

/1 remove the ProtocolController object). Pass in the CIMObjectPath
/1 reference to the ProtocolController as an argument to the

/ extrinsic ‘DeleteProtocolController’ method.

%InArguments[“ProtocolController”’] = $controller->
invokeMethod(
$ControllerConfigurationService->,
“DeleteProtocolController”,
%InArguments| |,
%OutArguments|]);

7.3.3.15.9.4 Define initiator authorization for a storage volume (read, read/write, none)
// DESCRIPTION
// This recipe will use the AuthorizationService to define which
// initiators (specified as Port HBA WWNGs) are allowed access to one or
// more StorageVolumes connected to a ProtocolController. It assumes
// that the mapping of the StorageVolumes to ProtocolController has
// already been done.
/1
// PRE-EXISTING CONDITIONS AND ASSUMPTION
//'1. Namespace has been identified and defined in the $NameSpace

/ variable
// 2. The CIM Object Path for the Storage system (ComputerSystem) of
I interest has been identified and defined in $StorageSystem->

//'3. The storage volumes to use have been identified and their CIM

/ Object Paths saved as $StorageVolume->[]

/4. The SCSIProtocolControllers have been identified and their CIM
// Object Paths saved as $ProtocolController->[]

//'5. The HBA Port WWNs have been identified and stored as strings in
/! the array variable #wwns[] (format is as specified in SMIS)

// Step 1: Locate the StorageHardwarelDService for this ComputerSystem
$StorageHardwareIDService-> = FindService(
$StorageSystem->,

“StorageHardwareIDService”)

// Step 2: Create Hardware IDs for each initiator WWN. This also creates

/ the association ConcreteDependency between this service and the
I new StorageHardwarelD.

For #x in #wwns] |

{

%InArguments[“ID”] = #wwn[#x]

Y%InArguments[“IDType”] =2 // 2 = PortWWN format

returnCode = InvokeMethod(
$StorageHardwareIDService->,

“CreateStorageHardwarelD”,

Version 1.0.1 253

254

SNIA Storage Management Initiative Specification

Y%InArguments[],
%OutArguments[])

// Step 3: Build a list of CIM object paths for WWN StorageHardwarelDs
/ just created. This is not needed if CreateStorageHardwareID
/1 returned StorageHardwareID object path

$StorageHardwareID[] = EnumlInstances(“StorageHardwareID”, true)

// Build a set of just our WWN5s
for #x in $StorageHardwareIDJ]

{
hwID = GetProperty($StorageHardwareID[#x], “ID”)
if (! contains(hwID, #wwns[]))
{
delete $StorageHardwareID[x]
}
b

// An alternative to steps 2 and 3 is to create the StorageHardwareIDs

// and then call CreateHardwareIDCollection and

/I AddHardwareIDsToCollection to associate the StorageHardwareIDs to the
// collection via the MemberOfCollection association. The client can

// then use the SystemSpecificCollection instead of the

// StorageHardwarelDs array in the steps below.

// Step 4: Find the Controllers associated to the storage volume
$Controllers[] = Associators(
$StorageVolume->,
“ProtocolControllerForUnit”
null,
null,
“Antecedent”,
false,
false,
false,
null)

/I Step 5: Find the AuthorizationService for this ComputerSystem
$ AuthorizationService-> = FindService(
$StorageSystem->,

“AuthorizationService”)

// Step 6: Create a Privilege instance
$Privilege = newInstance(
“Privilege”,

#NameSpace)

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.15.9.5

Version 1.0.1

// Now set the permissions
$Privilege.setProperty(

“Activities”,

[‘Read’, ‘Write’])
$Privilege.setProperty(“PrivilegeGranted”, [True])

Createlnstance($Privilege)

// Step 7: Assign access - links Privilege to Controller and

/! StorageHardwareIDs (WWN5s)

//' We need to convert the object paths into strings for InvokeMethod()
// No way to pass array of REFs

Array #ControllersAsStrings[] = {}

for #x in $SCSIProtocolControllers->]

{
#ControllersAsStrings.add(string($SCSIProtocolControllers->[#x]))

for #x in $StorageHardwareID->[]

{
%InArguments[“Subject”] = $StorageHardwarelD->[#x])
%InArguments[“AccessRights”] = $Privilege->
%InArguments|“Target”] = #ControllersAsStrings[]

H

returnCode = InvokeMethod(
$AuthorizationService->,
“AssignAccess”,
%InArguments|[],
%OutArguments|])

Deny initiator access for a storage volume
// DESCRIPTION
// This is a adjunct to a prior recipe. Now that we have access control
// set up. We can now use this recipe to restrict access from a
// particular initiator to a particular storage volume by creating a
// “Deny” rule. The client can then use the Client Discovery Algorithm
// to iterate through the “Allow” rules and “Deny” rules to find the
// actual permissions.
/1
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//'1. Initiator access has already been defined for a storage volume

/! (read, read/write, none) for two or more initiators
//2. The CIM Object Path for the Storage system (ComputerSystem) of
I interest has been identified and defined in $StorageSystem->

//'3. The storage volume to use has been identified as the CIM Object
/1 Path saved as $StorageVolume->

/4. The Controller(s) to deny access through have been identified as
// stored as $Controllers[]

255

SNIA Storage Management Initiative Specification

//'5. The CIM object path of the Hardware ID representing the HBA Port
/ WWN of the initiator is stored as the first element in the array
// $StorageHardwareID->[]

// Step 1: Find the AuthorizationService for this ComputerSystem
$ AuthorizationService-> = FindService(
$StorageSystem->,

“AuthorizationService™)

// Step 2: Create a Privilege instance
$Privilege = newlInstance(
“Privilege”,

#NameSpace)

// Now set the permissions
$Privilege.setProperty(“Activities”, [‘Read’, “Write’])
$Privilege.setProperty(‘“PrivilegeGranted”, [False])

CreateInstance($Privilege)

// Step 3: Assign access - links Privilege to Controller and

I StorageHardwareIDs (WWNs) Creates the “Deny” rule

/ We need to convert the object paths into strings for InvokeMethod()
/1 No way to pass array of REFs

Array #ControllersAsStrings[] = {}

for #x in $SCSIProtocolControllers->[]

{
#ControllersAsStrings.add(string($SCSIProtocolControllers->[#x]))

for #x in $StorageHardwareID->[]

{
%InArguments[“Subject”] = $StorageHardwareID->[]
%InArguments[“AccessRights”] = $Privilege->
%InArguments|“Target”] = #ControllersAsStrings[]

H

returnCode = InvokeMethod(
$AuthorizationService->,
“AssignAccess”,
%InArguments|[],
%OutArguments|])

7.3.3.15.9.6 Remove specific authorization for an initiator
// DESCRIPTION
// This recipe shows how to remove access that was assigned in another
I
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//'1. authorization has already been setup for the initiator in

256 Version 1.0.1

SNIA Storage Management Initiative Specification

Version 1.0.1

/ question by the prior grant of access

//2. The CIM Object Path for the Storage system (StorageSystem) of
/ interest has been identified and defined in $StorageSystem->
//'3. HBA Port WWN of the initiator is known and stored in $wwn

// Step 1: Find the CIM object path to the Initiator

$StorageHardwareID[] = EnumerateInstances(“StorageHardwareID”, true)

/I Go through the list to find a match for our WWN
for #x in $StorageHardwareIDJ]

{
#id = GetProperty($StorageHardwareID[x], “ID”)

#idType = GetProperty($StorageHardwareID[x], “IDType”)

if (#idType =2 && #id = #wwn)

{
// Save off the object path and we’re done
$Initiator-> = $StorageHardwareID[x]->
break;

/1 Step 2: Get the authorization service
$ AuthorizationService-> = FindService(
$StorageSystem->,

“AuthorizationService”)

// Step 3: Find the Privilege objects associated to this initiator
$Privileges[] = Associators(
$Initiator->,
“AuthorizedSubject”
null,
null,
“Antecedent”,
false,
false,
false,
null)

/I Step 4: We need to convert the object paths into strings for
/1 InvokeMethod()

Array #PrivilegesAsStrings[] = {}

for #x in $Privileges[]

{
#PrivilegesAsStrings.add(string($Privileges->[#x]))

// Step 5: Find Controllers associated to each initiator

257

SNIA Storage Management Initiative Specification

Array #ControllersAsStrings[]
Array $TheseControllers[]
for #x in $Privileges[]
{
$TheseControllers[] = Associators(
$Privilege[#x],
“AuthorizedTarget”,
null,
null,
“Antecedent”,
false,
false,
false,
null)
// Each Privilege could have multiple controllers associated
// with it,so we iterate through the list
for #y in $TheseControllers][]

{
#ControllersAsStrings.add(string($ TheseControllers->[#y]))

// Step 6: Remove access for that initiator
%InArguments[“Subject”] = $Initiator->
%InArguments[“Access”] = $PrivilegesAsStrings|[]
%InArguments[“Target”] = #ControllersAsStrings|[]
returnCode = InvokeMethod(
$AuthorizationService->,
“RemoveAccess”,
%InArguments[],
%OutArguments|])

7.3.3.15.9.7 Set the default access for a storage volume
// DESCRIPTION
/I A prior recipe shows how to set the access to a storage volume or
// volumes from a set of Initiators. This access can be overridden by
// specifying an additional Privilege object that is associated to a
// particular storage volume. The recipe below shows how to do just
// that. In this recipe, a wildcard StorageHardwarelD is used. This
// would indicate that any Initiator could access this volume. By
// placing the access control on the volume, it overrides any access
/I set by AssignAccess() to a ProtocolController.
/!
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
//'1. Namespace has been identified and defined in the #NameSpace
/ variable
//2. The CIM Object Path for the Storage system (StorageSystem) of

258 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.15.9.8

Version 1.0.1

/1 interest has been identified and defined in $StorageSystem->
//'3. The storage volume to use has been identified as the CIM Object

/ Path saved as $StorageVolume->

// Step 1: Create a wildcard StorageHardwareID (matches every initiator)

$WildcardID = newlInstance(“StorageHardwareID”, #NameSpace)

// Now set the permissions

$WildcardID.setProperty(“ID”, [**]) // Note: zero length string
$WildcardID.setProperty(“IDType”, [‘2’]) // Port WWN
Createlnstance($WildcardID)

// Step 2: Create a Privilege object
$Privilege = newlInstance(
“Privilege”,

#NameSpace)

// Now set the permissions
$Privilege.setProperty(“Activities”, [‘Read’, “Write’])
$Privilege.setProperty(‘“PrivilegeGranted”, [False])

CreateInstance($Privilege)

// Step 3: Setup the volume access
// By using the StorageVolume instead of Controllers, we override any
// access control settings via Controllers
%InArguments[“Subject”] = $WildcardID->
%InArguments[“AccessRights”] = $Privilege->
%InArguments[“Target”] = string($Storage Volume->)
returnCode = InvokeMethod(

$ AuthorizationService->,

“AssignAccess”,

%InArguments|[],

%OutArguments|])

Define a view for a SCSIProtocolController
// DESCRIPTION
// Define a view for a SCSIProtocolController
/!
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. The name of the SCSIProtocolController to create has previously
I been decided to be named #ControllerName.
//2. An array of target CIM_FCPorts to expose the view through has
// previously been decided as $Port->[].
//'3. An array of target CIM_LogicalDevices to associate the view with
/1 has previously been decided as $LogicalDevices->[].
/l'4. An array of device numbers for the LogicalDevices in this view,
I which correspond with the values in $LogicalDevices->[], has

/ previously been decided as #deviceNumbers]].

259

SNIA Storage Management Initiative Specification

// Step 1: Get the ControllerConfigurationService that is associated to
// the Storage System.
@{Get a ControllerConfigurationService CIMObjectPath for a StorageSystem }

// Step 2: Use the ControllerConfigurationService’s
/I ‘CreateProtocolController’ method to create the view (i.e. to create
// the SCSIProtocolController object). Pass in the desired Ports and
// Controller name for the view as arguments to the extrinsic
/I ‘CreateProtocolController’ method.
%InArguments[“ports”] = $Port->[];
%InArguments[“name”] = #ControllerName;
invokeMethod(
$ControllerConfigurationService->,
“CreateProtocolController”,
%InArguments] |,
%OutArguments|]);
$SCSIProtocolController-> = $OutArguments[“SCSIProtocolController’];

/I Step 3: Iterate through the LogicalDevices that will be exposed
/1 through this view.
for #i in $LogicalDevices->[]
{
// Step 3.1: Attach the LogicalDevice to the view by invoking
/I the ControllerConfigurationService’s ‘AttachDevice’
// extrinsic method. Pass in as arguments to the method:
/" the CIMObjectPath reference to the SCSIProtocolController
/- (view), the CIMObjectPath reference to the LogicalDevice,
// and the ‘DeviceNumber’ String.
%InArguments[“SCSIProtocolController”] =
$SCSIProtocolController->;
%InArguments[“LogicalDevice”] = $LogicalDevices->[#i];
%InArguments[“DeviceNumber”] = #deviceNumbers|[i];
invokeMethod(
$ControllerConfigurationService->,
“AttachDevice”,
%InArguments| |,
%OutArguments|]);

7.3.3.15.9.9 Remove a SCSIProtocolController View
// DESCRIPTION
// Remove a SCSIController View
/1
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. The CIMObjectPath of the SCSIProtocolController view to be removed is

// $controller->.

260 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.15.10

Version 1.0.1

// Step 1: Get the ControllerConfigurationService that is associated to
/1 the Storage System.
@{Get a ControllerConfigurationService CIMObjectPath for a StorageSystem}

// Step 2: Use the ControllerConfigurationService’s

// ‘DeleteProtocolController’ method to delete the view (i.e. to
/1 remove the SCSIProtocolController object). Pass in the

/ CIMObjectPath reference to the SCSIProtocolController as an
I argument to the extrinsic ‘DeleteProtocolController’ method.

%InArguments[“SCSIProtocolController”] = $controller->
invokeMethod(
$ControllerConfigurationService->,
“DeleteProtocolController”,
%InArguments| |,
%OutArguments|]);

Instrumentation Requirements

The subject can either be a single StorageHardwareID or a collection of StorageHardwarelIDs.
If the underlying implementation supports initiator groups, this can be modeled with the
collection. For implementations without hardware initiator groups, the agent can simulate
them if the membership information can be persisted.

If a PrivilegeManagementService is not present, then all access is assumed. If an
PrivilegeManagementService is present, then access MUST be specifically granted.

A StorageHardwarelD with Name set to "" is a wildcard that matches any name. This is a
zero-length (empty) string.

If a storage system supports wildcard permissions, it MUST keep all ProtocolControllers with
explicit StorageHardwareIDs up-to-date when wildcard permissions change for the connected
ports. For example, volume X is already exposed to one PortWWN when a client exposes
volume Y through the same device port with a wildcard StorageHardwarelID. The client would
create a new ProtocolController with the wildcard as the authorized subject and would attach
volume Y to this new ProtocolController. The instrumentation would also need to implicitly
add ProtocolControllerForUnit between volume Y and the existing ProtocolController.

If all the LogicalDevices in a view share the same permissions, then the model requires an
AuthorizedTarget from the Privilege (with the permissions) to the ProtocolController or to the
Logical Port, (but not both for the same subject). The permissions apply to all the
LogicalDevices associated to the ProtocolController via ProtocolControllerForUnit. (Note that
LogicalPort is chosen when a view is has ProtocolControllerForPort associations to more than
one LogicalPort, but where not all of those LogicalPorts are intended to be accessible by the
particular subject.)

If a view contains LogicalDevices with different permissions, the agent selects the most
restrictive Privilege as the default and uses Privilege/LogicalDevice AuthorizedTarget
associations for LogicalDevices with non-default permissions.

261

SNIA Storage Management Initiative Specification

« A LogicalDevice may have ProtocolControllerForUnit associations to multiple
ProtocolController - this models a device shared by different subject sets. See Figure 54:
"Volume used in multiple views".

e The view controller MUST present a view consistent with the semantics of the protocol. For
example, a SCSI implementation MUST NOT overlap Logical Unit Numbers and MUST have
a Logical Unit Number 0.

» Clients may need to know the range of possible unit numbers supported by a storage system.
The agent should set ProtocolController.MaxUnitsControlled.

262 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.15.11 Required CIM Elements

Table 120: Subprofile Required Classes, Associations, Methods and Indications

Subprofile Class & Associations

Notes

AuthorizedSubject (p. 264)

AuthorizedTarget (p. 264)

ConcreteDependency (p. 264)

ControllerConfigurationService (p. 265)

ElementCapabilities (p. 265)

ElementSettingData (p. 265)

HostedCollection (p. 266)

HostedService (p. 266)

LogicalDevice Properties (p. 266) (e.g., StorageVolume)

LogicalPort Properties (p. 266) (e.g., FCPort)

MemberOfCollection (p. 267)

OPTIONAL

Privilege (p. 267)

PrivilegeManagementService (p. 268)

ProtocolController (p. 268) (e.g., SCSIProtocolController)

ProtocolControllerForPort (p. 268)

ProtocolControllerForUnit (p. 268)

ProtocolControllerMaskingCapabilities (p. 266)

StorageClientSettingData (p. 268)

StorageClientSettingData (p. 268)

StorageHardwarelD (p. 269)

StorageHardwarelDManagementService (p. 270)

SystemSpecificCollection (p. 270)

Profile Methods

Notes

CreateProtocolControllerWithPorts()

DeleteProtocolController()

AttachDevice()

DetachDevice()

AssignAccess()

RemoveAccess()

CreateStorageHardwarelD

Version 1.0.1

263

SNIA Storage Management Initiative Specification

Table 120: Subprofile Required Classes, Associations, Methods and Indications

Subprofile Class & Associations Notes

DeleteStorageHardwarelD

Profile Indications Notes

SELECT * FROM CIM_InstCreation WHERE Sourcelnstance ISA
CIM_ProtocolControllerForUnit

SELECT * FROM CIM_InstDeletion WHERE Sourcelnstance ISA
CIM_ProtocolControllerForUnit

7.3.3.15.12 Required Properties for CIM Elements

7.3.3.15.12.1 AuthorizedSubject
AuthorizedSubject is an association used to tie specific Privileges to specific subjects

Table 121: Required Properties for AuthorizedSubject

Class Type Qualifier/ Notes
Properties Parameter
Privilege ref override The Privilege either granted or denied to an Identity or

group of Identities collected by a Role.

PrivilegedElement ref override The Subject for which Privileges are granted or denied.

7.3.3.15.12.2 AuthorizedTarget
AuthorizedTarget is an association used to tie an Identity or Roles Privileges to specific target

resources.
Table 122: Required Properties for AuthorizedTarget
Class Type Qualifier/ Notes
Properties Parameter
Privilege ref The Privilege affecting the target resource.
TargetElement ref The target set of resources to which the Privilege applies.

7.3.3.15.12.3 ConcreteDependency

CIM_ConcreteDependency is a generic association used to establish dependency relationships
between ManagedElements.

Table 123: Required Properties for ConcreteDependency

Class Type Qualifier/ Notes
Properties Parameter
Antecedent ref key Antecedent represents the independent object in this
association.
Dependent ref key Dependent represents the object dependent on the
Antecedent.

264 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.3.15.12.4 ControllerConfigurationService
ControllerConfigurationService provides methods for manipulating ProtocolControllers.

ControllerConfigurationService is subclassed from Service.

Table 124: Required Properties for ControllerConfigurationService

Class Properties Type Qualifier/ Notes
Parameter
SystemCreationClassName string maxlen(256), The scoping System's CreationClass-

key, propagated | Name.

SystemName string maxlen(256), The scoping System's Name.
key, propagated

CreationClassName string maxlen(256), The name of the concrete subclass
key

Name string maxlen(256),

key, override

CreateProtocolControllerWithPorts ()

DeleteProtocolController()

AttachDevice()

DetachDevice()

7.3.3.15.12.5 ElementCapabilities
The LUN Masking subprofile requires, but does alter ElementCapabilities.

7.3.3.15.12.6 ElementSettingData
ElementSettingData represents the association between ManagedElements and applicable setting

data. .
Table 125: Required Properties for ElementSettingData
Class Type Qualifier/ Notes
Properties Parameter
ManagedElement ref key The managed element.
SettingData ref key The SettingData object associated with the element.

Version 1.0.1 265

SNIA Storage Management Initiative Specification

7.3.3.15.12.7 HostedCollection

Table 126: Required Properties for HostedCollection

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key, min(1), max(1) ComputerSystem
Dependent ref key, weak LogicalPortGroup

7.3.3.15.12.8 HostedService
The LUN Masking subprofile requires but does not alter HostedService.

7.3.3.15.12.9 LogicalDevice Properties
The LUN Masking subprofile requires, but does alter LogicalDevice.

7.3.3.15.12.10 LogicalPort Properties
LUN Masking requires, but does not alter LogicalPort.

7.3.3.15.12.11 ProtocolControllerMaskingCapabilities
A subclass of Capabilities that defines the Masking-related Capabilities of a storage system.

ProtocolControllerMaskingCapabilities is subclassed from Capabilities

Table 127: Required Properties for MaskingCapabilities

Class Properties Type Qualifier/ Notes
Parameter
InstancelD string opaque, key
ElementName string override,
required
ValidHardwareldTypes uint16 A list of the valid values for

StrorageHardwarelD.IDType. ValueMap
{“2", l|3|l, |l4|l}, Values {“POrtWWN“,
"NodeWWN?", "Hostname"}]

AccessControlByPorts boolean Set to true to indicate that the associated
storage system always grants access to
initiators identically through all storage
system ports.

ClientSelectableDeviceNumb | boolean Set to true if this storage system allows the
ers client to specify the DeviceNumber
parameter when calling AttachDevice() on
ProtocolController instances. Set to false if
the implementation does not allow unit
numbers to vary across ProtocolController.

OneHardwarelDPerView boolean Set to true if this storage system limits
configurations to a single subject hardware
ID per view.

266 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 127: Required Properties for MaskingCapabilities (Continued)

Class Properties Type Qualifier/ Notes
Parameter

OnePortPerView boolean Set to true if this storage system limits
configurations to a single port per view.

ProtocolController boolean If true, this property indicates that at least

RequiresAuthorized one Privilege/ldentity pair must be specified

Identity when CreateProtocolController() is called.

PrivilegeDenied boolean Set to true if this storage system allows a

Supported client to create a Privilege instance with
PrivilegeGranted set to FALSE.

UniqueUnitNumbers boolean When set to false, different

PerPort ProtocolContollers attached to a LogicalPort
can expose the same unit numbers. If true,
then this storage system requires unique
unit numbers across all the
ProtocolControllers connected to a
LogicalPort.

AttachDeviceSupported boolean Set to true if this storage system supports
the AttachDevice method.

7.3.3.15.12.12 MemberOfCollection
The LUN Masking subprofile requires but does not alter MemberOfCollection

7.3.3.15.12.13 Privilege

Privilege is the base class for all types of activities that are granted or denied by a Role or an Identity.
Whether an individual Privilege is granted or denied is defined using the PrivilegeGranted
boolean. Any Privileges not specifically granted are assumed to be denied. An explicit deny
(PrivilegeGranted = FALSE) takes precedence over any granted Privileges.

The association of Roles and Identities to Privileges is accomplished using the AuthorizedSubjects
relationship. The entities that are protected are defined using the AuthorizedTarget relationship.

Note that Privileges may be inherited through hierarchical Roles, or may overlap. For example, a
Privilege denying any instance Writes in a particular CIM Server Namespace would overlap with
a Privilege defining specific access rights at an instance level within that Namespace. In this
example, the AuthorizedSubjects are either Identities or Roles, and the AuthorizedTargets are a
Namespace in the former case, and a particular instance in the latter.

For SMI-S 1.0, the ActivityQualifiers and QualifierFormats properties are not used.

Privilege is subclassed from ManagedElement

Table 128: Required Properties for Privilege

Class Type Qualifier/ Notes
Properties Parameter
InstancelD string opaque, key
ElementName string User Friendly name

Version 1.0.1

267

SNIA Storage Management Initiative Specification

Table 128: Required Properties for Privilege (Continued)

Class Type Qualifier/ Notes
Properties Parameter
PrivilegeGranted boolean Boolean indicating whether this Privilege grants

(TRUE) or denies (FALSE) permission. The
default is to grant permission.

Activities][] uint16 An array of string values indicating the activities
that are granted or denied. These activities
apply to all entities specified in the
ActivityQualifiers array."}

Values {"0", "1", "2", "3", "4", "5", "6", "7..}
ValueMap {"Unknown", "Other", "Create",
"Delete", “Read", "Write", "Execute"}

For SMIS 1.0, “Read” and “Write” are the only
defined Activities.

7.3.3.15.12.14 PrivilegeManagementService
PrivilegeManagementService is subclassed from AuthorizationService

Table 129: Required Properties for PrivilegeManagementService

Class Properties Type Qualifier/ Notes
Parameter

ElementName string User Friendly name

SystemCreationClassName string maxlen(256), key, | The scoping System's CreationClassName.
propagated

SystemName string maxlen(256), key, | The scoping System's Name.
propagated

CreationClassName string maxlen(256), key The name of the concrete subclass

Name string maxlen(256), key,
override

AssignAccess()

RemoveAccess()

7.3.3.15.12.15 ProtocolController
The LUN Masking subprofile requires but does not alter ProtocolController

7.3.3.15.12.16 ProtocolControllerForUnit
The LUN Masking subprofile requires but does not alter ProtocolControllerForUnit.

7.3.3.15.12.17 ProtocolControllerForPort
The LUN Masking subprofile requires but does not alter ProtocolControllerForPort.

7.3.3.15.12.18 StorageClientSettingData

This class models host environment that influence the behavior of Storage Systems. For example,
a disk array has different SCSI responses for initiators configured as AIX verses HPUX. Instances

268 Version 1.0.1

SNIA Storage Management Initiative Specification

of this setting class are associated via ElementSettingData to device Ports, ProtocolControllers, or
Volumes instances when these elements have host awareness. These associations are created by
the provider to reflect the current configuration. A client deletes/creates these associations to
request changes in element host-awareness.

This settings class is also associated with StorageHardwareID instances when that HW ID is
configured with host information.

An instance of this setting may include several ClientType values if the storage system treats
them identically.

The storage system exposes all supported setting instances to an enumerate request; the client
uses the returned settings to determine which types are available.

StorageClientSettingData is subclassed from SettingData.

Table 130: Required Properties for StorageClientSettingData

Class Properties Type Qualifier/ Notes
Parameter
InstancelD string key Opaque provider-generated name
ElementName string User Friendly Name
ClientTypes[] uint16 arraytype These names map to operating system and host
("indexed") environment factors that influence the behavior

exposed by storage systems.

ValueMap {"0", "1", "2", "3", "4" "5" "6" "7",
"g", "9, 1o, 11, 12", 13", 14", "15", "16",
"7, 18, ", "0x8000.." },

Values {"Unknown", "Other", "Standard",
"Solaris", "HPUX", "OpenVMS", "Tru64", "Net-
ware", "Sequent”, "AIX", "DGUX", "Dynix",
"Trix", "Cisco iSCSI Storage Router", "Linux",
"Microsoft Windows", "OS400", "TRESPASS",
"HI-UX", "DMTF Reserved", "Vendor Spe-

cific"}
OtherClientTypeDescriptions [] string arraytype A string describing the manufacturer and OS/
("indexed") Environment - used when the InitiatorTypes,

includes 'Other'.

7.3.3.15.12.19 StorageHardwarelD
StorageHardwarelD is a hardware ID that serves as an authorization subject.

StorageHardwarelID subclasses from Identity.

Table 131: Required Properties for StorageHardwarelD

Class Properties Type Qualifier/ Notes
Parameter
InstancelD string key
StoragelD string required The hardware worldwide unique ID.

Version 1.0.1 269

SNIA Storage Management Initiative Specification

Table 131: Required Properties for StorageHardwarelD (Continued)

Class Properties Type Qualifier/ Notes
Parameter
IDType uint16 required The type of the ID property.

ValueMap {uzn, u3n, n4n}’
Values {"PortWWN", "NodeWWN",
"Hostname"}

7.3.3.15.12.20 StorageHardwareIDManagementService
StorageHardwareIDManagementService provides methods for creating StorageHardwarelDs.

StorageHardwareIDManagementService is subclassed from AuthenticationService.

Table 132: Required Properties for StorageHardwareIDManagementService

Class Properties Type Qualifier/ Notes
Parameter

SystemCreationClassName string maxlen(256), The scoping System's CreationClass-
key, propagated | Name.

SystemName string maxlen(256), The scoping System's Name.
key, propagated

CreationClassName string maxlen(256), The name of the concrete subclass
key

Name string maxlen(256),
key, override

CreateStorageHardwarelD ()

DeleteStorageHardwarelD()

7.3.3.15.12.21 SystemSpecificCollection

SystemSpecificCollection represents the general concept of a collection that is scoped (or
contained) by a System. It represents a Collection that only has meaning in the context of a
System, and/or whose elements are restricted by the definition of the System. This is explicitly
described by the (required) association, HostedCollection.

In the context of LUN Mapping and Masking the collection is a collection of Logical Devices.

SystemSpecificCollection is subclassed from Collection

Table 133: Required Properties for SystemSpecificCollection

Class Properties Type Qualifier/ Notes
Parameter
ElementName string User Friendly name
InstancelD string opaque
7.3.3.15.13 Optional Subprofiles and Profiles

There are no optional subprofiles or profiles for this subprofile.

270 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4 Fabric
7.3.4.1 Fabric Profile
7.3.4.1.1 Description

7.3.4.1.1.1 SANS and Fabrics as AdminDomains

A SAN and Fabric are represented in CIM by AdminDomain. A SAN contains one or more Fabrics,
which are modeled as AdminDomains. The “containment” of Fabrics to SANs is through the
association ContainedDomain. AdminDomain is sub-classed from System. This is significant because
a SAN and a Fabric can be considered a group of components that operate together as a single
system and should/are managed as such. The relationship of the Fabrics in a SAN could be as
redundant fabrics, interconnected (using the same or different transports/protocols), or not
connected in any way. Even in the latter case where the Fabrics are disjoint, from an
administrative perspective they may still be managed together applying common practices
including naming across the Fabrics.

An AdminDomain in CIM is keyed by the property Name with an associated optional property
NameFormat. Typically SANs are identified (“named”) administratively and precise naming
conventions are left up to the implementation, which is then responsible for assuring that the
names are unique within the discovery of known SANs that populate the same CIM Namespace.

For Fibre Channel Fabrics, the identifier is the Fabric WWN that is based on the principal switch
and the NameFormat should indicate that it is a WWN.

7.3.4.1.1.2 Fabrics and Topology

A Fabric in CIM today minimally contains a ConnectivityCollection and its component systems.
They are associated to the Fabric by the association Component. For the purposes of this
discussion, it is assumed one models both.

ConnectivityCollection represents the foundation necessary for routing (and the reason it is defined
in the Network model). A ConnectivityCollection groups a set of ProtocolEndpoints together that are
able to communicate with each other directly. The ProtocolEndpoint is associated to the
ConnectivityCollection by MemberOfCollection. A link is represented by the association
ActiveCollection, which associates two ProtocolEndpoints, defined as a connection that is currently
carrying traffic or is configured to carry traffic.

It is important at this point to clarify the relationship (or use) of the ProtocolEndpoint versus the
use of FCPort (discussed later). A NetworkPort (from which FCPort is subclassed) is the device
that is used to represent the logical aspects of the link and data layers. The ProtocolEndpoint is
used to represent the higher network layers for routing. This is best understood when thinking
about ethernet and IP, but apply to fibre channel also. When two ProtocolEndpoints are capable of
communicating, the association ActiveConnection is used to represent the capability to
communicate and completes the picture of the topology.

One can ultimately represent multiple ConnectivityCollection (e.g. FC, IP (over FC), and IP (FC
encapsulated in IP)) for the same fibre channel fabric.

Note that in modeling SANs, Fabrics, and ConnectivityCollections, a ConnectivityCollection does not
require a Fabric, and a Fabric does not require a SAN. But a SAN requires a Fabric, and a Fabric
(for the purposes of this profile) requires a ConnectivityCollection.

The minimum set of requirements for this profile is based on ANSI T11 FC-GS.

Version 1.0.1 271

7.3.4.1.1.3

7.3.4.1.1.4

272

SNIA Storage Management Initiative Specification

Systems and NetworkPorts

As discussed in the previous section, a Port is associated to a device to represent the link layer. A
NetworkPort is associated to the ProtocolEndpoint by DeviceSAPImplementation and “joins” the
System and Device model to the Network model. Instantiation of DeviceSAPImplementation,
ProtocolEndpoint, and ActiveConnection is not necessary if the transceiver is not installed or the
cable connecting the port to another port is not installed since the device is not capable of
communicating.

Systems, or in this case ComputerSystem, represent the fabric elements that contain Ports. These
are typically Hosts, Switches and Storage Systems. In Fibre Channel, these are called Platforms
and Interconnect Elements. The property Dedicated in ComputerSystem allows these fabric
elements to be identified. For a host, Dedicated is set to “Not Dedicated”, for a switch, Dedicated is
set to “Switch”, and for a storage system, Dedicated is set to “Storage”. The Ports on a System are
associated by SystemDevice.

Discovery from the viewpoint of the fabric includes the end device, but often times the information
available is minimal or not available. In the case of Fibre Channel, this occurs if the platform
database is not populated. If this is the case, then discovery cannot tell whether a Fibre Channel
Node is contained within the same platform or not. When this occurs, ComputerSystem is not
instantiated and the LogicalPortGroup representing the Node and the FCPort are associated to the
AdminDomain representing the Fabric.

Additional identification information about ComputerSystem (e.g. DomainID) is placed in
Otherldentifylnfo property.

Zoning

The zoning model is based on ANSI FC-GS-4. This model represents the management model for
defining Zone Sets, Zones, and Zone Members and “activation” of a Zone Set for a fabric. In the
following discussion it may be helpful to also define the following:

Active ZoneSet: the Zone Set currently enforced by the Fabric.

Zone Set Database: The database of the Zone Sets not enforced by the Fabric. Referred to in
this document as the Inactive Zone Sets.

Zoning Definitions: a generic term used to indicate both the above concepts.

The zoning model refers to a Zone Set as ZoneSet (p. 291), a Zone as Zone (p. 289), ZoneAlias as a
NamedAddressCollection, and Zone Member as ZoneMembershipSettingData (p. 291). ZoneSets
MUST only contain Zones associated by MemberOfCollection. Zones MUST only contain
ZoneMembershipSettingData associated by ElementSettingData or NamedAddressCollections
associated by MemberOfCollection. For more information with regards to NamedAddressCollection,
see Enhanced Zoning and Enhanced Zoning Control Subprofile (p. 307).

The class ZoneMembershipSettingData has two properties that indicate how the device was
identified to be “zoned”. They are ConnectivityMemberType (e.g. PermanentAddress for WWN,
NetworkAddress for FCID, etc.) and ConnectivityMemberID which contains the actual device
identifier.

The Active Zone Set, defined by an instance of ZoneSet with the Active property set to TRUE, MUST
only be hosted on the AdminDomain representing the Fabric. The Inactive Zone Sets, defined by an
instance of ZoneSet with the Active property set to FALSE, SHALL be hosted on either the
AdminDomain representing the Fabric as shown in the Zoning Instance Diagram (AdminDomain) (p.
275) or the ComputerSystem representing the switch as shown in the Zoning Instance Diagram
(ComputerSystem) (p. 276). The ZoneService and ZoneCapabilities are also associated to the same
System (AdminDomain or ComputerSystem) as the Inactive Zone Sets using the association
HostedService or ElementCapabilities, respectively.

Version 1.0.1

SNIA Storage Management Initiative Specification

ZoneService provides the configuration methods to control create Zone Sets, Zones, Zone Aliases,
and Zone Members, as well as activation of the Zone Set. This service and its methods are

described in the Zone Control Subprofile (p. 291).

7.3.4.1.2

Standard Dependencies

The Fabric Discovery Profile is based on the following standards:

Table 134: Fabric Standards Dependencies

Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.8 Preliminary DMTF
7.3.4.1.3 Profile Dependencies

The Fabric Discovery Profile requires the Server Profile (p. 441).

7.3.4.1.4 CIM Server Requirements
7.3.4.1.4.1 Functional Profiles
Table 135: Required Functional Profiles
Profile Required Functional Group Dependency
YES Basic Read None
NO Basic Write Basic Read
NO Instance Manipulation Basic Write
NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read
NO Query Execution Basic Read
NO Qualifier Declaration Schema Manipulation
YES Indication None
7.3.4.1.4.2 Extrinsic Methods

The CIM Server MUST support extrinsic methods for the Fabric Discovery Profile.

7.3.4.1.4.3

The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP

Discovery

specification.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.1.5 Instance Diagrams
7.3.4.1.5.1 Fabric Instance
Figure 57: Fabric Instance Diagram
SAN AdminDomain
Contained
Domain
Fabric AdminDomain
’
Hosted HostedAccessPoint
Collection ConnectivityCollection Host LogicalPortGroup Hosted I_ ComputerSystem
ostt
Collection
MemberOf System Component
MemberOf Collection Deyvice ’
Collection ProtocolEndpoint FCPort
- DeviceSAP
Protocol Type="Fibre Implementation
Channel"]
Active
Connection Swi
- witch Syst
ProtocolEndpoint L_ | FCPort vaiir: ComputerSystem
ProtocolType="Fibre || DeviceSAP — Dedicated="Switch"
Channel" | Implementation —]
[
[
[
HostedAccessPoint
LogicalPortGrou
Actve Array % :
Connection
MemberOf Hosted
Collection Collection
ProtocolEndpoint X FCPort ComputerSystem
— DeviceSAP System
Protocol Type="Fibre Implementation Device Dedicated="Storage"
Channel"
HostedAccess
Point

274

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.1.5.2 Zoning
Figure 58: Zoning Instance Diagram (AdminDomain)
-1 ZoneMembership
| SefttinaData |
Element -
SettingData
Zone '\éirlrl]ebc?ircfr)'nf ZoneSet AdminDomain
H Active=TRUE Active=TRUE
S |
Hosted -
Collection ZoneService
-1 ZoneMembership
§ __Sgttlngllala_ Element
| M d ZoneSet Capabilities
ZoneCapabilities
= Active=FALSE
. MemberOf
Element Collection
SettingData
| gy Zone
Element | H Active=FALSE
SettingData
—
MemberOf
Collection
NamedAddress
Collection

Version 1.0.1

275

SNIA Storage Management Initiative Specification

Figure 59: Zoning Instance Diagram (ComputerSystem)
| ZoneMembership
SettingData
- 1
I Hosted
Collection,
Element T
SettingData
Zone Membe_rOf ZoneSet AdminDomain
Collection
H Active=TRUE Active=TRUE
S — |
“H] ZoneMembership
- SettingData
= Component
1 N ZoneSet
| Active=FALSE | |
MemberOf
Element Collection
SettingData
| iy Zone ComputerSystem
Hosted
Element | H Active=FALSE Collection
SettingData
I Hosted
MemberOf ZoneService Service
Collection |
NamedAddress Svstern
Collection ysterm
ZoneCanabil Capabilities
oneCapabilities
|
7.3.4.1.6 Durable Names and Correlatable IDs of the Profile
7.3.4.1.6.1 Overview

7.3.4.1.6.2

276

For the Fibre Channel Port, the durable name is the Port WWN. It is found in
FCPort.PermanentAddress.

For the Fibre Channel Switch, the durable name is the Switch WWN. It is found in
ComputerSystem.Name for ComputerSystems.Dedicated = ”Switch”.
ComputerSystem.NameFormat is set to “WWN”.

For the Fibre Channel Node, the durable name is the Node WWN. It is found in
LogicalPortGroup.Name with NameFormat set to WWN.

For the Fabric Name, the correlatable name is the Fabric WWN that is actually the principal
switches WWN. It is found in AdminDomain.Name. AdminDomain.NameFormat is set to “WWN”.

For the Zone Member Identifier, the correlatable name is the Port WWN, the Node WWN, or the
Domain and Port. These are found in ZoneMembershipSettingData.ConnectivityMemberID with
the corresponding ConnectivityMemberType set.

Durable Names Exported
None.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.1.6.3 Correlatable IDs Supported
None.

7.3.4.1.6.4 Durable Names and Correlatable Ids

Table 136: Durable Names Usage

Class Name Format Type Description

AdminDomain.ElementName

7.3.4.1.6.5 Correlatable IDs Used

None.
7.3.4.1.7 Methods
None.
7.3.4.1.8 Client Considerations

7.3.4.1.8.1 Fabric Identifier

The client needs to consider that the fabric identifier is not durable but is correlatable and may
change over time. See “Durable Names” on page 79.

7.3.4.1.8.2 FCPort OperationalStatus

OperationalStatus is the property to indicate status and state for the FCPort. The FCPort instance
has one of the following Operational Statuses.

Table 137: Port OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown

7.3.4.1.8.3 ComputerSystem OperationalStatus

OperationalStatus is the property to indicate status and state for the ComputerSystem. The
ComputerSystem instance has one of the following Operational Statuses and possibly one of the
Subsidiary statuses.

Table 138: OperationalStatus for ComputerSystem

Operational Possible Description
Status Subsidiary
Operational
Status
OK The system has a good status

Version 1.0.1 277

SNIA Storage Management Initiative Specification

Table 138: OperationalStatus for ComputerSystem

Operational Possible Description
Status Subsidiary
Operational
Status

OK Stressed The system is stressed, for example the
temperature is over limit or there is too much
10 in progress

OK Predictive Failure The system will probably will fail sometime
soon

Degraded The system is operational but not at 100%
redundancy. A component has suffered a
failure or something is running slow

Error An error has occurred causing the system to
stop. This error may be recoverable with
operator intervention.

Error Non-recoverable error A severe error has occurred. Operator
intervention is unlikely to fix it

Error Supporting entity in error | A modeled element has failed

No contact The provider knows about the array but has
not talked to it since last reboot

Lost communication The provider used to be able to communicate
with the array, but has now lost contact.

Starting The system is starting up

Stopping The system is shutting down.

Stopped The data path is OK but shut down, the
management channel is still working.

7.3.4.1.9 Recipes
7.3.4.1.9.1 Determine the active Zone Set in a SAN

278

// DESCRIPTION
// Traverse from the fabric to all zone sets, looking for

// the active zone set
/

// PREEXISTING CONDITIONS AND ASSUMPTIONS

I

//'1. The fabric of interest (an AdminDomain) has been previously

// identified and defined in the $Fabric-> variable

$ZoneSets[] = Associators($Fabric->, “CIM_HostedCollection”, “CIM_ZoneSet”, null, null, false, false, null)

for #i in $ZoneSets[] {
if ($ZoneSet[#i].Active) {

Version 1.0.1

SNIA Storage Management Initiative Specification

// <found active ZoneSet>
// NOTE - there can be only one active ZoneSet in a fabric, though there may be none
break

7.3.4.1.10 Instrumentation Requirements

The agent needs to respond to physical fabric changes by adding or removing Logical elements to
the AdminDomain. Adding an element to the fabric is straightforward, however it is not always
clear when an element has been removed. The device may have been reset, or temporarily shut
down, in which case it would be an element in the fabric with an “unknown” status. The lifetime of
objects that can no longer be discovered is implementation specific.

If the agent is unable to determine the type of platform discovered (defined in FC-GS), then the
agent MUST set the ComputerSystem.Dedicated property to “Unknown”.

Version 1.0.1 279

7.3.4.1.11

Required CIM Elements

SNIA Storage Management Initiative Specification

Table 139: Required CIM Elements

Profile Classes & Associations

Notes

ActiveConnection (p. 282)

AdminDomain (p. 282)

Representing the fabric

AdminDomain (p. 282)

Representing the SAN

Component (p. 282)

Aggregates Hosts, Arrays and Switches in the AdminDomain
that represents the Fabric

ComputerSystem (p. 282)

ConnectivityCollection (p. 287)

Collects the ProtocolEndpoints.

ContainedDomain (p. 284)

Associates Fabric to SAN

DeviceSAPImplementation (p. 284)

ElementCapabilities (p. 284)

Associates ZoneCapabilities to AdminDomain or
ComputerSystem

ElementSettingData (p. 284)

Associates ZoneMembershipSettingData to the Zone or
NamedAddressCollection representing the ZoneAlias.

FCPort (p. 284)

HostedAccessPoint (p. 287)

Associates the ProtocolEndpoint to the ComputerSystem
(Switch or Platform)

HostedCollection (p. 287)

LogicalPortGroup to ComputerSystem

HostedCollection (p. 287)

ConnectivityCollection to AdminDomain

HostedCollection (p. 287)

AdminDomain or ComputerSystem to ZoneSets, Zones, and
NamedAddressCollection

LogicalPortGroup (p. 287)

Fibre Channel Node

MemberOfCollection (LogicalPortGroup)
(p. 288)

FCPort to LogicalPortGroup

ProtocolEndpoint (p. 289)

ProtocolEndpoint MUST be implemented when an
ActiveConnection exists. It MAY be implemented if no
ActiveConnection exists.

SystemDevice (p. 289)

Zone (p. 289)

ZoneCapabilities (p. 289)

This class is optional

ZoneMembershipSettingData (p. 291)

ZoneMembershipSettingData (p. 291)

ZoneSet (p. 291)

Profile Class and Associated Indications

280

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 139: Required CIM Elements (Continued)

Profile Classes & Associations

Notes

Creation/Deletion of FCPort

“SELECT * FROM CIM_InstCreation WHERE Sourcelnstance
ISA CIM_FCPort”
SELECT * FROM CIM_InstDeletion WHERE Sourcelnstance
ISA CIM_FCPort”

Creation/Deletion of ComputerSystem

“SELECT * FROM CIM_InstCreation WHERE Sourcelnstance
ISA CIM_ComputerSystem”
SELECT * FROM CIM_InstDeletion WHERE Sourcelnstance
ISA CIM_ComputerSystem”

Changes in OperationalStatus of FCPort

“SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_FCPort AND
Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus”

Changes in OperationalStatus of
ComputerSystem

“SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_ComputerSystem AND
Sourcelnstance.OperationalStatus <>
Previousinstance.OperationalStatus”

Version 1.0.1

281

SNIA Storage Management Initiative Specification

7.3.4.1.12 Required Properties for CIM Elements
7.3.4.1.12.1 ActiveConnection

Table 140: Required Properties for ActiveConnection

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key ProtocolEndpoint reference
Dependent ref key ProtocolEndpoint reference

7.3.4.1.12.2 AdminDomain

Table 141: Required Properties for AdminDomain

Property/ Type Qualifier/ Description/Notes
Method Parameter
CreationClassName string maxlen(256), key Name of Class
Name string maxlen(256), key, For a Fibre Channel Fabric, it should
override be WWN. For a SAN, it is

implementation dependent.

NameFormat string maxlen(64) For a Fibre Channel Fabric, it should
be “WWN”.

7.3.4.1.12.3 Component

Table 142: Required Properties for Component

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref key AdminDomain (for Fabric) ref.
PartComponent ref key ComputerSystem ref.

7.3.4.1.12.4 ComputerSystem

Table 143: Required Properties for ComputerSystem

Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string Switch Symbolic Name. For
Platform it is the Platform Label.
CreationClassName string maxlen(256), key Name of Class
OperationalStatus uint16 req
Name string maxlen(256), key For Switches, it is the FC WWN.

For Platforms, it is the Platform
Name if available.

282 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 143: Required Properties for ComputerSystem (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
NameFormat string (override For Switches, “WWN?”. For all
“nameformat”) others, follow Table 3 on page 82.

Otherldentifyinglinfo[] string The DomainlID is stored here (in
base 10).

IdentifyingDescriptions]] string “DomainlD” is placed in the
corresponding index.

Dedicated[] int16 For a Switch, “Switch”. For a
Host. “Not Dedicated”. For
Arrays, “Storage”. For (Map
from FC-GS Name to CIM
Enumeration”)

OtherDedicatedDescriptions string A string describing how or why

the system is dedicated when the
Dedicated array includes the
value 2, \"Other\".

Version 1.0.1

283

SNIA Storage Management Initiative Specification

7.3.4.1.12.5 ContainedDomain
Table 144: Required Properties for ContainedDomain
Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref key AdminDomain (for SAN) ref.
PartComponent ref key AdminDomain (for Fabric) ref.
7.3.4.1.12.6 DeviceSAPImplementation
Table 145: Required Properties for DeviceSAPImplementation
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key FCPort reference
Dependent ref key ProtocolEndpoint reference
7.3.4.1.12.7 ElementCapabilities

Table 146: Required Properties for ElementCapabilities

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement ref AdminDomain
Capabilities ref ZoneCapabilities
7.3.4.1.12.8 ElementSettingData

Table 147: Required Properties for ElementSettingData

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement ref key Zone or ZoneAlias.
SettingData ref key ZooneMembershipSettingData.
7.3.4.1.12.9 FCPort
Table 148: Required Properties for FCPort
Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemName string key
SystemCreationClassName string key
CreationClassName string key

284 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 148: Required Properties for FCPort (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string Port Symbolic Name if available.
Otherwise NULL. If the underlying
implementation includes characters
that are illegal in CIM strings, then
truncate before the first of those
characters.
OperationalStatus uint16 See Table Port OperationalStatus (p.
277)
DevicelD string key, Opaque.
maxlen (64)
Speed uint64 units ("bits per Speed of zero represents a link not
second") established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.
PortType uint16 override “Unknown = 0, “Other” = 1,
“N” =10, “NL” = 11, “F/NL” = 12, “Nx”
=13, “E” =14, “F" = 15, “FL" = 16, “B”
=17,
HGH = 18.
OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").
LinkTechnology uint16 For FibreChannel, “FC”.
OtherLinkTechnology uint16 A string value describing
LinkTechnology when it is set to 1,
\"Other\".
PermanentAddress string maxlen (64) For FibreChannel, it is the Fibre
Channel Port WWN.
NetworkAddresses]] string maxlen (64), For Fibre Channel end device ports, it
arraytype is the Fibre Channel ID. For Switches,
("indexed") it should be Null.
SupportedCOS uint16[] FC-GS Class Of Service
An array of integers indicating the
Classes of Service that are active. Not
applicable for switches (e.g. NULL).

Version 1.0.1 285

SNIA Storage Management Initiative Specification

Table 148: Required Properties for FCPort (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
SupportedFC4Types uint16[] FC-GS FC4-TYPE

An array of integers indicating the
Fibre Channel FC-4 protocols
currently running. Not applicable for
switches (e.g. NULL).

286

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.1.12.10 HostedAccessPoint

Table 149: HostedAccessPoint

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref ComputerSystem
Dependent ref ProtocolEndpoint
7.3.4.1.12.11 HostedCollection
Table 150: Required Properties for HostedCollection
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key, min(1), max(1) ComputerSystem
Dependent ref key, weak LogicalPortGroup
7.3.4.1.12.12 ConnectivityCollection

Table 151: Required Properties for ConnectivityCollection

Property/
Method

Qualifier/
Parameter

Type

Description/Notes

Instanceld

string

ElementName

Not required, can be the
Fabric WWN.

7.3.4.1.12.13

LogicalPortGroup

Table 152: Required Properties for LogicalPortGroup

Property/
Method

Qualifier/
Parameter

Type

Description/Notes

ElementName

string

Node Symbolic Name if
available. Otherwise NULL. If
the underlying
implementation includes
characters that are illegal in
CIM strings, then truncate
before the first of those
characters.

InstancelD

string key

Opaque

Name

Node WWN.

NameFormat

string

“WWN?”

Version 1.0.1

287

SNIA Storage Management Initiative Specification

7.3.4.1.12.14 MemberOfCollection (LogicalPortGroup)

Table 153: Required Properties for MemberOfCollection

Property/ Type Qualifier/ Description/Notes
Method Parameter
Collection ref key LogicalPortGroup.
Member ref key FCPort

7.3.4.1.12.15 MemberOfCollection (ConnectivityCollection)

Table 154: Required Properties for MemberOfCollection

Property/ Type Qualifier/ Description/Notes
Method Parameter
Collection ref key ConnectivityCollection
ManagedElement ref key ProtocolEndpoint.

288 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.1.12.16 ProtocolEndpoint

Table 155: Required Properties for ProtocolEndpoint

Property/ Type Qualifier/ Description/Notes
Method Parameter
Name string key, maxlen (256)
CreationClassName string key, maxlen (256) | ComputerSystem that
HostedAccessPoint is associated to.

SystemCreationClassNam | string key, maxlen (256)

e

SystemName string key, maxlen (256)

NameFormat string maxlen (256) NameFormat MUST be “WWN”

ProtocolType string maxlen (64), ProtocolType MUST be "Fibre
valuemap {} Channel"
values {}

7.3.4.1.12.17 SystemDevice

Table 156: Required Properties for SystemDevice

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref override ComputerSystem
PartComponent ref override FCPort

7.3.4.1.12.18 Zone

Table 157: Required Properties for Zone

Property/ Type Qualifier/ Description/Notes
Method Parameter
InstancelD string key
ElementName string The Zone Name (FC-GS)
ZoneType uint16 Default, or Protocol (FC-
(enum) GS).
ZoneSubType uint16 FCPR, VI, IP
(enum) (Optional, only required
when ZoneType=Protocol)
Active boolean This Zone is active.

7.3.4.1.12.19 ZoneCapabilities

Version 1.0.1

289

SNIA Storage Management Initiative Specification

Note: The ZoneCapabilities table and its properties are optional.

Table 158: Required Properties for ZoneCapabilities

Property/ Type Qualifier/ Description/Notes
Method Parameter

InstancelD string key
MaxNumZoneSets uint32 If Null, it is indeterminate.
MaxNumZones uint32 If Null it is indeterminate.
MaxNumZoneMembers uint32 If Null, it is indeterminate.
MaxNumZoneAliases uint32 If Null, it is indeterminate.
MaxNumZonesPerZoneSet uint32 If Null, it is indeterminate.

290 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.1.12.20 ZoneMembershipSettingData

Table 159: Required Properties for ZoneMembershipSettingData

Property/ Type Qualifier/ Description/Notes
Method Parameter

InstancelD string key

ConnectivityMemberType required Permanent Address (WWN), Switch
Port ID (Domain:Port in base10),
Network Address (FCID).

ConnectivityMemberlD required The value of the WWN, Domain/Port, or
FCID

7.3.4.1.12.21 ZoneSet
Table 160: Required Properties for ZoneSet
Property/ Type Qualifier/ Description/Notes
Method Parameter

InstancelD string key

ElementName string required The ZoneSet name.

Active boolean required Indicates that this ZoneSet is active and

cannot be changed.

7.3.4.1.13 Optional Subprofiles

Table 161: Optional Profiles or Subprofiles

Name

Notes

Zone Control Subprofile (p. 291)

Enhanced Zoning and Enhanced Zoning
Control Subprofile (p. 307)

FDMI Subprofile (p. 313)

7.3.4.1.14 Zone Control Subprofile

7.3.4.1.14.1 Description

The zoning model includes extrinsic methods for creating Zone Sets, Zones, and Zone Members
and adding Zones to Zone Sets and Zone Members to Zones. Additionally SMI-S defines intrinisics
methods for the removing of Zone Members from Zones and Zone Aliases, Zones from Zone Sets,
and deleting Zone Members, Zones, and Zone Sets.

When an Inactive ZoneSet is “Activated”, new instances representing the Active Zone Set and
Active Zones are generated from the Inactive Zone Set definition (where a switch may prune the
referenced Zone Set collapsing aliases, removes empty zones, etc.).

When a new Zone Set is “Activated”, the instances representing the previous active Zone Set no

longer exists.

Version 1.0.1

291

SNIA Storage Management Initiative Specification

In the case where the Inactive Zone Sets are hosted on a switch, the client cannot know which
Inactive Zone Set was used to define the current Active Zone Set. Also if two Inactive Zone Sets
with the same name are hosted on two different switches, the definitions maybe completely
different.

7.3.4.1.14.2

See parent sections.

Standards Dependencies

7.3.4.1.14.3

See parent sections.

Profile Dependencies

7.3.4.1.14.4 CIM Server Requirements
7.3.4.1.14.4.1 Functional Profiles

Table 162: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

YES Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation
YES Indication None

7.3.4.1.14.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Fabric Discovery Profile.

7.3.4.1.14.4.3 Discovery

The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

7.3.4.1.14.5

See parent sections.

Instance Diagrams

7.3.4.1.14.6 Durable Names and Correlatable IDs

See parent sections.

7.3.4.1.14.7 Extrinsic Zoning Methods

7.3.4.1.14.7.1 CreateZoneSet

The method creates a ZoneSet and associates it to the AdminDomain that the ZoneService is
hosted.

CreateZoneSet (

string ZoneSetName,

292 Version 1.0.1

SNIA Storage Management Initiative Specification

[OUT] ref CIM_ZoneSet);

7.3.4.1.14.7.2 CreateZone
The method creates a Zone and associates it to AdminDomain that the ZoneService is hosted.

CreateZone (
string ZoneName,
Uint16 ZoneType,
Uint16 ZoneSubType,
[OUT] ref Zone);,

7.3.4.1.14.7.3 CreateZoneMembershipSettingData

CreateZoneMembershipSettingData creates a ZoneMembershipSettingData and adds it to the
specified Zone or NamedAddressCollection. The ConnectivityMemberID is dependent upon the
ConnectivityMemberType.

For Fibre Channel, the ConnectivityMemberType of "PermanentAddress", the
ConnectivityMemberID is the NxPort WWN; for ConnectivityMemberType of "NetworkAddress",
the ConnectivityMemberID is the NXPort Address ID; for ConnectivityMemberType of
"SwitchPortID", the ConnectivityMemberID is "Domain:PortNumber".

CreateZoneMembershipSettingData (
Uint16 ConnectivityMemberType,
string ConnectivityMemberID,
ref SystemSpecificCollection,
[OUT] ref ZoneMembershipSettingData);

7.3.4.1.14.7.4 AddZone

Adds to the ZoneSet the specified Zone. Adding a Zone to a ZoneSet, extends the zone enforcement
definition of the ZoneSet to include the members of that Zone. If adding the Zone is, successful, the
Zone should be associated to the ZoneSet by MemberOfCollection.

AddZone (
[IN] CIM_ZoneSet ref ZoneSet,
[IN] CIM_Zone ref Zone,
[OUT] CIM_MemberOfCollection ref MemberOfCollection);

7.3.4.1.14.7.5 AddZoneMembershipSettingData
Adds to the Zone or NamedAddessCollection the specified ZoneMembershipSettingData

AddZoneMembershipSettingData (
[IN] CIM_SystemSpecificCollection ref SystemSpecificCollection,
[IN] CIM_ZoneMembershipSettingData ref ZoneMembershipSettingData,
[OUT] CIM_MemberOfCollection ref MemberOfCollection);

7.3.4.1.14.7.6 ActivateZoneSet
Uint32 ActivateZoneSet (
[IN] CIM_ZoneSet ref ZoneSet,

Version 1.0.1 293

SNIA Storage Management Initiative Specification

[IN] boolean Activate)

7.3.4.1.14.7.7 SessionControl

SessionControl enables an application to request a lock of the fabric to begin zoning configuration
changes.

This method allows a client to request or release a lock on the fabric for zoning configuration
changes. As described in FC-GS, in the context of Enhanced Zoning Management, management
actions to a Zone Server (e.g. write access to the Zoning Database) MUST occur only inside a GS
session. Clients executing zoning management operations MUST use fabric sessions cooperatively
if the SMI-S agent supports it. (If the value of SessionStatus is 4 ("Not Applicable") then no
cooperative session usage is possible).

Before a client executes zoning management operations (intrinsic or extrinsic methods), the client
MUST request a new session and wait for the request to be granted. To request a new session, first
wait until the property "SessionStatus" of the fabric’s CIM_ZoneService is 3 ("Ended") and the
property "RequestedSessionStatus" is 5 "No Change". Then call SessionControl with
RequestedSessionStatus = 2 ("Started"). Once zoning management operations are completed, the
client MUST release the session to enable the provider to propagate changes to the fabric, and to
allow other clients to perform management operations. To end a session and commit the changes,
call SessionControl with RequestedSessionStatus = 3 ("Ended"). To abort a sequence of zoning
management operations without wupdating the fabric, call SessionControl with
RequestedSessionStatus = 4 ("Terminated").

SMIS agents MUST block on calls to SessionControl until the request is fulfilled. For example, an
error may occur while committing changes to a fabric, i.e. after a call to SessionControl with
RequestedSessionStatus = 3 ("Ended"). The method cannot return until the session has ended, so
that a CIM error can be returned if a problem occurs. While the method is in progress, another
client may read the value of the RequestedSessionStatus property and see the value set by the
method currently in progress. Once the request is fulfilled, the RequestedSessionStatus property
is set to value 5 "No Change", regardless of the value in the setInstance operation.

A SMIS agent may raise an error if these client cooperation rules are not followed. For the
purposes of a SMIS agent, a series of requests from the same authenticated entity are considered
to be from a single client. An agent may verify that such a series corresponds to the sequence
described above and raise the error CIM_ERR_FAILED at any time if the sequence is violated.

Uint32 SessionControl (
[N,
ValueMap {"2", "3", "4"},
Values {"Started", "Ended", "Terminated"}]
Uint16 RequestedSessionStatus;};

7.3.4.1.14.8 Intrinsic Zoning Methods

7.3.4.1.14.8.1 Removing a zone from a zone set

294

As seen in the instance diagram, a zone is a member of a zone set if there is a
“CIM_MemberOfCollection” association from the zone set to the zone. To remove a zone from a
zone set, delete the instance of the association “CIM_MemberOfCollection” using the intrinsic
operation deleteInstance.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.1.14.8.2 Removing a zone alias from a zone

A zone alias is a member of a zone if there is a “CIM_MemberOfCollection” association from the
zone to the zone alias. To remove a zone alias from a zone set, delete the instance of the association
“CIM_MemberOfCollection” using the intrinsic operation deleteInstance.

7.3.4.1.14.8.3 Removing a zone member from a zone or zone alias

Zone members are represented by CIM_ZoneMembershipSettingData instances. No instance of
CIM_ZoneMembershipSettingData exists unless it is associated to a zone or zone alias by a
CIM_ElementSettingData assoclation. However, an instance of
CIM_ZoneMembershipSettingData may be associated to more than one zone or zone alias.

Removing a zone member from a zone or zone alias is equivalent to deleting the instance of the
CIM_ElementSettingData association. Delete the instance using the intrinsic operation
deletelnstance. Clients are allowed to delete all the members of a zone or zone alias this way,
leaving the zone or zone alias empty.

If this is the last instance of a CIM_ElementSettingData association for a particular
CIM_ZoneMembershipSettingData, do not delete the instance of
CIM_ZoneMembershipSettingData; it is the provider's responsibility to clean up these structures.

7.3.4.1.14.8.4 Deleting a zone member

Zone members are represented by CIM_ZoneMembershipSettingData instances associated to
zones or zone aliases via CIM_ElementSettingData associations. To delete a zone member (and
remove it from any zones or zone aliases from which it is a member) use the CIM operation
deletelnstance to delete the instance of CIM_ZoneMembershipSettingData.

Do not delete the corresponding instances of the CIM_ElementSettingData; it is the provider's
responsibility to clean up these structures.

Clients are allowed to delete the last member in a zone alias or zone, leaving the zone or zone alias
empty.

7.3.4.1.14.8.5 Deleting a zone, zone alias, or zone set

Use the intrinsic operation deleteInstance to delete a zone, zone alias or zone set. Client are
allowed to delete zones or zone aliases that are members of collections (zones or zone sets). Clients
are allowed to delete the last member of a zone or zone set, leaving the collection empty.

A zone set or zone cannot be deleted if it is currently active (the error would be
CIM_ERR_FAILED). Some implementations may prohibit deleting zonesets, zones or zone aliases
that still have members (the error would be CIM_ERR_FAILED). When a zone, zone alias or zone
set is deleted, the client does not have to delete the corresponding instances of
CIM_MemberOfCollection or CIM_HostedCollection; it is the provider's responsibility to clean up
these structures.

7.3.4.1.14.9 Client Considerations

Many agent implementations do not allow Zone, a ZoneAlias or a Zone Set to be defined empty.
Since the methods defined in SMI-S do not support creating a Zone Set with a Zone and a Zone
with a Zone Member, the SessionControl method should be used to build a Zone Definition that is
interoperable. This is done by calling ZoneSession() to “Start” defining or updating the Zone
Definition. The client then calls the appropriate methods as necessary to build the desired Zone
Definition. For example, calling CreateZoneSet() to create a new Zone Set, CreateZone() to create a
new Zone, AddZoneToZoneSet() to add the newly created Zone to the newly created Zone Set, and
CreateZoneMembershipSettingData() to create and add a new Zone Member to the newly created
Zone. Upon completion of the new zoning definition, ZoneControl is called again to “End” the
session. The changes to the Zone Definition would then be applied to the Zone Set Database. This

Version 1.0.1 295

SNIA Storage Management Initiative Specification

set of calls would create a Zone Definition where the Zone and ZoneSet are not empty and would be
interoperable across all agent implementations.

7.3.4.1.14.10 Recipes

7.3.4.1.14.10.1 Create or delete zones Common Functions
// DESCRIPTION
/!
// Common functions used by the recipes below.
I
// startSession: attempt to start fabric session if required;
/I returns false if attempt fails; returns true if attempt succeeds
/I or if session control is unnecessary
/!
// endSession: finalize fabric session if required; returns false
/I if attempt fails; returns true if attempt succeeds or if session
/I control is unnecessary
/1
// PREEXISTING CONDITIONS AND ASSUMPTIONS
/!
// None

sub boolean startSession ($ZoneService->)

{

$ZoneService = Getlnstance($ZoneService->, false, false, false, null)

// session statuses
#Ended = 3
#NotApplicable = 4

// requested session statuses
#Started = 2

#NoChange = 5

if ($ZoneService.SessionState == #NotApplicable)

return true // no session control implemented by this agent

if ($ZoneService.SessionState != #Ended)

return false // fabric session is in use by another client or agent

if ($ZoneService.RequestedSessionState != #NoChange)

return false // another client has already requested session
%InArguments[“RequestedSessionState™] = #Started
#status = InvokeMethod($ZoneService->, “SessionControl”, %InArguments, %OutArguments)

if (#status !=0) // e.g. “Failed”

return false

296 Version 1.0.1

SNIA Storage Management Initiative Specification

$ZoneService = Getlnstance($ZoneService->, false, false, false, null)
if ($ZoneService.SessionState != #Started)

return false

return true

sub boolean endSession ($ZoneService->) {

$ZoneService = GetInstance($ZoneService->, false, false, false, null)

// session statuses
#Started = 2
#NotApplicable = 4

// requested session statuses
#End =3

if ($ZoneService.SessionStatus == #NotApplicable){

return true // no need for session control

if (§ZoneService.SessionStatus != #Started)

return false // no session started by this client

%InArguments[“RequestedSessionState”] = #End
#status = InvokeMethod($ZoneService, “SessionControl”, %InArguments, %OutArguments)
if (#status 1= 0) // e.g. “Failed”

return false

// Do not wait, or even check, for SessionState to have value “Ended” as
// a) InvokeMethod will block till done (or failed) anyway
// b) Before the check can be made, session may already be started

/I by another client

return true

7.3.4.1.14.10.2 Add new or existing Zone Member to Existing Zone
// DESCRIPTION
/I Add new or existing Zone Member to Existing Zone
/1
/I Assume the client has already invoked some logic to determine which
// System (fabric or switch) will host the zone database and zone
// service to be used. Request and obtain a fabric session from the
// zone service. Use an extrinsic method to attempt to create a new
// instance of ZoneMembershipSettingData, associated to a zone. If

// the creation fails because an instance already exists for the

Version 1.0.1 297

SNIA Storage Management Initiative Specification

// desired zone member id, simply create an association between the
// pre-existing ZoneMembershipSettingData instance and the zone

// instance. Then close the fabric session.

/1

// PREEXISTING CONDITIONS AND ASSUMPTIONS

/1

//' 1. The System hosting the zone database (ComputerSystem or

// AdminDomain) has been previously identified and defined in the
// $System-> variable

/1

// 2. The zone member type is defined in the #ConnectivityMemberType variable
//

/I 3. The zone member id of the new zone member is defined in the
/I #ConnectivityMemberID variable

//

//' 4. An existing zone is defined in the $Zone-> variable

/

// FUNCTIONS

/I 1. Get the Zone Service and start the session

$ZoneServices->[] = AssociatorNames($System->, “CIM_HostedService”,

“CIM_ZoneService”, null, null)

// Assumption 1 (above) guarantees there is a zone service for this
// System, Fabric Profile mandates there is no more than one zone
// service for this System

$ZoneService-> = $ZoneService->[0]

// Start the session
if (1&startSession($ZoneService->)) {

return

// 2. Create or locate a ZoneMembershipSettingData

%InArguments[“ConnectivityMemberType”] = #ConnectivityMemberType

%InArguments[“ConnectivityMemberID”] = #ConnectivityMemberID

%InArguments[“SystemSpecificCollection”] = $Zone->

#status = InvokeMethod($ZoneService->, “CreateZoneMembershipSettingData”,
%InArguments[], %OutArguments[])

//' 3. Add to zone if not created as a member of the zone
// NOTE: ZoneMember output argument is set even if return status is 8 (Already_Exists)
$ZoneMember-> = %OutArguments[“ZoneMembershipSettingData”]
if (#status == 8) {
%InArguments2[“SystemSpecificCollection”] = $Zone
%InArguments2[“ZoneMembershipSettingData”] = $ZoneMember->

298 Version 1.0.1

SNIA Storage Management Initiative Specification

InvokeMethod($ZoneService->, “AddZoneMembershipSettingData”,
%InArguments2[], %OutArguments|])
§
else if (#status !=0)
// ERROR!

//'4. End session successfully

&endSession($ZoneService->)

7.3.4.1.14.10.3 Create new Zone, add new/existing Zone Member, and add to existing ZoneSet

Version 1.0.1

// DESCRIPTION

// Create new Zone, add new/existing Zone Member, and add to existing ZoneSet
/!

// Assume the client has already invoked some logic to determine which
// System (fabric or switch) will host the zone database and zone

// service to be used. Request and obtain a fabric session from the

// zone service. Create a new Zone using an extrinsic method. The

// session may not be ended if any zone is empty, so add a zone member
// to the new zone. The session also may not be ended unless every

// zone is a member of at least one zone set, so add the new zone to

// an existing zone set. Then close the fabric session.

/!

/1

// PREEXISTING CONDITIONS AND ASSUMPTIONS

/!

// 1. The System hosting the zone database (ComputerSystem or

//" AdminDomain) has been previously identified and defined in the

// $System-> variable

/1

// 2. The name for a new zone is defined in the #ZoneName variable

/!

// 3. The type for the new zone is defined in the #ZoneType variable

/1

//'4. The sub type for the new zone is defined in the #ZoneSubType

/I variable

/1

/I'5. The zone member type is defined in the #ConnectivityMemberType variable
/1

/I 6. The zone member id of the new zone member is defined in the

/I #ConnectivityMemberID variable

/1

// 7. An existing zoneSet is defined in the $ZoneSet-> variable

/!

// FUNCTIONS

/I 1. Get the Zone Service and start the session

$ZoneServices->[] = AssociatorNames($System->, “CIM_HostedService”,

299

SNIA Storage Management Initiative Specification

“CIM_ZoneService”, null, null)

/I Assumption 1 (above) guarantees there is a zone service for this
// System, Fabric Profile mandates there is no more than one zone
// service for this System

$ZoneService-> = $ZoneServices->[0]

if (! &startSession($ZoneService->)) {

return

// 2. Create a zone

%InArguments[“ZoneName”] = #ZoneName

%InArguments[“ZoneType”’] = #ZoneType

%InArguments[“ZoneSubType”] = #ZoneSubType

InvokeMethod($ZoneService->, “CreateZone”, %InArguments[], %OutArguments[])
$Zone-> = $OutArguments[“Zone”]

/I 3. Create or locate a ZoneMembershipSettingData

%InArguments[“ConnectivityMemberType”] = #ConnectivityMemberType

%InArguments[“ConnectivityMemberID”] = #ConnectivityMemberID

%InArguments[“SystemSpecificCollection”] = $Zone->

#status = InvokeMethod($ZoneService->, “CreateZoneMembershipSettingData”,
%InArguments[], %OutArguments[])

//'4. Add to zone if not created as a member of the zone
$ZoneMember-> = %OutArguments[“ZoneMembershipSettingData”]

if (#status == 8) {
%InArguments2[“SystemSpecificCollection”] = $Zone->
%InArguments2[“ZoneMembershipSettingData”] = $ZoneMember->
InvokeMethod($ZoneService->, “AddZoneMembershipSettingData”,

%InArguments2[], %OutArguments[])

b

else if (#status !=0)
// ERROR!

//'5. Add the new zone to the existing zone set
%InArguments[“ZoneSet”] = $ZoneSet->
%InArguments[“Zone”] = $Zone->
#status = InvokeMethod($ZoneService->, “AddZone”, %InArguments[], %OutArguments[])
if (#status !=0)
// ERROR!

/1 6. End Session

&endSession($ZoneService->)

300 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.1.14.10.4 Create new ZoneSet and add existing Zone

Version 1.0.1

// DESCRIPTION

/I Create new ZoneSet and add existing Zone

/1

/I Assume the client has already invoked some logic to determine which
// System (fabric or switch) will host the zone database and zone

// service to be used. Request and obtain a fabric session from the

// zone service. Create a new ZoneSet with a given name, using an
// extrinsic method. The session may not be ended if any ZoneSet is
// empty, so add an existing zone to the ZoneSet. Then close the

// fabric session.

/!

// PREEXISTING CONDITIONS AND ASSUMPTIONS

/1

//'1. The System hosting the zone database (ComputerSystem or

//" AdminDomain) has been previously identified and defined in the
/I $System-> variable

/!

// 2. The name for the new zone set is defined in the #ZoneSetName
/I variable

/!

// 3. An existing zone is defined in the $Zone-> variable

/

// FUNCTIONS

/I 1. Get the Zone Service and start the session

$ZoneServices->[] = AssociatorNames($System->, “CIM_HostedService”,
“CIM_ZoneService”, null, null)

/I Assumption 1 (above) guarantees there is a zone service for this

// System, Fabric Profile mandates there is no more than one zone

// service for this System

$ZoneService-> = $ZoneServices->[0]

if (!&startSession($ZoneService->)

return

}

/2. Create a zone set
%InArguments[“ZoneSetName”] = #ZoneSetName
#status = InvokeMethod($ZoneService->, “CreateZoneSet”, %InArguments[], %OutArguments[])
if (#status !=0)
// ERROR!

$ZoneSet-> = %OutArguments[“ZoneSet”]

301

SNIA Storage Management Initiative Specification

//'3. Add the existing zone to the new zone set
%InArguments[“ZoneSet”] = $ZoneSet->
%InArguments[“Zone”] = $Zone->
#status = InvokeMethod($ZoneService->, “AddZone”, %InArguments[], %OutArguments[])
if (#status !=0)
// ERROR!

// 4. End Session

&endSession($ZoneService->)

7.3.4.1.14.10.5 Delete zone
// DESCRIPTION
// Delete Zone
/1
// Try to use intrinsic delete operation to delete a Zone instance.
// Before any operations can be imposed on the zoning service, a
// session is requested and obtained from the zone service. If the
// deletion fails, this may be because the zone is active, or because
// it is not empty. In the latter case, remove all members from the
// zone by deleting the ElementSettingData association instances, and
// try the deletion again.
/!
// PRE-EXISTING CONDITIONS AND ASSUMPTION
//'1. The object name of the zone to be deleted is defined in the
/I $Zone-> variable
// 2. The object name of the zone service object for the System
/I hosting the zone database is defined in the $ZoneService->

/' variable

if(!&startSession($ZoneService->))

return

try {

Deletelnstance($Zone->)
H
catch(CIM_ERR_FAILED) {
/I Verify that Zone is not active
$Zone = Getlnstance($Zone->, false, false, false, null)
if ($Zone.Active) {
// tell client of its logic problem
throw CIM_ERR_FAILED

// Failure may be caused because zone has members
// Try to delete all zone memberships (not zone members themselves)
$ZoneElements->[] = ReferenceNames($Zone->, “CIM_ElementSettingData”, null)

302 Version 1.0.1

SNIA Storage Management Initiative Specification

for #i in $ZoneElements->[] {

Deletelnstance($ZoneElements[#i])

// Try again

Deletelnstance($Zone->)

&endSession($ZoneService->)

7.3.4.1.14.10.6 Delete ZoneSet

Version 1.0.1

// DESCRIPTION

// Delete Zone Set

I

// Try to use intrinsic delete operation to delete a ZoneSet

// instance. Before any operations can be imposed on the zoning

// service, a session is requested and obtained from the zone service.

// The session is released when the operations are complete. If the
// deletion fails, this may be because the zone set is active, or

// because it is not empty. In the latter case, remove all zones from
// the zone set by deleting the MemberOfCollection association

// instances, and try the deletion again.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//'1. The object name of the zone set to be deleted is defined in the
/I $ZoneSet-> variable

// 2. The object name of the zone service object for the system

/I hosting the zone database is defined in the $ZoneService->

// variable

if (!&startSession($ZoneService->))

return

try {

Deletelnstance($ZoneSet->)
H
catch(CIM_ERR_FAILED) {
$ZoneSet = GetInstance($ZoneSet->, false, false, false, null)
if ($ZoneSet.Active) {
// tell client of logic problem
throw CIM_ERR_FAILED

// Failure may be because zoneset is not empty

303

SNIA Storage Management Initiative Specification

$ZoneMemberships->[] = ReferenceNames($ZoneSet->, “CIM_MemberOfCollection”, null)
for #i in $ZoneMemberships->[] {
Deletelnstance($ZoneMemberships->[$i])

// Try again

Deletelnstance($ZoneSet->)

&endSession($ZoneService->)

7.3.4.1.14.10.7 Create ZoneMember
// DESCRIPTION
// Create a zone member based on the parameters collected by the
// CIM Client. Before any operations can be imposed on the zoning service,
// a session is requested and obtained from the zone service. The
// session is released when the operations are complete.
/
// PRE-EXISTING CONDITIONS AND ASSUMPTION
//'1. The fabric of interest, the AdminDomain, has been previously
I identified and defined in the $Fabric-> variable
//2. The zone member is defined in the #ZoneMemberType variable
//'3. The zone member id of the new zone member is defined in the
I #ZoneMemberID variable
/4. The object name of the zone member to be deleted is defined in
/1 the $ZoneMember-> variable

/I'5. Assume that there is only one zone service per fabric

$ZoneServices->[] = AssociatorNames(
$Fabric->,
“CIM_HostedService”,
“CIM_ZoneService”,
null,
null)
$ZoneService-> = nameof $ZoneService
if(!&startSession($ZoneService->))

return

%InArguments[“ZoneMemberType”] = $ZoneMemberType
%InArguments[“Zonememberld”] = $ZoneMemberld
%InArguments[“SystemSpecificCollection”] = $Fabric
InvokeMethod(

$ZoneService->,

“CreateZoneAlias”,

%InArguments[],

%OutArguments|])

304 Version 1.0.1

SNIA Storage Management Initiative Specification

$ZoneMember-> = %OutArguments[“ZoneMember”]

&endSession($ZoneService->)

7.3.4.1.14.10.8 Delete ZoneMember

7.3.4.1.14.11

The agent MUST support the use case defined in the Client Considerations (p. 308).

Version 1.0.1

// DESCRIPTION

// Delete a zone member, removing it from any zones and aliases of

// which it is a member.

//

// Use the intrinsic delete operation to delete a

/I ZoneMembershipSettingData instance. Before any operations can be
// imposed on the zoning service, a session is requested and obtained

// from the zone service. The session is released when the operations
// are complete.

/

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//'1. The object name of the ZoneMembershipSettingData to be deleted is defined in the
/l $ZoneMember-> variable

/1 2. The object name of the zone service object for the system

/I hosting the zone database is defined in the $ZoneService->

// variable

if(! &startSession($ZoneService->))

return

Deletelnstance($ZoneMember->)

&endSession($ZoneService->)

Instrumentation Requirements

305

7.3.4.1.14.12

Required CIM Elements

SNIA Storage Management Initiative Specification

Table 163: Required CIM Elements

Profile Classes & Associations

Notes

HostedService (p. 306)

Associates ZoneService to the AdminDomain or

ComputerSystem

ZoneService (p. 306)

Ass

ociated Indications

7.3.4.1.14.13 Required Properties for CIM Elements
7.3.4.1.14.14 HostedService
Table 164: Required Properties for HostedService
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key, min(1), max(1) AdminDomain or
ComputerSystem
Dependent ref key, weak ZoneService
7.3.4.1.14.15 ZoneService
Table 165: Required Properties for ZoneService
Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemCreationClassName string propagated, key
CreationClassName string key
SystemName string propagated, key | AdminDomain
Name string key

OperationalStatus

uint16 (enum)

SessionStatus

uint16 (enum)

RequestedSessionStatus

CreateZone() uint16
DeleteZone() uint16
CreateZoneSet() uint16
DeleteZoneSet() uint16
ActivateZoneSet() uint16
306 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 165: Required Properties for ZoneService (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
DeactivateZoneSet() uint16

7.3.4.1.14.16 Optional Subprofiles

Table 166: Optional Profiles or Subprofiles

Name Notes

None

7.3.4.1.15 Enhanced Zoning and Enhanced Zoning Control Subprofile

7.3.4.1.15.1 Description

See parent sections.

7.3.4.1.15.2 Standards Dependencies
See parent sections.

7.3.4.1.15.3 Profile Dependencies

Support for the Zone Control Subprofile (p. 291) is required by the Enhanced Zoning and
Enhanced Zoning Control subprofile.

7.3.4.1.15.4 CIM Server Requirements
See parent sections.

7.3.4.1.15.5 Instance Diagrams

See parent sections.

7.3.4.1.15.6 Durable Names and Correlatable IDs

See parent sections.
7.3.4.1.15.7 Methods

7.3.4.1.15.7.1 CreateZoneAlias

The method creates a ZoneAlias and associates it to AdminDomain that the ZoneService is Hosted
on.

CreateZoneAlias (
string ZoneAliasName,
[OUT] ref ZoneAlias);

7.3.4.1.15.7.2 AddZoneAlias
Adds to the Zone the specified ZoneAlias.

AddZoneAlias (
[IN] CIM_Zone ref Zone,
[IN] CIM_ZoneAlias ref ZoneAlias,
[OUT] CIM_MemberOfCollection ref MemberOfCollection);

Version 1.0.1 307

SNIA Storage Management Initiative Specification

7.3.4.1.15.8 Client Considerations
7.3.4.1.15.9 Recipes

7.3.4.1.15.9.1 Create a ZoneAlias
// DESCRIPTION
// Create zone alias and add new/existing zone member based on
// the parameters collected by the CIM Client.
// Before any operations can be imposed on the zoning
// service, a session is requested and obtained from the zone
// service. Create a new ZoneAlias. The session may not be ended if
// the ZoneAlias is empty, so add a zone member to the new ZoneAlias.
// ' The session is released when the operations are
// completed.
/1
// PRE-EXISTING CONDITIONS AND ASSUMPTION
//'1. The system of interest,either the fabric (AdminDomain)
/ or the switch (ComputerSystem), has been
I previously identified and defined in the
// $System-> variable
//2. The name of the new zone alias is defined in the
/ #ZoneAliasName variable
//' 3. The zone member type is defined in the #ConnectivityMemberType
/ variable
//'4. The zone member Id of the new zone member is defined in the

/ #ConnectiivityMemberID variable

//'1. Get the ZoneService and start a session
$ZoneServices->[] = AssociatorNames(
$System->,
“CIM_HostedService”,

“CIM_ZoneService”, null, null)

// Assumption 1 above guarantees there is a zone service for this
// system. the fabric and switch profiles that there is no more than
// one ZoneService for this system

$ZoneService-> = $ZoneServices[0]

if(! &startSession($ZoneService->))

{

return

/2. Create the ZoneAlias
%InArguments[“CollectionAlias”] = #ZoneAliasName
#status = InvokeMethod(

$ZoneService->,

308 Version 1.0.1

SNIA Storage Management Initiative Specification

“CreateZoneAlias”,
%InArguments|[],
%OutArguments|])

$ZoneAlias-> = %OutArguments[“ZoneAlias”]
if(#status !=0)

// ERROR!

/' 3. Create or locate a ZoneMembershipSettingData

%InArguments[“ConnectivityMemberType”] = #ConnectivityMemberType

%InArguments[“ConnectivityMemberID”] = #ConnectivityMemberID
%InArguments[“SystemSpecificCollection”] = $ZoneAlias->

#status = InvokeMethod($ZoneService->, “CreateZoneMembershipSettingData”,

%InArguments[], %OutArguments[])

/1 4. Add to zone alias if not created as a member of the zone alias

// Zone member reference is set accordingly in the output arguments.

$ZoneMember-> = %OutArguments[“ZoneMembershipSettingData”]

if (#status == 8) {
/I ZoneMembershipSettingData already exists
%InArguments2[“SystemSpecificCollection”] = $ZoneAlias->
%InArguments2[“ZoneMembershipSettingData”] = $ZoneMember->
InvokeMethod($ZoneService->, “AddZoneMembershipSettingData”,

%InArguments2[], %OutArguments[])

}

else if (#status !=0)
// ERROR!

//'5. End the session gracefully

&endSession($ZoneService->)

7.3.4.1.15.9.2 Delete a ZoneAlias

Version 1.0.1

// DESCRIPTION

// Delete a zone alias.

// Before any operations can be imposed on the zoning service, a

// session is requested and obtained from the zone service.

// The session is released when the operations are completed.

/!

// if the deletion fails, it may be because the Zone Alias is not empty.
// In this case, remove all members from the alias by deleting the

// ElementSettingData associations, and try the deletion again.

/1

309

SNIA Storage Management Initiative Specification

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//'1. The system of interest,either the fabric (AdminDomain)
/ or the switch (ComputerSystem), has been

/ previously identified and defined in the

// $System-> variable

//2. The object name of the zone alias to be deleted is

/1 defined in the $ZoneAlias-> variable

/I 1. Get the zone service and start a session
$ZoneServices->[] = AssociatorNames(
$System->,
“CIM_HostedService”,
“CIM_ZoneService”,
null,
null)

// Assumption 1 above guarantees there is a zone service for this
// system. the fabric and switch profiles that there is no more than
// one ZoneService for this system

$ZoneService-> = $ZoneServices[0]

if(! &startSession($ZoneService->))

{

return

/2. Attempt to delete the alias
try {
Deletelnstance($ZoneAlias->)
}catch(CIM_ERR_FAILED){
// Try to remove any zone members in the alias
// via the ElementSettingData association
$ZoneMembers->[] = referenceNames($ZoneAlias->,
“CIM_ElementSettingData”,
null)
for #j in $ZoneMembers->[] {
Deletelnstance(ZoneMembers[#])
}
// Try again

Deletelnstance($ZoneAlias->)

}
// 3. End Session

&endSession($ZoneService->)

310 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.1.15.10 Instrumentation Requirements

See parent sections.

Version 1.0.1 311

SNIA Storage Management Initiative Specification

7.3.4.1.15.11 Required CIM Elements

Table 167: Required CIM Elements

Profile Classes & Notes
Associations
HostedCollection NamedAddressCollection hosted on System
MemberOfCollection Associates ZoneMembershipSettingData to NamedAddressCollection
NamedAddressCollection The Zone Alias

ZoneService

Packages and Subprofiles

Zone Control Subprofile (p.
291)

Associated Indications

7.3.4.1.15.12 Required Properties for CIM Elements

7.3.4.1.15.12.1 HostedCollection

Table 168: Required Properties for HostedCollection

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key, min(1), max(1) AdminDomain or
ComputerSystem
Dependent ref key, weak NamedAddressCollection

7.3.4.1.15.12.2 MemberOfCollection

Table 169: Required Properties of MemberOfCollection

Property/ Type Qualifier/ Description/Notes
Method Parameter
Collection ref key NamedAddressCollection
Member ref key ZoneMembershipSettingData

7.3.4.1.15.12.3 NamedAddressCollection

Table 170: Required Properties for NamedAddressCollection

Property/ Type Qualifier/ Description/Notes
Method Parameter

InstancelD string key REQUIRED

312 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 170: Required Properties for NamedAddressCollection

Property/ Type Qualifier/ Description/Notes
Method Parameter
CollectionAlias string required Zone Alias Name
FCSW ZoneAlias.Name, REQUIRED

7.3.4.1.15.13 ZoneService

The Service responsible for defining the zone enforcement for the fabric. The ZoneService is
Hosted on an AdminDomain and defines the containment and scope of the zoning entities.

Note: The following property list includes only those properties that must be added to the pre-
existing ZoneService instance (requried by the Zone Control subprofile).

Table 171: Required Properties for ZoneService

Property/ Type Qualifier/ Description/Notes
Method Parameter
CreateZoneAlias() uint16
DeleteZoneAlias() uint16

7.3.4.1.15.13.1 Optional Subprofiles

Table 172: Optional Profiles or Subprofiles

Name Notes

None.

7.3.4.1.16 FDMI Subprofile

7.3.4.1.16.1 Description

The Fabric-Device Management Interface (FDMI) enables the management of devices such as
HBASs through the Fabric. The FDMI complements data in the Fabric Profile.

This profile only addresses HBA type devices. The HBA Management Interface defined by FDMI is
a subset of interface defined by the Fibre Channel HBA API specification, as exposed by the FC
HBA Profile (p. 349).

7.3.4.1.16.2 Standards Dependencies

See parent sections.

7.3.4.1.16.3 Profile Dependencies
See parent sections.

7.3.4.1.16.4 CIM Server Requirements

See parent sections.

7.3.4.1.16.5 Instance Diagrams
See parent sections.

Version 1.0.1 313

7.3.4.1.16.6 Durable Names and Correlatable IDs
See parent sections.

7.3.4.1.16.7 Methods

See parent sections.

7.3.4.1.16.8

See parent sections.

Client Considerations

7.3.4.1.16.9

See parent sections.

Recipes

7.3.4.1.16.10

See parent sections.

Instrumentation Requirements

314

SNIA Storage Management Initiative Specification

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.1.16.11 Required CIM Elements

Table 173: Required CIM Elements

Profile Classes & Associations

Notes

DeviceSoftwareldentity (p. 316)

Associates PortController to Softwareldentity

ControlledByyJMS (p. 315)

FCPort (p. 316)

LogicalPortGroup (p. 318)

MemberOfCollection (p. 318)

PortController (p. 318) The HBA
ProtocolControllerForPort (p. 319) OPTIONAL
SCSIProtocolController (p. 319) OPTIONAL

SystemDevice (p. 289)

Associates ComputerSystem and FCPort or
SCSIProtocolController

Packages

Physical Package Package (p. 103)

Software Subprofile (p. 145)

Associated Indications

7.3.4.1.16.12 Required Properties for CIM Elements

7.3.4.1.16.12.1 ControlledByyJMS

Table 174: Required Properties for ControlledBy

Property/ Type Qualifier/ Description/Notes
Method Parameter

Antecedent ref key, override Softwareldentity

Dependent ref key, override PortController

InstancelD string required

Version string required

Manufacturer string required

Classification string required

Version 1.0.1

315

7.3.4.1.16.12.2 DeviceSoftwareldentity

SNIA Storage Management Initiative Specification

Table 175: Required Properties for DeviceSoftwareldentity

Property/ Type Qualifier/ Description/Notes
Method Parameter

Antecedent ref key, override Softwareldentity

Dependent ref key, override PortController

InstancelD string required

Version string required

Manufacturer string required

Classification string required

7.3.4.1.16.12.3 FCPort

Table 176: Required Properties for FCPort

Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemName string key
SystemCreationClassName | string key
CreationClassName string key
ElementName string Port Symbolic Name
OperationalStatus uint16
DevicelD string key, Opaque
maxlen (64)
Speed uint64 units ("bits per Speed of zero represents a link not
second") established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.
MaxSpeed uint64 Port Supported Speed from HBA API.
PortType uint16 override “Unknown = 0, “Other” = 1,
“N” =10, “NL” = 11, “F/NL” = 12, “Nx”
=13, “E" =14, “F" =15, “FL" = 16, “B”
=17,
“G”=18.
LinkTechnology uint16 For FibreChannel, “FC”

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 176: Required Properties for FCPort (Continued)

issionUnit

Property/ Type Qualifier/ Description/Notes
Method Parameter
PermanentAddress string maxlen (64) For FibreChannel, it is the Fibre
Channel Port WWN.

NetworkAddresses]] string maxlen (64), For Fibre Channel end device ports, it
arraytype is the Fibre Channel ID. For
("indexed") Switches, it should be Null.

SupportedMaximumTransm | uint16

Version 1.0.1

317

7.3.4.1.16.12.4 LogicalPortGroup

SNIA Storage Management Initiative Specification

Table 177: Required Properties for LogicalPortGroup

Property/
Method

Qualifier/
Parameter

Type

Description/Notes

ElementName

string

Node Symbolic Name if
available. Otherwise NULL. If
the underlying
implementation includes
characters that are illegal in
CIM strings, then truncate
before the first of those
characters.

InstancelD

string key

Opaque

Name

Node WWN.

NameFormat

string

“WWN”

7.3.4.1.16.12.5 MemberOfCollection

Table 178: Required Properties of MemberOfCollection

Property/ Type Qualifier/ Description/Notes
Method Parameter
Collection ref key The Collection that aggregates members.
Member ref key The aggregated member of the Collection.

7.3.4.1.16.12.6 PortController

Table 179: Required Properties for PortController

Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemCreationClassName string maxlen(256), key | The scoping System's
CreationClassName.

SystemName string maxlen(256), key | The scoping System's Name.

CreationClassName string maxlen(256), key | The name of the concrete
subclass

DevicelD string maxlen(64), key Opaque

ProtocolSupported uint16 The protocol used by the
Controller to access 'controlled'
Devices.

318

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.1.16.12.7 ProtocolControllerForPort

Table 180: Required Properties of ProtocolControllerForPort

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependent ref The Port
Antecedent ref The protocol controller

7.3.4.1.16.12.8 SCSIProtocolController

Table 181: Required Properties for SCSIProtocolController

Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key | The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DevicelD string maxlen(64), key Opaque

MaxUnitsControlled uint32 Maximum number of directly
addressable entities supported
by this Controller. A value of 0
should be used if the number is
unknown or unlimited.

Version 1.0.1

319

SNIA Storage Management Initiative Specification

7.3.4.2 Switch Profile
7.3.4.2.1 Description
The switch profile models the physical and logical aspects of a Fibre Channel fabric interconnect
element. The ComputerSystem class constitutes the core of the switch model. It is identified as a
switch using the property Dedicated set to “switch”.
If a switch is modular, for instance if the switch is comprised of multiple blades on a backplane,
LogicalModule can optionally be used to model each sub-module, and as an aggregation point for
the switch ports.
FCPort describes the logical aspects of the port link and the data layers. PhysicalConnector models
the physical aspects of a port. An instance of the FCPortStatistics class is expected for each instance
of the FCPort class. FCPortStatistics expose real time port health and traffic information.
7.3.4.2.2 Standard Dependencies
The Switch Profile is based on the following standards:
Table 182: Switch Standards Dependencies
Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.8 Preliminary DMTF
7.3.4.2.3 Profile Dependencies
The Switch Profile requires the Server Profile (p. 441).
7.3.4.2.4 CIM Server Requirements
7.3.4.2.4.1 Functional Profiles

Table 183: Required Functional Profiles

320

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation
YES Indication None

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.2.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.

7.3.4.2.4.3 Discovery

The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

7.3.4.2.5 Instance Diagram

Figure 60: Switch Instance Diagram

Product

FC PortStatistics

ProductP hysical

Component Element

‘ S tatisticalD ata
PhysicalPackage FCPort

SystemDevice

ComputerSystem

Package

]
ComputerSystem

Dedicated="switch" u
Software u

InstalledO n

System
FCPort

Softwareldentity

Element
S tatisticalD ata

FC PortStatistics

(Firmware)

7.3.4.2.6 Durable Names and Correlatable IDs of the Profile

7.3.4.2.6.1 Durable Names Exported

See parent profile.

7.3.4.2.6.2 Correlatable IDs Used
See parent profile.

7.3.4.2.7 Methods

See parent profile.

Version 1.0.1 321

SNIA Storage Management Initiative Specification

7.3.4.2.8 Client Considerations
See parent profile

7.3.4.2.9 Recipes

See parent profile

7.3.4.2.10 Instrumentation Requirements

The information about the device that is supposed to be managed by the provider running on host
(proxy agent) is implementation specific.

322 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.2.11

Required CIM Elements

Table 184: Required CIM Elements

Profile Classes & Associations

Notes

ComputerSystem (p. 323)

ElementStatisticalData (p. 325)

FCPort (p. 325)

FCPortRateStatistics (p. 327)

FCPortStatistics (p. 327)

SystemDevice (p. 329)

Packages

Physical Package Package (p. 103)

Software Package

Associated Indications

Creation/Deletion of ComputerSystem

SELECT * FROM CIM_InstCreation WHERE Sourcelnstance ISA
CIM_ComputerSystem
SELECT * FROM CIM_InstDeletion WHERE Sourcelnstance ISA
CIM_ComputerSystem

Change in status of ComputerSystem

SELECT * FROM CIM_InstModification WHERE Sourcelnstance ISA
CIM_ComputerSystem AND Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus

Change in status of FCPort

SELECT * FROM CIM_InstModification WHERE Sourcelnstance ISA
CIM_FCPort AND Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus

7.3.4.2.12

7.3.4.2.12.1 ComputerSystem

Required Properties for CIM Elements

Table 185: Required Properties for ComputerSystem

Property/ Type Qualifier/ Description/Notes
Method Parameter

ElementName string User Friendly name

OperationalStatus uint16

CreationClassName string maxlen(256), key Name of Class

Name string maxlen(256), key For Switches, it is the FC WWN.

NameFormat string override “WWN?”.

Otherldentifyinginfo[] string The DomainlD is stored here in
decimal format.

Version 1.0.1

323

SNIA Storage Management Initiative Specification

Table 185: Required Properties for ComputerSystem (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
IdentifyingDescription[] string “DomainlD” is placed in the

corresponding index.

Dedicated][] int16 “Switch”.

324 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.2.12.2 ElementStatisticalData

Table 186: Required Properties for ElementStatisticalData

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement ref The reference to the FCPort
Stats ref The reference to the FCPortStatistics.

7.3.4.2.12.3 FCPort

Table 187:

Required Properties for FCPort

Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemName string key

SystemCreationClassName | string key

CreationClassName string key

ElementName string Port Symbolic Name

OperationalStatus uint16

DevicelD string key, maxlen (64) | Opaque

Speed uint64 units ("bits per Speed of zero represents a link not

second") established

1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.

MaxSpeed uint64 The max speed of the Port in Bits per
Second using the same algorithm as
Speed.

PortType uint16 override “Unknown = 0, “Other” =1,
“N”=10, “NL” =11, “F/NL” = 12, “Nx” =
13, “E” = 14, “F" = 15, “FL" = 16, “B" =
17,
“G” =18.

OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").

PortNumber uint16 NetworkPorts are often numbered
relative to either a logical modules or a
network element.

LinkTechnology uint16 For FibreChannel, “FC”.

Version 1.0.1

325

SNIA Storage Management Initiative Specification

Table 187: Required Properties for FCPort (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
PermanentAddress string maxlen (64) For FibreChannel, it is the Fibre
Channel Port WWN.
NetworkAddresses] string maxlen (64), For Fibre Channel end device ports, it
arraytype is the Fibre Channel ID. For Switches,
("indexed") it should be Null.

326

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.2.12.4 FCPortRateStatistics

Table 188: Required Properties for FCPortRateStatistics

Property/ Type Qualifier/ Description/Notes
Method Paramete

r
ElementName string required
InstancelD unit16 key
Samplelnterval datetime This property is recommended
StatisticTime datetime This property is recommended
TxFrameRate uint64 This property is recommended
RxFrameRate uint64 This property is recommended
MaxTxFrameRate uint64 This property is recommended
MaxRxFrameRate uint64 This property is recommended
TxRate uint64 This property is recommended
RxRate uint64 This property is recommended
PeakTxRate uint64 This property is recommended
PeakRxRate uint64 This property is recommended

7.3.4.2.12.5 FCPortStatistics

Table 189: Required Properties for FCPortStatistics

Property/ Type Qualifier/ Description/Notes
Method Paramete

r
ElementName string required
InstancelD unit16 key
StatisticTime datetime This property is recommended
ResetSelectedStats() This property is recommended
BytesTransmitted uint64
BytesReceived uint64
PacketsTransmitted uint64
PacketsReceived uint64
LIPCount uint64 This property is recommended
NOSCount uint64 This property is recommended
ErrorFrames uint64 This property is recommended
DumpedFrames uint64 This property is recommended

Version 1.0.1 327

SNIA Storage Management Initiative Specification

Table 189: Required Properties for FCPortStatistics (Continued)

Property/ Type Qualifier/ Description/Notes
Method Paramete
r

LinkFailures uint64

LossOfSyncCounter uint64 This property is recommended
LossOfSignalCounter uint64 This property is recommended
PrimitiveSeqProtocolErrCount uint64

CRCErrors uint64

InvalidTransmissionWords uint64 This property is recommended
FramesTooShort uint64 This property is recommended
FramesToolLong uint64 This property is recommended
AddressErrors uint64 This property is recommended
BufferCreditNotProvided uint64 This property is recommended
DelimiterErrors uint64 This property is recommended
EncodingDisparityErrors uint64 This property is recommended
LinkResetsReceived uint64 This property is recommended
LinkResetsTransmitted uint64 This property is recommended
MulticastFramesReceived uint64 This property is recommended
MulticastFramesTransmitted uint64 This property is recommended
FBSYFrames This property is recommended
PBSYFrames This property is recommended
FRJTFrames This property is recommended
PRJTFrames This property is recommended
RXClass1Frames This property is recommended
TXClass1Frames This property is recommended
Class1FBSY This property is recommended
Class1PBSY This property is recommended
Class1FRJT This property is recommended
Class1PRJT This property is recommended
RXClass2Frames This property is recommended
TXClass2Frames This property is recommended
Class2FBSY This property is recommended
Class2PBSY This property is recommended

328 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 189: Required Properties for FCPortStatistics (Continued)

Property/ Type Qualifier/ Description/Notes
Method Paramete
r
Class2FRJT This property is recommended
Class2PRJT This property is recommended
RXClass3Frames This property is recommended

TXClass3Frames

This property is recommended

Class3FramesDiscarded

This property is recommended

RXBroadcastFrames This property is recommended
TXBroadcastFrames This property is recommended
RxOLS This property is recommended
TxOLS This property is recommended

InvalidOrderedSets

This property is recommended

7.3.4.2.12.6 SystemDevice
Table 190: Required Properties for SystemDevice
Property/ Type Qualifier/ Description/Notes
Method Parameter

GroupComponent ref override System Reference

PartComponent ref override LogicalDevice Reference
7.3.4.2.13 Optional Subprofiles

Table 191: Optional Profiles or Subprofiles
Name Notes

Blades Subprofile (p.

329)
7.3.4.2.14 Blades Subprofile
7.3.4.2.14.1 Description

See parent sections.

7.3.4.2.14.2

See parent sections.

Standards Dependencies

7.3.4.2.14.3

See parent sections.

Profile Dependencies

Version 1.0.1

329

SNIA Storage Management Initiative Specification

7.3.4.2.14.4 CIM Server Requirements
See parent sections.

7.3.4.2.14.5 Instance Diagram

Figure 61: Switch Blade Instance Diagram

[PhysicalPackage . Product
ComputerSystem | ProductPhysical |
Package — Component
\
\
Redlizes
E LogicaModule
FCPort
System
Device Module
ComputerSystem Port
Dedicated="switch"
FCPort

7.3.4.2.14.6 Durable Names and Correlatable IDs

See parent sections.

7.3.4.2.14.7 Methods

See parent sections.

7.3.4.2.14.8 Client Considerations

See parent sections.

7.3.4.2.14.9 Recipes

See parent sections.

7.3.4.2.14.10 Instrumentation Requirements

See parent sections.

330

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.2.14.11 Required CIM Elements

Table 192: Required CIM Elements

Profile Classes & Associations

Notes

LogicalModule (p. 331)

ModulePort (p. 332)

Realizes

Associates LogicalModule to PhysicalPackage

SystemDevice (p. 332)

Packages

Physical Package Package (p. 103)

Associated Indications

Creation/Deletion of LogicalModule.

“SELECT * FROM CIM_InstCreation WHERE Sourcelnstance

ISA CIM_LogicalModule”

“SELECT * FROM CIM_InstDeletion WHERE Sourcelnstance

ISA CIM_LogicalModule”

These indicaitons are RECOMENDED.

Change in status of LogicalModule

“SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_LogicalModule AND
Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus”

This indicaiton is RECOMENDED.

7.3.4.2.14.12 Required Properties for CIM Elements

7.3.4.2.14.12.1 LogicalModule

Table 193: Required Properties for LogicalModule

Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemName string key
SystemCreationClassName | string key
CreationClassName string key
ElementName string
OperationalStatus uint16
DevicelD string key, maxlen (64)
ModuleNumber uint16

Version 1.0.1

331

SNIA Storage Management Initiative Specification

7.3.4.2.14.12.2 ModulePort

Table 194: Required Properties for ModulePort

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref key LogicalModule
PartComponent ref key

7.3.4.2.14.12.3 SystemDevice

Table 195: Required Properties for SystemDevice

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref override System Reference
PartComponent ref override LogicalDevice Reference

7.3.4.2.14.13 Optional Subprofiles

Table 196: Optional Profiles or Subprofiles

Name Notes

None

332 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.3 Router Profile
7.3.4.3.1 Description
A Router is a device that translates between different types of SCSI buses. The instance diagram
shows a system with a parallel SCSI buss and Fibre Channel buss. Devices on the parallel bus are
served to the Fibre Channel bus without changing the characteristics of the device.
7.3.4.3.2 Standard Dependencies
The Router profile is based on the following standards:
Table 197: Router Standard Dependencies
Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.8 Preliminary DMTF
7.3.4.3.3 Profile Dependencies

The Router profile requires the Server Profile (p. 441).

7.3.4.3.4

7.3.4.3.4.1

7.3.4.3.4.2

CIM Server Requirements

Functional Profiles

Table 198: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation
YES Indication None

Extrinsic Methods

The CIM Server MUST support extrinsic methods for the Server profile.

7.3.4.3.4.3

The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP

Discovery

specification.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.3.5 Instance Diagrams

Figure 62: Router Instance Diagram

ControllerConfiguration

Service MemberOfCollection

FCPort LogicalPortGroup

HostedServic
e

ProtocolControllerForPort
Installed

Softw areElemen |
t SCSIProtocolController

ComputerSystem 1 ProtocolControllerForUnit
ConnectionRole = 'Server'

LogicalDevice

Softw areElement

Dedicated[x]=' 'Router’ Concreteldentity
1 SCSiProtocolController
| ProtocolControllerAccessesUni _| LogicalDevice
t
ComputerSystemPackage ConnectionRole = 'Client'

ProductPhysicalComponent |

ProductPhysicalComponent r|ea|izes
Product PhysicalPackage
Product PhysicalPackage
7.3.4.3.6 Durable Names and Correlatable IDs of the Profile

7.3.4.3.6.1 Durable Names Exported

See parent sections.

7.3.4.3.6.2 Correlatable IDs Used
See parent sections.

7.3.4.3.7 Methods

See parent sections.
7.3.4.3.8 Client Considerations

7.3.4.3.8.1 Basic Design

The router model consists of 6 major groups of classes (Core, Physical, Software, SCSI buses,
source / exported devices).

The CompuerSystem class is the core of the model. It is identified as a router by the dedicated
attribute being set to “Router”. The PysicalPackage class and PortOnDevice class represent the
physical aspects of the router and served devices. These classes contain attributes that can be used
to identify the hardware. This information includes serial number, model number, and vendor
name.

The SoftwareElement class represents the product’s firmware or vendor specific utilities that are
running on the router. This class should be sub-classed for each utility.

334 Version 1.0.1

SNIA Storage Management Initiative Specification

The SCSIProtocolController class and optionally the FCPort class represent the SCSI buses that are
part of the router. The SCSIProtocolController class near the bottom of the instance diagram is the
parallel SCSI side of the router. Note that it doesn’t have an association to a FCPort class. It has
ProtocolControllerAccessesUnit associations to the devices on the bus. The SCSI addresses of the
devices are stored in the association.

The SCSIProtocolController class near to top of the instance diagram has a Concreteldentity
association to a FCPort class. This indicates the FCPort is a Fibre channel SCSI port. This FC bus
connects to the SAN. This bus uses ProtocolControllerForUnit and ProtocolControllerForUnit
associations to hold the address mapping and masking. The SCSIProtocolController manages these
associations.

A LogicalDevice class represents the device on the back end bus. This class has a Realizes
association to a PhysicalPackage class to identify the hardware. The class uses a Concreteldentity
association to a second instance of LogicalDevice. This class represents the device as seen by the
front end port.

7.3.4.3.9 Recipes

No recipes have been defined for this profile.

7.3.4.3.10 Instrumentation Requirements

No implementation requirements have been defined for this profile.

Version 1.0.1 335

SNIA Storage Management Initiative Specification

7.3.4.3.11 Required CIM Elements

Table 199: Required CIM Elements

Profile Classes & Associations Notes

ComputerSystem (p. 337)

ComputerSystemPackage (p. 340)

FCPort (p. 340)

LogicalDevice (p. 344)

Concreteldentity (p. 344)

LogicalPortGroup (p. 344)

MemberOfCollection (p. 344)

SCSIProtocolController (p. 345)

ProtocolControllerAccessesUnit (p. 347)

ProtocolControllerForUnit (p. 347)

Packages

Physical Package Package (p. 103)

Associated Indications

Creation/Deletion of a ComputerSystem SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA CIM_ComputerSystem
SELECT * FROM CIM_InstDeletion WHERE
Sourcelnstance ISA CIM_ComputerSystem

Creation/Deletion of an FCPort SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA CIM_FCPort
SELECT * FROM CIM_InstDeletion WHERE
Sourcelnstance ISA CIM_FCPort

Change in status of ComputerSystem SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_ComputerSystem AND
Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus

Change is status of FCPort SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_FCPort AND
Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus

7.3.4.3.12 Required Properties for CIM Elements

336 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.3.12.1 ComputerSystem

Table 200: Required Properties for ComputerSystem

Property/ Type Qualifier/ Description/Notes

Method Parameter
Caption string maxlen(64) Short (one line) description
Description string Longer description
ElementName string User Friendly name
OperationalStatus uint16
CreationClassName string maxlen(256), key Name of Class
Name string maxlen(256), key
NameFormat string (override The ComputerSystem object and

“nameformat”) its derivatives are Top-level

Objects of CIM. They provide the
scope for numerous components.
Having unique System keys is
required. A heuristic is defined to
create the ComputerSystem Name
to attempt to always generate the
same Name, independent of
discovery protocol. This prevents
inventory and management
problems where the same asset or
entity is discovered multiple times,
but cannot be resolved to a single
object. Use of the heuristic is
optional, but recommended.

The NameFormat property
identifies how the ComputerSystem
Name is generated, using a
heuristic. The heuristic is outlined,
in detail, in the CIM V2 System
Model spec. It assumes that the
documented rules are traversed in
order, to determine and assign a
Name. The NameFormat Values
list defines the precedence order
for assigning the ComputerSystem
Name. Several rules do map to the
same Value.

Note that the ComputerSystem
Name calculated using the
heuristic is the System's key value.
Other names can be assigned and
used for the ComputerSystem, that
better suit a business, using
Aliases.

Version 1.0.1 337

SNIA Storage Management Initiative Specification

Table 200: Required Properties for ComputerSystem (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
Otherldentifyinglnfol] string An array of free-form strings

providing explanations and details
behind the entries in the
OtherldentifyingInfo array. Note,
each entry of this array is related to
the entry in OtherldentifyingInfo
that is located at the same index.

IdentifyingDescription][] string An array of free-form strings
providing explanations and details
behind the entries in the
OtherldentifyingInfo array. Note,
each entry of this array is related to
the entry in Otherldentifyinglnfo
that is located at the same index.

Dedicated][] int16 “blockserver” Enumeration indicating whether the
ComputerSystem is a special-
purpose System (i.e., dedicated to
a particular use), versus being
'general purpose'. For example,
one could specify that the System
is dedicated to \"Print\" (value=11)
or acts as a \"Hub\" (value=8). ||A
clarification is needed with respect
to the value 17 (\"Mobile User
Device\"). An example of a
dedicated user device is a mobile
phone or barcode scannerin a
store that communicates via radio
frequency. These systems are
quite limited in functionality and
programmability, and are not
considered 'general purpose'
computing platforms. Alternately,
an example of a mobile system that
is 'general purpose' (i.e., is NOT
dedicated) is a hand-held
computer. Although limited in its
programmability, new software can
be downloaded and its functionality
expanded by the user.

OtherDedicatedDescription string A string describing how or why the
system is dedicated when the
Dedicated array includes the value
2,\"Other\".

338 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 200: Required Properties for ComputerSystem (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
ResetCapability uint16 If enabled (value = 4), the

ComputerSystem can be reset via
hardware (e.g. the power and reset
buttons). If disabled (value = 3),
hardware reset is not allowed. In
addition to Enabled and Disabled,
other Values for the property are
also defined - \"Not Implemented\"
(5), \"Other\" (1) and \"Unknown\"

2).

Version 1.0.1

339

7.3.4.3.12.2 ComputerSystemPackage

SNIA Storage Management Initiative Specification

Table 201: Required Properties for ComputerSystemPackage

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref The reference to the PhysicalPackage(s)
that realize a UnitaryComputerSystem.
Dependent ref The reference to the
UnitaryComputerSystem.
PlatformGUID string A Globally Unique Identifier for the System's
Package.
7.3.4.3.12.3 FCPort
Table 202: Required Properties for FCPort
Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemName string key
SystemCreationClassName | string key
CreationClassName string key
ElementName string
OperationalStatus uint16
DevicelD string key, maxlen (64)
Speed uint64 units ("bits per Speed of zero represents a link not
second") established
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.
MaxSpeed uint64 The max speed of the Port in Bits per
Second.
FC-FS Port Speed Capabilities

340

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 202: Required Properties for FCPort (Continued)

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

PortType

uint16

override

PortType is defined to force consistent
naming of the 'type' property in
subclasses and to guarantee unique
enum values for all instances of
NetworkPort. When set to 1 (\"Other\"),
related property OtherPortType
contains a string description the of the
port's type. A range of values,
DMTF_Reserved, has been defined
that allows subclasses to override and
define their specific port types.

OtherNetworkPortType

string

Describes the type of module, when
PortType is set to 1 (\"Other\").

PortNumber

uint16

NetworkPorts are often numbered
relative to either a logical modules or a
network element.

LinkTechnology

uint16

An enumeration of the types of links.
When set to 1 (\"Other\"), the related
property OtherLinkTechnology
contains a string description of the
link's type.

OtherLinkTechnology

uint16

A string value describing
LinkTechnology when it is set to 1,
\"Other\".

PermanentAddress

string

maxlen (64)

PermanentAddress defines the
network address hard-coded into a
port. This hard-coded address may be
changed via firmware upgrade or
software configuration. If so, this field
should be updated when the change is
made. PermanentAddress should be
left blank if no hard-coded address
exists for the NetworkAdapter.

Port WWN (InfiniBand: Port GUID)

NetworkAddresses]

string

maxlen (64),

arraytype
("indexed")

An array of strings indicating the
network addresses for the port.
FCID (InfiniBand: LIDs)

FC-FS Address Identifier

Version 1.0.1

341

SNIA Storage Management Initiative Specification

Table 202: Required Properties for FCPort (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
Speed uint64 override Speed of zero represents a link not
established.

1Gb is 1062500000 bps

2Gb is 2125000000 bps

4Gb is 4250000000 bps)

10Gb single channel variants are
10518750000 bps

10Gb four channel variants are
12750000000 bps

This is the raw bit rate.

FullDuplex boolean Boolean indicating that the port is
operating in full duplex mode.

AutoSense boolean A boolean indicating whether the
NetworkPort is capable of
automatically determining the speed or
other communications characteristics
of the attached network media.

SupportedMaximumTransm | uint64 The maximum transmission unit (MTU)

issionUnit that can be supported."), Units
("Bytes")

ActiveMaximumTransmissio | uint64 The active or negotiated maximum

nUnit transmission unit (MTU) that can be
supported.

PortType uint16 FC-GS Port.Type||The specific mode

currently enabled for the Port. The
values: \"N\" = Node Port, \"NL\" =
Node Port supporting FC arbitrated
loop, \"E\" = Expansion Port connecting
fabric elements (for example, FC
switches), \"F\" = Fabric (element) Port,
\"FL\" = Fabric (element) Port
supporting FC arbitrated loop, and \"B\"
= Bridge Port. PortTypes are defined in
the ANSI X3 standards. When set to 1
(\"Other\"), the related property
OtherPortType contains a string
description of the port's type.

SupportedCOS uint16[] FC-GS Class Of Service

An array of integers indicating the Fibre
Channel Classes of Service that are
supported. The active COS are
indicated in ActiveCOS.

ActiveCOS uint16[] FC-GS Class Of Service

An array of integers indicating the
Classes of Service that are active. The
Active COS is indicated in ActiveCOS.

342 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 202: Required Properties for FCPort (Continued)

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

SupportedFC4Types

uint16[]

FC-GS FC4-TYPEs

An array of integers indicating the Fibre
Channel FC-4 protocols supported.
The protocols that are active and
running are indicated in the
ActiveFC4Types property.

ActiveFC4Types

uint16[]

FC-GS FC4-TYPE

An array of integers indicating the Fibre
Channel FC-4 protocols currently
running. A list of all protocols
supported is indicated in the
SupportedFC4Types property.

Version 1.0.1

343

7.3.4.3.12.3.1 LogicalDevice

SNIA Storage Management Initiative Specification

Table 203: Required Properties for LogicalDevice

Property/ Type Qualifier/ Description/Notes
Method Paramete
r
Antecedent ref override The physical component that implements the
Device.
Dependent ref override The LogicalDevice.

7.3.4.3.12.3.2 Concreteldentity

Table 204: Required Properties for Concreteldentity

Property/ Type Qualifier/ Description/Notes
Method Paramete
r
Antecedent ref override
Dependent ref override
7.3.4.3.12.4 LogicalPortGroup
Table 205: Required Properties for LogicalPortGroup
Property/ Type Qualifier/ Description/Notes
Method Parameter
InstanceName string Node Symbolic Name
SystemCreationClassName string propagated, key
SystemName string propagated, key
InstancelD string key Node WWN]||FC-GS
InterconnectElement.Name,
REQUIRED
7.3.4.3.12.5 MemberOfCollection
Table 206: Required Properties of MemberOfCollection

Property/ Type Qualifier/ Description/Notes

Method Parameter
Collection ref key The Collection that aggregates members.
ManagedElement ref key The aggregated member of the Collection.

344

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.3.12.6 SCSIProtocolController

Table 207: Required Properties for SCSIProtocolController

Property/ Type Qualifier/ Description/Notes
Method Parameter

Caption string maxlen(64) Short (one line) description

Description string Longer description

ElementName string User Friendly name

InstallDate datetime

OperationalStatus uint16

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key | The scoping System's
Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DevicelD string maxlen(64), key unique identifying
information

PowerManagementSupported boolean

PowerManagementCapabilities int16[]

Availability int16

Statusinfo int16

LastErrorCode uint32

ErrorDescription string

ErrorCleared boolean

Otherldentifyinglnfo string(]

PowerOnHours uint64

TotalPowerOnHours uintc4

IdentifyingDescriptions string(]

AdditionalAvailability uint16[]

MaxQuiesceTime uint64

PortNumber uint64 System level port or bus
identification number

TimeOfLastReset datetime Time of last reset of the
Controller.

Version 1.0.1 345

SNIA Storage Management Initiative Specification

Table 207: Required Properties for SCSIProtocolController (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
ProtocolSupported uint16 The protocol used by the

Controller to access
'controlled' Devices.

MaxNumberControlled uint32 Maximum number of
directly addressable
entities supported by this
Controller. A value of 0
should be used if the
number is unknown or
unlimited.

ProtocolDescription string A free form string providing
more information related to
the ProtocolSupported by
the Controller.

ProtectionManagement uint16 An integer enumeration
indicating whether or not
the SCSIProtocolController
provides redundancy or
protection against device
failures.

MaxDataWidth uint32 Maximum data width (in
bits) supported by the
SCSIProtocolController.

MaxTransferRate uint64 Maximum transfer rate (in
Bits per Second) supported
by the
SCSIProtocolController.

ControllerTimeouts uint32 Number of
SCSIProtocolController
timeouts that have
occurred since the
TimeOfLastReset.

SignalCapabilities|[] uint16 Signal capabilities that can
be supported by the
SCSIProtocolController.
For example, the Controller
may support \"Single
Ended\" and \"Differential\".
In this case, the values 3
and 4 would be written to
the SignalCapabilities
array.

346 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.4.3.12.7 ProtocolControllerAccessesUnit

Table 208: Required Properties for ProtocolControllerAccessesUnit

Property/ Type Qualifier/ Description/Notes
Method Parameter
NegotiatedSpeed unit64
NegotiatedDataWidth unit32
Dependent ref override LogicalDevice Reference
AccessState unit16
TimeOfDeviceReset datetime
NumberOfHardResets unit32
NumberOfSoftResets unit32
Antecedent ref override SCSIProtocolController Reference
SCSITimeouts unit32
SCSIRetries unit32
Initiatorld unit32
Targetld uint32
TargetLUN unit64
SCSIReservation unit16
SCSISignal unit16
MaxQueueDepth unit32
QueueDepthLimit unit32

7.3.4.3.12.8 ProtocolControllerForUnit

Table 209: Required Properties for ProtocolControllerForUnit

Property/ Type Qualifier/ Description/Notes
Method Parameter
NegotiatedSpeed unite4
NegotiatedDataWidth unit32
Dependent ref override LogicalDevice Reference
AccessState unit16
TimeOfDeviceReset datetime
NumberOfHardResets unit32
NumberOfSoftResets unit32

Version 1.0.1 347

SNIA Storage Management Initiative Specification

Table 209: Required Properties for ProtocolControllerForUnit (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter

Antecedent ref override SCSIProtocolController
Reference

DeviceNumber string Formatted as uppercase
hexadecimal digits, with a
prefix of “0x”.

7.3.4.3.13 Optional Subprofiles

Table 210: Optional Profiles or Subprofiles

Name Notes

Software Subprofile (p. 145)

Backend Ports Subprofile (p. 225)

LUN Mapping/Masking

348 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.5

7.3.5

7.3.5

7.3.5

A Fibre Channel adapter used in a host system is called a Host Bus Adapter (HBA). An HBA i1s a
physical device that contains one or more Fibre Channel ports. A single system contains one or

An HBA is represented in CIM by FCPorts associated to a ComputerSystem through the
SystemDevice association. To understand the containment to the HBAs physical implementation
the FCPorts are associated to PhysicalPackage (typically Card) through the Realizes association. If
the HBA has logical operations that apply to the HBA and not to an individual port, then the
PortController can be instantiated. The PortController is associated to the ComputerSystem through
the SystemDevice association and associated to the ports through the ProtocolControllerForUnit

Hosts
1 FC HBA Profile
1.1 Description
more HBAs.
association.
1.2 Standard Dependencies

The FC HBA profile is based on the following standards:

Table 211: HBA Standards Dependencies

Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.8 Preliminary DMTF
7.3.5.1.3 Profile Dependencies

7.3.5

7.3.5

The FC HBA profile requires the Server Profile (p. 441).
1.4 CIM Server Requirements

.1.4.1 Functional Profiles

Table 212: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation
YES Indication None

Version 1.0.1

349

SNIA Storage Management Initiative Specification

7.3.5.1.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.

7.3.5.1.4.3 Discovery

The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

7.3.5.1.5 Instance Diagrams

Figure 63: FC HBA Instance Diagram

Thisrepresentsthe"normal"caseofone
node perHBAcomprising allthe portsof
the HBA. Extreme variationsinclude one
Product nodeperportregardlessofthenumberof
portsonanHBA,andone node forall
portsonthehostregardlessofthe
numberofHBAspresent.

FCPortStatistics
ProductPhysicalComponent SCSIProtocolController FCPort Element
— n [~ StatisticalData |
ConnectionRole="Client" ProtocolControllerForPort StatisticalData
PhysicalPackage
(e.g. Card) [—————————————Realizes
SystemDevice
SystemDevice
’ HostedGCollecti
ComputerSystem System PortController ControlledB
Device 4
GControlledB
Dev‘ice MemberOfColiection LogicalPortGroup
Device Device
Softw are Softw are Soft MemberofColiect
Softw are : Identity oftw are ember ollection
Installed Identity 1 _ Identity _
System OnSystem Softw arelde ntity Softw arelde ntity Softw areldentity
System DeVice (Driver) (Firmw are) (FCodd/BI0S)
Device
SCSIProtocolController
ConnectionRole="Client | ProtocolControllerForPort —| FCPort FCPortStatistics
- Element _
StatisticalData
7.3.5.1.6 Durable Names and Correlatable IDs of the Profile

7.3.5.1.6.1 Durable Names Exported
For the Fibre Channel Port, the durable name is the Port WWN in FCPort.PermanentAddress.

7.3.5.1.6.2 Correlatable IDs Used

There are no correlatable IDs defined for this profile

7.3.5.1.7 Methods

There are no methods defined for this profile

350 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.5.1.8 Client Considerations

7.3.5.1.8.1 Multiple Agents

The client does need to consider that there could be multiple SMI-S agents providing instances
unrelated to what maybe provided on the Host system, and may be unrelated to other SMI-S
agents on the host.

7.3.5.1.9 Recipes

There are no recipes defined for this profile.

7.3.5.1.10 Instrumentation Requirements

There are no instrumentation requirements defined for this profile.

Version 1.0.1 351

SNIA Storage Management Initiative Specification

7.3.5.1.11 Required CIM Elements

Table 213: Required CIM Elements

Profile Classes & Associations Notes

ComputerSystem (p. 352)

ControlledBy (p. 354)

DeviceSoftware (p. 354)

ElementStatisticalData (p. 354) Associates FCPort and FCPortStatistics

FCPort (p. 355)

FCPortStatistics (p. 356)

HostedCollection (p. 357)

LogicalPortGroup (p. 357)

MemberOfCollection (p. 357)

PortController (p. 357) The HBA

PortController (p. 357)

ProtocolControllerForPort (p. 359)

SCSIProtocolController (p. 359)

Softwareldentity (p. 359)

SystemDevice (p. 359) Associates ComputerSystem and FCPort or
SCSIProtocolController

Packages

Physical Package Package (p. 103)

Software Subprofile (p. 145)

Associated Indications

Creation of an FCPort SELECT * FROM CIM_InstCreation WHERE Sourcelnstance ISA
CIM_FCPort
Change in status of FCPort SELECT * FROM CIM_InstModification WHERE Sourcelnstance

ISA CIM_FCPort AND Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus

7.3.5.1.12 Required Properties for CIM Elements
7.3.5.1.12.1 ComputerSystem

Table 214: Required Properties for ComputerSystem

Property/ Type Qualifier/ Description/Notes
Method Parameter
CreationClassName string maxlen(256), key | Name of Class

352 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 214: Required Properties for ComputerSystem (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
Name string maxlen(256), key | The name of the host, based on
NameFormat.
NameFormat string required In the Host Profile, valid NameFormats
are “IPAddressV4”, “IPAddressV6”, or
“DNSName”

Version 1.0.1

353

SNIA Storage Management Initiative Specification

7.3.5.1.12.2 ControlledBy
Table 215: Required Properties for ControlledBy
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key, override The Controller.
Dependent ref key, override The controlled Device.
7.3.5.1.12.3 ProtocolControllerForUnit
Table 216: Required Properties for ProtocolControllerForUnit
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key, override The Controller. In the Host Profile, this
refers to the PortController
Dependent ref key, override The controlled Device. In the Host
Profile, this refers to an FCPort.
7.3.5.1.12.4 DeviceSoftware
Table 217: Required Properties for DeviceSoftware
Property/ Type Qualifier/ Description/Notes
Method Parameter

SoftwareElement ref key, override The SoftwareElement.

LogicalDevice ref key, override The LogicalDevice that requires or
uses the software. In the Host Profile,
this refers to the PortController (or
FCPort)

Purpose uint16 An enumerated integer to indicate the
role this software plays in regards to its
associated Device. For example, this
software could be driver (value=2),
firmware (6), or ROM (8).

7.3.5.1.12.5 ElementStatisticalData
Table 218: Required Properties for ElementStatisticalData
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement ref For the Host Profile, this is the
FCPort
Stats ref For the Host Profile, this is the

FCPortStatistics

354

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.5.1.12.6 FCPort

Table 219: Required Properties for FCPort

Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string Port Symbolic Name
OperationalStatus|[] uint16
DevicelD string key, maxlen (64) | Opaque
Speed uint64 units ("bits per Speed of zero represents a link not
second") established.

1Gb is 1062500000 bps

2Gb is 2125000000 bps

4Gb is 4250000000 bps)

10Gb single channel variants are
10518750000 bps

10Gb four channel variants are
12750000000 bps

This is the raw bit rate.

MaxSpeed uint64 Port Supported Speed from HBA API.

PortType uint16 override “Unknown = 0, “Other” = 1,
“N” =10, “NL” = 11, “F/NL” = 12, “Nx” =
13,“E” =14, “F"=15,“FL" =16, “B" = 17,

“G”"=18.
OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").
LinkTechnology uint16 For FibreChannel, “FC”
PermanentAddress string maxlen (64) For FibreChannel, it is the Fibre Channel
Port WWN.
NetworkAddresses] string maxlen (64), For Fibre Channel end device ports, it is
arraytype the Fibre Channel ID. For Switches, it
("indexed") should be Null.
This property is OPTIONAL.
ActiveMaximumTransmissio | uint64 The active or negotiated maximum
nUnit transmission unit (MTU) that can be
supported.

This property is OPTIONAL.

SupportedCOS uint16[] Port Supported Class of Service.
This property is OPTIONAL.

ActiveFC4Types uint16[]

Version 1.0.1 355

SNIA Storage Management Initiative Specification

7.3.5.1.12.7 FCPortStatistics

Table 220: Required Properties for FCPortStatistics

Property/ Type Qualifi Description/Notes
Method er/
Param
eter
ElementName string key
BytesTransmitted uint64
BytesReceived uint64
PacketsTransmitted uint64
PacketsReceived uint64
LIPCount uint64
NOSCount uint64
ErrorFrames uint64
DumpedFrames uint64
LinkFailures uint64
LossOfSyncCounter uint64
LossOfSignalCounter uint64
PrimitiveSeqProtocolErCount uint64
CRCError uint64
InvalidTransmissionWords uint64
FramesTooShort uint64
FramesToolLong uint64
AddressErrors uint64
BufferCreditNotProvided uint64
DelimiterErrors uint64
EncodingDisparity uint64
LinkResetsReceived uint64
LinkResetsTransmitted uint64
MulticastFramesReceived uintc4
MulticastFramesTransmitted uint64

356 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.5.1.12.8 HostedCollection
Table 221: Required Properties for HostedCollection
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent REF key, min(1), max(1) ComputerSystem
Dependent REF key, weak LogicalPortGroup
7.3.5.1.12.9 LogicalPortGroup

Table 222: Required Properties for LogicalPortGroup

Property/ Type Qualifier/ Description/Notes

Method Parameter

SystemCreationClassName string propagated,
key

SystemName string propagated, key
ElementName string Node Symbolic Name
InstancelD string key Opaque
Name Node WWN.
NameFormat string “WWN”

7.3.5.1.12.10 MemberOfCollection

Table 223: Required Properties of MemberOfCollection

Property/ Type Qualifier/ Description/Notes
Method Parameter
Collection REF Key The Collection that aggregates members.
ManagedElement REF Key The aggregated member of the Collection.
7.3.5.1.12.11 PortController
Table 224: Required Properties for PortController
Property/ Type Qualifier/ Description/Notes
Method Parameter

ConnectionRole uint16 In the Host Profile, MUST
include Client (3)

SystemCreationClassName string maxlen(256), key | The scoping System's
CreationClassName.

SystemName string maxlen(256), key | The scoping System's Name.

CreationClassName string maxlen(256), key | The name of the concrete
subclass

Version 1.0.1

357

SNIA Storage Management Initiative Specification

Table 224: Required Properties for PortController (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
DevicelD string maxlen(64), key Opaque
ProtocolSupported uint16 The protocol used by the
Controller to access 'controlled’
Devices.

358 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.5.1.12.12 ProtocolControllerForPort
Table 225: Required Properties of ProtocolControllerForPort
Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependent ref The Port
Antecedent ref The protocol controller
7.3.5.1.12.13 SCSIProtocolController

Table 226: Required Properties for SCSIProtocolController

Property/ Type Qualifier/ Description/Notes
Method Parameter

ConnectionRole uint16 In the Host Profile, MUST
include Client (3)

SystemCreationClassName string maxlen(256), key | The scoping System's
CreationClassName.

SystemName string maxlen(256), key The scoping System's Name.

CreationClassName string maxlen(256), key | The name of the concrete
subclass

DevicelD string maxlen(64), key Opaque

ProtocolSupported uint16 The protocol used by the
Controller to access 'controlled'
Devices.

MaxNumberControlled uint32 Maximum number of directly
addressable entities supported
by this Controller. A value of 0
should be used if the number is
unknown or unlimited.

7.3.5.1.12.14 SystemDevice
Table 227: Required Properties for SystemDevice
Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref override System Reference
PartComponent ref override LogicalDevice Reference
7.3.5.1.12.15 Softwareldentity

The Softwareldentity is used to model either software or firmware.

Version 1.0.1

SNIA Storage Management Initiative Specification

Softwareldentity is subclassed from LogicalElement.

Table 228: Required Properties for Softwareldentity

Property/ Type Qualifier/ Description/Notes
Method Parameter
InstancelD string key The name used to identify this

Softwareldentity.

VersionString string Software Version should be in the form
<Major>.<Minor>.<Revision> or
<Major>.<Minor><letter><revision>.

Manufacturer string Manufacturer of this software.
Classifications string required “Driver”, “Firmware” or “FCode/BIOS”
BuildNumber uint16 OPTIONAL. The internal identifier for this

compilation of software, if available.

RevisionNumber uint16 OPTIONAL. This is the numeric
representation of the revision number in the
VersionString

MajorVersion uint16 OPTIONAL. This is the numeric
representation of the Major number in the
VersionString

MinorVersion uint16 OPTIONAL. This is the numeric
representation of the Minor number in the
VersionString

7.3.5.1.13 Optional Subprofiles

Table 229: Optional Profiles or Subprofiles

Name Notes

None.

360 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.5.2 Host Discovered Resources Profile

7.3.5.2.1 Description

Among the primary functions of a Fibre Channel Host Bus Adapter (HBA) and its supporting
software is discovery of SAN resources and presentation of those resources to the Host Operating
System. A description of the results of these functions is useful for some aspects of SAN
management:

* Determination of discrepancies between resources discovered by HBAs and the resources
provided by other SAN elements is valuable for diagnostics

+ The information discovered by HBAs can provide information about SAN resources not
themselves supported by SMI-S agents

+ In SANSs that lack an agent for the Fabric profile, e.g., Private Arbitrated Loops and FC Direct
Attach, a client can construct a view of the fabric by integrating the discovered resources from
any available hosts

+ Discovered resource information includes the identification of SAN resources as they are
presented to the Host OS

The Host Discovered Resource agent uses the SNIA HBA API Phase 1 to create a generic model of
the logical SAN and attached storage. HBA API Phase 1 is included as an appendix to the FC-MI
specification — see www.t11l.org. This agent models elements also exposed by HBA, storage, and
switch agents. A client can use durable names to equate objects from different agents.

This profile is restricted to FCP (SCSI over FibreChannel) discovery. A similar approach can be
used for other protocols (such as IP over FC), but this is not described in this profile. Note that no
physical objects are represented by this profile. Since the objects in this profile are discovered
remotely through an HBA, only their logical aspects are available. In general, the objects exposed
by this agent duplicate those exposed by canonical HBA, storage, or switch agents that provide the
physical model.

The Host SAN Resources are independently instantiated for each HBA FCPort on a host. They
include its discovered (remote) FCP ports, and SCSI Targets.

The discovering FCPort and each discovered FCPort are associated by DeviceSAPImplementation to
a ProtocolEndpoint representing its FCP support (ProtocolType=other,
OtherProtocol Type="SCSIOverFC”). An instance of LogicalNetwork is created to aggregate the FCP
ProtocolEndpoint for the discovering FCPort and all its discovered FCPorts.

SCSI Targets are modeled by FCPorts with a ProtocolControllerForPort to a SCSIProtocolController
that, in turn, has at least one ProtocolControllerForUnit association to a LogicalDevice. The
SCSIProtocolController / FCPort combination represents a SCSI Port with Target capability. The
LogicalDevice in such associations represent SCSI Target Logical Units.

SCSI Initiators (HBA ports) are also modeled with a SCSIProtocolController / FCPort combination.
Initiator SCSIProtocolControllers have ProtocolControllerAccessesUnit associations to logical
units (LogicalDevice subclasses) that are mapped to the HBA host.

Target Mappings are a pairing of an OS SCSI ID and an FCPID for a Logical Unit that represents
a Logical Unit as presented to a Host Operating System. They are modeled by a LogicalDevice with
both a ProtocolControllerForUnit and a ProtocolControllerAccessesUnit association. The OS SCSI
ID is represented as attributes of the ProtocolControllerAccessesUnit association. The paired
FCPID is derived from the attributes of the ProtocolControllerForUnit association and the FCPort
to which it (indirectly) associates.

Version 1.0.1 361

SNIA Storage Management Initiative Specification

CIM requires that all LogicalDevices (including SCSIProtocolController and FCPort) be weak to a
System via a SystemDevice aggregation. It does not in general have means to discover the
containing systems for discovered FCPorts, so for each LogicalNetwork, this profile provides an
AdminDomain to aggregate discovered objects that MUST be weak to a System.

7.3.5.2.2 Standard Dependencies

The Host Discovered Resources profile is based on the following standards:

Table 230: HostDiscoveredResources Standards Dependencies

Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.8 Preliminary DMTF

7.3.5.2.3 Profile Dependencies

The Host Discovered Resources profile requires the Server Profile (p. 441).

7.3.5.2.4 CIM Server Requirements
7.3.5.2.4.1 Functional Profiles
Table 231: Required Functional Profiles
Profile Required Functional Group Dependency
YES Basic Read None
NO Basic Write Basic Read
NO Instance Manipulation Basic Write
NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read
NO Query Execution Basic Read
NO Qualifier Declaration Schema Manipulation
YES Indication None
7.3.5.2.4.2 Extrinsic Methods

The CIM Server MUST support extrinsic methods for the Server profile.

7.3.5.2.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

7.3.5.2.5 Instance Diagrams

The first instance diagram depicts two logical networks — each contains an HBA and one of two
FCPorts in a multi-port array. Three volumes are depicted; note that volume 2 has no
ProtocolControllerAccessesUnit associations — indicating that it is not mapped to the OS hosting

362 Version 1.0.1

SNIA Storage Management Initiative Specification

this agent. Due to the complexity of this example, some associations are missing and some are
unlabeled.

Figure 64: Host Discovered Resources Instance Diagram 1

HBA1 Objects

ProtocolControllerForPort rDeviceSAPImpIementation -I
L L
SCSIProtocolController FCPort ProtocolEndpoint
ProtocolControllerAccessesUni [I)
t
AdminDomain LogicalNetw or
Array SystemDevice ————
Volume1
1 ProtocolControllerForPort ,——<>
ProtodolControllerForUnit L L
ProtocolControllerAccessesUni SCSIProtocolController FCPort ProtocolEndpoint
t —
Volume2 ProtocolControllerForUnit
I—DeviceSAleplementation |
ProtocolControllgrForUnit Fl’rotocoIControIIerForPortl - DeviceSA Pimplementation _I
SCSIProtocolController FCPort
Volume 3 ProtocolEndpoint

¢

AdminDomain

HBA 2 Objects
IProtocoIControIIerForPortI ,——@ ’_<>

_ProtocoIControIIterAccessesUni _| scsIProtocolController FCPort ProtocolEndpoint

LogicalNetw or
L

I
L DeviceSAPImplementation J

Note that all the depicted objects are instantiated by the Discovered Resources agent. The dashed
rectangles represent groups of objects that duplicate objects from other agents. For example, an
HBA agent also exposes all the objects in the “HBA1 Objects” rectangle. A client can use durable
names to “stitch together” these duplicates.

The second diagram consists of just a single HBA port, single array port and single volume. All
associations are included and labeled.

Figure 65: Host Discovered Resources Instance Diagram 2

HBA1 Objects |

ProtocolControllerForPort rDeviceSA Plimplementation]
1 1

SCSIProtocolController FCPort ProtocolEndpoint
I—SystemDevice —_— |
l MemberOfCollection
) Q
ProtocolControIIterAccessesUnl AdminDomain Component LogicalNetw or
SvstembDevi
¥

SystemDevice .
Array MemberOfCollection

Volume1

ProtocolControllerForPort
1 1

ProtocolControllerForUnit SCSProtocolController FCPort ProtocolEndpoint

L_DeviceSAPImplementation]
]

Version 1.0.1 363

7.3.5.2.6

7.3.5.2.6.1

7.3.5.2.6.2

7.3.5.2.7

7.3.5.2.8

364

SNIA Storage Management Initiative Specification

Durable Names and Correlatable IDs of the Profile

Durable Names Exported
For the Fibre Channel Port, the durable name is the Port WWN in FCPort.PermanentAddress.

Correlatable IDs Used

The Host Discovered Resources profile uses FC Port WWNs and SCSI Logical Unit (volume or tape
drive) IDs.

Methods

There are no methods defined for this profile

Client Considerations

In typical configurations, the ports and logical units provided by this model duplicates those found
in storage (array or tape library) and switch agents. Although this profile has information about
storage systems and the storage network, the information is not complete. For example, this agent
may model several small arrays that are actually separate targets (ports) on a single array (or
virtual targets resulting from LUN masking/mapping). Where available, the client should use
information from an array agent to get a complete model for the array. Similarly, the logical
networks modeled by this agent may actually be zones in fabrics; the client should use information
from switch agents to get a complete fabric model.

In a non-fabric storage network (Loop or Direct Attached Storage) there is likely to be no agent for
the Fabric profile. A client may derive similar information by integrating the models presented by
Host Discovered Resource agents running on multiple hosts.

Since the storage system topology cannot be accurately inferred, storage system objects are
associated to an AdminDomain, a “virtual” ComputerSystem that represents the collection of objects
in the ConnectivityCollection. In particular, SystemDevice associates all logical units to the
AdminDomain and the AdminDomain Name property is used as the SystemName property for all
LogicalDevice subclasses.

A client associates objects between profiles using durable identifiers (as described in other
profiles). If no storage system agent is available, the model from this agent may suffice, but some
details may not be available.

Discovered storage system resources can be partitioned into two groups, objects related to a port
(FCPort, SCSIProtocolController, and ProtocolEndpoint) and logical units (StorageVolume,
TapeDrive and the ProtocolControllerForUnit association). Discovery of logical units can be
resource intensive and disruptive to the host system (consider arrays with thousands of logical
units). The agent should not allocate resources on logical unit discovery unless requested by a
client; this request is communicated by following the ProtocolControllerForUnit associations from
a SCSIProtocolController to its logical units. The client algorithm for Discovered Resources for a
specific FCPort would be

Enumerate AdminDomains

Consider just those with “HBA Discovered Resources” in Roles[] and the WWPN of the specific FCPort in
Name

Follow the Component association to the LogicalNetwork
Foreach MemberOfCollection association, follow it to a ProtocolEndpoint
Follow the DeviceSAPImplementation association to a FCPort
// This gives the client a list of PortWWNs on the network.
// 1f these all map to PortWWNs from array/storage agents, the
// client may opt to stop probing.

Version 1.0.1

SNIA Storage Management Initiative Specification

If the client wishes to also discover LUNs
Follow the ProtocolControllerForPort Association to a SCSIProtocolController
Follow each ProtocolControllerForUnit association to logical units
If no ProtocolControllerForUnit associations are found,
This is an initiator (another HBA port)
Else
Get Instance of LogicalDevices from the ProtocolControllerForUnit association

This algorithm allows the agent to dedicate resources to LUN discovery only when requested by a
client. Note that if LUNs are not discovered, the model does not include ProtocolControllerForUnit
or ProtocolControllerAccessesUnit associations; the client determines target/initiator roles and
host/storage system topology by matching durable names with FCPorts in HBA and storage
profiles.

A client may discover more complex multipathing by integrating the HBA profiles and Host
Discovered Resources profiles from their respective agents. Here are some examples: If the client
found two FCPorts that were SystemDevices of the same ComputerSystem, and found among the
Discovered Resources of both, the same FCPort that was associated by ProtocolControllerForPort to
a SCSIProtocolController in turn associated by ProtocolControllerForUnit to a LogicalDevice, the
client would have demonstrated that the host represented by the ComputerSystem had
multipathing via two HBA ports to a single Target port. If it found two FCPorts that were
SystemDevices of the same ComputerSystem, and found among the Discovered Resources of each a
different FCPort that was associated by ProtocolControllerForPort to a SCSIProtocolController in
turn associated by ProtocolControllerForUnit with the same LogicalDevice, the client would have
demonstrated that the host represented by the ComputerSystem had multipathing via two HBA
ports and two Target ports to a single Target Logical Unit.

7.3.5.2.9 Recipes

There are no recipes defined for this profile

7.3.5.2.10 Instrumentation Requirements

The Host SAN Resources profile is based on information available through the HBA API Phase 1
discovery interfaces. Its implementation therefore may be HBA vendor independent.

The AdminDomain for the LogicalNetwork has no underlying identification. The agent should set
the AdminDomain Name property to the Port WWN of the discovering HBA port and the
NameFormat property to “FC”. This allows a client to determine which port was used to discover
the particular LogicalNetwork. The AdminDomain Roles[] array MUST contain a “HBA Discovered
Resources” entry. This allows the client to determine which AdminDomains are related to this
profile.

The agent MUST set ProtocolEndpoint properties ProtocolType=other and
OtherTypeDescription="SCSIOverFC”. The ProtocolEndpoints for the local HBA port and its
attached remote ports are all aggregated into a LogicalNetwork. The agent MUST set
LogicalNetwork properties NetworkType=other, OtherProtocolType="SCSIOverFC”,
Name=discovering FCPort WWN with “:SCSIOverFC” appended, and NameFormat="Discovering
FCPort WWN with :SCSIOverFC appended".

The agent should separate LUN discovery so that a client can limit resources as described in the
algorithm under “Client Considerations”, above. In particular, the agent should not issue SCSI
“Report LUNSs”, “Inquiry”, or “Read Capacity” unless a client follows ProtocolControllerForUnit
associations.

Version 1.0.1 365

SNIA Storage Management Initiative Specification

If the client does ask for ProtocolControllerForUnit associations, LogicalDevice subclasses are
instantiated for all the SCSI Logical Units reported by the “Report LUNs” command, then SCSI
Inquiry. The agent chooses the LogicalDevice subclass based in the SCSI Inquiry device type:

Table 232: SCSI Device Type Mapping

Peripheral Device Type LogicalDevice Subclass
Direct-access SCSI type StorageVolume
Sequential-access TapeDrive

All others LogicalDevice

366

Note that this agent cannot determine whether a Direct Access device is a physical disk or a
virtualized volume; for consistency the agent always instantiates a StorageVolume. Other than
disks and tapes, there are many vendor-specific implementations, so s generic LogicalDevice is
instantiated.

SCSI Inquiry VPD commands are issued to get LogicalDevice durable names as described in the
array and tape library profiles. These names can be used to identify multi-path configurations;
this is modeled with multiple ProtocolControllerForUnit associations from FCPort/ProtocolController
pairs to a common LogicalDevice.

If the same logical unit is discovered on multiple LogicalNetworks, the agent MAY create a single
instance and use ProtocolControllerForUnit associations to ProtocolControllers. Logical unit objects
MAY have ProtocolControllerForUnit associations to SCSIProtocolControllers that are associated to
different AdminDomains (because they are in different LogicalNetworks). A logical unit object
MUST be associated to a single AdminDomain. The agent should pick one of the AdminDomains and
use it for SystemDevice associations and determination of the SystemName property of the logical
unit objects.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.5.2.11 Required CIM Elements

Table 233: Required CIM Elements

Profile Classes & Associations Notes

AdminDomain (p. 368) The “virtual ComputerSystem” for LogicalDevice SystemName
attributes and SystemDevice associations

Component (p. 368) LogicalNetwork to AdminDomain

DeviceSAPImplementation (p. 368) Associates ProtocolEndpoint and FCPort

FCPort (p. 368) Used on both the initiator and target sides

HostedCollection (p. 372) LogicalPortGroup (Node) to ComputerSystem

LogicalDevice subclasses StorageVolume, TapeDrive, MediaAccessDevice depending on

SCSI Inquiry responses for whatever is discovered

LogicalNetwork (p. 372)

MemberOfCollection (p. 372) ProtocolEndpoint to LogicalNetwork

ProtocolControllerAccessesUnit Associates unit and initiator side protocol controller

ProtocolControllerForPort FCPort to SCSIProtocolController if any

ProtocolControllerForUnit Associates unit and target side protocol controller

ProtocolEndpoint (p. 373) Network aspects of an FC Port

SCSIProtocolController Used on both the initiator and target sides

SystemDevice (p. 373) Any LogicalDevice subclass to ComputerSystem (Device FCPort)
Packages

None.

Associated Indications

Creation/Deletion/Modification of SELECT * FROM CIM_InstCreation
StorageVolumes (similar for other logical | WHERE Sourcelnstance ISA CIM_StorageVolume
units) SELECT * from CIM_InstModification

WHERE Sourcelnstance ISA CIM_StorageVolume
SELECT * FROM CIM_InstDeletion
WHERE Sourcelnstance ISA CIM_StorageVolume

Creation/Deletion of ports SELECT * FROM CIM_InstCreation WHERE Sourcelnstance
ISA CIM_FCPort
SELECT * FROM CIM_InstDeletion WHERE Sourcelnstance
ISA CIM_FCPort

7.3.5.2.12 Required Properties for CIM Elements

The model exposed by this profile is discovered remotely and does not provide canonical
information about the elements. Hence, most properties are omitted.

Version 1.0.1 367

SNIA Storage Management Initiative Specification

7.3.5.2.12.1 AdminDomain
Table 234: Required Properties for AdminDomain
Property/ Type Qualifier/ Description/Notes
Method Parameter
Caption string maxlen(64) Short (one line) description
Description string Longer description
ElementName string User Friendly name
OperationalStatus uint16
CreationClassName string maxlen(256), key “whatever_AdminDomain”
Name string maxlen(256), key, The Port WWN of the discovering
override port.
NameFormat string maxlen(64) Set to “FC” in this Profile
PrimaryOwnerName
PrimaryOwnerContact
Roles string[] Must contain an “HBA Dlscovered
REsources” entry.
7.3.5.2.12.2 Component
Table 235: Required Properties for Component
Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref key In this profile, the LogicalNetwork
PartComponent ref key In this profile, an AdminDomain
7.3.5.2.12.3 DeviceSAPImplementation
Table 236: Required Properties for DeviceSAPImplementation
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key FCPort reference
Dependent ref key ProtocolEndpoint reference
7.3.56.2.12.4 FCPort
Table 237: Required Properties for FCPort
Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string

368

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 237: Required Properties for FCPort (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
OperationalStatus uint16
DevicelD string key, maxlen (64)
Speed uint64 units ("bits per Speed of zero represents a link not
second") established.

1Gb is 1062500000 bps

2Gb is 2125000000 bps

4Gb is 4250000000 bps)

10Gb single channel variants are
10518750000 bps

10Gb four channel variants are
12750000000 bps

This is the raw bit rate.

MaxSpeed uint64 The max speed of the Port in Bits per
Second.
FC-FS Port Speed Capabilities

PortType uint16 override PortType is defined to force consistent
naming of the 'type' property in
subclasses and to guarantee unique
enum values for all instances of
NetworkPort. When set to 1 (\"Other\"),
related property OtherPortType
contains a string description the of the
port's type. A range of values,
DMTF_Reserved, has been defined
that allows subclasses to override and
define their specific port types.

OtherNetworkPortType string Describes the type of module, when
PortType is set to 1 (\"Other\").

PortNumber uint64 NetworkPorts are often numbered
relative to either a logical modules or a
network element.

LinkTechnology uint16 An enumeration of the types of links.
When set to 1 (\"Other\"), the related
property OtherLinkTechnology
contains a string description of the
link's type.

OtherLinkTechnology uint16 A string value describing
LinkTechnology when it is set to 1,
\"Other\".

Version 1.0.1 369

SNIA Storage Management Initiative Specification

Table 237: Required Properties for FCPort (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
PermanentAddress string maxlen (64) PermanentAddress defines the

network address hardcoded into a port.
This 'hardcoded' address may be
changed via firmware upgrade or
software configuration. If so, this field
should be updated when the change is
made. PermanentAddress should be
left blank if no 'hardcoded' address
exists for the NetworkAdapter.||Port
WWN (InfiniBand: Port GUID)

NetworkAddresses]] string maxlen (64), An array of strings indicating the
arraytype network addresses for the port.
("indexed") FCID (InfiniBand: LIDs)
FC-FS Address Identifier
Speed uint64 override Speed of zero represents a link not
established.

1Gb is 1062500000 bps

2Gb is 2125000000 bps

4Gb is 4250000000 bps)

10Gb single channel variants are
10518750000 bps

10Gb four channel variants are
12750000000 bps

This is the raw bit rate.

FullDuplex boolean Boolean indicating that the port is
operating in full duplex mode.

AutoSense boolean A boolean indicating whether the
NetworkPort is capable of
automatically determining the speed or
other communications characteristics
of the attached network media.

SupportedMaximumTransm | uint64 The maximum transmission unit (MTU)

issionUnit that can be supported."), Units
("Bytes")

ActiveMaximumTransmissio | uint64 The active or negotiated maximum

nUnit transmission unit (MTU) that can be
supported.

370 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 237: Required Properties for FCPort (Continued)

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

PortType

uint16

FC-GS Port.Type||The specific mode
currently enabled for the Port. The
values: \"N\" = Node Port, \"NL\" =
Node Port supporting FC arbitrated
loop, \"E\" = Expansion Port
connecting fabric elements (for
example, FC switches), \"F\" = Fabric
(element) Port, \"FL\" = Fabric
(element) Port supporting FC
arbitrated loop, and \"B\" = Bridge Port.
PortTypes are defined in the ANSI X3
standards. When set to 1 (\"Other\"),
the related property OtherPortType
contains a string description of the
port's type.

SupportedCOS

uint16[]

FC-GS Class Of Service

An array of integers indicating the
Fibre Channel Classes of Service that
are supported. The active COS are
indicated in ActiveCOS.

ActiveCOS

uint16[]

FC-GS Class Of Service

An array of integers indicating the
Classes of Service that are active. The
Active COS is indicated in ActiveCOS.

SupportedFC4Types

uint16[]

FC-GS FC4-TYPEs

An array of integers indicating the
Fibre Channel FC-4 protocols
supported. The protocols that are
active and running are indicated in the
ActiveFC4Types property.

ActiveFC4Types

uint16[]

FC-GS FC4-TYPE

An array of integers indicating the
Fibre Channel FC-4 protocols currently
running. A list of all protocols
supported is indicated in the
SupportedFC4Types property.

Version 1.0.1

371

SNIA Storage Management Initiative Specification

7.3.5.2.12.5 HostedCollection
Table 238: Required Properties for HostedCollection
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent REF key, min(1), max(1) ComputerSystem
Dependent REF key, weak LogicalPortGroup
7.3.5.2.12.6 ProtocolControllerForPort
Table 239: Required Properties of ProtocolControllerForPort
Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependent ref The Port
Antecedent ref The protocol controller
7.3.5.2.12.7 LogicalNetwork
Table 240: Required Properties for LogicalNetwork
Property/ Type Qualifier/ Description/Notes
Method Parameter
InstanceName string Node Symbolic Name
CollectionID string key Node WWN
SystemCreationClassName string propagated,key
SystemName string propagated,key
Name string Discovering FC Port WWN with
“:SCSIOverFC” appended
Name Format string Must be set to "Discovering FCPort
WWN with :SCSIOverFC
appended"”
NetworkType string Must be set to “Other”
OtherProtocolType string
7.3.5.2.12.8 MemberOfCollection
Table 241: Required Properties of MemberOfCollection
Property/ Type Qualifier/ Description/Notes
Method Parameter
Collection ref key The Collection that aggregates members.
ManagedElement ref key The aggregated member of the Collection.

372

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.5.2.12.9 ProtocolEndpoint
Table 242: Requited Properties for ProtocolEndpoint
Property/ Type Qualifier/ Description/Notes
Method Parameter
Name string maxlen (256)
CreationClassName string key, maxlen (256)
SystemCreationClassNam | string key, maxlen (256)
e
SystemName string key, maxlen (256)
NameFormat string maxlen (256) heuristic that ensures unique name
ProtocolType string maxlen (64) “Other” for this profile
OtherTypeDescription string maxlen (64) “SCSIOverFC” for this profile
7.3.5.2.12.10 SystemDevice
Table 243: Required Properties for SystemDevice
Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref override System Reference
PartComponent ref override LogicalDevice Reference
7.3.5.2.12.11 StorageVolume
Table 244: Required Properties for StorageVolume
Property/ Type Qualifier/ Description/Notes
Method Parameter
Caption string maxlen(64) Short (one line) description
Description string Longer description
ElementName string User Friendly name
InstallDate datetime
Name string maxlen (256)
Status string maxlen (10)
SystemCreationClassName string maxlen(256), The scoping System's
key CreationClassName.
SystemName string maxlen(256), key The scoping System's
Name.
CreationClassName string maxlen(256), key The name of the concrete
subclass

Version 1.0.1

373

SNIA Storage Management Initiative Specification

Table 244: Required Properties for StorageVolume (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
DevicelD string maxlen(64), key unique identifying
information
Availability int16
LastErrorCode uint32
ErrorDescription string
ErrorCleared boolean
OtherldentifyingInfo string[]
PowerOnHours uint64
TotalPowerOnHours uint64
IdentifyingDescriptions string(]
AdditionalAvailability uint16[]
MaxQuiesceTime uint64
DataOrganization uint16
Purpose string
Access uint16
ErrorMethodology string
BlockSize uint64
NumberOfBlocks uint64
ConsumableBlocks uint64
IsBasedOnUnderlyingRedundancy | boolean
SequentialAccess boolean
ExtentStatus]] uint16
NoSinglePointOfFailure boolean
DataRedundancy uint16
SpindleRedundancy uint16
DeltaReservation uint16

374 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.5.2.13 Optional Subprofiles

Table 245: Optional Profiles or Subprofiles

Name Notes
Initiator Subprofile (p. 375)
Target Subprofile (p. 377)
7.3.5.2.14 Initiator Subprofile

7.3.5.2.14.1 Description
See parent sections.

7.3.5.2.14.2 Standards Dependencies

See parent sections.

7.3.5.2.14.3 Profile Dependencies
See parent sections.

7.3.5.2.14.4 CIM Server Requirements

See parent sections.

7.3.5.2.14.5 Instance Diagrams
See parent sections.

7.3.5.2.14.6 Durable Names and Correlatable IDs

See parent sections.

7.3.5.2.14.7 Methods

See parent sections.

7.3.5.2.14.8 Client Considerations

See parent sections.

7.3.5.2.14.9 Recipes
See parent sections.

7.3.5.2.14.10 Instrumentation Requirements

See parent sections.

Version 1.0.1

375

SNIA Storage Management Initiative Specification

7.3.5.2.14.11 Required CIM Elements

Table 246: Required CIM Elements

Profile Classes & Associations Notes

ProtocolControllerForPort (p. 376)

SCSIProtocolController (Initiator) (p. SCSI aspects of an FC Port
376)
ProtocolControllerAccessesUnit (p. Initiator ProtocolController to LogicalDevice or subclass that is
377) mapped into host OS
Packages
None.

Associated Indications

None

7.3.5.2.14.12 Required Properties for CIM Elements
7.3.5.2.14.12.1 ProtocolControllerForPort

Table 247: Required Properties for ProtocolControllerForPort

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependent ref override LogicalDevice Reference
Antecedent ref override SCSIProtocolController Reference

7.3.5.2.14.12.2 SCSIProtocolController (Initiator)

Table 248: Required Properties for SCSIProtocolController

Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.

SystemName string maxlen(256), key | The scoping System's Name.

CreationClassName string maxlen(256), key The name of the concrete
subclass

DevicelD string maxlen(64), key Port WWN of associated

FCPort is commonly used

ConnectionRole string Must include “client”

376 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.5.2.14.12.3 ProtocolControllerAccessesUnit

Table 249: Required Properties for ProtocolControllerAccessesUnit

Property/ Type Qualifier/ Description/Notes
Method Parameter

Dependent ref LogicalDevice Reference

Antecedent ref SCSIProtocolController Reference

Targetld uint32 The Target ID as exposed to drivers and
applications that use the HBA driver

DeviceNumber string The SCSI Logical Unit Number as seen by this
initiator

7.3.5.2.14.13 Optional Subprofiles

Table 250: Optional Profiles or Subprofiles

Name Notes

None

7.3.5.2.15 Target Subprofile

7.3.56.2.15.1 Description
See parent sections.

7.3.5.2.15.2 Standards Dependencies
See parent sections.

7.3.5.2.15.3 Profile Dependencies

See parent sections.

7.3.5.2.15.4 CIM Server Requirements
See parent sections.

7.3.5.2.15.5 Instance Diagrams

See parent sections.

7.3.5.2.15.6 Durable Names and Correlatable IDs
See parent sections.

7.3.5.2.15.7 Methods
See parent sections.

7.3.5.2.15.8 Client Considerations
See parent sections.

7.3.5.2.15.9 Recipes
See parent sections.

Version 1.0.1 377

SNIA Storage Management Initiative Specification

7.3.5.2.15.10 Instrumentation Requirements

See parent sections.

378 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.5.2.15.11 Required CIM Elements

Table 251: Required CIM Elements

Profile Classes & Notes
Associations

SCSIProtocolController) (p. 379) SCSI aspects of an FC Port

ProtocolControllerForUnit (p. 379) Target ProtocolController to LogicalDevice or subclass if any

Packages

None.

Associated Indications

None.

7.3.5.2.15.12 Required Properties for CIM_Elements
7.3.5.2.15.12.1 SCSIProtocolController)

Table 252: Required Properties for SCSIProtocolController

Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemCreationClassName string maxlen(256), key | The scoping System's
CreationClassName.
SystemName string maxlen(256), key The scoping System's Name.
CreationClassName string maxlen(256), key | The name of the concrete subclass
DevicelD string maxlen(64), key Port WWN of associated FCPort is

commonly used

ConnectionRole string Must include “server”

7.3.5.2.15.12.2 ProtocolControllerForUnit

Table 253: Required Properties for ProtocolControllerForUnit

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependent ref LogicalDevice
Antecedent ref SCSIProtocolController
DeviceNumber string Formatted as uppercase
hexadecimal digits, with a
prefix of “0x”.

Version 1.0.1 379

SNIA Storage Management Initiative Specification

7.3.5.2.15.13 Optional Subprofiles

Table 254: Optional Profiles or Subprofiles

Name Notes

None

380 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6

7.3.6.1

7.3.6.1.1

7.3.6.1.2

Storage
Array Profile

Description

The Array model profile describes external RAID arrays and disk storage systems. The key classes
are:

+ Computer Systems that represent the array as a whole;

« Storage Volumes that are equivalent to SCSI Logical Units visible to consumers;
» StoragePools that are the allocatable/available space on the array;

« Fibre Channel ports through which the LUNs are made available.

The basic array profile provides a high level read-only ‘view’ of an array. The various subprofiles
indicated in “Array Packages Diagram” on page 399 extend this description and also enable
configuration of the array. Refer to “Optional Subprofiles” on page 399 for more information on
these optional extensions. This profile also includes the mandatory “Physical Package Package” on
page 103 that describes the physical layout of the array and includes product identification
information.

Standard Dependencies
The Array profile is based on the following standards:

Table 255: Array Standard Dependencies

Standard Version Organization

CIM Specification 2.2 DMTF

CIM Operations over HTTP 1.2 DMTF

CIM Schema 2.8 Preliminary DMTF

7.3.6.1.3

Profile Dependencies
The Array profile requires the Server Profile (p. 441).

Version 1.0.1 381

7.3.6.1.4

7.3.6.1.4.1

7.3.6.1.4.2

CIM Server Requirements

Functional Profiles

SNIA Storage Management Initiative Specification

Table 256: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation
YES Indication None

Extrinsic Methods

Although there are some extrinsic methods defined within classes in this profile, they are not
needed for this Profile. However, sub profiles do require the use of Extrinsic methods.

7.3.6.1.4.3 Discovery

The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

382 Version 1.0.1

SNIA Storage Management Initiative Specification

Instance Diagrams.

Figure 66: Array Profile Instance Diagram

FCPort

SystemDevice ProtocolControllerForPort

ComputerSystem SCSIProtocolController

. ProtocolControllerForUnit
SystemDevice |

StorageVolume StorageSetting
ElementSettingData

AllocatedFromStoragePool

[]

StoragePool StorageCapabilities

AllocatedFromStoragePool BlementCapabilities

HostedStoragePool

The main function of a disk array is to host storage and provide it to consumers for use. This is
modeled in CIM using the concepts of 'Storage Pool' and 'Storage Volume'

Storage Pools

A StoragePool is an abstract notion of a blob of consumable storage space. A pool has certain
‘StorageCapabilities’, which indicate the range of 'Quality of Service' requirements that can be
applied to objects created from the pool. In this top-level profile, StorageCapabilities are
informational only. Refer to “Pool Manipulation, Capabilities, and Settings Subprofile” on
page 178 for details on the use of these objects.

Storage pools are scoped relative to the ComputerSystem (indicated by the HostedStoragePool
association). Objects created from a pool have the same scope.

Child objects (e.g. StorageVolumes or StoragePools) created from a StoragePool are linked back to
the parent pool using an AllocatedFromStoragePool association.

There are two properties on StoragePool that describe the size of the ‘underlying’ storage.
TotalManagedStorage describes the total raw storage in the pool and RemainingManagedStorage
describes the storage currently remaining in the pool. RemainingManagedStorage plus
AllocatedFromStoragePool.SpaceConsumed from all of the StorageVolumes allocated from the
pool MUST equal TotalManagedStorage.

Version 1.0.1 383

7.3.6.1.6

7.3.6.1.6.1

7.3.6.1.6.2

7.3.6.1.6.3

384

SNIA Storage Management Initiative Specification

Primordial Pool

The Primordial Pool is a specific instance of StoragePool. At least one MUST always exists on the
array to represent the unallocated storage on the storage device. The size of this Pool MUST be
equal to the total size of the allocated, raw (unformatted or unprepared) storage. The Primordial
property MUST be true for Primordial Pools.

The use of the Primordial Pool is to determine the amount of unallocated space left on the array.

Storage Volumes

Storage Volumes are configured pieces of storage that MUST be exposed from a system through an
external interface. In the class hierarchy they are a sub class of a StorageExtent. In SCSI terms,
they are Logical Units.

Storage Volumes are created from Storage Pools using the Storage Configuration Service (see
Section “LUN Creation Subprofile” on page 201).

In this profile, a StorageSetting is informational only. Refer to “LUN Creation Subprofile” on
page 201 for details on StorageSettings

Durable Names and Correlatable IDs of the Profile

Durable Names Exported

For StorageVolume, the durable name is the Name property. The format of this property is
available in NameFormat. The valid formats are described in Section ‘Find the Durable Name for
Volumes (p. 384)

For Fibre Channel port, the durable name is the Port WWN. It is found in
FCPort.PermanentAddress.

For the array itself (the computer system), the Name property contains a durable name. The
format of this name is defined by the NameFormat property.

Find the Durable Name for Volumes

Different implementation use different approaches to uniquely identify SCSI units (Logical
Devices). The agent SHOULD try these standard interfaces in this order to find a durable volume
name. The best name is put in the StorageVolume Name field. The NameFormat attribute of
LogicalDevice (and subclasses) identifies how the name field is generated. The client SHOULD use
the same name format to assure a consistent model.

“Inquiry-VPD page 83 data” is documented in the SCSI Primary Commands specification. It allows
a device to report a list of identifiers in a variety of formats. Identifier type 3 is an IEEE standard
that is used for device identification. The ANSI Name Address Authority (NAA) specifies the
format. When “association” is set to 0 the ID represents the logical device rather than a single port.
NAA specifies that high order 4 bits define the format used in the rest of the identifier. Other NAA
values and identifiers types MAY be used in older implementations. If the volume does not report
page 83, page 80 is a serial number; this value MUST be merged with vendor and model strings
from standard inquiry to generate a unique ID. Some vendors store a serial number in the vendor-
specific data in the standard inquiry data. The last option is a Fibre Channel WWN that may map
1-1 to a device in JBOD configurations.

Refer to Table 3, “Standardized Name Formats,” on page 82 for a complete list of the name formats
recognized by SMI-S.

Correlatable IDs Used
None.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.1.7 Methods
None.
7.3.6.1.8 Client Considerations

7.3.6.1.8.1 Discovering a Disk Array

The System NameFormat attribute identifies how the Name field is generated. Disk array
ComputerSystem names MUST be one of the following network host names (NameFormat = “IP”),
node names (NameFormat = “NodeWWN?”), platform IDs (NameFormat = “T'11PlatformID”), or
Vendor+Model+SerialNumber (NameFormat = “VendorModelSerial”)

7.3.6.1.8.2 Find Port Information

FCPorts MUST be aggregated from ComputerSystems using SystemDevice. In an array with
multiple storage processors, ports MUST be aggregated from the component ComputerSystem;
this aggregation allows a client to see which ports are associated with a particular processor and to
understand possible single points of failure.

FCPort MUST include ProtocolControllerForPort associations to SCSIProtocolController to
indicate the SCSI device for the port. SCSIProtocolController MUST include
ProtocolControllerForUnit associations to exposed StorageVolumes.

SCSIProtocolControllers can serve as initiators (for example, a port in an HBA) or as targets (ports
in devices). A RAID array model MAY include both; they can be differentiated in two ways:

» SCSIProtocolController.ConnectionRole can be ‘Client’ (initiator) or ‘Server’ (target).
* The ProtocolControllerAccessesUnit association indicates a initiator to LU relationship.

* The ProtocolControllerForUnit association indicates a target/LU relationship.

7.3.6.1.8.3 Find System Status

The ‘OperationalStatus’ property is available on most objects in the model and is used to indicate
it’s status. For the whole array, the ComputerSystem instance MUST have one of the following
Main Operational Status values and possibly one of the Subsidiary status values. The main
OperationalStatus MUST be the first element in the array.

Table 257: OperationalStatus for ComputerSystem

Main Operational Possible Description
Status Subsidiary
Operational
Status
OK The system has a good status
OK Stressed The system is stressed, for example the

temperature is over limit or there is too much
IO in progress

OK Predictive Failure The system will probably fail sometime soon

Degraded The system is operational but not at 100%
redundancy. A component has suffered a
failure or something is running slow

Version 1.0.1 385

7.3.6.1.8.4

386

SNIA Storage Management Initiative Specification

Table 257: OperationalStatus for ComputerSystem (Continued)

Main Operational Possible Description
Status Subsidiary
Operational
Status
Error An error has occurred causing the system to
stop. This error may be recoverable with
operator intervention.
Error Non-recoverable error A severe error has occurred. Operator
intervention is unlikely to fix it
Error Supporting entity in error | A modeled element has failed
No contact The provider knows about the array but has

not talked to it since last reboot

Lost communication

The provider used to be able to communicate
with the array, but has now lost contact.

Starting The array is starting up
Stopping The array is shutting down.
Stopped The data path is OK but shut down, the

management channel is still working.

A client SHOULD subscribe for Asynchronous notification of changes in status through
CIM_InstModification. More details on indications are in “Events — CIM Indications” on page 85.

Find Volume Status

The status of a volume MAY be determined by looking at the values in the OperationalStatus and
ExtentStatus properties. The following table describes their possible states. ExtentStatus provides
further clarification of the main OperationalStatus.

The status described in the table below MUST be supported for StorageVolume.OperationalStatus
and StorageVolume.ExtentStatus. ExtentStatus provides a further clarification of the main
OperationalStatus. The main OperationalStatus MUST be the fist element in the array.

Table 258: OperationalStatus for StorageVolume

Operational ExtentStatus Description
Status

OK The volume has good status

Degraded The volume is operating in a degraded mode.
There may have been a loss of redundancy.

Degraded Spare In Use The spare has been put into use. No more
spares are available.

Degraded Rebuild A spare is in use and a rebuild is in process.

Error The volume is not functioning

Error Broken The volume is not functioning but there is no
confirmed data loss

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 258: OperationalStatus for StorageVolume (Continued)

Operational ExtentStatus Description
Status
Error Data Lost The volume has broken and there is data loss
Starting The volume is in process of initialization
Dormant The volume is offline

7.3.6.1.8.5 Find Port Status

The status of a Fibre Channel port MAY be determined by the value of the OperationalStatus
property. Table 259 shows the allowed values for this property and their meanings. The table
below defines the possible states that MUST be supported for FCPort.OperationalStatus. The
main OperationalStatus MUST be the first element in the array.

Table 259: Port State/Status

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test
7.3.6.1.9 Recipes

7.3.6.1.9.1 Overview

The following recipes show examples of how a client MAY navigate the model and determine
information from the basic array profile. A compliant SMI-S server implementation MUST support
them. For details on the Pseudo code syntax please refer to “Recipe Conventions” on page 91.

7.3.6.1.9.2 Summarize the Pools on an array.
// DESCRIPTION
// This recipe works out the following:
/1 The overall size of the array, by summarizing the
/1 TotalManagedSpace for the primordial pools.
/ The consumed space on the array. This is worked out by summing
/ the space consumed by volumes.
/1 The Unallocated space on the array is the TotalManagedSpace -
/ consumed space.

/1

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//'1. The object name for the device, CIM_ComputerSystem, of interested
/ has been previously identified and defined in the $Array->

/1 variable

//2. Know the class definitions via a previous EnumerateClasses call

/ so can set includeQualifiers false on the associators call for

/1 higher performance.

Version 1.0.1 387

7.3.6.1.9.3

388

SNIA Storage Management Initiative Specification

// first find the pools...
$Pools[] = Associators(
$Array->,
“CIM_HostedStoragePool”,
“CIM_StoragePool”,
“GroupComponent”,
“PartComponent”,
false,
false,
$Properties[] {“TotalManagedSpace”,”Primordial”’});

// ' Then cycle through them and add up the managed space from the primordial pools.
#managedSpace = 0

#allocSpace =0

for #i in $Pools->[]

{
if ($Pools->[#i]->Primordial)
#managedSpace = managedSpace + $Pools->[#i]. TotalManagedSpace
$Allocs[] = references(
$Pools->[#i],
“CIM_AllocatedFromStoragePool”,
“Antecedent”,
false,
false,
null)
for #j in $Allocs
{
if ($Allocs[#j].Antecedent ISA “CIM_StorageVolume”)
#allocSpace = #allocSpace + $Allocs[#j].SpaceConsumed
}
H

// managedSpace is the total managed space and #allocSpace is the total allocated space.
// ' With these variables the client can determine the storage space reserved by pools and used

// in the allocated of volumes in respect to the total storage possible in this Array

List volume information
// DESCRIPTION
// This recipe will determine and access the name and volume size used
// for each volume in the array.
I
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

Version 1.0.1

SNIA Storage Management Initiative Specification

//'1. The object name for the device, CIM_ComputerSystem, of interested
/ has been previously identified and defined in the $Array->

/ variable

//2. Know the class definition so can set includeQualifiers false on

/ the associators call.

// first find the vols
$Vols[] = Associators(
$Array->,
“CIM_SystemDevice”,
“CIM_StorageVolume”,
“GroupComponent”,
“PartComponent”,
false,
false,
$Properties[] {“ElementName”, “Name”, “NameFormat”,
“BlockSize”, “NumberOfBlocks™});

// Then cycle through and use Volume information
for #i in $Vols[]

{

#VolumeDescription $Vols[#i].ElementName

#VolumeName = $Vols[#i].Name

#NameFormat = $Vols[#i].NameFormat

#VolumeSize = $Vols[#i].BlockSize * $Vols[#i]. NumberOfBlocks
H

7.3.6.1.9.4 List LUN information
// DESCRIPTION
// For each volume, get the LUN & FC Port information. Also determine the
// highest priority FC Port
/
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. Have a list of Volumes from the previous recipe.
// 2. Know the class definition so can set includeQualifiers false on

/! the associators call.

// FUNCTION: findUnit

// return the association instance from $pcfu which has #Pc as the
/I Antecedent

sub CIMInstance findUnit (int #Pc, CIMInstanceSpcfu[])

{
for #i in $pcfu

f
1

if (compare (#i.antecedent, #pc->))
return #i

}

Error(“can’t find relevent associator”)

Version 1.0.1 389

7.3.6.1.10

390

SNIA Storage Management Initiative Specification

/l MAIN
#first find the vols ...
for #i in $Vols([]
{
$ProCont[] = Associators(
$tti->,
“ProtocolControllerForUnit”,
“CIM_ProtocolController”,
“Dependent”,
“Antecedent”);
$pcfu[] = References(
$tti->,
“ProtocolControllerForUnit”,
“CIM_ProtocolController”,
“Dependent”,
false,
false);
for #y in $ProCont
{
$Ports[] = AssociatorsNames(
$tty->,
“ProtocolControllerForPort”,
“CIM_FCPort”,
“Antecedent”,
“Dependent”);
#luninfo = findUnit($y,$pcfu[])

// The following variables now contain the information
// * LUN* = #luninfo.DeviceNumber

// “Volume* = #i.ElementName

Instrumentation Requirements
There are no instrumentation requirements defined for this profile.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.1.11 Required CIM Elements

Table 260: Required CIM Elements

Profile Classes & Associations

Notes

AllocatedFromStoragePool (p. 392)

ElementCapabilities (p. 392)

ElementSettingData (p. 392)

ComputerSystem (p. 392)

FCPort (p. 394)

HostedStoragePool (p. 394)

ProtocolControllerForPort (p. 395)

ProtocolControllerForUnit (p. 395)

SCSIProtocolController (p. 395)

StorageCapabilities (p. 396)

StoragePool (p. 396)

StorageSetting (p. 397)

StorageVolume (p. 397)

SystemDevice (p. 399)

Packages

Physical Package Package (p. 103)

Software Package (p. 110)

Associated

Indications

Creation/Deletion of an Array

SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA CIM_ComputerSystem
SELECT * FROM CIM_InstDeletion WHERE
Sourcelnstance ISA CIM_ComputerSystem

Change in operational status of an Volume

SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_StorageVolume AND
Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus

Change in operational status of an FCPort

SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_FCPort AND
Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus

Change in operational status of an Array

SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_ComputerSystem AND
Sourcelnstance.OperationalStatus <>

Previouslnstance.OperationalStatus

Version 1.0.1

391

SNIA Storage Management Initiative Specification

7.3.6.1.12 Required Properties for CIM Elements
7.3.6.1.12.1 AllocatedFromStoragePool
Table 261: Required Properties for AllocatedFromStoragePool
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref The StoragePool.
Dependent ref The sub pool or volume.
SpaceConsumed uint64 Space Consumed from this Pool
(in bytes).
7.3.6.1.12.2 ElementCapabilities
Table 262: Required Properties for ElementCapabilities
Property/ Type Qualifier/ Description/Notes
Method Parameter
Capabilities ref The StorageCapabilities instance
ManagedElement ref The object to which the

capabilities apply.

7.3.6.1.12.3 ElementSettingData
Table 263: Required Properties for ElementSettingData
Property/ Type Qualifier/ Description/Notes
Method Parameter
SettingData ref The StorageSetting instance
ManagedElement ref The StorageVolume to which the
storagesetting applies
7.3.6.1.12.4 ComputerSystem
Table 264: Required Properties for ComputerSystem
Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string User Friendly name
OperationalStatus uint16[] Status of array
CreationClassName string required,
key
Name string key The identifier for the Array (e.g.
IP address or FC world wide
name).
NameFormat string The format of the Name property.

392

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 264: Required Properties for ComputerSystem (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dedicated][] int16 “blockserver”, For this profile Dedicated will
“storage” always include these two values.
PrimaryOwnerContact string Optional
PrimaryOwnerName string Optional

Version 1.0.1

393

7.3.6.1.12.5 FCPort

SNIA Storage Management Initiative Specification

Table 265: Required Properties for FCPort
Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemCreationClassName | string key

SystemName string key

CreationClass string key

ElementName string User friendly name/caption for port.

OperationalStatus]] uint16 Status of device

DevicelD string key Opaque

PortType uint16 Used to indicate the type of the port
(e.g., N-port/NL-port)
This property is OPTIONAL.

UsageRestriction uint16

PermanentAddress string The WWN of the port.

NetworkAddresses]] string The Fibre Channel address of the port.
This property is OPTIONAL.

Speed uint64 Speed of zero represents a link not
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps)
10Gb single channel variants are
10518750000 bps
10Gb four channel variants are
12750000000 bps
This is the raw bit rate.
This property is OPTIONAL.

7.3.6.1.12.6 HostedStoragePool
Table 266: Required Properties from HostedStoragePool
Property/ Type Qualifier/ Description/Notes
Method Parameter
PartComponent ref The storage pool
GroupComponent ref The scoping system

394

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.1.12.7 ProtocolControllerForPort
Table 267: Required Properties from ProtocolControllerForPort
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref The SCSIProtocolController for this
port
Dependent ref The port.
AccessPriority unit16 The priority of access through this
port for this ProtocolController.
This property is OPTIONAL.
7.3.6.1.12.8 ProtocolControllerForUnit
Table 268: Required Properties from ProtocolControllerForUnit
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref The protocol controller
Dependent ref The exposed logical unit.
DeviceNumber unit16 The Logical Unit number for this
Volume through this controller.
7.3.6.1.12.9 SCSIProtocolController
Table 269: Required Properties for SCSIProtocolController
Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemCreationClassName | string key
SystemName string key
CreationClass string key
ElementName string User friendly name/caption for port.
This property is OPTIONAL.
OperationalStatus|[] uint16 Status of device.
This property is OPTIONAL.
DevicelD string key Opaque
MaxUnitsControlled uint32 Maximum number of units controlled by

this controller.
This property is OPTIONAL.

Version 1.0.1

395

SNIA Storage Management Initiative Specification

7.3.6.1.12.10 StorageCapabilities

Table 270: Required Properties from StorageCapabilities

Property/ Type Qualifier/ Description/Notes
Method Parameter

InstancelD string key Opaque identifier

ElementName string User friendly name/
caption

ElementType uint16 Type of element this
capability applies to

NoSinglePointOfFailure boolean

NoSinglePointOfFailureDefault boolean

DataRedundancyMin uint16

DataRedundancyMax uint16

DeltaReservationDefault uint16

DeltaReservationMin uint16

DeltaReservationMax uint16

DataRedundancyDefault uint16

PackageRedundancyMin uint16

PackageRedundancyMax uint16

PackageRedundancyDefault unit16

7.3.6.1.12.11 StoragePool

Table 271: Required Properties for StoragePool

Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string User Friendly name
InstancelD string key Opaque identifier
PoollD string required A unique name in the context of the
System that identifies this pool.
TotalManagedSpace uint64
RemainingManagedSpace unite4
Primordial boolean defaults to false, true for the

primordial pools.

396 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.1.12.12 StorageSetting
Table 272: Required Properties from StorageSetting
Property/ Type Qualifier/ Description/Notes
Method Parameter
InstancelD string key Opaque identifier
ElementName string required User friendly name/caption
DataRedundancyMin uint16
DataRedundancyMax uint16
DataRedundancyGoal uint16
DeltaReservationGoal uint16
DeltaReservationMin uint16
DeltaReservationMax uint16
PackageRedundancyMin uint16
PackageRedundancyMax | uint16
PackageRedundancyGoal | unit16
7.3.6.1.12.13 StorageVolume
Table 273: Required Properties for StorageVolume
Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemCreationClassName string key
SystemName string key
CreationClass string key
ElementName string User Friendly name
Name string VPD Page 83 ID
NameFormat uint16 Format of Name property
ExtentStatus uint16][] Status of volume
(Rebuild,spare in use etc)
OperationalStatus unit16[] Current general status of
volume
DevicelD string key Opaque ID
BlockSize uint64 Block size of Volume
NumberOfBlocks uint64 NUmber of Blocks (not size
of volume is BlockSize*
NumberOFBlocks)
IsBasedOnUnderlyingRedundancy | boolean

Version 1.0.1

397

SNIA Storage Management Initiative Specification

Table 273: Required Properties for StorageVolume (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter

NoSinglePointOfFailure boolean Current value of
StorageSetting

DataRedundancy uint16 Current value of
StorageSetting

PackageRedundancy uint16 Current value of
StorageSetting

DeltaReservation uint16 Current value of
StorageSetting

398 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.1.12.14 SystemDevice

Table 274: Required Properties for SystemDevice

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref System Reference
PartComponent ref LogicalDevice Reference
7.3.6.1.13 Optional Subprofiles

Figure 67: Array Packages Diagram

SystemDevice
ComponentCS
HostedService
InstalledSoftwareElement Array Profile Device Credentials
Concreteldentity
HostedAccessPoint
Software
ComputerSystemPackage _| HostedService
Access Points
Cluster PhysicalPackage Package
_l PhysicalElementLocation Pool Manipulation Service)
ConcreteComponent = OwningJobEleme
Extra Capacity Set .
paclty ConcreteComponent / ——QwningJobElement
Location . /]
Copy Services |
Job Control
Container |
LUN Creation Service OwningJobE|ement
Backend Ports OwningJobElemel
LUN Mapping & Masking Service
Extent Mapping
BasedOn
Disk Drive

Version 1.0.1 399

SNIA Storage Management Initiative Specification

Table 275: Optional Profiles or Subprofiles

Name Notes

Access Points Subprofile (p. 113)

Cluster Subprofile (p. 116)

Extra Capacity Set Subprofile (p. 121)

Disk Drive Subprofile (p. 126)

Extent Mapping Subprofile (p. 138)

Location Subprofile (p. 142)

Software Subprofile (p. 145)

Copy Services Subprofile (p. 146)

Job Control Subprofile (p. 172)

Pool Manipulation, Capabilities, and
Settings Subprofile (p. 178)

LUN Creation

Device Credentials Subprofile (p. 220)

LUN Mapping and Masking

Sparing Subprofile (p. 517)

Backend Ports Subprofile (p. 225)

400 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.2 In-Band Virtualization Profile
7.3.6.2.1 Description
An in-band virtualization system uses storage provided by array controllers to create a seamless
pool of storage. The virtualization system in turn allocates volumes from the pool for host systems
to use. The system sits between two fabrics. The first fabric contains the array systems used by the
virtualization system. The second fabric connects the virtualization system to the hosts systems.
The basic Virtualization System profile provides a read-only view of the system. The various
subprofiles indicated in “In Band Virtualization Overview Diagram” on page 402 extend this
description and also enable configuration. Refer to “Optional Subprofiles” on page 417 for more
information on these optional extensions. This profile also includes the mandatory “Physical
Package Package” on page 103 that describes the physical layout of the system and includes
product identification information.
7.3.6.2.2 Standard Dependencies
The In-band Virtualizer profile is based on the following standards:
Table 276: In-Band Virtualizer Standards Dependencies
Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.8 Preliminary DMTF
7.3.6.2.3 Profile Dependencies
The In-band Virtualizer profile requires the Server Profile (p. 441).
7.3.6.2.4 CIM Server Requirements
7.3.6.2.4.1 Functional Profiles
Table 277: Required Functional Profiles
Profile Required Functional Group Dependency
YES Basic Read None
NO Basic Write Basic Read
NO Instance Manipulation Basic Write
NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read
NO Query Execution Basic Read
NO Qualifier Declaration Schema Manipulation
YES Indication None
7.3.6.2.4.2 Extrinsic Methods

Support for extrinsic methods is NOT REQUIRED for the InBandVirtualizer profile.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.2.4.3 Discovery

The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

7.3.6.2.5 Instance Diagrams

7.3.6.2.5.1 Overview

The modeling in this document is split into various sections that describe how to model particular
elements of an In-Band Virtualization System. The diagrams used in this document are 'Instance'
diagrams implying the actual classes that you implement rather than the class hierarchy
diagrams often used to show CIM models. This is felt to be easier to understand. Please refer to the
CIM Schema for information on class inheritance information and full information on the
properties and methods used.

Figure 68: In Band Virtualization Overview Diagram
ComponentCS

HostedService

In-Band Virtualization Profile Device Credentials

InstalledSpftwareElement

—

Software

Concreteldentity

HostedAccessPoint

ComputerSystemPackage _l

HostedService

Access Points
Cluster PhysicalPackage Package
ConcreteComponent OwningJobElement
—| PhysicalElementLocation Pool Manipulation Service
Extra Capacity Set
pacity —OwningJobElement
Location ‘ NS
Copy Services [
Job Control
| LUN creation Service OwningJobE|ement
OwningJobElement
Extend Mapping

LUN Mapping & Masking Service

402 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.2.5.2

In Band Virtualization System
Figure 69: In Band Virtualization System Instance
ProtocolControllerForUnit ProtocolControllerForPort
ComputerSystem StorageVolume SCSIProtocolController FCPort
Dedicated[x]=
'InbandVirtualization’ LUID: /VPD pg 83 ID
DefaultAccessMode
HostedStoragePool
AllocatedFromStoragePool
L BlementSettingData
StoragePool |
StorageSetting
AllocatedFromStoragePool
ConcreteComponent ProtocolControllerAccesses Unit ProtocolControllerForPort
StorageExtent SCSIProtocolContoller FCPort
Name: /VPD pg 83 ID
DefaultAccessMode

7.3.6.2.5.2.

7.3.6.2.5.2.

7.3.6.2.5.2.

The Virtualization system is modeled using the ComputerSystem class with the “Dedicated”
properties set to ‘BlockServer’ and “InBandVirtualization”. The model allows the system to be a
cluster or contain redundant components, but the components act as a single system. The
ComputerSystem class and common Cluster Subprofile model this.

The StoragePool classes in the center of the diagram represents the mapping from array storage to
Volumes for host access. The pool is hosted on the ComputerSystem and services to control it are
host on the same controller. The StorageExtent at the bottom of the screen represents the storage
from external arrays used by the mapping. These StorageExtents are connected to the pool using
the ConcreteComponent association.

StorageVolumes at the upper right are the volumes created from the StoragePool and are
accessible from hosts. The associations to the SCSIProtocolController and to the FCPort indicate
ports the volume is mapped to. The StorageVolumes are described by the StorageSetting class
connected by the ElementSettingData association.

1 Controller Software

Information on the installed controller software is represented by the optional Software subprofile.
This is linked to the controller using an InstalledSoftwareElement association.

2 Device Management Access

Most devices now have a web GUI to allow device specific configuration. This is modeled using the
common subprofile “Access Point”.

3 Physical Modeling

The physical aspects of the metadata controller are represented by the Common Package “Physical
Package” and the optional subprofile “Location”. See these common sections for more details.

Version 1.0.1 403

SNIA Storage Management Initiative Specification

7.3.6.2.5.2.4 Services

7.3.6.2.6

7.3.6.2.6.1

7.3.6.2.6.2

7.3.6.2.7

7.3.6.2.8

7.3.6.2.9

7.3.6.2.10

404

The system hosts services used to control the configuration of the system’s resources . These
services are optional and modeled by “LUN Creation”, “Copy Services”, and “Job Control”
subprofiles.

Durable Names and Correlatable IDs of the Profile

Durable Names Exported

For StorageVolume, the durable names used are the names of the volumes. The format of this
property is available in NameFormat. The valid formats are described in Section “Find the
Durable Name for Volumes” on page 384

For Fibre Channel port, the durable name is the Port WWN. It is found in
FCPort.PermanentAddress.

For the system itself (the computer system), the Name property contains a durable name. The
format of this name is defined by the NameFormat property.

Correlatable IDs Used
None.

Methods

The methods needed by this model are part of the common subprofiles for the services and are
described there.

Client Considerations

None.

Recipes
There are no recipes defined for this profile.

Instrumentation Requirements

None.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.2.11 Required CIM Elements

Table 278: Required CIM Elements

Profile Classes & Associations

Notes

AllocatedFromStoragePool (p. 407)

ConcreteComponent (p. 407)

ComputerSystem (p. 407)

ElementCapabilities (p. 408)

ElementSettingData (p. 408)

FCPort (p. 408)

HostedStoragePool (p. 410)

ProtocolControllerAccessesUnit (p. 410)

ProtocolControllerForPort (p. 410)

ProtocolControllerForUnit (p. 412)

SCSIProtocolController (p. 412)

StorageCapabilities (p. 412)

StoragePool (p. 414)

StoragePool (p. 414)

StorageSetting (p. 414)

StorageVolume (p. 416)

SystemDevice (p. 416)

(port)

SystemDevice (p. 416)

(volume)

StorageExtent (p. 414)

Packages

Physical Package Package (p. 103).

Associated Indications

Creation/Deletion of a Storage Pool

SELECT * FROM CIM_InstCreation
WHERE Sourcelnstance ISA
CIM_StoragePool

SELECT * FROM CIM_InstDeletion
WHERE Sourcelnstance ISA
CIM_StoragePool

Creation/Deletion of a Storage Volume

SELECT * FROM CIM_InstCreation
WHERE Sourcelnstance ISA
CIM_StorageVolume

SELECT * FROM CIM_InstDeletion
WHERE Sourcelnstance ISA
CIM_StorageVolume

Version 1.0.1

405

SNIA Storage Management Initiative Specification

Table 278: Required CIM Elements (Continued)

Profile Classes & Associations Notes

Creation/Deletion of an FCPort SELECT * FROM CIM_InstCreation
WHERE Sourcelnstance ISA CIM_FCPort
SELECT * FROM CIM_InstDeletion
WHERE Sourcelnstance ISA CIM_FCPort

Creation/Deletion of a Virtualizer SELECT * FROM CIM_InstCreation
WHERE Sourcelnstance ISA
CIM_ComputerSystem

SELECT * FROM CIM_InstDeletion
WHERE Sourcelnstance ISA
CIM_ComputerSystem

Change in the status of a Storage Volume SELECT * FROM CIM_InstModification
WHERE Sourcelnstance ISA
CIM_StorageVolume AND
Sourcelnstance.Operationalstatus <>
Previouslnstance.Operationalstatus

Change in the status of an FC Port SELECT * FROM CIM_InstModification
WHERE Sourcelnstance ISA CIM_FCPort
AND Sourcelnstance.Operationalstatus
<> PreviouslInstance.Operationalstatus

406 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.2.12 Required Properties for CIM Elements
7.3.6.2.12.1 AllocatedFromStoragePool

Table 279: Required Properties for AllocatedFromStoragePool

Property/ Type Qualifier/ Description/Notes
Method Parameter

Antecedent ref override The reference to The
StoragePool.

Dependent ref override The reference to the logical
element that is the subsidiary
element.

SpaceConsumed uint64 Space Consumed from this Pool
(in megabytes

7.3.6.2.12.2 ComputerSystem

Table 280: Required Properties for ComputerSystem

Property/ Type Qualifier/ Description/Notes
Method Parameter

CreationClassName string key

ElementName string User Friendly name

OperationalStatus uint16 Status of array

Name string key The identifier for the Array (e.g. IP
address or FC world wide name).

NameFormat string The format of the Name property.

Dedicated][] int16 “blockserver”, The use of this ComputerSystem

“metadatacontroller”

PrimaryOwnerContact string Optional

PrimaryOwnerName string Optional

7.3.6.2.12.3 ConcreteComponent

Table 281: Required Properties for ConcreteComponent

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref key, override
PartComponent ref key, override

Version 1.0.1

407

SNIA Storage Management Initiative Specification

7.3.6.2.12.4 ElementCapabilities

Table 282: Required Properties for ElementCapabilities

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement ref key, override
Capabilities ref key, override

7.3.6.2.12.5 ElementSettingData

Table 283: Required Properties for ElementSettingData

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement ref key The ManagedElement.
SettingData ref key The Setting Data object associated with

the ManagedElement.

IsDefault uint16 An enumerated integer indicating that
the referenced setting is a default setting
for the element, or that this information is
unknown."),||ValueMap {"0", "1", "2"},
||Values {"Unknown", "Is Default", "Is Not
Default"}

IsCurrent uint16 An enumerated integer indicating that
the referenced setting is currently being
used in the operation of the element, or
that this information is
unknown."),||ValueMap {"0", "1", "2"},
[[Values {"Unknown", "Is Current", "Is
Not Current"}

7.3.6.2.12.6 FCPort

Table 284: Required Properties for FCPort

Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemCreationClassName | string key
SystemName string key
CreationClassName string key
ElementName string User friendly name/caption for port.
OperationalStatus|[] uint16 Status of device
DevicelD string key Opaque

408 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 284: Required Properties for FCPort (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
PortType uint16 Used to indicate the type of the port
(e.g. N-port/NL-port).
This property is OPTIONAL.
PermanentAddress string The WWN of the port.
NetworkAddresses]] string The Fibre Channel address of the
port.
This property is OPTIONAL.
Speed uint64 Speed of zero represents a link not

established.

1Gb is 1062500000 bps

2Gb is 2125000000 bps

4Gb is 4250000000 bps)

10Gb single channel variants are
10518750000 bps

10Gb four channel variants are
12750000000 bps

This is the raw bit rate.

This property is OPTIONAL.

Version 1.0.1

409

SNIA Storage Management Initiative Specification

7.3.6.2.12.7 HostedStoragePool

Table 285: Required Properties from HostedStoragePool

Property/ Type Qualifier/ Description/Notes
Method Parameter
PartComponent ref The storage pool
GroupComponent ref The scoping system

7.3.6.2.12.8 ProtocolControllerAccessesUnit

Table 286: Required Properties for ProtocolControllerAccessesUnit

Property/ Type Qualifier/ Description/Notes
Method Parameter
NegotiatedSpeed unit64
NegotiatedDataWidth unit32
Dependent ref override LogicalDevice Reference
AccessState unit16
TimeOfDeviceReset datetime
NumberOfHardResets unit32
NumberOfSoftResets unit32
Antecedent ref override SCSIProtocolController Reference
SCSITimeouts unit32
SCSIRetries unit32
Initiatorld unit32
Targetld uint32
TargetLUN unit64
SCSIReservation unit16
SCSISignal unit16
MaxQueueDepth unit32
QueueDepthLimit unit32

7.3.6.2.12.9 ProtocolControllerForPort

Table 287: Required Properties from ProtocolControllerForPort

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent REF The SCSIProtocolController for this
port

410 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 287: Required Properties from ProtocolControllerForPort (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependent ref The port.
AccessPriority unit16 The priority of access through this
port for this ProtocolController
This property is OPTIONAL.

Version 1.0.1

411

SNIA Storage Management Initiative Specification

7.3.6.2.12.10 ProtocolControllerForUnit

Table 288: Required Properties from ProtocolControllerForUnit

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref The protocol controller
Dependent ref The exposed logical unit.
DeviceNumber unit16 The Logical Unit number for this
Volume through this controller.

7.3.6.2.12.11 SCSIProtocolController

Table 289: Required Properties for SCSIProtocolController

Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementName string User friendly name/caption for
port.
This property is OPTIONAL.
OperationalStatus|[] uint16 Status of device.
This property is OPTIONAL.
DevicelD string key Opaque
MaxUnitsControlled uint32 Maximum number of units

controlled by this controller
This property is OPTIONAL.

7.3.6.2.12.12 StorageCapabilities

Table 290: Required Properties from StorageCapabilities

Property/ Type Qualifier/ Description/Notes
Method Parameter
InstancelD unit16 key
ElementName string User friendly name/caption
ElementType uint16 Type of element this capability
applies to
NoSinglePointOfFailure boolean

NoSinglePointOfFailureDefault boolean

DataRedundancyMin uint16
DataRedundancyMax uint16
DataRedundancyDefault uint16
DeltaReservationMin uint16

412 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 290: Required Properties from StorageCapabilities (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
DeltaReservationMax uint16
DeltaReservationDefault uint16
PackageRedundancyMin uint16
PackageRedundancyMax uint16
PackageRedundancyDefault unit16

Version 1.0.1

413

SNIA Storage Management Initiative Specification

7.3.6.2.12.13 StorageExtent
Table 291: Required Properties for StorageExtent
Property/ Type Qualifier/ Description/Notes
Method Parameter
Name string required
SystemCreationClassName string maxlen(256), key The scoping System's
CreationClassName.
SystemName string maxlen(256), key The scoping System's Name.
CreationClassName string maxlen(256), key The name of the concrete
subclass

DevicelD string maxlen(64), key unique identifying information

BlockSize uint64

NumberOfBlocks uint64

ConsumableBlocks uint64

OperationalStatus unit16[]

ExtentStatus uint16[]
7.3.6.2.12.14 StoragePool

Table 292: Required Properties for StoragePool
Property/ Type Qualifier/ Description/Notes
Method Parameter

ElementName string User Friendly name

InstancelD string key Opaque identifier

PoollD string required, A unique name in the context of

maxlen(256) the System that identifies this
pool.

TotalManagedSpace uint64

RemianingManagedSpace unit64

Primordial boolean defaults to false, true for the

primordial pools.
7.3.6.2.12.15 StorageSetting
Table 293: Required Properties from StorageSetting
Property/ Type Qualifier/ Description/Notes
Method Parameter
Instanceld uint16 key
ElementName string required User friendly name/caption

414 Version 1.0.1

SNIA Storage Management Initiative Specification

Table 293: Required Properties from StorageSetting (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter
DataRedundancyMin uint16
DataRedundancyMax uint16
DataRedundancyGoal uint16
DeltaReservationMin uint16
DeltaReservationMax uint16
DeltaReservationGoal uint16
PackageRedundancyMin uint16
PackageRedundancyMax uint16
PackageRedundancyGoal unit16

Version 1.0.1

415

SNIA Storage Management Initiative Specification

7.3.6.2.12.16 StorageVolume

Table 294: Required Properties for StorageVolume

Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemCreationClassName string key

SystemName string key

CreationClassName string key

InstancelD uint16 key

ElementName string required User Friendly name

Name string VPD Page 83 ID

NameFormat uint16 Format of Name property

ExtentStatus uint16[] Status of volume (Rebuild,spare
in use etc.)

OperationalStatus unit] Current general status of volume

DevicelD string Opaque ID

BlockSize uint64 Block size of Volume

NumberOfBlocks uint64 NUmber of Blocks (not size of
volume is BlockSize*
NumberOFBlocks)

IsBasedOnUnderlyingRedundancy | boolean

NoSinglePointOfFailure boolean Current value of StorageSetting

DataRedundancy uint16 Current value of StorageSetting

PackageRedundancy uint16 Current value of StorageSetting

DeltaReservation uint16 Current value of StorageSetting

7.3.6.2.12.17 SystemDevice

Table 295: Required Properties for SystemDevice

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref override System Reference
PartComponent ref override LogicalDevice Reference

416 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.2.13 Optional Subprofiles

Table 296: Optional Profiles or Subprofiles

Name Notes

Cluster Subprofile (p. 116)

Extra Capacity Set Subprofile (p. 121)

Access Points Subprofile (p. 113)

Software Subprofile (p. 145)

Location Subprofile (p. 142)

Pool Manipulation, Capabilities, and Settings
Subprofile (p. 178)

Job Control Subprofile (p. 172)

Copy Services Subprofile (p. 146)

LUN Masking and Mapping (p. 192)

LUN Creation Subprofile (p. 201)

Device Credentials Subprofile (p. 220)

Extent Mapping Subprofile (p. 138)

Version 1.0.1 417

SNIA Storage Management Initiative Specification

7.3.6.3 Storage Library Profile
7.3.6.3.1 Description
The schema for a Storagelibrary provides the classes and associations necessary to represent
various forms of removable media libraries. This profile is based upon the CIM 2.7 model and
defines the subset of classes that supply the necessary information for robotic storage libraries.
This profile further describes how the classes are to be used to satisfy various use cases and offers
suggestions to agent implementors and client application developers. Detailed descriptions of
classes are from the CIM 2.8 preliminary schema. Only the classes unique to storage libraries
are described by this Profile. Other classes that are common to multiple Profiles may be found
elsewhere in this specification.
The relevant objects for a storage library should be instantiated in the name space of the provider
(or agent) for a storage library resource. Whenever an instance of a class for a resource may exist
in multiple name spaces a Durable Name is defined to aid clients in correlating the objects across
name spaces. For storage libraries, durable names are defined for the following resources:
- FCPort
« ChangerDevice
« TapeDrive
e StoragelLibrary
+ MediaAccessDevice
The durable names are defined in a following subsection of this profile. All other objects do not
require durable names and have instances within a single name space.
7.3.6.3.2 Standard Dependencies
The storage library profile is based on the following standards:
Table 297: Storage Library Standard Dependencies
Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.8 Preliminary DMTF
7.3.6.3.3 Profile Dependencies

418

The storage library profile requires the Server Profile (p. 441).

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.3.4

7.3.6.3.4.1

7.3.6.3.4.2

CIM Server Requirements

Functional Profiles

Table 298: Required Functional Profiles

Profile Required Functional Group Dependency

YES Basic Read None

NO Basic Write Basic Read

NO Instance Manipulation Basic Write

NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read

NO Query Execution Basic Read

NO Qualifier Declaration Schema Manipulation
YES Indication None

Extrinsic Methods

The CIM Server MUST support extrinsic methods for the Server profile.

The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP

The following instance diagrams represent five related views of the top-level storage library

7.3.6.3.4.3 Discovery
specification.
7.3.6.3.5 Instance Diagrams
None.
7.3.6.3.6 Instance Diagrams
7.3.6.3.6.1 Overview
profile:
a. System Level
b)
¢)
StorageMedial.ocation
d)
e)

Version 1.0.1

MediaAccessDevice and its physical and logical relationships

ChangerDevice and its connections to Softwareldentity, ProtocolController, and

StorageMedialLocation and its relationship to PhysicalMedia and other physical classes

StorageMedialocation and its required Realizes relationships.

419

7.3.6.3.6.2

SNIA Storage Management Initiative Specification

System Level View

This figure shows the required top-level components for a StorageLibrary system. Note that all
LogicalDevice subclasses MUST be associated with StorageLibrary via System Device.

Figure 70: StorageLibrary-centric Instance Diagram

Product

ProductPhysical Elements

— Chassis
LibraryPackage
StorageLibrary |——!
SystemDevice
SystemDevice
ProtocolController

MediaAccessDevice SystemDevice

ProtocolControllerForUni

ChangerDevice

SCSIProtocolController

TapeDrive

7.3.6.3.6.3

420

MediaAccessDevice-centric View

This figure shows the required classes related to MediaAccessDevice. Though not shown in this
figure, recall that both MediaAccessDevice and ProtocolController are connected to a StorageLibrary
instance through the SystemDevice association. Note that in some libraries, notably small
autoloaders, external hosts access a library’s ChangerDevice through the ProtocolController of a
MediaAccessDevice. For such libraries, an additional ProtocolControllerForUnit association should
be instantiated between the MediaAccessDevice’'s ProtocolController and the affected
ChangerDevice. ProtocolControllerForUnit is a many-to-many association, so a single

Version 1.0.1

SNIA Storage Management Initiative Specification

ProtocolController can be connected to multiple LogicalDevices if this accurately represents a
library’s configuration.

Figure 71: MediaAccessDevice-centric Instance Diagram

Softwareldentity

DeviceSoftware

PhysicalPackage

) MediaAccessDevice
Realizes

——Realizes —|

| StorageMedialLocation

ProtocolControllerForUnit

ProtocolController TapeDrive

SCSIProtocolController

Version 1.0.1 421

SNIA Storage Management Initiative Specification

7.3.6.3.6.4 ChangerDevice-centric View

This figure shows the required classes related to ChangerDevice.

Figure 72: ChangerDevice-centric Instance Diagram

StoragelLibrary

SystemDevice

SystemDevice

ChangerDevice

—

DeviceSoftware |

ProtocolControllerForUnit
Realizes

Softwareldentity StorageMedialocation ProtocolController

]

SCSIProtocolController

7.3.6.3.6.5 Physical View

This figure shows important physical components of a storage library and how they relate. With
regard to StorageMediaLocation and Magazine, one of two implementation alternatives MUST be
selected:

a. Instantiate multiple Magazines associated to Chassis via Container, then instantiate Stor-
ageMedial.ocations that are contained (again via Container) within each Magazine

422 Version 1.0.1

SNIA Storage Management Initiative Specification

b) Instantiate multiple StorageMedial.ocations directly associated to Chassis via Container,
without the use of Magazines. Other optional classes, such as Panel, can also be used to group
StorageMediaLocations, but this is not required.

Figure 73: Physical View Instance Diagram

Chassis

PackagedComponen
t

PhysicalMedia

Containe
r

‘hysicalMedialnLocatio PhysicalTape
n

StorageMedialLocation

Containt
r

Magazine

7.3.6.3.6.6 StorageMediaLocation Instance Diagram

This figure shows relationships between various LogicalDevices (i.e., MediaAccessDevices,
LimitedAccessPort, and ChangerDevice) and StorageMediaLocation. For each LogicalDevice that
can hold media, at least one StorageMediaLocation MUST be associated via Realizes. The figure

Version 1.0.1 423

SNIA Storage Management Initiative Specification

also shows how PhysicalMedia is conceptually placed “inside” a LogicalDevice by associating
PhysicalMedia with a StorageMediaLocation that Realizes a LogicalDevice.

Figure 74: StorageMediaLocation Instance Diagram
rPhysica/MedialnLocat%e&
MediaAccessDevice SoragelVedial ocation PysicalVeda
—— Redlizes
rPhysica/MedialnLocat%e&
ChangerDevice SoragelVedial ocation PhysicaMeda
—— Redlizes

7.3.6.3.7

7.3.6.3.7.1

7.3.6.3.7.2

7.3.6.3.8

424

Durable Names and Correlatable IDs of the Profile

Durable Names Exported

No Durable Names are exported by this profile.

Correlatable IDs Used

Different implementations use different approaches to uniquely identify the SCSI units pertinent
to Storage Media Libraries (i.e. Changer Devices and Media Access Devices). The agent should
utilize the same Durable Name techniques described for volumes in the Disk Array section. The
chosen name is stored in the Name attribute of the logical device with the corresponding setting
for the NameFormat attribute. Allowable name formats and device pairings for the storage library
profile are:

FCPort: FCPort.PermanentAddress = Fibre Channel Port World Wide Name. NameFormat
should be set to “WWN”

ChangerDevice.DeviceID = Vendor+Product+Serial Number+(optional instance number).
Vendor, Model and Serial number should be taken from the ChangerDevice’s associated
StorageLibrary, Product, and/or Chassis. An option instance number may be added to
uniquely denote more than one ChangerDevice “inside” a StorageLibrary

MediaAccessDevice (or TapeDrive).DevicelD = Vendor+Product+Serial number for the
MediaAccessDevice

StorageLibrary.Name = Vendor+Product+Serial number for the StorageLibrary and/or its
associated Product and Chassis. NameFormat should be set to “Vendor+Product+Serial”

Please refer to Table 3, “Standardized Name Formats,” on page 82 for additional information.

Methods

No methods have been defined for this profile.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.3.9 Client Considerations
See “Recipes” on page 425.

7.3.6.3.10 Recipes

7.3.6.3.10.1 Overview

While no pseudo-code-based recipes have been written for this profile, this section provides some
helpful information for writing management applications and suggests techniques for addressing
common use cases.

7.3.6.3.10.2 Discover a Storage Media Library

Discovery of Storage Media Libraries is achieved by looking up instances of StorageLibrary.
StoragelLibrary is subclassed from System and has a corresponding Name and NameFormat
property as described above under “Durable Names and Correlatable IDs of the Profile” on
page 424. Specifically, NameFormat SHALL be set to “VendorModelSerial” and the Name SHALL
be of the form Vendor+Product+Serial

7.3.6.3.10.3 Determine Library Physical Media Capacity

The physical media capacity of a library is the number of physical media objects that may be
stored in the currently installed configuration of a Storage Media Library. This capacity may be
determined by enumerating the StorageMedialocation instances that are associated with each of
the library’s Chassis objects.

In implementations that choose to include the Capacity subprofile, minimum and maximum slot
capacities for a Storage Library are modeled in the ConfigurationCapacity described earlier in the
section on Capacity Constraints. Since this use case relies on an optional part of the profile , it may
not be supported by each agent implementation.

7.3.6.3.10.4 Determine Physical Media Inventory

To determine the physical media inventory of a StorageLibrary, clients should discover the
Chassis instance associated with a particular StorageLibrary (via the LibraryPackage
association), and enumerate the PhyscialMedia instances associated with the Chassis through the
PackagedComponent association.

7.3.6.3.10.5 Discover Tape Library Control Type
The control mechanism to a library is either:

» SCSI Media Changer Commands directed to the library’s changer device
« Library control commands directed to a Library Control service.

If a library does not have a ProtocolController instance associated via ProtocolControllerForUnit to
the ChangerDevice then the client should conclude that an alternate mechanism for controlling the
library is required. This mechanism MAY vary but SHOULD be represented by an instance of
Service as described in the section on Software/Service View for a library’s hosted services

7.3.6.3.10.6 Determine Library Drive Capacity

The current drive capacity of a library may be determined by enumerating the MediaAccessDevice
instances through the SystemDevice association of the library.

When the optional Capacity subprofile is implemented, the number of drives discovered should be
within the range indicated by the minimum and maximum capacity attribute found on the library
Chassis’ ElementCapacity association with ConfigurationCapacity for tape drives. This bounds
check is not available if the Capacity subprofile is not implemented.

Version 1.0.1 425

SNIA Storage Management Initiative Specification

7.3.6.3.10.7 Determine Drive Data Path Technology

Clients can discover the data path protocol of each drive within a storage library by enumerating
MediaAccessDevice instances, then following the ProtocolControllerForUnit association linking a
MediaAccessDevivce with a ProtocolController. Properties within Contoller can then be queried for
more information. If the MediaAccessDevice has a fibre channel interface, an FCPort instance is
linked to its ProtocolController by a ProtocolControllerForPort association. See the “Fibre Channel
Connection Subprofile” on page 525 for more information on fibre channel connectivity.

7.3.6.3.10.8 Find asset Information

Information about the entire storage library is modeled in the Chassis instances associated with
the StoragelLibrary. Chassis properties include Manufacturer, Model, Version, and Tag. Tag is an
arbitrary identifying string.

To identify asset information for the logical devices, a client should access the corresponding
logical device through the StoragelLibrary object’s SystemDevice association. For each logical device
instance the client may then check for asset information from the PhysicalElement associated
through a Realizes association. Product information may also be available through the
corresponding ProductPhysicalElement/ProductPhysicalComponent aggregation.

7.3.6.3.10.9 Discovery of Mailslots, Import/Export Elements or LimitedAccessPorts in a Storage Library

7.3.6.3.11

Clients may determine the number of LimitedAccessPorts in a library by enumerating the
LimitedAccessPorts connected to a StorageLibrary instance via the SystemDevice association.

Note that some smaller libraries do not have the type of import/export element modelled by
LimitedAccessPort. As a result, LimitedAccessPort elements are included in an (optional) subprofile.
See “Limited Access Port Elements Subprofile” on page 437..

Instrumentation Requirements

7.3.6.3.11.1 Indications

Agents SHOULD be designed to support CIM indications.

7.3.6.3.11.2 Storage Inventory

To be useful to client management applications, the agent for a Storage Library resource needs to
accurately represent the required elements of a Storage Media Library and their proper state. In
order to provide consistent Storage Inventory it is important that PackagedComponent association
instances between a Storage Media Library’s Chassis and PhysicalMedia instances be maintained.

Entry and exit of PhysicalTape instances from the Storage Media Library REQUIRES updating
this set of associations. Details on this procedure vary from library to library, but, at a minimum,
require an update each time a library is powered up. Other considerations involve updates
whenever a LimitedAccessPort or InterLibraryPort changes state.

7.3.6.3.11.3 Hosted Services

426

It is not uncommon for libraries to include the following services:
* Web Server — typically supports administration and configuration of the library.

« SNMP Agent — for resource monitoring and management within legacy System Management
Frameworks, or even to support the SMI-S proxy agent.

« NDMP Services — NDMP may be present within the library to support the NDMP Backup
Process

Version 1.0.1

SNIA Storage Management Initiative Specification

As an additional out-of-band management service, client management applications would be well
served if they can locate these services via the agent’s implementation of a corresponding instance
of Service.

7.3.6.3.11.4 Media Changer Control Software

There are a variety of protocols for controlling storage libraries, the most predominant method
being the SCSI Media Changer Commands defined by the NCITS’ T10 Technical Committee. The
ability to determine the type of control software required by a library is an important use case for
clients. For this reason, it is imperative that the agent for a library resource instantiate the
appropriate subclass of ProtocolController for the ChangerDevice instances. Library vendors may
subclass ProtocolController for specifying proprietary library controllers for media changer devices.

7.3.6.3.11.5 Mixed Media Libraries

This profile fully supports mixed media style libraries. A mixed media library is a library that
supports PhysicalMedia with varying properties (e.g., DLT or LTO tapes, as well as optical media).
The StorageMedialLocation class’ MediaTypesSupported property specifies the type of media
accepted. Agent developers should implement the Container association from a MediaAccessDevice
to a StorageMedialLocation so that there is a mechanism in place for determining media and drive
compatibility.

Version 1.0.1 427

7.3.6.3.12

Required CIM Elements

Table 299:

SNIA Storage Management Initiative Specification

Required CIM Elements

Profile Classes & Associations

Notes

ChangerDevice (p. 430)

representing the robotic arm or picker

Chassis (p- 430)

representing the physical library frame

Container (p. 432)

links Chassis and StorageMedialLocation

ProtocolControllerForUnit (p. 432)

links ChangerDevice and ProtocolController

ProtocolControllerForUnit (p. 432)

links MediaAccessDevice and ProtocolController

SCSIProtocolController (p. 432)

representing a SCSI ProtocolController for
MediaAccessDevices and ChangerDevices

DeviceSoftware (p. 433)

links ChangerDevice and Softwareldentity

DeviceSoftware (p. 433)

links MediaAccessDevice and Softwareldentity

LibraryPackage (p. 433)

links Chassis and StorageL.ibrary

MediaAccessDevice (p. 433)

representing a tape, optical, or other drive

PackagedComponent (p. 434)

links Chassis and PhysicalMedia (or PhysicalTape)

PhysicalMedia. (p. 434)

representing a tape cartridge, optical platter, or other

PhysicalMedialnLocation (p. 434)

links PhysicalMedia and StorageMediaLocation

ProductPhysicalComponent (p. 435)

links Product and Chassis

Realizes (p. 435)

links MediaAccessDevice and PhysicalPackage

Realizes (p. 435)

links MediaAccessDevice and StorageMedial ocation

Realizes (p. 435)

StorageMedialocation and ChangerDevice

Realizes (p. 435)

StorageMedial.ocation and LimitedAccessPort

Softwareldentity (p. 435)

Representing the Changer

Softwareldentity (p. 435)

Representing the TapeDrive or MeidaAccessDevice

StoragelLibrary (p. 436)

representing the logical library itself

StorageMedialLocation (p. 436)

representing a physical location that holds media, such
as a simple slot or Magazine, or a location within a
ChangerDevice,

SystemDevice (p. 437)

links ChangerDevice and StorageLibrary

SystemDevice (p. 437)

links LimitedAccessPort and StorageLibrary

links StorageLibrary and ProtocolController

(

(
SystemDevice (p. 437)
SystemDevice (p. 437)

links StorageLibrary and MediaAccessDevice

Packages

428

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 299: Required CIM Elements (Continued)

Profile Classes & Associations Notes

Physical Package Package (p. 103) For system, changer, tape drive and other media
access devices

Associated Indications

Creation/Deletion of a StorageLibrary SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA CIM_StorageLibrary
SELECT * FROM CIM_lInstDeletion WHERE
Sourcelnstance ISA CIM_StorageLibrary

Creation/Deletion of a PhysicalMedia SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA PhysicalMedia

SELECT * FROM CIM_lInstDeletion WHERE
Sourcelnstance ISA CIM_PhysicalMedia

Creation/Deletion of a TapeDrive SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA CIM_TapeDrive
SELECT * FROM CIM_InstDeletion WHERE
Sourcelnstance ISA CIM_TapeDrive

Creation/Deletion of a ChangerDevice SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA CIM_ChangerDevice
CIM_SELECT * FROM CIM_lInstDeletion WHERE
Sourcelnstance ISA CIM_ChangerDevice

Creation/Deletion of an FCPort SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA CIM_FCPort
SELECT * FROM CIM_InstDeletion WHERE
Sourcelnstance ISA CIM_FCPort

Change in operational status of a SELECT * FROM CIM_InstModification WHERE
StoragelL.ibrary Sourcelnstance ISA CIM_StorageLibrary AND
Previouslnstance.OperationalStatus <>
Sourcelnstance.OperationalStatus

Change in operational status of a SELECT * FROM CIM InstModification WHERE
PhysicalMedia SourceInstance ISA CIM PhysicalMedia anDp
PreviousInstance.OperationalStatus <>
Sourcelnstance.OperationalStatus

Change in operational status of a TapeDrive SELECT * FROM CIM InstModification WHERE
SourceInstance ISA cIM TapeDrive aND
PreviousInstance.OperationalStatus <>
Sourcelnstance.OperationalStatus

Change in operational status of a SELECT * FROM CIM InstModification WHERE
ChangerDevice SourceInstance ISA CIM ChangerDevice AND
PreviousInstance.OperationalStatus <>
SourcelInstance.OperationalStatus

Change in operational status of an FCPort SELECT * FROM CIM InstModification WHERE
SourcelInstance ISA ¢IM FCPort AND
PreviousInstance.OperationalStatus <>
SourcelInstance.OperationalStatus

Version 1.0.1 429

7.3.6.3.13 Required Properties for CIM Elements

7.3.6.3.13.1 ChangerDevice

SNIA Storage Management Initiative Specification

Table 300: Required Properties for ChangerDevice

Property/Method Type Qualifier/ Description/Notes
Parameter

SystemCreationClassName string key The scoping System's
CreationClassName.

SystemName string key The scoping System's Name.

CreationClassName string key Indicates the name of the class
or subclass used in the creation
of an instance.

DevicelD string key

MediaFlipSupported boolean

ElementName string User friendly name

OperationalStatus uint16][] valuemap "Unknown", "Other", "OK",
"Degraded", "Stressed",
"Predictive Failure", "Error",
"Non-Recoverable Error",
"Starting", "Stopping",
"Stopped”, "In Service", "No
Contact", "Lost
Communication", "Aborted",
"Dormant”, "Supporting Entity in
Error", "Completed"

Caption string

Description string

Availability uint16 valuemap Values include: Other,
Unknown, Running/Full Power,
Warning, In Test, Power Off,
and Offline. See MOF for
values

7.3.6.3.13.2 Chassis

Table 301: Required Properties for Chassis

Property/ Type Qualifier/ Description/Notes
Method Parameter
Tag string key, An arbitrary string that uniquely identifies the
maxlen(256) PhysicalElement. See PhysicalElement
MOF.
CreationClassName string key, Indicates the name of the class or subclass
maxlen(256) used in the creation of an instance

430

Version 1.0.1

SNIA Storage Management Initiative Specification

Table 301: Required Properties for Chassis (Continued)

Property/ Type Qualifier/ Description/Notes
Method Parameter

LockPresent boolean Boolean indicating whether the Frame is
protected with a lock.

SecurityBreach uint16 valuemap “Other”, “Unknown”, “No Breach”, “Breach
Attempted”, “Breach Successful”

IsLocked boolean Boolean indicating that the Frame is
currently locked

ElementName string

Manufacturer string maxlen(256) The name of the organization responsible
for producing the PhysicalElement

Model string maxlen(256) The name by which the PhysicalElement is
generally known

SerialNumber string A manufacturer-allocated number used to
identify the PhysicalElement

Version 1.0.1

431

SNIA Storage Management Initiative Specification

7.3.6.3.13.3 Container

Table 302: Required Properties for Container

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref override PhysicalPackage Reference
PartComponent ref override PhysicalElement Reference

7.3.6.3.13.4 ProtocolControllerForUnit

Table 303: Required Properties for ProtocolControllerForUnit

Property/ Type Qualifier/ Description/Notes
Method Parameter

Antecedent ref key, override The ProtocolController.

Dependent ref key, override The controlled Device.

DeviceNumber string Address of associated Device in context
of the antecedent ProtocolController.
Formatted as uppercase hexadecimal
digits, with a prefix of “0x”.

7.3.6.3.13.5 SCSIProtocolController

Table 304: Required Properties for SCSIProtocolController

Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemCreationClassName | string key

SystemName string key

CreationClass string key

ElementName string User friendly name/caption for port.
This property is OPTIONAL.

OperationalStatus|[] uint16 Status of device.
This property is OPTIONAL.

DevicelD string key Opaque

MaxUnitsControlled uint32 Maximum number of units controlled by

this ProtocolController.
This property is OPTIONAL.

432 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.3.13.6 DeviceSoftware

Table 305: Required Properties for DeviceSoftware

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref key, override The Softwareldentity.
Dependent ref key, override The LogicalDevice that requires or uses
the software.

7.3.6.3.13.7 LibraryPackage

Table 306: Required Properties for LibraryPackage

Property/ Type Qualifier or Notes
Method Parameter
Antecedent ref override PhysicalPackage Reference
Dependent ref override StorageLibrary Reference

7.3.6.3.13.8 MediaAccessDevice

Table 307: Required Properties for MediaAccessDevice

Property/ Type Qualifier or Notes
Method Parameter
NeedsCleaning boolean
MountCount uint64
SystemCreationClassName string key, maxlen(256)
SystemName string key, maxlen(256)
CreationClassName string key, maxlen(256)
DevicelD uint64 key
Availability uint16 valuemap Values include: Other,

Unknown, Running/Full
Power, Warning, In Test,
Power Off, and Offline. See
MOF for values

PowerOnHours uint64 counter,
units(“hours”)

TotalPowerOnHours uint64 counter,
units(“hours”)

Version 1.0.1 433

SNIA Storage Management Initiative Specification

7.3.6.3.13.9 PackagedComponent

Table 308: Required Properties for PackagedComponent

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref override PhysicalPackage Reference
PartComponent ref override PhysicalComponent Reference

7.3.6.3.13.10 PhysicalMedia.

Table 309: Required Properties for PhysicalMedia

Property/ Type Qualifier/ Description/Notes
Method Parameter

Tag string maxlen(256), key An arbitrary string that uniquely
identifies the Physical Element

CreationClassName string key The name of the concrete subclass

Capacity uint64 units ("bytes")

MediaType uint16 valuemap See MOF file for values

MediaDescription string Additional detail related to the
MediaType enumeration.

CleanerMedia boolean

DualSided boolean

PhysicalLabels string[] One or more strings on 'labels' on the
PhysicalMedia.

Removable boolean

Replaceable boolean

HotSwappable Boolean

7.3.6.3.13.11 PhysicalMedialnLocation

Table 310: Required Properties for PhysicalMedialnLocation

Property/ Type Qualifier or Notes
Method Parameter
Antecedent ref override StorageMedialLocation Reference
Dependent ref override PhysicalMedia Reference

434 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.3.13.12 ProductPhysicalComponent
Table 311: Required Properties for ProductPhysicalComponent
Property/ Type Qualifier/ Description/Notes
Method Parameter
Product ref The Product
Component ref The PhysicalElement that is part of this
product
7.3.6.3.13.13 Realizes
Table 312: Required Properties for Realizes
Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent ref override PhysicalElement reference
Dependent ref override LogicalDevice reference
7.3.6.3.13.14 Softwareldentity

The Softwareldentity is used to model either software or firmware.

Softwareldentity is subclassed from LogicalElement.

Table 313: Required Properties for Softwareldentity

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

InstancelD

string

key

The name used to identify this
Softwareldentity.

VersionString

string

Software Version should be in the form
<Major>.<Minor>.<Revision> or
<Major>.<Minor><letter><revision>.

Manufacturer

string

Manufacturer of this software.

BuildNumber

uint16

OPTIONAL. The internal identifier for this
compilation of software, if available.

RevisionNumber

uint16

OPTIONAL. This is the numeric
representation of the revision number in the
VersionString

MajorVersion

uint16

OPTIONAL. This is the numeric
representation of the Major number in the
VersionString

MinorVersion

uint16

OPTIONAL. This is the numeric
representation of the Minor number in the
VersionString

Version 1.0.1

435

SNIA Storage Management Initiative Specification

7.3.6.3.13.15 StorageLibrary

Table 314: Required Properties for StorageLibrary

Property/ Type Qualifier/ Description/Notes
Method Parameter
OperationalStatus valuemap
CreationClassName string maxlen(256), key Name of Class
Name string maxlen(256), key
Automated boolean
PrimaryOwnerName string
PrimaryOwnerContact string
Caption string
Description string
ElementName string

7.3.6.3.13.16 StorageMediaLocation

Table 315: Required Properties for StorageMediaLl.ocation

Property/ Type Qualifier/ Description/Notes
Method Parameter
Tag string key, maxlen(256) | An arbitrary string that

uniquely identifies the
PhysicalElement. See
PhysicalElement MOF.

CreationClassName string key, maxlen(256) | Indicated the name of the
class or subclass.

LocationType uint16 valuemap Values include "Unknown",
"Other", "Slot", "Magazine",
"MediaAccessDevice",
"InterLibrary Port", "Limited
Access Port", "Door", "Shelf",
"Vault"

LocationCoordinates string General location information
about the physical location of
the StorageMedialocation

MediaTypesSupported uint16[] valuemap Complete list of accepted
media types. See MOF for list
of values

MediaCapacity uint32 The maximum number of

PhysicalMedia that this
StorageMediaLocation can
hold

436 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.3.13.17 SystemDevice

Table 316: Required Properties for SystemDevice

Property/ Type Qualifier/ Description/Notes
Method Parameter
GroupComponent ref override System Reference
PartComponent ref override LogicalDevice Reference

7.3.6.3.13.18 TapeDrive
This object inherits all of its properties for its superclass MediaAccessDevice (p. 433).

7.3.6.3.14 Optional Subprofiles

Table 317: Optional Profiles or Subprofiles

Name Notes

Physical Package Package (p. 103)

Access Points Subprofile (p. 113)

Location Subprofile (p. 142)

Software Subprofile (p. 145)

Limited Access Port Elements Subprofile (p. 437) Representing an import/export element or "mail
slot"

7.3.6.3.15 Limited Access Port Elements Subprofile

7.3.6.3.15.1 Description

Most libraries contain Limited Access Ports elements (a.k.a., mailslots, cartridge access ports, or
import/export elements). This subprofile defines the required classes necessary to publish
information about these common components.

7.3.6.3.15.2 Standards Dependencies
See parent sections.

7.3.6.3.15.3 Profile Dependencies

See parent sections.

7.3.6.3.15.4 CIM Server Requirements
See parent sections.

Version 1.0.1 437

SNIA Storage Management Initiative Specification

7.3.6.3.15.5 Instance Diagrams
This figure shows the relationship between LimitedAccessPorts and other portions of the Storage

Library profile.
Figure 75: LimitedAccessPort Linkages
Storagelibrary
SystemDevice
LimitedAccessPort Magazine
——Realizes—

Container

PhysicalMedia =

—— PhysicalMedialnLoc atien— .

StorageMedialocatiq.

7.3.6.3.15.6 Durable Names and Correlatable IDs
See parent sections.

7.3.6.3.15.7 Methods
None.

7.3.6.3.15.8 Client Considerations
See parent sections.

7.3.6.3.15.9 Instrumentation Requirements

See parent sections.

438 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.6.3.15.10 Required CIM Elements

Table 318: Required CIM Elements

Profile Classes & Associations

Notes

LimiteAccessPort (p. 439)

Realizes (p. 435)

Connects LimitedAccessPort to
StorageMedialocations (or
Magazines)

SystemDevice (p. 437)

Connects LimitedAccessPort to
StorageL.ibrary

Packages

None.

Associated Indications

Creation/Deletion of a LimitedAccessPort

SELECT * FROM
CIM_InstCreation WHERE
Sourcelnstance ISA
CIM_LimitedAccessPort
SELECT * FROM
CIM_InstDeletion WHERE
Sourcelnstance ISA
CIM_LimitedAccessPort

Change in operational status of a LimitedAccessPort

SELECT * FROM

CIM InstModification WHERE
SourcelInstance ISA

crM LimitedAccessPort AND
PreviousInstance.Operational
Status <>
SourcelInstance.OperationalSt
atus

7.3.6.3.15.11 Required Properties for CIM Elements

7.3.6.3.15.11.1 LimiteAccessPort

Table 319: Required Properties for LimitedAccessPort

Property/Method Type Qualifier/ Description/Notes
Parameter

SystemCreationClassName string key

SystemName string key

CreationClassName string key

DevicelD string key

Extended boolean When a Port is 'Extended' its
StorageMediaLocations are
accessible to a human
operator.

Version 1.0.1

439

SNIA Storage Management Initiative Specification

Table 319: Required Properties for Limited AccessPort (Continued)

Property/Method Type Qualifier/ Description/Notes
Parameter
ElementName string User friendly name
Caption string
Description string

7.3.6.3.15.12 Optional Subprofiles

Table 320: Optional Profiles or Subprofiles

Name

Notes

None

440

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.7 Server Profile
7.3.7.1 Description
A CIM Server is anything that supports the CIM-XML protocol and supports the basic read
functional profile as defined by the CIM Operations over HTTP specification.
The Server Profile is the profile that all SMI-S Servers MUST support for compliance.
The Object Manager part of the model defines the capabilities of a CIM Object Manager based on
the communication mechanisms that it supports.
The namespace model of the Server Profile describes the namespaces managed by the Object
Manager and the type information contained within the namespace. The main information
provided in the namespace part of the model is the namespace itself and its association to the
CIM_ObjectManager.
The RegisteredProfile part of the model is used to specify the Profiles supported by the Object
Manager. It also includes the specification of subprofiles that are supported by the profile.
In this section there are references to the InteropNamespace and the use of the InteropNamespace
for finding RegisteredProfiles and other related classes associated with the Server Profile. The
InteropNamespace refers to the first namespace found in the InteropSchemaNamespace attribute
of the SLP Template.
7.3.7.2 Standard Dependencies
The CIM Server Profile is based on the following standards:
Table 321: CIM Server Standard Dependencies
Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.8 Preliminary DMTF
7.3.7.3 Profile Dependencies

The Server Profile does not require any other Profiles.

Version 1.0.1 441

SNIA Storage Management Initiative Specification

7.3.7.4 CIM Server Requirements
7.3.7.4.1 Functional Profiles
Table 322: Required Functional Profiles
Profile Required Functional Group Dependency
YES Basic Read None
NO Basic Write Basic Read
NO Instance Manipulation Basic Write
NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read
NO Query Execution Basic Read
NO Qualifier Declaration Schema Manipulation
YES Indication None
7.3.7.4.2 Extrinsic Methods
The CIM Server MUST support extrinsic methods for the Server profile.
7.3.7.4.3 Discovery
The CIM Server MUST support SLP discovery as defined in the CIM Operations over HTTP
specification.

442 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.7.5 Instance Diagram

Figure 76: Server Model

ObjectManager System

HostedService

Name (InstancelD)
ElementName

Namespace

InManager

|—CommMechanismForManager—

Namespace

CIMXMLCommunictionMechanism

[Propagated Keys]
CreationClassName
Name

ClasslInfo

[Default CommunicationMechanism = "XML over HTTP"]
ClMValidated

DescriptionOfClassInfo

ManagedElement
(e.g., System)

ReferencedProfile

ElementConformsToProfile

RegisteredProfile

InstancelD
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes|]
AdvertiseTypeDescriptoins[]

SubProfile SubProfile
RequiresProfile RequiresProfile

RegisteredSubProfile RegisteredSubProfile

InstancelD
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes|]

InstancelD
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes[]

AdvertiseTypeDescriptoins|[]

AdvertiseTypeDescriptoins[]

A Server is modeled as a System with a HostedService association to an ObjectManager. The
ObjectManager is subclassed from Service.

This profile REQUIRES that all namespaces supported by the Server be identified (the Namespace
class) and associated to the ObjectManager via the NamespaceInManager association

Note: All classes of the Server Profile (as shown in Figure 76: "Server Model") are in the Interop
Namespace, with the exception of the “ManagedElement” that is referenced from the
RegisteredProfile. This makes traversing the Server Profile relatively simple. The only time
a traversal may require crossing namespaces 1s when following the
“ElementConformsToProfile” association.

The communication protocols supported by the ObjectManager SHOULD also be identified.
Specifically, the CIMXMLCommunicationMechanism MUST be present for standard
communication support for clients. This class is associated to the ObjectManager via the
CommMechanismForManager association.

The next set of classes and associations deal with Profiles supported by the ObjectManager. A
Profile is modeled using the RegisteredProfile class. One instance is created for each

Version 1.0.1 443

7.3.7.6

7.3.7.6.1

7.3.7.6.2

444

SNIA Storage Management Initiative Specification

ManagedElement that is covered by a profile and is managed by the Server. The RegisteredProfile
instances can be found by enumerating RegisteredProfiles within the interop namespace. A client
would find all profiles supported by the Server by enumerating RegisteredProfiles, enumerating
RegisteredSubprofiles and subtracting the second list from the first list. This will yield the list of
Profiles supported by the ObjectManager.

For each Profile instance, the subprofiles that have been implemented (for the instance) should be
identified via the SubprofileRequiresProfile association. Subprofiles are modeled using the
RegisteredSubProfile class. However, the RegisteredVersion property of subprofiles MUST be the
same as the RegisteredVersion in the parent profile.

In addition, the ElementConformsToProfile association ties the “top-level” Profile
(RegisteredProfile) to the scoping ManagedElements. These ManagedElements are typically
ComputerSystems or AdminDomains.

A single ManagedElement may have zero or more ElementConformsToProfile associations to
RegisteredProfiles. Regardless of the number of associated RegisteredProfiles the
ManagedElement represents one set of resources. So for example, consider a ManagedElement
that is a System that supports both the Array and In-Band Virtualization Appliance profiles. If
one asks for the total amount of mapped capacity, the answer applies to both Array and
Virtualizer and is not additive.

Durable Names and Other Correlatable IDs

Durable Names and Other Correlatable IDs Exported
The Server Profile exports the following:

CIM Server ID - ObjectManager.Name - The Name property is used to uniquely identify a CIM
Server. The CIM Server MUST ensure that this value is globally unique. In order to ensure
uniqueness, this value MUST be constructed using the following 'preferred' algorithm:
<OrgID>:<LocallD>

Where <OrgID> and <LocallD> are separated by a colon "', and where <OrgID> MUST include a
copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/
defining the name, or a registered ID that is assigned to the business entity by a recognized global
authority. (This is similar to the <Schema Name>_<Class Name> structure of Schema class
names.) In addition, to ensure uniqueness, <OrgID> MUST NOT contain a colon (:'). When using
this algorithm, the first colon to appear in InstancelD MUST appear between <OrgID> and
<LocallD>.

<LocalID> is chosen by the organizational entity and SHOULD not be re-used to identify different
underlying (real-world) elements. If the above 'preferred' algorithm is not used, the defining entity
MUST assure that the resultant InstancelD is not re-used across any InstancelDs produced by
this or other providers for this instance's NameSpace.

Note: Name is semantically the same as InstancelD. In the next major version of the CIM Schema,
Name is to be renamed to InstanceID and become the only key of this class.

ProfileInstance - RegisteredProfile.InstancelD - The InstancelD property is used to uniquely
identify a Profile Instance. The Server MUST ensure that this value is globally unique. In order to
ensure uniqueness, this value MUST be constructed in the following manner: <OrgID>:<LocallD>

Durable Names and Other Correlatable IDs Used
None.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.7.7 Methods

All Basic Read and Association Traversal methods are supported for the Server profile. However,
basic write or instance manipulation methods are NOT REQUIRED for the Server profile. The
model itself is instantiated by the CIM Server and cannot be directly modified. Indirectly, the
ObjectManager (RequestedStatus) can be modified via the StopService extrinsic method.

StopService()

The StopService method may be applied to the ObjectManager. The StopService method places the
ObjectManager in the stopped state.

Note: The StartService method is NOT supported for Object Managers.
7.3.7.8 Client Considerations

7.3.7.8.1 Using the CIM Server Model to Determine SNIA Profiles Supported

All SNIA Profiles require the implementation of the Server Profile as part of the CIM Server. This
allows a client to determine which SNIA Profiles are supported by the a proxy, embedded or
general purpose SMI-S Server. SMI-S clients can use SLP to search for services that support SNIA
profiles. Indeed, a client may restrict its search to specific types of SNIA profiles. The client would
get a response for each CIM Server service that supports a SNIA profile. From the responses, the
client should use the “service-id” to determine the unique CIM Servers it is dealing with.

For each CIM Server, the client can determine the types of entities supported by inspecting the
RegisteredProfilesSupported attribute returned for the SLP entries. This identifies the types of
entities (e.g., devices) supported by the CIM Server.

The Client may determine more detail on the support for the Profiles by going to the service
advertised for the CIM Server and inspecting the RegisteredProfiles maintained in the server
profile. This would be done by enumerating RegisteredProfiles and RegisteredSubprofiles within
the interop namespace. By inspection of the actual profile instances, the client can determine the
SNIA version (RegisteredVersion) of profile, associated namespaces and associated managed
elements (e.g., systems).

7.3.7.8.2 Using the CIM Server Model to Determine Optional Features supported

From the RegisteredProfiles within the namespace of the ObjectManager, a client can determine
the “optional features” that are supported for the profile by following the
SubprofileRequiresProfile association. This returns a set of RegisteredSubProfile instances that
represent Subprofiles of the specific Profile instance. The name of the subprofile is scoped by the
Profile. See individual Profile descriptions in this specification for the specific list of “optional
subprofiles” supported. For a given profile instance there may be zero, one or many subprofiles.
The optional subprofiles documented in this specification merely list the subprofiles that MAY be
associated with the profile (via the SubprofileRequiresProfile association).

All Subprofiles that are supported by a Profile MUST be directly associated to the Profile via the
SubprofileRequiresProfile association. All subprofiles (either direct or indirect via subprofiles)
MUST be directly attached to the Profile. For example, the Array Profile instance can support two
subprofiles: LUN Creation and Job Control. Both of these subprofiles would be directly attached to
the Array Profile instance, even though the Job Control subprofile is actually a subprofile of LUN
Creation.

Note: The RegisteredVersion property of subprofiles MUST match the RegisteredVersion
property of its parent Profile.

Version 1.0.1 445

7.3.7.9

7.3.7.9.1

7.3.7.9.2

446

SNIA Storage Management Initiative Specification

Recipes

Assumptions

For discovery recipes, the following are assumed:
a. A top-level object (class instance) exists for each Profile, and

b) the client knows what the top level object 1s.

The top-level object for each of the SMI-S Profiles are:

« ComputerSystem: For JBOD, Array, Virtualizers, Switches, Routers and HBAs. This is the
top-level ComputerSystem instance for the Profile (not the component ComputerSystem or
the member ComputerSystem);

e AdminDomain: For Fabric and HostDiscoveredResources;
* StorageLibrary: For Storage Libraries;
* ObjectManager: For Server.

The top-level object (class instance) is associated to the RegisteredProfile instance for the Profile
via the ElementConformsToProfile association.

Note: Other ManagedElement instances MAY be associated wo the RegisteredProfile, but the
meaning and behavior of such associations are NOT defined by SMI-S and are NOT
REQUIRED.

Find Servers Supporting a Given Profile
// DESCRIPTION
/I A management application wishes to find all CIM Servers on a
// particular subnet that support one or more SMI-S profiles.
I
// PRE-EXISTING CONDITIONS AND ASSUMPTION
//' 1. Assume CIM Servers have advertised their services (SrvReg)
//2. Assume there may (or may not) be Directory Agents in the subnet
//'3. Assume no security on SLP discovery
/l'4. #DirectoryList[] is an array of directory URLs
/I'5. #ServiceList[] is an array of service agent URLs
//'6. #DirectoryEntries [] is an array of directory entry Structures.
/ The structure matches the “wbem” SLP Template (see Clause 5,
/l section 10).

// Step 1: Set the Previous Responders List to the Null String.
#PRList =

// Step 2: Multicast a Service Request for a Directory Server Service.
/1 This is to find Directory Agents in the subnet.
/1
SrvRgst (
#PRList, // The Previous Responders list

”service:directory-agent” // Service type

Version 1.0.1

SNIA Storage Management Initiative Specification

“DEFAULT”, // ' The scope
NULL, // The predicate
NULL) /I SLP SPI (security token)

// Step 3: Listen for Response from Directory Agent(s)
#DirectoryList[] = DAAdvert (

BootTimestamp, // Time of last reboot of DA

URL, // The URL of the DA

ScopeList,// The scopes supported by the DA

AttrList, // The DA Attributes

SLP SPI List,// SLP SPI (SPIs the DA can verity)

Authentication Block)
// Tterate on Steps 2 & 3, until a response has been received or the client has
// reached a UA configured CONFIG_RETRY MAX seconds. If no DA if found,
// proceed to step 4. If a DA is found, proceed to step 7.

// Step 4: Set the Previous Responders List to the Null String.
#SAPRList =«

// Step 5: Multicast a Service Request for Service Agent Services. This

I is to find Service Agents in the subnet that are not advertised
/1 in a Directory.
SrvRgst (

#SAPRList, // The Previous Responders list

“service:service-agent” // Service type

“DEFAULT”, /I ' The scope
“(Service-type=WBEM)”, // The predicate
NULL) /I SLP SPI (security token)

// Step 6: Listen for Response from Service Agent(s)
#SAList[] = SAAdvert (
URL, // The URL of the SA
ScopeList,// The scopes supported by the SA
AttrList, // The SA Attributes
Authentication Block)
// Tterate on Steps 5 & 6, until a response has been received or the client has
// reached a UA configured CONFIG_RETRY MAX seconds. If no SA if found,
// Then record an error. There are NO WBEM SAs. Otherwise proceed to
// Step 8.

//Step 7: Unicast a Service Request to each of the DAs specifying

/1 a query predicate to select CIM Servers that support SNIA profiles
/ and listen for responses.

for #j in #DirectoryList[]

{
SrvRgst (

Version 1.0.1 447

448

SNIA Storage Management Initiative Specification

#PRList, // The Previous Responders list

“service:wbem”, // Service type

“DEFAULT”, /I The scope
RegisteredProfilesSupported=“SNIA:*”, / The predicate
NULL) /I SLP SPI (security token)

#ServiceList [#j] = SrvRply (
Count, // count of URLs
URL for each SA returned)

H
Go to Step 9.

//Step 8: Unicast a Service Request to each of the SAs specifying
/ a query predicate to select CIM Servers that support SNIA profiles

I and listen for responses.
for #j in #SAList[]
{

SrvRgst (

#PRList, // The Previous Responders list

“service:wbem”, // Service type

“DEFAULT”, /I ' The scope
RegisteredProfilesSupported=“SNIA:*”, / The predicate
NULL) // SLP SPI (security token)

#ServiceList [#j] = SrvRply (
Count, // count of URLs
URL for each SA returned)

/I Step 9: Next retrieve the attributes of each advertisement

For #i in #ServiceList[] // for each url in list

{
AttrRgst (
#PRList, // The Previous Responders list
#ServiceList[#i],// a url from #ServiceList[]
“DEFAULT”, // The scope
NULL, // Taglist. NULL means return all attributes
NULL) // SLP SPI (security token)
#DirectoryEntries [#i] = AttrRply (attr-list)
}
// Step 10: Correlate responses to the Service Request on unique
/ “service-id” to determine unique CIM Servers. The client will get
I multiple responses (one for each access point) for each CIM
/1 Server. At this point, the client has a list of CIM Servers that

/ claim to support SNIA profiles.

Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.7.9.3

Version 1.0.1

Enumerate Profiles Supported by a Given CIM Server
// DESCRIPTION
/I A management application wishes to determine the Profiles supported by
// a particular CIM Server.
/1
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. Assume the client only wants to know the “top level” profiles
/1 supported by the CIM Server
//2. Assume the client has used SLP to find the CIM Servers and has a
/ #DirectoryEntries [] structure
//' 3. This recipe describes the operations for one of the entries in
/! the #DirectoryEntries [] structure.
//'4. Assume the index into #DirectoryEntries[] for the CIM Server of

/! interest is #i.

// Step 1: Get the server url for the CIM Server.

#ServerName = #DirectoryEntries[#i].service-id

// Step 2: Get the Interop Namespace for the CIM Server.

#Inamespace = #DirectoryEntries[#i].InteropSchemaNamespace[1]

// Step 3: Establish a connection to the CIM Server with
// #IlNameSpace. Note that the WBEM operations throughout the remainder
// of this recipe are performed with this client handle.

<Make client connection to this server using the interop namespace>

/I Step 4: Get the names of all the RegisteredProfiles in the

// Interop Namespace

#ProfileName[] = Enumeratelnstances(“CIM_RegisteredProfile”,
TRUE, TRUE, FALSE, FALSE,

[“RegisteredName])

/I Step 5: Get all the RegisteredSubprofiles in the Interop Namespace
#SubprofileName[] = Enumeratelnstances(“CIM_RegisteredSubprofile”,
TRUE, TRUE, FALSE, FALSE,

[“RegisteredName”])

// Step 6: Subtract the list RegisteredSubprofiles from the list of
// RegisteredProfiles
#k=0
for #i in #ProfileName][i] {
for #i in #SubprofileName[j] {
if #ProfileName[#i] != #SubProfileName[#]] {
#TempArray[#k+1]=#ProfileName[#i]

449

SNIA Storage Management Initiative Specification

}
#ProfileName[] = #TempArray[]

7.3.7.9.4 Identify the ManagedElement Defined by a Profile
// DESCRIPTION
/I A management application wishes to determine the ManagedElement that
// is defined by a particular Profile.
/1
// PRE-EXISTING CONDITIONS AND ASSUMPTION
//'1. Assume the client has located the profile and has its object path
// ($RegisteredProfile->)

// Step 1: Determine the ManagedElement (System) by traversing the
/I ElementConformsToProfile association from the RegisteredProfile
/I that is the top level Profile that applies to the System
$ManagedElement->[] = AssociatorNames (
$RegisteredProfile->,
“CIM_ElementConformsToProfile”,
“CIM_System”, // Note: substitute “CIM_AdminDomain” for Fabrics
// or “CIM_ComputerSystem for Arrays
// or “CIM_StorageLibrary for Libraries
// or “CIM_ObjectManager for Servers
NULL,
NULL)

// Step 2: The object name of more than one System may be contained
// in the array returned. Examine the contents of $ManagedElement][]

// and save the name of the System of interest as $Name.

// NOTE: “Top” level object for each profile will be returned. It MUST have
// an ElementConformsToProfile association. To accommodate other

// potential ManagedElements, then it will be necessary need to throw out

// the ones that are NOT top level objects.

// NOTE: The object path for the ManagedElement MAY be in a Namespace

/1 that is different than the Interop Namespace. As a result, if the

/ client wishes to actually access the ManagedElement, the client

/ may get the namespace for the element by cracking the REF to the
/1 element:

#NameSpace=§Name.getNameSpace()

7.3.7.9.5 Determine the SNIA Version of a Profile
// DESCRIPTION

/I A management application wishes to determine the SNIA version

450 Version 1.0.1

SNIA Storage Management Initiative Specification

7.3.7.9.6

Version 1.0.1

// that a particular Profile supports.

I

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. Assume the client only wants to know version information
/ for a SNIA profile

//2. Assume the client has already found the profile and has the

/ $RegisteredProfile-> reference

// Step 1: Get the Instance of the Profile name.
$Profile = GetInstance($RegisteredProfile->)

// Step 2: Determine the SNIA Version for the Profile selected.
#SNIAVersion = $Profile.Registered Version

Determine the Subprofile Capabilities of a Profile
// DESCRIPTION
/I A management application wishes to determine the optional subprofiles
// supported by a SNIA Profile.
/!
// PRE-EXISTING CONDITIONS AND ASSUMPTION
// 1. Assume the client has already discovered the CIM Server that
I supports the SNIA profile
//2. Assume the client already has a $ObjectManager-> reference for
/1 the CIMOM on the WBEM Server.
//'3. Assume the client already has a $RegisteredProfile-> reference

/1 for the profile in question.

// Step 1: Check the version of the supported profile. Based on the

/ Registered Version property, the client should know what functions
/1 are REQUIRED as part of the profile definition.

$Profile = GetInstance($RegisteredProfile->)

#ProfileVersion = $Profile.Registered Version

/I Step 2: For each Profile, traverse the SubProfileRequiresProfile
/1 association to determine what optional subprofiles are also
/ supported. If the subprofile (e.g., CopyServices subprofile)
/ exists for a profile, this means that the copy services are
/ supported. The Copy Services also has a Version
/1 (RegisteredSubProfile.Registered Version). The Registered Version
/ of the subprofile MUST match the RegisteredVersion of the profile.
/1 The Registered Version implies a set of functional capabilities
/1 that are defined for that version of the subprofile.
$Subprofiles[] = Associators (
$RegisteredProfile->,

451

SNIA Storage Management Initiative Specification

“CIM_SubProfileRequiresProfile”,
“CIM_RegisteredProfile”,
NULL, NULL, false, false, NULL)

// Step 3: Verify that each Subprofile has the same version as the

/ Profile
for #i in $Subprofiles|[]
{

#SubprofileVersion = $Subprofile[#i].Registered Version
if (compare(#SubprofileVersion, #ProfileVersion))

f
1

Error(“Subprofile version mismatch with Profile version”)

7.3.7.9.7 Find all Profiles and Subprofiles on a Server
// DESCRIPTION
// A management application wishes to list all the SNIA profiles and
// their related subprofiles for a specific CIM Server.
/1
// PRE-EXISTING CONDITIONS AND ASSUMPTION
//'1. Assume the client has already discovered the CIM Servers that
/ support SNIA profiles

// Step 1: Get the names of all the RegisteredProfiles and their names

// in the Interop Namespace

$ProfileName[] = Enumeratelnstances(“CIM_RegisteredProfile”
true, true, false, false, {“RegisteredName”})

// Step 2: Get all the RegisteredSubprofiles in the Interop Namespace
$SubprofileName[] = Enumeratelnstances(“CIM_RegisteredSubprofile”,

true, true, false, false, {“RegisteredName”})

// Step 3: Subtract the list RegisteredSubprofiles from the list of
// RegisteredProfiles
#k=0
for #i in #ProfileName[#i] {
for #j in $SubprofileName[#] {
if ($ProfileName[#i] != $SubProfileName[#]]) {
#TempArray[#k+1]=#ProfileName[#i]

452 Version 1.0.1

SNIA Storage Management Initiative Specification

#ProfileName[] = #TempArray([]

// Step 4: Get the ObjectName for the Profiles
for #i in #ProfileName[] {
$Profile->[#i]=$Name.getObjectPath(#ProfileName[#i])

}

/I Step 5: Get the subprofiles associated to the profiles.

for #i in $ProfileName][]

{

$Subprofile[] = Associators(

$ProfileName[#j].getObjectPath(),
“CIM_SubprofileRequiresProfile”,
“CIM_RegisteredSubprofile”,
NULL, NULL, false, false, NULL)

7.3.7.9.8 Segregate a SAN Device Type
// DESCRIPTION

//' A management application wishes to manage a particular type of SAN
// device, but not other devices. So the management application needs to

// isolate the particular CIM Servers that support the type of device it

// wants to manage.

I

// PRE-EXISTING CONDITIONS AND ASSUMPTION
//'1. Assume CIM Servers have advertised their services (SrvReg)

//2. Assume there are one or more Directory Agents in the subnet

//'3. Assume no security on SLP discovery

//'4. #DirectoryList[] is an array of directory URLs

/I'5. #DirectoryEntries [] is an array of directory