
Storage Management Initiative Specification 

1.1.1 Revision 1

"This document has been released and approved by the SNIA. The SNIA believes that the ideas, 
methodologies and technologies described in this document accurately represent the SNIA goals and 
are appropriate for widespread distribution. Suggestion for revision should be directed to the Technical 
Council Managing Director at  tcmd@snia.org.”

SNIA Technical Position

5 June, 2007

 



 

ii



 

Errata/Change Log
June 5, 2007

No errata have been identified for 1.1.1.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position iii



 

iv



 

The SNIA hereby grants permission for individuals to use this document for personal use only, and for 
corporations and other business entities to use this document for internal use only (including internal 
copying, distribution, and display) provided that: 

a) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no 
alteration, and, 

b) Any document, printed or electronic, in which material from this document (or any portion hereof) 
is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for 
granting permission for its reuse. 

Other than as explicitly provided above, you may not make any commercial use of this document, sell 
any or this entire document, or distribute this document to third parties. All rights not explicitly granted 
are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested 
by e-mailing tcmd@snia.org please include the identity of the requesting individual and/or company and 
a brief description of the purpose, nature, and scope of the requested use.

Copyright  © 2007 Storage Networking Industry Association.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position v



 

vi



 

Intended Audience
This document is intended for use by individuals and companies engaged in developing, deploying, and 
promoting interoperable multi-vendor SANs through the SNIA organization.

Disclaimer
The information contained in this publication is subject to change without notice. The SNIA makes no 
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties 
of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained 
herein or for incidental or consequential damages in connection with the furnishing, performance, or 
use of this specification.

Suggestions for revisions should be directed to tcmd@snia.org.

Copyright © 2003-2007 SNIA. All rights reserved. All other trademarks or registered trademarks are the 
property of their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed 
Management Task Force (DMTF). The CIM classes that are documented have been developed and 
reviewed by both the Storage Networking Industry Association (SNIA) and DMTF Technical Working 
Groups. However, the schema is still in development and review in the DMTF Working Groups and 
Technical Committee, and subject to change.

Typographical Conventions

Deprecated Material
Sections identified as “Deprecated” contain material that is not recommended for use in new 
development efforts. Existing and new implementations may still use this material, but shall move to the 
newer approach as soon as possible. Providers shall implement the deprecated elements in order to 
achieve backwards compatibility. Clients may use the deprecated elements and are directed to instead 
use the elements that are thus favored.

Deprecated sections are documented with a reference to the last published version to include the 
deprecated section as normative material and to the section in the current specification with the 
replacement. A sample of the typographical convention for deprecated content is included below:

DEPRECATED

Deprecated material appears here.

DEPRECATED

Experimental Material
Some of the content considered for inclusion in SMI-S 1.1.1 has yet to receive sufficient review to 
satisfy the adoption requirements set forth by the SMI committee within the SNIA. This content is 
presented here as an aid to implementers who are interested in likely future developments within the 
SMI specification. The content marked experimental may change as implementation experience is 
gained. There is a high likelihood that it will be included in an upcoming revision of the specification. 
Until that time, it is purely informational, and is clearly marked within the text. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position vii



 

A sample of the typographical convention for experimental content is included here:

EXPERIMENTAL

Experimental content appears here.

EXPERIMENTAL
viii



 

Contents
Typographical Conventions....................................................................................................... vii
List of Tables ............................................................................................................................xvii
List of Figures........................................................................................................................xxxix
Foreword .................................................................................................................................. xlv
Introduction...............................................................................................................................xlvi
1. Scope ...................................................................................................................................1
2. Definitions, Symbols, Abbreviations, and Conventions .................................................3

2.1 Definitions........................................................................................................................3
2.2 Symbols and abbreviations ...........................................................................................15
2.3 Keywords.......................................................................................................................16
2.4 Conventions ..................................................................................................................17

3. Business Overview...........................................................................................................19
3.1 Preamble .......................................................................................................................19
3.2 Business Rationale........................................................................................................19
3.3 Interface Definition ........................................................................................................20
3.4 Technology Trends........................................................................................................22
3.5 Management Environment ............................................................................................23
3.6 Architectural Objectives.................................................................................................24
3.7 Disclaimer......................................................................................................................25

4. Overview............................................................................................................................27
4.1 Base Capabilities...........................................................................................................27

4.1.1. Object Oriented......................................................................................................27
4.1.2. Messaging Based ..................................................................................................29

4.2 Functionality Matrix .......................................................................................................31
4.2.1. Overview................................................................................................................31
4.2.2. Multi-Level Model Of Networked Storage Management Functionality ...................31
4.2.3. FCAPS...................................................................................................................32
4.2.4. Management Functionality Within Each Level Of The Model ................................32

4.2.4.1 (Level 1) Device Level Functionality................................................................32
4.2.4.2 (Level 2) Connectivity Level Functionality .......................................................32
4.2.4.3 (Level 3) Block Level Functionality..................................................................32
4.2.4.4 (Level 4) File/Record Level Functionality ........................................................32
4.2.4.5 (Level 5) Application Level Functionality .........................................................33

4.2.5. Referring To Levels And Capabilities In The Multi-level Model .............................33
4.2.6. Functionality Descriptions in SMI-S Profiles ..........................................................33

4.3 Capabilities of This Version...........................................................................................33
4.3.1. Device Level ..........................................................................................................33

4.3.1.1 Fault Management ..........................................................................................33
4.3.1.2 Configuration Management .............................................................................33
4.3.1.3 Accounting Management.................................................................................33
4.3.1.4 Performance Management..............................................................................33
4.3.1.5 Security Management .....................................................................................33

4.3.2. Connectivity Level..................................................................................................34
4.3.2.1 Fault Management ..........................................................................................34
4.3.2.2 Configuration Management .............................................................................34
 SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position ix



 

4.3.2.3 Accounting Management.................................................................................34
4.3.2.4 Performance Management..............................................................................34
4.3.2.5 Security Management .....................................................................................34

4.3.3. Block Level ............................................................................................................34
4.3.3.1 Fault Management ..........................................................................................34
4.3.3.2 Configuration Management .............................................................................34
4.3.3.3 Accounting Management.................................................................................34
4.3.3.4 Performance Management..............................................................................34
4.3.3.5 Security Management .....................................................................................34

4.3.4. File/Record Level ...................................................................................................35
4.3.4.1 Fault Management ..........................................................................................35
4.3.4.2 Configuration Management .............................................................................35
4.3.4.3 Accounting Management.................................................................................35
4.3.4.4 Performance Management..............................................................................35
4.3.4.5 Security Management .....................................................................................35

4.3.5. Application Level....................................................................................................35
4.4 Operational Environment .................................................................................................................. 37
4.5 Using this Specification .................................................................................................38
4.6 Language Bindings........................................................................................................38

5. Transport and Reference Model......................................................................................39
5.1 Introduction....................................................................................................................39

5.1.1. Overview................................................................................................................39
5.1.2. Language Requirements .......................................................................................39
5.1.3. Communications Requirements.............................................................................39
5.1.4. XML Message Syntax and Semantics ...................................................................39

5.2 Transport Stack .............................................................................................................40
5.3 Reference Model ...........................................................................................................41

5.3.1. Overview................................................................................................................41
5.3.2. Roles for Interface Constituents ............................................................................41

5.3.2.1 Client ...............................................................................................................41
5.3.2.2 Agent ...............................................................................................................41
5.3.2.3 CIM Server ......................................................................................................42
5.3.2.4 Provider ...........................................................................................................42
5.3.2.5 Lock Manager..................................................................................................42
5.3.2.6 Directory Server (SLP Directory Agent) ..........................................................42

5.3.3. Cascaded Agents ..................................................................................................42
6. Object Model General Information ..................................................................................43

6.1 Model Overview (Key Resources).................................................................................43
6.1.1. Overview................................................................................................................43
6.1.2. Introduction to CIM UML Notation .........................................................................43

6.2 Techniques....................................................................................................................44
6.2.1. CIM Fundamentals ................................................................................................44
6.2.2. Modeling Profiles ...................................................................................................46
6.2.3. CIM Naming...........................................................................................................47
6.2.4. Correlatable and Durable Names ..........................................................................49

6.2.4.1 Overview .........................................................................................................49
6.2.4.2 Guidelines for SCSI Logical Unit Names.........................................................50
x



 

6.2.4.3 Guidelines for Port Names ..............................................................................50
6.2.4.4 Guidelines for Storage System Names ...........................................................51
6.2.4.5 Standard Formats for Correlatable Names .....................................................52
6.2.4.6 Case Sensitivity...............................................................................................57
6.2.4.7 Testing Equality of correlatable Names...........................................................57
6.2.4.8 Operating System Device Names ...................................................................57
6.2.4.9 iSCSI Names...................................................................................................57

6.3 Health and Fault Management ......................................................................................59
6.3.1. Objectives ..............................................................................................................59
6.3.2. Overview................................................................................................................59
6.3.3. Terms.....................................................................................................................59
6.3.4. Description of Health and Fault Management .......................................................60

6.3.4.1 Operational Status and Health State (Polling).................................................60
6.3.4.2 Standard Errors and Events ............................................................................61
6.3.4.3 Indications .......................................................................................................61
6.3.4.4 Event Correlation and Fault Containment .......................................................62
6.3.4.5 Fault Regions ..................................................................................................64
6.3.4.6 Examples.........................................................................................................66

6.4 Policy.............................................................................................................................71
6.4.1. Objectives ..............................................................................................................71
6.4.2. Overview................................................................................................................71
6.4.3. Policy Terms ..........................................................................................................71
6.4.4. Policy Definition .....................................................................................................72

6.4.4.1 Query Condition ..............................................................................................72
6.4.4.2 Method Action .................................................................................................72
6.4.4.3 Query Condition Result ...................................................................................72
6.4.4.4 Method Action Result ......................................................................................72
6.4.4.5 Capabilities......................................................................................................73

6.4.5. Policy Recipes .......................................................................................................73
6.5 Standard Messages ......................................................................................................75

6.5.1. Overview................................................................................................................75
6.5.2. Required Characteristics of Standard Messages...................................................75

6.5.2.1 Common Messages ........................................................................................77
6.5.2.2 Storage Messages ..........................................................................................88
6.5.2.3 Fabric Messages .............................................................................................99

6.6 Recipe Overview .........................................................................................................103
6.6.1. Recipe Definition..................................................................................................103
6.6.2. Recipe Pseudo Code Conventions ......................................................................103

6.6.2.1 Overview .......................................................................................................103
6.6.2.2 General Syntax..............................................................................................103
6.6.2.3 CIM related variable and methods ................................................................104
6.6.2.4 Data Structure ...............................................................................................105
6.6.2.5 Operations.....................................................................................................105
6.6.2.6 Control Operations ........................................................................................106
6.6.2.7 Functions.......................................................................................................107
6.6.2.8 Exception Handling .......................................................................................107
6.6.2.9 Built-in Functions...........................................................................................107
 SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xi



 

6.6.2.10 Extrinsic method calls....................................................................................109
7. Normative References....................................................................................................111

7.1 Introduction to Profiles.................................................................................................113
7.1.1. Profile Content .....................................................................................................113

7.1.1.1 Profile Definition ............................................................................................113
7.1.1.2 Format for Profile Specifications ...................................................................114

8. Object Model ...................................................................................................................117
8.1 Registry of Profiles and Subprofiles ............................................................................117
8.2 Packages, Subprofiles and Profile ..............................................................................121

8.2.1. Common Profiles .................................................................................................121
8.2.1.1 Access Points Subprofile...............................................................................121
8.2.1.2 Cascading Subprofile ...................................................................................125
8.2.1.3 Cluster Subprofile (DEPRECATED)..............................................................151
8.2.1.4 Device Credentials Subprofile .......................................................................153
8.2.1.5 Extra Capacity Set Subprofile (DEPRECATED) ...........................................157
8.2.1.6 Health Package .............................................................................................159
8.2.1.7 Job Control Subprofile...................................................................................167
8.2.1.8 Location Subprofile........................................................................................179
8.2.1.9 Multiple Computer System Subprofile ...........................................................183
8.2.1.10 Physical Package Package ...........................................................................195
8.2.1.11 Policy Package..............................................................................................203
8.2.1.12 Software Installation Service Subprofile........................................................265
8.2.1.13 Software Package .........................................................................................273
8.2.1.14 Software Subprofile .......................................................................................277
8.2.1.15 Software Repository Subprofile.....................................................................281

8.2.2. Common Target Port Subprofiles Overview ........................................................287
8.2.2.1 Parallel SCSI (SPI) Target Ports Subprofile..................................................289
8.2.2.2 FC Target Port Subprofile .............................................................................293
8.2.2.3 iSCSI Target Ports Subprofile .......................................................................299
8.2.2.4 Direct Attach (DA) Port Subprofile.................................................................333

8.2.3. Common Initiator Port Subprofiles Overview.......................................................339
8.2.3.1 Parallel SCSI (SPI) Initiator Port Subprofile ..................................................341
8.2.3.2 Fibre Channel Initiator Port Subprofile ..........................................................347
8.2.3.3 iSCSI Initiator Port Subprofile........................................................................353
8.2.3.4 Back End Ports Subprofile (DEPRECATED) ................................................359

8.2.4. CIM Server Related Profiles ................................................................................363
8.2.4.1 Server Profile.................................................................................................363
8.2.4.2 Indications Subprofile ....................................................................................393
8.2.4.3 Object Manager Adapter Subprofile ..............................................................419

8.2.5. Security Profiles and Subprofiles .........................................................................423
8.2.5.1 Security Profile ..............................................................................................423
8.2.5.2 Authorization Subprofile ................................................................................433
8.2.5.3 Security Resource Ownership Subprofile......................................................451
8.2.5.4 Security Role Based Access Control Subprofile ...........................................467
8.2.5.5 IdentityManagement Subprofile.....................................................................483
8.2.5.6 CredentialManagement Subprofile................................................................505
8.2.5.7 3rd Party Authentication Subprofile...............................................................515
xii



 

8.2.6. Fabric Topology Profiles ......................................................................................527
8.2.6.1 Fabric Profile .................................................................................................527
8.2.6.2 Enhanced Zoning Subprofile .........................................................................555
8.2.6.3 Zone Control Subprofile ................................................................................561
8.2.6.4 FDMI Subprofile ............................................................................................579
8.2.6.5 Fabric Path Performance Subprofile .............................................................591
8.2.6.6 Switch Profile.................................................................................................597
8.2.6.7 Switch Configuration Data Subprofile............................................................633
8.2.6.8 Blades Subprofile ..........................................................................................637
8.2.6.9 Extender Profile.............................................................................................643

8.2.7. Host Profiles ........................................................................................................673
8.2.7.1 FC HBA Profile ..............................................................................................673
8.2.7.2 iSCSI Initiator Profile .....................................................................................701
8.2.7.3 Host Discovered Resources Profile...............................................................713
8.2.7.4 Disk Partition Subprofile ................................................................................725
8.2.7.5 SCSI Multipath Management Subprofile .......................................................741

8.2.8. Storage Profiles ...................................................................................................753
8.2.8.1 Array Profile...................................................................................................753
8.2.8.2 Storage Virtualizer Profile..............................................................................759
8.2.8.3 Volume Management Profile .........................................................................767
8.2.8.4 NAS Head Profile ..........................................................................................777
8.2.8.5 Self-Contained NAS Profile ..........................................................................813
8.2.8.6 Filesystem Manipulation Subprofile...............................................................847
8.2.8.7 File Export Manipulation Subprofile...............................................................881
8.2.8.8 Pool Management Policy Subprofile ............................................................911
8.2.8.9 Resource Ownership Subprofile....................................................................927
8.2.8.10 Block Services Package................................................................................935
8.2.8.11 Block Server Performance Subprofile .........................................................1003
8.2.8.12 Copy Services Subprofile ............................................................................1071
8.2.8.13 Disk Drive Subprofile (DEPRECATED).......................................................1179
8.2.8.14 Disk Drive Lite Subprofile ............................................................................1181
8.2.8.15 Disk Sparing Subprofile...............................................................................1189
8.2.8.16 Extent Composition Subprofile ....................................................................1207
8.2.8.17 Extent Mapping Subprofile (DEPRECATED) ..............................................1235
8.2.8.18 LUN Creation Subprofile (DEPRECATED) .................................................1237
8.2.8.19 LUN Mapping and Masking Subprofile........................................................1239
8.2.8.20 Masking and Mapping Subprofile ................................................................1241
8.2.8.21 Pool Manipulation Capabilities, and Settings Subprofile (DEPRECATED) .1277
8.2.8.22 Storage Library Profile.................................................................................1279
8.2.8.23 Element Counting Subprofile.......................................................................1295
8.2.8.24 InterLibraryPort Connection Subprofile .......................................................1301
8.2.8.25 Partitioned/Virtual Library Subprofile...........................................................1305
8.2.8.26 Library Capacity Subprofile .........................................................................1309
8.2.8.27 LibraryAlert Events/Indications for Library Devices.....................................1313
8.2.8.28 Media Movement Subprofile  ......................................................................1329
8.2.8.29 Limited Access Port Elements Subprofile ...................................................1335

8.3 Cross Profile Considerations.....................................................................................1341
 SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xiii



 

8.3.1. Overview............................................................................................................1341
8.3.2. HBA model.........................................................................................................1341

8.3.2.1 Recipes .......................................................................................................1341
8.3.3. Switch Model .....................................................................................................1342

8.3.3.1 Recipes .......................................................................................................1342
8.3.4. Array Model .......................................................................................................1347

8.3.4.1 Storage Virtualization Model .......................................................................1348
8.3.5. Fabric Topology (HBA, Switch, Array) ...............................................................1349

8.3.5.1 Overview .....................................................................................................1350
8.3.5.2 Main Recipe ................................................................................................1350
8.3.5.3 Array paths ..................................................................................................1359
8.3.5.4 Host Discovered Resource..........................................................................1362
8.3.5.5 Common Initiator Port .................................................................................1363
8.3.5.6 Fabric Layer ................................................................................................1365
8.3.5.7 IP Network Layer.........................................................................................1374
8.3.5.8 Local Disk Layer..........................................................................................1375
8.3.5.9 Logical Disk Layers .....................................................................................1379
8.3.5.10 Multipath Layer............................................................................................1382
8.3.5.11 Virtualizer Layer ..........................................................................................1383
8.3.5.12 Volume Manager Layer ...............................................................................1388

9. SMI-S Roles ...................................................................................................................1395
9.1 Introduction................................................................................................................1395
9.2 SMI-S Client ..............................................................................................................1396

9.2.1. Overview............................................................................................................1396
9.2.2. SLP Functions ...................................................................................................1396
9.2.3. CIM-XML Protocol Functions.............................................................................1396
9.2.4. Security Considerations.....................................................................................1396
9.2.5. Lock Management Functions.............................................................................1397

9.3 Dedicated SMI-S Server............................................................................................1397
9.3.1. Overview............................................................................................................1397
9.3.2. SLP Functions ...................................................................................................1397
9.3.3. CIM-XML Protocol Functions.............................................................................1397

9.3.3.1 General........................................................................................................1397
9.3.3.2 Required Intrinsic Methods..........................................................................1397
9.3.3.3 Required Model Support .............................................................................1398

9.3.4. Security Considerations.....................................................................................1398
9.3.5. Lock Management Functions.............................................................................1398

9.4 General Purpose SMI-S Server.................................................................................1398
9.4.1. Overview............................................................................................................1398
9.4.2. SLP Functions ...................................................................................................1399
9.4.3. CIM-XML Protocol Functions.............................................................................1399

9.4.3.1 General........................................................................................................1399
9.4.3.2 Required Intrinsic Methods..........................................................................1399
9.4.3.3 Required Model Support .............................................................................1399
9.4.3.4 Security Considerations ..............................................................................1399

9.4.4. Lock Management Functions.............................................................................1399
9.4.5. Provider Subrole ................................................................................................1399
xiv



 

9.4.5.1 Overview .....................................................................................................1399
9.4.5.2 Required Model Support .............................................................................1399

9.5 Directory Server ........................................................................................................1399
9.5.1. SLP Functions ...................................................................................................1400
9.5.2. CIM-XML Protocol Functions.............................................................................1400
9.5.3. Security Considerations.....................................................................................1400
9.5.4. Lock Management Functions.............................................................................1400

9.6 Combined Roles on a Single System........................................................................1400
9.6.1. Overview............................................................................................................1400
9.6.2. General Purpose SMI-S Server as a Profile Aggregator ...................................1400

9.6.2.1 SLP Functions .............................................................................................1400
9.6.2.2 CIM-XML Protocol Functions ......................................................................1400
9.6.2.3 Security Considerations ..............................................................................1400
9.6.2.4 Lock Manager Functions .............................................................................1400

10. Service Discovery.........................................................................................................1401
10.1 Objectives..................................................................................................................1401
10.2 Overview ...................................................................................................................1401
10.3 SLP Messages ..........................................................................................................1403
10.4 Scopes ......................................................................................................................1404
10.5 Services Definition.....................................................................................................1404

10.5.1. Service Type......................................................................................................1405
10.5.2. Service Attributes...............................................................................................1405

10.6 User Agents (UA) ......................................................................................................1406
10.7 Service Agents (SAs) ................................................................................................1407
10.8 Directory Agents (DAs)..............................................................................................1408
10.9 Service Agent Server (SA Server).............................................................................1408

10.9.1. General Information ...........................................................................................1408
10.9.2. SA Server (SAS) Implementation ......................................................................1408
10.9.3. SA Server (SAS) Clients ....................................................................................1409

10.9.3.1 Description ..................................................................................................1409
10.9.3.2 SAS Client Requests – SA Server Responses ...........................................1409

10.9.4. SA Server Configuration ....................................................................................1409
10.9.4.1 Overview .....................................................................................................1409
10.9.4.2 SLP Configuration File ................................................................................1409
10.9.4.3 Programmatic Configuration........................................................................1410
10.9.4.4 DHCP Configuration....................................................................................1410
10.9.4.5 Scope ..........................................................................................................1410

10.9.5. SA Server Discovery..........................................................................................1411
10.9.6. SAS Client Registration .....................................................................................1411

10.10‘Standard WBEM’ Service Type Templates.............................................................1411
10.11SLP Bibliography .....................................................................................................1415

11. Installation and Upgrade..............................................................................................1417
11.1 Introduction................................................................................................................1417
11.2 Role of the Administrator...........................................................................................1417
11.3 Goals .........................................................................................................................1417

11.3.1. Non-Disruptive Installation and De-installation ..................................................1417
11.3.2. Plug-and-Play ....................................................................................................1417
 SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xv



 

11.4 Device Support..........................................................................................................1418
11.4.1. Installation..........................................................................................................1418
11.4.2. Discovery and Initialization of Device Support...................................................1418
11.4.3. Uninstallation .....................................................................................................1418
11.4.4. Update ...............................................................................................................1418
11.4.5. Reconfiguration..................................................................................................1419
11.4.6. Failure................................................................................................................1419

11.5 WBEM Service Support & Related Functions ...........................................................1419
11.5.1. Installation..........................................................................................................1419
11.5.2. Multiple CIM Servers on a Single Server System..............................................1420
11.5.3. Uninstallation/Upgrade ......................................................................................1420
11.5.4. Reconfiguration..................................................................................................1420
11.5.5. Failure................................................................................................................1420

11.6 Client .........................................................................................................................1420
11.6.1. Uninstallation .....................................................................................................1420
11.6.2. Reconfiguration..................................................................................................1420

11.7 Directory Service .......................................................................................................1420
11.7.1. Installation..........................................................................................................1420
11.7.2. Uninstallation/Failure .........................................................................................1420

11.8 Issues with Discovery Mechanisms...........................................................................1421
A. (Informative) Mapping CIM Objects to SNMP MIB Structures ..................................1423

A.1. Purpose of this appendix..........................................................................................1423
A.2. CIM-to-MIB Mapping Overview ................................................................................1423
A.3. The SML MIB ...........................................................................................................1423

B. (Normative) Compliance with the SNIA SMI Specification .......................................1425
B.1. Compliance Statement .............................................................................................1425
B.2. How Compliance Is Declared ...................................................................................1425
B.3. The Server Profile and Compliance .........................................................................1425
B.4. Backward Compatibility ............................................................................................1426
xvi



 

List of Tables

Table 1. Functionality Matrix ................................................................................................................................................31
Table 2. SLP Properties .......................................................................................................................................................46
Table 3. Standard Formats for StorageVolume Names .......................................................................................................52
Table 4. Standard Formats for Port Names .........................................................................................................................53
Table 5. Standard Formats for Storage System Names ......................................................................................................54
Table 6. Standard Operating System Names for Tape Devices ..........................................................................................56
Table 7. LogicalDisk.Name for disk partitions ......................................................................................................................56
Table 8. GenericDiskParittion.Name for disk partitions........................................................................................................56
Table 9. Standard Operating System Names for Unpartitioned DIsks .................................................................................57
Table 10. OperationalStatus for Disk Drive............................................................................................................................61
Table 11. Example Standard Message Declaration...............................................................................................................76
Table 12. Example Standard Message Values ......................................................................................................................77
Table 13. Authorization Failure Message Arguments ............................................................................................................77
Table 14. Authorization Failure Error Properties ....................................................................................................................78
Table 15. Operation Not Supported Message Arguments .....................................................................................................78
Table 16. Property Not Found Message Arguments ..............................................................................................................79
Table 17. Invalid Query Message Arguments ........................................................................................................................79
Table 18. Parameter Error Message Arguments....................................................................................................................79
Table 19. Parameter Error Properties ....................................................................................................................................80
Table 20. Query Syntax Error Message Arguments...............................................................................................................80
Table 21. Query Syntax Error Properties ...............................................................................................................................80
Table 22. Query Too Expensive Message Arguments...........................................................................................................81
Table 23. Query Too Expensive Error Properties ..................................................................................................................81
Table 24. Class or Property Invalid in Query Message Arguments........................................................................................81
Table 25. Class or Property Invalid in Query Error Properties ...............................................................................................81
Table 26. Invalid Join in Query Message Arguments.............................................................................................................82
Table 27. Invalid Join in Query Error Properties ....................................................................................................................82
Table 28. Unexpected Hardware Fault Message Arguments.................................................................................................82
Table 29. Unexpected Hardware Fault Error Properties ........................................................................................................82
Table 30. Too busy to respond Message Arguments ............................................................................................................83
Table 31. Shutdown Started Message Arguments.................................................................................................................83
Table 32. Shutdown Started Alert Information .......................................................................................................................83
Table 33. Component Overheat Message Arguments ...........................................................................................................83
Table 34. Component Overheat Error Properties...................................................................................................................84
Table 35. Component overheat Alert Information ..................................................................................................................84
Table 36. Device Failover Message Arguments.....................................................................................................................84
Table 37. Functionality is Not Licensed Message Arguments................................................................................................85
Table 38. Functionality is not licensed Error Properties .........................................................................................................85
Table 39. Invalid Property Combination During Instance Creation or Modification Message Arguments ..............................85
Table 40. Invalid Property Combination during instance creation or modification Error Properties .......................................86
Table 41. Property Not Found Message Arguments ..............................................................................................................86
Table 42. Property Not Found Error Properties......................................................................................................................86
Table 43. Proxy Can Not Connect Message Arguments........................................................................................................86
Table 44. Proxy Can Not Connect Error Properties ...............................................................................................................87
Table 45. Not Enough Memory Message Arguments ............................................................................................................87
Table 46. Not Enough Memory Error Properties ....................................................................................................................87
Table 47. Object Already Exists Error Properties...................................................................................................................88
Table 48. Device Not ready Message Arguments..................................................................................................................88
Table 49. Device Not ready Error Properties .........................................................................................................................88
Table 50. Internal Bus Error Properties..................................................................................................................................89
Table 51. DMA Overflow Error Properties..............................................................................................................................89
Table 52. Firmware Logic Error Properties ............................................................................................................................89
Table 53. Front End Port Error Message Arguments .............................................................................................................90
Table 54. Front End Port Error Alert Information....................................................................................................................90
Table 55. Back End Port Error Message Arguments .............................................................................................................90
Table 56. Back End Port Error Alert Information....................................................................................................................90
Table 57. Remote Mirror Error Message Arguments .............................................................................................................90
Table 58. Remote Mirror Error Properties ..............................................................................................................................91
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xvii



 

Table 59. Remote Mirror Error Alert Information....................................................................................................................91
Table 60. Cache Memory Error Properties.............................................................................................................................91
Table 61. Unable to Access Remote Device Error Properties ...............................................................................................92
Table 62. Error Reading Data Alert Information.....................................................................................................................92
Table 63. Error Writing Data Alert Information .......................................................................................................................92
Table 64. Error Validating Write (CRC) Alert Information.......................................................................................................93
Table 65. Copy Operation Failed Error Properties .................................................................................................................93
Table 66. RAID Operation Failed Error Properties.................................................................................................................93
Table 67. Invalid RAID Type Error Properties........................................................................................................................94
Table 68. Invalid Storage Element Type Error Properties......................................................................................................94
Table 69. Configuration Change Failed Error Properties .......................................................................................................94
Table 70. Buffer Overrun Error Properties .............................................................................................................................95
Table 71. Stolen Capacity Message Arguments ....................................................................................................................95
Table 72. Stolen Capacity Error Properties............................................................................................................................95
Table 73. Invalid Extent passed Message Arguments ...........................................................................................................96
Table 74. Invalid Extent passed Error Properties...................................................................................................................96
Table 75. Invalid Deletion Attempted Error Properties ...........................................................................................................96
Table 76. Job Failed to Start Error Properties........................................................................................................................97
Table 77. Job was Halted Message Arguments.....................................................................................................................97
Table 78. Invalid State Transition Message Arguments.........................................................................................................97
Table 79. Invalid State Transition Error Properties ................................................................................................................98
Table 80. Invalid SAP for Method Message Arguments.........................................................................................................98
Table 81. Invalid SAP for Method Error Properties ................................................................................................................98
Table 82. Resource Not Available Message Arguments........................................................................................................98
Table 83. Resource Not Available Error Properties ...............................................................................................................99
Table 84. Resource Limit Exceeded Message Arguments ....................................................................................................99
Table 85. Resource Limit Exceeded Error Properties ............................................................................................................99
Table 86. Zone Database Changed Message Arguments ...................................................................................................100
Table 87. Zone Database Changed Alert Information..........................................................................................................100
Table 88. ZoneSet Activated Message Arguments ..............................................................................................................100
Table 89. ZoneSet Activated Alert Information ....................................................................................................................100
Table 90. Session Locked Error Properties .........................................................................................................................101
Table 91. Session Aborted Error Properties ........................................................................................................................101
Table 92. Standards Dependencies for SMI-S.....................................................................................................................111
Table 93. Profile Components..............................................................................................................................................114
Table 94. Registry of Profiles and Subprofiles. ....................................................................................................................117
Table 95. RemoteAccessPoint InfoFormat and AccessInfo Properties................................................................................122
Table 96. CIM Server Requirements for Access Points .......................................................................................................123
Table 97. CIM Elements for Access Points ..........................................................................................................................123
Table 98. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................123
Table 99. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint ........................................................124
Table 100. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ............................................................124
Table 101. Related Standards for Access Points...................................................................................................................124
Table 102. Supported Subprofiles for Cascading ..................................................................................................................134
Table 103. Extrinsic Methods Supported by Cascading Subprofile .......................................................................................134
Table 104. Cascading Capabilities Patterns ..........................................................................................................................137
Table 105. CIM Server Requirements for Cascading.............................................................................................................138
Table 106. CIM Elements for Cascading ...............................................................................................................................138
Table 107. SMI Referenced Properties/Methods for CIM_Dependency (System Dependency)............................................140
Table 108. SMI Referenced Properties/Methods for CIM_Dependency (Object Manager Dependency) ..............................140
Table 109. SMI Referenced Properties/Methods for CIM_Dependency (RegisteredProfile OM Dependency) .....................140
Table 110. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................141
Table 111. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Leaf)...............................................141
Table 112. SMI Referenced Properties/Methods for CIM_HostedCollection (AllocatedResources)......................................142
Table 113. SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources) .......................................142
Table 114. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................142
Table 115. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources) ...............................143
Table 116. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources) .................................143
Table 117. SMI Referenced Properties/Methods for CIM_Namespace (Leaf).......................................................................143
Table 118. SMI Referenced Properties/Methods for CIM_NamespaceInManager (Leaf)......................................................144
xviii



 

Table 119. SMI Referenced Properties/Methods for CIM_ObjectManager (Leaf) .................................................................144
Table 120. SMI Referenced Properties/Methods for CIM_ObjectManager (Cascading Profile) ............................................145
Table 121. SMI Referenced Properties/Methods for CIM_RegisteredProfile.........................................................................145
Table 122. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint ........................................................146
Table 123. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ............................................................147
Table 124. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................147
Table 125. SMI Referenced Properties/Methods for SNIA_AllocatedResources...................................................................147
Table 126. SMI Referenced Properties/Methods for SNIA_AllocationService .......................................................................148
Table 127. SMI Referenced Properties/Methods for SNIA_CascadingCapabilities ...............................................................149
Table 128. SMI Referenced Properties/Methods for SNIA_RemoteResources.....................................................................149
Table 129. Related Standards for Cascading ........................................................................................................................150
Table 130. CIM Server Requirements for Device Credentials ...............................................................................................154
Table 131. CIM Elements for Device Credentials ..................................................................................................................154
Table 132. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile .........................................................154
Table 133. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................155
Table 134. SMI Referenced Properties/Methods for CIM_RegisteredProfile.........................................................................155
Table 135. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................155
Table 136. SMI Referenced Properties/Methods for CIM_SharedSecret ..............................................................................155
Table 137. SMI Referenced Properties/Methods for CIM_SharedSecretIsShared................................................................156
Table 138. SMI Referenced Properties/Methods for CIM_SharedSecretService ..................................................................156
Table 139. SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile ...........................................................156
Table 140. Related Standards for Device Credentials ...........................................................................................................156
Table 141. OperationalStatus Details ....................................................................................................................................161
Table 142. CIM Server Requirements for Health ...................................................................................................................164
Table 143. CIM Elements for Health ......................................................................................................................................164
Table 144. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................164
Table 145. SMI Referenced Properties/Methods for CIM_LogicalDevice ..............................................................................165
Table 146. SMI Referenced Properties/Methods for CIM_RelatedElementCausingError......................................................165
Table 147. Related Standards for Health ...............................................................................................................................166
Table 148. OperationalStatus to Job State Mapping .............................................................................................................170
Table 149. Standard Message for Job Control Subprofile .....................................................................................................170
Table 150. CIM Server Requirements for Job Control ...........................................................................................................173
Table 151. CIM Elements for Job Control ..............................................................................................................................174
Table 152. SMI Referenced Properties/Methods for CIM_AffectedJobElement ....................................................................175
Table 153. SMI Referenced Properties/Methods for CIM_AssociatedJobMethodResult.......................................................175
Table 154. SMI Referenced Properties/Methods for CIM_ConcreteJob................................................................................175
Table 155. SMI Referenced Properties/Methods for CIM_MethodResult ..............................................................................178
Table 156. SMI Referenced Properties/Methods for CIM_OwningJobElement .....................................................................178
Table 157. Related Standards for Job Control .......................................................................................................................178
Table 158. CIM Server Requirements for Location................................................................................................................180
Table 159. CIM Elements for Location...................................................................................................................................180
Table 160. SMI Referenced Properties/Methods for CIM_Location.......................................................................................180
Table 161. SMI Referenced Properties/Methods for CIM_PhysicalElementLocation ............................................................181
Table 162. Related Standards for Location............................................................................................................................181
Table 163. Redundancy Type ................................................................................................................................................184
Table 164. CIM Server Requirements for Multiple Computer System ...................................................................................191
Table 165. CIM Elements for Multiple Computer System ......................................................................................................191
Table 166. SMI Referenced Properties/Methods for CIM_ComponentCS.............................................................................192
Table 167. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................192
Table 168. SMI Referenced Properties/Methods for CIM_ConcreteIdentity ..........................................................................193
Table 169. SMI Referenced Properties/Methods for CIM_IsSpare ........................................................................................193
Table 170. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................193
Table 171. SMI Referenced Properties/Methods for CIM_RedundancySet...........................................................................193
Table 172. Related Standards for Multiple Computer System ...............................................................................................194
Table 173. CIM Server Requirements for Physical Package .................................................................................................197
Table 174. CIM Elements for Physical Package ....................................................................................................................198
Table 175. SMI Referenced Properties/Methods for CIM_Container.....................................................................................199
Table 176. SMI Referenced Properties/Methods for CIM_PhysicalPackage.........................................................................199
Table 177. SMI Referenced Properties/Methods for CIM_Product ........................................................................................200
Table 178. SMI Referenced Properties/Methods for CIM_ProductParentChild .....................................................................200
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xix



 

Table 179. SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent ........................................................200
Table 180. SMI Referenced Properties/Methods for CIM_SystemPackaging........................................................................200
Table 181. Related Standards for Physical Package.............................................................................................................201
Table 182. Static Policy Instance Manipulation Methods.......................................................................................................223
Table 183. Dynamic Policy Instance Manipulation Methods..................................................................................................223
Table 184. Methods that cause Instance Creation, Deletion, or Modification of Dynamic Policy Rules ................................224
Table 185. SMI-S Supported PolicyCapabilities Patterns ......................................................................................................226
Table 186. CIM Server Requirements for Policy ....................................................................................................................227
Table 187. CIM Elements for Policy .......................................................................................................................................227
Table 188. SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Pre-defined) .........................................229
Table 189. SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Client defined)......................................231
Table 190. SMI Referenced Properties/Methods for CIM_CompoundPolicyCondition (Pre-defined) ....................................232
Table 191. SMI Referenced Properties/Methods for CIM_CompoundPolicyCondition (Client defined).................................234
Table 192. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................235
Table 193. SMI Referenced Properties/Methods for CIM_MethodAction (Pre-defined) ........................................................235
Table 194. SMI Referenced Properties/Methods for CIM_MethodAction (Client defined) .....................................................236
Table 195. SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyAction (Pre-defined) ....................................238
Table 196. SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyAction (Client defined).................................238
Table 197. SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyRule (Pre-defined).......................................239
Table 198. SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyRule (Client defined) ...................................240
Table 199. SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyCondition (Pre-defined)..........................240
Table 200. SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyCondition (Client defined) ......................241
Table 201. SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyRule (Pre-defined)..................................242
Table 202. SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyRule (Client defined) ..............................243
Table 203. SMI Referenced Properties/Methods for CIM_PolicyContainerInPolicyContainer (Pre-defined) .........................243
Table 204. SMI Referenced Properties/Methods for CIM_PolicyRule (Pre-defined) .............................................................245
Table 205. SMI Referenced Properties/Methods for CIM_PolicyRule (Client defined) ..........................................................247
Table 206. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (Pre-defined) ..............................................249
Table 207. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (Client defined) ...........................................249
Table 208. SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement (Pre-defined) ..................................250
Table 209. SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement (Client defined)...............................251
Table 210. SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod (Pre-defined) .........................................252
Table 211. SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod (Client defined) ......................................252
Table 212. SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Pre-defined) ...................................253
Table 213. SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Client defined)................................256
Table 214. SMI Referenced Properties/Methods for CIM_QueryCapabilities ........................................................................257
Table 215. SMI Referenced Properties/Methods for CIM_QueryCondition (Pre-defined) .....................................................258
Table 216. SMI Referenced Properties/Methods for CIM_QueryCondition (Client defined) ..................................................260
Table 217. SMI Referenced Properties/Methods for CIM_ReusablePolicy............................................................................262
Table 218. SMI Referenced Properties/Methods for CIM_ReusablePolicyContainer ............................................................262
Table 219. Related Standards for Policy................................................................................................................................263
Table 220. CIM Server Requirements for Software Installation Service ................................................................................268
Table 221. CIM Elements for Software Installation Service ...................................................................................................269
Table 222. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................269
Table 223. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................269
Table 224. SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity .............................................................270
Table 225. SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement ........................................................270
Table 226. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................270
Table 227. SMI Referenced Properties/Methods for CIM_SoftwareInstallationService .........................................................270
Table 228. SMI Referenced Properties/Methods for CIM_SoftwareInstallationServiceCapabilities ......................................271
Table 229. Related Standards for Software Installation Service............................................................................................271
Table 230. CIM Server Requirements for SoftwarePackage .................................................................................................274
Table 231. CIM Elements for SoftwarePackage ....................................................................................................................274
Table 232. SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity .............................................................274
Table 233. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................274
Table 234. Related Standards for SoftwarePackage .............................................................................................................275
Table 235. CIM Server Requirements for SoftwarePackage .................................................................................................278
Table 236. CIM Elements for SoftwarePackage ....................................................................................................................278
Table 237. SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity .............................................................278
Table 238. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................278
xx



 

Table 239. Related Standards for SoftwarePackage .............................................................................................................279
Table 240. CIM Server Requirements for Software Repository .............................................................................................282
Table 241. CIM Elements for Software Repository ................................................................................................................283
Table 242. SMI Referenced Properties/Methods for CIM_HostedCollection .........................................................................283
Table 243. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................283
Table 244. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint ........................................................284
Table 245. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ............................................................284
Table 246. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................284
Table 247. SMI Referenced Properties/Methods for CIM_SoftwareIdentityCollection...........................................................285
Table 248. SMI Referenced Properties/Methods for CIM_System ........................................................................................285
Table 249. Related Standards for Software Repository .........................................................................................................285
Table 250. How Common storage devices are modeled in CIM............................................................................................288
Table 251. SPIPort OperationalStatus ...................................................................................................................................289
Table 252. CIM Server Requirements for SPI Target Ports ...................................................................................................290
Table 253. CIM Elements for SPI Target Ports ......................................................................................................................290
Table 254. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..........................................................290
Table 255. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................291
Table 256. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint.................................................................291
Table 257. SMI Referenced Properties/Methods for CIM_SPIPort ........................................................................................291
Table 258. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................292
Table 259. Related Standards for SPI Target Ports...............................................................................................................292
Table 260. FCPort OperationalStatus ....................................................................................................................................294
Table 261. CIM Server Requirements for FC Target Ports ....................................................................................................294
Table 262. CIM Elements for FC Target Ports .......................................................................................................................295
Table 263. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..........................................................295
Table 264. SMI Referenced Properties/Methods for CIM_FCPort .........................................................................................296
Table 265. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................296
Table 266. SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort............................................................297
Table 267. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ............................................................297
Table 268. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint.................................................................297
Table 269. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................298
Table 270. Related Standards for FC Target Ports................................................................................................................298
Table 271. iSCSI Terminology and SMI-S Class Names.......................................................................................................300
Table 272. EthernetPort OperationalStatus ...........................................................................................................................302
Table 273. CIM Server Requirements for iSCSI Target Ports................................................................................................318
Table 274. CIM Elements for iSCSI Target Ports...................................................................................................................318
Table 275. SMI Referenced Properties/Methods for CIM_BindsTo .......................................................................................320
Table 276. SMI Referenced Properties/Methods for CIM_ConcreteDependency..................................................................320
Table 277. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..........................................................320
Table 278. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................320
Table 279. SMI Referenced Properties/Methods for CIM_ElementSettingData ....................................................................321
Table 280. SMI Referenced Properties/Methods for CIM_ElementStatisticalData ................................................................321
Table 281. SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe..............................................................321
Table 282. SMI Referenced Properties/Methods for CIM_EthernetPort ................................................................................321
Table 283. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................322
Table 284. SMI Referenced Properties/Methods for CIM_HostedCollection .........................................................................322
Table 285. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................322
Table 286. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint......................................................................322
Table 287. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................323
Table 288. SMI Referenced Properties/Methods for CIM_NetworkPipeComposition ............................................................323
Table 289. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ............................................................323
Table 290. SMI Referenced Properties/Methods for CIM_SCSIProtocolController ...............................................................324
Table 291. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................324
Table 292. SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ............................................................324
Table 293. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint..................................................................325
Table 294. SMI Referenced Properties/Methods for CIM_iSCSICapabilities.........................................................................325
Table 295. SMI Referenced Properties/Methods for CIM_iSCSIConfigurationCapabilities ...................................................325
Table 296. SMI Referenced Properties/Methods for CIM_iSCSIConfigurationService..........................................................326
Table 297. SMI Referenced Properties/Methods for CIM_iSCSIConnection.........................................................................326
Table 298. SMI Referenced Properties/Methods for CIM_iSCSIConnectionSettings ............................................................327
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xxi



 

Table 299. SMI Referenced Properties/Methods for CIM_iSCSILoginStatistics ....................................................................327
Table 300. SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint................................................................328
Table 301. SMI Referenced Properties/Methods for CIM_iSCSISession ..............................................................................328
Table 302. SMI Referenced Properties/Methods for CIM_iSCSISessionFailures..................................................................329
Table 303. SMI Referenced Properties/Methods for CIM_iSCSISessionSettings .................................................................330
Table 304. SMI Referenced Properties/Methods for CIM_iSCSISessionStatistics ................................................................330
Table 305. Related Standards for iSCSI Target Ports ...........................................................................................................331
Table 306. DAPort OperationalStatus....................................................................................................................................334
Table 307. CIM Server Requirements for DA Target Ports....................................................................................................335
Table 308. CIM Elements for DA Target Ports.......................................................................................................................335
Table 309. SMI Referenced Properties/Methods for CIM_DAPort.........................................................................................335
Table 310. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..........................................................336
Table 311. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................336
Table 312. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint.................................................................336
Table 313. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................337
Table 314. Related Standards for DA Target Ports ...............................................................................................................337
Table 315. SPIPort OperationalStatus ...................................................................................................................................341
Table 316. CIM Server Requirements for SPI Initiator Ports..................................................................................................342
Table 317. CIM Elements for SPI Initiator Ports.....................................................................................................................342
Table 318. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..........................................................342
Table 319. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................343
Table 320. SMI Referenced Properties/Methods for CIM_LogicalDevice ..............................................................................343
Table 321. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath.............................................343
Table 322. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint.................................................................344
Table 323. SMI Referenced Properties/Methods for CIM_SPIPort ........................................................................................344
Table 324. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................344
Table 325. Related Standards for SPI Initiator Ports .............................................................................................................345
Table 326. FCPort OperationalStatus ....................................................................................................................................347
Table 327. CIM Server Requirements for FC Initiator Ports...................................................................................................348
Table 328. CIM Elements for FC Initiator Ports......................................................................................................................349
Table 329. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..........................................................349
Table 330. SMI Referenced Properties/Methods for CIM_FCPort .........................................................................................350
Table 331. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................351
Table 332. SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort............................................................351
Table 333. SMI Referenced Properties/Methods for CIM_SCSIProtocolController ...............................................................351
Table 334. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint.................................................................352
Table 335. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................352
Table 336. Related Standards for FC Initiator Ports ..............................................................................................................352
Table 337. EthernetPort OperationalStatus ...........................................................................................................................354
Table 338. CIM Server Requirements for iSCSI Initiator Ports ..............................................................................................354
Table 339. CIM Elements for iSCSI Initiator Ports .................................................................................................................355
Table 340. SMI Referenced Properties/Methods for CIM_BindsTo .......................................................................................355
Table 341. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..........................................................356
Table 342. SMI Referenced Properties/Methods for CIM_EthernetPort ................................................................................356
Table 343. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................356
Table 344. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint......................................................................357
Table 345. SMI Referenced Properties/Methods for CIM_LogicalDevice ..............................................................................357
Table 346. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................357
Table 347. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint..................................................................358
Table 348. SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint................................................................358
Table 349. Related Standards for iSCSI Initiator Ports ..........................................................................................................358
Table 350. CIM Server Requirements for Backend Ports ......................................................................................................360
Table 351. CIM Elements for Backend Ports .........................................................................................................................360
Table 352. SMI Referenced Properties/Methods for CIM_FCPort .........................................................................................360
Table 353. SMI Referenced Properties/Methods for CIM_ProtocolControllerAccessesUnit..................................................361
Table 354. SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort............................................................361
Table 355. SMI Referenced Properties/Methods for CIM_SCSIProtocolController ...............................................................361
Table 356. SMI Referenced Properties/Methods for CIM_StorageExtent..............................................................................361
Table 357. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................362
Table 358. Related Standards for Backend Ports ..................................................................................................................362
xxii



 

Table 359. SMI-S Preferred Cipher Suites.............................................................................................................................368
Table 360. Supported Subprofiles for Server .........................................................................................................................373
Table 361. CIM Server Requirements for Server ...................................................................................................................384
Table 362. CIM Elements for Server ......................................................................................................................................385
Table 363. SMI Referenced Properties/Methods for CIM_CIMXMLCommunicationMechanism...........................................386
Table 364. SMI Referenced Properties/Methods for CIM_CommMechanismForManager....................................................386
Table 365. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile .........................................................386
Table 366. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity .............................................................387
Table 367. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................387
Table 368. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................387
Table 369. SMI Referenced Properties/Methods for CIM_Namespace .................................................................................387
Table 370. SMI Referenced Properties/Methods for CIM_NamespaceInManager ................................................................388
Table 371. SMI Referenced Properties/Methods for CIM_ObjectManager............................................................................388
Table 372. SMI Referenced Properties/Methods for CIM_ReferencedProfile........................................................................389
Table 373. SMI Referenced Properties/Methods for CIM_RegisteredProfile.........................................................................389
Table 374. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................390
Table 375. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................390
Table 376. SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile ...........................................................391
Table 377. SMI Referenced Properties/Methods for CIM_System ........................................................................................391
Table 378. Related Standards for Server...............................................................................................................................391
Table 379. Indications Subprofile Methods that Cause Instance Creation, Deletion or Modification .....................................404
Table 380. CIM Server Requirements for Indication ..............................................................................................................410
Table 381. CIM Elements for Indication .................................................................................................................................411
Table 382. SMI Referenced Properties/Methods for CIM_AlertIndication..............................................................................412
Table 383. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................413
Table 384. SMI Referenced Properties/Methods for CIM_IndicationFilter (Pre-defined) .......................................................413
Table 385. SMI Referenced Properties/Methods for CIM_IndicationFilter (Client defined)....................................................414
Table 386. SMI Referenced Properties/Methods for CIM_IndicationSubscription .................................................................414
Table 387. SMI Referenced Properties/Methods for CIM_InstCreation.................................................................................415
Table 388. SMI Referenced Properties/Methods for CIM_InstDeletion .................................................................................416
Table 389. SMI Referenced Properties/Methods for CIM_InstModification ...........................................................................416
Table 390. SMI Referenced Properties/Methods for CIM_ListenerDestinationCIMXML........................................................417
Table 391. SMI Referenced Properties/Methods for CIM_QueryCapabilities ........................................................................418
Table 392. Related Standards for Indication..........................................................................................................................418
Table 393. CIM Server Requirements for Object Manager Adapter ......................................................................................420
Table 394. CIM Elements for Object Manager Adapter .........................................................................................................420
Table 395. SMI Referenced Properties/Methods for CIM_CommMechanismForObjectManagerAdapter.............................420
Table 396. SMI Referenced Properties/Methods for CIM_ObjectManagerAdapter ...............................................................421
Table 397. Related Standards for Object Manager Adapter ..................................................................................................421
Table 398. Security Subprofiles .............................................................................................................................................424
Table 399. Supported Subprofiles for Security ......................................................................................................................426
Table 400. CIM Server Requirements for Security.................................................................................................................429
Table 401. CIM Elements for Security ...................................................................................................................................429
Table 402. SMI Referenced Properties/Methods for CIM_Account .......................................................................................430
Table 403. SMI Referenced Properties/Methods for CIM_AccountOnSystem.......................................................................430
Table 404. SMI Referenced Properties/Methods for CIM_AssignedIdentity ..........................................................................430
Table 405. SMI Referenced Properties/Methods for CIM_AuthenticationRule ......................................................................430
Table 406. SMI Referenced Properties/Methods for CIM_ConcreteIdentity ..........................................................................431
Table 407. SMI Referenced Properties/Methods for CIM_Identity.........................................................................................431
Table 408. SMI Referenced Properties/Methods for CIM_IdentityContext ............................................................................431
Table 409. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem ....................................................................431
Table 410. SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement ........................................................432
Table 411. SMI Referenced Properties/Methods for CIM_RegisteredProfile.........................................................................432
Table 412. SMI Referenced Properties/Methods for CIM_System ........................................................................................432
Table 413. Related Standards for Security ............................................................................................................................432
Table 414. CIM Server Requirements for Security Authorization...........................................................................................443
Table 415. CIM Elements for Security Authorization..............................................................................................................443
Table 416. SMI Referenced Properties/Methods for CIM_AuthorizationRule ........................................................................444
Table 417. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToIdentity ............................................444
Table 418. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToPrivilege ..........................................444
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xxiii



 

Table 419. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToTarget..............................................444
Table 420. SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege .....................................................................444
Table 421. SMI Referenced Properties/Methods for CIM_AuthorizedSubject .......................................................................445
Table 422. SMI Referenced Properties/Methods for CIM_AuthorizedTarget.........................................................................445
Table 423. SMI Referenced Properties/Methods for CIM_ConcreteDependency..................................................................445
Table 424. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile .........................................................445
Table 425. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................446
Table 426. SMI Referenced Properties/Methods for CIM_Identity.........................................................................................446
Table 427. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem ....................................................................446
Table 428. SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement ........................................................446
Table 429. SMI Referenced Properties/Methods for CIM_Privilege.......................................................................................447
Table 430. SMI Referenced Properties/Methods for CIM_PrivilegeManagementService......................................................447
Table 431. SMI Referenced Properties/Methods for CIM_PrivilegePropagationRule............................................................447
Table 432. SMI Referenced Properties/Methods for CIM_RegisteredProfile.........................................................................447
Table 433. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................448
Table 434. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement ................................................................448
Table 435. SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement ........................................................448
Table 436. SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile ...........................................................448
Table 437. SMI Referenced Properties/Methods for CIM_System ........................................................................................449
Table 438. Related Standards for Security Authorization ......................................................................................................449
Table 439. CIM Server Requirements for Security Resource Ownership ..............................................................................458
Table 440. CIM Elements for Security Resource Ownership .................................................................................................458
Table 441. SMI Referenced Properties/Methods for CIM_AuthorizationRule ........................................................................459
Table 442. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToIdentity ............................................459
Table 443. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToPrivilege ..........................................459
Table 444. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToRole.................................................460
Table 445. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToTarget..............................................460
Table 446. SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege .....................................................................460
Table 447. SMI Referenced Properties/Methods for CIM_AuthorizedSubject .......................................................................460
Table 448. SMI Referenced Properties/Methods for CIM_AuthorizedTarget.........................................................................461
Table 449. SMI Referenced Properties/Methods for CIM_ConcreteDependency..................................................................461
Table 450. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile .........................................................461
Table 451. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................461
Table 452. SMI Referenced Properties/Methods for CIM_Identity.........................................................................................461
Table 453. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................462
Table 454. SMI Referenced Properties/Methods for CIM_OwningCollectionElement ...........................................................462
Table 455. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem ....................................................................462
Table 456. SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement ........................................................462
Table 457. SMI Referenced Properties/Methods for CIM_Privilege.......................................................................................463
Table 458. SMI Referenced Properties/Methods for CIM_PrivilegeManagementService......................................................463
Table 459. SMI Referenced Properties/Methods for CIM_PrivilegePropagationRule............................................................463
Table 460. SMI Referenced Properties/Methods for CIM_ReferencedProfile........................................................................463
Table 461. SMI Referenced Properties/Methods for CIM_RegisteredProfile.........................................................................464
Table 462. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................464
Table 463. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................464
Table 464. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................464
Table 465. SMI Referenced Properties/Methods for CIM_Role .............................................................................................465
Table 466. SMI Referenced Properties/Methods for CIM_RoleLimitedToTarget...................................................................465
Table 467. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement ................................................................465
Table 468. SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement ........................................................465
Table 469. SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile ...........................................................465
Table 470. SMI Referenced Properties/Methods for CIM_System ........................................................................................466
Table 471. Related Standards for Security Resource Ownership..........................................................................................466
Table 472. CIM Server Requirements for Security RBAC......................................................................................................477
Table 473. CIM Elements for Security RBAC.........................................................................................................................477
Table 474. SMI Referenced Properties/Methods for CIM_AuthorizationRule ........................................................................478
Table 475. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToRole.................................................478
Table 476. SMI Referenced Properties/Methods for CIM_ConcreteDependency..................................................................478
Table 477. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile .........................................................478
Table 478. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................478
xxiv



 

Table 479. SMI Referenced Properties/Methods for CIM_Identity.........................................................................................479
Table 480. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................479
Table 481. SMI Referenced Properties/Methods for CIM_MoreRoleInfo...............................................................................479
Table 482. SMI Referenced Properties/Methods for CIM_OtherRoleInformation ..................................................................479
Table 483. SMI Referenced Properties/Methods for CIM_OwningCollectionElement ...........................................................480
Table 484. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem ....................................................................480
Table 485. SMI Referenced Properties/Methods for CIM_Privilege.......................................................................................480
Table 486. SMI Referenced Properties/Methods for CIM_PrivilegeManagementService......................................................480
Table 487. SMI Referenced Properties/Methods for CIM_RegisteredProfile.........................................................................481
Table 488. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................481
Table 489. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................481
Table 490. SMI Referenced Properties/Methods for CIM_Role .............................................................................................481
Table 491. SMI Referenced Properties/Methods for CIM_RoleLimitedToTarget...................................................................482
Table 492. SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile ...........................................................482
Table 493. SMI Referenced Properties/Methods for CIM_System ........................................................................................482
Table 494. Related Standards for Security RBAC .................................................................................................................482
Table 495. CIM Server Requirements for Security Identity Management ..............................................................................493
Table 496. CIM Elements for Security Identity Management .................................................................................................494
Table 497. SMI Referenced Properties/Methods for CIM_Account .......................................................................................495
Table 498. SMI Referenced Properties/Methods for CIM_AccountManagementService ......................................................495
Table 499. SMI Referenced Properties/Methods for CIM_AccountMapsToAccount .............................................................496
Table 500. SMI Referenced Properties/Methods for CIM_AccountOnSystem.......................................................................496
Table 501. SMI Referenced Properties/Methods for CIM_AssignedIdentity ..........................................................................496
Table 502. SMI Referenced Properties/Methods for CIM_AuthenticationService..................................................................496
Table 503. SMI Referenced Properties/Methods for CIM_ConcreteDependency..................................................................496
Table 504. SMI Referenced Properties/Methods for CIM_ConcreteIdentity ..........................................................................497
Table 505. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile .........................................................497
Table 506. SMI Referenced Properties/Methods for CIM_GatewayPathID ...........................................................................497
Table 507. SMI Referenced Properties/Methods for CIM_Group ..........................................................................................497
Table 508. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................498
Table 509. SMI Referenced Properties/Methods for CIM_IPNetworkIdentity ........................................................................498
Table 510. SMI Referenced Properties/Methods for CIM_Identity.........................................................................................498
Table 511. SMI Referenced Properties/Methods for CIM_IdentityContext ............................................................................498
Table 512. SMI Referenced Properties/Methods for CIM_ManagesAccount.........................................................................499
Table 513. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................499
Table 514. SMI Referenced Properties/Methods for CIM_MoreGroupInfo ............................................................................499
Table 515. SMI Referenced Properties/Methods for CIM_MoreOrgUnitInfo..........................................................................499
Table 516. SMI Referenced Properties/Methods for CIM_MoreOrganizationInfo..................................................................499
Table 517. SMI Referenced Properties/Methods for CIM_MorePersonInfo...........................................................................500
Table 518. SMI Referenced Properties/Methods for CIM_OrgStructure................................................................................500
Table 519. SMI Referenced Properties/Methods for CIM_OrgUnit ........................................................................................500
Table 520. SMI Referenced Properties/Methods for CIM_Organization ................................................................................500
Table 521. SMI Referenced Properties/Methods for CIM_OtherGroupInformation ...............................................................501
Table 522. SMI Referenced Properties/Methods for CIM_OtherOrgUnitInformation .............................................................501
Table 523. SMI Referenced Properties/Methods for CIM_OtherOrganizationInformation .....................................................501
Table 524. SMI Referenced Properties/Methods for CIM_OtherPersonInformation ..............................................................501
Table 525. SMI Referenced Properties/Methods for CIM_OwningCollectionElement ...........................................................502
Table 526. SMI Referenced Properties/Methods for CIM_Person.........................................................................................502
Table 527. SMI Referenced Properties/Methods for CIM_RegisteredProfile.........................................................................503
Table 528. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................503
Table 529. SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement ........................................................503
Table 530. SMI Referenced Properties/Methods for CIM_StorageHardwareID.....................................................................503
Table 531. SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile ...........................................................504
Table 532. SMI Referenced Properties/Methods for CIM_System ........................................................................................504
Table 533. SMI Referenced Properties/Methods for CIM_UserContact ................................................................................504
Table 534. Related Standards for Security Identity Management..........................................................................................504
Table 535. CIM Server Requirements for Security Credential Management .........................................................................508
Table 536. CIM Elements for Security Credential Management ............................................................................................509
Table 537. SMI Referenced Properties/Methods for CIM_CredentialContext........................................................................509
Table 538. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile .........................................................509
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xxv



 

Table 539. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................510
Table 540. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................510
Table 541. SMI Referenced Properties/Methods for CIM_IKESecretIsNamed......................................................................510
Table 542. SMI Referenced Properties/Methods for CIM_LocallyManagedPublicKey ..........................................................510
Table 543. SMI Referenced Properties/Methods for CIM_NamedSharedIKESecret .............................................................511
Table 544. SMI Referenced Properties/Methods for CIM_PublicKeyManagementService ...................................................511
Table 545. SMI Referenced Properties/Methods for CIM_RegisteredProfile.........................................................................511
Table 546. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................512
Table 547. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint ........................................................512
Table 548. SMI Referenced Properties/Methods for CIM_SharedSecret ..............................................................................512
Table 549. SMI Referenced Properties/Methods for CIM_SharedSecretIsShared................................................................512
Table 550. SMI Referenced Properties/Methods for CIM_SharedSecretService ..................................................................513
Table 551. SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile ...........................................................513
Table 552. SMI Referenced Properties/Methods for CIM_System ........................................................................................513
Table 553. SMI Referenced Properties/Methods for CIM_UnsignedPublicKey .....................................................................513
Table 554. Related Standards for Security Credential Management .....................................................................................514
Table 555. CIM Server Requirements for Security 3rd Party Authentication .........................................................................518
Table 556. CIM Elements for Security 3rd Party Authentication ............................................................................................518
Table 557. SMI Referenced Properties/Methods for CIM_Account .......................................................................................519
Table 558. SMI Referenced Properties/Methods for CIM_AccountOnSystem.......................................................................519
Table 559. SMI Referenced Properties/Methods for CIM_AssignedIdentity ..........................................................................519
Table 560. SMI Referenced Properties/Methods for CIM_AuthenticationService..................................................................520
Table 561. SMI Referenced Properties/Methods for CIM_ConcreteDependency..................................................................520
Table 562. SMI Referenced Properties/Methods for CIM_ConcreteIdentity ..........................................................................520
Table 563. SMI Referenced Properties/Methods for CIM_CredentialContext........................................................................520
Table 564. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile .........................................................521
Table 565. SMI Referenced Properties/Methods for CIM_Group ..........................................................................................521
Table 566. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................521
Table 567. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................521
Table 568. SMI Referenced Properties/Methods for CIM_Identity.........................................................................................522
Table 569. SMI Referenced Properties/Methods for CIM_IdentityContext ............................................................................522
Table 570. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................522
Table 571. SMI Referenced Properties/Methods for CIM_ReferencedProfile........................................................................522
Table 572. SMI Referenced Properties/Methods for CIM_RegisteredProfile.........................................................................522
Table 573. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................523
Table 574. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................523
Table 575. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile ..................................................................523
Table 576. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint ........................................................523
Table 577. SMI Referenced Properties/Methods for CIM_Role .............................................................................................524
Table 578. SMI Referenced Properties/Methods for CIM_ServiceSAPDependency.............................................................524
Table 579. SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile ...........................................................524
Table 580. SMI Referenced Properties/Methods for CIM_System ........................................................................................524
Table 581. SMI Referenced Properties/Methods for CIM_System ........................................................................................524
Table 582. SMI Referenced Properties/Methods for CIM_UserContact ................................................................................525
Table 583. Related Standards for Security 3rd Party Authentication.....................................................................................525
Table 584. Supported Subprofiles for Fabric .........................................................................................................................532
Table 585. Port OperationalStatus.........................................................................................................................................533
Table 586. OperationalStatus for ComputerSystem...............................................................................................................533
Table 587. CIM Server Requirements for Fabric....................................................................................................................538
Table 588. CIM Elements for Fabric ......................................................................................................................................539
Table 589. SMI Referenced Properties/Methods for CIM_ActiveConnection ........................................................................541
Table 590. SMI Referenced Properties/Methods for CIM_AdminDomain (SAN)...................................................................541
Table 591. SMI Referenced Properties/Methods for CIM_AdminDomain (Fabric) ................................................................541
Table 592. SMI Referenced Properties/Methods for CIM_Component..................................................................................542
Table 593. SMI Referenced Properties/Methods for CIM_ComputerSystem (Fibre Channel Switch) ...................................542
Table 594. SMI Referenced Properties/Methods for CIM_ComputerSystem (Fibre Channel Platform) ................................543
Table 595. SMI Referenced Properties/Methods for CIM_ConnectivityCollection .................................................................543
Table 596. SMI Referenced Properties/Methods for CIM_ContainedDomain........................................................................543
Table 597. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..........................................................544
Table 598. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................544
xxvi



 

Table 599. SMI Referenced Properties/Methods for CIM_ElementSettingData ....................................................................544
Table 600. SMI Referenced Properties/Methods for CIM_FCPort (Switch) ...........................................................................545
Table 601. SMI Referenced Properties/Methods for CIM_FCPort (Devices).........................................................................546
Table 602. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................547
Table 603. SMI Referenced Properties/Methods for CIM_HostedCollection (LogicalPortGroup)..........................................547
Table 604. SMI Referenced Properties/Methods for CIM_HostedCollection (ConnectivityCollection) ..................................547
Table 605. SMI Referenced Properties/Methods for CIM_HostedCollection (Zone, ZoneSet, and ZoneAlias) .....................548
Table 606. SMI Referenced Properties/Methods for CIM_LogicalPortGroup (Fibre Channel Node).....................................548
Table 607. SMI Referenced Properties/Methods for CIM_MemberOfCollection (FCPort to LogicalPortGroup)....................549
Table 608. SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoint to ConnectivityCollection) ..

549
Table 609. SMI Referenced Properties/Methods for CIM_MemberOfCollection (ZoneAlias and ZoneMember to Zone)......549
Table 610. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Zone to ZoneSet) .....................................550
Table 611. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint .........................................................................550
Table 612. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................550
Table 613. SMI Referenced Properties/Methods for CIM_Zone (Active) ...............................................................................551
Table 614. SMI Referenced Properties/Methods for CIM_Zone (Inactive) ............................................................................551
Table 615. SMI Referenced Properties/Methods for CIM_ZoneCapabilities..........................................................................551
Table 616. SMI Referenced Properties/Methods for CIM_ZoneMembershipSettingData......................................................553
Table 617. SMI Referenced Properties/Methods for CIM_ZoneSet (Active)..........................................................................553
Table 618. SMI Referenced Properties/Methods for CIM_ZoneSet (Inactive) .......................................................................554
Table 619. Related Standards for Fabric ...............................................................................................................................554
Table 620. CIM Server Requirements for Enhanced Zoning and Enhanced Zoning Control.................................................559
Table 621. CIM Elements for Enhanced Zoning and Enhanced Zoning Control....................................................................559
Table 622. SMI Referenced Properties/Methods for CIM_HostedCollection .........................................................................559
Table 623. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................560
Table 624. SMI Referenced Properties/Methods for CIM_NamedAddressCollection............................................................560
Table 625. SMI Referenced Properties/Methods for CIM_ZoneService ................................................................................560
Table 626. Related Standards for Enhanced Zoning and Enhanced Zoning Control ............................................................560
Table 627. CIM Server Requirements for Zone Control.........................................................................................................576
Table 628. CIM Elements for Zone Control............................................................................................................................576
Table 629. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................576
Table 630. SMI Referenced Properties/Methods for CIM_ZoneService ................................................................................576
Table 631. Related Standards for Zone Control ....................................................................................................................578
Table 632. CIM Server Requirements for FDMI.....................................................................................................................580
Table 633. CIM Elements for FDMI........................................................................................................................................581
Table 634. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................581
Table 635. SMI Referenced Properties/Methods for CIM_ControlledBy................................................................................582
Table 636. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity .............................................................582
Table 637. SMI Referenced Properties/Methods for CIM_FCPort .........................................................................................582
Table 638. SMI Referenced Properties/Methods for CIM_HostedCollection .........................................................................583
Table 639. SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity .............................................................584
Table 640. SMI Referenced Properties/Methods for CIM_LogicalPortGroup ........................................................................584
Table 641. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................584
Table 642. SMI Referenced Properties/Methods for CIM_PhysicalPackage.........................................................................585
Table 643. SMI Referenced Properties/Methods for CIM_PortController ..............................................................................585
Table 644. SMI Referenced Properties/Methods for CIM_Product ........................................................................................586
Table 645. SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent ........................................................586
Table 646. SMI Referenced Properties/Methods for CIM_Realizes.......................................................................................586
Table 647. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................587
Table 648. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................587
Table 649. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................588
Table 650. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................588
Table 651. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................588
Table 652. Related Standards for FDMI ................................................................................................................................589
Table 653. CIM Server Requirements for FabricPathPerformance........................................................................................592
Table 654. CIM Elements for FabricPathPerformance...........................................................................................................592
Table 655. SMI Referenced Properties/Methods for CIM_ElementStatisticalData ................................................................592
Table 656. SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe..............................................................593
Table 657. SMI Referenced Properties/Methods for CIM_HostedCollection .........................................................................593
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xxvii



 

Table 658. SMI Referenced Properties/Methods for CIM_HostedNetworkPipe.....................................................................593
Table 659. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................593
Table 660. SMI Referenced Properties/Methods for CIM_Network .......................................................................................594
Table 661. SMI Referenced Properties/Methods for CIM_NetworkPipe................................................................................594
Table 662. SMI Referenced Properties/Methods for CIM_NetworkPortStatistics ..................................................................594
Table 663. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint .........................................................................595
Table 664. SMI Referenced Properties/Methods for CIM_StatisticsCollection ......................................................................595
Table 665. Related Standards for FabricPathPerformance ...................................................................................................595
Table 666. FC Port Settings and Capabilities ........................................................................................................................599
Table 667. Supported Subprofiles for Switch.........................................................................................................................600
Table 668. Supported Packages for Switch ...........................................................................................................................601
Table 669. CIM Server Requirements for Switch...................................................................................................................618
Table 670. CIM Elements for Switch......................................................................................................................................619
Table 671. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................620
Table 672. SMI Referenced Properties/Methods for CIM_ComputerSystemPackage...........................................................621
Table 673. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................621
Table 674. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................621
Table 675. SMI Referenced Properties/Methods for CIM_ElementSettingData ....................................................................622
Table 676. SMI Referenced Properties/Methods for CIM_ElementSettingData ....................................................................622
Table 677. SMI Referenced Properties/Methods for CIM_ElementStatisticalData ................................................................622
Table 678. SMI Referenced Properties/Methods for CIM_ElementStatisticalData ................................................................622
Table 679. SMI Referenced Properties/Methods for CIM_FCPort .........................................................................................623
Table 680. SMI Referenced Properties/Methods for CIM_FCPortCapabilities ......................................................................624
Table 681. SMI Referenced Properties/Methods for CIM_FCPortRateStatistics ...................................................................625
Table 682. SMI Referenced Properties/Methods for CIM_FCPortSettings ............................................................................626
Table 683. SMI Referenced Properties/Methods for CIM_FCPortStatistics...........................................................................626
Table 684. SMI Referenced Properties/Methods for CIM_FCSwitchCapabilities ..................................................................628
Table 685. SMI Referenced Properties/Methods for CIM_FCSwitchSettings........................................................................628
Table 686. SMI Referenced Properties/Methods for CIM_HostedCollection .........................................................................629
Table 687. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................629
Table 688. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................629
Table 689. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint .........................................................................630
Table 690. SMI Referenced Properties/Methods for CIM_RedundancySet...........................................................................630
Table 691. SMI Referenced Properties/Methods for CIM_StatisticsCollection ......................................................................630
Table 692. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................631
Table 693. Related Standards for Switch...............................................................................................................................631
Table 694. CIM Server Requirements for Switch Configuration Data....................................................................................635
Table 695. CIM Elements for Switch Configuration Data.......................................................................................................635
Table 696. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................635
Table 697. SMI Referenced Properties/Methods for CIM_ConfigurationData .......................................................................636
Table 698. SMI Referenced Properties/Methods for CIM_ElementSettingData ....................................................................636
Table 699. Related Standards for Switch Configuration Data................................................................................................636
Table 700. CIM Server Requirements for Blades...................................................................................................................638
Table 701. CIM Elements for Blades .....................................................................................................................................639
Table 702. SMI Referenced Properties/Methods for CIM_LogicalModule .............................................................................639
Table 703. SMI Referenced Properties/Methods for CIM_ModulePort ..................................................................................640
Table 704. SMI Referenced Properties/Methods for CIM_PhysicalPackage.........................................................................640
Table 705. SMI Referenced Properties/Methods for CIM_Product ........................................................................................641
Table 706. SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent ........................................................641
Table 707. SMI Referenced Properties/Methods for CIM_Realizes.......................................................................................641
Table 708. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................642
Table 709. Related Standards for Blades ..............................................................................................................................642
Table 710. CIM Server Requirements for Extender ...............................................................................................................656
Table 711. CIM Elements for Extender ..................................................................................................................................657
Table 712. SMI Referenced Properties/Methods for CIM_BindsTo .......................................................................................658
Table 713. SMI Referenced Properties/Methods for CIM_Component..................................................................................659
Table 714. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................659
Table 715. SMI Referenced Properties/Methods for CIM_ComputerSystemPackage...........................................................659
Table 716. SMI Referenced Properties/Methods for CIM_ElementSettingData ....................................................................659
Table 717. SMI Referenced Properties/Methods for CIM_ElementStatisticalData ................................................................660
xxviii



 

Table 718. SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe..............................................................660
Table 719. SMI Referenced Properties/Methods for CIM_EthernetPort ................................................................................660
Table 720. SMI Referenced Properties/Methods for CIM_EthernetPortStatistics..................................................................661
Table 721. SMI Referenced Properties/Methods for CIM_FCIPSettings ...............................................................................661
Table 722. SMI Referenced Properties/Methods for CIM_FCPort .........................................................................................662
Table 723. SMI Referenced Properties/Methods for CIM_FCPortStatistics...........................................................................663
Table 724. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................665
Table 725. SMI Referenced Properties/Methods for CIM_HostedNetworkPipe.....................................................................665
Table 726. SMI Referenced Properties/Methods for CIM_IPEndpointStatistics ....................................................................665
Table 727. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint......................................................................666
Table 728. SMI Referenced Properties/Methods for CIM_IPSettings....................................................................................667
Table 729. SMI Referenced Properties/Methods for CIM_Network .......................................................................................667
Table 730. SMI Referenced Properties/Methods for CIM_NetworkPipe................................................................................667
Table 731. SMI Referenced Properties/Methods for CIM_NetworkPipeComposition ............................................................668
Table 732. SMI Referenced Properties/Methods for CIM_PortImplementsEndpoint .............................................................668
Table 733. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint .........................................................................668
Table 734. SMI Referenced Properties/Methods for CIM_RemotePort .................................................................................668
Table 735. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint ........................................................669
Table 736. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................669
Table 737. SMI Referenced Properties/Methods for CIM_TCPEndpointStatistics.................................................................669
Table 738. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint..................................................................670
Table 739. SMI Referenced Properties/Methods for CIM_TCPSettings ................................................................................670
Table 740. SMI Referenced Properties/Methods for CIM_TCPStatisticalData ......................................................................671
Table 741. Related Standards for Extender...........................................................................................................................671
Table 742. CIM Server Requirements for FC HBA ................................................................................................................686
Table 743. CIM Elements for FC HBA ...................................................................................................................................687
Table 744. SMI Referenced Properties/Methods for CIM_AlarmDevice ................................................................................688
Table 745. SMI Referenced Properties/Methods for CIM_AssociatedAlarm .........................................................................688
Table 746. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................688
Table 747. SMI Referenced Properties/Methods for CIM_ControlledBy................................................................................689
Table 748. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................689
Table 749. SMI Referenced Properties/Methods for CIM_ElementSettingData ....................................................................689
Table 750. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity .............................................................690
Table 751. SMI Referenced Properties/Methods for CIM_ElementStatisticalData ................................................................690
Table 752. SMI Referenced Properties/Methods for CIM_FCPort .........................................................................................690
Table 753. SMI Referenced Properties/Methods for CIM_FCPortStatistics...........................................................................690
Table 754. SMI Referenced Properties/Methods for CIM_HostedCollection .........................................................................691
Table 755. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................692
Table 756. SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity .............................................................692
Table 757. SMI Referenced Properties/Methods for CIM_LogicalPortGroup ........................................................................692
Table 758. SMI Referenced Properties/Methods for CIM_MemberOfCollection....................................................................693
Table 759. SMI Referenced Properties/Methods for CIM_OSStorageNameBinding.............................................................693
Table 760. SMI Referenced Properties/Methods for CIM_PhysicalPackage.........................................................................694
Table 761. SMI Referenced Properties/Methods for CIM_PortController ..............................................................................694
Table 762. SMI Referenced Properties/Methods for CIM_Product ........................................................................................695
Table 763. SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent ........................................................695
Table 764. SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort............................................................695
Table 765. SMI Referenced Properties/Methods for CIM_Realizes.......................................................................................695
Table 766. SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement ........................................................696
Table 767. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................696
Table 768. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................696
Table 769. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................697
Table 770. SMI Referenced Properties/Methods for CIM_StorageNameBinding ..................................................................697
Table 771. SMI Referenced Properties/Methods for CIM_StorageNameBindingCapabilities................................................698
Table 772. SMI Referenced Properties/Methods for CIM_StorageNameBindingService ......................................................699
Table 773. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................699
Table 774. Related Standards for FC HBA ............................................................................................................................699
Table 775. iSCSI Terminology ...............................................................................................................................................701
Table 776. OperationalStatus Values ....................................................................................................................................704
Table 777. Supported Subprofiles for iSCSI Initiator .............................................................................................................704
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xxix



 

Table 778. CIM Server Requirements for iSCSI Initiator........................................................................................................705
Table 779. CIM Elements for iSCSI Initiator...........................................................................................................................705
Table 780. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................706
Table 781. SMI Referenced Properties/Methods for CIM_ControlledBy................................................................................706
Table 782. SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe..............................................................706
Table 783. SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity .............................................................707
Table 784. SMI Referenced Properties/Methods for CIM_PhysicalPackage.........................................................................707
Table 785. SMI Referenced Properties/Methods for CIM_PortController ..............................................................................707
Table 786. SMI Referenced Properties/Methods for CIM_Product ........................................................................................708
Table 787. SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent ........................................................708
Table 788. SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort............................................................708
Table 789. SMI Referenced Properties/Methods for CIM_SCSIProtocolController ...............................................................709
Table 790. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...........................................................................709
Table 791. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................709
Table 792. SMI Referenced Properties/Methods for CIM_iSCSIConnection.........................................................................710
Table 793. SMI Referenced Properties/Methods for CIM_iSCSISession ..............................................................................710
Table 794. Related Standards for iSCSI Initiator ...................................................................................................................711
Table 795. Supported Subprofiles for Host Discovered Resources.......................................................................................717
Table 796. CIM Server Requirements for Host Discovered Resources.................................................................................720
Table 797. CIM Elements for Host Discovered Resources....................................................................................................720
Table 798. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................720
Table 799. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................721
Table 800. SMI Referenced Properties/Methods for CIM_LogicalDisk ..................................................................................721
Table 801. SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit.............................................................722
Table 802. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath.............................................722
Table 803. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint.................................................................723
Table 804. SMI Referenced Properties/Methods for CIM_StorageExtent..............................................................................723
Table 805. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................724
Table 806. SMI Referenced Properties/Methods for CIM_TapeDrive....................................................................................724
Table 807. Related Standards for Host Discovered Resources.............................................................................................724
Table 808. Capabilities Properties .........................................................................................................................................729
Table 809. CIM Server Requirements for Disk Partition ........................................................................................................735
Table 810. CIM Elements for Disk Partition ...........................................................................................................................736
Table 811. SMI Referenced Properties/Methods for CIM_BasedOn .....................................................................................736
Table 812. SMI Referenced Properties/Methods for CIM_DIskPartitionConfigurationCapabilities ........................................737
Table 813. SMI Referenced Properties/Methods for CIM_DIskPartitionConfigurationService...............................................737
Table 814. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................737
Table 815. SMI Referenced Properties/Methods for CIM_GenericDiskPartition....................................................................737
Table 816. SMI Referenced Properties/Methods for CIM_InstalledPartitionTable.................................................................738
Table 817. SMI Referenced Properties/Methods for CIM_LogicalDisk ..................................................................................738
Table 818. SMI Referenced Properties/Methods for CIM_LogicalDiskBasedOnPartition......................................................739
Table 819. SMI Referenced Properties/Methods for CIM_StorageExtent..............................................................................739
Table 820. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................739
Table 821. Related Standards for Disk Partition ....................................................................................................................740
Table 822. CIM Server Requirements for Multipath Management .........................................................................................751
Table 823. CIM Elements for Multipath Management ............................................................................................................751
Table 824. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath.............................................752
Table 825. Related Standards for Multipath Management.....................................................................................................752
Table 826. Supported Subprofiles for Array...........................................................................................................................754
Table 827. Supported Packages for Array .............................................................................................................................754
Table 828. CIM Server Requirements for Array.....................................................................................................................755
Table 829. CIM Elements for Array........................................................................................................................................755
Table 830. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................756
Table 831. SMI Referenced Properties/Methods for CIM_HostedAccessPoint .....................................................................756
Table 832. SMI Referenced Properties/Methods for CIM_LogicalPort ..................................................................................756
Table 833. SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit.............................................................757
Table 834. SMI Referenced Properties/Methods for CIM_SCSIProtocolController ...............................................................757
Table 835. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................757
Table 836. Related Standards for Array.................................................................................................................................758
Table 837. Supported Subprofiles for Storage Virtualizer ......................................................................................................762
xxx



 

Table 838. Supported Packages for Storage Virtualizer ........................................................................................................762
Table 839. CIM Server Requirements for Storage Virtualizer ................................................................................................763
Table 840. CIM Elements for Storage Virtualizer ...................................................................................................................763
Table 841. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................764
Table 842. SMI Referenced Properties/Methods for CIM_ConcreteComponent ...................................................................765
Table 843. SMI Referenced Properties/Methods for CIM_LogicalIdentity .............................................................................765
Table 844. SMI Referenced Properties/Methods for CIM_LogicalPort (Target Port) .............................................................765
Table 845. SMI Referenced Properties/Methods for CIM_LogicalPort (Initiator Port)............................................................766
Table 846. SMI Referenced Properties/Methods for CIM_StorageExtent..............................................................................766
Table 847. Related Standards for Storage Virtualizer............................................................................................................766
Table 848. Supported Subprofiles for Volume Management .................................................................................................769
Table 849. Supported Packages for Volume Management ...................................................................................................769
Table 850. CIM Server Requirements for Volume Management ...........................................................................................770
Table 851. CIM Elements for Volume Management ..............................................................................................................770
Table 852. SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool .........................................................771
Table 853. SMI Referenced Properties/Methods for CIM_ComputerSystem.........................................................................771
Table 854. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................772
Table 855. SMI Referenced Properties/Methods for CIM_ElementSettingData ....................................................................772
Table 856. SMI Referenced Properties/Methods for CIM_HostedStoragePool .....................................................................772
Table 857. SMI Referenced Properties/Methods for CIM_LogicalDisk ..................................................................................772
Table 858. SMI Referenced Properties/Methods for CIM_StorageCapabilities .....................................................................773
Table 859. SMI Referenced Properties/Methods for CIM_StoragePool (Primordial = False) ................................................773
Table 860. SMI Referenced Properties/Methods for CIM_StoragePool (Primordial = True) .................................................774
Table 861. SMI Referenced Properties/Methods for CIM_StorageSetting.............................................................................774
Table 862. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................775
Table 863. Related Standards for Volume Management .......................................................................................................775
Table 864. NetworkPort OperationalStatus............................................................................................................................786
Table 865. FileShare OperationalStatus ................................................................................................................................786
Table 866. Filesystem OperationalStatus ..............................................................................................................................787
Table 867. ProtocolEndpoint OperationalStatus ....................................................................................................................787
Table 868. Supported Subprofiles for NAS Head ..................................................................................................................788
Table 869. Supported Packages for NAS Head.....................................................................................................................789
Table 870. CIM Server Requirements for NAS Head.............................................................................................................793
Table 871. CIM Elements for NAS Head ...............................................................................................................................793
Table 872. SMI Referenced Properties/Methods for CIM_BindsTo .......................................................................................795
Table 873. SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint ..................................................................796
Table 874. SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level) .....................................................796
Table 875. SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)....................................................797
Table 876. SMI Referenced Properties/Methods for CIM_ConcreteComponent ...................................................................798
Table 877. SMI Referenced Properties/Methods for CIM_ConcreteDependency..................................................................798
Table 878. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort).........798
Table 879. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort) ........799
Table 880. SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)..................................................799
Table 881. SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem) ...............................................799
Table 882. SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting).............................................800
Table 883. SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)..................................................800
Table 884. SMI Referenced Properties/Methods for CIM_FileSystemSetting .......................................................................800
Table 885. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS) .............................................802
Table 886. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP, IP or LAN) .........................................802
Table 887. SMI Referenced Properties/Methods for CIM_HostedFileSystem .......................................................................803
Table 888. SMI Referenced Properties/Methods for CIM_HostedShare ...............................................................................803
Table 889. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint......................................................................804
Table 890. SMI Referenced Properties/Methods for CIM_LANEndpoint ...............................................................................804
Table 891. SMI Referenced Properties/Methods for CIM_LocalFileSystem..........................................................................805
Table 892. SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS) ...............................................................807
Table 893. SMI Referenced Properties/Methods for CIM_LogicalFile ...................................................................................807
Table 894. SMI Referenced Properties/Methods for CIM_NetworkPort.................................................................................808
Table 895. SMI Referenced Properties/Methods for CIM_ProtocolEndPoint (CIFS or NFS).................................................809
Table 896. SMI Referenced Properties/Methods for CIM_ResidesOnExtent ........................................................................810
Table 897. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ............................................................810
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xxxi



 

Table 898. SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial) ..........................................................810
Table 899. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................811
Table 900. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint..................................................................812
Table 901. Related Standards for NAS Head ........................................................................................................................812
Table 902. NetworkPort OperationalStatus............................................................................................................................820
Table 903. FileShare OperationalStatus ................................................................................................................................820
Table 904. Filesystem OperationalStatus ..............................................................................................................................821
Table 905. ProtocolEndpoint OperationalStatus ....................................................................................................................821
Table 906. Supported Subprofiles for Self-contained NAS System .......................................................................................822
Table 907. Supported Packages for Self-contained NAS System .........................................................................................822
Table 908. CIM Server Requirements for Self-contained NAS System .................................................................................826
Table 909. CIM Elements for Self-contained NAS System ....................................................................................................827
Table 910. SMI Referenced Properties/Methods for CIM_BindsTo .......................................................................................829
Table 911. SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint ..................................................................830
Table 912. SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level) .....................................................830
Table 913. SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)....................................................831
Table 914. SMI Referenced Properties/Methods for CIM_ConcreteDependency..................................................................831
Table 915. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort).........832
Table 916. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort) ........832
Table 917. SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)..................................................832
Table 918. SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem) ...............................................833
Table 919. SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting ...........................................................833
Table 920. SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)..................................................833
Table 921. SMI Referenced Properties/Methods for CIM_FileStorage..................................................................................834
Table 922. SMI Referenced Properties/Methods for CIM_FileSystemSetting .......................................................................834
Table 923. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS) .............................................836
Table 924. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP, IP or LAN) .........................................836
Table 925. SMI Referenced Properties/Methods for CIM_HostedFileSystem .......................................................................837
Table 926. SMI Referenced Properties/Methods for CIM_HostedShare ...............................................................................837
Table 927. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint......................................................................837
Table 928. SMI Referenced Properties/Methods for CIM_LANEndpoint ...............................................................................838
Table 929. SMI Referenced Properties/Methods for CIM_LocalFileSystem..........................................................................839
Table 930. SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS).............................................................840
Table 931. SMI Referenced Properties/Methods for CIM_LogicalFile ...................................................................................841
Table 932. SMI Referenced Properties/Methods for CIM_NetworkPort.................................................................................842
Table 933. SMI Referenced Properties/Methods for CIM_ProtocolEndPoint.........................................................................843
Table 934. SMI Referenced Properties/Methods for CIM_ResidesOnExtent ........................................................................843
Table 935. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ............................................................844
Table 936. SMI Referenced Properties/Methods for CIM_SystemDevice .............................................................................844
Table 937. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint..................................................................844
Table 938. Related Standards for Self-contained NAS System.............................................................................................845
Table 939. Supported Subprofiles for Filesystem Manipulation .............................................................................................851
Table 940. Filesystem Manipulation Methods that cause Instance Creation, Deletion or 

Modification851
Table 941. Filesystem Manipulation Supported Capabilities Patterns ...................................................................................867
Table 942. CIM Server Requirements for Filesystem Manipulation.......................................................................................867
Table 943. CIM Elements for Filesystem Manipulation..........................................................................................................868
Table 944. SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Capabilities) .........................................869
Table 945. SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Config Capabilities)..............................870
Table 946. SMI Referenced Properties/Methods for CIM_ElementSettingData ....................................................................870
Table 947. SMI Referenced Properties/Methods for CIM_FileStorage..................................................................................870
Table 948. SMI Referenced Properties/Methods for CIM_FileSystemCapabilities ................................................................871
Table 949. SMI Referenced Properties/Methods for CIM_FileSystemConfigurationCapabilities...........................................871
Table 950. SMI Referenced Properties/Methods for CIM_FileSystemConfigurationService .................................................872
Table 951. SMI Referenced Properties/Methods for CIM_FileSystemSetting (Pre-defined) .................................................873
Table 952. SMI Referenced Properties/Methods for CIM_FileSystemSetting (Attached to FileSystem) ...............................875
Table 953. SMI Referenced Properties/Methods for CIM_HostedFileSystem .......................................................................876
Table 954. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................877
Table 955. SMI Referenced Properties/Methods for CIM_LocalFileSystem..........................................................................877
Table 956. SMI Referenced Properties/Methods for CIM_LogicalFile ...................................................................................878
xxxii



 

Table 957. SMI Referenced Properties/Methods for CIM_ResidesOnExtent ........................................................................879
Table 958. SMI Referenced Properties/Methods for CIM_SettingAssociatedToCapabilities.................................................880
Table 959. Related Standards for Filesystem Manipulation...................................................................................................880
Table 960. Supported Subprofiles for File Export Manipulation .............................................................................................883
Table 961. FileExportManipulation Methods..........................................................................................................................883
Table 962. SMI-S File Export Supported Capabilities Patterns..............................................................................................896
Table 963. CIM Server Requirements for File Export Manipulation.......................................................................................896
Table 964. CIM Elements for File Export Manipulation..........................................................................................................897
Table 965. SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileExportCapabilities) ..............................899
Table 966. SMI Referenced Properties/Methods for CIM_ElementCapabilities (ExportedFileShareCapabilities).................899
Table 967. SMI Referenced Properties/Methods for CIM_ElementSettingData ....................................................................899
Table 968. SMI Referenced Properties/Methods for CIM_ExportedFileShareCapabilities ....................................................900
Table 969. SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Sample on Capabilities) ...................900
Table 970. SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (On FileShare)...................................902
Table 971. SMI Referenced Properties/Methods for CIM_FileExportCapabilities..................................................................904
Table 972. SMI Referenced Properties/Methods for CIM_FileExportService ........................................................................905
Table 973. SMI Referenced Properties/Methods for CIM_FileShare .....................................................................................906
Table 974. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................906
Table 975. SMI Referenced Properties/Methods for CIM_HostedShare ...............................................................................906
Table 976. SMI Referenced Properties/Methods for CIM_LogicalFile ...................................................................................907
Table 977. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement ................................................................907
Table 978. SMI Referenced Properties/Methods for CIM_SettingAssociatedToCapabilities.................................................908
Table 979. SMI Referenced Properties/Methods for CIM_SharedElement............................................................................908
Table 980. SMI Referenced Properties/Methods for CIM_SharedElementRoot ....................................................................908
Table 981. Related Standards for File Export Manipulation...................................................................................................909
Table 982. Pool Management Policy Subprofiles ..................................................................................................................914
Table 983. Static Policy Instance Methods ............................................................................................................................914
Table 984. Instance Methods of Dynamic Rules and Static Conditions and Actions.............................................................915
Table 985. Dynamic Policy Instance Methods .......................................................................................................................915
Table 986. Required CIM Elements .......................................................................................................................................916
Table 987. Instance Creation, Deletion or Modification for Pool Management Policy Subprofile Classes.............................916
Table 988. Valid Flag Values .................................................................................................................................................917
Table 989. Properties for MethodAction.................................................................................................................................918
Table 990. Properties for MethodActionResult ......................................................................................................................919
Table 991. Properties for PolicyActionInPolicyRule ...............................................................................................................920
Table 992. Properties for PolicyCapabilities...........................................................................................................................920
Table 993. Properties for PolicyConditionInPolicyRule..........................................................................................................921
Table 994. Properties for PolicyRule......................................................................................................................................921
Table 995. Properties for PolicyRuleInSystem.......................................................................................................................923
Table 996. Properties for PolicySetAppliesToElement...........................................................................................................924
Table 997.  Properties for QueryCondition.............................................................................................................................924
Table 998. Properties for QueryConditionResult....................................................................................................................925
Table 999. Pool Management Policy Profile Subprofile Standards Dependencies................................................................926
Table 1000. Pool Management Policy Subprofile Functional Profile Requirements ................................................................926
Table 1001. Block Service Management Rights ......................................................................................................................928
Table 1002. Supported Actions to Method Mapping ................................................................................................................939
Table 1003. RAID Mapping Table............................................................................................................................................943
Table 1004. Classes Required In Read-Only Implementation .................................................................................................944
Table 1005. Standard Messages for Block Services Package.................................................................................................950
Table 1006. CIM Server Requirements for Block Services ......................................................................................................987
Table 1007. CIM Elements for Block Services.........................................................................................................................988
Table 1008. SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool .........................................................990
Table 1009. SMI Referenced Properties/Methods for CIM_ElementCapabilities.....................................................................990
Table 1010. SMI Referenced Properties/Methods for CIM_ElementSettingData ....................................................................990
Table 1011. SMI Referenced Properties/Methods for CIM_HostedService .............................................................................991
Table 1012. SMI Referenced Properties/Methods for CIM_LogicalDisk ..................................................................................991
Table 1013. SMI Referenced Properties/Methods for CIM_StorageCapabilities .....................................................................992
Table 1014. SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities................................................994
Table 1015. SMI Referenced Properties/Methods for CIM_StorageConfigurationService ......................................................995
Table 1016. SMI Referenced Properties/Methods for CIM_StoragePool.................................................................................996
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xxxiii



 

Table 1017. SMI Referenced Properties/Methods for CIM_StoragePool.................................................................................996
Table 1018. SMI Referenced Properties/Methods for CIM_StoragePool.................................................................................997
Table 1019. SMI Referenced Properties/Methods for CIM_StorageSetting.............................................................................997
Table 1020. SMI Referenced Properties/Methods for CIM_StorageSettingWithHints .............................................................998
Table 1021. SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities ................................1000
Table 1022. SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities.............................1000
Table 1023. SMI Referenced Properties/Methods for CIM_StorageVolume..........................................................................1001
Table 1024. Related Standards for Block Services................................................................................................................1001
Table 1025. Summary of Element Types by Profile ...............................................................................................................1012
Table 1026. Supported Subprofiles for Block Server Performance........................................................................................1022
Table 1027. Creation, Deletion and Modification Methods in Block Server Performance Subprofile.....................................1022
Table 1028. Summary of Block Statistics Support by Element ..............................................................................................1051
Table 1029. Formulas and Calculations.................................................................................................................................1053
Table 1030. Block Server Performance Subprofile Supported Capabilities Patterns.............................................................1053
Table 1031. CIM Server Requirements for Block Server Performance..................................................................................1054
Table 1032. CIM Elements for Block Server Performance.....................................................................................................1055
Table 1033. SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection (Pre-defined) ......1056
Table 1034. SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection (Client defined)...1056
Table 1035. SMI Referenced Properties/Methods for CIM_BlockStatisticsCapabilities.........................................................1057
Table 1036. SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Pre-defined)........................................1058
Table 1037. SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client defined) ....................................1059
Table 1038. SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Pre-defined)........................1060
Table 1039. SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Client defined) ....................1061
Table 1040. SMI Referenced Properties/Methods for CIM_BlockStatisticsService ...............................................................1061
Table 1041. SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData ......................................................1062
Table 1042. SMI Referenced Properties/Methods for CIM_ElementCapabilities...................................................................1066
Table 1043. SMI Referenced Properties/Methods for CIM_ElementStatisticalData ..............................................................1066
Table 1044. SMI Referenced Properties/Methods for CIM_HostedCollection .......................................................................1067
Table 1045. SMI Referenced Properties/Methods for CIM_HostedService ...........................................................................1067
Table 1046. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Collect Statistics)....................................1067
Table 1047. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Collect pre-defined manifests)................1068
Table 1048. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Collect client defined manifests).............1068
Table 1049. SMI Referenced Properties/Methods for CIM_StatisticsCollection ....................................................................1068
Table 1050. Related Standards for Block Server Performance .............................................................................................1069
Table 1051. Copy Services Subprofile FCAPS Support ........................................................................................................1072
Table 1052. Synchronization Operation Support Requirements ............................................................................................1083
Table 1053. SyncState Values...............................................................................................................................................1084
Table 1054. SyncMaintained and WhenSynced Properties...................................................................................................1085
Table 1055. OperationalStatus Values for NetworkPipe........................................................................................................1090
Table 1056. Copy Services Alert Indications .........................................................................................................................1091
Table 1057. Copy Services Error Responses ........................................................................................................................1091
Table 1058. Extrinsic Methods of ReplicationServices Subprofile .........................................................................................1094
Table 1059. ModifySynchronization .......................................................................................................................................1094
Table 1060. CreateReplica Method .......................................................................................................................................1095
Table 1061. AttachOrModifyReplica Method .........................................................................................................................1096
Table 1062. CreateReplicationBuffer Method ........................................................................................................................1097
Table 1063. CreateOrModifyReplicationPipe Method............................................................................................................1098
Table 1064. Patterns Supported for StorageReplicationCapabilities .....................................................................................1108
Table 1065. Space Consumption Properties .........................................................................................................................1110
Table 1066. Space Consumption Properties, Fixed Pattern ..................................................................................................1111
Table 1067. CIM Server Requirements for Copy Services ....................................................................................................1160
Table 1068. CIM Elements for Copy Services .......................................................................................................................1161
Table 1069. SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool .......................................................1163
Table 1070. SMI Referenced Properties/Methods for CIM_AssociatedMemory....................................................................1163
Table 1071. SMI Referenced Properties/Methods for CIM_BasedOn ...................................................................................1163
Table 1072. SMI Referenced Properties/Methods for CIM_ConcreteDependency................................................................1164
Table 1073. SMI Referenced Properties/Methods for CIM_ElementCapabilities...................................................................1164
Table 1074. SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe............................................................1164
Table 1075. SMI Referenced Properties/Methods for CIM_HostedNetworkPipe...................................................................1164
Table 1076. SMI Referenced Properties/Methods for CIM_HostedService ...........................................................................1165
xxxiv



 

Table 1077. SMI Referenced Properties/Methods for CIM_Memory .....................................................................................1165
Table 1078. SMI Referenced Properties/Methods for CIM_Network .....................................................................................1165
Table 1079. SMI Referenced Properties/Methods for CIM_NetworkPipe..............................................................................1166
Table 1080. SMI Referenced Properties/Methods for CIM_NetworkPipeComposition ..........................................................1166
Table 1081. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint .......................................................................1167
Table 1082. SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage .............................................................1167
Table 1083. SMI Referenced Properties/Methods for CIM_StorageCapabilities ...................................................................1167
Table 1084. SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities..............................................1168
Table 1085. SMI Referenced Properties/Methods for CIM_StorageConfigurationService ....................................................1168
Table 1086. SMI Referenced Properties/Methods for CIM_StorageExtent (Copy Services) .................................................1169
Table 1087. SMI Referenced Properties/Methods for CIM_StoragePool...............................................................................1169
Table 1088. SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities .................................................1170
Table 1089. SMI Referenced Properties/Methods for CIM_StorageSetting...........................................................................1174
Table 1090. SMI Referenced Properties/Methods for CIM_StorageSynchronized................................................................1175
Table 1091. SMI Referenced Properties/Methods for CIM_StorageVolume (Array Profile) ..................................................1177
Table 1092. SMI Referenced Properties/Methods for CIM_SystemComponent....................................................................1177
Table 1093. Related Standards for Copy Services ................................................................................................................1177
Table 1094. OperationalStatus for a Disk ..............................................................................................................................1183
Table 1095. Volume-Level OperationalStatus .......................................................................................................................1183
Table 1096. CIM Server Requirements for Disk Drive Lite ....................................................................................................1184
Table 1097. CIM Elements for Disk Drive Lite .......................................................................................................................1184
Table 1098. SMI Referenced Properties/Methods for CIM_DiskDrive ...................................................................................1184
Table 1099. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity ...........................................................1185
Table 1100. SMI Referenced Properties/Methods for CIM_MediaPresent ............................................................................1185
Table 1101. SMI Referenced Properties/Methods for CIM_PhysicalPackage.......................................................................1185
Table 1102. SMI Referenced Properties/Methods for CIM_Realizes.....................................................................................1185
Table 1103. SMI Referenced Properties/Methods for CIM_SoftwareIdentity.........................................................................1186
Table 1104. SMI Referenced Properties/Methods for CIM_StorageExtent............................................................................1186
Table 1105. SMI Referenced Properties/Methods for CIM_SystemDevice ...........................................................................1186
Table 1106. Related Standards for Disk Drive Lite ................................................................................................................1187
Table 1107. Supported Methods to Method Mapping ............................................................................................................1193
Table 1108. CIM Server Requirements for Disk Sparing .......................................................................................................1200
Table 1109. CIM Elements for Disk Sparing ..........................................................................................................................1201
Table 1110. SMI Referenced Properties/Methods for CIM_ConcreteDependency................................................................1201
Table 1111. SMI Referenced Properties/Methods for CIM_HostedCollection .......................................................................1201
Table 1112. SMI Referenced Properties/Methods for CIM_IsSpare ......................................................................................1202
Table 1113. SMI Referenced Properties/Methods for CIM_LogicalDisk ................................................................................1202
Table 1114. SMI Referenced Properties/Methods for CIM_MemberOfCollection..................................................................1203
Table 1115. SMI Referenced Properties/Methods for CIM_Spared.......................................................................................1203
Table 1116. SMI Referenced Properties/Methods for CIM_StorageExtent............................................................................1203
Table 1117. SMI Referenced Properties/Methods for CIM_StoragePool...............................................................................1203
Table 1118. SMI Referenced Properties/Methods for CIM_StorageRedundancySet ............................................................1204
Table 1119. SMI Referenced Properties/Methods for CIM_StorageVolume..........................................................................1204
Table 1120. SMI Referenced Properties/Methods for SNIA_SpareConfigurationCapabilities ...............................................1205
Table 1121. SMI Referenced Properties/Methods for SNIA_SpareConfigurationService......................................................1206
Table 1122. Related Standards for Disk Sparing...................................................................................................................1206
Table 1123. Supported Common RAID Levels ......................................................................................................................1213
Table 1124. CIM Server Requirements for Extent Composition ............................................................................................1229
Table 1125. CIM Elements for Extent Composition ...............................................................................................................1230
Table 1126. SMI Referenced Properties/Methods for CIM_BasedOn ...................................................................................1230
Table 1127. SMI Referenced Properties/Methods for CIM_CompositeExtent .......................................................................1231
Table 1128. SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn........................................................1231
Table 1129. SMI Referenced Properties/Methods for CIM_ConcreteComponent .................................................................1232
Table 1130. SMI Referenced Properties/Methods for CIM_StorageExtent............................................................................1232
Table 1131. Related Standards for Extent Composition ........................................................................................................1233
Table 1132. SCSIProtocolController Property Description.....................................................................................................1247
Table 1133. ExposePath Use Cases .....................................................................................................................................1251
Table 1134. HidePaths Use Cases ........................................................................................................................................1253
Table 1135. Use Cases for ExposeDefaultLUs .....................................................................................................................1255
Table 1136. Use Cases for HideDefaultLUs ..........................................................................................................................1256
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xxxv



 

Table 1137. CIM Server Requirements for Masking and Mapping ........................................................................................1267
Table 1138. CIM Elements for Masking and Mapping ...........................................................................................................1267
Table 1139. SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege ...................................................................1268
Table 1140. SMI Referenced Properties/Methods for CIM_AuthorizedTarget.......................................................................1269
Table 1141. SMI Referenced Properties/Methods for CIM_ConcreteDependency................................................................1269
Table 1142. SMI Referenced Properties/Methods for CIM_AuthorizedSubject .....................................................................1269
Table 1143. SMI Referenced Properties/Methods for CIM_ElementCapabilities...................................................................1270
Table 1144. SMI Referenced Properties/Methods for CIM_ElementSettingData ..................................................................1270
Table 1145. SMI Referenced Properties/Methods for CIM_ControllerConfigurationService .................................................1270
Table 1146. SMI Referenced Properties/Methods for CIM_HostedService ...........................................................................1271
Table 1147. SMI Referenced Properties/Methods for CIM_LogicalDevice ............................................................................1271
Table 1148. SMI Referenced Properties/Methods for CIM_MemberOfCollection..................................................................1271
Table 1149. SMI Referenced Properties/Methods for CIM_HostedCollection .......................................................................1271
Table 1150. SMI Referenced Properties/Methods for CIM_PrivilegeManagementService....................................................1272
Table 1151. SMI Referenced Properties/Methods for CIM_ProtocolController......................................................................1272
Table 1152. SMI Referenced Properties/Methods for CIM_ProtocolControllerMaskingCapabilities......................................1273
Table 1153. SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit..........................................................1273
Table 1154. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..........................................................1274
Table 1155. SMI Referenced Properties/Methods for CIM_StorageClientSettingData..........................................................1275
Table 1156. SMI Referenced Properties/Methods for CIM_StorageHardwareID...................................................................1275
Table 1157. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint...............................................................1275
Table 1158. SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..........................................................1276
Table 1159. Related Standards for Masking and Mapping ....................................................................................................1276
Table 1160. SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService..................................1276
Table 1161. Supported Subprofiles for Storage Library .........................................................................................................1283
Table 1162. Supported Packages for Storage Library ...........................................................................................................1283
Table 1163. CIM Server Requirements for Storage Library ...................................................................................................1286
Table 1164. CIM Elements for Storage Library......................................................................................................................1286
Table 1165. SMI Referenced Properties/Methods for CIM_ChangerDevice..........................................................................1288
Table 1166. SMI Referenced Properties/Methods for CIM_Chassis......................................................................................1288
Table 1167. SMI Referenced Properties/Methods for CIM_ComputerSystem.......................................................................1288
Table 1168. SMI Referenced Properties/Methods for CIM_ComputerSystemPackage.........................................................1289
Table 1169. SMI Referenced Properties/Methods for CIM_ElementCapabilities...................................................................1289
Table 1170. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity ...........................................................1290
Table 1171. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity ...........................................................1290
Table 1172. SMI Referenced Properties/Methods for CIM_MediaAccessDevice ..................................................................1290
Table 1173. SMI Referenced Properties/Methods for CIM_PackagedComponent................................................................1290
Table 1174. SMI Referenced Properties/Methods for CIM_PhysicalMedia ...........................................................................1291
Table 1175. SMI Referenced Properties/Methods for CIM_PhysicalMediaInLocation...........................................................1291
Table 1176. SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit..........................................................1291
Table 1177. SMI Referenced Properties/Methods for CIM_Realizes.....................................................................................1292
Table 1178. SMI Referenced Properties/Methods for CIM_SCSIProtocolController .............................................................1292
Table 1179. SMI Referenced Properties/Methods for CIM_SoftwareIdentity.........................................................................1292
Table 1180. SMI Referenced Properties/Methods for CIM_StorageLibraryCapabilities ........................................................1293
Table 1181. SMI Referenced Properties/Methods for CIM_StorageMediaLocation ..............................................................1293
Table 1182. SMI Referenced Properties/Methods for CIM_SystemDevice ...........................................................................1293
Table 1183. Related Standards for Storage Library...............................................................................................................1294
Table 1184. CIM Server Requirements for Storage Library Element Counting .....................................................................1299
Table 1185. CIM Elements for Storage Library Element Counting ........................................................................................1299
Table 1186. SMI Referenced Properties/Methods for CIM_ConfigurationReportingService .................................................1299
Table 1187. SMI Referenced Properties/Methods for CIM_HostedService ...........................................................................1300
Table 1188. Related Standards for Storage Library Element Counting .................................................................................1300
Table 1189. CIM Server Requirements for Storage Library InterLibraryPort Connection ......................................................1302
Table 1190. CIM Elements for Storage Library InterLibraryPort Connection .........................................................................1303
Table 1191. SMI Referenced Properties/Methods for CIM_InterLibraryPort..........................................................................1303
Table 1192. SMI Referenced Properties/Methods for CIM_LibraryExchange .......................................................................1304
Table 1193. Related Standards for Storage Library InterLibraryPort Connection..................................................................1304
Table 1194. CIM Server Requirements for Storage Library Partitioned Library.....................................................................1306
Table 1195. CIM Elements for Storage Library Partitioned Library........................................................................................1306
Table 1196. SMI Referenced Properties/Methods for CIM_Container...................................................................................1306
xxxvi



 

Table 1197. SMI Referenced Properties/Methods for CIM_DeviceServicesLocation ............................................................1307
Table 1198. SMI Referenced Properties/Methods for CIM_Magazine...................................................................................1307
Table 1199. Related Standards for Storage Library Partitioned Library.................................................................................1307
Table 1200. CIM Server Requirements for Storage Library Capacity ....................................................................................1310
Table 1201. CIM Elements for Storage Library Capacity .......................................................................................................1310
Table 1202. SMI Referenced Properties/Methods for CIM_ConfigurationCapacity ...............................................................1310
Table 1203. SMI Referenced Properties/Methods for CIM_ElementCapacity .......................................................................1311
Table 1204. Related Standards for Storage Library Capacity................................................................................................1311
Table 1205. LibraryAlert Property Settings ............................................................................................................................1313
Table 1206. Vendor Specific Properties of LibraryAlert .........................................................................................................1314
Table 1207. Variable Alert Properties for LibraryAlert............................................................................................................1314
Table 1208. SCSI TapeAlert-based Properties......................................................................................................................1314
Table 1209. LibraryAlert AlertIndication Properties................................................................................................................1315
Table 1210. CIM Server Requirements for SML_Events .......................................................................................................1326
Table 1211. CIM Elements for SML_Events ..........................................................................................................................1326
Table 1212. SMI Referenced Properties/Methods for CIM_AlertIndication............................................................................1326
Table 1213. Related Standards for SML_Events...................................................................................................................1327
Table 1214. Media Movement Standard Messages...............................................................................................................1330
Table 1215. CIM Server Requirements for Storage Library Media Movement ......................................................................1332
Table 1216. CIM Elements for Storage Library Media Movement .........................................................................................1333
Table 1217. SMI Referenced Properties/Methods for CIM_HostedService ...........................................................................1333
Table 1218. SMI Referenced Properties/Methods for SNIA_MediaMovementService ..........................................................1333
Table 1219. Related Standards for Storage Library Media Movement ..................................................................................1333
Table 1220. CIM Server Requirements for Storage Library Limited Access Port Elements ..................................................1337
Table 1221. CIM Elements for Storage Library Limited Access Port Elements .....................................................................1338
Table 1222. SMI Referenced Properties/Methods for CIM_Container...................................................................................1338
Table 1223. SMI Referenced Properties/Methods for CIM_LimitedAccessPort.....................................................................1339
Table 1224. SMI Referenced Properties/Methods for CIM_Magazine...................................................................................1339
Table 1225. SMI Referenced Properties/Methods for CIM_Realizes.....................................................................................1340
Table 1226. SMI Referenced Properties/Methods for CIM_SystemDevice ...........................................................................1340
Table 1227. Related Standards for Storage Library Limited Access Port Elements ..............................................................1340
Table 1228. Functional Profiles..............................................................................................................................................1397
Table 1229. Message Types..................................................................................................................................................1404
Table 1230. Required Configuration Properties for SA as DA ...............................................................................................1409
Table 1231. Required Configuration Properties for SA..........................................................................................................1410
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xxxvii



 

xxxviii



 

List of Figures

Figure 1. Interface Functions ............................................................................................................................... 20
Figure 2. Large SAN Topology............................................................................................................................. 23
Figure 3. Example Client Server Distribution in a SAN........................................................................................ 24
Figure 4. Object Model/Server Relationship ........................................................................................................ 28
Figure 5. Canonical Inheritance ........................................................................................................................... 29
Figure 6. Sample CIM-XML Message .................................................................................................................. 30
Figure 7. Operational Environment ...................................................................................................................... 37
Figure 8. Transport Stack..................................................................................................................................... 40
Figure 9. Reference Model................................................................................................................................... 41
Figure 10. Server Profile Instance Diagram........................................................................................................... 47
Figure 11. iSCSI Qualified Names (iqn) Examples ................................................................................................ 58
Figure 12. iSCSI EUI Name Examples .................................................................................................................. 58
Figure 13. iSCSI 64-bit NAA Name Examples ....................................................................................................... 58
Figure 14. iSCSI 128-bit NAA Name Examples ..................................................................................................... 58
Figure 15. Basic Fault Detection ............................................................................................................................ 60
Figure 16. Health Lifecycle..................................................................................................................................... 63
Figure 17. Continuum............................................................................................................................................. 64
Figure 18. Application Fault Region ....................................................................................................................... 65
Figure 19. Array Instance....................................................................................................................................... 66
Figure 20. Switch Example .................................................................................................................................... 68
Figure 21. Use of Results as Context in the Execution of a Policy Rule................................................................ 73
Figure 22. System-wide Remote Access Point .................................................................................................... 121
Figure 23. Access Point Instance Diagram.......................................................................................................... 122
Figure 24. Instance Diagram for Logical Topology .............................................................................................. 126
Figure 25. Instance Diagram for Resource Allocation/Deallocation..................................................................... 128
Figure 26. Cascading Server Topology................................................................................................................ 130
Figure 27. Instance Diagram for Cascading with Resource Ownership............................................................... 131
Figure 28. Instance Diagram for Cascading with Credential Management Subprofile......................................... 132
Figure 29. Modeling of Cascading Capabilities.................................................................................................... 133
Figure 30. Device Credentials Subprofile Model.................................................................................................. 153
Figure 31. Job Control Subprofile Model.............................................................................................................. 167
Figure 32. Storage Configuration ......................................................................................................................... 173
Figure 33. Location Instance................................................................................................................................ 179
Figure 34. Two Redundant Systems Instance Diagram....................................................................................... 183
Figure 35. Multiple Redundancy Tier Instance Diagram...................................................................................... 184
Figure 36. System Level Numbers....................................................................................................................... 186
Figure 37. Physical Package Package Mandatory Classes................................................................................. 195
Figure 38. Physical Package Package with Optional Classes ............................................................................. 196
Figure 39. Basic Policy Package Instance Diagram ............................................................................................ 204
Figure 40. Policy Package QueryCondition Support Instance Diagram............................................................... 206
Figure 41. Policy Package MethodAction Support Instance Diagram.................................................................. 208
Figure 42. Policy Package for Static Rules Instance Diagram............................................................................. 210
Figure 43. Policy Package Support for Static Conditions and Actions Instance Diagram.................................... 212
Figure 44. Policy Package support for Dynamic Conditions and Actions Instance Diagram ............................... 213
Figure 45. Policy Package support for Trigger Conditions Instance Diagram...................................................... 215
Figure 46. Policy Package support for Time Periods Instance Diagram.............................................................. 216
Figure 47. Policy Package support for Compound Conditions Instance Diagram ............................................... 218
Figure 48. Policy Package support for Compound Actions Instance Diagram..................................................... 219
Figure 49. Policy Package support for Policy Capabilities Instance Diagram...................................................... 221
Figure 50. Software Installation Service Overview............................................................................................... 265
Figure 51. Example Instance Diagram................................................................................................................. 266
Figure 52. Software Instance Diagram................................................................................................................. 273
Figure 53. Software Repository Instance Diagram .............................................................................................. 281
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xxxix



 

Figure 54. Generic Storage Target ...................................................................................................................... 287
Figure 55. Port Class Hierarchy ........................................................................................................................... 288
Figure 56. SPI Target Port Instance Diagram...................................................................................................... 289
Figure 57. FC Target Port Instance Diagram....................................................................................................... 293
Figure 58. iSCSI Target Ports Subprofile Instance Diagram................................................................................ 299
Figure 59. DA Port Instance Diagram .................................................................................................................. 333
Figure 60. Generic Initiator Port Model ................................................................................................................ 339
Figure 61. Logical Port Hierarchy......................................................................................................................... 340
Figure 62. SPI Initiator Port Instance Diagram..................................................................................................... 341
Figure 63. Fibre Channel Initiator Instance Diagram ........................................................................................... 347
Figure 64. iSCSI Initiator Port Instance Diagram ................................................................................................. 353
Figure 65. Back-end Ports Instance..................................................................................................................... 359
Figure 66. Server Model....................................................................................................................................... 364
Figure 67. Indications Subprofile and Namespaces............................................................................................. 393
Figure 68. Indications Subprofile Instance Diagram ............................................................................................ 395
Figure 69. QueryCapabilities for Client Defined Filters ........................................................................................ 398
Figure 70. ObjectManagerAdapter Subprofile Model........................................................................................... 419
Figure 71. Identity ................................................................................................................................................ 425
Figure 72. Authorization ....................................................................................................................................... 434
Figure 73. Policy Rules ........................................................................................................................................ 436
Figure 74. Security Resource Ownership ............................................................................................................ 451
Figure 75. Service Associations........................................................................................................................... 453
Figure 76. AuthorizedPrivilege ............................................................................................................................. 454
Figure 77. Role-Based Access Control ................................................................................................................ 468
Figure 78. Policy Rules ........................................................................................................................................ 470
Figure 79. Service Associations........................................................................................................................... 471
Figure 80. AuthorizedPrivilege ............................................................................................................................. 473
Figure 81. Identities.............................................................................................................................................. 483
Figure 82. IPNetworkIdentity................................................................................................................................ 484
Figure 83. Account Management ......................................................................................................................... 485
Figure 84. OrganizationalEntities ......................................................................................................................... 486
Figure 85. Organizations and OrgUnits................................................................................................................ 487
Figure 86. People................................................................................................................................................. 488
Figure 87. Groups and Roles ............................................................................................................................... 489
Figure 88. Credential Management...................................................................................................................... 507
Figure 89. 3rd Party Authentication for the CIM Service...................................................................................... 516
Figure 90. Fabric Instance Diagram..................................................................................................................... 529
Figure 91. Zoning Instance Diagram (AdminDomain).......................................................................................... 530
Figure 92. Zoning Instance Diagram (ComputerSystem)..................................................................................... 531
Figure 93. FDMI Instance Diagram...................................................................................................................... 579
Figure 94. Instance Diagram................................................................................................................................ 591
Figure 95. Switch Instance Diagram .................................................................................................................... 598
Figure 96. Trunking Instance Diagram................................................................................................................. 600
Figure 97. Switch Configuration Data Instance Diagram ..................................................................................... 633
Figure 98. Switch Blade Instance Diagram.......................................................................................................... 637
Figure 99. FC Extender Node Instance Diagram................................................................................................. 644
Figure 100.FC Extender Group Instance Diagram ............................................................................................... 645
Figure 101.FC HBA Instance Diagram ................................................................................................................. 673
Figure 102.HBA Card with Two Ports ................................................................................................................... 674
Figure 103.Persistent Binding Model .................................................................................................................... 675
Figure 104.iSCSI Product and Package Model .................................................................................................... 702
Figure 105.iSCSI Sessions and Connections Model ............................................................................................ 703
Figure 106.iSCSI Initiator Node ............................................................................................................................ 703
Figure 107.Host Discovered Resources Block Diagram....................................................................................... 713
Figure 108.Host Discovered Resources Class Diagram....................................................................................... 715
xl



 

Figure 109.Single SPI Disk Model ........................................................................................................................ 716
Figure 110.Three FC Logical Unit Instance Diagram............................................................................................ 716
Figure 111.Non-SCSI Discovered Resource Model.............................................................................................. 717
Figure 112.Disk Partition Class Hierarchy ............................................................................................................ 726
Figure 113.Disk Partition Class Diagram .............................................................................................................. 726
Figure 114.Disk MBR Partition Example............................................................................................................... 727
Figure 115.MBR Partition Instance Diagram ........................................................................................................ 728
Figure 116.MBR and VTOC Partition Instance Diagram....................................................................................... 729
Figure 117.Partition Instance Diagram for Size/Address Rules............................................................................ 730
Figure 118.Multipath Management Class Diagram............................................................................................... 741
Figure 119.Four Path Instance Diagram............................................................................................................... 742
Figure 120.Array Profile Instance Diagram........................................................................................................... 753
Figure 121.Storage Virtualizer Package Diagram................................................................................................. 759
Figure 122.Storage Virtualizer System Instance................................................................................................... 760
Figure 123.Volume Management Instance Diagram ............................................................................................ 767
Figure 124.NAS Head Profiles and Subprofiles .................................................................................................... 777
Figure 125.NAS Head Instance Diagram.............................................................................................................. 779
Figure 126.NAS Storage Instance Diagram.......................................................................................................... 781
Figure 127.NAS Filesystem Instance Diagram ..................................................................................................... 782
Figure 128.NAS File Share Instance Diagram...................................................................................................... 783
Figure 129.NAS Head Cascading Support Instance Diagram .............................................................................. 785
Figure 130.Self-Contained NAS Profile and Subprofiles ...................................................................................... 813
Figure 131.Self-Contained NAS Instance Diagram .............................................................................................. 815
Figure 132.NAS Storage Instance Diagram.......................................................................................................... 817
Figure 133.NAS Filesystem Instance Diagram ..................................................................................................... 818
Figure 134.NAS File Share Instance Diagram...................................................................................................... 819
Figure 135.LocalFileSystem Creation Instance Diagram...................................................................................... 848
Figure 136.Capabilities and Settings for Filesystem Creation Diagram................................................................ 850
Figure 137.File Export Manipulation Subprofile Instance Diagram....................................................................... 882
Figure 138.Basic Pool Management Instance Diagram........................................................................................ 912
Figure 139.Resource Ownership for Block Services............................................................................................. 927
Figure 140.ServiceAffectsElement associations for ResourceOwnership ............................................................ 931
Figure 141.AuthorizedPrivilege associations for ResourceOwnership ................................................................. 931
Figure 142.Storage Capacity State....................................................................................................................... 935
Figure 143.Pool Manipulation Instance Diagram .................................................................................................. 937
Figure 144.Volume Creation Instance Diagram.................................................................................................... 940
Figure 145.Storage Configuration......................................................................................................................... 941
Figure 146.Extent Conservation, Step 1 ............................................................................................................... 946
Figure 147.Extent Conservation, Step 2 ............................................................................................................... 947
Figure 148.Extent Conservation, Step 3 ............................................................................................................... 948
Figure 149.Representative Block Service Instance Diagram................................................................................ 959
Figure 150.Pool Creation, Initial State .................................................................................................................. 960
Figure 151.Pool Creation - Step 2 ........................................................................................................................ 961
Figure 152.Pool Creation - Step 3 ........................................................................................................................ 962
Figure 153.Pool Creation - Step 4 ........................................................................................................................ 962
Figure 154.Volume Creation - Initial State ............................................................................................................ 963
Figure 155.Volume Creation - Step 1 ................................................................................................................... 964
Figure 156.Volume Creation - Step 2 ................................................................................................................... 965
Figure 157.Volume Creation - Step 3 ................................................................................................................... 966
Figure 158.Block Server Performance Subprofile Summary Instance Diagram ................................................. 1005
Figure 159.Base Array Profile Block Server Performance Instance Diagram..................................................... 1008
Figure 160.Base Storage Virtualizer Profile Block Server Performance Instance Diagram................................ 1010
Figure 161.Base Volume Management Profile Block Server Performance Instance Diagram ........................... 1011
Figure 162.Multiple Computer System Subprofile Block Server Performance Instance Diagram ...................... 1013
Figure 163.Fibre Channel Initiator Port Subprofile Block Server Performance Instance Diagram...................... 1014
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xli



 

Figure 164.Extent Composition Subprofile Block Server Performance Instance Diagram ................................. 1015
Figure 165.Disk Drive Lite Subprofile Block Server Performance Instance Diagram ......................................... 1016
Figure 166.SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram.......................................... 1017
Figure 167.Remote Mirrors Block Server Performance Instance Diagram......................................................... 1018
Figure 168.Block Server Performance Manifest Collections............................................................................... 1020
Figure 169.Copy Services Discovery .................................................................................................................. 1073
Figure 170.Local Replica .................................................................................................................................... 1074
Figure 171.Remote Mirror Replica...................................................................................................................... 1075
Figure 172.Cascading the Copy Services Subprofile ......................................................................................... 1076
Figure 173.Peer-to-Peer Connection .................................................................................................................. 1077
Figure 174.Multi-Level Local Replication ............................................................................................................ 1078
Figure 175.Multi-Level Remote Replication ........................................................................................................ 1079
Figure 176.Multi-Level Snapshots ...................................................................................................................... 1080
Figure 177.State Transitions for Mirrors ............................................................................................................. 1086
Figure 178.State Transitions for Snapshots........................................................................................................ 1087
Figure 179.Remote Replication Buffer ................................................................................................................ 1101
Figure 180.Fixed Space Consumption................................................................................................................ 1107
Figure 181.Variable Space Consumption ........................................................................................................... 1108
Figure 182.Disk Drive Lite Instance Model ......................................................................................................... 1182
Figure 183.Sparing Instance Diagram ................................................................................................................ 1189
Figure 184.Variations of RS per Storage Element .............................................................................................. 1192
Figure 185.Before Failure ................................................................................................................................... 1194
Figure 186.During Failure ................................................................................................................................... 1194
Figure 187.After Failure ...................................................................................................................................... 1195
Figure 188.Volume Composition from General QOS Pool.................................................................................. 1209
Figure 189.Single QOS Pool Composition (RAID Groups) ................................................................................. 1211
Figure 190.SIngle QOS Pool Composition - Two Concretes .............................................................................. 1212
Figure 191.Concatenation Composition.............................................................................................................. 1214
Figure 192.RAID 0 Composition ......................................................................................................................... 1214
Figure 193.RAID 1 Composition ......................................................................................................................... 1215
Figure 194.RAID 10 Composition ....................................................................................................................... 1216
Figure 195.RAID 0+1 Composition ..................................................................................................................... 1217
Figure 196.RAID 4, 5 Composition ..................................................................................................................... 1218
Figure 197.RAID 6, 5DP, 4DP ............................................................................................................................ 1219
Figure 198.RAID 15 Composition ....................................................................................................................... 1220
Figure 199.RAID 50 Composition ....................................................................................................................... 1221
Figure 200.RAID 51 Composition ....................................................................................................................... 1222
Figure 201.Generic System with no Configuration Service................................................................................. 1243
Figure 202.Generic System with ControllerConfigurationService ....................................................................... 1243
Figure 203.Relationship of Initiator IDs, Endpoints, and Logical Units ............................................................... 1244
Figure 204.StorageClientSettingData Model ...................................................................................................... 1248
Figure 205.Entire Model...................................................................................................................................... 1249
Figure 206.Storage Library-centric Instance Diagram ........................................................................................ 1280
Figure 207.MediaAccessDevice-centric Instance Diagram................................................................................. 1281
Figure 208.ChangerDevice-centric Instance Diagram ........................................................................................ 1281
Figure 209.Physical View Instance Diagram ...................................................................................................... 1282
Figure 210.StorageMediaLocation Instance Diagram......................................................................................... 1282
Figure 211.Instance Diagram.............................................................................................................................. 1295
Figure 212.InterLibraryPort Connection Instance Diagram................................................................................. 1301
Figure 213.Virtual ChangerDevices ................................................................................................................... 1305
Figure 214.Library Capacity Instance Diagram................................................................................................... 1309
Figure 215.Storage Library Centric View ............................................................................................................ 1329
Figure 216.Media-centric View ........................................................................................................................... 1330
Figure 217.LimitedAccessPort Linkages............................................................................................................. 1336
Figure 218.System Diagram ............................................................................................................................... 1341
xlii



 

Figure 219.Host Bus Adapter Model ................................................................................................................... 1341
Figure 220.Switch Model .................................................................................................................................... 1342
Figure 221.Array Instance................................................................................................................................... 1347
Figure 222.Virtualization Instance....................................................................................................................... 1348
Figure 223.Logical and Physical Topology Across Components of a Fabric ...................................................... 1349
Figure 224.Complete Reference Model .............................................................................................................. 1395
Figure 225.SA Server Configuration ................................................................................................................... 1411
Figure B.1 Provider Migration............................................................................................................................  1427
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xliii



 

xliv



 

Foreword

This foreword is not a normative part of the Storage Management Initiative Specification.

This Technical Specification defines a method for the interoperable management of a heterogeneous 
Storage Area Network (SAN), describes the information available to a WBEM Client from an SMI-S 
compliant CIM Server and an object-oriented, XML-based, messaging-based interface designed to 
support the specific requirements of managing devices in and through Storage Area Networks (SANs).

With any technical document there may arise questions of interpretation as new products are 
implemented. SNIA has established procedures to issue technical opinions concerning the standards 
developed by SNIA. These procedures may result in updates to the specification being published by 
SNIA.

These updates, while reflecting the opinion of the Technical Committee that developed the standard, 
are intended solely as supplementary information to other users of the standard. This standard as 
approved through the publication and voting procedures of the Storage Networking Industry 
Association, is not altered by these bulletins. Any subsequent revision to this standard may or may not 
reflect the contents of these Technical Information Bulletins.

This standard contains two annexes. Annex A is informative and is not considered part of this standard. 
Annex B is normative and is part of this standard.

Current SNIA practice is to make updates and other information available through its web site at 
http://www.snia.org

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. 
They should be sent to the Storage Networking Industry Association, 500 Sansome Street, Suite #504, 
San Francisco, CA 94111 USA. 

The SNIA SMI Technical Steering Group, which developed and reviewed this standard, would like to
recognize the significant contributions made by the following members:

Organization Represented Name of Representative
Brocade Communications Systems....................... John Crandall 
EMC Corporation ...................................................Kamesh Aiyer 
...............................................................................George Ericson 
...............................................................................Steve Terwilliger 
Hewlett-Packard.....................................................Steve Peters 
Hitachi Data Systems.............................................Steve Quinn 
IBM.........................................................................Duane Baldwin 
............................................................................... Jack Gelb 
...............................................................................Mike Walker 
iStor Networks, Inc.................................................Scott Baker 
Network Appliance .................................................Alan Yoder
Sun Microsystems..................................................Mark Carlson
...............................................................................Paul von Behren 
Symantec ............................................................... Joe Fasano 
...............................................................................Steve Hand 
TeraCloud ..............................................................Bill Pierce
WBEM Solutions .................................................... Jim Davis 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position xlv



 

Introduction

The SNIA Storage Management Initiative Specification standard (SMI-S) is divided into a number of 
clauses and annexes:

Clause 1 defines the scope of this standard and places it in context of other standards and standards 
projects.

Clause 2 specifies definitions, symbols, abbreviations, and document conventions.

Clause 3 describes the underlying concepts of the interface, including its anticipated usage model and 
business rationale.

Clause 4 shows typographical conventions used in this document to indicate deprecated and 
experimental material. The clause also defines  the terms deprecated and experimental as used in
SMI-S.

Clause 5 enumerates the normative references that apply to this standard.

Clause 6 identifies high-level requirements and capabilities addressed by this standard.

Clause 7 defines the transport layer and reference model employed in the standard.

Clause 8 provides an overview of the object model underlying the standard.

Clause 9 defines the object model underlying the standard.

Clause 10 defines service discovery in the context of this standard.

Clause 11 defines the roles for the various entities of the management system defined by the standard.

Clause 12 defines the installation and upgrade process defined by the standard.

Annex A specifies a method of mapping CIM objects to SNMP MIB structures (informative).

Annex B establishes the declaration of compliance with the SNIA SMI Specification (normative).
xlvi



 

Clause 1: Scope

This Technical Specification defines an interface for the secure, extensible, and interoperable
management of a distributed and heterogeneous storage system. This interface uses an object-
oriented, XML-based, messaging-based protocol designed to support the specific requirements of
managing devices and subsystems in this storage environment. Using this protocol, this Technical
Specification describes the information available to a WBEM Client from an SMI-S compliant CIM
WBEM Server. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1



 

2



 Definitions, Symbols, Abbreviations, and Conventions
Clause 2: Definitions, Symbols, Abbreviations, and Conventions

2.1 Definitions

2.1.1 Address masking
Address masking is a function of a host I/O controller (device driver) that filters access to certain
storage resources on the SAN. It puts the responsibility of segregating I/O paths on the individual
server system in the SAN and requires coordination of all servers to avoid access collisions. Also called
Host-based LUN Masking.

2.1.2 Addressable Unit
Storage addressable unit (e.g., LUN, Virtual Disk, Logical Disk, Logical Volume, Volume Set).

2.1.3 Agent
An Object Manager that includes the provider service for a limited set of resources.

An Agent may be embedded or hosted and can be an aggregator for multiple devices.

2.1.4 Aggregation
A strong form of an association. For example, the containment relationship between a system and the
components that make up the system can be called an aggregation. An aggregation is expressed as a
Qualifier on the association class. Aggregation often implies, but does not require, that the aggregated
objects have mutual dependencies.

2.1.5 ATM
Acronym for Asynchronous Transfer Mode.

2.1.6 Attributes
A collection of tags and values describing the characteristics of a service.

2.1.7 Attribute Reply (AttrRply)
A reply to an Attribute Request. (optional)

2.1.8 Attribute Request (AttrRqst)
A request for attributes of a given type of service or attributes of a given service. (optional)

2.1.9 Cardinality
The number of values that may apply to an attribute for a given entity. Refer to UML Standards. See
Table 92.

2.1.10 CIM
Acronym for Common Information Model. An object-oriented description of the entities and
relationships in a business' management environment maintained by the Distributed Management Task
Force. CIM is divided into a Core Model and Common Models. The Core Model addresses high-level
concepts (such as systems and devices), as well as fundamental relationships (such as dependencies).
The Common Models describe specific problem domains such as computer system, network, user or
device management. The Common Models are subclasses of the Core Model and may also be
subclasses of each other.

2.1.11 CIMOM
Acronym for Common Information Model Object Manager.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 3



 

2.1.12 Client
A process that issues requests for service. Formulating and issuing requests may involve multiple client
processes distributed over one or more computer systems. The collection of client processes involved
in formulating and issuing requests is known as a consumer.

2.1.13 Completion Semantics
Specifies how a method notifies its caller that its operations have completed. To this end, notification of
completion is accomplished in either of two ways:

Asynchronous notification: Upon return of the method, its operations may not have yet completed. The
caller is then required to employ some other mechanism to determine when the operations complete.
Events, callbacks, and polling are examples of mechanisms available to the caller in this regard.

Synchronous notification: The thread calling the method blocks until the method’s operations succeed
or fail.

Completion semantics refer to the operations executed by the method, and not the method completion
itself. For example, suppose we write a method to resync a split-mirror. We recognize that this could
take an indeterminate amount of time, so we design a method, resync(), to spawn a task to manage the
set of operations required for the resynchronization and then return to the caller. When the method,
resync(), completes and returns to the caller, the resynchronization of the mirrors will [most likely] not
have completed. So, the method has completed but its operations have not.

2.1.14 Consumer 
A host, identified by HBA WWN or other identifier, that is allowed access to a storage addressable unit

2.1.15 Control Software
A body of software that provides common control and management for one or more disk arrays or tape
arrays. Control software presents the arrays of disks or tapes it controls to its operating environment as
one or more virtual disks or tapes. Control software may execute in a disk controller or intelligent host
bus adapter, or in a host computer. When it executes in a disk controller or adapter, control software is
often referred to as firmware.

2.1.16 Concurrency Control Protocol
A set of rules for identifying and resolving resource conflicts between multiple, non-cooperating clients.
The three most common concurrency protocols are:

Lock ordering: Transactions are ordered according to the order of arrival of their operations at the
resource(s). 

Optimistic ordering: Transactions proceed until they are ready to commit, whereupon a check is made
to see whether they have performed conflicting operations.

Timestamp ordering: Transactions are ordered according to the time they were initiated.

2.1.17 Cooperating Clients
A set of consumer processes that are aware of each other and are able to coordinate access to (and
control of) resources among themselves

2.1.18 DA Advertisements (DAAdvert):
A solicited (unicast) or unsolicited (multicast) advertisement of Directory Agent availability.

2.1.19 Data Invariant
A data invariant is the name given to the consistency-state of shared data. A data invariant is always be
TRUE. When the data invariant is violated, the invariant shall be protected via mutual exclusion. For
4



 Definitions, Symbols, Abbreviations, and Conventions
example, suppose the user has a list of records and a record pointer, i, that is always set to point to the
last record in the list. In this example, the invariant is the record pointer always points to the last record. 

But observe what happens when the user appends a record to the list as follows:

(a) Add record to record[i].

(b)i += 1;

After (a) completes, but before (b) is invoked, i no longer points to the last record in the list. Now,
suppose another thread comes along and attempts to read the last record in the list. In this case, the
thread will get the penultimate record, not the last one – because i has not yet been updated. The
solution to this problem is to serialize access to both operations using a lock or a semaphore.

BEGIN LOCK

(a) Add record to record[i].

(b)i += 1;

END LOCK

2.1.20 Device
A storage system that is addressable from the SAN. 

2.1.21 DHCP
Acronym for dynamic host control protocol. An Internet protocol that allows nodes to dynamically
acquire (“lease”) network addresses for periods of time rather than having to pre-configure them. DHCP
greatly simplifies the administration of large networks, and networks in which nodes frequently join and
depart.

2.1.22 Directory 
A repository of information about objects that may be accessed via a Directory Service.

2.1.23 Directory Agent (DA):
In the context of SLP, a process that caches SLP service advertisements registered by Service Agents
and forwards the service advertisements to User Agents on demand. 

2.1.24 Discovery
Discovery provides information about what physical and logical SAN entities have been found within
the management domain. Enough information is provided to support the creation of correct Topology
maps. This information changes dynamically, as SAN entities are added, moved, or removed.

2.1.25 DLT
Acronym for Digital Linear Tape. A family of tape device and media technologies developed by
Quantum Corporation.

2.1.26 DMTF
Distributed Management Task Force. An industry organization that develops management standards
for computer system and enterprise environments. DMTF standards include WBEM, CIM, DMI, DEN
and ARM. The DMTF has a web site at www.dmtf.org.

2.1.27 Enclosure
A box or cabinet.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 5



 

2.1.28 Enumerate
This operation is used to enumerate subclasses, subclass names, instances and instance names in the
target Namespace. If successful, the method returns zero or more requested elements that meet the
required criteria.

2.1.29 Extent
A set of consecutively addressed FBA disk blocks that is allocated to consecutive addresses of a single
file. 

A set of consecutively located tracks on a CKD disk that is allocated to a single file. 

A set of consecutively addressed disk blocks that is part of a single virtual disk-to-member disk array
mapping. A single disk may be organized into multiple extents of different sizes, and may have multiple
(possibly) non-adjacent extents that are part of the same virtual disk-to-member disk array mapping.
This type of extent is sometimes called a logical disk. 

2.1.30 Extrinsic Method
A method defined as part of CIM Schema. Extrinsic methods are invoked on a CIM Class (if static) or
Instance (otherwise). An extrinsic method call is represented in XML by the <METHODCALL> element,
and the response to that call represented by the <METHODRESPONSE> element. cf. Intrinsic Method

2.1.31 Fabric
Any interconnect between two or more Fibre Channel N_Ports, including point-to-point, loop, and
Switched Fabric.

Switched Fabric: A fabric comprised of one or more Switches

2.1.32 FC-GS-3
Fibre Channel - Generic Services 3. Also abbreviated GS-3

2.1.33 FIP:
Acronym for Federal Information Processing Standard. Standards (and guidelines) produced by NIST
for government-wide use in the specification and procurement of Federal computer systems.

2.1.34 Grammar
A formal definition of the syntactic structure of a language (see 2.1.99, "Syntax"), normally given in
terms of production rules that specify the order of constituents and their sub-constituents in a sentence
(a well-formed string in the language). Each rule has a left-hand side symbol naming a syntactic
category (e.g., “noun-phrase” for a natural language grammar) and a right-hand side that is a sequence
of zero or more symbols. Each symbol may be either a terminal symbol or a non-terminal symbol. A
terminal symbol corresponds to one “lexeme” - a part of the sentence with no internal syntactic
structure (e.g., an identifier or an operator in a computer language). A non-terminal symbol is the left-
hand side of some rule. 

2.1.35 GS-3
Refer to FC-GS-3 

2.1.36 HBA
Host bus adapter, card that contains ports for host systems.

2.1.37 Host
A computer running an O/S.
6



 Definitions, Symbols, Abbreviations, and Conventions
2.1.38 HTTP
A request-reply protocol called the Hypertext Transfer Protocol, HTTP.

2.1.39 Hub
Interconnect element that supports a ring topology.

2.1.40 Inheritance Relationship
Refer to UML Standards.

2.1.41 Interconnect Element
Non terminal network elements (Switches, hubs, routers, directors).

2.1.42 Interface Definition Language (IDL)
A high-level declarative language that provides the syntax for interface declarations. Some examples of
IDLs in common usage today are:

• DCE’s RPC IDL

• Microsoft’s DCOM IDL (based on the DCE IDL)

• OMG IDL (used to define the DOM XML interface)

• DMTF MOF (an IDL-derived specification).

2.1.43 Intrinsic Method
 Operations made against a CIM server and a CIM Namespace independent of the implementation of
the schema defined in the server. Examples of intrinsic methods in XML include the <IMETHODCALL>
element, and the response to that call represented by the <IMETHODRESPONSE> element. cf.
Extrinsic Method

2.1.44 Language-Binding
The association of a programming language (e.g., C++, Java, C) with an interface definition language.
For example, OMG IDL supports many language bindings because it can be compiled into a variety of
programming languages (C, C++, Java, ADA, COBOL, etc.). By contrast, Microsoft’s DCOM IDL only
supports one language binding, C++. Similarly, Java IDL also supports only one language binding
(Java).

Some IDLs do not support any [formal] language bindings. DMTF’s MOF, for example, is derived from
OMG’s IDL but is used as a data modeling language more in the spirit of SQL than programmatic
interfaces.

2.1.45 Lock Manager
Short name for Lock Management Server. 

2.1.46 Logical Unit Number (LUN)
The SCSI identifier of a logical unit within a Target.

2.1.47 LTO
Acronym for Linear Tape Open. 

2.1.48 LUN Mapping
The process of creating a disk resource and defining its external access paths, by configuring LUs
(Logical Units) from the disk array logical disk volumes - either by grouping them as a single larger LU
or by creating partitions. The Logical Unit Number (LUN) (2.1.46) is then mapped to an external ID
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 7



 

descriptor (for example: a SCSI Port, Target ID and LU Number). An LU may be mapped for access
from multiple ports and/or multiple target IDs, providing alternate paths for nonstop data availability. 

LUN Mapping is a necessary task to be able to export the LUN to the Fabric/Server/etc. It can be done
independently of any knowledge of the intended use of the LUN. Only LUNs that are exposed via a Port
(2.1.62) are available for access. 

2.1.49 LUN Masking
Process of configuring software in SAN nodes to determine which hosts have access to exported
drives. LUN masking can be either server-based address masking or storage based port mapping. cf.
Port Mapping

2.1.50 MAN
Acronym for Metropolitan Area Network. A network that connects nodes distributed over a metropolitan
(city-wide) area as opposed to a local area (campus) or wide area (national or global). From a storage
perspective, MANs are of interest because there are MANs over which block storage protocols (e.g.,
ESCON, Fibre Channel) can be carried natively, whereas most WANs that extend beyond a single
metropolitan area do not currently support such protocols.

2.1.51 Marshalling
The set of operations by which a message is converted into a transfer syntax. In HTTP, requests and
replies are marshaled into formatted ASCI-text strings.

2.1.52 Method
The name of [one or more] operation(s) performed by an instance of an object class. Methods are
distinguished from operations as follows: A method is a name for one or more operations that may
execute when the method is invoked. For example, when the method, printSelf(), is called, the
operation of printing the state of the reference object is executed.

Synonyms are: Function, procedure, or subroutine. Usage of these terms should be deprecated.

In most models, a method is characterized by its name, return-type, parameters, completion semantics
(asynchronous or synchronous), and side effects (e.g., event generation, message propagation, etc.).

Methods are specified in an IDL.

Methods are declared in source header files of a programming language (.h files, Java Interface files,
etc.,).

Methods are defined (or implemented) in source implementation files (e.g.,.cpp,. java, class files).

Method specifications are language independent. Method declarations and implementations are, by
construction, language dependent.

2.1.53 Monitoring
Monitoring provides management information about the current state of individual logical and physical
SAN entities. This information changes dynamically, as SAN entities perform their functions, are
serviced, experience errors, etc. Monitoring can only be done on SAN entities that are known via
Discovery.

2.1.54 NAA
Acronym for Network Address Authority. A four bit identifier defined in FC-PH to denote a network
address authority (i.e., an organization such as CCITT or IEEE that administers network addresses).
8



 Definitions, Symbols, Abbreviations, and Conventions
2.1.55 NDMP
Acronym for Network Data Management Protocol. A communications protocol that allows intelligent
devices on which data is stored, robotic library devices, and backup applications to intercommunicate
for the purpose of performing backups.

An open standard protocol for network-based backup of NAS devices. NDMP allows a network backup
application to control the retrieval of data from, and backup of, a server without third-party software. The
control and data transfer components of backup and restore are separated. NDMP is intended to
support tape drives, but can be extended to address other devices and media in the future. The
Network Data Management Task Force has a web site at HTTP://www.ndmp.org.

2.1.56 N_Port
Refer to Port. Node

A collection of Ports. A Fiber channel device with a group of ports. 

An addressable entity connected to an I/O bus or network. Used primarily to refer to computers, storage
devices, and storage subsystems. The component of a node that connects to the bus or network is a
port.

2.1.57 Non-cooperating clients
A set of consumer processes that are independent of each other, compete for resources and execute
independently of the other. User processes on a multi-user machine are non-cooperating clients with
respect to the operating system.

2.1.58 Operation
An action executed within the body of a method. Operations are distinct from methods (see 2.1.52,
"Method").

2.1.59 Out-of-Band
Transmission of management information for Fibre Channel components outside of the Fibre Channel
network, typically over Ethernet. 

2.1.60 PKI
Acronym for public key infrastructure. A framework established to issue, maintain, and revoke public
key certificates accommodating a variety of security technologies. 

2.1.61 Platform
Collection of Nodes.

2.1.62 Port
Connection point for links. 

N_Port: A hardware entity that includes a Link_Control_Facility. It may act as an Originator, a
Responder, or both.

N_Port identifier: A Fabric unique address identifier by which an N_Port is uniquely known. The
identifier may be assigned by the Fabric during the initialization procedure. The identifier may also be
assigned by other procedures not defined in FC-FS.

Port_Name: As defined in FC-FS.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 9



 

2.1.63 Port Mapping
Function of a storage subsystem to define which hosts have access to exported drives. This
configuration authorizes specified server HBA WWNs to access the secured LU while preventing other
unauthorized servers/hosts from either seeing the secured LU or accessing the data contained on the
secured LU. cf. LUN Masking

2.1.64 Protocol
A set of rules that define and constrain data, operations, or both. For example, xmlCIM uses XML as its
transfer syntax, and HTTP as the request-reply protocol HTTP is layered over the TCP/IP network
protocol.

2.1.65 Provider
A COM server that communicates with managed objects to access data and event notifications from a
variety of sources, such as the system registry or an SNMP device. Providers forward this information
to the CIM Object Manager for integration and interpretation. 

class provider: A COM server that supplies class definitions. Class providers can support data
retrieval, modification, deletion, enumeration, and query processing.

property provider: A type of provider that supports the retrieval and modification of the CIM properties. 

2.1.66 Relationship
Refer to UML Standards. See Table 92.

2.1.67 Required Reference
Refer to UML Standards. See Table 92.

2.1.68 SA Advertisement (SAAdvert): 
Information describing a service that consists of the Service Type, Service Access Point, lifetime, and
Attributes.

2.1.69 SAN
Acronym for storage area network. (This is the normal usage in SNIA documents.) 

Acronym for Server Area Network that connects one or more servers. 

Acronym for System Area Network for an interconnected set of system elements.

A group of fabrics that have common leaf elements. 

2.1.70 Scope
A set of services, typically making up a logical administrative group. 

2.1.71 Semantics
The meaning or behavior associated with an entity. For example, we might say the semantics of the
method, resync_mirror(), is encoded in the method name. By contrast, the semantics of the UNIX
ioctl() method is encoded in the command parameter.

2.1.72 Server
A process that fields and/or dispatches requests. Honoring a request may involve more than one server
process distributed over one or more computer systems. The collection of server processes that are
involved in honoring a request are known as service providers.
10



 Definitions, Symbols, Abbreviations, and Conventions
2.1.73 Service Access Point
The network address and port number of a process offering a service.

2.1.74 Service Acknowledgement (SrvAck)
A reply to a SrvReg request. 

2.1.75 Service Agent (SA)
In the context of SLP, this refers to a process working on behalf of one or more services to advertise the
services in the network.

2.1.76 Service Agent Server (SAServer)
In the context of SLP, this refers to a process working on behalf of one or more Service Agents to listen
on a particular port number for SLP service requests. 

2.1.77 Service Deregister (SrvDereg)
A request to deregister a service or some attributes of a service. (optional)

2.1.78 Service Register (SrvReg)
A request to register a service or some attributes of a service. 

2.1.79 Service Reply (SrvRply)
A reply to a Service Request.

2.1.80 Service Request (SrvRqst)
A request for a service on the network.

2.1.81 SES
Acronym for SCSI Enclosure Services. AT10 standard for management of environmental factors such
as temperature, power, voltage, etc. (ANSI INCITS 305-1998 R2003)

2.1.82 Service Type
The class of a network service represented by a unique string, for example a namespace assigned by
IANA (Internet Assigned Number Authority).

2.1.83 Service Type Reply (SrvTypeRply)
A reply to a Service Type Request. (optional)

2.1.84 Service Type Request (SrvTypeRqst)
A request for all types of service on the network. (optional)

2.1.85 Service Type Template
A formalized, computer-readable description of a Service Type.

2.1.86 Service URL
A Uniform Resource Locator for a service containing the service type name, network family, Service
Access Point, and any other information needed to contact the service.

2.1.87 SLP
Acronym for Service Location Protocol.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 11



 

2.1.88 SNIA
Acronym for Storage Networking Industry Association. An association of producers and consumers of
storage networking products whose goal is to further storage networking technology and applications.

2.1.89 SNMP
Acronym for Simple Network Management Protocol. An IETF protocol for monitoring and managing
systems and devices in a network. The data being monitored and managed is defined by a MIB. The
functions supported by the protocol are the request and retrieval of data, the setting or writing of data,
and traps that signal the occurrence of events.

2.1.90 SNMP Trap
A type of SNMP message used to signal that an event has occurred.

2.1.91 Soft Zone
 A Zone consisting of Zone Members that are made visible to each other through Client Service
requests. Typically, Soft Zones contain Zone Members that are visible to devices via Name Server
exposure of Zone Members. The Fabric does not enforce a Soft Zone. Note that well known addresses
are implicitly included in every Zone.

2.1.92 SPI
Acronym for SCSI Parallel Interface. The family of SCSI standards that define the characteristics of the
parallel version of the SCSI interface. Several versions of SPI, known as SPI, SPI2, SPI3, etc., have
been developed. Each version provides for greater performance and functionality than preceding ones.

2.1.93 SRM
Acronym for storage resource management. Management of physical and logical storage resources,
including storage elements, storage devices, appliances, virtual devices, disk volume and file
resources.

2.1.94 SSL
Acronym for Secure Sockets Layer. A suite of cryptographic algorithms, protocols and procedures used
to provide security for communications used to access the world wide web. The characters “https:” at
the front of a URL cause SSL to be used to enhance communications security. More recent versions of
SSL are known as TLS (Transport Level Security) and are standardized by the Internet Engineering
Task Force (IETF)

2.1.95 SSP
Acronym for Storage Service Provider. 

2.1.96 Switch
Fibre channel interconnect element that supports a mesh topology.

2.1.97 Symmetric Virtualization Appliance
Synonym for an appliance that provides storage virtualization.Storage virtualization appliance is the
preferred term.

2.1.98 Synchronous
A method that blocks the calling thread until all operations have completed or failed. 

2.1.99 Syntax
(The structure of strings in some language. A language's syntax is described by a grammar. For
example, the syntax of a binary number could be expressed as 
12



 Definitions, Symbols, Abbreviations, and Conventions
binary_number = bit [binary_number]

bit = “0” | “1”

Meaning that a binary number is a bit optionally followed by a binary number and a bit is a literal zero or
one digit. The meaning of the language is given by its semantics. 

2.1.100 TLS
Acronym for Transport Layer Security as defined in RFC 2246. 

2.1.101 Transfer Syntax
The formal rules (i.e., the protocol) governing the format (or representation) of messages as they are
transferred between clients and servers

2.1.102 UDP
Acronym for User Datagram Protocol. An Internet protocol that provides connectionless datagram
delivery service to applications. Abbreviated UDP. UDP over IP adds the ability to address multiple
endpoints within a single network node to IP.

2.1.103 UML Standards
Appendix D of the Common Information Model (CIM) Specification, V2.0 (March 3, 1998). 

Class - represented by a rectangle.

The class name either stands alone in the rectangle or is in the uppermost segment. If present, the
segment below the segment containing the name contains the properties of the class. If present, a third
region indicates the presence of methods.

Lines indicate:

• Inheritance relationships (blue lines with arrows) – Otherwise known as “is-a” relationships

• Aggregation/component relationships (green lines with a diamond shape at the “aggregating”
end) - Otherwise known as “has-a” relationships 

• Dependency and other relationships (red lines) – Some of which are “uses-a” relationships

• Relationship Labels - Inheritance relationships are not specifically labeled or named, while all
other associations are named. 

• Cardinality - the cardinalities of the references on both sides of an association are indicated by
numeric values or an asterisk (*) at the endpoints of the association 

The following cardinalities are typically used in the CIM Schema:

0..1 - Indicates an optional single-valued reference 

1 - Indicates a required, single-valued reference

1..n or 1..* - Indicates either a single or multi-valued reference, that is required*, 0..n or 0..* - Indicates
an optional, single or multi-valued reference

Required Reference - the object and the association shall exist (or be instantiated) when the other
referenced class is defined. 

Weak Reference – indicated by the symbol, “w”, indicates that the referenced endpoint or class is
“weak” with respect to the other class participating in the association. This means that the referenced
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 13



 

class is scoped or named relative to the other class, and the identifying keys of the other class are
placed as properties in the “weak” class. 

Note that this is not standard UML convention, but an added symbol in CIM diagrams.

2.1.104 Universal Modeling Language (UML)
Refer to UML Standards.  See Table 92.

2.1.105 URL
Uniform Resource Locator. 

2.1.106 User Agent (UA)
In the context of SLP, a process that attempts to establish contact with one or more services. A User
Agent retrieves service information from Service Agents or Directory Agents. 

2.1.107 VAR
Value Added Reseller.

2.1.108 Volume Set
Synonym for virtual disk.

2.1.109 WAN
Acronym for Wide Area Network. A communications network that is geographically dispersed and that
includes telecommunications links.

2.1.110 Weak Reference
Refer to UML Standards. See Table 92.

2.1.111 WBEM
Acronym for Web Based Enterprise Management. Web-Based Enterprise Management is an initiative
in the DMTF. It is a set of technologies that enables interoperable management of an enterprise. WBEM
consists of CIM, an XML DTD defining the tags (XML encodings) to describe the CIM Schema and its
data, and a set of HTTP operations for exchanging the XML-based information. CIM joins the XML data
description language and HTTP transport protocol with an underlying information model, CIM to create
a conceptual view of the enterprise.

2.1.112 W3C
World Wide Web Consortium.

2.1.113 XML
Acronym for eXtensible Markup Language. A universal format for structured documents and data on
the World Wide Web. The World Wide Web Consortium is responsible for the XML specification. cf.
http://www.w3.org/XML/.

2.1.114 XML-CIM Listener
A server application that receives and processes XML-CIM Export Message requests and issues CIM
Export Message responses.

2.1.115 XML-CIM Server
A Server that receives and processes XML-CIM Operation Requests and issues XML-CIM Operation
Responses.
14



 Definitions, Symbols, Abbreviations, and Conventions
2.1.116 Zone
A group of ports and switches that allow access. Defined by a zone definition. cf. Hard Zone, Soft Zone

A collection of Zone Members. Zone Members in a Zone are made aware of each other, but not made
aware of devices outside the Zone. A Zone can be defined to exist in one or more Zone Sets. 

2.1.117 Zone Definition 
The parameters that define a Zone: the Zone Name, number of Zone Members, and Zone Member
definition.

2.1.118 Zone Member
An N_Port (or NL_Port) to be included in a Zone, as specified by its Zone Member Definition. N_Ports
at well known addresses shall not be specified as Zone Members.

2.1.119 Zone Member Definition
The parameter by which a Zone Member is specified. A Zone Member may be specified by: 

• a port on a Switch, (specifically by Domain_ID and port number); or,

• the device’s N_Port_Name; or, 

• the device’s address identifier; or, 

• the device’s Node_Name.

2.1.120 Zone Set
One or more Zones that may be activated or deactivated as a group.

Zone Set Name: The name assigned to a Zone Set.

Zone Set State: The state of a Zone Set, which may be either activated or deactivated.

Active Zone Set: The Zone Set that is currently activated. Only one Zone Set may be activated at any
time.

2.2 Symbols and abbreviations
|| concatenate
= or EQ equal
≈ approximately equal
API application programming interface
CDB command descriptor block
FC Fibre Channel
HBA host bus adapter
IDL interface definition language
IETF Internet Engineering Task Force
IMA iSCSI Management API
IP Internet Protocol
iSCSI Internet SCSI
iSD iSCSI Direct
LSB least significant bit
OS operating system
RFC Request for Comments
SCSI Small Computer System Interface 
SAM-3 SCSI Architecture Model
SAN storage area network
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 15



 

SPC-3 SCSI Primary Commands-3
TC Technical Committee
TCP Transmission Control Protocol
UDP User Datagram Protocol

2.3 Keywords

2.3.1 expected
A keyword used to describe the behavior of the hardware or software in the design models presumed
by this standard. Other hardware and software design models may also be implemented.

2.3.2 invalid
A keyword used to describe an illegal or unsupported bit, byte, word, field or code value. Receipt of an
invalid bit, byte, word, field or code value shall be reported as an error.

2.3.3 mandatory
A keyword indicating an item that is required to be implemented as defined in this standard to claim
compliance with this standard.

2.3.4 may
A keyword that indicates flexibility of choice with no implied preference.

2.3.5 may not
Keywords that indicates flexibility of choice with no implied preference.

2.3.6 obsolete 
A keyword indicating that an item was defined in prior standards but has been removed from this
standard.

2.3.7 opaque:
A keyword indicating that value has no semantics or internal structure.

2.3.8 optional
A keyword that describes features that are not required to be implemented by this standard. However, if
any optional feature defined by this standard is implemented, it shall be implemented as defined in this
standard.

2.3.9 reserved
A keyword referring to bits, bytes, words, fields and code values that are set aside for future
standardization. Their use and interpretation may be specified by future extensions to this or other
standards. A reserved bit, byte, word or field shall be set to zero, or in accordance with a future
extension to this standard. Recipients are not required to check reserved bits, bytes, words or fields for
zero values. Receipt of reserved code values in defined fields shall be reported as an error.

2.3.10 shall
A keyword indicating a mandatory requirement. Designers are required to implement all such
requirements to ensure interoperability with other products that conform to this standard.

2.3.11 should
A keyword indicating flexibility of choice with a preferred alternative; equivalent to the phrase “it is
recommended”.
16



 Definitions, Symbols, Abbreviations, and Conventions
2.4 Conventions
Certain words and terms used in this American National Standard have a specific meaning beyond the
normal English meaning. These words and terms are defined either in Clause 2:, "Definitions, Symbols,
Abbreviations, and Conventions" or in the text where they first appear. 

Numbers that are not immediately followed by lower-case b or h are decimal values.

Numbers immediately followed by lower-case b (xxb) are binary values.

Numbers immediately followed by lower-case h (xxh) are hexadecimal values.

Hexadecimal digits that are alphabetic characters are upper case (i.e., ABCDEF, not abcdef).

Hexadecimal numbers may be separated into groups of four digits by spaces. If the number is not a
multiple of four digits, the first group may have fewer than four digits (e.g., AB CDEF 1234 5678h)

Decimal fractions are initiated with a comma (e.g., two and one half is represented as 2,5). 

Decimal numbers having a value exceeding 999 are separated with a space(s) (e.g., 24 255).

A numeric list (e.g., 1,2,3) of items indicate the items in the list are ordered (i.e., item 1 shall occur or
complete before item 2).

In the event of conflicting information the precedence for requirements defined in this standard is

1) text,

2) tables, then 

3) figures.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 17



 

18



 Business Overview
Clause 3: Business Overview

3.1 Preamble
Large Storage Systems and Storage Area Networks (SANs) are emerging as a prominent and
independent layer of IT infrastructure in enterprise class and midrange computing environments.
Examples of applications and functions driving the emergence of new storage technology include:

• Sharing of vast storage resources between multiple systems via networks,

• LAN free backup,

• Remote, disaster tolerant, on-line mirroring of mission critical data,

• Clustering of fault tolerant applications and related systems around a single copy of data.

• Archiving requirements for sensitive business information.

• Distributed database and file systems.

To accelerate the emergence of more functional and sophisticated storage systems in the market, the
industry requires a standard management interface that allows different classes of hardware and
software products supplied by multiple vendors to reliably and seamlessly interoperate for the purpose
of monitoring and controlling resources. The SNIA Storage Management Initiative (SMI) was created to
develop this specification (SMI-Specification or SMI-S), the definition of that interface. This standard
provides for heterogeneous, functionally rich, reliable, and secure monitoring/control of mission critical
global resources in complex and potentially broadly-distributed, multi-vendor storage topologies like
SANs. As such, this interface overcomes the deficiencies associated with legacy management systems
that deter customer uptake of more advanced storage management systems.

3.2 Business Rationale
This interface is targeted at creating broad multi-vendor management interoperability and thus
increasing customer satisfaction. To that end, this specification defines an “open” and extensible
interface that allows subsystems and devices within the global context of a large storage system to be
reliably and securely managed by overlying presentation frameworks and management systems in the
context of the rapidly evolving multi-vendor market. In specific, SAN integrators (like end-users, VARs,
and SSPs) can, via this standardized management interface, more flexibly select between multiple
vendors when building the hierarchy of software systems required to manage a large storage system
independent of the underlying hardware systems. Additionally, storage integrators can more flexibly
select between alternate hardware vendors when constructing storage configurations. Broad adoption
of the standards defined and extended in this specification will provide increased customer satisfaction
and will:

• More rapidly expand the acceptance of new storage management technology like SANs and
iSCSI; 

• Accelerate customer acquisition of new storage management technology;

• Expand the total market.

Additionally, a single common management interface allows SAN vendors and integrators to decrease
the time required to bring new more functional technology, products, and solutions to market.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 19



 

3.3 Interface Definition
This management interface allows storage management systems to reliably identify, classify, monitor,
and control physical and logical resources in a storage system. The fundamental relationship of this
interface to storage management software, presentation frameworks, user applications, SAN physical
entities (i.e., devices), SAN discovery systems, and SAN logical entities is illustrated in Figure 1:
"Interface Functions".

The diagram illustrates that functions of the interface can be distributed across multiple devices (i.e.,
Switches or Array Controllers) and/or software systems (i.e., Discovery Systems). While the
functionality of the interface is distributed within or across a storage environment, to insure that
monitoring and control operations by clients are consistent and reliable, the state of a given resource is
not certain to be valid if it is simultaneously available to clients from multiple unsynchronized sources. 

Example:A request by an SRM application and a backup engine for the bandwidth available on
a given Fibre Channel path should be coordinated by a single monitoring entity to
insure information consistency. If the SRM application and Backup engine obtain
different available bandwidth information for a given Fibre Channel path from multiple
unsynchronized sources they could function in conflict and degrade the efficiency of
the environment. 

Addressing this concern is the responsibility of parties configuring Storage and Network management
clients that rely on the primitives defined in the specification.

Figure 1: Interface Functions

SMI-S Interface

Objects

Application Framework

LU LU 
Clone

LU 
Snapshot OtherPortHostZone

Enclosure

Graphical Interface

CardMedia 
Robot

Disk 
Drive HBA Mgmt 

Appliance Extender

Tape Virtual 
Volume

Implementation

RAIDset Removable 
Media Set FabricRouterArraySwitch

Performance Capacity Planning

Resource 
Allocation

Command Interface

Media 
Management

Volume 
Management

File System Backup System

Database System

Data Migration 
(HSM)Other
20



 Business Overview
Note: Within this architecture (as depicted by the illustration above) entities like an appliance-based
volume manager may potentially act as both a client and a server to the interface.

Example:A Host-based volume manager wants to construct a large storage pool from multiple
SAN appliance based volumes, as well as volumes/LUNs originating from array
controllers. In this case, the host based volume manager needs to inspect the
characteristics of the volumes on both the SAN appliance and array controller prior to
allocation. Additionally, the SAN appliance (which runs a volume manager) needs to
inspect the properties of storage devices when building its volumes. As such, the
SAN appliance in this case is both a client and server in the management
environment, depending on the action being performed. 

Figure 1: "Interface Functions" includes a number of strategic functional requirements for the interface.
These capabilities will be introduced to the interface implementation over time, and may not be present
in this version of the interface. The functionalities required to fully satisfy the needs of clients using a
storage management interface include:

a) Clients need to be able to obtain sufficient information to discern the topology of the SAN or com-
plex storage system;

b) Clients need to be able to reliably identify resources that have experienced an error/fault condition 
that has resulted in degraded/disabled operation;

c) Clients need to be able to construct a zone of allocation around a select group of host and storage 
resources;

d) Clients need to be able to identify nonvolatile storage resources available to a storage manage-
ment system, to allow them to construct a storage pool of a consistent level of performance and 
availability;

e) Clients need to be able to identify third-party copy engines (and associated media libraries/robots) 
available to a cooperating backup engine, allowing it to allocate an engine/library/robot to a given 
backup task;

f) Clients need to be able to dynamically allocate non-volatile storage resources;

Note: Each volume to be utilized is subject to strict availability and performance requirements. As a
result, the file system needs to inspect the properties of each volume prior to allocation.

g) Clients need to be able to access sufficient topology and component information to allow a Storage 
Resource Management (SRM) application like a performance monitor to examine topology and 
line utilization, such that performance bottlenecks can be exposed and capacity planning per-
formed;

h) Clients need to be able to employ appropriate data reporting and tracking to allow capacity plan-
ning system to identify each storage pool in the SAN and then interact with the manager of each 
pool to assess utilization statistics;

i) Clients need to be provided with adequate controls for a privileged, user-written application to 
restrict the use of a volume to a specific host, set of hosts, or set of controller communications 
ports;

j) Clients need to be assured of timely propagation of data concerning the health and performance of 
the devices and subsystems in the SAN to fault isolation and analysis systems.

Example non-goals for this interface include:

a) The ability to select a logical communications port over which to send/receive data;
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 21



 

b) The ability to read or write data to a volume;

c) The ability to identify and recover from data communications errors and failures;

d) The ability to log a new communications device into a network.

3.4 Technology Trends
To be broadly embraced and long lived this management interface should respect and leverage key
technology trends evolving within the industry. These include:

a) Improved Connectivity: Whether available In-band (i.e., over Fibre Channel/iSCSI) or available 
out-of-band (i.e., over a LAN/MAN/WAN), or available over a mix of both, virtually all devices in a 
storage management environment have (or soon will have), access to a common communications 
transport suitable for carrying management information content (e.g., TCP/IP), that is used to 
transmit a standardized encoding (e.g., CIM-XML) of recognized semantics (e.g., CIM);

b) Increased Device Manageability: Through a common, general-purpose network transport, provide 
the option to provide proxy services to provide access to (e.g., general purpose computer system) 
devices via this standardized management interface;

Example:A legacy array controller is incapable of running the software necessary to implement
a management server for this interface and uses a proxy server on a SAN appliance
to communicate within the management environment. 

Example:An HBA is incapable of running the software necessary to implement a management
server for this interface and uses a proxy server on its host system to communicate
within the management environment.

c) XML Standardization: XML is providing the ability to create management protocols with an extensi-
ble, platform independent, human readable, content describable communication language. This 
streamlines the task of developing infrastructure to support his interface and debug systems 
around the interface.

d) Object Independent Protocols: These protocols provide appropriate abstraction – separating the 
definition of the object model from the semantics/syntax of the protocol. Additionally, the transport-
independent, content-description (i.e., markup) nature of XML allows it to be utilized by both web-
enabled application and appliances;

e) Increased SAN Complexity: SANs are being configured with diverse classes of components and 
widely distributed topologies. Management clients and servers in the environment need to antici-
pate being widely distributed on systems, appliances and devices throughout large SAN topolo-
gies, while maintaining real-time distributed state for logical entities. Figure 2: "Large SAN 
22



 Business Overview
Topology" provides an example of a single SAN built from multiple classes of components span-
ning three physical locations (i.e., Sites A, B and C).”.

3.5 Management Environment
Clients and Servers of this interface can be widely distributed on systems, appliances, and devices
across a network that includes one or more large SAN topologies. 

The configuration in Figure 3: "Example Client Server Distribution in a SAN" provides an example
client/server distribution using in-band TCP/IP communications, out of band TCP/IP communications,
or employing proxy services to bridge legacy and/or proprietary communication interfaces. The device
“Old Array Controller” is incapable of appropriate communication with clients and servers in the
management environment to provide management access (i.e., a CIM Server). Access to the
communications transport that clients and servers share for communication is achieved via a proxy

Figure 2: Large SAN Topology

Host A1

Host A2

Host An

Switch A1
Switch A2

Bridge A1

Bridge A2

Appliance A1

Appliance A2

Array A1

Array An

Vol A1

Vol An

Site - A

Host C1

Host C2

Host B1

Switch C1
Switch C2

Bridge C1

Bridge C2

Appliance C1

Appliance C2

Array C1

Array An

Vol C1

Vol Cn

Site - C

Network

Switch B1 Router B1

Site - B

Library

Snaps and Clones
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 23



 

service on the host computer in the upper right hand corner of the illustration. All other clients and
servers communicate via direct access to a common communications transport.

3.6 Architectural Objectives
The following reflect architectural objectives of the interface. Some of these capabilities are not present
in the initial release of the interface, but are inherent in its architecture and intended extensibility. They
are intended to provide guidance concerning the present and future direction of development of the
Storage Management Initiative Specification.

a) Consistency: State within a managed object and between objects remains consistent independent 
of the number of clients simultaneously exerting control, the distribution of objects in the environ-
ment, or the management action being performed;

b) Isolation: A client that needs to execute an atomic set of management actions against one or more 
managed objects is able to do so in isolation of other clients, who are simultaneously executing 
management actions against those same objects;

c) Durability: Consistency, and isolation are preserved independent of the failure of any entity or com-
munications path in the management environment;

d) Consistent Name Space: Managed objects in a single management domain adhere to a consistent 
naming convention independent of state or reliability of any object, device, or subsystem in the 
SAN;

e) Distributed Security: Monitoring and control operations are secure. The architecture supports:

Figure 3: Example Client Server Distribution in a SAN

Host

WBEM Service

Host
Host

Management 
Appliance

Management 
Appliance

Bridge to ATMArray

Array Provider

 Legacy Array

Proprietary 
Management 

Service

Storage Area 
Network

Host Provider

Legacy Array 
Provider

Media Library

WBEM Service

Media Library 
Provider

Router

Proprietary 
Management 

Service

General Purpose 
LAN

Storage Area Network

Switch

Proprietary 
Management 

Service

WBEM Service

Bridge Provider

WBEM Service

HBA Provider

FileSystem 
Provider

WBEM Service

Host Provider

HBA Provider

FileSystem 
Provider

WBEM Service

Host Provider

HBA Provider

FileSystem 
Provider

Router Provider

Switch Provider

Database Mgmt

Volume Manager 

WBEM Client

WBEM Service

Host Provider

HBA Provider

SRM 

WBEM Client

Data Migration 
Mgmt

WBEM Service

Host Provider

HBA Provider

Discovery and 
Directory Service
24



 Business Overview
1) Client authentication;

2) Privacy (encryption) of the content of the messages in this protocol;

3) Client authorization;

f) Physical Interconnect Independence: The interface will function independent of any particular 
physical interconnect between components, any supplier, or any topology;

g) Multi-vendor Interoperability: Clients and servers should use a common communication transport 
and message/transfer syntax to promote seamless plug compatibility between heterogeneous 
multi-vendor components that implement the interface;

h) Scalability: The size, physical distribution, or heterogeneity of the storage system does not 
degrade the quality or function of the management interface;

i) Vendor Unique Extension: The interface allows vendors to implement proprietary functionality 
above and beyond the definitions here-in to distinguish their products and services in the market 
independent of the release of a new version of the interface;

j) Volatility of State: This interface does not assume that objects are preserved in non-volatile repos-
itories. Clients and servers may preserve object state across failures, but object preservation is not 
mandatory;

k) Replication: This interface provides no support for the automatic replication of object state within 
the management environment;

l) Functional Layering Independence: The design of this interface is independent of any functional 
layering a vendor chooses to employ in constructing the storage management systems (hardware 
and software) necessary to manage a storage environment;

m) Asynchronous or Synchronous execution: Management actions may execute either asynchro-
nously or synchronously;

n) Events: This interface provides for the reliable asynchronous delivery of events to one or more 
registered clients;

o) Cancelable Management Actions: Long running synchronous or asynchronous directives need to 
be capable of being cancelled by the client. Cancellation needs to result in the termination of work 
by the server and resource consumed being released;

p) Durable Reference: Object classes that persist across power cycles and need to be monitored and 
controlled independent of SAN reconfiguration (i.e., logical volumes) need be identified via “Dura-
ble Names” to insure consistent reference by clients;

q) Dynamic installation and reconfiguration: New clients and servers need to be capable of being 
added to or removed from a SMI-S management environment without disrupting the operation of 
other clients or servers. In most cases, clients should be capable of dynamically managing new 
servers that have been added to a SMI-S environment.

r) Automatic discovery of new servers: When new management servers are added to the manage-
ment system they should automatically become available to management clients without the need 
for manual configuration by administrations staff.

3.7 Disclaimer
The SNIA makes no assurance or warranty about the interoperability, data integrity, reliability, or
performance of products that implement this specification.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 25



 

26



 Overview
Clause 4: Overview

4.1 Base Capabilities
To achieve the architectural objectives and support the key technological trends in Clause 3:, "Business
Overview", this document describes an extensible, secure, auto-discoverable, object-oriented, XML-
based messaging based interface designed to support the specific requirements of managing devices
in and through storage systems. The top level protocol that implements this messaging based interface
in this revision of the specification is called Web Based Enterprise Management (WBEM) and more
specifically CIM/XML over http. To quickly become ubiquitous, SMI-S seeks to the greatest extent
possible to leverage a number of existing enterprise management standards through this interface,
such as:

• The Distributed Management Task Force (DMTF) authored Common Information Model (CIM) and
Web Based Enterprise Management (WBEM) standards,

• The standards written by ANSI on Fibre Channel and SCSI,

• The World Wide Web Consortium (W3C) for standards on XML,

• The Internet Engineering Task Force (IETF) for standards on HTTP, SLP, and iSCSI.

4.1.1 Object Oriented
A hierarchy of object classes with properties (a.k.a. attributes) and methods (a.k.a. directives) linked via
the Universal Modeling Language (UML) modeling constructs of inheritance and associations defines
most of the capabilities of the SMI-S. The SMI-S object model (which constitutes the bulk of this
specification) is integrated with and part of the Common Information Model (CIM) at the DMTF.
Implementers of this specification are encouraged to consult one of the many publicly available texts on
UML or the uml.org web site (www.uml.org) to develop an understanding of UML. A brief tutorial on
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 27



 

UML is provided in the introduction material on the Clause 6:, "Object Model General Information" in
this specification.

In Figure 4: "Object Model/Server Relationship", a SMI-S client obtains object classes and instances
that it can use to manage the storage. At this level of discussion, the focus is on SMI-S conformant
WBEM Clients and Servers. The WBEM Servers have providers for the various components that are
responsible for the class and association instances that allow the underlying component
implementation to be managed.

A standard, object-oriented interface, together with a standard interface protocol, allows WBEM Clients
to discover, monitor, and control storage and network devices, regardless of the underlying
implementation of those devices.

The goal of this document is to clearly and precisely describe the information expected to be available
to a WBEM Client from an SMI-S compliant WBEM Service. It relies upon UML diagrams, easy-to-use
tables and machine-readable, CIM-compliant Managed Object Format (MOF) (through the CIM model
maintained at the DMTF). This is intended to ease the task of client implementation and to ease the
task of using existing WBEM Servers. It should be noted that the MOF Interface Description Language
is a precise representation of the object model in this specification, and developers are encouraged to
learn this means of expression when implementing this interface. Programmers implementing this
interface should reference MOF representations of the object model when faced with implementation
decisions.

SMI-S compliant WBEM Servers provide instances in a manner conformant to one or more SMI-S
profiles (7.1.1, "Profile Content"). The object model supporting these instances may be extended by the
vendor as long as it remains conformant to the relevant SMI-S profiles. Generally, vendor-unique code

Figure 4: Object Model/Server Relationship

Instance provided by Host’s  WBEM Service

Instances provided by Array’s WBEM Service

Host

Array

Array Provider

Storage Area Network

Switch

WBEM Service

WBEM Service

Host Discovered
Resources
Provider

HBA Provider

LogicalDisk
D

StorageVolume
A

StorageVolume
A

StorageVolume
A

StorageVolume
A

Common 
Correlatable ID

Switch Provider

WBEM Service

Fabric Provider

SIM-S Client 
Application
28



 Overview
is necessary in a WBEM client to take advantage of vendor defined model extensions. Regardless of
the presence of vendor extensions, a generic WBEM client is able to leverage all SMI-S features
defined for a supported profile. 

Figure 5: "Canonical Inheritance" illustrates this requirement.

Figure 5: "Canonical Inheritance" illustrates that even though a Fibre Channel Switch may only report
instances and allow associated method execution for certain objects, when asked by a client to
enumerate its Object Classes it reports the entire hierarchy of classes in its tree. Similarly a server that
instantiates an array controller reports the complete set of object classes that links it to the base
canonical object of the SMI-S model. It is this single canonical root that allows any SMI-S client to
discover, map, and operate upon the complete set of objects in a given SAN.

The object model presented in this specification is intended to facilitate interoperability not limiting the
expression of unique features that differentiate manufacturers in the market For this reason, the object
model provided only serves as a”core” to compel multi-vendor interoperability. In the interest of gaining
a competitive advantage, a given vendor’s implementation of the interface may include additional object
classes, properties, methods, events, and associations around this “core”. These vendor-unique
extensions to the object model may, in select cases (e.g., extrinsic methods), require the modification of
client code above and beyond that required to support the core.

4.1.2 Messaging Based
A messaging-based interface, rather than a more traditional procedure call interface, was selected so
that platform and language independence could be achieved across the breadth of devices, clients, and
manufacturers that may implement the interface. This messaging-based environment also eases the
task of transporting management actions over different communications transports and protocols that

Figure 5: Canonical Inheritance

Instances reported by EnumerateInstances

Classes that must be reported by EnumerateClasses

CIM Object Manager

CIM Object Manager Providers
(See Core Model)

ManagedElement

System

(See Core Model)

(See Core Model)

LogicalElement

ManagedSystemElement

(See Core Model)

(See Core Model)

Service

Dependency

Component

*
*

*
*

HostedService

*w

SystemComponent

*

* LogicalDevice

(See Core Model)

(See Device model)

LogicalPort

(See Core Model)

EnabledLogicalElement

*
SystemDevice

*w

Component

(See Core Model)

SystemComponent

(See Core Model)

SystemDevice

(See Core Model)

Dependency
(See Core Model)

HostedService
(See Core Model)

System

Instance = Sys1

Instance = Svc1

Service

HostedService

Instance = Port1

LogicalPort

SystemDevice

Instance = Svc2

Service Instance = Port2

LogicalPort

Instance = Port3

LogicalPort
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 29



 

may emerge as the computer industry evolves. An example fragment of an SMI-S CIM-XML message
is provided in Figure 6: "Sample CIM-XML Message". 

Figure 6: Sample CIM-XML Message
<!DOCTYPE CIM SYSTEM HTTP://www.dmtf.org/cim-v2.dtd/>
<CIMVERSION=”2.0” DTDVersion=”2.0”>

<CLASS NAME=”ManagedSystemElement”>

<QUALIFIER NAME=”abstract”></QUALIFIER>

<PROPERTY NAME=”Caption” TYPE=”string”>

<QUALIFIER NAME=”MaxLen” TYPE=”sint32”>

<VALUE>64</VALUE>

</QUALIFIER>

</PROPERTY>

<PROPERTY NAME=”Description” TYPE=”string”></PROPERTY>

<PROPERTY NAME=”InstallDate” TYPE=”datetime”>

<QUALIFIER NAME=”MappingStrings” TYPE=”string”>

<VALUE>MIF.DMTF|ComponentID|001.5</VALUE>

</QUALIFIER>

</PROPERTY>

<PROPERTY NAME=”Status” TYPE=”string”>

<QUALIFIER NAME=”Values” TYPE=”string” ARRAY=”TRUE”>

<VALUE>OK</VALUE>

<VALUE>Error</VALUE>
30

http://www.dmtf.org/cim-v2.dtd/


 Overview
4.2 Functionality Matrix

4.2.1 Overview
The functionality enabled by this version of the Storage Management Initiative Specification organized
follows a multi-level model. Within each level of this model, several broad categories of management
are described. This creates a functionality matrix, which serves two purposes. First, it organizes a
complex set of capabilities enabled by the overall SMI-S approach. Second, it helps to ensure good
management functionality coverage for the managed devices comprehended by SMI-S. This section
provides an overview of the functionality matrix approach for describing the management functionality
provided by this version of SMI-S. A blank functionality matrix is provided in Table 1.

4.2.2 Multi-Level Model Of Networked Storage Management Functionality
The lowest level of the multi-level model of networked storage management functionality applies to
managing the basic physical aspects of the elements found in a networked storage environment, and
the upper levels are involved with managing the different logical levels supported by these managed
elements. Each level in this model depends upon the lower levels being in place.

Shown in top-down order, the functionality levels are:

• (Level 5) Application Level Functionality,

• (Level 4) File/Record Level Functionality,

• (Level 3) Block Level Functionality,

• (Level 2) Connectivity Level Functionality,

• (Level 1) Device Level Functionality.

Managed physical elements in a networked storage environment shall support Level 1 functionality, and
may support additional functionality levels as well, depending upon the logical capabilities of the
managed physical element. The functionality supported by a managed element will normally involve a
contiguous set of levels in this model. If a managed physical element supports functionality for a
particular upper level, then it will also support functionality for each level between that level and Level 1.

As an example of this last point, consider a NAS Head device. It has a physical component (Level 1). It
is connected to other physical components in the networked storage environment (Level 2). It deals
with Block storage (Level 3), and it deals with Files (Level 4). A NAS Head device can therefore be
expected to support functionality in levels 1 through 4 of this multi-level model of networked storage
management functionality. Similarly, a regular NAS device would support management functionality in
each of these same levels, although the functionality supported within each level might be slightly
different, since the regular NAS device does not have a SAN back-end.

Table 1: Functionality Matrix

Fault
Management

Configuration
Management

Accounting
Management

Performance
Management

Security
Management

Application Level
File / Record Level
Block Level
Connectivity Level
Device Level
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 31



 

4.2.3 FCAPS
Within each level of this model, a basic set of functionality is needed that allows management
applications to exercise FCAPS capabilities over elements supporting that level. FCAPS is a model of
the working objectives of network management, and these same concepts are applied to each of the
levels in the multi-level model of networked storage management functionality. A summary of FCAPS
capabilities includes:

• Fault Management: Identifying, isolating, correcting, and logging managed element faults.
Includes running diagnostics, generating fault alarms, and keeping error statistics,

• Configuration Management: Discovering, configuring, and monitoring managed elements.
Includes adding, altering, and removing managed elements,

• Accounting Management: Measuring and tracking usage of managed elements or services.
Includes distributing resources, setting quotas, and billing,

• Performance Management: Monitoring of performance, error rate, and utilization metrics for
managed elements. Includes setting thresholds, problem reporting, logging of data, and examining
historical data

• Security Management: Ensuring legitimate use of managed elements or services. Includes
checking user access rights, maintaining an audit trail log, generating security events and alarms,
and maintaining data confidentiality where necessary.

By specifying FCAPS capabilities within each of its levels, this multi-level model is used to describe the
functionality that is provided by SMI-S overall, and by individual profiles and subprofiles. The actual
degree of support for FCAPS capabilities within each level is determined by individual SMI-S profiles.

4.2.4 Management Functionality Within Each Level Of The Model

4.2.4.1 (Level 1) Device Level Functionality
This level includes all functionality needed to allow management applications to deal with the physical
aspects of managed elements in the networked storage environment. The physical aspects of HBAs,
Switches, Storage Systems etc. are handled by functionality in this level. This level also handles
functionality that is not exposed to other elements in the networked storage environment, like the
managing of storage devices within a Storage System prior to their being allocated to storage pools that
are accessible over the data network.

4.2.4.2 (Level 2) Connectivity Level Functionality
This level includes all functionality associated with allowing management applications to deal with the
logical aspects of the managed connectivity between physical elements in the networked storage
environment. This level is where things like Fibre Channel Fabrics and Zones are handled, and is also
where iSCSI Sessions are handled. This level also handles the logical aspects of switch and extender
connectivity.

4.2.4.3 (Level 3) Block Level Functionality
This level includes all functionality necessary to allow management applications to deal with storage
volumes in a networked storage environment. This level applies to Logical Units, LUN Masking and
Mapping, block aggregators like Volume Managers, etc. It also applies to block-level virtualization.

4.2.4.4 (Level 4) File/Record Level Functionality
This level includes all functionality associated with allowing management applications to deal with data
objects like file systems in a networked storage environment. Note that this level not only applies to file
systems -- it is also applies to records, for the structured usage of block storage by middleware
applications such as databases and e-mail servers. This level provides the functionality that enables
32



 Overview
management applications to determine the capacity utilization of the storage volumes handled by the
Block Level Functionality.

4.2.4.5 (Level 5) Application Level Functionality
This level includes all functionality needed to allow management applications to deal with managed
applications in the networked storage environment. This level applies to database applications, e-mail
server applications, etc. that work directly with the data objects handled by the File/Record Level
Functionality.

4.2.5 Referring To Levels And Capabilities In The Multi-level Model
To simplify talking about the different levels and capabilities within this multi-level model of networked
storage management functionality, the following short-hand notation may be used in SMI-S.

Individual functionality levels are referred to as L1 through L5, and a single letter appended to this level
indicates a particular kind of FCAPS capability. For instance, fault management functionality within the
connectivity layer would be referred to as L2F functionality, and configuration management functionality
for a physical device would be referred to as L1C functionality.

4.2.6 Functionality Descriptions in SMI-S Profiles
To make it easier to understand the management functionality coverage provided by individual profiles
and subprofiles in this SMI-S document, each profile lists the functionality provided by the profile and its
subprofiles. If a function is provided by a subprofile, this is indicated, including whether the subprofile is
optional or required. Functionality listed in the profile is organized by Level, and within each Level by
FCAPS category, as defined here by the Functionality Matrix. 

4.3 Capabilities of This Version
This section summarizes, at a high level, the capabilities provided by this SMI-S version based on the
Functionality Matrix, and is organized by Level.

4.3.1 Device Level

4.3.1.1 Fault Management
SMI-S device profiles that include the Health Package (8.2.1.6) provide capabilities for reporting of the
SAN device health and status, including the type, category, and source of the failures. Asynchronous
notification for changes in device health status is also provided via the Indications Subprofile (8.2.4.2).

4.3.1.2 Configuration Management
SMI-S defines the capabilities needed for the discovery, configuration, and monitoring of devices in a
SAN. Asynchronous notification for changes in device configuration is provided via the Indications
Subprofile (see 8.2.4.2).

4.3.1.3 Accounting Management
Other than basic device discovery, SMI-S provides no specific capabilities for device Accounting
Management.

4.3.1.4 Performance Management
SMI-S enables performance management of some SAN devices (see 8.2.8.11).

4.3.1.5 Security Management
SMI-S provides device-level security via basic authentication capabilities. See the SMI-S Security
section (8.2.5.1) and Device Credentials Profile (8.2.1.4) for more information. Note that the secure
communication between a device proxy CIM Server and the device is outside of the scope of SMI-S. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 33



 

4.3.2 Connectivity Level

4.3.2.1 Fault Management
SMI-S provides the capability to identify the heath of interconnects between SAN devices, mainly via
LogicalPort.OperationalStatus (see 8.2.2.1, "Parallel SCSI (SPI) Target Ports Subprofile", 8.2.2.2, "FC
Target Port Subprofile", 8.2.2.3, "iSCSI Target Ports Subprofile", 8.2.2.4, "Direct Attach (DA) Port
Subprofile", 8.2.3, "Common Initiator Port Subprofiles Overview", 8.2.3.1, "Parallel SCSI (SPI) Initiator
Port Subprofile", 8.2.3.2, "Fibre Channel Initiator Port Subprofile", 8.2.3.3, "iSCSI Initiator Port
Subprofile", 8.2.3.4, "Back End Ports Subprofile (DEPRECATED)" and 8.2.6.6, "Switch Profile".
Asynchronous notification for changes in link health status is also provided via the Indications
Subprofile (8.2.4.2).

4.3.2.2 Configuration Management
SMI-S defines the capabilities needed for the discovery, configuration, and monitoring of interconnects
between devices in a SAN. Asynchronous notification for changes in the fabric configuration is provided
via the Indications Subprofile.

4.3.2.3 Accounting Management
Connectivity-level Accounting Management is enabled in SMI-S via basic discovery capabilities and
usage tracking via the optional Fabric Path Performance Subprofile.

4.3.2.4 Performance Management
SMI-S enables performance management of SAN Interconnects via both the FCPortStatistics
(8.2.6.6.8.10) class and also the transport-independent Fabric Path Performance Subprofile.

4.3.2.5 Security Management
SMI-S provides Connectivity-level security via basic device authentication capabilities, Zone Control
and Enhanced Zoning subprofiles, and the Fabric Security subprofile.

4.3.3 Block Level

4.3.3.1 Fault Management
SMI-S Block-level profiles that include the Health Package (8.2.1.6) provide capabilities for reporting of
block level health and status, including the type, category, and source of the failures. 

4.3.3.2 Configuration Management
SMI-S defines the capabilities needed for the discovery, configuration, and monitoring block-level
resources. This includes ability to discover, create, delete, and modify StorageVolumes in the SAN.

4.3.3.3 Accounting Management
SMI-S enables accounting management of Block-level resources via basic discovery and discovery of
access rights and mappings.

4.3.3.4 Performance Management
SMI-S provides performance management capabilities for SAN Block-level resources (as provided by
Arrays, Virtualization systems and Volume Managers) via the Block Server Performance subprofile
(8.2.8.11).

4.3.3.5 Security Management
SMI-S provides the ability to manage (create/delete, enable/disable) connectivity and access rights to
Storage Volumes in the SAN. 
34



 Overview
4.3.4 File/Record Level

4.3.4.1 Fault Management
SMI-S NAS profiles provide Indications support on OperationalStatus for the FileSystems and
FileShares.

4.3.4.2 Configuration Management
SMI-S NAS profiles provide discovery of logical storage (StoragePools) and storage extents on logical
disks.

4.3.4.3 Accounting Management
This version of SMI-S defines no unique accounting management capabilities at the File level. 

4.3.4.4 Performance Management
This version of SMI-S defines no unique performance management capabilities at the File level. 

4.3.4.5 Security Management
This version of SMI-S defines no unique security management capabilities at the File level. 

4.3.5 Application Level
This version of SMI-S does not address functionality at the application level.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 35



 

36



 Overview
4.4 Operational Environment

Figure 7: "Operational Environment" illustrates activities that either clients or servers need to account
for in or to provide facilities to support:

• The discovery of constituents in the managed environment;

• The discovery of object classes as well as related associations, properties, methods, indications,
and return status codes that are provided by servers in the managed environment;

• The security or resources and communications in the environment;

• The locking of resources in the presence of non-cooperating clients; (the definition of locking is left
for a future version of the specification)

Figure 7: Operational Environment

 

Constituent 
Discovery 

Service 
Interface 

(SLP) 

Security
Services

Communications Transport

Object Model 
Discovery and 

Mapping 
Client 

Application  
Policy 

Wire Protocol

Client 

Server 

Message Marshalling/UnMarshalling

Intrinsic Methods 
(Get/Set, Enumerate 
Objects,/Instances) 

Extrinsic Methods 
(Create ZoneSet, 

Modify LUNmask) 

Communications Transport

Lock 
Manager 
Interface 

Wire Protocol

Client 

Server 

Message Dispatching

Communications Transport

Message Marshalling/UnMarshallingConstituent 
Discovery 

Service 
(SLP) 

Security 
Services 

CIM Agent  
Functions 

Lock Manager  
Functions 

Dedicated 
Agent 

Device

CIMOM 

Device
w/ 
Provider 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 37



 

• The marshalling/un-marshalling of communication messages;

• The execution of basic methods that are “intrinsic” to the construction, traversal, and management
of the object model provided by the distributed servers in a SAN;

• The execution of object specific “extrinsic” methods that provide clients the ability to change the
state of entities in the SAN.

In addition, to facilitate ease of installation, startup, expansion, and upgrade requirements for
implementations are specified for the developers of clients and servers.

4.5 Using this Specification
This specification is insufficient as a single resource for the developers of SMI-S clients and servers.
Developers are encouraged to first read the DMTF specifications on CIM, CIM Operations over HTTP,
and CIM-XML, as well as obtaining familiarity with UML and the IETF specification on Service Location
Protocol (SLP).

A developer implementing SMI-S clients/servers should read this specification in sequence noting that
7.1.1, "Profile Content" is intended principally as a reference relative to the particular device type that is
being provided or managed in a SMI-S environment.

4.6 Language Bindings
As a messaging interface, this specification places no explicit requirements for syntax or grammar on
the procedure call mechanisms employed to convert SMI-S messages into semantics consumable by
modern programming languages. The syntax and grammar used to express these semantics is left at
the discretion of each SMI-S developer. 

Several open-source codebases are available for programmers who wish to streamline the task of
parsing SMI-S messages into traditional procedure call semantics and using these semantics to store
object instances. Consult the WBEMsource initiative (http://wbemsource.org) for current language
bindings available to implement the SMI-S interface.
38



 Transport and Reference Model
Clause 5: Transport and Reference Model

5.1 Introduction

5.1.1 Overview
The interoperable management of storage devices and network elements in a distributed storage
network requires a common transport for communicating management information between
constituents of the management system. This section of the specification details the design of this
transport, as well as the roles and responsibilities of constituents that use the common transport (i.e., a
reference model).

5.1.2 Language Requirements
To express management information across the interface, a language is needed that:

• Can contain platform independent data structures,

• Is self describing and easy to debug,

• Can be extended easily for future needs.

The World Wide Web Consortium’s (W3C) Extensible Markup Language (XML) was chosen as the
language to express management information and related operations, as it meets the requirements
above.

5.1.3 Communications Requirements
Communications protocols to carry the XML based management information are needed that:

• Can take advantage of the existing ubiquitous IP protocol infrastructures,

• Can be made to traverse inter- and intra-organizational firewalls,

• Can easily be embedded in low cost devices.

The Hyper Text Transport Protocol (HTTP) was chosen for the messaging protocol and TCP was
chosen for the base transfer protocol to carry the XML management information for this interface as
they meets the requirements above.

5.1.4 XML Message Syntax and Semantics
In order to be successful, the expression of XML management information (messages) across this
interface needs to follow consistent rules for semantics and syntax. These rules are detailed in this
specification. They are of sufficient quality, extensibility, and completeness to allow their wide adoption
by storage vendors and management software vendors in the industry. In addition, to facilitate rapid
adoption, existing software that can parse, marshal, un-marshal, and interpret these XML messages
should be widely available in the market such that vendor implementations of the interface are
accelerated. The message syntax and semantics selected should:

• Be available on multiple platforms,

• Have software implementations that are Open source (i.e., collaborative code base),

• Have software implementations available in Java and C++,

• Leverage industry standards where applicable,

• Conform with W3C standards for XML use.

• Be object model independent (i.e., be able to express any object model).
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 39



 

Virtually the only existing industry standard in this area is the WBEM standards CIM Operations over
HTTP and Specification for the Representation of CIM in XML as developed and maintained by the
DMTF. The WBEMsource initiative is a collaboration of open source implementations, which can be
leveraged by storage vendors to prototype, validate, and implement this interface in products.
Specifically designed for transporting object-model-independent management information, the CIM-
XML message syntax was chosen because it meets the requirements enumerated above. This
specification augments the capabilities of CIM-XML in the area of discovery to facilitate ease of
management.

5.2 Transport Stack
The complete transport stack for this interface is illustrated in Figure 8: "Transport Stack". It is the
primary objective of this interface to drive seamless interoperability across vendors as communications
technology and the object model underlying this interface evolves. Accordingly, the transport stack has
been layered such that (if required) other protocols can be added as technology evolves. For example,
should SOAP or IIOP become prominent, the content in the stack below could be expanded with
minimal changes to existing product implementations in the market.

Again, this interface uses two specifications from the DMTF to fully implement the message syntax and
semantics for this interface.

The first specification, CIM Operations over HTTP details a basic set of directives (semantics) needed
to manage any schema over HTTP. The requirement for this basic set of directives is common to nearly
to all management frameworks (e.g., create object, delete object, create instance, and delete instance).
This class of directive is referred to in this document as an “intrinsic method”. CIM Operations over
HTTP also provides a client the ability to execute directives that are unique to the specification of a
particular object class within a schema (example: chop <method>, apple <object-class>). This class of
directive is referred to in this specification as an “extrinsic method”. 

The second specification, Specification for the Representation of CIM in XML, Version 2.1 details the
precise W3C compliant syntax and grammar for encoding CIM into XML.

While some vendors may choose alternate transfer and message protocols for unique
implementations, implementations of the transport stack elements listed above are required for
conformance with this standard. 

It should be noted that this specification places no restriction on the physical network selected to carry
this transport stack. For example, a vendor can choose to use in-band communication over Fibre-
channel as the backbone for this interface. Another vendor could exclusively (and wisely) choose out-
of-band communication over Ethernet to implement this management interface. Additionally, select
vendors could choose a mix of in-band and out-of-band physical network to carry this transport stack.

Figure 8: Transport Stack
 

Transfer  Protocol: TCP/IP   

Messaging Protocol: http   

Message  Semantics:  CIM operations over http 

Message Syntax: xmlCIM Encoding 
Object Model Independence 

Transfer Protocol Independence 

Message Protocol Independence 
40



 Transport and Reference Model
5.3 Reference Model

5.3.1 Overview
As shown in Figure 9: "Reference Model", the Reference Model shows all possible constituents of the
management environment in the presence of the transport stack for this interface.

Figure 9: "Reference Model" illustrates that the transport for this interface uses CIM Operations over
HTTP with xmlCIM encoding and HTTP/TCP/IP to execute intrinsic and extrinsic methods against the
schema for this interface. 

Note: It is envisioned that a more complete version of this reference model would include the Lock
Manager. However, the Lock Manager in SMI-S Release 1 is preliminary and subject to change.
As a result, it is shown as a dotted box to illustrate where the role would fit.

5.3.2 Roles for Interface Constituents

5.3.2.1 Client
A Client is the consumer of the management information in the environment. It provides an API
(language binding in Java or C++ for example) for overlying management applications (like backup
engines, graphical presentation frameworks, and volume managers) to use.

5.3.2.2 Agent
An agent is a CIM Server. It shall implement those functional profiles, as defined in the DMTF
specifications, necessary to satisfy the SMI-S profile with which it conforms. Often, an agent controls
only one device or subsystem, and is incapable of providing support for complex intrinsic methods like
schema traversal. An agent can be embedded in a device (like a Fibre Channel Switch) or provide a

Figure 9: Reference Model

 

Client 

Device or  
Subsystem 

Agent 

Proxy Model 

Proprietary or  
Legacy 

0…n 

0…n 

Agent 

Embedded Model 

0…n 

Object Manager 

Proxy Model 
Device 

Proprietary or  
Legacy 

0…n 

Lock 
Manager 

0…n 

1 
1 

n 

Provider    0..n 

1 

XML - CIM  + CIM operations  
 TCP/I
 

Device or  
Subsystem 

Device or  
Subsystem 

Directory  
Server 

0…n 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 41



 

proxy on a host that communicates to a device over a legacy or proprietary interconnect (like a SCSI
based array controller).

Embedding an agent directly in a device or subsystem reduces the management overhead seen by a
customer and eliminates the requirement for a stand-alone host (running the proxy agent) to support
the device. 

Embedded agents are the desired implementation for “plug and play” support in an SMI-S managed
environment. However, proxy agents are a practical concession to the legacy devices that are already
deployed in storage networked environments. In either case, the minimum CIM support for agents
applies to either agent deployments.

5.3.2.3 CIM Server 
A CIM Server is an object manager that serves management information from one or more devices or
underlying subsystems through providers. As such an Object Manager is an aggregator that enables
proxy access to devices/subsystems and can perform more complex operations like schema traversals.
An object manager typically includes a standard provider interface to which device vendors adapt
legacy or proprietary product implementations.

5.3.2.4 Provider
A provider expresses management information for a given resource such as a storage device or
subsystem exclusively to a CIM Server. The resource may be local to the host that runs the Object
Manager on or may be remotely accessed through a distributed systems interconnect.

5.3.2.5 Lock Manager
This version of the specification does not support a lock manager.

5.3.2.6 Directory Server (SLP Directory Agent)
A directory server provides a common service for use by clients for locating services in the
management environment.

5.3.3 Cascaded Agents
This specification discusses constituents in the SMI-S environment in the context of Clients and
Servers (Agents and Object Managers). This version of the specification does not allow constituents in
a SMI-S management environment to function as both client and server.
42



 Object Model General Information
Clause 6: Object Model General Information

6.1 Model Overview (Key Resources)

6.1.1 Overview
The SMI-S object model is based on the Common Information Model (CIM), developed by the DMTF.
For a more complete discussion of the full functionality of CIM and its modeling approach, see 
http://www.dmtf.org/standards/cim/. 

Readers seeking a more complete understanding of the assumptions, standards and tools that assisted
in the creation of the SMI-S object model are encouraged to review the following: 

• CIM Tutorial
(http://www.dmtf.org/education/tutorials)

• CIM UML Diagrams and MOFs 
(http://www.dmtf.org/standards/standard_cim.php)

• CIM System / Device Working Group Modeling Storage 
(http://www.dmtf.org/standards/)

Managed Object File (MOF) is a way to describe CIM object definitions in a textual form. A MOF can be
encoded in either Unicode of UTF-8. A MOF can be used as input into an MOF editor, parser or
compiler for use in an application. 

The SMI-S model is divided into several profiles, each of which describes a particular class of SAN
entity (such as disk arrays or FibreChannel Switches). These profiles allow for differences in
implementations but provide a consistent approach for clients to discover and manage SAN resources.
IN DMTF parlance, a provider is the instrumentation logic for a profile. In many implementations,
providers operate in the context of a CIM Server that is the infrastructure for a collection of providers. A
WBEM client interacts with one or more WBEM Servers. 

6.1.2 Introduction to CIM UML Notation
CIM diagrams use a subset of Unified Modeling Language (UML) notation.

Most classes are depicted in rectangles.  The class name is in the upper part and
properties (also known as attributes or fields) are listed in the lower part. A third subdivision added for
methods, if they are included. A special type of class, called an association, is used to describe the
relationship between two or more CIM classes

Three types of lines connect classes.

The CIM documents generally follow the convention of using blue arrows for inheritance, red lines for
associations and green lines for aggregation. The color-coding makes large diagrams much easier to
read but is not a part of the UML standard. 

PhysicalPackage

Inheritence

Association

Aggregation
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 43



 

The ends of some associations have numbers (cardinality) indicating the valid count of object
instances. Cardinality is expressed either as a single value (such as 1), or a range of values (0..1 or
1..4);“*” is shorthand for 0..n.

Some associations and aggregations are marked with a “W” at one end indicating that the identity of
this class depends on the class at the other end of the association. For example, fans may not have
worldwide unique identifiers; they are typically identified relative to a chassis.

This document uses two other UML conventions.

The UML Package symbol  is used as a shortcut representing a group of classes that work
together as an entity. For example, several classes model different aspects of a disk drive. After the
initial explanation of these objects, a single disk package symbol is used to represent the entire group
of objects.

Schema diagrams include all of a profile’s classes and associations; the class hierarchy is included and
each class is depicted one time in the schema diagram. Instance diagrams also contain classes and
associations but represent a particular configuration; multiple instances of an object may be depicted in
an instance diagram. An instance may be named with an instance name followed by a colon and a
class name (underlined). For example, 

represent an array and a switch – two instances of <COMPUTER SYSTEM> objects.

6.2 Techniques

6.2.1 CIM Fundamentals
This section provides a rudimentary introduction to some of the modeling techniques used in CIM, and
is intended to speed understanding of the SMI-S object model. 

Associations as Classes
CIM presents relationships between objects with specialized classes called associations and
aggregations. In addition to references to the related objects, the association or aggregations may also
contain domain-related properties. For example, ControlledBy associates a controller and a device.
There is a many-to-many cardinality between controllers and devices (i.e., a controller may control
multiple devices and multi-path devices connect to multiple controllers); each controller/device
connection has a separate activity state. This state corresponds to the AcccessState property of
ControlledBy association linking the device and the controller. 

Logical and Physical Views
CIM separates physical and logical views of a system component, and represents them as different
objects – the “realizes” association ties these logical and physical objects together.

Identity
Different agents may each have information about the same organic object and may need to instantiate
different model objects representing the same thing. Access control is one example: a switch zone
defines which host device ports may access a device port. The switch agent creates partially populated
port objects that are also created by the HBA and storage system agents. The ConcreteIdentity
association is used to indicate the associated object instances are the same thing. ConcreteIdentity is
also used as a language-independent alternative to multiple inheritance. For example, a FibreChannel

DIsk1

Array: ComputerSystem Switch: ComputerSystem
44



 Object Model General Information
port inherits from a generic port and also has properties of a SCSI controller. CIM models this as
FCPort and ProtocolController objects associated by ConcreteIdentity.

Extensibility
CIM makes allowances for additional values in enumerations that were not specified in the class
Derivation by adding a property to hold arbitrary additional values for an enumeration. This property is
usually named OtherXXXX (where XXXX is the name of the enumeration property) and specifying
“other” as the value in the enumeration property indicates its use. For an example see the
ConnectorType and OtherTypeDescription properties of Slot object in the CIM_Physical MOF. See
http://www.dmtf.org/standards/cim/cim_schema_v211/.

Value/ValueMap Arrays
CIM uses a pair of arrays to represent enumerated types. ValueMap is an array of integers; Values is an
array of strings that map to the equivalent entry in ValueMap. For example, PrinterStatus (in the
CIM_Device MOF) is defined as follows:

 ValueMap {“1”, “2”, “3”, “4”, “5”, “6”, “7”},

 Values {“Other”, “Unknown”, “Idle”, “Printing”, “Warm-up,

 “Stopped Printing”, “Offline”},

A status value of 6 means “Stopped Printing”. A client application can automatically convert the integer
status value to a human-readable message using this information from the MOF.

Return Codes 
When a class definition includes a method, the MOF includes Value/ValueMap arrays representing the
possible return codes. These values are partitioned into ranges of values; values from 0 to 0x1000 are
used for return codes that may be common to various methods. Interoperable values that are specific to
a method start at 0x1001; and vendor-specific values may be defined starting at 0x8000. Here’s an
example of return codes for starting a storage volume.

 ValueMap {“0”, “1”, “2”, “4”, “5”, “.”, “0x1000”, 

“0x1001”, “…”, “0x8000..”},

 Values {“Success”, “Not Supported”, “Unknown”, “Time-out,

“Failed”, “Invalid Parameter”, “DMTF_Reserved”, 

“Method parameters checked - job started”,

“Size not supported”,

“Method_Reserved”, "Vendor_Specific”}]

Model Conventions
This is a summary of objects and associations that are common to multiple profiles.

PhysicalPackage represents the physical storage product. PhysicalPackage may be sub-classed to 
ChangerDevice, but PhysicalPackage accommodates products deployed in multiple chassis.

Producer models asset information including vendor and product names. Product is associated with 
PhysicalPackage.

SoftwareIdentity models firmware and optional software packages. InstalledSoftwareIdentity associates 
SoftwareIdentity and ComputerSystem, ElementSoftwareIdentity associates SoftwareIdentity and 
LogicalDevices (a superclass of devices and ports).

Service models a configuration interface (for example, a switch zoning service or an array access control 
service). Services typically have methods and properties describing the capabilities of the service. A 
storage system may have multiple services; for example, an array may have separate services for LUN 
Masking and LUN creation. A client can test for the existence of a named service to see if the agent is 
providing this capability. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 45



 

LogicalDevice (for example, FCPort) is a superclass with device subclasses (like and DiskDrive and 
TapeDrive) and also intermediate nodes like Controller and FCPort. Each LogicalDevice subclass shall 
be associated to a ComputerSystem with a SystemDevice aggregation. Due to the large number of 
LogicalDevice subclasses, SystemDevice aggregations are often omitted in instance diagrams in this 
specification.

This specification covers many common storage models and management interfaces, but some
implementations include other objects and associations not detailed in the specification. In some cases,
these are modeled by CIM schema elements not covered by this document. When vendor-specific
capabilities are needed, they should be modeled in subclasses of CIM objects. These subclasses may
contain vendor-specific properties and methods and vendor-specific associations to other classes. 

6.2.2 Modeling Profiles
In addition to modeling SAN components, SMI-S servers shall model the profiles they provide. This
information is used two ways:

• Clients can quickly determine which profiles are available 

• An SLP component can query the SMI-S Server and automatically determine the appropriate SLP
Service Template information (see Clause 10:, "Service Discovery", and Table 2, “SLP Properties”)

Table 2: SLP Properties

Property Name Use
SupportedRegisteredProfiles Defines the organization defining the profile, the Regis-

teredProfile and RegisteredSubprofile. Setting this to 
“SNIA” indicates that one of the SNIA SMI-S profiles 
applies
46



 Object Model General Information
A client can traverse the Server Profile in each SMI-S server to see which Profiles (and objects) claim
SMI-S compliance.

The RegisteredProfile describes the profiles that a CIM Server claims are supported. The
RegisteredSubprofile is used to define the optional features supported by the system being modeled. A
client can traverse the associations in the Server Profile see which Profiles and subprofiles claim SMI-S
compliance. 

6.2.3 CIM Naming
There may be multiple SMI-S Servers in any given storage network environment. It is not sufficient to
think of the name of an object as just the combination of its key values. The name also serves to
identify the Server that is responsible for the object. The name of an object (instance) consists of the
Namespace path and the Model path. The Namespace path provides access to a specific SMI-S server
implementation and is used to locate a particular namespace within a Server. The Model path provides
full navigation within the CIM Schema and is the concatenation of the class name and key-qualified
properties and values.

The namespace has special rules. It should uniquely identify a SMI-S Server. However, a SMI-S Server
may support multiple namespaces. How an implementation defines Namespaces within a SMI-S server
is not restricted. However, to easy interoperability SMI-S implementations should manage all objects
within a Profile in one Namespace.

Figure 10: Server Profile Instance Diagram

Name (InstanceID)
ElementName

ObjectManager

[Propagated Keys]
CreationClassName
Name
ClassType
DescriptionOfClassType

Namespace

[Default CommunicationMechanism = "XML over HTTP"]
CIMValidated

CIMXMLCommunictionMechanism

Namespace
InManager CommMechanismForManager

InstanceID
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes[]
AdvertiseTypeDescriptoins[]

RegisteredProfile

InstanceID
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes[]
AdvertiseTypeDescriptoins[]

RegisteredSubProfile

SubProfile
RequiresProfile

ManagedElement
(e.g., System)

ElementConformsToProfile

 

SystemHostedService

ReferencedProfile

SoftwareIdentity

Classifications[0] = "Instrumentation"
VersionString = "build27p5"
Manufacturer = "Yoyodyne, Inc."
Name = "RAID-o-matic Services"

ElementSoftwareIdentity

Product

ProductSoftware
Component

ElementSoftwareIdentity

SubProfile
RequiresProfile
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 47



 

48



 Object Model General Information
6.2.4 Correlatable and Durable Names

6.2.4.1 Overview
Management applications often read and write information about managed objects in multiple CIM
namespaces or between CIM and some other storage management namespace. When an object in
one namespace is associated with an object in another namespace, each namespace may represent
some amount of information about the same managed resource using different objects. A management
application understands when objects in different namespaces represent the same managed resource
by the use of a unique common identifier, referred to as a “correlatable name”. A correlatable name is
designated as a mandatory property for any objects representing managed resources that may be seen
from multiple points of view. These durable names are used by management applications for object
coordination.

A related concept is referred to as “durability”. Some names may be correlatable at a particular point in
time, but may change over time (e.g., a durable name is a hardware-assigned port or volume name and
a correlatable, non-durable ID is a DHCP IP address). No name is permanently durable (e.g., even a
name derived from hardware may change due to FRU replacement). A client application should
assume that a stored durable name remains valid over time where a non-durable may not remain valid
over time.

Correlatable names are unique within a defined namespace. In some cases, that namespace is world-
wide; requiring compliance to standards defined by a naming authority. In other cases, the namespace
is the hosting system or some set of connected systems (e.g., operating system device names are
unique to the containing host). 

A name may be expressed in different formats (e.g., numeric value are sometimes displayed as
decimal or hexadecimal, the hexadecimal value sometimes has a leading “0x” or a trailing “h”). To
assure interoperability, mandatory formats are specified by this standard.

A necessary technique associated with correlatable names involves the use of CIM properties that
describe the format or namespace from which the name is derived. CIM key-value combinations are
unique across instances of a class, but CIM does not fully address cases where different types of
identifiers are possible on different instances of an object. It is therefore necessary to ensure that
multiple sources of information about managed resources use the same approach for forming
correlatable names whenever different types of identifiers are possible.

When different types of identifiers are possible, the profile specifies the possible name formats and
namespaces for durable and correlatable IDS, the preferred order that each implementation should use
if multiple namespaces are available, and the related properties that a client uses to determine the
namespace.

Correlatable, durable names are mandatory for the following objects:

• SCSI Logical Units (such as storage volumes or tape drives) that are exported from storage
systems

• External Ports on hosts and storage devices

• Fibre Channel ports on interconnect elements

• Fibre Channel fabric (modeled as AdminDomain)

• ComputerSystem objects that server as top-level systems for all SMI-S profiles

• Operating System Device Names

CIM keys and correlatable names are not tightly coupled. For some classes, they may be the same, but
this is not mandatory as long as all correlatable names are unique and management applications are
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 49



 

able to determine when objects in different namespaces are providing information about the same
managed resource.

The common types of information used for names include the SCSI Device Identifiers from the
Identification Vital Product Data page (i.e., VPD page 83h), Fibre Channel Name_Identifiers (i.e., World
Wide Names), Fully Qualified Domain Names, and IP Address information. See 6.2.4.2, "Guidelines for
SCSI Logical Unit Names", 6.2.4.3, "Guidelines for Port Names", and 6.2.4.4, "Guidelines for Storage
System Names" for general information on the advantages and disadvantages of certain types of
names. The details for each class requiring durable correlatable names are provided in the profiles
subclauses of this document.

6.2.4.2 Guidelines for SCSI Logical Unit Names
The preferred logical unit identifier is returned from a SCSI INQUIRY command in VPD page 83h.

Note: Legacy systems may lack correlatable names as SCSI standards prior to SAM-3 and SPC-3 did
not clearly define logical unit names, however this has been clarified to be logical unit names and
recent systems have converged in compliance.

The Unit Serial Number VPD page (i.e., SCSI Inquiry VPD Page 80h) returns a serial number, but the
SPC-3 standard allows this either be a serial number for a single logical unit or a serial number of the
target device. There's no mechanism to discover which approach the device is using. If a client is not
coded to understand which products provide per-logical unit or per-target serial numbers, then it should
not use the Unit Serial Number VPD page as a logical unit name.

The Identification Vital Product Data page (i.e., VPD page 83h) returns a list of identifiers with metadata
describing each identifier. The metadata includes:

• Code Set (i.e., binary verses ASCII)

• Association (i.e., indicates the SCSI object to which the identifier applies (e.g., for a logical unit,
port, or target device))

• Type (i.e., the naming authority for identifiers of the structure of information about target ports)

• Protocol Identifier (i.e., indicates the SCSI transport protocol to which the identifier applies)

To identify a logical unit name the Association shall be set to zero. The preferred Types for logical units
are 3 (i.e., NAA), 2 (i.e., EUI), and 8 (i.e., SCSI Name). However type 1 (i.e., T10) is allowed. If the code
set in the inquiry response indicates the identifier is binary, the CIM representation is hexadecimal-
encoded.

6.2.4.3 Guidelines for Port Names
The following is a list of optimal names for ports based on the transport type:

• Fibre Channel ports use Port World Wide Names (i.e., FC Name_Identifier)

• iSCSI has three types of ports:

• The combination of IP address and TCP port number serve as the primary correlatable name
for iSCSI target ports. Note that this information is stored in two separate properties and
hence there is no single correlatable name.

• The logical element (iSCSIProrotolEndpoint) that represents the SCSI port. The SCSI logical
port shall be named with an iSCSI name. 

• The underlying physical ports (typically Ethernet ports). Ethernet ports names shall use the
MAC address.
50



 Object Model General Information
• Parallel SCSI (SPI) and ATA ports typically do not have names, they are identified by a bus-
relative address typically set with jumpers. In configurations where these drives are not shared by
multiple hosts, the host-relative name acts as the name.

• CIM port classes do no include NameFormat; the appropriate format is determined by the
transport implied by the port subclass.

SCSIProtocolEndpoint represents SCSI protocol running through a port. In many cases, there is one-
to-one mapping between SCSIProtocolEndpoint and some subclass of LogicalPort and the name
requirements are identical. For iSCSI, there many be multiple Ethernet ports per SCSIProtocolEndpoint
instance. The IP address and TCP port number are modeled in IPProtocolEndpoint and
TCPProtocolEndpoint. iSCSIProtocolEndpoint Name holds the iSCSI initiator or target name. 

6.2.4.4 Guidelines for Storage System Names
Each profile has a ComputerSystem or AdminDomain instance that represents the entire system. There
are a variety of standard and proprietary names used to name storage systems. Unlike SCSI logical
units and ports, there is no particular name format in common use. There are advantages and
disadvantages to certain types of names.

IP addresses have an advantage in human recognition; (e.g., administrators are accustomed to
referring to systems by their IP addresses). The downsides are that IP addresses are not necessarily
durable (e.g., DHCP) are not necessarily system-wide (e.g., some storage systems have multiple
network interfaces), and are not necessarily unique (e.g., NAT allows the same IP address to be used
in multiple network zones).

Full Qualified Domain Names are friendlier than IP addresses and may fix the durability issue of IP
addresses (e.g., a host name may be constant even when the IP address changes). But storage
systems do not necessarily have access to their network names. Network names are typically handled
through a central service such as DNS. When a client application opens a connection to a remote
system, it asks the local system to resolve the name to an IP address, the local system redirects the
request to the DNS server, the IP address is returned and the client application opens the connection. If
the remote system is the storage system, this sequence requires the DNS server to know about the
storage system, but not vice-versa. A storage system is only required to know about DNS if software on
the storage system acts as a network client using host names. And, like IP addresses, a storage
system may have several network interfaces with different FQDNs. 

Transport-specific names are specific to a particular storage transport (e.g., Fibre Channel or iSCSI).
There are some good standard names (e.g., FC platform names or iSCSI Network Entity names). The
disadvantage of transport-specific names is that they are not able to be consistently used on storage
systems supporting multiple transports or in configurations with transport bridges (e.g., a client may
have no mechanism to issue FC commands to an FC device behind an FC/iSCSI bridge). 

SCSI target names solve the transport-specific issue. Before the SAM-3 and SPC-3 standards there
was not a standard SCSI system name, however with SPC-3, the Identification Vital Product Data page
association value 2 was defined for a target name. At this time, the SPC-3 standard is too new to be in
common use. Most storage systems include some vendor-specific way to get a target name, but client
is not able to use these names without specific knowledge of the vendor-specific interface.

At this time, no single storage system name format is in common use. The best approach is for
implementations to expose several names, along with information that tells the client how to interpret
the name. The OtherIdentifyingInfo and IdentifyingDescriptions array properties of ComputerSystem
provide the list of names and interpretations. However, IdentifyingDescriptions is not an enumerated
type; and as a result, any string is valid from a CIM perspective.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 51



 

6.2.4.5 Standard Formats for Correlatable Names
Correlatable names shall be used and formatted consistently. Storage volume names are more
complex that other element names (i.e., the same format may be used in different namespaces). For
example several common INQUIRY Vital Product Data page names use the IEEE NAA format and as a
result a client is not able to correlate names from different namespaces.

6.2.4.5.1 Standard Formats for Logical Unit Names
For disks and arrays, multiple name formats are in common use. Table 3 specifies standard formats for
storage volume names.

Table 3: Standard Formats for StorageVolume Names

Description Format property and 
value(valuemap)

Format of Name 

SCSI VPD page 
83 type 3, Asso-
ciation 0, NAA 
0101b

NameFormat = NAA(9), 
NameNamespace = 
VPD83Type3(1)

NAA name with first nibble of 5. Recommended format (8 bytes 
long) when the ID is directly associated with a hardware compo-
nent. Formatted as 16 un-separated upper case hex digits (e.g., 
'21000020372D3C73')

VPD page 83, 
type 3h, Associa-
tion=0, NAA 
0110b

NameFormat = NAA(9), 
NameNamespace= 
VPD83Type3(1)

NAA name with first nibble of 6. Recommended format (16 bytes 
long) when IDs are generated dynamically. Formatted as 32 un-
separated upper case hex digits.

VPD page 83, 
type 3h, Associa-
tion=0, NAA 
0010b

NameFormat = NAA(9), 
NameNamespace = 
VPD83Type3(1)

NAA name with first nibble of 2. Formatted as 16 un-separated 
upper case hex digits 

VPD page 83, 
type 3h, Associa-
tion=0, NAA 
0001b

NameFormat = NAA(9), 
NameNamespace = 
VPD83Type3(2)

NAA name with first nibble of 1. Formatted as 16 un-separated 
upper case hex digits 

VPD page 83, 
type 2h, Associa-
tion=0

NameFormat =  
EUI64(10), Name-
Namespace = 
VPD83Type2(3)

Formatted as 16, 24, or 32 un-separated upper case hex digits 

VPD page 83, 
type 1h, Associa-
tion=0

NameFormat =  
T10VID(11), Name-
Namespace = 
VPD83Type1(4)

Formatted as 1 to 252 bytes of ASCII.

VPD page 80, 
serial number

NameFormat = Other(1), 
NameNamespce = 
VPD80(5)

Only if serial number refers to logical units rather than the enclo-
sure. 1-252 ASCII characters

Concatenation of 
Vendor, Product, 
SerialNumber

NameFormat = SNVM(7), 
NameNamespace = 
SNVM(7)

3 strings representing the vendor name, product name within the 
vendor namespace, and serial number within the model 
namespace. Strings are delimited with a ‘+’ and spaces are 
included. Vendor and Product are fixed length: Vendor ID is 8 
bytes, Product is 16 bytes. SerialNumber is variable length and 
may be up to 252 bytes in length. If one of these fields contains a 
plus sign, it shall be escaped with a backslash ('\+'). The concate-
nation is done to provide world-wide uniqueness; clients should not 
parse this name.
52



 Object Model General Information
Storage volumes may have multiple standard names. A page 83 logical unit identifier shall be placed in
the Name property with NameFormat and Namespace set as specified in Table 3. Each additional
name should be placed in an element of OtherIdentifyingInfo. The corresponding element in
IdentifyingDescriptions shall contain a string from the Values lists from NameFormat and
NameNamespace, separated by a semi-colon. For example, an identifier from SCSI VPD page 83 with
type 3, association 0, and NAA 0101b - the corresponding entry in IdentifyingDescriptions[] shall be
“NAA;VPD83Type3”.

For other types of devices, the logical unit name shall be in the Name property; NameFormat and
NameNamespace are not valid properties of these other device classes.

6.2.4.5.2 Standard Formats for Port Names
Table 4, “Standard Formats for Port Names” specifies standard formats for port names

Note that iSCSI Network Portals do not have a single correlable name.  The combination of
IPProtocolEndpoint IPv4Address or IPv6Address and TCPProtocolEndpoint PortNumber uniquely
identifies the network portal, but since these are two properties, they do not form a correlatable name.

6.2.4.5.3 Standard Formats for Fabric Names
A fabric is modeled as AdminDomain. AdminDomain.Name shall hold the fabric name (i.e., WWN) and
AdminDomain.NameFormat shall be set to “WWN”. AdminDomain.Name shall be formatted as 16
unseparated upper case hex digits.

6.2.4.5.4 Standard Formats for Storage System Names
Due to the limited list of possible formats, the Name property is not considered an essential identifier for
SMI-S. SMI-S clients should use OtherIdenfyiingInfo property as described in Table 5.

FC Node WWN NameFormat = 
NodeWWN(8) Name-
Namespace = 
NodeWWN(6)

16 un-separated upper case hex digits (e.g., 
'21000020372D3C73')

Table 4: Standard Formats for Port Names

Name Type Name Format Details
An IP interface's 
MAC 

Network Port Permanent Address property; 
no corresponding format property 

Six upper case hex bytes, bytes are delim-
ited by colons ':'

World Wide Name 
(i.e., FC 
Name_Identifier)

FCPort Permanent Address property; no cor-
responding format property

16 un-separated upper case hex digits (e.g., 
'21000020372D3C73')

SCSIProtocolEndpoint Name property; Con-
nectionType = 2 (Fibre Channel)

16 un-separated upper case hex digits (e.g., 
'21000020372D3C73')

Parallel SCSI Name SPI Port Name property; no corresponding 
format property

String - platform-specific name representing 
the name. Note that this name is only corre-
latable relative to the system containing the 
port.

SCSIProtocolEndpoint Name property; Con-
nectionType = 3 (Parallel SCSI)

String - platform-specific name representing 
the name.

Table 3: Standard Formats for StorageVolume Names

Description Format property and 
value(valuemap)

Format of Name 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 53



 

Providers shall supply at least one Durable or Correlatable Name as an element in the
IdentifyingDescriptions[] array. The corresponding array elements of OtherIdentifyingInfo[] shall include
a value from Table 5 for all elements of IdentifyingDescriptions[]. The elements in the
IdentifyingDescriptions array are strings and may contain white space between words. Whenever
white-space appears, it shall consist of a single blank; other white-space characters and multiple
consecutive blanks shall not be used.

At least one of the values in IdentifyingDescriptions[] shall be something other than “SCSI Vendor
Specific Name” or “Other Vendor Specific Name”.

OtherIdentifyingInfo[0] should be assigned the most preferable name by the instrumentation.

In all cases, if the name is returned to the instrumentation in binary, the corresponding entry in
OtherIdentifyingInfo holds a hexadecimal-encoded representation of the value returned. Standard
names defined in binary are called out in Table 5.

Other ComputerSystem properties should be set as follows:

Name is a CIM key and shall be unique for ComputerSystem instances within the CIM namespace.
SMI-S clients should not assume Name is either durable or correlatable.

NameFormat is an enumerated type describing the Name property. Only a few of the defined values
are appropriate for storage systems. Use “IP” if Name is derived from an IP address of Fully Qualified
Domain Name. Use “HID” if Name is derived from a hardware ID. Use “OID” if Name is a unique ID
determined by some unique ID generating logic.

ElementName is a friendly name; SMI-S clients should not assume that ElementName is unique,
correlatable, or durable since a customer may provide the same info for multiple systems.

Table 5: Standard Formats for Storage System Names

IdentifyingDescriptions 
[x] value

Description Format of OtherIdentifyinginfo[x]

T10 Target Name Type 1 An identifier from 
a Identification 
Vital Product Data 
page response
with Association 
equal to
2.

Type 1 (T10) 1 to 252 bytes of ASCII
T10 Target Name Type 2 Type 2 (EUI) 16, 24, or 32 un-separated upper 

case hex digits (e.g., 
'21000020372D3C73')

T10 Target Name Type 3 Type 3 (NAA) 16 or 32 un-separated upper case 
hex digits (e.g., 
'21000020372D3C73')

T10 Target Name Type 8 Type 8 (SCSI Names) iSCSI Names (see 6.2.4.9)
T11 FC-GS-4 Platform 
Name

A platform name as defined in T11 FC-GS-
4 standard 

Up to 508 hex digits (254 bytes) as 
specified by T11 FC-GS-4 subclause 
on Platform Name. Format as unsep-
arated as hex digits . Platform Name 
Format Byte shall be included.

T11 RNID Name An RNID names as defined in T11 FC FS 
standard.

32 unseparated hex digits. 

iSCSI Network Entity 
Name

An iSCSI Network Entity name. iSCSI Names (see 6.2.4.9)

Ipv4 Address An IP V4 name Four decimal bytes delimited with 
dots ('.') 
54



 Object Model General Information
6.2.4.5.5 Operating System Device Names
Each operating system has different conventions for naming devices. Many operating systems provide
multiple names for the same device instance. In this version of the specification, operating system
device name formats are recommended.

The case of names specified by operating system interfaces shall be preserved.

Ipv6 Address An IP V6 name ‘x:x:x:x:x:x:x:x’, where the 'x's are the 
uppercase hexadecimal values of the 
eight 16-bit pieces of the address.
Examples: 
‘FEDC:BA98:7654:3210:FEDC:B
A98:7654:3210’, 
‘1080:0:0:0:8:800:200C:417A’
Leading zeros in individual fields 
should not be included and there 
shall be at least one numeral in every 
field. (This format is compliant with 
RFC 2373.) In addition, omitting 
groups of zeros or using dotted deci-
mal format for an embedded IPv4 
address is prohibited.

Fully Qualified Domain 
Name

A fully qualified domain name. A legal DNS name (fully qualified) 
consisting of strings delimited by peri-
ods.

Node WWN The Fibre Channel Node WWN. The pro-
vider shall assure that the same Node 
WWN shall be available through all FC 
ports within a target device.

16 un-separated upper case hex dig-
its (e.g., '21000020372D3C73')

T10 Unit Serial Number 
VPD page 

SCSI Inquiry VPD page 80 response is a 
serial number This name may be unique for 
a specific logical unit or for the target (e.g., 
storage system). These names are only 
valid if the instrumentation is certain that all 
logical units in a system return the same 
value. Since there is no mechanism to test 
whether the value is unique per target or 
per logical unit, this value is not interopera-
bly correlatable and should not be used

1-252 ASCII characters

SCSI Vendor Specific 
Name

This is a name 
accessible 
through a vendor-
specific SCSI 
command 

A client with a priori 
knowledge may be able 
to correlate this based 
on vendor and Product 
IDs.

unknown

Other Vendor Specific 
Name

This is a name 
accessible 
through some 
non-SCSI vendor-
specific interface. 

unknown

Table 5: Standard Formats for Storage System Names (Continued)

IdentifyingDescriptions 
[x] value

Description Format of OtherIdentifyinginfo[x]
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 55



 

Operating system device names are unique within the namespace of the scoping system and are not
unique between systems.

Table 6 specifies the format for names of tape devices.

Some operating systems treat disk partitions as virtual devices; applications operate on partitions as if
they were disks. The model requires two classes for each partition, LogicalDisk and
GenericDiskPartition. Other operating systems allow applications to operate on the entire disk without
partitions. Linux allows both.

Table 7 specifies the format for LogicalDisk.Name of disk partitions

Table 8 specifies the format for GernericDiskParition.Name and DeviceId properties for disk partitions

Table 6: Standard Operating System Names for Tape Devices 

Operating System Format Notes
AIX /dev/rmtX X represents a hexadecimal number and 

may be more than one character
HP-UX /dev/rmn/Xm X represents a hexadecimal number and 

may be more than one character
Linux /dev/stX X represents one or two lower case alpha-

betic characters 
Solaris /dev/rmt/Xn X represents a hexadecimal number and 

may be more than one character
WIndows \\.\\TAPEX X represents a decimal number

Table 7: LogicalDisk.Name for disk partitions

Operating System Format Notes
Linux dev/sdXY or /dev/hdXY where X represents one or two lower case 

alphabetic characters and Y represents an 
integer between 1 and 15

Solaris /dev/dsk/cXtXdXsX X represents one or two lower case alpha-
betic characters 

WIndows C: or the file name of mount point C represents an uppercase letter

Table 8: GenericDiskParittion.Name for disk partitions

Operating System Format Notes
Linux sdXY or hdXY X represents one or two lower case alpha-

betic characters 
Solaris /dev/dsk/cXtXdXsX where X represents one or two lower case 

alphabetic characters and Y represents an 
integer between 1 and 15

WIndows Disk #X, Partition #X X represents a decimal digit
56



 Object Model General Information
Table 9 specifies the format for LogicalDisk.Name for unpartitioned disks.

6.2.4.6 Case Sensitivity
Names and NameFormats are case sensitive and the cases provided in Table 9 shall be used If not
otherwise specified, uppercase should be used.

6.2.4.7 Testing Equality of correlatable Names
The implementation shall only compare objects of the same class or parent class. For objects that do
not require the use of additional properties, a simple direct comparison is sufficient, providing the format
for the mandatory correlatable name as identified in this section or the specific profile is adhered to.

For objects that do require the use of additional properties (e.g., NameFormat), the correlatable names
of objects representing the same entity should compare positively, negatively, or indicate clearly when a
comparison is ambiguous.

• if the two objects have the same NameFormat and Name, then they refer to the same resource

• if the two objects have the same NameFormat and different Names, then they refer to different
resources

• if the two objects have different NameFormats, whether the Names are the same or different, then
it is unknown whether they refer to the same resource

This reduces the possibility that a match is missed by a string equals comparison simply because of an
incompatibility of formats rather than non-equality of the data.

6.2.4.8 Operating System Device Names

6.2.4.9 iSCSI Names
The iSCSI standards define three text formats for names that apply to various iSCSI elements. The
three formats are: iSCSI qualified name (iqn), IEEE Extended Unique Identifier (eui), and ANSI T10
NAA. The format is included in the name as a three-letter prefix. The three formats are explained in
more detail.

The iSCSI qualified name (iqn) format is defined in [iSCSI] and contains (in order):

1 - The string “iqn.”

2 - A date code specifying the year and month in which the organization registered the domain or sub-
domain name used as the naming authority string.

3 - The organizational naming authority string, which consists of a valid, reversed domain or subdomain
name.

Table 9: Standard Operating System Names for Unpartitioned DIsks 

Operating System Format Notes
AIX /dev/hdiskX X represents a hexadecimal number and 

may be more than one character
HP-UX /dev/dsk/cXtYdZ X , Y, and Z represents hexadecimal number 

and may be more than one character in 
length

Linux /dev/sdX or /dev/hdX X represents one or two lower case alpha-
betic characters 

Windows \.\PHYSICALDRIVEx x represents a a decimal number and may be 
more than one character
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 57



 

Optionally, a ':', followed by a string of the assigning organization's choosing, which shall make each
assigned iSCSI name unique.

Figure 11: "iSCSI Qualified Names (iqn) Examples" contains examples of iSCSI-qualified names that
may be generated by “EXAMPLE Storage, Inc.” 

The IEEE Registration Authority provides a service for assigning globally unique identifiers [EUI]. The
EUI-64 format is used to build a global identifier in other network protocols.

The format is "eui." followed by an EUI-64 identifier. Figure 12: "iSCSI EUI Name Examples" contains
an example.

Type "naa." - Network Address Authority

The ANSI T10 FC-FS standard defines a format for constructing globally unique identifiers [FC-FS]
referred to as an Network Address Authority (NAA) format. The iSCSI name format is "naa." followed by
an NAA identifier (ASCII-encoded hexadecimal digits). 

Figure 13: "iSCSI 64-bit NAA Name Examples" contains an example of an iSCSI name with a 64-bit
NAA value: type NAA identifier (ASCII-encoded hexadecimal) 

Figure 14: "iSCSI 128-bit NAA Name Examples" contains an example of an iSCSI name with a 128-bit
NAA value: type NAA identifier (ASCII-encoded hexadecimal) 

Figure 11: iSCSI Qualified Names (iqn) Examples
              Organizational      Subgroup Naming Authority

                      Naming      and/or string Defined by

         Type  Date     Auth      Org. or Local Naming Authority

         +--++-----+ +---------+ +--------------------------------+

         |  ||     | |         | |                                |

         iqn.2001-04.com.example:diskarrays-sn-a8675309

         iqn.2001-04.com.example

         iqn.2001-04.com.example:storage.tape1.sys1.xyz

         iqn.2001-04.com.example:storage.disk2.sys1.xyz

Figure 12: iSCSI EUI Name Examples
          Type  EUI-64 identifier (ASCII-encoded hexadecimal)

          +--++--------------+

          |  ||              |

          eui.02004567A425678D

Figure 13: iSCSI 64-bit NAA Name Examples
         +--++--------------+  

         |  ||              |  

         naa.52004567BA64678D  

Figure 14: iSCSI 128-bit NAA Name Examples
         +--++------------------------------+  

         |  ||                              |  

         naa.62004567BA64678D0123456789ABCDEF  
58



 Object Model General Information
6.3 Health and Fault Management

6.3.1 Objectives
Health and Fault Management is the activity of anticipating or detecting failures through monitoring the
state of the storage network and its components and intervening before services can be interrupted. A
service in this case is the realization of storage through several interconnected devices connected,
configured for a dedicated purpose. The purpose is the delivery of software application functionality in
support of some business function.

6.3.2 Overview

• Express states and statuses with standard meanings.

• Define the use of comprehensive error reporting in determining the type, category, and source of
failures.

• Define the quality associated with errors rather than qualities.

• Define explicit failure scopes rather than requiring HFM enabled application to construct them.

6.3.3 Terms

Error:

An unexpected condition, result, signal or datum. An error is usually caused by an underlying problem
in the system such as a hardware fault or software defect. Errors can be classified as correctable
(recoverable) or uncorrectable, detectable or undetectable.

Fault:

A problem that occurs when something is broken and therefore not functioning in the manner it was
intended to function. A fault may cause an error to occur.

Fault Region:

Many devices or applications can attempt to fix themselves upon encountering some adverse condition.
The set of components which the device or application can attempt to fix is called the Fault Region. The
set may include part or all of other devices or applications. Having the Fault Regions declared helps a
HFM application, acting as a doctor, to do no harm by attempting to interfere and thereby adversely
effect the corrective action being attempted.

Health and Fault Management (HFM):

Health and Fault Management is the activity of anticipating or detecting debilitating failures through
monitoring the state of the storage network and its components and intervening in before services can
be interrupted. A service in this case is the realization of storage utilization through several
interconnected devices connected, configured for a dedicated purpose. The purpose is the delivery of
software application functionality in support of some business function.

Operational status: 

These values indicate the current status(es) of the element. Various operational statuses are defined (e.g. 
OK, starting, stopping, stopped, In Service, No Contact). 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 59



 

Health State:

These values indicate the current health of the element. This attribute expresses the health of this element 
but not necessarily that of its subcomponents.

6.3.4 Description of Health and Fault Management
The goal of effective administration requires devices and applications that comprise storage services to
report their status and the nature of their errors in standard terms. These terms need to be
understandable by a client without device specific knowledge.

There are four basic ways for a SMI-S client to detect an error or fault condition. These are: 

• Health state and Operational status - Polling.

• Error - Standard errors returned from CIM operations.

• Indications - Subscribe for and receive asynchronous Indications.

• Fault Regions (experimental) - Walk the CIM model looking for RelatedElementCausingError
associations.

6.3.4.1 Operational Status and Health State (Polling)
Operational Status and Health State are the two properties that will be used to monitor health. These
two properties could convey very different statuses and may at times be related or independent of each
other. For example, you may have a disk drive with the Operational Status of “Stopped” and the
HealthState of 0 (expired) or 100 (excellent). Now the reason the disk drive is stopped could vary from
the fact that it had a head crash (HealthState = 0) to the situation where it was stopped for the routine
maintenance (HealthState = 100).

Table 10 is an example of how HealthState can disambiguate health for a for a disk drive, various
values for OperationalStatus and HealthState:

The table shows, for a disk drive, various possible values for OperationalStatus and HealthState. Note
that there are many cases not shown.

Figure 15: Basic Fault Detection

textIndication CIM_Error SubComponentInError
Association

Poll for
Health State

Fault Detection
60



 Object Model General Information
The property OperationalStatus is multi-valued and more dynamic. It tends to emphasize the current
status and potentially the immediate status leading to the current status; whereas, the property
HealthState is less dynamic and tends to imply the health over a longer period of time. Again, in the disk
drive example, the disk drive's operational status may change many times in a given time period.
However, in the same time period, the health of the same drive may not change at all.

6.3.4.2 Standard Errors and Events
Standardization of error and events are required so that the meaning is unambiguous and is given to
comparisons. 

Error and Alert indications
HFM clients shall not be required to be embodied with specific knowledge of the devices and
applications in order to derive the quality of the error from the datum. The device and application shall
express the quality of the error rather than the quantity interpreted with a priori knowledge to determine
that error condition is present. For example, a device needs to express that it is too hot rather than
requiring the HFM enabled application to determine this from the temperature datum and device
specific knowledge of acceptable operating conditions. 

Standard errors are defined for each Profile / Subprofile. The definitions will be contained in the profiles
/ subprofiles. Standard errors are not the only error codes that can be returned, but are the only codes
that a generic client will understand.

6.3.4.3 Indications
Indications are asynchronous messages from CIM servers to clients. A client must register for them.
Each SMI-S profile/subprofile contains lists of indication filters that clients use to indicate the
information it is interested in. The message itself is defined in the SMI-S indication subprofile.

Table 10: OperationalStatus for Disk Drive

OperationalStatus Description HealthState Description Comment
2 OK 5 OK Everything is fine
2 OK 10 Degraded/Warning Some soft errors
3 or 2 Degraded or 

Predicted 
Failure

15 Minor Failure Many soft errors

3 or 2 Degraded or 
Predicted 
Failure

20 Major Failure Some hard errors

3 Degraded 10 Good A subcomponent has failed (no data 
loss)

10 Stopped 5 OK Drive spun down normally
10 Stopped 30 Non-recoverable 

Error
Head crash

8 Starting 10 Degraded/Warning Will update HealthState once fully started
4 Stressed 5 OK Too many I/O in progress, but the drive is 

fine.
15 Dormant 5 OK The drive is not needed currently
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 61



 

EXPERIMENTAL

6.3.4.4 Event Correlation and Fault Containment  
Automation will require that an error arising through control and configuration activities, as a side effect
of them, or by failures caused by defects can be directly correlatable. Error categories like network
cabling failures or network transmission errors will help organize the types of error that can be
produced. Standard errors, like impending disk media failure, will be required as well.

Once the errors have been collected and correlated, the HFM enabled application can produce an
impact list sorted by likelihood. Some of the error correlation can be determined by the common 

affect through the manifestation of the RelatedElementCausingError association to be described later.
The alerts themselves can report its correlation with other alerts.

Potential faults can then be derived from errors for each component. Deriving such a list may require a
dialog between the HFM enabled application and the device or application in question such that the
HFM enabled application is assisted in the production of the list.

If permitted, then control and configuration operations may be executed to contain the fault. The pallet
of these operations will be those operations already available through SMI-S. However, special
operations may arise from the HFM design work as well. Fault containment will include the
reconfiguration of the storage service with alternative components, leaving failing components or
interconnections isolated.

Define the use of comprehensive error reporting in determining the type, category, and source of
failures

Much like a physician, the HFM enabled application is notified or consulted when symptoms appear.
The HFM enabled application then develops a prognosis based on the manifestation of the ailment. At
times, the HFM enabled application will perform diagnostic procedures. The end result of the process is
to produce a list of possible causes, ranked by probability, and associated recommended procedures. 

Also like a doctor, the HFM enabled application will settle for enabling the patients to heal themselves.
That is the HFM enabled applications cannot be expected to heal the device in all cases. A significant
portion of all possible corrective actions will require the intervention of people or device unique
knowledge.

The simplified state diagram shown in Figure 16: "Health Lifecycle" follows the fault mitigation life cycle
for HFM.

The device or application manifests an event, either by a state change, error returned from a WBEM
operation, or an alert indication.

The event is recognized by the HFM enabled application and accessed by the HFM enabled
application. It may be that the event indication does the represent the existence of an error. An error
condition may be heralded by a single or multiple events occurring in some order. The process of
examining and characterizing event as errors is called error handling.

Once it is determined that an error condition is present, then possible causes are sought and ranked by
likelihood. The causes themselves describe a potential problem or fault with the component in question.
62



 Object Model General Information
Alternatively, the device or application may report the fault directly, through an alert indication,
optionally with recommended actions.

Fault resolution may not require the intervention of an operator or field technician. It is these faults that
can be handled entirely by the HFM enabled application. Otherwise, the HFM enabled application can
not actively participate in whole fault resolution life cycle. In this case, the HFM enabled application
would wait for the end state of fault resolution to come to being before ending its fault mitigation
exercise.

Faults are contained and components repaired or replaced. The instructions to the HFM enabled
application for what can be done to repair the fault are the recommended actions. Fault Containment
includes fencing off the faulty component and maintaining the service. To be minimally effective, the
HFM enabled application contains the fault. The repair may or may not be done with human
intervention.

Figure 16: Health Lifecycle

Event 
Received

indicate event 
has occurred

Error 
Derived

Fault 
Derived

Fault 
Resolution

assess event conditions

find and rank possible causes

recommend actions
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 63



 

The devices and application that comprise a storage system have themselves some level of self
diagnostics and report functionality.

There is a range of ability of devices and applications to recover from failures and to report on the error
recovery actions taken. The variance of capabilities for device and applications can be plotted on a
continuum. At one end of continuum, the device or application recognizes a fault condition and takes
action, reporting on the action taken and any further action required to service it. At the other end of the
continuum, the device can only report on that states and requires intervention both in the detection of
fault conditions and taking corrective action.

There are limits to what an HFM enabled application can do. Obviously, if the device or application can
not report states, errors and alerts in a standard way or can not report this data at all, then there is little
an external implementation can do. 

However, few, if any, of these devices and applications can monitor and correct the service as a whole.
It is for this reason, the HFM implementation is needed to augment the effectiveness of the
administrator.

6.3.4.5 Fault Regions 
A scope can be applied to the effect of errors and the associated fault. A fault may affect a component,
a device or application, storage service, or all the above. This scope defines the area of influence for
fault containment. For example, the device itself may monitor its components and perform fault
mitigation on its own. The plot of components whose errors are handled by a given fault mitigation
entity is the fault region. The scope of effect of this fault region shall be defined.

Figure 17: Continuum

Continuum of fault 
recovery

? Reports on states
? Requires intervention

? Reports on action  
   was taken
? Self-Healing
64



 Object Model General Information
Error handling is initiated by the interception of error events. For example, a switch may recognize the
failure of one it ports and reroute traffic to a working port. In this case, the fault region is defined as the
switch itself. If the failure event is publicly consumable, other fault mitigation entities can also handle
the error as well. The failure of a drive may be mitigated one way in the array fault region and mitigated
differently in the HFM enabled application fault region. For example, the array fault mitigation entity can
bring a volume off line if the failure of the disk brings the set of disks below the minimum required for
quorum. At the same time, the HFM enabled application can reconfigure the storage service to create a
replacement volume and then restore the failed volume's data from backup.

Figure 18: Application Fault Region

HFM Application Fault Region

Host Fault Region

Array Fault Region

Switch Fault Region

Host

Array

Switch

Webserver

Routing and 
Zoning

Block Server

Filesystem

Inband Protocol

Inband Protocol

Host

HFM Application

Out of band protocol

Out of band protocol
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 65



 

The HFM enabled application is one of the several possible storage network scope fault mitigation
entities. As discussed previously, this broad scope is necessary to mitigate faults where the faults
cannot be entirely mitigated by the storage device or application alone. It is necessary that fault
mitigation entities like the HFM enabled application can observe the activities of the fault mitigation
entities contained within their fault regions such that they do no harm. Device or application should
express what error conditions are to be handled inside their own fault domain and how an HFM enabled
application can detect that such fault containment is occurring. State changes on components may BE
sufficient representation of these activities.

In general, the HFM enabled application fault region mitigation may not necessarily include the same
actions that the host, switch, or array may take to fix them.

EXPERIMENTAL

6.3.4.6 Examples

6.3.4.6.1 Array Example
The scenario presented is related to a storage array that contains one or many ports. A port is off-line.
This port effects the serving of a volume to a host.

Indication
An AlertIndication is produced by the array notifying the HFM enabled application of the failure. The
indication reports the Object Name of the ProtocolController that has failed through its
AlertingManagedElement property. When storage capacity configuration operations are attempted on
storage related to the failed ProtocolController, an Error is reported. The error reports the Object Name
of the ProtocolController that has failed through the ErrorSource property. Error is a class introduced in
CIM 2.9 that provides a mechanism to express error number, category, recommended actions and the
like.

Standard Errors
It is mandatory to report error conditions through both AlertIndication and Error in those cases where
Error is returned when the method call failed for reasons other than the method call itself. For example,
if the device port is down then a method call can fail because of this condition. It is expected that the
device will report a port error AlertIndication to listening clients as well.

Figure 19: Array Instance

ComputerSystem

LogicalPort

SCSIProtocolController

StorageVolume

ProtocolControllerForPort

ProtocolControllerForUnit

SystemDevice

SystemDevice
66



 Object Model General Information
Operational status and Health State (Polling)
A client that gets the top Computer system instance should see an operational status of degraded and
a health state of good if the data wasn’t lost. At the same time, reading the instance of Computer
system for the broken controller would see an operational status of “stopped” and a health state of
“non-recoverable Error”.

EXPERIMENTAL

Fault Region  
The RelatedElementCausingError association defines the relationship between a CIM Instance that is
reporting an error status and the component that is the cause of the reported status. The Port and a
Volume using the port both report error status and the RelatedElementCausingError association reports
that the ProtocolController through which the Volume is exposed has failed and at least some of the
volumes are no longer visible externally to the array. The array itself would be thereby degraded.

The RelatedElementCausingError association is independent of all other associations. It is only use to
report error associations and comes into existence only when necessary. Once the error has been
handled, the association is removed from the model. 

EXPERIMENTAL
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 67



 

6.3.4.6.2 Switch Example
The scenario presented is related to a FC Switch that contains many ports. One of the ports is off-line.

Figure 20: Switch Example

Element
StatisticalData

Product

ComputerSystem

Dedicated="switch"

FCPort

FCPortStatistics

FCPort

Element
StatisticalDataFCPortStatistics

Software
InstalledOn

System

(Firmware)

SoftwareIdentity

PhysicalPackage

ProductPhysical
Component

System
DeviceComputerSystem

Package

.

.

.

FCPortSettings

FCPortCapabilities

Element
Capabilities

Element
SettingData

FCPortSettings

FCPortCapabilities

FCSwitchSettings

EnabledLogical
ElementCapabilities

Element
SettingData

Element
Capabilities

Element
SettingData

Element
Capabilities

FCPortRate
Statistics

FCPortRate
Statistics

StatisticsCollection
MemberOf
Collection
68



 Object Model General Information
Indication
An AlertIndication is produced by the switch notifying the HFM enabled client of the failure. The
indication reports the Object Name of the FC port (FCPort) that has failed through its
AlertingManagedElement property.

Standard Errors
A call to Port settings, port capabilities, or statistics cause an Error to be reported. The error reports the
Object Name of the FCPort that has failed through the ErrorSource property.

It is mandatory to report error conditions through both AlertIndication and Error in those cases where
Error is returned when the method call failed for reasons other than the method call itself. For example,
if the device is over heat, then a method call can fail because of this condition. It is expected that the
device will report an over heat AlertIndication to listening clients as well.

EXPERIMENTAL

Fault Region  
The RelatedElementCausingError association defines the relationship between a CIM Instance that is
reporting an error status and the component that is the cause of the reported status. The failed port
would report error status and the RelatedElementCausingError association reports that the
PortStatistics and PortSettings are effected. The switch itself would be thereby degraded.

The RelatedElementCausingError association is independent of all other associations. It is only use to
report error associations and comes into existence only when necessary. Once the error has been
handled, the association is removed from the model. 

EXPERIMENTAL
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 69



 

70



 Object Model General Information
6.4 Policy

6.4.1 Objectives
Policy in the context of SMI-S refers to the common expression of policy in the management of storage.
The specific objectives to be addressed by policy include:

a) Provide for the exposure of element specific policies which control the behavior of management 
for the element. This includes:

1) Native behavior currently unexposed through a standard interface;

2) Behavior that can be implemented on behalf of the element by the SMI-S implementation;

b) Provide a common expression that can be extended for vendor specific behavior;

c) Provide for a mechanism that allows for embedded policy implementations;

d) Provide for the implementation of policy external to individual elements;

e) Provide for policies that work across multiple profiles and implementations of those profiles;

f) Provide a policy mechanism that scales to enterprise environments;

g) Extend existing DMTF standard policy models that are used for network and security;

h) Provide a mechanism that allows SMI-S clients to determine the level of (SMI-S) policy support.

6.4.2 Overview
Policy is the expression of management behavior such that administrators and other management
software can control that behavior, tailoring it to accomplish specific goals. Policy based storage
management holds the promise of reducing the cost and complexity of the mostly manual management
of storage resources today. Policies provide for a level of automation while allowing control over the
behavior of that automation. Policies are envisioned as being implemented by management software
and device vendors and manipulated and extended by administrators in order to achieve specific
results in their environment.

Any good IT organization has specific policies and procedures as well as best practices that are
followed (largely through manual tasks) by the IT personnel in managing the IT environment. The best
organizations have documented these policies and have a process for updating and revising them.
Policy based management allows for the creation and maintenance of management policies that
automate the management of IT environments to achieve the desired goals of the business. These
policies can themselves be managed just as the best organizations manage their written policies and
procedures.

Note: Management of policy implementations including policy services and management of policies
themselves is left for a future 

Note: SMI-S.

6.4.3 Policy Terms
A number of concepts have required new terms to be defined as follows:

Policy Client: An CIM Client that creates or manipulates instances of policy classes in a CIM Server.

Policy Implementation: The implementation of policy class instances in a CIM Server (i.e., providers).

Policy Based:.An SMI-S compliant implementation that supports one or more policy profiles directly.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 71



 

Policy Enabled: An SMI-S profile, subprofile or package that includes properties and methods that are
used in one or more policy profiles.

6.4.4 Policy Definition
The expression of Policy in the CIM Model takes the form of policy rules that aggregate conditions and
actions whereby upon successful evaluation of the conditions the actions are taken. Up until recently,
the specialization of these base classes was along the lines of specific extensions for domains such as
Networking and Security. Rather than create domain specific extensions for storage, a more general
approach wa s taken. 

The new extensions to the CIM Policy Model are meant to enable policies that act on anything that is
itself modeled in CIM, testing conditions on instances in the model and invoking methods to manipulate
those instances.

Note: More information on the CIM Policy model and its application can be found in the DMTF Policy
whitepaper. This clause does not attempt to duplicate that material.

6.4.4.1 Query Condition
The base PolicyCondition class is extended in such a way as to allow a condition to query any state that
exists in implementations of the model. The new class QueryCondition allows a query string of
unrestricted complexity to be used, just as any other CIM Client, to interrogate the model and create
results. The presence of these results indicates that the condition evaluated to true. The absence
means that the condition is false.

6.4.4.2 Method Action
The base PolicyAction class is extended so that any arbitrary method (extrinsic or intrinsic) can be
invoked and appropriate parameters can be passed. This is also accomplished by a query string that, in
this case, specifies how to use the results from the QueryCondition(s).

6.4.4.3 Query Condition Result
The result of a QueryCondition when it evaluates to TRUE (FALSE produces no results by definition) is
one or more “rows” of embedded objects each with a predefined classname of QueryResultInstance
whose properties match (both name and type) the query select criteria. This result is used possibly by
other query conditions and method actions. 

6.4.4.4 Method Action Result
The result of a MethodAction is an instance indication that has scope and life only within an enclosing
PolicyRule. This result is used by other method Policy-Based Support

The implementation of policy can be limited to static instances of a policy model, specifically due to the
cost in resources to implement full query language support. This is similar to the situation with
Indication Filters in that static instances of QueryCondition and MethodActions and their associated
query strings are available when a CIM Client interrogates the model for the device. Attempts to create
new instances of these classes will fail because the logic embodied in the query strings is hard coded
by the implementation.
72



 Object Model General Information
There are basically three levels of support:

Full Dynamic Policy Rules – a CIM Client can create new instances of PolicyRule, QueryCondition and
MethodAction. Full support for a query language is implied in this level of support

Dynamic Rules with Static Components – a CIM Client may discover existing QueryConditions and
MethodActions, but may not create new ones. PolicyRule instances may be created to combine them in
unlimited ways.

Static Rules and Components – the full logic of the rule instances that already exist is hard coded by the
implementation. The CIM Client only has control of what the policy applies to (via, for example.
PolicySetAppliesToElement).

Any level of policy implementation may use the association PolicySetAppliesToElement to apply the
policy to one or more elements in the same object manager, but the query strings need to already
specify how the association is used.

6.4.4.5 Capabilities
The level of policy based support is driven by a capabilities class described in the policy subprofile.
Normative text for implementing this capability class is covered there.

6.4.5 Policy Recipes
The principal recipe for policy is the creation of policies in a CIM Server as follows:

// DESCRIPTION

// This recipe describes how to create a policy. The assumption is made that

// there is only one policy implementation present in the system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. The rule name is known as the #PolicyRuleName variable.

// 2. The condition name is known as the #PolicyConditionName variable.

// 3. The condition query is known as the #Query variable.

// MAIN

Figure 21: Use of Results as Context in the Execution of a Policy Rule

QueryCondition A

QueryCondition B

MethodAction

A’s Context
QueryResultInstance

B’s Context
QueryResultInstance

Publish
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 73



 

// Step 1. Create a Policy Rule

$PolicyRule = newInstance(“CIM_PolicyRule”)

$PolicyRule.setProperty(“PolicyRuleName”, #PolicyRuleName)

$PolicyRule.setProperty(“Enabled”, 2)// disabled

$PolicyRule.setProperty(“SequencedActions”, 1)// mandatory

$PolicyRule.setProperty(“ExecutionStrategy”, 3)// do until failure

$PolicyRule-> = CreateInstance($PolicyRule)

// Step 2. Create a Policy Condition

$QueryCondition = newInstance(“CIM_QueryCondition”)

$QueryCondition.setProperty(“PolicyConditionName”, #PolicyConditionName)

$QueryCondition.setProperty(“Query”, #Query)

$QueryCondition.setProperty(“QueryLanguage”, “CQL”)

$QueryCondition-> = CreateInstance($QueryCondition)

// Step 3. Associate Condition to the Rule

$PolicyConditionInRule = newInstance(“CIM_PolicyConditionInPolicyRule”)

$PolicyConditionInRule.setProperty(“GroupComponent”, $PolicyRule->)

$PolicyConditionInRule.setProperty(“PartComponent”, $QueryCondition->)

$PolicyConditionInRule-> = CreateInstance($PolicyConditionInRule)

// Step 4. Create the Action

$MethodAction = newInstance(“CIM_MethodAction”)

<Assign values to MethodAction attributes>

$PolicyAction-> = CreateInstance($MethodAction)

// Step 5. Associate the Action to the Rule

$PolicyActionStruct = newInstance(“CIM_PolicyActionStructure”)

$PolicyActionStruct.setProperty(“GroupComponent”, $PolicyRule->)

$PolicyActionStruct.setProperty(“PartComponent”, $PolicyAction->)

$PolicyActionStruct.setProperty(“ActionOrder”, 1)// Group 1

$PolicyActionStruct-> = CreateInstance($PolicyActionStruct)

// Step 6. Enable the Rule

$PolicyRule.Enabled = 1// Enabled

ModifyInstance($PolicyRule->,

$PolicyRule,

false,

{“Enabled”})
74



 Object Model General Information
EXPERIMENTAL

6.5 Standard Messages

6.5.1 Overview
Management of computer resources is, at times, fraught with exceptional conditions. SMI-S provides
the means by which storage related computing resources can be controlled, configured, and, to some
extent, monitored.  This clause defines standard messages used in reporting the nature of these
exceptional condition. Standard Messages are the expression of exceptional conditions in a managed
device or application in a standard form.  In other words, the indication of this condition as a standard
message enables a client application that relies solely on SMI-S for instrumentation to take meaningful
action in response.  

There are two types of SMI-S enabled client applications supported by standard messages. The first
type actively configures and controls. It requires the details why these types of operations failed to
complete successfully. The second type of client application is a passive observer of state changes
from the SMI-S Agent. It is solely an observer.

Failures in active management may arise for three reasons. The first type of failure is caused by invalid
parameters or an invalid combination of parameters to an extrinsic or intrinsic CIM Operation. The
second type of failure may also be caused by reasons other than the way in which the operation was
requested of the SMI-S agent. The third type of failure may be result from an exception condition in the
WBEM Infrastructure itself. 

The monitoring client waits for indications of exception condition on the device or application it is
monitoring.  

A CIM Operations may be successful and return a response or they may be unnecessarily and return
an error. The error is the combination of a standard CIM status code, like CIM_ERR_FAILED, a
description, and Error instance. This clause uses the term Error for the Error instance returned. 

A particular combination of state changes within the computer resource may arise from a single
condition. The profile, subprofile, or package designers may choose to indicate the condition directly.
This indication can be sent to the client, asynchronously, as a AlertIndication instance. This clause uses
the term Alert for the AlertIndication instance. The combination of the standard message and the
enclosing vehicle is called a standard event.

See 8.2.1.6, "Health Package" for further details on this mechanism.

The Errors and Alerts produced need to be interoperability interpreted by the client application that
receives them. Without such interoperability, the client developer would behavior details of the
computer resource in question from other sources than SMI-S. This situation is undesirable for
functionality specified in SMI-S because it means that the functionality specification is incomplete.

Some types of exceptional conditions may be both the Error resulting from some CIM Operation and an
Alert, like ‘system is shutting down’. The same standard message should be conveyed either an Error
or an Alert such that both types of clients can interpret the indication in the same manner. Additionally,
these types of exceptional conditions may be indicated from a read or write CIM Operation.

6.5.2 Required Characteristics of Standard Messages
Declaring and Producing Standard Messages
Standard Messages are defined in registries.  Each registry is the collection of standard messages
defined by a particular working group.  In the case of SNIA, the registry is defined by particular working
groups.  Each working group works on a part or domain of the storage management problem.  Each
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 75



 

message as a unique id within the content of an owning organization, SNIA in this case, and working
group. 

Each message in the registry shall define values for the five message properties, OwningEntity,
MessageID, Message, MessageArguments, and MessageFormatString.  Since registries are a
collection of messages and each registry is defined within the context of a owning entity, the owning
entity is implied.  

The message, as conveyed in an Error or Alert, and received by a client, shall contain the
OwningEntity, MessageID, Message, and MessageArguments. See “Standard Events” in the 8.2.1.6,
"Health Package".

When the Message is produced, the variables defined in the MessageFormatString are replaced with
the values from the MessageArguments array in the order in which the variables are defined.  The
MessageArguments array is an array of strings.  So the implementation shall coerce the value in its
native CIM data type to a string before adding that value to the MessageArguments.  A client may
coerce that value back to its native data type using the string coercion rules for each CIM data type.  

An argument present in the MessageArguments array may itself be an array.  The coercion of this array
argument to a string element in the MessageArgument shall result in each value of the array argument
to be delimited in the resulting string by a comma.  If a value within the array argument contains a
whitespace, then the value of that element shall appear in the MessageArgument element contained
within matching double quotes in the resulting common delimited list of array argument elements.  The
resulting comma delimited list of array arguments elements shall contain no whitespace characters
other that those that are part of a element value.

Neither the Message nor the MessageArguments shall contain non-printable characters other than the
whitespace. 

The Message shall be localized in the language requested by the client. See the CIM Operations over
HTTP specification, version 1.2, for details on internationalization with WBEM. 

A Standard Message may be conveyed with an Error or an Alert. The omission of specific values for the
other properties in the Error or Alert instance does not imply that this message may not be conveyed in
the omitted form.

Table 11: Example Standard Message Declaration

Message Property Value
OwningEntity SNIA
MessageID MP5
MessageFormatString” Parameter <Position> of the <Method Type> method, <Method 

Name> , is invalid producing <Status Code> . <Additional Sta-
tus>

MessageArguments Position: The position the errant argument appears in the decla-
ration of the method, from left to right.
Method Type: intrinsic or extrinsic
Method Name
Status Code: CIM Status Code <status code>
Additional Status: Additional circumstances describing the error 
(ex. Parameter out of range).
76



 Object Model General Information
Given the following method declaration:

uint32 RequestStateChange( 

         [IN, Description (“…”), 

          ValueMap { "2", "3", "4", "5", "6", "7..32767",

             "32768..65535" }, 

          Values { "Start", "Suspend", "Terminate", "Kill", "Service",

             "DMTF Reserved", "Vendor Reserved" }]

      uint16 RequestedState, 

         [IN, Description ("…")]

      datetime TimeoutPeriod); 

A client makes the following call

RequestStateChange(“1”, null);

“1” is an invalid RequestedState. Therefore, the target of the CIM Operations will produce a Error.

6.5.2.1 Common Messages

6.5.2.1.1 Message: Authorization Failure
Owning Entity: SNIA
Message ID: MP1
Message Format String: <Type of Operation> Access is Denied 

Table 13 describes the message arguments.

Table 12: Example Standard Message Values

Message Property Value
OwningEntity SNIA
MessageID MP5
Message Parameter 0 of the extrinsic method, RequestStateChange, is 

invalid producing CIM_ERR_INVALID_PARAMETER CIM Error. 
Parameter out of range.

MessageArguments “0” 
"extrinsic"
RequestedStateChange 
“CIM_ERR_INVALID_PARAMETER”
“Parameter out of range”

Table 13: Authorization Failure Message Arguments

Message Argument Data Type Description Possible Values
Type of Operation string Type of operation attempted. Creation

Modification
Deletion
Execution
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 77



 

Table 14 describes the error properties.

6.5.2.1.2 Message: Operation Not Supported
Owning Entity: SNIA
Message ID: MP2
Message Format String: <CIM Operation> is not supported. 

Table 15 describes the message arguments.

6.5.2.1.3 Message: Property Not Found
Owning Entity: SNIA

Table 14: Authorization Failure Error Properties

Property Value Description
CIMSTATUSCODE  2 (CIM_ERR_ACCESS_DENIED) Existence is required
ERROR_TYPE  4 (Software Error) Existence is required
ERROR_SOURCE  ( A reference to the object to whom 

access is requested. )
Existence is required

PERCEIVED_SEVERI
TY

2 (Low) Existence is required

Table 15: Operation Not Supported Message Arguments

Message Argument Data Type Description Possible Values
CIM Operation string GetClass

GetInstance
DeleteClass
DeleteInstance
CreateClass
CreateInstance
ModifyClass
ModifyInstance
EnumerateClasses
EnumerateInstances
EnumerateInstanceNames
ExecQuery
Associators
AssociatorNames
References
ReferenceNames
GetProperty
SetProperty
GetQualifier
SetQualifier
DeleteQualifier
EnumerateQualifier
78



 Object Model General Information
Message ID: MP3
Message Format String: <Property Name> property was not found in the <Class name> class. 

Table 16 describes the message arguments.

6.5.2.1.4 Message: Invalid Query
Owning Entity: SNIA
Message ID: MP4
Message Format String: Query language is not supported. The query language supported are <Supported Query 

Languages>

Table 17 describes the message arguments.

6.5.2.1.5 Message: Parameter Error
Owning Entity: SNIA
Message ID: MP5
Message Format String: Parameter <Position> of the <Method Type> method, <Method Name> , is invalid produc-

ing <Status Code> . <Additional Status>

Table 18 describes the message arguments.

Table 16: Property Not Found Message Arguments

Message Argument Data Type Description Possible Values
Property Name string The property name is specified as 

it was passed by the client. 
Class name string The property name is specified as 

it was passed by the client. 

Table 17: Invalid Query Message Arguments

Message Argument Data Type Description Possible Values
Supported Query Lan-
guages

string

Table 18: Parameter Error Message Arguments

Message Argument Data Type Description Possible Values
Position uint16 The position the errant argument 

appears in the declaration of the 
method, from left to right.

Method Type string extrinsic
intrinsic

Method Name string
Status Code string no

 CIM Status Code: Add status code 
number after the above

Additional Status string parameter value out of range
invalid combination
null parameter is not permitted
non-null value is not permitted
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 79



 

Table 19 describes the error properties.

6.5.2.1.6 Message: Query Syntax Error
Owning Entity: SNIA
Message ID: MP6
Message Format String: Syntactical error on query: <Errant Query Components> <Syntax Errors>

Table 20 describes the message arguments.

Table 21 describes the error properties.

6.5.2.1.7 Message: Query Too Expensive
Owning Entity: SNIA
Message ID: MP7
Message Format String: Query is too expensive because the <Rejection Reason>

empty string is not permitted
empty array is not permitted

Table 19: Parameter Error Properties

Property Value Description
CIMSTATUSCODE  4 (CIM_ERR_INVALID_PARAMETER) Existence is required
ERROR_TYPE  4 (Software Error) Existence is required
ERROR_SOURCE  ( It is discouraged from specifying any 

reference here. )
Existence is discouraged

PERCEIVED_SEVERI
TY

 2 (Low) Existence is required

Table 20: Query Syntax Error Message Arguments

Message Argument Data Type Description Possible Values
Errant Query Compo-
nents

string The parts of the query that are in 
error with a carrot '^' in front of text 
that is in error 

Syntax Errors string The syntax errors for each of the 
query components in the previous 
argument. The two arrays are to 
match element to element. 

Table 21: Query Syntax Error Properties

Property Value Description
CIMSTATUSCODE  4 (CIM_ERR_INVALID_QUERY) Existence is required
ERROR_TYPE  4 (Software Error) Existence is required
ERROR_SOURCE  ( It is discouraged from specifying any 

reference here. )
Existence is discouraged

PERCEIVED_SEVERI
TY

2 (Low) Existence is required

Table 18: Parameter Error Message Arguments

Message Argument Data Type Description Possible Values
80



 Object Model General Information
Table 22 describes the message arguments.

Table 23 describes the error properties.

6.5.2.1.8 Message: Class or Property Invalid in Query
Owning Entity: SNIA
Message ID: MP8
Message Format String: Invalid <Invalid Query Component>

Table 24 describes the message arguments.

Table 25 describes the error properties.

6.5.2.1.9 Message: Invalid Join in Query
Owning Entity: SNIA
Message ID: MP9
Message Format String: Invalid join clause: <Invalid Join Clause>

Table 22: Query Too Expensive Message Arguments

Message Argument Data Type Description Possible Values
Rejection Reason string result set will be too big

query will take too many computing 
resources to process

Table 23: Query Too Expensive Error Properties

Property Value Description
CIMSTATUSCODE  4 (CIM_ERR_INVALID_QUERY) Existence is required
ERROR_TYPE  4 (Software Error) Existence is required
ERROR_SOURCE  ( It is discouraged from specifying any 

reference here. )
Existence is discouraged

PERCEIVED_SEVERI
TY

2 (Low) Existence is required

Table 24: Class or Property Invalid in Query Message Arguments

Message Argument Data Type Description Possible Values
Invalid Query Component string This argument shall contain the 

'class name' or 'class name'.'prop-
erty name' 

Table 25: Class or Property Invalid in Query Error Properties

Property Value Description
CIMSTATUSCODE  4 (CIM_ERR_INVALID_QUERY) Existence is required
ERROR_TYPE  4 (Software Error) Existence is required
ERROR_SOURCE  (It is discouraged from specifying any 

reference here.)
Existence is discouraged

PERCEIVED_SEVERI
TY

2 (Low) Existence is required
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 81



 

Table 26 describes the message arguments.

Table 27 describes the error properties.

6.5.2.1.10 Message: Unexpected Hardware Fault
Owning Entity: SNIA
Message ID: MP10
Message Format String: Call technical support and report the following error number has occurred, <Hardware 

Error>

Table 28 describes the message arguments.

Table 29 describes the error properties.

6.5.2.1.11 Message: Too busy to respond
Owning Entity: SNIA
Message ID: MP11

Table 26: Invalid Join in Query Message Arguments

Message Argument Data Type Description Possible Values
Invalid Join Clause string This argument shall contain the 

entire join clause that is in error. 

Table 27: Invalid Join in Query Error Properties

Property Value Description
CIMSTATUSCODE  4 (CIM_ERR_INVALID_QUERY) Existence is required
ERROR_TYPE  4 (Software Error) Existence is required
ERROR_SOURCE  (It is discouraged from specifying any 

reference here.)
Existence is discouraged

PERCEIVED_SEVERI
TY

2 (Low) Existence is required

Table 28: Unexpected Hardware Fault Message Arguments

Message Argument Data Type Description Possible Values
Hardware Error sint32 Vendor specific hardware error. 

Use this error, only when all other 
standard messages can not cover 
this condition. 

Table 29: Unexpected Hardware Fault Error Properties

Property Value Description
CIMSTATUSCODE  1 (CIM_ERR_FAILED) Existence is required
ERROR_TYPE  5 (Hardware Error) Existence is required
ERROR_SOURCE  (It is discouraged from specifying any 

reference here.)
Existence is discouraged

PERCEIVED_SEVERI
TY

2 (Low) Existence is required
82



 Object Model General Information
Message Format String: WBEM Server is <Adverse Condition> to respond.

Table 30 describes the message arguments.

6.5.2.1.12 Message: Shutdown Started
Owning Entity: SNIA
Message ID: MP12
Message Format String: The computer system is shutting down in <seconds to shutdown> seconds. 

Table 31 describes the message arguments.

Table 32 describes the alerts that are associated with this message.

6.5.2.1.13 Message: Component overheat
Owning Entity: SNIA
Message ID: MP13
Message Format String: A component has overheated. <Component Type>

Table 33 describes the message arguments.

Table 30: Too busy to respond Message Arguments

Message Argument Data Type Description Possible Values
Adverse Condition string too busy

initializing

Table 31: Shutdown Started Message Arguments

Message Argument Data Type Description Possible Values
seconds to shutdown uint32 The number of seconds before the 

system is shutdown.

Table 32: Shutdown Started Alert Information

Name Req Value Description
ALERTING_MANAGED_ELE
MENT

Y   The object name must reference the top-most com-
puter system that is shutting down. If the computer sys-
tem is cluster, then the cluster computer system must 
be referenced. 

ALERT_TYPE Y  5 Device Alert
PERCEIVED_SEVERITY Y  4 High

Table 33: Component Overheat Message Arguments

Message Argument Data Type Description Possible Values
Component Type string The entire device is affected. Device 

wide failure has already or can be 
expected shortly. 
Only a single component is affected. 
Corrective action may be taken. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 83



 

Table 34 describes the error properties.

Table 35 describes the alerts that are associated with this message.

6.5.2.1.14 Message: WBEM Management Interface is not available
Owning Entity: SNIA
Message ID: MP14
Message Format String: The management interface for the device is not available.

6.5.2.1.15 Message: Device Failover
Owning Entity: SNIA
Message ID: MP15
Message Format String: Management interface is active on different device at the following URI, <URI>

Table 36 describes the message arguments.

6.5.2.1.16 Message: Functionality is not licensed
Owning Entity: SNIA
Message ID: MP16
Message Format String: Functionality requested is not licensed. The following license is required, <Required 

License Name>

Table 34: Component Overheat Error Properties

Property Value Description
CIMSTATUSCODE  1 (CIM_ERR_FAILED) Existence is required
ERROR_TYPE  6 (Environment Error) Existence is required
ERROR_SOURCE  ( The object name must reference the 

physical element most affected by the 
over temperature message. )

Existence is required

PERCEIVED_SEVERI
TY

 4 (High) Existence is required

Table 35: Component overheat Alert Information

Name Req Value Description
ALERTING_MANAGED_ELE
MENT

Y   The object name must reference the physical element 
most affected by the over temperature message. 

ALERT_TYPE Y  6 Environmental Alert
PERCEIVED_SEVERITY Y  4 High

Table 36: Device Failover Message Arguments

Message Argument Data Type Description Possible Values
URI string
84



 Object Model General Information
Table 37 describes the message arguments.

Table 38 describes the error properties.

6.5.2.1.17 Message: Invalid Property Combination during instance creation or modification
Owning Entity: SNIA
Message ID: MP17
Message Format String: The instance contains an invalid combination of properties. The <Errant Property Name> 

property may not have the value, <Errant Property Value> , when the <Existing Property Name> property 
has value, <Existing Property Value>

Table 39 describes the message arguments.

Table 37: Functionality is Not Licensed Message Arguments

Message Argument Data Type Description Possible Values
Required License 
Name

string

Table 38: Functionality is not licensed Error Properties

Property Value Description
CIMSTATUSCODE  1 (CIM_ERR_FAILED) Existence is required
ERROR_TYPE  4 (Software Error) Existence is required
ERROR_SOURCE  ( Reference to top most Computer 

System.)
Existence is required

PERCEIVED_SEVERI
TY

 3 (Medium) Existence is required

Table 39: Invalid Property Combination During Instance Creation or Modification Message Argu-
ments

Message Argument Data Type Description Possible Values
Errant Property Name string The name of the property is pri-

mary reason for the rejection of this 
instance.

Errant Property Value string The invalid property value, coerced 
as a string.

Existing Property 
Name

string The property whose value has to 
be set in some way before or 
regardless of the "Errant Property 
Name" property. For example, 
property A of value X may be com-
patible with property B with value Y. 
But, property B may have had 
value Y prior to property A having a 
value or value X. Or, property B 
may be a key and must logically 
have a value before any other 
property set operation is consid-
ered. 

Existing Property 
Value

string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 85



 

Table 40 describes the error properties.

6.5.2.1.18 Message: Property Not Found
Owning Entity: SNIA
Message ID: MP18
Message Format String: <Errant Property Name> property was not found in class <Class Name used in Opera-

tion>

Table 41describes the message arguments.

Table 42 describes the error properties.

6.5.2.1.19 Message: Proxy Can Not Connect
Owning Entity: SNIA
Message ID: MP19
Message Format String: Proxy CIM provider can not connect. <Reason for Connection Failure>

Table 43 describes the message arguments.

Table 40: Invalid Property Combination during instance creation or modification Error Properties

Property Value Description
CIMSTATUSCODE  1 (CIM_ERR_FAILED) Existence is required
ERROR_TYPE  4 (Software Error) Existence is required
ERROR_SOURCE  ( Nothing to reference.) Existence is discouraged
PERCEIVED_SEVERITY  3 (Medium) Existence is required

Table 41: Property Not Found Message Arguments

Message Argument Data Type Description
Errant Property Name string The name of the property provided in a instance related CIM Operation 

that simply does not exist in the class as indicated by the class name.
Class Name used in 
Operation

string The class name used in the CIM Operation as stated directly as a 
method parameters or as part of a CIM Object Name (CIM Object Path).

Table 42: Property Not Found Error Properties

Property Value Description
CIMSTATUSCODE  1 (CIM_ERR_FAILED) Existence is required
ERROR_TYPE  4 (Software Error) Existence is required
ERROR_SOURCE  ( Reference the class in question.) Existence is required
PERCEIVED_SEVERITY  3 (Medium) Existence is required

Table 43: Proxy Can Not Connect Message Arguments

Message Argument Data Type Description Possible Values
Reason for Connection 
Failure

string The reason for the connection
failure.

Authentication Failure

Authorization Failure
Communications Failure
86



 Object Model General Information
Table 44 describes the error properties.

6.5.2.1.20 Message: Not Enough Memory
Owning Entity: SNIA
Message ID: MP20
Message Format String: <Method Type> method <Method Name> can not be completed because of lack of mem-

ory.

Table 45 describes the message arguments.

Table 46 describes the error properties.

6.5.2.1.21 Message: Object Already Exists
Owning Entity: SNIA
Message ID: MP21
Message Format String: Object already exists.

Table 44: Proxy Can Not Connect Error Properties

Property Value Description
CIMSTATUSCODE  1 (CIM_ERR_FAILED) Existence is required
ERROR_TYPE  4 (Software Error) Existence is required
ERROR_SOURCE  ( Nothing to reference.) Existence is discouraged
PERCEIVED_SEVERI
TY

 3 (Medium) Existence is required

Table 45: Not Enough Memory Message Arguments

Message Argument Data Type Description Possible Values
Method Type string intrinsic

extrinsic
Method Name string The method name. If the method is 

an intrinsic method, provide the 
CIM Operation Name, e.g., Enu-
merateInstances. If the method is 
an extrinsic method, i.e., 
InvokeMethod, then provide the 
method name in the class that was 
invoked.

Table 46: Not Enough Memory Error Properties

Property Value Description
CIMSTATUSCODE  1 (CIM_ERR_FAILED) Existence is required
ERROR_TYPE  4 (Software Error) Existence is required
ERROR_SOURCE  ( Nothing to reference.) Existence is discouraged
PERCEIVED_SEVERITY  3 (Medium) Existence is required
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 87



 

Table 47 describes the error properties.

6.5.2.2 Storage Messages

6.5.2.2.1 Message: Device Not ready
Owning Entity: SNIA
Message ID: DRM1
Message Format String: Device <Device ID> not ready because of <StateOrStatus> state or status.

Table 48 describes the message arguments.

Table 49 describes the error properties.

6.5.2.2.2 Message: Internal Bus Error
Owning Entity: SNIA
Message ID: DRM2
Message Format String: Internal Bus Error 

Table 47: Object Already Exists Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  Reference to the already existing zone 

element. ()
Existence is required

PERCEIVED_SEVERITY  2 ( Low ) Existence is required

Table 48: Device Not ready Message Arguments

Message Argument Data Type Description Possible Values
Device ID string LogicalDevice.DeviceID, Physi-

calElement.Tag, or ComputerSys-
tem.Name

StateOrStatus string Relevant State or Status that 
explains the reason for the produc-
tion of this message.

Table 49: Device Not ready Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  5 ( Hardware Error ) Existence is required
ERROR_SOURCE  (Object Name for the top-level object 

for the device, which is typically the 
computer system instance )

Existence is required

PERCEIVED_SEVERITY  4 ( High ) Existence is required
88



 Object Model General Information
Table 50 describes the error properties.

6.5.2.2.3 Message: DMA Overflow
Owning Entity: SNIA
Message ID: DRM3
Message Format String: DMA Overflow

Table 51 describes the error properties.

6.5.2.2.4 Message: Firmware Logic Error
Owning Entity: SNIA
Message ID: DRM4
Message Format String: Firmware Logic Error

Table 52 describes the error properties.

6.5.2.2.5 Message: Front End Port Error
Owning Entity: SNIA
Message ID: DRM5
Message Format String: Front End Port Error on Device identified by <Device ID>

Table 50: Internal Bus Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  5 ( Hardware Error ) Existence is required
ERROR_SOURCE  (Object Name for the top-level object 

for the device, which is typically the 
computer system instance )

Existence is required

PERCEIVED_SEVERITY  4 ( High ) Existence is required

Table 51: DMA Overflow Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE Object Name for the top-level object for 

the device, which is typically the com-
puter system instance ()

Existence is required

PERCEIVED_SEVERITY  4 ( High ) Existence is required

Table 52: Firmware Logic Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE Object Name for the top-level object for 

the device, which is typically the com-
puter system instance ()

Existence is required

PERCEIVED_SEVERITY  4 ( High ) Existence is required
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 89



 

Table 53 describes the message arguments.

Table 54describes the alerts that are associated with this message.

6.5.2.2.6 Message: Back End Port Error
Owning Entity: SNIA
Message ID: DRM6
Message Format String: Back End Port Error on Device identified by <Device ID>

Table 55 describes the message arguments.

Table 56 describes the alerts that are associated with this message.

6.5.2.2.7 Message: Remote Mirror Error
Owning Entity: SNIA
Message ID: DRM7
Message Format String: Error detected associated with remote volume, <Remote Volume Name>

Table 57 describes the message arguments.

Table 53: Front End Port Error Message Arguments

Message Argument Data Type Description Possible Values
Device ID string LogicalDevice.DeviceID

Table 54: Front End Port Error Alert Information

Name Req Value Description
ALERTING_MANAGED_ELE
MENT

Y  Object Name for the top-level object for the device, 
which is typically the computer system instance 

ALERT_TYPE Y  2  Communications Alert 
PERCEIVED_SEVERITY Y  4  High 

Table 55: Back End Port Error Message Arguments

Message Argument Data Type Description Possible Values
Device ID string LogicalDevice.DeviceID

Table 56: Back End Port Error Alert Information

Name Req Value Description
ALERTING_MANAGED_ELE
MENT

Y  Object Name for the top-level object for the device, 
which is typically the computer system instance 

ALERT_TYPE Y  2  Communications Alert 
PERCEIVED_SEVERITY Y  4  High 

Table 57: Remote Mirror Error Message Arguments

Message Argument Data Type Description Possible Values
Remote Volume Name string StorageVolume.Name
90



 Object Model General Information
Table 58 describes the error properties.

Table 59 describes the alerts that are associated with this message.

6.5.2.2.8 Message: Cache Memory Error
Owning Entity: SNIA
Message ID: DRM8
Message Format String: Cache Memory Error 

Table 60 describes the error properties.

6.5.2.2.9 Message: Unable to Access Remote Device
Owning Entity: SNIA
Message ID: DRM9
Message Format String: Unable to Access Remote Device

Table 58: Remote Mirror Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  5 ( Hardware Error ) Existence is required
ERROR_SOURCE  (Object Name for the top-level object 

for the remote block server, which is 
typically the computer system instance. 
The implementation will have to imple-
ment the Cascading Subprofile. )

Existence is optional

PERCEIVED_SEVERITY  3 ( Medium ) Existence is required

Table 59: Remote Mirror Error Alert Information

Name Req Value Description
ALERTING_MANAGED_ELE
MENT

N  Object Name for the top-level object for the remote 
block server, which is typically the computer system 
instance. The implementation will have to implement 
the Cascading Subprofile. 

ALERT_TYPE Y  
PERCEIVED_SEVERITY Y  3  Medium 

Table 60: Cache Memory Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  5 ( Hardware Error ) Existence is required
ERROR_SOURCE  (Object Name for the top-level object 

for the device, which is typically the 
computer system instance )

Existence is required

PERCEIVED_SEVERITY  3 ( Medium ) Existence is required
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 91



 

Table 61 describes the error properties.

6.5.2.2.10 Message: Error Reading Data
Owning Entity: SNIA
Message ID: DRM10
Message Format String: Error Reading Data

Table 62 describes the alerts that are associated with this message.

6.5.2.2.11 Message: Error Writing Data
Owning Entity: SNIA
Message ID: DRM11
Message Format String: Error Writing Data

Table 63 describes the alerts that are associated with this message.

6.5.2.2.12 Message: Error Validating Write (CRC)
Owning Entity: SNIA
Message ID: DRM12
Message Format String: Error Validating Write

Table 61: Unable to Access Remote Device Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  5 ( Hardware Error ) Existence is required
ERROR_SOURCE  (Object Name for the top-level object 

for the remote block server, which is 
typically the computer system instance. 
The implementation will have to imple-
ment the Cascading Subprofile.)

Existence is optional

PERCEIVED_SEVERI
TY

 3 ( Medium ) Existence is required

Table 62: Error Reading Data Alert Information

Name Req Value Description
ALERTING_MANAGED_ELE
MENT

Y  Object Name for the top-level object for the device, 
which is typically the computer system instance 

ALERT_TYPE Y  2  Communications Alert 
PERCEIVED_SEVERITY Y  3  Medium 

Table 63: Error Writing Data Alert Information

Name Req Value Description
ALERTING_MANAGED_ELE
MENT

Y  Object Name for the top-level object for the device, 
which is typically the computer system instance 

ALERT_TYPE Y  2  Communications Alert 
PERCEIVED_SEVERITY Y  3  Medium 
92



 Object Model General Information
Table 64 describes the alerts that are associated with this message.

6.5.2.2.13 Message: Copy Operation Failed
Owning Entity: SNIA
Message ID: DRM13
Message Format String: Copy Operation Failed

Table 65 describes the error properties.

6.5.2.2.14 Message: RAID Operation Failed
Owning Entity: SNIA
Message ID: DRM14
Message Format String: RAID Operation Failed

Table 66 describes the error properties.

6.5.2.2.15 Message: Invalid RAID Type
Owning Entity: SNIA
Message ID: DRM15
Message Format String: Invalid RAID Type

Table 64: Error Validating Write (CRC) Alert Information

Name Req Value Description
ALERTING_MANAGED_ELE
MENT

Y  Object Name for the top-level object for the device, 
which is typically the computer system instance 

ALERT_TYPE Y  2  Communications Alert 
PERCEIVED_SEVERITY Y  3  Medium 

Table 65: Copy Operation Failed Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  5 ( Hardware Error ) Existence is required
ERROR_SOURCE  () Existence is discouraged
PERCEIVED_SEVERITY  3 ( Medium ) Existence is required

Table 66: RAID Operation Failed Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  5 ( Hardware Error ) Existence is required
ERROR_SOURCE  () Existence is discouraged
PERCEIVED_SEVERITY  3 ( Medium ) Existence is required
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 93



 

Table 67 describes the error properties.

6.5.2.2.16 Message: Invalid Storage Element Type
Owning Entity: SNIA
Message ID: DRM16
Message Format String: Invalid Device Type

Table 68 describes the error properties.

6.5.2.2.17 Message: Configuration Change Failed
Owning Entity: SNIA
Message ID: DRM17
Message Format String: Configuration Change Failed

Table 69 describes the error properties.

6.5.2.2.18 Message: Buffer Overrun
Owning Entity: SNIA
Message ID: DRM18
Message Format String: Buffer Overrun

Table 67: Invalid RAID Type Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  10 ( Unsupported Operation Error ) Existence is required
ERROR_SOURCE  () Existence is discouraged
PERCEIVED_SEVERITY  2 ( Low ) Existence is required

Table 68: Invalid Storage Element Type Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  10 ( Unsupported Operation Error ) Existence is required
ERROR_SOURCE  () Existence is discouraged
PERCEIVED_SEVERITY  2 ( Low ) Existence is required

Table 69: Configuration Change Failed Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  Object Name for the top-level 

object for the device, which is typi-
cally the computer system 
instance ()

Existence is required

PERCEIVED_SEVERITY  2 ( Low ) Existence is required
94



 Object Model General Information
Table 70 describes the error properties.

6.5.2.2.19 Message: Stolen Capacity
Owning Entity: SNIA
Message ID: DRM19
Message Format String: The capacity requested, <Requested Capacity> , that was requested is no longer avail-

able. 

Table 71 describes the message arguments.

Table 72 describes the error properties.

6.5.2.2.20 Message: Invalid Extent passed
Owning Entity: SNIA
Message ID: DRM20
Message Format String: One or more of the extents passed can not be used to create or modify storage elements. 

<Invalid Extents Array>

Table 70: Buffer Overrun Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  Object Name for the top-level 

object for the device, which is typi-
cally the computer system 
instance ()

Existence is required

PERCEIVED_SEVERITY  2 ( Low ) Existence is required

Table 71: Stolen Capacity Message Arguments

Message Argument Data Type Description
Requested Capacity sint64 Capacity requested in bytes 

expressed in powers of 10.

Table 72: Stolen Capacity Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  (The pool, volume, or logical disk 

being modified, or, in the case of 
element creation the parent pool 
from which capacity is being 
drawn.)

Existence is required

PERCEIVED_SEVERITY  2 ( Low ) Existence is required
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 95



 

Table 73 describes the message arguments.

Table 74 describes the error properties.

6.5.2.2.21 Message: Invalid Deletion Attempted
Owning Entity: SNIA
Message ID: DRM21
Message Format String: Existing pool or storage element (StorageVolume or LogicalDisk) may not be deleted 

because there are existing Storage Extents which relay on it. 

Table 75 describes the error properties.

6.5.2.2.22 Message: Job Failed to Start
Owning Entity: SNIA
Message ID: DRM22
Message Format String: Job failed to start because resources required for method execution are no longer avail-

able.

Table 73: Invalid Extent passed Message Arguments

Message Argument Data Type Description Possible Values
Invalid Extents Array reference Array of references to the all 

Extents that can not be used in the 
specified manner (ex. CreateOr-
ModifyStroragePool or CreateOr-
ModifyElementFromElements).

Table 74: Invalid Extent passed Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  (A reference to the storage con-

figuration service instance on 
which the method was called that 
caused this error. )

Existence is required

PERCEIVED_SEVERITY  2 ( Low ) Existence is required

Table 75: Invalid Deletion Attempted Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  (A reference to one of the depen-

dent StorageExtents.)
Existence is required

PERCEIVED_SEVERITY  2 ( Low ) Existence is required
96



 Object Model General Information
Table 76 describes the error properties.

6.5.2.2.23 Message: Job was Halted
Owning Entity: SNIA
Message ID: DRM23
Message Format String: Job was <Reason for Job halt>

Table 77 describes the message arguments.

6.5.2.2.24 Message: Invalid State Transition
Owning Entity: SNIA
Message ID: DRM24
Message Format String: An invalid state transition, <Invalid Sync State> , was requested given current state, <Cur-

rent Sync State>

Table 78 describes the message arguments.

Table 76: Job Failed to Start Error Properties

Property Value Description
CIMSTATUSCODE  1 (CIM_ERR_FAILED) Existence is required
ERROR_TYPE  8 (Oversubscription Error) Existence is required
ERROR_SOURCE  (Reference to Job instance which 

failed to start for this reason if a 
Job instance was created because 
of the time required to make this 
resource assessment. If a Job 
instance was not created, 
because the assessment was fast 
enough, then this property must 
be NULL.)

Existence is required

PERCEIVED_SEVERITY  2 ( Low ) Existence is required

Table 77: Job was Halted Message Arguments

Message Argument Data Type Description Possible Values
Reason for Job halt string A Job may be stopped by a client 

using the RequestedStateChange 
method. If the job stopped execut-
ing for other reasons, then use a 
different message.

killed

terminated

Table 78: Invalid State Transition Message Arguments

Message Argument Data Type Description
Invalid Sync State string The textual equivalent (Value) for 

StorageSynchronized.SyncState 
value requested.

Current Sync State string The textual equivalent (Value) for 
the current StorageSynchro-
nized.SyncState value
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 97



 

Table 79 describes the error properties.

6.5.2.2.25 Message: Invalid SAP for Method
Owning Entity: SNIA
Message ID: DRM25
Message Format String: Invalid type of copy services host. The host must be a <Host Type>

Table 80 describes the message arguments.

Table 81 describes the error properties.

6.5.2.2.26 Message: Resource Not Available
Owning Entity: SNIA
Message ID: DRM26
Message Format String: <Resource Needed>

Table 82 describes the message arguments.

Table 79: Invalid State Transition Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  (Reference to the StorageSyn-

chronized instance in question.)
Existence is required

PERCEIVED_SEVERITY  2 ( Low ) Existence is required

Table 80: Invalid SAP for Method Message Arguments

Message Argument Data Type Description Possible Values
Host Type string The type of copy services on which 

the method was invoked.
source

target

Table 81: Invalid SAP for Method Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  (Reference to the Computer Sys-

tem host which is of the wrong 
type.)

Existence is required

PERCEIVED_SEVERITY  2 ( Low ) Existence is required

Table 82: Resource Not Available Message Arguments

Message Argument Data Type Description Possible Values
Resource Needed string No replication log available.

Special replica pool required.
98



 Object Model General Information
Table 83 describes the error properties.

6.5.2.2.27 Message: Resource Limit Exceeded
Owning Entity: SNIA
Message ID: DRM27
Message Format String: <Reason>

Table 84 describes the message arguments.

Table 85 describes the error properties.

6.5.2.2.28

6.5.2.3 Fabric Messages

6.5.2.3.1 Message: Zone Database Changed
Owning Entity: SNIA
Message ID: FC1
Message Format String: Zone database changed for <Fabric Identity Type> named <WWN>

Table 83: Resource Not Available Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  (Nothing to reference.) Existence is discouraged
PERCEIVED_SEVERITY  2 ( Low ) Existence is required

Table 84: Resource Limit Exceeded Message Arguments

Message Argument Data Type Description Possible Values
Reason string The reasons for the lack of 

resources for copy services opera-
tion.

Insufficient pool space.

Maximum replication depth exceeded.
Maximum replicas exceeded for source 
element.

Table 85: Resource Limit Exceeded Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  (Nothing to reference.) Existence is discouraged
PERCEIVED_SEVERITY  2 ( Low ) Existence is required
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 99



 

Table 86 describes the message arguments.

Table 87 describes the alerts that are associated with this message.

6.5.2.3.2 Message: ZoneSet Activated
Owning Entity: SNIA
Message ID: FC2
Message Format String: ZoneSet <ZoneSet Name> was activated for fabric <WWN>

Table 88 describes the message arguments.

Table 89 describes the alerts that are associated with this message.

Table 86: Zone Database Changed Message Arguments

Message Argument Data Type Description Possible Values
Fabric Identity Type string Defines the type of fabric entity 

names by the following WWN.
fabric

switch
WWN string World Wide name identifier. The 

required form of the WWN is 
defined by this regular expression, 
"^[0123456789ABCDEF]{16}$"

Table 87: Zone Database Changed Alert Information

Name Req Value Description
ALERTING_MANAGED_ELE
MENT

Y  A reference to the switch or fabric which is named by 
the WWN. 

ALERT_TYPE Y  6  Environmental Alert 
PERCEIVED_SEVERITY Y  1  Informational 

Table 88: ZoneSet Activated Message Arguments

Message Argument Data Type Description Possible Values
ZoneSet Name string CIM_ZoneSet.ElementName 

attribute
WWN string World Wide name identifier. The 

required form of the WWN is 
defined by this regular expression, 
"^[0123456789ABCDEF]{16}$"

Table 89: ZoneSet Activated Alert Information

Name Req Value Description
ALERTING_MANAGED_ELE
MENT

Y  A reference to the switch of fabric which is named by 
the WWN. 

ALERT_TYPE Y  6  Environmental Error 
PERCEIVED_SEVERITY Y  4  High 
100



 Object Model General Information
6.5.2.3.3 Message: Session Locked
Owning Entity: SNIA
Message ID: FC3
Message Format String: Operation blocked by session lock.

Table 90 describes the error properties.

6.5.2.3.4 Message: Session Aborted
Owning Entity: SNIA
Message ID: FC4
Message Format String: Operation by another client failed causing the session to be aborted. This error may be 

caused by client aborting, switch aborting the client, or timeout of session lock.

Table 91 describes the error properties.

EXPERIMENTAL

Table 90: Session Locked Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  Object Name for the top-level 

object for the device, which is typi-
cally the computer system 
instance ()

Existence is required

PERCEIVED_SEVERITY  2 ( Low ) Existence is required

Table 91: Session Aborted Error Properties

Property Value Description
CIMSTATUSCODE  1 ( CIM_ERR_FAILED ) Existence is required
ERROR_TYPE  4 ( Software Error ) Existence is required
ERROR_SOURCE  Object Name for the top-level 

object for the device, which is typi-
cally the computer system 
instance ()

Existence is required

PERCEIVED_SEVERITY  2 ( Low ) Existence is required
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 101



 

102



 Object Model General Information
6.6 Recipe Overview

6.6.1 Recipe Definition
Recipe: A set of instructions for making something from mixing various ingredients in a particular
sequence. The set of ingredients used by a particular recipe is scoped by the particular profile,
subprofile or some other well-defined context in which that recipe is defined.

A recipe shall specify an interoperable means for accomplishing a particular task across all conformant
implementations. However, a recipe does not necessarily specify the only set of instructions for
accomplishing that task. Nor are all tasks that may be accomplished necessarily specified by the set of
recipes defined for a particular profile or subprofile.

In order to compress the document, some recipes are implied or assumed. This would include, for
instance, that the set of available, interoperable properties are those explicitly defined by a particular
profile or subprofile. In general, any CIM intrinsic read methods on profile or subprofile models are
implied. However, CIM intrinsic write methods (Create/Delete/Modify) should not be assumed unless
explicitly listed in the profile or subprofile definition with a well defined semantic.

For a profile or subprofile, the set of all defined and implied recipes defines the range of behavior
across for which interoperability is mandatory for all conformant implementations. Unless specifically
defined in a recipe, other sequences of actions (even simple Create/Delete instance requests) are not
guaranteed to have the same results across multiple implementations.

Each recipe defines an interoperable series of interactions (between a SMI-S Client and a SMI-S
Server) required to manage storage devices or applications. Another goal is to list the operations
required for the CIM Client realize functionality. It is not a goal to comprehensively express the
programming logic required to implement the recipe in any particular language. In fact, recipes are
limited to the expression of CIM or SLP operations, and may simply reference or describe any of the
implementation that may be required beyond that. 

6.6.2 Recipe Pseudo Code Conventions

6.6.2.1 Overview
A recipe's instructions are written using the pseudo code language defined in this section.

All recipes are prefixed with a summary narrative of the functionality being implemented. This summary
may be included explicitly as part of the recipe or reference to the appropriate narrative that can be
found elsewhere in the specification. 

Note:  The use of optional features (profiles or subprofiles) in recipes shall be clearly identified.

CIM Operations and their parameters are taken directly from the CIM Operations Over HTTP
specification. It is assumed that these methods are being called on the CIM Client API. Arrays grow in
size automatically.

6.6.2.2 General Syntax
<condition> logical statement that evaluates to true (Boolean)

!<condition> tests for false (Boolean)

<action> unspecified list of programming logic that is not important to the understanding of
the reader for a particular recipe.

<EXIT: success message>Exits the recipe with a success status code. The condition that resulted in
the call to exit the recipe was allowable. The implementation subjected to the recipe
behaves in accordance to this specification.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 103



 

<ERROR! error condition> Exits the recipe with a failure status code. The condition that resulted in
the call to the exit the recipe was not allowable. The implementation subjected to the
recipe does not behave in accordance with this specification.

@{recipe} logic flow is contained within the specification of the recipe elsewhere in the
specification

<variable> some variable

6.6.2.3 CIM related variable and methods

6.6.2.3.1  CIM Instances and Object Names
$name represents a single instance (CIMInstance) with a given variable name

$name.property represents a property in a single instance (CIMInstance)

$name.getObjectPath()
method returns a object name, REF, to the CIM Instance

$name.getNameSpace()
method returns the namespace name for the CIM Instance or Object Name

{value1, value2 ...}
an anonymous array, comprised of selected values of a given type; an anonymous
array is an array that is not referable by a variable

Example:

    {"Joe", "Fred", "Bob", "Celma"}

$name[] represents an array of instances (CIMInstances) with a given variable name; array
are initialized by constructing an anonymous array.

Example:
Names = {"Joe", "Fred", "Bob", "Celma"}

$name-> represents an object path name (CIMObjectPath)

$name->[] represents an array of object names of a given name

$name->property
represents a property of object $name

$name[].size() returns the number of CIM instances in the array 

$name->[].length returns the number of CIM object names in the array 

#name[].length returns the number of variable elements in the array 

%name[].length returns the number of method arguments elements in the array 

6.6.2.3.2 Extrinsic method arguments
%name represents a CIM Argument that can contain any CIM or other variable.

%name[] represents an array of CIM Arguments 
104



 Object Model General Information
6.6.2.3.3  Other Variables
#name neither CIM Instance nor Object Name variable. The type may be a string, number

or some other special type. Types are defined in the CIM Specification 2.2.

#name[] a non-CIM variable array

"literal” some string literal

6.6.2.4 Data Structure
Variables can be collected by an array. The array can be indexed by other variable (see 6.6.2.3.3). 

Arguments are always indexed by strings. In other words, the arguments are retrieved from the array by
name. 

6.6.2.5 Operations
= assigns right value to left value

== test for equivalency

!= test for not equivalency

< true if the left argument is numerically less than the right argument.

> true if the left argument is numerically greater than the right argument.

<= true if the left argument is numerically less than or equal to the right argument.

>= true if the left argument is numerically greater than or equal to the right argument.

&& condition A AND condition B

|| condition A OR condition B

+, -, *, / addition, subtraction, multiplication and division, respectively

++, -- increment and decrement a variable, respectively; placement of the operator
relative to the variable determines whether the operation is completed before or
after evaluation

Example:  

#i = 1

#names[] = {"A", "B, "C"}

"B" == #names[++#i] is true

2 == #i is true

Example:

#i = 2

#names[] = {"A", "B, "C"}

"B" == #names[#i++]  is true

3 == #i is true

// comments

nameof returns an Object Name given a CIM Instance. This unitary operator does nothing in
other  usages.

ISA tests for the name of the CIM Instance or object name
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 105



 

Example: if ($SomeName-> ISA CIM_StorageVolume) {
<The Object Name is a reference to a CIM_StorageVolume >
}

6.6.2.6 Control Operations
The pseudocode used in this specification relies on control operators common to most high-level
languages. For example:

•  for 

Example:
for #x in <variable array> {
<actions>
}

•  if

Example: 
if (<condition>) {
<actions>
} ;
if (<condition>) {
<actions>
} else {
<alternate actions>
}

•  do/while

Example:
do {
<actions>
} while (<condition>)

• continue
Within a for loop: initialize loop variable to next available value and restart loop body. Terminate
loop if no more loop variable values available. Within a do/while loop: transfer control immediately
to while test.

Example:

for #i in <array> {

if (<some condition>)

continue;    // process next loop variable

    <alternative>

}

• break: interrupts the sequence of statement execution within a loop block and exits the loop block
altogether. The looping condition is not re-evaluated Statement execution starts at the next
statement outside of the loop block.

• exit
Terminate recipe instantly, including termination of any callers.

Example:
if (<unexpected condition>)
    exit
106



 Object Model General Information
6.6.2.7 Functions

6.6.2.7.1 Function Declaration

A function definition is of the form sub functionName(), followed by the body of the function enclosed in
braces. If parameters are to be passed to a function, then are expressed as a comma-separated list of
arguments within the parentheses following the function name. Each argument is comprised of a data
type and an accompanying argument name.

Functions are declared at the beginning of a recipe.

 sub functionName(integer nArg1, Class &cArg2) {

 <actions>

 }

6.6.2.7.2 Function Invocation
A function invocation is of the form &functionName(). If parameters are to be passed to a function, then
are expressed as a comma-separated list within the parentheses following the function name. 

 &functionName(5, pClass)

6.6.2.8 Exception Handling
All operations may produce exceptions or errors. The following construct is used to test for particular
errors. Once a particular error is caught, then special exception handling logic is processed. Only CIM
Errors can be caught.

try {

<actions>

} 

catch (CIM Exception $Exception) {

 <recovery actions>

}

 The error received may also be thrown

 throw $Exception

The error response returned from the SMI-S implementation is treated as a exception, a "CIM
Exception". The catch condition is expressed in terms of the CIM status code returned (e.g.,
CIM_ERR_NOT_FOUND) as defined in the CIM Operations specification. 

The $Exception variable contains a Error instance. The $Exception CIM Instance may be examined like
any other CIM Instance. In this language, the $Exception is never null even if the SMI-S implementation
does provide one. In this case, the $Exception CIM Instance is empty with the exception of the
CIMStatusCode and CIMStatusCodeDescription properties. This properties are populated with the
Status and Description returned in the error response from the SMI-S implementation. 

6.6.2.9 Built-in Functions

a) boolean = compare(<variable>, <variable>)

1) Used to determine if two variables of the same type are equivalent

2) The variables shall not be CIM instances or object names nor other complex data types or 
structures

3) The variables shall be of the same type

b) $instance = newInstance("CIM Classname")
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 107



 

1) Creates a CIM instance, which does not exist in the CIMOM (yet), that can be later filled in 
with properties and passed to CreateInstance. The namespace is assumed to be the same 
that the CIM client connected to. 

c) $instance - newInstance("CIM Namespace", "CIM Classname”)

1) Variable of the above method that has the namespace name as an argument

d) boolean = contains(<test value>, <variable array>)

1) Used to test if the variable array contains a value equivalent to the test variable

2) The array shall be of variables of the same types as the test variable.

3) If the equivalency is found with at least one value then the function returns true, else false is 
returned.

4) If the array is not a simple, or non-CIM, data type, then the test value shall be a CIM property, 
$SomeInstance.SomeProperty or $SomeObjectname->SomeProperty

e) %Argument = newArgument("Argument Name", <variable>)

1) Creates a CIM Argument of a given name containing a value, CIM or non-CIM

f) $objectPath-> = newObjectPath("Class name", "NameSpace name")

1) Returns a new ObjectPath, built from the supplied arguments;

2) Required to perform the EnumerateInstances and EnumerateInstanceNames 
operations

g) #stringArray[] = #stringVariable.split(#stringParam or “string literal”)

1) Returns an array of strings, built by splitting the string variable around matches of the sup-
plied string parameter

2) Divides the string into substrings, using the string parameter as a delimiter, returning the sub-
strings in an array in the order in which they occurred in the string variable. If there are no 
occurrences of the string parameter, then the array returned contains only one string element 
equal to the original string variable.

h) #intVariable = Integer(#stringVariable)

1) Returns the integer that the supplied string represents. If the supplied string does not repre-
sent an integer, then an error is thrown.

2) The function will parse and return signed or unsigned integers up to 64-bits in size, and will 
accept the hyphen ‘-‘ character in the 8-bit ASCII-range of UTF-8 as the first character in the 
string to indicate a negative number.

i) #datetimeVariable = Datetime(#stringVariable)

1) Returns a variable of Datetime type, as defined by section 2.2.1 the CIM Infrastructure Speci-
fication v1.3, that the supplied string represents. If the supplied string does not represent a 
DateTime object, then an error is thrown.

2) This function will accept strings of the format described in the CIM Infrastructure Specifica-
tion, including both timestamps and intervals, zero-padded to 25-characters, and will recog-
nize Datetime strings containing asterisk (“*”) characters for fields that are not significant.
108



 Object Model General Information
6.6.2.10 Extrinsic method calls
<variable> = InvokeMethod ($someobjectname->, "Method Name", 

 %InArguments[], %OutArguments[])
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 109



 

110



 Normative References
Clause 7: Normative References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

Table 92: Standards Dependencies for SMI-S

Standard Version Organization
CIM Operations over HTTP (DSP0200) 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
CIM Infrastructure Specification (DSP004) 2.3.0 DMTF
CIM Query Language Specification, DSP0202 1.0.0 DMTF
Specification for the Representation of CIM over 
XML (DSP0201)

2.2 DMTF

WBEM URI Mapping Specification (DSP0207) 1.0.01 (preliminary) DMTF
UML 1.3 OMG
Securing Block Storage Protocols over IP 
(RFC 3723)

IETF

Service Location Protocol (SLP), Version 2 
(RFC2608)

2 IETF

Internet X.509 Public Key Infrastructure Certificate 
and Certificate Revocation List (CRL) Profile 
(RFC3289)

IETF

Service Templates and Service: Schemes 
(RFC2609)

IETF

DHCP Options for Service Location Protocol 
(RFC2610)

IETF

An API for Service Location (RFC2614) IETF
Hypertext Transfer Protocol -- HTTP  (RFC1945) 1.0 IETF
Hypertext Transfer Protocol -- HTTP /1.1 
(RFC2616, RFC2068)

1.1 IETF

A String Representation of Distinguished Names 
(RFC1779)

IETF

HTTP Authentication: Basic and Digest Access 
Authentication (RFC2617)

IETF

Key words for use in RFCs to Indicate Requirement 
Levels  (RFC2119)

IETF

An Extension to HTTP: Digest Access 
Authentication  (RFC2069)

IETF

Multipurpose Internet Mail Extensions (MIME) Part 
One: Format of Internet Message Bodies 
(RFC2045)

November, 1996 IETF

Transport Layer Security (TLS) (RFC 4346, 
RFC3280)

1.0 (1.1) IETF

Secure Sockets Layer (SSL) 3.0 Netscape
The Directory: Public-key and attribute certificate 
frameworks (DER encoded X.509)

May, 2000 ITU-T
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 111



 

PKCS #12: Personal Information Exchange Syntax 1.0 RSA Laboratories
Storage Management (IS24775-2006) 1.0 SNIA

Table 92: Standards Dependencies for SMI-S

Standard Version Organization
112



 Normative References
7.1 Introduction to Profiles

7.1.1 Profile Content

7.1.1.1 Profile Definition
A profile is a specification that defines the CIM model and associated behavior for an autonomous and
self-contained management domain. The CIM model includes the CIM Classes, Associations,
Indications, Methods and Properties. The management domain is a set of related management tasks. A
profile is uniquely identified by the name, organization and version.

In SMI-S, a profile describes the management interfaces for a class of storage subsystem, typically
realized as a hardware of software product. For example, SMI-S includes profiles for arrays, FC-
Switches, and logical volume manager software. The boundaries chosen for SMI-S profiles are often
those of storage products, but some vendors may package things differently. For example, one vendor
may choose to package an Array and an FC Switch into a single product; this can be handled in SMI-S
by implementing the Array and FC Switch profiles for this product.

A profile may add restrictions to usage and behavior, but cannot change CIM defined characteristics.
For example, if a property is required in the CIM model, then it is required in a profile. On the other
hand, a profile may specify that a property is required even if it is not required by the general CIM
model.

In SMI-S, profiles serve several purposes:

• Specification organization - the SMI-S object model (see Clause 8:, "Object Model") is presented
as a set of profiles, each describing a type of storage element or behavior,

• Certification - SMI-S profiles form the basis for CTP certification,

• Discovery- profiles are registered with the CIM Server and advertised to clients as part of the CIM
model and using SLP (see Clause 10:, "Service Discovery"). An SMI-S client uses SLP to
determine which CIM Servers host profiles it wishes to manage, then uses the CIM model to
discover the actual configurations and capabilities. 

A subprofile is a profile that specifies a subset of a management domain. A subprofiles’s CIM elements
are scoped within a containing profile. Multiple profiles may use the same subprofile. A subprofile is
uniquely identified by the name, organization and version.

A profile specification may include a list of the subprofiles it uses. The included subprofiles may be
optional or mandatory by the scoping profile. The behavior of a profile is specified in this profile and its
included subprofiles.

For example, target devices such as RAID arrays and tape libraries may support Fibre Channel or
parallel SCSI connectivity. SMI-S includes an FC Target Port Subprofile and an Parallel SCSI Target
Port Subprofile that may optionally be supported by profiles representing target devices. The elements
defined in the port subprofiles are scoped to the ComputerSystem in the profile. For example, each
LogicalPort subclass has a SystemDevice association to the profile’s ComputerSystem.

In addition to sharing the purposes of profiles (above), subprofiles have these purposes:

• Optional behavior - a profile may allow, but not require, an implementation to support a subprofile.
Although a subprofile does not describe a full product, a subprofile should describe an aspect of a
product that is recognizable to an knowledgeable end-user such as a storage administrator, 

• Reuse of functionality - some storage management behavior is common across different types of
storage elements. For example, block virtualization is managed similarly in RAID arrays and
logical volume managers. These common sets of functionality are specified as profiles that are
shared by several other profiles.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 113



 

• Decomposition - certain functionality may not be reused multiple places, but is complicated
enough to document as a separate profile. For example, Disk Partition management is only used
in the Host Discovered Resources profiles, but is complicated enough that it has been
documented as a separate profile.

Terminology
A profile collects included subprofiles and provides the filler needed to define the management
interfaces of a particular type of subsystem. Profiles are separated into two groups. Storage profiles
define the management interfaces for storage subsystems such as arrays or FC switches. Generic
profiles define management interfaces for generic systems that are related to storage management.
Storage and generic profiles are specified the same way in SMI-S, but generic profiles are not certified
as free-standing entities, only as a dependency of a storage profile. 

A Package is a profile that whose implementation is mandatory to comply with the requirements of all of
its containing top-level profiles. Since a package is always mandatory, it is not registered with the CIM
Server. Packages provide decomposition in the specification.

Profiles may be related by specialization - where several profiles (or subprofiles) share many common
elements, but are specialized for specific implementations. The SMI-S Security profiles are an example;
the specializations (Authorization Profile, Security Resource Ownership Profile,...) share some classes
and behavior. Profile specialization is only an artifact of the specification. It saves the reader from
reading common aspects in multiple places and help the specification stay consistent across the
specialized profiles. There is no information in the CIM model about the relationship between generic
and specialized profiles. 

7.1.1.2 Format for Profile Specifications
For each profile there is a set of information that is provided to specify the characteristics and
requirements of the profile. Subprofiles are also defined using this format, but they are clearly identified
as subprofiles.

Each profile or subprofile is defined in subsections that are described in Table 93.

Note: CIM schema diagrams are logically part of a profile description. However, they can be rather
involved and cannot be easily depicted in a single diagram. As a result the reader is advised to
refer to DMTF characterizations of CIM schema diagrams.

Table 93: Profile Components (Sheet 1 of 3)

Profile Element Goal
Description This section provides a description of the profile and model including an overview 

of the objectives and functionality. 

Functionality is described in a bullet-form in this section that includes functionality 
provided by the subprofiles referenced by the profile. If a function is provided by a 
subprofile, this is indicated, including whether the subprofile is optional or 
required. Functionality listed in the profile is organized by Levels, and within each 
Level by FCAPS category, as defined in the SMI-S functionality matrix section 
<link>.

Instance Diagrams: One or more instance diagrams to highlight common imple-
mentations that employ this section of the Object Model. Instance diagrams also 
contain classes and associations but represent a particular configuration; multiple 
instances of an object may be depicted in an instance diagram.

Finally, This section may include supporting text for recipes, properties, and meth-
ods as needed.
114



 Normative References
Health & Fault Manage-
ment 

If a profile provides optional Health & Fault Management capabilities, then this 
section describes the specifics of these capabilities, including:

• A table of the classes that report health information
• Tables of possible states of the OperationalStatus and

HealthState attributes and descriptions for those elements that
report state.

• Cause and Effect associations.
• Standard Errors produced (including Alert Indications, Errors,

CIM Errors, and Health Related Live Cycle Events.
Cascading Consider-
ations 

A Profile may be a cascading profile. A cascading profile is any Profile that sup-
ports the Cascading Subprofile as either a mandatory or recommended subpro-
file. If the profile is a cascading profile, this section documents cascading 
considerations in each of the following areas:

• Cascaded Resources – Defines the type of resources in the
Cascading Profile that are associated to what type of resources
in the Leaf Profile and the association.

• Ownership Privileges – Identifies the Resource Control Privileges
(on leaf resources) that are established by the Cascading Profile.

• Limitations on Cascading Subprofile – Identifies any limitations
on the Cascading Subprofile that are imposed by the Cascading
in effect

Supported Subprofiles 
and Packages

A list of the names and versions of subprofiles and packages supported by a pro-
file.

Methods of the Profile This section documents the methods used in this profile. All methods used in rec-
ipes shall be documented; optional methods (those not used in recipes) may also 
be included.

Recipes and Client 
Considerations

This section documents a set of "recipes" that describe the CIM operations and 
other steps required to accomplish particular tasks. These recipes do not define 
the upper bound of what a CIM Server may support, however, they define a lower 
bound. That is, a CIM Provider implementation shall support these recipes as pre-
scribed to be SMI-S compliant.

Note: A recipe that is defined as part of a subprofile is only required if
the subprofile is implemented.

All optional behavior in a profile shall be described in a recipe and shall have a 
capabilities property a client can test to determine whether the optional behavior 
is supported. The actual capabilities properties are documented in the Classes 
Used section.

CIM Server Require-
ments

A list of requirements on the CIM Server necessary to support the profile and its 
subprofiles.

Table 93: Profile Components (Sheet 2 of 3)

Profile Element Goal
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 115



 

CIM Elements A table listing the classes, associations, subprofile, packages, and indication fil-
ters that this profile (or subprofile) supports, and a brief description of each. 
Everything listed in this section is mandatory for the profile or subprofile. This sec-
tion shall not list optional elements. 

Prior to this version of SMI-S, CIM did not have standard language for indication 
filters; IS24775-2006, Storage Management used the proposed WQL query lan-
guage. The current version of SMI-S uses the CQL standard query language. 
WQL is also supported for backward compatibility. The Description column for an 
indication filter specifies whether the filter string is compliant to CQL or WQL. If 
neither is stated, then the string complies to both CQL and WQL.

Classes Used in the 
Profile

This section provides one table per class and lists each required and recom-
mended property. For each required or recommended property a brief description 
on what information is to be encoded is identified.

The class tables include a “Flags” column. This can contain “C” (the property is a 
correlatable name or a format for a name), “D” (the property is a durable name), 
“M” (the property is modifiable), or “N” (null is a valid value). 

Dependencies on Other 
Standards

A table listing other standards that this profile and its subprofiles are dependent 
on.

Table 93: Profile Components (Sheet 3 of 3)

Profile Element Goal
116



 Object Model
Clause 8: Object Model

8.1 Registry of Profiles and Subprofiles
Each profile and subprofile within the SNIA Storage Management Initiative is identified by a unique
name, selected and maintained by the SNIA, to assure that SMI implementers do not encounter any
namespace collisions. The registry of these names, and a reference to their definition within this
specification, are summarized in Table 94

Table 94: Registry of Profiles and Subprofiles.

Area Registered Profile Name Registered Subprofile Names
Server Server Object Manager Adapter Subprofile

Indication Subprofile
Security Security Security Credential Management Subprofile

Security Identity Management Subprofile
Security Authorization Subprofile

Fabric Fabric Zone Control Subprofile
Enhanced Zoning and Enhanced Zoning Control Sub-
profile
FDMI Subprofile
Fabric Path Performance Subprofile

 Switch Blades Subprofile
Access Points Subprofile
Software Installation Subprofile
Multiple Computer System Subprofile
Switch Configuration Data Subprofile
Physical Package Package
Software Package

 Extender Physical Package Package
Software Package

Host FC HBA FC Initiator Ports Subprofile
 iSCSI Initiator iSCSI Initiator Ports Subprofile
 Host Discovered Resources SCSI Multipath Management Subprofile

Disk Partition Subprofile
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 117



 

Storage Array Access Points Subprofile
Block Server Performance Subprofile
Cluster Subprofile
Extra Capacity Set Subprofile
Disk Drive Subprofile
Disk Drive Lite Subprofile
Extent Mapping Subprofile
Extent Composition Subprofile
Location Subprofile
Software Subprofile
Copy Services Subprofile
Job Control Subprofile
Pool Manipulation Capabilities and Settings Subprofile
LUN Creation Subprofile
Device Credentials Subprofile
LUN Mapping and Masking Subprofile
Masking and Mapping Subprofile
SPI Target Ports Subprofile
FC Target Ports Subprofile
iSCSI Target Ports Subprofile
Backend Ports Subprofile
Disk Sparing Subprofile
FC Initiator Ports Subprofile
SPI Initiator Ports Subprofile
Block Services Package
Physical Package Package
Health Package

 Storage Virtualizer Access Points Subprofile
Copy Services Subprofile
Job Control Subprofile
Location Subprofile
Masking and Mapping Subprofile
Software Subprofile
Multiple Computer System Subprofile
FC Initiator Ports Subprofile
iSCSI Target Ports Subprofile
FC Target Ports Subprofile
iSCSI Initiator Ports Subprofile
Extent Composition Subprofile
Cascading Subprofile
Block Services Package
Physical Package Package

Table 94: Registry of Profiles and Subprofiles.

Area Registered Profile Name Registered Subprofile Names
118



 Object Model
 Volume Management Access Points Subprofile
Extent Composition Subprofile
Location Subprofile
Software Subprofile
Copy Services Subprofile
Disk Sparing Subprofile
Multi System Subprofile
Job Control Subprofile
Cascading Subprofile
Block Storage Resource Ownership Subprofile
Block Server Performance Subprofile
Block Services Package
Health Package

 Storage Library Access Points Subprofile
Location Subprofile
FC Target Ports Subprofile
Software Subprofile
Storage Library Limited Access Port Elements Subpro-
file
Storage Library Media Movement Subprofile
Storage Library Capacity Subprofile
Storage Library Element Counting Subprofile
Storage Library InterLibraryPort Connection Subprofile
Storage Library Partitioned Library Subprofile
Physical Package Package

 NAS Head Indication Subprofile
Cascading Subprofile
Access Points Subprofile
Multiple Computer System Subprofile
Software Subprofile
Location Subprofile
Extent Composition Subprofile
File System Manipulation Subprofile
File Export Manipulation Subprofile
Job Control Subprofile
SPI Initiator Ports Subprofile
FC Initiator Ports Subprofile
Device Credentials Subprofile
Physical Package Package
Block Services Package
Health Package

Table 94: Registry of Profiles and Subprofiles.

Area Registered Profile Name Registered Subprofile Names
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 119



 

 Self-contained NAS System Indication Subprofile
Access Points Subprofile
Multiple Computer System Subprofile
Software Subprofile
Location Subprofile
Extent Composition Subprofile
File System Manipulation Subprofile
File Export Manipulation Subprofile
Job Control Subprofile
Disk Drive Lite Subprofile
SPI Initiator Ports Subprofile
FC Initiator Ports Subprofile
iSCSI Initiator Ports Subprofile
iSCSI Target Ports Subprofile
Device Credentials Subprofile
Physical Package Package
Block Services Package
Health Package

Table 94: Registry of Profiles and Subprofiles.

Area Registered Profile Name Registered Subprofile Names
120



 

8.2 Packages, Subprofiles and Profile

8.2.1 Common Profiles
Common profiles (including subprofiles and packages) are shared by multiple profiles

8.2.1.1 Access Points Subprofile

8.2.1.1.1 Description
The Access Points subprofile provides addresses of remote access points for management services.

This is modeled using a RemoteServiceAccessPoint linked to the managed system using a
HostedAccessPoint association.

A management service is typically associated with all elements in a system, but in some cases, a
management service relates to a subset of elements. The scope of a RemoteServiceAccessPoint may
be constrained to a subset of elements using SAPAvailableForElement. If the service referenced in
RemoteServiceAccessPoint is not referenced by any SAPAvailableForElement associations, then the
service described by RemoteServiceAccessPoint shall apply to all the elements of the system
referenced via HostedAccessPoints. This type of system-wide service is depicted in Figure 22:
"System-wide Remote Access Point".

If the service referenced in RemoteServiceAccessPoint is referenced by any SAPAvailableForElement
associations, then the service described by RemoteServiceAccessPoint shall apply to the subset of
elements referenced via SAPAvailabelForElement associations. The HostedAccessPoint association
between RemoteServiceAccessPoint is still mandatory (so the client can readily associate the service
to a specific storage system).

Figure 22: System-wide Remote Access Point

Access Point Subprofile
ComputerSystem

Global Service::
RemoteServiceAccessPoint

HostedAccessPoint
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 121



 

Figure 23: "Access Point Instance Diagram" depicts a configuration with two
RemoveServiceAccessPoint instances. One represents a system-wide service and the other
represents a service that applies just to certain devices.

The exposed management services may represent a web UI that can be launched by a web browser, a
telnet interface, or some vendor-specific interface. RemoteServiceAccessPoint InfoFormat property
describes the format of the AccessInfo property; valid options include “URL” and FQDN”. In a URL, the
text before the “://” is referred to as the “scheme”. A URL with an http or HTTPS scheme is often a web/
HTML page, but HTTP can be used for other purposes. Table 95 specifies the requirements for
InfoFormat, AccessInfo, and the scheme subset of a URL AccessInfo.  

8.2.1.1.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.1.1.3 Cascading Considerations
Not defined in this standard.

8.2.1.1.4 Supported Subprofiles and Packages
Not defined in this standard.

Figure 23: Access Point Instance Diagram

Table 95: RemoteAccessPoint InfoFormat and AccessInfo Properties

InfoFormat AccessInfo Scheme Description
“URL” “http” or “https” The references URL shall be a valid web 

page. It should provide element manage-
ment for the system or elements referenced 
by the associated HostedAccessPoint asso-
ciation.

“Other” with OtherInfoFormatDe-
scription = "Non-UI URL" 

“http” or” https” Used for HTTP URLs that do not reference a 
valid web UI. 

“URL” anything other than “http” 
and “https”

May be used. No standard behavior is speci-
fied.

others from the MOF n/a May be used. No standard behavior is speci-
fied.

ComputerSystem

Global Service::
RemoteServiceAccessPoint

HostedAccessPoint

Service For Devices ::
RemoteServiceAccessPointSAPAvailableForElement

SystemDevice

HostedAccessPointSystemDevice
122



 

8.2.1.1.5 Methods of this Profile
Not defined in this standard.

8.2.1.1.6 Client Considerations and Recipes
Not defined in this standard.

8.2.1.1.7 Registered Name and Version
Access Points version 1.1.0

8.2.1.1.8 CIM Server Requirements

8.2.1.1.9 CIM Elements

8.2.1.1.9.1 CIM_HostedAccessPoint
Associate the RemoteServiceAccessPoint to the System on which it is hosted.
Created By : Static or External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 96: CIM Server Requirements for Access Points

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 97: CIM Elements for Access Points

Element Name Description
Mandatory Classes

CIM_HostedAccessPoint (8.2.1.1.9.1) Associate the RemoteServiceAccessPoint to the Sys-
tem on which it is hosted.

CIM_RemoteServiceAccessPoint (8.2.1.1.9.2) A ServiceAccessPoint for management tools
Optional Classes

CIM_SAPAvailableForElement (8.2.1.1.9.3) This association identifies the element that is serviced 
by the RemoteServiceAccessPoint

Table 98: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The hosting System 
Dependent CIM_ServiceAccessPoint The SAP(s) that are hosted on 

this System.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 123



 

8.2.1.1.9.2 CIM_RemoteServiceAccessPoint
A ServiceAccessPoint for management tools
Created By : Static or External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.1.1.9.3 CIM_SAPAvailableForElement
This association identifies the element that is serviced by the RemoteServiceAccessPoint
Created By : Static or External
Modified By : External
Deleted By : External
Class Mandatory: false

8.2.1.1.10 Related Standards

Table 99: SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
Name string
ElementName string User-friendly name
AccessInfo string Management Address.
InfoFormat uint16 The format of the Management 

Address. For interoperability, this shall 
be  URL'(200).'

Table 100: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

AvailableSAP CIM_ServiceAccessPoi
nt

The Service that is available.

ManagedElement CIM_ManagedElement The ManagedElement that may use the 
Service.

Table 101: Related Standards for Access Points

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
124



 Cascading Subprofile 
EXPERIMENTAL

8.2.1.2 Cascading Subprofile 

8.2.1.2.1 Description
The cascading subprofile defines the set of classes, methods and behavior used to model cross profile
dependencies and references. This includes modeling of cross CIM server references when the
referenced profile is managed by another CIM server.

Examples of SMI-S Profiles that should support the Cascading Subprofile include Storage Virtualizer,
NAS Heads and Volume Managers. However, other profiles may also support the cascading subprofile
for cross profile references. For example, if an Array Profile may support the cascading subprofile to
effect cross profile references used in “remote copy.”

For ease of documentation, a profile that supports the cascading subprofile is referred to as a
Cascading Profile. The profile referenced is referred to as a Leaf Profile. For example, storage
virtualization would support the cascading subprofile and would be a Cascading Profile. It would
reference storage volumes in one or more Array profiles. In such configurations, the Array profiles
would be referred to as Leaf profiles.

The cascading subprofile defines a common approach to “stitching” resources in the cascading profile
to resources in the leaf profiles. While the general mechanism used is common, the specifics may vary
depending on the resources that are stitched together. For example, a Storage Virtualization Profile
would stitch StorageExtents (in the virtualizer) to StorageVolumes (in arrays). But a Volume Manager
would stitch LogicalDisks (in the volume manager) to StorageVolumes (in arrays or virtualizers).

The cascading subprofile defines how to model the relationships between CIM Servers when there are
CIM Servers of Leaf profiles that are referenced by a CIM Server of the cascading profile, and how a
client manages the interaction between CIM Servers in a cascading configuration (including CIM Server
credentials).

In addition to the Cascading subprofile, there are two related subprofiles that may also be supported by
the cascading profile or the leaf profiles. They are the Credential Management Subprofile, which
defines the classes, methods and behavior for managing the credentials used by a CIM server of the
cascading profile when accessing (different) CIM Servers of Leaf profiles. The second is the Security
Resource Ownership Subprofile (or a specialization of this subprofile) which defines the classes,
methods and behavior of recording ownership in the leaf profiles. The usage of these subprofiles will be
referenced in this subprofile, but their definition is contained in separate subprofile specifications.

The Cascading Subprofile provides block-level configuration management in this version of SMI-S.

The Cascading Subprofile defines cascading of resources at the block level. That is, a Cascading
Profile uses Block storage resources of the leaf profiles. These are StorageVolumes or LogicalDisks. In
this version of SMI-S the model will only be tested in the context of cascading for block storage.

8.2.1.2.1.1 Instance Diagrams
There are three aspects of the cascading subprofile that are illustrated separately:

• Logical Topology (usage of leaf resources by cascading profiles)

• Resource Allocation/Deallocation

• CIM Server Topology (usage of CIM Servers by other CIM Servers)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 125



 

In addition, there are the relationships between the Cascading subprofile and the Security Resource
Ownership Subprofile and the Credential Management Subprofile. This relationship will be illustrated,
but the details of those subprofiles are documented in their own sections.

Logical Topology
Figure 24: "Instance Diagram for Logical Topology" illustrates the basic constructs for modeling the
logical topology represented by cascading profiles. The cascading profile is the top box. The modeling
for the cascading subprofile is in the dashed box (in the Cascading Profile). The leaf profile is the lower
box. Note that for the basic modeling of the logical topology of cascading, there are no modeling
requirements on the leaf profile. 

NOTE: The dashed classes in Figure 24: "Instance Diagram for Logical Topology" are instances that
are cached in the Cascading Profile. They are redundant with the instances maintained by the Leaf
profile. The dashed arrows between the Cacsading Profile and the Leaf Profile signifies “stitching”
based on durable names or correlatable ids for the resources represented. The dashed arrows are not
instantiated associations.

Figure 24: Instance Diagram for Logical Topology

Local Resource
LeafResource

Name= X
NameFormat= whatever

System

Name= L
NameFormat=url

System

Name= C
NameFormat=urlLeafSystem

Name= L
NameFormat= url

Dependency

Cascading Profile

Leaf Profile

LeafResource

Name= X
NameFormat= whatever

SystemDevice

LogicalDevice

Name= X
NameFormat=whatever

SystemDevice

RemoteServiceAccessPoint

SAPAvailableForElement

Local Resource

LogicalIdentity

LogicalIdentity
126



 Cascading Subprofile 
If the Cascading Subprofile is supported by the Cascading Profile, then there will be support for
instantiating “leaf” “top level object” (e.g., ComputerSystems) and “leaf” LogicalDevices (e.g.,
StorageVolumes) in those Leaf Profiles that are “visible” to the Cascading Profile (device). The
instances of the “leaf” “top level object” can be found by traversing the CascadingDependency
association from the “top level object” of the Cascading Profile. 

The leaf resources (logical devices) that are visible to the Cascading Profile have an association (e.g.,
SystemDevice association) to the “leaf” top level object (e.g., ComputerSystem) that has exposed them
to the Cascading Profile.

The top level object, Hosted or SystemDevice association and LogicalDevices mirrors information that
is in the Leaf Profile. In some Cascading Profile configurations, the Cascading Profile may want to
subscribe to life cycle indications on the devices of interest in the Leaf Profile. However, that is a
consideration of the Cascading Profile. It is not required as part of the Cascading Subprofile.

From the top level object (e.g., ComputerSystem) of the Leaf, there may be a SAPAvailableForElement
association to a RemoteServiceAccessPoint instance. The RemoteServiceAccessPoint identifies
information need for access to the management interface to the Leaf system. This management
interface may or may not be a CIM interface. 

The expectation is that the model represented in Figure 24: "Instance Diagram for Logical Topology"
will be automatically maintained by the Cascading Profile (and providers). There are no methods for
client manipulation of this model. In the case of the RemoteServiceAccessPoint instance, the
expectation is that discovery of leaf systems would be an automatic process (e.g., SLP discovery of
SMI-S Profiles and Servers) and that the provider would record the access information based on its
discovery processes.

In the simplest form of cascading, this is sufficient to model the logical topology of the cascading.
However, many implementations will need to go further (see “Resource Allocation/Deallocation” on
page 127 in 8.2.1.2.1.1 ).

Resource Allocation/Deallocation
In some cascading environments, it is necessary to distinguish between resources that are “visible” to
the Cascading Profile from resources that are actually “in use.” For example, a Volume Manager or
storage virtualization system may be able to “see” a number of storage volumes (logical units) through
its ports. But this does not necessarily mean that is has allocated and is using them. A separate step is
required to “prepare” the resources for use. In the case of storage virtualization systems, this step
would include assigning the storage to a storage pool in the virtualizer.

To readily discern which storage volumes (logical devices) are “visible” and which volumes are
assigned, two collections are defined. The collection of “visible” resources is the “RemoteResources”
collection. The collection of assigned resources is the “AllocatedResources” collection. This is
illustrated in Figure 25: "Instance Diagram for Resource Allocation/Deallocation"
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 127



 

 

The SNIA_AllocationService may or may not exist. The actual function of Allocation may be
implemented as a side effect of other methods. For example, allocating a Leaf StorageVolume may
occur as a side effect of CreateOrModifyStoragePool, where the an extent (e.g., leaf StorageVolume) is
added to a StoragePool. The semantics of CreateOrModifyStoragePool constructs all the necessary
associations for the StorageExtent (and may also have the semantics of an implied allocation of the
StorageVolume).

To determine if allocation or deallocation are explicit (via allocate/deallocate method calls) or implicit
(side effect of another method), the client should inspect the “AsynchronousMethodsSupported” and
“SynchronousMethodsSupported” properties of the SNIA_CascadingCapabilities instance for the
System. 

Figure 25: Instance Diagram for Resource Allocation/Deallocation

LogicalDevice

Name= X
NameFormat=whatever

LeafResource

Name= X
NameFormat= whatever

System

Name= L
NameFormat=url

System

Name= C
NameFormat=url

LeafSystem

Name= L
NameFormat= url

Dependency

Cascading Profile

Leaf Profile

LeafResource

Name= X
NameFormat= whatever

SystemDevice

LogicalDevice

Name= X
NameFormat=whatever

SystemDevice

LeafResource

Name= X
NameFormat= whatever

LeafResource

Name= X
NameFormat= whatever

SystemDevice

SNIA_AllocatedResources

ElementType

LogicalDevice

Name= X
NameFormat=whatever

LogicalDevice

Name= X
NameFormat=whatever

MemberOfCollection

SNIA_RemoteResources

ElementType

SNIA_AllocationService

Allocate()
Deallocate()

HostedService

HostedCollection

HostedCollection
128



 Cascading Subprofile 
CIM Server Topology
In addition to a cascading system using leaf systems and its resources, a cascading profile may also
model the dependencies between the CIM Server of the cascading profile and the CIM Servers of the
Leaf Profiles. This is illustrated in Figure 26: "Cascading Server Topology".
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 129



 

Figure 26: Cascading Server Topology

System

Name= L
NameFormat=url

System

Name= C
NameFormat=url

LeafSystem

Name= L
NameFormat= url

Dependency

Cascading Profile

Leaf Profile

ObjectManager

Namespace

Namespace
InManager

RegisteredProfile

RegisteredSubProfile

SubProfile
RequiresProfile

ElementConformsToProfile

ReferencedProfile

         For the 
     Leaf  Profile

ObjectManager

Namespace
Namespace
InManager

RegisteredProfile ElementConformsToProfile

Dependency

         For the 
cascading Profile

ObjectManager

Dependency

      For the 
cascading Profile

RegisteredProfile

ElementConforms
ToProfile
130



 Cascading Subprofile 
As with the logical topology, the server topology is effected by caching Leaf information in the
cascading profile. Specifically, the cached instances from the leaf profiles are:

ObjectManager – to allow the dependency between ObjectManagers to be instantiated in the
cascading profile.

Namespace – to provide cached information on the namespace of the leaf CIM Server. This would be
the Interop Namespace for accessing the Server Profile of the CIM Server.

RegisteredProfile – to identify the Profile of the Leaf Profile (e.g., Array or Virtualizer).

In addition, the necessary associations (HostedProfile, NamespaceInManager and
ElementConformsToProfile) would be instantiated to connect the relevant instances.

The actual dependence between the CIM Server (ObjectManager) of the Cascading Profile and the
CIM Server (ObjectManager) of the Leaf systems is represented by instances of Dependency.

Cascading with the Resource Ownership Subprofile

Cascading with the Credentials Management Subprofile
As an extension of the modeling of CIM Server topology, a cascading profile may implement the
Credentials Management Subprofile. When this is done it extends the modeling for the Server topology
as illustrated in Figure 28: "Instance Diagram for Cascading with Credential Management Subprofile".

Figure 27: Instance Diagram for Cascading with Resource Ownership

L o c a l R e s o u rc e
L e a fR e s o u rc e

N a m e =  X
N a m e F o rm a t=  w h a te v e r

S y s te m

N a m e =  L
N a m e F o rm a t= u r l

S y s te m

N a m e =  C
N a m e F o rm a t= u r lL e a fS y s te m

N a m e =  L
N a m e F o rm a t=  u r l

D e p e n d e n c y

C a s c a d in g  P r o f i le

L e a f  P r o f i le

L e a fR e s o u rc e

N a m e =  X
N a m e F o rm a t=  w h a te v e r

S y s te m D e v ic e

L o g ic a lD e v ic e

N a m e =  X
N a m e F o rm a t= w h a te v e r

S y s te m D e v ic e

L o c a l R e s o u rc e

L o g ic a lId e n t i ty

L o g ic a lId e n t ity

A u th o r iz e d P r iv i le g eA u th o r iz e d T a rg e t

A u th o r iz e d S u b je c t
Id e n t i ty

Id e n t i ty C o n te x t
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 131



 

The Credential Management information would be associated with the CIM Server ObjectManager
instance for a Leaf system. The Credential Management Subprofile would identify how the cascading
system would authenticate itself with the Leaf system.

Modeling for Defining Cascading Capabilities
As indicated in previous discussions, only parts of the Cascading subprofile are mandatory. For a list of
what elements are mandatory, see 8.2.1.2.9, "CIM Elements". In order to make it relatively easy for
clients to determine what is supported, implementation of the SNIA_CascadingCapabilities class is

Figure 28: Instance Diagram for Cascading with Credential Management Subprofile

System

Name= L
NameFormat=url

System

Name= C
NameFormat=url

LeafSystem

Name= L
NameFormat= url

Dependency

Cascading Profile

Leaf ProfileObjectManager

         For the 
     Leaf  Profile

ObjectManager

Namespace
Namespace
InManager

RegisteredProfile

ElementConforms
ToProfile

Dependency

         For the 
cascading Profile

ObjectManager

Dependency

      For the 
cascading Profile

RegisteredProfile

Dependency

ElementConforms
ToProfile

Credential
Management

???
132



 Cascading Subprofile 
mandatory if cascading is supported. The modeling for this class is illustrated in Figure 29: "Modeling of
Cascading Capabilities".

The SNIA_CascadingCapabilities instance would be found by doing association traversal from the
RegisteredSubprofile for cascading following the ElementCapabilites association.

The properties of SNIA_CascadingCapabilities are defined as follows:

• FeaturesSupported - This is an array that defines the cascading features that are supported by the 
implementation of the Cascading Profile. The values are "Ownership", "Leaf Credentials", "OM 
Dependencies" and "Allocation Service".

• SupportedElementTypes - This is an array that defines the type of “Remote Resource” 
ManagedElements that are supported by the implementation. For this version of SMI-S, only 
StorageVolumes are supported.

• AsynchronousMethodsSupported – This is an array that defines any asynchronous methods 
supported for allocation or deallocation of leaf resources. The values are “Allocation” or 
“Deallocation”.

• SynchronousMethodsSupported – This is an array that defines any synchronous methods 
supported for allocation or deallocation of leaf resources. The values are “Allocation” or 
“Deallocation”.

The Cascading subprofile uses durable names of leaf resources for stitching together the Leaf Profile
and its resources to the corresponding instances in the Cascading Profile.

Figure 29: Modeling of Cascading Capabilities

RegisteredSubprofile

RegisteredName = 
"Cascading"

SNIA_CascadingCapabilities

FeaturesSupported[]
SupportedElementTypes[]

AsynchronousMethodsSupported
SynchronousMethodsSupported

.....

ElementCapabilities

Cascading Profile
RegisteredSubprofile

RegisteredName = 
"Storage Virtualizer"

SubProfile
RequiresProfile

ComputerSystem

Dedicated = 
"Storage Virtualizer"

ElementConformsToProfile
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 133



 

The CIM Server of the Cascading Profile may use indications (or provider poll on access) to keep its
model accurate.

8.2.1.2.2 Health and Fault Management Considerations

8.2.1.2.2.1 Reporting Health of Leaf Systems, Resources and Object Managers
A Cascading Profile should not report health of leaf resources without verifying the health of those
resources (via direct reference to the Leaf Profile). The Cascading Profile may keep health properties in
its local copy of the instances for leaf resources for its own purposes, but it should always refer to the
leaf profile on requests from clients.

A request for a health property (e.g., OperationalStatus) should result in a request to the underlying leaf
resource for the information. If the leaf resource is not available (e.g., the connection to the CIM Server
is broken) the Cascading Profile may report health from its local copy of the instance.

8.2.1.2.2.2 Cascading Indications of Health
Given a Cascading Profile is dependent upon leaf resources, the CIM Server of the Cascading Profile
may chose to subscribe to health (OperationalStatus) indications on the leaf resources it is actively
using (allocated resources). Generally speaking, health problems on leaf resources will translate to
health problems on one or more resources in the Cascading Profile. For example, if a StorageVolume in
the Array (leaf) profile has an OperationalStatus of “Error”, this may cause one or more
StorageVolumes in a Virtualizer that is using the array to either be in error or be degraded.

Health indications should cascade. However, how they cascade will depend on where and how the leaf
resources are used. 

However a cascading profile discovers a problem with leaf resources, then it may be reflected in
operational status of the cascader’s resources. 

8.2.1.2.3 Cascading Considerations
Not defined in this standard.

8.2.1.2.4 Supported Subprofiles and Packages

8.2.1.2.5 Methods of this Subprofile
Table 103 summarized the extrinsic methods supported by the Cascading Subprofile. 

Table 102: Supported Subprofiles for Cascading

Registered Subprofile Names Mandatory Version
Security Resource Ownership No 1.1.0
Credential Management No 1.1.0

Table 103: Extrinsic Methods Supported by Cascading Subprofile

Method Created Instances Deleted Instances Modified Instances
Allocate MemberOfCollection N/A N/A
Deallocate N/A MemberOfCollection N/A
134



 Cascading Subprofile 
8.2.1.2.5.1 Extrinsic Methods of this Profile
There are two extrinsic Methods that may be supported by an implementation of the cascading
subprofile:

• Allocate

• Deallocate

8.2.1.2.5.1.1 Allocate
Starts a job to allocate remote resources (from the RemoteResources collection) to the
AllocatedResources collection.

Allocate ( 

[IN, Description (Enumeration indicating the type of element being allocated. This type value shall
match the type of the instances.),

       ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8" }, 

       Values { "Unknown", "Reserved", "Any Type", "StorageVolume", "StorageExtent", "StoragePool",
"ComputerSystem", "LogicalDisk", "FileShare" }]

Only “3” (StorageVolume) is supported in this version of SMI-S.

   uint16 ElementType;

[IN ( false ), OUT, Description (Reference to the job (may be null if job completed).)]

      CIM_ConcreteJob REF Job, 

[IN, Description (The reference to the AllocatedResource collection to which Elements are being
added.)]

      SNIA_AllocatedResources REF Collection,

[IN, Description (Array of strings containing representations of references to CIM_ManagedElement
instances, that are being allocated to the AllocatedResources Collection.)]

      string InElements[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"In Use", "DMTF Reserved", "Method Parameters Checked - Job Started", "Method Reserved", "Vendor
Specific" }]

8.2.1.2.5.1.2 Deallocate
Starts a job to remove remote resources (from the AllocatedResources collection) and return them to
the RemoteResources collection.

Deallocate ( 

         [IN, Description (Enumeration indicating the type of element being deallocated. This type value
shall match the type of the instances.),

       ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8" }, 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 135



 

       Values { "Unknown", "Reserved", "Any Type", "StorageVolume", "StorageExtent", "StoragePool",
"ComputerSystem", "LogicalDisk", "FileShare" }]

Only “3” (StorageVolume) is supported in this version of SMI-S.

   uint16 ElementType;

         [IN ( false ), OUT, Description (Reference to the job (may be null if job completed).)]

      CIM_ConcreteJob REF Job, 

[IN, Description (The reference to the AllocatedResource collection from which Elements are being
removed. )]

      SNIA_AllocatedResources REF Collection,

[IN, Description ( Array of strings containing representations of references to CIM_ManagedElement
instances, that are being deallocated from the AllocatedResources Collection.")]

      string InElements[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"In Use", "DMTF Reserved", "Method Parameters Checked - Job Started", "Method Reserved", "Vendor
Specific" }

8.2.1.2.5.2 Intrinsic Methods of this Profile
None.

8.2.1.2.6 Client Considerations and Recipes

8.2.1.2.6.1 Recipe MPCP01: Determining Resources used by cascading Profiles
This recipe is not defined in this standard. It will be included in a future revision, based on
implementation experience.

8.2.1.2.6.2 Recipe MPCP02: Monitoring the existence of Cascading Profiles
This recipe is not defined in this standard. It will be included in a future revision, based on
implementation experience.

8.2.1.2.6.3 OPTIONAL: Recipe MPCP03: Allocation of Leaf Resources
This recipe is not defined in this standard. It will be included in a future revision, based on
implementation experience.

8.2.1.2.6.4 OPTIONAL: Recipe MPCP04: Deallocation of Leaf Resources
This recipe is not defined in this standard. It will be included in a future revision, based on
implementation experience.

8.2.1.2.6.5 Recipe MPCP05: Monitoring the existence of “Stitching” between Profiles
This recipe is not defined in this standard. It will be included in a future revision, based on
implementation experience.
136



 Cascading Subprofile 
8.2.1.2.6.6 Supported SNIA_CascadingCapabilities Patterns
The SNIA_CascadingCapabilities patterns shown in Table 104: "Cascading Capabilities Patterns" are
formally recognized and supported by this version of SMI-S.

8.2.1.2.7 Registered Name and Version
Cascading version 1.1.0

Table 104: Cascading Capabilities Patterns

FeaturesSupported SupportedElementTypes SynchronousMethods
Supported

AsynchronouosMethods
Supported

none StorageVolume none none
Ownership, 
Leaf Credentials, 
OM Dependencies, Alloca-
tion Service

StorageVolume Allocation
Deallocation

Allocation
Deallocation

Allocation Service StorageVolume Allocation
Deallocation

none

Allocation Service StorageVolume none Allocation
Deallocation

Ownership, 
Leaf Credentials, 
OM Dependencies

StorageVolume none none
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 137



 

8.2.1.2.8 CIM Server Requirements

8.2.1.2.9 CIM Elements

Table 105: CIM Server Requirements for Cascading

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications No
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No

Table 106: CIM Elements for Cascading

Element Name Description
Mandatory Classes

CIM_Dependency (8.2.1.2.9.1) (System Dependency) This associates the Leaf System 
to the Cascading System.

CIM_ElementCapabilities (8.2.1.2.9.4) This associates the CascadingCapabilities to the cas-
cading system (e.g., ComputerSystem).

CIM_HostedCollection (8.2.1.2.9.6) (AllocatedResources) This would associate the Allocat-
edResources collection to the top level system for the 
Cascading Profile (e.g., Storage Virtualizer).

CIM_MemberOfCollection (8.2.1.2.9.9) (Allocated Resources) This supports collecting leaf 
resources. This is required to support the Allocate-
dResources collection.

CIM_ObjectManager (8.2.1.2.9.14) (Cascading Profile) This is the Object Manager service 
of the CIM Server.

CIM_SystemDevice (8.2.1.2.9.18) This association links LogicalDevice remote resources 
to the scoping system. This is used to associate the 
remote resources with the System that manages them.

SNIA_AllocatedResources (8.2.1.2.9.19) This is a SystemSpecificCollection for collecting leaf 
resources that have been deployed for use in the Cas-
cading profile (e.g., StorageVolumes assigned to a virtu-
alizer's StoragePool).

SNIA_CascadingCapabilities (8.2.1.2.9.21) This defines the cascading capabilities supported by the 
implementation of the profile.

Optional Classes
CIM_Dependency (8.2.1.2.9.2) (ObjectManager Dependency) This associates the 

Object Manager of the Leaf System to the Object Man-
ager of the Cascading System.

CIM_Dependency (8.2.1.2.9.3) (RegisteredProfile Dependency) This associates the 
RegisteredProfile of a leaf system to the Object Man-
ager of the leaf system.
138



 Cascading Subprofile 
8.2.1.2.9.1 CIM_Dependency
CIM_Dependency is an association between a Leaf System and the Cascading System
(ComputerSystem). The specific nature of the dependency is determined by associations between
resources of the cascading system and resources of the leaf system.

CIM_Dependency is not subclassed from anything.

Created By : Static
Modified By : Static
Deleted By : Static

CIM_ElementConformsToProfile (8.2.1.2.9.5) (Leaf) This associates the RegisteredProfile of the Leaf 
Profile to the Leaf system (e.g., ComputerSystem).

CIM_HostedCollection (8.2.1.2.9.7) (RemoteResources) This would associate the Remot-
eResources collection to the top level system for the 
Cascading Profile (e.g., Storage Virtualizer).

CIM_HostedService (8.2.1.2.9.8) This associates the AllocationService to the system in 
the cascading profile that hosts the service.

CIM_MemberOfCollection (8.2.1.2.9.10) (Remote Resources) This supports collecting leaf 
resources. This is optional when used to support the 
RemoteResources collection (the RemoteResources 
collection is optional).

CIM_Namespace (8.2.1.2.9.11) (Leaf) There would be one for every namespace sup-
ported. 

CIM_NamespaceInManager (8.2.1.2.9.12) (Leaf) This associates the namespace to the Object-
Manager

CIM_ObjectManager (8.2.1.2.9.13) (Leaf) This is the Object Manager service of the CIM 
Server.

CIM_RegisteredProfile (8.2.1.2.9.15) (Leaf) A registered profile that is supported by the CIM 
Server

CIM_RemoteServiceAccessPoint (8.2.1.2.9.16) CIM_RemoteServiceAccessPoint represents the man-
agement interface to a leaf system.

CIM_SAPAvailableForElement (8.2.1.2.9.17) Represents the association between a RemoteService-
AccessPoint and the leaf System to which it provides 
access.

SNIA_AllocationService (8.2.1.2.9.20) Optional: This service provides methods for allocating 
and deallocating leaf resources.

SNIA_RemoteResources (8.2.1.2.9.22) This is a SystemSpecificCollection for collecting leaf 
resources that may be allocated by the system of the 
Cascading profile (e.g., StorageVolumes assigned to a 
virtualizer's StoragePool).

Table 106: CIM Elements for Cascading

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 139



 

Class Mandatory: true

8.2.1.2.9.2 CIM_Dependency
CIM_Dependency is an association between an Object Manager of a Leaf System and the Object
Manager of the Cascading System (ComputerSystem). If the Leaf System and the Cascading System
are supported by the same Object Manager, then no Dependency would exist.

CIM_Dependency is not subclassed from anything.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.1.2.9.3 CIM_Dependency
CIM_Dependency is an association between RegisteredProfile and the Object Manager that provides
the management interface. 

CIM_Dependency is not subclassed from anything.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.1.2.9.4 CIM_ElementCapabilities
CIM_ElementCapabilities represents the association between ManagedElements
(i.e.,ComputerSystem) and their capabilities (e.g., SNIA_CascadingCapabilities). 

Table 107: SMI Referenced Properties/Methods for CIM_Dependency (System Dependency)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement The Cascading System.
Dependent CIM_ManagedElement The Leaf System.

Table 108: SMI Referenced Properties/Methods for CIM_Dependency (Object Manager Depen-
dency)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement The Object Manager of the Cascading 
System.

Dependent CIM_ManagedElement The Object Manager of the Leaf Sys-
tem.

Table 109: SMI Referenced Properties/Methods for CIM_Dependency (RegisteredProfile OM 
Dependency)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement The Object Manager.
Dependent CIM_ManagedElement The RegisteredProfile.
140



 Cascading Subprofile 
CIM_ElementCapabilities is not subclassed from anything.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.1.2.9.5 CIM_ElementConformsToProfile
CIM_ElementConformsToProfile is the association between the RegisteredProfile of the leaf profile and
the system of the leaf (i.e., leaf ComputerSystem). 

CIM_ElementConformsToProfile is not subclassed from anything.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.1.2.9.6 CIM_HostedCollection
CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Cascading Subprofile, it is used to associate the
Allocated Resources to the top level Computer System of the Cascading Profile. 

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By : Static
Modified By : Static
Deleted By : Static

Table 110: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The managed element (System or Sys-
tem Subclass)

Capabilities CIM_Capabilities The CascadingCapabilities instance 
associated with the element.

Table 111: SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Leaf)

Property Flags Type Description & Notes
Mandatory Properties/Methods

ConformantStandard CIM_RegisteredProfile The RegisteredProfile of the leaf sys-
tem.

ManagedElement CIM_ManagedElement The "top level" System instance of the 
leaf profile.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 141



 

Class Mandatory: true

8.2.1.2.9.7 CIM_HostedCollection
CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Cascading Subprofile, it is used to associate the
Remote Resources to the top level Computer System of the Cascading Profile. 

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.1.2.9.8 CIM_HostedService
CIM_HostedService is an association between a Service (SNIA_AllocationService) and the System
(ComputerSystem) on which the functionality resides. 

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Table 112: SMI Referenced Properties/Methods for CIM_HostedCollection (AllocatedResources)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The top level ComputerSystem of the 
profile

Dependent CIM_SystemSpecificColl
ection

The AllocatedResources collection

Table 113: SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The top level ComputerSystem of the 
profile

Dependent CIM_SystemSpecificColl
ection

The RemoteResources collection

Table 114: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The hosting System.
Dependent CIM_Service The AllocationService hosted on the 

System.
142



 Cascading Subprofile 
8.2.1.2.9.9 CIM_MemberOfCollection
This use of MemberOfCollection is to collect all resource instances (in the AllocatedResources
collection). Each association is created as a result of the Allocate method or as a side effect of a
cascading profile specific operation.

Created By : ExternalExtrinsic(s): 
Modified By : Static
Deleted By : ExternalExtrinsic(s): 
Class Mandatory: true

8.2.1.2.9.10 CIM_MemberOfCollection
This use of MemberOfCollection is to collect all resource instances (in the RemoteResources
collection). Each association (and the RemoteResources collection, itself) is created through external
means.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.1.2.9.11 CIM_Namespace
(Leaf) There would be one for every namespace supported. 
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Table 115: SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated 
Resources)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The AllocatedResources collection
Member CIM_ManagedElement An individual resource instance that 

has been allocated.

Table 116: SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote 
Resources)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The RemoteResources collection
Member CIM_ManagedElement An individual resource instance that is 

or can be allocated.

Table 117: SMI Referenced Properties/Methods for CIM_Namespace (Leaf)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 143



 

8.2.1.2.9.12 CIM_NamespaceInManager
(Leaf) This associates the namespace to the ObjectManager
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.1.2.9.13 CIM_ObjectManager
(Leaf) This is the Object Manager service of the CIM Server.
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

ObjectManagerCreationClass-
Name

string

ObjectManagerName string
CreationClassName string
Name string
ClassType uint16
DescriptionOfClassType string Mandatory if ClassType is set to Other''

Optional Properties/Methods
ClassInfo uint16 Deprecated in the MOF, but required     

for 1.0 compatibility. Not required if all 
hosted profiles are new in 1.1

DescriptionOfClassInfo string Deprecated in the MOF, but mandatory 
for 1.0 compatibility. Mandatory if 
ClassInfo is set to Other

Table 118: SMI Referenced Properties/Methods for CIM_NamespaceInManager (Leaf)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ObjectManager The ObjectManager containing a 
Namespace

Dependent CIM_Namespace The Namespace in an ObjectManager

Table 119: SMI Referenced Properties/Methods for CIM_ObjectManager (Leaf)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Name string
SystemCreationClassName string
SystemName string
CreationClassName string
ElementName string

Table 117: SMI Referenced Properties/Methods for CIM_Namespace (Leaf)

Property Flags Type Description & Notes
144



 Cascading Subprofile 
8.2.1.2.9.14 CIM_ObjectManager
(Cascading Profile) This is the Object Manager service of the CIM Server.
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.1.2.9.15 CIM_RegisteredProfile
(Leaf) A registered profile that is supported by the CIM Server
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Description string
OperationalStatus uint16[]
Started boolean

Optional Properties/Methods
StopService()

Table 120: SMI Referenced Properties/Methods for CIM_ObjectManager (Cascading Profile)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Name string
SystemCreationClassName string
SystemName string
CreationClassName string
ElementName string
Description string
OperationalStatus uint16[]
Started boolean

Optional Properties/Methods
StopService()

Table 121: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string This is a unique value for the profile 
instance.

RegisteredOrganization uint16 This is the official name of the organi-
zation that created the profile. For SMI-
S profiles, this would be SNIA.

RegisteredName string This is the name assigned by the orga-
nization that created the profile.

Table 119: SMI Referenced Properties/Methods for CIM_ObjectManager (Leaf)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 145



 

8.2.1.2.9.16 CIM_RemoteServiceAccessPoint
CIM_RemoteServiceAccessPoint is an instance that provides access information for accessing the
actual leaf profile via a management interface.

CIM_RemoteServiceAccessPoint is not subclassed from CIM_ServiceAccessPoint.

Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

8.2.1.2.9.17 CIM_SAPAvailableForElement
Represents the association between a RemoteServiceAccessPoint and the leaf System to which it provides 
access.
Created By : External
Modified By : Static
Deleted By : External

RegisteredVersion string This is the version number of the orga-
nization that defined the profile. 

AdvertiseTypes uint16[] Defines the advertisement of this pro-
file. If the property is null then no adver-
tisement is defined. A value of 1 is used 
to indicate other, and a 3 is used to 
indicate SLP.

Optional Properties/Methods
OtherRegisteredOrganization string
AdvertiseTypeDescriptions string[] This shall not be NULL if Other is iden-

tified in AdvertiseType'

Table 122: SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The CIM Class name of the Computer 
System hosting the management inter-
face.

SystemName string The name of the Computer System 
hosting the management interface.

CreationClassName string The CIM Class name of the manage-
ment interface.

Name string The unique name of the management 
interface.

Table 121: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
146



 Cascading Subprofile 
Class Mandatory: false

8.2.1.2.9.18 CIM_SystemDevice
This association links LogicalDevice remote resources to the scoping system. This is used to associate the 
remote resources with the System that manages them.
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.1.2.9.19 SNIA_AllocatedResources
An instance of a default SNIA_AllocatedResources defines the set of remote (leaf) resources that are
allocated and in use by the Cascading Profile. 

SNIA_AllocatedResources is subclassed from CIM_SystemSpecificCollection. 

At least one instance of the SNIA_AllocatedResources shall exist for a Profile and shall be hosted by
one of the ComputerSystems of that Profile.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

Table 123: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The System that is made available 
through a SAP. 

AvailableSAP CIM_ServiceAccessPoi
nt

The Service Access Point that is avail-
able to the leaf system.

Table 124: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System The Computer System that contains 
this device.

PartComponent CIM_LogicalDevice The logical device that is managed by a 
computer system. 

Table 125: SMI Referenced Properties/Methods for SNIA_AllocatedResources

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string A user-friendly name for the Allocate-

dResources collection (e.g., Allocated-
Volumes).
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 147



 

8.2.1.2.9.20 SNIA_AllocationService
The SNIA_AllocationService class provides methods for allocating and deallocating remote resources
for use in the Cascading Profile. 

The SNIA_AllocationService class is subclassed from CIM_Service. 

There may be an instance of the SNIA_AllocationService if Allocation or Deallocation are supported.

The methods that are supported can be determined from the SynchronousMethodsSupported and
AsynchronousMethodsSupported properties of the SNIA_CascadingCapabilities.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.1.2.9.21 SNIA_CascadingCapabilities
An instance of the SNIA_CascadingCapabilities class defines the specific support provided with the
implementation of the Cascading Profile. 

There would be zero or one instance of this class in a profile. There would be none if the profile did not
support the Cascading Subprofile. There would be exactly one instance if the profile did support the
Cascading Subprofile. 

SNIA_CascadingCapabilities class is subclassed from CIM_Capabilities.

Created By : Static

ElementType uint16 The type of remote resources collected 
by the AllocatedResources collection.
For this version of SMI-S, the only 
value supported is "3" (StorageVol-
ume).

Table 126: SMI Referenced Properties/Methods for SNIA_AllocationService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string

Optional Properties/Methods
Allocate() Support for this method is optional. 

This method allocates remote (leaf) 
resources to the AllocatedResources 
collection.

Deallocate() Support for this method is optional. 
This method is used to remove remote 
(leaf) resources from the Allocate-
dResources collection.

Table 125: SMI Referenced Properties/Methods for SNIA_AllocatedResources

Property Flags Type Description & Notes
148



 Cascading Subprofile 
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.1.2.9.22 SNIA_RemoteResources
An instance of a default SNIA_RemoteResources defines the set of remote (leaf) resources that are
available to be used by the Cascading profile. 

SNIA_RemoteResources is subclassed from CIM_SystemSpecificCollection. 

One instance of the SNIA_RemoteResources would exist for each Element type for a profile and shall
be hosted by one of the ComputerSystems of that profile.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Table 127: SMI Referenced Properties/Methods for SNIA_CascadingCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
FeaturesSupported uint16[] ValueMap { "2", "3", "4", "5" }, 

Values {"Ownership", "Leaf Creden-
tials", "OM Dependencies", "Allocation 
Service"}

SupportedElementTypes uint16[] For this version of SMI-S, only the 
value "3" (StorageVolume) is sup-
ported.
ValueMap { "2", "3", "4", "5", "6", "7", "8" 
}, 
Values {"Any Type", "StorageVolume", 
"StorageExtent", "StoragePool", "Com-
puterSystem", "LogicalDisk", "File-
Share"}

SupportedSynchronousActions uint16[] ValueMap { "2", "3" }, 
Values {"Allocation", "Deallocation"}

SupportedAsynchronousActions uint16[] ValueMap { "2", "3" }, 
Values {"Allocation", "Deallocation"}

Table 128: SMI Referenced Properties/Methods for SNIA_RemoteResources

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string A user-friendly name for the Remot-

eResources collection (e.g., 
RemoteVolumes).
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 149



 

8.2.1.2.10 Related Standards

EXPERIMENTAL

ElementType uint16 The type of remote resources collected 
by the RemoteResources collection.
For this version of SMI-S, the only 
value supported is "3" (StorageVol-
ume).

Table 129: Related Standards for Cascading

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.11.0 DMTF

Table 128: SMI Referenced Properties/Methods for SNIA_RemoteResources

Property Flags Type Description & Notes
150



 Cluster Subprofile (DEPRECATED)
DEPRECATED

8.2.1.3 Cluster Subprofile (DEPRECATED)
The functionality of the Cluster Subprofile has been subsumed by 8.2.1.9, "Multiple Computer System
Subprofile".

The Cluster Subprofile is defined in IS24775-2006, Storage Management (SMI-S 1.0). Any
instrumentation that complies to the Multiple Computer System Subprofile defined in this specification
may also claim compliance to that version of the Cluster Subprofile and may register as both an SMI-S
1.1 (this version) Multiple Computer System Subprofile and SMI-S 1.0 Cluster Subprofile as defined in
IS24775-2006, Storage Management.

DEPRECATED
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 151



 

152



 Device Credentials Subprofile
8.2.1.4 Device Credentials Subprofile

8.2.1.4.1 Description
Many devices require a shared secret to be provided to access them. This shared secret is different
that the credentials used by the SMI-S Client for authentication with the CIM Server. This Subprofile is
used to change this device shared secrets.

The SMI-S Client shall not be provided with the password, only the principle. The SMI-S Client can use
the principle to change the shared secret appropriately.

The device credentials can be exposed throughout the CIM model such that a CIM Client may
manipulate them. The credentials are modeled as shared secrets. 

Instance Diagram
Figure 30: "Device Credentials Subprofile Model" provides a sample instance diagram.

8.2.1.4.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.1.4.3 Cascading Considerations
Not defined in this standard.

8.2.1.4.4 Supported Subprofiles and Packages
Not defined in this standard.

8.2.1.4.5 Extrinsic Methods of this Profile
Not defined in this standard.

8.2.1.4.6 Client Considerations and Recipes
None.

Figure 30: Device Credentials Subprofile Model

SharedSecretIsShared
1

SharedSecretService

Algorithm: string
Protocol: string

SharedSecret

RemoteID: string [key]
Secret: string
Algorithm: string
Protocol: string

1
HostedService *w

ComputerSystem

OtherIdentifyingInfo: string[ ]
IdentifyingDescriptions: string[ ]
Dedicated: uint16[ ]

RegisteredSubProfile

RegisteredName = “Security CredentialManagement”

ElementConformsToProfile
ReferencedProfile

*

*

*

RegisteredSubProfile

RegisteredName = “Device Credential”

ElementConformsToProfile

*

RegisteredProfile

RegisteredName = “Security”

ReferencedProfile

RegisteredProfile

RegisteredName = “Server”
SubProfileRequiresProfile

SubProfileRequiresProfile

*w
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 153



 

8.2.1.4.7 Registered Name and Version
Device Credentials version 1.1.0

8.2.1.4.8 CIM Server Requirements

8.2.1.4.9 CIM Elements

8.2.1.4.9.1 CIM_ElementConformsToProfile
Class Mandatory: true

Table 130: CIM Server Requirements for Device Credentials

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No

Table 131: CIM Elements for Device Credentials

Element Name Description
Mandatory Classes

CIM_ElementConformsToProfile (8.2.1.4.9.1)
CIM_HostedService (8.2.1.4.9.2)
CIM_RegisteredSubProfile (8.2.1.4.9.4)
CIM_SharedSecret (8.2.1.4.9.5)
CIM_SharedSecretIsShared (8.2.1.4.9.6)
CIM_SharedSecretService (8.2.1.4.9.7)
CIM_SubProfileRequiresProfile (8.2.1.4.9.8)

Optional Classes
CIM_RegisteredProfile (8.2.1.4.9.3)

Table 132: SMI Referenced Properties/Methods for CIM_ElementConformsToProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

ConformantStandard CIM_RegisteredProfile Key
ManagedElement CIM_ManagedElement Key
154



 Device Credentials Subprofile
8.2.1.4.9.2 CIM_HostedService
Class Mandatory: true

8.2.1.4.9.3 CIM_RegisteredProfile
Class Mandatory: false

8.2.1.4.9.4 CIM_RegisteredSubProfile
Class Mandatory: true

8.2.1.4.9.5 CIM_SharedSecret
Class Mandatory: true

Table 133: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_Service

Table 134: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicates SNIA
RegisteredName C string Parent subprofile

Table 135: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicates SNIA
RegisteredName C string This subprofile

Table 136: SMI Referenced Properties/Methods for CIM_SharedSecret

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
ServiceCreationClassName string
ServiceName string
RemoteID string
Secret string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 155



 

8.2.1.4.9.6 CIM_SharedSecretIsShared
Class Mandatory: true

8.2.1.4.9.7 CIM_SharedSecretService
Class Mandatory: true

8.2.1.4.9.8 CIM_SubProfileRequiresProfile
Class Mandatory: true

8.2.1.4.10 Related Standards

Table 137: SMI Referenced Properties/Methods for CIM_SharedSecretIsShared

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_SharedSecretServi
ce

Dependent CIM_SharedSecret

Table 138: SMI Referenced Properties/Methods for CIM_SharedSecretService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
ElementName string

Table 139: SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_RegisteredSubProf
ile

Key

Antecedent CIM_RegisteredProfile Key

Table 140: Related Standards for Device Credentials

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
156



 Extra Capacity Set Subprofile (DEPRECATED)
DEPRECATED 

8.2.1.5 Extra Capacity Set Subprofile (DEPRECATED)
The functionality of the Extra Capacity Set Subprofile has been replaced by 8.2.1.9, "Multiple Computer
System Subprofile".

The Extra Capacity Set Subprofile is defined in Annex B of IS24775-2006, Storage Management, also
known as SMI-S 1.0.

DEPRECATED
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 157



 

158



 Health Package
8.2.1.6 Health Package

8.2.1.6.1 Description
Failures and abnormal occurrences are a common and expected part of monitoring, controlling, and
configuring devices and applications. A SMI-S client needs to be prepared at all times to trap
unexpected situations and take appropriate action. This package defines the general mechanisms used
in the expression of health in SMI-S. This package does not define the particular way a particular
profile, subprofile, or package reports health. 

This package builds on the Health and Fault Management (HFM) Clause. In particular, this package
defines the basis of all the sections that currently and will exist in this specification or future versions of
same.

Error Reporting Mechanism
Error are reports for many reasons. Not all the reasons are directly related to the operation being
imposed on the implementation by the client. It is therefore necessary for the client to be able to
distinguish between errors that are associated to problems in the formation and invocation of a method,
extrinsic or intrinsic, or are related to other conditions. 

The client application may need to reform the method call itself, by fixing parameters for example, or
the client may need to stop what its attempting. At a basic level, the client needs to know that this
operation will succeed at all, given the prevailing conditions on the managed element. A client may also
need to notify the end-user of the situation that is preventing the client from fulfilling its function. A HFM
application may need to investigate the failure and develop a prognosis. 

The types of errors are categorized in the three following types.

a) Errors associated to the method call

b) Errors caused by adverse prevailing conditions in the managed element

c) Errors causes by adverse prevailing conditions in the WBEM Server or related, infrastructural 
components

Obviously, the method called may not exist. There may be a spelling mistake for the method name. One
or more of the parameters may be incorrectly formed, expressed, or otherwise invalid. The first type of
error, type a, is designed to inform the client that the operation attempted is still valid, but that the
request was faulty. The intent of such an error is to tell the client what is wrong with the method call and
allow the method to be invoked again. 

On the other hand, the device or application may be in some failure condition which prevents it from
honoring this particular or several method calls. This type of error, type b, tells the client that the it is
unlikely that the method being attempted will be honored. Specifically, the method execution is blocked
by the prevailing condition being described in the error itself. Given the presence of both type a and
type b error situations, the implementation should  report the type b error. In this case, it does not matter
how many fixes are made to the method call, the method call will fail anyway.

The WBEM Service is a separate architectural element from the managed element itself. It can fail,
even though the methods and the managed element itself are without error. For example, the WBEM
Server may allow only a limited number of concurrent connection or request and reject all others. The
server may be shutting down or starting up and thus be unable to process any requests at the time.
Unlike type b errors, type c errors are usually transient in nature. Since a failure in the WBEM Server or
its components constitutes a communications failure, the reporting of type c errors shall take
precedence over all other existing error type conditions.

The WBEM Server returns a error response or a results response to the request, which contains the
operation previous mentioned. Errors in WBEM may be reported through two ways. The status code
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 159



 

itself provides basic failure information. The number of status codes is very limited. Also on conveyed
on the error response, is a Error instance. The Error provides vastly most information than the status
code and, as such, is a superior mechanism for reporting errors. 

The CIM Error provides attributes to express the categorization and severity of the error. More
importantly, the CIM Error and AlertIndication, to be discussed later, contain the exact expression of the
nature of the error and additional parameters to that error. 

Event Reporting Mechanism
It is not sufficient to simply report the adverse conditions of the device or application through the error
reporting mechanism. Many of the adverse conditions that would be reported to a client application
attempting control or configuration operations are also of interest to client applications monitoring the
very same device or application. 

The CIM Event model provides a special class for reporting event conditions, AlertIndication. The
AlertIndication is used to report a device or application conditions that may also be represented in one
or more other instances. When the implementation detects the presence of a supported condition, it
generates an AlertIndication to those listening clients. 

It is recommended that the type b and type c errors reported above are also be reported through
AlertIndications. 

Standard Events
The expression of Error or an Alertindication is not entirely meaningful to the SMI-S client without the
standardization. A client can use these classes to determine the category, severity, and some other
characteristics of the event, but the client can not determine the exact nature of the event without this
standardization. 

Standard events are registered and this registry is maintained by some organization or company, like
SNIA.

Primary event identification and characterization properties:

• OwningEntity
This property defines the registration entity for the event. The entities that are in scope for
SMI-S are “DMTF” and “SNIA”. If the OwningEntity is neither of these, then this specification
provides no meaning for this event.

• MessageID
This property defines an event identifier that is unique for the OwningEntity. The combination
of the OwningEntity and MessageID defines the entry in the registry. 

• Message
This property contains the message that can be forwarded to the end-user. The message is
built from using the static, MessageFormatString, and dynamic, MessageArguments,
components. This text may be localized. This text is not intended for programmatic
processing

• MessageArguments
This property defines the variable content for the message. The client would
programmatically process the arguments to get further details on the nature of the event. For
example, the message argument can tell the client which method parameter has a problem
and what the problem is. 

• MessageFormatString
This property defines the static component of the message. This property is not included in
the event instance itself and is only present in the event registry.
160



 Health Package
Reporting Health
Many devices or applications can attempt to fix themselves upon encountering some adverse condition.
The set of components which the device or application can attempt to fix is called the Fault Region. The
set may include part or all of other devices or applications. Having the Fault Regions declared helps a
HFM application, acting as a doctor, to do no harm by attempting to interfere and thereby adversely
effect the corrective action being attempted. 

When components fail or become degraded, they can cause other components to fail or become
degraded. For an HFM application to report or attempt to diagnose the problem, the device or
application should express what the cause and effect relationships are that define the extent of the
components affected by the failure or degradation. The RelatedElementCausingError class provides
just such a mechanism. 

The cause and effect relationships identified by the RelatedElementCausingError association may be a
chain of cause and effect relationships with many levels. Given that devices or applications are
sometimes subject to several levels of decomposition, each level of may have its own set of these
associations that represent the ranking of cause and effect relationships and their effect on the parent
component on the given level. 

Computer System Operational Status
For most profiles, the ComputerSystem class is used to define the top or head of the object hierarchy. A
profile may allow for partitioning or clustering by having more than one ComputerSystem, but one
ComputerSystem often represents the device or application representation. In this role, it is important
the summary of the health of the device or application is declared in the ComputerSystem instance.

Table 141: OperationalStatus Details  

Primary Operational 
Status

Subsidiary Operational 
Status

Description

2 “OK” The system has a good status
2 “OK” 4 “Stressed” The system is stressed, for example the tem-

perature is over limit or there is too much IO in 
progress

2 “OK” 5 “Predictive Failure” The system will probably fail sometime soon
3 “Degraded” The system is operational but not at 100% 

redundancy. A component has suffered a fail-
ure or something is running slow

6 “Error” An error has occurred causing the system to 
stop. This error may be recoverable with opera-
tor intervention.

6 “Error” 7 “Non-recoverable error” A severe error has occurred. Operator interven-
tion is unlikely to fix it

6 “Error” 16 “Supporting entity in error” A modeled element has failed
12 “No contact” The provider knows about the array but has not 

talked to it since last reboot
13 “Lost communica-
tion”

The provider used to be able to communicate 
with the array, but has now lost contact.

8 “Starting” The system is starting up
9 “Stopping” The system is shutting down.
10 “Stopped” The data path is OK but shut down, the man-

agement channel is still working.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 161



 

OperationalStatus is an array. The primary and subsidiary statuses are both OperationalStatus
property, and are summarized in Table 141. If the subsidiary operational status is present in the array, it
is intended to provide additional clarification to the primary operational status. The implementation shall
report one of the above combinations of statuses. It may also report additional statues beyond the ones
defined above. 

The operational status combinations listed above that include descriptions about “provider” (i.e., the
CIM Provider), are only valid in those cases where the implementation of SMI-S employs a proxy
provider.

The above operational statuses shall not be used to report the status of the WBEM Server itself. 

EXPERIMENTAL

Event Reporting
The implementation may report Event or AlertIndication instances. The profile, subprofile, or package
that includes this package defines whether or not these events are supported and when the events are
produced. 

If Event or AlertIndication is implemented, then the implementation shall also support the common
messages through both Errors and AlertIndications. This means that the implementation shall produce
the common event listed in the registry whenever the condition, also described in the registry, is
present.

It is mandatory to report error conditions through both AlertIndication or Lifecycle indication and Error in
those cases where Error is returned when the method call failed for reasons other than the method call
itself. For example, if the device is over heated, then a method call can fail because of this condition. It
is expected that the device will report an over heat AlertIndication to listening clients as well.

Fault Region
If the device or application is itself attempting to rectify an adverse condition reported through a
standard error, then the implementation shall report what corrective action, if any, it is taking. This is
necessary to prevent a HFM application from also trying to rectify the very same condition. An HFM
application should avoid a interfering with ongoing corrective action taken by the device or application
itself. 

The corrective action may be a process, like hardware diagnostics or volume rebuild. In which case, the
above requirement is fulfilled by expressing the instances representing the process.

The corrective action may be a state change, like reboot. In which case, the above requirement is
fulfilled by expressing the state change in some CIM Instances.

In all cases, the profile, subprofile, or package that includes this package defines the standard events
included and the associated, possible corrective actions taken in response to these events. 

EXPERIMENTAL

RelatedElementCausingError
This package provides a mechanism by which the effect of a component failure on other components
can be reported. The RelatedElementCausingError association defines what components are causing
a particular component to fail or become degraded.

Some effects are more central to a given failure or degradation than others. This association provides a
mechanism for ranking related effects, easing the identification of primary and secondary causes. The
162



 Health Package
implementing shall provide the EffectCorrelation property, but it recommended that the implementation
also provide the FailureRelationshipInitiated and Ranking properties

If there are these cause and effect relationships, the RelatedElementCausingError association should
be implemented to report the causes of the failure or degradation.

HealthState
The HealthState property in LogicalDevice defines the state for a particular component. The
OperationalStatus defines operational status. For example, a disk or port may be taken off-line for
service. The component’s health may still be OK or not OK. The two properties, when used in
combination, disambiguate the health of the component. For example, a OperationStatus of 10
“Stopped” and a HealthState of 30 “Major Failure” means that the component is off-line and has failed.
While a OperationalStatus of 10 “Stopped” and a HealthState of 5 “OK” for the very same component
means that although the component is off-line, the component is still in good working order. 

The HealthState of a component should not represent the health of any other component as well by
way of a summary or aggregate health state. However, if the component is itself relies on other
components for its health, because the component itself is an aggregate of components, then the
HealthState may represent a summary HealthState by side-effect.

HealthState is a mandatory for all system device logical devices that are defined by the profile or
subprofile that includes this package. It is recommended that HealthState is something other than 0
“Unknown”. However, a component may report “Unknown” after it has reported one of the other
HealthStates. When HealthState changes from 5 “OK”, it is mandatory that a LogicalDevice report
some other HealthState (e.g., 30 “Major Failure”) before reporting 0 “Unknown”. Such a requirement is
necessary, so that the client can notice the adverse state change via polling or indication before the
component is no longer responding. 

8.2.1.6.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.1.6.3 Cascading Considerations
Not defined in this standard.

8.2.1.6.4 Supported Subprofiles and Packages
Not defined in this standard.

8.2.1.6.5 Methods of this Profile
Not defined in this standard.

8.2.1.6.6 Client Considerations and Recipes
Not defined in this standard.

8.2.1.6.7 Registered Name and Version
Health version 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 163



 

8.2.1.6.8 CIM Server Requirements

8.2.1.6.9 CIM Elements

8.2.1.6.9.1 CIM_ComputerSystem
Class Mandatory: true

Table 142: CIM Server Requirements for Health

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 143: CIM Elements for Health

Element Name Description
Mandatory Classes

CIM_ComputerSystem (8.2.1.6.9.1)
CIM_LogicalDevice (8.2.1.6.9.2)

Optional Classes
CIM_RelatedElementCausingError (8.2.1.6.9.3)

Mandatory Indications
SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA     CIM_ComputerSystem AND Source-
Instance.CIM_ComputerSystem::OperationalStatus     
<>     PreviousInstance.CIM_ComputerSystem::Opera-
tionalStatus

CQL - Operational Status change of the device and 
application.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA    CIM_LogicalDevice AND SourceIn-
stance.CIM_LogicalDevice::HealthState <>    
PreviousInstance.CIM_LogicalDevice::HealthState

CQL - Health State change of the logical component.

Table 144: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string
OperationalStatus uint16[] Overall status of the Host
164



 Health Package
8.2.1.6.9.2 CIM_LogicalDevice
Class Mandatory: true

8.2.1.6.9.3 CIM_RelatedElementCausingError
Class Mandatory: false

Table 145: SMI Referenced Properties/Methods for CIM_LogicalDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
HealthState uint16 Reports the health of the component 

beyond the operational status.

Table 146: SMI Referenced Properties/Methods for CIM_RelatedElementCausingError

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ManagedElement
Antecedent CIM_ManagedElement
EffectCorrelation uint16 Describes the general nature of the 

cause and effect correlation.
Optional Properties/Methods

FailureRelationshipInitiated datetime Reports the date and time when this 
cause and effect was created. The pop-
ulation of this property is recom-
mended.

Ranking uint16 Describes the order of effect from 1, the 
highest effect, on. If there is only one of 
these associations between two ele-
ments, the ranking shall be 1. Once 
more associations are added, then it 
Recommend that the implementation 
assist the client by stating which of the 
cause and effect relationship should be 
reviewed and addressed first. This 
property assists a client in accomplish-
ing a triage of known problems.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 165



 

8.2.1.6.10 Related Standards

Table 147: Related Standards for Health

Specification Revision Organization
CIM Infrastructure 2.3 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
166



 Job Control Subprofile
8.2.1.7 Job Control Subprofile

8.2.1.7.1 Description
In some profiles, some or all of the methods described may take some time to execute (longer than an
HTTP time-out). In this case, a mechanism is needed to handle asynchronous execution of the method
as a 'Job'.

This subprofile defines the constructs and behavior for job control for SNIA profiles that make use of the
subprofile. 

Note:  The subprofile describes a specific use of the constructs and properties involved. The actual
CIM capability may be more, but this specification clearly states what clients may depend on in
SNIA profiles that implement the Job Control subprofile.

Instance Diagram
A normal instance diagram is provided in Figure 31: "Job Control Subprofile Model".

When the Job Control Subprofile is implemented and a client executes a method that executes
asynchronously, a reference to an instance of ConcreteJob is returned and the return value for the
method is set to “Method parameters checked - job started”.

The ConcreteJob instance allows the progress of the method to be checked, and instance Indications
can be used to subscribe for Job completion. 

The associations OwningJobElement and AffectedJobElement are used to indicate the service whose
method created the job by side-effect and the element being affected by the job. The job itself may
create, modify and/or delete many elements during its execution.  The nature of this affect is the
creation or deletion of the instances or associations or the modification of instance properties.  These
elements, albeit regular instances or associations, are said to be affected by the job.  The elements
linked by AffectedJobElement may change through the execution of the job, and in addition, the job
may be associated to more than one Input and/or Output elements or other elements affected by side-
effect. Input and Output elements are those referenced by method parameters of the same type, input
and output parameters respectively.  

Figure 31: Job Control Subprofile Model

Service
(e.g., StorageConfigurationService)

OwningJobElement

ManagedElement
(e.g., StorageVolume)AffectedJobElement

AssociatedJobMethodResult

ConcreteJob

MethodResult
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 167



 

EXPERIMENTAL

The following set of rules defines the nature of the AffectedJobElement associations for a given job in
terms of the references passed as parameters to the service method that spawned the job. Obviously,
the distinction of Input element from Output element in the following rules only makes sense if these
parameters are not both Input and Output elements. 

• If all Elements created by the method exists immediately upon the return from the method, then
AffectedJobElement shall reference the Output Element. 

• If the Output Element, one or more, does not exist until the job has completed, the
AffectedJobElement shall reference the Input Element until the job completes, at which time
AffectedJobElement shall then reference the Output Element instead. 

• In the event the job fails and the Output  Element created during the job and referenced by
AffectedJobElement is no longer available, AffectedJobElement shall  revert to referencing the
Input  Element.

• If the method affects elements without referencing elements as Output parameters, then the
AffectedJobElement Association shall reference the Input element, one or more. 

• If the method only modifies the elements referenced with method parameters, then the
AffectedJobElement association references the modified elements.  Elements modified by the job
shall be reference by this association.

• If the method affects elements but references no elements as either Input or Output parameters or
the only Input elements referenced are those of the elements to be deleted, then AffectJobElement
associations shall exist to other elements that are affected by the job.

• Other elements whose references are not used in the method invocation, but that are created or
modified by side-effect of the job’s execution shall be associated to the job via the
AffectJobElement association, but may cease to be associated once the job has finished
execution. 

The lifetime of a completed job instance, and thus the AffectedJobElement association to the
appropriate Element is currently implementation dependent.  However, the set of AffectedJobElement
associations to Input and Output element present when the job finishes execution shall remain until the
job is deleted. 

MethodResult
Jobs are produced by side effect of the invocation of an extrinsic method. Reporting the resulting Job is
the purpose of this subprofile. The MethodResult class is used to report the extrinsic method called and
the parameters passed to the method. In this way, third party observers of a CIMOM can tell what the
job is and what it is doing. A MethodResult instance contains the LifeCycle indications that have been
or would have been produced as the result of the extrinsic method invocation. That is, the instance
contains the indications whether or not there were the appropriate indication subscription at the time the
indication were produced.

A client may fetch the method lifecycle indication produced when the method was called from the
PreCallIndication attribute. This indication, an instance of InstMethodCall, contains the input
parameters provided by the client that called the method. 

A client may fetch the method lifecycle indication produced once the method execution was completed
from the PostCallIndication. This indication contains the input parameters provided by the client that
called the method and output parameters returned by the method implementation. Parameters that are
168



 Job Control Subprofile
both input and output parameters will contain the output parameter provided by the method
implementation. 

EXPERIMENTAL

OperationalStatus for Jobs
 The OperationalStatus property is used to communicate that status of the job that is created. As such,
it is critical that implementations are consistent in how this property is set. The values that shall be
supported consistently are:

• 2 “OK” - combined with 17 “Completed” to indicate that the job completed with no error.

• 6 “Error” - combined with 17 “Completed” to indicate that the job did not complete normally and
that an error occurred.

• 10 “Stopped” implies a clean and orderly stop. 

• 17 “Completed” indicates the Job has completed its operation. This value should be combined with
either 2 “OK” or 6 “Error, so that a client can tell if the complete operation passed (Completed with
OK), and failure (Completed with Error). 

JobState for Jobs
The JobState property is used to communicate Job specific states and statuses.  

• 2 “New” - Job was created but has not yet started

• 3 “Starting” - Job has started

• 4 “Running” - Job is current executing

• 5 “Suspended” - Job has been suspended.  The Job may be suspended for many reasons like it
has been usurped by a higher priority or a client has suspended it (not described within this
subprofile). 

• 6 “Shutting Down” - Job is completing its work, has been terminated, or has been killed.  The Job
may be cleaning up after only having completed some of its work.  

• 7 “Completed” - Job has completed normally, its work has been completed successfully.

• 8 “Terminated” - Job has been terminated

• 9 “Killed” - Job has been aborted.  The Job may not cleanup after itself.

• 10 “Exception” - Job failed and is in some abnormal state. The client may fetch the error conditions
from the job. See Getting Error Conditions from Jobs () in 8.2.1.7.1, "Description".
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 169



 

Table 148 maps the standard mapping between the OperationalStatus and JobState properties on
ConcreteJob. The actual values of the properties are listed in Table 148 with the associated value from

the property’s ValueMap qualifier.

Determining How Long a Job Remains after Execution
The Job shall report how long it will remain after it has finished executing, fails on its own, is terminated,
or is killed.  The TimeBeforeRemoval attribute reports a datetime offset.  

The TimeBeforeRemoval and DeleteOnCompletion attributes are related. If the DeleteOnCompletion is
FALSE, then the Job shall remain until is it explicitly deleted.  If the DeleteOnCompletion is TRUE, then
the Job shall exist for the length of time specified in the TimeBeforeRemoval attribute.  An
implementation may not support the setting of the DeleteOnCompletion attribute because it does not
support the client modifying the Job instance.

The amount of time specified in the TimeBeforeRemoval should be five or more minutes. This amount
of time allows a client to recognize that the Job has failed and retrieve the Error.

8.2.1.7.2 Health and Fault Management
The implementation should report CIM Errors from the ConcreteJob.GetError() method. See 8.2.1.6,
"Health Package" for details.

EXPERIMENTAL

The standards messages specific to this profile are listed in Table 149. See 6.5, "Standard Messages"
for a description of standard messages and the list all standard messages

EXPERIMENTAL

Table 148: OperationalStatus to Job State Mapping

OperationalStatus JobState Job is
2 “OK”, 17 “Completed” 7 “Completed” Completed normally
6 “Error”, 17 “Completed” 10 “Exception” Completed abnormally
10 “Stopped” 7 “Terminated” Terminated
6 “Error” 9 “Killed” Aborted / Killed
2 “OK” 4 “Running” Executing
15 “Dormant” 2 “New” Created but not yet executing
2 “OK”, 8 “Starting” 3 “Starting” Starting up
2 “OK” 5 “Suspended” Suspended
2 “OK”, 9 “Stopping” 6 “Shutting Down” Terminated and potentially 

cleaning up
6 “Error” 6 “Shutting Down” Killed and is aborting

Table 149: Standard Message for Job Control Subprofile

Message ID Message Name
DRM22 Job failed to start
DRM23 Job was halted
170



 Job Control Subprofile
8.2.1.7.3 Cascading Considerations
Not defined in this standard.

8.2.1.7.4 Support Subprofiles and Packages
Not defined in this standard.

8.2.1.7.5 Methods of the Profile
Job Modification
A Job instance may be modified. The DeleteOnCompletion and TimeBeforeRemoval properties are
writable. If the intrinsic ModifyInstance method is supported, then the setting of both attributes shall be
supported.

EXPERIMENTAL

Getting Error Conditions from Jobs
uint32 GetError(

[Out, EmbeddedObject] string Error); 

This method is used to fetch the reason for the job failure.  The type of failure being report is when a
Job stops executing on its own.  That is, the Job was not killed or terminated.  An Embedded Object,
encoded in a string, shall returned if the method is both supported and the job has failed.  The Job shall
report the 10 “Exception” status when the Job has failed on its own.  

The GetError method should be supported.

The Error string contains a Error instance. See 8.2.1.6, "Health Package" for details on how to process
this CIM Instance.

EXPERIMENTAL

Suspending, Killing or Terminating a Job
A Job may be suspended, terminated or killed.  Suspending a Job means that the Job will not be
executing and  be suspended until it is resumed.  Terminating a job means to request that the Job stop
executing and that the Job clean-up its state prior to completing.  Killing a job means to request that the
Job abort executing, usually meaning there is little or no clean-up of Job state.  

uint32 RequestStateChange(
[In] RequestedState,
[In] TimeoutPeriod);

A client may request a state change on the Job.

• RequestedState - The standard states that can requested are “Start”, “Suspend”, “Terminate”,
“Kill”, “Service”. A new Job may be started. A suspended Job may be resumed, using the “Started”
requested status. A executing Job may be suspended, terminated, or killed. A new or executing
Job may be put into the “Service” state. The “Service” state is vendor specific. An implementation
can indicate what state transitions are supported by not returning the 4 098 “Invalid State
Transition” return code

• TimeoutPeriod - The client the state transition to occur within the specified amount of time.  The
implementation may support the method but not this parameter.

Return codes:

• 0 “Completed with No Error”
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 171



 

• 1 “Not Supported” - The method is not supported

• 2 “Unknown/UnSpecified Error” - Failure for some vendor specific reason

• 3 “Can not complete within Timeout Period” - The requested amount of time is less than how long
the requested state transition takes

• 4 “Failed” 

• 5 “Invalid Parameters” - The parameters are incorrect

• 6 “In Use” - Another client has requested a state change that has not completed

• 4 096 “Method Parameters Checked - Transition Started” - The method can return before the state
transition completes. This error code tells that calling that this situation has occurred

• 4 097 “Invalid State Transition” - The state change requested is invalid for the current state. 4 098
“Use of Timeout Parameter Not Supported” - This implementation does not support the
TimeoutPeriod parameter. A client may pass a NULL for the TimeoutPeriod and try again. There is
no mechanism to determine what state changes are supported by a particular implementation.
Such a mechanism is planned for a future version of this specification.

• 4 099 “Busy” - A state change is underway in the Job and, as such, the state can not be changed.
An implementation may use this return code to indicate the job can not be suspended, killed, or
terminated at all or in the current phase of execution

8.2.1.7.6 Client Considerations and Recipes
If the operation will take a while (longer than an HTTP timeout), a handle to a newly minted
ConcreteJob is returned. This allows the job to continue in the background. Note a few things:

• The job is associated to the Service via OwningJobElement and is also linked to the object being
modified/created via AffectedJobElement. For example, a job to create a StorageVolume may start
off pointing to a Pool until the Volume is instantiated at which point the association would change
to the StorageVolume.

• These jobs do not have to get instantiated. If the method completes quickly, a null can be returned
as a handle, as illustrated in Figure 32: "Storage Configuration". 

• It may take some time before the Job starts.

• A Job may be terminated or killed. 

• Jobs may be modified.

• Jobs may be restarted. 
172



 Job Control Subprofile
8.2.1.7.7 Registered Name and Version
Job Control version 1.1.0

8.2.1.7.8 CIM Server Requirements

Figure 32: Storage Configuration

Table 150: CIM Server Requirements for Job Control

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No

Cluster

StorageSystem

StorageConfigurationService

ConcreteJob

StoragePool

StorageVolume

AffectedJobElement

OwningJobElement

AffectedJobElement

Describes range of 
capabilities of Pools/Volumes 
that can be created
with the Service

StorageCapabilities

Element
Capabilities

HostedService
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 173



 

8.2.1.7.9 CIM Elements

Table 151: CIM Elements for Job Control

Element Name Description
Mandatory Classes

CIM_AffectedJobElement (8.2.1.7.9.1)
CIM_AssociatedJobMethodResult (8.2.1.7.9.2)
CIM_ConcreteJob (8.2.1.7.9.3)
CIM_MethodResult (8.2.1.7.9.4)
CIM_OwningJobElement (8.2.1.7.9.5)

Mandatory Indications
SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ConcreteJob                          AND 
SourceInstance.PercentComplete <> PreviousIn-
stance.PercentComplete

Deprecated WQL - Modification of Percentage Com-
plete for a Concrete Job

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ConcreteJob                          AND 
SourceInstance.OperationalStatus[*] = 17 AND Source-
Instance.OperationalStatus[*] = 2

Deprecated WQL - Modification of Operational Status 
for a Concrete Job to 'Complete' and 'OK'

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ConcreteJob                          AND 
SourceInstance.OperationalStatus[*] = 17 AND Source-
Instance.OperationalStatus[*] = 6

Deprecated WQL - Modification of Operational Status 
for a Concrete Job to 'Complete' and 'Error'

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ConcreteJob                          AND 
SourceInstance.CIM_ConcreteJob::PercentComplete 
<> PreviousInstance.CIM_ConcreteJob::PercentCom-
plete

CQL - Modification of Percentage Complete for a Con-
crete Job

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ConcreteJob                          AND 
ANY SourceInstance.CIM_ConcreteJob::Operational-
Status[*] = 17 AND ANY SourceIn-
stance.CIM_ConcreteJob::OperationalStatus[*] = 2

CQL - Modification of Operational Status for a Concrete 
Job to 'Complete' and 'OK'

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ConcreteJob                          AND 
ANY SourceInstance.CIM_ConcreteJob::Operational-
Status[*] = 17 AND ANY SourceIn-
stance.CIM_ConcreteJob::OperationalStatus[*] = 6

CQL - Modification of Operational Status for a Concrete 
Job to 'Complete' and 'Error'

Optional Indications
SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ConcreteJob                          AND 
SourceInstance.JobStatus <> PreviousInstance.JobSta-
tus

Deprecated WQL - Modification of Job Status for a Con-
crete Job. Deprecated

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ConcreteJob                          AND 
SourceInstance.CIM_ConcreteJob::JobStatus <> Previ-
ousInstance.CIM_ConcreteJob::JobStatus

CQL - Modification of Job Status for a Concrete Job. 
Deprecated
174



 Job Control Subprofile
8.2.1.7.9.1 CIM_AffectedJobElement
Class Mandatory: true

8.2.1.7.9.2 CIM_AssociatedJobMethodResult
Class Mandatory: true

8.2.1.7.9.3 CIM_ConcreteJob
Created By : External
Deleted By : External
Class Mandatory: true

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ConcreteJob                          AND 
SourceInstance.JobState <> PreviousInstance.JobState

Deprecated WQL - Modification of Job State for a Con-
crete Job.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ConcreteJob     AND SourceIn-
stance.CIM_ConcreteJob::JobState <> 
PreviousInstance.CIM_ConcreteJob::JobState

CQL - Modification of Job State for a Concrete Job.

Table 152: SMI Referenced Properties/Methods for CIM_AffectedJobElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

AffectedElement CIM_ManagedElement The ManagedElement affected by the 
execution of the Job.

AffectingElement CIM_Job The Job that is affecting the Man-
agedElement.

Table 153: SMI Referenced Properties/Methods for CIM_AssociatedJobMethodResult

Property Flags Type Description & Notes
Mandatory Properties/Methods

Job CIM_ConcreteJob The Job that has parameters.
JobParameters CIM_MethodResult The parameters for the method which 

by side-effect created the Job.

Table 154: SMI Referenced Properties/Methods for CIM_ConcreteJob

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
Name string The user-friendly name for this instance 

of Job. In addition, the user-friendly 
name can be used as a property for a 
search or query. (Note: Name does not 
have to be unique within a 
namespace.)" 

Table 151: CIM Elements for Job Control

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 175



 

OperationalStatus uint16[] Describes whether the Job is running 
or not.

JobStatus string Add additional detail beyond the Oper-
ationalStaus about the runtime status of 
the Job. This property is free-form and 
vendor-specific

PercentComplete uint16 The percentage of the job that has 
completed at the time that this value is 
requested. Optimally, the percentage 
should reflect the amount of work 
accomplished in relation to the amount 
of work left to be done. 0 percent com-
plete means that the job has not started 
and 100 percent complete means the 
job has finished all its work. However, 
in the degenerate case, 50 percent 
complete means that the job is running 
and may remain that way until the job 
completes.

DeleteOnCompletion boolean Indicates whether or not the job should 
be automatically deleted upon comple-
tion. If this property is set to false and 
the job completes, then the extrinsic 
method DeleteInstance shall be used 
to delete the job versus updating this 
property. Even if the Job is set to delete 
on completion, the job shall remain for 
some period of time, see GetError() 
method. 

TimeBeforeRemoval datetime The amount of time the job will exist 
after the execution of the Job if Dele-
teOnCompletion is set to FALSE. Jobs 
that complete successfully or fail shall 
remain for at least this period of time 
before being removed from the model 
(CIMOM).

JobState uint16 Add additional detail beyond the Oper-
ationalStaus about the runtime state of 
the Job.

Table 154: SMI Referenced Properties/Methods for CIM_ConcreteJob

Property Flags Type Description & Notes
176



 Job Control Subprofile
GetError() This method is used to retrieve the 
error that caused the Job to fail. The 
Job shall remain in the model long 
enough to allow client to a) notice that 
the job was stopped executing and b) 
to retrieve the error using this method. 
There are not requirements for how 
long the job must remain; however, it is 
suggested that the Job remain for at 
least five minutes. JobStatus=10 
"Exception" tell the client that the job 
failed and this method can be called to 
retrieve the reason why embedded in 
the CIM_Error, see GetError() method.

Optional Properties/Methods
ElapsedTime datetime The time interval that the Job has been 

executing or the total execution time if 
the Job is complete.

ErrorCode uint16 A vendor specific error code. This is set 
to zero if the job completed without 
error.

ErrorDescription string A free form string containing the vendor 
error description.

RequestStateChange() This method changes the state of the 
job. The client may suspend, terminate, 
or shutdown the job. To terminate a job 
means to request a clean shutdown of 
the job, have it finish some portion of 
it's work and terminate or to roll back 
the changes done by the job to date. 
The implement can make the choice 
which behavior. To kill a job means to 
abort the job, perhaps leaving some 
element of the work partially done and 
in an unknown state. 

Table 154: SMI Referenced Properties/Methods for CIM_ConcreteJob

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 177



 

8.2.1.7.9.4 CIM_MethodResult
Class Mandatory: true

8.2.1.7.9.5 CIM_OwningJobElement
Class Mandatory: true

8.2.1.7.10 Related Standards

Table 155: SMI Referenced Properties/Methods for CIM_MethodResult

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
PrecallIndication string Contains a copy of the 

CIM_InstMethodCall produced when 
the configuration or control change 
method was called. This EmbeddedIn-
stance contains the configuration or 
control change extrinsic method name 
(MethodName) and parameters (Meth-
odParameters).

PostCallIndication string Contains a copy of the 
CIM_InstMethodCall produced when 
the configuration or control change 
method has completed execution and 
control was returned to the client. This 
EmbeddedInstance contains the con-
figuration or control change extrinsic 
method name (MethodName) and 
parameters (MethodParameters).

Table 156: SMI Referenced Properties/Methods for CIM_OwningJobElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

OwningElement CIM_ManagedElement The ManagedElement responsible for 
the creation of the Job. (e.g., Storage-
ConfigurationService)

OwnedElement CIM_Job The Job created by the ManagedEle-
ment.

Table 157: Related Standards for Job Control

Specification Revision Organization
CIM Infrastructure 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
178



 Location Subprofile
8.2.1.8 Location Subprofile

8.2.1.8.1 Description
Associated with product information, a PhysicalPackage may also have a location. This is indicated
using an instance of a Location class and the PhysicalElementLocation association.

Instance Diagram
Figure 33: "Location Instance" illustrates a typical instance diagram.

8.2.1.8.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.1.8.3 Cascading Considerations
Not defined in this standard.

8.2.1.8.4 Supported Subprofiles and Packages
None.

8.2.1.8.5 Methods of the Profile
None.

8.2.1.8.6 Client Considerations and Recipes
None

8.2.1.8.7 Registered Name and Version
Location version 1.1.0

Figure 33: Location Instance

PhysicalPackage

Location

PhysicalElementLocation
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 179



 

8.2.1.8.8 CIM Server Requirements

8.2.1.8.9 CIM Elements

8.2.1.8.9.1 CIM_Location
Class Mandatory: true

Table 158: CIM Server Requirements for Location

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 159: CIM Elements for Location

Element Name Description
Mandatory Classes

CIM_Location (8.2.1.8.9.1)
CIM_PhysicalElementLocation (8.2.1.8.9.2) Associates the location to product

Table 160: SMI Referenced Properties/Methods for CIM_Location

Property Flags Type Description & Notes
Mandatory Properties/Methods

Name string A free-form string defining a label for 
the Location.

PhysicalPosition string A free-form string indicating the place-
ment of a PhysicalElement.

Optional Properties/Methods
ElementName string User-friendly name.
Address string A free-form string indicating a street, 

building or other type of address for the 
PhysicalElementsLocation.'
180



 Location Subprofile
8.2.1.8.9.2 CIM_PhysicalElementLocation
Associates the location to product
Class Mandatory: true

8.2.1.8.10 Related Standards

Table 161: SMI Referenced Properties/Methods for CIM_PhysicalElementLocation

Property Flags Type Description & Notes
Mandatory Properties/Methods

Element CIM_PhysicalElement The PhysicalElement whose Location 
is specified.

PhysicalLocation CIM_Location The PhysicalElementsLocation.'

Table 162: Related Standards for Location

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 181



 

182



 Multiple Computer System Subprofile
8.2.1.9 Multiple Computer System Subprofile

8.2.1.9.1 Description
The Multiple Computer System Subprofile models multiple systems that cooperate to present a “virtual”
computer system with additional capabilities or redundancy. This virtual aggregate system is
sometimes referred to as a cluster. and is illustrated in Figure 34:, "Two Redundant Systems Instance
Diagram"., 

The general pattern for the redundancy aspect of Multiple Systems uses an instance of RedundancySet
to aggregate multiple “real” ComputerSystem instances (labeled RCS0 and RCS1 in the diagram).
Another ComputerSystem instance (TCS0) is associated to the RedundancySet instance using a
ConcreteIdentity association and is associated to the real ComputerSystems using ComponentCS.

Top Level System
The top (“virtual”) system in this diagram (labeled TCS0) is referred to as the Top Level System. Note
that for single-system configurations, the top-level system is the only system. Top-level systems have
characteristics different from the underlying ComputerSystem instances.

The Top Level System is associated to the registered profile described in 8.2.4.1, "Server Profile".
Other elements such as LogicalDevices (ports, volumes), ServiceAccessPoints, and Services are
associated to the top-level system if these elements are supported by multiple underlying systems (for
example, the underlying systems provide failover and/or load balancing). Alternatively, elements can be
associated to an underlying system if that system is a single point of failure. For example, a RAID array
may associate StorageVolume instances to a top-level system since these are available when one
underlying system (RAID controller) fails, all the port elements are associated to one underlying system
because the ports become unavailable when this system fails.

The Dedicated property is required for top-level systems. Each profile defines the values that are
appropriate for Dedicated.

Non-Top-Level Systems
Each ComputerSystem instance shall have a unique Name property. For non-top-level systems, Name
may be vendor-unique; in which case, NameFormat shall be set to “Other”.

ComputerSystem.Dedicated should not be used in non-top-level systems.

Figure 34: Two Redundant Systems Instance Diagram

Top-level System 
included in profile

RCS0: ComputerSystem

RedundancySet

ConcreteIdentity

TCS0: ComputerSystem

RCS1: ComputerSystem

MemberOfCollection MemberOfCollection

ComponentCS ComponentCS
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 183



 

Non-top-level systems shall not be associated to registered profiles or subprofiles.

Each non-top-level ComputerSystem shall be associated to the top-level system using ComponentCS.
Note that non-top-level systems may not be members of a RedundancySet. For example, a top-level
system may be associated to a RedundancySet with two systems as described in Figure 34: "Two
Redundant Systems Instance Diagram" and also associated via ComponentCS to another Computer
(not a member of a RedundancySet) representing a service processor.

Types of RedundancySets
The TypeOfSet property of RedundancySet is a list describing the types of redundancy. its values are
summarized in Table 163.

Multiple Tiers of Systems
The diagram above describes two tiers of systems; the real systems (labeled RCS0 and RCS1) in the
lower tier are aggregated into a top-level system (TCS0) in the upper tier. There may be more than two
tiers, as depicted in Figure 35: "Multiple Redundancy Tier Instance Diagram".

Table 163: Redundancy Type

Redundancy Type Description
N+1 All ComputerSystems are active, are unaware and function independent of one 

another. However, there exists at least one extra ComputerSystem to achieve 
functionality.

Load Balanced All computer systems are active. However, their functionality is not independent of 
each other. Their functioning is determined by some sort of load balancing algo-
rithm (implemented in hardware and/or software). 'Sparing' is implied (i.e., each 
computer system can be a spare for the other(s).

Sparing All computer systems are active and are aware of each other. However, their func-
tionality is independent until failover. Each computer system can be a spare for the 
other(s).

Limited Sparing All members are active, and they may or may not be aware of each and they are 
not spares for each other. Instead, their redundancy is indicated by the IsSpare 
relationship.

Other/Unspecified The relationship between the computer systems is not specified.

Figure 35: Multiple Redundancy Tier Instance Diagram

RCS0: ComputerSystem

RedundancySet

ConcreteIdentity

ComputerSystem

RCS1: ComputerSystem

MemberOf
Collection

MemberOf
Collection

RCS2: ComputerSystem

RedundancySet

ConcreteIdentity

ComputerSystem

RCS3: ComputerSystem

MemberOf
Collection

MemberOf
Collection

RedundancySet

ConcreteIdentity

TCS0: ComputerSystem

MemberOf
Collection

Component
CS
184



 Multiple Computer System Subprofile
The systems in the bottom tier (RCS0-RCS3) represent "real" systems. 

RedundancySet.TypeOfSet can be used as part of multiple tier configurations to describe different
types of redundancy at different tiers. For example, a virtualization system has four controllers that
operate in pairwise redundancy. This could be modeled using the model in the diagram above and
setting TypeOfSet in the top RedundancySet to “N+1” and setting TypeOfSet to “LoadBalancing” in the
lower two RedundacySets.

Associations between ComputerSystems and other Logical Elements
SystemDevice associates device (subclasses of LogicalDevice such as LogicalPort or StorageVolume)
and ComputerSystem instances. The cardinality of SystemDevice is one-to-many; a LogicalDevice may
be associated with one and only one ComputerSystem. If the device availability is equivalent to that of
the top-level system, it shall be associated to the top-level system via SystemDevice. If the device may
become unavailable while the system as a whole remains available, the device shall be associated to a
non-top-level system that has availability equivalent to the device. This system could be a real system
or a system in an intermediate tier (representing some redundancy less than full redundancy).

This same approach shall be used for all other logical CIM elements with associations to systems. For
example, HostedService and HostedAccessPoint shall associate elements (services, access points,
and protocol endpoints) to the ComputerSystem with availability to the element.

Based on the arrangement of systems in Figure 35, associations from systems to service and
capabilities classes shall not be lower than associations to other classes. For the purpose of formally
stating this rule, each ComputerSystem is assigned a level number. The profile's top-level
ComputerSystem has level number 0. The ComputerSystem instances that are members of
RedundancySets associated via ConcreteIdentity to the top-level system have level number 1. The
members of redundancy sets associated to the level number 1 systems via ConcreteIdentity have level
number 2. In general, the ComputerSystem members of redundancy sets associated to the level
number n systems via ConcreteIdentity have level number n+1. The level of non-system objects is the
level of the ComputerSystem instance associated to the object via associations such as SystemDevice,
HostedAccessPoint, HostedService, or ElementCapabilities. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 185



 

Figure 36: "System Level Numbers" demonstrates these system level numbers using the same
configuration from Figure 35: "Multiple Redundancy Tier Instance Diagram". Note that ComponentCS
diagrams are omitted from this diagram to avoid clutter.

All subclasses of CIM_Service and CIM_Capabilities shall have a level number less than or equal to the
level number of storage classes (ports, volumes, etc.) that are influenced by the properties and
methods of the Service and Capabilities classes. In some cases, different storage classes are
influenced by different Service or Capabilities classes; the “level number less than or equal to”
requirement may apply differently to different Service/Capabilities classes. It is always valid to
associate Service and Capabilities classes to the top-level ComputerSystem since the level number of
the top-level system (0) is always less than or equal to the level number of any other system. 

Example 1 - An array with two controllers is modeled as a top-level ComputerSystem with real systems
representing the controllers. The system’s storage volumes remain available when one controller fails,
but each LogicalPort becomes unavailable when a controller fails. The StorageVolumes should be
associated to the top-level ComputerSystem and the LogicalPorts should be associated to one of the
real ComputerSystems.
Example 2 - An array with four pair-wise redundant controllers. Each LogicalPort is associated with a
pair of controllers - if one controller in a pair fails, the port is still accessible through the alternate
controller. This corresponds to Figure 35: "Multiple Redundancy Tier Instance Diagram"; the ports
should be associated with one of the ComputerSystems in the middle tier.
A provider shall delete and create associations between ComputerSystems and logical elements (e.g.,
ports, logical devices) during failover or failback to represent changes in availability. This includes
SystemDevice, HostedAccessPoint, HostedService, or HostedFileSystem associations (and other
associations weak to systems). The effect of the creation and deletion of associations is to switch these
elements from one ComputerSystem to another. The profiles that include Multiple Computer System
Subprofile shall specify the affected associations and indications for creation and deletion of these
associations.

Associations between ComputerSystems and PhysicalPackages and Products
The relationship between ComputerSystems, PhysicalPackages, and Products is defined in the
Physical Package Package (see 8.2.1.10, "Physical Package Package") which may be required by the
profile including the Multiple Computer System Subprofile. Typically, the top-level system is associated

Figure 36: System Level Numbers

RCS0: ComputerSystem

RedundancySet

ConcreteIdentity

ComputerSystem

RCS1: ComputerSystem

MemberOf
Collection

MemberOf
Collection

RCS2: ComputerSystem

RedundancySet

ConcreteIdentity

ComputerSystem

RCS3: ComputerSystem

MemberOf
Collection

MemberOf
Collection

RedundancySet

ConcreteIdentity

TCS0: ComputerSystem

MemberOf
Collection

Level 0 System

Level 2 Systems

Level 1 System Level 1 System
186



 Multiple Computer System Subprofile
to a PhysicalPackage which is associated to a Product. Non-top-level systems may also be associated
to PhysicalPackage and indirectly to a Product. If all underlying ComputerSystems share the same
physical package, a single PhysicalPackage should be associated to the upper ComputerSystem.

The relationships between ComputerSystems, redundancy sets, and CIM logical elements serve as a
redundancy topology - informing the client of the availability of subsets of logical elements. The
relationships between PhysicalPackages and logical elements serve as a physical topology. These two
topologies need not be equivalent. Consider these examples:

Example 1: a RAID array with a single controller (no redundancy); the controller and all backend disks
are housed in a single chassis. This is modeled as a single ComputerSystem, no RedundancySets, no
ComponentCS associations, and a single PhysicalPackage with a single associated Product.

Example 2: a RAID array with two redundant controllers; both controllers and all backend disks share a
single chassis. In this case, the redundancy topology matches Figure 34: "Two Redundant Systems
Instance Diagram". The top-level ComputerSystem is associated to a PhysicalPackage with a single
associated Product.

Example 3: two arrays described in example 1 are assembled as part of common rack and sold as a
single product. Note that although there are two controllers, there is no redundancy - the two controllers
act completely independently. This is modeled as two top-level computer systems attached to separate
PhysicalPackages (representing the two internal chassis); These two PhysicalPackages have a
Container association to third PhysicalPackage representing the assembly - which has an association
to a Product.

Example 4: two arrays described in Example 1 are assembled as part of a common rack and also share
a high-speed trunk and a mutual failover capability. This failover capability means the two controllers
share a RedundancySet and common top-level system. The result is similar to example 2, but each real
ComputerSystem is now associated to separate PhysicalPackages which have Contiainer associations
to a common PhysicalPackage.

Storage Systems without Multiple Systems 
In configurations where the instrumentation does not model multiple ComputerSystem instances, all the
associations described above reference the one and only ComputerSystem.

Durable Names and Correlatable IDs of the Subprofile
This subprofile does not impose any requirements on names. The requirements for ComputerSystem
names are defined in the profiles that depend on Multiple Computer System Subprofile and in 6.2.4,
"Correlatable and Durable Names". Clients should not expect that a network name or IP address is
exposed as a ComputerSystem property. The Access Points subprofile should be used to model a
network access point.

8.2.1.9.2 Health and Fault Management Considerations
The requirements for OperationalStatus of a ComputerSystem are discussed in 8.2.1.6, "Health
Package".

8.2.1.9.3 Cascading Considerations
None

8.2.1.9.4 Supported Subprofiles and Packages
None.

8.2.1.9.5 Methods of the Profile
This subprofile does not include any extrinsic methods. A client may use this subprofile to discover
information about the topology of computer systems, but cannot change the topology.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 187



 

8.2.1.9.6 Client Considerations and Recipes
A client cannot generally, interoperably navigate the redundancy topology using ComponentCS
because some Component CS associations may not parallel RedundancySet associations. But a client
may use ComponentCS selectively to speed up certain tasks. In particular, a client may locate the top-
level system from other ComputerSystems using ComponentCS.

8.2.1.9.6.1 Find Top-level Computer Systems
See 8.2.4.1.5.3, "Identify the ManagedElement Defined by a Profile". Top-level systems are the only
objects in SMI-S associated to RegisteredProfile via ElementConformsToProfile.

8.2.1.9.6.2 Find the Top-level Computer System for any LogicalDevice 
/ 

// DESCRIPTION:

// Find the Top-level Computer System for any CIM_LogicalDevice

//

// Preconditions:

//  $Device - Reference the LogicalDevice

//

// Find Systems associated to $Device

$Systems->[] = AssociatorNames($Device->,   // ObjectName

        “CIM_SystemDevice”,             // AssocClass

        “CIM_System”,                   // ResultClass

        “PartComponent”,                // Role

        “GroupComponent”)               // ResultRole

if ($Systems == null || $Systems->[].size != 1) {

    <ERROR! must be exactly one ComputerSystem Associated via

         SystemDevice to each LogicalDevice instance>

}

// System->[0] is the associated system; see if it’s the

// top-level system for the scoping profile.  All ComponentCS

// association GroupComponent references must refer to the

// profile’s top-level system.

$UpperSystems->[] = AssociatorNames($System->[0],

“CIM_ComponentCS”,// AssocClass

“CIM_ComputerSystem”,// ResultClass

“PartComponent”,// Role

“GroupComponent”)   // ResultRole   

if ($UpperSystems != null && $UpperSystems->[].size > 1) {

// The restriction below is a characteristic of this subprofile

// and matches the DMTF Partinion white paper.

    <ERROR! must be no more than one ComputerSystem Associated 

         via ComponentCS to each LogicalDevice instance>

}

// If an upper system was found, it must be the top-level

// system; if not, then the system associated to the device

// must be the top-level system

if ($UpperSystems->[].size == 1) {
188



 Multiple Computer System Subprofile
  $TopLevelSystem =  $UpperSystems->[0]

} else {

  $TopLevelSystem = $System->[0]

}

// The remaining steps are not needed to locate the top-level

// system, but validate the classes and associations.

//

// The system associated to the device may also be part of a RedundancySet.

// If so, follow a chain from that system to the RedundancySet, then

// follow ConcreteIdentity to a system - then check to see if it has

// ConponentCS to the top-level system.  Keep iterating till no more

// RedundancySets - this must be the same system as TopLevelSystem.

do {

    // Get the RedundancySet that $System->[0] is a member of

    $RedundancySets->[] = AssociatorNames($System->[0],

“CIM_MemberOfCollection”,

“CIM_RedundancySet”,

“Member”,

“Collection”)

    if ($RedundancySets == null || $RedundancySets->[].size ==0) {

        #InARedundancySet = false

    } else {

        #InARedundancySet = true

// Error is more than one RedundancySet

if ($RedundancySets->[].size != 1) {

    <ERROR: A system cannot be the member of multiple RedundancySets>

}

        $Systems->[] = AssociatorNames($RedundancySets->[0],   // ObjectName

            “CIM_ConcreteIdentity”,          // AssocClass

            “CIM_System”,                   // ResultClass

            “SameElement”,                  // Role

            “SystemElement”)                // ResultRole

        if ($Systems == null || $Systemss->[].size != 1) {

            <ERROR: There must be exactly one System associated to each 

        RedundancySet>

}

// if System->[0] is not the TopLevelSystem, it must have ComponentCS

if ($System->[0] != $TopLevelSystem) {

            $UpperSystems->[] = AssociatorNames($System->[0],

                “CIM_ComponentCS”,// AssocClass

        “CIM_ComputerSystem”,// ResultClass

        “PartComponent”,// Role

                “GroupComponent”)   // ResultRole

            if ($UpperSystems == null && $UpperSystems->[].size != 1) {

                <ERROR: must be no more than one ComputerSystem Associated 

                   via ComponentCS to each LogicalDevice instance>
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 189



 

    }   

            if ($UpperSystems->[0] != $TopLevelSystem) {

               <ERROR: The one end of every ComponentCS must be the Top Level 

         system>

            } 

}

    }

} while (#InARedundancySet)

8.2.1.9.7 Registered Name and Version
Multiple Computer System version 1.1.0
190



 Multiple Computer System Subprofile
8.2.1.9.8 CIM Server Requirements

8.2.1.9.9 CIM Elements

Table 164: CIM Server Requirements for Multiple Computer System

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 165: CIM Elements for Multiple Computer System

Element Name Description
Mandatory Classes

CIM_ComponentCS (8.2.1.9.9.1) Associates non-top-level systems to the top-level sys-
tem

CIM_ComputerSystem (8.2.1.9.9.2) Non-Top-level System
CIM_ConcreteIdentity (8.2.1.9.9.3) Associates aggregate (possibly top-level) Computer-

System and RedundancySet
CIM_MemberOfCollection (8.2.1.9.9.5) Associates RedundancySet and its member Computer-

Systems
CIM_RedundancySet (8.2.1.9.9.6)

Optional Classes
CIM_IsSpare (8.2.1.9.9.4) optional

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_ComputerSystem

Creation of a ComputerSystem instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_ComputerSystem

Deletion of a ComputerSystem instance

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem                          
AND SourceInstance.OperationalStatus <> PreviousIn-
stance.OperationalStatus

Deprecated WQL - Change of Operational Status of a 
ComputerSystem instance

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem                          
AND SourceInstance.CIM_ComputerSystem::Opera-
tionalStatus <> PreviousIn-
stance.CIM_ComputerSystem::OperationalStatus

CQL - Change of Operational Status of a ComputerSys-
tem instance

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_RedundancySet                          
AND SourceInstance.RedundancyStatus <> Previ-
ousInstance.RedundancyStatus

Deprecated WQL - Change of redundancy status
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 191



 

8.2.1.9.9.1 CIM_ComponentCS
Associates non-top-level systems to the top-level system
Created By : Static or External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.1.9.9.2 CIM_ComputerSystem
Non-Top-level system

Created By : Static or External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.1.9.9.3 CIM_ConcreteIdentity
Associates aggregate (possibly top-level) ComputerSystem and RedundancySet
Created By : Static or External
Modified By : External
Deleted By : External

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_RedundancySet                          
AND SourceInstance.CIM_RedundancySet::Redundan-
cyStatus <> PreviousIn-
stance.CIM_RedundancySet::RedundancyStatus

CQL - Change of redundancy status

Table 166: SMI Referenced Properties/Methods for CIM_ComponentCS

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_ComputerSystem The Top-Level ComputerSystem; must 
be associated to a RegisteredProfile

PartComponent CIM_ComputerSystem The contained (Sub)ComputerSystem

Table 167: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string
NameFormat string Non-top-level system names are not 

correlatable, any format is valid
ElementName string
OperationalStatus uint16[]

Table 165: CIM Elements for Multiple Computer System

Element Name Description
192



 Multiple Computer System Subprofile
Class Mandatory: true

8.2.1.9.9.4 CIM_IsSpare
Associates the ComputerSystem that may be used as a spare to the RedundancySet of
ActiveComputerSystem.

Class Mandatory: false

8.2.1.9.9.5 CIM_MemberOfCollection
Associates RedundancySet and its member ComputerSystems
Created By : Static or External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.1.9.9.6 CIM_RedundancySet
Created By : Static or External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 168: SMI Referenced Properties/Methods for CIM_ConcreteIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemElement CIM_ManagedElement REF to the Computer System
SameElement CIM_ManagedElement REF to the RedundancySet

Table 169: SMI Referenced Properties/Methods for CIM_IsSpare

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement The spare system
Dependent CIM_RedundancySet The RedundancySet
SpareStatus uint16
FailoverSupported uint16

Table 170: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Member CIM_ManagedElement
Collection CIM_Collection

Table 171: SMI Referenced Properties/Methods for CIM_RedundancySet

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 193



 

8.2.1.9.10 Related Standards

RedundancyStatus uint16 The redundancy status shall be either 
'Unknown' 0, 'Redundant' 2, or 'Redun-
dancy Lost'. The implementation 
should report 2 or 3 most of the time, 
although it may report 0 sometimes. It 
should report 2 when there is at least 
one spare per the RedundancySet. It 
should report 3 when there are no more 
spares (via IsSpare association) per the 
RedundancySet. 

TypeOfSet uint16[]
Optional Properties/Methods

ElementName string

Table 172: Related Standards for Multiple Computer System

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF

Table 171: SMI Referenced Properties/Methods for CIM_RedundancySet

Property Flags Type Description & Notes
194



 Physical Package Package
8.2.1.10 Physical Package Package

8.2.1.10.1 Description
Physical Package Package models information about a storage system’s physical package and
optionally about internal sub-packages. A System is 'realized' using a SystemPackaging association to
a PhysicalPackage (or a subclasses such as Chassis). The physical containment model can then be
built up using Container associations and subclasses (such as PackageInChassis).

Physical elements are described as products using the Product class and ProductPhysicalComponent
associations. The Product instances may be built up into a hierarchy using the ProductParentChild
association. The Product class holds information such as vendor name, serial number and version.

Well Defined Subcomponents
In addition to defining physical packages at the “System” level, PhysicalPackage may also be defined
at a lower, subcomponent level. For example, PhysicalPackage is used in the Disk Drive Lite Subprofile
and for devices supported by storage media libraries (e.g., TapeDrive and ChangerDevice). If the
subcomponents are supported by the Profile, they shall model their physical packaging. When
subcomponents are modeled, there shall be a container relationship between their physical package
and the containing package (e.g., the System level physical package). In addition, there shall be a
ProductParentChild association between the subcomponent Product and the parent Product.

The Physical Package constructs may also be used to model other aspects of the environment.
However, this is not mandatory. Note that each controller is realized by a card. The cards are contained
in a controller chassis.

When establishing physical packages for subcomponents (e.g., disk drives, changers, etc.) the provider
shall populate both Container and Realizes associations. Similarly, when establishing the Product
instances for the packages the provider shall populate the ProductParentChild association to the parent
product.

Multiple Product Identities
Instrumentation may optionally describe multiple product identities for a physical package, for example,
product information for both an OEM and vendor. This information should be modeled as multiple
instances of CIM_Product associated with the LogicalIdentity association. The Product instance that
clients should treat as primary is directly associated with PhysicalPackage via
ProductPhysicalComponent. Additional product instances are associated with the primary product
using the LogicalIdentity association. 

Figure 37: Physical Package Package Mandatory Classes

Physical Package Package

System

PhysicalPackage
(e.g.,  Chassis) Product

System Packaging

ProductPhysical
Com ponent
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 195



 

Figure 38: "Physical Package Package with Optional Classes" shows an example of the use of
mandatory and optional physical package classes.

8.2.1.10.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.1.10.3 Cascading Considerations
Not defined in this standard.

8.2.1.10.4 Supported Subprofiles and Packages
Not defined in this standard.

8.2.1.10.5 Methods of this Profile
Not defined in this standard.

8.2.1.10.6 Client Considerations and Recipes
Find Asset Information
Information about a system is modeled in PhysicalPackage. PhysicalPackage may be subclassed to
Chassis; the more general PhysicalPackage is used here to accommodate device implementations that
are deployed in multiple chassis. PhysicalPackage has an associated Product with physical asset
information such as Vendor and Version.

Finding Product information
To locate product information (Vendor, Serial number and product versions) information about a device
that is conforms to the profile, you would start with the “top-level” computer system and traverse the
SystemPackaging to the PhysicalPackage (e.g., a Chassis). From the PhysicalPackage, the client
would then traverse the ProductPhysicalComponent association to locate the Product instance. The
primary Vendor, Serial Number and version for the device is in the Product instance associated with the

Figure 38: Physical Package Package with Optional Classes
System

PhysicalPackage
(e.g.,  Chassis) Product

SystemPackaging

ProductPhysicalComponent

PhysicalPackage Product

 

ProductPhysicalComponent

 LogicalDevice (e.g., 
Drive, tape,device 

changer)

Realizes

ProductParentChildContainer
(e.g., PackageInChassis)

Product

 

LogicalIdentity
196



 Physical Package Package
PhysicalPackage. Additional product identities may be associated with the primary Product using the
LogicalIdentity association. 

Finding Asset information
There are certain subcomponents of a device that a client may be interested in locating. For example,
disk drives in an array or changer devices in a library. To locate the asset information of these
subcomponents, the client would follow the ProductParentChild association from the system Product to
lower level Products.

Alternatively, if the client is starting from a LogicalDevice, it can locate the PhysicalPackage by
following the Realizes association from the LogicalDevice. From the PhysicalPackage, the client can
find the Product information by traversing the ProductPhysicalComponent association.

8.2.1.10.7 Registered Name and Version
Physical Package version 1.1.0

8.2.1.10.8 CIM Server Requirements

Table 173: CIM Server Requirements for Physical Package

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 197



 

8.2.1.10.9 CIM Elements

8.2.1.10.9.1 CIM_Card
A subclass of PhysicalPackage which may be used to appropriately model a specific implementation
Class Mandatory: false
No specified properties or methods.

8.2.1.10.9.2 CIM_Chassis
A subclass of PhysicalPackage which may be used to appropriately model a specific implementation
Class Mandatory: false
No specified properties or methods.

8.2.1.10.9.3 CIM_Container
This associates a PhysicalPackage to its component physical packages (e.g., Drives in a Storage System). This 
may be subclassed (e.g., PackageInChassis), but only the Container properties are required

Table 174: CIM Elements for Physical Package

Element Name Description
Mandatory Classes

CIM_PhysicalPackage (8.2.1.10.9.7)
CIM_Product (8.2.1.10.9.8)
CIM_ProductPhysicalComponent (8.2.1.10.9.10)
CIM_SystemPackaging (8.2.1.10.9.12) This association implement the 'realizes' relationship 

between a system and it's physical components. The 
LibraryPackage subclass should be used for Storage 
Media Libraries and the ComputerSystemPackage 
should be used for other profiles.

Optional Classes
CIM_Card (8.2.1.10.9.1) A subclass of PhysicalPackage which may be used to 

appropriately model a specific implementation
CIM_Chassis (8.2.1.10.9.2) A subclass of PhysicalPackage which may be used to 

appropriately model a specific implementation
CIM_Container (8.2.1.10.9.3) This associates a PhysicalPackage to its component 

physical packages (e.g., Drives in a Storage System). 
This may be subclassed (e.g., PackageInChassis), but 
only the Container properties are required

CIM_LogicalIdentity (8.2.1.10.9.4) Required by the presence of CIM_Card
CIM_PackageInChassis (8.2.1.10.9.5) Provided to allow component hierarchies
CIM_PhysicalConnector (8.2.1.10.9.6) Required by the presence of CIM_Card
CIM_ProductParentChild (8.2.1.10.9.9) If more than one product comprises a system, this asso-

ciation should be used to indicate the 'parent' product
CIM_Realizes (8.2.1.10.9.11) Required by the presence of CIM_Card
198



 Physical Package Package
Class Mandatory: false

8.2.1.10.9.4 CIM_LogicalIdentity
Required by the presence of CIM_Card
Class Mandatory: false
No specified properties or methods.

8.2.1.10.9.5 CIM_PackageInChassis
Provided to allow component hierarchies
Class Mandatory: false
No specified properties or methods.

8.2.1.10.9.6 CIM_PhysicalConnector
Required by the presence of CIM_Card
Class Mandatory: false
No specified properties or methods.

8.2.1.10.9.7 CIM_PhysicalPackage
Class Mandatory: true

Table 175: SMI Referenced Properties/Methods for CIM_Container

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_PhysicalPackage
PartComponent CIM_PhysicalElement

Table 176: SMI Referenced Properties/Methods for CIM_PhysicalPackage

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Tag string
Manufacturer string
Model string

Optional Properties/Methods
ElementName string
Name string
SerialNumber string
Version string
PartNumber string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 199



 

8.2.1.10.9.8 CIM_Product
Class Mandatory: true

8.2.1.10.9.9 CIM_ProductParentChild
If more than one product comprises a system, this association should be used to indicate the 'parent' product
Class Mandatory: false

8.2.1.10.9.10 CIM_ProductPhysicalComponent
Class Mandatory: true

8.2.1.10.9.11 CIM_Realizes
Required by the presence of CIM_Card
Class Mandatory: false
No specified properties or methods.

8.2.1.10.9.12 CIM_SystemPackaging
This association implement the 'realizes' relationship between a system and it's physical components. The Library-
Package subclass should be used for Storage Media Libraries and the ComputerSystemPackage should be used 
for other profiles.
Class Mandatory: true

Table 177: SMI Referenced Properties/Methods for CIM_Product

Property Flags Type Description & Notes
Mandatory Properties/Methods

Name string
IdentifyingNumber string
Vendor string
Version string
ElementName string

Table 178: SMI Referenced Properties/Methods for CIM_ProductParentChild

Property Flags Type Description & Notes
Mandatory Properties/Methods

Parent CIM_Product
Child CIM_Product

Table 179: SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_Product
PartComponent CIM_PhysicalElement

Table 180: SMI Referenced Properties/Methods for CIM_SystemPackaging

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_PhysicalElement
200



 Physical Package Package
8.2.1.10.10 Related Standards

Dependent CIM_System

Table 181: Related Standards for Physical Package

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF

Table 180: SMI Referenced Properties/Methods for CIM_SystemPackaging

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 201



 

202



8.2.1.11 Policy Package 

8.2.1.11.1 Description
The Policy Package would be deployed by any profile or subprofile that provides Policy management
capability. Any profile or subprofile that supports the Policy Package is referred to as a “Policy based”
profile or subprofile. In this version of SMI-S, there is no profile defined for a “Global Policy Manager”
that provides policy management for a variety of other SMI-S profiles. The intent of this version of the
SMI-S Policy Package is to support policy mechanisms “inside” Arrays, Storage Virtualizers, Volume
Management, NAS, Storage Libraries, and Fabric components of a storage network. As a result, there
are some limitations in this version of the Policy Package and there are some simplifying assumptions
that can be made about the Policy mechanisms. For example, most arrays today don’t support
providing a general policy mechanism for a storage network. The policies and the context of the
execution of the policies are confined to the array.

There are, however, some complications that will be dealt with. In particular, cascading profiles, such as
Volume Management, Storage Virtualizers and NAS Heads will have to deal with policies that derive
context from other profiles (e.g., arrays and/or fabric). Note: In the future, the Policy Package will be
expanded to support a Specific Policy Profile as implemented in a Global Policy Manager and this may
raise additional requirements. 

Note: This Package covers “Policy-Based” support. That is, it only covers implementation of Policy
constructs (classes and associations) in the policy based profile or subprofile. It does not cover
requirements on underlying profiles that may be used by the policy based profile or subprofile. 

It is important to understand the limitations of the Policy Package in this version of SMI-S. While one
could argue that a host based volume manager has a broad view of the storage network and could, in
theory, perform policy based SAN management, there is no expectation that a volume manager will (or
should) be the vehicle for SAN management. The policies that would be supported by a Volume
Management Profile would be policies for automating certain administrative functions of the volume
manager.

8.2.1.11.1.1 Instance Diagrams
Support for the Policy Package entails support for a number of constructs and the methods to support
them. Any given implementation may support only a subset of the constructs and methods, based on
how flexible their support is. This will be discussed in more detail in Table 185, “SMI-S Supported
PolicyCapabilities Patterns”. 

Policy constructs will be discussed in the following sections, starting with the basics and then building
on those basics to describe more complicated functions and constructs.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 203



 

Basics of Policy Support
The basic constructs used by the Policy Package are illustrated in Figure 39: "Basic Policy Package
Instance Diagram"

There are five basic constructs that define a policy:

PolicyRule – This defines a policy to be applied. Specifically, it collects a number of other constructs
that compose the policy.

PolicyCondition – A condition to be evaluated at the time the Policy Rule is checked. The
PolicyCondition would be subclassed to a specific condition (e.g., QueryCondition) that can be
evaluated in the context of the policy based profile or subprofile.

Figure 39: Basic Policy Package Instance Diagram

PolicyAction

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyActionName
DoActionLogging

PolicyRule

ElementName
CommonName
PolicyDecisionStrategy
Enabled
SystemCreationClassName
SystemName
CreationClassName
PolicyRuleName
ConditionListType
RuleUsage
SequencedActions
ExecutionStrategy

PolicyCondition

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyConditionName

PolicyConditionInPolicyRule PolicyActionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem
204



 Policy Package
PolicyAction – An action to be executed based on conditions of the policy rule. The PolicyAction would
be subclassed to a specific PolicyAction (e.g., a MethodAction) supported by the policy based profile or
subprofile.

PolicySetAppliesToElement – An association that may be referenced by a PolicyCondition or
PolicyAction (e.g., used as part of the query string in QueryConditions or MethodActions) to constrain
the application of the PolicyRule. The “ManagedElement” would generally be any ManagedElement
within the profile of the policy based profile or subprofile. 

Note: In the case of a Policy-based cascading profile, the ManagedElement could be a reference to a
ManagedElement in a leaf profile (see 8.2.1.11.3, "Cascading Considerations")

PolicyRuleInSystem – An association that is used to define the System scope of the PolicyRule. For
policy based profiles or subprofiles, the system in question would be the “top level” system for the
profile. 

Note: In the case where a Policy-based cascading profile cascades to a Policy-based leaf profile, it is
possible for a PolicyRule to be defined at the leaf and referenced by the cascading profile (i.e.,
cascading policy rules). See 8.2.1.11.3, "Cascading Considerations" for more information on this
case.

In addition there are associations to define what Policy conditions are used in what Policy Rules (the
PolicyConditionInPolicyRule association) and what Policy Actions are used by what Policy Rules (the
PolicyActionInPolicyRule association). 

A PolicyRule is the central class used for representing the 'If Condition then Action' semantics of a
policy rule. A PolicyRule condition, in the most general sense, is represented as either an OR’ed set of
AND’ed conditions (Disjunctive Normal Form, or DNF) or an AND’ed set of OR’ed conditions
(Conjunctive Normal Form, or CNF). Individual conditions may either be negated (not C) or unnegated
(C). The actions specified by a PolicyRule are to be performed if and only if the PolicyRule condition
(whether it is represented in DNF or CNF) evaluates to TRUE.

The conditions and actions associated with a PolicyRule are modeled, respectively, with instances of
PolicyCondition and PolicyAction. These condition and action objects are tied to instances of
PolicyRule by the PolicyConditionInPolicyRule and PolicyActionInPolicyRule aggregations. 

The PolicyRule class uses the property ConditionListType, to indicate whether the conditions for the
rule are in DNF (disjunctive normal form), CNF (conjunctive normal form) or, in the case of a rule with
no conditions, as an UnconditionalRule. The PolicyConditionInPolicyRule aggregation contains two
additional properties to complete the representation of the Rule's conditional expression. The first of
these properties is an integer to partition the referenced PolicyConditions into one or more groups, and
the second is a Boolean to indicate whether a referenced Condition is negated. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 205



 

Query Conditions
The basic constructs used by QueryConditions are illustrated in Figure 40: "Policy Package
QueryCondition Support Instance Diagram"

A QueryCondition is a subclass of PolicyCondition that defines the criteria for generating a set of
instances that result from the contained query. If there are no instances returned from the query, then
the result is false; otherwise, true. 

Note: A QueryCondition instance has a Trigger property. This property indicates whether or not the
query is to be used to trigger evaluation of all QueryConditions of the PolicyRule. If the Trigger
Boolean is set to TRUE, then the QueryCondition is a trigger. When the QueryCondition
evaluates to TRUE, then all the QueryConditions are evaluated.

Note: None, some or all query conditions in a PolicyRule may have the Trigger Boolean set to TRUE. If
no Trigger property is set to TRUE, then the conditions are to be periodically evaluated (with the
period selected by the policy based profile or subprofile). See “Trigger Conditions” on page 215
in 8.2.1.11.1.1.

Figure 40: Policy Package QueryCondition Support Instance Diagram

PolicyAction

PolicyRule #7

QueryCondition

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyConditionName
Query
QueryLanguage
Trigger

PolicyConditionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

PolicyActionInPolicyRule
206



 Policy Package
The following query is an example of a QueryCondition query that might be used:

SELECT 

OBJECTPATH(primordial) AS POBJ, 

OBJECTPATH(concrete) AS COBJ, 

OBJECTPATH(service) AS SOBJ,

concrete.TotalManagedSpace * .25 AS AmountToIncrease

FROM 

CIM_PolicyAppliesToElement applies,

CIM_StoragePool concrete,

CIM_StoragePool primordial.

CIM_AllocatedFromStoragePool alloc,

CIM_PolicySet policy,

CIM_HostedService hosted, 

CIM_HostedStoragePool hostedpool,

CIM_ComputerSystem, system,

CIM_StorageConfigurationService service

WHERE (concrete.RemainingManagedSpace/primordial.TotalManagedSpace * 100) < 75

    and concrete.Primordial = false 

// Join Primordial Pool with Concrete Pools

    and OBJECTPATH(primordial) = alloc.Antecedent

    and OBJECTPATH(concrete) = alloc.Dependent

// Determine what concrete Pools the PolicySet applies to

    and policy.CommonName = "Pool Exhausting Policy Condition"

    and OBJECTPATH(policy) = element.PolicySet

    and OBJECTPATH(concrete) = element.ManagedElement

// Join found primordial Pool with Service

    and OBJECTPATH(primoridal) = hostedpool.PartComponent

    and OBJECTPATH(system) = hostedpool.GroupComponent

    and OBJECTPATH(system) = hosted.Antecedent

    and OBJECTPATH(service) = hosted.Dependent

    and service ISA "CIM_StorageConfigurationService"
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 207



 

MethodActions
The basic constructs for MethodActions of the Policy Package are illustrated in Figure 41: "Policy
Package MethodAction Support Instance Diagram"

A MethodAction is a PolicyAction that is a method that invokes an action defined by a query. The action
is defined by a method of an ObjectName, which may be an intrinsic method of a CIM Namespace or
an extrinsic method of a ManagedElement. The input parameters to the method are defined by the
query and may be fixed values defined by literals or may be defined by reference to one or more
properties of result instance from a QueryCondition query, a MethodAction query, or other instances.

The following query is an example of a MethodAction query that might be used:

SELECT

SOBJ, // Service object path

'CreateOrModifyStoragePool', 

NULL, // ElementName parameter

NULL, // Goal parameter, take default Setting

AmountToIncrease, // Size parameter

Figure 41: Policy Package MethodAction Support Instance Diagram

MethodAction

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyActionName
InstMethodCallName
DoActionLogging
Query
QueryLanguage

PolicyRule #7

PolicyCondition

PolicyConditionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

PolicyActionInPolicyRule
208



 Policy Package
POBJ, // InPools parameter

NULL, // InExtents parameter

COBJ // Pool parameter

FROM 

CIM_QueryCondition condition,

CIM_QueryResult result,

CIM_PolicySet policy,

CIM_PolicyConditionInPolicyRule inpolicyset

WHERE

policy.CommonName = "Pool Exhausting Policy Condition"

    and OBJECTPATH(policy) = inpolicyset.GroupComponent

    and OBJECTPATH(condition) = inpolicyset.PartComponent

    and CLASSNAME(result) = QueryResult.QueryResultSubclassName

PolicySetAppliesToElement
PolicySetAppliesToElement makes explicit which PolicyRules are currently applied to a particular
Element. This association indicates that the PolicyRules that are appropriate for a ManagedElement
(specified using the PolicyRoleCollection aggregation) have actually been implemented in the policy
management infrastructure. One or more QueryCondition or MethodAction instances may reference
the PolicySetAppliesToElement association as part of its query. PolicySetAppliesToElement shall not be
used if the associated PolicyRule does not make use of the association. Note that if the named Element
refers to a Collection, then the PolicyRule is assumed to be applied to all the members of the
Collection.

PolicyRules are defined in the context of the System in which they apply. For policy based profiles or
subprofiles, this is the “top level” system of the profile. The top level system can have many
PolicyRules. A priority may be assigned to these rules using the Priority property of the
PolicyRuleInSystem association.

Note: See 8.2.1.11.3, "Cascading Considerations" for a variation of this that involves cascading policy
rules.

Context Passing
The execution of a PolicyRule involves establishing and naming the results of Query execution in
QueryConditions and Queries associated with MethodActions. These Query results are transient
instances that only exist in the context of the PolicyRule. The QueryResultName is a Property of
QueryCondition that identifies the output of the query in the QueryCondition instance. The
InstMethodCallName is a Property of a MethodAction that identifies the output of the query in the
MethodAction instance. 

Static Rules Support
A policy based profile or subprofile may support a set of “Static” PolicyRules. These are PolicyRules
that cannot be modified by a client (except for enabling or disabling the rule or defining a
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 209



 

PolicySetAppliesToElement association). The constructs used for this are illustrated in Figure 42:
"Policy Package for Static Rules Instance Diagram".

The figure shows 3 static rules (PolicyRules #1, #3 and #4). These illustrate four distinct types of Static
policy rules. 

The first PolicyRule (PolicyRule #1) has no condition(s) and action(s) (or PolicySetAppliesToElement
association). It merely names a specified policy rule. The only aspect of the PolicyRule that may (or
may not) be changed is the “Enabled” property of the PolicyRule. This type of static policy rule is used
to identify a behavior supported by the policy based profile. For example, Arrays might define a
PolicyRule named “Controller Failover Type 1” or “Controller Failover Type 2” to indicate how controller
failover works. Any particular Array Profile implementation would only support one of these
PolicyRules. The client would determine behavior of failover by inspecting which PolicyRule is followed.
But the actual behavior is not actually modeled in CIM. It is merely referenced using this simple form of
static policy rules.

The second PolicyRule (PolicyRule #3) is has condition(s) and action(s), but is not referenced by any
PolicySetAppliesToElement association. It behaves exactly like any other PolicyRule, except the
QueryCondition(s) and MethodAction(s) are fixed and cannot be changed. The only aspects of the
PolicyRule that may (or may not) be changed is the “Enabled” property of the PolicyRule. This type of

Figure 42: Policy Package for Static Rules Instance Diagram

MethodAction

PolicyRule #4

QueryCondition

PolicyConditionInPolicyRule PolicyActionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

PolicyRule #3
PolicyRule #1

MethodActionQueryCondition

PolicyConditionInPolicyRule

PolicyActionInPolicyRule

PolicyRuleInSystem
210



 Policy Package
static policy rule is more descriptive than the first, in that it models conditions that are evaluated and
actions that are taken.

The third PolicyRule (PolicyRule #4) has condition(s) and action(s), and is referenced by a
PolicySetAppliesToElement association. It behaves exactly like any other PolicyRule, except the
QueryCondition(s) and MethodAction(s) are fixed and cannot be changed. The only aspects of the
PolicyRule that may be changed are the “Enabled” property of the PolicyRule and the
PolicySetAppliesToElement association (to identify the managed element in which to apply the rule). In
this case, the Query Condition or MethodAction refers to the PolicySetAppliesToElement association to
constrain where or how the policy rule is applied. This type of static Policy Rule can be applied to
specific managed elements in the profile. For example, an Array PolicyRule might define a policy for
automatic extension of a StoragePool. The application of this policy to specific StoragePools would be
governed by use of the PolicySetAppliesToElement.

Note: All PolicyRules have a PolicyRuleInSystem association to the System in which the PolicyRule is
evaluated. In most cases, this will be the Top Level Object (System) for the policy based profile
(i.e., the RegisteredProfile that a specific Policy RegisteredSubprofile supports). In order for the
execution of the Policy to be constrained to the profile in question the QueryConditions and
MethodActions should include a reference to PolicyRuleInSystem.

EXPERIMENTAL

If any of these types of “Static Rules” are supported by a specific Policy Subprofile implementation then
the PolicyFeaturesSupported array property of the PolicyCapabilities shall be set to include the “Static
Rules” value.

EXPERIMENTAL
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 211



 

Static Conditions and Actions
In addition to Static Rules, there are “Dynamic” PolicyRules that can be constructed using static
conditions and static actions. The constructs used for this are illustrated in Figure 43: "Policy Package
Support for Static Conditions and Actions Instance Diagram".

Dynamic PolicyRules are constructed out of PolicyRule templates. In Figure 43: "Policy Package
Support for Static Conditions and Actions Instance Diagram", PolicyContainer C is a template, and
PolicyRule #6 is the policy rule constructed from the template. The PolicyContainer C merely collects all
the “static” Conditions and “Static” actions that may be used to construct the PolicyRule. The
ReusablePolicy associations are what connects the QueryConditions and MethodActions to the
ReusablePolicyContainer (template). Note that a QueryCondition or MethodAction may appear in
multiple ReusablePolicyContainers (e.g., ReusablePolicyContainer B and ReusablePolicyContainer C
share a common QueryCondition).

To construct PolicyRule #6, the client would need to create PolicyRule #6 (giving it a client defined
name) and creating the associations to the conditions and actions that are desired.

Figure 43: Policy Package Support for Static Conditions and Actions Instance Diagram

MethodAction

PolicyRule #6

PolicyRuleName= 
‘PRname 2’

QueryCondition

PolicyConditionInPolicyRule

PolicyActionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

QueryCondition

MethodActionQueryCondition

MethodAction

ReusablePolicy

ReusablePolicy

ReusablePolicyContainer: 
C

Name=’PRname 2'

ReusablePolicyContainer: A

Name=’Dynamic PolicyRule Templates’

ReusablePolicyContainer: 
B

Name=’PRname 1'

PolicyContainerInPolicyContainer

ReusablePolicy

ReusablePolicy
212



 Policy Package
Note: Creation of the PolicyRule and the associations to QueryConditions and MethodActions are
done using the CreateInstance intrinsic. Until all associations are in place and correctly
configured, the “Enabled” property of the PolicyRule should be “disabled.” Once everything is in
place and correct, the client may enable the rule).

EXPERIMENTAL

If any of these types of “Dynamic Rules” are supported by a specific Policy Subprofile implementation
then the PolicyFeaturesSupported array property of the PolicyCapabilities shall be set to include the
“Dynamic Rules” value.

EXPERIMENTAL

Dynamic Conditions and Actions
The most general policy support includes support for dynamic conditions and actions. The constructs
used for this are the basic policy constructs as illustrated in Figure 44: "Policy Package support for
Dynamic Conditions and Actions Instance Diagram".

In the dynamic conditions and actions case, all constructs are built using CreateInstance. The client
would first create (and name) the PolicyRule, setting the Enabled property to ‘disabled’. Then the client
would create the QueryConditions and MethodActions, and associate them to the PolicyRule. 

Figure 44: Policy Package support for Dynamic Conditions and Actions Instance Diagram

MethodAction

PolicyRule #7

QueryCondition

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

QueryCondition

Trigger='TRUE'

PolicyActionInPolicyRule
PolicyConditionInPolicyRule
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 213



 

Note: At least one QueryCondition should have a Trigger property of TRUE. If all the QueryConditions
have a Trigger property of FALSE, the conditions will be evaluated at the convenience of the CIM
server. 

SMI-S only recognizes CQL Query statements in the QueryConditions. An implementation may support
other QueryLanguages, but these would not be covered by SMI-S.

CQL defines “levels” of support. These levels are recognized for the purposes of Policy definitions. The
CQL levels shall be identified in the CQLFeatures property of the QueryCapabilities instance
associated to a specific Policy Subprofile (See Policy (and Query) Capabilities on Page 221 in
8.2.1.11.1.1.

EXPERIMENTAL

If this types of “Client defined rules” are supported by a specific Policy Subprofile implementation then
the PolicyFeaturesSupported array property of the PolicyCapabilities shall be set to include the “Client
Defined Rules” value.

EXPERIMENTAL
214



 Policy Package
Trigger Conditions
Trigger Conditions are QueryConditions that, when TRUE, cause evaluation of all conditions in the
Policy Rule. A trigger condition is a QueryCondition with the Trigger property set to TRUE. This is
illustrated in Figure 45: "Policy Package support for Trigger Conditions Instance Diagram".

Figure 45: "Policy Package support for Trigger Conditions Instance Diagram" shows a PolicyRule with
three QueryConditions. Two of the QueryConditions have Trigger set to TRUE. In the third, the Trigger
property is set to FALSE. If either of the first two QueryConditions are true the third is evaluated.

Figure 45: Policy Package support for Trigger Conditions Instance Diagram

MethodAction

PolicyRule #7

QueryCondition

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

QueryCondition

Trigger='TRUE'

PolicyActionInPolicyRule
PolicyConditionInPolicyRule
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 215



 

TimePeriod Conditions
PolicyRules may be constrained by one or more time periods that define when the PolicyRule is to be
active. The constructs used for this are illustrated inFigure 46: "Policy Package support for Time
Periods Instance Diagram" .

A PolicyRule may also be associated with one or more policy time periods, indicating the schedule
according to which the policy rule is active and inactive. In this case it is the PolicySetValidityPeriod
aggregation that provides this linkage. 

Evaluation of Policy conditions may be consider to be done in the following sequence:

1) Trigger Conditions - triggers are treated like indications to initiate evaluation of other conditions

2) TimePeriod Conditions - to determine if the remaining conditions need to be evaluated

3) Non-Trigger Conditions - the remaining Policy Conditions.

Figure 46: Policy Package support for Time Periods Instance Diagram

MethodAction

PolicyRule #8

QueryCondition PolicySetAppliesToElement

System

PolicyRuleInSystem

QueryCondition

Trigger='TRUE'

PolicyActionInPolicyRule

PolicyConditionInPolicyRule

PolicyTimePeriodCondition

ElementName
CommonName
PolicyKeywords[]
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyConditionName
TimePeriod
MonthOfYearMask[]
DayOfMonthMask[]
DayOfWeekMask[]
TimeOfDayMask[]
LocalOrUtcTime

PolicyTimePeriodCondition

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyConditionName
TimePeriod
MonthOfYearMask[]
DayOfMonthMask[]
DayOfWeekMask[]
TimeOfDayMask[]
LocalOrUtcTime

PolicySetValidityPeriod

PolicySetValidityPeriod
216



 Policy Package
When there are compound conditions, the evaluation of each compound condition is evaluated
independently. And the evaluation of a compound condition would follow the logical sequence
described above.

When there are multiple PolicyTimePeriodConditions in a PolicyRule, then all shall evaluate to true. If
there are no PolicyTimePeriodConditions specified in a PolicyRule, then all times are valid.

There are also two special cases in which one of the date/time strings is replaced with a special string
defined in RFC 2445. 

• If the first date/time is replaced with the string 'THISANDPRIOR', then the property indicates that a
PolicyRule is valid [from now] until the date/time that appears after the '/'.

• If the second date/time is replaced with the string 'THISANDFUTURE', then the property indicates
that a PolicyRule becomes valid on the date/time that appears before the '/', and remains valid
from that point on.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 217



 

Compound Conditions
QueryConditions may be aggregated into rules and into compound conditions. The constructs used for
this are illustrated inFigure 47: "Policy Package support for Compound Conditions Instance Diagram" 

A PolicyRule aggregates zero or more instances of the QueryCondition class, via the
PolicyConditionInPolicyRule association. A Rule that aggregates zero Conditions is not valid; it may,
however, be in the process of being defined. Note that a PolicyRule should have no effect until it is
enabled.

QueryConditions may be aggregated into rules and into compound conditions.
PolicyConditionStructure is the abstract aggregation class for the structuring of policy conditions. 

The Conditions aggregated by a PolicyRule or CompoundPolicyCondition are grouped into two levels
of lists: either an OR’ed set of AND’ed sets of conditions (DNF, the default) or an AND’ed set of OR’ed
sets of conditions (CNF). Individual QueryConditions in these lists may be negated. The property
ConditionListType specifies which of these two grouping schemes applies to a particular PolicyRule or
CompoundPolicyCondition instance. 

Figure 47: Policy Package support for Compound Conditions Instance Diagram

MethodAction

PolicyRule #7

CompoundPolicyCondition

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyConditionName
ConditionListType

PolicyConditionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem
QueryCondition

Trigger='TRUE'

PolicyActionInPolicyRule

PolicyConditionInPolicyRule

QueryCondition QueryCondition

PolicyConditionInPolicyCondition
218



 Policy Package
One or more PolicyTimePeriodConditions may be among the conditions associated with a PolicyRule
or CompoundPolicyCondition via the PolicyConditionStructure subclass association. In this case, the
time periods are simply additional Conditions to be evaluated along with any others that are specified.

A CompoundPolicyCondition aggregates zero or more instances of the QueryCondition class, via the
PolicyConditionInPolicyCondition association. A CompoundPolicyCondition that aggregates zero
Conditions is not valid; it may, however, be in the process of being defined. Note that a
CompoundPolicyCondition should have no effect until it is valid.

Compound Actions
PolicyActions may be aggregated into rules and into compound actions. The constructs used for this
are illustrated in Figure 48: "Policy Package support for Compound Actions Instance Diagram" 

Figure 48: Policy Package support for Compound Actions Instance Diagram

CompoundPolicyAction

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyActionName
SequencedActions
ExecutionStrategy

PolicyRule #9

QueryCondition

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

QueryCondition

Trigger='TRUE'

PolicyActionInPolicyRule
PolicyConditionInPolicyRule

MethodAction MethodAction

PolicyActionInPolicyAction PolicyActionInPolicyAction
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 219



 

A PolicyRule aggregates zero or more instances of the PolicyAction class, via the
PolicyActionInPolicyRule association. A Rule that aggregates zero Actions is not valid--it may, however,
be in the process of being entered into a PolicyRepository or being defined for a System. Alternately,
the actions of the policy may be explicit in the definition of the PolicyRule. Note that a PolicyRule should
have no effect until it is valid. 

The Actions associated with a PolicyRule may be given a required order, a recommended order, or no
order at all. For Actions represented as separate objects, the PolicyActionInPolicyRule aggregation can
be used to express an order. 

This aggregation does not indicate whether a specified action order is required, recommended, or of no
significance; the property SequencedActions in the aggregating instance of PolicyRule provides this
indication.

A series of examples will make ordering of PolicyActions clearer: ActionOrder is an unsigned integer 'n'
that indicates the relative position of a PolicyAction in the sequence of actions associated with a
PolicyRule or CompoundPolicyAction. When 'n' is a positive integer, it indicates a place in the sequence
of actions to be performed, with smaller integers indicating earlier positions in the sequence. The
special value '0' indicates 'don't care'. If two or more PolicyActions have the same non-zero sequence
number, they may be performed in any order, but they shall all be performed at the appropriate place in
the overall action sequence. 

If all actions have the same sequence number, regardless of whether it is '0' or non-zero, any order is
acceptable. 

The values: 

1:ACTION A 

2:ACTION B 

1:ACTION C 

3:ACTION D 

indicate two acceptable orders: A,C,B,D or C,A,B,D, 

since A and C can be performed in either order, but only at the '1' position. 

The values: 

0:ACTION A 

2:ACTION B 

3:ACTION C 

3:ACTION D 

require that B,C, and D occur either as B,C,D or as B,D,C. Action A may appear at any point relative to
B, C, and D. Thus the complete set of acceptable orders is: A,B,C,D; B,A,C,D; B,C,A,D; B,C,D,A;
A,B,D,C; B,A,D,C; B,D,A,C; B,D,C,A. 

Note that the non-zero sequence numbers need not start with '1', and they need not be consecutive.
All that matters is their relative magnitude.
220



 Policy Package
EXPERIMENTAL

Policy (and Query) Capabilities  
Implementations of a specific Policy Subprofile can vary in degree of support. The degree of support
provided by an implementation can be determined by inspection of the QueryCapabilities and
PolicyCapabilities. The constructs used for this are illustrated inFigure 49: "Policy Package support for
Policy Capabilities Instance Diagram" 

In this figure, the policy based profile is an Array Profile. And it has two Specific Policy Subprofiles:

1) a Pool Management Policy Subprofile and,

2) a Copy Management Policy. 

Figure 49: Policy Package support for Policy Capabilities Instance Diagram

RegisteredSuprofile

RegisteredName='[Specific]Policy'
 (e.g., PoolManagement Policy)

RegisteredProfile
(Policy-Based Profile)

(e.g.,, Array)

SubprofileRequiresProfile

SNIA_PolicyCapabilities

ElementName
InstanceID
PolicyFeaturesSupported[]

ElementCapabilities

QueryCapabilities

ElementName
InstanceID
CQLFeatures[]

ElementCapabilities
ObjectManager

QueryCapabilities

ElementName
InstanceID
CQLFeatures[]

ElementCapabilities

HostedProfile

RegisteredSuprofile

RegisteredName='Policy-based Subprofile'
( e.g., Copy Services)

RegisteredSuprofile

RegisteredName='[Specific]Policy'
(e.g., Copy Management Policy)

SubprofileRequiresProfile

SubprofileRequiresProfile

SNIA_PolicyCapabilities

ElementName
InstanceID
PolicyFeaturesSupported[]

ElementCapabilities

ElementCapabilities
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 221



 

Each of these subprofiles shall have their Policy capabilities defined by associating an instance of
PolicyCapabilities to each. Similarly, each may refer to a QueryCapabilities instance.

A policy based profile or subprofile would identify its basic capabilities using 2 capabilities classes: A
QueryCapabilities class instance and a PolicyCapabilities class instance. Both instances will be
associated to a specific Policy RegisteredSubprofile of the Policy-based RegisteredProfile. These
classes and associations should be populated in the InterOp Namespace (with the
RegisteredSubprofile). If they are populated in the policy based profile namespace, then the
ElementCapabilities associations shall (at least) be populated in the InteropNamespace.

Also shown in Figure 49: "Policy Package support for Policy Capabilities Instance Diagram" are the
ObjectManager (representing the CIM Server) and its QueryCapabilities instance. The
QueryCapabilities instance that is associated to the ObjectManager represents the general capabilities
of the CIM Server and may offer more capabilities than are supported for defining QueryConditions for
PolicyRules. This instance is not part of the Policy Package (or either of the specific Policy Subprofiles).
The ObjectManager version of the QueryCapabilities need not be present. The QueryCapabilities
associated with a Specific Policy Subprofile is mandatory if the profile supports “Client defined”
QueryConditions. If Client defined QueryConditions are not supported by the profile or subprofile, then
the QueryCapabilities instance is not needed for the Specific Policy Subprofile.

The QueryCapabilities that may be supported for the purpose of client defined policies are “Basic
Query”, “Simple Join”, “Complex Join”, “Time”, “Basic Like”, ”Full Like”, “Array Elements”, ”Embedded
Objects“, “Order By”, “Aggregations”, “Subduer”, “Satisfies Array”, “Distinct”, “Forestland “Path
Functions”. For definitions of these values see the CIM Query Language Specification.

Any or all of these may be specified in the QueryCapabilities associated with a specific Policy
Subprofile.

The second capabilities instance associated to the specific Policy Subprofile is the PolicyCapabilities
instance. The PolicyCapabilities class has the following properties that define the capabilities of the
subprofile:

PolicyFeaturesSupported[]

“Static Rules” – Static rules are pre-defined by the profile implementation and are available to the Client
to enable and disable (or set PolicySetAppliesToElement).

“Dynamic Rules” – Dynamic rules means that the profile implementation has populated
PolicyContainers that include QueryConditions and MethodActions that can be constructed into Client
specified PolicyRules (using the conditions and actions in the container).

 “Client Defined Rules” – Client Defined Rules means that a Client may create its own PolicyRules,
specifying its own (Client invented) QueryConditions and MethodActions. The QueryConditions and
MethodActions shall, of course, be valid operations on the profile in question. That is, QueryConditions
shall address class instances and properties that are part of the profile model and the MethodActions
shall be actions supported by the profile.

EXPERIMENTAL

8.2.1.11.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.1.11.3 Cascading Considerations
Not defined in this standard.
222



 Policy Package
8.2.1.11.4 Supported Subprofiles and Packages
None.

8.2.1.11.5 Methods of the Profile

EXPERIMENTAL

8.2.1.11.5.1 Extrinsic Methods of the Profile  
There are no Extrinsic methods defined for this Package. All Policy manipulation actions are done using
intrinsic methods. These are described in 8.2.1.11.5.2, "Intrinsic Methods of the Profile" and illustrated
in 8.2.1.11.6, "Client Considerations and Recipes". However, it is recognized that some Extrinsic
Methods may make Policy manipulation a lot easier and more efficient for clients. Such methods will be
considered in a future release.

EXPERIMENTAL

8.2.1.11.5.2 Intrinsic Methods of the Profile
Table 182, “Static Policy Instance Manipulation Methods” identifies how Policy constructs get created,
deleted or modified. Any class not listed is assumed to be pre-existing (e.g., canned) or manipulated
through another profile or subprofile.

Table 183 identifies how Policy constructs get created, deleted or modified. Any class not listed is
assumed to be pre-existing (e.g., canned) or manipulated through another profile or subprofile.

Table 182: Static Policy Instance Manipulation Methods

Method Created Instances Deleted Instances Modified Instances

CreateInstance PolicySetAppliesToElement N/A N/A

DeleteInstance N/A PolicySetAppliesToElement N/A

SetProperty N/A N/A PolicyRule (Enabled)

Table 183: Dynamic Policy Instance Manipulation Methods

Method Created Instances Deleted Instances Modified Instances

CreateInstance PolicyRule N/A N/A

CreateInstance PolicyConditionInPolicyRule N/A N/A

CreateInstance PolicyActionInPolicyRule N/A N/A

DeleteInstance N/A PolicyRule N/A

DeleteInstance N/A PolicyConditionInPolicyRule N/A

DeleteInstance N/A PolicyActionInPolicyRule N/A

ModifyInstance N/A N/A PolicyRule (Enabled)

ModifyInstance N/A N/A QueryCondition (Trigger)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 223



 

Table 184 identifies how Policy constructs get created, deleted, or modified for dynamic policies.

Table 184: Methods that cause Instance Creation, Deletion, or Modification of Dynamic Policy 
Rules

Method Created Instances Deleted Instances Modified Instances

CreateInstance PolicyRule N/A N/A

CreateInstance QueryCondition N/A N/A

CreateInstance PolicyConditionInPolicyRule N/A N/A

CreateInstance PolicyConditionIn
PolicyCondition

N/A N/A

CreateInstance CompoundPolicyCondition N/A N/A

CreateInstance PolicySetValidityPeriod N/A N/A

CreateInstance PolicyTimePeriodCondition N/A N/A

CreateInstance CompoundPolicyAction N/A N/A

CreateInstance MethodAction N/A N/A

CreateInstance PolicyActionInPolicyRule N/A N/A

CreateInstance PolicyActionInPolicyAction N/A N/A

DeleteInstance N/A PolicyRule N/A

DeleteInstance N/A QueryCondition N/A

DeleteInstance N/A MethodAction N/A

DeleteInstance N/A PolicyConditionIn
PolicyRule

N/A

DeleteInstance N/A PolicyActionInPolicyRule N/A

DeleteInstance N/A CompoundPolicyCondition N/A

DeleteInstance N/A PolicyConditionIn
PolicyCondition

N/A

DeleteInstance N/A CompoundPolicyAction N/A

DeleteInstance N/A PolicyActionInPolicyAction N/A

DeleteInstance N/A PolicySetValidityPeriod N/A

DeleteInstance N/A PolicyTimePeriodCondition N/A

ModifyInstance N/A N/A PolicyRule (Enabled)

ModifyInstance N/A N/A PolicyRuleInSystem

ModifyInstance N/A N/A QueryCondition (Trigger)

ModifyInstance N/A N/A QueryCondition

ModifyInstance N/A N/A MethodAction

ModifyInstance N/A N/A PolicyConditionIn
PolicyRule

ModifyInstance N/A N/A PolicyActionInPolicyRule

ModifyInstance N/A N/A CompoundPolicy Condi-
tion
224



 Policy Package
CreateInstance
     CreateInstance (  

        [IN] <instance> NewInstance 

 )

The CreateInstance intrinsic method is used for the creation of PolicyRules, QueryConditions,
ReusablePolicyContainers and MethodActions, It is also used to create PolicyConditionInPolicyRule
associations, PolicyConditionInPolicyCondition associations, ReusablePolicyComponent associations,
PolicyActionInPolicyRule associations, PolicyActionInPolicyAction associations and
PolicySetAppliesToElement associations.

Care should be taken when creating a policy. The following sequence should be followed for enabling
Static Policies:

• Creation of the PolicyRule (disabled)

• Creation of the QueryCondition(s)

• Immediately followed by Creation of the PolicyConditionInPolicyRule association(s)

• Creation of the MethodAction(s)

• Immediately followed by Creation of the PolicyActionInPolicyRule association(s)

• Creation of one or more PolicySetAppliesToElement associations (if needed)

• ModifyInstance of the PolicyRule (to enable)

If this sequence in not followed, there is no guarantee that the desired Policy will be created. Also note
that all steps would need to successfully execute to ensure creation of any of the instances involved in
the PolicyRule. 

If instances created are not immediately associated with an appropriate PolicyRule, they may be lost. A
provider is not required to keep “dangling” instances around indefinitely. Indeed, they are expected to
do periodic clean up of “dangling” instances.

The above sequence may not need to be done if there is no PolicySetAppliesToElement. In this case,
all copies of the static policy are the same. All that is required is to enable (ModifyInstance) the
PolicyRule.

The following sequence should be followed for creating Dynamic PolicyRules:

• Creation of the PolicyRule (disabled) (based on a ReusablePolicyContainer)

ModifyInstance N/A N/A PolicyConditionIn
PolicyCondition

ModifyInstance N/A N/A CompoundPolicyAction

ModifyInstance N/A N/A PolicyTimePeriod Condi-
tion

ModifyInstance N/A N/A PolicyActionIn
PolicyAction

Table 184: Methods that cause Instance Creation, Deletion, or Modification of Dynamic Policy 
Rules

Method Created Instances Deleted Instances Modified Instances
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 225



 

• Associate selected QueryConditions to the PolicyRule

• Associate selected MethodActions to the PolicyRule

• Create the appropriate PolicySetAppliesToElement associations

• ModifyInstance of the PolicyRule (to enable)

If this sequence in not followed, there is no guarantee that the desired Policy will be created. Also note
that all steps would need to successfully execute to ensure creation of any of the instances involved in
the PolicyRule

The following sequence should be followed for creating Client Defined Policies:

• Creation of the PolicyRule (disabled)

• Creation of the QueryCondition(s)

• Immediately followed by Creation of the PolicyConditionInPolicyRule association(s)

• Creation of the MethodAction(s)

• Immediately followed by Creation of the PolicyActionInPolicyRule association(s)

• Creation of one or more PolicySetAppliesToElement associations (if needed)

• ModifyInstance of the PolicyRule (to enable)

If this sequence in not followed, there is no guarantee that the desired Policy will be created. Also note
that all steps would need to successfully execute to ensure creation of any of the instances involved in
the PolicyRule

DeleteInstance
Not defined in this standard.

ModifyInstance
Not defined in this standard.

8.2.1.11.6 Client Considerations and Recipes
None.

8.2.1.11.6.1 SMI-S Supported PolicyCapabilities and QueryCapabilities Patterns
The PolicyCapabilities patterns that are formally recognized by this version of SMI-S are shown in
Table 185, “SMI-S Supported PolicyCapabilities Patterns”.

Table 185: SMI-S Supported PolicyCapabilities Patterns
PolicyLevels Supported

Static Rules
Static Rules, Dynamic Rules
Static Rules, Client Defined Rules
Static Rules, Dynamic Rules, Client Defined Rules
Dynamic Rules
Dynamic Rules, Client Defined Rules
Client Defined Rules
226



 Policy Package
8.2.1.11.7 Registered Name and Version
Policy version 1.1.0

8.2.1.11.8 CIM Server Requirements

8.2.1.11.9 CIM Elements

Table 186: CIM Server Requirements for Policy

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No

Table 187: CIM Elements for Policy

Element Name Description
Optional Classes

CIM_CompoundPolicyAction (8.2.1.11.9.1)  A pre-defined Policy action that groups multiple method 
actions as a unit.

CIM_CompoundPolicyAction (8.2.1.11.9.2)  A Client defined Policy action that groups multiple 
method actions as a unit.

CIM_CompoundPolicyCondition (8.2.1.11.9.3)  A pre-defined Policy condition that groups multiple 
query conditions as a unit

CIM_CompoundPolicyCondition (8.2.1.11.9.4)  A Client defined Policy condition that groups multiple 
query conditions as a unit.

CIM_ElementCapabilities (8.2.1.11.9.5) This associates the QueryCapabilities to the specific 
PolicyRegisteredSubprofile.

CIM_MethodAction (8.2.1.11.9.6)  Defines a Method (pre-defined) to be executed as part 
of a PolicyRule

CIM_MethodAction (8.2.1.11.9.7)  Defines a Method (Client defined) to be executed as 
part of a PolicyRule

CIM_PolicyActionInPolicyAction (8.2.1.11.9.8) OPTIONAL: Associates a MethodAction to a pre-
defined CompoundPolicyAction.

CIM_PolicyActionInPolicyAction (8.2.1.11.9.9) OPTIONAL: Associates a MethodAction to a Client 
defined CompoundPolicyAction.

CIM_PolicyActionInPolicyRule (8.2.1.11.9.10) OPTIONAL: Associates a MethodAction to the pre-
defined PolicyRule of which it is a part.

CIM_PolicyActionInPolicyRule (8.2.1.11.9.11) OPTIONAL: Associates a MethodAction to the Client 
defined PolicyRule of which it is a part.

CIM_PolicyConditionInPolicyCondition (8.2.1.11.9.12)  Associates a QueryCondition to a pre-defined Com-
poundPolicyCondition.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 227



 

CIM_PolicyConditionInPolicyCondition (8.2.1.11.9.13)  Associates a QueryCondition to a Client defined Com-
poundPolicyCondition.

CIM_PolicyConditionInPolicyRule (8.2.1.11.9.14)  Associates a pre-defined QueryCondition to the Poli-
cyRules of which it is part.

CIM_PolicyConditionInPolicyRule (8.2.1.11.9.15)  Associates a Client defined QueryCondition to the Poli-
cyRules of which it is part.

CIM_PolicyContainerInPolicyContainer (8.2.1.11.9.16)  Association that collects PolicyContainers in other Poli-
cyContainers.

CIM_PolicyRule (8.2.1.11.9.17) Defines a Static (pre-defined) PolicyRule.
CIM_PolicyRule (8.2.1.11.9.18) Defines a PolicyRule created by a client (Dynamic or 

Client Defined policy).
CIM_PolicyRuleInSystem (8.2.1.11.9.19)  Associates Static PolicyRules to the System that hosts 

them.
CIM_PolicyRuleInSystem (8.2.1.11.9.20)  Associates Dynamic or Client Defined PolicyRules to 

the System that hosts them.
CIM_PolicySetAppliesToElement (8.2.1.11.9.21)  An association that may be referenced in QueryCondi-

tions or MethodActions to constrain the application of a 
pre-defined PolicyRule. It associates the PolicyRule to 
ManagedElements.

CIM_PolicySetAppliesToElement (8.2.1.11.9.22)  An association that may be referenced in QueryCondi-
tions or MethodActions to constrain the application of a 
Dynamic or Client defined PolicyRule. It associates the 
PolicyRule to ManagedElements.

CIM_PolicySetValidityPeriod (8.2.1.11.9.23)  Associates a PolicyTimePeriodCondition to a pre-
defined PolicyRule.

CIM_PolicySetValidityPeriod (8.2.1.11.9.24)  Associates a PolicyTimePeriodCondition to a Dynamic 
or client defined PolicyRule.

CIM_PolicyTimePeriodCondition (8.2.1.11.9.25)  A pre-defined PolicyCondition that specifies the valid 
time period for Policy activation.

CIM_PolicyTimePeriodCondition (8.2.1.11.9.26)  A Dynamic or Client defined PolicyCondition that spec-
ifies the valid time period for Policy activation.

CIM_QueryCapabilities (8.2.1.11.9.27)  Defines the Query execution capabilities of the profile 
or CIMOM.

CIM_QueryCondition (8.2.1.11.9.28)  A pre-defined Query that is used as a condition of a 
PolicyRule. A QueryCondition where Trigger=TRUE 
serves as an indication to drive evaluation of other Que-
ryConditions in the PolicyRule.

CIM_QueryCondition (8.2.1.11.9.29)  A Dynamic or Client defined Query that is used as a 
condition of a PolicyRule. A QueryCondition where Trig-
ger=TRUE serves as an indication to drive evaluation of 
other QueryConditions in the PolicyRule.

CIM_ReusablePolicy (8.2.1.11.9.30)  ReusablePolicy associates Policy Conditions and Pol-
icy Actions to a ReusablePolicyContainer. It is used for 
Dynamic Policy support.

Table 187: CIM Elements for Policy

Element Name Description
228



 Policy Package
8.2.1.11.9.1 CIM_CompoundPolicyAction
CompoundPolicyAction is used to represent an expression consisting of an ordered sequence of action
terms. Each action term is represented as a subclass of the PolicyAction class. Compound actions are
constructed by associating dependent action terms together using the PolicyActionInPolicyAction
aggregation.

CompoundPolicyAction is subclassed from PolicyAction.

An instance of CompoundPolicyAction will exist if any compound actions exist.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

CIM_ReusablePolicyContainer (8.2.1.11.9.31)  A ReusablePolicyContainer collects all the Policy Con-
ditions and Actions that may be used in constructing a 
Dynamic PolicyRule.

Table 188: SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The name of the class or the subclass 
used in the creation of the System 
object in whose scope this PolicyAction 
is defined.

SystemName string The name of the System object in 
whose scope this PolicyAction is 
defined.

PolicyRuleCreationClassName string For a rule-specific PolicyAction, the 
CreationClassName of the PolicyRule 
object with which this Action is associ-
ated. For a reusable PolicyAction, a 
special value, 'NO RULE', should be 
used.

CreationClassName string The name of the class or the subclass 
used in the creation of an instance.

PolicyRuleName string For a rule-specific PolicyAction, the 
name of the PolicyRule object with 
which this Action is associated. For a 
reusable PolicyAction, a special value, 
'NO RULE', should be used.

PolicyActionName string A provider generated user-friendly 
name of this policy (method) action

Optional Properties/Methods
ElementName string Another provider generated user-

friendly name 
CommonName string A provider generated user-friendly 

name of the CompoundPolicyAction 

Table 187: CIM Elements for Policy

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 229



 

8.2.1.11.9.2 CIM_CompoundPolicyAction
CompoundPolicyAction is used to represent an expression consisting of an ordered sequence of action
terms. Each action term is represented as a subclass of the PolicyAction class. Compound actions are
constructed by associating dependent action terms together using the PolicyActionInPolicyAction
aggregation.

CompoundPolicyAction is subclassed from PolicyAction.

An instance of CompoundPolicyAction will exist if any compound actions exist.

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance

DoActionLogging boolean
SequencedActions uint16 This property gives a profile designer a 

way of specifying how the ordering of 
the PolicyActions associated with this 
PolicyRule is to be interpreted. Three 
values are supported:
- mandatory(1): Do the actions in the 
indicated order, or don't do them at all.
- recommended(2): Do the actions in 
the indicated order if you can, but if you 
can't do them in this order, do them in 
another order if you can.
- dontCare(3): Do them -- I don't care 
about the order.
The default value is 3 ("DontCare"). 
Values { "Mandatory", "Recom-
mended", "Dont Care" }

ExecutionStrategy uint16 A profile designed ExecutionStrategy 
defines the strategy to be used in exe-
cuting the sequenced actions aggre-
gated by this CompoundPolicyAction. 
There are three execution strategies:
Do Until Success - execute actions 
according to predefined order, until 
successful execution of a single action.
Do All - execute ALL actions which are 
part of the modeled set, according to 
their predefined order. Continue doing 
this, even if one or more of the actions 
fails.
Do Until Failure - execute actions 
according to predefined order, until the 
first failure in execution of an action 
instance.
The default value is 2 ("Do All"). 
Values { "Do Until Success", "Do All", 
"Do Until Failure" }

Table 188: SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Pre-defined)

Property Flags Type Description & Notes
230



 Policy Package
Class Mandatory: false

Table 189: SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Client defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The name of the class or the subclass 
used in the creation of the System 
object in whose scope this PolicyAction 
is defined.

SystemName string The name of the System object in 
whose scope this PolicyAction is 
defined.

PolicyRuleCreationClassName string For a rule-specific PolicyAction, the 
CreationClassName of the PolicyRule 
object with which this Action is associ-
ated. For a reusable PolicyAction, a 
special value, 'NO RULE', should be 
used.

CreationClassName string The name of the class or the subclass 
used in the creation of an instance.

PolicyRuleName string For a rule-specific PolicyAction, the 
name of the PolicyRule object with 
which this Action is associated. For a 
reusable PolicyAction, a special value, 
'NO RULE', should be used.

PolicyActionName string A client defined user-friendly name of 
this policy (method) action

Optional Properties/Methods
ElementName string Another Client defined user-friendly 

name 
CommonName string A client-defined user-friendly name of 

the CompoundPolicyAction
DoActionLogging boolean
SequencedActions uint16 This property gives a policy administra-

tor (client) a way of specifying how the 
ordering of the PolicyActions associ-
ated with this PolicyRule is to be inter-
preted. Three values are supported:
- mandatory(1): Do the actions in the 
indicated order, or don't do them at all.
- recommended(2): Do the actions in 
the indicated order if you can, but if you 
can't do them in this order, do them in 
another order if you can.
- dontCare(3): Do them -- I don't care 
about the order.
The default value is 3 ("DontCare"). 
Values { "Mandatory", "Recom-
mended", "Dont Care" }
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 231



 

8.2.1.11.9.3 CIM_CompoundPolicyCondition
CompoundPolicyCondition is used to represent compound conditions formed by aggregating simpler
policy conditions. Compound conditions are constructed by associating subordinate condition terms
together using the PolicyConditionInPolicyCondition aggregation.

CompoundPolicyCondition is subclassed from PolicyCondition.

An instance of CompoundPolicyCondition will exist if any pre-defined compound conditions exist.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

ExecutionStrategy uint16 ExecutionStrategy defines the strategy 
to be used in executing the sequenced 
actions aggregated by this Compound-
PolicyAction. There are three execution 
strategies:
Do Until Success - execute actions 
according to predefined order, until 
successful execution of a single action.
Do All - execute ALL actions which are 
part of the modeled set, according to 
their predefined order. Continue doing 
this, even if one or more of the actions 
fails.
Do Until Failure - execute actions 
according to predefined order, until the 
first failure in execution of an action 
instance.
The default value is 2 ("Do All"). Values 
{ "Do Until Success", "Do All", "Do Until 
Failure" }

Table 190: SMI Referenced Properties/Methods for CIM_CompoundPolicyCondition (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The name of the class or the subclass 
used in the creation of the System 
object in whose scope this PolicyCon-
dition is defined.

SystemName string The name of the System object in 
whose scope this PolicyCondition is 
defined.

Table 189: SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Client defined)

Property Flags Type Description & Notes
232



 Policy Package
8.2.1.11.9.4 CIM_CompoundPolicyCondition
CompoundPolicyCondition is used to represent compound conditions formed by aggregating simpler
policy conditions. Compound conditions are constructed by associating subordinate condition terms
together using the PolicyConditionInPolicyCondition aggregation.

CompoundPolicyCondition is subclassed from PolicyCondition.

An instance of CompoundPolicyCondition will exist if any client defined compound conditions exist.

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance

PolicyRuleCreationClassName string For a rule-specific PolicyCondition, the 
CreationClassName of the PolicyRule 
object with which this Condition is 
associated. For a reusable PolicyCon-
dition, a special value, 'NO RULE', 
should be used to indicate that this 
Condition is reusable and not associ-
ated with a single PolicyRule.

PolicyRuleName string For a rule-specific PolicyCondition, the 
name of the PolicyRule object with 
which this Condition is associated. For 
a reusable PolicyCondition, a special 
value, 'NO RULE', should be used to 
indicate that this Condition is reusable 
and not associated with a single Poli-
cyRule.

CreationClassName string The name of the class or the subclass 
used in the creation of an instance.

PolicyConditionName string A provider supplied user-friendly name 
of this PolicyCondition.

Optional Properties/Methods
ElementName string Another provider supplied user-friendly 

name 
CommonName string A provider supplied user-friendly name 

of the CompoundPolicyCondition.
ConditionListType uint16 Indicates whether the list of Com-

poundPolicyConditions associated with 
this PolicyRule Is in disjunctive normal 
form (DNF) or conjunctive normal form 
(CNF). 
The default value is 1 ("DNF"). Values { 
"DNF", "CNF" }

Table 190: SMI Referenced Properties/Methods for CIM_CompoundPolicyCondition (Pre-defined)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 233



 

Class Mandatory: false

8.2.1.11.9.5 CIM_ElementCapabilities
CIM_ElementCapabilities represents the association between ManagedElements
(i.e.,CIM_RegisteredSubprofile) and their Capabilities (e.g., CIM_QueryCapabilities). 

CIM_ElementCapabilities is not subclassed from anything.

Table 191: SMI Referenced Properties/Methods for CIM_CompoundPolicyCondition (Client 
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The name of the class or the subclass 
used in the creation of the System 
object in whose scope this PolicyCon-
dition is defined.

SystemName string The name of the System object in 
whose scope this PolicyCondition is 
defined.

PolicyRuleCreationClassName string For a rule-specific PolicyCondition, the 
CreationClassName of the PolicyRule 
object with which this Condition is 
associated. For a reusable PolicyCon-
dition, a special value, 'NO RULE', 
should be used to indicate that this 
Condition is reusable and not associ-
ated with a single PolicyRule.

PolicyRuleName string For a rule-specific PolicyCondition, the 
name of the PolicyRule object with 
which this Condition is associated. For 
a reusable PolicyCondition, a special 
value, 'NO RULE', should be used to 
indicate that this Condition is reusable 
and not associated with a single Poli-
cyRule.

CreationClassName string The name of the class or the subclass 
used in the creation of an instance.

PolicyConditionName string A client defined user-friendly name of 
this PolicyCondition.

Optional Properties/Methods
ElementName string Another client defined user-friendly 

name 
CommonName string A client defined user-friendly name of 

the CompoundPolicyCondition.
ConditionListType uint16 Indicates whether the list of Com-

poundPolicyConditions associated with 
this PolicyRule is in disjunctive normal 
form (DNF) or conjunctive normal form 
(CNF). 
The default value is 1 ("DNF"). Values { 
"DNF", "CNF" }
234



 Policy Package
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.1.11.9.6 CIM_MethodAction
MethodAction is a PolicyAction that invokes an action defined by a query. The action is defined by a
method of an ObjectName, which may be an intrinsic method of a CIM Namespace or an extrinsic
method of a CIM_ManagedElement. The input parameters to the method are defined by the query and
may be fixed values defined by literals or may be defined by reference to one or more properties of
QueryConditionResult, MethodActionResult, or other instances.

MethodAction is subclassed from PolicyAction.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Table 192: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The managed element (Registered-
Subprofile)

Capabilities CIM_Capabilities The CIM_QueryCapabilities instance 
associated with the element.

Table 193: SMI Referenced Properties/Methods for CIM_MethodAction (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The name of the class or the subclass 
used in the creation of the System 
object in whose scope this PolicyAction 
is defined.

SystemName string The name of the System object in 
whose scope this MethodAction is 
defined.

PolicyRuleCreationClassName string For a rule-specific MethodAction, the 
CreationClassName of the PolicyRule 
object with which this Action is associ-
ated. For a reusable MethodAction, a 
special value, 'NO RULE', should be 
used.

PolicyRuleName string For a rule-specific MethodAction, the 
name of the PolicyRule object with 
which this Action is associated. For a 
reusable MethodAction, a special 
value, 'NO RULE', should be used.

CreationClassName string The name of the class or the subclass 
used in the creation of an instance.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 235



 

8.2.1.11.9.7 CIM_MethodAction
MethodAction is a PolicyAction that invokes an action defined by a query. The action is defined by a
method of an ObjectName, which may be an intrinsic method of a CIM Namespace or an extrinsic
method of a CIM_ManagedElement. The input parameters to the method are defined by the query and
may be fixed values defined by literals or may be defined by reference to one or more properties of
QueryConditionResult, MethodActionResult, or other instances.

MethodAction is subclassed from PolicyAction.

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: false

PolicyActionName string A provider supplied user-friendly name 
of this policy (method) action

InstMethodCallName string In the context of the associated Poli-
cyRule, InstMethodCallName defines a 
unique name for the query results that 
invoke the method specified in the 
Query string. It may be used in subse-
quent MethodActions of the same Poli-
cyRule. This string is treated as a class 
name, in a query statement.

Query string The query that defines the method and 
the input parameters to that method.

QueryLanguage uint16 This defines the query language being 
used, and for the current version of 
SMI-S, it shall be set to "2" (CQL).

Optional Properties/Methods
ElementName string Another provider supplied user-friendly 

name 
CommonName string A provider supplied user-friendly name 

of the MethodAction.
DoActionLogging boolean

Table 194: SMI Referenced Properties/Methods for CIM_MethodAction (Client defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The name of the class or the subclass 
used in the creation of the System 
object in whose scope this PolicyAction 
is defined.

SystemName string The name of the System object in 
whose scope this MethodAction is 
defined.

Table 193: SMI Referenced Properties/Methods for CIM_MethodAction (Pre-defined)

Property Flags Type Description & Notes
236



 Policy Package
8.2.1.11.9.8 CIM_PolicyActionInPolicyAction
PolicyActionInPolicyAction is used to represent the compounding of policy actions into a higher-level
policy action.

PolicyActionInPolicyAction is subclassed from PolicyActionStructure.

This association will exist if there is a pre-defined CompoundPolicyAction instance.

Created By : Static
Modified By : Static
Deleted By : Static

PolicyRuleCreationClassName string For a rule-specific MethodAction, the 
CreationClassName of the PolicyRule 
object with which this Action is associ-
ated. For a reusable MethodAction, a 
special value, 'NO RULE', should be 
used.

PolicyRuleName string For a rule-specific MethodAction, the 
name of the PolicyRule object with 
which this Action is associated. For a 
reusable MethodAction, a special 
value, 'NO RULE', should be used.

CreationClassName string The name of the class or the subclass 
used in the creation of an instance.

PolicyActionName string A client defined user-friendly name of 
this policy (method) action

InstMethodCallName string In the context of the associated Poli-
cyRule, InstMethodCallName defines a 
unique name for the query results that 
invoke the method specified in the 
Query string. It may be used in subse-
quent MethodActions of the same Poli-
cyRule. This string is treated as a class 
name, in a query statement.

Query string The query that defines the method and 
the input parameters to that method.

QueryLanguage uint16 This defines the query language being 
used, and for the current version of 
SMI-S, this shall be set to "2" (CQL).

Optional Properties/Methods
ElementName string Another client defined user-friendly 

name 
CommonName string A client defined user-friendly name of 

the MethodAction.
DoActionLogging boolean

Table 194: SMI Referenced Properties/Methods for CIM_MethodAction (Client defined)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 237



 

Class Mandatory: false

8.2.1.11.9.9 CIM_PolicyActionInPolicyAction
PolicyActionInPolicyAction is used to represent the compounding of policy actions into a higher-level
policy action.

PolicyActionInPolicyAction is subclassed from PolicyActionStructure.

This association will exist if there is a Client defined CompoundPolicyAction instance.

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: false

8.2.1.11.9.10 CIM_PolicyActionInPolicyRule
A PolicyRule aggregates zero or more instances of the PolicyAction class, via the
PolicyActionInPolicyRule association. A Rule that aggregates zero Actions is not valid--it may, however,

Table 195: SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyAction (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_CompoundPolicyA
ction

This property represents the Com-
poundPolicyAction that contains one or 
more PolicyActions.

PartComponent CIM_PolicyAction This property holds the name of a Poli-
cyAction contained by one or more 
CompoundPolicyActions.

Optional Properties/Methods
ActionOrder uint16 ActionOrder is an unsigned integer 'n' 

that indicates the relative position of a 
PolicyAction in the sequence of actions 
associated with a PolicyRule or Com-
poundPolicyAction.

Table 196: SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyAction (Client 
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_CompoundPolicyA
ction

This property represents the Com-
poundPolicyAction that contains one or 
more PolicyActions.

PartComponent CIM_PolicyAction This property holds the name of a Poli-
cyAction contained by one or more 
CompoundPolicyActions.

Optional Properties/Methods
ActionOrder uint16 ActionOrder is an unsigned integer 'n' 

that indicates the relative position of a 
PolicyAction in the sequence of actions 
associated with a PolicyRule or Com-
poundPolicyAction.
238



 Policy Package
be in the process of being entered into a PolicyRepository or being defined for a System. Alternately,
the actions of the policy may be explicit in the definition of the PolicyRule. Note that a PolicyRule should
have no effect until it is valid.

The Actions associated with a PolicyRule may be given a required order, a recommended order, or no
order at all. For Actions represented as separate objects, the PolicyActionInPolicyRule aggregation can
be used to express an order.

This aggregation does not indicate whether a specified action order is required, recommended, or of no
significance; the property SequencedActions in the aggregating instance of PolicyRule provides this
indication.

PolicyActionInPolicyRule is subclassed from PolicyActionStructure.

This association will exist if there are any Static PolicyRules that have MethodActions.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.1.11.9.11 CIM_PolicyActionInPolicyRule
A PolicyRule aggregates zero or more instances of the PolicyAction class, via the
PolicyActionInPolicyRule association. A Rule that aggregates zero Actions is not valid--it may, however,
be in the process of being entered into a PolicyRepository or being defined for a System. Alternately,
the actions of the policy may be explicit in the definition of the PolicyRule. Note that a PolicyRule should
have no effect until it is valid.

The Actions associated with a PolicyRule may be given a required order, a recommended order, or no
order at all. For Actions represented as separate objects, the PolicyActionInPolicyRule aggregation can
be used to express an order.

This aggregation does not indicate whether a specified action order is required, recommended, or of
nosignificance; the property SequencedActions in the aggregating instance of PolicyRule provides this
indication.

PolicyActionInPolicyRule is subclassed from PolicyActionStructure.

This association will exist if there are any Client defined PolicyRules that have MethodActions.

Table 197: SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyRule (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_PolicyRule This property represents the PolicyRule 
that contains one or more PolicyAc-
tions.

PartComponent CIM_PolicyAction This property holds the name of a Poli-
cyAction contained by one or more Pol-
icyRules.

Optional Properties/Methods
ActionOrder uint16 ActionOrder is an unsigned integer 'n' 

that indicates the relative position of a 
PolicyAction in the sequence of actions 
associated with a PolicyRule.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 239



 

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: false

8.2.1.11.9.12 CIM_PolicyConditionInPolicyCondition
A CompoundPolicyCondition aggregates zero or more instances of the PolicyCondition class, via the
PolicyConditionInPolicyCondition association. A CompoundPolicyCondition that aggregates zero
Conditions is not valid; it may, however, be in the process of being defined. Note that a
CompoundPolicyCondition should have no effect until it is valid.

CIM_PolicyConditionInPolicyCondition is subclassed from CIM_PolicyConditionStructure.

There would be at least on instance of this association if there are any pre-defined
CompoundPolicyConditions.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Table 198: SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyRule (Client 
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_PolicyRule This property represents the PolicyRule 
that contains one or more PolicyAc-
tions.

PartComponent CIM_PolicyAction This property holds the name of a Poli-
cyAction contained by one or more Pol-
icyRules.

Optional Properties/Methods
ActionOrder uint16 ActionOrder is an unsigned integer 'n' 

that indicates the relative position of a 
PolicyAction in the sequence of actions 
associated with a PolicyRule.

Table 199: SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyCondition (Pre-
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupNumber uint16 Unsigned integer indicating the group 
to which the contained PolicyCondition 
belongs. This integer segments the 
Conditions into the ANDed sets (when 
the ConditionListType is "DNF") or, sim-
ilarly, into the ORed sets (when the 
ConditionListType is "CNF”).
240



 Policy Package
8.2.1.11.9.13 CIM_PolicyConditionInPolicyCondition
A CompoundPolicyCondition aggregates zero or more instances of the PolicyCondition class, via the
PolicyConditionInPolicyCondition association. A CompoundPolicyCondition that aggregates zero
Conditions is not valid; it may, however, be in the process of being defined. Note that a
CompoundPolicyCondition should have no effect until it is valid.

CIM_PolicyConditionInPolicyCondition is subclassed from CIM_PolicyConditionStructure.

There would be at least on instance of this association if there are any Client defined
CompoundPolicyConditions.

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: false

ConditionNegated boolean Indication of whether the contained 
PolicyCondition is negated. TRUE indi-
cates that the PolicyCondition IS 
negated, FALSE indicates that it IS not 
negated.

GroupComponent CIM_CompoundPolicyCondition This property represents the Com-
poundPolicyCondition that contains 
one or more PolicyConditions.

PartComponent CIM_PolicyCondition This property holds the name of a Poli-
cyCondition contained by one or more 
CompoundPolicyConditions.

Table 200: SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyCondition (Client 
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupNumber uint16 Unsigned integer indicating the group 
to which the contained PolicyCondition 
belongs. This integer segments the 
Conditions into the ANDed sets (when 
the ConditionListType is "DNF") or, sim-
ilarly, into the ORed sets (when the 
ConditionListType is "CNF").

ConditionNegated boolean Indication of whether the contained 
PolicyCondition is negated. TRUE indi-
cates that the PolicyCondition IS 
negated, FALSE indicates that it IS not 
negated.

GroupComponent CIM_CompoundPolicyCondition This property represents the Com-
poundPolicyCondition that contains 
one or more PolicyConditions.

Table 199: SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyCondition (Pre-
defined)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 241



 

8.2.1.11.9.14 CIM_PolicyConditionInPolicyRule
A PolicyRule aggregates zero or more instances of the PolicyCondition class, via the
PolicyConditionInPolicyRule association. A Rule that aggregates zero Conditions is not valid; it may,
however, be in the process of being defined. Note that a PolicyRule should have no effect until it is
valid.

CIM_PolicyConditionInPolicyRule is subclassed from CIM_PolicyConditionStructure.

There would be one instance of this association for each pre-defined PolicyCondition in a PolicyRule.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.1.11.9.15 CIM_PolicyConditionInPolicyRule
A PolicyRule aggregates zero or more instances of the PolicyCondition class, via the
PolicyConditionInPolicyRule association. A Rule that aggregates zero Conditions is not valid; it may,
however, be in the process of being defined. Note that a PolicyRule should have no effect until it is
valid.

CIM_PolicyConditionInPolicyRule is subclassed from CIM_PolicyConditionStructure.

PartComponent CIM_PolicyCondition This property holds the name of a Poli-
cyCondition contained by one or more 
CompoundPolicyConditions.

Table 201: SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyRule (Pre-
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupNumber uint16 Unsigned integer indicating the group 
to which the contained PolicyCondition 
belongs. This integer segments the 
Conditions into the ANDed sets (when 
the ConditionListType is "DNF") or, sim-
ilarly, into the ORed sets (when the 
ConditionListType is "CNF").

ConditionNegated boolean Indication of whether the contained 
PolicyCondition is negated. TRUE indi-
cates that the PolicyCondition IS 
negated, FALSE indicates that it IS not 
negated.

GroupComponent CIM_PolicyRule This property represents the PolicyRule 
that contains one or more PolicyCondi-
tions.

PartComponent CIM_PolicyCondition This property holds the name of a Poli-
cyCondition contained by one or more 
PolicyRules.

Table 200: SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyCondition (Client 
defined)

Property Flags Type Description & Notes
242



 Policy Package
There would be one instance of this association for each client defined PolicyCondition in a PolicyRule.

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: false

8.2.1.11.9.16 CIM_PolicyContainerInPolicyContainer
A relationship that aggregates one or more lower-level ReusablePolicyContainer instances into a
higher-level ReusablePolicyContainer.

CIM_PolicyContainerInPolicyContainer is subclassed form CIM_SystemComponent.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Table 202: SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyRule (Client 
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupNumber uint16 Unsigned integer indicating the group 
to which the contained PolicyCondition 
belongs. This integer segments the 
Conditions into the ANDed sets (when 
the ConditionListType is "DNF") or, sim-
ilarly, into the ORed sets (when the 
ConditionListType is "CNF").

ConditionNegated boolean Indication of whether the contained 
PolicyCondition is negated. TRUE indi-
cates that the PolicyCondition IS 
negated, FALSE indicates that it IS not 
negated.

GroupComponent CIM_PolicyRule This property represents the PolicyRule 
that contains one or more PolicyCondi-
tions.

PartComponent CIM_PolicyCondition This property holds the name of a Poli-
cyCondition contained by one or more 
PolicyRules.

Table 203: SMI Referenced Properties/Methods for CIM_PolicyContainerInPolicyContainer (Pre-
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_ReusablePolicyContainer A ReusablePolicyContainer that aggre-
gates other ReusablePolicyContainers.

PartComponent CIM_ReusablePolicyContainer A ReusablePolicyContainer aggre-
gated by another ReusablePolicyCon-
tainer.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 243



 

8.2.1.11.9.17 CIM_PolicyRule
The central class used for representing the 'If Condition then Action' semantics of a policy rule. A
PolicyRule condition, in the most general sense, is represented as either an ORed set of ANDed
conditions (Disjunctive Normal Form, or DNF) or an ANDed set of ORed conditions (Conjunctive
Normal Form, or CNF). Individual conditions may either be negated (not C) or unnegated (C). The
actions specified by a PolicyRule are to be performed if and only if the PolicyRule condition (whether it
is represented in DNF or CNF) evaluates to TRUE.

The conditions and actions associated with a PolicyRule are modeled, respectively, with subclasses of
PolicyCondition and PolicyAction. These condition and action objects are tied to instances of
PolicyRule by the PolicyConditionInPolicyRule and PolicyActionInPolicyRule aggregations.

A PolicyRule may also be associated with one or more policy time periods, indicating the schedule
according to which the policy rule is active and inactive. In this case it is the PolicySetValidityPeriod
aggregation that provides this linkage.

The PolicyRule class uses the property ConditionListType, to indicate whether the conditions for the
rule are in DNF (disjunctive normal form), CNF (conjunctive normal form) or, in the case of a rule with
no conditions, as an UnconditionalRule. The PolicyConditionInPolicyRule aggregation contains two
additional properties to complete the representation of the Rule's conditional expression. The first of
these properties is an integer to partition the referenced PolicyConditions into one or more groups, and
the second is a Boolean to indicate whether a referenced Condition is negated. An example shows how
ConditionListType and these two additional properties provide a unique representation of a set of
PolicyConditions in either DNF or CNF.

Suppose we have a PolicyRule that aggregates five PolicyConditions C1 through C5, with the following
values in the properties of the five PolicyConditionInPolicyRule associations:

C1: GroupNumber = 1, ConditionNegated = FALSE

C2: GroupNumber = 1, ConditionNegated = TRUE

C3: GroupNumber = 1, ConditionNegated = FALSE

C4: GroupNumber = 2, ConditionNegated = FALSE

C5: GroupNumber = 2, ConditionNegated = FALSE

If ConditionListType = DNF, then the overall condition for the PolicyRule is:

(C1 AND (not C2) AND C3) OR (C4 AND C5)

On the other hand, if ConditionListType = CNF, then the overall condition for the PolicyRule is:

(C1 OR (not C2) OR C3) AND (C4 OR C5)

In both cases, there is an unambiguous specification of the overall condition that is tested to determine
whether to perform the PolicyActions associated with the PolicyRule.

PolicyRule instances may also be used to aggregate other PolicyRules and/or PolicyGroups. When
used in this way to implement nested rules, the conditions of the aggregating rule apply to the
subordinate rules as well. However, any side effects of condition evaluation or the execution of actions
shall not affect the result of the evaluation of other conditions evaluated by the rule engine in the same
evaluation pass. That is, an implementation of a rule engine may evaluate all conditions in any order
before applying the priority and determining which actions are to be executed.

CIM_PolicyRule is subclassed from CIM_PolicySet.
244



 Policy Package
There shall be at least one instance of PolicyRule for a policy based profile (a profile with an
implementation of the Policy Package).

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Table 204: SMI Referenced Properties/Methods for CIM_PolicyRule (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicyDecisionStrategy uint16 PolicyDecisionStrategy defines the 
evaluation method used for policies 
contained in the PolicySet. FirstMatch-
ing enforces the actions of the first rule 
that evaluates to TRUE. It is the only 
value currently defined.
Values { "First Matching" }

Enabled uint16 Indicates whether this PolicySet is 
administratively enabled or administra-
tively disabled. SMI-S does not define a 
usage for 'Enabled for Debug', but it 
may be supported by an implementa-
tion.
ValueMap { "1", "2", "3" }, 
Values { "Enabled", "Disabled", 
"Enabled For Debug" }

SystemCreationClassName string The scoping System's CreationClass-
Name.

SystemName string The scoping System's Name.
CreationClassName string CreationClassName indicates the 

name of the class or the subclass used 
in the creation of an instance.

PolicyRuleName string A user-friendly name of this PolicyRule.
ExecutionStrategy uint16 ExecutionStrategy defines the strategy 

to be used in executing the sequenced 
actions aggregated by this PolicyRule. 
There are three execution strategies:
Do Until Success - execute actions 
according to predefined order, until 
successful execution of a single action.
Do All - execute ALL actions which are 
part of the modeled set, according to 
their predefined order. Continue doing 
this, even if one or more of the actions 
fails.
Do Until Failure - execute actions 
according to predefined order, until the 
first failure in execution of an action 
instance.
Values { "Do Until Success", "Do All", 
"Do Until Failure" }
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 245



 

8.2.1.11.9.18 CIM_PolicyRule
Same rules as defined for pre-defined PolicyRules apply to Client Defined PolicyRules.

CIM_PolicyRule is subclassed from CIM_PolicySet.

There shall be at least one instance of PolicyRule for a policy based profile (a profile with an
implementation of the Policy Package).

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance

Optional Properties/Methods
ElementName string Another provider supplied user-friendly 

name 
CommonName string A provider supplied user-friendly name 

of the policy rule
ConditionListType uint16 Indicates whether the list of PolicyCon-

ditions associated with this PolicyRule 
is in disjunctive normal form (DNF), 
conjunctive normal form (CNF), or has 
no conditions (i.e., is an Unconditional-
Rule) and is automatically evaluated to 
"True."
The default value is 1 ("DNF").
Values { "Unconditional Rule", "DNF", 
"CNF" }

RuleUsage string A free-form string that can be used to 
provide guidelines on how this Poli-
cyRule should be used.

SequencedActions uint16 This property gives a policy administra-
tor a way of specifying how the order-
ing of the PolicyActions associated with 
this PolicyRule is to be interpreted. 
Three values are supported:
- mandatory(1): Do the actions in the 
indicated order, or don't do them at all.
- recommended(2): Do the actions in 
the indicated order if you can, but if you 
can't do them in this order, do them in 
another order if you can.
- dontCare(3): Do them -- I don't care 
about the order.
The default value is 3 ("DontCare").
Values { "Mandatory", "Recom-
mended", "Dont Care" }

Table 204: SMI Referenced Properties/Methods for CIM_PolicyRule (Pre-defined)

Property Flags Type Description & Notes
246



 Policy Package
Class Mandatory: false

Table 205: SMI Referenced Properties/Methods for CIM_PolicyRule (Client defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicyDecisionStrategy uint16 PolicyDecisionStrategy defines the 
evaluation method used for policies 
contained in the PolicySet. FirstMatch-
ing enforces the actions of the first rule 
that evaluates to TRUE. It is the only 
value currently defined.
Values { "First Matching" }

Enabled uint16 Indicates whether this PolicySet is 
administratively enabled or administra-
tively disabled. SMI-S does not define a 
usage for 'Enabled for Debug', but it 
may be supported by an implementa-
tion.
ValueMap { "1", "2", "3" }, 
Values { "Enabled", "Disabled", 
"Enabled For Debug" }

SystemCreationClassName string The scoping System's CreationClass-
Name.

SystemName string The scoping System's Name.
CreationClassName string CreationClassName indicates the 

name of the class or the subclass used 
in the creation of an instance.

PolicyRuleName string A user-friendly name of this PolicyRule.
ExecutionStrategy uint16 ExecutionStrategy defines the strategy 

to be used in executing the sequenced 
actions aggregated by this PolicyRule. 
There are three execution strategies:
Do Until Success - execute actions 
according to predefined order, until 
successful execution of a single action.
Do All - execute ALL actions which are 
part of the modeled set, according to 
their predefined order. Continue doing 
this, even if one or more of the actions 
fails.
Do Until Failure - execute actions 
according to predefined order, until the 
first failure in execution of an action 
instance.
Values { "Do Until Success", "Do All", 
"Do Until Failure" }

Optional Properties/Methods
ElementName string Another client defined user-friendly 

name
CommonName string A client defined user-friendly name of 

policy rule.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 247



 

8.2.1.11.9.19 CIM_PolicyRuleInSystem
An association that links a PolicyRule to the System in whose scope the Rule is defined. It represents a
relationship between a System and a PolicyRule used in the administrative scope of that system (e.g.,
AdminDomain, ComputerSystem). The Priority property is used to assign a relative priority to a
PolicyRule within the administrative scope in contexts where it is not a component of another PolicySet.

CIM_PolicyRuleInSystem is subclassed from CIM_PolicySetInSystem.

There shall be at least one instance of this association for each Static Policy rule.

Created By : Static
Modified By : Static
Deleted By : Static

ConditionListType uint16 Indicates whether the list of PolicyCon-
ditions associated with this PolicyRule 
is in disjunctive normal form (DNF), 
conjunctive normal form (CNF), or has 
no conditions (i.e., is an Unconditional-
Rule) and is automatically evaluated to 
"True." 
The default value is 1 ("DNF").
Values { "Unconditional Rule", "DNF", 
"CNF" }

RuleUsage string A free-form string that can be used to 
provide guidelines on how this Poli-
cyRule should be used.

SequencedActions uint16 This property gives a policy administra-
tor a way of specifying how the order-
ing of the PolicyActions associated with 
this PolicyRule is to be interpreted. 
Three values are supported:
- mandatory(1): Do the actions in the 
indicated order, or don't do them at all.
- recommended(2): Do the actions in 
the indicated order if you can, but if you 
can't do them in this order, do them in 
another order if you can.
- dontCare(3): Do them -- I don't care 
about the order.
The default value is 3 ("DontCare").
Values { "Mandatory", "Recom-
mended", "Dont Care" }

Table 205: SMI Referenced Properties/Methods for CIM_PolicyRule (Client defined)

Property Flags Type Description & Notes
248



 Policy Package
Class Mandatory: false

8.2.1.11.9.20 CIM_PolicyRuleInSystem
An association that links a PolicyRule to the System in whose scope the Rule is defined. It represents a
relationship between a System and a PolicyRule used in the administrative scope of that system (e.g.,
AdminDomain, ComputerSystem). The Priority property is used to assign a relative priority to a
PolicyRule within the administrative scope in contexts where it is not a component of another PolicySet.

CIM_PolicyRuleInSystem is subclassed from CIM_PolicySetInSystem.

There shall be at least one instance of this association for each Dynamic or Client Defined Policy Rule.

Created By : CreateInstance
Modified By : Static
Deleted By : DeleteInstance
Class Mandatory: false

Table 206: SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The System in whose scope a Poli-
cyRule is defined.

Dependent CIM_PolicyRule A PolicyRule named within the scope of 
a System.

Optional Properties/Methods
Priority uint16 The Priority property is used to specify 

the relative priority of the referenced 
PolicySet (PolicyRule) when there are 
more than one PolicySet instances 
applied to a managed resource that are 
not PolicySetComponents and, there-
fore, have no other relative priority 
defined. The priority is a non-negative 
integer; a larger value indicates a 
higher priority.

Table 207: SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (Client defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The System in whose scope a Poli-
cyRule is defined.

Dependent CIM_PolicyRule A PolicyRule named within the scope of 
a System.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 249



 

8.2.1.11.9.21 CIM_PolicySetAppliesToElement
PolicySetAppliesToElement makes explicit which PolicySets (i.e., policy rules and groups of rules) ARE
CURRENTLY applied to a particular Element. This association indicates that the PolicySets that are
appropriate for a ManagedElement(specified using the PolicyRoleCollection aggregation) have actually
been deployed in the policy management infrastructure. One or more QueryCondition or MethodAction
instances may reference the PolicySetAppliesToElement association as part of its query.
PolicySetAppliesToElement shall not be used if the associated PolicySet, (collectively though its rules,
conditions, and actions), does not make use of the association. Note that if the named Element refers to
a Collection, then the PolicySet is assumed to be applied to all the members of the Collection.

CIM_PolicySetAppliesToElement is not subclassed from anything.

An instance of this class may or may not exist.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.1.11.9.22 CIM_PolicySetAppliesToElement
PolicySetAppliesToElement makes explicit which PolicySets (i.e., policy rules and groups of rules) ARE
CURRENTLY applied to a particular Element. This association indicates that the PolicySets that are
appropriate for a ManagedElement(specified using the PolicyRoleCollection aggregation) have actually
been deployed in the policy management infrastructure. One or more QueryCondition or MethodAction
instances may reference the PolicySetAppliesToElement association as part of its query.
PolicySetAppliesToElement shall not be used if the associated PolicySet, (collectively though its rules,
conditions, and actions), does not make use of the association. Note that if the named Element refers to
a Collection, then the PolicySet is assumed to be applied to all the members of the Collection.

Optional Properties/Methods
Priority uint16 The Priority property is used to specify 

the relative priority of the referenced 
PolicySet (PolicyRule) when there are 
more than one PolicySet instances 
applied to a managed resource that are 
not PolicySetComponents and, there-
fore, have no other relative priority 
defined. The priority is a non-negative 
integer; a larger value indicates a 
higher priority.

Table 208: SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement (Pre-
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_PolicySet The PolicyRules and/or groups of rules 
that are currently applied to an Ele-
ment.

ManagedElement CIM_ManagedElement The ManagedElement to which the Pol-
icySet applies.

Table 207: SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (Client defined)

Property Flags Type Description & Notes
250



 Policy Package
CIM_PolicySetAppliesToElement is not subclassed from anything.

An instance of this class may or may not exist.

Created By : CreateInstance
Modified By : Static
Deleted By : DeleteInstance
Class Mandatory: false

8.2.1.11.9.23 CIM_PolicySetValidityPeriod
The PolicySetValidityPeriod aggregation represents scheduled activation and deactivation of a
PolicySet. A PolicySet is considered "active" if it is both "Enabled" and in a valid time period. 

If a PolicySet is associated with multiple policy time periods via this association, then the Set is in a
valid time period if at least one of the time periods evaluates to TRUE. If a PolicySet is contained in
another PolicySet via the PolicySetComponent aggregation (e.g., a PolicyRule in a PolicyGroup), then
the contained PolicySet (e.g., PolicyRule) is in a valid period if at least one of the aggregate's
PolicyTimePeriodCondition instances evaluates to TRUE and at least one of its own
PolicyTimePeriodCondition instances also evaluates to TRUE. (In other words, the
PolicyTimePeriodConditions are ORed to determine whether the PolicySet is in a valid time period and
then ANDed with the ORed PolicyTimePeriodConditions of each of PolicySet instances in the
PolicySetComponent hierarchy to determine if the PolicySet is in a valid time period and, if also
"Enabled", therefore, active, i.e., the hierarchy ANDs the ORed PolicyTimePeriodConditions of the
elements of the hierarchy.

A Time Period may be aggregated by multiple PolicySets. A Set that does not point to a
PolicyTimePeriodCondition via this association, from the point of view of scheduling, is always in a valid
time period.

CIM_PolicySetValidityPeriod is subclassed from CIM_PolicyComponent.

An instance of this class may or may not exist.

Created By : Static
Modified By : Static
Deleted By : Static

Table 209: SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement (Client 
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_PolicySet The PolicyRules and/or groups of rules 
that are currently applied to an Ele-
ment.

ManagedElement CIM_ManagedElement The ManagedElement to which the Pol-
icySet applies.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 251



 

Class Mandatory: false

8.2.1.11.9.24 CIM_PolicySetValidityPeriod
The rules for client defined PolicySetValidityPeriods are the same as those for pre-
definedPolicySetValidityPeriods.

CIM_PolicySetValidityPeriod is subclassed from CIM_PolicyComponent.

An instance of this class may or may not exist.

Created By : CreateInstance
Modified By : Static
Deleted By : DeleteInstance
Class Mandatory: false

8.2.1.11.9.25 CIM_PolicyTimePeriodCondition
This class provides a means of representing the time periods during which a PolicySet is valid, i.e.,
active. At all times that fall outside these time periods, the PolicySet has no effect. A PolicySet is
treated as valid at ALL times, if it does not specify a PolicyTimePeriodCondition.

In some cases a Policy Consumer may need to perform certain setup / cleanup actions when a
PolicySet becomes active / inactive. For example, sessions that were established while a PolicySet
was active might need to be taken down when the PolicySet becomes inactive. In other cases,
however, such sessions might be left up. In this case, the effect of deactivating the PolicySet would just
be to prevent the establishment of new sessions.

Setup / cleanup behaviors on validity period transitions are not currently addressed by the Policy
Model, and must be specified in 'guideline' documents or via subclasses of CIM_PolicySet,
CIM_PolicyTimePeriod Condition or other concrete subclasses of CIM_Policy. If such behaviors need

Table 210: SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_PolicySet This property contains the name of a 
PolicySet that contains one or more 
PolicyTimePeriodConditions.

PartComponent CIM_PolicyTimePeriodC
ondition

This property contains the name of a 
PolicyTimePeriodCondition defining the 
valid time periods for one or more Poli-
cySets.

Table 211: SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod (Client defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_PolicySet This property contains the name of a 
PolicySet that contains one or more 
PolicyTimePeriodConditions.

PartComponent CIM_PolicyTimePeriodC
ondition

This property contains the name of a 
PolicyTimePeriodCondition defining the 
valid time periods for one or more Poli-
cySets.
252



 Policy Package
to be under the control of the policy administrator, then a mechanism to allow this control shall also be
specified in the subclasses.

PolicyTimePeriodCondition is defined as a subclass of PolicyCondition. This is to allow the inclusion of
time-based criteria in the AND/OR condition definitions for a PolicyRule.

Instances of this class may have up to five properties identifying time periods at different levels. The
values of all the properties present in an instance are ANDed together to determine the validity
period(s) for the instance. For example, an instance with an overall validity range of January 1, 2000
through December 31, 2000; a month mask that selects March and April; a day-of-the-week mask that
selects Fridays; and a time of day range of 0800 through 1600 would be represented using the
following time periods:

Friday, March 5, 2000, from 0800 through 1600;

Friday, March 12, 2000, from 0800 through 1600;

Friday, March 19, 2000, from 0800 through 1600;

Friday, March 26, 2000, from 0800 through 1600;

Friday, April 2, 2000, from 0800 through 1600;

Friday, April 9, 2000, from 0800 through 1600;

Friday, April 16, 2000, from 0800 through 1600;

Friday, April 23, 2000, from 0800 through 1600;

Friday, April 30, 2000, from 0800 through 1600.

Properties not present in an instance of PolicyTimePeriodCondition are implicitly treated as having their
value 'always enabled'. Thus, in the example above, the day-of-the-month mask is not present, and so
the validity period for the instance implicitly includes a day-of-the-month mask that selects all days of
the month. If this 'missing property' rule is applied to its fullest, we see that there is a second way to
indicate that a PolicySet is always enabled: associate with it an instance of PolicyTimePeriodCondition
whose only properties with specific values are its key properties.

CIM_PolicyTimePeriodCondition is subclassed from CIM_PolicyCondition.

An instance of this class may or may not exist. If they exist, they can be found by following
PolicyConditionInRule associations from PolicyRule instances or ReusablePolicy associations from
ReusablePolicyContainer instances. 

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Table 212: SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The name of the class or the subclass 
used in the creation of the System 
object in whose scope this PolicyCon-
dition is defined.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 253



 

SystemName string The name of the System object in 
whose scope this PolicyCondition is 
defined.

PolicyRuleCreationClassName string For a rule-specific PolicyCondition, the 
CreationClassName of the PolicyRule 
object with which this Condition is 
associated. For a reusable Policy Con-
dition, a special value, 'NO RULE', 
should be used to indicate that this 
Condition is reusable and not associ-
ated with a single PolicyRule.

PolicyRuleName string For a rule-specific PolicyCondition, the 
name of the PolicyRule object with 
which this Condition is associated. For 
a reusable PolicyCondition, a special 
value, 'NO RULE', should be used to 
indicate that this Condition is reusable 
and not associated with a single Poli-
cyRule.

CreationClassName string CreationClassName indicates the 
name of the class or the subclass used 
in the creation of an instance.

PolicyConditionName string A user-friendly name of this PolicyCon-
dition.

Optional Properties/Methods
ElementName string Another provider supplied user-friendly 

name.
CommonName string A provider supplied user-friendly name 

of policy object. 
TimePeriod string This property identifies an overall range 

of calendar dates and times over which 
a PolicySet is valid. It is formatted as a 
string representing a start date and 
time, in which the character 'T' indi-
cates the beginning of the time portion, 
followed by the solidus character '/', fol-
lowed by a similar string representing 
an end date and time. The first date 
indicates the beginning of the range, 
while the second date indicates the 
end. Thus, the second date and time 
shall be later than the first. Date/times 
are expressed as substrings of the form 
yyyymmddThhmmss.

Table 212: SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Pre-defined)

Property Flags Type Description & Notes
254



 Policy Package
MonthOfYearMask uint8[] The purpose of this property is to refine 
the valid time period that is defined by 
the TimePeriod property, by explicitly 
specifying in which months the Policy-
Set is valid. These properties work 
together, with the TimePeriod used to 
specify the overall time period in which 
the PolicySet is valid, and the MonthOf-
YearMask used to pick out the months 
during which the PolicySet is valid.

DayOfMonthMask uint8[] The purpose of this property is to refine 
the valid time period that is defined by 
the TimePeriod property, by explicitly 
specifying in which days of the month 
the PolicySet is valid. These properties 
work together, with the TimePeriod 
used to specify the overall time period 
in which the PolicySet is valid, and the 
DayOfMonthMask used to pick out the 
days of the month during which the Pol-
icySet is valid.

DayOfWeekMask uint8[] The purpose of this property is to refine 
the valid time period that is defined by 
the TimePeriod property, by explicitly 
specifying in which days of the week 
the PolicySet is valid. These properties 
work together, with the TimePeriod 
used to specify the overall time period 
in which the PolicySet is valid, and the 
DayOfWeekMask used to pick out the 
days of the week during which the Poli-
cySet is valid.

TimeOfDayMask string The purpose of this property is to refine 
the valid time period that is defined by 
the TimePeriod property, by explicitly 
specifying a range of times in a day 
during which the PolicySet is valid. 
These properties work together, with 
the TimePeriod used to specify the 
overall time period in which the Policy-
Set is valid, and the TimeOfDayMask 
used to pick out the range of time peri-
ods in a given day of during which the 
PolicySet is valid.

Table 212: SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Pre-defined)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 255



 

8.2.1.11.9.26 CIM_PolicyTimePeriodCondition
The rules for client defined PolicyTimePeriodCondition are the same as those described for pre-defined
PolicyTimePeriodCondition.

CIM_PolicyTimePeriodCondition is subclassed from CIM_PolicyCondition.

An instance of this class may or may not exist. If they exist, they can be found by following
PolicyConditionInRule associations from PolicyRule instances or ReusablePolicy associations from
ReusablePolicyContainer instances.

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: false

LocalOrUtcTime uint16 This property indicates whether the 
times represented in the TimePeriod 
property and in the various Mask prop-
erties represent local times or UTC 
times. There is no provision for mixing 
of local times and UTC times: the value 
of this property applies to all of the 
other time-related properties. TimePeri-
ods are synchronized worldwide by 
using the enumeration value 'UTC-
Time'.

Table 213: SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Client 
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The name of the class or the subclass 
used in the creation of the System 
object in whose scope this PolicyCon-
dition is defined.

SystemName string The name of the System object in 
whose scope this PolicyCondition is 
defined.

PolicyRuleCreationClassName string For a rule-specific PolicyCondition, the 
CreationClassName of the PolicyRule 
object with which this Condition is 
associated. For a reusable Policy Con-
dition, a special value, 'NO RULE', 
should be used to indicate that this 
Condition is reusable and not associ-
ated with a single PolicyRule.

Table 212: SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Pre-defined)

Property Flags Type Description & Notes
256



 Policy Package
8.2.1.11.9.27 CIM_QueryCapabilities
This class defines the capabilities of the Specific Policy Subprofile associated via ElementCapabilities.

CIM_QueryCapabilities is subclassed from CIM_Capabilities.

An instance of this class may or may not exist. An instance of CIM_QueryCapabilities shall exist for
each Specific Policy Subprofile that supports client defined queries.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

PolicyRuleName string For a rule-specific PolicyCondition, the 
name of the PolicyRule object with 
which this Condition is associated. For 
a reusable PolicyCondition, a special 
value, 'NO RULE', should be used to 
indicate that this Condition is reusable 
and not associated with a single Poli-
cyRule.

CreationClassName string CreationClassName indicates the 
name of the class or the subclass used 
in the creation of an instance.

PolicyConditionName string A user-friendly name of this PolicyCon-
dition.

Optional Properties/Methods
ElementName string Another client defined user-friendly 

name. 
CommonName string A client defined user-friendly name of 

policy object 
TimePeriod string
MonthOfYearMask uint8[]
DayOfMonthMask uint8[]
DayOfWeekMask uint8[]
TimeOfDayMask string
LocalOrUtcTime uint16

Table 214: SMI Referenced Properties/Methods for CIM_QueryCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string This is a user-friendly name of the 

capabilities instance.

Table 213: SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Client 
defined)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 257



 

8.2.1.11.9.28 CIM_QueryCondition
QueryCondition defines the criteria for generating a set of QueryConditionResult instances that result
from the contained query. If there are no instances returned from the query, then the result is false;
otherwise, true. 

CIM_QueryCondition is subclassed from CIM_PolicyCondition.

QueryCondition instances may or may not exist. If they exist, they can be found by following
PolicyConditionInRule associations from PolicyRule instances or ReusablePolicy associations from
ReusablePolicyContainer instances.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

CQLFeatures uint16[] Enumeration of CQL features sup-
ported by an Object Manager or Pro-
vider associated via 
ElementCapabilities. (See DSP0202 
CIM Query Language Specification for 
a normative definition of each feature.)
Values {"Basic Query", "Simple Join", 
"Complex Join", "Time", "Basic Like", 
"Full Like", "Array Elements", "Embed-
ded Objects", "Order By", "Aggrega-
tions", "Subquery", "Satisfies Array", 
"Distinct", "First", "Path Functions"}

Table 215: SMI Referenced Properties/Methods for CIM_QueryCondition (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The name of the class or the subclass 
used in the creation of the System 
object in whose scope this PolicyCon-
dition is defined.

SystemName string The name of the System object in 
whose scope this PolicyCondition is 
defined.

PolicyRuleCreationClassName string For a rule-specific PolicyCondition, the 
CreationClassName of the PolicyRule 
object with which this Condition is 
associated. For a reusable Policy Con-
dition, a special value, 'NO RULE', 
should be used to indicate that this 
Condition is reusable and not associ-
ated with a single PolicyRule.

Table 214: SMI Referenced Properties/Methods for CIM_QueryCapabilities

Property Flags Type Description & Notes
258



 Policy Package
PolicyRuleName string For a rule-specific PolicyCondition, the 
name of the PolicyRule object with 
which this Condition is associated. For 
a reusable PolicyCondition, a special 
value, 'NO RULE', should be used to 
indicate that this Condition is reusable 
and not associated with a single Poli-
cyRule.

CreationClassName string CreationClassName indicates the 
name of the class or the subclass used 
in the creation of an instance.

PolicyConditionName string A user-friendly name of this PolicyCon-
dition.

QueryResultName string In the context of the associated Poli-
cyRule, QueryResultName defines a 
unique alias for the query results that 
may be used in subsequent QueryCon-
ditions or MethodActions of the same 
PolicyRule. This string is treated as a 
class name, in a query statement.

Query string A query expression that defines the 
condition(s) under which QueryCondi-
tionResult instances will be generated. 
The FROM clause may reference any 
class, including QueryConditionResult.
NOTE THAT the property name, 'Que-
ryConditionPath', shall not be used as 
the name of a select-list entry in the 
select-criteria clause of the query.

QueryLanguage uint16 The language in which the query is 
expressed. SMI-S only recognizes 
'CQL'. Other query languages may be 
encoded for vendor specific support, 
but only CQL is supported for SMI-S 
interoperability.
Values {"CQL", "DMTF Reserved", 
"Vendor Reserved"}

Trigger boolean If Trigger = true, and with the exception 
of any PolicyTimePeriodConditions, 
PolicyConditions of this PolicyRule are 
not evaluated until this 'triggering' con-
dition query is true. There shall be no 
more than one QueryCondition with 
Trigger = true associated with a particu-
lar PolicyRule.

Optional Properties/Methods
ElementName string Another provider supplied user-friendly 

name

Table 215: SMI Referenced Properties/Methods for CIM_QueryCondition (Pre-defined)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 259



 

8.2.1.11.9.29 CIM_QueryCondition
QueryCondition defines the criteria for generating a set of QueryConditionResult instances that result
from the contained query. If there are no instances returned from the query, then the result is false;
otherwise, true. 

CIM_QueryCondition is subclassed from CIM_PolicyCondition.

QueryCondition instances may or may not exist. If they exist, they can be found by following
PolicyConditionInRule associations from PolicyRule instances or ReusablePolicy associations from
ReusablePolicyContainer instances.

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: false

CommonName string A provider supplied user-friendly name 
of the QueryCondition

Table 216: SMI Referenced Properties/Methods for CIM_QueryCondition (Client defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The name of the class or the subclass 
used in the creation of the System 
object in whose scope this PolicyCon-
dition is defined.

SystemName string The name of the System object in 
whose scope this PolicyCondition is 
defined.

PolicyRuleCreationClassName string For a rule-specific PolicyCondition, the 
CreationClassName of the PolicyRule 
object with which this Condition is 
associated. For a reusable Policy Con-
dition, a special value, 'NO RULE', 
should be used to indicate that this 
Condition is reusable and not associ-
ated with a single PolicyRule.

PolicyRuleName string For a rule-specific PolicyCondition, the 
name of the PolicyRule object with 
which this Condition is associated. For 
a reusable PolicyCondition, a special 
value, 'NO RULE', should be used to 
indicate that this Condition is reusable 
and not associated with a single Poli-
cyRule.

CreationClassName string CreationClassName indicates the 
name of the class or the subclass used 
in the creation of an instance.

PolicyConditionName string A user-friendly name of this PolicyCon-
dition.

Table 215: SMI Referenced Properties/Methods for CIM_QueryCondition (Pre-defined)

Property Flags Type Description & Notes
260



 Policy Package
8.2.1.11.9.30 CIM_ReusablePolicy
The ReusablePolicy association provides for the reuse of any subclass of Policy in a
ReusablePolicyContainer. It is used in the Policy Package to associate the ReusablePolicyContainer
(Dynamic PolicyRule templates) to the System in which the Dynamic PolicyRule can be defined. 

CIM_ReusablePolicy is subclassed from CIM_PolicyInSystem.

This would only be supported if the Policy Package supports Dynamic PolicyRules, as defined in the
PolicyFeaturesSupported property of the PolicyCapabilities instance for the Package. There would be
one instance of ReusablePolicy for every Dynamic PolicyRule template supported by the profile.

Created By : Static
Modified By : Static
Deleted By : Static

QueryResultName string In the context of the associated Poli-
cyRule, QueryResultName defines a 
unique alias for the query results that 
may be used in subsequent QueryCon-
ditions or MethodActions of the same 
PolicyRule. This string is treated as a 
class name, in a query statement.

Query string A query expression that defines the 
condition(s) under which QueryCondi-
tionResult instances will be generated. 
The FROM clause may reference any 
class, including QueryConditionResult.
NOTE THAT the property name, 'Que-
ryConditionPath', shall not be used as 
the name of a select-list entry in the 
select-criteria clause of the query.

QueryLanguage uint16 The language in which the query is 
expressed. SMI-S only recognizes 
'CQL' Other query languages may be 
encoded for vendor specific support, 
but only CQL is supported for SMI-S 
interoperability.
Values {"CQL", "DMTF Reserved", 
"Vendor Reserved"}

Trigger boolean If Trigger = true, and with the exception 
of any PolicyTimePeriodConditions, 
PolicyConditions of this PolicyRule are 
not evaluated until this 'triggering' con-
dition query is true. There shall be no 
more than one QueryCondition with 
Trigger = true associated with a particu-
lar PolicyRule.

Optional Properties/Methods
ElementName string Another user-friendly name.
CommonName string User-friendly name of the QueryCondi-

tion.

Table 216: SMI Referenced Properties/Methods for CIM_QueryCondition (Client defined)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 261



 

Class Mandatory: false

8.2.1.11.9.31 CIM_ReusablePolicyContainer
ReusablePolicyContainer is a class representing an administratively defined container for reusable
policy-related information. This class does not introduce any additional properties beyond those in its
superclass AdminDomain. It does, however, participate in a unique association for containing policy
elements that may be used in constructing Dynamic PolicyRules.

An instance of this class uses the NameFormat value "ReusablePolicyContainer".

CIM_ReusablePolicyContainer is subclassed from CIM_AdminDomain.

This would only be supported if the Policy Package supports Dynamic PolicyRules, as defined in the
PolicyFeaturesSupported property of the PolicyCapabilities instance for the Package. There would be
one instance of ReusablePolicyContainer for every Dynamic PolicyRule template supported by the
profile.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Table 217: SMI Referenced Properties/Methods for CIM_ReusablePolicy

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ReusablePolicyCo
ntainer

This property identifies a ReusablePoli-
cyContainer that is a holder for candi-
date Policies elements (conditions and 
actions) for defining a Dynamic Poli-
cyRule.

Dependent CIM_Policy A reusable policy element (Condition or 
Action) that may be used in defining a 
Dynamic PolicyRule.

Table 218: SMI Referenced Properties/Methods for CIM_ReusablePolicyContainer

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string This should be the Name of the Poli-

cyRule Template as specified in the 
profile.

NameFormat string This shall be set to ReusablePolicy-
Container
262



 Policy Package
8.2.1.11.10 Related Standards

Table 219: Related Standards for Policy

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Query Specification 1.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 263



 

264



 Software Installation Service Subprofile
EXPERIMENTAL

8.2.1.12 Software Installation Service Subprofile  

8.2.1.12.1 Description
This profile extends on the Software Package/Subprofile which enables a managed element to
advertise version information for installed software elements. 

The Software Installation Service Subprofile defines three methods to download and install software
(including firmware) using a SMI-S based mechanism. This subprofile defines the use of one of them,
which can be used interoperable. The following use cases are considered:

• A device (or provider) that can use a passed CIMObjectPath to a SoftwareIdentity in a separate 
namespace (or other ‘external’ repository) as a reference to an update.

• A device that also has it's own software repository and (may) find it's own updates from the web or 
elsewhere and advertise them.

This subprofile is closely related to the Software Repository subprofile and both can be used together
or separately within a single device. The Software Repository subprofile provides a mechanism for
exposing ‘candidate’ SoftwareIndentitys which can be selected by a client application and ‘applied’ to
the element managed by the SoftwareInstallationService. The Software Repository and the Software
Installation Service subprofiles expose enough information so that a management client can
interoperable choose applicable SoftwareIdentity and understand freshening. No information is
exposed about dependencies, however, the CheckSoftwareIndentity method can be used to determine
if there are missing dependencies.

Figure 50: Software Installation Service Overview

Intelligent Device w/
repository

Repository

Software/Firmware Management Client

Repository 
Service

Intelligent
target

RepositoryRepository CheckSoftware
Identity()

InstallSoftware
Identity()

WBEM

CheckSoftware
Identity()

InstallSoftware
Identity()
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 265



 

Figure 51: Example Instance Diagram

A provider for the SoftwareInstallationService will be take the passed SoftwareIdentity reference, obtain
the actual instance and then follow the SAPAvailableForElement association to find the URL for the
required bits. 

Figure 51: "Example Instance Diagram" shows how this might be instantiated with a proxy provider.

Durable Names and Correlatable IDs of the Profile
Software Identity.TargetType is the only correlatable ID introduced by this subprofile. The TargetType
parameter is a correlatable identifier that indicates the ‘type’ of SoftwareIdentity. It allows a ‘repository’
to be queried for applicable software/firmware.

The same format shall be used for the Software Repository and for the Software Installation Service so
that correlation can be performed.

Since the SoftwareInstallationService may be able to handle multiple TargetTypes,
SoftwareInstallationServiceCapabilities includes an array of supported TargetTypes that indicates the
types supported by the service.

8.2.1.12.2 Health and Fault Management Considerations
Not defined in this standard.

SoftwareInstallationService

InstallFromSoftwareIdentity()
CheckSoftwareIdentity()

ComputerSystem

Eg array

ElementCapabilities

SoftwareInstallationServiceCapabilities

SupportedSynchronousActions[] =
   “Install From SoftwareIdentity”
SupportedPackageIDs = 
    { “hp/nss/eva/5000”, “hp/nss/eva/3000” }

ServiceAvailableToElement

HostedService

SoftwareIdentity

TargetType = “hp/nss/eva/5000”
MajorVersion = 2;
MinorVersion = 3;
RevisionNumber = 4;
versionString = ” V2.3 (4)"

InstalledSoftwareIdentity

ComputerSystem

Proxy
266



 Software Installation Service Subprofile
8.2.1.12.3 Cascading Considerations
Not defined in this standard.

8.2.1.12.4 Supported Subprofiles and Packages
None.

8.2.1.12.5 Methods of this Profile
The following methods are used by this subprofile:

uint32 InstallFromSoftwareIdentity(

CIM_ConcreteJob REF Job

CIM_SoftwareIdentity REF Source

CIM_ManagedElement REF Target

CIM_SoftwareIdentityCollection REF Collection

)

Start a job to install or update a SoftwareIdentity (Source) on a ManagedElement (Target).

In addition the method can be used to add the SoftwareIdentity simultaneously to a specified
SofwareIndentityCollection if the SoftwareRepository subprofile is supported. A client may specify
either or both of the Collection and Target parameters. The Collection parameter is only supported if the
SoftwareRepository subprofile is supported and SoftwareInstallationService.CanAddToCollection is
TRUE. It shall be set to NULL otherwise.

If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4
096/0x1000 is returned, a ConcreteJob will be started to perform the install. The Job's reference will be
returned in the output parameter Job.

uint32 CheckSoftwareIdentity(

CIM_SoftwareIdentity REF Source

CIM_ManagedElement REF Target

CIM_SoftwareIdentityCollection REF Collection

uint16 InstallCharacteristics [ ]

)

This method allows a client application to determine whether a specific SoftwareIdentity can be
installed (or updated) on a ManagedElement. It also allows other characteristics to be determined such
as whether install will require a reboot. In addition a client can check whether the SoftwareIdentity can
be added simultaneously to a specified SofwareIndentityCollection. A client may specify either or both
of the Collection and Target parameters. The Collection parameter is only supported if the
SoftwareRepository subprofile is supported and SoftwareInstallationService.CanAddToCollection is
TRUE. It shall be set to NULL otherwise.

The InstallCharacteristics parameter describes the characteristics of this installation/update:

• Target automatic reset: The target element will automatically reset once the installation is 
complete.

• System automatic reset: The containing system of the target ManagedElement (normally a 
logical device or the system itself) will automatically reset/reboot once the installation is complete.

• Separate target reset required: EnabledLogicalElement.RequestStateChange needs to be used 
to reset the target element after the SoftwareIdentity is installed.

• Separate system reset required: EnabledLogicalElement.RequestStateChange needs to be 
used to reset/reboot the containing system of the target ManagedElement after the 
SoftwareIdentity is installed.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 267



 

• Manual Reboot Required: The system needs to be manually rebooted by the user.

• No reboot required: No reboot is required after installation.

• User Intervention Recommended: It is recommended that a user confirm installation of this 
SoftwareIdentity. Inappropriate application may have serious consequences.

• may be added to specified collection: The SoftwareIdentity may be added to specified 
SoftwareIdentityCollection.

8.2.1.12.6 Client Considerations and Recipes
Not defined in this standard.

8.2.1.12.7 Registered Name and Version
Software Installation Service version 1.1.0

8.2.1.12.8 CIM Server Requirements

Table 220: CIM Server Requirements for Software Installation Service

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
268



 Software Installation Service Subprofile
8.2.1.12.9 CIM Elements

8.2.1.12.9.1 CIM_ElementCapabilities
Class Mandatory: true

8.2.1.12.9.2 CIM_HostedService
Class Mandatory: true

8.2.1.12.9.3 CIM_InstalledSoftwareIdentity
Indicates that a particular software identity 

Table 221: CIM Elements for Software Installation Service

Element Name Description
Mandatory Classes

CIM_ElementCapabilities (8.2.1.12.9.1)
CIM_HostedService (8.2.1.12.9.2)
CIM_InstalledSoftwareIdentity (8.2.1.12.9.3) Indicates that a particular software identity 
CIM_ServiceAvailableToElement (8.2.1.12.9.4) Associates ManagedElements that the service can 

update 
CIM_SoftwareIdentity (8.2.1.12.9.5) Versioning/identity information for a specific software 

identity
CIM_SoftwareInstallationService (8.2.1.12.9.6) The service for installing software/firmware.
CIM_SoftwareInstallationServiceCapabilities 
(8.2.1.12.9.7)

The capabilities of the Software Installation Service

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_SoftwareIdentity

Addition of Software Identity

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_SoftwareIdentity

Delete SoftwareIdentity

Table 222: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement
Capabilities CIM_Capabilities

Table 223: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_Service
Antecedent CIM_System
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 269



 

Class Mandatory: true

8.2.1.12.9.4 CIM_ServiceAvailableToElement
associates ManagedElements that the service can update 
Class Mandatory: true

8.2.1.12.9.5 CIM_SoftwareIdentity
Versioning/identity information for a specific software identity
Class Mandatory: true

8.2.1.12.9.6 CIM_SoftwareInstallationService
The service for installing software/firmware.
Class Mandatory: true

Table 224: SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

System CIM_System
InstalledSoftware CIM_SoftwareIdentity

Table 225: SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

UserOfService CIM_ManagedElement
ServiceProvided CIM_Service

Table 226: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
TargetType C string

Optional Properties/Methods
SerialNumber string
ReleaseDate datetime

Table 227: SMI Referenced Properties/Methods for CIM_SoftwareInstallationService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
Name string
ElementName string
CheckSoftwareIdentity()
InstallFromSoftwareIdentity()
270



 Software Installation Service Subprofile
8.2.1.12.9.7 CIM_SoftwareInstallationServiceCapabilities
The capabilities of the Software Installation Service
Class Mandatory: true

8.2.1.12.10 Related Standards

EXPERIMENTAL

Table 228: SMI Referenced Properties/Methods for CIM_SoftwareInstallationServiceCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

SupportedAsynchronousActions N uint16[]
SupportedSynchronousActions N uint16[]
SupportedTargetTypes string[]
CanAddToCollection boolean

Table 229: Related Standards for Software Installation Service

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 271



 

272



 Software Package
8.2.1.13 Software Package

8.2.1.13.1 Description
Software Package models software or firmware installed on a computer system.

Information on the installed software is given using the SoftwareIdentity class. This is linked to the
system using a InstalledSoftwareIdentity association.

Software information may be associated with the “top” level ComputerSystem (if all components are
using the same software) or a component ComputerSystem if the software loaded can vary by
processor.

Firmware is modeled as SoftwareIdentity. InstalledSoftwareIdentity is used for firmware associated with
a System. 

Figure 52: "Software Instance Diagram" contains the instance diagram for the Software Package.

8.2.1.13.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.1.13.3 Cascading Considerations
Not defined in this standard.

8.2.1.13.4 Supported Subprofiles and Packages
Not defined in this standard.

Figure 52: Software Instance Diagram

SoftwareIdentity

InstalledSofwareIdentity

SoftwareIdentity

InstalledSoftwareIdentity

ComputerSystem

ComputerSystem

ComponentCS
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 273



 

8.2.1.13.5 Methods of this Profile
Not defined in this standard.

8.2.1.13.6 Client Considerations and Recipes
None.

8.2.1.13.7 Registered Name and Version
SoftwarePackage version 1.1.0

8.2.1.13.8 CIM Server Requirements

8.2.1.13.9 CIM Elements

8.2.1.13.9.1 CIM_InstalledSoftwareIdentity
Class Mandatory: true

8.2.1.13.9.2 CIM_SoftwareIdentity
Class Mandatory: true

Table 230: CIM Server Requirements for SoftwarePackage

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 231: CIM Elements for SoftwarePackage

Element Name Description
Mandatory Classes

CIM_InstalledSoftwareIdentity (8.2.1.13.9.1)
CIM_SoftwareIdentity (8.2.1.13.9.2)

Table 232: SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

System CIM_System
InstalledSoftware CIM_SoftwareIdentity

Table 233: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
274



 Software Package
8.2.1.13.10 Related Standards

VersionString string
Manufacturer string

Optional Properties/Methods
BuildNumber uint16
MajorVersion uint16
RevisionNumber uint16
MinorVersion uint16

Table 234: Related Standards for SoftwarePackage

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF

Table 233: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 275



 

276



 Software Subprofile
8.2.1.14 Software Subprofile

8.2.1.14.1 Description
Information on the installed controller software is given using the SoftwareIdentity class. This is linked
to the controller using an InstalledSoftwareIdentity association

See 8.2.1.13, "Software Package" for an instance diagram.

8.2.1.14.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.1.14.3 Cascading Considerations
Not defined in this standard.

8.2.1.14.4 Supported Subprofiles, and Packages
None.

8.2.1.14.5 Methods of the Profile
None.

8.2.1.14.6 Client Considerations and Recipes
None.

8.2.1.14.7 Registered Name and Version
SoftwarePackage version 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 277



 

8.2.1.14.8 CIM Server Requirements

8.2.1.14.9 CIM Elements

8.2.1.14.9.1 CIM_InstalledSoftwareIdentity
Class Mandatory: true

8.2.1.14.9.2 CIM_SoftwareIdentity
Class Mandatory: true

Table 235: CIM Server Requirements for SoftwarePackage

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 236: CIM Elements for SoftwarePackage

Element Name Description
Mandatory Classes

CIM_InstalledSoftwareIdentity (8.2.1.14.9.1)
CIM_SoftwareIdentity (8.2.1.14.9.2)

Table 237: SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

System CIM_System
InstalledSoftware CIM_SoftwareIdentity

Table 238: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
VersionString string
Manufacturer string

Optional Properties/Methods
BuildNumber uint16
MajorVersion uint16
RevisionNumber uint16
MinorVersion uint16
278



 Software Subprofile
8.2.1.14.10 Related Standards

Table 239: Related Standards for SoftwarePackage

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 279



 

280



 Software Repository Subprofile
EXPERIMENTAL

8.2.1.15 Software Repository Subprofile  

8.2.1.15.1 Description
This profile provides the ability to expose a collection of SoftwareIdentity instances representing
software installation packages that can be used in conjunction with the 8.2.1.12, "Software Installation
Service Subprofile". These two profiles form a ‘pair’ that can be used together within a single system or
independently on different unaware systems. The different use cases covered are shown in Figure 53:
"Software Repository Instance Diagram".

A typical implementation of a representation would consist of multiple SoftwareIdentitys representing
potential upgrades associated by MemberOfCollection to an instance of a SoftwareIdentityCollection
which represents the collection itself. The ‘location’ of the bits needed to install a specific

Figure 53: Software Repository Instance Diagram

SoftwareIdentityCollection

SoftwareIdentity

TargetType = “hp/nss/eva/5000”
MajorVersion = 2;
MinorVersion = 3;
RevisionNumber = 4;
versionString = ” V2.3 (4)"

SoftwareIdentity

TargetType = “hp/iss/proliant”
MajorVersion = 7;
MinorVersion = 1;
RevisionNumber = 2;
versionString = ” Smartpaq September 
Release"

SoftwareIdentity

TargetType = “hp/nss/eva/5000”
MajorVersion = 2;
MinorVersion = 3;
RevisionNumber = 5;
versionString = ” V2.3 (5)"

MemberOfCollection

CIM_System

Notional admin domain or a specific 
computer system

HostedCollection

RemoteServiceAccessPoint

AccessInfo = “ftp:firmware.hp.com/bits.zip”
InfoFormat = 200 \\ URL

SAPAvailableForElement

RemoteServiceAccessPoint

AccessInfo = “ftp:firmware.hp.com/
newbits.zip”
InfoFormat = 200 \\ URL

RemoteServiceAccessPoint

AccessInfo = “ftp:download.hp.com/
mybits.zip”
InfoFormat = 200 \\ URL

SAPAvailableForElement

SAPAvailableForElement
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 281



 

SoftwareIdentity are represented as RemoteServiceAccessPoint instances one per URL) associated to
the SoftwareIdentity by SAPAvailableForElement.

Durable Names and Correlatable IDs of the Profile
Software Identity.TargetType is the only correlatable ID introduced by this subprofile. The TargetType
parameter is a correlatable identifier that indicates the ‘type’ of SoftwareIdentity. It allows a ‘repository’
to be queried for applicable software/firmware.

The same format shall be used for the Software Repository and for the Software Installation Service so
that correlation can be performed.

Since the SoftwareInstallationService may be able to handle multiple TargetTypes,
SoftwareInstallationServiceCapabilities includes an array of supported TargetTypes that indicates the
types supported by the service.

8.2.1.15.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.1.15.3 Cascading Considerations
Not defined in this standard.

8.2.1.15.4 Methods of the Profile
None.

8.2.1.15.5 Supported Subprofiles, and Packages
None.

8.2.1.15.6 Client Considerations and Recipes
None.

8.2.1.15.7 Registered Name and Version
Software Repository version 1.1.0

8.2.1.15.8 CIM Server Requirements

Table 240: CIM Server Requirements for Software Repository

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
282



 Software Repository Subprofile
8.2.1.15.9 CIM Elements

8.2.1.15.9.1 CIM_HostedCollection
The SoftwareIdentityCollection is scoped to a system.
Class Mandatory: true

8.2.1.15.9.2 CIM_MemberOfCollection
Associates SoftwareIdentities to the collection
Class Mandatory: true

8.2.1.15.9.3 CIM_RemoteServiceAccessPoint
Used to express the location of the 'bits' for a software update as an URL

Table 241: CIM Elements for Software Repository

Element Name Description
Mandatory Classes

CIM_HostedCollection (8.2.1.15.9.1) The SoftwareIdentityCollection is scoped to a system.
CIM_MemberOfCollection (8.2.1.15.9.2) Associates SoftwareIdentities to the collection
CIM_RemoteServiceAccessPoint (8.2.1.15.9.3) Used to express the location of the 'bits' for a software 

update as an URL
CIM_SAPAvailableForElement (8.2.1.15.9.4) Links one or more URLs to a SoftwareIdentity.
CIM_SoftwareIdentity (8.2.1.15.9.5) The information for an available software/firmware 

update
CIM_SoftwareIdentityCollection (8.2.1.15.9.6) A collection of SoftwareIdentities that forms the reposi-

tory
CIM_System (8.2.1.15.9.7) Represents the system hosting the Software Reposi-

tory.
Mandatory Indications

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_SoftwareIdentity

Addition of Software Identity

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_SoftwareIdentity

Delete SoftwareIdentity

Table 242: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_SystemSpecificColl

ection

Table 243: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection
Member CIM_ManagedElement
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 283



 

Class Mandatory: true

8.2.1.15.9.4 CIM_SAPAvailableForElement
Links one or more URLs to a SoftwareIdentity.
Class Mandatory: true

8.2.1.15.9.5 CIM_SoftwareIdentity
The information for an available software/firmware update
Class Mandatory: true

Table 244: SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
Name string
ElementName string
AccessInfo string
InfoFormat uint16

Table 245: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

AvailableSAP CIM_ServiceAccessPoi
nt

ManagedElement CIM_ManagedElement

Table 246: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
TargetType C string

Optional Properties/Methods
SerialNumber string
ReleaseDate datetime
284



 Software Repository Subprofile
8.2.1.15.9.6 CIM_SoftwareIdentityCollection
A collection of SoftwareIdentities that forms the repository
Class Mandatory: true

8.2.1.15.9.7 CIM_System
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.1.15.10 Related Standards

EXPERIMENTAL

Table 247: SMI Referenced Properties/Methods for CIM_SoftwareIdentityCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
Optional Properties/Methods

ElementName string

Table 248: SMI Referenced Properties/Methods for CIM_System

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Name of Class
Name string System hosting the Software Reposi-

tory

Table 249: Related Standards for Software Repository

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 285



 

286



 Common Target Port Subprofiles Overview
8.2.2 Common Target Port Subprofiles Overview
Target Port Subprofiles model the generic SCSI capabilities and transport-specific aspects of target
storage systems such as disk arrays and tape libraries. Separate subprofiles are defined for Fibre
Channel, iSCSI, and other transports; but some aspects of these subprofiles follow a common pattern.

SCSIProtocolEndpoint represents SCSI as a protocol, independent of specific transports or device
types – i.e., the behavior described in the SCSI Primary Commands (SPC) and SCSI Architecture
Model (SAM) specifications from T10. Separating the port from the protocol allows the same type of
port to be used with non-SCSI protocols such as IP. SCSIProtocolEndpoint.Role indicates whether this
protocol endpoint instance represents a SCSI initiator or target.

Various subclasses of a LogicalPort (e.g., FCPort, EthernetPort) represent the logical aspects of ports,
independent from SCSI protocol. SCSIProtocolEndpoint and LogicalPort are associated with
DeviceSAPImplementation. For most transports, SCSI protocol is implemented in the port hardware so
there is 1-1 cardinality between the LogicalPort and SCSIProtocolEndpoint instances. iSCSI is an
exception, many-to-many relationships are possible between EthernetPort and iSCSIProtocolController
instances.

A property on LogicalPort called UsageRestriction is indicates whether the port is restricted to use as a
“front end” (target) or a “back end” (initiator) interface or both. Note that port may not have a restriction
and the actual point-in-time role is modeled in SCISProtocolEndpoint.Role.

SCSIProtocolController represents the SCSI ‘view’ of ports and logical devices seen by SCSI initiators.
In a system supporting LUN Masking, zero or more views exist; defined by the customer to expose
subsets of logical units to certain initiators. SAPAvailableForElement connects SCSI ProtocolEndpoint
from a target port subprofile to SCSIProtocolController instances from the Masking/Mapping subprofile.

The LogicalDevice object represents SCSI logical units that are visible to external systems. It is
subclassed to StorageVolume, TapeDrive, etc. to identify the device type. 

LogicalPort instances are associated to a ComputerSystem instance from the target profile. If the port is
available to multiple controllers, this would be the top-level ComputerSystem. If the port is vulnerable to
failover when a controller fails, it should be associated to non-top-level ComputerSystem that
represents that controller. HostedAccessPoint associates SCSIProtocolEndpoint to a ComputerSystem
from the target profile (for example, Array Profile), the same ComputerSystem that is associated to the
protocol endpoint’s associated port. Other transport-specific classes are defined in the target port
subprofiles that follow.

Figure 54: "Generic Storage Target" depicts a generic storage device with elements from a target port
subprofile, the Masking/Mapping subprofile, and a target device subprofile.

Figure 54: Generic Storage Target

Target Port Subprofile
Masking/Mapping 
Subprofile Target Device Profile

ComputerSystem

SCSIProtocolController

SAPAvailable
ForElement

SystemDevice SystemDevice

SCSIProtocolEndpoint LogicalDevice
(Volume, Tape Drive)

LogicalPort

ProtocolController
ForUnit

DeviceSAP
Implementation

HostedAccessPoint

SystemDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 287



 

Modeling SCSI Logical Units
The SCSI standard inquiry response includes a Device Type property with integers representing types
of devices. Most of these devices types have a CIM analog. Devices that are used primarily for
management are modeled as ArbitraryLogicalUnit. ArbitraryLogicalUnit.DeviceType maps to SCSI
device types. Table 250 describes how common storage devices are modeled in CIM.

Table 250: How Common storage devices are modeled in CIM

All devices (SCSI logical units) visible to external systems shall be modeled.

Types of Ports
LogicalPort and SCSIProtocolEndpoint work together to model the external connection. LogicalPort is
subclassed to signify the type of transport. If the port is subclassed directly from LogicalPort it indicates
it is connected to a bus. If the port is further subclassed from NetworkPort it indicates the port is
capable of being used in a network. Details for each port type are in the following sections.

SCSI Device Type Inquiry Device 
Type

LogicalDevice

DirectAccessDevice(00) 0 DiskDrive or StorageVolume 
SequentialAccessDevice(01) 1 TapeDrive
WriteOnceDevice(04) 4 WormDrive
CD-ROM(05) 5 CDROMDrive
MediaChanger(08) 8 MediaTranferDevice
ArrayController(0C) 0xc SCSIArbitraryLogicalUnit DeviceType=”SCSI 

SCC Device”
SES(0D) 0xd SCSIArbitraryLogicalUnit 

DeviceType=”SCSI SES”
Other SCSIArbitraryLogicalUnit

DeviceType=”Other”
Unknown SCSIArbitraryLogicalUnit

DeviceType=”Uknown”

Figure 55: Port Class Hierarchy

LogicalPort

NetworkPort

SPIPortDAPort EthernetPortFCPort
288



 Parallel SCSI (SPI) Target Ports Subprofile
8.2.2.1 Parallel SCSI (SPI) Target Ports Subprofile

8.2.2.1.1 Description
This port represents a classical SCSI Parallel Interface (SPI).

Because of addressing limits, the port may use multiple SCSI IDs to extend the addressing. The LUN
Mapping/Masking common subprofile is not used with this port type.

The SCSIProtocolEndpoint.ConnectionType shall be set to “Parallel SCSI”. The SCSIProtocolEndpoint
class is connected to a SPIPort. Attributes of SPIPort define the bus width and speed. The port class
inherits the UsageRestriction attribute from LogicalPort. This attribute shall be set to “Front-end only”

8.2.2.1.2 Durable Names and Correlatable IDs of the Subprofile
None

8.2.2.1.3 Health and Fault Management

8.2.2.1.4 Dependencies on Profiles, Subprofiles, and Packages
None

Figure 56: SPI Target Port Instance Diagram

Table 251: SPIPort OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown

SPI Target Port Subprofile

System
Device

NetworkEntity:
ComputerSystem

SAPAvailableForElement

SystemDevice

DeviceSAPImplementation

ConnectType=”Parallel 
SCSI”
Name

SCSIProtocolEndpoint

SPIPort
LogicalDevice

1 *

*

Name

SCSIDevice:
SCSIProtocolController

ProtocolController
ForUnit

*
1

1

HostedAccessPoint

SystemDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 289



 

8.2.2.1.5 Extrinsic Methods of this Subprofile
None

8.2.2.1.6 Client Considerations and Recipes
None

8.2.2.1.7 Registered Name and Version
SPI Target Ports version 1.1.0

8.2.2.1.8 CIM Server Requirements

8.2.2.1.9 CIM Elements

8.2.2.1.9.1 CIM_DeviceSAPImplementation
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 252: CIM Server Requirements for SPI Target Ports

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 253: CIM Elements for SPI Target Ports

Element Name Description
Mandatory Classes

CIM_DeviceSAPImplementation (8.2.2.1.9.1)
CIM_HostedAccessPoint (8.2.2.1.9.2)
CIM_SCSIProtocolEndpoint (8.2.2.1.9.3)
CIM_SPIPort (8.2.2.1.9.4)
CIM_SystemDevice (8.2.2.1.9.5)

Table 254: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_LogicalDevice
Dependent CIM_ServiceAccessPoi

nt
290



 Parallel SCSI (SPI) Target Ports Subprofile
8.2.2.1.9.2 CIM_HostedAccessPoint
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.2.1.9.3 CIM_SCSIProtocolEndpoint
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.2.1.9.4 CIM_SPIPort
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 255: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_ServiceAccessPoi

nt

Table 256: SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
ProtocolIFType uint16
OtherTypeDescription string
ConnectionType uint16 Shall be 3 (Parallel SCSI)
Role uint16 Shall be 3 (Target) or 4 (Both Initiator 

and Target)

Table 257: SMI Referenced Properties/Methods for CIM_SPIPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
OperationalStatus uint16[]
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 291



 

8.2.2.1.9.5 CIM_SystemDevice
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.2.1.10 Related Standards

UsageRestriction uint16 Shall be 2 to indicate this is a front end 
port only or 4 to indicate usage is not 
restricted.

Table 258: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice

Table 259: Related Standards for SPI Target Ports

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF

Table 257: SMI Referenced Properties/Methods for CIM_SPIPort

Property Flags Type Description & Notes
292



 FC Target Port Subprofile
8.2.2.2 FC Target Port Subprofile

8.2.2.2.1 Description
The FC Target Port Subprofile models the Fibre Channel specific aspects of a target storage system.

For Fibre Channel ports, the concrete subclass of LogicalPort is FCPort. FCPort is always associated
1-1 with a SCSIProtocolEndpoint instance. 

IS24775-2006, Storage Management Backwards Compatibility
SCSIProtocolEndpoint was introduced in this version ofSMI-S  to enable support for non-FC transports
and for non-SCSI protocols. In IS24775-2006, Storage Management (SMI-S 1.0), FCPort was
associated directly to SCSIProtocolController. SCSIProtocolEndpoint, DeviceSAPImplementation, and
SAPAvailableForElement are required and are used consistently across all target port subprofiles. To
maintain backwards compatibility, ProtocolControllerForPort is still required in this version of SMI-S. But
this association will be removed in a future versions and clients should start using the newer model.

8.2.2.2.2 Durable Names and Correlatable IDs of the Subprofile
FCPort.PermanantAddress shall contain the port’s Port WWN.

Figure 57: FC Target Port Instance Diagram

System
Device

ComputerSystem

SCSIProtocolController

SAPAvailable
ForElement

SystemDevice

DeviceSAPImplementation

ConnectType="Fibre 
Channel"

SCSIProtocolEndpoint

FCPort

1

1
ProtocolController

ForPort

Hosted
AccessPoint
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 293



 

8.2.2.2.3 Health and Fault Management

8.2.2.2.4 Dependencies on Profiles, Subprofiles, and Packages
None

8.2.2.2.5 Extrinsic Methods of this Subprofile
None

8.2.2.2.6 Client Considerations and Recipes
None

8.2.2.2.7 Registered Name and Version
FC Target Ports version 1.1.0

8.2.2.2.8 CIM Server Requirements

Table 260: FCPort OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown

Table 261: CIM Server Requirements for FC Target Ports

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
294



 FC Target Port Subprofile
8.2.2.2.9 CIM Elements

8.2.2.2.9.1 CIM_DeviceSAPImplementation
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 262: CIM Elements for FC Target Ports

Element Name Description
Mandatory Classes

CIM_DeviceSAPImplementation (8.2.2.2.9.1)
CIM_FCPort (8.2.2.2.9.2)
CIM_HostedAccessPoint (8.2.2.2.9.3)
CIM_SAPAvailableForElement (8.2.2.2.9.5)
CIM_SCSIProtocolEndpoint (8.2.2.2.9.6)
CIM_SystemDevice (8.2.2.2.9.7)

Optional Classes
CIM_ProtocolControllerForPort (8.2.2.2.9.4) Only required if the instrumentation claims compatibility 

with 1.0
Mandatory Indications

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_FCPort

Create FCPort

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_FCPort AND SourceIn-
stance.OperationalStatus <> 
PreviousInstance.OperationalStatus

Deprecated WQL - Change to FCPort OperationalSta-
tus

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_FCPort AND SourceIn-
stance.CIM_FCPort::OperationalStatus <> 
PreviousInstance.CIM_FCPort::OperationalStatus

CQL - Change to FCPort OperationalStatus

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_FCPort AND SourceIn-
stance.Speed <> PreviousInstance.Speed

Change to FCPort properties

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_FCPort AND SourceIn-
stance.CIM_FCPort::NetworkAddresses <> 
PreviousInstance.CIM_FCPort::NetworkAddresses

CQL - Change to FCPort properties

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_FCPort

Delete FCPort

Table 263: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_LogicalDevice
Dependent CIM_ServiceAccessPoi

nt
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 295



 

8.2.2.2.9.2 CIM_FCPort
Created By : External
Modified By : External
Deleted By : External
Standard Names: The PermanentAddress Property follows the requirements in 6.2.4.5.2
Class Mandatory: true

8.2.2.2.9.3 CIM_HostedAccessPoint
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.2.2.9.4 CIM_ProtocolControllerForPort
Only required if the instrumentation claims compatibility with 1.0
Created By : External
Modified By : External
Deleted By : External

Table 264: SMI Referenced Properties/Methods for CIM_FCPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
PermanentAddress CD string Port WWN
OperationalStatus uint16[]
UsageRestriction uint16 Shall be 2 to indicate this is a front end 

port only or 4 to indicate usage is not 
restricted.

Optional Properties/Methods
SupportedCOS uint16[]
ActiveCOS uint16[]
SupportedFC4Types uint16[]
ActiveFC4Types uint16[]
PortType uint16

Table 265: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_ServiceAccessPoi

nt
296



 FC Target Port Subprofile
Class Mandatory: false

8.2.2.2.9.5 CIM_SAPAvailableForElement
Created By : Static or External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.2.2.9.6 CIM_SCSIProtocolEndpoint
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.2.2.9.7 CIM_SystemDevice
Created By : External
Modified By : External
Deleted By : External

Table 266: SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ProtocolController
Dependent CIM_LogicalPort

Table 267: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

AvailableSAP CIM_ServiceAccessPoi
nt

The SCSIProtocolEndpoint.

ManagedElement CIM_ManagedElement The SCSIProtocolController.

Table 268: SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
ProtocolIFType uint16
OtherTypeDescription string
ConnectionType uint16 Shall be 2 (Fibre Channel)
Role uint16 Shall be 3 (Target) or 4 (Both Initiator 

and Target)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 297



 

Class Mandatory: true

8.2.2.2.10 Related Standards

Table 269: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice

Table 270: Related Standards for FC Target Ports

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
298



 iSCSI Target Ports Subprofile
EXPERIMENTAL

8.2.2.3 iSCSI Target Ports Subprofile  

8.2.2.3.1 Description
The iSCSI target ports subprofile describes the iSCSI specific aspects of target device. iSCSI
terminology is different than that used in other parts of SMI-S. Table 58 uses the UML instance naming
notation (InstanceName:ClassName) with the iSCSI-style names before the CIM names. Table 58
explains the use of all these objects.

Note that ComputerSystem, SCSIProtocolController and StorageVolume are not actually part of this
subprofile; they would be the parts of the Array Profile that associate with the iSCSI-specific classes.
iSCSI does have a specific naming requirement for SCSIProtocolController that is described below.

Figure 58: iSCSI Target Ports Subprofile Instance Diagram

TCPProtocolEndpoint

NetworkEntity:
ComputerSystem

iSCSISession

iSCSINode:
SCSIProtocolController

SAPAvailable
ForElement

EndpointOfNetworkPipe

Name
Role
Identifier

iSCSIPort:
iSCSIProtocolEndpoint

ConnectionID

iSCSIConnection

EndpointOfNetworkPipe

NetworkPipe
Composition

SystemDevice

BindsTo

 

StorageVolume

ProtocolController
ForUnit

 

iSCSIPortalGroup:
SystemSpecificCollection

Dependency

Hosted
Collection

MemberOfCollection

Hosted
Access
Point

DeviceSAPImplementation

EthernetPort

iSCSICapabilities

iSCSIConfiguration
Service

ElementCapabilities

iSCSILoginStatisticsiSCSISession
Failures

Element
StatisticalData

Element
StatisticalData

iSCSISession
Statistics

ElementStatisticalData

iSCSISession
Settings

Element
SettingData

Element
SettingData

Element
SettingData

IPProtocolEndpoint

BindsTo

iSCSIConnection
Settings

Element
SettingData

iSCSIConfiguration
Capabilities

ElementCapabilities

Hosted
Service

DeviceSAP
Implementation
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 299



 

Mapping and Masking Considerations

Table 271: iSCSI Terminology and SMI-S Class Names

iSCSI Term CIM Class Name Notes
Network 
Entity

ComputerSystem The Network Entity represents a device or gateway that is 
accessible from the IP network. A Network Entity shall have 
one or more Network Portals, each of which can be used to 
gain access to the IP network by some iSCSI Nodes contained 
in that Network Entity.

Session iSCSISession The group of TCP connections that link an initiator with a target 
form a session (loosely equivalent to a SCSI I-T nexus). TCP 
connections can be added and removed from a session. 
Across all connections within a session, an initiator sees one 
and the same target.

Connection NetworkPipe A connection is a TCP connection. Communication between 
the initiator and target occurs over one or more TCP connec-
tions. The TCP connections carry control messages, SCSI 
commands, parameters, and data within iSCSI Protocol Data 
Units (iSCSI PDUs).

SCSI Port iSCSIProtocolEndpoint A SCSI Port using an iSCSI service delivery subsystem. A col-
lection of Network Portals that together act as a SCSI initiator 
or target.

Portal 
Group

SystemSpecificCollec-
tion

iSCSI supports multiple connections within the same session; 
some implementations will have the ability to combine connec-
tions in a session across multiple Network Portals. A Portal 
Group defines a set of Network Portals within an iSCSI Net-
work Entity that collectively supports the capability of coordi-
nating a session with connections spanning these portals. Not 
all Network Portals within a Portal Group need participate in 
every session connected through that Portal Group. One or 
more Portal Groups may provide access to an iSCSI Node. 
Each Network Portal, as utilized by a given iSCSI Node, 
belongs to exactly one portal group within that node.

Network 
Portal

TCPProtocolEndpoint, 
IPProtocolEndpoint, 
EthernetPort

The Network Portal is a component of a Network Entity that 
has a TCP/IP network address and that may be used by an 
iSCSI Node within that Network Entity for the connection(s) 
within one of its iSCSI sessions. A Network Portal in an initiator 
is identified by its IP address. A Network Portal in a target is 
identified by its IP address and its listening TCP port.

Node SCSIProtocolController The iSCSI Node represents a single iSCSI initiator or iSCSI 
target. There are one or more iSCSI Nodes within a Network 
Entity. The iSCSI Node is accessible via one or more Network 
Portals. An iSCSI Node is identified by its iSCSI Name. The 
separation of the iSCSI Name from the addresses used by and 
for the iSCSI Node allows multiple iSCSI nodes to use the 
same address, and the same iSCSI node to use multiple 
addresses.
300



 iSCSI Target Ports Subprofile
The class SCSIProtocolController is used in the Mapping and Masking subprofile to model a “view”,
which is a set of logical devices exposed to an initiator. It is in a sense a virtual SCSI device, but carries
no SCSI device name when used with the other Target Ports subprofiles such as the FC Target Port
subprofile. In fact the class is even not part of these sub-profiles.

The iSCSI Target Ports subprofile however uses SCSIProtocolController to model the iSCSI Node
which is the SCSI Device as defined in the SAM specification. It has a SCSI device name which is the
iSCSI Node Name. Thus the presence of instances of SCSIProtocolController with this subprofile has
multiple meanings. Whereas there may be no instances of SCSIProtocolController with other Target
Port subprofiles until created as views by the Mapping and Masking method ExposePaths, instances of
SCSIProtocolControllers as iSCSINodes can be brought into existence by the iSCSI method
CreateiSCSINode. The instances can then be used as inputs to ExposePaths to grant access by
Initiators to logical devices through the Node. This initial SCSIProtocolController that was created as a
Node will be the first view. Additional “view” ProtocolControllers created by ExposePaths would carry
the same iSCSI Node name to convey that they represent the same underlying Node.

Settings

An iSCSI Session is established between an Initiator Port and a Target Port through the establishment
of an initial iSCSI Connection, which happens during the “Leading” Login. At this time the operational
properties for the Session are negotiated and also the operational properties for the initial Connection.
Additional Connections for the Session are established through subsequent logins. For many
operational properties both the Initiator and Target have settings that specify the starting position for the
negotiation process. The settings for negotiating Session-wide operational properties (found in
iSCSISession) are in iSCSISessionSettings. Likewise the settings for negotiating Connection level
operational properties (found in iSCSI Connection) are in iSCSIConnectionSettings. For example,
iSCSISessionSettings contains the property MaxConnectionsPerSession, which is the value that the
local system (which in this sub-profile is the Target) would like to use for Session. When the leading
login is complete the actual value agreed upon with the Initiator is in the property
MaxConnectionsPerSession in iSCSI Session.

Different implementations may scope the settings classes differently.

iSCSISessionSettings can be associated to any one of the following classes:

iSCSIProtocolEndpoint: The Settings apply to Sessions created on the iSCSI Port represented by the
iSCSIProtocolEndpoint.

SCSIProtocolController: The Settings apply to Sessions created on all iSCSIProtocolEndpoint
belonging to the iSCSI Node represented by the SCSIProtocolController.

ComputerSystem: The Settings apply to Sessions created on all iSCSIProtocolEndpoints belonging to
all SCSIProtocolControllers belonging to the ComputerSystem.

iSCSIConnectionSettings can be associated to any one of the following classes:

TCPProtocolEndpoint: The Settings apply to each Connection created using the Network Portal
represented by the TCPProtocolEndpoint, regardless of which iSCSIProtocolEndpoint owns the
Session that the Connection belongs to.

iSCSIProtocolEndpoint: The Settings apply to Connections using NetworkPortals to which the
iSCSIProtocolEndpoint is bound and belonging to Sessions on that same iSCSIProtocolEndpoint.

Durable Names and Correlatable IDs of the Subprofile
The Name property for the iSCSI node (SCSIProtocolController) shall be a compliant iSCSI name as
described in 6.2.4.9, "iSCSI Names" and NameFormat shall be set to “iSCSI Name”. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 301



 

The Name property for iSCSIProtocolEndpoint shall be a compliant iSCSI name as described in
6.2.4.9, "iSCSI Names" and ConnectionType shall be set to “iSCSI”.

8.2.2.3.2 Health and Fault Management

8.2.2.3.3 Supported Subprofiles and Packages
None

8.2.2.3.4 Methods of this Subprofile
The iSCSIConfigurationService provides the following methods that allow a client to manipulate
iSCSIProtocolEndpoints in an iSCSI Target Node. The class iSCSIProtocolController models the iSCSI
Target Port. The instance of the service is scoped by an instance of ComputerSystem that represents
that Network Entity. The capabilities of this service are defined in the companion class
iSCSIConfigurationCapabilities. 

8.2.2.3.4.1 CreateiSCSINode
This method creates an iSCSI Node in the form of an instance of SCSIProtocolController. As part of the
creation process a SystemDevice association is created between the new SCSIProtocolController and
the scoping Network Entity (ComputerSystem) hosting this service.

   CreateiSCSINode

      IN, string Alias,

The iSCSI Alias for the new Node.

      OUT, SCSIProtocolController REF iSCSINode,

A reference to the new SCSIProtocolController that is created.

8.2.2.3.4.1.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

Node Creation Not Supported

Alias in use by Other Node

Table 272: EthernetPort OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown
302



 iSCSI Target Ports Subprofile
8.2.2.3.4.1.2 Created Instances
SCSIProtocolController

SystemDevice

8.2.2.3.4.1.3  Deleted Instances
None

8.2.2.3.4.1.4  Modified Instances
None

8.2.2.3.4.2 DeleteiSCSINode
The method deletes an instance of SCSIProtocolController representing an iSCSI Node and all
associations in which this SCSIProtocolController is referenced. If Sessions are active on
iSCSIProtocolEndpoints belonging to this Node an error will be returned. If no Sessions are active the
scoped iSCSIProtocolEndpoints will be deleted.

   DeleteiSCSINode 

      IN, SCSIProtocolController REF iSCSINode 

The SCSIProtocolController to be deleted.

8.2.2.3.4.2.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

Invalid Parameter

SCSIProtocolController Non-existent

Sessions Active on Node Ports

8.2.2.3.4.2.2 Created Instances
None

8.2.2.3.4.2.3  Deleted Instances
SCSIProtocolController

SystemDevice

iSCSIProtocolEndpoint

HostedAccessPoint

SAPAvailableForElement

BindsTo
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 303



 

8.2.2.3.4.2.4  Modified Instances
None

8.2.2.3.4.3 CreateiSCSIProtocolEndpoint
This method creates an iSCSI Port in the form of an instance of iSCSIProtocolEndpoint. As part of the
creation process the iSCSIProtocolEndpoint is 'bound to' the underlying TCPProtocolEndpoints which
are specified as inputs by creating instances of the BindsTo association between the new instance and
those instances. In addition, an instance of SAPAvailableForElement is created between the specified
SCSIProtocolController and the new instance of iSCSIProtocolEndpoint.

   CreateiSCSIProtocolEndpoint

      IN, SCSIProtocolController   REF iSCSINode,

The SCSIProtocolController instance representing the iSCSI Node that will contain the iSCSI Port.

      IN, uint16 Role,

For iSCSI, each iSCSIProtocolEndpoint acts as either a target or an initiator endpoint.This property
indicates which role this iSCSIProtocolEndpoint implements.

      IN, string Identifier,

The Identifier shall contain the Target Portal Group Tag (TGPT). Each iSCSIProtocolEndpoint (iSCSI
port) associated to a common SCSIProtocolController (iSCSI node) has a unique Identifier. This field is
a string that contains 12 hexadecimal digits. If the property IdentifierSelectionSupported in class
iSCSIConfigurationCapabilities is false, this parameter shall be set to NULL.

      IN, ProtocolEndpoint REF NetworkPortals[],

An Array of References to TCPProtocolEndpoints representing Target Network Portals. The
TCPProtocolEndpoints specified each shall be associated to an instance of IPProtocolEndpoint via a
BindsTo association in order to provide the Target Network Portal functionality. The selected Portal
endpoints shall be from the same SystemSpecificCollection, which represents a Portal Group.

      OUT, iSCSIProtocolEndpoint REF iSCSIPort,

A reference to the new iSCSIProtocolEndpoint that is created.

8.2.2.3.4.3.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

SCSIProtocolController Non-existent

Role Not Supported By Specified SCSIProtocolController   

Identifier In Use, Not Unique

Identifier Selection Not Supported

ProtocolEndpoint Non-Existent
304



 iSCSI Target Ports Subprofile
TCPProtocolEndpoint Not Bound To Underlying IPProtocolEndpoint

TCPProtocolEndpoint In Use By Other iSCSIProtocolEndpoint In Same Target SCSIProtocolController.

ProtocolEndpoints Not From Same Endpoint Collection

8.2.2.3.4.3.2 Created Instances
iSCSIProtocolEndpoint

HostedAccessPoint

SAPAvailableForElement

BindsTo

8.2.2.3.4.3.3  Deleted Instances
None

8.2.2.3.4.3.4  Modified Instances
None

8.2.2.3.4.4 DeleteiSCSIProtocolEndpoint
The method deletes an instance of iSCSIProtocolEndpoint and all associations in which this
iSCSIProtocolEndpoint is referenced.

   DeleteiSCSIProtocolEndpoint

      IN, iSCSIProtocolEndpoint REF iSCSIPort 

The iSCSIProtocolEndpoint to be deleted.

8.2.2.3.4.4.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

Invalid Parameter

Endpoint Non-existent

8.2.2.3.4.4.2 Created Instances
None

8.2.2.3.4.4.3  Deleted Instances
iSCSIProtocolEndpoint

HostedAccessPoint

SAPAvailableForElement

BindsTo
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 305



 

8.2.2.3.4.4.4  Modified Instances
None

8.2.2.3.4.5 BindiSCSIProtocolEndpoint
This method provides for modification of an existing iSCSI Port by associating a TCPProtocolEndpoint
representing a Target Network Portal to the iSCSIProtocolEndpoint. The association is persisted as an
instance of BindsTo. The selected Portal endpoint shall be from the same SystemSpecificCollection,
which represents a Portal Group, as those endpoints currently bound to the iSCSIProtocolEndpoint.

This action is intended to be reversed by the use of the intrinsic method 'DeleteInstance'.

BindiSCSIProtocolEndPoint

    IN, iSCSIProtocolEndpoint REF iSCSIPort,

A reference to the iSCSIProtocolEndpoint

    IN, ProtocolEndpoint REF NetworkPortal 

An instance of TCPProtocolEndpoint representing the Network Portal to be added

8.2.2.3.4.5.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

Invalid Parameter

ProtocolEndpoint Non-Existent

TCPProtocolEndpoint Not Bound To Underlying IPProtocolEndpoint

ProtocolEndpoint In Use By Other iSCSIProtocolEndpoint In Same Target SCSIProtocolController   

ProtocolEndpoint Not From Same Endpoint Collection

8.2.2.3.4.5.2 Created Instances
BindsTo

8.2.2.3.4.5.3  Deleted Instances
None

8.2.2.3.4.5.4  Modified Instances
None

8.2.2.3.5 Client Considerations and Recipes

8.2.2.3.5.1 Discover the iSCSI Target Port capabilities.
// DESCRIPTION

// Discover the iSCSI Target Port capabilities.

//
306



 iSCSI Target Ports Subprofile
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem representing the target system of interest has been 

// previously identified and defined in the $NetworkEntity-> variable.

// MAIN

// Step 1. Locate the instance of CIM_iSCSICapabilities associated to the

// target ComputerSystem.

$iSCSICapabilities[] = Associators($NetworkEntity->,

“CIM_ElementCapabilities”,

“CIM_iSCSICapabilities”,

“ManagedElement”,

“Capabilities”,

{“MinimumSpecificationVersionSupported”, 

“MaximumSpecificationVersionSupported”, 

“AuthenticationMethodsSupported”})

if ($iSCSICapabilities[] == null || $iSCSICapabilities[].length != 1) {

    <ERROR! The iSCSI capabilities could not be found>

}

$Capabilities = $iSCSICapabilities[0]

8.2.2.3.5.2 Identify the iSCSI Nodes in a target system.
Step 1. Look for instances of SCSIProtocolController with NameFormat=”iSCSI Name”.

// DESCRIPTION

//

// Identify the iSCSI Nodes in a target system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem representing the Network Entity of interest has been 

// previously identified and defined in the $NetworkEntity-> variable.

// MAIN

// Step 1. Locate the instances of CIM_SCSIProtocolController with a NameFormat

// property value of “iSCSI Name”.

$ProtocolControllers[] = Associators($NetworkEntity->,

“CIM_SystemDevice”,

“CIM_SCSIProtocolController”,

“GroupComponent”,

“PartComponent”,

false,

false,

{“Name”, “NameFormat”})

// Step 2. Locate the SCSIProtocolControllers that represent the iSCSI Nodes.

$iSCSINodes[]

#index = 0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 307



 

for (#i in $ProtocolControllers[]) {

    if ($ProtocolControllers[#i].NameFormat == “iSCSI Name”) {

// Filter out SCSIProtocolControllers previously encountered.

if (!contains($ProtocolControllers[#i].Name, #NodeNames[])) {

    #NodeNames[#index] = $ProtocolControllers[#i].Name

    $iSCSINodes[#index++] = $ProtocolControllers[#i]

}

    }

}

<EXIT: $Nodes[] contains the results>

8.2.2.3.5.3 Identify the iSCSI Ports on an given iSCSI node.
// DESCRIPTION

// Identify the iSCSI Ports on an given iSCSI node.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The SCSIProtocolController representing an iSCSI Node of interest has 

// been previously identified and defined in the $iSCSINode-> variable.

// This function returns the instance(s) of iSCSI ports on the specified

// iSCSI node, or null if none are found.

sub $iSCSIPorts[] getiSCSIPortsOnNode($Node->) {

    // Step 1. Locate the iSCSI Ports, which are represented by instances of 

    // iSCSIProtocolEndpoint, on the iSCSI Node of interest.

    $iSCSIPorts[] = Associators($iSCSINode->,

    “CIM_SAPAvailableForElement”,

    “CIM_iSCSIProtocolEndpoint”,

    “ManagedElement”,

    “AvailableSAP”,

    false,

    false,

    {“Name”, “Identifier”, “Role”})

    if ($iSCSIPorts[].length == 0) {

return (null)

    }

    return ($iSCSIPorts[])

}

// MAIN

$iSCSIPorts[] = &getiSCSIPortsOnNode($iSCSINode->)

8.2.2.3.5.4 Identify the iSCSI sessions existing on an iSCSI node.
// DESCRIPTION

// Identify the iSCSI sessions existing on an iSCSI node.
308



 iSCSI Target Ports Subprofile
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The SCSIProtocolController representing the iSCSI Node of interest has 

// been previously identified and defined in the $iSCSINode-> variable

// Step 1. Retrieve the CIM_iSCSIProtocolEndpoints for an

// CIM_SCSIProtocolController representing a node.

$iSCSIPorts[] = @getiSCSIPortsOnNode($iSCSINode->)

if ($iSCSIPorts[] == null) {

    <ERROR! No iSCSI ports located on the specified iSCSI node>

}

// Step 2. Retrieve the iSCSI session associated with each iSCSI port.

$iSCSISessions[]

#index = 0

#PropList[] = {“Directionality”, “SessionType”, “TSIH”, “EndPointName”, 

“CurrentConnections”, “InitialR2T”, “ImmediateData”, 

“MaxOutstandingR2T”, “MaxUnsolicitedFirstDataBurstLength”, 

“MaxDataBurstLength”, “AuthenticationMethodUsed”, 

“DataSequenceInOrder”, “DataPDUInOrder”, “ErrorRecoveryLevel”}

for (#i in $iSCSIPorts[]) {

    $Sessions[] = Associators($iSCSIPorts[#i].getObjectPath(),

    “CIM_EndpointOfNetworkPipe”,

    “CIM_iSCSISession”,

    “Antecedent”,

    “Dependent”,

#PropList[])

    if ($Sessions[] != null && $Sessions[].length == 1) {

$iSCSISessions[#index++] = $Sessions[0]

    }

}

<EXIT: $iSCSISessions[] contains the iSCSI Sessions>

8.2.2.3.5.5 Create an iSCSI Target Node on an iSCSI Network Entity
// DESCRIPTION

// Create an iSCSI Target Node on an iSCSI Network Entity

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem representing the Network Entity of interest has been 

// previously identified and defined in the $NetworkEntity-> variable.

// MAIN

// Step 1. Locate the CIM_iSCSIConfigurationService hosted by the System.

// Note that active iSCSI configuration may not be supported by the device.

try {

    $iSCSIConfigurationService->[] = AssociatorNames($NetworkEntity->,

    “CIM_HostedService”,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 309



 

    “CIM_iSCSIConfigurationService”,

    “Antecedent”,

    “Dependent”)

    // iSCSIConfigurationService and HostedService may not be implemented

    // in the SMI Agent.

    if ($iSCSIConfigurationService->[] == null || 

    $iSCSIConfigurationService->[].length == 0) {

<EXIT: iSCSI Configuration is not supported>

    }

} catch (CIMException $Exception) {

    // iSCSIConfigurationService and/or HostedService may not be included in

    // the model implemented at all if iSCSI Configuration is not supported.

    if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<EXIT: iSCSI Configuration is not supported.>

    }

}

// Step 2. Examine the capabilities to determine if Node creation is supported.

$ConfigurationCapabilities[] = Associators($iSCSIConfigurationService->[0],

“CIM_ElementCapabilities”,

“CIM_iSCSIConfigurationCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“iSCSINodeCreationSupported”})

if ($ConfigurationCapabilities[] == null || 

$ConfigurationCapabilities[].length == 0) {

    <ERROR! Required iSCSI Configuration Service capabilities not available>

}

// Step 3. Create the iSCSI Target Node if supported by the device.

if ($ConfigurationCapabilities[0].iSCSINodeCreationSupported  == true) {

    %InArguments[“Alias”] = “Some Target Alias”

    #ReturnValue = invokeMethod($iSCSIConfigurationService->[0],

    “CreateiSCSINode”, 

    %InArguments[], 

    %OutArguments[])

    

    if (#ReturnValue == 0) {

$NewNode-> = $OutArguments[“iSCSINode”]

<EXIT: The node was created>

    } else {

<EXIT: The method returned an error; the Node was not created>

    }

} else {

    <EXIT: Node Creation is not supported>
310



 iSCSI Target Ports Subprofile
}

8.2.2.3.5.6 Create an iSCSI Target Port on an iSCSI target node.
// DESCRIPTION

// This recipe describes how to create an iSCSI Target Port on an iSCSI target 

// node.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the ComputerSystem representing the Network Entity of 

// interest has been previously identified and defined in the $NetworkEntity-> 

// variable.

// 2. The object name for the SCSIProtocolController representing the iSCSI Node

// within which to create the iSCSI Port has been identified and defined in the // 
$Node-> variable.

// 3. The object names for one or more TCPProtocolEndpoints representing Target 

// Network Portals have been previously identified and defined in the 

// Portals->[] array variable.

// MAIN

// Step 1. Find a CIM_iSCSIConfigurationService associated to ComputerSystem

// by HostedService. Note that active iSCSI configuration may not be supported 

// by the device.

try {

    $iSCSIConfigurationService->[] = AssociatorNames($NetworkEntity->,

    “CIM_HostedService”,

    “CIM_iSCSIConfigurationService”,

    “Antecedent”,

    “Dependent”)

    // iSCSIConfigurationService and HostedService may not be implemented

    // in the SMI Agent.

    if ($iSCSIConfigurationService->[] == null || 

    $iSCSIConfigurationService->[].length == 0) {

<EXIT: iSCSI Configuration is not supported>

    }

} catch (CIMException $Exception) {

    // iSCSIConfigurationService and/or HostedService may not be included in

    // the model implemented at all if iSCSI Configuration is not supported.

    if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<EXIT: iSCSI Configuration is not supported.>

    }

}

// Step 2. Examine the associated CIM_iSCSIConfigurationCapabilities to

// determine if Target Port manipulation is supported.

$ConfigurationCapabilities[] = Associators($iSCSIConfigurationService->[0],

“CIM_ElementCapabilities”,

“CIM_iSCSIConfigurationCapabilities”,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 311



 

“ManagedElement”,

“Capabilities”,

false,

false,

{“iSCSIProtocolEndpointCreationSupported”})

// Step 3. Given an instance of CIM_SCSIProtocolController representing a

// Node($Node->), and one or more TCPProtocolEndpoints representing Target 

// Network Portals(Portals->[]), invoke the method CreateiSCSIProtocolEndpoint

// to create the iSCSIProtocolEndpoint.

if ($ConfigurationCapabilities[0].iSCSIProtocolEndpointCreationSupported == true) 
{

    %InArguments[“iSCSINode”] = $Node->

    %InArguments[“Role”] = 3// “Target”

    %InArguments[“NetworkPortals”] = Portals->[]

    #ReturnValue = InvokeMethod($iSCSIConfigurationService->[0],

    “CreateiSCSIProtocolEndpoint”, 

    %InArguments[], 

    %OutArguments[])

    if (#ReturnValue == 0) {

$NewiSCSIProtocolEndpoint-> = $OutArguments[“iSCSIPort”]

<EXIT: The ProtocolEndpoint was created>

    } else {

<EXIT: The method returned an error; the ProtocolEndpoint was not created>

    }

} else {

    <EXIT: iSCSIProtocolEndpoint creation is not supported>

}

8.2.2.3.5.7 Add a Network Portal to a Target Port.
// DESCRIPTION

// This recipe describes how to add a Network Portal to a Target Port.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the ComputerSystem representing the Network Entity of

// interest has been previously identified and defined in the $NetworkEntity-> 

// variable.

// 2. The object name for the instance of iSCSIProtocolEndpoint representing a 

// Port has been previously identified and defined in the $iSCSIPort-> variable.

// 3. The object name for the instance of TCPProtocolEndpoint representing a 

// Target Network Portal has been previously identified and defined in the 

// $Portal-> variable.

// MAIN
312



 iSCSI Target Ports Subprofile
// Step 1. Find a CIM_iSCSIConfigurationService associated to ComputerSystem by // 
HostedService. Note that active iSCSI configuration may not be supported by 

// the device.

try {

    $iSCSIConfigurationService->[] = AssociatorNames($NetworkEntity->,

    “CIM_HostedService”,

    “CIM_iSCSIConfigurationService”,

    “Antecedent”,

    “Dependent”)

    // iSCSIConfigurationService and HostedService may not be implemented

    // in the SMI Agent.

    if ($iSCSIConfigurationService->[] == null || 

    $iSCSIConfigurationService->[].length == 0) {

<EXIT: iSCSI Configuration is not supported>

    }

} catch (CIMException $Exception) {

    // iSCSIConfigurationService and/or HostedService may not be included in

    // the model implemented at all if iSCSI Configuration is not supported.

    if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<EXIT: iSCSI Configuration is not supported.>

    }

}

// Step 2. Examine the associated CIM_iSCSIConfigurationCapabilities to

// determine if Target Port manipulation is supported.

$ConfigurationCapabilities[] = Associators($iSCSIConfigurationService->[0],

“CIM_ElementCapabilities”,

“CIM_iSCSIConfigurationCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“iSCSIProtocolEndpointCreationSupported”})

// Step 3. Given an instance of CIM_iSCSIProtocolEndpoint representing a

// Port (iSCSIPort->), and an instance of TCPProtocolEndpoint representing a 

// Target Network Portal($Portal->), invoke BindiSCSIProtocolEndpoint().

if ($ConfigurationCapabilities[0].iSCSIProtocolEndpointCreationSupported == true) 
{

    %InArguments[“iSCSIPort”] = $iSCSIPort->

    %InArguments[“NetworkPortal”] = $Portal->

    #ReturnValue = invokeMethod($iSCSIConfigurationService->[0],

    “BindiSCSIProtocolEndpoint”, 

    %InArguments[], 

    %OutArguments[])
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 313



 

    if (#ReturnValue == 0) {

<EXIT: The ProtocolEndpoint was modified>

    } else {

<EXIT: The method returned an error; the ProtocolEndpoint was not modified>

    }

} else {

    <EXIT: iSCSIProtocolEndpoint modification is not supported>

}

8.2.2.3.5.8 Determine the health of Nodes in a target system.
// DESCRIPTION

//

// Determine the health of Nodes in a target system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the SCSIProtocolController representing the iSCSI 

// Node of interest has been previously identified and defined in the 

// $iSCSINode-> variable.

// Step 1. Given an instance of SCSIProtocolController, get the instances of 

// iSCSISessionFailures and iSCSILoginStatistics associated by 

// ElementStatisticalData.

//

$SessionFailures[] = Associators($iSCSINode->,

“CIM_ElementStatisticalData”,

“CIM_iSCSISessionFailures”,

“ManagedElement”,

“Stats”);

$LoginStatistics[] = Associators($iSCSINode->,

“CIM_ElementStatisticalData”,

“CIM_iSCSILoginStatistics”,

“ManagedElement”,

“Stats”);

<EXIT: The statistics are in $SessionFailures[0] and $LoginStatistics[0]>

8.2.2.3.5.9 Determine the health of a Session on a target system.
// DESCRIPTION

//

// Determine the health of a Session on a target system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the iSCSISession of interest has been previously 

// identified and defined in the $iSCSISession-> variable.
314



 iSCSI Target Ports Subprofile
// Step 1. Given an instance of iSCSISession, get the instance of 

// iSCSISessionStatistics associated by ElementStatisticalData.

//

$SessionStatistics[] = Associators($iSCSISession->,

    “CIM_ElementStatisticalData”,

    “CIM_iSCSISessionStatistics”,

    “ManagedElement”,

    “Stats”);

<EXIT: The statistics are in $SessionStatistics[0]>

8.2.2.3.5.10 Configure the default settings for Sessions created in a target computer system.
// DESCRIPTION

//

// Configure the default settings for iSCSI Sessions created on a target device.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the iSCSI endpoint of interest has been previously 

// identified and defined in the $iSCSIProtocolEndpoint-> variable.

// 2. A supported value for the iSCSISessionSettings.MaxConnectionsPerSession

// has previously been identified and defined in the #MaxConnectionsPerSession

// variable.

// Step 1. Find the instance of iSCSISessionSettings associated to the 

// iSCSIProtocolEndpoint.

$SessionSettings[] = Associators($iSCSIProtocolEndpoint->,

“CIM_ElementSettingData”,

“CIM_iSCSISessionSettings”,

“ManagedElement”,

“SettingData”);

// Step 2. Attempt to modify the permissible connections per session setting.

//

try {

    $SessionSettings[0].MaxConnectionsPerSession = #MaxConnectionsPerSession;

    ModifyInstance($SessionSettings[0],

    false,

    {“MaxConnectionsPerSession”});

    <EXIT: Success>

} catch (CIMException $Exception) {

    // Note that the implementation may be read-only and may not support

    // modification of settings. In this case, CIM_ERR_NOT_SUPPORTED must be

    // returned when an attempt is made to modify the instance.

    if ($Exception.CIMStatusCode == CIM_ERR_NOT_SUPPORTED) {

<EXIT: Session settings modification is not supported>

    }
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 315



 

    <ERROR! Failure; an unexpected error was encountered.>

}

8.2.2.3.5.11 Configure the default settings for iSCSI Connections created on Network Portals used by an
iSCSIProtocolEndpoint.

// DESCRIPTION

//

// Configure the default settings for iSCSI Connections created on a Network 

// Portal used by an iSCSIProtocolEndpoint.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the iSCSI endpoint of interest has been previously 

// identified and defined in the $iSCSIProtocolEndpoint-> variable.

// 2. A supported value for the 
iSCSIConnectionSettings.MaxReceiveDataSegmentLength

// has previously been identified and defined in the #MaxRecvDataSegLength

// variable.

// Step 1. Find the instance of iSCSIConnectionSettings associated to the 

// iSCSIProtocolEndpoint.

//

$ConnectionSettings[] = Associators($iSCSIProtocolEndpoint->,

“CIM_ElementSettingData”,

“CIM_iSCSIConnectionSettings”,

“ManagedElement”,

“SettingData”);

// Step 2. Attempt to modify the permissible received data segment length

// on the connection.

//

try {

    $ConnectionSettings[0].MaxReceiveDataSegmentLength = #MaxRecvDataSegLength;

    ModifyInstance($ConnectionSettings[0],

    false,

    {“MaxReceiveDataSegmentLength”});

    <EXIT: Success>

} catch (CIMException $Exception) {

    // Note that the implementation may be read-only and may not support

    // modification of settings. In this case, CIM_ERR_NOT_SUPPORTED must be

    // returned when an attempt is made to modify the instance.

    if ($Exception.CIMStatusCode == CIM_ERR_NOT_SUPPORTED) {

<EXIT: Connection settings modification is not supported>

    }

    <ERROR! Failure; an unexpected error was encountered.>

}

316



 iSCSI Target Ports Subprofile
8.2.2.3.5.12 Get the statistics for a Session on a target system
The statistics are properties in the same class as the health information; see 8.2.2.3.5.9, "Determine
the health of a Session on a target system."

8.2.2.3.5.13 Configure Enable/disable header and data digest
See 8.2.2.3.5.11, "Configure the default settings for iSCSI Connections created on Network Portals
used by an iSCSIProtocolEndpoint."

8.2.2.3.6 Registered Name and Version
iSCSI Target Ports version 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 317



 

8.2.2.3.7 CIM Server Requirements

8.2.2.3.8 CIM Elements

Table 273: CIM Server Requirements for iSCSI Target Ports

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No

Table 274: CIM Elements for iSCSI Target Ports

Element Name Description
Mandatory Classes

CIM_BindsTo (8.2.2.3.8.1)
CIM_ConcreteDependency (8.2.2.3.8.2)
CIM_ElementCapabilities (8.2.2.3.8.4)
CIM_ElementSettingData (8.2.2.3.8.5)
CIM_ElementStatisticalData (8.2.2.3.8.6)
CIM_EndpointOfNetworkPipe (8.2.2.3.8.7)
CIM_HostedAccessPoint (8.2.2.3.8.9)
CIM_HostedCollection (8.2.2.3.8.10)
CIM_IPProtocolEndpoint (8.2.2.3.8.12)
CIM_NetworkPipeComposition (8.2.2.3.8.14)
CIM_SAPAvailableForElement (8.2.2.3.8.15)
CIM_SCSIProtocolController (8.2.2.3.8.16)
CIM_SystemDevice (8.2.2.3.8.17) This association links all LogicalDevicesto the scoping 

system.
CIM_TCPProtocolEndpoint (8.2.2.3.8.19)
CIM_iSCSICapabilities (8.2.2.3.8.20)
CIM_iSCSIProtocolEndpoint (8.2.2.3.8.26)
CIM_iSCSISession (8.2.2.3.8.27)
CIM_iSCSISessionSettings (8.2.2.3.8.29)

Optional Classes
CIM_DeviceSAPImplementation (8.2.2.3.8.3)
CIM_EthernetPort (8.2.2.3.8.8)
CIM_HostedService (8.2.2.3.8.11)
CIM_MemberOfCollection (8.2.2.3.8.13)
CIM_SystemSpecificCollection (8.2.2.3.8.18)
318



 iSCSI Target Ports Subprofile
8.2.2.3.8.1 CIM_BindsTo
Created By : External or StaticExtrinsic(s): 

CIM_iSCSIConfigurationCapabilities (8.2.2.3.8.21)
CIM_iSCSIConfigurationService (8.2.2.3.8.22)
CIM_iSCSIConnection (8.2.2.3.8.23)
CIM_iSCSIConnectionSettings (8.2.2.3.8.24)
CIM_iSCSILoginStatistics (8.2.2.3.8.25)
CIM_iSCSISessionFailures (8.2.2.3.8.28)
CIM_iSCSISessionStatistics (8.2.2.3.8.30)

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_iSCSIProtocolEndpoint

Create iSCSIProtocolEndpoint

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_iSCSIProtocolEndpoint

Delete SCSIProtocolEndpoint

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_SCSIProtocolController

Create SCSIProtocolController

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_SCSIProtocolController

Delete iSCSIProtocolController

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_iSCSISessionSettings

Modify iSCSISessionSettings

Optional Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_EthernetPort

Create EthernetPort

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_EthernetPort AND SourceIn-
stance.CIM_EthernetPort::OperationalStatus <> 
PreviousInstance.CIM_EthernetPort::OperationalStatus

CQL - Modify EthernetPort

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_EthernetPort

Delete EthernetPort

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_iSCSISession

Create iSCSISession

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_iSCSISession AND SourceIn-
stance.CIM_iSCSISession::CurrentConnections <> 
PreviousInstance.CIM_iSCSISession::CurrentConnec-
tions

CQL - Modify iSCSISession

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_iSCSISession

Delete iSCSISession

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_iSCSIConnection

Create iSCSIConnection

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_iSCSIConnection

Delete iSCSIConnection

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_iSCSIConnectionSettings

Modify iSCSIConnectionSettings

Table 274: CIM Elements for iSCSI Target Ports

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 319



 

Deleted By : ExternalExtrinsic(s): 
Class Mandatory: true

8.2.2.3.8.2 CIM_ConcreteDependency
Created By : StaticExtrinsic(s): 
Deleted By : Extrinsic(s): 
Class Mandatory: true

8.2.2.3.8.3 CIM_DeviceSAPImplementation
Created By : Static or External
Deleted By : External
Class Mandatory: false

8.2.2.3.8.4 CIM_ElementCapabilities
Created By : Static
Class Mandatory: true

8.2.2.3.8.5 CIM_ElementSettingData
Created By : Static

Table 275: SMI Referenced Properties/Methods for CIM_BindsTo

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ProtocolEndpoint
Dependent CIM_ServiceAccessPoi

nt

Table 276: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement
Dependent CIM_ManagedElement

Table 277: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_LogicalDevice
Dependent CIM_ServiceAccessPoi

nt

Table 278: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement
Capabilities CIM_Capabilities
320



 iSCSI Target Ports Subprofile
Class Mandatory: true

8.2.2.3.8.6 CIM_ElementStatisticalData
Created By : Static
Class Mandatory: true

8.2.2.3.8.7 CIM_EndpointOfNetworkPipe
Created By : External
Deleted By : External
Class Mandatory: true

8.2.2.3.8.8 CIM_EthernetPort
Created By : Static or External
Deleted By : External
Standard Names: The PermanentAddress Property follows the requirements in6.2.4.5.2
Class Mandatory: false

Table 279: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement
SettingData CIM_SettingData

Table 280: SMI Referenced Properties/Methods for CIM_ElementStatisticalData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement
Stats CIM_StatisticalData

Table 281: SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ServiceAccessPoi
nt

Dependent CIM_NetworkPipe

Table 282: SMI Referenced Properties/Methods for CIM_EthernetPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
OperationalStatus uint16[]
PermanentAddress CD string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 321



 

8.2.2.3.8.9 CIM_HostedAccessPoint
Created By : External or StaticExtrinsic(s): 
Deleted By : ExternalExtrinsic(s): 
Class Mandatory: true

8.2.2.3.8.10 CIM_HostedCollection
Created By : Static
Class Mandatory: true

8.2.2.3.8.11 CIM_HostedService
Created By : Static
Class Mandatory: false

8.2.2.3.8.12 CIM_IPProtocolEndpoint
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 283: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_ServiceAccessPoi

nt

Table 284: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_SystemSpecificColl

ection

Table 285: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_Service

Table 286: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
322



 iSCSI Target Ports Subprofile
8.2.2.3.8.13 CIM_MemberOfCollection
Created By : Static or External
Deleted By : External
Class Mandatory: false

8.2.2.3.8.14 CIM_NetworkPipeComposition
Created By : External
Deleted By : External
Class Mandatory: true

8.2.2.3.8.15 CIM_SAPAvailableForElement
Created By : StaticExtrinsic(s): 
Deleted By : Extrinsic(s): 
Class Mandatory: true

8.2.2.3.8.16 CIM_SCSIProtocolController
Created By : StaticExtrinsic(s): 
Modified By : Extrinsic(s): 
Deleted By : Extrinsic(s): 

ProtocolIFType uint16
Optional Properties/Methods

IPv4Address CD string
IPv6Address CD string

Table 287: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection
Member CIM_ManagedElement

Table 288: SMI Referenced Properties/Methods for CIM_NetworkPipeComposition

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_NetworkPipe
PartComponent CIM_NetworkPipe

Table 289: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

AvailableSAP CIM_ServiceAccessPoi
nt

ManagedElement CIM_ManagedElement

Table 286: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 323



 

Class Mandatory: true

8.2.2.3.8.17 CIM_SystemDevice
This association links all LogicalDevicesto the scoping system.
Created By : StaticExtrinsic(s): 
Deleted By : Extrinsic(s): 
Class Mandatory: true

8.2.2.3.8.18 CIM_SystemSpecificCollection
Created By : Static or External
Modified By : External
Deleted By : External
Class Mandatory: false

8.2.2.3.8.19 CIM_TCPProtocolEndpoint
Created By : Static or External
Modified By : External
Deleted By : External

Table 290: SMI Referenced Properties/Methods for CIM_SCSIProtocolController

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
ElementName string iSCSI Alias
Name CD string
NameFormat uint16

Table 291: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice

Table 292: SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
324



 iSCSI Target Ports Subprofile
Class Mandatory: true

8.2.2.3.8.20 CIM_iSCSICapabilities
Created By : Static
Class Mandatory: true

8.2.2.3.8.21 CIM_iSCSIConfigurationCapabilities
Created By : Static
Class Mandatory: false

8.2.2.3.8.22 CIM_iSCSIConfigurationService
Created By : Static

Table 293: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
PortNumber uint32
ProtocolIFType uint16

Table 294: SMI Referenced Properties/Methods for CIM_iSCSICapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
MinimumSpecificationVersionSup-
ported

uint8

MaximumSpecificationVersion-
Supported

uint8

AuthenticationMethodsSupported uint16[]

Table 295: SMI Referenced Properties/Methods for CIM_iSCSIConfigurationCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
iSCSINodeCreationSupported boolean
iSCSIProtocolEndpointCreation-
Supported

boolean

IdentifierSelectionSupported boolean
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 325



 

Class Mandatory: false

8.2.2.3.8.23 CIM_iSCSIConnection
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

8.2.2.3.8.24 CIM_iSCSIConnectionSettings
Created By : Static
Modified By : ModifyInstance

Table 296: SMI Referenced Properties/Methods for CIM_iSCSIConfigurationService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
CreateiSCSINode()
DeleteiSCSINode()
CreateiSCSIProtocolEndpoint()
DeleteiSCSIProtocolEndpoint()
BindiSCSIProtocolEndPoint()

Table 297: SMI Referenced Properties/Methods for CIM_iSCSIConnection

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ConnectionID uint32
MaxReceiveDataSegmentLength uint32
MaxTransmitDataSegmentLength uint32
HeaderDigestMethod uint16
DataDigestMethod uint16
ReceivingMarkers boolean
SendingMarkers boolean
ActiveiSCSIVersion boolean
AuthenticationMethodUsed uint16
MutualAuthentication boolean

Optional Properties/Methods
OtherHeaderDigestMethod string
OtherDataDigestMethod string
326



 iSCSI Target Ports Subprofile
Class Mandatory: false

8.2.2.3.8.25 CIM_iSCSILoginStatistics
Created By : Static
Modified By : External
Class Mandatory: false

Table 298: SMI Referenced Properties/Methods for CIM_iSCSIConnectionSettings

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
MaxReceiveDataSegmentLength uint32
PrimaryHeaderDigestMethod uint16
PrimaryDataDigestMethod uint16
SecondaryHeaderDigestMethod uint16
SecondaryDataDigestMethod uint16
RequestingMarkersOnReceive boolean
PrimaryAuthenticationMethod uint16
SecondaryAuthenticationMethod uint16

Optional Properties/Methods
OtherPrimaryHeaderDigest-
Method

string

OtherPrimaryDataDigestMethod string
OtherSecondaryHeaderDigest-
Method

string

OtherSecondaryDataDigest-
Method

string

Table 299: SMI Referenced Properties/Methods for CIM_iSCSILoginStatistics

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string

Optional Properties/Methods
LoginFailures uint64
LastLoginFailureTime datetime
LastLoginFailureType uint16
OtherLastLoginFailureType string
LastLoginFailureRemoteNode-
Name

string

LastLoginFailureRemoteAd-
dressType

uint16

LastLoginFailureRemoteAddress uint32
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 327



 

8.2.2.3.8.26 CIM_iSCSIProtocolEndpoint
Created By : StaticExtrinsic(s): 
Modified By : Extrinsic(s): 
Deleted By : Extrinsic(s): 
Standard Names: The Name Property follows the requirements in6.2.4.5.2
Class Mandatory: true

8.2.2.3.8.27 CIM_iSCSISession
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

SuccessfulLogins uint64
NegotiationLoginFailures uint64
AuthenticationLoginFailures uint64
AuthorizationLoginFailures uint64
LoginRedirects uint64
OtherLoginFailures uint64
NormalLogouts uint64
OtherLogouts uint64

Table 300: SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name CD string
ConnectionType uint16 Shall be 7 (iSCSI)
Identifier string ISID or TPGT
ProtocolIFType uint16 Other
OtherTypeDescription string
Role uint16 Shall be 3 (Target) or 4 (Both Initiator 

and Target)

Table 301: SMI Referenced Properties/Methods for CIM_iSCSISession

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
Directionality uint16
SessionType uint16
TSIH uint32

Table 299: SMI Referenced Properties/Methods for CIM_iSCSILoginStatistics

Property Flags Type Description & Notes
328



 iSCSI Target Ports Subprofile
8.2.2.3.8.28 CIM_iSCSISessionFailures
Created By : Static
Modified By : External
Class Mandatory: false

8.2.2.3.8.29 CIM_iSCSISessionSettings
Created By : Static
Modified By : ModifyInstance

EndPointName string
CurrentConnections uint32
InitialR2T boolean
ImmediateData boolean
MaxOutstandingR2T uint32
MaxUnsolicitedFirstDataBurst-
Length

uint32

MaxDataBurstLength uint32
DataSequenceInOrder boolean
DataPDUInOrder boolean
ErrorRecoveryLevel uint32
MaxConnectionsPerSession uint32
DefaultTimeToWait uint32
DefaultTimeToRetain uint32

Table 302: SMI Referenced Properties/Methods for CIM_iSCSISessionFailures

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string

Optional Properties/Methods
SessionFailures uint64
LastSessionFailureType uint16
OtherLastSessionFailureType string
LastSessionFailureRemoteNode-
Name

string

SessionDigestFailures uint64
SessionConnectionTimeoutFail-
ures

uint64

SessionFormatErrors uint64

Table 301: SMI Referenced Properties/Methods for CIM_iSCSISession

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 329



 

Class Mandatory: true

8.2.2.3.8.30 CIM_iSCSISessionStatistics
Created By : Static
Modified By : External
Class Mandatory: false

Table 303: SMI Referenced Properties/Methods for CIM_iSCSISessionSettings

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
MaxConnectionsPerSession uint32
InitialR2TPreference boolean
ImmediateDataPreference boolean
MaxOutstandingR2T uint32
MaxUnsolicitedFirstDataBurst-
Length

uint32

MaxDataBurstLength uint32
DataSequenceInOrderPreference boolean
DataPDUInOrderPreference boolean
DefaultTimeToWaitPreference uint32
DefaultTimeToRetainPreference uint32
ErrorRecoveryLevelPreference uint32

Table 304: SMI Referenced Properties/Methods for CIM_iSCSISessionStatistics

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string

Optional Properties/Methods
CommandPDUsTransferred uint64
ResponsePDUsTransferred uint64
BytesTransmitted uint64
BytesReceived uint64
DigestErrors uint64
ConnectionTimeoutErrors uint64
330



 iSCSI Target Ports Subprofile
8.2.2.3.9 Related Standards

EXPERIMENTAL

Table 305: Related Standards for iSCSI Target Ports

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
Representation of CIM using XML 2.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 331



 

332



 Direct Attach (DA) Port Subprofile
EXPERIMENTAL

8.2.2.4 Direct Attach (DA) Port Subprofile  

8.2.2.4.1 Description
The DAPort (Direct Attach) port models storage systems that attach directly to buses in a host system
(e.g., ISA, EISA, PCI, PCI-E, and chip interfaces on a motherboard). The DAPort can be viewed as
both the initiator and Target ports.

This port can not be used with the LUN Mapping/Masking common subprofile. All volumes served by
this port are fully accessible by the host system. 

Volumes served by this port shall be discovered and presented by the Host Discovered Resources
Profile.

The DAPort class is connected to the SCSIProtocolEndpoint and optionally to a PhysicalPackage. The
DAPort also contains a port type attribute to identify the interconnect technology.

8.2.2.4.2 Durable Names and Correlatable IDs of the Subprofile
None

Figure 59: DA Port Instance Diagram

DA Target Port Subprofile

System
Device

ComputerSystem

SAPAvailableForELement

SystemDevice

DeviceSAPImplementation

ConnectType=”Other”
Name

SCSIProtocolEndpoint

DAPort LogicalDevice

1 *

*

Name

SCSIProtocolController

ProtocolController
ForUnit

* 1

1

HostedAccessPoint
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 333



 

8.2.2.4.3 Health and Fault Management

8.2.2.4.4 Dependencies on Profiles, Subprofiles, and Packages
None

8.2.2.4.5 Extrinsic Methods of this Subprofile
None

8.2.2.4.6 Client Considerations and Recipes

8.2.2.4.7 Registered Name and Version
DA Target Ports version 1.1.0

Table 306: DAPort OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown
334



 Direct Attach (DA) Port Subprofile
8.2.2.4.8 CIM Server Requirements

8.2.2.4.9 CIM Elements

8.2.2.4.9.1 CIM_DAPort
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.2.4.9.2 CIM_DeviceSAPImplementation
Created By : External
Modified By : External
Deleted By : External

Table 307: CIM Server Requirements for DA Target Ports

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 308: CIM Elements for DA Target Ports

Element Name Description
Mandatory Classes

CIM_DAPort (8.2.2.4.9.1)
CIM_DeviceSAPImplementation (8.2.2.4.9.2)
CIM_HostedAccessPoint (8.2.2.4.9.3)
CIM_SCSIProtocolEndpoint (8.2.2.4.9.4)
CIM_SystemDevice (8.2.2.4.9.5)

Table 309: SMI Referenced Properties/Methods for CIM_DAPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
OperationalStatus uint16[]
UsageRestriction uint16 Shall be 2 to indicate this is a front end 

port.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 335



 

Class Mandatory: true

8.2.2.4.9.3 CIM_HostedAccessPoint
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.2.4.9.4 CIM_SCSIProtocolEndpoint
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.2.4.9.5 CIM_SystemDevice
Created By : External
Modified By : External
Deleted By : External

Table 310: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_LogicalDevice
Dependent CIM_ServiceAccessPoi

nt

Table 311: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_ServiceAccessPoi

nt

Table 312: SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
ProtocolIFType uint16
OtherTypeDescription string
ConnectionType uint16 Simulates SPI 
Role uint16
336



 Direct Attach (DA) Port Subprofile
Class Mandatory: true

8.2.2.4.10 Related Standards

EXPERIMENTAL

Table 313: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice

Table 314: Related Standards for DA Target Ports

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 337



 

338



 Common Initiator Port Subprofiles Overview
8.2.3 Common Initiator Port Subprofiles Overview
Hosts and some storage systems provide interfaces to discover and manage the connections between
the system and connected storage (physical disks, external storage). For example, an array may have
an interface to acquire and optimize the utilization of separate buses, loops, or fabrics connecting
backend storage. The discovered target elements (port and logical units) may be modeled by the
scoping profile.

SMI-S includes separate initiator ports subprofiles for several types of transport (Fibre Channel, iSCSI,
Parallel SCSI,...). Rather than include the same classes, the appropriate initiator ports subprofile is also
required in the FC HBA and iSCSI Initiator Profiles.

Generic Model
The initiator port is modeled as a ProtocolEndpoint connected to a port (LogicalPort) The port is
modeled as two separate instances to capture the manageable properties of the physical connector
and transport (LogicalPort) separately from those of the protocol(s) (ProtocolEndpoint) used for
communication. Some transports (such as parallel SCSI - SPI) lock the physical port to a specific
protocol. But an FC Port can carry SCSI and/or IP as protocols. With iSCSI, an Ethernet port can
support SCSI and a variety of network protocols.

The LogicalDevice instances may represent local storage (embedded in the system containing the
initiator ports) or remote storage. When it represents remote storage the Name and NameFormat
properties are used as correlatable ids to reference the remote device. When the LogicalDevice
represents local disk storage, it may be represented as an instance of StorageVolume (subclass of
LogicalDevice) or part of an instance of the Disk Drive common subprofile. A property on LogicalPort
called UsageRestriction is available to indicate whether the controller is capable of providing a “front
end” (target), a “back end” (initiator), or both interfaces. 

Figure 60:, "Generic Initiator Port Model" depicts the generic model.

Ports and Transport Types
Several technologies are used to attach storage to initiators. The interconnect technology is
represented by subclasses of LogicalPort. FCPort and EthernetPort are further sub classed from
NetworkPort to show that the port participates in a network. The other ports are simple buses.

Figure 60: Generic Initiator Port Model

SPIPort SCSI Parallel Interface
FCPort Fibre Channel
EthernetPort iSCSI

ComputerSystem

ProtocolEndpoint

HostedAccessPoint

LogicalDevice

SystemDevice
DeviceSAPImplementation

*

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 339



 

Associations to the Containing Profile
Each Initiator Port Subprofile includes instances of subclasses of LogicalPort and ProtocolEndpoint.
These are associated to the ComputerSystem of the containing profile. Other associations may also tie
to instances from the containing profile or one of its other subprofiles. 

Figure 61: Logical Port Hierarchy

LogicalPort

NetworkPort

SPIPortDAPort EthernetPortFCPort
340



 Parallel SCSI (SPI) Initiator Port Subprofile
EXPERIMENTAL

8.2.3.1 Parallel SCSI (SPI) Initiator Port Subprofile  

8.2.3.1.1 Description
The SPI Initiator Port Subprofile defines the model to parallel SCSI ports. A typical instance diagram is
provided in Figure 62: "SPI Initiator Port Instance Diagram". 

8.2.3.1.2 Health and Fault Management Considerations
Table 315: “SPIPort OperationalStatus” summarized the Health and Fault Management issues that are
unique to this profile.

8.2.3.1.3 Dependencies on Profiles, Subprofiles and Packages
None

8.2.3.1.4 Methods of the Subprofile
None

8.2.3.1.5 Client Considerations and Recipes
None

8.2.3.1.6 Registered Name and Version
SPI Initiator Ports version 1.1.0

Figure 62: SPI Initiator Port Instance Diagram

Table 315: SPIPort OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown

(target subprofile  e lem ents )

C om puterS ystem

S P IP ort In itia to r:
S C S IP roroco lE ndpo in t

Log ica lD evice

S ystem D evice

S ystem D evice

H ostedA ccessP oin t

H ostedA ccessP o in t

Targe t:
S C S IP roroco lE ndpo in t

S C S IIn itia to rTargetLog ica lU nitP a th

D eviceS A P
Im plem enta tion
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 341



 

8.2.3.1.7 CIM Server Requirements

8.2.3.1.8 CIM Elements

8.2.3.1.8.1 CIM_DeviceSAPImplementation
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.3.1.8.2 CIM_HostedAccessPoint
Created By : External
Modified By : External
Deleted By : External

Table 316: CIM Server Requirements for SPI Initiator Ports

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 317: CIM Elements for SPI Initiator Ports

Element Name Description
Mandatory Classes

CIM_DeviceSAPImplementation (8.2.3.1.8.1)
CIM_HostedAccessPoint (8.2.3.1.8.2)
CIM_SCSIProtocolEndpoint (8.2.3.1.8.5)
CIM_SPIPort (8.2.3.1.8.6)
CIM_SystemDevice (8.2.3.1.8.7)

Optional Classes
CIM_LogicalDevice (8.2.3.1.8.3)
CIM_SCSIInitiatorTargetLogicalUnitPath (8.2.3.1.8.4)

Table 318: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_LogicalDevice
Dependent CIM_ServiceAccessPoint
342



 Parallel SCSI (SPI) Initiator Port Subprofile
Class Mandatory: true

8.2.3.1.8.3 CIM_LogicalDevice
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

8.2.3.1.8.4 CIM_SCSIInitiatorTargetLogicalUnitPath
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

8.2.3.1.8.5 CIM_SCSIProtocolEndpoint
Created By : Static
Modified By : Static
Deleted By : Static

Table 319: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_ServiceAccessPoi

nt

Table 320: SMI Referenced Properties/Methods for CIM_LogicalDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
Name string
OperationalStatus uint16[]

Table 321: SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Property Flags Type Description & Notes
Mandatory Properties/Methods

Initiator CIM_SCSIProtocolEndp
oint

Target CIM_SCSIProtocolEndp
oint

LogicalUnit CIM_LogicalDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 343



 

Class Mandatory: true

8.2.3.1.8.6 CIM_SPIPort
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.3.1.8.7 CIM_SystemDevice
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 322: SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
ProtocolIFType uint16
OtherTypeDescription string
ConnectionType uint16
Role uint16 Shall be 2 (Initiator) or 4 (Both Initiator 

and Target)

Table 323: SMI Referenced Properties/Methods for CIM_SPIPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
OperationalStatus uint16[]
UsageRestriction uint16 Shall be 3 for ports restricted to Back-

end only or 4 if the port is unrestricted

Table 324: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice
344



 Parallel SCSI (SPI) Initiator Port Subprofile
8.2.3.1.9 Related Standards

EXPERIMENTAL

Table 325: Related Standards for SPI Initiator Ports

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 345



 

346



 Fibre Channel Initiator Port Subprofile
8.2.3.2 Fibre Channel Initiator Port Subprofile

8.2.3.2.1 Description
Table 63 is an example of a single port and drive connected to a single system using Fibre Channel.
The instance diagram shows a disk (LogicalDevice in the diagram would be subclassed as something
like StorageExtent) in an array, connected by a Fibre Channel port. The full model for the disk is shown
in the Disk Drive subprofile. SCSIProtocolController is not generally used in initiator contexts. It is
included here to be compatible with SMI-S 1.0 clients as specified in IS24775-2006, Storage
Management

8.2.3.2.2 Health and Fault Management Considerations
Table 326:  “FCPort OperationalStatus” summarized the Health and Fault Management considerations
specific to this profile.

8.2.3.2.3 Cascading Considerations
Not defined in this standard.

8.2.3.2.4 Supported Subprofiles and Packages
None.

8.2.3.2.5 Methods of the Profile
None.

Figure 63: Fibre Channel Initiator Instance Diagram

Table 326: FCPort OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown

(target subprofile elements – not part of this profile)

SystemDevice
ComputerSystem

SCSIProtocolController
(for SMI-S 1.0 
Compatibility)

DeviceSAP
Implementation

ConnectionType = 
“Fibre Channel”

Initiator:
SCSIProtocolEndpoint

FCPort

LogicalDevice

ProtocolController
AccessesUnit

 

Target:
SCSIProtocolEndpoint

SCSIInitiatorTarget
LogicalUnitPath

SystemDevice

HostedAccessPoint

HostedAccessPoint

ProtocolController
ForPort
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 347



 

8.2.3.2.6 Client Considerations and Recipes
None

8.2.3.2.7 Registered Name and Version
FC Initiator Ports version 1.1.0

8.2.3.2.8 CIM Server Requirements

Table 327: CIM Server Requirements for FC Initiator Ports

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
348



 Fibre Channel Initiator Port Subprofile
8.2.3.2.9 CIM Elements

8.2.3.2.9.1 CIM_DeviceSAPImplementation
Created By : External
Modified By : Extrinsic(s): 
Deleted By : External
Class Mandatory: true

8.2.3.2.9.2 CIM_FCPort
Created By : External
Modified By : External
Deleted By : External
Standard Names: The PermanentAddress Property follows the requirements in 6.2.4.5.2

Table 328: CIM Elements for FC Initiator Ports

Element Name Description
Mandatory Classes

CIM_DeviceSAPImplementation (8.2.3.2.9.1)
CIM_FCPort (8.2.3.2.9.2)
CIM_HostedAccessPoint (8.2.3.2.9.3)
CIM_SCSIProtocolEndpoint (8.2.3.2.9.6)
CIM_SystemDevice (8.2.3.2.9.7)

Optional Classes
CIM_ProtocolControllerForPort (8.2.3.2.9.4)
CIM_SCSIProtocolController (8.2.3.2.9.5) Represents a 'LUN Map'

Optional Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_FCPort

Create FCPort

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_FCPort AND SourceIn-
stance.OperationalStatus <> 
PreviousInstance.OperationalStatus

Deprecated WQL - Modify FCPort

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_FCPort AND SourceIn-
stance.CIM_FCPort::OperationalStatus <> 
PreviousInstance.CIM_FCPort::OperationalStatus

CQL - Modify FCPort

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_FCPort

Delete FCPort

Table 329: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_LogicalDevice
Dependent CIM_ServiceAccessPoi

nt
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 349



 

Class Mandatory: true

8.2.3.2.9.3 CIM_HostedAccessPoint
Created By : External
Modified By : External
Deleted By : External

Table 330: SMI Referenced Properties/Methods for CIM_FCPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
ElementName string Port Symbolic Name
UsageRestriction uint16 Shall be 3 for ports restricted to Back-

end only or 4 if the port is unrestricted
OperationalStatus uint16[]
Speed uint64
MaxSpeed uint64 Port Supported Speed from HBA API.
PortType uint16 "Unknown" = 0, "Other" = 1, "N" = 10, 

"NL" = 11, "F/NL" = 12, "Nx" = 13, "E" = 
14, "F" = 15, "FL" = 16, "B" = 17, "G" = 
18.

LinkTechnology uint16
SupportedMaximumTransmission-
Unit

uint64

Optional Properties/Methods
PortNumber uint16
PermanentAddress CD string PermanentAddress is optional when 

used as a backend port in a device. 
This may be overridden in profiles that 
use this subprofile.

NetworkAddresses string[] For Fibre Channel end device ports, 
the Fibre Channel ID

SupportedCOS uint16[]
ActiveCOS uint16[]
SupportedFC4Types uint16[]
ActiveFC4Types uint16[]
ActiveMaximumTransmissionUnit uint64
350



 Fibre Channel Initiator Port Subprofile
Class Mandatory: true

8.2.3.2.9.4 CIM_ProtocolControllerForPort
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.3.2.9.5 CIM_SCSIProtocolController
Represents a 'LUN Map'
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.3.2.9.6 CIM_SCSIProtocolEndpoint
Created By : Static
Modified By : Static
Deleted By : Static

Table 331: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_ServiceAccessPoi

nt

Table 332: SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_LogicalPort
Antecedent CIM_ProtocolController

Table 333: SMI Referenced Properties/Methods for CIM_SCSIProtocolController

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifier

Optional Properties/Methods
ElementName string
OperationalStatus uint16[]
MaxUnitsControlled uint32
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 351



 

Class Mandatory: true

8.2.3.2.9.7 CIM_SystemDevice
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.3.2.10 Related Standards

Table 334: SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
ProtocolIFType uint16
OtherTypeDescription string
ConnectionType uint16 Shall be 2 (Fibre Channel)
Role uint16 Shall be 2 (Initiator) or 4 (Both Initiator 

and Target)

Table 335: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice

Table 336: Related Standards for FC Initiator Ports

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.11.0 DMTF
352



 iSCSI Initiator Port Subprofile
EXPERIMENTAL

8.2.3.3 iSCSI Initiator Port Subprofile  

8.2.3.3.1 Description
Other port subprofiles have a single physical port (LogicalPort subclass) associated with each SCSI
initiator (SCSIProtocolEndpoint). iSCSI allows multiple connections (each with a single Ethernet port) in
a session that acts as a SCSI initiator. This subprofile includes the subset of classes that model the
SCSI initiator and its relationship to logical classes that model physical elements (Ethernet ports).

Table 64 depicts a configuration with an initiator with two Ethernet ports that are part of a single session
that acts as a SCSI initiator. The Ethernet ports (referred to in iSCSI literature as Network Portals) are
modeled as instances of EthernetPort, IPProtocolEndpoint, and TCPProtocolEndpoint with 1-1
cardinality. These ports are in the initiator side, the target ports are not required in this subprofile. Note
that all ProtocolEndpoint instances need a HostAccessPoint association to the ComputerSystem, some
are omitted to keep the diagram less cluttered.

8.2.3.3.2 Durable Names and Other Correlatable ids of the Subprofile
LogicalDevice.Name is the name of a SCSI Logical Unit as defined in the Correlateable Names section

Figure 64: iSCSI Initiator Port Instance Diagram

iSCSI Network Portal (Ethernet Port) 1

ComputerSystem

(referencing 
Profile)

Initiator:
iSCSIProrocolEndpoint

System
Device

HostedAccessPoint

EthernetPort IPProrocolEndpoint TCPProrocolEndpoint

DeviceSAP
Implementation BindsTo

BindsTo

iSCSI Network Portal (Ethernet Port) 2

EthernetPort IPProrocolEndpoint TCPProrocolEndpoint

DeviceSAP
Implementation BindsTo

System
Device

BindsTo1

*1111

1

*

1 1 1 1 *
Note: HostAccessPoint 
associations to every 
ProtocolEndpoint are 

required, but omitted from 
diagram to reduce clutter

1

DeviceSAP
Implementation

DeviceSAP
Implementation
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 353



 

8.2.3.3.3 Health and Fault Management Considerations

8.2.3.3.4 Dependencies on Profiles, Subprofiles and Packages
None

8.2.3.3.5 Extrinsic Methods of the Subprofile
None

8.2.3.3.6 Client Considerations and Recipes

8.2.3.3.7 Registered Name and Version
iSCSI Initiator Ports version 1.1.0

8.2.3.3.8 CIM Server Requirements

Table 337: EthernetPort OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown

Table 338: CIM Server Requirements for iSCSI Initiator Ports

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
354



 iSCSI Initiator Port Subprofile
8.2.3.3.9 CIM Elements

8.2.3.3.9.1 CIM_BindsTo
Created By : External
Modified By : Extrinsic(s): 
Deleted By : External
Class Mandatory: true

8.2.3.3.9.2 CIM_DeviceSAPImplementation
Created By : External
Modified By : Extrinsic(s): 
Deleted By : External

Table 339: CIM Elements for iSCSI Initiator Ports

Element Name Description
Mandatory Classes

CIM_BindsTo (8.2.3.3.9.1)
CIM_DeviceSAPImplementation (8.2.3.3.9.2)
CIM_EthernetPort (8.2.3.3.9.3)
CIM_HostedAccessPoint (8.2.3.3.9.4)
CIM_IPProtocolEndpoint (8.2.3.3.9.5)
CIM_SystemDevice (8.2.3.3.9.7)
CIM_TCPProtocolEndpoint (8.2.3.3.9.8)
CIM_iSCSIProtocolEndpoint (8.2.3.3.9.9)

Optional Classes
CIM_LogicalDevice (8.2.3.3.9.6)

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_EthernetPort

Port Creation

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_EthernetPort AND SourceIn-
stance.CIM_EthernetPort::OperationalStatus <> 
PreviousInstance.CIM_EthernetPort::OperationalStatus

CQL - Port Status Change

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_EthernetPort

Port Removal

Table 340: SMI Referenced Properties/Methods for CIM_BindsTo

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ProtocolEndpoint
Dependent CIM_ServiceAccessPoi

nt
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 355



 

Class Mandatory: true

8.2.3.3.9.3 CIM_EthernetPort
Created By : External
Modified By : External
Deleted By : External
Standard Names: The PermanentAddress Property follows the requirements in 6.2.4.5.2 
Class Mandatory: true

8.2.3.3.9.4 CIM_HostedAccessPoint
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.3.3.9.5 CIM_IPProtocolEndpoint
Created By : External
Modified By : External
Deleted By : External

Table 341: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_LogicalDevice
Dependent CIM_ServiceAccessPoi

nt

Table 342: SMI Referenced Properties/Methods for CIM_EthernetPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
OperationalStatus uint16[]
PortType uint16
OperationalStatus uint16[]
PermanentAddress CD string

Table 343: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_ServiceAccessPoi

nt
356



 iSCSI Initiator Port Subprofile
Class Mandatory: true

8.2.3.3.9.6 CIM_LogicalDevice
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

8.2.3.3.9.7 CIM_SystemDevice
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 344: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
OtherTypeDescription string
ProtocolIFType uint16

Optional Properties/Methods
IPv4Address CD string Maps to 

IMA_NETWORK_PORTAL_PROPERT
IES, ipAddress

IPv6Address CD string Maps to 
IMA_NETWORK_PORTAL_PROPERT
IES, ipAddress

Table 345: SMI Referenced Properties/Methods for CIM_LogicalDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
Name string
OperationalStatus uint16[]

Table 346: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 357



 

8.2.3.3.9.8 CIM_TCPProtocolEndpoint
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.3.3.9.9 CIM_iSCSIProtocolEndpoint
Created By : Static
Modified By : Static
Deleted By : Static
Standard Names: The Name Property follows the requirements in 6.2.4.5.2 
Class Mandatory: true

8.2.3.3.10 Related Standards

EXPERIMENTAL

Table 347: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
PortNumber CD uint32
ProtocolIFType uint16

Table 348: SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name CD string
ProtocolIFType uint16 Other
OtherTypeDescription string
ConnectionType uint16 iSCSI
Role uint16 Shall be 2 (Initiator)
Identifier string ISID

Table 349: Related Standards for iSCSI Initiator Ports

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
358



 Back End Ports Subprofile (DEPRECATED)
DEPRECATED

8.2.3.4 Back End Ports Subprofile (DEPRECATED)

8.2.3.4.1 Description

Some RAID systems provide interfaces to discover and manage the internal connections between the
RAID processors and physical disks. For example, an array may have an interface to acquire and
optimize the utilization of separate buses, loops, or fabrics to back-end storage. In this case, the ports
to individual disks can be modeled similarly to a JBOD configuration as well as the ports on the RAID
processors.

A property on FCPort called UsageRestriction is available to indicate whether the controller is providing
a front end (target) or back end (initiator) interface.

The RAID controller itself has front-end ports (connected to customer hosts or switches) and back-end
ports (connected to the internal disks). Figure 65: "Back-end Ports Instance" shows an instance
diagram for three disks (StorageExent only shown) in an array, connected by a FC loop. The full model
for the disk is shown in 8.2.8.13, "Disk Drive Subprofile (DEPRECATED)".

Instance Diagram

8.2.3.4.2 Health and Fault Management
Not defined in this standard.

8.2.3.4.3 Cascading Considerations
Not defined in this standard.

8.2.3.4.4 Dependencies on Profiles, Subprofiles, and Packages
None.

8.2.3.4.5 Methods of the Profile
None.

Figure 65: Back-end Ports Instance

StorageExtent

Name: //VPD pg 83 ID
DefaultAccessMode

ComputerSystem

dedicated[x] '= 
'BlockServer"

"Array"

SCSIProtocolControllerFCPort
UsageRestriction = 

‘Back-end only’

ProtocolControllerForPort

StorageExtent

Name: //VPD pg 83 ID
DefaultAccessMode

SCSIProtocolControllerFCPort
UsageRestriction = 

‘Back-end only’

ProtocolControllerForPort

ProtocolControllerAccessesUnit

StorageExtent

Name: //VPD pg 83 ID
DefaultAccessMode

ProtocolControllerAccessesUnit ProtocolControllerAccessesUnit

SystemDevice

SystemDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 359



 

8.2.3.4.6 Client Considerations and Recipes
None.

8.2.3.4.7 Registered Name and Version
Backend Ports version 1.0.2

8.2.3.4.8 CIM Server Requirements

8.2.3.4.9 CIM Elements

8.2.3.4.9.1 CIM_FCPort
Class Mandatory: true

Table 350: CIM Server Requirements for Backend Ports

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 351: CIM Elements for Backend Ports

Element Name Description
Mandatory Classes

CIM_FCPort (8.2.3.4.9.1)
CIM_ProtocolControllerAccessesUnit (8.2.3.4.9.2)
CIM_ProtocolControllerForPort (8.2.3.4.9.3)
CIM_SCSIProtocolController (8.2.3.4.9.4)
CIM_StorageExtent (8.2.3.4.9.5)
CIM_SystemDevice (8.2.3.4.9.6)

Table 352: SMI Referenced Properties/Methods for CIM_FCPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
OperationalStatus uint16[]

Optional Properties/Methods
Speed uint64
360



 Back End Ports Subprofile (DEPRECATED)
8.2.3.4.9.2 CIM_ProtocolControllerAccessesUnit
Class Mandatory: true

8.2.3.4.9.3 CIM_ProtocolControllerForPort
Class Mandatory: true

8.2.3.4.9.4 CIM_SCSIProtocolController
Class Mandatory: true

8.2.3.4.9.5 CIM_StorageExtent
Class Mandatory: true

Table 353: SMI Referenced Properties/Methods for CIM_ProtocolControllerAccessesUnit

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ProtocolController
Dependent CIM_LogicalDevice
DeviceNumber string

Optional Properties/Methods
TargetControllerNumber string

Table 354: SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ProtocolController
Dependent CIM_LogicalPort

Optional Properties/Methods
AccessPriority uint16

Table 355: SMI Referenced Properties/Methods for CIM_SCSIProtocolController

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string

Optional Properties/Methods
ElementName string
OperationalStatus uint16[]

Table 356: SMI Referenced Properties/Methods for CIM_StorageExtent

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 361



 

8.2.3.4.9.6 CIM_SystemDevice
Class Mandatory: true

8.2.3.4.10 Related Standards

DEPRECATED

SystemName string
CreationClassName string
DeviceID string
ExtentStatus uint16[]
OperationalStatus uint16[]
BlockSize uint64
Primordial boolean

Optional Properties/Methods
Name string VPD 83 identifier for this volume (ide-

ally a LUN WWN)
NumberOfBlocks uint64
IsBasedOnUnderlyingRedun-
dancy

boolean

Table 357: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice

Table 358: Related Standards for Backend Ports

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.8.0 DMTF

Table 356: SMI Referenced Properties/Methods for CIM_StorageExtent

Property Flags Type Description & Notes
362



 Server Profile
8.2.4 CIM Server Related Profiles

8.2.4.1 Server Profile

8.2.4.1.1 Description
A CIM Server is anything that supports the CIM-XML protocol and supports the basic read functional
profile as defined by the CIM Operations over HTTP specification. 

The Server Profile is mandatory for all compliant SMI-S Servers. 

The Object Manager part of the model defines the capabilities of a CIM Object Manager based on the
communication mechanisms that it supports.

The namespace model of the Server Profile describes the namespaces managed by the Object
Manager and the type information contained within the namespace. The main information provided in
the namespace part of the model is the namespace itself and its association to the ObjectManager. 

The RegisteredProfile part of the model is used to specify the Profiles supported by the Object
Manager. It also includes the specification of subprofiles that are supported by the profile.

In this section there are references to the InteropNamespace and the use of the InteropNamespace for
finding RegisteredProfiles and other related classes associated with the Server Profile. The
InteropNamespace refers to the first namespace found in the InteropSchemaNamespace attribute of
the SLP Template.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 363



 

8.2.4.1.1.1 Instance Diagram

A Server is modeled as a System with a HostedService association to an ObjectManager. The
ObjectManager is subclassed from Service. 

It is mandatory that all namespaces supported by the Server be identified (the Namespace class) and
associated to the ObjectManager via the NamespaceInManager association

Note: Most classes of the Server Profile (as shown in Figure 66: "Server Model") are in the Interop
Namespace. with the exception of the “ManagedElement” that is referenced from the
RegisteredProfile. This makes traversing the Server Profile relatively simple. The only time a
traversal may require crossing namespaces is when following the “ElementConformsToProfile”
association.

The communication protocols supported by the ObjectManager should also be identified. Specifically,
the CIMXMLCommunicationMechanism shall be present for standard communication support for
clients. This class is associated to the ObjectManager via the CommMechanismForManager
association.

The next set of classes and associations deal with Profiles supported by the ObjectManager. A Profile
is modeled using the RegisteredProfile class. One instance is created for each ManagedElement that is
covered by a profile and is managed by the Server. The RegisteredProfile instances can be found by

Figure 66: Server Model

Name (InstanceID)
ElementName

ObjectManager

[Propagated Keys]
CreationClassName
Name
ClassType
DescriptionOfClassType

Namespace

[Default CommunicationMechanism = "XML over HTTP"]
CIMValidated

CIMXMLCommunictionMechanism

Namespace
InManager CommMechanismForManager

InstanceID
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes[]
AdvertiseTypeDescriptoins[]

RegisteredProfile

InstanceID
RegisteredOrganization
OtherRegisteredOrganization
RegisteredName
RegisteredVersion
AdvertiseTypes[]
AdvertiseTypeDescriptoins[]

RegisteredSubProfile

SubProfile
RequiresProfile

ManagedElement
(e.g., System)

ElementConformsToProfile

 

SystemHostedService

ReferencedProfile

SoftwareIdentity

Classifications[0] = "Instrumentation"
VersionString = "build27p5"
Manufacturer = "Yoyodyne, Inc."
Name = "RAID-o-matic Services"

ElementSoftwareIdentity

Product

ProductSoftware
Component

ElementSoftwareIdentity

SubProfile
RequiresProfile
364



 Server Profile
enumerating RegisteredProfiles within the interop namespace. A client would find all profiles supported
by the Server by enumerating RegisteredProfiles, enumerating RegisteredSubprofiles and subtracting
the second list from the first list. This will yield the list of Profiles supported by the ObjectManager.

For each Profile instance, the subprofiles that have been implemented (for the instance) should be
identified via the SubprofileRequiresProfile association. Subprofiles are modeled using the
RegisteredSubProfile class. 

In addition, the ElementConformsToProfile association ties the “top-level” Profile (RegisteredProfile) to
the scoping ManagedElements. These ManagedElements are typically ComputerSystems or
AdminDomains.

A single ManagedElement may have zero or more ElementConformsToProfile associations to
RegisteredProfiles. Regardless of the number of associated RegisteredProfiles the ManagedElement
represents one set of resources. So for example, consider a ManagedElement that is a System that
supports both the Array and Storage Virtualizer profiles. If one asks for the total amount of mapped
capacity, the answer applies to both Array and Virtualizer and is not additive.

Each RegisteredProfile and RegisteredSubprofile instance shall be associated to one (or more)
SoftwareIdentity instances containing information about the software packages required to deploy the
instrumentation (including providers). These are associated using ElementSoftwareIdentity.
SoftwareIdentity instance may optionally be associated to Product instances representing a software
product.

8.2.4.1.1.2 Use of model fields to Populate the SLP template
The data used to populate the SLP template for advertising SMI-S profiles is found in the CIM Server
profile. The SLP template fields are populated as follows:

template-url-syntax: =string   
The following quotation is from the “WBEM SLP Template v1.0.0. 
(http://www.dmtf.org/standards wbem/wbem.1.0.en)

“The template-url-syntax shall be the WBEM URI Mapping of the location of one service access point
offered by the WBEM Server over TCP transport. This attribute shall provide sufficient addressing
information so that the WBEM Server can be addressed directly using the URL.”

The WBEM URI Mapping is defined in the WBEM URI Mapping Specification 1.0.0 (DSP0207).
Example: (template-url-syntax=https://localhost:5989 [^])

service-hi-name: ObjectManager.ElementName

service-hi-description: ObjectManager.Description

service-id: ObjectManager.Name

Service-location-tcp: The location of one service access point offered by the CIM Server over TCP
transport. This attribute shall provide sufficient addressing information that the CIM Server can be
addressed directly using only this attribute.

CommunicationMechanism: ObjectManagerCommunicationMechanism.CommunicationMechanism

OtherCommunicationMechanism:
ObjectManagerCommunicationMechanism.OtherCommunicationMechanism

InteropSchemaNamespace: Namespace.Name for the InteropNamespace

ProtocolVersion: ObjectManagerCommunicationMechanism.Version
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 365



 

FunctionalProfilesSupported:
ObjectManagerCommunicationMechanism.FunctionalProfilesSupported

FunctionalProfileDescriptions:
ObjectManagerCommunicationMechanism.FunctionalProfileDescriptions

MultipleOperationsSupported:
ObjectManagerCommunicationMechanism.MultipleOperationsSupported

AuthenticationMechanismSupported:
ObjectManagerCommunicationMechanism.AuthenticationMechanismsSupported

OtherAuthenticationDescription:
ObjectManagerCommunicationMechanism.AuthenticationMechanismDescriptions

Namespace: Namespace.Name for each Namespace instance supported

Classinfo: Namespace.Classinfo for each Namespace instance

RegisteredProfilesSupported: The concatenation of:

• RegisteredProfile.RegisteredOrganization;

• RegisteredProfile.RegisteredName;

• RegisteredProfile.RegisteredName (where the second RegisteredName is the name of a
subprofile that is identified for SLP advertisement).

8.2.4.1.1.3 HTTP Security Background
Section 4.4 of “Specification for CIM Operations over HTTP, Version 1.1” from DMTF describes the
requirements for CIM clients and servers. The authentication methods referred to in the above
specification are described in the IETF RFCs 1945 and 2068, “Hypertext Transfer Protocol -- HTTP/
1.0(1.1)” and IETF RFC 2069 “An Extension to HTTP: Digest Access Authentication””. The Transport
Layer Security Protocol Version 1.0 (TLS) is defined by ETF RFC 4346, which contains specifications
for both versions 1.0 and 1.1. The Secure Sockets Layer 3.0 (SSL 3.0) protocol specification can be
downloaded from HTTP://wp.netscape.com/end/ssl3/.

Section 4.4 of “Specification for CIM Operations over HTTP, Version 1.1" defines additional
requirements for HTTP authentication, above those found in HTTP 1.1 [RFC 2068], or the HTTP
authentication documents [RFC 2069, RFC 2617]. HTTP authentication generally starts with an HTTP
client request, such as “GET Request-URI” (where Request-URI is the resource requested). If the client
request does not include an “Authorization” header line and authentication is required, the server
responds with a “401 unauthorized” status code, and a “WWW-Authenticate” header line. The HTTP
client shall then respond with the appropriate “Authorization” header line in a subsequent request. The
format of the “WWW-Authenticate” and “Authorization” header lines varies depending on the type of
authentication required: basic authentication or digest authentication. If the authentication is
successful, the HTTP server will respond with a status code of “200 OK”. 

Basic authentication involves sending the user name and password in the clear, and should only be
used on a secure network, or in conjunction with a mechanism that ensures confidentiality, such as
TLS. Digest authentication sends a secure digest of the user name and password (and other
information including a nonce value), so that the password is not revealed. “401Unauthorized”
responses should not include a choice of authentication 

SSL 3.0 and TLS provide both confidentiality and integrity in communication, which precludes
eavesdropping, tampering, and message forgery. While TLS 1.1 and TLS 1.0 are based on SSL 3.0
and the differences between them are not dramatic, it is important to note that these differences are
366



 Server Profile
significant enough that TLS 1.1, TLS 1.0 and SSL 3.0 will not interoperate. However, both versions of
TLS do provide mechanisms for backwards compatibility with the earlier versions.

Both TLS and SSL 3.0 package one key establishment, confidentiality, signature and hash algorithm
into a "cipher suite." A registered 16-bit (4 hexadecimal digit) number, called the cipher suite index, is
assigned for each defined cipher suite. For example, RSA key agreement, RSA signature, Triple Data
Encryption Standard (3DES) using Encryption-Decryption-Encryption (EDE) and Cipher Block Chaining
(CBC) confidentiality, and the Secure Hash Algorithm (SHA-1) hash is assigned the hexadecimal value
{0x000A} for TLS. Note especially that TLS 1.1 requires (IEFT RFC 4346, Section 9 - Mandatory Cipher
Suites): "In the absence of an application profile standard specifying otherwise, a TLS compliant
application shall implement the cipher suite TLS_RSA_WITH_3DES_EBE_CBC_ SHA" described
above.

The client always initiates the TLS and SSL 3.0 session and starts cipher suite negotiation by
transmitting a handshake message that lists the cipher suites (by index value) that it will accept. The
server responds with a handshake message indicating which cipher suite it selected from the list or an
"abort" as described below. Although the client is required to order its list by increasing "strength" of
cipher suite, the server may choose ANY of the cipher suites proposed by the client. Therefore, there is
NO guarantee that the negotiation will select the strongest suite. If no cipher suites are mutually
supported, the connection is aborted. When the negotiated options, including optional public key
certificates and random data for developing keying material to be used by the cryptographic algorithms,
are complete, messages are exchanged to place the communications channel in a secure mode.

SMI-S clients and servers may be attacked by setting up a false SMI-S server to capture userids and
passwords or to insert itself as an undetected proxy between an SMI-S client and server. The most
effective countermeasure for this attack is the controlled use of server certificates with SSL 3.0 or TLS,
matched by client controls on certificate acceptance on the assumption that the false server will be
unable to obtain an acceptable certificate. Specifically, this could be accomplished by configuring clients
to always use SSL 3.0 or TLS underneath HTTP authentication, and only accept certificates from a
specific local certificate authority. See 8.2.4.1.1.4 for requirements in this area. In the absence of this
countermeasure, some protection can by obtained by limiting the scope of SMI-S discovery, including
SLP, by IP address range (this involves client configuration plus SLP DA configuration, if any SLP DA is
used), and the use of firewalls to block ports used by SMI-S and SLP in order to prevent SMI-S access
to/from points outside a protected area of the network.

8.2.4.1.1.4 HTTP Security
This section specified security requirements on the protocol for communication between a Client and
an SMI-S Server, but not the mechanism of authentication used by the SMI-S Server.

Client authentication to the SMI-S Server is based on an authentication service. Differing authentication
schemes may be supported, including host-based authentication, Kerberos, PKI, or other.

For the purposes of SMI-S, basic strength ciphersuites include 512-bit (or longer) asymmetric
algorithms (RSA or Diffie-Hellman), combined with 40-bit (or longer) symmetric algorithms (Triple DES,
IDEA, RC4-128) and either SHA-1 or MD5. Enhanced strength ciphersuites combine 1 024-bit (or
longer) asymmetric algorithms (RSA or Diffie-Hellman) with 128-bit (or longer) symmetric algorithms
(Triple DES, IDEA, RC4-128, AES) and either SHA-1 or MD5. 

General Requirements 
The following are general requirements for the support of security when using HTTP.

a) SMI-S Servers and Clients shall conform to section 4.4 of “Specification for CIM Operations over 
HTTP, Version 1.1”. 

b) HTTP Basic Authentication shall be implemented. HTTP Digest Authentication should be imple-
mented. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 367



 

c) To minimize compromising user identities, and credentials such as passwords, implementers 
should use HTTP Basic Authentication ONLY in conjunction with SSL 3.0 or TLS and an enhanced 
strength ciphersuite. 

d) Where neither SSL 3.0 or TLS are used, or where they are used with a basic strength ciphersuite, 
implementers should utilize HTTP Digest Authentication. 

e) To ensure a minimum level of security and interoperability between implementations, support for 
the TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher suite shall be included in all implementa-
tions. Implementers are free to include additional cipher suites.

EXPERIMENTAL

When such cipher suites are supported, SSL_RSA_WITH_3DES_EDE_CBC_SHA for SSL 3.0
and TLS_RSA_WITH_3DES_EDE_CBC_SHA for TLS shall be supported at a minimum.
Additionally, Table 359 identifies the SSL and TLS cipher suites (in order of descending
preference) that should be supported and used by SMI-S implementations:

The order of the cipher suites in Table 359 is the order of preference (i.e., cipher suites higher in
the table are preferred over those lower in the table) when multiple cipher suites are offered unless
overridden by local security policy. Within each pair of cipher suites, the "_DHE_" suite uses a
Diffie-Hellman exchange to provide forward secrecy so that future disclosure of the RSA key(s)
used will not compromise previous secured traffic.

Recognizing that implementers are likely to start with the least preferred 3DES-based cipher suites
and then consider the AES suites, it is important to note that the National Institute of Standards
and Technology (NIST) is currently encouraging transition to AES. Implementers should be aware
that AES_128 is not only a stronger encryption algorithm than 3DES, but also that AES_128 tends
to be more efficient and of higher performance when implemented.

For these reasons, if an SMI-S implementation supports 3DES, then support of AES_128 is
strongly recommended. It is reasonable to expect that a future version of SMI-S will include a
mandatory AES_128-based cipher suite.

EXPERIMENTAL

f) If no enhanced strength ciphersuite is supported, then HTTP Digest Authentication shall be imple-
mented. 

g) A user identity and credential used with one type of HTTP Authentication (i.e., Basic or Digest) 
shall not ever be subsequently used with the other type of HTTP Authentication. To avoid compro-
mising the integrity of a stronger scheme, established good security practices avoids the reuse of 
identity & credential information across schemes of different strengths.

Table 359: SMI-S Preferred Cipher Suites

TLS 1.0 & 1.1 SSL 3.0
TLS_DHE_RSA_WITH_AES_256_CBC_SHA SSL_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA SSL_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA
368



 Server Profile
h) SSL 3.0 and TLS 1.0 shall be supported; TLS 1.1 is currently an allowed option that is strongly rec-
ommended. SSL support is currently required for backwards compatibility as described in Appen-
dix E of RFC 4346. 

EXPERIMENTAL

Additionally, SMI-S implementations shall have configurable mechanisms to only use cipher suites
that include RSA, DHE-RSA, or DHE-DSS key establishment mechanisms and RSA or DSA
signature mechanisms (i.e., only certificate-based cipher suites). These mechanisms shall further
prevent the negotiation of the "EXPORT" cipher suites (identified in Section A.5 of RFC 4346 as
TLS 1.1 must not negotiate cipher suites; in addition, SMI-S prohibits use of "EXPORT" cipher
suites with SSL 3.0 and TLS 1.0).

Although DES is an allowed cipher when used with the appropriate key exchange mechanism,
DES is vulnerable to brute-force attacks. When such an attack is a concern, a stronger cipher
should be used.

It is important to recognize that maintaining security often requires changing requirements to
reflect advances in technology, discovery of vulnerabilities, and defenses against new attacks.
Consequently, it is expected that future versions of SMI-S will require TLS 1.1 to be implemented,
deprecate support for SSL 3.0, deprecate cipher suites that include DES (any key size) as the
cipher, and deprecate cipher suites that include MD5 as the hash.

EXPERIMENTAL

i) Clients that fail to contact an SMI-S server via HTTP over SSL 3.0 or TLS on TCP port 5 989 
should retry with HTTP on TCP port 5 988 if their security policy allows it.

j) In order for Clients and Servers to communicate, they need to be using a consistent approach to 
security. It is possible for properly configured Clients and Servers to fail to communicate if one is 
relying upon port 5 989 and the other on port 5 988.

k) Servers can accelerate discovery that a secure channel is needed by responding to HTTP con-
tacts on TCP port 5 988 with an HTTP REDIRECT to the appropriate HTTPS: URL (HTTP over 
SSL or TLS on TCP port 5 989) to avoid the need for clients to timeout the HTTP contact attempt. 
Clients should honor such redirects in this situation. 

Requirements for the support of HTTP Realm
The relationship of the realm-value to an authentication service, and one or more sets of user identity
and credential, is determined separately by the configuration of each SMI-S client, and configurations
may differ between multiple SMI-S clients in the same system. The means of creating this configuration
in the SMI-S client is outside of the scope of this specification. The client configuration is expected to a
contain at least a default set of user identity and credential per realm-value. When the configuration
associates a single realm-value with multiple sets of user identity and credential, the basis on which a
single set is selected is also outside of the scope of this specification (and may include considerations
such as the need to assert elevated privilege at the server to perform specific operations.)

Where the Realm field is not used, or the realm-value is unrecognized, the SMI-S Client may use
means outside of the scope of this specification to identify the user identity and credential to be used,
including the use of information obtained during Service Discovery.

For this revision of the specification, it is recommended that a single realm-value per SMI-S Server be
defined by means such as a configuration file. In future revisions, the definition of multiple and dynamic
user identities and credentials per SMI-S Server will be addressed, and may use other communication
methods in addition to, or in place of, the Realm field.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 369



 

a) The Realm field defined by HTTP Version 1.1 (see RFC 2617 section 1.2 and RFC 2616) shall be 
implemented by the SMI-S Server, and should be used to identify to the Client the authentication 
service to be used to access the server. 

b) The realm-value contains information to help determine which specific user identity and credential 
(e.g., user ID & password) and are to be used with the authentication service, but shall not contain 
any portion of an identity or a credential itself. 

c) The exact form of the authentication service is not defined by SMI-S, and may either be part of the 
configuration of an SMI-S Server, or may involve an external entity such as a RADIUS server. A 
single authentication service may be utilized by multiple SMI-S Servers. Realm-values shall be 
unique throughout the scope of the authentication service.

d) When provided, the realm-value shall meet all of the requirements contained in RFC 2616 and 
RFC 2617, with the exception of the specific requirement in section 3.2.1 of RFC 2617 that the 
realm-value “be displayed to users”. In SMI-S, the realm-value may be handled by the SMI-S Cli-
ent without reference to a user.

e) Where no format for the realm-value has been defined by other standards or conventions, and 
where an authentication is handled autonomously by an SMI-S server, then a string in the format 
defined in “SMI-S defined format for HTTP Realm ()” in 8.2.4.1.1.4 is recommended. 

f) Where a single authentication service is utilized by multiple SMI-S Servers, the SMI-S recom-
mended format defined in ““SMI-S defined format for HTTP Realm” on page 370 in 8.2.4.1.1.4 
should not be used, and use of SHA-1 in the creation of realm-values is recommended. 

SMI-S defined format for HTTP Realm
The format is based on components of the definition of the Uniform Resource Identifier (URI) in RFC
2396 and extended in RFC 2732, and is described using the BNF-like grammar of those documents as: 

[1*(unreserved) "."] "smis@" host

where: 

• unreserved is as defined in section 2.3 of RFC 2396

• "." is a dot 

• "smis@" is a string literal 

• host is as defined in section 3 of RFC 2732 

The combination of the unreserved and host portions should be defined in a manner that allows an
administrator to quickly identify a specific SMI-S Server in his configuration. Note that some portion of
unreserved could be generated randomly in the SMI-S Server to reduce the chance of accidental realm
collisions.

An example of the use of the recommended format defined above is as follows: Consider a single
server system labelled Server6 owned by Widgets Inc. (owner of the example.com domain) that hosts
two SMI-S Servers, one from Acme Inc., and the other from XYZ Ltd. The realm-value reported by the
Acme SMI-S Server might be "ug723.acme.net.smis@server6.example.com". In the configuration of a
specific SMI-S client accessing the Acme SMI-S Server, this realm-value might identify a server-
specific authentication service and a user identity of "arrayuser74" and a password of "YT56z".
Similarly, the realm-value reported by the XYZ Ltd SMI-S Server might be
"bx48d.xyz.co.uk.smis@server6.example.com". In the configuration of a different SMI-S client
accessing the XYZ SMI-S Server, this realm-value might identify a SMIS-server-specific authentication
service and a user identity of "42fred" and a password of "OTH3afa".
370



 Server Profile
Certificate Usage with SSL 3.0 and TLS
Within SMI-S, SSL 3.0 and TLS are used with public key certificates (or identity certificates) for
authentication. These X.509 certificates conform to the format and semantics specified in IETF RFC
3280 and use a digital signature to bind together a public key with an identity. These signatures will
often be issued by a certification authority (CA) associated with an internal or external public key
infrastructure (PKI); however, an alternate approach uses self-signed certificates (the certificate is
digitally signed by the very same key-pair whose public part appears in the certificate data). The trust
models associated with these two approaches are very different. In the case of PKI certificates, there is
a hierarchy of trust and a trusted third-party that can be consulted in the certificate validation process,
which enhances security at the expense of increased complexity. The self-signed certificates can be
used to form a web of trust (trust decisions are in the hands of individual users/administrators), but is
considered less secure as there is no central authority for trust (e.g., no identity assurance or
revocation). This reduction in overall security, which may still offer adequate protections for some
environments, is accompanied by an easing of the overall complexity of implementation.

With PKI certificates, it is often necessary to traverse the hierarchy or chain of trust in search of a root
of trust or trust anchor (a trusted CA). This trust anchor may be an internal CA, which has a certificate
signed by a higher ranking CA, or it may be the end of a certificate chain with the highest ranking CA.
This highest ranking CA provides the ultimate in attestation authority in a particular PKI scheme and its
certificate, known as a root certificate, can only be self-signed. Establishing a trust anchor at the root
certificate level, especially for commercial CAs, can have undesirable side effects resulting from the
implicit trust afforded all certificates issued by that commercial CA. Ideally the trust anchor should be
established with the lowest ranking CA that is practical.

The remainder of this subsection provides certificate-related requirements that apply to any SMI-S
implementation that supports SSL 3.0 or TLS.

Certificate Usage with SSL 3.0 and TLS: Requirements

a) Require support for existing common practice for certificate usage.

• SMI-S uses X.509 version 3 public key certificates that are conformant with the Certificate
and Certificate Extension Profile defined in Section 4 of IETF RFC 3280. This profile specifies
the mandatory fields that shall be included in the certificate as well as optional fields and
extensions that may be included in the certificate.

• Server certificates shall be supported and client certificates MAY be supported. A server
certificate is presented by the server to authenticate the server to the client; likewise, a client
certificate is presented by the client to authenticate itself to the server. For public web sites
offering secure communications via SSL 3.0 or TLS, server certificate usage is quite
common, but client certificates are rarely used.

• SMI-S clients and servers shall perform basic path validation, extension path validation, and
CRL validation as specified in Section 6 of IETF RFC 3280 for all presented certificates.
These validations include, but are not limited to, the following:

•  The certificate is a validly constructed certificate 

•  The signature is correct for the certificate

•  The date of its use is within the validity period (i.e., it has not expired)

•  The certificate has not been revoked (applies only to PKI certificates)

•  The certificate chain is validly constructed (considering the peer certificate plus valid issuer 
certificates up to the maximum allowed chain depth; applies only to PKI certificates).

• When SMI-S clients and servers use certificate revocation lists (CRL), they shall uses X.509
version 2 CRLs that are conformant with the CRL and CRL Extension Profile defined in
Section 5 of IETF RFC 3280.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 371



 

• When PKI certificates and self-signed certificates are used together in a single management
domain, it is important to recognize that the level of security is lowered to that afforded by
self-signed certificates.

b) Allow customers to enforce their own certificate usage and acceptance policies.

• All certificates identifying SMI-S management entities and their associated private keys shall
be replaceable. SMI-S clients and servers shall either 1) have the ability to import an
externally generated certificate and corresponding private key or 2) have the ability to
generate and install a new self-signed certificate along with its corresponding private key.

• When PKI certificates are used by SMI-S clients and servers, the implementations shall
include the ability to import, install/store, and remove the CA root certificates; support for
multiple trusted issuing CAs shall be included. CA certificates are used to verify that a
certificate has been signed by a key from an acceptable certification authority. 

• To facilitate the use of certificates, SMI-S implementations should include configurable
mechanisms that allow for one of the following mutually exclusive operating modes to be in
force at any point in time for end-entity certificates (i.e., not CA certificates):

•  Unverifiable end-entity (self-signed) certificates are automatically installed as trust anchors 
when they are presented; such certificates shall be determined to not be CA root certifi-
cates prior to being installed as trust anchors and shall not serve as trust anchors to verify 
any other certificates. If a CA certificate is presented as an end-entity certificate in this 
mode, it shall be rejected. For SMI-S clients, a variant of this option, which consults the 
user before taking action, should be implemented and used when possible. NOTE: The 
use of this operating mode should be limited to a learning or enrollment period during 
which communication is established with all other SMI-S systems with which security com-
munication is desired. Use of a timeout to force automatic exit from this mode is recom-
mended.

•  Unverifiable end-entity (self-signed) certificates can be manually imported and installed as 
trust anchors (in a fashion similar to manually importing and installing a CA root certificate), 
but they are not automatically added when initially encountered. Administrative privilege 
may be required to import and install an end-entity certificate as a trust anchor. NOTE: This 
is considered the normal operating mode.

• All certificate acceptance policies for SMI-S clients and servers shall be configurable. The
configurable mechanisms determine how the SMI-S implementation handles presented
certificates. Under normal operating mode, SMI-S servers should not accept certificates from
unknown trust authorities (i.e., the CA root certificate has not been installed).

• When self-signed certificates are used in conjunction with SLPv2, the trustworthiness of
these certificates becomes an important factor in preventing SLPv2 from becoming an attack
vector.

c) Default to facilitating interoperability where not specifically disallowed by security policy.
Interactive clients should provide a means to query the user about acceptance of a certificate from
an unrecognized certificate authority (no corresponding CA root certificate installed in client), and
accept responses allowing use of the certificate presented, or all certificates from the issuing CA.
Servers should not support acceptance of unrecognized certificates; it is expected that a limited
number of CAs will be acceptable for client certificates in any site that uses them.

Pre-configuring root certificates from widely used CAs is optional, but simplifies initial configuration
of certificate-based security, as certificates from those CAs will be accepted. These CA root
certificates can be exported from widely available web browsers.
372



 Server Profile
d) Require support for certificate acquisition from and revocation by common PKI/CA software.
All interfaces for certificate configuration in (b) and (c) above shall support the following certificate
formats:

• DER encoded X.509
International Telecommunications Union Telecommunication Standardization Sector (ITU-T),
Recommendation X.509: Information technology - Open Systems Interconnection - The
Directory: Public-key and attribute certificate frameworks, May 2000. 
Specification and technical corrigenda can be obtained from: 
http://www.itu.int/publications

• Base64 encoded X.509 (often called PEM)
N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies, IETF RFC 2045, November 1996, Section 6.8. 
Available at: http://www.ietf.org/rfc/rfc2045.txt

• PKCS#12
RSA Laboratories, PKCS #12: Personal Information Exchange Syntax, Version 1.0, June
1999. Specification and Technical Corrigendum. Available at:
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-12/index.html

All certificate validation software MUST support local certificate revocation lists, and at least one
list per CA root certificate supported. Support is REQUIRED for both DER encoded X.509 and
Base64 encoded X.509 formats, but this support may be provided by using one format in the
software and providing a tool to convert lists from the other format. OCSP and other means of
immediate online verification of certificate validity are OPTIONAL, as connectivity to the issuing
Certificate Authority cannot be assured.

e) Allow security policy control to be restricted to security administrators. 
All certificate interfaces required above MUST support access restrictions that permit access only
by suitably privileged administrators. A suitably privileged security administrator MUST be able to
disable functionality for acceptance of unrecognized certificates described in (c) above.

The above requirements can be satisfied via appropriate use of the readily-available OpenSSL
toolkit software (www.openssl.org). Support for PKCS#7 certificate format was deliberately omitted
from the requirements. This format is primarily used for online interaction with certificate
authorities; such functionality is not appropriate to require of all SMI-S storage management
software, and tools are readily available to convert PKCS#7 certificates to or from other certificate
formats.

8.2.4.1.2 Health and Fault Management
Not defined in this standard.

8.2.4.1.3 Cascading Considerations
Not defined in this standard.

Supported Subprofiles and Packages

Table 360: Supported Subprofiles for Server

Registered Subprofile Names Mandatory Version
Object Manager Adapter No 1.1.0
Indication No 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 373



 

8.2.4.1.4  Methods of the Profile
None.

8.2.4.1.5 Client Considerations and Recipes
Applicability of Security Considerations

The security requirements for HTTP implementation given in 8.2.4.1.1.4, "HTTP Security" apply to both
SMI-S servers and clients. An SMI-S client shall comply with all security requirements for HTTP
specified in 8.2.4.1.1.4, "HTTP Security" that are applicable to clients.

SMI-S Client support for HTTP security is REQUIRED. This includes the following requirements
applicable to clients:

• SSL 3.0 and TLS shall be supported.

• HTTP Basic Authentication shall be supported. HTTP Digest Authentication should be supported.

• HTTP Realms shall be supported.

• All certificates, including CA Root Certificates used by clients for certificate validation, shall be
replaceable.

• The DER encoded X.509, Base64 encoded X.509 and PKCS#12 certificate formats shall be
supported.

• Certificate Revocation Lists shall be supported in the DER encoded X.509 and Base64 encoded
X.509 formats.

The above list is not comprehensive; see Section 8.2.4.1.1.4 for the complete requirements. If there is
any conflict between this text and Section 8.2.4.1.1.4, the text in Section 8.1.4.1.1.2 is the final
specification of the requirements.

Using the CIM Server Model to Determine SNIA Profiles Supported
All SNIA Profiles require the implementation of the Server Profile as part of the CIM Server. This allows
a client to determine which SNIA Profiles are supported by the a proxy, embedded or general purpose
SMI-S Server. SMI-S clients can use SLP to search for services that support SNIA profiles. Indeed, a
client may restrict its search to specific types of SNIA profiles. The client would get a response for each
CIM Server service that supports a SNIA profile. From the responses, the client should use the
“service-id” to determine the unique CIM Servers it is dealing with. 

For each CIM Server, the client can determine the types of entities supported by inspecting the
RegisteredProfilesSupported attribute returned for the SLP entries. This identifies the types of entities
(e.g., devices) supported by the CIM Server.

The Client may determine more detail on the support for the Profiles by going to the service advertised
for the CIM Server and inspecting the RegisteredProfiles maintained in the server profile. This would be
done by enumerating RegisteredProfiles and RegisteredSubprofiles within the interop namespace. By
inspection of the actual profile instances, the client can determine the SNIA version
(RegisteredVersion) of profile, associated namespaces and associated managed elements (e.g.,
systems).

Using the CIM Server Model to Determine Optional Features supported 
From the RegisteredProfiles within the namespace of the ObjectManager, a client can determine the
“optional features” that are supported for the profile by following the SubprofileRequiresProfile
374



 Server Profile
association. This returns a set of RegisteredSubProfile instances that represent Subprofiles of the
specific Profile instance. The name of the subprofile is scoped by the Profile. See individual Profile
descriptions in this specification for the specific list of “optional subprofiles” supported. For a given
profile instance there may be zero, one or many subprofiles. The optional subprofiles documented in
this specification merely list the subprofiles that may be associated with the profile (via the
SubprofileRequiresProfile association).

All Subprofiles that are supported by a Profile shall be directly associated to the Profile via the
SubprofileRequiresProfile association. All subprofiles (either direct or indirect via subprofiles) shall be
directly attached to the Profile. For example, the Array Profile instance can support two subprofiles:
LUN Creation and Job Control. Both of these subprofiles would be directly attached to the Array Profile
instance, even though the Job Control subprofile is actually a subprofile of LUN Creation. 

Note:  The RegisteredVersion property of subprofiles shall match the RegisteredVersion property of its
parent Profile.

Recipe Assumptions
For discovery recipes, the following are assumed:

a) A top-level object (class instance) exists for each Profile, and

b) the client knows what the top level object is.

The top-level object for each of the SMI-S Profiles are:

• ComputerSystem: For Array, Storage (Media) Libraries, Virtualizers, Switches, and HBAs. This is
the top-level ComputerSystem instance for the Profile (not the component ComputerSystem or the
member ComputerSystem);

• AdminDomain: For Fabric and HostDiscoveredResources;

• ObjectManager: For Server.

The top-level object (class instance) is associated to the RegisteredProfile instance for the Profile via
the ElementConformsToProfile association. 

Note: Other ManagedElement instances may be associated to the RegisteredProfile, but the meaning
and behavior of such associations are not defined by SMI-S and are not mandatory.

8.2.4.1.1.4, "HTTP Security" and its subsections contain security requirements, some of which are
applicable to clients. All SMI-S shall satisfy every security requirement in that section and its subsection
that is applicable to clients.

8.2.4.1.5.1 Find Servers Supporting a Given Profile
// DESCRIPTION 

// A management application wishes to find all CIM Servers on a 

// particular subnet that support one or more SMI-S profiles.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume CIM Servers have advertised their services (SrvReg)

// 2.Assume there may (or may not) be Directory Agents in the subnet

// 3.Assume no security on SLP discovery

// 4.#DirectoryList[] is an array of directory URLs

// 5.#ServiceList[] is an array of service agent URLs

// 6.#DirectoryEntries [] is an array of directory entry Structures. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 375



 

// The structure matches the “wbem” SLP Template (see Clause 5, 

// section 10).

// Step 1:  Set the Previous Responders List to the Null String.

#PRList = ““

// Step 2: Multicast a Service Request for a Directory Server Service. 

// This is to find Directory Agents in the subnet.

//

SrvRqst (

#PRList,        // The Previous Responders list

”service:directory-agent” // Service type

“DEFAULT”,          // The scope

NULL,             // The predicate

NULL)             // SLP SPI (security token)

// Step 3: Listen for Response from Directory Agent(s)

#DirectoryList[] = DAAdvert (

BootTimestamp, // Time of last reboot of DA

URL, // The URL of the DA

ScopeList,// The scopes supported by the DA

AttrList,// The DA Attributes

SLP SPI List,// SLP SPI (SPIs the DA can verify)

Authentication Block)

// Iterate on Steps 2 & 3, until a response has been received or the client has 

// reached a UA configured CONFIG_RETRY_MAX seconds.  If no DA if found,

// proceed to step 4.  If a DA is found, proceed to step 7.

// Step 4: Set the Previous Responders List to the Null String.

#SAPRList = ““

// Step 5: Multicast a Service Request for Service Agent Services. This 

// is to find Service Agents in the subnet that are not advertised 

// in a Directory.

SrvRqst (

#SAPRList,        // The Previous Responders list

“service:service-agent” // Service type

“DEFAULT”,          // The scope

“(Service-type=WBEM)”,        // The predicate

NULL)             // SLP SPI (security token)

// Step 6: Listen for Response from Service Agent(s)

#SAList[] = SAAdvert (

URL, // The URL of the SA

ScopeList,// The scopes supported by the SA

AttrList,// The SA Attributes
376



 Server Profile
Authentication Block)

// Iterate on Steps 5 & 6, until a response has been received or the client has 

// reached a UA configured CONFIG_RETRY_MAX seconds.  If no SA if found,

// Then record an error.   There are NO WBEM SAs.  Otherwise proceed to 

// Step 8.

//Step 7: Unicast a Service Request to each of the DAs specifying

// a query predicate to select CIM Servers that support SNIA profiles

// and listen for responses.

for #j in #DirectoryList[]

{

SrvRqst (

#PRList,        // The Previous Responders list

”service:wbem”,    // Service type 

“DEFAULT”,          // The scope

RegisteredProfilesSupported=“SNIA:*”, // The predicate

NULL)             // SLP SPI (security token)

#ServiceList [#j] = SrvRply  (

Count,       // count of URLs

URL for each SA returned)

}

Go to Step 9.

//Step 8: Unicast a Service Request to each of the SAs specifying

// a query predicate to select CIM Servers that support SNIA profiles

// and listen for responses.

for #j in #SAList[]

{

SrvRqst (

#PRList,        // The Previous Responders list

”service:wbem”,    // Service type 

“DEFAULT”,          // The scope

RegisteredProfilesSupported=“SNIA:*”, // The predicate

NULL)             // SLP SPI (security token)

#ServiceList [#j] = SrvRply  (

Count,       // count of URLs

URL for each SA returned)

}

// Step 9: Next retrieve the attributes of each advertisement

For #i in #ServiceList[]  // for each url in list

{

AttrRqst (

#PRList,       // The Previous Responders list
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 377



 

#ServiceList[#i],// a url from #ServiceList[] 

“DEFAULT”, // The scope

NULL, // Tag list.  NULL means return all attributes

NULL) // SLP SPI (security token)

#DirectoryEntries [#i] = AttrRply (attr-list)

}

// Step 10: Correlate responses to the Service Request on unique 

// “service-id” to determine unique CIM Servers. The client will get

// multiple responses (one for each access point) for each CIM 

// Server. At this point, the client has a list of CIM Servers that 

// claim to support SNIA profiles.

8.2.4.1.5.2 Enumerate Profiles Supported by a Given CIM Server
// DESCRIPTION 

// A management application wishes to determine the Profiles supported by

// a particular CIM Server. 

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume the client only wants to know the “top level” profiles 

// supported by the CIM Server

// 2.Assume the client has used SLP to find the CIM Servers and has a 

// #DirectoryEntries [] structure

// 3.This recipe describes the operations for one of the entries in 

// the #DirectoryEntries [] structure. 

// 4.    Assume the index into #DirectoryEntries[] for the CIM Server of

//        interest is #i.

// Step 1: Get the server url for the CIM Server.

#ServerName = #DirectoryEntries[#i].service-id

// Step 2: Get the Interop Namespace for the CIM Server.

#Inamespace = #DirectoryEntries[#i].InteropSchemaNamespace[1]

// Step 3:  Establish a connection to the CIM Server with

// #INameSpace. Note that the WBEM operations throughout the remainder

// of this recipe are performed with this client handle.

<Make client connection to this server using the interop namespace>

// Step 4:  Get the names of all the RegisteredProfiles in the 

// Interop Namespace

#ProfileName[] = EnumerateInstances(“CIM_RegisteredProfile”,

TRUE, TRUE, FALSE, FALSE,

[“RegisteredName”])

// Step 5:  Get all the RegisteredSubprofiles in the Interop Namespace

#SubprofileName[] = EnumerateInstances(“CIM_RegisteredSubprofile”,
378



 Server Profile
TRUE, TRUE, FALSE, FALSE,

[“RegisteredName”])

// Step 6:  Subtract the list RegisteredSubprofiles from the list of

// RegisteredProfiles

#k = 0

for #i in #ProfileName[i] {

for #i in #SubprofileName[j] {

if #ProfileName[#i] != #SubProfileName[#j] {

#TempArray[#k+1]=#ProfileName[#i]

}

}

}

#ProfileName[] = #TempArray[]

8.2.4.1.5.3 Identify the ManagedElement Defined by a Profile
// DESCRIPTION 

// A management application wishes to determine the ManagedElement that 

// is defined by a particular Profile.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume the client has located the profile and has its object path 

// ($RegisteredProfile->)

// Step 1: Determine the ManagedElement (System) by traversing the 

//    ElementConformsToProfile association from the RegisteredProfile 

//    that is the top level Profile that applies to the System

$ManagedElement->[] = AssociatorNames (

$RegisteredProfile->,

“CIM_ElementConformsToProfile”,

“CIM_System”,    // Note: substitute “CIM_AdminDomain” for Fabrics

       // or “CIM_ComputerSystem” for Arrays, tape libraries, switchs 
and the like

                               // or “CIM_ObjectManager” for Servers

NULL, 

NULL)

// Step 2: The object name of more than one System may be contained

// in the array returned. Examine the contents of $ManagedElement[]

// and save the name of the System of interest as $Name.

// NOTE: “Top” level object for each profile will be returned. It MUST have 

// an ElementConformsToProfile association.  To accommodate other 

// potential ManagedElements, then it will be necessary need to throw out 

// the ones that are NOT top level objects. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 379



 

// NOTE: The object path for the ManagedElement MAY be in a Namespace 

// that is different than the Interop Namespace. As a result, if the 

// client wishes to actually access the ManagedElement, the client 

// may get the namespace for the element by cracking the REF to the 

// element:

#NameSpace=$Name.getNameSpace()

8.2.4.1.5.4 Determine the SNIA Version of a Profile
// DESCRIPTION 

// A management application wishes to determine the SNIA version

// that a particular Profile supports.   

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume the client only wants to know version information

// for a SNIA profile 

// 2.Assume the client has already found the profile and has the

// $RegisteredProfile-> reference 

// Step 1: Get the Instance of the Profile name.

$Profile = GetInstance($RegisteredProfile->)

// Step 2: Determine the SNIA Version for the Profile selected.

#SNIAVersion = $Profile.RegisteredVersion

8.2.4.1.5.5 Determine the Subprofile Capabilities of a Profile
// DESCRIPTION 

// A management application wishes to determine the optional subprofiles

// supported by a SNIA Profile. 

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume the client has already discovered the CIM Server that 

// supports the SNIA profile

// 2.Assume the client already has a $ObjectManager-> reference for

// the CIMOM on the WBEM Server.

// 3.Assume the client already has a $RegisteredProfile-> reference 

// for the profile in question.

// Step 1: Check the version of the supported profile. Based on the 

// RegisteredVersion property, the client should know what functions

// are REQUIRED as part of the profile definition. 

$Profile = GetInstance($RegisteredProfile->)

#ProfileVersion = $Profile.RegisteredVersion
380



 Server Profile
// Step 2: For each Profile, traverse the SubProfileRequiresProfile 

// association to determine what optional subprofiles are also 

// supported. If the subprofile (e.g., CopyServices subprofile) 

// exists for a profile, this means that the copy services are 

// supported. The Copy Services also has a Version 

// (RegisteredSubProfile.RegisteredVersion). The RegisteredVersion 

// of the subprofile MUST match the RegisteredVersion of the profile.

// The RegisteredVersion implies a set of functional capabilities 

// that are defined for that version of the subprofile.

$Subprofiles[] = Associators (

$RegisteredProfile->,

“CIM_SubProfileRequiresProfile”,

“CIM_RegisteredProfile”,

NULL, NULL, false, false, NULL)

// Step 3: Verify that each Subprofile has the same version as the

// Profile

for #i in $Subprofiles[]

{

#SubprofileVersion = $Subprofile[#i].RegisteredVersion

if (!compare(#SubprofileVersion, #ProfileVersion))

{

Error(“Subprofile version mismatch with Profile version”)

}

}

8.2.4.1.5.6 Find all Profiles and Subprofiles on a Server
// DESCRIPTION 

// A management application wishes to list all the SNIA profiles and 

// their related subprofiles for a specific CIM Server. 

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume the client has already discovered the CIM Servers that 

// support SNIA profiles

// Step 1:  Get the names of all the RegisteredProfiles and their names 

// in the Interop Namespace

$ProfileName[] = EnumerateInstances(“CIM_RegisteredProfile”

                            true, true, false, false, {“RegisteredName”})

// Step 2:  Get all the RegisteredSubprofiles in the Interop Namespace

$SubprofileName[] = EnumerateInstances(“CIM_RegisteredSubprofile”,

                            true, true, false, false, {“RegisteredName”})
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 381



 

// Step 3:  Subtract the list RegisteredSubprofiles from the list of

// RegisteredProfiles

#k = 0

for #i in #ProfileName[#i] {

    for #j in $SubprofileName[#j] {

        if ($ProfileName[#i] != $SubProfileName[#j]) {

#TempArray[#k+1]=#ProfileName[#i]

}

}

}

#ProfileName[] = #TempArray[]

// Step 4:  Get the ObjectName for the Profiles

for #i in #ProfileName[] {

$Profile->[#i]=$Name.getObjectPath(#ProfileName[#i])

}

// Step 5: Get the subprofiles associated to the profiles. 

for #i in $ProfileName[]

{

    $Subprofile[] = Associators(

                           $ProfileName[#j].getObjectPath(),

                           “CIM_SubprofileRequiresProfile”,

                           “CIM_RegisteredSubprofile”,

                           NULL, NULL, false, false, NULL)

}

8.2.4.1.5.7 Segregate a SAN Device Type
// DESCRIPTION 

// A management application wishes to manage a particular type of SAN 

// device, but not other devices. So the management application needs to 

// isolate the particular CIM Servers that support the type of device it 

// wants to manage. 

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume CIM Servers have advertised their services (SrvReg)

// 2.Assume there are one or more Directory Agents in the subnet

// 3.Assume no security on SLP discovery

// 4.#DirectoryList[] is an array of directory URLs

// 5.#DirectoryEntries [] is an array of directory entry Structures. 

// The structure matches the “wbem” SLP Template (see “Standard

// WBEM Service Type Templates”).

// 6.Assume that the device is #DesiredProfile and the device is an  

// SMI-S device (a SNIA defined profile)
382



 Server Profile
// Step 1:  Set the Previous Responders List to the Null String.

#PRList = ““

// Step 2: Multicast a Service Request for a Directory Server Service. 

// This is to find Directory Agents in the subnet.

//

SrvRqst (

#PRList,        // The Previous Responders list

”service:directory-agent” // Service type

“DEFAULT”,          // The scope

NULL,             // The predicate

NULL)             // SLP SPI (security token)

// Step 3: Listen for Response from Directory Agent(s)

#DirectoryList[] = DAAdvert (

BootTimestamp, // Time of last reboot of DA

URL, // The URL of the DA

ScopeList,// The scopes supported by the DA

AttrList,// The DA Attributes

SLP SPI List,// SLP SPI (SPIs the DA can verify)

Authentication Block)

// Iterate on Steps 2 & 3, until a response has been received or the client 

// has reached a UA configured CONFIG_RETRY_MAX seconds.  

// Step 4: Unicast a Service Request to each of the DAs specifying a 

// query predicate to select CIM Servers that support SNIA 

// #DesiredDevice profiles and listen for responses.

for #j in #DirectoryList[]

{

SrvRqst (

#DAPRList,        // The Previous Responders list

“service:wbem”,    // Service type 

“DEFAULT”,          // The scope

“RegisteredProfilesSupported=SNIA:”+#DesiredProfile+”*”, 

                                           // The predicate

NULL)             // SLP SPI (security token)

#ServiceList [#j] = SrvRply  (

Count,       // count of URLs

#SAPRList[])

}

// Step 5: Next retrieve the attributes of each advertisement

For #i in #ServiceList[]  // for each url in list

{

AttrRqst (

#SAPRList,       // The Previous Responders list
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 383



 

#ServiceList[#i ],// a url from #ServiceList[] 

“DEFAULT”, // The scope

NULL, // Tag list.  NULL means return all 

// attributes

NULL) // SLP SPI (security token)

#DirectoryEntries [#i] = AttrRply (#attr-list)

}

// Step 7: Correlate the responses to the Service Request on unique 

// “service-id” to determine unique CIM Servers. The client will get

// multiple responses (one for each access point) for each CIM

// Server. At this point, the client has a list of CIM Servers that 

// claim to support SNIA #DesiredProfile profiles.

8.2.4.1.6 Registered Name and Version
Server version 1.1.0

8.2.4.1.7 CIM Server Requirements

Table 361: CIM Server Requirements for Server

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
384



 Server Profile
8.2.4.1.8 CIM Elements

8.2.4.1.8.1 CIM_CIMXMLCommunicationMechanism

Table 362: CIM Elements for Server

Element Name Description
Mandatory Classes

CIM_CIMXMLCommunicationMechanism (8.2.4.1.8.1)
CIM_CommMechanismForManager (8.2.4.1.8.2) This associates the ObjectManager and the communi-

cation classes it supports
CIM_ElementConformsToProfile (8.2.4.1.8.3) Ties managed elements (e.g., Device system) to the 

registered profile that applies
CIM_ElementSoftwareIdentity (8.2.4.1.8.4) Associates the profile and SoftwareIdentity instances
CIM_HostedAccessPoint (8.2.4.1.8.5) This associates the communication mechanisms with 

the hosting System
CIM_HostedService (8.2.4.1.8.6) Connects the ObjectManager to the System that is host-

ing the ObjectManager
CIM_Namespace (8.2.4.1.8.7) There would be one for every namespace supported. 
CIM_NamespaceInManager (8.2.4.1.8.8) This osculates the namespace to the ObjectManager
CIM_ObjectManager (8.2.4.1.8.9) This is the Object Manager service of the CIM Server
CIM_ReferencedProfile (8.2.4.1.8.12) Ties profiles to other profiles
CIM_RegisteredProfile (8.2.4.1.8.13) A registered profile that is supported by the CIM Server
CIM_RegisteredSubProfile (8.2.4.1.8.14) For each subprofile of a profile that is supported
CIM_SoftwareIdentity (8.2.4.1.8.15) A representation of some bundle of providers and sup-

porting software that shares a version number.
CIM_SubProfileRequiresProfile (8.2.4.1.8.16) Ties profiles to their subprofiles
CIM_System (8.2.4.1.8.17) The System that is hosting the Object Manager (CIM 

Server)
Optional Classes

CIM_Product (8.2.4.1.8.10) optional
CIM_ProductSoftwareComponent (8.2.4.1.8.11) optional

Optional Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_RegisteredProfile

Creation of a registered profile instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_RegisteredProfile

Deletion of a registered profile instance

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ObjectManager                          
AND SourceInstance.Started < > PreviousIn-
stance.Started

Deprecated WQL - Start of object manager

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ObjectManager                          
AND SourceInstance.CIM_ObjectManager::Started < > 
PreviousInstance.CIM_ObjectManager::Started

CQL - Start of object manager
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 385



 

Class Mandatory: true

8.2.4.1.8.2 CIM_CommMechanismForManager
This associates the ObjectManager and the communication classes it supports
Class Mandatory: true

8.2.4.1.8.3 CIM_ElementConformsToProfile
Ties managed elements (e.g., Device system) to the registered profile that applies
Class Mandatory: true

Table 363: SMI Referenced Properties/Methods for CIM_CIMXMLCommunicationMechanism

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
ElementName string
CommunicationMechanism uint16
Version string
CIMValidated boolean
FunctionalProfilesSupported uint16[]
MultipleOperationsSupported boolean
AuthenticationMechanismsSup-
ported

uint16[]

OperationalStatus uint16[]
Optional Properties/Methods

OtherCommunicationMechanism-
Description

string This shall not be NULL if Other is iden-
tified in CommunicationMechanism'

StatusDescriptions string[]
FunctionalProfileDescriptions string[]

Table 364: SMI Referenced Properties/Methods for CIM_CommMechanismForManager

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ObjectManager
Dependent CIM_ObjectManagerCo

mmunicationMechanism

Table 365: SMI Referenced Properties/Methods for CIM_ElementConformsToProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

ConformantStandard CIM_RegisteredProfile The RegisteredProfile to which the 
ManagedElement conforms.
386



 Server Profile
8.2.4.1.8.4 CIM_ElementSoftwareIdentity
Associates the profile and SoftwareIdentity instances
Class Mandatory: true

8.2.4.1.8.5 CIM_HostedAccessPoint
This associates the communication mechanisms with the hosting System
Class Mandatory: true

8.2.4.1.8.6 CIM_HostedService
Connects the ObjectManager to the System that is hosting the ObjectManager
Class Mandatory: true

8.2.4.1.8.7 CIM_Namespace
There would be one for every namespace supported. 
Class Mandatory: true

ManagedElement CIM_ManagedElement The ManagedElement that conforms to 
the RegisteredProfile.

Table 366: SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_SoftwareIdentity The Software
Dependent CIM_ManagedElement The Profile or Subprofile

Table 367: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The hosting System
Dependent CIM_ServiceAccessPoi

nt
The ServiceAccessPoints hosted by 
this system

Table 368: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The hosting System.
Dependent CIM_Service The Service hosted on the System.

Table 369: SMI Referenced Properties/Methods for CIM_Namespace

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string

Table 365: SMI Referenced Properties/Methods for CIM_ElementConformsToProfile

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 387



 

8.2.4.1.8.8 CIM_NamespaceInManager
This osculates the namespace to the ObjectManager
Class Mandatory: true

8.2.4.1.8.9 CIM_ObjectManager
This is the Object Manager service of the CIM Server
Class Mandatory: true

ObjectManagerCreationClass-
Name

string

ObjectManagerName string
CreationClassName string
Name string
ClassType uint16

Optional Properties/Methods
DescriptionOfClassType string Mandatory if ClassType is set to Other''
ClassInfo uint16 Deprecated in the MOF, but required 

for 1.0 compatibility. Not required if all 
hosted profiles are new in 1.1

DescriptionOfClassInfo string Deprecated in the MOF, but mandatory 
for 1.0 compatibility. Mandatory if 
ClassInfo is set to Other''

Table 370: SMI Referenced Properties/Methods for CIM_NamespaceInManager

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ObjectManager The ObjectManager containing a 
Namespace

Dependent CIM_Namespace The Namespace in an ObjectManager

Table 371: SMI Referenced Properties/Methods for CIM_ObjectManager

Property Flags Type Description & Notes
Mandatory Properties/Methods

Name string
SystemCreationClassName string
SystemName string
CreationClassName string
ElementName string
Description string
OperationalStatus uint16[]
Started boolean

Optional Properties/Methods
StopService()

Table 369: SMI Referenced Properties/Methods for CIM_Namespace

Property Flags Type Description & Notes
388



 Server Profile
8.2.4.1.8.10 CIM_Product
optional
Class Mandatory: false
No specified properties or methods.

8.2.4.1.8.11 CIM_ProductSoftwareComponent
optional
Class Mandatory: false
No specified properties or methods.

8.2.4.1.8.12 CIM_ReferencedProfile
Ties profiles to other profiles
Class Mandatory: true

8.2.4.1.8.13 CIM_RegisteredProfile
A registered profile that is supported by the CIM Server
Class Mandatory: true

Table 372: SMI Referenced Properties/Methods for CIM_ReferencedProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_RegisteredProfile The RegisteredProfile that is refer-
enced by the Dependent Profile.

Dependent CIM_RegisteredProfile A RegisteredProfile that references 
other profiles.

Table 373: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string This is a unique value for the profile 
instance

RegisteredOrganization uint16 This is the official name of the organi-
zation that created the Profile. For SMI-
S profiles, this would be SNIA.

RegisteredName string This is the name assigned by the orga-
nization that created the profile 

RegisteredVersion string This is the version number of the orga-
nization that defined the Profile. 

AdvertiseTypes uint16[] Defines the advertisement of this pro-
file. If the property is null then no adver-
tisement is defined. A value of 1 is used 
to indicate other and a 3 is used to indi-
cate 'SLP''

Optional Properties/Methods
OtherRegisteredOrganization string
AdvertiseTypeDescriptions string[] This shall not be NULL if Other is iden-

tified in AdvertiseType'
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 389



 

8.2.4.1.8.14 CIM_RegisteredSubProfile
For each subprofile of a profile that is supported
Class Mandatory: true

8.2.4.1.8.15 CIM_SoftwareIdentity
A representation of some bundle of providers and supporting software that shares a version number.
Class Mandatory: true

8.2.4.1.8.16 CIM_SubProfileRequiresProfile
Ties profiles to their subprofiles

Table 374: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string This is a unique value for the subprofile 
instance

RegisteredOrganization uint16 This is the official name of the organi-
zation that created the subprofile. For 
SMI-S profiles, this would be SNIA. 

RegisteredName string This is the name assigned by the orga-
nization that created the profile (or sub-
profile)

RegisteredVersion string This is the version number of the orga-
nization that defined the subprofile. It 
shall be the same as its parent profile

AdvertiseTypes uint16[] Should be NotAdvertised for subpro-
files

Optional Properties/Methods
OtherRegisteredOrganization string
AdvertiseTypeDescriptions string[] This field should be null

Table 375: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

Name string A user-friendly name for the instrumen-
tation software

InstanceID string
VersionString string
Manufacturer string The name of the company associated 

with the instrumentation software
Classifications uint16[]
390



 Server Profile
Class Mandatory: true

8.2.4.1.8.17 CIM_System
The System that is hosting the Object Manager (CIM Server)
Class Mandatory: true

8.2.4.1.9 Related Standards

Table 376: SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_RegisteredProfile The RegisteredProfile that is refer-
enced/required by the subprofile.

Dependent CIM_RegisteredSubProf
ile

A RegisteredSubProfile that requires a 
scoping profile, for context.

Table 377: SMI Referenced Properties/Methods for CIM_System

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string
Description string
ElementName string
OperationalStatus uint16[]
NameFormat string

Table 378: Related Standards for Server

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
Representation of CIM using XML 2.2.0 DMTF
WBEM Discovery using SLP 1.0.0 DMTF
WBEM URI Specification 1.0.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 391



 

392



 Indications Subprofile
8.2.4.2 Indications Subprofile

8.2.4.2.1 Description
Indications are support for unsolicited event notification. Each profile that supports event notification
through CIM indications would support this subprofile and its classes and associations.

The Indications Subprofile is a subprofile of the Server Profile. It may also be a mandatory subprofile of
any other profile (e.g., Array Profile). 

Note: Refer to individual profile definitions to see whether or not the Indications Subprofile is
mandatory or not. Figure 67: "Indications Subprofile and Namespaces" illustrates the structure of
profiles, the Indications Subprofile and indication instances implied by an Array’s support for the
Indications Subprofile.

Indication filters are defined in the context of the namespace in which they are implemented. In
Figure 67: "Indications Subprofile and Namespaces", this is the Array’s namespace. The indication
filters shall be defined in two places: The InteropNamespace and the Namespace where the indications
are intended to originate. For the Filters defined in the InteropNamespace, the SourceNamespace
property shall be filled out to indicate the Namespace where the indications are to originate. For the
IndicationFilters defined in the Array Namespace, this property may be null (indicating the indications
originate in the array namespace). 

The RegisteredProfile for the Array is associated to the ComputerSystem that is the top level system for
the Array. This is done via the ElementConformsToProfile association, which is a cross namespace
association (populated by the provider). The IndicationFilters may also be populated by the Provider (or

Figure 67: Indications Subprofile and Namespaces

Array NamespaceInterop NamespaceObjectManager

HostedProfile

RegisteredProfile

RegisteredName = 
"Server"

RegisteredSubprofile

RegisteredName = 
"Indications"

SubProfile
RequiresProfile

RegisteredProfile

RegisteredName = 
"Array"

SubProfile
RequiresProfile

ComputerSystem

 

IndicationFilter

 

IndicationFilter

ListenerDestinationCIMXML

IndicationSubscription

ElementConformsToProfile

ReferencedProfile

 

IndicationFilter

SourceNamespace = 
Array Namespace

IndicationFilter

IndicationSubscription

ListenerDestinationCIMXML

IndicationSubscription
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 393



 

they may be created by a client). In either case, they are created in both the Interop Namespace and
the namespace of the array. The ListenerDestinationCIMXML class shall be in the Interop Namespace
and may also be in the “source” namespace. And there would be two instantiations of the
IndicationSubscription association: one in the Interop Namespace and one in the Array Namespace. 

SMI-S profile and subprofile implementations that support indications shall support either the use of
“predefined” indications filters, “client defined” indication filters or both. In the case of an implementation
that supports “predefined” filters, the SMI-S Server would populate its model with indication filters that it
supports. SMI-S Clients would select the indication filters to which they wish to subscribe from the list
supplied by the SMI-S Server (enumeration of IndicationFilters in the appropriate namespace). In the
case of an implementation that supports “client defined” filters, the SMI-S Server shall support filter
creation (and deletion) by clients and it shall support creation of at least the filters defined by the profile.

Creation of an IndicationFilter will cause the creation of instances in both the InteropNamespace and
the “Source” namespace. ListenerDestinationCIMXML instances should be created in the
InteropNamespace, but may also be created in the “Source” Namespace (for IS24775-2006, Storage
Management, compatibility reasons). If a ListenerDestinationCIMXML instance is created in the
“Source” Namespace, a duplicate instance will be instantiated in the InteropNamespace. However, if a
ListenerDestinationCIMXML is created in the InteropNamespace, it may not be created in the “source”
namespace.

Note: An implementation may support both “predefined” filters and “Client Defined” filters. 

SMI-S Clients would subscribe to the indications for the events to which they wish to be notified. They
would also supply an address (Indication listener) in which the indications are to be sent. SMI-S Clients
shall use the subclass ListenerDestinationCIMXML when creating subscriptions.

In any given implementation Indication Filters are scoped by NameSpace. That is, a subscription to the
change of operational status for a ComputerSystem can result in reporting of any change of operational
status for ANY ComputerSystem managed within a Namespace. A client should inspect any indication
to see if it is for an element that it manages.

All indication filters identified by a profile are mandatory for that profile. There is no notion of optional or
recommended indication filters. A vendor implementation may support additional indication filters, but
all the filters identified in SMI-S are mandatory (in the context of the implementing profile).

Note: Indication filters may correspond to optional features in a profile. When a provider supports an
optional feature, all of the indications corresponding to the feature are mandatory. This means
that the provider shall supply the filters or shall allow a client to define the filters. Indications
corresponding to the filter shall be generated by the provider when a corresponding event
occurs. On the other hand, if a profile implementation does not support a subprofile that defines
mandatory indications, then the profile implementation does not need to support those
indications. 

8.2.4.2.1.1 Basic Indication Classes and Association
Figure 68: "Indications Subprofile Instance Diagram" illustrates the classes used in support of
indications. Any given profile implementation may not include all of these classes. But they would at
least support IndicationFilters (possibly predefined), ListenerDestinationsCIMXML and
394



 Indications Subprofile
IndicationSubscriptions. The actual types of indications supported can vary by profile (see the “CIM
Element” section of the profile to determine the types of indications supported).

Clients request indications to be sent to them by subscribing to the indication filters. Subscriptions are
stored in the SMI-S Server. A Subscription is expressed by the creation of a IndicationSubscription
association instance that references an IndicationFilter (a filter) instance, and an ListenerDestination
(for the handler of the indications) instance. A Filter contains the query that selects an indication class
or classes.

Figure 68: Indications Subprofile Instance Diagram

ElementName
SystemCreationClassName
SystemName
CreationClassName
PersistenceTypePersistenceType
Name
Destination

ListenerDestinationCIMXML

IndicationIdentifier
CorrelatedIndications[]
IndicationTime
SourceInstance
SourceInstanceModelPath

InstDeletion

ProviderCapabilities

IndicationSubscription

IndicationIdentifier
CorrelatedIndications[]
IndicationTime
SourceInstance
SourceInstanceModelPath

InstCreation

ElementName
SystemCreationClassName
SystemName
CreationClassName
Name
SourceNamespace
Query
QueryLanguage

IndicationFilter

FiltersSupported

IndicationIdentifier
CorrelatedIndications[]
IndicationTime
SourceInstance
SourceInstanceModelPath
PreviousInstance

InstModification

IndicationIdentifier
CorrelatedIndications[]
IndicationTime
Description
AlertingManagedElement
AlertingElementFormat
AlertType
OtherAlertType
PerceivedSeverity
OtherSeverity
ProbableCause
ProbableCauseDescription
EventID
SystemCreationClassName
SystemName
ProviderName

AlertIndication
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 395



 

SMI-S Servers that support SMI-S profiles that provide CIM indications support shall populate their
models with the filters as defined by the profile(s) or allow clients to create the filters that are defined for
the profile(s). Additional filters may also be created by indication consumers (e.g., SMI-S Clients), but
this is not mandatory with SMI-S. The client would create these filters using CreateInstance intrinsic
method. 

The query property of the IndicationFilter is a string that specifies which indications are to be delivered
to the client. There is also a query language property that defines the language of the query string.
Example query strings are:

“SELECT * FROM AlertIndication”

“SELECT * FROM InstModification WHERE SourceInstance ISA ComputerSystem”

AlertIndication and InstModification are types of indications. The first query says to deliver all alert type
indications to the client, and the second query says to deliver all instance modification indications to the
client, where the instance being modified is a ComputerSystem (or any subclass thereof).

DEPRECATED

Note: For this version of SMI-S and future revisions, the preferred query language will be “DMTF:CQL”.
Support for the Query Language specified in IS24775-2006, Storage Management (SMI-S 1.0),
is being deprecated.

DEPRECATED

A ListenerDestination specifies the means of delivering indications to the client. The subclass
ListenerDestinationCIMXML provides for XML encoded indications to be sent to a specific URL, which
is specified as a property of that class.

When a client receives an indication, it will receive some information with the indication, and then it may
need to do additional queries to determine all of the consequences of the event. 

Note: To avoid multiple calls to get additional data for an indication, profile designers (or clients, for
client defined filters) should consider more elaborate Queries for Filters to return more
information.

The instances of AlertIndications, InstCreation, InstDeletion and InstModification are temporary. They
exist until they are delivered to the subscribing clients. The ListenerDestinationCIMXML, IndicationFilter
and IndicationSubscription instance are permanent. That is, they persist until action is taken by client to
delete them.

One final note on the indications supported. InstModification may or may not require the
PreviousInstance property. A profile may be designed to require it or not. If the SMI-S profile defines an
IndicationFilter on InstModification it shall specify whether or not PreviousInstance is required. It may
always be recommended. If a profile defines PreviousInstance as optional, then an implementation may
provide a previous instance (or not). However, if the SMI-S profile defines an IndicationFilter on
InstModification with PreviousInstance required, then all implementations shall implement the
PreviousInstance property. 

8.2.4.2.1.2 AlertIndications
AlertIndications are used to by HFM and certain profiles for indicating process events. Unlike life cycle
events, which report on changes to instances, AlertIndications report on process related events (such
as error events) or events on aspects that are not part of the model. Since these indications are not
necessarily identifiable by a CIM Instance, the properties shall convey the necessary information about
the event.
396



 Indications Subprofile
The mandatory properties of an AlertIndication are:

• IndicationIdentifier - An identifier for the Indication that can be used for identification when
correlating Indications (see the CorrelatedIndications array).

• IndicationTime - The time and date of creation of the Indication.

• AlertingManagedElement - The identifying information of the entity (i.e., the instance) for which
this Indication is generated. The property contains the path of an instance, encoded as a string
parameter - if the instance is modeled in the CIM Schema. If not a CIM instance, the property
contains some identifying string that names the entity for which the Alert is generated.

• AlertingElementFormat - The format of the AlertingManagedElement property is interpretable
based upon the value of this property. Values are defined as: “Unknown”, “Other”,
“CIMObjectPath”

• AlertType - This is an integer property that is a value map. The values supported are: “Other”,
“Communications Alert”, “Quality of Service Alert”, “Processing Error”, “Device Alert”,
“Environmental Alert”, “Model Change”, “Security Alert”

• PerceivedSeverity - An enumerated value that describes the severity of the Alert Indication from
the notifier's point of view. This is an integer property that is a value map. The values supported
are: “Unknown”, “Other”, “Information”, “Degraded/Warning”, “Minor”, “Major”, “Critical”, “Fatal/Non
Recoverable”.

• ProbableCause - This is an integer property that is a value map. There are many values that may
be set (refer to the MOF for details).

• SystemCreationClassName - The scoping System's CreationClassName for the Provider
generating this Indication.

• SystemName - The scoping System's Name for the Provider generating this Indication.

• ProviderName - The name of the Provider generating this Indication.

In addition, the following properties are recommended, but not mandatory:

• CorrelatedIndications[]

• Description - A short description of the Indication.

• OtherAlertType - This property is mandatory if the AlertType is 1 (for “other”).

• OtherSeverity - This property is mandatory if the PerceivedSeverity is 1 (for “other”)

• ProbableCauseDescription - Provides additional information related to the ProbableCause.

• EventID - An instrumentation or provider specific value that describes the underlying \”real-world\”
event represented by the Indication.

For descriptions of how these properties should be encoded, see the profile for specific alert indications
that are supported.

8.2.4.2.1.3 Query Capabilities
If a profile supports “Client Defined” filters the CIM Server shall support CQL and the ObjectManager
shall identify the CQL Features supported. This is done by associating an instance of QueryCapabilities
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 397



 

to the ObjectManager using the ElementCapabilities association. This is illustrated in Figure 69:
"QueryCapabilities for Client Defined Filters".

Note that QueryCapabilities are defined for the CIM Server (ObjectManager). The assumption is that
any Query feature supported by CIM Server can be used in an IndicationFilter. The QueryFeatures
property contains the list of features that are supported. The possible values are “Basic Query”, “Simple
Join”, “Complex Join”, “Time”, “Basic Like”, “Full Like”, “Array Elements”, “Embedded Objects”, “Order
By”, “Aggregations”, “Subduer”, “Satisfies Array”, “Distinct”, “First” and “Path Functions”. For a definition
of what these values mean, see the CIM Query Language Specification.

8.2.4.2.1.4 Special handling for Multiple events of the same type
When a client creates a subscription (using CreateInstance), the provider may fill in the
RepeatNotificationPolicy and related properties. This information describes the policy used by the
implementation for reporting multiple events of the same type (multiple events for the subscription). If
the RepeatNotificationPolicy is “None”, then the client will receive all indications. If the
RepeatNotificationPolicy is “Suppress”, then all indications after the first ‘n’ (where ‘n’ is defined by the
RepeatNotificationCount) are not sent (within the RepeatNotificationInterval time). If the
RepeatNotificationPolicy is “Delay”, then indications are collected and notification is only sent after a
certain number of events happen (as defined by RepeatNotificationCount) or the time interval
(RepeatNotificationInterval) lapses.

8.2.4.2.1.5 Indication Delivery
In some cases, the Client (ListenerDestination) may not be available when an event occurs that
requires delivery to the client. In such cases, the CIM Server should attempt delivery to the listener
destination 3 times. If the delivery cannot be made within 3 attempts, the indication may be considered
delivered.

If the ListenerDestinationCIMXML.PersistenceType is set to "3" (transient), the IndicationSubscription
may be deleted after 3 attempts that fail. If the ListenerDestinationCIMXML.PersistenceType is set to
"2" (permanent) the IndicationSubscription shall be retained.

8.2.4.2.1.6 Instrumentation Requirements

8.2.4.2.1.6.1 General Instrumentation Considerations 
A SMI-S Server may allow a client to create indications filters. If the SMI-S Server does not support this
option, then the server shall send a return code indicating a request to create an instance of a filter is
unsupported. This allows the provider to inform clients which types of indications the provider supports.

Figure 69: QueryCapabilities for Client Defined Filters

ObjectManager
QueryCapabilities

ElementName
InstanceID
CQLFeatures[]

ElementCapabilities
398



 Indications Subprofile
For example, a provider that does not support SNMPTrapAlertIndications shall return unsupported for
an indications filter create request.

8.2.4.2.1.6.2 SMI-S Dedicated Server Considerations
The dedicated server should supply more detailed queries as described in the profile sections.

A standard implementation of indications requires the server to accept client requests to create
ListenerDestinations. The dedicated server implementation uses the Instance Manipulation functional
group in addition to Basic Read. 

8.2.4.2.1.6.3 Additional Indications
Most Indication Filters defined in the “CIM Elements” section of the specification are mandatory.
However, a profile may also document additional Indication Filters as optional filters. A client can
determine whether or not “additional” indication filters are supported by one of two techniques:

1) Enumerating Predefined Indication Filters – this will return all the indication filters that have been 
predefined by the provider for the Namespace. 

2) CreateInstance of the desired “additional” Indication Filter – if the “additional” indication filter is 
supported, the CreateInstance will succeed.

DEPRECATED

8.2.4.2.1.6.4 Support for Query Language for IS24775-2006, Storage Management (SMI-S 1.0)
(DEPRECATED)
Support for 1.0 Query Language, as specified in IS24775-2006, Storage Management, will continue
until the next major version, at which time it will be withdrawn from the standard.

Note: IS24775-2006, Storage Management identified QueryLanguage as a mandatory property, but did
not specify what value to put in the property. However, the query language used in IS24775-
2006, Storage Management was based on a precursor to CQL called WQL. It supported a syntax
that used OperationalStatus comparisons. Since OperationalStatus is an array, such
comparisons are ambiguous. In CQL the syntax intended was OperationalStatus[*], meaning that
any of the values of the array compare to the value, then the expression evaluates to true.

For IS24775-2006, Storage Management, indication filters, OperationalStatus comparisons are treated
as the CQL OperationalStatus[*] comparisons.

DEPRECATED

8.2.4.2.1.6.5 Timing of Delivery of Indications
There are no standards for how quickly an implementation shall deliver an indication. All reasonable
attempts should be made by the implementation to deliver all indications at the CIM Server’s earliest
convenience.

There are also no standard guidelines on how long or how many attempts should be made to deliver an
indication. As a general guideline an implementation should make at least 3 attempts to deliver an
indication before giving up trying to deliver the indication. Similarly, delivery of indications should allow
at least 30 seconds to elapse before giving up trying to deliver the indication. The intent is to allow
sufficient time to allow any network problems to clear.

8.2.4.2.1.6.6 Handling of Indication Storms
Occasionally an event may occur that causes many indication filters to evaluate to true (an trigger many
indications). This situation is referred to as an “indication storm.” These can be very expensive and
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 399



 

degrade the performance of the environment. To contain the impact of this an implementation can
employ any one of three techniques:

• use the RepeatNotificationPolicy (and related properties) of the IndicationSubscription. 

EXPERIMENTAL

• Use of Bellwether events (if they are defined by the profile)  

• Use of batching  

EXPERIMENTAL

Use of RepeatNotificationPolicy
The RepeatNotificationPolicy property defines the desired behavior for handling Indications that report
the occurrence of the same underlying event (e.g., the disk is still generating I/O errors and has not yet
been repaired). For SMI-S, this is extended to include multiple indications that are generated from a
single IndicationFilter.

The related properties are RepeatNotificationCount, RepeatNotificationInterval, and
RepeatNotificationGap. The defined semantics for these properties depend on the value of
RepeatNotificationPolicy, but values for these properties shall be set if the property is defined for the
selected policy. 

If the value of RepeatNotificationPolicy is 2 (\”None\”), special processing of repeat Indications shall not
be performed. 

If the value is 3 (\”Suppress\”) the first RepeatNotificationCount Indications, describing the same event,
shall be sent and all subsequent Indications for this event suppressed for the remainder of the time
interval RepeatNotificationInterval. A new interval starts when the next Indication for this event is
received. 

If the value of RepeatNotificationPolicy is 4 (\”Delay\”) and an Indication is received, this Indication shall
be suppressed if, including this Indication, RepeatNoticationCount or fewer Indications for this event
have been received during the prior time interval defined by RepeatNotificationInterval. If this Indication
is the RepeatNotificationCount + 1 Indication, this Indication shall be sent and all subsequent
Indications for this event ignored until the RepeatNotificationGap has elapsed. A
RepeatNotificationInterval may not overlap a RepeatNotificationGap time interval.

For SMI-S, a single indication filter that identifies a change in OperationalStatus on StorageVolumes
would be subjected to the RepeatNotificationPolicy, even though the repeat notifications may be from
multiple StorageVolumes.

The RepeatNotificationPolicy can vary by implementation (or even IndictationFilter). However, it shall
be specified on any subscription. The valid values for an SMI-S implementation are:

• 2 (\”None\”),

• 3 (\”Suppress\”), or

• 4 (\”Delay\”)

An SMI-S profile may restrict this further for any given indication filter, but it cannot expand this to other
policies without breaking interoperability. For example, a profile might restrict InstCreation filters for
ComputerSystems to “None” and restrict InstModification filters on StorageVolume to “Suppress” or
400



 Indications Subprofile
“Delay.” But an SMI-S profile shall not define “unknown” as a valid SMI-S setting for the
RepeatNotificationPolicy.

Note: RepeatNotificationPolicy set to 2 “none” is compatible with IS24775-2006, Storage Management.

EXPERIMENTAL

Use of Bellwether Events  
There are many state changes in the model for a device or application that results in changes in many
CIM instances.  For example, the addition of a device or application representation to a CIMOM should
result in creation indications for every single member instance of that device or application.  The
activation of a ZoneSet from one of the member Switches in a fabric should result to indication listeners
on another Switch's namespace creation indications for every instance of the new ZoneSet.  

The worse case risk is that several of this type of situation may occur simultaneously and result in
network storms and the sudden saturation of the LAN.  Additionally, the use of computing resources of
the device or application producing the indication or client receiving the indications may be
unacceptably high.

Indications provide the most value when they are used by a client as a mechanism to pick a significant
or small number of changes in CIMOMs of interest.  In order to capture a wide variety of changes, any
of which may be pertinent to the client application, the client is likely to create many indication
subscriptions and keep them all active simultaneously.  This approach is not problematic because the
number of management related changes to any device or application in the network is usually very
small.

As mentioned previously, there are several potential situations where an excessive number of
indications can be produced, thereby potentially overloading the network, originating CIMOM, and
receiving client's resources.  There is no need to occur such a risk because it is likely that the client is
not going to be interested in all things at all times.  The interest of the client in instance changes usually
follows the needs of the current users of that client application.  

Bellwether indications are used by SMI-S designers and individual implementation to signal many
instance changes with one event.  A client can assume that some previously defined graph of
associated CIM instances are affected when it receives a bellwether indication.  It can then choose, if
warranted, to fetch all or some of these instances.  This design prevent the previously mentioned
adverse side effects.

Some rules being considered are:

• When a device or application is added to a namespace and there are indication subscription that
cover some or all of the graph of instances added by side effect of the addition, then only a create
indication is produced for the top level object for the device or application, like ComputerSystem,
provided that there is an indication subscription for changes in the top-level object.  Similarly, if a
device or application is deleted in the same situation, then only a delete indication will be
produced.

• Bellwether indication are mandatory if they exist in SMI-S and will be easily identified as being
bellwether events.  

• The classes associated to the bellwether indication will be part of the definition of the
indication.  The client can assume that instances of these classes will have been affected and
can choose to harvest that data.  The implementation is not required to produce instances of
every class listed as per the requirements defined elsewhere in SMI-S.  

• SMI-S Designer's are encouraged to define bellwether indications, which can be of any class of
indication, for major state changes of a model.  In the previous examples, the device creation
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 401



 

could be a life cycle indication where changes in ZoneSet change may be best communicated by
an Alert Indication.

Bellwether Indications for ComputerSystem
It is important to not overload a SMI-S client when device or applications are added or removed from
CIM Object Managers. The addition or removal of the representation of a device or application is
attributed to the creation or deletion of a top-level computer system instance. This overloading would
arise from a SMI-S Agent sending creation or deletion indications to every indication destination for all
component or dependent instances to the top-level computer system. For this profile, when a top-level
computer system instance is created in the model, the SMI-S agent shall not produce indications for
indication subscriptions, on indications that do not reference the top-level computer system, that would
otherwise receive InstCreation indications. Likewise, for this profile, when a top-level computer system
is deleted from the model, the SMI-S agent shall not produce indications for indications subscriptions,
on indications that do not reference the top-level computer system, that would otherwise receive
InstDeletion indications.

Not defined in this standard.

EXPERIMENTAL

8.2.4.2.1.6.7 Clarification of indication generation
General Requirements
To minimize the use of stale object references by WBEM Clients, a WBEM Server shall generate
instance deletion indications, where defined as mandatory profile elements, whenever a MSE instance
is removed while the WBEM Server is operational. The indication shall be generated for all causes of
removal, which include but are not limited to, explicit WBEM instance manipulation by some WBEM
Client, internal implementation of the WBEM Server outside the scope of SMI-S, and a side effect of
invoking some WBEM extrinsic method.

A WBEM Server should generate instance deletion indications, where defined as mandatory profile
elements, whenever a MSE instance that was present before a failure of the device or application is no
longer present when the device or application recovers from the failure. Note: SMI-S already requires
WBEM Servers to persist WBEM Client subscription for indications.

A WBEM Server shall generate instance creation indications, where defined as mandatory profile
elements, whenever a MSE instance is created while the WBEM Server is operational. A WBEM Server
shall also generate instance creation indications, where defined as mandatory profile elements,
whenever a MSE instance that was not present before a failure of the device or application is present
when the device or application recovers from the failure.

Almost universally in SMI-S profiles, all MSE's can be linked by association back to a specific “top-level”
MSE. In most profiles this is either a ComputerSystem or a AdminDomain. A WBEM Server that is
providing information on multiple devices will have multiple MSE instances, one for each of the devices.
The behavior of WBEM Operations in the face of a failure of the device or applications differs.

Definition of “failed” MSE
A MSE instance is defined to be failed if any of the following conditions hold:

1) Failure status are contained in the OperationalStatus attribute, when present, and OperationalSta-
tus array does not contain “OK”

2) EnumerateInstances, EnumerateInstanceNames, Associators, AssociatorNames, References, 
ReferenceNames WBEM Operations might return meaningless or no information for any manda-
tory profile element. OperationalStatus when present in the class will have meaningful data and 
402



 Indications Subprofile
will have a failure status. Explicit values for “unknown” or “undetermined” are completely meaning-
ful when defined for a profile element.

3) WBEM extrinsic operations that ERR_FAILED may indicate that this instance is failed.

4) CIM Instances that were returned before the failure of the MSE might not be returned after the fail-
ure. Indications representing the OperationalStatus change to a failure status were produced for 
the this 'top-level' CIM Instance or 'top-level' parent CIM Instance. The combination of these two 
situations define failure in this case

A MSE with an OperationalStatus of “Lost Communications” or “No Contact” obviously shall be
considered failed because no WBEM operations can succeed.

An OperationalStatus of “Starting”, “Stopping”, or “Stopped” does not mandate failure. The detailed
behavior of the MSE with regard to the conditions given above, determines whether these status's
indicate failure. The WBEM Client should be warned of a possible failure scenario when receiving these
status.

Minimal function for failed MSEs
Any failed instance represented by any WBEM Server shall support the following functionality. If the
WBEM Server is not able to support the functionality on a failed instance, it shall delete the instance.

1) EnumerateInstances, EnumerateInstanceNames, Associators, AssociatorNames, References, 
and RefererenceNames WBEM Operations that include the failed instance as part of the return set 
will complete without error. The Key and the OperationalStatus attributes, when present, shall be 
properly provided.

2) When a GetInstance WBEM Operation is attempted on the failed instance, CIM_ERR_FAILED 
shall be returned with a message describing or indicating the failure of the device or application.

3) Failed instance names shall be returned from WBEM Operations that return Object Names. Failed 
instances shall be returned for WBEM Operations that return Instances but only the keys and 
OperationalStatus, when present, are mandatory.

4) Method invocations on failed MSEs will fail with the CIM_ERR_FAILED error.

Isolation of failed top-level MSE's
For efficiency and consistency of navigation, a WBEM Client should not be able to retrieve false or
meaningless information from the WBEM Server about a MSE instance.

A WBEM Server can take one of two actions in the Failed MSE case and top-level MSE instances. It
shall set the OperationalStatus on the top-level MSE instance to reflect the failed state and forward the
related CIM Indications as required. It may also remove all directly or indirectly associated instances,
generating the corresponding indications.

A WBEM Client shall be prepared to deal with a WBEM Object CIM_ERR_NOT_FOUND error,
indicating the use of a stale object reference not avoided by timely receipt and processing of an
instance deletion indication. A WBEM Client shall also consider the OperationalStatus of any MSE for
which OperationalStatus is a mandatory profile element before treating the other attributes and
associations of the instance as meaningful.

8.2.4.2.2 Health and Fault Management Considerations
Elements Reporting Health
The Indications Subprofile has no classes that report health information. However, indications are a
means available for reporting changes in health status. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 403



 

Health State Transformations and Dependencies
No Indications class have OperationalStatus or HealthState properties. 

Standard Errors Produced
All manipulation of Indication classes and associations are done using intrinsic methods. The errors
produced are those listed for intrinsic methods.

Cause and effect associations 
Cause and effect associations are defined as part of the Health and Fault Management Package.

8.2.4.2.3 Cascading Considerations
Not Applicable.

8.2.4.2.4 Supported Subprofiles and Packages
None

8.2.4.2.5  Methods of the Profile

8.2.4.2.5.1 Extrinsic Methods of the Profile
No extrinsics are specified on the Indication Subprofile.

8.2.4.2.5.2 Intrinsic Methods of the Profile
The Indication Subprofile is mostly populated by providers and is accessible to clients using basic read
and association traversal. However, there are two constructs that would be created by Clients. These
are the ListenerDestinationCIMXML and the IndicationSubscription. In addition, a client may be able to
create an IndicationFilter. In addition to being able to create them, client may delete them (except “pre-
defined” filters which cannot be deleted), and a client may modify any IndicationFilter that was client
created. These functions are performed using the intrinsics: 

CreateInstance - for ListenerDestinationCIMXML, IndicationSubscription and IndicationFilter

<instanceName>CreateInstance (  

        [IN] <instance> NewInstance  

 )

If successful, the return value defines the object path of the new CIM Instance relative to the target
Namespace (i.e., the Model Path), created by the CIM Server. 

Note that for CreateInstance of an IndicationSubscription requires that the ListenerDestinationCIMXML
instance and the IndicationFilter exist.

Table 379: Indications Subprofile Methods that Cause Instance Creation, Deletion or Modification

Method CreatedInstances Deleted Instances Modified Instances

CreateInstance ListenerDestinationCIMXML N/A N/A

CreateInstance IndicationSubscription N/A N/A

CreateInstance IndicationFilter N/A N/A

DeleteInstance N/A ListenerDestinationCIMXML N/A

DeleteInstance N/A IndicationSubscription N/A

DeleteInstance N/A IndicationFilter N/A

ModifyInstance N/A N/A IndicationFilter
404



 Indications Subprofile
If unsuccessful, one of the following status codes shall be returned by this method, where the first
applicable error in the list (starting with the first element of the list, and working down) is the error
returned. Any additional method-specific interpretation of the error in is given in parentheses. 

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance does
not exist), CIM_ERR_ALREADY_EXISTS (the CIM Instance already exists), CIM_ERR_FAILED (some
other unspecified error occurred). 

Note that a ListenerDestinationCIMXML instance should be created in the Interop namespace.
However, they may be created in the “Source” namespace. If the client creates a
ListenerDestinationCIMXML instance in the “Source” namespace, then a duplicate
ListenerDestinationCIMXML instance will be created in the Interop Namespace.

Note: The inverse is not true. If the client creates the ListenerDestinationCIMXML instance in the
Interop Namespace, no instance will be created in another namespace (there is nothing that
would indicate which Namespace would be the Source namespace). 

IndicationFilters shall be created in either the Interop Namespace or the Namespace in which the
indications are to originate. In either case, the Client only needs to create one instance (and providers
will automatically create the corresponding instance in the other namespace). 

Note: If a client attempts to create an IndicationFilter that already exists (has the same key fields), but
other properties are different, then the request will fail. If the Client attempts to create an
IndicationFilter that has identical properties to an existing IndicationFilter instance, it will succeed
and CreateInstance need not treat the instance as a separate instance.

When a client creates an IndicationSubscription the client only needs to create a subscription to one of
the IndicationFilters (the provider will automatically generate the corresponding subscription to the
other filter instance). Even though there are two instance of the IndicationFilter created (and two
instances of the subscription) duplicate indications will not be sent to the ListenerDestination. 

Indeed, in general, redundant subscriptions need not produce duplicate indications (that is, if the same
listener subscribes to two filters that are equivalent, then an implementation need not produce two
indications).

DeleteInstance - for ListenerDestinationCIMXML, IndicationSubscription and IndicationFilter

void DeleteInstance (  

         [IN] <instanceName> InstanceName  

)

The InstanceName input parameter defines the name (model path) of the Instance to be deleted. 

If successful, the specified Instance (ListenerDestinationCIMXML, IndicationSubscription or
IndicationFilter) shall have been removed by the CIM Server. 

The deletion of a ListenerDestinationCIMXML or an IndicationFilter instance will cause the automatic
deletion of any associated IndicationSubscription instances. Deletion of an IndicationSubscription will
not cause the deletion of any corresponding ListenerDestinationCIMXML or IndicationFilter instances.
For example, the deletion of an instance may cause the automatic deletion of all associations that
reference that instance. Or the deletion of an instance may cause the automatic deletion of instances
(and their associations) that have a Min(1) relationship to that instance. 

If unsuccessful, one of the following status codes shall be returned by this method, where the first
applicable error in the list (starting with the first element of the list, and working down) is the error
returned. Any additional method-specific interpretation of the error in is given in parentheses. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 405



 

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class does not exist in the specified namespace),
CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance does not exist in
the specified namespace), CIM_ERR_FAILED (some other unspecified error occurred).

Note: Deleting the instance of an IndicationFilter in the Interop Namespace will cause the
corresponding IndicationFilter in the “SourceNamespace” to also be deleted (and vice versa).
Deletion of an indication filter will also cause all subscriptions to that filter to be deleted.
However, deletion of a filter will not cause the deletion of any listener destination.

Note: Deleting the instance of an IndicationSubscription in the InteropNamespace will cause the
corresponding IndicationSubscription in the “SourceNamespace” to also be deleted (and vice
versa). However, deleting a subscription will not delete filters or listener destinations.

Note: Deleting the instance of ListenerDestinationCIMXML in either the InteropNamespace or the
“source” namespace will cause the corresponding instance (if one exists) to be deleted.

ModifyInstance - for IndicationFilters

void ModifyInstance (  

        [IN] <namedInstance> ModifiedInstance,  

        [IN, Optional, NULL] string propertyList[] = NULL  

 )

The ModifiedInstance input parameter identifies the name of the Instance to be modified, and defines
the set of changes to be made to the current Instance definition. 

The only Property that may be specified in the PropertyList input parameter is the Query property.
Modification of all other properties is not specified by SMI-S.

If successful, the specified Instance shall have been updated by the CIM Server. 

If unsuccessful, one of the following status codes shall be returned by this method, where the first
applicable error in the list (starting with the first element of the list, and working down) is the error
returned. Any additional method-specific interpretation of the error in is given in parentheses. 

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance does
not exist), CIM_ERR_NOT_FOUND (the CIM Instance does not exist), CIM_ERR_FAILED (some other
unspecified error occurred) 

8.2.4.2.6 Client Considerations and Recipes

8.2.4.2.6.1 Use of Profile Specific Recipes 
See Recipes in related profile sections.

8.2.4.2.6.2 General Client Considerations
The indication filters that a client subscribes to are either “predefined” and populated by the profile, or
they are created by the client. If the profile supports “predefined” indication filters the client can find
them via an enumeration. If the client cannot find the filter it is looking for, it may attempt to create the
desired indication filter. If this fails, the client should fall back to creating a filter exactly as it exists in
SMI-S. This shall work. The “predefined” indication filters in this specification shall be populated in the
profile or it shall be possible to create it.
406



 Indications Subprofile
8.2.4.2.6.3 Discovery of Implementation variations
A client will need to discovery the variations that are allowed in SMI-S profile implementations. A profile
implementation has the following degrees of variability:

• Client defined IndicationFilters, pre-defined IndicationFilters or both

• InstModification, with or without PreviousInstance

• Additional Indications

To determine if an implementation supports Client Defined filters, the client should attempt to create an
SMI-S specified filter. If it succeeds, the implementation supports client defined filters. At this point, the
client can attempt to create a filter of its own choice or making (e.g., using the client’s desired query). If
it fails, this means the implementation does not support an indication based on the query used. The
client may refer to the QueryCapabilities to ensure that it is using features that are supported by the
CIM Server.

If the attempt to create an SMI-S specified indication filter fails, this means client defined queries are
not supported. At this point, the client should look for pre-defined filters. This can be done by
enumerating filters in the namespace of the profile the client wishes to monitor.

An implementation may (or may not) support PreviousInstance, when the SMI-S specification for the
profile identifies InstModification as the indication filter and PreviousInstance is identified as optional. If
a client wishes to determine whether or not the implementation actually supports PreviousInstance, it
can only tell by receiving an InstModification indication.

Additional Indications are IndicationFilters that are supported by the implementation, but not mandatory
with SMI-S. If the implementation supports pre-defined Filters, these can easily be discovered in the
enumeration of IndicationFilters. If the implementation does not support pre-defined filters, then the
only way a client can discover these is through trial and error (or specific knowledge of the
implementation).

8.2.4.2.6.4 Client Defined Filters
Clients need to avoid Filters that generate excessive events. Subscriptions to a general-purpose Server
should be specific to the provider – for example “select * from CompanyCorp_InstCreation” rather than
“select * from CIM_InstCreation”. 

8.2.4.2.6.5 Indications Status
// DESCRIPTION 

// Determine if the indication subscription requested already exists. If 

// not, then attempt to create the indication subscription passed in. If 

// the CIM Server does not support the addition of indication, then the 

// CIM Client will need to poll for these instance changes. This recipes 

// does not handle the issue of providing the target URL for indications.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.The namespace of interest has previously been identified and 

// defined in the #SomeNameSpace variable 

// 2.The list of filters of interest has been previously built in the 

// #filters[] array. Each element is this array is the query filter itself 

// FUNCTION: createIndication
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 407



 

sub createIndication ($Filter)

{

try {

<create indications as per SMIS specification>

} catch(CIM Exception $Exception) {

if($Exception.CIMStatusCode == CIM_ERROR_NOT_SUPPORTED) {

// The implementation does not allow the creation of indication filters

// Normally this should not happen because the filter being created

// is the one required by SMI-S.

<client polls for changes rather than listening to indications>‘

} else {

throw $Exception

}

}

}

// MAIN

$ExistingInstances[] = EnumerateInstances(#SomeNameSpace, “CIM_IndicationFilter”) 

#found = false

for #i in #filters[]

{

for #j in $ExistingInstances[]

{

if(compare($ExistingInstances[#j].Query, #filters[#i]) 

{

#found = true

}

}

if(!#found) {

&createIndiciation(#filters[#i])

} else { // #found == true

#found = false

}

}

8.2.4.2.6.6 Listenable Instance Notification
// DESCRIPTION 

// Create an indication subscription for every indication that is 

// required by the profile.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1.The namespace of interest has previously been identified and 

// defined in the #SomeNameSpace variable 

#filters[] = <array of SMIS filters for the target profile>

@{Determine if Indications already exist or have to be created} #filters
408



 Indications Subprofile
8.2.4.2.6.7 Life Cycle Event Subscription Description
// DESCRIPTION 

// Create an indication subscription for the operational status for a 

// computer systems defined within a given CIM agent and namespace. This 

// subscription   will only be made in those CIM agents that have SAN 

// devices or applications of   interest defined in them. The client will

// have to determine once having received the indication, whether the 

// computer system related to this indication (AlertingManagedElement 

// attribute) is of interest. This recipe does not handle the target URL 

// for the indication.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// None

#filter[0] = “SELECT * FROM CIM_InstModification

    WHERE SourceInstance ISA CIM_ComputerSystem

      AND SourceInstance.OperationalStatus[0] <>

          PreviousInstance.OperationalStatus[0]”

@{Determine if Indications already exist or have to be created} #filter

8.2.4.2.6.8 Subscription for alert indications
// DESCRIPTION 

// Create an indication subscription for every indication

// that isrequired by the profile

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.The namespace of interest has previously been identified and

// defined in the #SomeNameSpace variable

#filters[] = <array of SMIS filters for the target profile>

@{Determine if Indications already exist or have to be created} #filters

8.2.4.2.6.9 Listenable Interface Modification Notification
// DESCRIPTION 

// Create an indication subscription for every indication

// that isrequired by the profile

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.The namespace of interest has previously been identified and

// defined in the #SomeNameSpace variable

#filters[] = <array of SMIS filters for the target profile>

@{Determine if Indications already exist or have to be created} #filters

8.2.4.2.6.10 Subscribe for Lifecycle Events where OperationalStatus Changes
// DESCRIPTION 

// Create an indication subscription for the operational

// status for a computer systems defined within a given CIM agent and
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 409



 

// namspace.  This subscription will only be made in those CIM agents

// that have SAN devices or applications of interest defined in them. The

// client will have to determine once having received the indication,

// whether the computer system related tothis indication

// (AlertingManagedElement attribute) is of interest.  This recipe does

// not handle the target URL for the indication.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// None

#filter[0] = “SELECT * FROM InstModification

  WHERE SourceInstance ISA CIM_ComputerSystem

    AND SourceInstance.OperationalStatus[0] <>

        PreviousInstance.OperationalStatus[0]”

@{Determine if Indications already exist or have to be created} #filter

8.2.4.2.7 Registered Name and Version
Indication version 1.1.0

8.2.4.2.8 CIM Server Requirements

Table 380: CIM Server Requirements for Indication

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No
410



 Indications Subprofile
8.2.4.2.9 CIM Elements

8.2.4.2.9.1 CIM_AlertIndication
A CIM_AlertIndication is a specialized type of CIM_Indication that contains information about the
severity, cause, recommended actions and other data of a real world event.

CIM_AlertIndication is subclassed from CIM_ProcessIndication.

Created By : External
Modified By : External
Deleted By : External

Table 381: CIM Elements for Indication

Element Name Description
Mandatory Classes

CIM_IndicationSubscription (8.2.4.2.9.5) This association defines a subscription to a specific 
IndicationFilter instance by a specific indication handler 
(as represented by a ListenerDestinationCIMXML 
instance).

CIM_ListenerDestinationCIMXML (8.2.4.2.9.9) A CIM_ListenerDestinationCIMXML describes the des-
tination for CIM Export Messages to be delivered via 
CIM-XML. ListenerDestinationCIMXML is subclassed 
from ListenerDestination.

Optional Classes
CIM_AlertIndication (8.2.4.2.9.1) This Indication is used to capture events that occur in 

the profile, but may not be related to a specific part of 
the model.

CIM_ElementCapabilities (8.2.4.2.9.2) This associates the QueryCapabilities to the Object-
Manager.

CIM_IndicationFilter (8.2.4.2.9.3) This is for "pre-defined" CIM_IndicationFilter 
instances.CIM_IndicationFilter defines the criteria for 
generating an Indication and what data should be 
returned in the Indication.

CIM_IndicationFilter (8.2.4.2.9.4) This is for "client defined" CIM_IndicationFilter 
instances.CIM_IndicationFilter defines the criteria for 
generating an Indication and what data should be 
returned in the Indication. 

CIM_InstCreation (8.2.4.2.9.6) CIM_InstCreation is an indication of the creation of a 
CIM instance. It would be generated when an instance 
of the SourceInstance class is created (either explicitly 
or implicitly).

CIM_InstDeletion (8.2.4.2.9.7) CIM_InstDeletion is an indication of the Deletion of a 
CIM instance. It would be generated when an instance 
of the SourceInstance class is deleted from the model 
(either explicitly or implicitly).

CIM_InstModification (8.2.4.2.9.8) CIM_InstModification is an indication of the modification 
or change to a CIM instance. It would be generated 
when an instance of the SourceInstance class is modi-
fied or changed (either explicitly or implicitly). 

CIM_QueryCapabilities (8.2.4.2.9.10) OPTIONAL: Defines the Query execution capabilities of 
the profile or CIMOM.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 411



 

Class Mandatory: false

8.2.4.2.9.2 CIM_ElementCapabilities
CIM_ElementCapabilities represents the association between ManagedElements
(i.e.,CIM_ObjectManager) and their Capabilities (e.g., CIM_QueryCapabilities). 

CIM_ElementCapabilities is not subclassed from anything.

Created By : Static
Modified By : Static
Deleted By : Static

Table 382: SMI Referenced Properties/Methods for CIM_AlertIndication

Property Flags Type Description & Notes
Mandatory Properties/Methods

IndicationIdentifier string An identifier for the Indication used for 
correlated indications.

IndicationTime N datetime The time and date of creation of the 
Indication. The property may be set to 
NULL if it cannot be determined. 

AlertingManagedElement string The identifying information of the entity 
for which this Indication is generated.

AlertingElementFormat uint16 Valid SMI-S values are "Unknown", 
"Other", "CIMObjectPath" 

AlertType uint16 Values { "Other", "Communications 
Alert", "Quality of Service Alert", "Pro-
cessing Error", "Device Alert", "Envi-
ronmental Alert", "Model Change", 
"Security Alert" }

PerceivedSeverity uint16 Values { "Unknown", "Other", "Informa-
tion", "Degraded/Warning", "Minor", 
"Major", "Critical", "Fatal/NonRecover-
able" }

ProbableCause uint16 Many possible values in a value map. 
See MOF.

SystemCreationClassName string
SystemName string
ProviderName string

Optional Properties/Methods
CorrelatedIndications string[] IndicationIdentifiers whose notifica-

tions are correlated with this one.
Description string Recommendation.ITU|X733.Additional 

text
OtherAlertType string
OtherSeverity string
ProbableCauseDescription string
EventID string
412



 Indications Subprofile
Class Mandatory: false

8.2.4.2.9.3 CIM_IndicationFilter
CIM_IndicationFilter instances that are "pre-defined" are IndicationFilters that are be populated
automatically by the profile provider. If a profile implementation cannot support client defined
IndicationFilters, the implementation can populate its model with "pre-defined" IndicationFilter
instances. "Pre-defined" filters shall include those that are required by the profile, but may also contain
additional filters supported by the implementation.

CIM_IndicationFilter is subclassed from CIM_ManagedElement.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Table 383: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The managed element (ObjectMan-
ager)

Capabilities CIM_Capabilities The CIM_QueryCapabilities instance 
associated with the element.

Table 384: SMI Referenced Properties/Methods for CIM_IndicationFilter (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
Name string
Query string
QueryLanguage string This should be DMTF:CQL, but may be 

WQL or SMI-S V1.0. WQL and SMI-S 
V1.0 are deprecated in favor of 
DMTF:CQL.

Optional Properties/Methods
SourceNamespace N string For instances in the Interop-

Namespace, this shall be the 
namespace where the indications are 
to originate. For instances in the 
namespace where the indications are 
to originate (e.g., the namespace of the 
profile that supports the filter), this may 
be NULL to indicate the Filter is regis-
tered in the Namespace where the indi-
cations originate.

ElementName N string This should be NULL for pre-defined 
indication filters.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 413



 

8.2.4.2.9.4 CIM_IndicationFilter
CIM_IndicationFilter instances that are "client defined" are IndicationFilters that are be created by a
client using CreateInstance. If a profile implementation can support client defined IndicationFilters, the
implementation would support "client defined" IndicationFilter instances. The implementation shall
support "client defined" filters that are defined by SMI-S profile as mandatory, but may also support
additional filters supported by the implementation (See QueryCapabilities).

CIM_IndicationFilter is subclassed from CIM_ManagedElement.

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: false

8.2.4.2.9.5 CIM_IndicationSubscription
A CIM_IndicationSubscription is not subclassed from anything.

Created By : CreateInstance
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: true

Table 385: SMI Referenced Properties/Methods for CIM_IndicationFilter (Client defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
Name string
Query string
QueryLanguage string This should be DMTF:CQL, but may be 

WQL or SMI-S V1.0. WQL and SMI-S 
V1.0 are deprecated in favor of 
DMTF:CQL.

Optional Properties/Methods
SourceNamespace N string The path to a local namespace where 

the Indications originate. If NULL, the 
namespace of the Filter registration is 
assumed.

ElementName string A Client Defined user-friendly string 
that identifies the Indication Filter.

Table 386: SMI Referenced Properties/Methods for CIM_IndicationSubscription

Property Flags Type Description & Notes
Mandatory Properties/Methods

Filter CIM_IndicationFilter
Handler CIM_ListenerDestinatio

n

414



 Indications Subprofile
8.2.4.2.9.6 CIM_InstCreation
CIM_InstCreation notifies a handler when a new instance (of a class defined in the Filter QueryString) is
created.

CIM_InstCreation is subclassed from CIM_InstIndication.

Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

8.2.4.2.9.7 CIM_InstDeletion
CIM_InstDeletion notifies a handler when a new instance (of a class defined in the Filter QueryString) is
deleted.

CIM_InstDeletion is subclassed from CIM_InstIndication.

Created By : External

RepeatNotificationPolicy uint16 SMI-S supports a restricted set of val-
ues. 
ValueMap { "2", "3", "4" }, Values { 
"None", "Suppress", "Delay" }

Optional Properties/Methods
RepeatNotificationInterval uint64 Mandatory if the RepeatNotificationPol-

icy is "Suppress" or "Delay".
RepeatNotificationGap uint64 Mandatory if the RepeatNotificationPol-

icy is "Delay".
RepeatNotificationCount uint16 Mandatory if the RepeatNotificationPol-

icy is "Suppress" or "Delay".

Table 387: SMI Referenced Properties/Methods for CIM_InstCreation

Property Flags Type Description & Notes
Mandatory Properties/Methods

IndicationIdentifier string An identifier for the Indication used for 
correlated indications.

IndicationTime datetime The time and date of creation of the 
Indication. The property may be set to 
NULL if it cannot be determined.

SourceInstance string A copy of the instance that changed to 
generate the Indication. SourceIn-
stance contains the current values of 
the properties selected by the Indica-
tion Filter's Query.

SourceInstanceModelPath string The Model Path of the SourceInstance.
Optional Properties/Methods

CorrelatedIndications string[] IndicationIdentifiers whose notifica-
tions are correlated with this one.

Table 386: SMI Referenced Properties/Methods for CIM_IndicationSubscription

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 415



 

Modified By : External
Deleted By : External
Class Mandatory: false

8.2.4.2.9.8 CIM_InstModification
CIM_InstModification notifies a handler when a new instance (of a class defined in the Filter
QueryString) is modified or changed. To avoid undue effort on Providers, the select list (in the query
filter) for this indication should only call for properties that are needed.

CIM_InstModification is subclassed from CIM_InstIndication.

Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

Table 388: SMI Referenced Properties/Methods for CIM_InstDeletion

Property Flags Type Description & Notes
Mandatory Properties/Methods

IndicationIdentifier string An identifier for the Indication used for 
correlated indications.

IndicationTime datetime The time and date of creation of the 
Indication. The property may be set to 
NULL if it cannot be determined.

SourceInstance string A copy of the instance that changed to 
generate the Indication. SourceIn-
stance contains the current values of 
the properties selected by the Indica-
tion Filter's Query.

SourceInstanceModelPath string The Model Path of the SourceInstance.
Optional Properties/Methods

CorrelatedIndications string[] IndicationIdentifiers whose notifica-
tions are correlated with this one.

Table 389: SMI Referenced Properties/Methods for CIM_InstModification

Property Flags Type Description & Notes
Mandatory Properties/Methods

IndicationIdentifier string An identifier for the Indication used for 
correlated indications.

IndicationTime datetime The time and date of creation of the 
Indication. The property may be set to 
NULL if it cannot be determined.

SourceInstance string A copy of the instance that changed to 
generate the Indication. SourceIn-
stance contains the current values of 
the properties selected by the Indica-
tion Filter's Query.

SourceInstanceModelPath string The Model Path of the SourceInstance.
416



 Indications Subprofile
8.2.4.2.9.9 CIM_ListenerDestinationCIMXML
CIM_ListenerDestinationCIMXML is subclassed from CIM_ListenerDestination.

Created By : CreateInstance
Modified By : Static
Deleted By : DeleteInstance
Class Mandatory: true

8.2.4.2.9.10 CIM_QueryCapabilities
This class defines the capabilities of the Object Manager or Provider associated via
ElementCapabilities.

CIM_QueryCapabilities is subclassed from CIM_Capabilities.

An instance of this class may or may not exist. If the profile supports client defined indication filters,
then an instance shall exist.

Created By : Static
Modified By : Static

Optional Properties/Methods
CorrelatedIndications string[] IndicationIdentifiers whose notifica-

tions are correlated with this one.
PreviousInstance string A copy of the 'previous' instance whose 

change generated the Indication. Previ-
ousInstance contains 'older' values of 
an instance's properties (as compared 
to SourceInstance), selected by the 
IndicationFilter's Query.

Table 390: SMI Referenced Properties/Methods for CIM_ListenerDestinationCIMXML

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementName string A client defined user-friendly string that 
identifies the CIMXML Listener destina-
tion.

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
PersistenceType uint16 For SMI-S, this shall be "2" (perma-

nent) or "3" (transient)
Destination string The destination URL to which CIM-

XML Export Messages are to be deliv-
ered. The scheme prefix shall be con-
sistent with the DMTF CIM-XML 
specifications.If a scheme prefix is not 
specified, the scheme "http:" shall be 
assumed.

Table 389: SMI Referenced Properties/Methods for CIM_InstModification

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 417



 

Deleted By : Static
Class Mandatory: false

8.2.4.2.10 Related Standards

Table 391: SMI Referenced Properties/Methods for CIM_QueryCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string This is a user-friendly name of the 

capabilities instance.
CQLFeatures uint16[] Enumeration of CQL features sup-

ported by an Object Manager or Pro-
vider associated via 
ElementCapabilities. (See DSP0202 
CIM Query Language Specification for 
a normative definition of each feature.)
Values {"Basic Query", "Simple Join", 
"Complex Join", "Time", "Basic Like", 
"Full Like", "Array Elements", "Embed-
ded Objects", "Order By", "Aggrega-
tions", "Subquery", "Satisfies Array", 
"Distinct", "First", "Path Functions"}

Table 392: Related Standards for Indication

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.9.1 DMTF
CIM Query Specification 1.0 DMTF
418



 Object Manager Adapter Subprofile
8.2.4.3 Object Manager Adapter Subprofile

8.2.4.3.1 Description
The ObjectManagerAdapter model defines the protocol adapters that are supported for a CIM Server.
This model is optional for the CIM Server Profile. If implemented, the ObjectManagerAdapterModel
shall adhere to the “required elements” table.

Instance Diagram
ObjectManagerAdapter subprofile is not advertised.

8.2.4.3.2 Health and Fault Management
Not defined in this standard.

8.2.4.3.3 Cascading Considerations
Not defined in this standard.

8.2.4.3.4 Supported Subprofiles and Packages
None.

8.2.4.3.5 Methods of the Profile
None.

Figure 70: ObjectManagerAdapter Subprofile Model

[Default CommunicationMechanism = "XML over HTTP"]
WBEMProtocolVersion
CIMValidated

CIMXMLCommunictionMechanism

Name
Handle
ProtocolAdapterType
OtherProtocolAdapterType

ProtocolAdapter

CommMechanismForAdapter
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 419



 

8.2.4.3.6 Client Considerations and Recipes
None.

8.2.4.3.7 Registered Name and Version
Object Manager Adapter version 1.1.0

8.2.4.3.8 CIM Server Requirements

8.2.4.3.9 CIM Elements

8.2.4.3.9.1 CIM_CommMechanismForObjectManagerAdapter
Class Mandatory: true

Table 393: CIM Server Requirements for Object Manager Adapter

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 394: CIM Elements for Object Manager Adapter

Element Name Description
Mandatory Classes

CIM_CommMechanismForObjectManagerAdapter 
(8.2.4.3.9.1)
CIM_ObjectManagerAdapter (8.2.4.3.9.2)

Table 395: SMI Referenced Properties/Methods for 
CIM_CommMechanismForObjectManagerAdapter

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ObjectManagerAd
apter

The specific ObjectManagerAdapter 
whose communication mechanism with 
the CIM Object Manager is described.

Dependent CIM_ObjectManagerCo
mmunicationMechanism

The encoding/protocol/set of opera-
tions that may be used to communicate 
between the Object Manager and the 
referenced ObjectManagerAdapter.
420



 Object Manager Adapter Subprofile
8.2.4.3.9.2 CIM_ObjectManagerAdapter
Class Mandatory: true

8.2.4.3.10 Related Standards

Table 396: SMI Referenced Properties/Methods for CIM_ObjectManagerAdapter

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
ElementName string
Handle string
AdapterType uint16
OperationalStatus uint16[]
Started boolean
StartService()
StopService()

Optional Properties/Methods
OtherAdapterTypeDescription string
StatusDescriptions string[] This shall not be NULL if "Other" is 

identified in OperationalStatus

Table 397: Related Standards for Object Manager Adapter

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 421



 

422



 Security Profile
8.2.5 Security Profiles and Subprofiles

EXPERIMENTAL

8.2.5.1 Security Profile  

8.2.5.1.1 Description
Overview
Security requirements can be divided into four major categories: authentication, authorization,
confidentiality, and integrity (including non-repudiation), brief definitions follow. Authentication is
verifying the identity of an entity (client or server). Authorization is deciding if an entity is allowed to
perform a given operation. Confidentiality is restricting information to only those intended recipients.
Integrity is guaranteeing that information, passed between entities, has not been modified.

This top level Security Profile primarily addresses authentication; 8.2.4.1.1.4, "HTTP Security" of the
Server Profile addresses confidentiality; and authorization is addressed by 8.2.5.2, "Authorization
Subprofile". 

Issues not covered include threat models, protection against specific attack vectors, (such as denial of
service, replay, buffer overflow, man in the middle, etc.), topics related to key management, and data
integrity. Development of threat models, and specific attack countermeasures required for robust
security elements, such as integrity has been left for future work.

Security concerns occur in three areas of an SMI-S implementation. 

First an SMI-S Server may also be a client of other services, (sometimes conceptualized as a devices.).
Those services, (or devices), may require a login before discovery or operations are allowed to be
performed. The information needed to perform this login is generically referred to as “credentials”, (or in
the case of devices as “device credentials”). An SMI-S server or provider needs to obtain these
credentials in order to talk to the service, and they should be provided confidentially. 

Second, an SMI-S Server may need to authenticate an SMI-S Client. Not all Clients may be allowed to
query the object model, and not all Clients may be allowed to perform operations on objects in the
model. The SMI-S Server is responsible for the process of authenticating credentials received from an
SMI-S Client. Successful authentication establishes a trust relationship, which is represented on the
SMI-S Server by an authenticated Identity. Authenticating the client is the first step in determining what
that Client is allowed to do.

Thirdly, should implementers of an SMI-S Server be unaware of secure development practices,
attackers may be able to exploit insecurely developed implementations. (Note, potential attacks might
include, but not be limited to buffer overflows, obtaining secure information handled by the SMI-S
implementation, like passwords, etc.) In an effort to increase the general knowledge of SMI-S
developers, for secure development practices, one resources is referenced: Building Secure Software
by Gary McGraw and John Viega (ISBN: 020172152X).
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 423



 

 

 

Security Subprofiles
This profile describes minimum requirements on Authentication and Authorization services of an SMI-S
Server, where an authenticated Identity is assumed to be authorized. This capability is then extended
and constrained by various subprofiles. These are summarized in Table 398, “Security Subprofiles”.

The purpose of the Security profile is to enable the monitoring and management an entity's rights to act
on, (including to view or detect), the operational or management aspects of particular objects within a
System. Such an entity is known in CIM by an instance of Identity. With respect to the particular objects,
at any point in time an entity is either authenticated or not. This is tracked in the Identity instance as
CurrentlyAuthenticated. An Identity with CurrentlyAuthenticated set to True represents a security
principal. Authentication is a key criteria for Authorization, where authenticated entities are granted
rights to act on particular objects. 

Support for this profile declares the ability to discover Identities maintained on an SMI-S Server. Unless
modified by a subprofile, entities represented by authenticated Identities are granted all rights to all
objects within the scope that the identified entity is known.

This profile contains a number of options. It is up to the profile or subprofile that depends on this profile
to specify which options are acceptable

Table 398: Security Subprofiles

Security Subprofile Depends on References Description
3rdPartyAuthentication IdentityManagement

Security
CredentialManagement Specifies additional require-

ments on an SMI-S Server 
when it is also a client of a 
3rd party authentication ser-
vice

Authorization Security Specifies additional require-
ments on an SMI-S Server 
that supports an authorization
service

CredentialManagement Security Specifies additional require-
ments on an SMI-S Server 
that is also a client of some 
other service that enforces 
security

IdentityManagement Security Specifies additional require-
ments on an SMI-S Server 
that supports the manage-
ment of Identities, including 
establishing Accounts, and 
defining User and Organiza-
tional entities and Groups of 
those entities.

RBAC Authorization
Security

Specifies additional require-
ments on an SMI-S Server 
that supports Role Based 
Access Control.

ResourceOwnership Authorization
Security

RBAC Specifies additional require-
ments on an SMI-S Server 
that supports the capability to
restrict authorization rights.
424



 Security Profile
Selecting an Identity
To act on a system which enforces security, a requestor needs to be authenticated.   The process of
authentication maps a requestor to a well-defined Identity.   From a management point of view, rights to
act on particular resources of a system are granted to Identities.

Figure 71: "Identity" shows that an Identity instance may be associated with the entity being identified
via AssignedIdentity. Commonly this ManagedElement will be an instance of UserContact. UserContact
provides information about a user, including UserID. 

If AssignedIdentity is not used, an alternative is to use a subclass of Identity with additional properties
and to algorithmically equate those properties to a requesting entity in a known way.
StorageHardwareID instances are an example of the second option. Each StorageHardwareID contains
a StorageID that uniquely identifies a requesting port.

An Identity is only valid within some scope. This is defined by an IdentityContext association, typically
to a System or RemoteServiceAccessPoint. If there is more than one System or if there are
RemoteServiceAccessPoint instances in the Profile namespace, then IdentityContext is mandatory for
this profile. 

In all cases, the InstanceID of an Identity should be treated as opaque.

Two options are available for managing the Authentication process within a System.

One option is to use the Identity aspect of Account via ConcreteIdentity. The UserID and UserPassword
properties of Account are matched to the authentication information provided by a requestor and the
associated Identity instances are selected. 

The other option is to associate an AuthenticationRule via PolicySetAppliesToElement.

An Account may be used together with an AuthenticationRule.

See the Security Identity Management subprofile for specification of the ability to add Accounts,
UserContacts, and Identities to an SMI-S Server.

Figure 71: Identity

Id e n t i t y
In s t a n c e ID :  s t r in g
C u r r e n t ly A u t h e n t ic a t e d :  b o o le a n

Id e n t i f ie d E le m e n t :  
M a n a g e d E le m e n t

A s s ig n e d Id e n t i t y

0 . .1

Id e n t i t y C o n te x t

*
*

*

S y s t e m

C o n c r e te Id e n t i t y

A c c o u n t
U s e r ID :  s t r in g
U s e r C e r t i f ic a te [ ] :  s t r in g
U s e r P a s s w o r d [ ] :  s t r in g

A c c o u n tO n S y s te m

*

*

1

*

A u th e n t ic a t io n R u leP o l ic y S e tA p p l ie s T o E le m e n t * *

1

P o lic y R u le In S y s te m

O p t io n  2

O p t io n  1

R e g is t e r e d P r o f i le

R e g is t e r e d N a m e  =  “ S e c u r i t y ”

E le m e n t C o n f o r m s T o P r o f i le

R e g is t e r e d  P r o f i le
R e f e r e n c e d P r o f i le

B o ld :  Im p l ie s  R e q u ir e d

*
*

* *

S c o p in g E le m e n t :  
M a n a g e d E le m e n t

T y p ic a l ly  a  S y s te m  o r  a  
R e m o te S e r v ic e A c c e s s P o in t

*

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 425



 

Authentication Policy
If an AuthenticationRule is not associated with an Identity, then CurrentlyAuthenticated property of
Identity is set to True whenever a requestor authenticates to an Identity, and False otherwise.

An AuthenticationRule may be associated with Identity via PolicySetAppliesToElement. 

If specified, it further defines or constrains the authentication for the associated Identity. For instance, a
PolicyTimePeriodCondition may be associated to the AuthenticationRule via PolicySetValidationPeriod.
Additionally, there are a number of specific subclasses of AuthenticationCondition which may be used
to further qualify the AuthenticationRule. The CurrentlyAuthenticated property of one of these Identity
instances is set to True whenever a requestor matches to an Identity and the conditions of the
AuthenticationRule are met, and is set to False otherwise.

The incorporating profile or subprofile shall specify which subclasses of Identity and AuthenticationRule
are allowable.

Authorization
Unless further constrained by a subprofile or by an incorporating profile, if the CurrentlyAuthenticated
property of Identity is set to True, then the identified requesting entity is granted permission to perform
any supported action on all elements of the System that conforms to this profile.

See the Security Authorization and Security RBAC subprofiles for additional specification of SMI-S
conformant authorization rules.

8.2.5.1.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.5.1.3 Cascading Considerations
Not defined in this standard.

8.2.5.1.4 Supported Subprofiles and Packages

8.2.5.1.5 Methods of the Profile
None.

8.2.5.1.6 Client Considerations and Recipes
Included is one recipe to list and classify Identities. 

8.2.5.1.6.1 List and classify Identities
// DESCRIPTION

// This recipe describes how to identify existing Identities and classify them 

// by type. The current authentication status of each Identity is determined.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS: 

Table 399: Supported Subprofiles for Security

Registered Subprofile Names Mandatory Version
Security CredentialManagement No 1.1.0
Security IdentityManagement No 1.1.0
Security Authorization No 1.1.0
426



 Security Profile
// 1. The name of a top-level System instance in the Security Profile has 

// previously been discovered via SLP and is known as $System->.

// MAIN

// Step 1. Locate the known Identities on the system.

$Identities[] = Associators($System->,

“CIM_IdentityContext”,

“CIM_Identity”,

“ElementProvidingContext”,

“ElementInContext”,

false,

false,

{“CurrentlyAuthenticated”})

// Verify that one or more Identities exist on the system.

if ($Identities[] == null || $Identities[].length < 1) {

    <ERROR! No known Identities on the system>

}

// Step 2. Create a list entry for each Identity and classify it by type.

#IdentityType[]// contains {“HardwareID”, “Entity”, “Unknown”}

#IdentityUserID[]// contains UserID if the Identity is for an Account.

for (#i in $Identities[]) {

    #IsAuthenticated[#i] = $Identities[#i].CurrentlyAuthenticated

    $Identity-> = $Identities[#i].getObjectPath()

    if ($Identity-> ISA CIM_StorageHardwareID) {

#IdentityType[#i] = “HardwareID”

#IdentityUserID[#i] = ““

    } else if ($Identity-> ISA CIM_IPNetworkID) {

#IdentityType[#i] = “IPNetworkID”

#IdentityUserID[#i] = ““

    } else {

// Determine the matching entity type

$Entity[] = Associators($Identity->,

“CIM_AssignedIdentity”,

“CIM_ManagedElement”,

“IdentityInfo”,

“ManagedElement”,

false,

false,

{“UserID”})

// There will be at most one matching entity

if ($Entity[] == null || $Entity[].length == 0) {

    // Not enough information present to determine type of Identity
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 427



 

    #IdentityType[#i] = “Unknown”

    #IdentityUserID[#i] = ““

} else {

    // Determine the matching entity type.

    if ($Identity[#i] ISA CIM_UserContact) {

// Identity of a User

#IdentityType[#i] = “User”

#IdentityUserID[#i] = $Entity[0].UserID

    } else {

// Identity of some other type of Entity 

#IdentityType[#i] = “Entity”

#IdentityUserID[#i] = ““

    }

}

    }

    // Determine if there is an associated Account.

    $Entity[] = Associators($Identity->, 

    “CIM_ConcreteIdentity”,

    “CIM_Account”,

    “SameElement”,

    “SystemElement”,

    null,

    null,

    {“UserID”})

    if ($Entity[] != null && $Entity[].length = 1) {

#IdentityUserID[#i] = Entity[1].UserID

    }

}

8.2.5.1.7 Registered Name and Version
Security version 1.1.0
428



 Security Profile
8.2.5.1.8 CIM Server Requirements

8.2.5.1.9 CIM Elements

8.2.5.1.9.1 CIM_Account
Represents information about an entity that may act on resources

Table 400: CIM Server Requirements for Security

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No

Table 401: CIM Elements for Security

Element Name Description
Mandatory Classes

CIM_RegisteredProfile (8.2.5.1.9.11) Describes support for the Security Profile
CIM_System (8.2.5.1.9.12) System containing elements supporting Authentication 

and basic Authorization
Optional Classes

CIM_Account (8.2.5.1.9.1) Represents information about an entity that may act on 
resources

CIM_AccountOnSystem (8.2.5.1.9.2) Identifies the conformant element
CIM_AssignedIdentity (8.2.5.1.9.3) Identifies the conformant element
CIM_AuthenticationRule (8.2.5.1.9.4) A policy the defines the rules for authenticating an Iden-

tity
CIM_ConcreteIdentity (8.2.5.1.9.5) Identifies the conformant element
CIM_Identity (8.2.5.1.9.6) Represents an entity that may act on resources
CIM_IdentityContext (8.2.5.1.9.7) Identifies the conformant element
CIM_ManagedElement (8.2.5.1.9.8) Represents either an entity or a resource
CIM_PolicyRuleInSystem (8.2.5.1.9.9) Identifies the System which supports the associated 

PolicyRule. 
CIM_PolicySetAppliesToElement (8.2.5.1.9.10) Identifies the conformant element

Mandatory Indications
SELECT * FROM CIM_InstMethodCall                                  
WHERE ANY element in Error[*] SATISFIES ele-
ment.CIMStatusCode = 2

Deprecated WQL - Capture all Access Denied errors

SELECT * FROM CIM_InstMethodCall                                  
WHERE ANY element in Error[*] SATISFIES ele-
ment.CIM_InstMethodCall::CIMStatusCode = 2

CQL - Capture all Access Denied errors
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 429



 

Class Mandatory: false

8.2.5.1.9.2 CIM_AccountOnSystem
Identifies the conformant element
Class Mandatory: false

8.2.5.1.9.3 CIM_AssignedIdentity
Identifies the conformant element
Class Mandatory: false

8.2.5.1.9.4 CIM_AuthenticationRule
A policy the defines the rules for authenticating an Identity
Class Mandatory: false

Table 402: SMI Referenced Properties/Methods for CIM_Account

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key
UserID string
UserPassword string[]
OrganizationName string[]

Table 403: SMI Referenced Properties/Methods for CIM_AccountOnSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System Key
PartComponent CIM_Account Key

Table 404: SMI Referenced Properties/Methods for CIM_AssignedIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement Key
IdentityInfo CIM_Identity Key

Table 405: SMI Referenced Properties/Methods for CIM_AuthenticationRule

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
PolicyRuleName string Key
430



 Security Profile
8.2.5.1.9.5 CIM_ConcreteIdentity
Identifies the conformant element
Class Mandatory: false

8.2.5.1.9.6 CIM_Identity
Represents an entity that may act on resources
Class Mandatory: false

8.2.5.1.9.7 CIM_IdentityContext
Identifies the conformant element
Class Mandatory: false

8.2.5.1.9.8 CIM_ManagedElement
Represents either an entity or a resource
Class Mandatory: false
No specified properties or methods.

8.2.5.1.9.9 CIM_PolicyRuleInSystem
Identifies the System which supports the associated PolicyRule. 
Class Mandatory: false

Table 406: SMI Referenced Properties/Methods for CIM_ConcreteIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

SameElement CIM_ManagedElement Key
SystemElement CIM_ManagedElement Key

Table 407: SMI Referenced Properties/Methods for CIM_Identity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
CurrentlyAuthenticated boolean Indicates whether or not an entity has 

been authenticated to use this Identity.

Table 408: SMI Referenced Properties/Methods for CIM_IdentityContext

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementProvidingContext CIM_ManagedElement Key
ElementInContext CIM_Identity Key

Table 409: SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_PolicyRule Key
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 431



 

8.2.5.1.9.10 CIM_PolicySetAppliesToElement
Identifies the conformant element
Class Mandatory: false

8.2.5.1.9.11 CIM_RegisteredProfile
Describes support for the Security Profile
Class Mandatory: true

8.2.5.1.9.12 CIM_System
System containing elements supporting Authentication and basic Authorization
Class Mandatory: true

8.2.5.1.10 Related Standards

EXPERIMENTAL

Table 410: SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement Key
PolicySet CIM_PolicySet Key

Table 411: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization uint16 SNIA
RegisteredName string The Profile name.
RegisteredVersion string

Table 412: SMI Referenced Properties/Methods for CIM_System

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key

Table 413: Related Standards for Security

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
Representation of CIM using XML 2.2.0 DMTF
WBEM Discovery using SLP 1.0.0 DMTF
WBEM URI Specification 1.0.0 DMTF
CIM Schema 2.11.0 DMTF
432



 Authorization Subprofile
EXPERIMENTAL

8.2.5.2 Authorization Subprofile  

8.2.5.2.1 Description
The Authorization subprofile extends the Security profile. The Authorization subprofile specifies base
support to enable management of the rights of particular subjects to perform specific operations on
selected target elements within a CIM Service. 

Authorization
Assuming successful authentication, the system needs to assure that the requestor is authorized to
perform the request. Figure 72: "Authorization" shows the elements needed to manage authorization.
This subprofile constrains the Security profile. When applied, authenticated requestors are not
automatically granted all rights. Instead, this subprofile automatically denies all rights unless specifically
granted. See “Authorization Rights” in 8.2.5.2.1for a detailed description of rights.

Rights to act on a resource are granted or denied to entities using the ChangeAccess method of a
PrivilegeManagementService instance. Resources and entities are represented by ManagedElements
and Identities, respectively. Granted rights are displayed using the ShowAccess method.

In complex environments two additional associations are used to select the correct
PrivilegeManagementService:

• The first is ServiceAvailableToElement, which is not mandatory unless there are more than one
System instances in the profile namespace. If there are more than one System, then a
ServiceAvailableToElement association between the applicable System and the
PrivilegeManagementService is mandatory.

• The second is ServiceAffectsElement associations, which are not mandatory unless there are
more than one PrivilegeManagementService instances in the profile namespace. If there are more
than one PrivilegeManagementService, then a ServiceAffectsElement association between the
PrivilegeManagementService and elements that it can operate on is mandatory.

Sets of rights are represented by Privilege instances. An implementation may publish Privilege
instances to use as templates for granting rights. This is done by associating Privilege instances to a
PrivilegeManagementService instance via ConcreteDependency. 

When a set of rights are granted, the implementation may make this concrete by instantiating an
AuthorizedPrivilege instance to represent the set of rights and then using AuthorizedSubject and
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 433



 

AuthorizedTarget to associate the authorized Identity and resource. Profiles that incorporate this
subprofile may require these associations to be made explicit.

A request is made to act on some element. In the case of Intrinsic Methods, this is first a Namespace,
which may or may not be modeled, and which may propagate sub-requests to one or more other
ManagedElements published in that Namespace. In the case of Extrinsic Methods, the element shall be
the ManagedElement which supports the method. 

If it is desired to place restrictions on all elements within a Namespace, then modeling the Namespace
is required. The Namespace instance is used as the “ManagedElement” instance shown in Figure 72:
"Authorization".

Good practice requires the implementation of each ManagedElement to enforce authorization. A
simpler, but less robust model allows the ObjectManager or the Provider of the ManagedElement to
authorize the request. Since enforcement at either the ObjectManager or Provider level does not
assure there are no back-doors to the implementation, and since the ObjectManager has limited
semantic information about the model elements, (and therefore the meaning of the rights passed in
Privilege instances,) these simpler schemes are not always applicable. As a result, this Profile
RECOMMENDS the more general model.

When the request is delivered, the Identity of the requestor shall be available to the
AuthorizationService. The Provider for a ManagedElement can then ask the AuthorizationService to
verify that the requested action is allowed. The AuthorizationService maps the request to the rights
specified by the Activities, ActivityQualifiers, and QualifierFormat properties of AuthorizedPrivilege. The

Figure 72: Authorization

ConcreteDependency

Subject: Identity
InstanceID: string
CurrentlyAuthenticated: boolean

AuthorizedPrivilegeAuthorizedSubject
ManagedElement

AuthorizedTarget

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

*
*

* Privilege

InstanceID: string {key}
PrivilegeGranted: boolean (True)
Activities: uint16 [ ] {enum}
ActivityQualifiers: string [ ]
QualifierFormats: uint16 [ ] {enum}
RepresentsAuthorizationRights:boolean 

*

System

1

*

ServiceAffectsElement

ServiceAffectsElement

*

*

HostedService

*

ServiceAvailableToElement

*

*
*

Subprofile: Security
Subprofile: Security Authorization

BOLD: Indicates Required Classes

RegisteredProfile

RegisteredName = “Security”
ElementConformsToProfile

Registered Profile

Incorporating Profile

ReferencedProfile

RegisteredSubProfile

RegisteredName = “Security Authorization”
SubProfileRequiresProfile

*

*

*

*

0..1

* *
434



 Authorization Subprofile
means for the Provider of a ManagedElement to ask this question of the AuthorizationService is not
specified by this Profile.

The client shall use either ChangeAccess (recommended), or AssignAccess and RemoveAccess to
grant or deny rights. 

Authorization Rights
Rights are encoded within the properties of Privilege, two of which operate on all rights defined by the
Privilege instance and three of which define a set of rights. The Privilege global properties are: 

• PrivilegeGranted: This boolean controls whether the rights defined by the instance are granted or
denied1. The default is TRUE.

• RepresentsAuthorizationRights: This boolean controls whether the rights defined by the instance
specifies access rights or authorization rights. Access rights grant a subject access to a target.
Authorization rights grant a subject the right to assign, change, or remove the specified rights for a
target to other subjects. The default is FALSE. 

The properties which define rights are each an indexed array. Corresponding array entries across all
three represent a single access or authorization right. These properties are:

• Activities: Each entry is an enumeration that specifies whether the corresponding right is “Read”.
“Write”, “Execute”, “Create”, “Delete”, or “Detect”.

• ActivityQualifiers: Each entry is a string that qualifies the corresponding Activity entry. For
instance, if the Activities is “Execute”, then the corresponding entry might be a comma separated
list of method names. An entry may be NULL which specifies that the corresponding Activity is not
qualified.

• QualifierFormats: Each entry is an enumeration that specifies the format of the string in the
corresponding ActivityQualifiers entry. If an ActivityQualifiers entry is not NULL then the
corresponding QualifierFormats entry shall be specified. Otherwise it shall be NULL. Possible
enumerations are: “Class Name”, “<Class.>Property”, “<Class.>Method”, “Object Reference”,
“Namespace”, “URL”, “Directory/File Name”, “Command Line Instruction”, “SCSI Command”, and
“Packet”. In the “Execute” example above, the QualifierFormats entry shall be “<Class.>Method”.

Specification of allowable combinations of rights is left to the profiles or subprofiles that incorporate this
subprofile.

Authorization Policy
The default authorization policy is to deny all requests that are not explicitly granted via either an
AuthorizationPolicy or by an explicit ChangeAccess or AssignAccess method.

An AuthorizationRule may be specified as part of a ChangeAccess method. The AuthorizationRule may
then grant rights implicitly. 

Identities, Privileges, and target ManagedElements may be associated to an AuthorizationRule by
AuthorizationRuleAppliesToIdentity, AuthorizationRuleAppliesTo-AuthorizedPrivilege, and
AuthorizationRuleAppliesToTarget respectively. This is shown in Figure 73: "Policy Rules". When an
AuthorizedPrivilege, is added to the AuthorizationRule, an AuthorizedSubject or AuthorizedTarget may
be instantiated.

1.When used with ChangeAccess, the meaning of PrivilegeGranted changes to specify whether the rights defined by 
the instance are added or subtracted.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 435



 

The details of the specification of AuthorizationRules are left to the profiles and subprofiles that
reference this subprofile.

Privilege Propagation Policies
In most instances, the propagation rules for a particular type of target element are clear and apply to all
subjects. In this case, the semantics of the target element can imply a particular propagation policy.
When a subject may select from multiple possible propagation strategies for a target element, there
needs to be a means to specify the propagation strategy. Subclasses of PrivilegePropagationRule
provide this ability. When associated with a target element via PolicySetAppliesToElement, the
PrivilegePropagationRule specifies the default policy to apply. When associated to an
AuthorizedPrivilege, via PolicySetAppliesToElement, the PrivilegePropagationRule specifies the policy
used to propagate the named rights.

When an AuthorizedPrivilege instance representing propagated rights is returned, it will have the
IsPropagated boolean set to True.

The details of the specification of PrivilegePropagationRules are left to the profiles and subprofiles that
reference this subprofile. 

For illustrative purposes only, the following example illustrates the creation of a
PrivilegePropagationRule using QueryCondition (not shown) and MethodAction (not shown) classes
associated via PolicyConditionInPolicyRule (not shown) and PolicyActionInPolicyRule (not shown)
respectively. The QueryLanguage property of the QueryCondition and MethodAction instances shall be
set to “2”, meaning “CQL”. Assume the QueryCondition.QueryResultName is set to
“SNIA_AuthorizationConditionExample” and its Query property set to

“SELECT (M.SourceInstanceHost || “/” || M.SourceInstanceModelPath) AS PMSPath,

                     M.MethodParameters.Subject,

                     ObjectPath(E) AS Target,

Figure 73: Policy Rules

Subject: Identity AuthorizedPrivilege
AuthorizedSubject

Target: ManagedElement
AuthorizedTarget* *

Privilege

AuthorizationRule

AuthorizationRuleAppliesToTarget
AuthorizationRuleAppliesToPrivilege

*

*

*

AuthorizationRuleAppliesToIdentity

System

*
1

PrivilegePropagationRule

PolicySetAppliesToElement

*

*

*
*

PrivilegePropagationRule

PolicyRuleInSystem

*
*

Subprofile: Security Authorization
Subprofile: Security
436



 Authorization Subprofile
                     M MethodParameters.Privileges

FROM

CIM_InstMethodCall M,

CIM_Collection C,

CIM_MemberOfCollection MoC,

CIM_ManagedElement E

CIM_PolicySetAppliesToElement PSATE

CIM_PolicyConditionInPolicyRule PCIPR

CIM_PrivilegePropagationRule PPR

WHERE 

M.MethodName = “ChangeAccess”

AND M.ReturnValue = 0

AND M.PreCall = FALSE

AND M.MethodParameters.Target ISA CIM_Collection

AND M.Target = MoC.Collection

AND ObjectPath(E) = MoC.Element

AND ObjectPath() = PCIPR.PartComponent

AND ObjectPath(PPR) = PCIPR.GroupComponent

AND ObjectPath(PPR) = PSATE.PolicySet

AND ObjectPath(E) = PSATE.ManagedElement”

This assures that this query is being run on behalf of a PrivilegePropagationRule that is applied to the
Collection. This assures that propagation does not pass through collections that are not appropriate.

The corresponding MethodAction instance would have its Query property set to

“SELECT (Ex.PMSPath || “.” || “ChangeAccess”) AS Methadone,

                    Ex.Subject AS Subject,

                    Ex.Target AS Target,

                    NULL AS PropagationPolicies,

                    Ex.Privileges AS Privileges

FROM SNIA_AuthorizationConditionExample Ex”

The ChangeAccess method enables a client to specify a PrivilegePropagationRule to use while
assigning rights. (See Figure 73: "Policy Rules".)

Reporting Granted Rights
Granted rights are reported using the ShowAccess method. (See Figure 72: "Authorization".) This
method takes as input one or both of a subject Identity and target ManagedElement. Output is a list of
Identity, Privilege, target triples that represent granted Privileges. This output shall reflect a consistent
current state at the time of the call, regardless of whether or not corresponding instances of
AuthorizedPrivilege, AuthorizedTarget, and AuthorizedSubject have been instantiated.

8.2.5.2.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.5.2.3 Cascading Considerations
Not defined in this standard.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 437



 

8.2.5.2.4 Supported Subprofiles and Packages
None.

8.2.5.2.5 Methods of the Profile
None.

8.2.5.2.6 Client Considerations and Recipes

8.2.5.2.6.1 Show access rights
// DESCRIPTION

// This recipe describes how to identify the authorized subjects and their 

// rights for a specified resource.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The name of a top-level System instance in the Security Profile has 

// previously been discovered via SLP and is known as $System->.

// 2. The name of a managed element on $System-> whose authorized subjects and 

// rights has previously been discovered and is known as $Resource->.

// This function locates the PrivilegeManagementService that manages the 

// specified managed element. If no such service is located, null is returned.

sub CIMObjectPath GetPrivilegeServiceForElement(CIMObjectPath[] $Services->[], 

CIMObjectPath $Resource->) {

    $Service-> = null

    // Verify that there is one or more instance of PrivilegeManagementService

    // hosted by the system.

    if ($Services->[] != null && $Services->[] > 0) {

// Locate the service that manages the privileges of the specified

// managed element.

$ResourceServices->[] = AssociatorNames($Resource->,

“CIM_ServiceAffectsElement”,

“CIM_PrivilegeManagementService”,

“UserOfService”,

“ServiceProvided”)

if ($ResourceServices->[] != null || $ResourceServices->[].length > 0) {

    for (#i in $ResourceServices->[]) {

for (#j in $Services->[]) {

    if ($ResourceServices->[#i] == $Services->[#j)) {

$Service-> = Services->[#j]

break

    }

}

    }

}

    }

    return $Service->
438



 Authorization Subprofile
}

// MAIN

// Step 1. Locate the PrivilegeManagementServices on the system.

$PrivilegeServices->[] = AssociatorNames($System->,

“CIM_HostedService”,

“CIM_PrivilegeManagementService”,

“Antecedent”,

“Dependent”)

// There must be exactly one PrivilegeManagementService for the managed element.

$PrivilegeService-> = &GetPrivilegeServiceForElement($PrivilegeServices->[],

$Resource->)

if ($PrivilegeService-> == null) {

    <EXIT! The required PrivilegeManagementService was not found>

}

// Step 2. Retrieve the authorized subjects and their rights for the specified 

// resource.

%InArgs[“Subject”] = null

%InArgs[“Target”] = $Resource->

#Result = InvokeMethod($PrivilegeService->,

“ShowAccess”,

%InArgs[],

%OutArgs[])

// Verify that the operation performed successfully.

if (#Result != 0) {

    <EXIT! Retrieving access for the specified resource failed>

}

// Step 3. Retrieve the references to the Identities (or other subjects)

// authorized for the resource.

$OutSubjects->[] = %OutArgs[“OutSubjects”]

// Step 4. Retrieve the references to the Privileges corresponding to the

// subject entries.

$OutPrivileges->[] = %OutArgs[“Privileges”]

8.2.5.2.6.2 Grant an access right
// DESCRIPTION

// This recipe describes how to apply a set of rights to a given resource

// and subject.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The name of a top-level System instance in the Security Profile has 

// previously been discovered via SLP and is known as $System->.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 439



 

// 2. The name of a managed element on $System-> has previously been 

// discovered and is known as $Resource->.

// 3. The name of a subject has previously been discovered and is known as

// $Subject->.

// 4. A container of activities to be granted or denied is known as #Activity[].

// 5. A container of additional information related to the activities is known

// as #ActivityQualifiers[].

// 6. A container of sematic descriptions of the formats of the elements in 

// #ActivityQualifiers[] is known as #QualifierFormats[].

// MAIN

// Step 1. Locate the PrivilegeManagementServices on the system.

$PrivilegeServices->[] = AssociatorNames($System->,

“CIM_HostedService”,

“CIM_PrivilegeManagementService”,

“Antecedent”,

“Dependent”)

// There must be exactly one PrivilegeManagementService for the managed element.

$PrivilegeService-> = &GetPrivilegeServiceForElement($PrivilegeServices->[],

$Resource->)

if ($PrivilegeService-> == null) {

    <EXIT! The required PrivilegeManagementService was not found>

}

// Step 2. Create an Access Privilege

$Privilege = newInstance(“CIM_Privilege”)

$Privilege.PrivilegeGranted = true

$Privilege.RepresentsAuthorizationRights = false

$Privilege.Activity[] = #Activity[]

$Privilege.ActivityQualifiers[] = #ActivityQualifiers[]

$Privilege.QualifierFormats[] = #QualifierFormats[]

// Step 3. Add the right and get the resultant rights.

%InArgs[“Subject”] = $Subject->

%InArgs[“Target”] = $Resource->

%InArgs[“PropagationPolicies”] = null

$Privileges[0] = $Privilege

%InArgs[“Privileges”] = $Privileges[]

#Result = InvokeMethod($PrivilegeService->,

“ChangeAccess”,

%InArgs[],

%OutArgs[])

// Verify that the operation performed successfully.

if (#Result != 0) {

    <EXIT! Changing access for the specified resource failed>
440



 Authorization Subprofile
}

// Step 4. Retrieve the references to the Privileges that represent the

// resulting rights between the subject and target instances.

$OutPrivileges->[] = %OutArgs[“Privileges”]

8.2.5.2.6.3 Deny a right
// DESCRIPTION

// This recipe describes how to remove a right from a given resource.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The name of a top-level System instance in the Security Profile has 

// previously been discovered via SLP and is known as $System->.

// 2. The name of a managed element on $System-> has previously been 

// discovered and is known as $Resource->.

// 3. The name of a subject has previously been discovered and is known as

// $Subject->.

// 4. A container of activities to be granted or denied is known as #Activity[].

// 5. A container of additional information related to the activities is known

// as #ActivityQualifiers[].

// 6. A container of sematic descriptions of the formats of the elements in 

// #ActivityQualifiers[] is known as #QualifierFormats[].

// MAIN

// Step 1. Locate the PrivilegeManagementServices on the system.

$PrivilegeServices->[] = AssociatorNames($System->,

“CIM_HostedService”,

“CIM_PrivilegeManagementService”,

“Antecedent”,

“Dependent”)

// There must be exactly one PrivilegeManagementService for the managed element.

$PrivilegeService-> = &GetPrivilegeServiceForElement($PrivilegeServices->[],

$Resource->)

if ($PrivilegeService-> == null) {

    <EXIT! The required PrivilegeManagementService was not found>

}

// Step 2. Create an Access Privilege

$Privilege = newInstance(“CIM_Privilege”)

$Privilege.PrivilegeGranted = false

$Privilege.RepresentsAuthorizationRights = false

$Privilege.Activity[] = #Activity[]

$Privilege.ActivityQualifiers[] = #ActivityQualifiers[]

$Privilege.QualifierFormats[] = #QualifierFormats[]

$Privilege[1] = $Privilege
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 441



 

// Step 3. Remove the right and get the resultant rights.

%InArgs[“Subject”] = $Subject->

%InArgs[“Target”] = $Resource->

%InArgs[“PropagationPolicies”] = null

$Privileges[0] = $Privilege

%InArgs[“Privileges”] = $Privileges[]

#Result = InvokeMethod($PrivilegeService->,

“ChangeAccess”,

%InArgs[],

%OutArgs[])

// Verify that the operation performed successfully.

if (#Result != 0) {

    <EXIT! Changing access for the specified resource failed>

}

// Step 4. Retrieve the references to the Privileges that represent the

// resulting rights between the subject and target instances.

$OutPrivileges->[] = %OutArgs[“Privileges”]

8.2.5.2.7 Registered Name and Version
Security Authorization version 1.1.0
442



 Authorization Subprofile
8.2.5.2.8 CIM Server Requirements

8.2.5.2.9 CIM Elements

Table 414: CIM Server Requirements for Security Authorization

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications No
Instance Manipulation Yes
Qualifier Declaration No
Query Yes
Schema Manipulation No

Table 415: CIM Elements for Security Authorization

Element Name Description
Mandatory Classes

CIM_ElementConformsToProfile (8.2.5.2.9.9)
CIM_HostedService (8.2.5.2.9.10)
CIM_PrivilegeManagementService (8.2.5.2.9.16)
CIM_RegisteredSubProfile (8.2.5.2.9.19)
CIM_ServiceAvailableToElement (8.2.5.2.9.21)
CIM_SubProfileRequiresProfile (8.2.5.2.9.22)
CIM_System (8.2.5.2.9.23)

Optional Classes
CIM_AuthorizationRule (8.2.5.2.9.1)
CIM_AuthorizationRuleAppliesToIdentity (8.2.5.2.9.2)
CIM_AuthorizationRuleAppliesToPrivilege (8.2.5.2.9.3)
CIM_AuthorizationRuleAppliesToTarget (8.2.5.2.9.4)
CIM_AuthorizedPrivilege (8.2.5.2.9.5)
CIM_AuthorizedSubject (8.2.5.2.9.6)
CIM_AuthorizedTarget (8.2.5.2.9.7)
CIM_ConcreteDependency (8.2.5.2.9.8)
CIM_Identity (8.2.5.2.9.11)
CIM_ManagedElement (8.2.5.2.9.12)
CIM_PolicyRuleInSystem (8.2.5.2.9.13)
CIM_PolicySetAppliesToElement (8.2.5.2.9.14)
CIM_Privilege (8.2.5.2.9.15)
CIM_PrivilegePropagationRule (8.2.5.2.9.17)
CIM_RegisteredProfile (8.2.5.2.9.18)
CIM_ServiceAffectsElement (8.2.5.2.9.20)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 443



 

8.2.5.2.9.1 CIM_AuthorizationRule
Class Mandatory: false

8.2.5.2.9.2 CIM_AuthorizationRuleAppliesToIdentity
Class Mandatory: false

8.2.5.2.9.3 CIM_AuthorizationRuleAppliesToPrivilege
Class Mandatory: false

8.2.5.2.9.4 CIM_AuthorizationRuleAppliesToTarget
Class Mandatory: false

8.2.5.2.9.5 CIM_AuthorizedPrivilege
Class Mandatory: false

Table 416: SMI Referenced Properties/Methods for CIM_AuthorizationRule

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
PolicyRuleName string Key

Table 417: SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_AuthorizationRule Key
ManagedElement CIM_Identity Key

Table 418: SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToPrivilege

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_AuthorizationRule Key
ManagedElement CIM_Privilege Key

Table 419: SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToTarget

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_AuthorizationRule Key
ManagedElement CIM_ManagedElement Key

Table 420: SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
444



 Authorization Subprofile
8.2.5.2.9.6 CIM_AuthorizedSubject
Class Mandatory: false

8.2.5.2.9.7 CIM_AuthorizedTarget
Class Mandatory: false

8.2.5.2.9.8 CIM_ConcreteDependency
Class Mandatory: false

8.2.5.2.9.9 CIM_ElementConformsToProfile
Class Mandatory: true

RepresentsAuthorizationRights boolean Must be an Access right for this sub-
profile.

PrivilegeGranted boolean Only Grant type privileges are allowed.

Table 421: SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Property Flags Type Description & Notes
Mandatory Properties/Methods

Privilege CIM_AuthorizedPrivileg
e

Key

PrivilegedElement CIM_ManagedElement Key

Table 422: SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Property Flags Type Description & Notes
Mandatory Properties/Methods

Privilege CIM_AuthorizedPrivileg
e

Key

TargetElement CIM_ManagedElement Key

Table 423: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement Key
Dependent CIM_ManagedElement Key

Table 424: SMI Referenced Properties/Methods for CIM_ElementConformsToProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

ConformantStandard CIM_RegisteredProfile Key
ManagedElement CIM_ManagedElement Key

Table 420: SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 445



 

8.2.5.2.9.10 CIM_HostedService
Class Mandatory: true

8.2.5.2.9.11 CIM_Identity
Class Mandatory: false

8.2.5.2.9.12 CIM_ManagedElement
Class Mandatory: false
No specified properties or methods.

8.2.5.2.9.13 CIM_PolicyRuleInSystem
Class Mandatory: false

8.2.5.2.9.14 CIM_PolicySetAppliesToElement
Class Mandatory: false

Table 425: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_Service Key

Table 426: SMI Referenced Properties/Methods for CIM_Identity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
CurrentlyAuthenticated boolean The Identified entity is authenticated or 

not

Table 427: SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_PolicyRule Key

Table 428: SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_PolicySet Key
ManagedElement CIM_ManagedElement Key
446



 Authorization Subprofile
8.2.5.2.9.15 CIM_Privilege
Class Mandatory: false

8.2.5.2.9.16 CIM_PrivilegeManagementService
Class Mandatory: true

8.2.5.2.9.17 CIM_PrivilegePropagationRule
Class Mandatory: false

8.2.5.2.9.18 CIM_RegisteredProfile
Class Mandatory: false

Table 429: SMI Referenced Properties/Methods for CIM_Privilege

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RepresentsAuthorizationRights boolean Indicates the privilege is to assign the 

named rights to subjects.
Optional Properties/Methods

PrivilegeGranted boolean Only Grant type privileges are allowed.

Table 430: SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key

Optional Properties/Methods
ChangeAccess()
ShowAccess()

Table 431: SMI Referenced Properties/Methods for CIM_PrivilegePropagationRule

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
PolicyRuleName string Key

Table 432: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 447



 

8.2.5.2.9.19 CIM_RegisteredSubProfile
Class Mandatory: true

8.2.5.2.9.20 CIM_ServiceAffectsElement
Class Mandatory: false

8.2.5.2.9.21 CIM_ServiceAvailableToElement
Class Mandatory: true

8.2.5.2.9.22 CIM_SubProfileRequiresProfile
Class Mandatory: true

RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string Parent subprofile

Table 433: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string This subprofile

Table 434: SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

AffectingElement CIM_Service Key
AffectedElement CIM_ManagedElement Key

Table 435: SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

UserOfService CIM_ManagedElement Key
ServiceProvided CIM_Service Key

Table 436: SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_RegisteredSubProf
ile

Key

Antecedent CIM_RegisteredProfile Key

Table 432: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
448



 Authorization Subprofile
8.2.5.2.9.23 CIM_System
Class Mandatory: true

8.2.5.2.10 Related Standards

EXPERIMENTAL

Table 437: SMI Referenced Properties/Methods for CIM_System

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key

Table 438: Related Standards for Security Authorization

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 449



 

450



 Security Resource Ownership Subprofile
EXPERIMENTAL

8.2.5.3 Security Resource Ownership Subprofile  

8.2.5.3.1 Description
.

Figure 74: Security Resource Ownership
This subprofile2 provides the means to model restrictions on CIM operations associated with exclusive
use of a resource, For instance, a storage volume in an array. It is intended for environments in which
multiple CIM clients may not be completely aware of each other's activities, making it important that use
of the resource not be disrupted by a client that is unaware of its use. Specific examples include use of
a volume by storage virtualizers and NAS gateways, where attempts to manage the volume by clients
not associated with this use could be seriously disruptive. An intended configuration is that a CIM client
exists in the cascading device that has exclusive use of the volume, although this is not strictly
necessary. The Security Resource Ownership Subprofile is optional.

The model is permission-based (i.e., represents allowed operations, as opposed to forbidden ones).
Where used, the policy is to deny all rights except those explicitly granted. Specific details of how the
Security Resource Ownership Subprofile is applied are specified in the Resource Ownership
Considerations subsection of the Cascading Considerations section of the including profile; this
includes definition of the contents of the Privilege instances and definition of any propagation rules. The
key class in Security Resource Ownership is the Privilege class that is used to grant rights to subjects
(for instance, the identity of an embedded CIM client) to act on targets (resources that can be
manipulated.) 

2. The Security Resource Ownership subprofile was formerly known as Ownership. It has been renamed to avoid con-
fusion with the notion of file owner commonly found in filesystems.

ConcreteDependency

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

Privilege

InstanceID: string {key}
PrivilegeGranted: boolean (True)
Activities: uint16 [ ] {enum}
ActivityQualifiers: string [ ]
QualifierFormats: uint16 [ ] {enum}
RepresentsAuthorizationRights:boolean 

System

1

HostedService

*

* Subprofile: Security Authorization
Subprofile: Security RBAC
Subprofile: Security Resource Ownership

RegisteredSubProfile

RegisteredName = “Security Authorization”

RegisteredSubProfile

RegisteredName = “Security ResourceOwnership

ElementConformsToProfile

SubProfileRequiresProfile

*

* 0..1

*

*
RegisteredSubProfile

RegisteredName = “Security RBAC”
ReferencedProfile

*
*

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 451



 

Support for the ShowAccess method is mandatory. It is used to extract which rights have been granted
to a subject entity for a particular target resource. The implementation may also make this explicit by
instantiating AuthorizedPrivilege instances with appropriate AuthorizedSubject and AuthorizedTarget
associations.

 An important aspect of this class is the RepresentsAuthorizationRights property:

• A Privilege with RepresentsAuthorizationRights = FALSE is an access privilege that controls
invocation of CIM operations. The basic operation of an access privilege is that only the authorized
subject identities can perform the Activities (including qualifiers) in the privilege on the authorized
target(s). 

• A Privilege with RepresentsAuthorizationRights = TRUE is a resource ownership privilege that
controls the ability to associate access privileges with objects. The basic operation of an
ownership privilege is to control the association of access privileges to target resource; for the
Activities (including qualifiers) listed in the ownership privilege. Only authorized subjects of the
ownership privilege are permitted to associate an access privilege containing any of those
Activities with any target of the ownership privilege. An object that is an authorized target of an
ownership privilege is called an owned resource.

An object can be subject to operation restrictions imposed by this subprofile only when it is an owned
resource (i.e., the target of a resource ownership privilege). The algorithm is:

1) In the absence of an ownership privilege on a resource, any client may assign access privileges to 
that resource.

2) If an object is an owned resource (the target of a resource ownership privilege) then only subjects 
represented by owning Identities may assign access rights covered by the ownership Privilege 
instance to that resource. 

3) In the absence of an access privilege on a resource, all clients are granted Read and Detect 
access (see the CIM Authorization model for information on the intrinsic operations covered by 
Read and Detect). All other access is denied.

4) All object reference parameters of each extrinsic method shall be checked; it is not sufficient to 
check only the first object reference parameter on the theory that the extrinsic is invoked on that 
object. 

5) When Security Resource Ownership is in use, the CIM Client shall authenticate to the CIMOM to 
prevent misuse of Identity; an unauthenticated CIM Client will not be able to invoke any operation 
that is restricted by an access privilege.

For an object to be both owned and manageable via the controlling CIM Client, that object needs to be
the target of a resource ownership privilege (for the ownership rights) and an access privilege (to allow
management operations).

To enable future flexibility and (hopefully) minimize the opportunity for client programming errors, a
resource supporting the Security Resource Ownership Subprofile shall either:

1) Instantiate one or more ownership Privilege instances containing allowable sets of rights to be 
granted. These are associated to the PrivilegeManagementService via ConcreteDependency 
associations. To assign ownership, the RepresentsAuthorizationRights property shall be set to 
TRUE in a copy of a Privilege instance passed in the ChangeAccess method. Otherwise, access 
rights are defined.

2) Instantiate one or more Role instances having ownership Privilege instances associated via Mem-
berOfCollection. As above, these Privilege instances contain allowable sets of rights to be granted. 
Unless the Role applies to all resources in the System, the Role instances shall be associated to 
452



 Security Resource Ownership Subprofile
applicable resources via RoleLimitedToTarget. The infrastructure may restrict the ability of the cli-
ent to modify Role instances, including associations and associated Privileges. To assign owner-
ship, a Role with Privileges, associated by MemberOfCollection, that have 
RepresentsAuthorizationRights set to TRUE, shall be associated via MemberOfCollection to one 
or more Identity instances. Each selected Identity instance shall be associated via ServiceAffect-
sElement to PrivilegeManagementService that is also associated to the resource via ServiceAf-
fectsElement.

Privilege propagation rules, as defined by an instance of PrivilegePropagationRule, is a means of
specifying how rights are propagated by a ChangeAccess call. The infrastructure may publish available
propagation strategies via instances of PrivilegePropagationRule associated to a resource via
PolicySetAppliesToElement associations. Alternatively, a Profile may define a set of “well-known”
PrivilegePropagationRules that apply to particular types of resources and which may be discovered via
enumeration. In either case, these available rules may be referenced in a ChangeAccess method. 

Design Considerations
ServiceAffectsElement associations are assumed between Services and affected elements. (See
Figure 75: "Service Associations".) This subprofile does not require an implementation to present these
associations unless there is more than one PrivilegeManagementService in the profiled Namespace. 

ServiceAvailableToElement associations are assumed between Services and using elements (See
Figure 75: "Service Associations".) This subprofile does not require an implementation to present these
associations unless there is more than one System in the profiled Namespace.

AuthorizedPrivilege instances are assumed when a Privilege is granted to a subject or assigned to a
target. (See Figure 76: "AuthorizedPrivilege".) AuthorizedTarget and AuthorizedSubject associations
are assumed between the AuthorizedPrivilege and the target and subject entities respectively. This
subprofile does not require the implementation to make these instances explicit. Instead this profile
relies on the ChangeAccess method to grant or deny rights and on the ShowAccess method to display
rights.

Figure 75: Service Associations

P r i v i l e g e M a n a g e m e n t S e r v i c e

A s s ig n A c c e s s ( )
R e m o v e A c c e s s ( )
C h a n g e A c c e s s ( )
S h o w A c c e s s ( )

P r i v i l e g e

*

S u b p r o f i l e :  S e c u r i t y  R B A C
S u b p r o f i l e :  S e c u r i t y  A u t h o r i z a t i o n

S u b p r o f i l e :  S e c u r i t y  R e s o u r c e O w n e r s h i p
B o l d :  R e q u i r e d

M a n a g e d E l e m e n t

*I d e n t i t y

*

S e r v i c e A f f e c t s E le m e n t
*S e r v i c e A f f e c t s E le m e n t

S y s t e m

S e r v i c e A v a i l a b le T o E le m e n t
*

*

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 453



 

8.2.5.3.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.5.3.3 Cascading Considerations
Not defined in this standard.

8.2.5.3.4 Supported Subprofiles and Packages
None.

8.2.5.3.5 Methods of the Profile
None.

8.2.5.3.6 Client Considerations and Recipes

8.2.5.3.6.1 Show Ownership Rights
// DESCRIPTION

// List the Subjects that have authorization rights to a resource.

// These subjects have ownership for the associated privileges.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// $Resource-> contains a reference to a resource (Any Managed Element)

// $PMS-> contains a reference to the PrivilegeManagementService

//

Figure 76: AuthorizedPrivilege 

M a n a g e d E le m e n t

A u th o r iz e d P r iv i le g e*
*

Id e n t i t y

A u th o r iz e d S u b je c t

*
P r iv i le g e

*
A u th o r iz e d T a r g e t

S u b p r o f i le :  S e c u r i t y  R B A C
S u b p r o f i le :  S e c u r i t y  A u t h o r iz a t io n

S u b p r o f i le :  S e c u r i t y  R e s o u r c e O w n e r s h ip
B o ld :  R e q u i r e d
454



 Security Resource Ownership Subprofile
// Get Privileges for resource

//

#result = $PMS->ShowAccess(,$Resource->, $OutSubject->[], null, $OutPrivilege[])

// Verify that the operation performed successfully.

if (#Result != 0) {

    <EXIT! Show access for the specified resource failed>

}

// Filter out the non authorization rights

//

#k = 0

for #j in $OutPrivilege[] {

    if ($OutPrivilege[#j].RepresentsAuthorizationRights = True) {

#k++

$Subject->[#k] = $OutSubject->[#j]

$Privilege->[#k] = $OutPrivilege->[#j]

    }

}

//

// $Resource-> contains resource

// $Subject->[] contains array of references to Identities (or other subjects), 

//   with Authorization rights to a resource

// $Privilege[] contains array of Privileges, corresponding to the subject 
entries.

//

8.2.5.3.6.2 Deny ownership rights
// DESCRIPTION

// Remove a set of authorization rights, (represented by a Privilege), from a named 

//    Subject for a resource.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// The calling subject MUST be an owner for the named set of rights.

// Note: A resource is typically represented by an instance of some type of 

//       CIM_ManagedElement.  Conceptually, a resource could also be an association 
instance.

//       It is up to referencing Profiles to apply any additional constraints on 
the types of 

//       instances that are considered to be resource.

//

// $Identity-> contains a reference to a subject Identity

// $Resource-> contains a reference to a resource

// $Privilege contains a Privilege
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 455



 

// $PMS-> contains a reference to the PrivilegeManagementService

//

// This recipe is NOT dealing with Privilege Propagation.

//

// Set the Privilege to eliminate all rights

//

$Privilege[1] = $Privilege

$Privilege[1].PrivilegeGranted = False

$Privilege[1].RepresentsAuthorizationRights = True

// Eliminate all rights to the resource.

// Note that we don’t care whether someone else did it already.

//

#result = $PMS->ChangeAccess($Identity->,$Resource->,null,$Privilege[])

// Verify that the operation performed successfully.

if (#Result != 0) {

    <EXIT! Changing access for the specified resource failed>

}

// $Privilege[] contains the result array of Privileges between the subject and 
target

//

8.2.5.3.6.3 Grant ownership rights
// DESCRIPTION

// Give a named Subject a set of authorization rights, 

//    (represented by a Privilege) for a resource.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// The calling subject MUST be an owner.

//  This call also makes the named subject an owner.

//  The assumption is that the calling subject trusts the named subject.

//

// $Identity-> contains a reference to a subject Identity

// $Resource-> contains a reference to a resource

// $Privilege contains a Privilege to be granted

// $PMS-> contains a reference to the PrivilegeManagementService

//

// This recipe is NOT dealing with Privilege Propagation.

//

// Set the Privilege

//

$Privilege[1] = $Privilege

$Privilege[1].PrivilegeGranted = True
456



 Security Resource Ownership Subprofile
$Privilege[1].RepresentsAuthorizationRights = True

#result = $PMS->ChangeAccess($Identity->,$Resource->,null,$Privilege[])

// Verify that the operation performed successfully.

if (#Result != 0) {

    <EXIT! Changing access for the specified resource failed>

}

// $Privilege[] contains the result array of Privileges between the subject and 
target

//

8.2.5.3.7 Registered Name and Version
Security Resource Ownership version 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 457



 

8.2.5.3.8 CIM Server Requirements

8.2.5.3.9 CIM Elements

Table 439: CIM Server Requirements for Security Resource Ownership

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications No
Instance Manipulation Yes
Qualifier Declaration No
Query Yes
Schema Manipulation No

Table 440: CIM Elements for Security Resource Ownership

Element Name Description
Mandatory Classes

CIM_ElementConformsToProfile (8.2.5.3.9.10)
CIM_HostedService (8.2.5.3.9.11)
CIM_PrivilegeManagementService (8.2.5.3.9.19)
CIM_RegisteredSubProfile (8.2.5.3.9.23)
CIM_RegisteredSubProfile (8.2.5.3.9.24)
CIM_ServiceAvailableToElement (8.2.5.3.9.29)
CIM_SubProfileRequiresProfile (8.2.5.3.9.30)
CIM_System (8.2.5.3.9.31)

Optional Classes
CIM_AuthorizationRule (8.2.5.3.9.1)
CIM_AuthorizationRuleAppliesToIdentity (8.2.5.3.9.2)
CIM_AuthorizationRuleAppliesToPrivilege (8.2.5.3.9.3)
CIM_AuthorizationRuleAppliesToRole (8.2.5.3.9.4)
CIM_AuthorizationRuleAppliesToTarget (8.2.5.3.9.5)
CIM_AuthorizedPrivilege (8.2.5.3.9.6)
CIM_AuthorizedSubject (8.2.5.3.9.7)
CIM_AuthorizedTarget (8.2.5.3.9.8)
CIM_ConcreteDependency (8.2.5.3.9.9)
CIM_Identity (8.2.5.3.9.12)
CIM_ManagedElement (8.2.5.3.9.13)
CIM_MemberOfCollection (8.2.5.3.9.14)
CIM_OwningCollectionElement (8.2.5.3.9.15)
CIM_PolicyRuleInSystem (8.2.5.3.9.16)
CIM_PolicySetAppliesToElement (8.2.5.3.9.17)
458



 Security Resource Ownership Subprofile
8.2.5.3.9.1 CIM_AuthorizationRule
Class Mandatory: false

8.2.5.3.9.2 CIM_AuthorizationRuleAppliesToIdentity
Class Mandatory: false

8.2.5.3.9.3 CIM_AuthorizationRuleAppliesToPrivilege
Class Mandatory: false

CIM_Privilege (8.2.5.3.9.18)
CIM_PrivilegePropagationRule (8.2.5.3.9.20)
CIM_ReferencedProfile (8.2.5.3.9.21)
CIM_RegisteredProfile (8.2.5.3.9.22)
CIM_RegisteredSubProfile (8.2.5.3.9.25)
CIM_Role (8.2.5.3.9.26)
CIM_RoleLimitedToTarget (8.2.5.3.9.27)
CIM_ServiceAffectsElement (8.2.5.3.9.28)

Table 441: SMI Referenced Properties/Methods for CIM_AuthorizationRule

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
PolicyRuleName string Key

Table 442: SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_AuthorizationRule Key
ManagedElement CIM_Identity Key

Table 443: SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToPrivilege

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_AuthorizationRule Key
ManagedElement CIM_Privilege Key

Table 440: CIM Elements for Security Resource Ownership

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 459



 

8.2.5.3.9.4 CIM_AuthorizationRuleAppliesToRole
Class Mandatory: false

8.2.5.3.9.5 CIM_AuthorizationRuleAppliesToTarget
Class Mandatory: false

8.2.5.3.9.6 CIM_AuthorizedPrivilege
Class Mandatory: false

8.2.5.3.9.7 CIM_AuthorizedSubject
Class Mandatory: false

Table 444: SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToRole

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_AuthorizationRule Key
ManagedElement CIM_Role Key

Table 445: SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToTarget

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_AuthorizationRule Key
ManagedElement CIM_ManagedElement Key

Table 446: SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RepresentsAuthorizationRights boolean Must be an Access right for this sub-

profile.
PrivilegeGranted boolean Only Grant type privileges are allowed.

Table 447: SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Property Flags Type Description & Notes
Mandatory Properties/Methods

Privilege CIM_AuthorizedPrivileg
e

Key

PrivilegedElement CIM_ManagedElement Key
460



 Security Resource Ownership Subprofile
8.2.5.3.9.8 CIM_AuthorizedTarget
Class Mandatory: false

8.2.5.3.9.9 CIM_ConcreteDependency
Class Mandatory: false

8.2.5.3.9.10 CIM_ElementConformsToProfile
Class Mandatory: true

8.2.5.3.9.11 CIM_HostedService
Class Mandatory: true

8.2.5.3.9.12 CIM_Identity
Class Mandatory: false

Table 448: SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Property Flags Type Description & Notes
Mandatory Properties/Methods

Privilege CIM_AuthorizedPrivileg
e

Key

TargetElement CIM_ManagedElement Key

Table 449: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement Key
Dependent CIM_ManagedElement Key

Table 450: SMI Referenced Properties/Methods for CIM_ElementConformsToProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

ConformantStandard CIM_RegisteredProfile Key
ManagedElement CIM_ManagedElement Key

Table 451: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_Service Key

Table 452: SMI Referenced Properties/Methods for CIM_Identity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
CurrentlyAuthenticated boolean
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 461



 

8.2.5.3.9.13 CIM_ManagedElement
Class Mandatory: false
No specified properties or methods.

8.2.5.3.9.14 CIM_MemberOfCollection
Class Mandatory: false

8.2.5.3.9.15 CIM_OwningCollectionElement
Class Mandatory: false

8.2.5.3.9.16 CIM_PolicyRuleInSystem
Class Mandatory: false

8.2.5.3.9.17 CIM_PolicySetAppliesToElement
Class Mandatory: false

Table 453: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection Key
Member CIM_ManagedElement Key

Table 454: SMI Referenced Properties/Methods for CIM_OwningCollectionElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

OwnedElement CIM_Collection Key
OwningElement CIM_ManagedElement Key

Table 455: SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_PolicyRule Key

Table 456: SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_PolicySet Key
ManagedElement CIM_ManagedElement Key
462



 Security Resource Ownership Subprofile
8.2.5.3.9.18 CIM_Privilege
Class Mandatory: false

8.2.5.3.9.19 CIM_PrivilegeManagementService
Class Mandatory: true

8.2.5.3.9.20 CIM_PrivilegePropagationRule
Class Mandatory: false

8.2.5.3.9.21 CIM_ReferencedProfile
Class Mandatory: false

Table 457: SMI Referenced Properties/Methods for CIM_Privilege

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RepresentsAuthorizationRights boolean Must be an Access right for this sub-

profile.
PrivilegeGranted boolean Only Grant type privileges are allowed.

Table 458: SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key

Optional Properties/Methods
ChangeAccess()

Table 459: SMI Referenced Properties/Methods for CIM_PrivilegePropagationRule

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
PolicyRuleName string Key

Table 460: SMI Referenced Properties/Methods for CIM_ReferencedProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_RegisteredProfile Key
Antecedent CIM_RegisteredProfile Key
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 463



 

8.2.5.3.9.22 CIM_RegisteredProfile
Class Mandatory: false

8.2.5.3.9.23 CIM_RegisteredSubProfile
Class Mandatory: true

8.2.5.3.9.24 CIM_RegisteredSubProfile
Class Mandatory: true

8.2.5.3.9.25 CIM_RegisteredSubProfile
Class Mandatory: false

Table 461: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization uint16
RegisteredName string

Table 462: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string This subprofile

Table 463: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization uint16
RegisteredName string

Table 464: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization uint16
RegisteredName string
464



 Security Resource Ownership Subprofile
8.2.5.3.9.26 CIM_Role
Class Mandatory: false

8.2.5.3.9.27 CIM_RoleLimitedToTarget
Class Mandatory: false

8.2.5.3.9.28 CIM_ServiceAffectsElement
Class Mandatory: false

8.2.5.3.9.29 CIM_ServiceAvailableToElement
Class Mandatory: true

8.2.5.3.9.30 CIM_SubProfileRequiresProfile
Class Mandatory: true

Table 465: SMI Referenced Properties/Methods for CIM_Role

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key

Table 466: SMI Referenced Properties/Methods for CIM_RoleLimitedToTarget

Property Flags Type Description & Notes
Mandatory Properties/Methods

DefiningRole CIM_Role Key
TargetElement CIM_ManagedElement Key

Table 467: SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

AffectingElement CIM_Service Key
AffectedElement CIM_ManagedElement Key

Table 468: SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

UserOfService CIM_ManagedElement Key
ServiceProvided CIM_Service Key

Table 469: SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_RegisteredSubProf
ile

Key

Antecedent CIM_RegisteredProfile Key
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 465



 

8.2.5.3.9.31 CIM_System
Class Mandatory: true

8.2.5.3.10 Related Standards

EXPERIMENTAL

Table 470: SMI Referenced Properties/Methods for CIM_System

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key

Table 471: Related Standards for Security Resource Ownership

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
466



 Security Role Based Access Control Subprofile
EXPERIMENTAL

8.2.5.4 Security Role Based Access Control Subprofile  

8.2.5.4.1 Description

8.2.5.4.1.1 Overview
The Role Based Access Control (RBAC.) subprofile enables management of authorization using RBAC
Roles, (see Figure 77: "Role-Based Access Control"). The Security RBAC subprofile is a subprofile of
the Security Authorization subprofile. 

If this subprofile is supported, the CIM Server may publish some number of Roles via
OwningCollectionElement associations to the top level System. Rights are granted to a Role by
Privilege instances associated via MemberOfCollection. Target resources are associated to a Role via
RoleLimitedToTarget associations. 

If a subject Identity is associated to a Role via MemberOfCollection and if CurrentlyAuthenticated is
true, then the entity named by the Identity is authorized to exercise all rights granted by the Role to
target resources. 

If there are no RoleLimitedToTarget associations, then the Role applies to all resources in the System.
If there are RoleLimitedToTarget association, then those associations identify the target resources of
the role.

A Role may collect other Roles via MemberOfCollection. Privileges of the included Role are granted to
Identities of the including Role for those resources that are scoped to both Roles.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 467



 

 

Figure 77: Role-Based Access Control

ConcreteDependency

Subject: Identity

InstanceID: string
CurrentlyAuthenticated: boolean

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

Privilege

InstanceID: string {key}
PrivilegeGranted: boolean (True)
Activities: uint16 [ ] {enum}
ActivityQualifiers: string [ ]
QualifierFormats: uint16 [ ] {enum}
RepresentsAuthorizationRights:boolean 

System 1
HostedService *

MemberOfCollection

MemberOfCollection *

*

*

*

Subprofile: Security Authorization 
Subprofile: Security RBAC

RegisteredSubProfile

RegisteredName = “Security Authorization”

RegisteredSubProfile

RegisteredName = “Security RBAC

ElementConformsToProfile

SubProfileRequiresProfile

*

*0..1

*

OwningCollectionElement

*
Role

CreationClassName: string {key}
Name: string {key}  
BusinessCategory: string
CommonName: string {Req'd}

OtherRoleInformation

CreationClassName: string {key}
Name: string {key}  
ObjectClass: String [ ]
BusinessCategory: string[ ]
CommonName: string[ ]
Descriptions: string[ ]
DestinationIndicator: string[ ]
FacsimileTelephoneNumber: string[ ]
InternationaliSDNNumber: string[ ]
OU: string[ ]
PhysicalDeliveryOfficeName: string[ ]
PostalAddress: string[ ] 
PostalCode: string[ ]
PostOfficeBox: string[ ]
PreferredDeliveryMethod: string
RegisteredAddress:string[ ]
SeeAlso: string[ ] 
StateOrProvince: string[ ] 
Street: string[ ]
TelephoneNumber: string[ ] 
TeletexTerminalIdentifier: string[ ]
TelexNumber: string[ ]
X121Address: string[ ]  

MoreRoleInfo

1

0..1

*
ManagedElement

*

RoleLimitedToTarget

*
MemberOfCollection *

*

0..1

RegisteredProfile

RegisteredName = “Security”

SubProfileRequiresProfile

* 0..1
468



 Security Role Based Access Control Subprofile
8.2.5.4.1.2 Default Authorization
The ChangeAccess method is not used to grant or deny authorization via Roles. Rather, this subprofile
uses CIM Intrinsic methods CreateInstance and DeleteInstance on appropriate associations and on the
Role class itself. The following list describes the rules.

• All resources of a system conforming to this subprofile are scoped to any Role with no
RoleLimitedToTarget associations.

• Only resources associated by RoleLimitedToTarget are scoped to a Role with RoleLimitedToTarget
associations. CreateInstance and DeleteInstance are used to add or delete RoleLimitedToTarget
associations.

• MemberOfCollection associations are used to grant Privileges to a Role. CreateInstance and
DeleteInstance are used to add or delete MemberOfCollection associations between Privilege and
Role instances.

• MemberOfCollection associations are used to place Identities into a Role. CreateInstance and
DeleteInstance are used to add or delete MemberOfCollection associations between Identity and
Role instances. 

• Every Identity in a Role is authorized with all rights defined by all Privileges granted to the Role for
all resources scoped to the Role. The set of authorized rights is adjusted dynamically as a result of
CreateInstance and DeleteInstance operations on the MemberOfCollection and
RoleLimitedToTarget associations described above.

• MemberOfCollection associations are used to incorporate one Role into another Role.
CreateInstance and DeleteInstance are used to add or delete MemberOfCollection associations
between Role instances. The following additional rules apply:

• Identities of the incorporating Role are authorized with all rights defined by all Privileges
granted to the incorporated Role for all resources that are scoped to the intersection of the set
of resources scoped to each Role. 

• This process is recursive through the MemberOfCollection association between Roles with
the added conditions that:

• At each level, the intersecting set of resources found at level n is intersected with the set
of resources scoped to level n+1. 

• This intersection forms the set of resources to which the Identities of level 1 are
authorized with the Privileges of level n+1. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 469



 

8.2.5.4.1.3 Authorization Policy
This subprofile extends the Authorization Policy defined in the Security Authorization subprofile.

In addition associations specified in the Security Authorization subprofile.
AuthenticationRuleAppliesToRole may be used to incorporate a Role into an AuthenticationRule. This
is shown in Figure 78: "Policy Rules". 

The details of the specification of AuthorizationRules are left to the profiles and subprofiles that
reference this subprofile.

Figure 78: Policy Rules

ConcreteDependency

Subject: Identity

InstanceID: string
CurrentlyAuthenticated: boolean

AuthorizedPrivilege

AuthorizedSubject

Target: ManagedElement
AuthorizedTarget

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

*

*
*

*

Privilege

InstanceID: string {key}
PrivilegeGranted: boolean (True)
Activities: uint16 [ ] {enum}
ActivityQualifiers: string [ ]
QualifierFormats: uint16 [ ] {enum}
RepresentsAuthorizationRights:boolean 

AuthorizationRule

AuthorizationRuleAppliesToTarget

AuthorizationRuleAppliesToPrivilege

*

*

*

AuthorizationRuleAppliesToIdentity

System

*1

HostedService

*

1

PrivilegePropagationRule

PolicySetAppliesToElement

*

*

*

Role

MemberOfCollection

AuthorizationRuleAppliesToRole

RoleLimitedToTarget

MemberOfCollection

*

MemberOfCollection

*

*

*
*

*

*

*

PolicyRuleInSystem

*

*
Subprofile: Security Authorization 
Subprofile: Security RBAC

OwningCollectionElement

0..1

*

470



 Security Role Based Access Control Subprofile
8.2.5.4.1.4 Design Considerations
ConcreteDependency associations are assumed between Services and the elements that they directly
manage (See Figure 79: "Service Associations".) This subprofile does not REQUIRE an
implementation to present these associations unless there is more than one
PrivilegeManagementService in the profiled Namespace. 

ServiceAffectsElement associations are assumed between Services and affected elements. (See
Figure 79: "Service Associations".) This subprofile does not REQUIRE an implementation to present
these associations unless there is more than one PrivilegeManagementService in the profiled
Namespace. 

ServiceAvailableToElement associations are assumed between Services and using elements (See
Figure 79: "Service Associations".) This subprofile does not REQUIRE an implementation to present
these associations unless there is more than one System in the profiled Namespace.

Figure 79: Service Associations

PrivilegeManagem entService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

Privilege

*

Subprofile: Security RBAC
Subprofile: Security Authorization

Bold: Required

ManagedElem ent

*Identity

*

ServiceAffectsElement *

System

ServiceAvailableToElement

*

*

Role *
ConcreteDependency
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 471



 

This subprofile does not REQUIRE the implementation to make AuthorizedPrivilege instances explicit.
However, there existence is assumed whenever a Role containing one or more Privileges is associated
by MemberOfCollection to an Identity. 

• In the case where there is no RoleLimitedToTarget association, then all ManagedElements are
implicitly authorized to the collected Identity instances. 

• If RoleLimitedToTarget associations are used, then only those ManagedElements are authorized.
Figure 80: "AuthorizedPrivilege" show this case. 

• Additionally Figure 80: "AuthorizedPrivilege" shows the case where a Role is collected into
another role. Only the intersection of target resources between the included and including Roles
are granted permission for Identities of the including Role. For example, in Figure 80:
"AuthorizedPrivilege", note that Identity B does not become authorized to ManagedElement A.
472



 Security Role Based Access Control Subprofile
However, Identity A does become authorized to ManagedElement AB.This subprofile relies on the
ShowAccess method to display rights the rights granted by membership in a Role

.

8.2.5.4.2 Health and Fault Management Consideration
Not defined in this standard.

8.2.5.4.3 Cascading Considerations
Not defined in this standard.

8.2.5.4.4 Supported Subprofiles and Packages
None.

8.2.5.4.5 Methods of the Profile
None.

Figure 80: AuthorizedPrivilege 

A: ManagedElement

AA: AuthorizedPrivilege*
*A: Identity AuthorizedSubject

*

A: Privilege
*

AuthorizedTarget

A: Role

MemberOfCollection

RoleLimitedToTarget

*

*
*

B: Role

MemberOfCollection

*

C: ManagedElement*

*

*

BC: AuthorizedPrivilege

*

B: Privilege
*

Subprofile: Security Authorization

Subprofile: Security RBAC

Bold: Required

AC: AuthorizedPrivilege

*

AuthorizedSubject

*

B: Identity *

MemberOfCollection

*

*

*

*

MemberOfCollection

*

*

*

*

B: ManagedElement

*

RoleLimitedToTarget

*

RoleLimitedToTarget * AuthorizedTarget

*BB: AuthorizedPrivilege

MemberOfCollection

AuthorizedSubject

*

* * *

AuthorizedTarget
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 473



 

8.2.5.4.6 Client Considerations and Recipes

8.2.5.4.6.1 List the Roles associated with an Identity
// DESCRIPTION

// For a specific Identity, this recipe lists all associated Roles

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// $Identity-> contains a reference to an Identity

//

//==================================================================

// Subroutines of SecurityRBAC 1

//==================================================================

Sub GetMemberRoles($StartRoles->[], $Roles->[])

{

    // Get Member Roles

    for #i in $StartRoles->[]

    {

        $MemberRoles->[] = AssociatorNames($StartRoles->[#i],

                                           
“CIM_MemberOfCollection”,”CIM_Role”,Collection,)

        // Append Member Roles to Roles output.

// Note that on the first iteration size of Roles is 0.

//       On the next interation Roles.size is now size of previous 
MemberRoles.

        //

        #i = $Roles->[].size

        for #j in $MemberRoles->[]

        {

            $Roles->[(#i+#j] = $MemberRoles->[#j]    

        }

//  Get Members of Members

//

        &GetMemberRoles($MemberRoles->[], Roles->[])

}

//==================================================================

//SecurityRBAC 1 Recipe starts here

//==================================================================

// Find the first-level Roles of an Identity.

//

$Roles->[] = AssociatorNames($Identity>, 
“CIM_MemberOfCollection”,”CIM_Role”,Member,)

//Append Member Roles
474



 Security Role Based Access Control Subprofile
&GetMemberRoles($Roles->[], $Roles->[])

// ON OUTPUT

//

// $Roles->[] contains a list of pointers to Roles

//

8.2.5.4.6.2 List the Privileges of a Role
// DESCRIPTION

// For a specific Role, this recipe lists all associated Privileges obtained 

// via membership in various Roles.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// $Role-> contains a reference to a Role

//

//=============================================================

// Subroutines of SecurityRBAC 2

//=============================================================

Sub GetMemberPrivileges($StartRoles->[], $Roles->[], $Privileges->[])

{

    // Get Member Roles

    for #i in $StartRoles->[]

    {

        $MemberRoles->[] = AssociatorNames($StartRoles->[#i],

                                           
“CIM_MemberOfCollection”,”CIM_Role”,Collection,)

        // Append Member Roles to Roles output.

// Note that on the first iteration size of Roles is 0.

//      On the next interation Roles.size is now size of previous

// MemberRoles.

        //

        #i = $Roles->[].size

        for #j in $MemberRoles->[]

        {

            $Roles->[#i+#j] = $MemberRoles->[#j]

    

            // Now append the Privileges for each member

    //

            $MemberPrivs->[] = AssociatorNames(&MemberRoles-[#j],

“CIM_MemberOfCollection”,”CIM_Privilege”,Collection,)

#k = $Privileges->[].size

            for #l in $MemberPrivs->[]

            {

                $Privileges->[#k+#l] = $MemberPrivs->[#l]      

            }  

        }
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 475



 

//  Get Members of Members

//

        &GetMemberRoles($MemberRoles->[], Roles->[], $Privileges->[])

}

//=============================================================

//SecurityRBAC 2 Recipe starts here

//=============================================================

// Find the first-level Privileges

//

    $Privileges->[] = AssociatorNames($Role->,

                                       
“CIM_MemberOfCollection”,”CIM_Privilege”,Collection,)    

//Append Member Privileges

$Roles->[1] = $Role->&GetMemberPrivileges($Roles->[], $Roles->[], $Privileges->[])

// ON OUTPUT

//

// $Roles->[] contains a list of pointers to Roles in the Role hierarchy

// $Privileges->[] contains a list of pointers to Privileges from the Role 
hierachy

//

8.2.5.4.7 Registered Name and Version
Security RBAC version 1.1.0
476



 Security Role Based Access Control Subprofile
8.2.5.4.8 CIM Server Requirements

8.2.5.4.9 CIM Elements

8.2.5.4.9.1 CIM_AuthorizationRule

Table 472: CIM Server Requirements for Security RBAC

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications No
Instance Manipulation Yes
Qualifier Declaration No
Query Yes
Schema Manipulation No

Table 473: CIM Elements for Security RBAC

Element Name Description
Mandatory Classes

CIM_ConcreteDependency (8.2.5.4.9.3)
CIM_ElementConformsToProfile (8.2.5.4.9.4)
CIM_HostedService (8.2.5.4.9.5)
CIM_RegisteredSubProfile (8.2.5.4.9.16)
CIM_RegisteredSubProfile (8.2.5.4.9.17)
CIM_SubProfileRequiresProfile (8.2.5.4.9.20)
CIM_System (8.2.5.4.9.21)

Optional Classes
CIM_AuthorizationRule (8.2.5.4.9.1)
CIM_AuthorizationRuleAppliesToRole (8.2.5.4.9.2)
CIM_Identity (8.2.5.4.9.6)
CIM_ManagedElement (8.2.5.4.9.7)
CIM_MemberOfCollection (8.2.5.4.9.8)
CIM_MoreRoleInfo (8.2.5.4.9.9)
CIM_OtherRoleInformation (8.2.5.4.9.10)
CIM_OwningCollectionElement (8.2.5.4.9.11)
CIM_PolicyRuleInSystem (8.2.5.4.9.12)
CIM_Privilege (8.2.5.4.9.13)
CIM_PrivilegeManagementService (8.2.5.4.9.14)
CIM_RegisteredProfile (8.2.5.4.9.15)
CIM_Role (8.2.5.4.9.18)
CIM_RoleLimitedToTarget (8.2.5.4.9.19)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 477



 

Class Mandatory: false

8.2.5.4.9.2 CIM_AuthorizationRuleAppliesToRole
Class Mandatory: false

8.2.5.4.9.3 CIM_ConcreteDependency
Class Mandatory: true

8.2.5.4.9.4 CIM_ElementConformsToProfile
Class Mandatory: true

8.2.5.4.9.5 CIM_HostedService
Class Mandatory: true

Table 474: SMI Referenced Properties/Methods for CIM_AuthorizationRule

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
PolicyRuleName string Key

Table 475: SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToRole

Property Flags Type Description & Notes
Mandatory Properties/Methods

PolicySet CIM_AuthorizationRule Key
ManagedElement CIM_Role Key

Table 476: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement Key
Dependent CIM_ManagedElement Key

Table 477: SMI Referenced Properties/Methods for CIM_ElementConformsToProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

ConformantStandard CIM_RegisteredProfile Key
ManagedElement CIM_ManagedElement Key

Table 478: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_Service Key
478



 Security Role Based Access Control Subprofile
8.2.5.4.9.6 CIM_Identity
Class Mandatory: false

8.2.5.4.9.7 CIM_ManagedElement
Class Mandatory: false
No specified properties or methods.

8.2.5.4.9.8 CIM_MemberOfCollection
Class Mandatory: false

8.2.5.4.9.9 CIM_MoreRoleInfo
Class Mandatory: false

8.2.5.4.9.10 CIM_OtherRoleInformation
Class Mandatory: false

Table 479: SMI Referenced Properties/Methods for CIM_Identity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
CurrentlyAuthenticated boolean Entity is authenticated to use this Iden-

tity.

Table 480: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection Key
Member CIM_ManagedElement Key

Table 481: SMI Referenced Properties/Methods for CIM_MoreRoleInfo

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Role
Dependent CIM_OtherRoleInformati

on

Table 482: SMI Referenced Properties/Methods for CIM_OtherRoleInformation

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key, Must match that of Role
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 479



 

8.2.5.4.9.11 CIM_OwningCollectionElement
Class Mandatory: false

8.2.5.4.9.12 CIM_PolicyRuleInSystem
Class Mandatory: false

8.2.5.4.9.13 CIM_Privilege
Class Mandatory: false

8.2.5.4.9.14 CIM_PrivilegeManagementService
Class Mandatory: false

Table 483: SMI Referenced Properties/Methods for CIM_OwningCollectionElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

OwningElement CIM_ManagedElement Key
OwnedElement CIM_Collection Key

Table 484: SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_PolicyRule Key

Table 485: SMI Referenced Properties/Methods for CIM_Privilege

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RepresentsAuthorizationRights boolean Rights are to assign rights.
PrivilegeGranted boolean Instantiated Privileges will only be 

granted.

Table 486: SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key
480



 Security Role Based Access Control Subprofile
8.2.5.4.9.15 CIM_RegisteredProfile
Class Mandatory: false

8.2.5.4.9.16 CIM_RegisteredSubProfile
Class Mandatory: true

8.2.5.4.9.17 CIM_RegisteredSubProfile
Class Mandatory: true

8.2.5.4.9.18 CIM_Role
Class Mandatory: false

Table 487: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string Parent subprofile

Table 488: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string This subprofile

Table 489: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization uint16
RegisteredName string

Table 490: SMI Referenced Properties/Methods for CIM_Role

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 481



 

8.2.5.4.9.19 CIM_RoleLimitedToTarget
Class Mandatory: false

8.2.5.4.9.20 CIM_SubProfileRequiresProfile
Class Mandatory: true

8.2.5.4.9.21 CIM_System
Class Mandatory: true

8.2.5.4.10 Related Standards

EXPERIMENTAL

Table 491: SMI Referenced Properties/Methods for CIM_RoleLimitedToTarget

Property Flags Type Description & Notes
Mandatory Properties/Methods

DefiningRole CIM_Role Key
TargetElement CIM_ManagedElement Key

Table 492: SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_RegisteredSubProf
ile

Key

Antecedent CIM_RegisteredProfile Key

Table 493: SMI Referenced Properties/Methods for CIM_System

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key

Table 494: Related Standards for Security RBAC

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
482



 IdentityManagement Subprofile
EXPERIMENTAL

8.2.5.5 IdentityManagement Subprofile  

8.2.5.5.1 Description
This subprofile of the Security profile provides support for adding and managing users of a system and
for mapping those users to accounts, people and organizations. 

Users are assumed to have Identity instances to represent their ability to be authenticated. Identity
instances may stand alone or may be linked to Accounts, Organizations, OrgUnits, UserContacts,
Persons, Groups or Roles. 

All Identity instances shall be unique within the namespace of the conformant System. 

8.2.5.5.2 Identities
Identities represent a user of a system and when authenticated, represent a security principal.’

Authentication is performed by an authentication service which may be represented as an
AuthenticationService. If represented, this specification relies on the implementation to instantiate
appropriate ServiceAffectsElement associations between the AuthenticationService and an Identities.

If there are multiple Systems in the namespace, and the Identity is scoped to a particular System, then
IdentityContext associations shall be instantiated between the Identity and the scoping System.
CreateInstance and DeleteInstance may be used to instantiate IdentityContext associations.
IdentityContext instances shall be deleted by the infrastructure as a side-affect of deleting an Identity.

Figure 81: Identities

Identity

InstanceID: string
CurrentlAuthenticated: boolean

System

CreationClassName: string {key}
Name: string {key}

RegisteredProfile

RegisteredName = “Security”

RegisteredSubProfile

RegisteredName = “Security IdentityManagement

ElementConformsToProfile

SubProfileRequiresProfile*

*

0..1

*

IdentityContext

*

*

StorageHardwareID
StorageID: string
IDType: uint16 {enum}
OtherIDType: string

GatewayPathID

GatewayID: string
GatewayIDType: uint16 {enum}

AuthenticationService

HostedService

1

*
*

ConcreteDependency
ServiceAvailableToElement

*

*

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 483



 

8.2.5.5.2.1 Stand-alone Identities
Two types of stand-alone Identities may be instantiated, StorageHardwareID and GatewayPathID. Use
CreateInstance and DeleteInstance to instantiate stand-alone Identities. The detailed specification for
use of StorageHardwareID and GatewayPathID instances is deferred to profiles or subprofiles that
reference this subprofile.

8.2.5.5.2.2 Network Identities
NetworkIdentities represent a particular IPProtocolEndpoint or a collection of IPProtocolEndpoints. 

Figure 82: IPNetworkIdentity

Identity

InstanceID: string
CurrentlAuthenticated: boolean

*

0..1

IPNetworkIdentity

IdentityType: uint16 {enum}
IdentityValue: string

IPProtocolEndpont
AssignedIdentity

RangeOfIPAddresses
AssignedIdentity

0..1

MemberOfCollection*
*

IdentityContext

*

*

ManagedElement
484



 IdentityManagement Subprofile
8.2.5.5.3 Accounts
Accounts are used for the purpose of authenticating Identities and may additionally be used to as a
basis for tracking other information about the use of a system by a particular Identity. Account is
essentially another aspect of Identity and is associated via ConcreteIdentity. 

When creation of Accounts is supported, the implementation shall present an
AccountManagementService instance together with HostedService and ServiceAvailableToElement
associations.

If an AccountManagementService is present, instances of Account may be added or deleted using the
CreateInstance and DeleteInstance intrinsic methods. The key properties: SystemCreationClassName,
SystemName, CreationClassName, and Name of each Account shall be fully specified at creation time.
The implementation shall add or delete the AccountOnSystem associations automatically. 

Modeling one or more AccountManagementService instances is optional for this subprofile. If there is
only one AccountManagementService with a ServiceAvailableToElement association to the named
System, then a ManagesAccount association may be implied or the implementation may automatically
instantiate one. However if there is more than one AccountManagementService with a
ServiceAvailableToElement association to the named System, an instance of ManagesAccount shall be
added by a CreateInstance of an Account. The choice of which AccountManagementService to
associate to is made intrinsically by the implementation. ManagesAccount instances are deleted
automatically when an Account is deleted. 

For each Account instance, this subprofile recommends a corresponding Identity instance, associated
by ConcreteIdentity. When the Account is created, UserID is set and the UserPassword is specified in
clear-text. The creation request is expected to be performed over a secure channel. This subprofile
REQUIRES that the UserPassword property shall be write only. 

UserContact and Person instances that are associated to an Account via a common Identity instance
may have the same, non-null UserID. Setting UserID, UserCertificate or UserPassword properties on
such related Account, UserContact or Person instances shall also set the corresponding entries in
matching instances.

Figure 83: Account Management

AccountManagementService

*

Account

SystemCreationClassName: string {key}
SystemName: string {key}
CreationClassName: string {key}
Name: string{key}
Userid: string
ObjectClass: String [ ]
Descriptions: string[ ] 
Host: string[ ]
LocalityName: string[ ]
OrganizationName: string[ ]
OU: string[ ]
SeeAlso: string[ ] 
UserCertificate: string[ ] {octetstring} 
UserPassword: string[ ] {octetstring} 

AccountOnSystem

*w

*ManagesAccount

Identity

InstanceID: string
CurrentlAuthenticated: boolean

ConcreteIdentity*
*

AccountMapsToAccount

*

*

System

CreationClassName: string {key}
Name: string {key}

1

HostedService

1

*w

ServiceAvailableToElement

*

*

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 485



 

8.2.5.5.4 Organizational Directories
There are three basic types of OrganizationalEntities that may be stored in a namespace:

• Organization instances describe top-level entities, like organizations. (See 8.2.5.5.4.1,
"Organizations".)

• OrgUnit instances describe sub-units of organizations. (See 8.2.5.5.4.1, "Organizations".)

• UserEntity instances describe people. (See 8.2.5.5.4.2, "OPeople".)

Any OrganizationalEntity may aggregate any number of Collections, such as Groups or Roles. This is
managed by CreateInstance or DeleteInstance of CollectionInOrganization associations. This
association may be used to associate a Collection to at most one OrganizationalEntity.

Any System may aggregate any number of Collections. This is managed by CreateInstance or
DeleteInstance of OwningCollectionElement associations. This association may be used to associate a
Collection to at most one System. 

A single Collection shall not have both OwningCollectionElement and CollectionInOrganization
associations.

Any OrganizationalEntity may aggregate any number of other OrganizationalUnits. For example, a
Company may have Business Units and Business Units may have Departments. This is managed by
CreateInstance or DeleteInstance of OrgStructure associations. An OrganizationalUnit may belong to at
most one OrganizationalUnit.

Figure 84: OrganizationalEntities

*

OrganizationalEntity

0..1

UserEntity

<See People>

Organization

<See Organization>

OrgStructure

OrgUnit

<See Organization>
486



 IdentityManagement Subprofile
8.2.5.5.4.1 Organizations
There are two types of OrganizationalEntities. (See Figure 8.2.5.5.4.2: "OPeople".) The difference
between the two is largely subjective, however this subprofile RECOMMENDS that Organization
instances be used to describe businesses, clubs, families, or governments and that OrgUnit instances
be used to describe sub-units within Organizations. To make the amount of information provided in
these classes more manageable, much of the less commonly used information is defined by properties
of the OtherOrganizationInfo and OtherOrgUnitInfo classes respectively, 

The key properties: CreationClassName and Name of each shall be fully specified at creation time.
Name defines a namespace unique name for the instance of the class. Additionally, the
OganizationName or OU properties are also required and name the OrganizationalEntity. 

Either or these classes may be added or deleted by the CreateInstance or DeleteInstance intrinsic
methods. 

At most one OtherOrganizationalInfo or OtherOrgUnitInfo instance per respective Organization or
OrgUnit may be instantiated using CreateInstance or DeleteInstance. When instantiated a
MoreOrganizationInfo or MoreOrgUnitInfo association is instantiated to the corresponding Organization
or OrgUnit with the same Name. It is an error if either there is no matching instance or there is already
an instance of this type with the same Name.

Figure 85: Organizations and OrgUnits

M o re O rg a n iz a t io n In fo

O rg a n iz a tio n a lE n tity

O rg a n iz a t io n

C re a tio n C la s s N a m e : s tr in g   {K e y }
N a m e : s tr in g  {K e y }
B u s in e s s C a te g o ry : s tr in g
F a c s im ile T e le p h o n e N u m b e r : s tr in g
L o c a lity N a m e : s tr in g
M a il: s tr in g
O rg a n iz a t io n N a m e : s tr in g  {R e q 'd }
P o s ta lA d d re s s : s tr in g [ ]  
P o s ta lC o d e : s tr in g
S ta te O rP ro v in c e : s tr in g
T e le p h o n e N u m b e r : s tr in g

O th e rO rg a n iz a tio n In fo rm a tio n

C re a tio n C la s s N a m e : s tr in g  {k e y }  
N a m e : s tr in g  {k e y }   
O b je c tC la s s : S tr in g  [ ]
B u s in e s s C a te g o ry : s tr in g [ ]
D e s c r ip tio n s : s tr in g [ ]
D e s t in a tio n In d ic a to r : s tr in g [ ]
F a c s im ile T e le p h o n e N u m b e r : s tr in g [ ]
In te rn a tio n a liS D N N u m b e r: s tr in g [ ]
L a b e le d U R I: s tr in g  [  ]
L o c a lity N a m e : s tr in g [ ]
M a il: s tr in g [ ]
M a n a g e r : s tr in g [ ] 
O rg a n iz a t io n N a m e : s tr in g [ ]
O th e rM a ilb o x : s tr in g [ ]
P h y s ic a lD e liv e ry O ff ic e N a m e : s tr in g [ ]
P o s ta lA d d re s s : s tr in g [ ]  
P o s ta lC o d e : s tr in g [ ]
P o s tO ffic e B o x : s tr in g [ ]
P re fe rre d D e liv e ry M e th o d : s tr in g
R e g is te re d A d d re s s :s tr in g [ ]
S e a rc h G u id e : s tr in g [ ]
S e e A ls o : s tr in g [ ] 
S ta te O rP ro v in c e : s tr in g [ ] 
S tre e t:  s tr in g [ ]
T e le p h o n e N u m b e r : s tr in g [ ] 
T e le te x T e rm in a lId e n t if ie r:  s tr in g [ ]
T e le x N u m b e r : s tr in g [ ]
T h u m b n a ilL o g o : s tr in g [ ] {o c te ts tr in g }
U n iq u e Id e n tif ie r :  s tr in g [ ]
U s e rP a s s w o rd : s tr in g [ ] {o c te ts tr in g }
X 1 2 1 A d d re s s : s tr in g [ ] 

1

0 ..1

O rg U n it

C re a tio n C la s s N a m e : s tr in g  {k e y }  
N a m e : s tr in g  {k e y }  
B u s in e s s C a te g o ry : s tr in g
F a c s im ile T e le p h o n e N u m b e r : s tr in g
L o c a lity N a m e : s tr in g
O U : s tr in g  {R e q 'd }
P o s ta lA d d re s s : s tr in g [ ] 
P o s ta lC o d e : s tr in g
S ta te O rP ro v in c e : s tr in g
T e le p h o n e N u m b e r : s tr in g

O th e rO rg U n it In fo rm a tio n

C re a tio n C la s s N a m e : s tr in g  {k e y }  
N a m e : s tr in g  {k e y }  
O b je c tC la s s : S tr in g  [  ]
B u s in e s s C a te g o ry : s tr in g [ ]
D e s c r ip tio n s : s tr in g [ ]
D e s tin a tio n In d ic a to r :  s tr in g [ ]
F a c s im ile T e le p h o n e N u m b e r : s tr in g [ ]
In te rn a t io n a liS D N N u m b e r: s tr in g [ ]
L o c a lity N a m e : s tr in g [ ]
O U : s tr in g [ ]  
P h y s ic a lD e liv e ry O ffic e N a m e : s tr in g [ ]
P o s ta lA d d re s s : s tr in g [ ] 
P o s ta lC o d e : s tr in g [ ]
P o s tO ffic e B o x : s tr in g [ ]
P re fe r re d D e liv e ry M e th o d : s tr in g
S e a rc h G u id e : s tr in g [ ]
S e e A ls o : s tr in g [ ]  
S ta te O rP ro v in c e : s tr in g [ ] 
S tre e t: s tr in g [ ]
T e le p h o n e N u m b e r : s tr in g [ ]  
T e le te x T e rm in a lId e n tif ie r: s tr in g [ ]
T e le x N u m b e r : s tr in g [ ]
U s e rP a s s w o rd : s tr in g [ ]  {o c te ts tr in g }
X 1 2 1 A d d re s s : s tr in g [ ]   

M o re O rg U n it In fo

1

0 ..1
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 487



 

8.2.5.5.4.2 OPeople
A person may be represented by either an Account instance, (see Figure 8.2.5.5.3: "Accounts"), or by a
UserContact instance, (see Figure 86: "People".) Subjectively, Accounts are used to authenticate and
track user of a system, where UserContacts are used to represent a person to clients of a system. 

The Person class subclasses from UserContact and provides additional information about a person.
This is further enhanced by OtherPersonInformation. 

A Person instance together with an OtherPersonInformation instance provides UserID and Password.
As such, the pair could be used for authentication, in place of Account. However this subprofile
RECOMMENDS that Account instances be used for authentication and that UserContact instances be
used to describe directory information about a person. 

Instances of UserContact, Person, OtherPersonInformation, and MorePersonInfo may be added or
deleted using CreateInstance and DeleteInstance intrinsic methods. The key properties of each shall
be fully specified at creation time. Additionally the Surname property is required for UserContact or
Person instances. 

There shall be exactly one Person instance with the same Name property for each instantiated
OtherPersonInfo instance.

UserContact and Person instances associated to the same Identity match an Account instance with the
same, non-null UserID. Setting UserID, UserCertificate or UserPassword properties on Account,
UserContact or Person instances shall also set the corresponding entries in matching instances.

For this subprofile, when a UserContact or Person instance is created, it is mandatory to create an
Identity associated via AssignedIdentity. 

Figure 86: People
UserEntity

Person

BusinessCategory: string
CommonName: string {Req'd}
EmployeeNumber: string
EmployeeType: string
FacsimileTelephoneNumber: string
HomePhone: string
HomePostalAddress: string[ ]
JpegPhoto: uint8[ ] {octetstring}
Manager: string 
Mobile: string
OU: string
Pager: string
PreferredLanguage: string
Secretary: string 
Title: string

1
0..1

UserContact

CreationClassName: string {key}
Name: string {key}   
GivenName: string
Surname: string {Req'd}
Mail:string
UserID: string
LocalityName: string
PostalAddress: string[ ]
StateOrProvince: string
PostalCode: string
TelephoneNumber: string

MorePersonInfo

OtherPersonInformation

CreationClassName: string {key}  
Name: string {key}  
ObjectClass: String [ ]
Audio: string[ ] {octetstring}
BusinessCategory: string[ ]
CarLicense: string[ ]
CommonName: string[ ]
CountryName: string[ ]
DepartmentNumber: string[ ]
Descriptions: string[ ]
DestinationIndicator: string[ ]
DisplayName: string[ ] 
EmployeeNumber: string
EmployeeType: string[ ] 
FacsimileTelephoneNumber: string[ ]
GenerationQualifier:string[ ]
GivenName: string[ ]
HomeFax: string[ ]
HomePhone: string[ ]
HomePostalAddress: string[ ]
Initials: string[ ]
InternationaliSDNNumber: string[ ]
JpegPhoto: string[ ] {octetstring}
LabeledURI: string[ ]
LocalityName: string[ ]
Mail:string[ ]
Manager: string[ ] 
MiddleName: string[ ]
Mobile: string[ ]
OrganizationName: string[ ]
OrganizationalStatus: string[ ]
OtherMailbox: string[ ]

OU: string[ ]
Pager: string[ ]
PersonalTitle: string[ ]
Photo: string[ ] {octetstring}
PhysicalDeliveryOfficeName: string[ ]
PostalAddress: string[ ] 
PostalCode: string[ ]
PostOfficeBox: string[ ]
PreferredDeliveryMethod: string
PreferredLanguage: string
RegisteredAddress : string[ ]
RoomNumber: string[ ]
Secretary: string[ ] 
SeeAlso: string[ ] 
StateOrProvince: string[ ] 
Street: string[ ]
Surname: string[ ]
TelephoneNumber: string[ ] 
TeletexTerminalIdentifier: string[ ]
TelexNumber: string[ ]
ThumbnailLogo: string[ ] {octetstring} 
ThumbnailPhoto: string[ ] {octetstring}
Title: string[ ]
UserID: string[ ]
UniqueIdentifier: string[ ] 
UserCertificate: string[ ] {octetstring} 
UserPassword: string[ ] {octetstring} 
UserPKCS12: string[ ] {octetstring} 
UserSMIMECertificate: string[ ] {octetstring} 
X121Address: string[ ]
X500UniqueIdentifier: string[ ] {octetstring} 

Identity

InstanceID: string
CurrentlAuthenticated: boolean

AssignedIdentity *

*

488



 IdentityManagement Subprofile
8.2.5.5.5 Groups
A Group is an aggregation of ManagedElements. These shall be Identities. An Identity is assigned to a
Group via AssignedIdentity in order to assign privileges to a Group or to incorporate a Group into a
Role. Unless otherwise specified, the Authentication policy for the Group Identity is that a successful
authentication of a MemberOfCollection Identity also authenticates the Group Identity for that user. 

Both Groups and Roles may be aggregated via OwningCollectionElement into an OrganizationalEntity
instance.

Member information defined by an OtherGroupInformation instance may be associated to a Group via
the MoreGroupInfo association. 

All of these associations, OwningCollectionElement, MemberOfCollection, AssignedIdentity, and
MoreGroupInformation, may be added or deleted via CreateInstance or DeleteInstance intrinsic
methods: The key properties of each shall be fully specified at creation time. 

All may be added or deleted using CreateInstance and DeleteInstance intrinsic methods. The key
properties of each shall be fully specified at creation time. In addition to their keys, both Roles and
Groups require that the CommonName property shall be specified at creation time. 

There shall be exactly one Group instance with the same Name property for each instantiated
OtherGroupInformation instance.

Figure 87: Groups and Roles

8.2.5.5.6 Client Considerations and Recipes

8.2.5.5.6.1 Create a new User instance with an associated Identity
// DESCRIPTION

// This recipe will create a UserContact and an associated Identity. 

OrganizationalEntity

0..1

Group

CreationClassName: string {key}
Name: string {key}  
BusinessCategory: string
CommonName: string {Req'd}

OtherGroupInformation

CreationClassName: string {key}
Name: string {key}  
ObjectClass: String [ ]
BusinessCategory: string[ ]
CommonName: string[ ]
Descriptions: string[ ]
OrganizationName: string[ ]
OU: string[ ]
Owner: string[ ]  
SeeAlso: string[ ]  

1

MoreGroupInfo

0..1

MemberOfCollection *

*
Identity

Of Group Members

AssignedIdentity *

MemberOfCollection

*

*

OwningCollectionElement

*

Identity
Of the Group

*

System

CreationClassName: string {key}
Name: string {key}

OwningCollectionElement

0..1
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 489



 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// $User is a template supplied by the application for a new 

//  instance of the class CIM_UserContact or one of its subclasses. 

//  It is up to the incorporating profile to define exactly what subclass of 

//  UserContact and any constraints on properties that must be filled in and what 
values are permissible.

// Create a new Identity for the UserContact

//

$Identity = NewInstance(“CIM_Identity”)

$Identity-> = CreateInstance($Identity)

// Create the UserContact instance

//

$User-> = CreateInstance($User);

// Create AssignedIdentity between UserContact and Identity

//

$AssignedIdentity = NewInstance(“CIM_AssignedIdentity”)

$AssignedIdentity.IdentityInfo = $Identity->

$AssignedIdentity.ManagedElement= $User->

$AssignedIdentity-> = CreateInstance($AssignedIdentity)

// ON OUTPUT

//

// $User-> References the User

// $Identity-> References the Identity of the Account

// $AssignedIdentity-> References the AssignedIdentity association

8.2.5.5.6.2 Create an Account for an Identity
// DESCRIPTION

// This recipe creates an Account and attaches it to an existing Identity.

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// $Identity-> points to an Identity.

//

// $Account contains a new Account. 

// Account.UserID MUST be set.  It is synonomous with User Name.

//          If the named Identity has an AssignedIdentity association to a 
UserContact instance, then 

//          theAccount.UserID MUST match that of UserContact. 

//      Account.Password must be set to the encrypted value that it will compare 
to.

// Create the Account

//

$Account-> = CreateInstance($Account);
490



 IdentityManagement Subprofile
// Create ConcreteIdentity between Account and Identity

//

$ConcreteIdentity = NewInstance(“CIM_ConcreteIdentity”)

$ConcreteIdentity.SameElement = $Identity->

$ConcreteIdentity.SystemElement = $Account->

$ConcreteIdentity-> = CreateInstance($ConcreteIdentity)

// ON OUTPUT

//

// $Account-> References the Account

// $Identity-> References the Identity of the Account

// $ConcreteIdentity-> References the ConcreteIdentity association

8.2.5.5.6.3 Create an Account and attach it to an existing User
// DESCRIPTION

// This recipe creates an Account and attach it to an existing User.

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// $User-> points to an UserContact.

//      This recipe assumes that each UserContact instance has at least one 
Identity

//      A user may have zero or more accounts.  Each Account/User pair has exactly 
one Identity.

//      Account and Identity correlate on UserID

//

// $Account contains a new Account. 

// Account.UserID MUST be set.  It is synonomous with User Name.

//          If the named Identity has an AssignedIdentity association to a 
UserContact instance, then 

//          theAccount.UserID MUST match that of UserContact. 

//      Account.Password must be set to the encrypted value that it will compare 
to.

//  Get Identities currrently assigned to the User.

//

$Identity->[] = AssociatorNames ($User->, “CIM_AssignedIdentity”,null,null)

// Case 1: Account.UserID matches User.UserID

//

if ($Account.UserID = $User->UserID)

{

    // This is the principal Account.  

    // To simplify, this recipe assumes this is the first Account added.

    //

    if ($Identity->[]size() != 1)

    {
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 491



 

<ERROR! Expecting exactly one Identity when adding principal account>

    }

    $Account2->[] = AssociatorNames ($Identity[1]->, 
“CIM_ConcreteIdentity”,”CIM_Account”,null,null)

    if ($Account2->[]size() != 0)

    {

<ERROR! Principal account is already added.>

    }

    // Create the Account

    //

    $Account-> = CreateInstance($Account);

    // Create ConcreteIdentity between Account and Identity

    //

    $ConcreteIdentity = NewInstance(“CIM_ConcreteIdentity”)

    $ConcreteIdentity.SameElement = $Identity->[1]

    $ConcreteIdentity.SystemElement = $Account->

    $ConcreteIdentity-> = CreateInstance($ConcreteIdentity)

    <EXIT: “Principal Account Added”>

}

// If we are here, we are adding a secondary account.  We assume the account does 
not already exist.

//  But don’t take it for granted.

for #i in $Identity->[] 

{

    $Account2[] = AssociatorNames ($Identity->[#i], 
“CIM_ConcreteIdentity”,”CIM_Account”,null,null)

    for #j in $Account2->[]

    {

        if (Account.UserID = Account2->[#j].UserID)

        {

    <ERROR! Specified secondary account is already added.>

        }

    }

}

// Create the Account and create a new Identity instance together with 
associations.

//

$Account-> = CreateInstance($Account);

$Identity = NewInstance($Identity);

$Identity-> = CreateInstance($Identity);

// Create ConcreteIdentity between Account and Identity
492



 IdentityManagement Subprofile
//

$ConcreteIdentity = NewInstance(“CIM_ConcreteIdentity”)

$ConcreteIdentity.SameElement = $Identity->

$ConcreteIdentity.SystemElement = $Account->

$ConcreteIdentity-> = CreateInstance($ConcreteIdentity)

// Create AssignedIdentity between User and Identity

//

$AssignedIdentity = NewInstance(“CIM_AssignedIdentity”)

$AssignedIdentity.IdentityInfo = $Identity->

$AssignedIdentity.ManagedElement= $User->

$AssignedIdentity-> = CreateInstance($AssignedIdentity)

// Check that all these instances are created

//

try {

$Account = GetInstance($Account->)

$Identity = GetInstance($Identity->)

$ConcreteIdentity = GetInstance($ConcreteIdentity->)

$AssignedIdentity = GetInstance($AssignedIdentity->)

} 

catch (CIM Exception $Exception) {

throw $Exception

}

<EXIT: “Secondary Account Added”>

8.2.5.5.7 Registered Name and Version
Security Identity Management version 1.1.0

8.2.5.5.8 CIM Server Requirements

Table 495: CIM Server Requirements for Security Identity Management

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications No
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 493



 

8.2.5.5.9 CIM Elements

Table 496: CIM Elements for Security Identity Management

Element Name Description
Mandatory Classes

CIM_AccountMapsToAccount (8.2.5.5.9.3)
CIM_AccountOnSystem (8.2.5.5.9.4)
CIM_AssignedIdentity (8.2.5.5.9.5)
CIM_ConcreteDependency (8.2.5.5.9.7)
CIM_ConcreteIdentity (8.2.5.5.9.8)
CIM_ElementConformsToProfile (8.2.5.5.9.9)
CIM_HostedService (8.2.5.5.9.12)
CIM_IdentityContext (8.2.5.5.9.15)
CIM_ManagesAccount (8.2.5.5.9.17)
CIM_RegisteredSubProfile (8.2.5.5.9.34)
CIM_ServiceAvailableToElement (8.2.5.5.9.35)
CIM_SubProfileRequiresProfile (8.2.5.5.9.37)
CIM_System (8.2.5.5.9.38)

Optional Classes
CIM_Account (8.2.5.5.9.1)
CIM_AccountManagementService (8.2.5.5.9.2)
CIM_AuthenticationService (8.2.5.5.9.6)
CIM_GatewayPathID (8.2.5.5.9.10)
CIM_Group (8.2.5.5.9.11)
CIM_IPNetworkIdentity (8.2.5.5.9.13)
CIM_Identity (8.2.5.5.9.14)
CIM_ManagedElement (8.2.5.5.9.16)
CIM_MemberOfCollection (8.2.5.5.9.18)
CIM_MoreGroupInfo (8.2.5.5.9.19)
CIM_MoreOrgUnitInfo (8.2.5.5.9.20)
CIM_MoreOrganizationInfo (8.2.5.5.9.21)
CIM_MorePersonInfo (8.2.5.5.9.22)
CIM_OrgStructure (8.2.5.5.9.23)
CIM_OrgUnit (8.2.5.5.9.24)
CIM_Organization (8.2.5.5.9.25)
CIM_OrganizationalEntity (8.2.5.5.9.26)
CIM_OtherGroupInformation (8.2.5.5.9.27)
CIM_OtherOrgUnitInformation (8.2.5.5.9.28)
CIM_OtherOrganizationInformation (8.2.5.5.9.29)
CIM_OtherPersonInformation (8.2.5.5.9.30)
CIM_OwningCollectionElement (8.2.5.5.9.31) shall not be present if CollectionInOrganization is 

present.
494



 IdentityManagement Subprofile
8.2.5.5.9.1 CIM_Account
Class Mandatory: false

8.2.5.5.9.2 CIM_AccountManagementService
Class Mandatory: false

CIM_Person (8.2.5.5.9.32)
CIM_RegisteredProfile (8.2.5.5.9.33)
CIM_StorageHardwareID (8.2.5.5.9.36)
CIM_UserContact (8.2.5.5.9.39)

Table 497: SMI Referenced Properties/Methods for CIM_Account

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key
Userid string The name the user is known by in the 

System. Matches any UserContact or 
Person with the same value. Changing 
here changes corresponding values on 
matching UserContact or Person 
instances.

UserCertificate string[] The Public Key Certificate of this user. 
Changing here changes corresponding 
values on matching UserContact or 
Person instances.

UserPassword string[] The password used with the UserID. 
Changing here changes corresponding 
values on matching UserContact or 
Person instances.

Table 498: SMI Referenced Properties/Methods for CIM_AccountManagementService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key

Table 496: CIM Elements for Security Identity Management

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 495



 

8.2.5.5.9.3 CIM_AccountMapsToAccount
Class Mandatory: true

8.2.5.5.9.4 CIM_AccountOnSystem
Class Mandatory: true

8.2.5.5.9.5 CIM_AssignedIdentity
Class Mandatory: true

8.2.5.5.9.6 CIM_AuthenticationService
Class Mandatory: false

8.2.5.5.9.7 CIM_ConcreteDependency
Class Mandatory: true

Table 499: SMI Referenced Properties/Methods for CIM_AccountMapsToAccount

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Account Key
Dependent CIM_Account Key

Table 500: SMI Referenced Properties/Methods for CIM_AccountOnSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System Key
PartComponent CIM_Account Key

Table 501: SMI Referenced Properties/Methods for CIM_AssignedIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

IdentityInfo CIM_Identity Key
ManagedElement CIM_ManagedElement Key

Table 502: SMI Referenced Properties/Methods for CIM_AuthenticationService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key

Table 503: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement Key
496



 IdentityManagement Subprofile
8.2.5.5.9.8 CIM_ConcreteIdentity
Class Mandatory: true

8.2.5.5.9.9 CIM_ElementConformsToProfile
Class Mandatory: true

8.2.5.5.9.10 CIM_GatewayPathID
Class Mandatory: false

8.2.5.5.9.11 CIM_Group
Class Mandatory: false

Dependent CIM_ManagedElement Key

Table 504: SMI Referenced Properties/Methods for CIM_ConcreteIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemElement CIM_ManagedElement Key
SameElement CIM_ManagedElement Key

Table 505: SMI Referenced Properties/Methods for CIM_ElementConformsToProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

ConformantStandard CIM_RegisteredProfile Key
ManagedElement CIM_ManagedElement Key

Table 506: SMI Referenced Properties/Methods for CIM_GatewayPathID

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
CurrentlyAuthenticated boolean True if currently authenticated

Table 507: SMI Referenced Properties/Methods for CIM_Group

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key
CommonName string The Name by which the Group is 

known

Table 503: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 497



 

8.2.5.5.9.12 CIM_HostedService
Class Mandatory: true

8.2.5.5.9.13 CIM_IPNetworkIdentity
Class Mandatory: false

8.2.5.5.9.14 CIM_Identity
Class Mandatory: false

8.2.5.5.9.15 CIM_IdentityContext
Class Mandatory: true

8.2.5.5.9.16 CIM_ManagedElement
Class Mandatory: false
No specified properties or methods.

Table 508: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_Service Key

Table 509: SMI Referenced Properties/Methods for CIM_IPNetworkIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
CurrentlyAuthenticated boolean True if currently authenticated

Table 510: SMI Referenced Properties/Methods for CIM_Identity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
CurrentlyAuthenticated boolean True if currently authenticated

Table 511: SMI Referenced Properties/Methods for CIM_IdentityContext

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementInContext CIM_Identity Key
ElementProvidingContext CIM_ManagedElement Key
498



 IdentityManagement Subprofile
8.2.5.5.9.17 CIM_ManagesAccount
Class Mandatory: true

8.2.5.5.9.18 CIM_MemberOfCollection
Class Mandatory: false

8.2.5.5.9.19 CIM_MoreGroupInfo
Class Mandatory: false

8.2.5.5.9.20 CIM_MoreOrgUnitInfo
Class Mandatory: false

8.2.5.5.9.21 CIM_MoreOrganizationInfo
Class Mandatory: false

Table 512: SMI Referenced Properties/Methods for CIM_ManagesAccount

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_AccountManagem
entService

Key

Dependent CIM_Account Key

Table 513: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection
Member CIM_ManagedElement

Table 514: SMI Referenced Properties/Methods for CIM_MoreGroupInfo

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Group
Dependent CIM_OtherGroupInform

ation

Table 515: SMI Referenced Properties/Methods for CIM_MoreOrgUnitInfo

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_OrgUnit
Dependent CIM_OtherOrgUnitInfor

mation

Table 516: SMI Referenced Properties/Methods for CIM_MoreOrganizationInfo

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Organization
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 499



 

8.2.5.5.9.22 CIM_MorePersonInfo
Class Mandatory: false

8.2.5.5.9.23 CIM_OrgStructure
Class Mandatory: false

8.2.5.5.9.24 CIM_OrgUnit
Class Mandatory: false

8.2.5.5.9.25 CIM_Organization
Class Mandatory: false

Dependent CIM_OtherOrganizationI
nformation

Table 517: SMI Referenced Properties/Methods for CIM_MorePersonInfo

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Person
Dependent CIM_OtherPersonInform

ation

Table 518: SMI Referenced Properties/Methods for CIM_OrgStructure

Property Flags Type Description & Notes
Mandatory Properties/Methods

Parent CIM_OrganizationalEntit
y

Child CIM_OrganizationalEntit
y

Table 519: SMI Referenced Properties/Methods for CIM_OrgUnit

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key
OU string The Name by which the Organizational 

Unit is known

Table 520: SMI Referenced Properties/Methods for CIM_Organization

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key

Table 516: SMI Referenced Properties/Methods for CIM_MoreOrganizationInfo

Property Flags Type Description & Notes
500



 IdentityManagement Subprofile
8.2.5.5.9.26 CIM_OrganizationalEntity
Class Mandatory: false
No specified properties or methods.

8.2.5.5.9.27 CIM_OtherGroupInformation
Class Mandatory: false

8.2.5.5.9.28 CIM_OtherOrgUnitInformation
Class Mandatory: false

8.2.5.5.9.29 CIM_OtherOrganizationInformation
Class Mandatory: false

8.2.5.5.9.30 CIM_OtherPersonInformation
Class Mandatory: false

OrganizationName string The Name by which the Organization is 
known

Table 521: SMI Referenced Properties/Methods for CIM_OtherGroupInformation

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key, Must match that of Group

Table 522: SMI Referenced Properties/Methods for CIM_OtherOrgUnitInformation

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key, Must match that of OrgUnit.

Table 523: SMI Referenced Properties/Methods for CIM_OtherOrganizationInformation

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key, Must match that of Organization.

Table 524: SMI Referenced Properties/Methods for CIM_OtherPersonInformation

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key, Must match that of Person.

Table 520: SMI Referenced Properties/Methods for CIM_Organization

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 501



 

8.2.5.5.9.31 CIM_OwningCollectionElement
shall not be present if CollectionInOrganization is present.
Class Mandatory: false

8.2.5.5.9.32 CIM_Person
Class Mandatory: false

UserID string[] The Name by which the User is known 
to the System. Matches all Account or 
Person instances in the namespace 
with the same UserID. Changing here 
changes corresponding values on 
matching UserContact or Account 
instances.

UserCertificate string[] The Public Key Certificate of this user. 
Changing here changes corresponding 
values on matching UserContact or 
Account instances.

UserPassword string[] The password used with the UserID. 
Changing here changes the corre-
sponding values on matching UserCon-
tact or Account instances.

Table 525: SMI Referenced Properties/Methods for CIM_OwningCollectionElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

OwningElement CIM_ManagedElement
OwnedElement CIM_Collection

Table 526: SMI Referenced Properties/Methods for CIM_Person

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key
Surname string The Name by which the User is known 

to other Persons
UserID string The Name by which the User is known 

to the System. Matches all Account or 
Person instances in the namespace 
with the same UserID. Changing here 
changes corresponding values on 
matching UserContact or Account 
instances.

Table 524: SMI Referenced Properties/Methods for CIM_OtherPersonInformation

Property Flags Type Description & Notes
502



 IdentityManagement Subprofile
8.2.5.5.9.33 CIM_RegisteredProfile
Class Mandatory: false

8.2.5.5.9.34 CIM_RegisteredSubProfile
Class Mandatory: true

8.2.5.5.9.35 CIM_ServiceAvailableToElement
Class Mandatory: true

8.2.5.5.9.36 CIM_StorageHardwareID
Class Mandatory: false

Table 527: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string Parent subprofile

Table 528: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string This subprofile

Table 529: SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

ServiceProvided CIM_Service Key
UserOfService CIM_ManagedElement Key

Table 530: SMI Referenced Properties/Methods for CIM_StorageHardwareID

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
CurrentlyAuthenticated boolean True if currently authenticated
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 503



 

8.2.5.5.9.37 CIM_SubProfileRequiresProfile
Class Mandatory: true

8.2.5.5.9.38 CIM_System
Class Mandatory: true

8.2.5.5.9.39 CIM_UserContact
Class Mandatory: false

8.2.5.5.10 Related Standards

EXPERIMENTAL

Table 531: SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_RegisteredSubProf
ile

Key

Antecedent CIM_RegisteredProfile Key

Table 532: SMI Referenced Properties/Methods for CIM_System

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key

Table 533: SMI Referenced Properties/Methods for CIM_UserContact

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key
Surname string The Name by which the User is known 

to other users.
UserID string The Name by which the User is known 

to the System. Matches all Account or 
Person instances in the namespace 
with the same UserID. Changing here 
changes corresponding values on 
matching Person or Account instances.

Table 534: Related Standards for Security Identity Management

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
504



 CredentialManagement Subprofile
EXPERIMENTAL

8.2.5.6 CredentialManagement Subprofile  

8.2.5.6.1 Description
This subprofile provides for management of credentials used by a client to establish its identity to a
serving system. An administrator of both the client and server systems establishes an Identity for the
client on the server system and creates a credential for the client on the client system. 

Note: SMI-S Servers are often clients of other services. For instance, a device that is managed by an
SMI-S Server may require a login before it allows a client to discover or manage its components.
Credentials used to access devices are known within this specification as “device credentials”.

As shown in Figure 88: "Credential Management", this subprofile applies to a System as a whole. 

Credentials are created by a LocalCredentialManagementService. There shall be a one or more
LocalCredentialManagementService instances on a System conforming to this subprofile.

The Credentials are intended to authenticate a client on this System to a service running on a remote
system. There shall be one or more RemoteServiceAccessPoint instances for each of the Systems to
which Credentials may be presented.

Credential setup
The administrator needs to have prior knowledge about the type of Credential required by the remote
system. The LocalCredentialManagementService is subclassed into two types, a SharedSecretService
and a PublicKeyManagementService. If the latter is present, then UnsignedPublicKey Credentials are
supported. If the former, then SharedSecretService.Protocol = “SharedSecret” specifies that
SharedSecret credentials are supported and SharedSecretService.Protocol = “IKE” specifies that
NamedSharedIKESecret credentials are supported

The administrator uses CreateInstance and DeleteInstance to create or delete Credentials. The details
of each are described below. In common to all is that the key properties: SystemCreationClassName,
SystemName, ServiceCreationClassName, and ServiceName of each Credential shall be fully
specified at creation time. This information is used by the system to locate the correct
LocalCredentialManagementService instance and to snap the required IKESecretIsNamed,
SharedSecretIsShared or LocallyManagedPublicKey associations. Additionally certain remaining
properties of each credential shall be filled in as described below.

• Expires: Set to the datetime after which this credential will not be valid. Use a value of
“99991231235959.999999+999” if this field is to be ignored. 

SharedSecret Credential

• RemoteID: Set to the User ID or other value by which the client is known on the remote system.
Typically this will correspond to Account.Userid or Person.UserID as stored on the remote system.

• Secret: Set to the password or other value by which the client is authenticated on the remote
system. The value is provided in clear text. There is an underlying assumption that there is a
secure communication path being used between the administrator and the CIM Service on the
client system. This property is writable, but shall not be readable. Typically this will correspond to
Account.Userid or Person.UserID as stored on the remote system.

NamedSharedIKE Credential

• PeerIdentityType: This describes the type of identity used to locate the remote peer. It is an
enumerated type that shall correspond to one of the following values: “IPV4_ADDR”, “FQDN”,
“USER_FQDN”, “IPV4_ADDR_SUBNET”,”IPV6_ADDR”, “IPV6_ADDR_SUBNET”,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 505



 

“IPV4_ADDR_RANGE”, “IPV6_ADDR_RANGE”, “DER_ASN1_DN”, “DER_ASN1_GN”, or
“KEY_ID”.

• PeerIdentity: An identity value conforming to the PeerIdentityType and naming the remote peer
with whom a direct trust relation exists.

• LocalIdentityType: This describes the type of identity used to name the local peer. It is an
enumerated type that shall correspond to one of the following values: “IPV4_ADDR”, “FQDN”,
“USER_FQDN”, “IPV4_ADDR_SUBNET”,”IPV6_ADDR”, “IPV6_ADDR_SUBNET”,
“IPV4_ADDR_RANGE”, “IPV6_ADDR_RANGE”, “DER_ASN1_DN”, “DER_ASN1_GN”, or
“KEY_ID”. 

• LocalIdentity: An identity value conforming to the LocalIdentityType and naming the local peer with
whom a direct trust relation exists.

• SharedSecretName: On creation, this is set to the password or other shared value used to
authenticate the client. When read, this is an indirect reference to a shared secret. The
SecretService does not expose the actual secret. 

UnsignedPublicKey Credential

• PeerIdentityType: This describes the type of identity used to locate the remote peer. It is an
enumerated type that shall correspond to one of the following values: “IPV4_ADDR”, “FQDN”,
“USER_FQDN”, “IPV4_ADDR_SUBNET”,”IPV6_ADDR”, “IPV6_ADDR_SUBNET”,
“IPV4_ADDR_RANGE”, “IPV6_ADDR_RANGE”, “DER_ASN1_DN”, “DER_ASN1_GN”, or
“KEY_ID”.

• PeerIdentity: An identity value conforming to the PeerIdentityType and naming the remote peer
with whom a direct trust relation exists.

• PublicKey: The DER-encoded raw public key.
506



 CredentialManagement Subprofile
Figure 88: Credential Management

Credential Use
Once set up, a Credential may be enabled or disabled for use by using CreateInstance or
DeleteInstance to add or remove CredentialContext associations between a Credential and the
RemoteServiceAccessPoint used to access a remote system.

8.2.1.4, "Device Credentials Subprofile" for a complete discussion of the SMI-S requirements for
modeling device credentials.

The SMI-S Server shall securely store the device credentials local to the SMI-S Server. A proxy SMI-S
Server may need to store the credentials on disk so that they are available upon reboot. In this case the
credentials shall be encrypted for confidentiality.

The device credentials shall be transmitted securely from the SMI-S Server to the device. The
mechanism of communicating the credentials to the device is outside the scope of this specification, but
it should be over a secure channel if possible.

A SMI-S Server may be configured with the device credentials necessary to talk to the device. If a SMI-
S Server supports SSL 3.0 or TLS, the HTTP Client shall use SSL 3.0 or TLS to pass device credentials
to the SMI-S Server. When new device credentials are passed to an SMI-S Server, the device
credential information in the device shall be updated immediately.

Only the SMI-S Server responsible for communicating with the device has access to the properties of
the SharedSecret object. No other SMI-S Client may read the Secret property of this object as it shall
be implemented Write-Only.

SharedSecretService

Algorithm: string
Protocol : string

Credential

SharedSecret

SystemCreationClassName: string {key}
SystemName: string {key}
ServiceCreationClassName: string {key}
ServiceName: string {key}
RemoteID: string {key}
Secret: string
Algorithm: string
Protocol: string

SharedSecretIsShared

*w

1

NamedSharedIKESecret

SystemCreationClassName: string {key}
SystemName: string {key}
ServiceCreationClassName: string {key}
ServiceName: string {key}
PeerIdentityType: uint16 {key}
PeerIdentity: string {key}
LocalIdentityType: uint16 {key, enum}
LocalIdentity: string {key}
SharedSecretName: string

IKESecretIsNamed
1

*w

PublicKeyManagementService

UnsignedPublicKey

SystemCreationClassName: string {key}
SystemName: string {key}
ServiceCreationClassName: string {key}
ServiceName: string {key}
PeerIdentity: string {key}
PeerIdentityType: uint16 {enum}
PublicKey: uint8[ ] {octetstring}

LocallyManagedPublicKey

*w

1

LocalCredentialManagementService

SystemCreationClassName: string {key}
SystemName: string {key}
CreationClassName: string {key}
Name: string {key}

System

CreationClassName: string {key}
Name: string {key}

1
HostedService

RegisteredProfile

RegisteredName = “Security”

RegisteredSubProfile

RegisteredName = “Security CredentialManagement

ElementConformsToProfile

SubProfileRequiresProfile*

*

0..1

*
1

HostedAccessPoint

RemoteServiceAccessPoint
AccessInfo : string
InfoFormat : uint16 {enum}
OtherInfoFormatDescription : stringCredentialContext* *

*w

*w
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 507



 

8.2.5.6.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.5.6.3 Cascading Considerations
Not defined in this standard.

8.2.5.6.4 Supported Subprofiles and Packages
None.

8.2.5.6.5 Methods of the Profile
None.

8.2.5.6.6 Client Considerations and Recipes
None.

8.2.5.6.7 Registered Name and Version
Security Credential Management version 1.1.0

8.2.5.6.8 CIM Server Requirements

Table 535: CIM Server Requirements for Security Credential Management

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications No
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No
508



 CredentialManagement Subprofile
8.2.5.6.9 CIM Elements

8.2.5.6.9.1 CIM_CredentialContext
Class Mandatory: false

8.2.5.6.9.2 CIM_ElementConformsToProfile
Class Mandatory: true

Table 536: CIM Elements for Security Credential Management

Element Name Description
Mandatory Classes

CIM_ElementConformsToProfile (8.2.5.6.9.2)
CIM_HostedAccessPoint (8.2.5.6.9.3)
CIM_HostedService (8.2.5.6.9.4)
CIM_NamedSharedIKESecret (8.2.5.6.9.7)
CIM_PublicKeyManagementService (8.2.5.6.9.8)
CIM_RegisteredSubProfile (8.2.5.6.9.10)
CIM_RemoteServiceAccessPoint (8.2.5.6.9.11)
CIM_SharedSecret (8.2.5.6.9.12)
CIM_SharedSecretService (8.2.5.6.9.14)
CIM_SubProfileRequiresProfile (8.2.5.6.9.15)
CIM_System (8.2.5.6.9.16)
CIM_UnsignedPublicKey (8.2.5.6.9.17)

Optional Classes
CIM_CredentialContext (8.2.5.6.9.1)
CIM_IKESecretIsNamed (8.2.5.6.9.5)
CIM_LocallyManagedPublicKey (8.2.5.6.9.6)
CIM_RegisteredProfile (8.2.5.6.9.9)
CIM_SharedSecretIsShared (8.2.5.6.9.13)

Table 537: SMI Referenced Properties/Methods for CIM_CredentialContext

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementInContext CIM_Credential Key
ElementProvidingContext CIM_ManagedElement Key

Table 538: SMI Referenced Properties/Methods for CIM_ElementConformsToProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

ConformantStandard CIM_RegisteredProfile Key
ManagedElement CIM_ManagedElement Key
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 509



 

8.2.5.6.9.3 CIM_HostedAccessPoint
Class Mandatory: true

8.2.5.6.9.4 CIM_HostedService
Class Mandatory: true

8.2.5.6.9.5 CIM_IKESecretIsNamed
Class Mandatory: false

8.2.5.6.9.6 CIM_LocallyManagedPublicKey
Class Mandatory: false

Table 539: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_ServiceAccessPoi

nt
Key

Table 540: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_Service Key

Table 541: SMI Referenced Properties/Methods for CIM_IKESecretIsNamed

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_SharedSecretServi
ce

Key

Dependent CIM_NamedSharedIKE
Secret

Key

Table 542: SMI Referenced Properties/Methods for CIM_LocallyManagedPublicKey

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_PublicKeyManage
mentService

Key

Dependent CIM_UnsignedPublicKe
y

Key
510



 CredentialManagement Subprofile
8.2.5.6.9.7 CIM_NamedSharedIKESecret
Class Mandatory: true

8.2.5.6.9.8 CIM_PublicKeyManagementService
Class Mandatory: true

8.2.5.6.9.9 CIM_RegisteredProfile
Class Mandatory: false

Table 543: SMI Referenced Properties/Methods for CIM_NamedSharedIKESecret

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
ServiceCreationClassName string Key
ServiceName string Key
PeerIdentity string Key, The identity of the remote peer 

trusted entity.
PeerIdentityType uint16 The type of the remote PeerIdentity.
LocalIdentity string Key, The identity of the local peer 

trusted entity.
LocalIdentityType uint16 The type of the LocalIdentity.
SharedSecretName M string The name of the shared secret,

Table 544: SMI Referenced Properties/Methods for CIM_PublicKeyManagementService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key

Table 545: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string Parent subprofile
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 511



 

8.2.5.6.9.10 CIM_RegisteredSubProfile
Class Mandatory: true

8.2.5.6.9.11 CIM_RemoteServiceAccessPoint
Class Mandatory: true

8.2.5.6.9.12 CIM_SharedSecret
Class Mandatory: true

8.2.5.6.9.13 CIM_SharedSecretIsShared
Class Mandatory: false

Table 546: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string This subprofile

Table 547: SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key

Table 548: SMI Referenced Properties/Methods for CIM_SharedSecret

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
ServiceCreationClassName string Key
ServiceName string Key
RemoteID string Key, The identity of the client as known 

on the remote system.
Secret string A secret

Table 549: SMI Referenced Properties/Methods for CIM_SharedSecretIsShared

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_SharedSecretServi
ce

Key

Dependent CIM_SharedSecret Key
512



 CredentialManagement Subprofile
8.2.5.6.9.14 CIM_SharedSecretService
Class Mandatory: true

8.2.5.6.9.15 CIM_SubProfileRequiresProfile
Class Mandatory: true

8.2.5.6.9.16 CIM_System
Class Mandatory: true

8.2.5.6.9.17 CIM_UnsignedPublicKey
Class Mandatory: true

Table 550: SMI Referenced Properties/Methods for CIM_SharedSecretService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key
Protocol M string Select IKE'forSharedIKEsecret-

sand'SharedSecret'forSharedsecrets.'

Table 551: SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_RegisteredSubProf
ile

Key

Antecedent CIM_RegisteredProfile Key

Table 552: SMI Referenced Properties/Methods for CIM_System

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key

Table 553: SMI Referenced Properties/Methods for CIM_UnsignedPublicKey

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
ServiceCreationClassName string Key
ServiceName string Key
PeerIdentity string Key, The identity of the peer trusted 

entity.
PeerIdentityType uint16 The type of the PeerIdentity.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 513



 

8.2.5.6.10 Related Standards

EXPERIMENTAL

PublicKey M uint8[] Key, The identity of the peer trusted 
entity.

Table 554: Related Standards for Security Credential Management

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF

Table 553: SMI Referenced Properties/Methods for CIM_UnsignedPublicKey

Property Flags Type Description & Notes
514



 3rd Party Authentication Subprofile
EXPERIMENTAL

8.2.5.7 3rd Party Authentication Subprofile  

8.2.5.7.1 Description
This subprofile extends the Security IdentityManagement profile by specifying the necessary elements
required to manage the relationships between a CIM Server and 3rd party Authentication Servers such
as Radius. 

The implementation shall use a HostedService association between the System and the
AuthenticationService.

In this environment, the local AuthenticationService may delegate authentication requests to a 3rd-
party authentication service which is accessed through a RemoteServiceAccessPoint as shown in
Figure 89: "3rd Party Authentication for the CIM Service". The implementation shall instantiate a
ServiceSAPDependency between the RemoteServiceAccessPoint and the AuthenticationService.

If the 3rd Party Authentication Service requires that the local system authenticate itself, then the
required Credential is associated via CredentialContext to the RemoteServiceAccessPoint instance.
(See the Security CredentialMangement subprofile.) This may be accomplished using intrinsic
operations.

UserContact.Name, Group.Name, and Role.Name are used as a correlatable identifier for users,
groups, and roles respectively. Note that the UserID property of UserContact is synonymous with a
typical user Name. A user may have multiple Identities. This specification restricts a Group to having at
most one Identity and does not assign Identities to Roles. An Identity for a UserContact is matched via
an AssignedIdentity association and a match on both Name and UserID in the UserContact.

In the event that there is more than one 3rd Party Authentication Service, this profile does not specify
the means used by which the local authentication service locates the correct 3rd Party Authentication
Service, UserID, and if specified the Realm. See 8.2.4.1.1.4, "HTTP Security" in the Server Profile. A
sufficient authentication strategy is to pass the requestor’s UserID, Realm and credentials to each
Authentication service.

The 3rd Party Authentication Service should respond true or false, and if true should also respond with
a list of discontinued names which represent at most one authenticated UserContact and a set of
Group, and Role elements to which the authenticated user belongs. Each returned distinguished name
matches the Name property of at most one such element.

If a UserContact is matched via Name, the UserID shall match that instance of UserContact or that of
an associated Account instance. This specification allows a UserContact to be associated via
AssignedIdentity to multiple Identities, which in turn may be associated to at most one Account via
ConcreteIdentity. An Identity is selected which has matching Name and either a matching UserID or an
associated Account with a matching UserID.   If no match is found, then this user is not known on this
system. A profile that incorporates this subprofile may define an AuthenticationRule that designates
some other Identity to authenticate in the case a matching Identity is not found by the above algorithm.

Additionally, the 3rd Party Authentication Service may return the distinguished names of groups or roles
to which the user belongs. These names correlated to Group.Name or Role.Name. This specification
restricts a Group to at most one Identity associated via AssignedIdentity. If a Group is matched, then
the user belongs to the group and the Groups Identity is authenticated. If a Role is matched, then the
user is authenticated for the Role. Profiles or subprofiles that rely on this profile may further qualify the
types of Identity and AuthenticationRules that may be used.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 515



 

.

8.2.5.7.2 Durable Names and Correlatable IDs of the Profile
When a UserID is passed from an SMI-S Client to an SMI-S Server and then to a 3rd Party
Authentication service, there needs to be some means to assure that each is referring to the same
entity. The process specified here is for the client to pass the server a UserID, together with Realm and
Credential information. The server passes this through to the authentication service, which maps this to
a particular user and zero or more groups and roles to which the User belongs. This subprofile specifies
that users, groups, and roles need to have unique distinguished names, (see http://www.ietf.org/rfc/
rfc1779.txt?number=1779.) These distinguished names are returned to the SMI-S Server by the 3rd
Party Authentication service. The SMI-S Server correlates these distinguished names to the Name
property of UserContact, Group, or Role instances. 

The Identity of a user is determined by a match on both the UserID provided by the SMI-S Client and
the distinguished name returned by the 3rd Party Authentication service. (See the algorithm described
in the previous section.) 

8.2.5.7.3 Client Considerations and Recipes

8.2.5.7.3.1 Create a new User instance with an associated Identity.
The client should use the “Create a new User instance with an associated Identity” recipe defined in the
Security Identity Management subprofile. The UserContact (or subclass) instance supplied by the SMI-
S Client shall have the Name property set to match the corresponding information on held on the
system supporting the 3rd Party Authentication service. The UserID property shall be that of the
principal account for that user.

Figure 89: 3rd Party Authentication for the CIM Service

AuthenticationService

RemoteServiceAccessPoint

<To AuthenticationService on 3rd 
party authentication system >

ServiceSAPDependency

Credential

CredentialContext

HostedService

System

CreationClassName: string {key}
Name: string {key}

RegisteredProfile

RegisteredName = “Security IdentityMangement”

RegisteredSubProfile

RegisteredName = “Security 3rdPartyAuthentication

ElementConformsToProfile

SubProfileRequiresProfile

*

*
0..1

* 1

*
*
*

*

*

ReferencedProfile

*

Identity

InstanceID: string
CurrentlyAuthenticated: boolean

IdentityContext*
*

AssignedIdentity *

RegisteredSubProfile

RegisteredName = “Security CredentialManagement”

*

0..1

UserContact

CreationClassName: string {key}
Name: string {key}   
G ivenName: string
Surname: string {Req'd}
Mail:string
UserID: string
LocalityName: string
PostalAddress: string[ ]
StateOrProvince: string
PostalCode: string
TelephoneNumber: string

*

ConcreteDependency

*

Group

CreationClassName: string {key}
Name: string {key}  
BusinessCategory: string
CommonName: string {Req'd}

AssignedIdentity

0..1

Account

SystemCreationClassName: string {key}
SystemName: string {key}
CreationClassName: string {key}
Name: string{key}
Userid: string
ObjectClass: String [ ]
Descriptions: string[ ] 
Host: string[ ]
LocalityName: string[ ]
OrganizationName: string[ ]
OU: string[ ]
SeeAlso: string[ ] 
UserCertificate: string[ ] {octetstring} 
UserPassword: string[ ] {octetstring} 

ConcreteIdentity

*

*

SubProfileRequiresProfile

*

0..1

RegisteredProfile

RegisteredName = “Security”

HostedAccessPoint*

System

Correlated to the System of the 3rd 
party authentication service

AccountOnSystem

*
1

SubProfileRequiresProfile

MemberOfCollection

Role

CreationClassName: string {key}
Name: string {key}  
BusinessCategory: string
CommonName: string {Req'd}

*

*

516

http://www.ietf.org/rfc/rfc1779.txt?number=1779
http://www.ietf.org/rfc/rfc1779.txt?number=1779


 3rd Party Authentication Subprofile
8.2.5.7.3.2 Add an Account for a User.
If more than one Identity is maintained for a user on the SMI-S server, the client should use the “Create
an Account and attach it to an existing User.” recipe defined in the Security Identity Management
subprofile. The UserContact (or subclass) instance named by the SMI-S client shall correspond by
NAME to the distinguished name of the user as known on the system of the 3rd Party Authentication
service. If this is the principal account, the UserID property of the Account shall match that of the
named UserContact instance. In all cases the UserID property of the supplied Account shall match the
UserID used to authenticate the user. Since the Account is not directly authenticated, the Password
property shall not be specified.

8.2.5.7.4 Registered Name and Version
Security 3rd Party Authentication version 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 517



 

8.2.5.7.5 CIM Server Requirements

8.2.5.7.6 CIM Elements

Table 555: CIM Server Requirements for Security 3rd Party Authentication

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications No
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No

Table 556: CIM Elements for Security 3rd Party Authentication

Element Name Description
Mandatory Classes

CIM_ConcreteDependency (8.2.5.7.6.5)
CIM_ConcreteIdentity (8.2.5.7.6.6)
CIM_Credential (8.2.5.7.6.7)
CIM_ElementConformsToProfile (8.2.5.7.6.9)
CIM_HostedAccessPoint (8.2.5.7.6.11)
CIM_HostedService (8.2.5.7.6.12)
CIM_ReferencedProfile (8.2.5.7.6.16)
CIM_RegisteredSubProfile (8.2.5.7.6.18) Specifies additional requirements on an SMI-S Server 

when it is also a client of a 3rd party authentication ser-
vice.

CIM_RemoteServiceAccessPoint (8.2.5.7.6.21)
CIM_ServiceSAPDependency (8.2.5.7.6.23)
CIM_SubProfileRequiresProfile (8.2.5.7.6.24)
CIM_System (8.2.5.7.6.26)

Optional Classes
CIM_Account (8.2.5.7.6.1)
CIM_AccountOnSystem (8.2.5.7.6.2)
CIM_AssignedIdentity (8.2.5.7.6.3)
CIM_AuthenticationService (8.2.5.7.6.4)
CIM_CredentialContext (8.2.5.7.6.8)
CIM_Group (8.2.5.7.6.10)
CIM_Identity (8.2.5.7.6.13)
CIM_IdentityContext (8.2.5.7.6.14)
CIM_MemberOfCollection (8.2.5.7.6.15)
CIM_RegisteredProfile (8.2.5.7.6.17)
518



 3rd Party Authentication Subprofile
8.2.5.7.6.1 CIM_Account
Class Mandatory: false

8.2.5.7.6.2 CIM_AccountOnSystem
Class Mandatory: false

8.2.5.7.6.3 CIM_AssignedIdentity
Class Mandatory: false

CIM_RegisteredSubProfile (8.2.5.7.6.19) Specifies additional requirements on an SMI-S Server 
that is also a client of some other service that enforces 
security.

CIM_RegisteredSubProfile (8.2.5.7.6.20) Specifies additional requirements on an SMI-S Server 
that supports the management of Identities, including 
establishing Accounts, and defining User and Organiza-
tional entities and Groups of those entities.

CIM_Role (8.2.5.7.6.22)
CIM_System (8.2.5.7.6.25)
CIM_UserContact (8.2.5.7.6.27)

Table 557: SMI Referenced Properties/Methods for CIM_Account

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemName string Key
SystemCreationClassName string Key
Name string Key
CreationClassName string Key
UserID CM string The users ID

Table 558: SMI Referenced Properties/Methods for CIM_AccountOnSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System Key
PartComponent CIM_Account Key

Table 559: SMI Referenced Properties/Methods for CIM_AssignedIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

IdentityInfo CIM_Identity Key
ManagedElement CIM_ManagedElement Key

Table 556: CIM Elements for Security 3rd Party Authentication

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 519



 

8.2.5.7.6.4 CIM_AuthenticationService
Class Mandatory: false

8.2.5.7.6.5 CIM_ConcreteDependency
Class Mandatory: true

8.2.5.7.6.6 CIM_ConcreteIdentity
Class Mandatory: true

8.2.5.7.6.7 CIM_Credential
Class Mandatory: true
No specified properties or methods.

8.2.5.7.6.8 CIM_CredentialContext
Class Mandatory: false

Table 560: SMI Referenced Properties/Methods for CIM_AuthenticationService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key

Table 561: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement Key
Dependent CIM_ManagedElement Key

Table 562: SMI Referenced Properties/Methods for CIM_ConcreteIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemElement CIM_ManagedElement Key
SameElement CIM_ManagedElement Key

Table 563: SMI Referenced Properties/Methods for CIM_CredentialContext

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementInContext CIM_Credential Key
ElementProvidingContext CIM_ManagedElement Key
520



 3rd Party Authentication Subprofile
8.2.5.7.6.9 CIM_ElementConformsToProfile
Class Mandatory: true

8.2.5.7.6.10 CIM_Group
Class Mandatory: false

8.2.5.7.6.11 CIM_HostedAccessPoint
Class Mandatory: true

8.2.5.7.6.12 CIM_HostedService
Class Mandatory: true

Table 564: SMI Referenced Properties/Methods for CIM_ElementConformsToProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

ConformantStandard CIM_RegisteredProfile Key
ManagedElement CIM_ManagedElement Key

Table 565: SMI Referenced Properties/Methods for CIM_Group

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name C string Key
CommonName string The Name by which the Group is 

known

Table 566: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_ServiceAccessPoi

nt
Key

Table 567: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Key
Dependent CIM_Service Key
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 521



 

8.2.5.7.6.13 CIM_Identity
Class Mandatory: false

8.2.5.7.6.14 CIM_IdentityContext
Class Mandatory: false

8.2.5.7.6.15 CIM_MemberOfCollection
Class Mandatory: false

8.2.5.7.6.16 CIM_ReferencedProfile
Class Mandatory: true

8.2.5.7.6.17 CIM_RegisteredProfile
Class Mandatory: false

Table 568: SMI Referenced Properties/Methods for CIM_Identity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
CurrentlyAuthenticated boolean Currently trusted or not

Table 569: SMI Referenced Properties/Methods for CIM_IdentityContext

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementProvidingContext CIM_ManagedElement Key
ElementInContext CIM_Identity Key

Table 570: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection Key
Member CIM_ManagedElement Key

Table 571: SMI Referenced Properties/Methods for CIM_ReferencedProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_RegisteredProfile Key
Antecedent CIM_RegisteredProfile Key

Table 572: SMI Referenced Properties/Methods for CIM_RegisteredProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string Parent subprofile
522



 3rd Party Authentication Subprofile
8.2.5.7.6.18 CIM_RegisteredSubProfile
Specifies additional requirements on an SMI-S Server when it is also a client of a 3rd party authentication service.
Class Mandatory: true

8.2.5.7.6.19 CIM_RegisteredSubProfile
Specifies additional requirements on an SMI-S Server that is also a client of some other service that enforces secu-
rity.
Class Mandatory: false

8.2.5.7.6.20 CIM_RegisteredSubProfile
Specifies additional requirements on an SMI-S Server that supports the management of Identities, including estab-
lishing Accounts, and defining User and Organizational entities and Groups of those entities.
Class Mandatory: false

8.2.5.7.6.21 CIM_RemoteServiceAccessPoint
Class Mandatory: true

Table 573: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string This subprofile

Table 574: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string SubProfile Name

Table 575: SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Key
RegisteredOrganization C uint16 Indicate SNIA
RegisteredName C string SubProfile Name

Table 576: SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string Key
SystemName string Key
CreationClassName string Key
Name string Key
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 523



 

8.2.5.7.6.22 CIM_Role
Class Mandatory: false

8.2.5.7.6.23 CIM_ServiceSAPDependency
Class Mandatory: true

8.2.5.7.6.24 CIM_SubProfileRequiresProfile
Class Mandatory: true

8.2.5.7.6.25 CIM_System
Class Mandatory: false

8.2.5.7.6.26 CIM_System
Class Mandatory: true

Table 577: SMI Referenced Properties/Methods for CIM_Role

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name C string Key

Table 578: SMI Referenced Properties/Methods for CIM_ServiceSAPDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ServiceAccessPoi
nt

Key

Dependent CIM_Service Key

Table 579: SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_RegisteredSubProf
ile

Key

Antecedent CIM_RegisteredProfile Key

Table 580: SMI Referenced Properties/Methods for CIM_System

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name string Key

Table 581: SMI Referenced Properties/Methods for CIM_System

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
524



 3rd Party Authentication Subprofile
8.2.5.7.6.27 CIM_UserContact
Class Mandatory: false

8.2.5.7.7 Related Standards

EXPERIMENTAL

Name string Key

Table 582: SMI Referenced Properties/Methods for CIM_UserContact

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Key
Name C string Key
Surname string The Name by which the User is known 

to other users.
UserID C string The Name by which the User is known 

to the System.  Matches all Account or 
Person instances in the namespace 
with the same UserID. Changing here 
changes corresponding values on 
matching Person or Account instances.

Table 583: Related Standards for Security 3rd Party Authentication

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF

Table 581: SMI Referenced Properties/Methods for CIM_System

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 525



 

526



 Fabric Profile
8.2.6 Fabric Topology Profiles

8.2.6.1 Fabric Profile

8.2.6.1.1 Description
SANS and Fabrics as AdminDomains
A SAN and Fabric are represented in CIM by AdminDomain. A SAN contains one or more Fabrics,
which are modeled as AdminDomains. The “containment” of Fabrics to SANs is through the association
ContainedDomain. AdminDomain is sub-classed from System. This is significant because a SAN and a
Fabric can be considered a group of components that operate together as a single system and should
be/are managed as such. The relationship of the Fabrics in a SAN could be as redundant fabrics,
interconnected (using the same or different transports/protocols), or not connected in any way. Even in
the latter case where the Fabrics are disjoint, from an administrative perspective they may still be
managed together applying common practices including naming across the Fabrics. 

An AdminDomain in CIM is keyed by the property Name with an associated optional property
NameFormat. Typically SANs are identified (“named”) administratively and precise naming conventions
are left up to the implementation, which is then responsible for assuring that the names are unique
within the discovery of known SANs that populate the same CIM Namespace.

For Fibre Channel Fabrics, the identifier (AdminDomain.Name) is the Fabric WWN that is the switch
name of the principal switch. The AdminDomain for the Fibre Channel Fabric shall have a NameFormat
of WWN. 

Fabrics and Topology
A Fabric in CIM today minimally contains a ConnectivityCollection and its component systems. They
are associated to the Fabric by the association Component. For the purposes of this discussion, it is
assumed one models both.

ConnectivityCollection represents the foundation necessary for routing (and the reason it is defined in
the Network model). A ConnectivityCollection groups a set of ProtocolEndpoints together that are able
to communicate with each other directly. The ProtocolEndpoint is associated to the
ConnectivityCollection by MemberOfCollection. A link is represented by the association
ActiveCollection, which associates two ProtocolEndpoints, defined as a connection that is currently
carrying traffic or is configured to carry traffic. 

It is important at this point to clarify the relationship (or use) of the ProtocolEndpoint versus the use of
FCPort (discussed later). A NetworkPort (from which FCPort is subclassed) is the device that is used to
represent the logical aspects of the link and data layers. The ProtocolEndpoint is used to represent the
higher network layers for routing. This is best understood when thinking about Ethernet and IP, but
applies to fibre channel also. When two ProtocolEndpoints are capable of communicating, the
association ActiveConnection is used to represent the capability to communicate and completes the
picture of the topology.

One can ultimately represent multiple ConnectivityCollections (e.g., FC, IP (over FC), and IP (FC
encapsulated in IP)) for the same fibre channel fabric.

Note that in modeling SANs, Fabrics, and ConnectivityCollections, a ConnectivityCollection does not
require a Fabric, and a Fabric does not require a SAN. But a SAN requires a Fabric, and a Fabric (for
the purposes of this profile) requires a ConnectivityCollection.

The minimum set of requirements for this profile is based on FC-GS.

Systems and NetworkPorts
As discussed in the previous section, a Port is associated to a device to represent the link layer. A
NetworkPort is associated to the ProtocolEndpoint by DeviceSAPImplementation and “joins” the
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 527



 

System and Device model to the Network model. Instantiation of DeviceSAPImplementation,
ProtocolEndpoint, and ActiveConnection is not necessary if the transceiver is not installed or the cable
connecting the port to another port is not installed since the device is not capable of communicating.

Systems, or in this case ComputerSystem, represent the fabric elements that contain Ports. These are
typically Hosts, Switches and Storage Systems. In Fibre Channel, these are called Platforms and
Interconnect Elements. The property Dedicated in ComputerSystem allows these fabric elements to be
identified. For a host, Dedicated is set to “Not Dedicated”, for a switch, Dedicated is set to “Switch”, and
for a storage system, Dedicated is set to “Storage”. The Ports on a System are associated by
SystemDevice.

Discovery from the viewpoint of the fabric includes the end device, but often times the information
available is minimal or not available. In the case of Fibre Channel, this occurs if the platform database is
not populated. If this is the case, then discovery cannot tell whether a Fibre Channel Node is contained
within the same platform or not. When this occurs, ComputerSystem is not instantiated and the
LogicalPortGroup representing the Node and the FCPort are associated to the AdminDomain
representing the Fabric.

The instrumentation needs to respond to physical fabric changes by adding or removing Logical
elements to the AdminDomain. Adding an element to the fabric is straightforward, however it is not
always clear when an element has been removed. The device may have been reset, or temporarily
shut down, in which case it would be an element in the fabric with an “unknown” status. The lifetime of
objects that can no longer be discovered is implementation specific.

If the instrumentation is unable to determine the type of platform discovered (defined in FC-GS), then
the agent shall set the ComputerSystem.Dedicated property to “Unknown”.

Additional identification information about ComputerSystem (e.g., DomainID) is placed in
OtherIdentifyInfo property.
528



 Fabric Profile
Figure 90: Fabric Instance Diagram

FCPort
FCPort

FCPort

ProtocolEndpoint

ProtocolType="Fibre
Channel"

DeviceSAP
Implementation

ComputerSystem

FCPort

System
Device

ConnectivityCollection LogicalPortGroup

MemberOf
Collection

Hosted
Collection

AdminDomain

ComponentMemberOf
Collection

ComputerSystem

Dedicated="Switch"

FCPort System
Device

ComputerSystem

Dedicated="Storage"

FCPort
System
Device

LogicalPortGroup

MemberOf
Collection

Hosted
Collection

ProtocolEndpoint

ProtocolType="Fibre
Channel"

DeviceSAP
Implementation

Active
Connection

Host

Array

Switch

Fabric

AdminDomainSAN

Contained
Domain

ProtocolEndpoint

ProtocolType="Fibre
Channel"

Active
Connection

DeviceSAP
Implementation

HostedAccessPointHosted
Collection

HostedAccessPoint

HostedAccess
Point
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 529



 

Figure 91: Zoning Instance Diagram (AdminDomain)

Zone

Active=FALSE

ZoneSet

Active=FALSE

ZoneService

ZoneCapabilities

Hosted
Collection

Element
Capabilities

MemberOf
CollectionElement

SettingData

ZoneMembership
SettingData

NamedAddress
Collection

Hosted
Collection

Hosted
Service

Element
SettingData

MemberOf
Collection

AdminDomainZoneSet

Active=TRUE

Zone

Active=TRUE

ZoneMembership
SettingData

MemberOf
Collection

Element
SettingData
530



 Fabric Profile
Zoning
The zoning model is based on ANSI FC-GS-4. This model represents the management model for
defining Zone Sets, Zones, and Zone Members and “activation” of a Zone Set for a fabric. In the
following discussion it may be helpful to also define the following:

Active ZoneSet: the Zone Set currently enforced by the Fabric.

Zone Set Database: The database of the Zone Sets not enforced by the Fabric. Referred to in this
document as the Inactive Zone Sets.

Zoning Definitions: a generic term used to indicate both the above concepts.

The zoning model refers to a Zone Set as ZoneSet, a Zone as Zone, ZoneAlias as a
NamedAddressCollection, and Zone Member as ZoneMembershipSettingData. ZoneSets shall only
contain Zones associated by MemberOfCollection. Zones shall only contain
ZoneMembershipSettingData associated by ElementSettingData or NamedAddressCollections
associated by MemberOfCollection. For more information with regards to NamedAddressCollection,
see 8.2.6.2, "Enhanced Zoning Subprofile". 

The class ZoneMembershipSettingData has two properties that indicate how the device was identified
to be “zoned”. They are ConnectivityMemberType (e.g., PermanentAddress for WWN, NetworkAddress
for FCID, etc.) and ConnectivityMemberID which contains the actual device identifier.

Figure 92: Zoning Instance Diagram (ComputerSystem)

Zone

Active=FALSE

ZoneSet

Active=FALSE

ZoneService

ZoneCapabilities

ComputerSystem

System
Capabilities

MemberOf
Collection

Hosted
Collection

Element
SettingData

ZoneMembership
SettingData

NamedAddress
Collection

Hosted
Service

Element
SettingData

MemberOf
Collection

AdminDomainZoneSet

Active=TRUE

Hosted
Collection

Zone

Active=TRUE

ZoneMembership
SettingData

MemberOf
Collection

Element
SettingData

Hosted
Collection

Component
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 531



 

The Active Zone Set, defined by an instance of ZoneSet with the Active property set to TRUE, shall
only be hosted on the AdminDomain representing the Fabric. The Inactive Zone Sets, defined by an
instance of ZoneSet with the Active property set to FALSE, shall be hosted on either the AdminDomain
representing the Fabric as shown in the Figure 91: "Zoning Instance Diagram (AdminDomain)" or the
ComputerSystem representing the switch as shown in the Figure 92: "Zoning Instance Diagram
(ComputerSystem)". It is allowed to have no ZoneSets (active or inactive), only an active ZoneSet, only
an inactive ZoneSet(s), or both an inactive ZoneSet(s) and an active ZoneSet. 

The ZoneService and ZoneCapabilities are also associated to the same System (AdminDomain or
ComputerSystem) as the Inactive Zone Sets using the association HostedService or
ElementCapabilities, respectively.

ZoneService provides the configuration methods to control create ZoneSets, Zones, Zone Aliases, and
Zone Members, as well as activation of the Zone Set. This service and its methods are described in the
8.2.6.2, "Enhanced Zoning Subprofile".

8.2.6.1.2 Health and Fault Management
The following classes report possible Health and Fault information through LifeCycle indications:

• ComputerSystem,

• FCPort/

These LifeCycle indications are more fully described in 8.2.6.1.8, "CIM Server Requirements".

Also in Table 587, “CIM Server Requirements for Fabric” are a list of AlertIndications which may also be
indicators for Health and Fault Management.

8.2.6.1.3 Cascading Considerations
None

8.2.6.1.4 Supported Subprofiles and Package

8.2.6.1.5 Methods of this Profile
None

8.2.6.1.6 Client Considerations and Recipes
Fabric Identifier
The client needs to consider that the fabric identifier is not durable but is correlatable and may change
over time. See 6.2.4, "Correlatable and Durable Names".

Table 584: Supported Subprofiles for Fabric

Registered Subprofile Names Mandatory Version
Zone Control No 1.1.0
Enhanced Zoning and Enhanced Zoning Control No 1.1.0
FDMI No 1.1.0
Fabric Path Performance No 1.1.0
532



 Fabric Profile
FCPort OperationalStatus
OperationalStatus is the property to indicate status and state for the FCPort. The FCPort instance has
one of the following Operational Statuses.

ComputerSystem OperationalStatus
OperationalStatus is the property to indicate status and state for the ComputerSystem. The
ComputerSystem instance has one of the following Operational Statuses and possibly one of the
Subsidiary statuses.

8.2.6.1.6.1 Discover the Fabric Topology
// This recipe describes how to build a topology graph of a fabric.

Table 585: Port OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown

Table 586: OperationalStatus for ComputerSystem

Operational Status Possible Subsidiary 
Operational Status

Description

OK The system has a good status
OK Stressed The system is stressed, for example the tem-

perature is over limit or there is too much IO in 
progress

OK Predictive Failure The system will probably will fail sometime 
soon

Degraded The system is operational but not at 100% 
redundancy. A component has suffered a fail-
ure or something is running slow

Error An error has occurred causing the system to 
stop. This error may be recoverable with opera-
tor intervention.

Error Non-recoverable error A severe error has occurred. Operator interven-
tion is unlikely to fix it

Error Supporting entity in error A modeled element has failed
InService Switch is in Self Test.
No contact The provider knows about the array but has not 

talked to it since last reboot
Lost communication The provider used to be able to communicate 

with the array, but has now lost contact.
Starting The system is starting up
Stopping The system is shutting down.
Stopped The data path is OK but shut down, the man-

agement channel is still working.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 533



 

//

// 1. Identifies all the Switches and adds their objects paths and the 

// object paths of the FC Ports belonging to these Switches to the $nodes 

// array

//

// 2. Creates a suitable Association instance (e.g. a SystemDevice 

// Association instance between a Switch and a FC Port), setting its 

// GroupComponent and PartComponent. Adds the object path of the 

// Association to the $links array

//

// 3. Creates a map of all connected FC Ports (i.e., belonging to Switches 

// that are ISL’d together and to Host HBAs and Storage System Front End 

// Controllers)

// 

// In this map, the FC Ports (i.e., the ones that are connected) are 

// cross-connected.

//

// e.g., For a pair of FC Ports, one belonging to a Switch and the other 

// belonging to a Host (HBA), the map indexed by the Switch Port WWN returns 

// the Host (HBA) FC Port object path and the map indexed by the Host (HBA) 

// FC Port WWN returns the Switch FC Port object path.

//

// Similar relationship exists between the pairs of FC Ports where one 

// belongs to a Switch and the other belonging belongs to a Storage System 

// Front End Controller and for FC Ports each of which belongs to a Switch.

//

// 4. Identifies all the Hosts and adds their objects paths to the $nodes 

// array. Note that the object paths of the FC Ports (HBA Ports) belonging 

// to these Hosts are already added to the $nodes array in step-3.

//

// 5. Creates a suitable Association instance (e.g. a SystemDevice 

// Association instance between a Host and a FC Port), setting its 

// GroupComponent and PartComponent. Adds the object path of the Association 

// to the $links array.

//

// 6. Identifies all the Storage Systems and adds their objects paths to the 

// $nodes array.

// Note that the object paths of the FC Ports (i.e., Front End Controller 

// FC Ports) belonging to these Storage Systems are already added to the 

// $nodes array in step-3.

//

// 7. Creates a suitable Association instance (e.g. a SystemDevice 

// Association instance between a Storage System and a FC Port), setting 

// its GroupComponent and PartComponent. Adds the object path of the 

// Association to the $links array.

// DESCRIPTION
534



 Fabric Profile
// Create a map of how elements in a SAN are connected together via 

// Fibre-ChannelFC ports.

//

// The map is built in array $attachedFcPorts->[], where the index is a

// WWN of any device port on the SAN, and the value at that index is

// the object path of the connected Switch or HBA or Storage System FC port.

//

// First find all the switches in a SAN. Get all the FC Ports for each

// switch and get the Attached FC Ports for each Switch FC Port. Save these 

// device FC ports in the map described above.

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// 1. All agents/namespaces supporting Fabric Profile previously identified

// using SLP. Do this for each CIMOM supporting Fabric Profile

switches[] = enumerateInstances(“CIM_ComputerSystem”, true, false, true, true, 
null)

for #i in $switches[]

{

    if (!contains(5, $switches[#i].Dedicated))

        continue 

    // only process switches, not other computer systems

    // Add the switch to the $nodes array

    $nodes.addIfNotAlreadyAdded ($switches[#i].getObjectPath();

    // Get all the SystemDevice associations between this switch and its 

    // FC Ports

    $sysDevAssoc[] = ReferenceNames($switches[#i], 

                                “CIM_FCPort”, 

                                “GroupComponent”);

    // Add these associations to the $links array

    for #a in $sysDevAssoc->[]

    $links.addIfNotAlreadyAdded ($sysDevAssoc->[#a];

    $fcPorts->[] = AssociatorNames(

        $switches[#i].getObjectPath(),

        “CIM_SystemDevice”,

        “CIM_FCPort”,

        “GroupComponent”,

        “PartComponent”)

    for #j in $fcPorts->[]

    {
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 535



 

        // Add the FC Port in $nodes array

        $nodes.addIfNotAlreadyAdded (fcPorts->[#j];

        $protocolEndpoints->[] = AssociatorNames(

            fcPorts->[#j],

            “CIM_DeviceSAPImplementation”,

            “CIM_ProtocolEndpoint”,

            “Antecedent”,

        “Dependent”);

        // NOTE - It is possible for this collection to be empty (i.e., ports 

        // that are not connected). It is possible for this collection to 

        // have more than one element (loops attached to a switch port is the 

        // most common example).

        if ($protocolEndpoints->[].length == 0)

            continue

        // Add the Protocol End Point to the nodes array.

        // Currently this recipe is designed to only save one 

        // ProtocolEndpoint. 

        $nodes.addIfNotAlreadyAdded (protocolEndpoints[0]);

        // Add the associations between the fcPort and the Protocol end point 

        // to the links array

        $devSAPImplassoc[]  = ReferenceNames($fcPorts->[#j], 

                                     “CIM_ProtocolEndpoint”, 

                                     null);

        for #a in $devSAPImplassoc->[]

            $links.addIfNotAlreadyAdded ($devSAPImplassoc->[#a];

        $attachedProtocolEndpoints->[] = AssociatorNames(

            $protocolEndpoints->[0],

            “CIM_ActiveConnection”,

            “CIM_ProtocolEndpoint”,

            null, null) 

        // Add the Attached Protocol End Point to the nodes array

        $nodes.addIfNotAlreadyAdded (attachedProtocolEndpoints->[0]);

        // Add the associations between the Protocol end point and the 

        // Attached protocol endpoint to the links array
536



 Fabric Profile
        $actConnassoc[]  = ReferenceNames($protocolEndpoint->[#0], 

                                  “CIM_ActiveConnection”, 

                                   null);

        for #a in $actConnassoc->[]

            $links.addIfNotAlreadyAdded ($actConnassoc->[#a];

        // NOTE: role & resultRole are null as the direction of the 

        // association is not dictated by the specification

        // $attachedFcPort is either a device FC port or an ISL’d switch FC 

        // port from another switch. We store this result is stored (i.e., 

        // which device FC Port is connected // to which switch FC Port) in 

        // a suitable data structure for subsequent correlation to ports 

        // discovered on devices.

        for #k in $attachedProtocolEndpoints->[] 

        {

            $attachedFcPorts->[] = Associators(

                $attachedProtocolEndpoints->[#k],

                “CIM_DeviceSAPImplementation”,

                “CIM_FCPort”,

                “Dependent”,

                “Antecedent”,

                false,

                false,

                [“PermanentAddress”])

            $attachedFcPort = $attachedFcPorts[0] // Exactly one member guaranteed 
by model

            // Add the attached FC Port to the $nodes array

            if $attachedFcPort != null 

                $nodes.addIfNotAlreadyAdded ($attachedFcPort);

        }

    }

}

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 537



 

Determine the active Zone Set in a SAN

// DESCRIPTION

// Traverse from the fabric to all zone sets, looking for

// the active zone set

// 

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// 

// 1. The fabric of interest (an AdminDomain) has been previously

//   identified and defined in the $Fabric-> variable

$ZoneSets[] = Associators($Fabric->, “CIM_HostedCollection”, “CIM_ZoneSet”, null, 
null, false, false, null)

for #i in $ZoneSets[] {

    if ($ZoneSet[#i].Active) {

        // <found active ZoneSet>

        // NOTE - there can be only one active ZoneSet in a fabric, though there 
may be none

        break

    }

}  

8.2.6.1.7 Registered Name and Version
Fabric version 1.1.0

8.2.6.1.8 CIM Server Requirements

Table 587: CIM Server Requirements for Fabric

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
538



 Fabric Profile
8.2.6.1.9 CIM Elements

Table 588: CIM Elements for Fabric

Element Name Description
Mandatory Classes

CIM_ActiveConnection (8.2.6.1.9.1) The association between ProtocolEndpoints represent-
ing the links between devices.

CIM_AdminDomain (8.2.6.1.9.2) AdminDomain representing the SAN
CIM_AdminDomain (8.2.6.1.9.3) AdminDomain representing the Fabric.
CIM_Component (8.2.6.1.9.4) Aggregates Hosts, Arrays and Switches in the AdminD-

omain that represents the Fabric
CIM_ComputerSystem (8.2.6.1.9.5) The ComputerSystem representing the Interconnect 

Element (e.g. a switch) or Platform (e.g. Host and 
Array).

CIM_ComputerSystem (8.2.6.1.9.6) The ComputerSystem representing the Platform (e.g. 
Host and Array).

CIM_ConnectivityCollection (8.2.6.1.9.7) Collects the ProtocolEndpoints of the fabric.
CIM_ContainedDomain (8.2.6.1.9.8) Associates a Fabric to a SAN
CIM_DeviceSAPImplementation (8.2.6.1.9.9) Associates the FCPort to the ProtocolEndpoint
CIM_ElementCapabilities (8.2.6.1.9.10) Associates ZoneCapabilities to a System
CIM_ElementSettingData (8.2.6.1.9.11) Associates ZoneMembershipSettingData to the Zone or 

NamedAddressCollection representing the ZoneAlias.
CIM_FCPort (8.2.6.1.9.12) Fibre Channel Port for Switch
CIM_FCPort (8.2.6.1.9.13) Fibre Channel Port for Devices
CIM_HostedAccessPoint (8.2.6.1.9.14) Associates the ProtocolEndpoint to the hosting System
CIM_HostedCollection (8.2.6.1.9.15) Associates the LogicalPortGroup (Fibre Channel Node) 

to the hosting System.
CIM_HostedCollection (8.2.6.1.9.16) Associates the ConnectivityCollection to the AdminDo-

main representing the Fabric.
CIM_HostedCollection (8.2.6.1.9.17) Associates the ZoneSets, Zones, and NamedAddress-

Collections representing the ZoneAliases to the hosting 
System (either the AdminDomain representing the Fab-
ric or the ComputerSystem representing the switch).

CIM_LogicalPortGroup (8.2.6.1.9.18) Fibre Channel Node
CIM_MemberOfCollection (8.2.6.1.9.19) Associates FCPort to the LogicalPortGroup
CIM_MemberOfCollection (8.2.6.1.9.20) Associates ProtocolEndpoints to the ConnectivityCol-

lection
CIM_MemberOfCollection (8.2.6.1.9.21) Associates ZoneMembershipSettingData and Named-

AddressCollections to the Zone
CIM_MemberOfCollection (8.2.6.1.9.22) Associates Zones to the ZoneSets
CIM_ProtocolEndpoint (8.2.6.1.9.23) The endpoint of a link (ActiveConnection).
CIM_SystemDevice (8.2.6.1.9.24) Associates the FCPort to the ComputerSystem
CIM_Zone (8.2.6.1.9.25) The active Zones being enforced by the Fabric.
CIM_Zone (8.2.6.1.9.26) The inactive Zones being enforced by the Fabric.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 539



 

8.2.6.1.9.1 CIM_ActiveConnection
The association between ProtocolEndpoints representing the links between devices (including ISLs).
For loops, multiple ActiveConnections are instantiated as one to many relationships.

Created By : Static
Modified By : Static
Deleted By : Static

CIM_ZoneCapabilities (8.2.6.1.9.27) The Zoning Capabilities of the ZoneService of the Fab-
ric (or Switch).

CIM_ZoneMembershipSettingData (8.2.6.1.9.28) Defines the ZoneMember
CIM_ZoneSet (8.2.6.1.9.29) The active ZoneSets being enforced by the Fabric.
CIM_ZoneSet (8.2.6.1.9.30) The inactive ZoneSet

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_ComputerSystem

Creation of a ComputerSystem instance.

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_ComputerSystem

Deletion of a ComputerSystem instance.

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_FCPort

Creation of a FC Port instance. Indications for FCPort 
creation should not be generated as a result of the 
ComputerSystem being created.

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_FCPort

Deletion of a FC Port instance. Indications for FCPort 
deletion should not be generated as a result of the 
ComputerSystem being deleted.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_FCPort AND SourceIn-
stance.OperationalStatus <> 
PreviousInstance.OperationalStatus

Deprecated WQL - Modification of OperationalStatus of 
a FC Port instance.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_FCPort                          AND Sour-
ceInstance.CIM_FCPort::OperationalStatus <> 
PreviousInstance.CIM_FCPort::OperationalStatus

CQL - Modification of OperationalStatus of a FC Port 
instance.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem AND SourceIn-
stance.Operationalstatus <> 
PreviousInstance.Operationalstatus

Deprecated WQL - Modification of OperationalStatus of 
a ComputerSystem instance.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem AND                          
SourceInstance.CIM_ComputerSystem::Operational-
status <> PreviousIn-
stance.CIM_ComputerSystem::Operationalstatus

CQL - Modification of OperationalStatus of a Computer-
System instance.

SELECT * FROM CIM_AlertIndication WHERE Ownin-
gEntity='SNIA' and MessageID='FC1'

Modification of Zone Database.

SELECT * FROM CIM_AlertIndication WHERE Ownin-
gEntity='SNIA' and MessageID='FC2'

ZoneSet Activated.

Table 588: CIM Elements for Fabric

Element Name Description
540



 Fabric Profile
Class Mandatory: true

8.2.6.1.9.2 CIM_AdminDomain
AdminDomain representing the SAN

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.6.1.9.3 CIM_AdminDomain
AdminDomain representing the fabric. This is a logical entity and can represent virtual fabrics.

Created By : External
Modified By : Static
Deleted By : External
Standard Names: The Fabric Name follows the requirements in 6.2.4.5.3
Class Mandatory: true

8.2.6.1.9.4 CIM_Component
Aggregates Hosts, Arrays and Switches in the AdminDomain that represents the Fabric

Created By : External
Modified By : Static
Deleted By : External

Table 589: SMI Referenced Properties/Methods for CIM_ActiveConnection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ServiceAccessPoi
nt

The reference to the ProtocolEndpoint 
for one end of the link

Dependent CIM_ServiceAccessPoi
nt

The reference to the ProtocolEndpoint 
for the other end of the link

Table 590: SMI Referenced Properties/Methods for CIM_AdminDomain (SAN)

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Name of Class
Name string An arbitrary name (implementation 

dependent)
NameFormat string Dependent on the arbitrary name cho-

sen.

Table 591: SMI Referenced Properties/Methods for CIM_AdminDomain (Fabric)

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Name of Class
Name C string WWN of Fabric
NameFormat string "WWN"
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 541



 

Class Mandatory: true

8.2.6.1.9.5 CIM_ComputerSystem
The ComputerSystem representing the Interconnect Element (e.g. a switch) or Platform (e.g. Host and
Array).

Created By : External
Modified By : Static
Deleted By : External
Standard Names: The Computer System Name follows the requirements in 6.2.4.5.3
Class Mandatory: true

8.2.6.1.9.6 CIM_ComputerSystem
The ComputerSystem representing the Platform (e.g. Host and Array). This class is typically
instantiated if the end device has populated the Fibre Channel Platform Database or FDMI.

Created By : External
Modified By : Static
Deleted By : External
Standard Names: The Computer System Name follows the requirements in 6.2.4.5.3

Table 592: SMI Referenced Properties/Methods for CIM_Component

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_ManagedElement The reference to the AdminDomain 
representing the Fabric

PartComponent CIM_ManagedElement The reference to the ComputerSystem 
representing the Host, Array, or Switch.

Table 593: SMI Referenced Properties/Methods for CIM_ComputerSystem (Fibre Channel Switch)

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Name of Class
Name C string The Switch WWN.
ElementName string The Switch Symbolic Name.
NameFormat string
OperationalStatus uint16[] One of the defined values shall be 

present in the array value.
OtherIdentifyingInfo string[] DomainID stored in decimal format
Dedicated uint16[]  "Switch"
IdentifyingDescriptions string[] Identifying descriptor for OtherIdentify-

ingInfo. The value "DomainID" is in 
IdentifyingDescriptions and in the cor-
responding index for OtherIdentifying-
Info the DomainID is placed.
542



 Fabric Profile
Class Mandatory: true

8.2.6.1.9.7 CIM_ConnectivityCollection
Collects the ProtocolEndpoints of the fabric.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.1.9.8 CIM_ContainedDomain
Associates one or more Fabrics to a SAN.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

Table 594: SMI Referenced Properties/Methods for CIM_ComputerSystem (Fibre Channel Plat-
form)

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Name of Class
Name C string The Platform Name or FDMI Host 

Name.
ElementName string The Platform Label.
NameFormat string
Dedicated uint16[] For a FC-GS Platform Type of Host, 

"Not Dedicated" (0); for storage sub-
systems, "Storage" (3); for Gateway, 
"Gateway" (20); for Router, "Router" 
(4); for Bridge, "Bridge/Extender" (19); 
for Platform Type of Other, "Other" (2).

Table 595: SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
Optional Properties/Methods

ElementName string Not required, can be the Fabric WWN.

Table 596: SMI Referenced Properties/Methods for CIM_ContainedDomain

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_AdminDomain The reference to the AdminDomain 
representing the SAN

PartComponent CIM_AdminDomain The reference to the AdminDomain 
representing the Fabric
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 543



 

8.2.6.1.9.9 CIM_DeviceSAPImplementation
Associates the FCPort to the ProtocolEndpoint

Created By : Extrinsic(s): 
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.1.9.10 CIM_ElementCapabilities
Associates the ZoneCapabilities to a System. The system normally is the AdminDomain representing
the Fabric, but in some cases where the Zone Database is not a fabric entity, it may be hosted on a
ComputerSystem representing the Switch.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.1.9.11 CIM_ElementSettingData
Associates ZoneMembershipSettingData to the Zone or NamedAddressCollection representing the
ZoneAlias.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

Table 597: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_LogicalDevice The reference to the FCPort
Dependent CIM_ServiceAccessPoi

nt
The reference to the ProtocolEndpoint

Table 598: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The reference to a System represent-
ing either an AdminDomain or Comput-
erSystem

Capabilities CIM_Capabilities The reference to ZoneCapabilities

Table 599: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The reference to the Zone or ZoneAlias
SettingData CIM_SettingData The reference to ZoneMembershipSet-

tingData
544



 Fabric Profile
8.2.6.1.9.12 CIM_FCPort
Fibre Channel Port for Switch

Created By : External
Modified By : Static
Deleted By : External
Standard Names: The PermanentAddress follows the requirements in 6.2.4.5.2
Class Mandatory: true

8.2.6.1.9.13 CIM_FCPort
Fibre Channel Port for non-Switches (Non-Dedicated, Storage, Router, Bridge/Extender)

Created By : External
Modified By : Static
Deleted By : External
Standard Names: The PermanentAddress follows the requirements in 6.2.4.5.2

Table 600: SMI Referenced Properties/Methods for CIM_FCPort (Switch)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System's CreationClass-
Name.

SystemName string The scoping System's Name.
CreationClassName string Name of Class
DeviceID string Opaque
ElementName string Port Symbolic Name if available. Other-

wise NULL. If the underlying implemen-
tation includes characters that are 
illegal in CIM strings, then truncate 
before the first of those characters.

PermanentAddress CD string Fibre Channel Port WWN
OperationalStatus uint16[] One of the defined values shall be 

present in the array value.
PortType uint16 The specific port type currently enabled 

(from FC-GS Port.Type)
LinkTechnology uint16 "FC"

Optional Properties/Methods
Speed uint64 Speed of zero represents a link not 

established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps
10Gb single channel variants are 
10518750000 bps
10Gb four channel variants are 
12750000000 bps
This is the raw bit rate.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 545



 

Class Mandatory: true

8.2.6.1.9.14 CIM_HostedAccessPoint
Associates the ProtocolEndpoint to the hosting System. The hosting System is either a
ComputerSystem for the Switch or Platform or to the AdminDomain for those systems not registered in
the Platform Database or discovered through FDMI.

Created By : External
Modified By : Static
Deleted By : External

Table 601: SMI Referenced Properties/Methods for CIM_FCPort (Devices)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System's CreationClass-
Name.

SystemName string The scoping System's Name.
CreationClassName string Name of Class
DeviceID string Opaque
OperationalStatus uint16[] One of the defined values shall be 

present in the array value.
PortType uint16 The specific port type currently enabled 

(from FC-GS Port.Type)
LinkTechnology uint16 "FC"

Optional Properties/Methods
ElementName string Port Symbolic Name if available. Other-

wise NULL. If the underlying implemen-
tation includes characters that are 
illegal in CIM strings, then truncate 
before the first of those characters.

PermanentAddress CD string Fibre Channel Port WWN. Expressed 
as 16 unseparated upper case hex dig-
its (see Table 4 for more information 
about formats).

NetworkAddresses C string[] Fibre Channel ID (FCID). Expressed as 
8 unseparated upper case hex digits 
(see Table 4 for more information about 
formats).

SupportedFC4Types uint16[] An array of integers indicating the Fibre 
Channel FC-4 protocols supported

SupportedCOS uint16[] An array of integers indicating the Fibre 
Channel Classes of Service that are 
supported.
546



 Fabric Profile
Class Mandatory: true

8.2.6.1.9.15 CIM_HostedCollection
Associates the LogicalPortGroup (Fibre Channel Node) to the hosting System. The hosting System is
either a ComputerSystem for the Platform or the AdminDomain for those systems not registered in the
Platform Database or discovered through FDMI.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.1.9.16 CIM_HostedCollection
Associates the ConnectivityCollection to the AdminDomain representing the Fabric.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.1.9.17 CIM_HostedCollection
Associates the ZoneSets, Zones, and NamedAddressCollections representing the ZoneAliases to the
hosting System (either the AdminDomain representing the Fabric or the ComputerSystem representing
the switch).

Created By : External
Modified By : Static

Table 602: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Reference to the System
Dependent CIM_ServiceAccessPoi

nt
Reference to the ProtocolEndpoint

Table 603: SMI Referenced Properties/Methods for CIM_HostedCollection (LogicalPortGroup)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The reference to the System
Dependent CIM_SystemSpecificColl

ection
The reference to the LogicalPortGroup 
(Fibre Channel Node)

Table 604: SMI Referenced Properties/Methods for CIM_HostedCollection (ConnectivityCollec-
tion)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The reference to the AdminDomain 
representing the Fabric

Dependent CIM_SystemSpecificColl
ection

The reference to the ConnectivityCol-
lection
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 547



 

Deleted By : External
Class Mandatory: true

8.2.6.1.9.18 CIM_LogicalPortGroup
Represents the Fibre Channel Node. Associated to the host system by the HostedCollection
Association. The hosting System is either a ComputerSystem representing the Platform or the
AdminDomain representing the fabric in the case for those systems not registered in the Platform
Database or discovered through FDMI (but available through the Name Server/Management Server).

Created By : External
Modified By : Static
Deleted By : External
Standard Names: The Name follows the requirements in 6.2.4.5.2
Class Mandatory: true

8.2.6.1.9.19 CIM_MemberOfCollection
Associates FCPort to the LogicalPortGroup

Created By : External
Modified By : Static
Deleted By : External

Table 605: SMI Referenced Properties/Methods for CIM_HostedCollection (Zone, ZoneSet, and 
ZoneAlias)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The reference to the System (AdminD-
omain representing the Fabric or the 
ComputerSystem representing the 
Switch)

Dependent CIM_SystemSpecificColl
ection

The reference to the SystemSpecific-
Collection (ZoneSets, Zones, or 
NamedAddressCollection)

Table 606: SMI Referenced Properties/Methods for CIM_LogicalPortGroup (Fibre Channel Node)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
Name CD string Fibre Channel Node WWN
NameFormat string "WWN"
ElementName N string Node Symbolic Name if available. Oth-

erwise NULL. If the underlying imple-
mentation includes characters that are 
illegal in CIM strings, then truncate 
before the first of those characters.
548



 Fabric Profile
Class Mandatory: true

8.2.6.1.9.20 CIM_MemberOfCollection
Associates ProtocolEndpoints to the ConnectivityCollection

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.1.9.21 CIM_MemberOfCollection
Associates ZoneMembershipSettingData and NamedAddressCollections (Zone Alias) which are Zone
Members to the Zone

Created By : CreateInstanceExtrinsic(s): AddZoneMembershipSettingData
Modified By : Static
Deleted By : DeleteInstance
Class Mandatory: true

8.2.6.1.9.22 CIM_MemberOfCollection
Associates Zones to the ZoneSets

Created By : CreateInstanceExtrinsic(s): AddZone
Modified By : Static
Deleted By : DeleteInstance

Table 607: SMI Referenced Properties/Methods for CIM_MemberOfCollection (FCPort to Logi-
calPortGroup)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The reference to the LogicalPortGroup 
representing the Fibre Channel Node

Member CIM_ManagedElement The reference to FCPort.

Table 608: SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoint 
to ConnectivityCollection)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The reference to the ConnectivityCol-
lection

Member CIM_ManagedElement The reference to ProtocolEndpoint

Table 609: SMI Referenced Properties/Methods for CIM_MemberOfCollection (ZoneAlias and 
ZoneMember to Zone)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The reference to Zone
Member CIM_ManagedElement The reference to either the ZoneMem-

bershipSettingData or LogicalPort-
Group
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 549



 

Class Mandatory: true

8.2.6.1.9.23 CIM_ProtocolEndpoint
The endpoint of a link (ActiveConnection). ProtocolEndpoint shall be implemented when an
ActiveConnection exists. It may be implemented if no ActiveConnections exist.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.1.9.24 CIM_SystemDevice
Associates the FCPort to the ComputerSystem

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.1.9.25 CIM_Zone
The active Zones being enforced by the Fabric.

Created By : Extrinsic(s): ActivateZoneSet
Modified By : Static
Deleted By : External

Table 610: SMI Referenced Properties/Methods for CIM_MemberOfCollection (Zone to ZoneSet)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The reference to the ZoneSet
Member CIM_ManagedElement The reference to the Zone

Table 611: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System's CreationClass-
Name.

SystemName string The scoping System's Name.
CreationClassName string Name of Class
Name CD string The Fibre Channel Port WWN.
NameFormat string "WWN"
ProtocolIFType uint16 "Fibre Channel"

Table 612: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System The reference to the ComputerSystem
PartComponent CIM_LogicalDevice The reference to the FCPort
550



 Fabric Profile
Class Mandatory: true

8.2.6.1.9.26 CIM_Zone
The inactive Zones being enforced by the Fabric.

Created By : Extrinsic(s): CreateZone
Modified By : Static
Deleted By : DeleteInstance
Class Mandatory: true

8.2.6.1.9.27 CIM_ZoneCapabilities
The Zoning Capabilities of the ZoneService of the Fabric (or Switch). 

ZoneCapabilities exposes the capabilities of the AdminDomain representing the Fabric for active
zoning and the capabilities of the ComputerSystem representing the Switch or AdminDomain
representing the Fabric for Zone Set Database. 

If a ZoneCapability property is not applicable or does not explicitly exists (e.g. the capability is limited
only by a memory size), the property is NULL.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

Table 613: SMI Referenced Properties/Methods for CIM_Zone (Active)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ElementName string The Zone Name
ZoneType uint16 The Zone Type
Active boolean Must be TRUE. Indicates that this 

ZoneSet is active.

Table 614: SMI Referenced Properties/Methods for CIM_Zone (Inactive)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ElementName string The Zone Name
ZoneType uint16 The Zone Type
Active boolean Must be FALSE. Indicates that this 

ZoneSet is inactive.

Table 615: SMI Referenced Properties/Methods for CIM_ZoneCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 551



 

ZoneNameMaxLen uint32 The maximum length for the name of a 
ZoneAlias (NamedAddressCollec-
tion.ElementName), Zone (Zone.Ele-
mentName) or ZoneSet 
(ZoneSet.ElementName) the Fabric (or 
Switch) are capable of supporting.

ZoneNameFormat uint16 The name format of a ZoneAlias 
(NamedAddressCollection.Element-
Name), Zone (Zone.ElementName) or 
ZoneSet (ZoneSet.ElementName) sup-
ported by either the Fabric (or the 
Switch)

SupportedConnectivityMember-
Types

uint16[] An array containing the supported con-
nectivity member types supported 
which include Permanent Address 
(WWN), Switch Port ID (Domain:Port in 
base10),Network Address (FCID), Log-
ical Port Group (Node WWN).

Optional Properties/Methods
MaxNumZoneSets uint32 The maximum number of ZoneSets in 

the Zone Set Database.
NULL should be returned in such cases 
when the property is not applicable or 
the number is not limited explicitly.

MaxNumZone uint32 The maximum number of Zones in the 
Zone Set Database.
NULL should be returned in such cases 
when the property is not applicable or 
the number is not limited explicitly.

MaxNumZoneMembers uint32 The maximum number of ZoneMem-
bers in the Zone Set Database . All 
ZoneMembers included in both Zones 
and ZoneAliases are counted, while the 
same ZoneMember included in multiple 
Zones or ZoneAliases is counted only 
once.
NULL should be returned in such cases 
when the property is not applicable or 
the number is not limited explicitly.

MaxNumZoneAliases uint32 The maximum number of ZoneAliases 
in the Zone Set Database
NULL should be returned in such cases 
when the property is not applicable or 
the number is not limited explicitly.

MaxNumZonesPerZoneSet uint32 The maximum number of Zones per 
ZoneSet.
NULL should be returned in such cases 
when the property is not applicable or 
the number is not limited explicitly.

Table 615: SMI Referenced Properties/Methods for CIM_ZoneCapabilities

Property Flags Type Description & Notes
552



 Fabric Profile
8.2.6.1.9.28 CIM_ZoneMembershipSettingData
Defines the ZoneMember

Created By : Extrinsic(s): AddZoneMemberSettingData
Modified By : Static
Deleted By : DeleteInstance
Class Mandatory: true

8.2.6.1.9.29 CIM_ZoneSet
The active ZoneSet being enforced by the Fabric.

Created By : Extrinsic(s): ActivateZoneSet
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.1.9.30 CIM_ZoneSet
The inactive ZoneSets.

Created By : Extrinsic(s): CreateZoneSet
Modified By : Static
Deleted By : DeleteInstance

MaxNumZoneSets uint32 The maximum number of ZoneSets in 
the Zone Set Database.
NULL should be returned in such cases 
when the property is not applicable or 
the number is not limited explicitly.

Table 616: SMI Referenced Properties/Methods for CIM_ZoneMembershipSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ConnectivityMemberType uint16 Permanent Address (WWN), Switch 

Port ID (Domain:Port in base10),Net-
work Address (FCID).

ConnectivityMemberID C string The value of the WWN, Domain/Port, 
or FCID.

Table 617: SMI Referenced Properties/Methods for CIM_ZoneSet (Active)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ElementName string The ZoneSet name.
Active boolean shall be TRUE. Indicates that this 

ZoneSet is active and members cannot 
be changed.

Table 615: SMI Referenced Properties/Methods for CIM_ZoneCapabilities

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 553



 

Class Mandatory: true

8.2.6.1.10 Related Standards

Table 618: SMI Referenced Properties/Methods for CIM_ZoneSet (Inactive)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ElementName string The ZoneSet name.
Active boolean Must be FALSE. Indicates that this 

ZoneSet is inactive.

Table 619: Related Standards for Fabric

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.11.0 DMTF
554



 Enhanced Zoning Subprofile
8.2.6.2 Enhanced Zoning Subprofile

8.2.6.2.1 Description
This profile describes the additional zoning functions for enhanced zoning. Note that Sessions are
normally part of enhanced zoning, but are included in the base fabric profile to address the various
types of zoning operations into a single object model. In this subprofile, then only Zone Alias is added.

8.2.6.2.2 Health and Fault Management
None

8.2.6.2.3 Cascading Considerations
None

8.2.6.2.4 Dependencies on Profiles, Subprofiles, and Packages
Support for the 8.2.6.3, "Zone Control Subprofile" is mandatory for the Enhanced Zoning and Enhanced
Zoning Control subprofile.

8.2.6.2.5 Methods of this Profile
CreateZoneAlias
The method creates a ZoneAlias and the association HostedCollection. The newly created association,
HostedCollection, associates the ZoneAlias to the same AdminDomain the ZoneService is hosted to.
For the newly created ZoneAlias, the Active property is always set to false.

CreateZoneAlias(

[IN] string CollectionAlias,

[OUT] CIM_NamedAddressCollection ref ZoneAlias);

AddZoneAlias
Adds to the Zone the specified ZoneAlias.

AddZoneAlias(

[IN] CIM_Zone ref Zone, 

[IN] CIM_NamedAddressCollection ref ZoneAlias);

8.2.6.2.6 Client Considerations and Recipes

8.2.6.2.6.1 Create a ZoneAlias
// DESCRIPTION 

// Create zone alias and add new zone member based on

// the parameters collected by the  CIM Client. 

// Before any operations can be imposed on the zoning

// service, a session is requested and obtained from the zone 

// service. Create a new ZoneAlias. The session may not be ended if 

// the ZoneAlias is empty, so add a zone member to the new ZoneAlias.

// The session is released when the operations are 

// completed.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.The system of interest,either the fabric (AdminDomain)

// or the switch (ComputerSystem), has been 

// previously identified and defined in the 

// $System-> variable 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 555



 

// 2.The name of the new zone alias is defined in the 

// #ZoneAliasName variable 

// 3.   The zone member type is defined in the #ConnectivityMemberType

// variable

// 4.   The zone member Id of the new zone member is defined in the

// #ConnectiivityMemberID variable

// 1. Get the ZoneService and start a session

$ZoneServices->[] = AssociatorNames(

$System->, 

“CIM_HostedService”, 

“CIM_ZoneService”, null, null)

// Assumption 1 above guarantees there is a zone service for this

// system. the fabric and switch profiles that there is no more than

// one ZoneService for this system

$ZoneService-> = $ZoneServices[0]

if(!&startSession($ZoneService->))

{

return

}

// 2. Create the ZoneAlias

%InArguments[“CollectionAlias”] = #ZoneAliasName

#status = InvokeMethod(

$ZoneService->, 

“CreateZoneAlias”, 

%InArguments[], 

%OutArguments[])

$ZoneAlias-> = %OutArguments[“ZoneAlias”]

if(#status != 0)

// ERROR!

// 3. Create or locate a ZoneMembershipSettingData

%InArguments[“ConnectivityMemberType”] = #ConnectivityMemberType

%InArguments[“ConnectivityMemberID”] = #ConnectivityMemberID

%InArguments[“SystemSpecificCollection”] = $ZoneAlias->

#status = InvokeMethod($ZoneService->, “CreateZoneMembershipSettingData”, 

                       %InArguments[], %OutArguments[])

// 4. Add to zone alias if not created as a member of the zone alias

//    Zone member reference is set accordingly in the output arguments.

$ZoneMember-> = %OutArguments[“ZoneMembershipSettingData”]
556



 Enhanced Zoning Subprofile
if (#status != 0)

    // ERROR!

// 5. End the session gracefully

&endSession($ZoneService->)

// 6. Verify that the ZoneAlias exists in the database

try{

GetInstance($ZoneAlias->)

}catch(CIM_ERR_NOT_FOUND){

// error

}

8.2.6.2.6.2 Delete a ZoneAlias
// DESCRIPTION 

// Delete a zone alias.

// Before any operations can be imposed on the zoning service, a 

// session is requested and obtained from the zone service.

// The session is released when the operations are completed.

// 

// if the deletion fails, it may be because the Zone Alias is not empty.

// In this case, remove all members from the alias by deleting the 

// ElementSettingData associations, and try the deletion again.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.The system of interest,either the fabric (AdminDomain)

// or the switch (ComputerSystem), has been 

// previously identified and defined in the 

// $System-> variable

// 2.The object name of the zone alias to be deleted is 

// defined in the $ZoneAlias-> variable

// 1. Get the zone service and start a session

$ZoneServices->[] = AssociatorNames(

$System->,

“CIM_HostedService”,

“CIM_ZoneService”,

null,

null)

// Assumption 1 above guarantees there is a zone service for this

// system. the fabric and switch profiles that there is no more than

// one ZoneService for this system

$ZoneService-> = $ZoneServices[0]
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 557



 

if(!&startSession($ZoneService->))

{

return

}

// 2. Attempt to delete the alias

try{

DeleteInstance($ZoneAlias->)

}catch(CIM_ERR_FAILED){

// Try to remove any zone members in the alias

// via the ElementSettingData association

$ZoneMembers->[] = referenceNames($ZoneAlias->,

“CIM_ElementSettingData”,

null)

for #j in $ZoneMembers->[] {

DeleteInstance(ZoneMembers[#j])

}

// Try again

DeleteInstance($ZoneAlias->)

}

// 3. End Session

&endSession($ZoneService->)

// verify that the deletion occurred

try{

GetInstance($ZoneAlias->)

}catch(CIM_ERR_NOT_FOUND){

//expect exception

return

}

// error!!

8.2.6.2.7 Registered Name and Version
Enhanced Zoning and Enhanced Zoning Control version 1.1.0
558



 Enhanced Zoning Subprofile
8.2.6.2.8 CIM Server Requirements

8.2.6.2.9 CIM Elements

8.2.6.2.9.1 CIM_HostedCollection
Associates the NamedAddressCollection representing the Zone Alias to the System (AdminDomain
representing the Fabric or the ComputerSystem representing the switch)

Class Mandatory: true

8.2.6.2.9.2 CIM_MemberOfCollection
Associates the ZoneMembershipSettingData to the NamedAddressCollection representing the Zone
Alias.

Table 620: CIM Server Requirements for Enhanced Zoning and Enhanced Zoning Control

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 621: CIM Elements for Enhanced Zoning and Enhanced Zoning Control

Element Name Description
Mandatory Classes

CIM_HostedCollection (8.2.6.2.9.1) Associates the NameAddressCollection representing 
the Zone Alias to the System

CIM_MemberOfCollection (8.2.6.2.9.2) Associates the ZoneMembershipSettingData to the 
NamedAddressCollection

CIM_NamedAddressCollection (8.2.6.2.9.3) The Zone Alias.
CIM_ZoneService (8.2.6.2.9.4) The service that allows for all of the zoning configura-

tion changes.

Table 622: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The reference to the System
Dependent CIM_SystemSpecificColl

ection
The reference to the NamedAddress-
Collection representing the Zone Alias.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 559



 

Class Mandatory: true

8.2.6.2.9.3 CIM_NamedAddressCollection
The Zone Alias.

Class Mandatory: true

8.2.6.2.9.4 CIM_ZoneService
The service that allows for all of the zoning configuration changes.

Class Mandatory: true

8.2.6.2.10 Related Standards

Table 623: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The reference to the NamedAddress-
Collection

Member CIM_ManagedElement The reference to the ZoneMembership-
SettingData

Table 624: SMI Referenced Properties/Methods for CIM_NamedAddressCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
CollectionAlias string The Zone Alias Name

Table 625: SMI Referenced Properties/Methods for CIM_ZoneService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping SystemsCreationClass-
Name.'

SystemName string The scoping SystemsName.'
CreationClassName string The Class Name
Name string Opaque
CreateZoneAlias()
AddZoneAlias()

Table 626: Related Standards for Enhanced Zoning and Enhanced Zoning Control

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
560



 Zone Control Subprofile
8.2.6.3 Zone Control Subprofile

8.2.6.3.1 Description
The zoning model includes extrinsic methods for creating Zone Sets, Zones, and Zone Members and
adding Zones to Zone Sets and Zone Members to Zones. Additionally SMI-S defines intrinsic methods
for the removing of Zone Members from Zones and Zone Aliases, Zones from Zone Sets, and deleting
Zone Members, Zones, and Zone Sets.

When an Inactive ZoneSet is “Activated”, new instances representing the Active Zone Set and Active
Zones are generated from the Inactive Zone Set definition (where a switch may prune the referenced
Zone Set collapsing aliases, removes empty zones, etc.).

When a new Zone Set is “Activated”, the instances representing the previous active Zone Set no longer
exists.

In the case where the Inactive Zone Sets are hosted on a switch, the client cannot know which Inactive
Zone Set was used to define the current Active Zone Set. Also if two Inactive Zone Sets with the same
name are hosted on two different switches, the definitions maybe completely different.

8.2.6.3.2 Durable Names and Correlatable IDs of the Profile
None

8.2.6.3.3 Instrumentation Requirements
The agent shall support the use case defined in the 8.2.6.3.8, "Client Considerations and Recipes".

8.2.6.3.4 Health and Fault Management
None

8.2.6.3.5 Cascading Considerations
None

8.2.6.3.6 Dependencies on Profiles, Subprofiles, and Packages
None

8.2.6.3.7 Methods of this Profile
The CIM Server shall support extrinsic methods for the Fabric Discovery Profile.

CreateZoneSet
The method creates a ZoneSet and associates it to the System (AdminDomain representing the Fabric
or the ComputerSystem representing the Switch) that the ZoneService is hosted on.

CreateZoneSet (

[IN] string ZoneSetName, 

[OUT] CIM_ZoneSet ref ZoneSet); 

CreateZone
The method creates a Zone and associates it to System (AdminDomain representing the Fabric or the
ComputerSystem representing the Switch) that the ZoneService is hosted on.

CreateZone (

[IN] string ZoneName, 

[IN] uint16 ZoneType, 
[IN] uint16 ZoneSubType, 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 561



 

[OUT] CIM_Zone ref Zone);

CreateZoneMembershipSettingData
The method creates a ZoneMembershipSettingData (a zone member) and adds it to the specified Zone
or NamedAddressCollection representing a Zone Alias. The ConnectivityMemberID is dependent upon
the ConnectivityMemberType.

For Fibre Channel, the ConnectivityMemberType of “PermanentAddress”, the ConnectivityMemberID is
the NxPort WWN; for ConnectivityMemberType of “NetworkAddress”, the ConnectivityMemberID is the
NXPort Address ID; for ConnectivityMemberType of “SwitchPortID”, the ConnectivityMemberID is
“Domain:PortNumber”.

CreateZoneMembershipSettingData (

[IN] uint16 ConnectivityMemberType, 
[IN] string ConnectivityMemberID, 

[IN] CIM_SystemSpecificCollection ref SystemSpecificCollection, 

[OUT] CIM_ZoneMembershipSettingData ref ZoneMembershipSettingData); 

AddZone
The method adds to the specified ZoneSet the specified Zone. Adding a Zone to a ZoneSet, extends
the zone enforcement definition of the ZoneSet to include the members of that Zone. If adding the Zone
is, successful, the Zone should be associated to the ZoneSet by MemberOfCollection.

AddZone (

[IN] CIM_ZoneSet ref ZoneSet, 

[IN] CIM_Zone ref Zone); 

AddZoneMembershipSettingData
The method adds to the specified Zone or NamedAddessCollection representing the Zone Alias the
specified ZoneMembershipSettingData (a zone member).

AddZoneMembershipSettingData (

[IN] CIM_SystemSpecificCollection ref SystemSpecificCollection,

[IN] CIM_ZoneMembershipSettingData ref ZoneMembershipSettingData); 

ActivateZoneSet
The method activates the specified ZoneSet. Once a ZoneSet is activated, a ZoneSet with the property
Active set to true, its associated Zones with the property Active set to true, and the Zone’s associated
ZoneMembershipSettingData are instantiated.

ActivateZoneSet shall be supported outside of a session. ActivateZoneSet being called within a session
is implementation specific. 

Calling ActivateZoneSet outside of a session while a session is open is implementation specific.

Uint32 ActivateZoneSet (

[IN] CIM_ZoneSet ref ZoneSet,

[IN] boolean Activate )

SessionControl
The method enables a client to request a lock of the fabric to begin zoning configuration changes.
562



 Zone Control Subprofile
This method allows a client to request or release a lock on the fabric for zoning configuration changes.
As described in FC-GS, in the context of Enhanced Zoning Management, management actions to a
Zone Server (e.g., write access to the Zoning Database) shall occur only inside a GS session. Clients
executing zoning management operations shall use fabric sessions cooperatively if the SMI-S agent
supports it. (If the value of SessionState is 4 (“Not Applicable”) then no cooperative session usage is
possible). 

Before a client executes zoning management operations (intrinsic or extrinsic methods), the client shall
request a new session and wait for the request to be granted. To request a new session, first wait until
the property “SessionState” of the fabric’s ZoneService is 3 (“Ended”) and the property
“RequestedSessionState” is 5 “No Change”. Then call SessionControl with RequestedSessionState = 2
(“Started”). Once zoning management operations are completed, the client shall release the session to
enable the provider to propagate changes to the fabric, and to allow other clients to perform
management operations. To end a session and commit the changes, call SessionControl with
RequestedSessionState = 3 (“Ended”). To abort a sequence of zoning management operations without
updating the fabric, call SessionControl with RequestedSessionState = 4 (“Terminated”). 

SMIS agents shall block on calls to SessionControl until the request is fulfilled. For example, an error
may occur while committing changes to a fabric, i.e., after a call to SessionControl with
RequestedSessionState = 3 (“Ended”). The method cannot return until the session has ended, so that a
CIM error can be returned if a problem occurs. While the method is in progress, another client may read
the value of the RequestedSessionState property and see the value set by the method currently in
progress. Once the request is fulfilled, the RequestedSessionState property is set to value 5 “No
Change”, regardless of the value in the setInstance operation.

Sessions can timeout. The session timeout behavior and settings are defined by FC-SW in the section
discussing mapping GS sessions for Enhanced Zoning Management.

A SMIS agent may raise an error if these client cooperation rules are not followed. For the purposes of
a SMIS agent, a series of requests from the same authenticated entity are considered to be from a
single client. An agent may verify that such a series corresponds to the sequence described above and
raise the error CIM_ERR_FAILED at any time if the sequence is violated.

Uint32 SessionControl (

[IN,

 ValueMap {"2", "3", "4"}, 

 Values {"Started", "Ended", "Terminated"}] 

uint16 RequestedSessionState;};
Intrinsics for removing a zone from a zone set
As seen in the instance diagram, a zone is a member of a zone set if there is a
“CIM_MemberOfCollection” association from the zone set to the zone. To remove a zone from a zone
set, delete the instance of the association “CIM_MemberOfCollection” using the intrinsic operation
deleteInstance.

Intrinsics for removing a zone alias from a zone
A zone alias is a member of a zone if there is a “CIM_MemberOfCollection” association from the zone
to the zone alias. To remove a zone alias from a zone set, delete the instance of the association
“CIM_MemberOfCollection” using the intrinsic operation deleteInstance.

Intrinsics for removing a zone member from a zone or zone alias
Zone members are represented by CIM_ZoneMembershipSettingData instances. No instance of
CIM_ZoneMembershipSettingData exists unless it is associated to a zone or zone alias by a
CIM_ElementSettingData association. However, an instance of CIM_ZoneMembershipSettingData
may be associated to more than one zone or zone alias. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 563



 

Removing a zone member from a zone or zone alias is equivalent to deleting the instance of the
CIM_ElementSettingData association. Delete the instance using the intrinsic operation deleteInstance. 

If this is the last instance of a CIM_ElementSettingData association for a particular
CIM_ZoneMembershipSettingData, do not delete the instance of CIM_ZoneMembershipSettingData; it
is the provider's responsibility to clean up these structures.

Intrinsic for deleting a zone member
Zone members are represented by CIM_ZoneMembershipSettingData instances associated to zones
or zone aliases via CIM_ElementSettingData associations. To delete a zone member (and remove it
from any zones or zone aliases from which it is a member) use the CIM operation deleteInstance to
delete the instance of CIM_ZoneMembershipSettingData.

Do not delete the corresponding instances of the CIM_ElementSettingData; it is the provider's
responsibility to clean up these structures.

Intrinsic for deleting a zone, zone alias, or zone set
Use the intrinsic operation deleteInstance to delete a zone, zone alias or zone set. Client are allowed to
delete zones or zone aliases that are members of collections (zones or zone sets). Clients are allowed
to delete the last member of a zone or zone set, leaving the collection empty. 

A zone set or zone cannot be deleted if it is currently active (the error would be CIM_ERR_FAILED).
Some implementations may prohibit deleting zonesets, zones or zone aliases that still have members
(the error would be CIM_ERR_FAILED). When a zone, zone alias or zone set is deleted, the client does
not have to delete the corresponding instances of CIM_MemberOfCollection or CIM_HostedCollection;
it is the provider's responsibility to clean up these structures.

8.2.6.3.8 Client Considerations and Recipes
Many agent implementations do not allow Zone, a ZoneAlias or a Zone Set to be defined empty. Since
the methods defined in SMI-S do not support creating a Zone Set with a Zone and a Zone with a Zone
Member, the SessionControl method should be used to build a Zone Definition that is interoperable.
This is done by calling ZoneSession() to “Start” defining or updating the Zone Definition. The client then
calls the appropriate methods as necessary to build the desired Zone Definition. For example, calling
CreateZoneSet() to create a new Zone Set, CreateZone() to create a new Zone, AddZoneToZoneSet()
to add the newly created Zone to the newly created Zone Set, and
CreateZoneMembershipSettingData() to create and add a new Zone Member to the newly created
Zone. Upon completion of the new zoning definition, ZoneControl is called again to “End” the session.
The changes to the Zone Definition would then be applied to the Zone Set Database. This set of calls
would create a Zone Definition where the Zone and ZoneSet are not empty and would be interoperable
across all agent implementations.

8.2.6.3.8.1 Create or delete zones Common Functions
// DESCRIPTION

//

// Common functions used by the recipes below.

//

// startSession: attempt to start fabric session if required; 

//   returns false if attempt fails; returns true if attempt succeeds

//   or if session control is unnecessary

//

// endSession: finalize fabric session if required; returns false

//   if attempt fails; returns true if attempt succeeds or if session 

//   control is unnecessary

//
564



 Zone Control Subprofile
//

// findActiveZoneSet: routine to find the active zoneset

// on a fabric, and return the reference to it

//

 

// PREEXISTING CONDITIONS AND ASSUMPTIONS 

//

// None

sub boolean startSession ($ZoneService->)

{

    $ZoneService = GetInstance($ZoneService->, false, false, false, null)

    // session statuses

    #Ended = 3

    #NotApplicable = 4

    // requested session statuses

    #Started = 2

    #NoChange = 5

    if ($ZoneService.SessionState == #NotApplicable)

         return true // no session control implemented by this agent

    if ($ZoneService.SessionState != #Ended)

         return false // fabric session is in use by another client or agent

    if ($ZoneService.RequestedSessionState != #NoChange) 

         return false // another client has already requested session

    %InArguments[“RequestedSessionState”] = #Started

    #status = InvokeMethod($ZoneService->, “SessionControl”, %InArguments, 
%OutArguments)

    if (#status != 0) // e.g. “Failed”

        return false

    $ZoneService = GetInstance($ZoneService->, false, false, false, null)

    if ($ZoneService.SessionState != #Started)

        return false

    return true

}

// PREEXISTING CONDITIONS AND ASSUMPTIONS 

//
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 565



 

// None

sub boolean endSession ($ZoneService->) {

    $ZoneService = GetInstance($ZoneService->, false, false, false, null)

    // session statuses

    #Started = 2

    #NotApplicable = 4

    // requested session statuses

    #End = 3

    if ($ZoneService.SessionStatus == #NotApplicable){

        return true      // no need for session control

    if ($ZoneService.SessionStatus != #Started) 

        return false     // no session started by this client

    %InArguments[“RequestedSessionState”] = #End

    #status = InvokeMethod($ZoneService, “SessionControl”, %InArguments, 
%OutArguments)

    if (#status != 0)   // e.g. “Failed”

        return false

    // Do not wait, or even check, for SessionState to have value “Ended” as

    // a) InvokeMethod will block till done (or failed) anyway

    // b) Before the check can be made, session may already be started

    //    by another client

    return true

}

// PREEXISTING CONDITIONS AND ASSUMPTIONS 

// The reference to the fabric on which the active 

// zoneset it to be sought is already known in 

// the input variable $Fabric. Calling code

// should verify that the returned reference is non-null

//

sub Ref findActiveZoneSet($Fabric->){

$ActiveZoneSet->=null

$ZoneSets[] = Associators(

$Fabric->,

“CIM_HostedCollection”,

“CIM_ZoneSet”,

null,

null,

false,
566



 Zone Control Subprofile
false,

{“Active”} )

// there may be no active zoneset

if(0 < ZoneSets[].size()){

for(#i in $ZoneSets[]){

if(true==$ZoneSets[#i].Active){

$ActiveZoneSet->=nameof($ZoneSets[#i])

break

}

}

}

return $ActiveZoneSet->

}

8.2.6.3.8.2  Add new Zone Member to Existing Zone
// DESCRIPTION

// Add new Zone Member to Existing Zone

// 

// Assume the client has already invoked some logic to determine which

// System (fabric or switch) will host the zone database and zone

// service to be used.  Request and obtain a fabric session from the

// zone service.  Use an extrinsic method to attempt to create a new

// instance of ZoneMembershipSettingData, associated to a zone.  If

// the creation fails because an instance already exists for the

// desired zone member id, simply create an association between the

// pre-existing ZoneMembershipSettingData instance and the zone

// instance.  Then close the fabric session.

//

// PREEXISTING CONDITIONS AND ASSUMPTIONS 

// 

// 1. The System hosting the zone database (ComputerSystem or

//    AdminDomain) has been previously identified and defined in the

//    $System-> variable

// 

// 2. The zone member type is defined in the #ConnectivityMemberType variable

// 

// 3. The zone member id of the new zone member is defined in the

//    #ConnectivityMemberID variable

// 

// 4. An existing zone is defined in the $Zone-> variable

// 

// FUNCTIONS

// 1. Get the Zone Service and start the session

$ZoneServices->[] = AssociatorNames($System->, “CIM_HostedService”, 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 567



 

                                    “CIM_ZoneService”, null, null)

// Assumption 1 (above) guarantees there is a zone service for this

// System, Fabric Profile mandates there is no more than one zone

// service for this System

$ZoneService-> = $ZoneService->[0]

// Start the session

if (!&startSession($ZoneService->)) {

    <ERROR! Failed to start zone session>

}

// 2. Create a ZoneMembershipSettingData

%InArguments[“ConnectivityMemberType”] = #ConnectivityMemberType

%InArguments[“ConnectivityMemberID”] = #ConnectivityMemberID

%InArguments[“SystemSpecificCollection”] = $Zone->

#status = InvokeMethod($ZoneService->, “CreateZoneMembershipSettingData”, 

                       %InArguments[], %OutArguments[])

if (#status != 0){

<ERROR! call to method CreateZoneMembershipSettingData failed #status>

}

// 3. Store the returned object path for verification

$ZoneMember-> = %OutArguments[“ZoneMembershipSettingData”]

// 4. End session successfully

if(!&endSession($ZoneService->)){

<ERROR! Failed to end session, changes may not have been committed>

} 

// 5. Verify that the zonemember exist within the specified zone

$ZoneMembers->[]=associatorNames(

$Zone->,

“CIM_ElementSettingData”,

“CIM_ZoneMembershipSettingData”,

“ManagedElement”,

“SettingData” )

if(!contains($ZoneMember->,$ZoneMembers[])){

<ERROR! Failed to verify zone member created>

}

8.2.6.3.8.3 Create new Zone, add new Zone Member, and add to existing ZoneSet
// DESCRIPTION

// Create new Zone, add new Zone Member, and add to existing ZoneSet

//
568



 Zone Control Subprofile
// Assume the client has already invoked some logic to determine which

// System (fabric or switch) will host the zone database and zone

// service to be used.  Request and obtain a fabric session from the

// zone service.  Create a new Zone using an extrinsic method.  The

// session may not be ended if any zone is empty, so add a zone member

// to the new zone.  The session also may not be ended unless every

// zone is a member of at least one zone set, so add the new zone to

// an existing zone set.  Then close the fabric session.

//

// 

// PREEXISTING CONDITIONS AND ASSUMPTIONS 

// 

// 1. The System hosting the zone database (ComputerSystem or

//    AdminDomain) has been previously identified and defined in the

//    $System-> variable

// 

// 2. The name for a new zone is defined in the #ZoneName variable

// 

// 3. The type for the new zone is defined in the #ZoneType variable

// 

// 4. The sub type for the new zone is defined in the #ZoneSubType

//    variable

// 

// 5. The zone member type is defined in the #ConnectivityMemberType variable

// 

// 6. The zone member id of the new zone member is defined in the

//    #ConnectivityMemberID variable

// 

// 7. An existing zoneSet is defined in the $ZoneSet-> variable

// 

// FUNCTIONS

// 1. Get the Zone Service and start the session

$ZoneServices->[] = AssociatorNames($System->, “CIM_HostedService”, 

                                    “CIM_ZoneService”, null, null)

// Assumption 1 (above) guarantees there is a zone service for this

// System, Fabric Profile mandates there is no more than one zone

// service for this System

$ZoneService-> = $ZoneServices->[0]

    if (!&startSession($ZoneService->)) {

    <ERROR! Failed to start zone session>

} 

// 2. Create a zone

%InArguments[“ZoneName”] = #ZoneName
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 569



 

%InArguments[“ZoneType”] = #ZoneType

%InArguments[“ZoneSubType”] = #ZoneSubType

InvokeMethod($ZoneService->, “CreateZone”, %InArguments[], %OutArguments[])

$Zone-> = $OutArguments[“Zone”] 

   

// 3. Create  a ZoneMembershipSettingData

%InArguments[“ConnectivityMemberType”] = #ConnectivityMemberType

%InArguments[“ConnectivityMemberID”] = #ConnectivityMemberID

%InArguments[“SystemSpecificCollection”] = $Zone->

#status = InvokeMethod($ZoneService->, “CreateZoneMembershipSettingData”, 

                       %InArguments[], %OutArguments[])

if (#status != 0){

<ERROR! Call to method CreateZoneMembershipSettingData failed #status>

}

// 4. Save the returned member objectpath for verification

$ZoneMember-> = %OutArguments[“ZoneMembershipSettingData”]

// 5. Add the new zone to the existing zone set

%InArguments[“ZoneSet”] = $ZoneSet->

%InArguments[“Zone”] = $Zone-> 

#status = InvokeMethod($ZoneService->, “AddZone”, %InArguments[], %OutArguments[])

if (#status != 0){

<ERROR Call to method AddZone failed>

}

// 6. End Session

if(!&endSession($ZoneService->)){

<ERROR! Failed to end session, changes may not have been committed>

}

// 7. Verify that the zone exists in the zone set

$Zones->[]=associatorNames(

$ZoneSet->,

“CIM_MemberOfCollection”,

“CIM_Zone”,

“Collection”,

“Member”

)

// see if the zone is in the returned array

if(!contains($Zone->,$Zones->[])){

<ERROR! Failed to verify that Zone was added to ZoneSet>

}

8.2.6.3.8.4 Create new ZoneSet and add existing Zone
// DESCRIPTION
570



 Zone Control Subprofile
// Create new ZoneSet and add existing Zone

// 

// Assume the client has already invoked some logic to determine which

// System (fabric or switch) will host the zone database and zone

// service to be used.  Request and obtain a fabric session from the

// zone service.  Create a new ZoneSet with a given name, using an

// extrinsic method.  The session may not be ended if any ZoneSet is

// empty, so add an existing zone to the ZoneSet. Then close the

// fabric session.

// 

// PREEXISTING CONDITIONS AND ASSUMPTIONS 

// 

// 1. The System hosting the zone database (ComputerSystem or

//    AdminDomain) has been previously identified and defined in the

//    $System-> variable

// 

// 2. The name for the new zone set is defined in the #ZoneSetName

//    variable

//

// 3. An existing zone is defined in the $Zone-> variable

// 

// FUNCTIONS

// 1. Get the Zone Service and start the session

$ZoneServices->[] = AssociatorNames($System->, “CIM_HostedService”, 

                                    “CIM_ZoneService”, null, null)

// Assumption 1 (above) guarantees there is a zone service for this

// System, Fabric Profile mandates there is no more than one zone

// service for this System

$ZoneService-> = $ZoneServices->[0]

if (!&startSession($ZoneService->)){

<ERROR! Failed to start zone session>

} 

// 2. Create a zone set 

%InArguments[“ZoneSetName”] = #ZoneSetName

#status = InvokeMethod($ZoneService->, “CreateZoneSet”, %InArguments[], 
%OutArguments[])

if (#status != 0){

<ERROR! Call to method CreateZoneSet failed>

}

$ZoneSet-> = %OutArguments[“ZoneSet”] 

// 3. Add the existing zone to the new zone set

%InArguments[“ZoneSet”] = $ZoneSet->
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 571



 

%InArguments[“Zone”] = $Zone-> 

#status = InvokeMethod($ZoneService->, “AddZone”, %InArguments[], %OutArguments[])

if (#status != 0){

<ERROR! Call to method AddZone failed #status>

}

// 4. End Session

if(!&endSession($ZoneService->)){

<ERROR! Failed to end zone session, changes may not be committed>

}

// 5. Verify that the new zone set exists in the zone database

try{

GetInstance($ZoneSet->);

}catch(CIM_ERR_NOT_FOUND){

<ERROR! Failed to verify ZoneSet created>

}

8.2.6.3.8.5 Delete zone
// DESCRIPTION

// Delete Zone

//

// Try to use intrinsic delete operation to delete a Zone instance.

// Before any operations can be imposed on the zoning service, a

// session is requested and obtained from the zone service.  If the

// deletion fails, this may be because the zone is active, or because

// it is not empty.  In the latter case, remove all members from the

// zone by deleting the ElementSettingData association instances, and

// try the deletion again.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.  The object name of the zone to be deleted is defined in the 

//     $Zone-> variable

// 2.  The object name of the zone service object for the System

//     hosting the zone database is defined in the $ZoneService-> 

//     variable

if(!&startSession($ZoneService->)){

<ERROR! Failed to start session>

}

try {

    DeleteInstance($Zone->)

} 

catch(CIM_ERR_FAILED) {
572



 Zone Control Subprofile
    // Verify that Zone is not active

    $Zone = GetInstance($Zone->, false, false, false, null)

    if ($Zone.Active) {

        // tell client of its logic problem

        <ERROR! May not delete Zone from active ZoneSet>

    }

    // Failure may be caused because zone has members

    // Try to delete all zone memberships (not zone members themselves)

    $ZoneElements->[] = ReferenceNames($Zone->, “CIM_ElementSettingData”, null)

    for #i in $ZoneElements->[] {

        DeleteInstance($ZoneElements[#i])

    }

    // Try again

    DeleteInstance($Zone->)

}

if(!&endSession($ZoneService->)){

<ERROR! Failed to end session, changes may not be committed>

}

// Verify that the zone no longer exists in the zone database

try{

GetInstance($Zone->)

}catch(CIM_ERR_NOT_FOUND){

// expect failure

return

}

// error if no exception thrown

<ERROR! Found Zone that should have been deleted>

8.2.6.3.8.6 Delete ZoneSet
// DESCRIPTION 

// Delete Zone Set

//

// Try to use intrinsic delete operation to delete a ZoneSet

// instance. Before any operations can be imposed on the zoning

// service, a session is requested and obtained from the zone service.

// The session is released when the operations are complete.  If the

// deletion fails, this may be because the zone set is active, or

// because it is not empty.  In the latter case, remove all zones from

// the zone set by deleting the MemberOfCollection association

// instances, and try the deletion again.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.  The object name of the zone set to be deleted is defined in the 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 573



 

//     $ZoneSet-> variable

// 2.  The object name of the zone service object for the system

//     hosting the zone database is defined in the $ZoneService-> 

//     variable

if (!&startSession($ZoneService->))

<ERROR! Failed to start session>

}

try {

    DeleteInstance($ZoneSet->)

} 

catch(CIM_ERR_FAILED) {

    $ZoneSet = GetInstance($ZoneSet->, false, false, false, null)

    if ($ZoneSet.Active) {

        // tell client of logic problem

        <ERROR! May not delete an active ZoneSet>

    }

    // Failure may be because zoneset is not empty

    $ZoneMemberships->[] = ReferenceNames($ZoneSet->, “CIM_MemberOfCollection”, 
null)

    for #i in $ZoneMemberships->[] {

        DeleteInstance($ZoneMemberships->[$i])

    }

    // Try again

    DeleteInstance($ZoneSet->)

}

if(!&endSession($ZoneService->)){

<ERROR! Failed to end session, changes may not have been committed>

}

// Verify that the deletion did indeed occur

try{

GetInstance($ZoneSet->)

}catch(CIM_ERR_NOT_FOUND){

// expected, not a recipe error

return

}

// error if no exception caught

<ERROR! Found ZoneSet that should have been deleted>

8.2.6.3.8.7 Delete ZoneMember
// DESCRIPTION 

// Delete a zone member, removing it from any zones and aliases of

// which it is a member.

// 
574



 Zone Control Subprofile
// Use the intrinsic delete operation to delete a

// ZoneMembershipSettingData instance. Before any operations can be

// imposed on the zoning service, a session is requested and obtained

// from the zone service.  The session is released when the operations

// are complete.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.  The object name of the ZoneMembershipSettingData to be deleted is defined in 
the 

//     $ZoneMember-> variable

// 2.  The object name of the zone service object for the system

//     hosting the zone database is defined in the $ZoneService-> 

//     variable

    

if(!&startSession($ZoneService->)){

<ERROR! Failed to start session>

}

DeleteInstance($ZoneMember->)

if(!&endSession($ZoneService->)){

<ERROR! Failed to end session, changes may not have been committed>

}

// verify that it is indeed deleted

try{

GetInstance($ZoneMember->)

}catch(CIM_ERR_NOT_FOUND){

// expect an exception,

// not a recipe error

return

}

// error if no exception caught

<ERROR! Found ZoneMember that should have been deleted>

8.2.6.3.9 Registered Name and Version
Zone Control version 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 575



 

8.2.6.3.10 CIM Server Requirements

8.2.6.3.11 CIM Elements

8.2.6.3.11.1 CIM_HostedService
Associates the ZoneService to the AdminDomain representing the fabric or the ComputerSystem
representing the switch.

Class Mandatory: true

8.2.6.3.11.2 CIM_ZoneService
The service that allows for all of the zoning configuration changes.

Class Mandatory: true

Table 627: CIM Server Requirements for Zone Control

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications No
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No

Table 628: CIM Elements for Zone Control

Element Name Description
Mandatory Classes

CIM_HostedService (8.2.6.3.11.1) Associates the ZoneService to the AdminDomain repre-
senting the fabric or the ComputerSystem representing 
the switch.

CIM_ZoneService (8.2.6.3.11.2) The service that allows for all of the zoning configura-
tion changes.

Table 629: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The reference to the System represent-
ing the fabric or the switch.

Dependent CIM_Service The reference to the ZoneService.

Table 630: SMI Referenced Properties/Methods for CIM_ZoneService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping SystemsCreationClass-
Name.
576



 Zone Control Subprofile
SystemName string The scoping SystemsName.
CreationClassName string The Class Name
Name string Opaque
OperationalStatus uint16[] Status of Zoning Service.
SessionState uint16 State of session. Valid values are 

"Starting", "Ended".
RequestedSessionState uint16 The requested session state from the 

client. The valid values that can be set 
are "Start", "End", and "Terminate".

DefaultZoningState uint16
CreateZoneSet() The method creates a ZoneSet and 

associates it to the System (AdminDo-
main representing the Fabric or the 
ComputerSystem representing the 
Switch) that the ZoneService is hosted 
on.

CreateZone() The method creates a Zone and asso-
ciates it to System (AdminDomain rep-
resenting the Fabric or the 
ComputerSystem representing the 
Switch) that the ZoneService is hosted 
on.

CreateZoneMembershipSetting-
Data()

The method creates a ZoneMember-
shipSettingData (a zone member) and 
adds it to the specified Zone or Named-
AddressCollection representing a Fibre 
Channel Node.

AddZone() The method adds to the specified 
ZoneSet the specified Zone.

AddZoneMembershipSetting-
Data()

The method adds to the specified Zone 
or NamedAddessCollection represent-
ing the Fibre Channel Node the speci-
fied ZoneMembershipSettingData (a 
zone member).

ActivateZoneSet() The method activates the specified 
ZoneSet.

SessionControl() The method enables a client to request 
a lock of the fabric to begin zoning con-
figuration changes.

Table 630: SMI Referenced Properties/Methods for CIM_ZoneService

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 577



 

8.2.6.3.12 Related Standards

Table 631: Related Standards for Zone Control

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
578



 FDMI Subprofile
8.2.6.4 FDMI Subprofile

8.2.6.4.1 Description
The Fabric-Device Management Interface (FDMI) enables the management of devices such as HBAs
through the Fabric. The FDMI complements data in the Fabric Profile. It allows for any entity in the
Fabric to expose through SMI the HBA information without having an agent resident on the Host
containing the HBA.

This profile only addresses HBA type devices. The HBA Management Interface defined by FDMI is a
subset of interface defined by the Fibre Channel HBA API specification, as exposed by the 8.2.7.1, "FC
HBA Profile". 

8.2.6.4.2 Health and Fault Management
None

8.2.6.4.3 Cascading Considerations
None

8.2.6.4.4 Dependencies on Profiles, Subprofiles, and Packages
None

8.2.6.4.5 Methods of this Profile
None

Figure 93: FDMI Instance Diagram

Product

ComputerSystem PortController

Installed
Software
Identity

(Driver)

SoftwareIdentity

FCPort

Element
Statistical   

Data FCPortStatistics

LogicalPortGroup MemberOf
Collection

ControlledBy

(FCode/BIOS)

SoftwareIdentityt

(Firmware)

SoftwareIdentity

(e.g. Card)

PhysicalPackage

ProductPhysicalComponent

System
Device

System
Device

Hosted
Collection

Realizes

Element
Software
Identity

Element
Software
Identity

Element
Software
Identity
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 579



 

8.2.6.4.6 Client Considerations and Recipes
None

8.2.6.4.7 Registered Name and Version
FDMI version 1.1.0

8.2.6.4.8 CIM Server Requirements

Table 632: CIM Server Requirements for FDMI

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
580



 FDMI Subprofile
8.2.6.4.9 CIM Elements

8.2.6.4.9.1 CIM_ComputerSystem
The system the HBA is within. It is identified using Host Name from the FDMI interface.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.2 CIM_ControlledBy
Associates the ComputerSystem with the PortController.

Table 633: CIM Elements for FDMI

Element Name Description
Mandatory Classes

CIM_ComputerSystem (8.2.6.4.9.1) The System the HBA is within.
CIM_ControlledBy (8.2.6.4.9.2) Associates the ComputerSystem with the PortController
CIM_ElementSoftwareIdentity (8.2.6.4.9.3) Associates the SoftwareIdentity to the HBA
CIM_FCPort (8.2.6.4.9.4) The HBA Fibre Channel Port
CIM_HostedCollection (8.2.6.4.9.5) Associates the LogicalPortGroup (Fibre Channel Node) 

to the hosting System.
CIM_InstalledSoftwareIdentity (8.2.6.4.9.6) Associates the SoftwareIdentity representing the driver 

to the System it is installed on.
CIM_LogicalPortGroup (8.2.6.4.9.7) The Fibre Channel Node
CIM_MemberOfCollection (8.2.6.4.9.8) Associates FCPort to the LogicalPortGroup
CIM_PhysicalPackage (8.2.6.4.9.9) The physical package that the HBA is contained in
CIM_PortController (8.2.6.4.9.10) The HBA
CIM_Product (8.2.6.4.9.11) The product information for the HBA
CIM_ProductPhysicalComponent (8.2.6.4.9.12) Associates the Product to the PhysicalPackage
CIM_Realizes (8.2.6.4.9.13) Associates the PhysicalPackage to the PortController
CIM_SoftwareIdentity (8.2.6.4.9.14) The software for the firmware
CIM_SoftwareIdentity (8.2.6.4.9.15) The software for the driver
CIM_SoftwareIdentity (8.2.6.4.9.16) The software for the Option ROM
CIM_SystemDevice (8.2.6.4.9.17) Associates the ComputerSystem with the FCPort
CIM_SystemDevice (8.2.6.4.9.18) Associates the ComputerSystem with the PortController

Table 634: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string The name of the host containing the 

Device. The key identifier helping in 
discovery to determine which HBAs are 
in the same host.

NameFormat string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 581



 

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.3 CIM_ElementSoftwareIdentity
Associates the SoftwareIdentities representing the various software for the HBA to the PortController
representing the HBA.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.4 CIM_FCPort
The HBA Fibre Channel Port.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

Table 635: SMI Referenced Properties/Methods for CIM_ControlledBy

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Controller PortController
Dependent CIM_LogicalDevice FCPort

Table 636: SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_SoftwareIdentity
Dependent CIM_ManagedElement

Table 637: SMI Referenced Properties/Methods for CIM_FCPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System's CreationClass-
Name.

SystemName string The scoping System's Name.
CreationClassName string Name of Class
DeviceID string Opaque
ElementName string Port Symbolic Name if available. Other-

wise NULL. If the underlying implemen-
tation includes characters that are 
illegal in CIM strings, then truncate 
before the first of those characters.

LinkTechnology uint16 "FC"
582



 FDMI Subprofile
8.2.6.4.9.5 CIM_HostedCollection
Associates the LogicalPortGroup (Fibre Channel Node) to the hosting System.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.6 CIM_InstalledSoftwareIdentity
Associates the SoftwareIdentity representing the driver to the System it is installed on.

Created By : External
Modified By : Static
Deleted By : External

PermanentAddress string Fibre Channel Port WWN
NetworkAddresses C string[] Fibre Channel ID (FCID). Expressed as 

8 unseparated upper case hex digits 
(see Table 4 for more information about 
formats).

ActiveFC4Types uint16[] The active Fibre Channel FC-4 protocol 
PortType uint16 The specific port type currently enabled 

(from FC-GS Port.Type)
Optional Properties/Methods

SupportedFC4Types uint16[] An array of integers indicating the Fibre 
Channel FC-4 protocols supported

SupportedCOS uint16[] An array of integers indicating the Fibre 
Channel Classes of Service that are 
supported.

Speed uint64 Speed of zero represents a link not 
established.
1Gb is 1062500000 bps
2Gb is 2125000000 bps
4Gb is 4250000000 bps
10Gb single channel variants are 
10518750000 bps
10Gb four channel variants are 
12750000000 bps
This is the raw bit rate.

Table 638: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The reference to the System
Dependent CIM_SystemSpecificColl

ection
The reference to the LogicalPortGroup 
(Fibre Channel Node)

Table 637: SMI Referenced Properties/Methods for CIM_FCPort

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 583



 

Class Mandatory: true

8.2.6.4.9.7 CIM_LogicalPortGroup
The Fibre Channel Node

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.8 CIM_MemberOfCollection
Associates FCPort to the LogicalPortGroup

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.9 CIM_PhysicalPackage
The physical package that the HBA is contained by. It can be simply a PhysicalPackage that the system
and HBA is contained within. If it is known that the HBA is on a separate board, Card (a subclass of
PhysicalPackage) can be used. 

Created By : External

Table 639: SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

System CIM_System
InstalledSoftware CIM_SoftwareIdentity

Table 640: SMI Referenced Properties/Methods for CIM_LogicalPortGroup

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
Name D string Fibre Channel Node WWN
NameFormat string "WWN"
ElementName N string Node Symbolic Name if available. Oth-

erwise NULL. If the underlying imple-
mentation includes characters that are 
illegal in CIM strings, then truncate 
before the first of those characters.

Table 641: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The reference to the LogicalPortGroup 
representing the Fibre Channel Node

Member CIM_ManagedElement The reference to FCPort.
584



 FDMI Subprofile
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.10 CIM_PortController
The HBA. The HBA may have logical operations that can apply to it (e.g., OperationalStatus).

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.11 CIM_Product
The product information for the HBA

Created By : External
Modified By : Static
Deleted By : External

Table 642: SMI Referenced Properties/Methods for CIM_PhysicalPackage

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Name of Class
Tag string An arbitrary string that uniquely identi-

fies the PhysicalPackage.
Manufacturer string
Model string

Optional Properties/Methods
ElementName string User-friendly name.

This property is OPTIONAL.
Name string
SerialNumber string
Version string
PartNumber string

Table 643: SMI Referenced Properties/Methods for CIM_PortController

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
ControllerType uint16
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 585



 

Class Mandatory: true

8.2.6.4.9.12 CIM_ProductPhysicalComponent
Associates the Product to the PhysicalPackage. This is necessary to link the Product information to the
HBA.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.13 CIM_Realizes
Associates the PhysicalPackage to the PortController.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.14 CIM_SoftwareIdentity
The software for the firmware

Created By : External
Modified By : Static
Deleted By : External

Table 644: SMI Referenced Properties/Methods for CIM_Product

Property Flags Type Description & Notes
Mandatory Properties/Methods

Name string Commonly used Product name.
IdentifyingNumber string Product identification such as a serial 

number.
Vendor string The manufacturer or the OEM.
Version string Product version information.
ElementName string User-friendly name. Suggested use is 

Vendor, Version and product name.

Table 645: SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_Product
PartComponent CIM_PhysicalElement

Table 646: SMI Referenced Properties/Methods for CIM_Realizes

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_PhysicalElement
Dependent CIM_LogicalDevice
586



 FDMI Subprofile
Class Mandatory: true

8.2.6.4.9.15 CIM_SoftwareIdentity
The software for the driver

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.16 CIM_SoftwareIdentity
The software for the Option ROM

Created By : External
Modified By : Static
Deleted By : External

Table 647: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
VersionString string
Manufacturer string
Classifications uint16[]

Optional Properties/Methods
BuildNumber uint16
MajorVersion uint16
RevisionNumber uint16
MinorVersion uint16

Table 648: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
VersionString string
Manufacturer string
Classifications uint16[]

Optional Properties/Methods
BuildNumber uint16
MajorVersion uint16
RevisionNumber uint16
MinorVersion uint16
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 587



 

Class Mandatory: true

8.2.6.4.9.17 CIM_SystemDevice
Associates the ComputerSystem with the FCPort

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.4.9.18 CIM_SystemDevice
Associates the ComputerSystem with the PortController

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

Table 649: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
VersionString string
Manufacturer string
Classifications uint16[]

Optional Properties/Methods
BuildNumber uint16
MajorVersion uint16
RevisionNumber uint16
MinorVersion uint16

Table 650: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System ComputerSystem
PartComponent CIM_LogicalDevice FCPort

Table 651: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System ComputerSystem
PartComponent CIM_LogicalDevice PortController
588



 FDMI Subprofile
8.2.6.4.10 Related Standards

Table 652: Related Standards for FDMI

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 589



 

590



 Fabric Path Performance Subprofile
8.2.6.5 Fabric Path Performance Subprofile

8.2.6.5.1 Description
The fabric path performance subprofile extends the standard capabilities of obtaining performance
associated to a port to identify the performance in the path defined by an initiator and target
ProtocolEndpoint. In the current networking model, the path through the “cloud” is defined by
NetworkPipe which is a class that is associated to a ProtocolEndpoint by EndpointOfNetworkPipe.
Since the statistics model is defined to allow an association to any LogicalElement, the statistics
collected for an NetworkPort, NetworkPortStatistics, can be associated to the NetworkPipe also. When
a device supports the Fabric Path Performance Subprofile, it will instantiate the NetworkPipe and as it
collects statistics will instantiate the StatisticalData.

The class, StatisticsCollection, provides a mechanism to “collect” all the statistics associated to the
NetworkPipes.

8.2.6.5.2 Health and Fault Management
None

8.2.6.5.3 Dependencies on Profiles, Subprofiles, and Packages
None

8.2.6.5.4 Methods of this Profile
None

8.2.6.5.5 Client Considerations and Recipes
None

8.2.6.5.6 Registered Name and Version
FabricPathPerformance version 1.1.0

Figure 94: Instance Diagram

ProtocolEndpoint

ProtocolType="Fibre
Channel"

ConnectivityCollection

subclass of AdminDomain 
representing the fabric

Network

ProtocolEndpoint

ProtocolType="Fibre
Channel"

Hosted
Collection

ComputerSystem

Hosted
NetworkPipeNetworkPipe 

Element
StatisticalData

NetworkPort
Statistics

InstanceID
ElementName
StatisticsTime
BytesTransmitted
BytesReceived

Hosted
AccessPoint

EndpointOf
NetworkPipe

StatisticsCollection

MemberOf
Collection

MemberOf
Collection
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 591



 

8.2.6.5.7 CIM Server Requirements

8.2.6.5.8 CIM Elements

8.2.6.5.8.1 CIM_ElementStatisticalData
Associates FCPortStatistics to the FCPort
Class Mandatory: true

8.2.6.5.8.2 CIM_EndpointOfNetworkPipe
Associates FCPortRateStatistics to the FCPort

Table 653: CIM Server Requirements for FabricPathPerformance

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 654: CIM Elements for FabricPathPerformance

Element Name Description
Mandatory Classes

CIM_ElementStatisticalData (8.2.6.5.8.1) Associates FCPortStatistics to the FCPort
CIM_EndpointOfNetworkPipe (8.2.6.5.8.2) Associates FCPortRateStatistics to the FCPort
CIM_HostedCollection (8.2.6.5.8.3) Associates the Statistics Collection to the Network rep-

resenting the fabric.
CIM_HostedNetworkPipe (8.2.6.5.8.4) Associates NetworkPipe to the Network
CIM_MemberOfCollection (8.2.6.5.8.5) Associates the NetworkPortStatistics to the Statis-

ticsCollection.
CIM_Network (8.2.6.5.8.6) Subclass of AdminDomain representing the fabric
CIM_NetworkPipe (8.2.6.5.8.7) Pipe through the cloud from an initiator to the target.
CIM_NetworkPortStatistics (8.2.6.5.8.8) NetworkPort Statistics of the NetworkPipe
CIM_ProtocolEndpoint (8.2.6.5.8.9) The initiator or target (ends of the NetworkPipe).
CIM_StatisticsCollection (8.2.6.5.8.10) Collection to aggregate the NetworkPipe statistics

Table 655: SMI Referenced Properties/Methods for CIM_ElementStatisticalData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement FCPort
Stats CIM_StatisticalData FCPortStatistics
592



 Fabric Path Performance Subprofile
Class Mandatory: true

8.2.6.5.8.3 CIM_HostedCollection
Associates the Statistics Collection to the Network representing the fabric.
Class Mandatory: true

8.2.6.5.8.4 CIM_HostedNetworkPipe
Associates NetworkPipe to the Network
Class Mandatory: true

8.2.6.5.8.5 CIM_MemberOfCollection
Associates the NetworkPortStatistics to the StatisticsCollection.
Class Mandatory: true

8.2.6.5.8.6 CIM_Network
Subclass of AdminDomain representing the fabric

Table 656: SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ServiceAccessPoi
nt

ProtocolEndpoint

Dependent CIM_NetworkPipe NetworkPipe

Table 657: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_SystemSpecificColl

ection

Table 658: SMI Referenced Properties/Methods for CIM_HostedNetworkPipe

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Network NetworkPipe
Dependent CIM_NetworkPipe Network

Table 659: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection StatisticsCollection
Member CIM_ManagedElement FCPortStatistics
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 593



 

Class Mandatory: true

8.2.6.5.8.7 CIM_NetworkPipe
The NetworkPipe for this profile is instantiated to provide a mechanism to indicate monitors are in place
in the network to collect statistical information. NetworkPortStatistics are associated to the pipe via the
association ElementStatisticalData to NetworkPortStatistics and subclasses of NetworkPortStatistics
(e.g. FCPortStatistics).

Class Mandatory: true

8.2.6.5.8.8 CIM_NetworkPortStatistics
Network Port Statistics represent a snapshots of counters for the NetworkPipe. An instance of this class
can represent the statistics for the current statistics, archived and consolidated statistics, or both.

Class Mandatory: true

8.2.6.5.8.9 CIM_ProtocolEndpoint
The initiator or target (ends of the NetworkPipe).

Table 660: SMI Referenced Properties/Methods for CIM_Network

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string
NameFormat string

Table 661: SMI Referenced Properties/Methods for CIM_NetworkPipe

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
Optional Properties/Methods

ElementName string

Table 662: SMI Referenced Properties/Methods for CIM_NetworkPortStatistics

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
BytesTransmitted uint64
BytesReceived uint64

Optional Properties/Methods
ElementName string
StatisticTime datetime The time the statistics were collected. If 

historical data is instantiated (present), 
this property shall be set with the time 
representing the time the statistic was 
collected.
594



 Fabric Path Performance Subprofile
Class Mandatory: true

8.2.6.5.8.10 CIM_StatisticsCollection
Collection to aggregate the NetworkPipe statistics
Class Mandatory: true

8.2.6.5.9 Related Standards

Table 663: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
NameFormat string
ProtocolIFType uint16

Table 664: SMI Referenced Properties/Methods for CIM_StatisticsCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceId string
ElementName string
SampleInterval datetime
TimeLastSampled dateTime

Table 665: Related Standards for FabricPathPerformance

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 595



 

596



 Switch Profile
8.2.6.6 Switch Profile

8.2.6.6.1 Description
The switch profile models logical and physical aspects of a Fibre Channel fabric switch. The
ComputerSystem class constitutes the center of the switch model (and is the top level object which the
profile registration points to). An instance of a ComputerSystem is identified as a switch by the property
Dedicated set to “switch”.

This profile includes discovery components including ports, port statistics, product information,
software, and chassis information. It also includes configuration of the switch including switch and port
state change, port speed, switch and port symbolic naming, and DomainID.

Both the Switch and Port have a capabilities class, FCSwitchCapabilities and FCPortCapabilities,
respectively, defining which configuration options are supported by the switch. The capabilities define
what components are configurable and any restrictions that apply. Except for state change, an
associated settings class is defined for both the switch and port, FCSwitchSettings and FCPortSettings,
which the client uses to request configuration changes to the Switch or Port, respectively. A setting
does not necessarily result in a change to the underlying Switch or Port. The client can determine
whether the setting was applied by looking at the associated property in the Switch or Port class.

The model for configuration is made up of three components, capabilities, settings, and the
ManagedElements ComputerSystem and FCPort.  The capabilities define what components are
configurable and any restrictions that apply, the settings define what the client requests, and the
ManagedElement expose the actual changes that were applied. 

The ComputerSystem (Dedicated as Switch) and FCPort classes have the method
RequestStateChange() for requesting the state be changed and an associated property
RequestedState on the classes which indicates the current state that has been requested. To determine
whether the state change has completed, the property EnabledState can be examined to determine
whether the device has completed the state change.

If a switch is modular, for instance if the switch is comprised of multiple blades on a backplane,
LogicalModule can optionally be used to model each sub-module, and as an aggregation point for the
switch ports. This is described in the Blade Subprofile.

FCPort describes the logical aspects of the port link and the data layers. PhysicalConnector models the
physical aspects of a port. An instance of the FCPortStatistics class is expected for each instance of the
FCPort class. FCPortStatistics expose real time port health and traffic information.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 597



 

If the instrumentation is embedded in a switch, it shall provide a switch profile implementation for the
hosting switch, and it may proxy a switch profile implementation for other switches reported in the
Fabric Profile.

8.2.6.6.1.1 FC Port Settings and Capabilities
Capabilities describe the possible features that a ManagedElement supports. Settings are used to
describe the requested configuration. The ManagedElement itself describes what settings have been
applied and operating.

So lets look at FC Port Type. Here we have are settings that are not in the actual ManagedElement,
FCPort.Types. These are settings that allow a subrange of possible port types. They are:

• A G_Port is a Switch Port that is capable of either operating as an E_Port or F_Port. A G_Port 
determines through Port Initialization whether it operates as an E_Port or as an F_Port. 

• A GL_Port is a G_Port that is also capable of operating as an FL_Port.

• A Fx_Port is a switch port capable of operating as an F_Port or FL_Port.

The actual FCPort when operating can only run one of the port types as per FC-GS. In most cases a
switch has a default setting to autonegotiate, which in most cases equates to GL or G being set in
FCPortSetting.RequestedType. It is required that this setting, FCPortSetting.RequestedType, be shown

Figure 95: Switch Instance Diagram

E le m e n t
S ta t is t ic a lD a ta

P ro d u c t

C o m p u te rS y s te m

D e d ic a te d = "s w itc h "

F C P o r t

F C P o r tS ta t is t ic s

F C P o r t

E le m e n t
S ta t is t ic a lD a taF C P o r tS ta t is t ic s

S o f tw a re
In s ta l le d O n

S y s te m

(F irm w a re )

S o f tw a re Id e n t i ty

P h y s ic a lP a c k a g e

P ro d u c tP h y s ic a l
C o m p o n e n t

S y s te m
D e v ic eC o m p u te rS y s te m

P a c k a g e

.

.

.

F C P o r tS e t t in g s

F C P o r tC a p a b il i t ie s

E le m e n t
C a p a b il it ie s

E le m e n t
S e tt in g D a ta

F C P o r tS e t t in g s

F C P o r tC a p a b il i t ie s

F C S w itc h S e t t in g s

F C S w itc h C a p a b il i t ie s

E le m e n t
S e t t in g D a ta

E le m e n t
C a p a b il i t ie s

E le m e n t
S e tt in g D a ta

E le m e n t
C a p a b il it ie s

F C P o r tR a te
S ta t is t ic s

F C P o r tR a te
S ta t is t ic s

S ta t is t ic s C o lle c t io n
M e m b e rO f
C o lle c t io n

H o s te d
C o lle c t io n
598



 Switch Profile
regardless of whether it was set administratively or is the default behavior of the switch.
FCPortSetting.RequestedType represents a setting that the administrator can understand and clearly
identify why a switch port ends up running a particular port type. If the switch does not support setting
the port type, the RequestedTypesSupported array will be empty. It is valid to have a port type of
“Unknown” until the link has been established.

The same concept applies for FCPort settings for speed except there is a separate property indicating
auto negotiate, FCPortSettings.AutoSenseSpeed (LogicalPortSettings.AutoSenseSpeed). Note that
this setting may have been previously set through some other administrative interface (e.g., CLI), but
should still be reported in FCPortSettings.RequestedSpeed. If FCPortSetting.AutoSenseSpeed is true,
then the value of FCPortSettings.RequestedSpeed is ignored and the speed will be negotiated by the
hardware. If it is disabled, the port will operate at the speed configured in
FCPortSettings.RequestedSpeed.

FCPortSettings.RequestedSpeed allows the port speed to be administratively set (WRITE qualifier). It
also indicates to the client that the port has been administratively set (now or at a previous time). This
property can only be set administratively if FCPortCapabilities.RequestedSpeedsSupported[] is not
empty, and may only be set to one of the values in FCPortCapabilities.RequestedSpeedsSupported[].

FCPortCapabilities.RequestedSpeedsSupported indicates whether the device allows the speed to be
administratively set. For instance a 4Gb port may allow 1, 2, and 4 Gb. FCPort.Speed
(LogicalPort.Speed) represents the actual speed the port is running and a speed of zero represents that
the link has not been established.

Table 666: FC Port Settings and Capabilities

FCPort
Type

FCPortSetting
RequestedType

FCPortCapabilities
RequestedTypesSupported

N X X X
NL X X X

F/NL X
Nx X X X
E X X X
F X X X
fx X X
FL X
B X X X
G X X

GL X X
Unknown X

Other X
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 599



 

8.2.6.6.1.2 Trunking

Trunking describes from a switch perspective which ports are working together passing frames using
the class RedundancySet. The RedundancySet has a property TypeOfSet which is used to identify
what type of redundancy or trunking is occurring among the switch ports associated to the
RedundancySet using MemberOfCollection.

8.2.6.6.2 Health and Fault Management
The following classes report possible Health and Fault information through LifeCycle indications:

• ComputerSystem

• FCPort

These LifeCycle indications are more fully described in Table 141, “OperationalStatus Details”.

Also in Table 669, “CIM Server Requirements for Switch” are a list of AlertIndications which may also
be indicators for Health and Fault Management.

8.2.6.6.3 Cascading Considerations
None

Dependencies on Profiles, Subprofiles, and Packages

Figure 96: Trunking Instance Diagram

Table 667: Supported Subprofiles for Switch

Registered Subprofile Names Mandatory Version
Blades No 1.1.0
Access Points No 1.1.0
Software Installation No 1.1.0
Multiple Computer System No 1.1.0
Switch Configuration Data No 1.1.0

ComputerSystem

Dedicated="switch"

FCPort

FCPort

System
Device

.

.

.
RedundancySet

MemberOf
Collection

Hosted
Collection
600



 Switch Profile
8.2.6.6.4 Methods of this Profile
Not defined in this standard.

8.2.6.6.5 Client Considerations and Recipes

8.2.6.6.5.1 Enable FCPort
// DESCRIPTION

// This recipe describes how to enable a port on a Fibre Channel Switch.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS 

// 1. The instance of the port to be enabled is known as $Port.

// MAIN

// Step 1. Retrieve the capabilities of the port.

$PortCapabilities[] = Associators($Port.getObjectPath(),

“CIM_ElementCapabilities”,

“CIM_FCPortCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“RequestedStatesSupported”})

if ($PortCapabilities[] == null || PortCapabilities[].length != 1) {

    <ERROR! The required port capabilities are not available>

}

// Step 2. Verify that the port can be enabled.

if (!contains(2, $PortCapabilities[0].RequestedStatesSupported)) {

    <EXIT! Enabling the specified port is not supported>

}

// Step 3. Verify that the port is in a state in which enabling is appropriate.

if ($Port.EnabledState != 2 && $Port.RequestedState == 5) {

    // Step 4. Enable the port.

    %InArguments[“RequestedState”] = 2// “Enabled”

    // Timeout request after 90 seconds

    %InArguments[“TimeoutPeriod”] = 00000000000130.000000:000 

    #ReturnValue = InvokeMethod($Port.getObjectPath(),

    “RequestStateChange”,

Table 668: Supported Packages for Switch

Registered Package Names Version
Physical Package 1.1.0
Software 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 601



 

    %InArguments,

    %OutArguments)

    if (#ReturnValue == 0) {// “Completed with No Error”

<EXIT! Port successfully enabled>

    } else if (#ReturnValue == 4098) {// “Timeout Parameter Not Supported”

%InArguments[“RequestedState”] = 2// “Enabled”

%InArguments[“TimeoutPeriod”] = 0// No timeout

#ReturnValue = InvokeMethod($Port.getObjectPath(),

“RequestStateChange”,

%InArguments,

%OutArguments)

if (#ReturnValue == 0) {// “Completed with No Error”

    <EXIT! Port successfully enabled>

} else {

    <ERROR! Port state transition failed>

}

    }

} else {

    <ERROR! The specified port is already enabled or currently in a 

    state transition>

}

8.2.6.6.5.2 Disable Port
// DESCRIPTION

// This recipe describes how to disable a port on a Fibre Channel Switch.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS 

// 1. The instance of the port to be disabled is known as $Port.

// MAIN

// Step 1. Retrieve the capabilities of the port.

$PortCapabilities[] = Associators($Port.getObjectPath(),

“CIM_ElementCapabilities”,

“CIM_FCPortCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“RequestedStatesSupported”})

if ($PortCapabilities[] == null || PortCapabilities[].length != 1) {

    <ERROR! The required port capabilities are not available>

}

// Step 2. Verify that the port can be disabled.

if (!contains(3, $Capabilities.RequestedStatesSupported)) {

    <EXIT! Disabling the specified port is not supported>

}

602



 Switch Profile
// Step 3. Verify that the port is in a state in which disabling is appropriate.

if ($Port.EnabledState != 3 && $Port.RequestedState == 5) {

    // Step 4. Disable the port.

    %InArguments[“RequestedState”] = 3// “Disabled”

    // Timeout request after 90 seconds

    %InArguments[“TimeoutPeriod”] = 00000000000130.000000:000 

    #ReturnValue = InvokeMethod($Port.getObjectPath(),

    “RequestStateChange”,

    %InArguments,

    %OutArguments)

    if (#ReturnValue == 0) {// “Completed with No Error”

<EXIT! Port successfully disabled>

    } else if (#ReturnValue == 4098) {// “Timeout Parameter Not Supported”

%InArguments[“RequestedState”] = 3 // “Disabled”

%InArguments[“TimeoutPeriod”] = 0 // No timeout

#ReturnValue = InvokeMethod($Port.getObjectPath(),

“RequestStateChange”, 

%InArguments, 

%OutArguments)

if (#ReturnValue == 0) {// “Completed with No Error”

    <EXIT! Port successfully disabled>

} else {

    <ERROR! Port state transition failed>

}

    }

} else {

    <ERROR! The specified port is already disabled or currently in a

    state transition>

}

8.2.6.6.5.3 Enable Switch
// DESCRIPTION

// This recipe describes how to enable a Fibre Channel Switch.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS 

// 1. A reference to the Switch to enable is known and defined in the 

//    variable $Switch->.

// MAIN

// Step 1. Retrieve the relevant Switch instance information.

$Switch = GetInstance($Switch->,

false,

false,

false,

{“EnabledState”, “RequestedState”})
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 603



 

// Step 2. Retrieve the capabilities of the Switch.

$SwitchCapabilities[] = Associators($Switch->,

“CIM_ElementCapabilities”,

“CIM_FCSwitchCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“RequestedStatesSupported”})

if ($SwitchCapabilities[] == null || SwitchCapabilities[].length != 1) {

    <ERROR! The required Switch capabilities are not available>

}

// Step 3. Verify that the Switch can be enabled.

if (!contains(2, $SwitchCapabilities[0].RequestedStatesSupported)) {

    <EXIT! Enabling the specified Switch is not supported>

}

// Step 4. Verify that the Switch is in a state in which enabling is 

// appropriate.

if ($Switch.EnabledState != 2 && $Switch.RequestedState == 5) {

    // Step 5. Enable the Switch.

    %InArguments[“RequestedState”] = 2// “Enabled”

    // Timeout request after 90 seconds

    %InArguments[“TimeoutPeriod”] = 00000000000130.000000:000 

    #ReturnValue = InvokeMethod($Switch->,

    “RequestStateChange”,

    %InArguments,

    %OutArguments)

    if (#ReturnValue == 0) {// “Completed with No Error”

<EXIT! Switch successfully enabled>

    } else if (#ReturnValue == 4098) {// “Timeout Parameter Not Supported”

%InArguments[“RequestedState”] = 2// “Enabled”

%InArguments[“TimeoutPeriod”] = 0// No timeout

#ReturnValue = InvokeMethod($Switch->,

“RequestStateChange”,

%InArguments,

%OutArguments)

if (#ReturnValue == 0) {// “Completed with No Error”

<EXIT! Switch successfully enabled>

} else {

    <ERROR! Switch state transition failed>

}

    }

} else {
604



 Switch Profile
    <ERROR! The specified Switch is already enabled or currently in 

    a state transition>

}

8.2.6.6.5.4 Disable Switch
// DESCRIPTION

// This recipe describes how to disable a Fibre Channel Switch.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS 

// 1. A reference to the Switch to disable is known and defined in the 

//    variable $Switch->.

// MAIN

// Step 1. Retrieve the relevant Switch instance information.

$Switch = GetInstance($Switch->,

false,

false,

false,

{“EnabledState”, “RequestedState”})

// Step 2. Retrieve the capabilities of the Switch.

$SwitchCapabilities[] = Associators($Switch->,

“CIM_ElementCapabilities”,

“CIM_FCSwitchCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“RequestedStatesSupported”})

if ($SwitchCapabilities[] == null || SwitchCapabilities[].length != 1) {

    <ERROR! The required Switch capabilities are not available>

}

// Step 3. Verify that the Switch can be disabled.

if (contains(3, $SwitchCapabilities[0].RequestedStatesSupported)) {

    <EXIT! Disabling the specified Switch is not supported>

}

// Step 4. Verify that the Switch is in a state in which disabling is 

// appropriate.

if ($Switch.EnabledState != 3 && $Switch.RequestedState == 5) {

    // Step 5. Disable the Switch.

    %InArguments[“RequestedState”] = 3// “Disabled”

    // Timeout request after 90 seconds

    %InArguments[“TimeoutPeriod”] = 00000000000130.000000:000 

    #ReturnValue = InvokeMethod($Switch->,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 605



 

    “RequestStateChange”,

    %InArguments,

    %OutArguments)

    if (#ReturnValue == 0) {// “Completed with No Error”

<EXIT! Switch successfully disabled>

    } else if (#ReturnValue == 4098) {// “Timeout Parameter Not Supported”

%InArguments[“RequestedState”] = 3// “Disabled”

%InArguments[“TimeoutPeriod”] = 0// No timeout

#ReturnValue = InvokeMethod($Switch->,

“RequestStateChange”,

%InArguments,

%OutArguments)

if (#ReturnValue == 0) {// “Completed with No Error”

    <EXIT! Switch successfully disabled>

} else {

<ERROR! Switch state transition failed>

}

    } else {

<ERROR! Switch state transition failed>

    }

} else {

    <ERROR! The specified Switch is already disabled or currently in 

    a state transition>

}

8.2.6.6.5.5 Reset Switch
// DESCRIPTION

// This recipe describes how to reset a Fibre Channel Switch.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS 

// 1. A reference to the Switch to reset is known and defined in the 

//    variable $Switch->.

// MAIN

// Step 1. Retrieve the relevant Switch instance information.

$Switch = GetInstance($Switch->,

false,

false,

false,

{“EnabledState”, “RequestedState”})

// Step 2. Retrieve the capabilities of the Switch.

$SwitchCapabilities[] = Associators($Switch->,

“CIM_ElementCapabilities”,

“CIM_FCSwitchCapabilities”,

“ManagedElement”,

“Capabilities”,
606



 Switch Profile
false,

false,

{“RequestedStatesSupported”})

if ($SwitchCapabilities[] == null || SwitchCapabilities[].length != 1) {

    <ERROR! The required Switch capabilities are not available>

}

// Step 3. Verify that the Switch can be reset.

if (contains(11, $SwitchCapabilities[0].RequestedStatesSupported)) {

    <EXIT! Resetting the specified Switch is not supported>

}

// Step 4. Verify that the Switch is in a state in which reseting is 

// appropriate.

if ($Switch.EnabledState == 2 && $Switch.RequestedState == 5) {

    // Step 5. Reset the Switch.

    %InArguments[“RequestedState”] = 11// “Reset”

    // Timeout request after 90 seconds

    %InArguments[“TimeoutPeriod”] = 00000000000130.000000:000 

    #ReturnValue = InvokeMethod($Switch->,

    “RequestStateChange”,

    %InArguments,

    %OutArguments)

    if (#ReturnValue == 0) {// “Completed with No Error”

<EXIT! Switch successfully reset>

    } else if (#ReturnValue == 4098) {// “Timeout Parameter Not Supported”

%InArguments[“RequestedState”] = 11// “Reset”

%InArguments[“TimeoutPeriod”] = 0// No timeout

#ReturnValue = InvokeMethod($Switch->,

“RequestStateChange”,

%InArguments,

%OutArguments)

if (#ReturnValue == 0) {// “Completed with No Error”

    <EXIT! Switch successfully reset>

} else {

    <ERROR! Switch state transition failed>

}

    } else {

<ERROR! Switch state transition failed>

    }

} else {

    <ERROR! The specified Switch is already reset or currently in 

    a state transition>

}

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 607



 

8.2.6.6.5.6 Set Port Speed
// DESCRIPTION

// This recipe describes how to modify the speed of a port on a Fibre Channel 

// Switch.

//

// PREEXISTING CONDITIONS AND ASSUMPTIONS 

// 1. The instance of the port to whose speed to modify is known as $Port.

// 2. The desired port speed is known and defined in the variable #Speed.

// MAIN

// Step 1. Retrieve the capabilities of the port.

$PortCapabilities[] = Associators($Port.getObjectPath(),

“CIM_ElementCapabilities”,

“CIM_FCPortCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“AutoSenseSpeedConfigurable”, “RequestedSpeedsSupported”})

if ($PortCapabilities[] == null || PortCapabilities[].length != 1) {

    <ERROR! The required port capabilities are not available>

}

$Capabilities = $PortCapabilities[0]

// Step 2. Verify that the port speed can be set to the specified speed.

if (contains(#Speed, $Capabilities.RequestedSpeedsSupported)) {

// Step 3. Retrieve the port settings.

$Settings[] = Associators($Port.getObjectPath(),

“CIM_ElementSettingData”,

“CIM_FCPortSettings”,

“ManagedSetting”,

“SettingData”,

false,

false,

{“InstanceID”, “AutoSenseSpeed”, “RequestedSpeed”})

if ($Settings[] == null || Settings[].length != 1) {

<ERROR! The required port settings are not available>

}

$PortSetting = $Settings[0]

// Step 4. Port speed is ignored unless AutoSenseSpeed is disabled,

if ($PortSetting.AutoSenseSpeed) {

if ($Capabilities.AutoSenseSpeedConfigurable) {

$PortSetting.AutoSenseSpeed = false

} else {

//Unlikely, but not an error
608



 Switch Profile
}

}

// Step 5. Modify the port speed to the specified speed.

$PortSetting.RequestedSpeed = #Speed

ModifyInstance($PortSetting.getObjectPath(),

$PortSetting,

false,

{“AutoSenseSpeed”, “RequestedSpeed”})

// Step 6. Verify that the port speed modification was applied.

$Port = GetInstance($Port.getObjectPath(),

false,

false,

false,

{“Speed”})

if ($Port.Speed == #Speed) {

<EXIT! Port speed modified successfully>

} else {

<ERROR! Port speed was not modified as specified>

}

} else {

<EXIT! Specified port speed is not supported>

}

8.2.6.6.5.7 Set Port Type
// DESCRIPTION

// This recipe describes how to modify the port type on a Fibre Channel Switch.

//

// PREEXISTING CONDITIONS AND ASSUMPTIONS 

// 1. The instance of the port to whose type to modify is known as $Port.

// 2. The desired port type is known and defined in the variable #Type.

// MAIN

// Step 1. Retrieve the capabilities of the port.

$PortCapabilities[] = Associators($Port.getObjectPath(),

“CIM_ElementCapabilities”,

“CIM_FCPortCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“RequestedTypesSupported”})

if ($PortCapabilities[] == null || PortCapabilities[].length != 1) {

    <ERROR! The required port capabilities are not available>

}

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 609



 

// Step 2. Verify that the port type can be modified as specified.

$Capabilities = $PortCapabilities[0]

if (contains(#Type, $Capabilities.RequestedTypesSupported)) {

    // Step 3. Retrieve the port settings.

    $Settings[] = Associators($Port.getObjectPath(),

    “CIM_ElementSettingData”,

    “CIM_FCPortSettings”,

    “ManagedSetting”,

    “SettingData”,

    false,

    false,

    {“RequestedType”})

    if ($Settings[] == null || Settings[].length != 1) {

<ERROR! The required port settings are not available>

    }

    $PortSetting = $Settings[0]

    // Step 4. Modify the port type to the specified type.

    $PortSetting.RequestedType = #Type

    ModifyInstance($PortSetting.getObjectPath(),

    $PortSetting,

    false,

    {“RequestedType”})

    // Step 5. Verify that the port type modification was applied.

    $Port = GetInstance($PortSetting.getObjectPath(),

    false,

    false,

    false,

    {“RequestedType”})

    if ($PortSetting.RequestedType == #Type) {

<EXIT! Port type request successfully>

    }

    <ERROR! Port type request was not modified as specified>

} else {

    <ERROR! Port type request cannot be set to specified type>

}

8.2.6.6.5.8 Set Fibre Channel Switch Principal Priority
// DESCRIPTION

// This recipe describes how to modify the Principal Priority of a Fibre Channel

// Switch.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS 

//
610



 Switch Profile
// 1. A reference to the Switch whose Principal Priority to modify is known and 

//    defined in the variable $Switch->

// 2. The desired Principal Priority of the Switch is known as #Priority.

// MAIN

// Step 1. Retrieve the capabilities of the Switch.

$SwitchCapabilities[] = Associators($Switch->,

“CIM_ElementCapabilities”,

“CIM_FCSwitchCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“PrincipalPrioritiesSupported”})

if ($SwitchCapabilities[] == null || SwitchCapabilities[].length != 1) {

    <ERROR! The required Switch capabilities are not available>

}

// Step 2. Verify that the Switch Principal Priority can be modified.

$Capabilities = $SwitchCapabilities[0]

if (!contains(5, $Capabilities.PrincipalPrioritiesSupported[])) {

    $SwitchSettings[] = Associators($Switch->,

“CIM_ElementSettingData”,

“CIM_FCSwitchSettings”,

“ManagedElement”,

“SettingData”,

false,

false,

{“PrincipalPriority”})

    if ($SwitchSettings[] == null || SwitchSettings[].length != 1) {

<ERROR! Required Switch settings are not available>

    }

    $Settings = $SwitchSettings[0]

    // Step 3. Ensure a new Principal Priority is being set.

    if (#Priority != $Settings.PrincipalPriority)) {

// Step 4. Modify the Principal Priority of the Switch.

$Settings.PrincipalPriority = #Priority

ModifyInstance($Settings.getObjectPath(),

$Settings,

false,

{“PrincipalPriority”})

// Step 5. Verify that the Switch priority modification was applied.

$Settings = GetInstance($Settings.getObjectPath(),

false,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 611



 

false,

false,

{“PrincipalPriority”})

if ($Settings.PrincipalPriority == #Priority) {

    <EXIT! Switch Principal Priority was modified successfully>

}

<EXIT! Switch Principal Priority was not modified successfully>

    } else {

<ERROR! Principal Priority specified is already set>

    }

} else {

    // “Not Applicable”

    <EXIT! The Switch does not support Principal Priority modification>

}

8.2.6.6.5.9 Set Switch Name
// DESCRIPTION

// This recipe describes how to modify the name of a Fibre Channel Switch.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS 

//

// 1. A reference to the Switch whose name to modify is known and defined in 

//    the variable $Switch->

// 2. The desired name of the Switch is known as #Name.

// MAIN

// Step 1. Retrieve the capabilities of the Switch.

$SwitchCapabilities[] = Associators($Switch->,

“CIM_ElementCapabilities”,

“CIM_FCSwitchCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“ElementNameEditSupported”, “MaxElementNameLen”})

if ($SwitchCapabilities[] == null || $SwitchCapabilities[].length != 1) {

    <ERROR! The required Switch capabilities are not available>

}

// Step 2. Verify that the Switch name can be modified.

$Capabilities = $SwitchCapabilities[0]

if ($Capabilities.ElementNameEditSupported) {

    // Step 3. Verify that the new name to be specified is within the

    // constraints of the name length supported by the Switch.

    if (#Name.length() < $Capabilities.MaxElementNameLen) {
612



 Switch Profile
// Step 4. Retrieve the instance representing the Switch.

$Switch = GetInstance($Switch->,

false,

false,

false,

{“ElementName”})

// Step 5. Modify the name of the Switch.

$Switch.ElementName = #Name

ModifyInstance($Switch->,

$Switch,

false,

{“ElementName”})

// Step 6. Verify that the Switch name change was applied.

$Switch = GetInstance($Switch->,

false,

false,

false,

{“ElementName”})

if (compare(#Name, $Switch.ElementName)) {

    <EXIT! Switch name was modified successfully>

}

<ERROR! Switch name was not modified successfully>

    }

    <ERROR! Specified Switch name exceeds length limit>

} else {

    <EXIT! The Switch does not support name modification>

}

8.2.6.6.5.10 Set Port Name
// DESCRIPTION

// This recipe describes how to modify the name of a Port on a Fibre Channel 

// Switch.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS 

// 1. The instance of the port to whose type to modify is known as $Port.

// 3. The desired name of the port is known as #Name.

// MAIN

// Step 1. Retrieve the capabilities of the port.

$PortCapabilities[] = Associators($Port.getObjectPath(),

“CIM_ElementCapabilities”,

“CIM_FCPortCapabilities”,

“ManagedElement”,

“Capabilities”,

false,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 613



 

false,

{“ElementNameEditSupported”, “MaxElementNameLen”})

if ($PortCapabilities[] == null || $PortCapabilities[].length != 1) {

    <ERROR! The required Port capabilities are not available>

}

// Step 2. Verify that the port name can be modified.

$Capabilities = $PortCapabilities[0]

if ($Capabilities.ElementNameEditSupported) {

    // Step 3. Verify that the new name to be specified is within the

    // constraints of the name length supported by the port.

    if (#Name.length() < $Capabilities.MaxElementNameLen) {

// Step 4. Modify the name of the port.

$Port.ElementName = #Name

ModifyInstance($Port.getObjectPath(),

$Port,

false,

{“ElementName”})

// Step 5. Verify that the port name change was applied.

$Port = GetInstance($Port.getObjectPath(),

false,

false,

false,

{“ElementName”})

if (compare(#Name, $Port.ElementName)) {

    <EXIT! Port name was modified successfully>

}

<ERROR! Port name was not modified successfully>

    }

    <ERROR! Specified Port name exceeds length limit>

} else {

    <EXIT! The Port does not support name modification>

}

8.2.6.6.5.11 Set Fibre Channel Switch Preferred Domain ID
// DESCRIPTION

//

// This recipe describes how to modify the preferred Domain ID of a Switch.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS 

// 1. A reference to the Switch to reset is known and defined in the 

//    variable $Switch->.

// 2. The new preferred Domain ID to be set on the Switch is known as #DomainID.
614



 Switch Profile
// MAIN

// Step 1. Retrieve the capabilities of the Switch.

$SwitchCapabilities[] = Associators($Switch->,

“CIM_ElementCapabilities”,

“CIM_FCSwitchCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“DomainIDConfigureable”, “MinDomainID”, “MaxDomainID”})

if ($SwitchCapabilities[] == null || SwitchCapabilities[].length != 1) {

    <ERROR! The required Switch capabilities are not available>

}

// Step 2. Verify that the Switch’s preferred Domain ID can be modified.

$Capabilities = $SwitchCapabilities[0]

if ($Capabilities.DomainIDConfigureable) {

    // Step 3. Verify that the desired Domain ID is within the permissible

    // range.

    if (#DomainID >= $Capabilities.MinDomainID

    && #DomainID <= $Capabilities.MaxDomainID) {

// Step 4. Retrieve the Switch settings.

$Settings[] = Associators($Switch->,

“CIM_ElementSettingData”,

“CIM_FCSwitchSettings”,

“ManagedSetting”,

“SettingData”,

false,

false,

{“PreferredDomainID”})

if ($Settings[] == null || Settings[].length != 1) {

    <ERROR! The required Switch settings are not available>

}

$SwitchSetting = $Settings[0]

// Step 5. Modify the Switch Domain ID to the specified preferred value.

$SwitchSetting.PreferredDomainID = #DomainID

ModifyInstance($SwitchSetting.getObjectPath(),

$SwitchSetting,

false,

{“PreferredDomainID”})

// Step 6. Verify that the Switch Domain ID modification was applied.

$Switch = GetInstance($Switch->,

false,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 615



 

false,

false,

{“IdentifyingDescriptions”, “OtherIdentifyingInfo”})

// NOTE: The Domain ID value is contained in the OtherIdentifyingInfo

// property at the same index as the “DomainID” element index in the

// IdentifyingDescriptions property.

#index = -1

while (#i < $Switch.IdentifyingDescriptions[].length 

&& #index < 0) {

    if ($Switch.IdentifyingDescriptions[#i] == “DomainID”) {

#index = #i

    }

}

if (#index >= 0 && $Switch.OtherIdentifyingInfo[#index] == #DomainID) {

    <EXIT! Switch Domain ID successfully modified>

}

<ERROR! Switch Domain ID was not modified as specified>

    } else {

<ERROR! Domain ID specified is not within permitted range>

    }

} else {

    <EXIT! Domain ID configuration on the specified Switch is not supported>

}

8.2.6.6.5.12 Lock Fibre Channel Switch Domain ID
// DESCRIPTION

//

// This recipe describes how to set the Domain ID Lock of a Switch.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS 

// 1. A reference to the Switch whose Domain ID to lock is known and defined 

// in the variable $Switch->.

// MAIN

// Step 1. Retrieve the capabilities of the Switch.

$SwitchCapabilities[] = Associators($Switch->,

“CIM_ElementCapabilities”,

“CIM_FCSwitchCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“DomainIDLockedSupported”})

if ($SwitchCapabilities[] == null || $SwitchCapabilities[].length != 1) {

    <ERROR! The required Switch capabilities are not available>

}

616



 Switch Profile
// Step 2. Verify that the Switch’s Domain ID Lock can be set.

$Capabilities = $SwitchCapabilities[0]

if ($Capabilities.DomainIDLockedSupported) {

    // Step 3. Retrieve the Switch settings.

    $Settings[] = Associators($Switch->,

    “CIM_ElementSettingData”,

    “CIM_FCSwitchSettings”,

    “ManagedSetting”,

    “SettingData”,

    false,

    false,

    {“DomainIDLocked”, “PreferredDomainID”})

    if ($Settings[] == null || Settings[].length != 1) {

<ERROR! The required Switch settings are not available>

    }

    $SwitchSetting = $Settings[0]

    #PreferredDomainID = $SwitchSetting.PreferredDomainID

    // Step 4. Verify that the Domain ID is not already locked.

    if ($SwitchSetting.DomainIDLocked) {

<EXIT! The Domain ID Lock is already set>

    }

    // Step 5. Lock the Switch Domain ID.

    $SwitchSetting.DomainIDLocked = true

    ModifyInstance($SwitchSetting.getObjectPath(),

    $SwitchSetting,

    false,

    {“DomainIDLocked”})

    // Step 6. Verify that the Switch Domain ID specifies the preferred

    // Domain ID.

    $Switch = GetInstance($Switch->,

    false,

    false,

    false,

    {“IdentifyingDescriptions”, “OtherIdentifyingInfo”})

    // NOTE: The Domain ID value is contained in the OtherIdentifyingInfo

    // property at the same index as the “DomainID” element index in the

    // IdentifyingDescriptions property.

    #index = -1

    while (#i < $Switch.IdentifyingDescriptions[].length && #index < 0) {

if ($Switch.IdentifyingDescriptions[#i] == “DomainID”) {

    #index = #i

}

    }
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 617



 

    if (#index >= 0 && 

    $Switch.OtherIdentifyingInfo[#index] == #PreferredDomainID) {

<EXIT! Switch Domain ID successfully locked>

    }

    <ERROR! Switch Domain ID does not reflect the preferred Domain ID>

} else {

    <EXIT! Domain ID configuration on the specified Switch is not supported>

}

8.2.6.6.6 Registered Name and Version
Switch version 1.1.0

8.2.6.6.7 CIM Server Requirements

Table 669: CIM Server Requirements for Switch

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
618



 Switch Profile
8.2.6.6.8 CIM Elements

Table 670: CIM Elements for Switch

Element Name Description
Mandatory Classes

CIM_ComputerSystem (8.2.6.6.8.1) Represents the Switch
CIM_ComputerSystemPackage (8.2.6.6.8.2) Associated PhysicalPackage to the ComputerSystem 

(Switch)
CIM_ElementCapabilities (8.2.6.6.8.3) Associates FCSwitchCapabilities to the ComputerSys-

tem (Switch)
CIM_ElementCapabilities (8.2.6.6.8.4) Associates FCPortCapabilities to the FCPort
CIM_ElementSettingData (8.2.6.6.8.5) Associates FCSwitchSettings to ComputerSystem 

(Switch)
CIM_ElementSettingData (8.2.6.6.8.6) Associates FCPortSettings to FCPort
CIM_ElementStatisticalData (8.2.6.6.8.7) Associates FCPortRateStatistics to the FCPort
CIM_ElementStatisticalData (8.2.6.6.8.8) Associates FCPortStatistics to the FCPort
CIM_FCPort (8.2.6.6.8.9) Fibre Channel Switch Port
CIM_FCPortCapabilities (8.2.6.6.8.10) Switch Port Capabilities
CIM_FCPortStatistics (8.2.6.6.8.13) Fibre Channel Switch Port Statistics.
CIM_FCSwitchCapabilities (8.2.6.6.8.14) Fibre Channel Switch Capabilities
CIM_FCSwitchSettings (8.2.6.6.8.15) Fibre Channel Switch Settings
CIM_HostedCollection (8.2.6.6.8.16) Associates the Statistics Collection to the Network rep-

resenting the fabric.
CIM_MemberOfCollection (8.2.6.6.8.17) Associates the NetworkPortStatistics to the Statis-

ticsCollection.
CIM_StatisticsCollection (8.2.6.6.8.21) Collection to aggregate the FCPortStatistics for each 

switch
CIM_SystemDevice (8.2.6.6.8.22) Associated FCPort to the ComputerSystem (Switch)

Optional Classes
CIM_FCPortRateStatistics (8.2.6.6.8.11) Fibre Channel Switch Port Rate Statistics
CIM_FCPortSettings (8.2.6.6.8.12) Switch Port Settings
CIM_MemberOfCollection (8.2.6.6.8.18) Associates the FCPort to the RedundancySet.
CIM_ProtocolEndpoint (8.2.6.6.8.19) The endpoint of a link (ActiveConnection).
CIM_RedundancySet (8.2.6.6.8.20) The class RedundancySet along with the association 

MemberOfCollection in this profile is used to show port 
aggregation for Fibre Channel trunking.

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_ComputerSystem

New Switch Instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_ComputerSystem

Deletion of Switch Instance

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem AND SourceIn-
stance.Operationalstatus <> 
PreviousInstance.Operationalstatus

Deprecated WQL - Modification of OperationalStatus in 
Switch Instance
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 619



 

8.2.6.6.8.1 CIM_ComputerSystem
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_FCPort AND SourceIn-
stance.OperationalStatus <> 
PreviousInstance.OperationalStatus

Deprecated WQL - Modification of OperationalStatus in 
FC Port Instance

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem                          
AND SourceInstance.CIM_ComputerSystem::Opera-
tionalstatus <> PreviousIn-
stance.CIM_ComputerSystem::Operationalstatus

CQL - Modification of OperationalStatus in Switch 
Instance

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_FCPort                          AND Sour-
ceInstance.CIM_FCPort::OperationalStatus <> 
PreviousInstance.CIM_FCPort::OperationalStatus

CQL - Modification of OperationalStatus in FC Port 
Instance

Table 671: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string Name of Class
Name D string Switch Name (WWN)
NameFormat string "WWN"
OperationalStatus uint16[] See Table 586, “OperationalStatus for 

ComputerSystem”.
Dedicated uint16[] "Switch"
RequestedState uint16 The Switch state requested via 

RequestStateChange(). Shall be of the 
range specified in FCSwitchCapabili-
ties.RequestedStatesSupported if a 
state change has been requested. Oth-
erwise shall be "Not Applicable".

Optional Properties/Methods
ElementName string User-friendly name. Can be set if 

FCSwitchCapabilities.ElementName-
EditSupported for the switch is True.

OtherIdentifyingInfo C string[] DomainID stored in decimal format
IdentifyingDescriptions string[] "DomainID" is placed into correspond-

ing index of OtherIdentifyingInfo
EnabledState uint16 See Table 586, “OperationalStatus for 

ComputerSystem”
EnabledDefault uint16 Default startup for the Switch
RequestStateChange()

Table 670: CIM Elements for Switch

Element Name Description
620



 Switch Profile
8.2.6.6.8.2 CIM_ComputerSystemPackage
Associated PhysicalPackage to the ComputerSystem (Switch)
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.6.8.3 CIM_ElementCapabilities
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.6.8.4 CIM_ElementCapabilities
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.6.8.5 CIM_ElementSettingData
Created By : External
Modified By : Static
Deleted By : External

Table 672: SMI Referenced Properties/Methods for CIM_ComputerSystemPackage

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_PhysicalPackage The reference to the PhysicalPackage
Dependent CIM_ComputerSystem The reference to the ComputerSystem

Table 673: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The reference to the ComputerSystem
Capabilities CIM_Capabilities The reference to the FCSwitchCapabili-

ties

Table 674: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The reference to the FCPort
Capabilities CIM_Capabilities The reference to the FCPortCapabili-

ties
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 621



 

Class Mandatory: true

8.2.6.6.8.6 CIM_ElementSettingData
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.6.8.7 CIM_ElementStatisticalData
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.6.8.8 CIM_ElementStatisticalData
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.6.8.9 CIM_FCPort
The Fibre Channel Switch Port.

Table 675: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The reference to the ComputerSystem
SettingData CIM_SettingData The reference to the FCSwitchSettings

Table 676: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The reference to the FCPort
SettingData CIM_SettingData The reference to the FCPortSettings

Table 677: SMI Referenced Properties/Methods for CIM_ElementStatisticalData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The reference to the FCPort
Stats CIM_StatisticalData The reference to the FCPortRateStatis-

tics

Table 678: SMI Referenced Properties/Methods for CIM_ElementStatisticalData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The reference to the FCPort
Stats CIM_StatisticalData The reference to the FCPortStatistics
622



 Switch Profile
Created By : Static
Modified By : ModifyInstanceExtrinsic(s): RequestStateChange
Deleted By : Static
Class Mandatory: true

Table 679: SMI Referenced Properties/Methods for CIM_FCPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System's CreationClass-
Name.

SystemName string The scoping System's Name.
CreationClassName string The Class Name
DeviceID string Opaque
ElementName string User-friendly name. Can be set if 

FCPortCapabilities.ElementNameEdit-
Supported is True.

OperationalStatus uint16[] See Table 586, “OperationalStatus for 
ComputerSystem”.

RequestedState uint16 The port state requested via Request-
StateChange(). Shall be of the range 
specified in FCPortCapabili-
ties.RequestedStatesSupported if a 
state change has been requested. Oth-
erwise Shall be "Not Applicable". 

EnabledDefault uint16 Default startup for the port. Used in 
conjunction with RequestedState can 
allow for persistent disabling of a port.

Speed uint64 Speed of zero represents a link not 
established.
 1Gb is 1062500000 bps
 2Gb is 2125000000 bps
 4Gb is 4250000000 bps
 10Gb single channel variants are 
10518750000 bps
 10Gb four channel variants are 
12750000000 bps
 This is the raw bit rate.

MaxSpeed uint64 The max speed of the Port in Bits per 
Second using the same algorithm as 
Speed.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 623



 

8.2.6.6.8.10 CIM_FCPortCapabilities
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

PortType uint16 FC-GS Port.Type The specific mode 
currently enabled for the Port. The val-
ues:

"N" = Node Port
"NL" = Node Port supporting FC arbi-
trated loop
"E" = Expansion Port connecting fabric 
elements (for example, FC switches)
"F" = Fabric (element) Port
"FL" = Fabric (element) Port supporting 
FC arbitrated loop
"B" = Bridge Port. PortTypes are 
defined in the ANSI INCITS FC-GS 
standards. 

Can be set using FCPortSet-
tings.RequestedType.

PortNumber uint16 NetworkPorts are often numbered rela-
tive to either a logical modules or a net-
work element.

PermanentAddress string Fibre Channel Port WWN.
LinkTechnology uint16 "FC"

Optional Properties/Methods
EnabledState uint16 See Table 586, “OperationalStatus for 

ComputerSystem”
RequestStateChange() Method to change the port state. 

FCPortCapabilities.RequestedStates-
Supported indicates what states can be 
set.

Table 680: SMI Referenced Properties/Methods for CIM_FCPortCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ElementName string Shall be set to "FC Port Capabilities"
ElementNameEditSupported boolean Indicates whether FCPort.Element-

Name is settable
MaxElementNameLen uint16 Indicates the maximum string length of 

FCPort.ElementName

Table 679: SMI Referenced Properties/Methods for CIM_FCPort

Property Flags Type Description & Notes
624



 Switch Profile
8.2.6.6.8.11 CIM_FCPortRateStatistics
Fibre Channel Switch Port Rate Statistics represent the rate per second over the SampleInterval. An
instance of this class can represent the statistics for the current statistics, archived and consolidated
statistics, or both.

Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

8.2.6.6.8.12 CIM_FCPortSettings
Created By : External
Modified By : ModifyInstance
Deleted By : External

RequestedStatesSupported uint16[] Indicates the supported states for call-
ing FCPort.RequestStateChange().

RequestedSpeedsSupported uint64[] Indicates the supported speeds that 
can be set in FCPortSettings.Request-
edSpeed

AutoSenseSpeedConfigurable boolean Indicates whether FCPortSet-
tings.AutoSenseSpeed can be set to 
auto-negotiate speed.

RequestedTypesSupported uint16[] Indicates the list of supported port 
types that can be set in FCPortSet-
tings.RequestedType.

Table 681: SMI Referenced Properties/Methods for CIM_FCPortRateStatistics

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
StatisticTime datetime The time the statistic was collected.
SampleInterval datetime The interval at which the rates are cal-

culated.
TxRate uint64
RxRate uint64

Optional Properties/Methods
TxFrameRate uint64
RxFrameRate uint64
MaxTxFrameRate uint64
MaxRxFrameRate uint64
PeakTxRate uint64
PeakRxRate uint64

Table 680: SMI Referenced Properties/Methods for CIM_FCPortCapabilities

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 625



 

Class Mandatory: false

8.2.6.6.8.13 CIM_FCPortStatistics
Snapshot of performance and error counters for the Fibre Channel Switch.

Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 682: SMI Referenced Properties/Methods for CIM_FCPortSettings

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ElementName string Shall be set to "FC Port Settings"
RequestedSpeed M uint64 The requested value to which 

FCPort.Speed should be set.
AutoSenseSpeed M boolean The request for the FCPort to auto 

sense the speed (FCPort.Speed).
RequestedType M uint16 The requested setting for the 

FCPort.PortType.

Table 683: SMI Referenced Properties/Methods for CIM_FCPortStatistics

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
BytesTransmitted uint64
BytesReceived uint64
PacketsTransmitted uint64
PacketsReceived uint64
CRCErrors uint64
LinkFailures uint64
PrimitiveSeqProtocolErrCount uint64

Optional Properties/Methods
StatisticTime datetime The time the statistics were collected. If 

historical data is instantiated (present), 
this property shall be set with the time 
representing the time the statistic was 
collected.

ElementName string
LIPCount uint64
NOSCount uint64
ErrorFrames uint64
DumpedFrames uint64
LossOfSignalCounter uint64
LossOfSyncCounter uint64
626



 Switch Profile
8.2.6.6.8.14 CIM_FCSwitchCapabilities
The Fibre Channel Switch Capabilities.

Created By : External
Modified By : Static
Deleted By : External

InvalidTransmissionWords uint64
FramesTooShort uint64
FramesTooLong uint64
AddressErrors uint64
BufferCreditNotProvided uint64
BufferCreditNotReceived uint64
DelimiterErrors uint64
EncodingDisparityErrors uint64
LinkResetsReceived uint64
LinkResetsTransmitted uint64
MulticastFramesReceived uint64
MulticastFramesTransmitted uint64
FBSYFrames uint64
PBSYFrames uint64
FRJTFrames uint64
PRJTFrames uint64
RXClass1Frames uint64
TXClass1Frames uint64
Class1FBSY uint64
Class1PBSY uint64
Class1FRJT uint64
Class1PRJT uint64
RXClass2Frames uint64
TXClass2Frames uint64
Class2FBSY uint64
Class2PBSY uint64
Class2FRJT uint64
Class2PRJT uint64
RXClass3Frames uint64
TXClass3Frames uint64
Class3FramesDiscarded uint64
RXBroadcastFrames uint64
TXBroadcastFrames uint64

Table 683: SMI Referenced Properties/Methods for CIM_FCPortStatistics

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 627



 

Class Mandatory: true

8.2.6.6.8.15 CIM_FCSwitchSettings
Created By : External
Modified By : ModifyInstance
Deleted By : External
Class Mandatory: true

8.2.6.6.8.16 CIM_HostedCollection
Created By : External
Modified By : Static
Deleted By : External

Table 684: SMI Referenced Properties/Methods for CIM_FCSwitchCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ElementName string Shall be set to "FC Switch Capabilities"
ElementNameEditSupported boolean Capability indicating whether Comput-

erSystem.ElementName for the switch 
can be set.

MaxElementNameLen uint16 Capability specifying the maximum 
name of ComputerSystem.Element-
Name for the switch 

RequestedStatesSupported uint16[] The states the switch can support via 
ComputerSystem.RequestedState.

DomainIDLockedSupported boolean
PrincipalPrioritiesSupported uint16[]

Optional Properties/Methods
MinDomainID uint8 Shall be set if DomainIDConfigurable is 

TRUE.
MaxDomainID uint8 Shall be set if DomainIDConfigurable is 

TRUE.

Table 685: SMI Referenced Properties/Methods for CIM_FCSwitchSettings

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ElementName string Shall be set to "FC Switch Settings"

Optional Properties/Methods
PreferredDomainID M uint8 Required if FCSwitchCapabili-

ties.DomainIDConfigurable is TRUE.
DomainIDLocked M boolean Required if FCSwitchCapabili-

ties.DomainIDLockSupported is TRUE.
PrincipalPriority M uint16 Required if FCSwitchCapabilities.Prin-

cipalPrioritiesSupported is not set to 
"Not Applicable".
628



 Switch Profile
Class Mandatory: true

8.2.6.6.8.17 CIM_MemberOfCollection
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.6.8.18 CIM_MemberOfCollection
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.6.6.8.19 CIM_ProtocolEndpoint
The endpoint of a link (ActiveConnection). ProtocolEndpoint shall be implemented when
BroadcastReset() is supported (Force LIP). It is expected that the Fabric Profile is also implemented
which defines the necessary information for determining who will receive the Force LIP on the loop.

Created By : External
Modified By : Static
Deleted By : External

Table 686: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_SystemSpecificColl

ection

Table 687: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The reference to the StatisticsCollec-
tion

Member CIM_ManagedElement The reference to the FCPortStatistics

Table 688: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The reference to the RedundancySet
Member CIM_ManagedElement The reference to the FCPortPort
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 629



 

Class Mandatory: false

8.2.6.6.8.20 CIM_RedundancySet
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.6.6.8.21 CIM_StatisticsCollection
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.6.8.22 CIM_SystemDevice
Created By : External

Table 689: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System's CreationClass-
Name.

SystemName string The scoping System's Name.
CreationClassName string Name of Class
Name CD string The Fibre Channel Port WWN.
NameFormat string "WWN"
ProtocolIFType uint16 "Fibre Channel"
BroadcastResetSupported boolean

Optional Properties/Methods
BroadcastReset() Sends a Force LIP to all attached 

Ports. Required if BroadcastResetSup-
ported is TRUE.

Table 690: SMI Referenced Properties/Methods for CIM_RedundancySet

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
TypeOfSet uint16[]

Table 691: SMI Referenced Properties/Methods for CIM_StatisticsCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceId string Opaque
ElementName string
SampleInterval datetime
TimeLastSampled dateTime
630



 Switch Profile
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.6.9 Related Standards

Table 692: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System The reference to the System
PartComponent CIM_LogicalDevice The reference to the FCPort

Table 693: Related Standards for Switch

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 631



 

632



 Switch Configuration Data Subprofile
8.2.6.7 Switch Configuration Data Subprofile

8.2.6.7.1 Description
This subprofile describes the ability to retrieve a configuration from a switch and latter apply that
configuration back on the switch (similar to an image backup and restoration of a computer system).

The profile only has three classes providing all the functionality. When a client needs to obtain a
snapshot of the switch configuration, he enumerates ConfigurationData which will return the current
configuration with the timestamp set appropriately.

When the client wants to apply a configuration, he creates and instance of ConfigurationData and calls
the method ApplyConfiguration() on the instance containing the property ConfigurationInformation
which is to be applied to the switch.

8.2.6.7.2 Durable Names and Correlatable IDs of the Profile
Not defined in this standard.

8.2.6.7.3 Instrumentation Requirements
Not defined in this standard.

8.2.6.7.4 Health and Fault Management
None

8.2.6.7.5 Cascading Considerations
None

8.2.6.7.6 Methods of this Profile

8.2.6.7.6.1 ApplyConfiguration
This method applies the configuration data to the switch. The data in the instance's
ConfigurationInformation property is used as the configuration to apply. Note that it is not necessary for
the element to be associated with the ConfigurationData instance at the time that this method is called.

uint32 ApplyConfiguration (

boolean ValidateOnly,

uint16 TypeOfConfiguration 

CIM_ManagedElement REF ManagedElement);

8.2.6.7.7 Client Considerations and Recipes

8.2.6.7.7.1 Get Switch Configuration
// DESCRIPTION

//

Figure 97: Switch Configuration Data Instance Diagram

Com puterSystem

Dedicated="sw itch"

ConfigurationData

InstanceId
E lem entNam e
ConfigurationInform ation
ConfigurationTim estam p

Elem ent
SettingData
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 633



 

// This recipe describes how to retrieve Switch configuration data.

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS 

// 1. A reference to the Switch whose configuration data to retrieve is known 

// and defined in the variable $Switch->.

// MAIN

// Step 1. Retrieve the configuration of the Switch.

$ConfigData[] = Associators($Switch->,

“CIM_ElementSettingData”,

“CIM_ConfigurationData”,

“ManagedElement”,

“SettingData”,

false,

false,

{“ConfigurationInformation”, “ConfigurationTimestamp”})

if ($ConfigData[] == null || $ConfigData[].length != 1) {

    <ERROR! The required Switch configuration data is not available>

}

$SwitchConfig = $ConfigData[0]

8.2.6.7.7.2 Set Switch Configuration
// DESCRIPTION

//

// Set Switch Configuration

// 

// PREEXISTING CONDITIONS AND ASSUMPTIONS 

//

// None

Placeholder File

8.2.6.7.8 Registered Name and Version
Switch Configuration Data version 1.1.0
634



 Switch Configuration Data Subprofile
8.2.6.7.9 CIM Server Requirements

8.2.6.7.10 CIM Elements

8.2.6.7.10.1 CIM_ComputerSystem
Represents the Switch
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.7.10.2 CIM_ConfigurationData
Switch Configuration Data
Created By : Extrinsic(s): 
Modified By : Static
Deleted By : DeleteInstance

Table 694: CIM Server Requirements for Switch Configuration Data

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 695: CIM Elements for Switch Configuration Data

Element Name Description
Mandatory Classes

CIM_ComputerSystem (8.2.6.7.10.1) Represents the Switch
CIM_ConfigurationData (8.2.6.7.10.2) Switch Configuration Data
CIM_ElementSettingData (8.2.6.7.10.3) Associates ConfigurationData to the switch

Table 696: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string The class name
Name string Switch Name (WWN)
NameFormat string "WWN"
Dedicated uint16[] "Switch"
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 635



 

Class Mandatory: true

8.2.6.7.10.3 CIM_ElementSettingData
Associates ConfigurationData to the switch
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.7.11 Related Standards

Table 697: SMI Referenced Properties/Methods for CIM_ConfigurationData

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ElementName string User-friendly for configuration file.
ConfigurationInformation uint8[] The configuration data of the switch.
ConfigurationTimestamp datetime Time the configuration data was 

obtained
ApplyConfiguration() Method that processes the configura-

tion in the same instance and applies it 
to the switch

Table 698: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The reference to the ComputerSystem
SettingData CIM_SettingData The reference to the ConfigurationData

Table 699: Related Standards for Switch Configuration Data

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
636



 Blades Subprofile
8.2.6.8 Blades Subprofile

8.2.6.8.1 Description
This subprofile describes how blades in a director class switch can be discovered and managed.

Instance Diagram

8.2.6.8.2 Health and Fault Management
None

8.2.6.8.3 Cascading Considerations
None

8.2.6.8.4 Methods of this Profile
None

8.2.6.8.5 Client Considerations and Recipes
None

Figure 98: Switch Blade Instance Diagram

Product

ComputerSystem

Dedicated="switch"

FCPort

Module
Port

FCPort

PhysicalPackage

Realizes

ProductPhysical
Component

System
Device

ComputerSystem
Package

LogicalModule
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 637



 

8.2.6.8.6 Registered Name and Version
Blades version 1.1.0

8.2.6.8.7 CIM Server Requirements

Table 700: CIM Server Requirements for Blades

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
638



 Blades Subprofile
8.2.6.8.8 CIM Elements

8.2.6.8.8.1 CIM_LogicalModule
The Blade

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

Table 701: CIM Elements for Blades

Element Name Description
Mandatory Classes

CIM_LogicalModule (8.2.6.8.8.1) The Blade
CIM_ModulePort (8.2.6.8.8.2) Associates the LogicalModule to the FCPort
CIM_PhysicalPackage (8.2.6.8.8.3) The physical package that the LogicalModule is con-

tained within
CIM_Realizes (8.2.6.8.8.6) Associates the LogicalModule to its PhysicalPackage
CIM_SystemDevice (8.2.6.8.8.7) Associates the LogicalModule to the ComputerSystem 

representing the Switch
Optional Classes

CIM_Product (8.2.6.8.8.4) The product information for the Blade
CIM_ProductPhysicalComponent (8.2.6.8.8.5) Associates the Product to the PhysicalPackage

Optional Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_LogicalModule

Creation of an Creation LogicalModule instance. 
This indication is recommended.

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_LogicalModule

Deletion of an LogicalModule instance. 
This indication is recommended.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_LogicalModule AND SourceIn-
stance.OperationalStatus <> 
PreviousInstance.OperationalStatus

Deprecated WQL - Change in status of LogicalModule. 
This indication is recommended.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_LogicalModule AND SourceIn-
stance.CIM_LogicalModule::OperationalStatus <> 
PreviousInstance.CIM_LogicalModule::OperationalSta-
tus

CQL - Change in status of LogicalModule. 
This indication is recommended.

Table 702: SMI Referenced Properties/Methods for CIM_LogicalModule

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque
ElementName string
OperationalStatus uint16[]
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 639



 

8.2.6.8.8.2 CIM_ModulePort
Associates the LogicalModule to the FCPort

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.8.8.3 CIM_PhysicalPackage
The physical package that the LogicalModule is contained within.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.8.8.4 CIM_Product
The product information for the Blade

Created By : External
Modified By : Static
Deleted By : External

ModuleNumber uint16

Table 703: SMI Referenced Properties/Methods for CIM_ModulePort

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_LogicalModule The reference to the Computer System 
representing the Switch

PartComponent CIM_NetworkPort The reference to the FCPort

Table 704: SMI Referenced Properties/Methods for CIM_PhysicalPackage

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Tag string
Manufacturer string
Model string

Optional Properties/Methods
ElementName string
Name string
SerialNumber string
Version string
PartNumber string

Table 702: SMI Referenced Properties/Methods for CIM_LogicalModule

Property Flags Type Description & Notes
640



 Blades Subprofile
Class Mandatory: false

8.2.6.8.8.5 CIM_ProductPhysicalComponent
Associates the Product to the PhysicalPackage. This is necessary to link the Product information to the
Blade.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.6.8.8.6 CIM_Realizes
Associates the LogicalModule to its PhysicalPackage

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.6.8.8.7 CIM_SystemDevice
Associates the LogicalModule to the ComputerSystem representing the Switch

Created By : External
Modified By : Static
Deleted By : External

Table 705: SMI Referenced Properties/Methods for CIM_Product

Property Flags Type Description & Notes
Mandatory Properties/Methods

Name string Commonly used Product name.
IdentifyingNumber string Product identification such as a serial-

number.
Vendor string The manufacturer or the OEM.
Version string Product version information.
ElementName string User Friendly name. Suggested use 

isVendor, Version and product name.

Table 706: SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_Product
PartComponent CIM_PhysicalElement

Table 707: SMI Referenced Properties/Methods for CIM_Realizes

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_PhysicalElement The reference to the PhysicalPackage.
Dependent CIM_LogicalDevice The reference to the LogicalModule 

representing the Blade.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 641



 

Class Mandatory: true

8.2.6.8.9 Related Standards

Table 708: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System The reference to the Computer System 
representing the Switch

PartComponent CIM_LogicalDevice The reference to the LogicalModule

Table 709: Related Standards for Blades

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
642



 Extender Profile
EXPERIMENTAL

8.2.6.9 Extender Profile  

8.2.6.9.1 Description
A FC Extender is a logical entity representing an inter-switch link consisting of two FC Extender Node
devices and the Network pipes that connect them. 

A FC Extender is used to connect two Fabrics across a LAN, MAN, WAN, or other network
communications media. 

A FC Extender Node is a physical device that converts Fibre Channel protocol for transmission over
different network communication technologies.

The domain of the Extender Group is defined by Network, which is a subclass of AdminDomain.

8.2.6.9.1.1 FC Extender Node Topology Classes
The ComputerSystem class is the core of the model. It is identified as an Extender node by the
dedicated attribute being set to ExtenderNode. 

The TCPSettings and IPSettings classes represent the global configuration of the FC Extender
transport layer. 

The Port group of classes contains the following classes: FCPort, and EthernetPort. The FCPort class
represents the connection of a FC Extender to a SAN. This class connects to other FCPort classes to
represent Fibre channel connections. This class could be replaced with other port types to represent
SANs based on other interconnect technology. The EthernetPort class represents an Ethernet link
between FC Extender nodes.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 643



 

Figure 99: FC Extender Node Instance Diagram

8.2.6.9.1.2 FC Extender Node Network Connectivity Classes
Each FC Extender node local ProtocolEndpoint (e.g., FCProtocolEndpoints, TCPProtocolEndpoints)
has a BindsTo dependency on a RemotePort that describes access or addressing information to a
remote ProtocolEndpoint for a specific connection. 

The Extender node represents ProtocolEndpoints dependencies (e.g., FC ProtocolEndpoint on
TCPProtocolEndpoints, TCPProtocolEndpoint on IPProtocolEndpoint, IPProtocolEndpoint on
EthernetProtocolEndpoint) with a BindsTo association.

8.2.6.9.1.3 FC Extender Group Network Connectivity Classes
A FC Extender connection is represented by a NetworkPipe class associated with
FCProtocolEndpoints. A FCExtender Network class groups multiple NetworkPipes.

The NetworkPipe between FCProtocolEndpoints is composed of lower-level TCP network pipes.

EthernetPortStatistics

ComputerSystem

Dedicated[x]=ExtenderNode

PhysicalPackage

Product

FCPort

EthernetPort ProtocolEndpoint

TCPProtocolEndpoint 

IPProtocolEndpoint 

ProtocolEndpoint  

ProtocolIFType = "Fcip"

RemoteServiceAccessPoint

RemotePort

RemotePort

FCPortStatistics

S
ys

te
m

D
ev

ic
e

PortImplementsEndpoint

ElementStatisticalData

ElementStatisticalData

HostedAccessPoint

PortImplementsEndpoint

BindsTo

BindsTo

BindsTo

BindsTo

BindsTo

BindsTo

ComputerSystemPackage

ProductPhysicalComponent

HostedAccessPoint

TCPStatisticalData

ElementStatisticalData

TCPEndpointStatistics

ElementStatisticalData

IPEndpointStatistics

TCPSettings

IPSettings 

E
le

m
en

tS
et

tin
gD

at
a

E
le

m
en

tS
ta

tis
tic

al
D

at
a

FCIPSettings

E
le

m
en

tS
et

tin
gD

at
a

ElementSettingData

IPSettings

FCIPSettings

SoftwareIdentity

(Firmware)

SoftwareInstalledOnSystem
644



 Extender Profile
Figure 100: FC Extender Group Instance Diagram

8.2.6.9.2 Health and Fault Management
None

8.2.6.9.3 Cascading Considerations
None

8.2.6.9.4 Supported Subprofiles and Packages
None

8.2.6.9.5 Methods of this Profile
None

8.2.6.9.6 Client Considerations and Recipes

8.2.6.9.6.1 Extender Connectivity Settings
// Description

// Collecting settings  

// of Extender node connectivity elements participating in the Extender

// of interest.

// $extenderNodeFCIPSettings(fcip protocol endpoint settings) 

HostedNetworkPipe

ComputerSystem

Dedicated[x]=ExtenderNode

BandwidthThreshold  : uint32
ExtensionType: enum
State:  uint16[ ] {enum}

FCExtender (Proposed)

HostedNetworkPipe

TCPProtocolEndpoint 

MaxTransmissionRate: uint32

FCProtocolEndpoint (Proposed) 

 

HostedAccessPoint

Network

(See Network Model 
(Systems))

EndpointOfNetworkPipe

NetworkPipe

Component

ProtocolEndpoint (Proposed) 

ProtocolType = "Ethernet" 

EndpointOfNetworkPipe

ComputerSystem

Dedicated[x]=ExtenderNode

ComputerSystem

Dedicated[x]=ExtenderNode

ProtocolEndpoint

ProtocolIFType = "Fcip" 

TCPProtocolEndpoint 

IPProtocolEndpoint 

MaxTransmissionUnit: uint32 

ProtocolEndpoint  

ProtocolType = "Ethernet" 

IPProtocolEndpoint 

TCPProtocolEndpoint 

MaxTransmissionRate: uint32

FCProtocolEndpoint (Proposed) 

 

ProtocolEndpoint (Proposed) 

ProtocolType = "Ethernet" 

ProtocolEndpoint  

ProtocolIFType = "Fcip"

TCPProtocolEndpoint 

IPProtocolEndpoint 

MaxTransmissionUnit: uint32 

ProtocolEndpoint  

ProtocolType = "Ethernet" 

IPProtocolEndpoint 

Component

HostedAccessPoint

TCPNetworkPipe (Proposed) 

MaxTransmissionRate: uint32
 

NetworkPipe 

*

*

NetworkPipeCompositionBindsTo

BindsTo

BindsTo

BindsTo

BindsTo

BindsTo

*

1 *

*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 645



 

// $extenderNodeTCPSettings (transport layer settings) 

// $extenderIPSettings (ip protocol endpoint settings)

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// The Extender fcip ProtocolEndpoint has been previously

// identified and defined in the $fcipProtocolEndpoint-> variable

// 1. Get ComputerSystem associated with $fcipProtocolEndpoint 

$extenderNodes[] = Associators( 

$fcipProtocolEndpoint->,

CIM_HostedAccessPoint,

CIM_ComputerSystem,

Antecedent,

Dependent,

false,

false,

[Dedicated])

if (contains(23, $extenderNodes[0].Dedicated))

{

#extenderNodeAccessA = true

$extenderNode-> = $extenderNodes[0].getObjectPath()

}

if(#extenderNodeAccessA)

{

//2. Get fcip protocol endpoint

 

 // find FCIP Settings

$fcipSettings[]= Associators(

$fcipProtocolEndpoint,

CIM_ElementSettingData,

CIM_FCIPSettings,

ManagedElement,

SettingData,

false,

false,

null)

if ($fcipSettings[].length != 0)

$extenderNodeFCIPSettings = $fcipSettings[0]

//3. Get transport layer settings

$tcpSettings[]= Associators(

$extenderNode->,

CIM_ElementSettingData,

CIM_TCPSettings,

ManagedElement,

SettingData,
646



 Extender Profile
false,

false,

null)

if ($tcpSettings[].length != 0)

$extenderNodeTCPSettings = $tcpSettings[0]

//4. Find TCPProtocolEndpoint bound to the extender fcip ProtocolEndpoint

$tcpProtocolEndpoint->[]= AssociatorNames(

$fcipProtocolEndpoint->,

CIM_BindTo,

CIM_TCPProtocolEndpoint,

Dependent,

Antecedent,

false,

false,

null))

//5. Find IPProtocolEndpoint bound to the extender tcp ProtocolEndpoint

$ipProtocolEndpoints->[]= AssociatorNames(

$tcpProtocolEndpoint->,

CIM_BindTo,

CIM_IPProtocolEndpoint,

Dependent,

Antecedent,

false,

false,

null))

$ipProtocolEndpoint-> = $ipProtocolEndpoints->[0]

//6. Find IPProtocolEndpoint settings

$ipSettings[]= Associators(

$ipProtocolEndpoint->,

CIM_ElementSettingData,

CIM_IPSettings,

ManagedElement,

SettingData,

false,

false,

null)

if ($ipSettings[].length != 0)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 647



 

$extenderNodeIPSettings = $ipSettings[0]

}

8.2.6.9.6.2 Extender Connective Statistics
// Description

// Collecting statistical data 

// of Extender node conectivity elements participating in the Extender

// of interest.

// $extenderNodeTCPStatisticalData (transport layer stats) 

// $extenderIPEndpointStatistics (IP protocol endpoint stats)

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// The Extender fcip ProtocolEndpoint has been previously

// identified and defined in the $fcipProtocolEndpoint-> variable

// 1. Get ComputerSystem associated with $fcipProtocolEndpoint 

$extenderNodes[] = Associators( 

$fcipProtocolEndpoint->,

CIM_HostedAccessPoint,

CIM_ComputerSystem,

Antecedent,

Dependent,

false,

false,

[Dedicated])

if (contains(23, $extenderNodes[0].Dedicated))

{

#extenderNodeAccess = true

$extenderNode-> = $extenderNodes[0].getObjectPath()

}

if(#extenderNodeAccess)

{

//2. Get transport layer statistics

$tcpStatistics[] = Associators(

$extenderNode->,

CIM_ElementStatisticalData,

CIM_TCPStatisticalData,

ManagedElement,

Stats,

false,

false,
648



 Extender Profile
null))

$extenderNodeTCPStatisticalData = $tcpStatistics[0] 

//3. Find TCPProtocolEndpoint bound to the extender fcip ProtocolEndpoint

$tcpProtocolEndpoint->[]= AssociatorNames(

$fcipProtocolEndpoint->,

CIM_BindTo,

CIM_TCPProtocolEndpoint,

Dependent,

Antecedent,

false,

false,

null))

//4. Find IPProtocolEndpoint bound to the extender tcp ProtocolEndpoint

$ipProtocolEndpoint->[]= AssociatorNames(

$tcpProtocolEndpoint->,

CIM_BindTo,

CIM_IPProtocolEndpoint,

Dependent,

Antecedent,

false,

false,

null))

//5. Find IPProtocolEndpoint statistics

$ipStatistics[]= Associators(

$ipProtocolEndpoint->,

CIM_ElementStatisticalData,

CIM_IPEndpointStatistics,

ManagedElement,

Stats,

false,

false,

null)

$extenderIPEndpointStatistics = $ipStatistics[0]

}

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 649



 

8.2.6.9.6.3 Extender Port Group Information
// Description

// Collecting configuration and statistical data 

// of Extender node ports participating in the Extender

// of interest.

// $extenderNodeFCPort (connected to a switch)

// $extenderNodeFCPortStatistics 

// $extenderNodeEthernetPort (connected to a peer Extender node)  

// $extenderNodeEthernetStatistics 

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// The Extender fcip ProtocolEndpoint has been previously

// identified and defined in the $fcipProtocolEndpoint-> variable

// 1. Get ComputerSystem associated with $fcipProtocolEndpoint 

$extenderNodes[] = Associators( 

$fcipProtocolEndpoint->,

CIM_HostedAccessPoint,

CIM_ComputerSystem,

Antecedent,

Dependent,

false,

false,

[Dedicated])

if (contains(23, $extenderNodes[0].Dedicated))

{

#extenderNodeAccess = true

}

if(#extenderNodeAccess)

{

// 2. Get FC port  

$fcPorts[] = Associators(

$fcipProtocolEndpoints->,

CIM_DeviceSAPImplementation,

CIM_FCPort,

Dependent,

Antecedent,

false,

false,

null)

$extenderNodeFCPort = $fcPorts[0]  

// 2. Get FC port statistics  

$fcPortStatistics->[] = Associators(

$extenderNodeFCPort.getObjectPath(),
650



 Extender Profile
CIM_ElementStatisticalData,

CIM_FCPortStatistics,

ManagedElement,

Stats,

false,

false,

null))

$extenderNodeFCPortStatistics = $fcPortsStatistics[0]

//3. Find TCPProtocolEndpoint bound to the extender FCIP ProtocolEndpoint

$tcpProtocolEndpoints->[]= AssociatorNames(

$fcipProtocolEndpoint->,

CIM_BindTo,

CIM_TCPProtocolEndpoint,

Dependent,

Antecedent,

false,

false,

null))

// at least one should exist

$tcpProtocolEndpoint->=$tcpProtocolEndpoints->[0]

//4. Find IPProtocolEndpoint bound to the extender TCP ProtocolEndpoint

$ipProtocolEndpoint->[]= AssociatorNames(

$tcpProtocolEndpoint->,

CIM_BindTo,

CIM_IPProtocolEndpoint,

Dependent,

Antecedent,

false,

false,

null))

$ipProtocolEndpoint->=$ipProtocolEndpoints->[0]

//5. Get Ethernet port  

$ethernetPorts[] = Associators(

$ipProtocolEndpoints->,

CIM_DeviceSAPImplementation,

CIM_EthernetPort,

Dependent,

Antecedent,

false,

false,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 651



 

null)

$extenderNodeEthernetPort = $ethernetPorts[0]  

//6. Get Ethernet port statistics  

$ethernetPortStatistics->[] = Associators(

$extenderNodeEthernetPort.getObjectPath(),

CIM_ElementStatisticalData,

CIM_EthernetStatistics,

ManagedElement,

Stats,

false,

false,

null))

$extenderNodeEthernetPortStatistics = $ethernetPortsStatistics[0]

}

8.2.6.9.6.4 Extender Topology Mapping
// This recipe describes how to build a topology graph of a fabric.

//

// 1. Identifies all the Switches and adds their objects paths and the 

// object paths of the FC Ports belonging to these Switches to the $nodes 

// array

//

// 2. Creates a suitable Association instance (e.g. a SystemDevice 

// Association instance between a Switch and a FC Port), setting its 

// GroupComponent and PartComponent. Adds the object path of the 

// Association to the $links array

//

// 3. Creates a map of all connected FC Ports (i.e., belonging to Switches 

// that are ISL’d together and to Host HBAs and Storage System Front End 

// Controllers)

// 

// In this map, the FC Ports (i.e., the ones that are connected) are 

// cross-connected.

//

// e.g., For a pair of FC Ports, one belonging to a Switch and the other 

// belonging to a Host (HBA), the map indexed by the Switch Port WWN returns 

// the Host (HBA) FC Port object path and the map indexed by the Host (HBA) 

// FC Port WWN returns the Switch FC Port object path.

//
652



 Extender Profile
// Similar relationship exists between the pairs of FC Ports where one 

// belongs to a Switch and the other belonging belongs to a Storage System 

// Front End Controller and for FC Ports each of which belongs to a Switch.

//

// 4. Identifies all the Hosts and adds their objects paths to the $nodes 

// array. Note that the object paths of the FC Ports (HBA Ports) belonging 

// to these Hosts are already added to the $nodes array in step-3.

//

// 5. Creates a suitable Association instance (e.g. a SystemDevice 

// Association instance between a Host and a FC Port), setting its 

// GroupComponent and PartComponent. Adds the object path of the Association 

// to the $links array.

//

// 6. Identifies all the Storage Systems and adds their objects paths to the 

// $nodes array.

// Note that the object paths of the FC Ports (i.e., Front End Controller 

// FC Ports) belonging to these Storage Systems are already added to the 

// $nodes array in step-3.

//

// 7. Creates a suitable Association instance (e.g. a SystemDevice 

// Association instance between a Storage System and a FC Port), setting 

// its GroupComponent and PartComponent. Adds the object path of the 

// Association to the $links array.

// DESCRIPTION

// Create a map of how elements in a SAN are connected together via 

// Fibre-ChannelFC ports.

//

// The map is built in array $attachedFcPorts->[], where the index is a

// WWN of any device port on the SAN, and the value at that index is

// the object path of the connected Switch or HBA or Storage System FC port.

//

// First find all the switches in a SAN. Get all the FC Ports for each

// switch and get the Attached FC Ports for each Switch FC Port. Save these 

// device FC ports in the map described above.

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// 1. All agents/namespaces supporting Fabric Profile previously identified

// using SLP. Do this for each CIMOM supporting Fabric Profile

switches[] = enumerateInstances(“CIM_ComputerSystem”, true, false, true, true, 
null)

for #i in $switches[]

{

    if (!contains(5, $switches[#i].Dedicated))

        continue 

    // only process switches, not other computer systems
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 653



 

    // Add the switch to the $nodes array

    $nodes.addIfNotAlreadyAdded ($switches[#i].getObjectPath();

    // Get all the SystemDevice associations between this switch and its 

    // FC Ports

    $sysDevAssoc[] = ReferenceNames($switches[#i], 

                                “CIM_FCPort”, 

                                “GroupComponent”);

    // Add these associations to the $links array

    for #a in $sysDevAssoc->[]

    $links.addIfNotAlreadyAdded ($sysDevAssoc->[#a];

    $fcPorts->[] = AssociatorNames(

        $switches[#i].getObjectPath(),

        “CIM_SystemDevice”,

        “CIM_FCPort”,

        “GroupComponent”,

        “PartComponent”)

    for #j in $fcPorts->[]

    {

        // Add the FC Port in $nodes array

        $nodes.addIfNotAlreadyAdded (fcPorts->[#j];

        $protocolEndpoints->[] = AssociatorNames(

            fcPorts->[#j],

            “CIM_DeviceSAPImplementation”,

            “CIM_ProtocolEndpoint”,

            “Antecedent”,

        “Dependent”);

        // NOTE - It is possible for this collection to be empty (i.e., ports 

        // that are not connected). It is possible for this collection to 

        // have more than one element (loops attached to a switch port is the 

        // most common example).

        if ($protocolEndpoints->[].length == 0)

            continue

        // Add the Protocol End Point to the nodes array.

        // Currently this recipe is designed to only save one 
654



 Extender Profile
        // ProtocolEndpoint. 

        $nodes.addIfNotAlreadyAdded (protocolEndpoints[0]);

        // Add the associations between the fcPort and the Protocol end point 

        // to the links array

        $devSAPImplassoc[]  = ReferenceNames($fcPorts->[#j], 

                                     “CIM_ProtocolEndpoint”, 

                                     null);

        for #a in $devSAPImplassoc->[]

            $links.addIfNotAlreadyAdded ($devSAPImplassoc->[#a];

        $attachedProtocolEndpoints->[] = AssociatorNames(

            $protocolEndpoints->[0],

            “CIM_ActiveConnection”,

            “CIM_ProtocolEndpoint”,

            null, null) 

        // Add the Attached Protocol End Point to the nodes array

        $nodes.addIfNotAlreadyAdded (attachedProtocolEndpoints->[0]);

        // Add the associations between the Protocol end point and the 

        // Attached protocol endpoint to the links array

        $actConnassoc[]  = ReferenceNames($protocolEndpoint->[#0], 

                                  “CIM_ActiveConnection”, 

                                   null);

        for #a in $actConnassoc->[]

            $links.addIfNotAlreadyAdded ($actConnassoc->[#a];

        // NOTE: role & resultRole are null as the direction of the 

        // association is not dictated by the specification

        // $attachedFcPort is either a device FC port or an ISL’d switch FC 

        // port from another switch. We store this result is stored (i.e.,

        // which device FC Port is connected // to which switch FC Port) in 

        // a suitable data structure for subsequent correlation to ports 

        // discovered on devices.

        for #k in $attachedProtocolEndpoints->[] 

        {

            $attachedFcPorts->[] = Associators(

                $attachedProtocolEndpoints->[#k],

                “CIM_DeviceSAPImplementation”,

                “CIM_FCPort”,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 655



 

                “Dependent”,

                “Antecedent”,

                false,

                false,

                [“PermanentAddress”])

            $attachedFcPort = $attachedFcPorts[0] // Exactly one member guaranteed 
by model

            // Add the attached FC Port to the $nodes array

            if $attachedFcPort != null 

                $nodes.addIfNotAlreadyAdded ($attachedFcPort);

        }

    }

}

8.2.6.9.7 Registered Name and Version
Extender version 1.1.0

8.2.6.9.8 CIM Server Requirements

Table 710: CIM Server Requirements for Extender

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
656



 Extender Profile
8.2.6.9.9 CIM Elements

Table 711: CIM Elements for Extender

Element Name Description
Mandatory Classes

CIM_BindsTo (8.2.6.9.9.1) Associates Extender Node ProtocolEndpoints from dif-
ferent layers in the protocol stack

CIM_Component (8.2.6.9.9.2) Aggregates Extender Nodes in the Network that repre-
sents the group of Extenders

CIM_ComputerSystem (8.2.6.9.9.3) Represents the Extender Node
CIM_ComputerSystemPackage (8.2.6.9.9.4) Associated PhysicalPackage to the ComputerSystem 

(Extender)
CIM_ElementSettingData (8.2.6.9.9.5) Associates SettingData to Extender Node orProtoco-

lEndpoints
CIM_ElementStatisticalData (8.2.6.9.9.6) Associates StatisticalData to Extender Node or Protoco-

lEndpoints
CIM_EndpointOfNetworkPipe (8.2.6.9.9.7)
CIM_EthernetPort (8.2.6.9.9.8)
CIM_EthernetPortStatistics (8.2.6.9.9.9)
CIM_FCIPSettings (8.2.6.9.9.10) Defines FCIP settings for a group of ProtocolEndpoints 

(ProtocolIFType - "Fcip") which belongs to the Comput-
erSystem (Extender Node)

CIM_FCPort (8.2.6.9.9.11)
CIM_FCPortStatistics (8.2.6.9.9.12)
CIM_HostedAccessPoint (8.2.6.9.9.13) Associates the ProtocolEndpoint to the ComputerSys-

tem or Network
CIM_HostedNetworkPipe (8.2.6.9.9.14) Associates NetworkPipe to the Network
CIM_IPEndpointStatistics (8.2.6.9.9.15)
CIM_IPProtocolEndpoint (8.2.6.9.9.16)
CIM_IPSettings (8.2.6.9.9.17) Defines IP settings for a group of IPProtocolEndpoints 

which belongs to the ComputerSystem
CIM_Network (8.2.6.9.9.18) Network represents a network connectivity domain. It 

groups NetworkPipes. 
CIM_NetworkPipe (8.2.6.9.9.19) NetworkPipe represents state, configuration of a con-

nection between endpoints in the context of a Network
CIM_NetworkPipeComposition (8.2.6.9.9.20)
CIM_PortImplementsEndpoint (8.2.6.9.9.21)
CIM_ProtocolEndpoint (8.2.6.9.9.22) ProtocolEndpoint shall be implemented when an Active-

Connection or NetworkPipe exists. It may be imple-
mented if no ActiveConnection or NetworkPipe exists.

CIM_RemotePort (8.2.6.9.9.23)
CIM_RemoteServiceAccessPoint (8.2.6.9.9.24)
CIM_SystemDevice (8.2.6.9.9.25) Associated FCPort and EthernetPort to the Computer-

System
CIM_TCPEndpointStatistics (8.2.6.9.9.26) Opaque
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 657



 

8.2.6.9.9.1 CIM_BindsTo
Associates Extender Node ProtocolEndpoints from different layers in the protocol stack
Class Mandatory: true

8.2.6.9.9.2 CIM_Component
Aggregates Extender Nodes in the Network that represents the group of Extenders

CIM_TCPProtocolEndpoint (8.2.6.9.9.27)
CIM_TCPSettings (8.2.6.9.9.28) Defines TCP settings for a group of TCPProtocolEnd-

points which belongs to the ComputerSystem
CIM_TCPStatisticalData (8.2.6.9.9.29)

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_ComputerSystem

Creation of a ComputerSystem instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance CIM_ComputerSystem

Deletion of a computer system instance

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem                          
AND SourceInstance.Operationalstatus ** PreviousIn-
stance.Operationalstatus

Deprecated WQL -  Change of OperationalStatus for a 
Computer System

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem                          
AND SourceInstance.CIM_ComputerSystem::Opera-
tionalstatus ** PreviousIn-
stance.CIM_ComputerSystem::Operationalstatus

CQL - Change of OperationalStatus for a Computer 
System

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem                          
AND SourceInstance.Operationalstatus ** PreviousIn-
stance.Operationalstatus

Deprecated WQL -  Change of OperationalStatus for a 
Computer System

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem                          
AND SourceInstance.CIM_ComputerSystem::Opera-
tionalstatus ** PreviousIn-
stance.CIM_ComputerSystem::Operationalstatus

CQL - Change of OperationalStatus for a Computer 
System

Table 712: SMI Referenced Properties/Methods for CIM_BindsTo

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ProtocolEndpoint TCPProtocolEndpoint, IPProtocolEnd-
point

Dependent CIM_ServiceAccessPoi
nt

ProtocolEndpoint.ProtocolIFT-
ype=""Fcip", TCPProtocolEndpoint

Table 711: CIM Elements for Extender

Element Name Description
658



 Extender Profile
Class Mandatory: true

8.2.6.9.9.3 CIM_ComputerSystem
Represents the Extender Node
Class Mandatory: true

8.2.6.9.9.4 CIM_ComputerSystemPackage
Associated PhysicalPackage to the ComputerSystem (Extender)
Class Mandatory: true

8.2.6.9.9.5 CIM_ElementSettingData
Associates SettingData to Extender Node orProtocolEndpoints
Class Mandatory: true

Table 713: SMI Referenced Properties/Methods for CIM_Component

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_ManagedElement Network ref.
PartComponent CIM_ManagedElement ComputerSystem ref.

Table 714: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string IP Address
NameFormat string IP Address
OperationalStatus uint16[] Status of Computer System.
Dedicated uint16[] ExtenderNode

Optional Properties/Methods
ElementName string User-friendly name
OtherIdentifyingInfo string[] DNS name
IdentifyingDescriptions string[] Fully qualified domain name

Table 715: SMI Referenced Properties/Methods for CIM_ComputerSystemPackage

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_PhysicalPackage
Dependent CIM_ComputerSystem

Table 716: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement ComputerSystem orProtocolEndpoint
SettingData CIM_SettingData
IsDefault uint16
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 659



 

8.2.6.9.9.6 CIM_ElementStatisticalData
Associates StatisticalData to Extender Node or ProtocolEndpoints
Class Mandatory: true

8.2.6.9.9.7 CIM_EndpointOfNetworkPipe
Class Mandatory: true

8.2.6.9.9.8 CIM_EthernetPort
Class Mandatory: true

IsCurrent uint16

Table 717: SMI Referenced Properties/Methods for CIM_ElementStatisticalData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement ComputerSystem orProtocolEndpoint
Stats CIM_StatisticalData

Table 718: SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ServiceAccessPoi
nt

Dependent CIM_NetworkPipe ProtocolEndpoint.ProtocolIFT-
ype=""Fcip", TCPProtocolEndpoint

Table 719: SMI Referenced Properties/Methods for CIM_EthernetPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
OperationalStatus uint16[]
Speed uint64
MaxSpeed uint64
PortType uint16 Supported port mode 10BaseT,10-

100BaseT, 100BaseT, 1000BaseT, etc.
PortNumber uint16 System level port or bus identification 

number
NetworkAddresses string[] MAC addresses
LinkTechnology uint16 Ethernet

Table 716: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
660



 Extender Profile
8.2.6.9.9.9 CIM_EthernetPortStatistics
Class Mandatory: true

8.2.6.9.9.10 CIM_FCIPSettings
Defines FCIP settings for a group of ProtocolEndpoints (ProtocolIFType - "Fcip") which belongs to the Computer-
System (Extender Node)
Class Mandatory: true

Optional Properties/Methods
ElementName string User-friendly name

Table 720: SMI Referenced Properties/Methods for CIM_EthernetPortStatistics

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ElementName string
BytesTransmitted uint64
BytesReceived uint64
PacketsTransmitted uint64
PacketsReceived uint64
SymbolErrors uint32
CarrierSenseErrors uint32

Optional Properties/Methods
StatisticTime datetime
AlignmentErrors uint32
FCSErrors uint32
SingleCollisionFrames uint32
MultipleCollisionFrames uint32
DeferredTransmissions uint32
LateCollisions uint32
ExcessiveCollisions uint32
InternalMACTransmitErrors uint32
InternalMACReceiveErrors uint32
FrameTooLongs uint32
ResetSelectedStats()

Table 721: SMI Referenced Properties/Methods for CIM_FCIPSettings

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
ConnectionUsageFlags uint16

Table 719: SMI Referenced Properties/Methods for CIM_EthernetPort

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 661



 

8.2.6.9.9.11 CIM_FCPort
Class Mandatory: true

SpecialFrameTimeout uint32
KeepAliveTimeout uint32

Optional Properties/Methods
ElementName string User-friendly name. In addition, it can 

be used as a index property for a 
search or query.

Table 722: SMI Referenced Properties/Methods for CIM_FCPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
OperationalStatus uint16[]
Speed uint64 Speed of zero represents a link notest-

ablished. 1Gb is 1062500000 bps. 2Gb 
is 2125000000 bps. 4Gb is 
4250000000 bps. 10Gb single channel 
variants are 10518750000 bps. 10Gb 
four channel variants are 12750000000 
bps. This is the raw bit rate.

MaxSpeed uint64 The max speed of the Port in Bits per 
second using the same algorithm as 
Speed.

Table 721: SMI Referenced Properties/Methods for CIM_FCIPSettings

Property Flags Type Description & Notes
662



 Extender Profile
8.2.6.9.9.12 CIM_FCPortStatistics
Class Mandatory: true

PortType uint16 FC-GS Port.Type The specific mode 
currently enabled for the Port. The val-
ues: "N" = Node Port, "NL" = Node Port 
supporting FC arbitrated loop, "E" = 
Expansion Port connecting fabric ele-
ments (for example, FC switches), "F" 
= Fabric (element) Port, "FL" = Fabric 
(element) Port supporting FC arbitrated 
loop, and "B" = Bridge Port. PortTypes 
are defined in the ANSI INCITS FC-GS 
standards. When set to 1 ("Other"), the 
related property OtherPortType con-
tains a string description of the port's 
type. PortType is defined to force con-
sistent naming of the 'type' property in 
subclasses and to guarantee unique 
enum values for all instances of Net-
workPort. A range of values, 
DMTF_Reserved, has been defined 
that allows subclasses to override and 
define their specific port types. Vendor 
Reserved = 16000..65535 can be used 
if the PortType is not one already 
defined in the above enumerations and 
a vendor subclass is defined specifying 
the appropriate value and valuemap.

PortNumber uint16 System level port or busidentification 
number

PermanentAddress string For FibreChannel, it is the Fibre Chan-
nel Port WWN.

LinkTechnology uint16 FC
SupportedCOS uint16[]
SupportedMaximumTransmission-
Unit

uint64

Optional Properties/Methods
ElementName string User-friendly Name
ActiveCOS uint16[]
ActiveMaximumTransmissionUnit uint64

Table 723: SMI Referenced Properties/Methods for CIM_FCPortStatistics

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
StatisticTime datetime

Table 722: SMI Referenced Properties/Methods for CIM_FCPort

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 663



 

BytesTransmitted uint64
BytesReceived uint64
PacketsTransmitted uint64
PacketsReceived uint64
CRCErrors uint64
LinkFailures uint64
PrimitiveSeqProtocolErrCount uint64
LossOfSignalCounter uint64
InvalidTransmissionWords uint64
StatisticTime datetime
SampleInterval datetime
LIPCount uint64
NOSCount uint64
ErrorFrames uint64
DumpedFrames uint64
LossOfSyncCounter uint64
FramesTooShort uint64
FramesTooLong uint64
AddressErrors uint64
BufferCreditNotProvided uint64
DelimiterErrors uint64
EncodingDisparityErrors uint64
LinkResetsReceived uint64
LinkResetsTransmitted uint64
MulticastFramesReceived uint64
MulticastFramesTransmitted uint64
RXBroadcastFrames uint64
TXBroadcastFrames uint64
FBSYFrames uint64
PBSYFrames uint64
FRJTFrames uint64
PRJTFrames uint64
RXClass1Frames uint64
TXClass1Frames uint64
RXClass2Frames uint64
TXClass2Frames uint64
Class2FBSY uint64
Class2PBSY uint64
Class2FRJT uint64

Table 723: SMI Referenced Properties/Methods for CIM_FCPortStatistics

Property Flags Type Description & Notes
664



 Extender Profile
8.2.6.9.9.13 CIM_HostedAccessPoint
Associates the ProtocolEndpoint to the ComputerSystem or Network
Class Mandatory: true

8.2.6.9.9.14 CIM_HostedNetworkPipe
Associates NetworkPipe to the Network
Class Mandatory: true

8.2.6.9.9.15 CIM_IPEndpointStatistics
Class Mandatory: true

Class2PRJT uint64
RXClass3Frames uint64
TXClass3Frames uint64
Class3FramesDiscarded uint64

Optional Properties/Methods
ElementName string
ResetSelectedStats()

Table 724: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System ProtocolEndpoint.ProtocolIFT-
ype=""Fcip", TCPProtocolEndpoint, 
IPProtocolEndpoint 

Dependent CIM_ServiceAccessPoi
nt

Table 725: SMI Referenced Properties/Methods for CIM_HostedNetworkPipe

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Network Network
Dependent CIM_NetworkPipe NetworkPipe

Table 726: SMI Referenced Properties/Methods for CIM_IPEndpointStatistics

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
StatisticTime datetime
ReceivedPDUs uint32
ReceivedPDUHeaderErrors uint32
ReceivedPDUAddressErrors uint32
ReceivedPDUForwards uint32

Table 723: SMI Referenced Properties/Methods for CIM_FCPortStatistics

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 665



 

8.2.6.9.9.16 CIM_IPProtocolEndpoint
Class Mandatory: true

8.2.6.9.9.17 CIM_IPSettings
Defines IP settings for a group of IPProtocolEndpoints which belongs to the ComputerSystem

ReceivedPDUUnknownProtocol-
Errors

uint32

ReceivedPDUDiscards uint32
PDUDelivers uint32
SentPDUs uint32
SentPDUDiscards uint32
SentPDUNoRouteErrors uint32
ReassemblyRequired uint32
ReassembledPackets uint32
ReassemblyFailed uint32
Fragmentation uint32
FragmentationFails uint32
FragmentedPDUsCreates uint32
RouteEntriesDiscards uint32

Optional Properties/Methods
ElementName string User-friendly name. In addition, it can 

be used as a index property for a 
search or query.

ResetSelectedStats()

Table 727: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
NameFormat string
IPv4Address string
IPv6Address string
SubnetMask string
ProtocolIFType uint16 IPv4, IPv6, IPv4/v6

Optional Properties/Methods
PrefixLength uint8

Table 726: SMI Referenced Properties/Methods for CIM_IPEndpointStatistics

Property Flags Type Description & Notes
666



 Extender Profile
Class Mandatory: true

8.2.6.9.9.18 CIM_Network
Network represents a network connectivity domain. It groups NetworkPipes. 
Class Mandatory: true

8.2.6.9.9.19 CIM_NetworkPipe
NetworkPipe represents state, configuration of a connection between endpoints in the context of a Network
Class Mandatory: true

Table 728: SMI Referenced Properties/Methods for CIM_IPSettings

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
FragmentationTimeout uint32
EnableIPForwarding boolean

Optional Properties/Methods
ElementName string User-friendly name. In addition, it can 

be used as a index property for a 
search or query.

Table 729: SMI Referenced Properties/Methods for CIM_Network

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string IP Address
NameFormat string IP Address

Table 730: SMI Referenced Properties/Methods for CIM_NetworkPipe

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
Optional Properties/Methods

Directionality uint16
OperationalStatus uint16[]
AggregationBehavior uint16
EnabledState uint16
RequestedState uint16
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 667



 

8.2.6.9.9.20 CIM_NetworkPipeComposition
Class Mandatory: true

8.2.6.9.9.21 CIM_PortImplementsEndpoint
Class Mandatory: true

8.2.6.9.9.22 CIM_ProtocolEndpoint
ProtocolEndpoint shall be implemented when an ActiveConnection or NetworkPipe exists. It may be implemented 
if no ActiveConnection or NetworkPipe exists.
Class Mandatory: true

8.2.6.9.9.23 CIM_RemotePort
Class Mandatory: true

Table 731: SMI Referenced Properties/Methods for CIM_NetworkPipeComposition

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_NetworkPipe
PartComponent CIM_NetworkPipe
AggregationSequence uint16

Table 732: SMI Referenced Properties/Methods for CIM_PortImplementsEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_LogicalPort
Dependent CIM_ProtocolEndpoint

Table 733: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
NameFormat string
ProtocolIFType uint16 Fibrechannel, Fcip

Table 734: SMI Referenced Properties/Methods for CIM_RemotePort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemName string
CreationClassName string
Name string Opaque
AccessInfo string
InfoFormat uint16
668



 Extender Profile
8.2.6.9.9.24 CIM_RemoteServiceAccessPoint
Class Mandatory: true

8.2.6.9.9.25 CIM_SystemDevice
Associated FCPort and EthernetPort to the ComputerSystem
Class Mandatory: true

8.2.6.9.9.26 CIM_TCPEndpointStatistics
Opaque
Class Mandatory: true

OtherInfoFormatDescription string WWN
PortProtocol uint16
OtherProtocolDescription string

Optional Properties/Methods
PortInfo string WWN or TCP port number

Table 735: SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
AccessInfo string
InfoFormat uint16 IPv4 Address OR IPv6 Address

Optional Properties/Methods
OtherInfoFormatDescription string

Table 736: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice

Table 737: SMI Referenced Properties/Methods for CIM_TCPEndpointStatistics

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
StatisticTime datetime
ReceivedSegmentsInError uint32
SentResetSegments uint32

Table 734: SMI Referenced Properties/Methods for CIM_RemotePort

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 669



 

8.2.6.9.9.27 CIM_TCPProtocolEndpoint
Class Mandatory: true

8.2.6.9.9.28 CIM_TCPSettings
Defines TCP settings for a group of TCPProtocolEndpoints which belongs to the ComputerSystem
Class Mandatory: true

Optional Properties/Methods
ElementName string User-friendly name. In addition, it can 

be used as a index property for a 
search or query.

ResetSelectedStats()

Table 738: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string
ProtocolIFType uint16

Optional Properties/Methods
NameFormat string
PortNumber uint32

Table 739: SMI Referenced Properties/Methods for CIM_TCPSettings

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
RetransmissionTimeoutAlgorithm uint16
RetransmissionTimeoutMin uint16
RetransmissionTimeoutMax uint16

Optional Properties/Methods
ElementName string User-friendly name. In addition, it can 

be used as a index property for a 
search or query.

Table 737: SMI Referenced Properties/Methods for CIM_TCPEndpointStatistics

Property Flags Type Description & Notes
670



 Extender Profile
8.2.6.9.9.29 CIM_TCPStatisticalData
Class Mandatory: true

8.2.6.9.10 Related Standards

EXPERIMENTAL

Table 740: SMI Referenced Properties/Methods for CIM_TCPStatisticalData

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
StatisticTime datetime
ActiveOpenConnections uint32
PassiveOpenConnections uint32
AttemptsFails uint32
EstablishedResets uint32
EstablishedConnections uint32
ReceivedSegments uint32
SentSegments uint32
RetransmittedSegments uint32
ReceivedSegmentsInError uint32
SentResetSegments uint32
ResetSelectedStats()

Optional Properties/Methods
ElementName string User-friendly Name

Table 741: Related Standards for Extender

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 671



 

672



 FC HBA Profile
8.2.7 Host Profiles

8.2.7.1 FC HBA Profile

8.2.7.1.1 Description
A Fibre Channel adapter used in a host system is called a Host Bus Adapter (HBA). An HBA is a
physical device that contains one or more Fibre Channel ports. A single system contains one or more
HBAs.

An HBA is represented in CIM by FCPorts associated to a ComputerSystem through the SystemDevice
association. To understand the containment to the HBAs physical implementation the FCPorts are
associated to PhysicalPackage through the Realizes association. The PortController represents the
logical behavior of the HBA card, It is associated to the ComputerSystem through the SystemDevice
association and associated to the ports through the ControlledBy association. PortController’s
PhysicalPackage is associated with Product - which holds information about the HBA (including vendor
and model names).

If the FCPorts reside on a motherboard (rather than a separate card), the same model is used -
PortController and PhysicalPackage represent the motherboard. Attributes of Product refer the vendor
and model names of the FCPorts, not the motherboard or system.

Separate instances of SoftwareIdentity represent driver, firmware, and FCODE/BIOS associated with
the HBA and includes properties for the vendor, product, and version names (see Table 767: "SMI
Referenced Properties/Methods for CIM_SoftwareIdentity" for details). The Classifications property
identifies the type (driver, firmware,...). The SoftwareIdentity instance for the driver is mandatory; the
others are optional. Note that a separate instance of SoftwareIdentity representing the SMI-S/CIM
instrumentation is required by the Server Profile.

Figure 101: FC HBA Instance Diagram

FC Initiator Port Subprofile

SMI-S 1.0 Backwards Compatibility

Product

ComputerSystem PortController

Installed
Software
Identity

(Driver)

SoftwareIdentity

port2:FCPort
Element

StatisticalData

FCPortStatistics

LogicalPortGroup

MemberOfCollectionControlledBy

(FCode/BIOS)

SoftwareIdentity

(Firmware)

SoftwareIdentity

(e.g. Card)

PhysicalPackage

ProductPhysicalComponent

System
Device

System
Device

HostedCollection

Realizes

SCSIProtocolEndpoint DeviceSAP
Implementaton

Element
Software
Identity

Element
Software
Identity

Element
Software
Identity

Hosted
Access
Point

SCSIProtocolController

System
Device

ProtocolControllerForPort

AlarmDevice

Associated
Alarm
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 673



 

DEPRECATED 

Modeling SCSI Protocol Support
The SMI-S 1.0 model (as specified in IS24775-2006, Storage Management)  for ports and protocols
addressed FCP (SCSI over Fibre Channel). As other configurations were considered, the general
pattern of initiator port subprofiles (see 8.2.3, "Common Initiator Port Subprofiles Overview") emerged.
For this version of SMI-S, any initiator port that is configured for SCSI protocol shall use the model in
the instance diagram above (ComputerSystem-Hosted Access Point-SCSIProtocoEndpoint-
DeviceSAPImplementation-FCPort). 

For backwards compatibility, the FC HBA Profile also exposes the IS24775-2006, Storage
Management classes (SCSIProtocolController and ProtocolControllerForPort association). In the
future, SCSIProtocolController and ProtocolControllerForPort will not be part of the profile; client
applications are encouraged to migrate to the new model.

DEPRECATED

Figure 102: "HBA Card with Two Ports" depicts the model for an HBA card with two ports. The
LogicalPortGroup represents the collection of ports that shared a Node WWN (in this case, both ports
on a card, but other implementations are in use). 

Figure 102: HBA Card with Two Ports

Element
StatisticalData

Product

ComputerSystem

port1:FCPort FCPortStatistics

MemberOfCollectionPortController ControlledBy

Installed
Software
Identity

(Driver)

SoftwareIdentity

port2:FCPort
Element

StatisticalData

FCPortStatistics

LogicalPortGroup

MemberOfCollectionControlledBy

(FCode/BIOS)

SoftwareIdentity

(Firmware)

SoftwareIdentity

(e.g. Card)

PhysicalPackage

ProductPhysicalComponent

This represents the "normal" case of one node per HBA comprising all the ports of the 
HBA.  Variations include one node per port regardless of the number of ports on an 

HBA, and one node for all ports on the host regardless of the number of HBAs present.

System
Device

System
Device

SystemDevice
HostedCollection

Realizes

SCSIProtocolEndpoint DeviceSAP
Implementaton

SCSIProtocolEndpoint
DeviceSAP

Implementaton

Element
Software
Identity

Element
Software
Identity

Element
Software
Identity

Hosted
Access
Point

Hosted
Access
Point

AlarmDevice

Associated
Alarm

AlarmDevice

Associated
Alarm
674



 FC HBA Profile
Persistent Binding
Persistent Binding describes the capability of host adapters to persist user preferences regarding which
target logical units are mapped to which OS device names. Persistent Binding for Fibre Channel HBAs
is documented in detail in the FC API specification. 

The term “Persistent Binding” technically refers to the data structure that maps the association from
target device correlatable IDs to an OS device name. The collection of these bindings is persisted by
the HBA and/or drivers. A persistent binding structure can be defined while the referenced hardware is
offline or uninstalled. When the drivers discover attached hardware that matches a persistent binding,
the mapping takes place. In many cases, a newly defined persistent binding has no impact until the
system is rebooted. The impact will cause target logical units to be attached to initiator
SCSIProtocolEndpoints. These associations and target objects are modeled with the Host Discovered
Resources Profile.

The persistent binding data structure for bindings that specify OS device names is modeled as
OSStorageNametBinding. A persistent binding lets the OS determine the device name is modeled as
StorageNameBinding. StorageNameBindingService includes methods to create instances of the setting
data subclasses, and StorageNameBindingCapabilities provides information about the capabilities of
the implementation

Persistent Binding is optional. An implementation that does not support persistent binding (and any of
the classes in the diagram above) shall not instantiate an instance of StorageNameBindingService. An
implementation that does support persistent binding shall:

• Instantiate a single instance of StorageNameBindingService and associate it to the
ComputerSystem

• Instantiate an instance of StorageNameBindingCapabilities for each FCPort instance, associated
via ElementCapabilities

• At initialization, the implementation shall instantiate instances of OSStorageNameBinding or
StorageNameBinding for each previously defined binding. 

• implement the CreateOSStorageNameBindingMethod if any StorageNameBindingCapabilities
exists with CanSetOSDeviceName set to true

• implement the CreateStorageNameBindingMethod if StorageNameBindingCapabilities instance
exists with CanSetOSDeviceName set to false 

• support DeleteInstance for StorageNameBinding and OSStorageNameBinding

Figure 103: Persistent Binding Model

Non
Persistent
Binding
Classes

CreateSettingData()

StorageName
BindingService

StorageName
BindingCapabilities

ElementCapabilities
ServiceAvailableToElement

OSStorage
NameBinding

ElementSettingData

ComputerSystem

Storage
NameBinding

HostedService

Element
Capabilities

ElementSettingData

FCPort

1

1 1

1

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 675



 

• support ModifyInstance of StorageNameBindingCapabilities. Not all properties are modifiable, see
the “M” flags in Table 771: "SMI Referenced Properties/Methods for
CIM_StorageNameBindingCapabilities".

LED Blink
Implementations may optionally support LED blinking by instantiating a AlarmDevice instance and
associating it via AssociatedAlarm to Port instances.

AlarmDevice.VisibleAlarm sound be set to true.

AlarmDevice.Urgency should be set to 3 (Informational).

The instrumentation shall provide the SetAlarmState method on AlarmDevice. This method has a single
parameter RequestedAlarmState. The only value for this parameter shall be 3 (Alternating).

8.2.7.1.2 Health and Fault Management

8.2.7.1.3 Supported Subprofiles and Packages
The FC HBA profile requires the FC Initiator Port Subprofile.

8.2.7.1.4 Methods of this Profile
The following extrinsic methods are available, but only required if the specific capability (persistent
binding or LED blink) is supported.

8.2.7.1.4.1 StorageNameBindingService.CreateStorageNameBinding
This method requests that the driver create a name binding from a target (and optional logical unit) and
lets the OS assign the name.

 uint32 CreateStorageNameBinding (

    [IN, Description (“The value to assign to BindingType.”), 

   uint16 BindingType,

   

     [IN, Description ("The value to assign to BindAllLogicalUnits.")]

   boolean BindAllLogicalUnits,

   

     [IN, Description ("The value to assign to Hide.")]

   boolean Hide,

   

     [IN, Description ("The value to assign to TargetName.")]

   string TargetName,

   

     [IN, Description ("The value to assign to LogicalUnitNumber.")]

   string LogicalUnitNumber, 

      

     [IN, Description ("The type of the ports in LocalPortNames."), 

     // shall be "2" "FC Port WWN"

   uint16 LocalPortNameType,

   

     [IN, Description ("The values to assign to LocalPortNames.")]

   string LocalPortName,

   
676



 FC HBA Profile
     [IN (false), OUT, Description ("A reference to the created name binding 
instance.")]

   StorageNameBinding REF Binding); 

8.2.7.1.4.2 StorageNameBindingService.CreateOSStorageNameBinding
This method requests that the driver create a name binding from a target (and option logical unit) to a
specified OS Device Name or addresses.".

 uint32 CreateOSStorageNameBinding (

     [IN, Description ("The value to assign to BindingType."), 

   uint16 BindingType,

   

     [IN, Description ("The value to assign to BindAllLogicalUnits.")]

   boolean BindAllLogicalUnits,

   

     [IN, Description ("The value to assign to Hide.")]

   boolean Hide,

   

     [IN, Description ("The value to assign to TargetName.")]

   string TargetName,

   

     [IN, Description ("The value to assign to LogicalUnitNumber.")]

   string LogicalUnitNumber,

   

     [IN, Description (“The value to assign to OSDeviceName.")]

   string OSDeviceName,

   

    [IN, Description ("The value to assign to OSAddressesValid.")]

   boolean OSAddressesValid,

   

     [IN, Description ("The value to assign to OSBusNumber.")]

   uint32 OSBusNumber,

   

     [IN, Description (“The value to assign to OSTargetNumber.")]

   uint32 OSTargetNumber,

   

     [IN, Description ("The value to assign to OSLUN.")]

   uint32 OSLUN,

   

     [IN, Description ("The type of the ports in LocalPortNames."), 

     // shall be "2" "FC Port WWN"

   uint16 LocalPortNameType,

   

     [IN, Description ("The values to assign to LocalPortNames.")]

   string LocalPortName,

   

     [IN (false), OUT, Description ("A reference to the created name binding 
instance.")]

   CIM_StorageNameBinding REF Binding); 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 677



 

CIM_AlarmDevice.SetAlarmState

8.2.7.1.5 Client Considerations and Recipes
Different HBA vendors may have separate implementations of this profile installed on the same server;
the instrumentation may be running under the same or different CIM servers. 

8.2.7.1.5.1 Discovery HBA Topology and Attributes
// DESCRIPTION

//

// This recipe discovers the topology of an FC HBA. Noteworthy information 

// such as installed firmware/software and port information is retrieved.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//

// 1. A reference to the top-level ComputerSystem in the FC HBA Profile,

//    which represents the system hosting the HBA, is known as $Host->

//

// Step 1. Get name(s) of the HBA’s on the host system. Note that there 

// MAY be more than one HBA on the host.

//

$HBA->[] = AssociatorNames($Host->,// ObjectName

“CIM_SystemDevice”,// AssocClass

“CIM_PortController”,// ResultClass

“GroupComponent”,// Role

“PartComponent”)// ResultRole

if ($HBA->[] == null || $HBA->[].length == 0) {

<EXIT: No HBAs on the host system!>

}

// Determine the topology and retrieve noteworthy information for each HBA.

//

for (#i in $HBA->[]) {

// Step 2. Determine the vendor and product information of the HBA.

//

$PhysicalPackage[] = Associators(

$HBA->[#i],// ObjectName

“CIM_Realizes”,// AssocClass

“CIM_PhysicalPackage”,// ResultClass

“Antecedent”,// ResultRole

“Dependent”,// Role

false, // IncludeQualifiers

false, // IncludeClassOrigin

{“Manufacturer”, “Model”})// PropertyList

// Exactly one PhysicalPackage MUST be returned

if ($PhysicalPackage[] == null || $PhysicalPackage[].length == 0) {
678



 FC HBA Profile
<ERROR! Improper Physical Package information!>

}

// NOTE: The Product properties of interest are all Key qualified

// properties, thus the instance name rather the instance itself

// is retrieved.

//

$Product->[] = AssociatorNames(

$PhysicalPackage[0],// ObjectName

“CIM_ProductPhysicalComponent”,// AssocClass

“CIM_Product”,// ResultClass

“GroupComponent”,// ResultRole

“PartComponent”)// Role

// Exactly one PhysicalPackage MUST be returned

if ($Product->[] == null || $Product->[].length == 0) {

<ERROR! Improper Product information!>

}

// Step 3. Determine the software (e.g. firmware, driver(s), BIOS,

// FCode) installed on the HBA.

//

#PropList = {“VersionString”, “Manufacturer”, “Classifications”}

$Software[] = Associators(

$HBA->[#i],// ObjectName

“CIM_ElementSoftwareIdentity”,// AssocClass

“CIM_SoftwareIdentity”,// ResultClass

“Antecedent”,// ResultRole

“Dependent”,// Role

false, // IncludeQualifiers

false, // IncludeClassOrigin

#PropList)// PropertyList

if ($Software[] != null && $Software[].length > 0) {

for (#j in $Software[]) {

// Retrieve relevant property instance data

                        // These properties are not used in the recipe,

                        // this just demostrates how to locate this

                        // information

#VersionString = $Software[#j].VersionString

#Manufacturer = $Software[#j].Manufacturer

#Classifications[] = $Software[#j].Classifications

}

}

// Step 4. Locate the Fibre Channel ports on the HBA and determine

// each port’s speed and WWN.

#PropList = {“Speed”, “PermanentAddress”}

$Ports[] = Associators(

$HBA->[#i],// ObjectName

“CIM_ControlledBy”,// AssocClass

“CIM_FCPort”,// ResultClass
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 679



 

“Dependent”,// ResultRole

“Antecedent”,// Role

false, // IncludeQualifiers

false, // IncludeClassOrigin

#PropList)// PropertyList

if ($Ports[] != null && $Ports[].length > 0) {

for (#j in $Ports[]) {

// Retrieve relevant Port instance data

#Speed = $Ports[#j].Speed

#PermanentAddress[] = $Ports[#j].PermanentAddress

// Step 5. Determine the Node WWN of the port.

$PortGroup[] = Associators(

$Ports[#j].getObjectPath(),// ObjectName

“CIM_MemberOfCollection”,// AssocClass

“CIM_LogicalPortGroup”,// ResultClass

“Collection”,// ResultRole

“Member”, // Role

false, // IncludeQualifiers

false, // IncludeClassOrigin

{“Name”}) // PropertyList

// Exactly one PhysicalPackage MUST be returned

if ($PortGroup[] == null || $PortGroup[].length == 0) {

<ERROR! Improper Port Group information!>

}

#NodeWWN = $PortGroup[0].Name

}

}

}

8.2.7.1.5.2 Get the statistics for each port
//

// DESCRIPTION

//

// Find the FCPortStatistics associated with FC ports 

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//

// 1. A reference to the top-level ComputerSystem in the FC HBA Profile,

//    which represents the system hosting the HBA, is known as $Host->

//

// Get a list of all the ports

$Ports->[] = AssociatorNames($Host->,// ObjectName

“CIM_SystemDevice”,// AssocClass

“CIM_FCPort”,// ResultClass

“GroupComponent”,   // Role

“PartComponent”)    // ResultRole   

if ($Ports->[] == null || $Ports->[].length == 0) {
680



 FC HBA Profile
<ERROR! No FC Ports on the host system!>

}

for (#i in $Ports->[] ) {

    // Get a list of FCPortStatistics associated with each port

    // Should only be exactly one FCPortStatistics instance

    $Stats->[] = AssociatorNames($Ports->[#i],// ObjectName

“CIM_ElementStatisticalData”,// AssocClass

“CIM_FCPortStatistics”,// ResultClass

“ManagedElement”,// Role

“Stats”)    // ResultRole   

    if ($Stats->[] == null || $Ports->[].length == 0) {

<ERROR! Each FCPort shall have an associated FCPortStatistics>

    } else {

        if ( $Stats->[].length > 1) {

    <ERROR: More than 1 FCPortStatistics associated with a port>

}

    }

    // $Stats[0]-> holds that stats

}

8.2.7.1.5.3 Define a persistent binding to a target PWWN
// DESCRIPTION

//

// This recipe creates a persistent binding based on a PWWN

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//

// 1. A reference to the top-level ComputerSystem in the FC HBA Profile,

//    which represents the system hosting the HBA, is known as $Host->

//

// 2. The name of the target port WWN is known as #TargetWWN.  The

//    easiest way to discover this is to use an FC Switch or Fabric

//    client application.  The host should have a single HBA Profile

//    implmentation running and the target MUST be connected to an

//    HBA supported by this profile implementation.

//    

// 3. A reference to an FCPort on the local system - $LocalPort->

//

     

// Get a list of initiator ports

// First get all the initiator ports

$Ports->[] = AssociatorNames($Host->,// ObjectName

“CIM_SystemDevice”,// AssocClass

“CIM_FCPort”,// ResultClass

“GroupComponent”,   // Role

“PartComponent”)    // ResultRole   
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 681



 

if ($Ports->[] == null || $Ports->[].length == 0) {

<ERROR! No FC Ports on the host system!>

}

if (!contains($LocalPort->, $Ports->[]) {

<ERROR! The input local port is not on the host system!>

}

$Services->[] = AssociatorNames($Host->,// ObjectName

“CIM_HostedService”,// AssocClass

“CIM_StorageNameBindingService”,// ResultClass

null,null)

if ($Services == null || $Servicse[].length == 0) {

    <ERROR: HBA Instrumentation does not instantiate StorageNameBindingService>

}    

if ($Services[].length != 1) {

    <ERROR! Must be exactly one StorageNameBindingService>

}    

$Capabilities->[] = AssociatorNames($FCPort->,// ObjectName

“CIM_ElementCapabilities”,// AssocClass

“CIM_StorageNameBindingCapabilities”,// ResultClass

        null, null)

If ($Capabilities == null || $Capabilities[].length != 1) {

    <ERROR! must be exactly one StorageNameBindingCapabilities per FCPort>

}    

If ($Capabilities->[0].CanBindAllLuns != true) {

    <EXIT: HBA Instrumentation does not support CanBindAllLuns>

} 

If contains(“FcApiBindToWWN”, $Capabilities->[0].ValidBindingTypes) {

    // All checks done, perform the binding

    // set up the arguments and invoke CreateStorageNameBinding

    %InArguments[“BindingType”] = “FcApiBindToWWPN”

    %InArguments[“BindAllLogicalUnits”]=true

    %InArguments[“Hide”]=false

    %InArguments[“TargetName”]=#TargetPWWN

    %InArguments[“LocalPortNameType”]=”2”// FC Port WWN

    %InArguments[“LocalPortName”]=$LocalPort->[].PermanentAddress

    #MethodReturn = InvokeMethod(

        $Services->[0],

        “CreateStorageNameBinding”,

        %InArguments,

        %OutArguments)
682



 FC HBA Profile
    if(#MethodReturn != 0) { 

<ERROR! CreateStorageNameBinding method Failed >

    }

    If ($Capabilities->[0].ActivateBindingRequiresReset) {

        <EXIT: Persistent Binding request okay; Reboot Required>

    } 

} else {

    <EXIT: HBA instrumentation does not support BindtoWWPN>

}

8.2.7.1.5.4 Define a persistent binding to an LUID
// DESCRIPTION

//

// This recipe creates a persistent binding based on a LUID

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 

//

// 1. A reference to the top-level ComputerSystem in the FC HBA Profile,

//    which represents the system hosting the HBA, is known as $Host->

//

// 2. The name of the logical unit (VPD pg 83 ID) is known as #LUID.  

//    The easiest way to discover this is to use an array management

//    client application.  The host should have a single HBA Profile

//    implmentation running and the LU shall be in a target connected 

//    to an HBA supported by this profile implementation.

//

// 3. A reference to an FCPort on the local system - $LocalPort->

//    

     

// Get a list of initiator ports

// First get all the initiator ports

$Ports->[] = AssociatorNames($Host->,// ObjectName

“CIM_SystemDevice”,// AssocClass

“CIM_FCPort”,// ResultClass

“GroupComponent”,   // Role

“PartComponent”)    // ResultRole   

if ($Ports->[] == null || $Ports->[].length == 0) {

<ERROR! No FC Ports on the host system!>

}

if (!contains($LocalPort->, $Ports->[]) {

<ERROR: The input local port is not on the host system!>

}

$Services->[] = AssociatorNames($Host->,// ObjectName
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 683



 

“CIM_HostedService”,// AssocClass

“CIM_StorageNameBindingService”,// ResultClass

null,null)

if ($Services == null || $Servicse[].length == 0) {

    <ERROR: HBA Instrumentation does not instantiate StorageNameBindingService>

}    

if ($Services[].length != 1) {

    <ERROR! Must be exactly one StorageNameBindingService>

}    

$Capabilities->[] = AssociatorNames($FCPort->,// ObjectName

“CIM_ElementCapabilities”,// AssocClass

“CIM_StorageNameBindingCapabilities”,// ResultClass

        null, null)

If ($Capabilities == null || $Capabilities[].length != 1) {

    <ERROR! must be exactly one StorageNameBindingCapabilities per FCPort>

}    

If contains(“BindToLUID”, $Capabilities->[0].ValidBindingTypes) {

    // All checks done, perform the binding

    // set up the arguments and invoke CreateStorageNameBinding

    %InArguments[“BindingType”]=”BindToLUID”

    %InArguments[“BindAllLogicalUnits”]=true

    %InArguments[“Hide”]=false

    %InArguments[“TargetName”]=#LUID

    %InArguments[“LocalPortNameType”]=”2”// FC Port WWN

    %InArguments[“LocalPortName”]=$LocalPort->[].PermanentAddress

    #MethodReturn = InvokeMethod(

        $Services->[0],

        “CreateStorageNameBinding”,

        %InArguments,

        %OutArguments)

    if(#MethodReturn != 0) { 

        <ERROR! CreateStorageNameBinding method Failed>

    }

    If ($Capabilities->[0].ActivateBindingRequiresReset) {

        <EXIT: Persistent Binding request okay; Reboot Required>

    } 

} else {

    <EXIT: HBA instrumentation does not support BindtoLUID>

}

8.2.7.1.5.5 Blink the LED
//
684



 FC HBA Profile
// DESCRIPTION

//

// Blink LEDs associated with FC ports 

// 

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//

// 1. A reference to the top-level ComputerSystem in the FC HBA Profile,

//    which represents the system hosting the HBA, is known as $Host->

//

//    The host should have a single HBA Profile implmentation running 

//  

// Get a list of all the ports

$Ports->[] = AssociatorNames($Host->,// ObjectName

“CIM_SystemDevice”,// AssocClass

“CIM_FCPort”,// ResultClass

“GroupComponent”,   // Role

“PartComponent”)    // ResultRole   

if ($Ports->[] == null || $Ports->[].length == 0) {

<ERROR! No FC Ports on the host system!>

}

for (#i in $Ports->[] ) {

    // Get a list of Alarms associated with each port

    // Should only be one (or zero) alarms

    $Alarms->[] = AssociatorNames($Ports->[#i],// ObjectName

“CIM_AssociatedAlarm”,// AssocClass

“CIM_Alarm”,// ResultClass

“Antecedent”,   // Role

“Dependent”)    // ResultRole   

    if ($Alarms->[] == null || $Ports->[].length == 0) {

<EXIT: HBA Instrumentation does not support LED blink>

    } else {

        if ( $Alarms->[].length > 1) {

    <ERROR! More than 1 alarm associated with a port>

}

    }

    

    // invoke the method to blink the alarm

    %InArguments[“RequestedAlarmState”] = “Alternating”

    #MethodReturn = InvokeMethod(

$Alarms->[0],

“SetAlarmState”,

%InArguments)

    if(#MethodReturn != 0)

    { 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 685



 

        <ERROR! SetAlarmState (blink LED) method Failed >

    }

}

8.2.7.1.6 Registered Name and Version
FC HBA version 1.1.0

8.2.7.1.7 CIM Server Requirements

Table 742: CIM Server Requirements for FC HBA

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
686



 FC HBA Profile
8.2.7.1.8 CIM Elements

Table 743: CIM Elements for FC HBA

Element Name Description
Mandatory Classes

CIM_ComputerSystem (8.2.7.1.8.3)
CIM_ControlledBy (8.2.7.1.8.4)
CIM_ElementSoftwareIdentity (8.2.7.1.8.7)
CIM_ElementStatisticalData (8.2.7.1.8.8)
CIM_FCPort (8.2.7.1.8.9)
CIM_FCPortStatistics (8.2.7.1.8.10)
CIM_PhysicalPackage (8.2.7.1.8.17)
CIM_PortController (8.2.7.1.8.18)
CIM_Product (8.2.7.1.8.19)
CIM_ProductPhysicalComponent (8.2.7.1.8.20)
CIM_Realizes (8.2.7.1.8.22)
CIM_SoftwareIdentity (8.2.7.1.8.24) Driver
CIM_SystemDevice (8.2.7.1.8.30)

Optional Classes
CIM_AlarmDevice (8.2.7.1.8.1) optional
CIM_AssociatedAlarm (8.2.7.1.8.2) optional
CIM_ElementCapabilities (8.2.7.1.8.5)
CIM_ElementSettingData (8.2.7.1.8.6)
CIM_HostedCollection (8.2.7.1.8.11) Associates the LogicalPortGroup (Fibre Channel Node) 

to the hosting System.
CIM_HostedService (8.2.7.1.8.12)
CIM_InstalledSoftwareIdentity (8.2.7.1.8.13)
CIM_LogicalPortGroup (8.2.7.1.8.14) Collection of Fibre Channel ports that share a Node 

WWN
CIM_MemberOfCollection (8.2.7.1.8.15) Associates FCPort to the LogicalPortGroup
CIM_OSStorageNameBinding (8.2.7.1.8.16)
CIM_ProtocolControllerForPort (8.2.7.1.8.21)
CIM_ServiceAvailableToElement (8.2.7.1.8.23)
CIM_SoftwareIdentity (8.2.7.1.8.25) Firmware
CIM_SoftwareIdentity (8.2.7.1.8.26) FCODE/BIOS
CIM_StorageNameBinding (8.2.7.1.8.27)
CIM_StorageNameBindingCapabilities (8.2.7.1.8.28)
CIM_StorageNameBindingService (8.2.7.1.8.29)

Optional Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_PortController

PortController (HBA) Creation. See 8.2.7.1.5.1 

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_PorController

PortController (HBA) Removal
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 687



 

8.2.7.1.8.1 CIM_AlarmDevice
optional
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.1.8.2 CIM_AssociatedAlarm
optional
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.1.8.3 CIM_ComputerSystem
Created By : Static
Modified By : Static
Deleted By : Static
Standard Names: The Name and NameFormat properties shall follow the requirements in 6.2.4.5.4 
Class Mandatory: true

Table 744: SMI Referenced Properties/Methods for CIM_AlarmDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
VisibleAlarm boolean shall be "true"
Urgency uint16 shall be 3 (Alternating)
SetAlarmState()

Table 745: SMI Referenced Properties/Methods for CIM_AssociatedAlarm

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_AlarmDevice Reference to AlarmDevice
Dependent CIM_LogicalDevice Reference to FCPort

Table 746: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string The name of the host containing the 

HBA.
ElementName string
NameFormat string
OtherIdentifyingInfo C string[]
688



 FC HBA Profile
8.2.7.1.8.4 CIM_ControlledBy
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.1.8.5 CIM_ElementCapabilities
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.1.8.6 CIM_ElementSettingData
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Dedicated uint16[] 0 (Not Dedicated)
OperationalStatus uint16[]

Optional Properties/Methods
OtherDedicatedDescriptions string[]

Table 747: SMI Referenced Properties/Methods for CIM_ControlledBy

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Controller Reference to PortController
Dependent CIM_LogicalDevice Reference to FCPort

Table 748: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

Capabilities CIM_Capabilities Reference to StorageNameBindingCa-
pabilities

ManagedElement CIM_ManagedElement Reference to FCPort

Table 749: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement Reference to StorageNameBindingSer-
vice

SettingData CIM_SettingData Reference to StorageNameBinding or 
OSStorageNameBinding

Table 746: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 689



 

8.2.7.1.8.7 CIM_ElementSoftwareIdentity
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.1.8.8 CIM_ElementStatisticalData
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.1.8.9 CIM_FCPort
Class Mandatory: true

8.2.7.1.8.10 CIM_FCPortStatistics
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

Table 750: SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_SoftwareIdentity Reference to SoftwareIdentity
Dependent CIM_ManagedElement Reference to the PortController

Table 751: SMI Referenced Properties/Methods for CIM_ElementStatisticalData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement
Stats CIM_StatisticalData

Table 752: SMI Referenced Properties/Methods for CIM_FCPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

PermanentAddress string Override PermanentAddress to be 
mandatory in this profile.

Table 753: SMI Referenced Properties/Methods for CIM_FCPortStatistics

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementName string
InstanceID string
690



 FC HBA Profile
8.2.7.1.8.11 CIM_HostedCollection
Associates the LogicalPortGroup (Fibre Channel Node) to the hosting System. The hosting System is
either a ComputerSystem for the Platform or the AdminDomain for those systems not registered in the
Platform Database or discovered through FDMI.

Class Mandatory: false

BytesTransmitted uint64 From NetworkPortStatistics Super-
class. Maps to 
HBA_PortStatistics,TxWords. Multiply 
word count by 4

BytesReceived uint64 From NetworkPortStatistics Super-
class. Maps to 
HBA_PortStatistics.RxWords. Multiply 
word count by 4

PacketsTransmitted uint64 From NetworkPortStatistics Super-
class. Maps to 
HBA_PortStatistics.TxFrames

PacketsReceived uint64 From NetworkPortStatistics Super-
class. Maps to 
HBA_PortStatistics.RxFrames

CRCErrors uint64 Maps to HBA_PortStatistics.Invalid-
CRCCount

LinkFailures uint64 Maps to HBA_PortStatistics.LinkFail-
ureCount

PrimitiveSeqProtocolErrCount uint64
LossOfSignalCounter uint64 Maps to HBA_PortStatistics.LossOfSig-

nalCount
InvalidTransmissionWords uint64 Maps to HBA_PortStatistics.Invalid-

CRCCount
LIPCount uint64
NOSCount uint64
ErrorFrames uint64
DumpedFrames uint64
LossOfSyncCounter uint64 Maps to HBA_PortStatistics.LossOf-

SynchCount
Optional Properties/Methods

StatisticTime datetime optional - time last measurement was 
taken 

Table 754: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The reference to the System

Table 753: SMI Referenced Properties/Methods for CIM_FCPortStatistics

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 691



 

8.2.7.1.8.12 CIM_HostedService
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.1.8.13 CIM_InstalledSoftwareIdentity
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.1.8.14 CIM_LogicalPortGroup
Represents the Fibre Channel Node. Associated to the host system by the HostedCollection
Association. 

Class Mandatory: false

Dependent CIM_SystemSpecificColl
ection

The reference to the LogicalPortGroup 
(Fibre Channel Node)

Table 755: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System Reference to ComputerSystem
Dependent CIM_Service Reference to StorageNameBindingSer-

vice

Table 756: SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

System CIM_System
InstalledSoftware CIM_SoftwareIdentity

Table 757: SMI Referenced Properties/Methods for CIM_LogicalPortGroup

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque
Name D string Fibre Channel Node WWN
NameFormat string "WWN"
ElementName N string Node Symbolic Name if available. Oth-

erwise NULL. If the underlying imple-
mentation includes characters that are 
illegal in CIM strings, then truncate 
before the first of those characters.

Table 754: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
692



 FC HBA Profile
8.2.7.1.8.15 CIM_MemberOfCollection
Associates FCPort to the LogicalPortGroup

Class Mandatory: false

8.2.7.1.8.16 CIM_OSStorageNameBinding
The structure representing an FC persistent binding when the caller specifies the OS Device name.
Description column includes mapping to FC API properties.

Created By : StaticExtrinsic(s): CIM_StorageNameBindingService.CreateOSStorageNameBinding
Modified By : Static
Deleted By : DeleteInstance
Class Mandatory: false

Table 758: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The reference to the LogicalPortGroup 
representing the Fibre Channel Node

Member CIM_ManagedElement The reference to FCPort.

Table 759: SMI Referenced Properties/Methods for CIM_OSStorageNameBinding

Property Flags Type Description & Notes
Mandatory Properties/Methods

BindingType uint16 API HBA_BIND_TYPE. 2=FCApiBind-
ToDID, 3=FCApiBindToWWPN, 
4=FCApiBindToWWNN, 5=BindToLUID

BindAllLogicalUnits boolean API HBA_BIND_TARGETS. If true, 
then all target logical units are bound to 
the OS.Not valid to set this if Binding-
Type is BindToLUID.

Hide boolean Must be false
TargetName CD String  API FCID, NodeWWN, PortWWN or 

HBA_LUID. If BindingType is FcApiB-
indToDID, TargetName holds a hexa-
decimal-encoded representation of the 
32-bit D_ID and corresponds to FC API 
HBA_FCPID.FcId. If BindingType is 
FcApiBindToWWPN or FcApiBindToW-
WNN, TargetName holds a hexadeci-
mal-encoded representation of the 64-
bit FC Port or Node World Wide Name. 
If BindingType is BindToLUID, Target-
Name holds a SCSI Logical Unit Name 
from Inquiry VPD page 83, Association 
0 as defined in SCSI Primary Com-
mands. If the identifier descriptor (in the 
SCSI response) has Code Set Binary, 
then TargetName is its hexadecimal-
encoded value.

Status uint32 HBA_FCPBINDING2.Status
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 693



 

8.2.7.1.8.17 CIM_PhysicalPackage
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.1.8.18 CIM_PortController
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.1.8.19 CIM_Product
Created By : Static
Modified By : Static
Deleted By : Static

OSDeviceName string
OSAddressesValid boolean Indicates whether OSBusNumber, 

OSTargetNumber, and OSLUN proper-
ties are valid.

OSBusNumber uint32 API SCSIBusNumber
OSTargetNumber uint32 API osTargetId
OSLUN uint32 API osLUN
LocalPortNameType uint16 Must be 2 - FC Port WWN
LocalPortName string initiator port WWN

Table 760: SMI Referenced Properties/Methods for CIM_PhysicalPackage

Property Flags Type Description & Notes
Mandatory Properties/Methods

Manufacturer string
Model string
Tag string
CreationClassName string

Table 761: SMI Referenced Properties/Methods for CIM_PortController

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
ControllerType uint16

Table 759: SMI Referenced Properties/Methods for CIM_OSStorageNameBinding

Property Flags Type Description & Notes
694



 FC HBA Profile
Class Mandatory: true

8.2.7.1.8.20 CIM_ProductPhysicalComponent
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.1.8.21 CIM_ProtocolControllerForPort
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.1.8.22 CIM_Realizes
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

Table 762: SMI Referenced Properties/Methods for CIM_Product

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementName string
Name string
IdentifyingNumber string
Vendor string
Version string

Table 763: SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_Product
PartComponent CIM_PhysicalElement

Table 764: SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_LogicalPort Reference to FCPort
Antecedent CIM_ProtocolController Reference to SCSIProtocolController

Table 765: SMI Referenced Properties/Methods for CIM_Realizes

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_LogicalDevice
Antecedent CIM_PhysicalElement
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 695



 

8.2.7.1.8.23 CIM_ServiceAvailableToElement
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.1.8.24 CIM_SoftwareIdentity
Driver

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.1.8.25 CIM_SoftwareIdentity
Firmware

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

Table 766: SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

ServiceProvided CIM_Service Reference to StorageNameBindingSer-
vice

UserOfService CIM_ManagedElement Reference to FCPort

Table 767: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string The name used to identify this Softwa-
reIdentity.

VersionString string Software Version should be in the form 
[Major], [Minor].[Revision] or 
[Major].[Minor][letter][revision].

Manufacturer string Manufacturer of this Software.
Classifications uint16[]

Table 768: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string The name used to identify this Softwa-
reIdentity.

VersionString string Software Version should be in the form 
[Major], [Minor].[Revision] or 
[Major].[Minor][letter][revision].

Manufacturer string Manufacturer of this Software.
696



 FC HBA Profile
8.2.7.1.8.26 CIM_SoftwareIdentity
FCODE/BIOS

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.1.8.27 CIM_StorageNameBinding
The structure representing an FC persistent binding when the driver/platform implicitly creates the OS
device name. Description column includes mapping to FC API properties.

Created By : StaticExtrinsic(s): CIM_StorageNameBindingService.CreateStorageNameBinding
Modified By : Static
Deleted By : DeleteInstance
Class Mandatory: false

Classifications uint16[]

Table 769: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string The name used to identify this Softwa-
reIdentity.

VersionString string Software Version should be in the form 
[Major], [Minor].[Revision] or 
[Major].[Minor][letter][revision].

Manufacturer string Manufacturer of this Software.
Classifications uint16[]

Table 770: SMI Referenced Properties/Methods for CIM_StorageNameBinding

Property Flags Type Description & Notes
Mandatory Properties/Methods

BindingType uint16 API HBA_BIND_TYPE. 2=FCApiBind-
ToDID, 3=FCApiBindToWWPN, 
4=FCApiBindToWWNN, 5=BindToLUID

BindAllLogicalUnits boolean API HBA_BIND_TARGETS. If true, 
then all target logical units are bound to 
the OS.Not valid to set this if Binding-
Type is BindToLUID.

Hide boolean Must be false

Table 768: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 697



 

8.2.7.1.8.28 CIM_StorageNameBindingCapabilities
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.1.8.29 CIM_StorageNameBindingService
Created By : Static
Modified By : Static
Deleted By : Static

TargetName CD String  API FCID, NodeWWN, PortWWN or 
HBA_LUID. If BindingType is FcApiB-
indToDID, TargetName holds a hexa-
decimal-encoded representation of the 
32-bit D_ID and corresponds to FC API 
HBA_FCPID.FcId. If BindingType is 
FcApiBindToWWPN or FcApiBindToW-
WNN, TargetName holds a hexadeci-
mal-encoded representation of the 64-
bit FC Port or Node World Wide Name. 
If BindingType is BindToLUID, Target-
Name holds a SCSI Logical Unit Name 
from Inquiry VPD page 83, Association 
0 as defined in SCSI Primary Com-
mands. If the identifier descriptor (in the 
SCSI response) has Code Set Binary, 
then TargetName is its hexadecimal-
encoded value.

Status uint32 HBA_FCPBINDING2.Status
LocalPortNameType uint16 Must be 2 - FC Port WWN
LocalPortName CD string initiator port WWN

Table 771: SMI Referenced Properties/Methods for CIM_StorageNameBindingCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ValidBindingTypes M uint16[] API HBA_BIND_TYPE. Must include a 
subset of 2(FcApiBindToDID), 
3(FcApiBindToWWPN), 4(FcApiBind-
ToWWNN), or 5(BindToLUID)

ActivateBindingRequiresReset boolean True if creating a binding requires a 
system reboot

CanMapAddresses M boolean True if the implementation allows over-
riding OS bus/target/LUN numbers.

CanBindAllLuns M boolean
AutoDiscovery boolean
CanSetOSDeviceName boolean

Table 770: SMI Referenced Properties/Methods for CIM_StorageNameBinding

Property Flags Type Description & Notes
698



 FC HBA Profile
Class Mandatory: false

8.2.7.1.8.30 CIM_SystemDevice
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.1.9 Related Standards

Table 772: SMI Referenced Properties/Methods for CIM_StorageNameBindingService

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreateStorageNameBinding()
CreateOSStorageNameBinding()

Table 773: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice

Table 774: Related Standards for FC HBA

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 699



 

700



 iSCSI Initiator Profile
EXPERIMENTAL

8.2.7.2 iSCSI Initiator Profile  

8.2.7.2.1 Description
An iSCSI initiator is the hardware and driver combination that acts as a client to an iSCSI target device.
iSCSI initiators may utilize general –purpose Network Interface Cards (NICs) or hardware optimized for
storage such as TCP Offload Engines (TOEs). iSCSI initiators may be running on a customer server or
the “back end” of a bridge or virtualizer.

iSCSI terminology spans SCSI and network concepts and introduces new terms. Table 775 is a
summary of some key iSCSI terms, their equivalent CIM classes, and definitions (from the IETF iSCSI
RFC).

This profile requires the iSCSI Initiator Port Subprofile (see 8.2.3.3) that includes classes (EthernetPort,
iSCSIProtocolEndoint) that model SCSI ports and network portals.

Table 775: iSCSI Terminology

iSCSI Term CIM Class Name Notes
Network 
Entity

ComputerSystem The Network Entity represents a device or gateway that is 
accessible from the IP network. A Network Entity shall have 
one or more Network Portals, each of which can be used to 
gain access to the IP network by some iSCSI Nodes con-
tained in that Network Entity.

Session iSCSISession The group of TCP connections that link an initiator with a tar-
get form a session (loosely equivalent to a SCSI I-T nexus). 
TCP connections can be added and removed from a session. 
Across all connections within a session, an initiator sees one 
and the same target.

Connection iSCSIConnection A connection is a TCP connection. Communication between 
the initiator and target occurs over one or more TCP connec-
tions. The TCP connections carry control messages, SCSI 
commands, parameters, and data within iSCSI Protocol Data 
Units (iSCSI PDUs).

SCSI Port iSCSIProtocolEndpoint A SCSI Port using an iSCSI service delivery subsystem. A 
collection of Network Portals that together act as a SCSI initi-
ator or target.

Network 
Portal

TCPProtocolEndpoint, 
IPProtocolEndpoint, 
EthernetPort

The Network Portal is a component of a Network Entity that 
has a TCP/IP network address and that may be used by an 
iSCSI Node within that Network Entity for the connection(s) 
within one of its iSCSI sessions. A Network Portal in an initia-
tor is identified by its IP address. A Network Portal in a target 
is identified by its IP address and its listening TCP port.

Node SCSIProtocolController The iSCSI Node represents a single iSCSI initiator or iSCSI 
target. There are one or more iSCSI Nodes within a Network 
Entity. The iSCSI Node is accessible via one or more Network 
Portals. An iSCSI Node is identified by its iSCSI Name. The 
separation of the iSCSI Name from the addresses used by 
and for the iSCSI Node allows multiple iSCSI nodes to use 
the same address, and the same iSCSI node to use multiple 
addresses.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 701



 

Figure 104: "iSCSI Product and Package Model" models the relationships between the iSCSI port
classes and physical and product classes. A single iSCSI card may contain multiple Ethernet ports
PhysicalPackage subclass Card models an add-in card with multiple Ethernet ports. Other
PhysicalPackage subclasses may be used to model Ethernet ports embedded on a motherboard.
PortController models a common management interface to multiple Ethernet ports.

ComputerSystem models the system hosting the initiator components. This is the same instance as
iSCSI Network Entity in the previous diagram. 

An implementation includes single instances of PhysicalPackage, Product, and PortController, plus
SoftwareIdentity instances for the driver, firmware, and Fcode/BIOS. The Product instance may be
shared across cards with the same make and model

Sessions and Connections
A session is an active communication stream between an iSCSI initiator port and an iSCSI target port.
However, any given session may contain part or all of the TCP/IP addresses within a Portal Group.
Conceptually, a Portal Group is a pool of addresses which may be used to create/receive a session.

Figure 104: iSCSI Product and Package Model

Product

ComputerSystem

(iSCSI Initiator Port 
Subprofile)

EthernetPort

PortController ControlledBy

Software
Installed

OnSystem
(Driver)

SoftwareIdentity

(FCode/BIOS)

SoftwareIdentity

(Firmware)

SoftwareIdentity

(e.g. Card)

PhysicalPackage

ProductPhysicalComponent

System
Device

SystemDevice
Realizes

Element
Software
Identity

Element
Software
Identity

Element
Software
Identity
702



 iSCSI Initiator Profile
The implementation may optionally model iSCSI sessions and connections with instances of
iSCSISession and iSCSIConnection classes associate to iSCSIProtocolEndpoint and
TCPProtocolEndpoint (respectively) using EndpointOfNetworkPipe association.

There should be a single instance of SCSIProtocolController representing the initiator iSCSI node. This
is associated via SystemDevice to the ComputerSystem. See Figure 106: "iSCSI Initiator Node" 

8.2.7.2.2 Durable Names and Correlatable IDs of the Profile
The Name property for the iSCSI node (SCSIProtocolController) shall be a compliant iSCSI name as
described in 6.2.4.9, "iSCSI Names" and NameFormat shall be set to “iSCSI Name”. 

Figure 105: iSCSI Sessions and Connections Model

Figure 106: iSCSI Initiator Node

(iSCSI Initiator Port 
Subprofile)

TCPProtocolEndpoint

NetworkEntity:
ComputerSystem

EndpointName
TSIH
SessionType

iSCSISession

EndpointOfNetworkPipe

Name
Role
Identifier

iSCSIPort:
iSCSIProtocolEndpoint

ConnectionID

iSCSIConnection

EndpointOfNetworkPipe

NetworkPipe
Composition BindsTo

DeviceSAPImplementation

(iSCSI Initiator Port 
Subprofile)

EthernetPort

System
Device

Hosted
Access
Point

(iSCSI Initiator Port 
Subprofile)

IPProtocolEndpoint
BindsTo

DeviceSAP
Implementation

Netw orkEntity:
C om puterSystem

iSC SI N ode:
SC SIProtocolC ontroller

System
D evice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 703



 

The Name property for iSCSIProtocolEndpoint shall be a compliant iSCSI name as described in
6.2.4.9, "iSCSI Names" and ConnectionType shall be set to “iSCSI”.

The Name property for EthernetPort shall be a compliant iSCSI name as described in 6.2.4.9, "iSCSI
Names".

8.2.7.2.3 Health and Fault Management Considerations
The status of an Ethernet port may be determined by the value of the OperationalStatus property.
Table 776, “OperationalStatus Values” defines the possible states that shall be supported for
EthernetPort.OperationalStatus. The main OperationalStatus shall be the first element in the array 

8.2.7.2.4 Supported Subprofiles and Packages

8.2.7.2.5 Methods of the Profile
None

8.2.7.2.6 Client Considerations and Recipes

8.2.7.2.6.1 Add an additional NIC port
See 8.2.2.3.5.7, "Add a Network Portal to a Target Port." in the iSCSI Target Ports subprofile.

8.2.7.2.6.2 Find the health of an initiator
See 8.2.2.3.5.9, "Determine the health of a Session on a target system." in the iSCSI Target Ports
subprofile.

8.2.7.2.6.3 Enable/disable header and data digest
See 8.2.7.2.6.3, "Enable/disable header and data digest" in the iSCSI Target Ports subprofile. 

8.2.7.2.7 Registered Name and Version
iSCSI Initiator version 1.1.0

Table 776: OperationalStatus Values

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test

Table 777: Supported Subprofiles for iSCSI Initiator

Registered Subprofile Names Mandatory Version
iSCSI Initiator Ports No 1.1.0
704



 iSCSI Initiator Profile
8.2.7.2.8 CIM Server Requirements

8.2.7.2.9 CIM Elements

8.2.7.2.9.1 CIM_ComputerSystem
Created By : Static
Modified By : Static

Table 778: CIM Server Requirements for iSCSI Initiator

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 779: CIM Elements for iSCSI Initiator

Element Name Description
Mandatory Classes

CIM_ComputerSystem (8.2.7.2.9.1)
CIM_ElementSoftwareIdentity (8.2.7.2.9.3)
CIM_EndpointOfNetworkPipe (8.2.7.2.9.4)
CIM_PhysicalPackage (8.2.7.2.9.6)
CIM_Product (8.2.7.2.9.8)
CIM_ProductPhysicalComponent (8.2.7.2.9.9)
CIM_ProtocolControllerForPort (8.2.7.2.9.10)
CIM_Realizes (8.2.7.2.9.11)
CIM_SCSIProtocolController (8.2.7.2.9.12)
CIM_SystemDevice (8.2.7.2.9.14)
CIM_iSCSISession (8.2.7.2.9.16)

Optional Classes
CIM_ControlledBy (8.2.7.2.9.2)
CIM_InstalledSoftwareIdentity (8.2.7.2.9.5)
CIM_PortController (8.2.7.2.9.7)
CIM_SoftwareIdentity (8.2.7.2.9.13)
CIM_iSCSIConnection (8.2.7.2.9.15)

Optional Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_PortController

PortController (HBA) Creation

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_PorController

PortController (HBA) Removal
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 705



 

Deleted By : Static
Class Mandatory: true

8.2.7.2.9.2 CIM_ControlledBy
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.2.9.3 CIM_ElementSoftwareIdentity
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true
No specified properties or methods.

8.2.7.2.9.4 CIM_EndpointOfNetworkPipe
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 780: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string The name of the host containing the 

iSCSI initiator.
ElementName string
NameFormat string
OtherIdentifyingInfo C string[]
OperationalStatus uint16[]
Dedicated uint16[] "Not Dedicated"

Optional Properties/Methods
OtherDedicatedDescriptions string[]

Table 781: SMI Referenced Properties/Methods for CIM_ControlledBy

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Controller
Dependent CIM_LogicalDevice

Table 782: SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ServiceAccessPoi
nt

Dependent CIM_NetworkPipe
706



 iSCSI Initiator Profile
8.2.7.2.9.5 CIM_InstalledSoftwareIdentity
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.2.9.6 CIM_PhysicalPackage
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.2.9.7 CIM_PortController
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.2.9.8 CIM_Product
Created By : Static
Modified By : Static
Deleted By : Static

Table 783: SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

System CIM_System
InstalledSoftware CIM_SoftwareIdentity

Table 784: SMI Referenced Properties/Methods for CIM_PhysicalPackage

Property Flags Type Description & Notes
Mandatory Properties/Methods

Manufacturer string Maps to 
IMA_PHBA_PROPERTIES.vendor

Model string Maps to 
IMA_PHBA_PROPERTIES.model

Table 785: SMI Referenced Properties/Methods for CIM_PortController

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
ControllerType uint16
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 707



 

Class Mandatory: true

8.2.7.2.9.9 CIM_ProductPhysicalComponent
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.2.9.10 CIM_ProtocolControllerForPort
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.2.9.11 CIM_Realizes
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true
No specified properties or methods.

8.2.7.2.9.12 CIM_SCSIProtocolController
Created By : External
Modified By : External

Table 786: SMI Referenced Properties/Methods for CIM_Product

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementName string
Name string
IdentifyingNumber string Maps to IMA_PHBA_PROPERTIES, 

serialNumber
Vendor string Maps to IMA_PHBA_PROPERTIES, 

vendor
Version string Maps to IMA_PHBA_PROPERTIES, 

hardwareVersion

Table 787: SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_Product
PartComponent CIM_PhysicalElement

Table 788: SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_LogicalPort
Antecedent CIM_ProtocolController
708



 iSCSI Initiator Profile
Deleted By : External
Class Mandatory: true

8.2.7.2.9.13 CIM_SoftwareIdentity
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

8.2.7.2.9.14 CIM_SystemDevice
Created By : Static
Class Mandatory: true

8.2.7.2.9.15 CIM_iSCSIConnection
Created By : External
Modified By : External

Table 789: SMI Referenced Properties/Methods for CIM_SCSIProtocolController

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
ElementName string iSCSI Alias
Name CD string Maps to IMA_NODE_PROPERTIES, 

name
NameFormat uint16

Table 790: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
VersionString string Maps to IMA_PHBA_PROPERTIES, 

driverVersion/firmwareVersion/option-
RomVersion as per the Classifications 
property

Manufacturer string Maps to 
IMA_PHBA_PROPERTIES.vendor

Classifications uint16[] Either Driver','Firmware',or'BIOS/
FCode'(2,10,or11)'

Table 791: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 709



 

Deleted By : External
Class Mandatory: false

8.2.7.2.9.16 CIM_iSCSISession
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 792: SMI Referenced Properties/Methods for CIM_iSCSIConnection

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ConnectionID uint32
MaxReceiveDataSegmentLength uint32 Maps to 

IMA_GetMaxRecvDataSegmentLength
Properties, 
IMA_SetMaxRecvDataSegmentLength

MaxTransmitDataSegmentLength uint32
HeaderDigestMethod uint16
DataDigestMethod uint16
ReceivingMarkers boolean
SendingMarkers boolean
ActiveiSCSIVersion boolean
AuthenticationMethodUsed uint16 Maps to 

IMA_GetInUseInitiatorAuthMethods.
MutualAuthentication boolean

Optional Properties/Methods
OtherHeaderDigestMethod string
OtherDataDigestMethod string

Table 793: SMI Referenced Properties/Methods for CIM_iSCSISession

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
Directionality uint16
SessionType uint16
TSIH uint32
EndPointName string Maps to IMA_TARGET_PROPERTIES, 

name
CurrentConnections uint32
InitialR2T boolean Maps to IMA_GetInitialR2TProperties, 

IMA_SetInitialR2T.
710



 iSCSI Initiator Profile
8.2.7.2.10 Related Standards

EXPERIMENTAL

ImmediateData boolean Maps to 
IMA_GetImmediateDataProperties, 
IMA_SetImmediateData.

MaxOutstandingR2T uint32 Maps to 
IMA_GetMaxOutstandingR2TPropertie
s, IMA_SetMaxOutstandingR2T.

MaxUnsolicitedFirstDataBurst-
Length

uint32 Maps to 
IMA_GetMaxFirstBurstLengthPropertie
s, IMA_SetMaxFirstBurstLength.

MaxDataBurstLength uint32 Maps to 
IMA_GetMaxBurstLengthProperties, 
IMA_SetMaxBurstLength.

DataSequenceInOrder boolean Maps to 
IMA_GetDataSequenceInOrderPropert
ies, IMA_SetDataSequenceInOrder.

DataPDUInOrder boolean Maps to 
IMA_GetDataPDUInOrderProperties, 
IMA_SetDataPDUInOrder.

ErrorRecoveryLevel uint32 Maps to 
IMA_GetErrorRecoveryLevelProperties
, IMA_SetErrorRecoveryLevel.

MaxConnectionsPerSession uint32 Maps to 
IMA_GetMaxConnectionsProperties, 
IMA_SetMaxConnections.

DefaultTimeToWait uint32 Maps to 
IMA_GetDefaultTime2WaitProperties, 
IMA_SetDefaultTime2Wait.

DefaultTimeToRetain uint32 Maps to 
IMA_GetDefaultTime2RetainProperties
, IMA_SetDefaultTime2Retain.

Table 794: Related Standards for iSCSI Initiator

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF

Table 793: SMI Referenced Properties/Methods for CIM_iSCSISession

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 711



 

712



 Host Discovered Resources Profile
EXPERIMENTAL

8.2.7.3 Host Discovered Resources Profile  

8.2.7.3.1 Description
The Host Discovered Resources profile allows a client application to discover the storage hardware
resources attached to a host system, the logical storage resources available through the OS, and the
relationship between these hardware and logical resources. The hardware resources include host
adapters and storage devices. The logical resources include the OS special files that represent storage
devices. In some cases, there is a one-to-one relationship between the logical and physical device. But
multipath and disk partitioning introduce resource fan-in and fan-out that are also modeled in this
profile.

Figure 107: "Host Discovered Resources Block Diagram" depicts the relationship between the Host
Discovered Resources profile and these other profiles. The areas with the shaded background are
covered by the Host Discovered Resources profile – including partitioned and multipath storage.

Applications and Logical Volume Manager are consumers of Host Discovered Resources. The diagram
depicts how an application can use Logical Volume Manager resources or use Host Discovered
Resources directly. For example, a server may have some filesystems using LVM volumes and some
filesystems using OS volumes.

The blocks at the bottom of the diagram represent resources (HBAs and target devices) for which the
Host Discovered Resources profile provides a host view. Note that interconnect elements between the
HBAs and target devices are not part of the Host Discovered Resources profile.

The Host Discovered Resources Profile provides a minimal amount of information about the discovered
hardware resources; this includes the connectivity and correlatable IDs. The Host Discovered
Resources profile does not act as the canonical profile for any particular hardware resource; even host-
resident elements like FC HBAs, iSCSI initiators, and Logical Volume Managers have separate profiles.

Figure 107: Host Discovered Resources Block Diagram

Non-
Block 

Storage

Multipath Aggregation

PCI
RAID

adapters
FC HBAs

Applications 
(filesystems, database, backup)

Interconnect Elements (switches, routers, ...)

Target Storage Devices 
(arrays, virtualizers, media libraries)

Parallel
SCSI 
HBAs

iSCSI 
Initiators

Raw 
Access 
Block 

Storage

Partitioned 
Block Storage

     Logical Volume   
    Manager Block 

Storage
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 713



 

The correlatable IDs exposed by The Host Discovered Resources profile allow an application to
associate host-discovered resources with resources from these other profiles.

For example, an array profile can describe the redundancy characteristics and performance statistics of
a RAID volume. But the array profile will use a SCSI logical unit identifier as the volume’s name. By
combining information from the array and host-discovered resources profiles, a client can display the
host special file name(s) associated with that volume. This additional name information can help the
administrator (or client software) determine which applications are associated with volumes.

Host Disk Extent Class Name Conventions
The Host Discovered Resources profile uses several different CIM classes to represent disk extents.
LogicalDisk models an extent exposed by the OS to applications such as filesystems, databases, or
logical volume managers. GenericDiskPartition represents a partition or slice of a disk as supported
directly by the OS. StorageVolume represents disks or virtual volumes exported from disk arrays and
virtualizers in the array or virtualizer profiles. StorageExtent represents disk extents that do fit these
other classes; these will be intermediate extents that are neither consumed volumes nor exported
logical disks.

Note that Logical Volume Managers are described in a separate profile. Logical Volume Managers may
also expose partitions, but these are independent of partitions integrated into some OSes. The Host
Discovered Resources profile just addresses OS partitions.

To make it easier for clients of this profile, all consumable storage exported by this profile are modeled
as instances of LogicalDisk.

The functionality of host resources discovery is broken into three areas:

• Disk partition discovery and management. See 8.2.7.4, "Disk Partition Subprofile".

• Multipath Management. See 8.2.7.5, "SCSI Multipath Management Subprofile".

• DIscovery of Hardware Resouces. See “Discovered Hardware Resources” on page 714 in
8.2.7.3.1.

Discovered Hardware Resources
This profile presents a view of discovered resources with a common model based on the SCSI model,
extended for different transports. Ports are modeled as instances of SCSIProtocolEndpoint -
representing the SCSI (or ATA) protocol, not the physical interconnect. 

The Host Discovered Resource profile could be implemented using standard APIs (such as the HBA
API, or SNIA iSCSI Management API) to create a generic model of the host-storage controllers and
storage attached to those controllers. The model includes elements also exposed by HBA and storage
agents; the details are included in these other profiles. A client uses correlatable IDs to equate objects
from different agents.

 The correlatable IDs for logical units (LogicalDisk, StorageExtent, TapeDrive) are the identifiers
assigned by the hosting operating system (see Table 8 for the name requirements for OS names of disk
logical units). An implementation of this profile shall also provide the correlatable names associated
with the underlying devices. The requirements specified in 6.2.4.5.1, "Standard Formats for Logical Unit
Names" apply, but instead of using the Name and NameNamespace properties, the information is
corresponding elements in the OtherIdentifyingInfo and IdentifyingDescriptions array properties. The
valid strings for IdentifyingDescriptions are exactly those described for NameNamespace in 6.2.4.5.1,
"Standard Formats for Logical Unit Names".

This profile is restricted to discovery of I/O devices and does not include remote filesystems. The SCSI
and ATA models are discussed separately.
714



 Host Discovered Resources Profile
Model for SCSI Protocol Resources
The SCSI protocol is used in several transports - Fibre Channel, iSCSI, Parallel SCSI (SPI), and Serial
Attached SCSI (SAS). SCSI Protocol includes initiator and target ports, and a logical units (RAID
volumes, tape drives) in a many-to-many-to-many relationship - in other words, an initiator port may
connect to many target ports (and vice versa), and each target device many have many logical units
connected to initiator and target ports. “Figure 60: "Generic Initiator Port Model"” provides a general
controller/device SCSI model. LogicalDevice subclasses model different types of SCSI logical unit, e.g.,
TapeDrive.

SCSIProtocolEndpoint represents the SCSI logical port, either initiator or target. The transports type
(e.g., FC, iSCSI) is specified in SCSIProtocolEndpoint ConnectionType property. 

The initiator ProtocolEndpoint and each target ProtocolEndpoint and LogicalDevice are associated by
SCSIInitiatorRagetLogicalUnitPath.

Figure 108: Host Discovered Resources Class Diagram

ComputerSystem

Initiator:
SCSIProtocolEndpoint

LogicalDevice

SystemDevice

HostedAccessPoint

HostedAccessPoint

Target:
SCSIProtocolEndpoint

SCSIInitiatorTargetLogicalUnitPath

StorageExtent TapeDriveLogicalDisk SCSIArbitrary
LogicalUnit
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 715



 

Consider a few concrete cases. The first is a single parallel SCSI disk. In general, Host APIs cannot
differentiate a “real” disk from a virtual disk as exposed by a RAID controller, so the StorageExtent
subclass of LogicalDevice is used.

The second case is a Fibre Channel RAID controller exposing three virtual disks to a single host/
initiator port.There is a single initiator and target that share access to three StorageExtent instances.

The Multipath Subprofile describes more complicated multipath configurations. See Figure 119: "Four
Path Instance Diagram".

Figure 109: Single SPI Disk Model

Figure 110: Three FC Logical Unit Instance Diagram

ComputerSystem

Initiator:
SCSIProtocolEndpoint

StorageExtent

SystemDevice

HostedAccessPoint

HostedAccessPoint

Target:
SCSIProtocolEndpoint

SCSIInitiatorTargetLogicalUnitPath

ComputerSystem

Initiator:
SCSIProtocolEndpoint

StorageExtent

SystemDevice

HostedAccessPoint

HostedAccessPoint

Target:
SCSIProtocolEndpoint

SCSIInitiatorTargetLogicalUnitPath

StorageExtent
SCSIInitiatorTargetLogicalUnitPath

StorageExtent

SCSIInitiatorTargetLogicalUnitPath
716



 Host Discovered Resources Profile
Model for non-SCSI Protocol Resources
The model for non-SCSI transports such as ATA is simpler because multipath support is not included
and because there is a single controller (ProtocolEndpoint) rather than separate initiator and target
controllers.

Associating Hardware and OS Devices
There are two variations for disks and virtual disks - configurations with or without disk partitions.

1) With no partitions, each discovered (virtual) disk is modeled as LogicalDisk

2) With disk partitions, each partition exposed to an application or LVM is modeled as LogicalDisk. 
Any disk (or intermediate partition) that contains partitions is modeled as StorageExtent. DiskParti-
tion instances are modeled between the StorageExtents and LogicalDisks. For more details, see 
the 8.2.7.4 "Disk Partition Subprofile". The requirement for disk partitions is reflected by the pres-
ence of DiskPartitionConfigurationCapabilities.

Tape drive configurations are similar to case 1 above, with TapeDrive rather than LogicalDisk.

8.2.7.3.2 Health and Fault Management Considerations
Not defined in this standard

8.2.7.3.3 Cascading Considerations
Not defined in this standard

Supported Subprofiles and Packages

Figure 111: Non-SCSI Discovered Resource Model

Table 795: Supported Subprofiles for Host Discovered Resources

Registered Subprofile Names Mandatory Version
SCSI Multipath Management No 1.1.0
Disk Partition No 1.1.0

ComputerSystem

ProtocolEndpoint

HostedAccessPoint

LogicalDevice

SystemDevice
DeviceSAPImplementation

*

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 717



 

8.2.7.3.4 Extrinsic Methods of the Profile
StorageConfigurationService.SCSIScan 
This method requests that the system rescan SCSI devices for changes in their configuration. If called
on a general-purpose host, the changes are reflected in the list of devices available to applications (for
example, the UNIX 'device tree').

This operation can be disruptive; optional parameters allow the caller to limit the scan to a single or set
of SCSI device elements. All parameters are optional; if parameters other than Job are passed in as
null, a full scan is invoked. If the caller specifies a connection type, the scan is limited to that connection
type.

Job - a reference to a Job

ConnectionType - The type of connection (transport, such as FC or iSCSI), constrains the scan to
initiator ports of this type. Only used if the Initiators parameter is null.

OtherConnectionType - The connection type if the ConnectionType parameter is Other.

Initiators - A list of references to initiators. Scanning will be limited to SCSI targets attached to these
initiators. If this parameter is null and connection is specified, all initiators of that connection type are
scanned. If this parameter and ConnectionType are null, all targets on all system initiators are probed.

Targets - A list of names or numbers for targets. These should be formatted to match the appropriate
connection type. For example, PortWWNs would be specified for Fibre Channel targets.

LogicalUnits - A list of SCSI logical unit numbers representing logical units hosted on the targets
specified in the Targets argument.

ScsiScan() support is optional. support for ScsiScan() can be determined based on the inclusion of
“SCSI Scan” in the SupportedAsynchronousActions array in StorageConfigurationCapabilities.

8.2.7.3.5 Client Considerations and Recipes

8.2.7.3.5.1 Determine which exported extents are impacted by removal of a physical extent
//

// Description:

// Determine which exported extents are impacted by removal of a 

// physical extent.  Note that in this Profile, “exported extent”

// is synonymous with LogicalDisk.

//

// Pre-Contitions:

// $Host holds a ref to the (top-level) ComputerSystem

// $Disk holds a reference to the StorageExtent to be removed.

// 

// In SMI-S, anything exposed to applications (or LVMs) as an OS

// disk is modeled as LogicalDisk.  On platforms that support partitions,

// if a disk is partitioned, the disk itself is modeled as StorageExtent.

// Each partition that is exposed is modeled as LogicalDisk Based on a 

// GenericDiskPartition BasedOn StorageExtent (the disk).  Some platforms 

// allow a partition to be sub-partitioned; this is modeled as

// LogicalDisk (exposed) BasedOn DiskPartition (top-tier) BasedOn

// DIskPartition (bottom tier) BasedOn StorageExtent (the disk).

// On systems without disk partitions, a LogicalDisk instance models
718



 Host Discovered Resources Profile
// the entire usable disk capacity.

// 

// CIM models each exposed partition as a LogicalDisk BasedOn a 

// DiskPartition (mapped 1-1).  Many DiskPartitions can be based 

// on the same underlying StorageExtent (either a disk or another 

// partition).  The valid configurations

// are

// 1 - $Disk is actually exposed as a LogicalDisk (LD)

// 2 - Single-tier partitioning, LD based on DiskPartition (DP) BasedOn SE

//     (StorageExtent)

// 3 - Two-tier partitioning - LD BasedOn DP BasedOn DP BasedOn SE

// 

/  The recipe below uses recursion to find all StorageExtents (the 

// super-class of LogicalDisk and DiskPartition) based on $Disk, then 

// follows BasedOn associations untill it hits LogicalDisks.

sub REF[] GetImpactedExtents($Extent)

{

        // A logical disk can’t contain any partitions - if $Extent

        // is a LogicalDisk, add it to the $ImpactedExtents list

        // and return.

if ($Extent ISA CIM_LogicalDisk) {

          push ($ImpactedExtents[], $Extent)

return ($ImpactedExtents[]->)

        }

        // For non LogicalDisks, get the list of all extents based on $Extent

$SuperExtents[]  = AssociatorNames(

$Disk,

“CIM_BasedOn”,

null, // ResultClass

“Antecedent”    // Role

“Dependent”)// ResultRole

// For each extent that depends on $Extent, recurse 

for #i in $SuperExtents[] {

    $ImpactedExtents = &GetImpactedExtents($SuperExtents[#i])

}

return $ImpactedExtents[]->

}

$ImpactedLDs = &GetImpactedExtents($Disk)

8.2.7.3.6 Registered Name and Version
Host Discovered Resources version 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 719



 

8.2.7.3.7 CIM Server Requirements

8.2.7.3.8 CIM Elements

8.2.7.3.8.1 CIM_ComputerSystem
'Top level' system that hosts the resources.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 796: CIM Server Requirements for Host Discovered Resources

Profile Mandatory
Association Traversal No
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 797: CIM Elements for Host Discovered Resources

Element Name Description
Mandatory Classes

CIM_ComputerSystem (8.2.7.3.8.1) 'Top level' system that hosts the resources.
CIM_HostedAccessPoint (8.2.7.3.8.2) This association links all SCSIProtocolEndpoints to 

the scoping system.
CIM_LogicalDisk (8.2.7.3.8.3) Represents a block logical unit that is exposed to appli-

cations such as file systems without being partitioned.
CIM_SCSIInitiatorTargetLogicalUnitPath (8.2.7.3.8.5) Associates initiator and target SCSIProtocolEndpoints 

to a SCSI logical unit (LogicalDevice)
CIM_SCSIProtocolEndpoint (8.2.7.3.8.6)
CIM_StorageExtent (8.2.7.3.8.7) Represents a block logical unit in the host that is parti-

tioned before being exposed to applications.
CIM_SystemDevice (8.2.7.3.8.8) This association links all LogicalDevices to the scoping 

system.
CIM_TapeDrive (8.2.7.3.8.9) Represents a tape drive logical unit in the host

Optional Classes
CIM_SCSIArbitraryLogicalUnit (8.2.7.3.8.4) A SCSI Logical Unit that exists only for management.

Table 798: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
720



 Host Discovered Resources Profile
8.2.7.3.8.2 CIM_HostedAccessPoint
This association links all SCSIProtocolEndpoints to the scoping system.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.7.3.8.3 CIM_LogicalDisk
Represents a block logical unit that is exposed to applications such as file systems without being partitioned.
Standard Names: The Name, NameFormat, and NameNamespace properties shall follow the requirements in 

6.2.4.5.1 OtherIdentifyingInfo holds the correlatable ID of the underlying logical unit.
Class Mandatory: true

Name C string Unique identifier for the system. E.g., 
IP address.

ElementName string User-friendly name
NameFormat string Format for Name property.
Dedicated uint16[] Indicates that this computer system is 

not a dedicated storage system

Table 799: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The Hosting System
Dependent CIM_ServiceAccessPoi

nt
The ProtocolEndpoint

Table 800: SMI Referenced Properties/Methods for CIM_LogicalDisk

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifier
ElementName string User-friendly name
Name C string OS device name
NameFormat C uint16
NameNamespace C uint16
OtherIdentifyingInfo C string[] The correlatable ID of the underlying 

logical unit
IdentifyingDescriptions C string[]
OperationalStatus uint16[]

Table 798: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 721



 

8.2.7.3.8.4 CIM_SCSIArbitraryLogicalUnit
A SCSI Logical Unit that exists only for management.
Standard Names: The Name property shall follow the requirements in 6.2.4.5.1 OtherIdentifyingInfo holds the cor-

relatable ID of the underlying logical unit.
Class Mandatory: false

8.2.7.3.8.5 CIM_SCSIInitiatorTargetLogicalUnitPath
Associates initiator and target SCSIProtocolEndpoints to a SCSI logical unit (LogicalDevice)
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.7.3.8.6 CIM_SCSIProtocolEndpoint
Created By : Static
Modified By : Static
Deleted By : Static
Standard Names: The Name Property follows the requirements in 6.2.4.5.2

Table 801: SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifier
ElementName string User-friendly name
Name C string OS device name
OtherIdentifyingInfo C string[] The correlatable ID of the underlying 

logical unit
IdentifyingDescriptions C string[]
OperationalStatus uint16[]

Table 802: SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Property Flags Type Description & Notes
Mandatory Properties/Methods

LogicalUnit CIM_LogicalDevice A reference to a LogicalDevice
Initiator CIM_SCSIProtocolEndp

oint
A reference to the initiator 
CIM_SCSIProtocolEndpoint

Target CIM_SCSIProtocolEndp
oint

A reference to the target 
CIM_SCSIProtocolEndpoint

AdministrativeWeight M uint32
State uint32
AdministrativeOverride uint16

Optional Properties/Methods
OSDeviceName string
722



 Host Discovered Resources Profile
Class Mandatory: true

8.2.7.3.8.7 CIM_StorageExtent
Represents a block logical unit in the host that is partitioned before being exposed to applications.
Standard Names: The Name, NameFormat, and NameNamespace properties shall follow the requirements in 

6.2.4.5.1 OtherIdentifyingInfo holds the correlatable ID of the underlying logical unit.
Class Mandatory: true

8.2.7.3.8.8 CIM_SystemDevice
This association links all LogicalDevices to the scoping system.
Created By : External
Modified By : External
Deleted By : External

Table 803: SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name C string
ProtocolIFType uint16
ConnectionType uint16
Role uint16

Table 804: SMI Referenced Properties/Methods for CIM_StorageExtent

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifier
ElementName string User-friendly name
Name C string OS device name
NameFormat C uint16
NameNamespace C uint16
OtherIdentifyingInfo C string[] The correlatable ID of the underlying 

logical unit
IdentifyingDescriptions C string[]
OperationalStatus uint16[]
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 723



 

Class Mandatory: true

8.2.7.3.8.9 CIM_TapeDrive
Represents a tape drive logical unit in the host
Standard Names: The Name property shall follow the requirements in 6.2.4.5.1 OtherIdentifyingInfo holds the cor-

relatable ID of the underlying logical unit.
Class Mandatory: true

8.2.7.3.9 Related Standards

EXPERIMENTAL

Table 805: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice

Table 806: SMI Referenced Properties/Methods for CIM_TapeDrive

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifier
ElementName string User-friendly name
Name C string OS device name
OtherIdentifyingInfo C string[] The correlatable ID of the underlying 

logical unit
IdentifyingDescriptions C string[]
OperationalStatus uint16[]

Table 807: Related Standards for Host Discovered Resources

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
724



 Disk Partition Subprofile
EXPERIMENTAL

8.2.7.4 Disk Partition Subprofile  

8.2.7.4.1 Description
This subprofile models partition (or slice) configuration services provided by operating systems on
some platforms. Some operating systems do not use this type of partitioning. On the operating systems
that do, the operating system disk drivers treat partitions as virtual disks. The types of valid partitions
are determined by the operating system and the partitioning tools.

We need to consider several operating system variants related to operating system partitions

• On some platforms (e.g., Solaris, Windows), a raw disk volume needs to be partitioned before an
application (i.e., a filesystem) uses it. There may be just a single partition on the volume. In these
platforms, there is not a name that represents an entire disk volume if that disk volume has
multiple partitions.

• On other platforms (e.g., Linux), an application resides on a partition or on the entire disk volume.

• Different operating systems have incompatible partitioning approaches and on-disk data structures
(e.g disk labels or partition tables). This specification refers to these approaches as styles. Each
style may be supported by multiple operating systems, and most operating systems support
multiple styles. The styles supported in this subprofile are MBR (used on all operating systems
running on X86 hardware), vtoc (Solaris and other operating systems with a BSD heritage), and
EFI (an emerging style that supports multi-terabyte disk volumes).

• Some styles support multiple tiers of partitions - a partition at one tier may have sub-partitions. On
Windows, extended partitions are also a second tier with MBR partitions at each tier.

• Some operating systems utilize two tiers of partitions with different styles at different tiers. For
example, BSD-derived Unix variants running on X86 platforms: the lower tier is the X86 BIOS-
supported MBR partitions; BSD-style slices can be installed on one of the MBR partitions. 

• Some operating systems (AIX, HP_UX) have no equivalent to partitioning.

• Some partition styles have a fixed number of partitions (dependent on the partition type); the user
can’t create or delete partitions, just adjust the properties of one of the pre-defined partitions.

A partitioned disk volume has an associated partition table. The partition table contains information
about the partitions on the disk volume – the starting address, length, and (in some cases) the type of
the partition. In certain cases, a partition table can be associated with a partition; allowing multiple tiers
of partitions.

In order for storage applications (e.g., logical volume managers, filesystems, databases) to use a disk
volume, the operating system provides a name for the volume. These names appear to be filenames
but are part of one (or a few) special namespaces managed by the operating system. Windows drive
letters and Unix /dev/ directories are examples of the special namespaces. Any extent that is
consumable by storage applications is modeled a LogicalDisk; the LogicalDisk.Name property provides
this special filename. The exported extent resulting from a partition is a LogicalDisk; on systems that do
not require partitions, each usable disk volume has a LogicalDisk instance that models the operating
system name. Extents that are not available for storage applications are modeled as StorageExtent (or
StorageExtent subclasses other than LogicalDisk) instances and have a name derived from the
underlying hardware and partition number. 

Operating systems may have different partition styles. The most common style is the MBR (Master
Boot Record) style used on x86 PCs. This style supports four primary partitions on a disk volume with
an optional second-tier (extended/logical partitions). Solaris uses a style called VTOC that is derived
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 725



 

from and similar to BSD partitions. VTOC supports eight partitions. On Solaris X86, VTOC is installed in
one X86 MBR primary partition for compatibility with other x86 operating systems. EFI is a new set of
interfaces for x86 64-bit environments and includes a partitioning style. Of particular note is that EFI
partitions can exceed the two-terabyte limit associated with other partition styles. So many vendors are
migrating towards EFI as an option for supporting larger volumes. This profile includes separate
specialized subclasses for MBR, VTOC, and EFI partitions. Their relationship is summarized in
Figure 112: "Disk Partition Class Hierarchy". 

This profile includes a partition configuration service class that allows a client to create partition tables
and modify partitions. It also includes a partition configuration capabilities class that describes the
partition configuration capabilities of the system. Separate capabilities instances describe each partition
style supported on the system. There should be at most one instance of
DiskPartitionConfigurationService, as shown in Figure 113: "Disk Partition Class Diagram".

Background on X86 MBR Partitions
The terminology used in X86 partition applications is somewhat confusing and masks the actual
configurations. The MBR style supports two tiers of partitions; up to four partitions at the entire disk

Figure 112: Disk Partition Class Hierarchy

Figure 113: Disk Partition Class Diagram

GenericDiskPartition

DiskPartition

x86 MBR-only

EFIDiskPartition VTOCDiskPartition

(from the scoping profile)

ComputerSystem

PartitionTableType
SupportedSubPartitions
AllowsOverlap
PartitionTableSize

DiskPartition
ConfigurationCapabilities

SystemDevice

EntireVolume::StorageExtent

(from the scoping profile)

GenericDiskPartition

BasedOn

OS_Device_Node_for_Partition::
LogicalDisk

LogicalDiskBasedOnPartition

SystemDeviceSystemDevice

DiskPartition
ConfigurationService

Installed
PartitionTable

Installed
PartitionTable

* *

0..1 ElementCapabilities
HostedService

*

1

1

*

BasedOn

0..1
726



 Disk Partition Subprofile
volume tier and up to four partitions within each of these top-tier partitions. An MBR primary partition is
a top-tier partition that is not sub-partitioned. An MBR extended partition is a top-tier partition that is
sub-partitioned. An MBR logical partition is a sub-partition of an extended partition.

Figure 114: "Disk MBR Partition Example" represents the actual layout of an MBR drive with three
usable partitions – with Windows/DOS driver letter names. 

C: is a primary partition and F: and D: are logical partitions that share an extended partition. Note that
the partitions drive letters (C:, F:, and D:) are not in alphabetical order; the assignment of drive letters
under Windows/DOS is decoupled from the partitioning logic.

Figure 115: "MBR Partition Instance Diagram" is an instance diagram of the SMI-S classes describing
this configuration. Technically, the MBR/Partition tables could be considered to be small partitions.
operating systems generally hide these sectors and treat the effective disk volume as starting just after
the MBR. Rather than complicate the SMI-S model, these MBR areas are just ignored and the
consumable block size is reduced by the appropriate value (the PartitionTableSize property of
DiskPartitionConfigurationCapabilities). In the SMI-S model, the InstalledPartitionTable association to
the containing extent indicates the presence of a disk label and/or partition table. In Figure 115: "MBR
Partition Instance Diagram", the extent representing the entire disk volume (on the lower left) and the
top-tier partition to the right each contain a partition table and are each associated to
DiskPartitionConfigurationCapabilities via an InstalledPartitionTable association.

Figure 114: Disk MBR Partition Example

C: F: D:

0   ------------------------------------------    LBA    ------------------------------------------------------->     max

MBR/Partition Table

Partition Table

Primary Partition - leaf partition in top tier

Logical Partition - leaf partition ion second tier

Extended Partition- top tier partition containing a partition table allowing sub-partitions
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 727



 

In Figure 115: "MBR Partition Instance Diagram" the StorageExtent at the lower left represents the
entire disk volume and the two “top-tier” partitions are based on this extent. The LogicalDisk instances
at the top represent the consumable partitions C:, F:, and D:.

Figure 116: "MBR and VTOC Partition Instance Diagram" models a similar configuration where the one
top-tier partition contains a Solaris X86 installation. In this case, the instrumentation instantiates two

Figure 115: MBR Partition Instance Diagram

DiskPartition

Name = "C:"

EntireVolume::StorageExtent

DiskPartition

DiskPartition DiskPartition

BasedOn BasedOn

BasedOn BasedOn

LogicalDisk

Name = "C:"

LogicalDisk
BasedOnPartition

LogicalDisk

Name = "F:"

LogicalDisk

Name = "D:"

LogicalDisk
BasedOnPartition

LogicalDisk
BasedOnPartition

PartitionStyle = MBR

DiskPartition
ConfigurationCapabilities

InstalledPartitionTable

InstalledPartitionTable
728



 Disk Partition Subprofile
instances of DiskPartitionConfigurationCapabilities, one for the top-tier MBR partition table and one for
the vtoc partition table.

Table 808 summarizes likely values for capabilities properties and suggested Name properties on
various operating systems

Figure 116: MBR and VTOC Partition Instance Diagram

Table 808: Capabilities Properties

 Property X86 MBR vtoc EFI
Win Linux Solaris 

SPARC
Solaris X86

Overlap
Allowed

Depends on 
applications

true false

MaxCapacity 2 terabytes 
(2^32 blocks)

2 terabytes 2^64 blocks

MaxNumberOfPar-
titions

4 8 128 15 127 127

DiskPartition

Name = "C:"

EntireVolume::StorageExtent

DiskPartition

VtocDiskPartition VtocDiskPartition

BasedOn BasedOn

BasedOn BasedOn

LogicalDisk

Name = "C:"

LogicalDisk
BasedOnPartition

LogicalDisk
Name = "
 /dev/dsk/c0t0d0s0"

LogicalDisk
Name = 
  "/dev/dsk/c0t0d0s1"

LogicalDisk
BasedOnPartition

LogicalDisk
BasedOnPartition

PartitionStyle = MBR

DiskPartition
ConfigurationCapabilities

InstalledPartitionTable

InstalledPartitionTable

PartitionStyle = vtoc

DiskPartition
ConfigurationCapabilities
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 729



 

The sizes and starting/ending addresses shall be consistent between the associated LogicalDisk,
DiskPartition, and LogicalDisk instances. Figure 117: "Partition Instance Diagram for Size/Address
Rules" shows the classes with size information.

In this diagram, partitions P1,... Pn are all based on the same underlying disk volume (or partition) SE1.

• The NumberOfBlocks shall be the same for a LogicalDisk and its underlying partition (for example,
LD1 and P1 in the diagram).

• The StartingAddress in the LogicalDiskBasedOnPartition associations (B1 in the diagram)
between a LogicalDisk and its underlying partition will be 0. The EndingAddress in this association
shall be one less than NumberOfBlocks from either the LogicalDisk or partition.

• The NumberOfBlocks for each partition (P1, ... Pn) shall be equal to the values of EndingAddress-
StartingAddress+1 of the underlying LogicalDiskBasedOnPartition association (B2 in the diagram).

• DiskPartitionConfigurationCapabilities.PartitionTableSize shall hold the total number of blocks
consumed by metadata (volume label, boot record, and partition tables) for the associated
StorageExtent. For MBR and VTOC styles, this is a fixed value. For EFI, this value could in theory
be larger for large extents. Separate instances of DiskPartitionConfigurationCapabilities shall be
instantiated as needed to allow different values of PartitionTableSize.

• The size of maintenance tracks or cylinders shall not be included StorageExtent.NumberOfBlocks.
This size may be included in DiskPartitionConfigurationCapabilities.PartitionTableSize.

• If DiskPartitionConfigurationCapabilities.OverlapAllowed is false, then the sum of the
NumberOfBlocks properties for all partitions plus
DiskPartitionConfigurationCapabilities.PartitionTableSize shall not exceed the value of
NumberOfBlocks for the underlying StorageExtent. Other than that, there is no guaranteed
relationship between StorageExtent.NumberOfBlocks and the sum of the NumberOfBlock values
for partitions BasedOn the StorageExtent.

8.2.7.4.2 Health and Fault Management Considerations
No health information is required in LogicalDisk or partition instances. Clients should assume that the
health-related properties of the underlying StorageExtent apply to all partitions and LogicalDisks based
on that extent.

Figure 117: Partition Instance Diagram for Size/Address Rules

SE1: StorageExtent

P1:GenericDiskPartition Pn:GenericDiskPartition

B2: BasedOn

LD1:LogicalDisk LDn:LogicalDisk

B1: LogicalDisk
BasedOnPartition

B1: LogicalDisk
BasedOnPartition

InstalledPartitionTable

DiskPartition
ConfigurationCapabilities

. . .

. . .
730



 Disk Partition Subprofile
8.2.7.4.3 Supported Subprofiles and Packages
None

8.2.7.4.4 Methods of the Profile

8.2.7.4.4.1 SetPartitionStyle
This method installs a partition table on an extent of the specified partition style, creates DiskPartition
instances if SettingStyleInstantiatedPartitions is non-zero, and BasedOn associations between the
underlying extent and the new partition instances. As a side effect, the usable block size of the
underlying extent is reduced by the block size of the metadata reserved by the partition table and
associated metadata. This size is in the PartitionTableSize property of the associated
DiskPartitionConfigurationCapabilities instance.

 uint32 SetPartitionStyle (

       [IN, Description (

           "A reference to the extent (volume or partition) where "

           "this style (partition table) will be installed.")]

    CIM_StorageExtent REF Extent,

       [IN, Description (

           "A reference to the "

           "DiskPartitionConfigurationCapabilities instance "

           "describing the desired partition style.")]

    CIM_DiskPartitionConfigurationCapabilities REF PartitionStyle );

8.2.7.4.4.2 CreateOrModifyPartition
This method creates a new partition if the Partition parameter is null or modifies the partition specified.
If the starting and ending address parameters are null, the resulting partition will occupy the entire
underlying extent. If a the DeviceFileName parameter is non-null, a LogicalDisk instance is created and
associated via LogicalDiskBasedOnPartition to the partition. The underlying extent shall be associated
to a capabilities class describing the installed partition style (partition table); this association is
established using 

  uint32 CreateOrModifyPartition (

         [IN, Description (

             "A reference to the underlying extent the partition is "

             "base on.")]

      CIM_StorageExtent REF extent,

         [IN, Description (

             "The starting block number.")]

      uint64 StartingAddress,

         [IN, Description (

             "The ending block number.")]

      uint64 EndingAddress,

         [IN, Description (

             "The platform-specific special file name to be assigned "

             "to the LogicalDisk instance BasedOn the new "
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 731



 

             "DiskPartition instance.")]

      string DeviceFileName,

         [IN, OUT, Description (

             "A reference an existing partition instance to modify or "

             "null to request a new partition.")]

      CIM_GenericDiskPartition REF Partition);

Delete Instance to delete DiskPartition (and everything south) 

8.2.7.4.5 Client Considerations and Recipes
A client discovers partition configuration support by looking for instances of
DiskPartitionConfigurationService. If no service instances are available, then this operating system
does not support disk partitions and the client can assume that any LogicalDisk instance is consumable
by applications (such as volume managers or filesystems). For operating systems that do support
partitioning, the client can discover whether a particular extent is partitioned by looking for a
InstalledPartitionTable instance associated with the extent. The client can discover the existing partition
configuration by following BasedOn associations between the extent and GenericDiskPartition
instances.

For each discovered service, there shall be one or more instances of
DiskPartitionConfigurationCapabilities. There is exactly one capabilities instance per partition table
type. If multiple capabilities instances are discovered, the client should look at the
SupportedExtentTypes property to determine the services that apply to entire disk volumes and those
that apply to partitions.

8.2.7.4.5.1 Create New Partition Using All Available Space at End of Volume
//

// Description:

// Create New Partition Using All Available Space at End of Volume

//

// Preconditions:

// $Host holds a ref to the (top-level) ComputerSystem

// $Disk holds a reference to the LogicalDisk (or StorageExtent) instance 

// representing the disk or disk volume.  $Disk must either be “raw”

// (no volume label), or have some partitioned space at the end.

// Locate instances of CIM_DiskPartitionConfigurationService.

// Note that HDR does not support the multiple system SP,

// so all services must be hosted on $Host.  

$Services = AssociatorNames($Host,

“CIM_HostedService”,

“CIM_DiskPartitionConfigurationService”,

“Antecedent”,// Role

“Dependent”)// Result Role

// If no service instances are found, then this platform does

// not support partitioning - so exit. 

if ($Service->[].size == 0) {
732



 Disk Partition Subprofile
  <EXIT This system does not support SMI-S disk partitioning>

  }

// Look for CIM_DiskPartitionConfigurationCapabilities 

// associated to $Disk.  

$Capabilities->[] = AssociatorNames($Host->,// ObjectName

“CIM_ElementCapabilities”,// AssocClass

“CIM_DiskPartitionConfigurationCapabilities”,// ResultClass

“ManagedElement”,   // Role

“Capabilities”)    // ResultRole

if ($Capabilities != null && $Capabilities->[].size > 1) {

    <ERROR - must not be more than 1 

      CIM_DiskPartitionConfigurationCapabilities 

         associated with an extent>

#CreateOneBigPartition = false

if ($Capabilities == null || $Capabilities->[].size == 0 ) {

    // No Capabilities instance found assocaited to $Disk, this disk has no 

    // volume label, create a label with SetPartitionStyle() using

    // the first service instance found.

    // Locate the first Capabilities instance associated with the

    // service.  If none, then error.

    $Capabilities->[] = 

    // If no capabilities associated to service, then error exit

    %InArguments[“Extent”] = $Disk

    %InArguments[“Capabilities”] - $Capabilities->[0]

    #MethodReturn = $Services[0]->InvokeMethod(

    $Service->[0],

    “SetPartitionStyle”,

    %InArguments)

    if (#MethodReturn != 0) {

        <ERROR - SetPartitionStyle non-zero method return>

    }

    #CreateOneBigPartition = true;

    }

// locate partitons based on this disk

$BasedOns[] = References(

$Disk->[],

“CIM_BasedOn”, // Assoc class

“Antecedent”,// my role

false, 

false, 

{“StartingAddress”, “EndingAddress”})
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 733



 

    if ($BasedOns[] == null || $BasedOns->[].size == 0) {

// If $Disk has no associated partitions, create one using

// entire disk with CreateOrModifyPartition()

#CreateOneBigPartition = true;

    }

if (#CreateOneBigPartition == true) {    

// null starting and ending address parameters mean

// “use entire disk”. 

// null Partition REF parameter means Create

        %InArguments[“Extent”] = $Disk 

        // all other parms default to “use entire extent”

    #MethodReturn = $Services[0]->InvokeMethod(

    $Services->[0],

    “CreateOrModifyPartition”,

    %InArguments)

        if(#MedthodReturn != 0)  { 

            <ERROR! CreateOrModifyPartition full disk method Failed >

        }

    }

    

// Look for available space at end of disk

// Note that the order of partitions in $BasedOns is not necessarily 

// the same as the order of the addresses in the partitions.

#CreatePartPossible = true;

// LastBlockInParts in the highest block address in any partition

#LastBlockInParts = $Capabilities.PartitionTableSize

$Capabilities = <get capabilities instance associated with this disk>

for (#i in $BasedOns->[]) {

    // if this partition goes to the end of the underlying extent ...

    if ($BasedOns[#i].EndingAddress == $Disk.NumberOfBlocks-1) {

// if OverlapAllowed and this partitions takes up entire

// consumable disk space, then this is a special backup

// partition - the condition below is the opposite...

if ((!$Capabilities.OverlapAllowed) || 

  ($BasedOns->[#i].StartingAddress > 

             $Capabilities.PartitionTableSize)) {

            #CreatePartPossible = false

}

    } else {

        // This partition ends after others we’ve seen (LastBlockInParts)

        // Update LastBlockInParts with the new address

if ($BasedOns[#i].EndingAddress > #LastBlockInParts) {

  #LastBlockInParts = $BasedOns[#i].EndingAddress

}

    }
734



 Disk Partition Subprofile
}  

if (#CreatePartPossible) {

    if ($BasedOns->[].size() >= $Capabilities.MaxNumberOfPartitions) {

        // then we can’t create any more partitions - exit

        exit

    } else {

   // Get the service associated with $Capabilities

        $Service = ..

        $Services = AssociatorNames($Host,

    “CIM_InstalledPartitionTable”,

            “CIM_DiskPartitionConfigurationService”,

    “Antecedent”,// Role

    “Dependent”)// Result Role

        %InArguments[“Extent”] = $Disk;

%InArguments[“StartingBlock”] = #LastBlockInParts + 1

        // EndingBLock will default to end of disk

    #MethodReturn = InvokeMethod(

    $Services->[0],

    “CreateOrModifyPartition”,

    %InArguments)

        if(#MedthodReturn != 0)  { 

            <ERROR! CreateOrModifyPartition park disk method Failed >

        }

    }  

} else {

    <EXIT - no space at end of disk>

}

8.2.7.4.6 Registered Name and Version
Disk Partition version 1.1.0

8.2.7.4.7 CIM Server Requirements

Table 809: CIM Server Requirements for Disk Partition

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 735



 

8.2.7.4.8 CIM Elements

8.2.7.4.8.1 CIM_BasedOn
Created By : Static or External
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: true

8.2.7.4.8.2 CIM_DIskPartitionConfigurationCapabilities
Created By : Static
Modified By : Static
Deleted By : Static

Table 810: CIM Elements for Disk Partition

Element Name Description
Mandatory Classes

CIM_BasedOn (8.2.7.4.8.1)
CIM_DIskPartitionConfigurationCapabilities 
(8.2.7.4.8.2)
CIM_DIskPartitionConfigurationService (8.2.7.4.8.3)
CIM_ElementCapabilities (8.2.7.4.8.4)
CIM_GenericDiskPartition (8.2.7.4.8.5)
CIM_HostedService (8.2.7.4.8.6)
CIM_InstalledPartitionTable (8.2.7.4.8.7)
CIM_LogicalDisk (8.2.7.4.8.8)
CIM_LogicalDiskBasedOnPartition (8.2.7.4.8.9)
CIM_StorageExtent (8.2.7.4.8.10)
CIM_SystemDevice (8.2.7.4.8.11)

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_GenericDiskPartition

Partition Creation

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_GenericDiskPartition

Partition Deletion

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_GenericDiskPartition

Partition Modification

Table 811: SMI Referenced Properties/Methods for CIM_BasedOn

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_StorageExtent
Dependent CIM_StorageExtent
StartingAddress uint64
EndingAddress uint64
736



 Disk Partition Subprofile
Class Mandatory: true

8.2.7.4.8.3 CIM_DIskPartitionConfigurationService
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.4.8.4 CIM_ElementCapabilities
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.4.8.5 CIM_GenericDiskPartition
Created By : Static or External
Class Mandatory: true

Table 812: SMI Referenced Properties/Methods for CIM_DIskPartitionConfigurationCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

PartitionStyle uint16
ValidSubpartitionStyles uint16[]
MaxNumberOfPartitions uint16
MaxCapacity uint64
OverlapAllowed boolean
PartitionTableSize uint32

Table 813: SMI Referenced Properties/Methods for CIM_DIskPartitionConfigurationService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SetPartitionStyle()
CreateOrModifyPartition()

Table 814: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement
Capabilities CIM_Capabilities

Table 815: SMI Referenced Properties/Methods for CIM_GenericDiskPartition

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 737



 

8.2.7.4.8.6 CIM_HostedService
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true
No specified properties or methods.

8.2.7.4.8.7 CIM_InstalledPartitionTable
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.7.4.8.8 CIM_LogicalDisk
Created By : Static or External
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: true

DeviceID string
Name string
OperationalStatus uint16[]

Optional Properties/Methods
NumberOfBlocks uint64

Table 816: SMI Referenced Properties/Methods for CIM_InstalledPartitionTable

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_DiskPartitionConfig
urationCapabilities

Dependent CIM_StorageExtent

Table 817: SMI Referenced Properties/Methods for CIM_LogicalDisk

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
Name string
NameFormat uint16 OS Device Name
NameNamespace uint16 OS Device Namespace
OperationalStatus uint16[]

Table 815: SMI Referenced Properties/Methods for CIM_GenericDiskPartition

Property Flags Type Description & Notes
738



 Disk Partition Subprofile
8.2.7.4.8.9 CIM_LogicalDiskBasedOnPartition
Created By : Static or External
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: true

8.2.7.4.8.10 CIM_StorageExtent
Class Mandatory: true

8.2.7.4.8.11 CIM_SystemDevice
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

Optional Properties/Methods
NumberOfBlocks uint64

Table 818: SMI Referenced Properties/Methods for CIM_LogicalDiskBasedOnPartition

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_GenericDiskPartiti
on

Dependent CIM_LogicalDisk

Table 819: SMI Referenced Properties/Methods for CIM_StorageExtent

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
Name string
OperationalStatus uint16[]

Optional Properties/Methods
NumberOfBlocks uint64

Table 820: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice

Table 817: SMI Referenced Properties/Methods for CIM_LogicalDisk

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 739



 

8.2.7.4.9 Related Standards

EXPERIMENTAL

Table 821: Related Standards for Disk Partition

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
740



 SCSI Multipath Management Subprofile
EXPERIMENTAL

8.2.7.5 SCSI Multipath Management Subprofile  

8.2.7.5.1 Description
Multipath access to SCSI devices is handled in a similar way on many operating systems. As viewed
from host adapters, each combination of host adapter (initiator) port, target device port, and logical unit
appears to be a separate logical unit. For example, each path to a multipath device appears to be a
separate device. Multipath drivers aggregate these into a single device that acts to storage applications
like a single path device, but provides administrative interfaces for load balancing and failback.

Host Discovered Resources incorporates multipath logic as part of the mapping from logical (operating
system) resources to hardware resources. If the discovered block storage has a single path, then
LogicalIdentity associates the discovered StorageVolume instance with the OS/Partition StorageExtent/
LogicalDisk representing the underlying volume. The subclass of StorageExtent follows the extent
naming conventions described in “Host Disk Extent Class Name Conventions” in 8.2.7.3.1.

The rest of the examples in this section use LogicalDisks since multipath disk arrays are more
common, but the same approach can be extended to other storage types. For example, a TapeDrive
can model multipath access to a tape drive.

MultipathConfigurationCapabilities allows clients to determine which features and capabilities are
exposed. SCSIPathConfigurationService may provide methods for management load balancing and
failback. A system may have multiple multipath drivers with different capabilities and interfaces – each
driver is modeled with a separate instance of MultipathConfigurationCapabilities and
SCSIPathConfigurationService, as illustrated in Figure 118: "Multipath Management Class Diagram".

Figure 118: Multipath Management Class Diagram

SCSIPath
ConfigurationService

SetTPGAccess()
SetLoadBalanceAlgorithm()
AssignLogicalUnitToPortGroup
SetOverridePath()
CancelOverridePath()

SCSIMultipath
ConfigurationCapabilities

SupportedLoadBalanceTypes
CanSetPathGroupAccess
ExposesPathDeviceFiles
DefaultLoadBalanceType

SoftwareIdentity
(Driver)

Manufacturer
VersionString

SoftwareIdentity
(MP API plugin)

api rev
Manufacturer
VersionString

ServiceSoftware
Identity

ServiceSoftware
Identity

Element
Capabilities

LogicalDisk
(or other SCSI logical 

unit)

(from HDR profile)

ServiceAvailable
ToElement

Target Port:
SCSIProtocolEndpoint

(from HDR profile)

Initiator Port :
SCSIProtocolEndpoint

(from HDR profile)

Product

Concrete
Component

ComputerSystem

(from HDR profile)

Hosted
Service

1

*

SCSITarget
PortGroup

MemberOfCollection

ConcreteDependency

*

*

SCSIMultipathSettings

Element
SettingData

*

1

*

*

*

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 741



 

.Figure 119: "Four Path Instance Diagram" shows the relationship of target and initiator ports

(SCSIProtocolEndpoint instances) and a disk (LogicalDisk) with four paths.
SCSIInitiatorTargetLogicalUnitPath instances represent each path and associate each permutation of
initiator SCSIProtocolEndpoint, target SCSIProtocolEndpoint, and the LogicalDisk. 
Asymmetric Multipath Target Devices
Some devices implement asymmetric multipath access, i.e., in non-failover mode, each LUN is only
available through certain target ports, but can be access through other ports during failover. The SMI-S
model uses the SPC-3 interface for asymmetric access. This model has target port groups – collections
of target ports sharing a common access state for a group of logical units. Mutipath drivers for
asymmetric access devices optionally provide an interface to “failback” after a failover condition has
been corrected. The SMI-S interface follows the SPC-3 interface; the caller shall specify the desired
access state for each target port group (TargetPortGroup). This interface is the SetTPGAccess method
of SCSIPathConfigurationService. Driver support for this method (and other methods and capabilities)
is indicated by properties of MultipathConfigurationCapabilities.

In the past, devices exposed vendor-specific SCSI multipath interfaces, so drivers with device-specific
logic were shipped with target devices, logical volume managers, and HBAs. The SPC-3 have been
enhanced to allow more interoperability and operating systems are including multipath support for any
target that complies with the standards. However, there are still cases where a single customer host
includes multiple multipath drivers, each with different capabilities and interfaces. And a single target
device may be connected in such a way that multiple multipath drivers are involved at multiple places in
the driver stack.

The SNIA Multipath Management API provides an interoperable interface to multipath driver features.
Each multipath driver includes a corresponding plug-in for the multipath API. The SNIA Multipath
Management Subprofile utilizes the Multipath API to interface to each multipath driver and provide all
the associations from the discovered hardware resources to the consumable operating system
resources.

The instrumentation shall instantiate SCSIInitiatorTargetLogicalUnitPath instances representing each
path to SCSI logical units (LogicalDevice subclasses) attached to the hosting system.

Figure 119: Four Path Instance Diagram
Initiator Port 1:

SCSIProtocolEndpoint
Initiator Port 2:

SCSIProtocolEndpoint

 

Target Port  1:
SCSIProtocolEndpoint

Target Port 2:
SCSIProtocolEndpoint

LogicalDisk

Each diamond is an instance of the  
SCSIInitiatirTargetLogicalUnitPath 

association representing a different path 
to the LogicalDisk.
742



 SCSI Multipath Management Subprofile
The instrumentation shall instantiate at least one instance of SCSIMultipathConfigurationCapabilities
for each multipath API plug-in registered on the system.

If the multipath API plug-ins provide support for interfaces to change load balancing and force failover,
the instrumentation should support these methods.

8.2.7.5.2 Health and Fault Management Considerations
This subprofile specifies logical paths between elements (ports and logical units). The health and fault
management information for these elements is specified in the profiles for those elements - for
example, port subprofiles.

8.2.7.5.3 Cascading Considerations
None.

8.2.7.5.4 Supported Subprofiles and Packages
None

8.2.7.5.5 Methods of the Profile
All methods are part of SCSIPathConfigurationService and are optional. 

SCSIPathConfigurationService.SetTPGAccess
This method allows a client to manually failover or failback. The parameters are: 

• LogicalDevice - A reference to an instance of a subclass of LogicalDevice representing the SCSI 
logical unit where the command shall be sent.

• TargetPortGroups - Array of references to instances of SCSITargetPortGroup. All the referenced 
TargetPortGroup instances shall be part of the same target device

• AccessStates[] - An array of desired access states. Each access state in this array is the desired 
access state for the SCSITargetPortGroup in the corresponding entry in the TargetPortGroups 
parameter. The Active value is not part of SPC-3; it is a convenience for clients that are not sure 
whether to specify Active/Optimized of Active/Non-optimized. The instrumentation selects a value 
based on historic information, knowledge of the target configuration, or trial and error. Note that 
SCSITargetPortGroup.AccessState includes the value 'Transitioning' that is excluded here - a 
caller cannot request transitioning, though it may be reported by a target device.

SCSIPathConfigurationService.SetLoadBalanceAlgorithm
This method requests that the target change the load balance algorithm for the referenced
LogicalDevice instance. The parameters are

• LogicalDevice - a reference to an instance of a subclass of LogicalDevice representing a SCSI 
logical unit.

• LoadBalanceAlgorithm - The desired load balance algorithm - possible values are “Unknown”, 
“Other”, “No Load Balancing”, “Round Robin”, “Least Blocks”, “Least IO”, or “Product Specific” 

• OtherLoadBalanceAlgorithm - When LoadBalanceAlgorithm is 'Other', this parameter specifies a 
description of the load balancing algorithm. When LoadBalanceAlgorithm is 'Product Specific', this 
property provides a string specifying the vendor/product/version of the ManagedElement.

SCSIPathConfigurationService.AssignLogicalUnitToPortGroup 
This method allows an administrator to assign a logical unit to a target port group. Each LU is typically
associated with two target port groups, one in active state and one in standby state. The result of this
method is that the LU associations change to a pair of target port groups. Only valid if the target device
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 743



 

supports asymmetric access state and SCSIMultipathConfigurationCapabilities SupportsLuAssignment
is set. The parameters are:

• LogicalDevice - a reference to an instance of a subclass of LogicalDevice representing a SCSI 
logical unit.

• TargetPortGroup - A reference to a target port group. The Target Port Group should be in an active 
state.

SCSIPathConfigurationService.SetOverRidePath 
This method allows an administrator to temporarily disable load balancing for a specific logical unit. The
path specified as a parameter shall have its AdministrativeOverride property set to 'Overriding' and all I/
O to the logical unit shall be directed to this path. All other paths to this logical unit shall have
AdministrativeOverride set to 'Overridden'. There is one parameter:

• Path - A reference to a SCSIInitiatorTargetLogicalUnitPath.

SCSIPathConfigurationService.CencelOverRidePath 
This method clears an override path as set in SetOverridePath and load balancing is enabled. All paths
to the logical unit specified as a parameter shall have AdministrativeOverride property set to 'No
override in effect’. There is one parameter:

• LogicalUnit -A reference to a SCSIInitiatorTargetLogicalUnitPath.

After an override is canceled, the previous load balance algorithm should be restored.

8.2.7.5.6 Client Considerations and Recipes

8.2.7.5.6.1 Discover All Paths to a Disk Volume
)// DESCRIPTION

//

// This recipe discovers the topology of HW resources attached to the

// current host system. Host controllers (HBAs) and attached volumes

// (disks) supporting SCSI proptocol are reported.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//

// 1. A reference to the top-level ComputerSystem in the HDR Profile

//    is known as $Host->

//

// Step 1. Get name(s) of the SCSIProtocolEndpoints representing 

// SCSI initiators on the host system.

//

$SPEs->[] = AssociatorNames($Host->,// ObjectName

“CIM_HostedAccessPoint”,// AssocClass

“CIM_SCSIProtocolEndpoint”,// ResultClass

“Antecedent”,   // Role

“Dependent”)    // ResultRole

        

$Initiators->[] = <get the subset of $SPEs with Role = “Initiator”>
744



 SCSI Multipath Management Subprofile
if ($Initiators->[] == null || $Initiators->[].length == 0) {

<EXIT: No SCSI Initiators on the host system!>

}

// Determine the topology of inititors, targets, and volumes.

//

for (#i in $Initiators->[]) {

// Step 2. Find the paths attached to each iniitiator 

        // SCSIProtocolEndpoint.  Each path includes a REF to

        // a target SCSIProtocolEndpoint and to a logical unit.

$Paths[] = References(

$Initiators->[#i],// ObjectName

“CIM_SCSIInitiatorTargetLogicalUnitPath”, // ResultClass

“Initiator”,            // Role

false, // IncludeQualifiers

false, // IncludeClassOrigin

{“LogicalUnitNumber”})  // PropertyList

// All members of Paths[] have the same Initiator REF.  

        // Sort the paths so that all members with identical 

        // Target REFs are consecutive.

        $SortedPaths->[] = <Paths[] sorted by Target property>

        // Step 3. Find all the logical units attached to an

        // initiator/target pair and verify that each has

        // a unique logical unit number.

        #l = 0;         // the index of LU numbers to test

        $CurrentTarget = <initialize to null>

        for  (#p in $SortedPaths->[]) {

                // Each time a new target REF is discovered, save it

                // in $CurrentTarget and empty the list if LU numbers.

                if ($CurrentTarget != $SortedPaths[#p]->Target) {

                        $CurrentTarget = $SortedPaths[#p]->Target

                        #LUNumbers[] = {};      // empty the list

                }                        

                if contains($SortedPath->LogicalUnitNumber, #LUNumbers[]) {

                        <ERROR: logical unit number already in use>

                } else {                         

                        LUNumbers[#l++] = $SortedPath->LogicalUnitNumber

                }

                // Other interesting bits of info available

                // $SortedPaths->State

                // $SortedPaths->LogicalUnit is a REF to the 

                //  LogicalDevice subclass (LogicalDisk, TapeDrive)

                //  where Name is a logical unit correlatable ID

                // $CurrentTarget is a ref to the target 

                //  SCSIProtocolController where ConnectionType

                //  is the transport and Name is the transport-

                //  specific correlatable ID (e.g. PortWWN)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 745



 

                // $Initiators->[#i] is a ref to the initiator

                //  SCSIProtocolController

        }

}

8.2.7.5.6.2 Force Failover or change Load Balancing on a volume
// 

// DESCRIPTION:

// Set the desired path for a multipath disk volume

//

// Preconditions:

//  $Host - Reference to the hosting system

//  $Path  - ref to SCSIInitiatorTargetLogicalUnitPath instance - desired path

//

/  Notes:

// If the volume is asymmetric, failover applies.  If symmetric, then 

// we use a driver override to set the path.  

// 

// $Vol  = LU REF from $Path

$Vol = $Path->LogicalUnit

// Get SCSIPathConfigurationService instances associated 

// to $Vol via ServiceAvailableToElement- ERROR if not exactly 1

$Services->[] = AssociatorNames($Vol,  // this is a ref

“CIM_ServiceAvailableToElement”,

“CIM_SCSIPathConfigurationService”,

null,null)

if ($Services == null || $Services->[].size != 1) {

    <ERROR: must not be more than 1 

      CIM_SCSIPathConfigurationService

         associated with an LogicalDevice/volume>

}

// Get SCSIMultipathConfigurationCapabilities instances

// associated to $Service - Error if not exactly one

$Capabilities->[] = AssociatorNames($Services->[0],// ObjectName

“CIM_ElementCapabilities”,// AssocClass

“CIM_SCSIMultipathConfigurationCapabilities”,// ResultClass

“ManagedElement”,   // Role

“Capabilities”)    // ResultRole

if ($Capabilities == null || $Capabilities[].length != 1) {

    <ERROR: must be 1 CIM_SCSIMultipathConfigurationCapabilities instance

        associated with each SCSIPathConfigurationService>

}

// Look at CIM_SCSIMultipathSettings.Asymmetric to determine 

// whether the Volume is Asymmetric MP.  If no SCSIMultipathSettings

// is associated to the volume, or if Assymmetric property is
746



 SCSI Multipath Management Subprofile
// not-present/null, then assume Symmetric

$SettingDatas-[] = AssociatorNames($Vol,

         “CIM_ElementSettingData”,

 “CIM_SCSIMultipathSettings”,

 “null,null)

If ($SettingDatas == null || $SettingDatas[].length != 1 ||

     $SettingDatas->[0].Asymmetric == null ||  

     $SettingDatas->[0].Asymmetric == false) {

    // A Symmetric MP volume has multiple, active paths.

    // Use SetOverridePath to make just one path active

    if ($Capabilities->[0].CanOverridePaths == false) {

      <EXIT: Instrumentation does not support OverridePaths method>

    }  

    // set up and invoke the method

    %InArguments[“Path”]=$Path

    #MethodReturn = InvokeMethod(

$Services->[0],

“SetOverridePath”,

%InArguments,

%OutArguments)

    if(#MethodReturn != 0) {

        <ERROR! SetOverridePath method Failed >

    }

} else {

    // The Volume has Assymmetric MP access

    if (Capabilities->[0].CanSetTPGAccess == false) {

      <EXIT: Instrumentation does not support SetTPGAccess method>

    }  

    // Find the TargetPortGroups containing $Vol  

    $TPGs->[] = AssociatorNames($Vol,

    “CIM_ConcreteDependency”,

    “CIM_SCSITargetPortGroup”,

    “Dependent”, “Antecedent”)

    // Some of these TPGs may not include the Target Port in $Path,

    // locate one the does.

    #foundTPG = false

    for i in $TPGs->[] {

        $TargetPorts->[] = AssociatorNames($TPGs->[#i],

                              “CIM_MemberOfCollection”,

      “CIM_LogicalPort”,

      “Collection”,”Member”)

        if contains($Path->Target, $TargetPorts) {

            $TheTPG = $TPGs->[#i]

    #foundTPG = false

    break

        }

    }
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 747



 

    %LogicalUnit[“LogicalUnit”] = $Vol

    %InArguments[“TargetPortGroups”] = {$TheTPG}

    %InArguments[“AccessStates”] = {“6”} // Active      

    #MethodReturn = InvokeMethod(

$Services->[0],

“SetTPGAccess”,

%InArguments,

%OutArguments)

    if(#MethodReturn != 0) {

        <ERROR! SetSetTPGAccess method Failed >

    }

    // To be completely accurate, we should include SetOverridePath

    // method call here; in theory a TPG can support multiple ports.

    // But in practice, Asymmetric arrays have one port per TPG.

}

8.2.7.5.6.3 Change a LogicalDisk’s Load Balancing Algorithm
// 

// DESCRIPTION:

// Set the load balance algorithm for a multipath disk volume

//

// Preconditions:

//  $Host - Reference to the hosting system

//  $Vol - Reference to the volume

//

/  Notes:

// The currentload balance type could be a driver-wide default (from 

// SCSIMultipathConfigurationCapabilities), or a per-LU value from 

// SCSIMultipathSettings associated with $Vol.

// Once we get the current value, we search the list of supported values for 

// a different supported value, then use it to call SetLoadBalanceAlgorithm

// 

// get SCSIPathConfigurationService instances associated to $Vol 

// via ServiceAvailableToElement- ERROR if not exactly 1

$Services->[] = AssociatorNames($Vol,  // this is a ref

“CIM_ServiceAvailableToElement”,

“CIM_SCSIPathConfigurationService”,

null,null)

if ($Services == null || $Services->[].size != 1) {

    <ERROR: must not be more than 1 

      CIM_SCSIPathConfigurationService

         associated with an LogicalDevice/volume>

}

// 3. Set $Capabilities to the instance SCSIMultipathConfigurationCapabilities 

// associated to $Service - Error if not exactly one

$Capabilities->[] = AssociatorNames($Services->[0],// ObjectName

“CIM_ElementCapabilities”,// AssocClass
748



 SCSI Multipath Management Subprofile
“CIM_SCSIMultipathConfigurationCapabilities”,// ResultClass

“ManagedElement”,   // Role

“Capabilities”)    // ResultRole

if ($Capabilities == null || $Capabilities[].length != 1) {

    <ERROR: must be 1 CIM_SCSIMultipathConfigurationCapabilities instance

        associated with each SCSIPathConfigurationService>

}

// the next two tests are not required, but will help diagnostics

if $Capabilities->[0].OnlySupportsSpecifiedProducts == true {

    <EXIT: the multipath instrumentation only supports 1 devices-specific

       load balance algorithm which cannot be changed>

}    

if sizeof($Capabilities->[0].SupportedLoadBalanceTypes) == 1 {    

    <EXIT: the multipath instrumentation only supports 1 

       load balance algorithm which cannot be changed>

}    

// Get the CIM_SCSIMultipathSettings instance associated with $Vol

$SettingDatas->[] = AssociatorNames($Vol,

         “CIM_ElementSettingData”,

 “CIM_SCSIMultipathSettings”,

 “null,null)

if ($SettingDatas != null || $SettingDatas[].length > 1 ) {

    <ERROR: must be 0 or 1 CIM_SCSIMultipathSettings instance

        associated with each SCSI logical unit>

}

// Determine the current load balance type

// The default from Capabilities applies unless overridden

#MyLoadBalanceType = $Capabilities->[0].DefaultLoadBalanceType

// If SettingData is associated to $Vol, it may override load balance

if (($SettingDatas != null || $SettingDatas[].length == 1 ) 

          // SettingData load balance 7 means use Capabilities default

       && $SettingDatas->[0].CurrentLoadBalanceType != “7”) { 

    // Override with value from settings    

    #MyLoadBalanceType = $SettingDatas->[0].CurrentLoadBalanceType

    }

#newTypeFound = false

for i in $Capabilities->[0].SupportedLoadBalanceTypes {

  if $Capabilities->[0].SupportedLoadBalanceTypes[#i] != “0” // Unknown

     && $Capabilities->[0].SupportedLoadBalanceTypes[#i] != #MyLoadBalanceType {

     // We found a supported locad balance type other than the 

     // current one.  We can live with “No Load Balance” (2),

     // but just for kicks, try to find another one

     #newTypeFound = true

     %InArguments[“LoadBalanceAlgorithm” = 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 749



 

         $Capabilities->[0].SupportedLoadBalanceTypes[#i]

     if $Capabilities->[0].SupportedLoadBalanceTypes[#i] == “1” { // Other

         %InArguments[“OtherLoadBalanceAlgorithmDescription”] = 

             $Capabilities->[0].OtherSupportedLoadBalanceTypes[#i]

     }         

     if $Capabilities->[0].SupportedLoadBalanceTypes[#i] != “2” { // no LB

        break

     }

   }  

}

if #newTypeFound == false {

    <EXIT: no supported load balance types found other than the current type>

}  

// invoke the SetLoadBalanceAlgorithm method

%InArguments[“LogicalDevice”] = $Vol

#MethodReturn = InvokeMethod(

    $Services->[0],

    “SetLoadBalanceAlgorithm”,

    %InArguments,

    %OutArguments)

if(#MethodReturn != 0) {

    <ERROR! SetLoadBalanceAlgorithm method Failed >

}

8.2.7.5.7 Registered Name and Version
Multipath Management version 1.1.0
750



 SCSI Multipath Management Subprofile
8.2.7.5.8 CIM Server Requirements

8.2.7.5.9 CIM Elements

8.2.7.5.9.1 CIM_SCSIInitiatorTargetLogicalUnitPath
Associates initiator and target SCSIProtocolEndpoints to a SCSI logical unit (LogicalDevice)
Created By : External
Modified By : External
Deleted By : External

Table 822: CIM Server Requirements for Multipath Management

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 823: CIM Elements for Multipath Management

Element Name Description
Mandatory Classes

CIM_SCSIInitiatorTargetLogicalUnitPath (8.2.7.5.9.1) Associates initiator and target SCSIProtocolEndpoints 
to a SCSI logical unit (LogicalDevice)

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_SCSIInitiatorTargetLogicalUnitPath

Path creation

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_SCSIInitiatorTargetLogicalUnitPath 

Path deletion

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA 
CIM_SCSIInitiatorTargetLogicalUnitPath AND Source-
Instance.State <> PreviousInstance.State

Path State change

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA 
CIM_SCSIInitiatorTargetLogicalUnitPath AND Source-
Instance.AdministrativeWeight <> PreviousIn-
stance.AdministrativeWeight

Path AdminsitrativeWeight change

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA 
CIM_SCSIInitiatorTargetLogicalUnitPath AND Source-
Instance.AdministrativeOverride<> PreviousIn-
stance.AdministrativeOverride

Path AdministrativeOverride change
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 751



 

Class Mandatory: true

8.2.7.5.10 Related Standards

EXPERIMENTAL

Table 824: SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Property Flags Type Description & Notes
Mandatory Properties/Methods

LogicalUnit CIM_LogicalDevice A reference to a LogicalDevice
Initiator CIM_SCSIProtocolEndp

oint
A reference to the initiator 
CIM_SCSIProtocolEndpoint

Target CIM_SCSIProtocolEndp
oint

A reference to the target 
CIM_SCSIProtocolEndpoint

AdministrativeWeight M uint32
State uint32
AdministrativeOverride uint16

Optional Properties/Methods
OSDeviceName string

Table 825: Related Standards for Multipath Management

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SPC-3 21a Novem-

ber 2004
T10 (to be published as ISO/IEC 
14776-313)
752



 Array Profile
8.2.8 Storage Profiles

8.2.8.1 Array Profile

8.2.8.1.1 Description
The Array model profile describes external RAID arrays and disk storage systems. The key classes are:

• Computer Systems that represent the array as a whole;

• Storage Volumes that are equivalent to SCSI Logical Units visible to consumers;

• StoragePools that are the allocatable/available space on the array;

• A SCSI transport (e.g., Fibre Channel or iSCSI) through which the LUNs are made available.

The basic array profile provides a high level read-only ‘view’ of an array. The Block Services Package
(8.2.8.10) includes the basic description of how storage is managed. This profile also includes the
mandatory Physical Package Package (8.2.1.10)) that describes the physical layout of the array and
includes product identification information

The various subprofiles indicated in Figure 120: "Array Profile Instance Diagram" cover other areas of
functionality. Refer to 8.2.8.1.7, "Registered Name and Version" for more information on these optional
extensions.

8.2.8.1.2 Health and Fault Management
Not defined in this standard.

8.2.8.1.3 Cascading Considerations
Not defined in this standard.

Figure 120: Array Profile Instance Diagram

ComputerSystem

SCSIProtocolEndpoint

SCSIProtocolController

StorageVolume

SAPAvailableForElement

ProtocolControllerForUnit
SystemDevice

One of the Target ports subprofiles

Block services package

HostedAccessPoint
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 753



 

8.2.8.1.4 Supported Subprofiles and Packages

8.2.8.1.5 Methods of the Profile
None.

8.2.8.1.6 Client Considerations and Recipes
None.

Table 826: Supported Subprofiles for Array

Registered Subprofile Names Mandatory Version
Access Points No 1.1.0
Block Server Performance No 1.1.0
Cluster No 1.0.2
Extra Capacity Set No 1.0.2
Disk Drive No 1.0.2
Disk Drive Lite No 1.1.0
Extent Mapping No 1.0.2
Extent Composition No 1.1.0
Location No 1.1.0
Software No 1.1.0
Copy Services No 1.1.0
Job Control No 1.1.0
Pool Manipulation Capabilities and Settings No 1.0.2
LUN Creation No 1.0.2
Device Credentials No 1.1.0
LUN Mapping and Masking No 1.0.2
Masking and Mapping No 1.1.0
SPI Target Ports No 1.1.0
FC Target Ports No 1.1.0
iSCSI Target Ports No 1.1.0
Backend Ports No 1.0.2
Disk Sparing No 1.1.0
FC Initiator Ports No 1.1.0
SPI Initiator Ports No 1.1.0

Table 827: Supported Packages for Array

Registered Package Names Version
Block Services 1.1.0
Physical Package 1.1.0
Health 1.1.0
754



 Array Profile
8.2.8.1.7 Registered Name and Version
Array version 1.1.0

8.2.8.1.8 CIM Server Requirements

8.2.8.1.9 CIM Elements

8.2.8.1.9.1 CIM_ComputerSystem
'Top level' system that represents the whole array.
Created By : External
Modified By : External
Deleted By : External
Standard Names: The Name and NameFormat properties shall follow the requirements in 6.2.4.5.4

Table 828: CIM Server Requirements for Array

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 829: CIM Elements for Array

Element Name Description
Mandatory Classes

CIM_ComputerSystem (8.2.8.1.9.1) 'Top level' system that represents the whole array.
CIM_HostedAccessPoint (8.2.8.1.9.2) This association that links ProtocolEndpoints to the 

hosting computer system.
CIM_LogicalPort (8.2.8.1.9.3) Target (front end) ports for the array. Most requirements 

are defined in the referenced target port subprofiles. In 
this profile, this class represents a requirement for some 
target port - regardless of the transport.

CIM_SCSIProtocolController (8.2.8.1.9.5)
CIM_SystemDevice (8.2.8.1.9.6) This association links all LogicalDevices to the scoping 

system.
Optional Classes

CIM_SCSIArbitraryLogicalUnit (8.2.8.1.9.4) A SCSI Logical Unit that exists only for management of 
the array.

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_ComputerSystem

Addition of a new array instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_ComputerSystem

Deletion of an array instance
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 755



 

Class Mandatory: true

8.2.8.1.9.2 CIM_HostedAccessPoint
This association that links ProtocolEndpoints to the hosting computer system.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.1.9.3 CIM_LogicalPort
Target (front end) ports for the array. Most requirements are defined in the referenced target port subprofiles. In this 
profile, this class represents a requirement for some target port - regardless of the transport.
Class Mandatory: true

Table 830: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string Unique identifier for the array. Eg IP 

address
ElementName string User friendly name
OtherIdentifyingInfo C string[]
IdentifyingDescriptions C string[]
OperationalStatus uint16[] Overall status of the array
NameFormat string Format for Name property.
Dedicated uint16[] Indicates that this computer system is 

dedicated to operation as a storage 
array

Optional Properties/Methods
PrimaryOwnerContact M string Contact a details for owner
PrimaryOwnerName M string Owner of the array

Table 831: SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

Antecedent CIM_System

Table 832: SMI Referenced Properties/Methods for CIM_LogicalPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

UsageRestriction uint16 Shall be 2 to indicate this is a front end 
port only or 4 to indicate usage is not 
restricted.
756



 Array Profile
8.2.8.1.9.4 CIM_SCSIArbitraryLogicalUnit
A SCSI Logical Unit that exists only for management of the array.
Class Mandatory: false

8.2.8.1.9.5 CIM_SCSIProtocolController
Class Mandatory: true

8.2.8.1.9.6 CIM_SystemDevice
This association links all LogicalDevices to the scoping system.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 833: SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifer
ElementName string User-friendly name
Name string
OperationalStatus uint16[]

Table 834: SMI Referenced Properties/Methods for CIM_SCSIProtocolController

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string

Table 835: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 757



 

8.2.8.1.10 Related Standards

Table 836: Related Standards for Array

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
758



 Storage Virtualizer Profile
8.2.8.2 Storage Virtualizer Profile

8.2.8.2.1 Description

These products act like Raid arrays but do not include any local storage. A Storage
Virtualizer system uses storage provided by array controllers to create a seamless pool. The
virtualization system allocates volumes from the pool for host systems to use. 

The basic Virtualizer System profile provides a read-only view of the system. The various subprofiles
indicated in Figure 121:, "Storage Virtualizer Package Diagram" extend this description and also enable
configuration. Refer to 8.2.8.2.4, "Supported Subprofiles and Packages" for more information on these
optional extensions. This profile also includes the mandatory 8.2.1.10, "Physical Package Package"
that describes the physical layout of the system and includes product identification information.

The modeling in this document is split into various sections that describe how to model particular
elements of an Storage Virtualizer System. The diagrams used in this document are 'Instance'
diagrams implying the actual classes that you implement rather than the class hierarchy diagrams often
used to show CIM models. This is felt to be easier to understand. Please refer to the CIM Schema for
information on class inheritance information and full information on the properties and methods used. 

Instance Diagrams
Figure 121: "Storage Virtualizer Package Diagram" illustrates the relationship between the packages
related to the Storage Virtualizer Profile.

Figure 121: Storage Virtualizer Package Diagram

Location

Masking & Mapping

Copy Services

Storage Virtualizer Profile

Multiple System

Access Points

Software

Block Services
PhysicalPackage

HostedService

ComputerSystemPackage

HostedAccessPoint

ComponentCS

PhysicalElementLocation

InstalledSoftwareIdentity

InitiatorPorts

TargetPorts

Job Control

Cascading

SystemDevice

SystemDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 759



 

Figure 122: "Storage Virtualizer System Instance" illustrates a typical instance diagram.

Figure 122: Storage Virtualizer System Instance

P ro toco lC on tro lle r

S to rageV o lum e

LU ID : //V P D  pg 83  ID
D efau ltA ccessM ode

S torageE xten t

S torageP oo l

A lloca tedF rom S torageP oo l

S torageS etting

E lem entS e ttingD a ta

A lloca tedF rom S torageP oo l

C om pu te rS ystem
D edica ted [x ] =  

'S to rage  V irtua lize r'

H os tedS to rageP oo l

C oncre teC om ponen t

P ort

S to rageS etting
E lem entS e ttingD a ta

P ro toco lE ndpo in t

P ro toco lC on tro lle rF o rU n it

S A P A va ilab leF orE lem en t D eviceS A P Im p lem en ta tion

T a rge t P o rt S ubp ro file

In itia to r P o rt S ubp ro file

B lock  S e rv ices  P acka ge

Logica lP ort In itia to r:
S C S IP ro toco lE ndpo in t

S to rageV o lum e

N am e: //V P D  pg 83  ID
D efau ltA ccessM ode

S ystem D evice

H ostedA ccessP o in t

T a rge t:
S C S IP ro toco lE ndpo in t

S C S IIn itia to rT a rge tLog ica lU n itP a th

D eviceS A P
Im plem enta tion

S ystem D evice

Log ica lIden tity

S ystem D evice

M ask ing /M app ing  S ubp ro file

S C S IP ro toco lC on tro lle r
(fo r S M I-S  1 .0  
C om pa tib ility)

P ro toco lC on tro lle r
A ccessU n it

P ro toco lC on tro lle r
F o rP ort
760



 Storage Virtualizer Profile
Storage Virtualization System
The Virtualization system is modeled using the ComputerSystem class with the “Dedicated” properties
set to ‘BlockServer’ and “StorageVirtualizer”. The model allows the system to be a cluster or contain
redundant components, but the components act as a single system. The ComputerSystem class and
common Multiple Computer System Subprofile model this.

The StoragePool classes in the center of the diagram represents the mapping from array storage to
volumes for host access. The pool is hosted on the ComputerSystem and services to control it are host
on the same controller. The StorageExtent at the bottom of the screen represents the storage from
external arrays used by the mapping. These StorageExtents are connected to the pool using the
ConcreteComponent association and are connected to the imported StorageVolume from the array
using LogicalIdentity. The SCSIProtocolController with the ProtocolControllerAccessesUnit association
to the StorageVolume are provided for clients convenience and compatibility with IS24775-2006,
Storage Management (SMI-S 1.0).

StorageVolumes at the upper right are the volumes created from the StoragePool and are accessible
from hosts. The associations to the SCSIProtocolController and to the Port indicate ports the volume is
mapped to. The StorageVolumes are described by the StorageSetting class connected by the
ElementSettingData association.

Controller Software
Information on the installed controller software is represented by the optional Software subprofile. This
is linked to the controller using an InstalledSoftwareIdentity association.

Device Management Access
Most devices now have a web GUI to allow device specific configuration. This is modeled using the
common subprofile “Access Point”.

Physical Modeling
The physical aspects of the Storage Virtualizer ComputerSystem are represented by the Common
Package “Physical Package” and the optional subprofile “Location”. See these common sections for
more details.

Services
The system hosts services used to control the configuration of the system’s resources. These services
are optional and modeled by the “Block Services” Package, and the “Copy Services”, and “Job Control”
subprofiles. 

Ports
An implementation of the Storage Virtualizer shall implement at least one Target Ports Subprofile and at
least one Initiator Ports Subprofile. However, SMI-S does not specify any particular port type be
supported. In either target or initiator cases, the ports could be FC or iSCSI.

8.2.8.2.2 Health and Fault Management
Not defined in this standard.

8.2.8.2.3 Cascading Considerations
Not defined in this standard.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 761



 

8.2.8.2.4 Supported Subprofiles and Packages
Table 837, “Supported Subprofiles for Storage Virtualizer” lists the supported subprofiles for this Profile.

8.2.8.2.5 Methods of the Profile
None.

8.2.8.2.6 Client Considerations and Recipes
None.

8.2.8.2.7 Registered Name and Version
Storage Virtualizer version 1.1.0

Table 837: Supported Subprofiles for Storage Virtualizer

Registered Subprofile Names Mandatory Version
Access Points No 1.1.0
Copy Services No 1.1.0
Job Control No 1.1.0
Location No 1.1.0
Masking and Mapping No 1.1.0
Software No 1.1.0
Multiple Computer System No 1.1.0
FC Initiator Ports No 1.1.0
iSCSI Target Ports No 1.1.0
FC Target Ports No 1.1.0
iSCSI Initiator Ports No 1.1.0
Extent Composition No 1.1.0
Cascading No 1.1.0

Table 838: Supported Packages for Storage Virtualizer

Registered Package Names Version
Block Services 1.1.0
Physical Package 1.1.0
762



 Storage Virtualizer Profile
8.2.8.2.8 CIM Server Requirements

8.2.8.2.9 CIM Elements

Table 839: CIM Server Requirements for Storage Virtualizer

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 840: CIM Elements for Storage Virtualizer

Element Name Description
Mandatory Classes

CIM_ComputerSystem (8.2.8.2.9.1) 'Top-level' system that represents the whole virtualizer.
CIM_ConcreteComponent (8.2.8.2.9.2) Used to associate StorageExtents that are playing the 

Pool Component role to a Primordial StoragePool.
CIM_LogicalIdentity (8.2.8.2.9.3) Used to associate StorageExtents of a Primordial Stor-

agePool to the imported StorageVolumes (of the Initia-
torPort Subprofile.

CIM_LogicalPort (8.2.8.2.9.4) Target (front end) ports for the array. Most requirements 
are defined in the referenced initiator port subprofiles. In 
this profile, this class represents a requirement for some 
target port - regardless of the transport.

CIM_StorageExtent (8.2.8.2.9.6) Used to represent the storage imported from external 
arrays and used as ConcreteComponents of Primordial 
StoragePools.

Optional Classes
CIM_LogicalPort (8.2.8.2.9.5) Initiator (back end) ports for the array. Most require-

ments are defined in the referenced initiator port sub-
profiles. In this profile, this class represents a 
requirement for some initiator port - regardless of the 
transport.

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_ComputerSystem

Creation of a ComputerSystem instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance CIM_ComputerSystem

Deletion of a ComputerSystem instance

SELECT * FROM CIM_InstModification        WHERE 
SourceInstance ISA CIM_StorageVolume                          
AND SourceInstance.CIM_StorageVolume::Operation-
alStatus <>                          PreviousIn-
stance.CIM_StorageVolume::OperationalStatus

CQL - Modification of OperationalStatus of a Storage 
Volume instance
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 763



 

8.2.8.2.9.1 CIM_ComputerSystem
'Top-level' system that represents the whole virtualizer.
Created By : External
Standard Names: The Name and NameFormat properties shall follow the requirements in 6.2.4.5.4 
Class Mandatory: true

SELECT * FROM CIM_InstModification        WHERE 
SourceInstance ISA CIM_LogicalPort                          
AND SourceInstance.CIM_LogicalPort::OperationalSta-
tus <>                          PreviousIn-
stance.CIM_LogicalPort::OperationalStatus

CQL - Modification of OperationalStatus of a Logical 
(FC or Ethernet) port instance

SELECT * FROM CIM_InstModification                    
WHERE SourceInstance ISA CIM_ComputerSystem                          
AND SourceInstance.CIM_ComputerSystem::Opera-
tionalStatus <>                          PreviousIn-
stance.CIM_ComputerSystem::OperationalStatus

CQL - Modification of OperationalStatus of a Computer-
System instance

Optional Indications
SELECT * FROM CIM_InstModification        WHERE 
SourceInstance ISA CIM_StorageVolume                          
AND SourceInstance.OperationalStatus <>                          
PreviousInstance.OperationalStatus

Deprecated WQL - Modification of OperationalStatus of 
a Storage Volume instance, provided for backward com-
patibility with In-band Virtualization.

SELECT * FROM CIM_InstModification        WHERE 
SourceInstance ISA CIM_FCPort                          AND 
SourceInstance.OperationalStatus <>                          
PreviousInstance.OperationalStatus

Deprecated WQL - Modification of OperationalStatus of 
a FC port instance, provided for backward compatibility 
with In-band Virtualization.

SELECT * FROM CIM_InstModification        WHERE 
SourceInstance ISA CIM_ComputerSystem                          
AND SourceInstance.OperationalStatus <>                          
PreviousInstance.OperationalStatus

Deprecated WQL - Modification of OperationalStatus of 
a ComputerSystem instance, provided for backward 
compatibility with In-band Virtualization.

Table 841: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name C string Unique identifier for the array, e.g., IP 

address or a FC WWN.
ElementName string User-friendly name
OperationalStatus uint16[] Overall status of the array
NameFormat string Format for Name property.
Dedicated uint16[] Indicates that this computer system is 

dedicated to operation as a storage vir-
tualizer

Optional Properties/Methods
PrimaryOwnerContact M string Contact a details for owner
PrimaryOwnerName M string Owner of the array

Table 840: CIM Elements for Storage Virtualizer

Element Name Description
764



 Storage Virtualizer Profile
8.2.8.2.9.2 CIM_ConcreteComponent
Used to associate StorageExtents that are playing the Pool Component role to a Primordial StoragePool.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.2.9.3 CIM_LogicalIdentity
Used to associate StorageExtents of a Primordial StoragePool to the imported StorageVolumes (of the InitiatorPort 
Subprofile.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.2.9.4 CIM_LogicalPort
Target (front end) ports for the array. Most requirements are defined in the referenced initiator port subprofiles. In 
this profile, this class represents a requirement for some target port - regardless of the transport.
Class Mandatory: true

8.2.8.2.9.5 CIM_LogicalPort
Initiator (back end) ports for the array. Most requirements are defined in the referenced initiator port subprofiles. In 
this profile, this class represents a requirement for some initiator port - regardless of the transport.

Table 842: SMI Referenced Properties/Methods for CIM_ConcreteComponent

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_ManagedElement A Primordial StoragePool
PartComponent CIM_ManagedElement The StorageExtent

Table 843: SMI Referenced Properties/Methods for CIM_LogicalIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

SameElement CIM_ManagedElement The imported StorageVolume
SystemElement CIM_ManagedElement The StorageExtent

Table 844: SMI Referenced Properties/Methods for CIM_LogicalPort (Target Port)

Property Flags Type Description & Notes
Mandatory Properties/Methods

UsageRestriction uint16 Shall be 3 to indicate this is a back end 
port only or 4 to indicate usage is not 
restricted.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 765



 

Class Mandatory: false

8.2.8.2.9.6 CIM_StorageExtent
Used to represent the storage imported from external arrays and used as ConcreteComponents of Primordial Stor-
agePools.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.2.10 Related Standards

Table 845: SMI Referenced Properties/Methods for CIM_LogicalPort (Initiator Port)

Property Flags Type Description & Notes
Mandatory Properties/Methods

UsageRestriction uint16 Shall be 2 to indicate this is a front end 
port only or 4 to indicate usage is not 
restricted.

Table 846: SMI Referenced Properties/Methods for CIM_StorageExtent

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
BlockSize uint64
NumberOfBlocks uint64
ExtentStatus uint16[]
OperationalStatus uint16[]

Table 847: Related Standards for Storage Virtualizer

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
766



 Volume Management Profile
8.2.8.3 Volume Management Profile

8.2.8.3.1 Description
The host Volume Management (VM) profile addresses block storage virtualization and presents virtual
block devices to clients. The model represents virtualization for host volume management where
LogicalDisks are exported. 

A host volume manager is a software storage management subsystem that allows one to manage
physical disks as logical devices called volumes. A volume is a logical device that appears to data
management systems as a physical disk. Through support of RAID, the volume manager provides
similar features as many disk arrays. Therefore, CIM administration of a volume manager is similar to
that of an array. Embedded volume managers, like in a switch, should use the virtualization profile.

The Volume Management profile uses existing classes from the Array profile and Block Services
subprofile, and optionally uses the Host Discovered Resources subprofile to bind with the disks in the
host operating system.

Instance Diagram

Input Class of the Volume Manager
The host operating system provides a unique name for each disk via a special file name.  Typically,
these are device file names: drive letters on Windows systems or /dev/dsk/device1 on UNIX systems. A
LogicalDisk can be based on a disk partition or created by the operating system to represent a
discovered volume and would have an operating system device name. The volume manager
provider will place into a primordial pool all disks that it discovers as a LogicalDisk and uses the Name
property to specify the operating system device file name.

Figure 123: Volume Management Instance Diagram

Host

CIM_ComputerSystem

CIM_StoragePool

CIM_HostedStoragePool

Output_Material::
 CIM_LogicalDisk

CIM_StorageCapabilities

CIM_ElementCapabilities

CIM_AllocatedFromStoragePool

Input_material
CIM_LogicalDisk

CIM_BasedOn

CIM_StorageSetting

CIM_AllocatedFromStoragePool

CIM_BasedOn

CIM_SystemDevice

CIM_ConcreateComponent

CIM_ElementSettingData
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 767



 

Export Class of the Volume Manager
The Volume Management profile exports LogicalDisk, which may be referred to as a volume in a typical
host volume manager. For host volume managers, this is treated as a virtual disk or volume, and is
where a file system or database would reside on.

8.2.8.3.1.1 Initializing OS Disks for Volume Manager Use
All disks initially discovered by the volume manager from the host's device tree are added to a
Primordial Pool by creating an association between the Primordial Pool and a LogicalDisk instance.
Typically, these discovered disks are those listed in the /dev directory. Disks on a host are not
immediately available for volume manager use; they are first initialized for volume manager use by
writing metadata to the disk. Any disks that are not yet initialized for volume manager use will become
initialized as a side effect of creating a concrete StoragePool.

8.2.8.3.1.2 Creating Pools and Logical Volumes
Concrete StoragePools are created by the Block Services CreateOrModifyStoragePool method.
Any uninitialized disks that are added to the concrete StoragePool are initialized as a side-effect of
adding the disk to the pool.
The Block Services methods CreateOrModifyElementFromStoragePool or
CreateOrModifyElementFromElements are used to create and modify volumes. When specifying a
primordial pool or uninitialized disks to create or modify volumes, any disks that are not yet initialized
will be initialized as a side effect of adding the disks to a concrete pool and creating the volume. See
8.2.8.10.1, "Description" for more details on methods for creating pools and logical volumes.

8.2.8.3.1.3 Storage Settings for Volumes
Providers need to map a Quality of Service and any Storage Settings to a particular volume's
redundancy or raid level. This is similar to creating StorageVolumes in the Block Services subprofile.

The StorageSetting, StorageSettingWithHints, and StorageCapabilities classes may be used to specify
striping parameters such as number of stripe columns, or the extent stripe length. See 8.2.8.10, "Block
Services Package" for a description of these settings. The StorageSettings.Description string should be
updated with an appropriate string describing the volume's settings.The Exported value in
ExtentStatus[] of the LogicalDisk should be set if it is intended for application use.

8.2.8.3.1.4 Durable Names and Other Correlatable ids of the Profile
Each object's Name in the volume manager is not durable. The names can be changed at any time.
However, names will always be unique and correlatable. The provider will present names that the
underlying volume manager software creates using its own naming heuristics. When available, the Host
Discovered Resources profile provides the connectivity and correlatable IDs of the host resources.

8.2.8.3.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.8.3.3 Cascading Considerations
The Cascading subprofile may be used when the Host Discovered Resources profile is available on the
host, where the Host Discovered Resource profile would be the leaf profile. In this case, all discovered
disks by the provider are still placed in the primordial pool. Therefore, the behavior of what is in the
primordial pool should not change based on the presence of another profile. The content should be
consistent regardless of the presence of the Host Discovered Resources profile. The the description of
the Cascading subprofile for usage with the Security Resource Ownership Subprofile.
768



 Volume Management Profile
8.2.8.3.4 Supported Subprofiles and Packages

8.2.8.3.5 Methods of the Profile
None

8.2.8.3.6 Client Considerations and Recipes
Use the Block Services subprofile to create and modify volumes.

See recipes for creating volumes in 8.2.8.10, "Block Services Package".

Replacing a disk is done by using the Sparing subprofile. Newly added disks are first made and then
are used to replace the old disk.

8.2.8.3.6.1 Storage Configuration
The Volume Management profile uses the StorageConfigurationService in the Block Services
subprofile for creating and modifying objects in a StoragePool. Creating volumes with specified extents
shall be done using the CreateorModifyElementFromElements method. When specifying extents, or
when using the InExtents[] parameter of CreateOrModifyStoragePool for creating storage pools as well
as adding disks, then the specified extents shall be from among the extents returned from the
StoragePool.GetAvailableExtents method. Any other extents may cause the operation to fail.

8.2.8.3.7 Registered Name and Version
Volume Management version 1.1.0

Table 848: Supported Subprofiles for Volume Management

Registered Subprofile Names Mandatory Version
Access Points No 1.1.0
Extent Composition No 1.1.0
Location No 1.1.0
Software No 1.1.0
Copy Services No 1.1.0
Disk Sparing No 1.1.0
Multi System No 1.1.0
Job Control No 1.1.0
Cascading No 1.1.0
Block Storage Resource Ownership No 1.1.0
Block Server Performance No 1.1.0

Table 849: Supported Packages for Volume Management

Registered Package Names Version
Block Services 1.1.0
Health 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 769



 

8.2.8.3.8 CIM Server Requirements

8.2.8.3.9 CIM Elements

Table 850: CIM Server Requirements for Volume Management

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 851: CIM Elements for Volume Management

Element Name Description
Mandatory Classes

CIM_AllocatedFromStoragePool (8.2.8.3.9.1)
CIM_ComputerSystem (8.2.8.3.9.2)
CIM_ElementCapabilities (8.2.8.3.9.3)
CIM_ElementSettingData (8.2.8.3.9.4)
CIM_HostedStoragePool (8.2.8.3.9.5)
CIM_LogicalDisk (8.2.8.3.9.6)
CIM_StorageCapabilities (8.2.8.3.9.7)
CIM_StoragePool (8.2.8.3.9.8) Logical Disks are allocated from 'concrete' pools.
CIM_StoragePool (8.2.8.3.9.9) At least one primordial pool must exist for a host. This is 

the 'unallocated storage' of the host, and contains 
unused disks.

CIM_StorageSetting (8.2.8.3.9.10)
CIM_SystemDevice (8.2.8.3.9.11)

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_LogicalDisk

Addition of a new logical disk instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_LogicalDisk

Deletion of a logical disk instance

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_LogicalDisk AND SourceIn-
stance.OperationalStatus <> 
PreviousInstance.OperationalStatus

Change of status of a Logical Disk

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_LogicalDisk                          AND 
SourceInstance.CIM_LogicalDisk::OperationalStatus 
<> PreviousInstance.CIM_LogicalDisk::OperationalSta-
tus

CQL - Change of status of a Logical Disk
770



 Volume Management Profile
8.2.8.3.9.1 CIM_AllocatedFromStoragePool
Class Mandatory: true

8.2.8.3.9.2 CIM_ComputerSystem
Class Mandatory: true

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_StoragePool                          AND 
SourceInstance.CIM_StoragePool::OperationalStatus 
<> PreviousInstance.CIM_StoragePool::Operational-
Status

CQL - Change of status of a storage pool

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_StoragePool

Addition of a storage pool instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_StoragePool

Deletion of a storage pool instance

Table 852: SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_StoragePool
Dependent CIM_LogicalElement
SpaceConsumed uint64

Table 853: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Name string Unique identifier for the Host. IP 

address
ElementName string User-friendly name
OperationalStatus uint16[] Overall status of the Host
NameFormat string Format for Name property.
Dedicated uint16[] Indicates that this computer system is 

not dedicated to volume management.
Optional Properties/Methods

PrimaryOwnerContact string
PrimaryOwnerName string

Table 851: CIM Elements for Volume Management

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 771



 

8.2.8.3.9.3 CIM_ElementCapabilities
Class Mandatory: true

8.2.8.3.9.4 CIM_ElementSettingData
Created By : Extrinsic(s): 
Class Mandatory: true

8.2.8.3.9.5 CIM_HostedStoragePool
Class Mandatory: true

8.2.8.3.9.6 CIM_LogicalDisk
Class Mandatory: true

Table 854: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement
Capabilities CIM_Capabilities

Table 855: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement
SettingData CIM_SettingData

Table 856: SMI Referenced Properties/Methods for CIM_HostedStoragePool

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_StoragePool

Table 857: SMI Referenced Properties/Methods for CIM_LogicalDisk

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifier
ElementName string User-friendly name
Name string Should be a durable name. As yet any 

name
ExtentStatus uint16[]
OperationalStatus uint16[]
BlockSize uint64
NumberOfBlocks uint64
772



 Volume Management Profile
8.2.8.3.9.7 CIM_StorageCapabilities
Class Mandatory: true

8.2.8.3.9.8 CIM_StoragePool
Logical Disks are allocated from 'concrete' pools.
Created By : External
Class Mandatory: true

IsBasedOnUnderlyingRedun-
dancy

boolean

NoSinglePointOfFailure boolean
DataRedundancy uint16
PackageRedundancy uint16
DeltaReservation uint8
ConsumableBlocks uint64

Table 858: SMI Referenced Properties/Methods for CIM_StorageCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
NoSinglePointOfFailure boolean
NoSinglePointOfFailureDefault boolean
DataRedundancyMin uint16
DataRedundancyMax uint16
DataRedundancyDefault uint16
PackageRedundancyMin uint16
PackageRedundancyMax uint16
PackageRedundancyDefault uint16
DeltaReservationDefault uint16
DeltaReservationMax uint16
DeltaReservationMin uint16

Table 859: SMI Referenced Properties/Methods for CIM_StoragePool (Primordial = False)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
PoolID string
TotalManagedSpace uint64
RemainingManagedSpace uint64

Table 857: SMI Referenced Properties/Methods for CIM_LogicalDisk

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 773



 

8.2.8.3.9.9 CIM_StoragePool
At least one primordial pool must exist for a host. This is the 'unallocated storage' of the host, and contains unused 
disks.
Class Mandatory: true

8.2.8.3.9.10 CIM_StorageSetting
Class Mandatory: true

8.2.8.3.9.11 CIM_SystemDevice
Created By : External

Primordial boolean

Table 860: SMI Referenced Properties/Methods for CIM_StoragePool (Primordial = True)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
PoolID string
TotalManagedSpace uint64
RemainingManagedSpace uint64
Primordial boolean

Table 861: SMI Referenced Properties/Methods for CIM_StorageSetting

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque identifier
ElementName string User-friendly name, can be used for 

'potted' settings for specific RAID lev-
els.

DataRedundancyMin uint16
DataRedundancyMax uint16
DataRedundancyGoal uint16
PackageRedundancyMin uint16
PackageRedundancyMax uint16
PackageRedundancyGoal uint16
DeltaReservationGoal uint8
DeltaReservationMax uint8
DeltaReservationMin uint8

Table 859: SMI Referenced Properties/Methods for CIM_StoragePool (Primordial = False)

Property Flags Type Description & Notes
774



 Volume Management Profile
Class Mandatory: true

8.2.8.3.10 Related Standards

Table 862: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice

Table 863: Related Standards for Volume Management

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 775



 

776



 NAS Head Profile
8.2.8.4 NAS Head Profile 

8.2.8.4.1 Description
A NAS Head is a NAS controller that gets its storage from external SAN storage. The storage obtained
is visible to external management tools and they may share their storage with other hosts or devices.
For example, an NAS Head might go to an array for its storage. The array provides storage to the NAS
Head, but may also supply storage to Hosts (or other NAS heads).

This profile defines how to model the NAS head constructs, and how it reflects connections to and
storage from the array(s) below it. The actual details of how the array exports storage to the NAS head,
is not covered by the NAS head. This would be covered by the array profile.

The NAS Head profile reuses a significant portion of the Storage Virtualizer Profile. This is illustrated in
Figure 124: "NAS Head Profiles and Subprofiles".

Figure 124: NAS Head Profiles and Subprofiles

Location

NAS Head

Multiple 
ComputerSystem

Access Points

Software

Job Control

Block 
Services
Package

Device Credentials

PhysicalPackage Package

                  HostedService

HostedService

ComputerSystemPackage

HostedAccessPoint

ConcreteIdentity

ComponentCS

PhysicalElementLocation

InstalledSoftwareIdentity

FileExport
Manipulation

SystemDevice

Initiator Ports

Filesystem
Manipulation

OwningJobElement

Indications

Cascading

CascadingDependency

Extent 
Composition

ConcreteComponent
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 777



 

The NAS Head Profile and its subprofiles provide the following capabilities to SMI-S:

• Device Level Configuration

• The NAS Head Profile defines reporting of physical storage. This includes configuration of
storage access below the NAS Head (on the SAN).

• The NAS Head Profile supports indications on OperationalStatus of the NAS processors.

• Connectivity Level Configuration

• The NAS Head Profile defines reporting on port connectivity to the NAS Head (and Port
connectivity to underlying storage). 

• The NAS Head Profile supports indications on OperationalStatus of the NAS Ports and
ProtocolEndpoints.

• The File Export Manipulation Subprofile defines mechanism for establishing file access
through port connectivity to the NAS offering. 

• Block Level Configuration 

• The NAS Head Profile defines reporting on logical storage (StoragePools) and LogicalDisks
on those pools. 

Note: Filesystems are built on the LogicalDisks.

• The NAS Head Profile supports indications on OperationalStatus of the LogicalDisks.

• File/Record Configuration

• The NAS Head Profile defines reporting on the file systems and file shares that are
configured out of the storage of the NAS Head.

• The NAS Head Profile supports indications on OperationalStatus of the FileSystems and
FileShares.

• The Filesystem Manipulation Subprofile defines the ability to configure file systems out of the
storage of the NAS Profile it supports.

• The File Export Manipulation Subprofile defines mechanism for establishing file shares on
local file systems that can then be accessed by remote clients.
778



 NAS Head Profile
8.2.8.4.1.1 Summary Instance Diagram
Figure 125: "NAS Head Instance Diagram" illustrates the mandatory classes for the NAS Head Profile.
This figure shows all the classes that are mandatory for the NAS Head Profile. Later diagrams will
review specific sections of this diagram.

The NAS Head Profile closely parallels the Storage Virtualizer Profile in how it models storage. Storage
is assigned to StoragePools and LogicalDisks are allocated from those storage pools for the purpose of
holding local file systems of the NAS. 

Figure 125: NAS Head Instance Diagram

ComputerSystem LogicalDisk

StoragePool

AllocatedFromStoragePool

AllocatedFromStoragePool StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingData

HostedStoragePool

LocalFileSystem

HostedFileSystem
ResidesOnExtent

(Optional)

LogicalFile
(Directory)

FileShare
NFS or CIFS

ConcreteDependency
(Optional)

FileStorage

ProtocolEndPoint

ProtocolIFType = 4200 | 4201
('NFS" or "CIFS") NetworkPort

SAPAvailableForElement

FileSystemSetting
(Optional)

ElementSettingData
(Optional)

ExportedFileShareSettingElementSettingData

HostedShare

ConcreteComponent
(Optional)

StorageExtent
(Optional)

SCSIProtocolController FCPort
UsageRestriction = 

‘Back-end only’

ProtocolControllerForEndpoint

StorageExtent
(Optional)

ProtocolControllerAccessesUnit

Initiator Ports Subprofile (Optional)

SystemDevice

SystemDevice
(Optional)

ProtocolEndpoint

PortImplementsEndpoint

Block Services Package

SystemDevice

DeviceSAPImplementation
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 779



 

As with the Storage Virtualizer Profile, the NAS Head StoragePools have StorageCapabilities
associated to the StoragePools via ElementCapabilities. Similarly, LogicalDisks that are allocated from
those StoragePools have StorageSettings, which are associated to the LogicalDisk via
ElementSettingData. StoragePools are hosted by a ComputerSystem that represents the NAS “top
level” system, and the StorageExtents have a SystemDevice association to the “top level”
ComputerSystem.

Note: As with Self-Contained NAS, the StoragePools may be hosted by a component
ComputerSystem if the Profile has implemented the Multiple Computer System Subprofile. 

As with the Storage Virtualizer Profile, the “top level” ComputerSystem of the NAS Head does not (and
typically isn’t) a real ComputerSystem. It is merely the ManagedElement upon which all aspects of the
NAS offering are scoped.

As with Storage Virtualizer Profile, the NAS Head draws its storage from an open SAN. That is, the
actual disk storage is addressable independent of the NAS Head. As a result, the NAS head shall
model the Initiator ports and the StorageExtents that it acquires from the SAN. The NAS Head supports
at least one of the Initiator Ports Subprofiles (the dashed box at the bottom of the diagram) to effect the
support for backend ports. The NAS Head includes the Block Services Package to effect the logical
storage management (the dashed box just above the Initiator Ports dashed box in the diagram).

Everything above the LogicalDisk is specific to NAS (and does not appear in the Storage Virtualizer
Profile). LocalFileSystems are created on the LogicalDisks, LogicialFiles within those LocalFileSystens
are shared (FileShare) through ProtocolEndpoints associated with NetworkPorts.

The ConcreteDependency association is optional. It is shown here to illustrate a relationship between a
FileShare and some Directory. However, the Directory need not be part of the LocalFileSystem.
Similarly, the ResidesOnExtent is optional, but is shown here to illustrate that a LocalFileSystem may
map to a LogicalDisk. However, other mappings to storage are also possible.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They
are only shown here to illustrate where they would show up in the model should they be implemented.

In the base NAS Head profile, these are automatically populated based on how the NAS Head is
configured. Client modification of the configuration (including configuring storage, creating extents,
local file systems and file shares) are functions found in subprofiles of the NAS Head Profile.
780



 NAS Head Profile
8.2.8.4.1.2 NAS Storage Model
Figure 126: "NAS Storage Instance Diagram" illustrates the classes mandatory for modeling of storage
for the NAS Head Profile.

The NAS Head Profile uses most of the classes and associations used by the Storage Virtualizer Profile
(including those in the Block Services Package). In doing this, it leverages many of the subprofiles that
are available for Storage Virtualizer Profiles. The classes and associations shown in Figure 126: "NAS
Storage Instance Diagram" are the minimum mandatory for read only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled,
including the HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the
StoragePool. In addition, for NAS Heads, which get their storage from a SAN, the StorageExtents that
compose the lowest StoragePools may also be modeled with ConcreteComponent associations to the
StoragePool to which they belong. However, modeling of StorageExtents is optional for NAS Heads.

In addition, in order for storage to be used it shall be allocated to one or more LogicalDisks. A
LogicalDisk shall have an AllocatedFromStoragePool association to the StoragePool from which it is
allocated. The LogicalDisk shall have an ElementSettingData association to the settings that were used
when the LogicalDisk was created.

For manipulation of Storage, see 8.2.8.10, "Block Services Package". For NAS Heads, LogicalDisks
are the ElementType that is supported for storage allocation functions (e.g.,
CreateOrModifyElementFromStoragePool and ReturnToStoragePool) and LogicalDisk creation is
optional. NAS also supports (optionally) the Pool manipulation functions (e.g.,
CreateOrModifyStoragePool and DeleteStoragePool) of the Block Services Package.

Figure 126: NAS Storage Instance Diagram

In i t ia t o r  P o r t  S u b p r o f i le  ( O p t io n a l )

B lo c k  S e r v ic e s  P a c k a g e

C o m p u t e r S y s t e m

L o g ic a lD is k

S t o r a g e P o o l

A l lo c a t e d F r o m S t o r a g e P o o l

S t o r a g e C a p a b i l i t i e s

S t o r a g e S e t t in g

E le m e n t C a p a b i l i t i e s

E le m e n t S e t t in g D a t aH o s t e d S t o r a g e P o o l

S C S I P r o t o c o lC o n t r o l le r

S t o r a g e E x t e n t
( O p t io n a l )

P r o t o c o lC o n t r o l le r F o r U n i t

S y s t e m D e v ic e

S y s t e m D e v ic e

S t o r a g e E x t e n t
( O p t io n a l )

C o n c r e t e C o m p o n e n t
( O p t io n a l )

S y s t e m D e v ic e
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 781



 

8.2.8.4.1.3 NAS Filesystem Model
Figure 127: "NAS Filesystem Instance Diagram" illustrates the classes mandatory for the modeling of
file systems for the NAS Profiles.

Note: This part of the model is the same for both the NAS Head and the Self-contained NASt

The NAS Profile builds on the storage with Filesystems which are established on LogicalDisks. In the
case of NAS Profiles, one Filesystem is established on one LogicalDisk.

Note: One Filesystem may also span multiple LogicalDisks or a Filesystem is may be allocated directly
from a StoragePool, but these methods of storing a FileSystem are not covered by this version of
SMI-S.

A Filesystem shall be represented in the model as instance of LocalFileSystem. A LocalFileSystem
instance may have exactly one ResidesOnExtent association to one exactly one LogicalDisk. In this
case, a client would determine the size (in bytes) of a Filesystem by inspecting the size of the
LogicalDisk on which the filesystem resides. FileSystemSize can also be found as a property of
LocalFileSystem. For other methods of FileSystem storage, the client should use the FileSystemSize
property of the LocalFileSystem.

The FileSystem shall have a HostedFileSystem association to a NAS ComputerSystem. Normally this
will be the top level ComputerSystem of the NAS profile. However, if the Multiple Computer System
Subprofile is implemented, the HostedFileSystem may be associated to a component ComputerSystem
(See t8.2.1.9, "Multiple Computer System Subprofile").

Figure 127: NAS Filesystem Instance Diagram

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

StorageSetting
ElementSettingDataHostedStoragePool

LocalFileSystem

HostedFileSystem

ResidesOnExtent
(Optional)

FileSystemSetting
(Optional)ElementSettingData

(Optional)

SystemDevice
782



 NAS Head Profile
The LocalFileSystem instance may also have an ElementSettingData association to the
FileSystemSetting for the Filesystem. However, the FileSystemSetting is optional and may not be
present.

8.2.8.4.1.4 NAS File Share Model
Figure 128: "NAS File Share Instance Diagram" illustrates the classes mandatory to model File Shares
for the NAS Profile.

Note: This part of the model is the same for both the NAS Head and the Self-contained NAS.

Figure 128: NAS File Share Instance Diagram

ComputerSystem

LocalFileSystem

HostedFileSystem

LogicalFile

FileShare
NFS or CIFS

ConcreteDependency
(Optional)

FileStorage

ProtocolEndPoint

ProtocolIFType= 4200 | 4201
('NFS" or "CIFS")

DeviceSAPImplementation

SAPAvailableForElement

FileSystemSetting
(Optional)

ElementSettingData
(Optional)

NetworkPort

ExportedFileShareSetting
ElementSettingData

HostedShare

Hosted
AccessPoint

SystemDevice

BindsTo
(Optional)

TCPProtocolEndPoint
(Optional)

IPProtocolEndPoint
(Optional)

LANProtocolEndPoint
(Optional)

BindsTo
(Optional)

BindsToLANEndpoint
(Optional)

DeviceSAPImplementation
(Optional)

HostedAccessPoint
(Optional)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 783



 

The NAS Profile shall model any File Shares that have been exported to the network. A File Share shall
be represented as a FileShare instance with associations to the ComputerSystem that hosts the share
(via HostedShare), to the ExportedFileShareSetting (via ElementSettingData) and to the
ProtocolEndpoint through which the Share can be accessed (via SAPAvailableForElement). Optionally,
there may also be an association between the FileShare and the LogicalFile that the share represents
(via ConcreteDependency).

The LogicalFile on which the FileShare is based shall have a FileStorage association to the
LocalFileSystem in which it resides.

EXPERIMENTAL

8.2.8.4.1.5 NAS Head Support of Cascading  
Figure 129: "NAS Head Cascading Support Instance Diagram"illustrates the NAS Head support for
cascading. Support for the Cascading Subprofile is optional (and the Cascading Subprofile is
experimental). It is provided here to illustrate stitching between the NAS Head and Array or Storage
Virtualizer Profiles.
784



 NAS Head Profile
The lower dashed box in the figure illustrates the classes and associations of the Cascading Subprofile.
The dashed classes are virtual instances (copies cached from the Array or Storage Virtualizer Profile).
The other classes of the Cascading Subprofile represent NAS Head usage of those classes. For
example, the collection AllocatedResources collects all the Array volumes that are used in
StoragePools of the NAS Head. The RemoteResources collection collects all volumes that the NAS
Head has discovered (whether used or not).

Figure 129: NAS Head Cascading Support Instance Diagram

            Cascading Subprofile

Block Services Package

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingDataHostedStoragePool

ComputerSystem
(Virtual)

StorageExtent

SystemDevice

StorageExtent

ConcreteComponent

StorageVolume
(Virtual)

StorageVolume
(Virtual)

RemoteResources

Dependency

RemoteServiceAccessPoint

SAPAvailableForElement

SystemDevice

AllocatedResources

MemberOfCollection

MemberOfCollection

LogicalIdentity
LogicalIdentity

SystemDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 785



 

The RemoteServiceAccessPoint is the URL of the management interface that the NAS Head uses for
managing the Array or Storage Virtualizer Profiles. This may or may not be an SMI-S Server URL.

EXPERIMENTAL

8.2.8.4.2 Health and Fault Management Considerations
The NAS Head supports state information (e.g., OperationalStatus) on the following elements of the
model:

• Network Ports (See 8.2.8.4.2.1, "OperationalStatus for Network Ports")

• Back-end Ports (See 8.2.3.2, "Fibre Channel Initiator Port Subprofile", 8.2.3.1, "Parallel SCSI
(SPI) Initiator Port Subprofile" and 8.2.3.3, "iSCSI Initiator Port Subprofile")

• ComputerSystems (See 6.3, "Health and Fault Management")

• FileShares that are exported (See 8.2.8.4.9.11, "CIM_ExportedFileShareSetting")

• Local File Systems (See 8.2.8.4.2.2, "OperationalStatus for FileShares")

• ProtocolEndpoints (See 8.2.8.4.2.4, "OperationalStatus for ProtocolEndpoints")

8.2.8.4.2.1 OperationalStatus for Network Ports

8.2.8.4.2.2 OperationalStatus for FileShares

Table 864: NetworkPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 865: FileShare OperationalStatus

OperationalStatus Description

OK FileShare is online

Error FileShare has a failure. This could be due to a Filesys-
tem failure.

Stopped FileShare is disabled

Unknown
786



 NAS Head Profile
8.2.8.4.2.3 OperationalStatus for Filesystems

8.2.8.4.2.4 OperationalStatus for ProtocolEndpoints

Table 866: Filesystem OperationalStatus

OperationalStatus Description

OK The Filesystem has good status

Stressed Filesystem resources are stressed

Degraded The Filesystem is operating in a degraded mode. This 
could be due to the OperationalStatus of the underly-
ing storage.

Predictive Failure Filesystem might fail

Lost Communications Filesystem cannot be accessed - if this happens in 
real-time, the opStatus is Lost Communication, other-
wise it is Stopped.

Error The Filesystem is not functioning

Non-recoverable Error The Filesystem is not functioning and no SMI-S action 
will fix the problem.

Supporting Entity in Error FileSystem is in an error state because a supporting 
entity is not accessible

Starting The Filesystem is in process of initialization

Stopping The Filesystem is in process of stopping

Stopped The Filesystem is stopped

Dormant The Filesystem is offline

Table 867: ProtocolEndpoint OperationalStatus

OperationalStatus Description

OK ProtocolEndpoint is online

Error ProtocolEndpoint has a failure

Stopped ProtocolEndpoint is disabled

Unknown
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 787



 

EXPERIMENTAL

8.2.8.4.3 Cascading Considerations  
The NAS Head is a cascading Profile, but the Cascading Subprofile is Experimental in this version of
SMI-S. As such, the Cascading Subprofile is defined as an optional subprofile. A NAS Head may
cascade storage. The cascading considerations for this are discussed in the following sections.

8.2.8.4.3.1 Cascading Resources for the NAS Head Profile
By definition, a NAS Head gets its storage from the network. As such, there is a cascading relationship
between the NAS Head Profile and the Profiles (e.g., Array Profiles) that provide the storage for the
NAS Head. Figure 129: "NAS Head Cascading Support Instance Diagram" illustrates the constructs to
be used to model this cascading relationship.

• The NAS Head Cascaded Resources are Primordial StorageExtents (used to populate Primordial
StoragePools)

• The NAS Head obtains the storage for these from Array or Storage Virtualizer Profiles

• Each Primordial StorageExtent maps (via LogicalIdentity) to a StorageVolume (from the Array
or Storage Virtualizer Profile).

8.2.8.4.3.2 Ownership Privileges Asserted by NAS Heads
In support of the Cascading NAS Heads may assert ownership over the StorageVolumes that they
import. If the Array or Storage Virtualizer implementation supports Ownership, NAS Heads would assert
ownership using the following Privileges:

• Activity - Execute

• ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool

• FormatQualifier - Method

8.2.8.4.3.3 NAS Head Limitations on use of the Cascading Subprofile
The NAS Head support for Cascading places the following limitations and restrictions on the Cascading
Subprofile:

• The AllocationService is not supported. - Allocation is done as a side effect of assigning the
extents to the Primordial pool.

• Dependency - The Dependency between the NAS Head top level ComputerSystem and the Array
or Virtualizer top level ComputerSystem may exist, even when there are no resources that are
imported. This signifies that the NAS Head has discovered the Array or Virtualizer, but has no
access to any of their volumes.

EXPERIMENTAL

8.2.8.4.4 Supported Subprofiles and Packages

Table 868: Supported Subprofiles for NAS Head

Registered Subprofile Names Mandatory Version
Indication Yes 1.1.0
788



 NAS Head Profile
8.2.8.4.5 Methods of the Profile

8.2.8.4.5.1 Extrinsic Methods of the Profile
None.

8.2.8.4.5.2 Intrinsic Methods of the Profile
The profile supports read methods and association traversal. Manipulation functions are only supported
for managing Indications (IndicationFilters, IndicationSubscriptions and ListenerDestinations).

8.2.8.4.6 Client Considerations and Recipes
In the NAS recipes, the following subroutines are used (and provided here as forward declarations):

sub GetFSServer(IN REF CIM_FileSystem $fs,

                 OUT CIM_ComputerSystem $system);

sub GetFSCapabilityFromServer(IN REF CIM_System $server, 

                              OUT CIM_FileSystemConfigurationServiceCapabilities 
$capability,

                              OUT CIM_FileSystemConfigurationService 
$fsconfigurator,

                              IN Optional String $filesystemtype = "",

                              IN Optional String $otherpropertyname = NULL,

Cascading No 1.1.0
Access Points No 1.1.0
Multiple Computer System No 1.1.0
Software No 1.1.0
Location No 1.1.0
Extent Composition No 1.1.0
File System Manipulation No 1.1.0
File Export Manipulation No 1.1.0
Job Control No 1.1.0
SPI Initiator Ports No 1.1.0
FC Initiator Ports No 1.1.0
Device Credentials No 1.1.0

Table 869: Supported Packages for NAS Head

Registered Package Names Version
Physical Package 1.1.0
Block Services 1.1.0
Health 1.1.0

Table 868: Supported Subprofiles for NAS Head

Registered Subprofile Names Mandatory Version
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 789



 

                              IN Optional String $otherpropertyvalue = NULL);

sub GetFSCapabilityFromFileSystem(IN REF CIM_FileSystem $fs, 

                   OUT CIM_FileSystemConfigurationServiceCapabilities $capability,

                   OUT CIM_FileSystemConfigurationService $fsconfigurator);

sub GetExportServiceAndCapabilities(IN REF CIM_FileSystem $fs,

                                    IN String $sharetype,

                                    OUT CIM_FileExportService $feservice,

                                    OUT CIM_ExportedFileShareCapabilities 
$efscapability);

Conventions used in the NAS recipes: 

•  When there is expected to be only one association of interest, the first item in the array returned
by the Associators( ) call is used without further validation. Real code will need to be more robust.

• We use Values and Valuemap members as equivalent. In real code, client-side magic is required
to convert the integer representation into the string form given in the MOF.

8.2.8.4.6.1 List Existing Filesystems on the NAS
// DESCRIPTION

// The goal of this recipe is to locate all file systems hosted on the NAS.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. A reference to the top-level ComputerSystem was previously discovered

// and is defined in the $NAS-> variable.

// Function ListFileSystems

// This function takes a given top-level ComputerSystem and locates the file 

// systems which it hosts.

// Input:

// A reference to the top-level ComputerSystem representing the NAS.

// Return:

// An array of instance(s) to the file systems hosted on the NAS or null 

// if there are no hosted file systems.

sub CIMInstance[] ListFileSystems(REF $System->) {

    // Step 1. Locate the file systems hosted directly by the top-level

    // ComputerSystem representing the NAS.

    #FSProps[] = {“CSCreationClassName”, “CSName”, “CreationClassName”,

    “Name”, “OperationalStatus”, “CaseSensitive”, “CasePreserved”,

    “MaxFileNameLength”, “FileSystemType”, “IsFixedSize”}

    $FileSystems[] = Associators($System->, 

    “CIM_HostedFileSystem”,

    “CIM_LocalFileSystem”,

    “GroupComponent”,

    “PartComponent”,

    false,
790



 NAS Head Profile
    false,

    #FSProps[])

    // Step 2. Locate any non-top-level ComputerSystems that may be present in

    // a NAS device that supports the Multiple Computer System Subprofile.

    try {

$ComponentSystems->[] = AssociatorNames($System->,

“CIM_ComponentCS,

“CIM_ComputerSystem”,

“GroupComponent”,

“PartComponent”)

// Step 3. Locate the file systems hosted by each non-top-level

// ComputerSystems and add them to the list of known file systems.

if ($ComponentSystems->[] != null && $ComponentSystems->[].length > 0) {

    $ComponentFS[]

    for (#i in $ComponentSystems->[]) {

#fsCounter = $FileSystems[].length

$ComponentFS[] = Associators($ComponentSystems->[#i], 

“CIM_HostedFileSystem”,

“CIM_LocalFileSystem”,

“GroupComponent”,

“PartComponent”,

false,

false,

#FSProps[])

if ($ComponentFS[] != null && $ComponentFS[].length > 0) {

    for (#j in $ComponentFS[]) {

$FileSystems[#fsCounter] = $ComponentFS[#j]

#fsCounter++

    }

}

    }

}

    } catch (CIMException $Exception) {

// ComponentCS may not be included in the model implemented at all if 

// the Multiple Computer System Subprofile is not supported.

if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

    return $FileSystems[]

}

<ERROR! An unexpected failure occured>

    }

    return $FileSystems[]

}

// MAIN

$FS[] = ListFileSystems($NAS->)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 791



 

8.2.8.4.6.2 Get the ComputerSystem that hosts a FileSystem
//

// Get the ComputerSystem that hosts a FileSystem

//

sub GetFSServer(IN REF CIM_FileSystem $fs, 

                OUT CIM_ComputerSystem $system)

{

    $system = Associators($fs,

                          “CIM_HostedFileSystem”,

                          “CIM_ComputerSystem”,

                          “PartComponent”,

                          “GroupComponent”)->[0];

}

8.2.8.4.6.3 List Existing FileShares on the NAS
//

// List the shares on a Server

//

sub ListSystemShares(IN CIM_System $server,

                    OUT CIM_FileSystem $shares[])

{

    //

    // Use the HostedShare Association

    //

    $shares[] = Associators($server, 

                            “CIM_HostedShare”,

                            “CIM_Share”,

                            “Antecedent”,

                            “Dependent”);

}

8.2.8.4.7 Registered Name and Version
NAS Head version 1.1.0
792



 NAS Head Profile
8.2.8.4.8 CIM Server Requirements

8.2.8.4.9 CIM Elements

Table 870: CIM Server Requirements for NAS Head

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No

Table 871: CIM Elements for NAS Head

Element Name Description
Mandatory Classes

CIM_ComputerSystem (8.2.8.4.9.3) This declares that at least one computer system entry 
will pre-exist. The Name property should be the Unique 
identifier for the NAS Head.

CIM_ComputerSystem (8.2.8.4.9.4) This declares that at least one computer system that 
provides File Server capabilities will pre-exist. This 
could be the same as the top-level ComputerSystem 
but this would not be true in a cluster, so this has a sep-
arate entry that is not tagged as a top level system. The 
File Server(s) must be manageable as a computer sys-
tem and so could be exposed through other profiles and 
so there must be a way to correlate it with other man-
agement clients.

CIM_ConcreteComponent (8.2.8.4.9.5) Represents the association between a Primordial Stor-
agePool and the underlying StorageExtents that com-
pose it.

CIM_DeviceSAPImplementation (8.2.8.4.9.7) (CIFS or NFS to NetworkPort) Represents the associa-
tion between a CIFS or NFS ProtocolEndpoint and the 
NetworkPort that it supports. 

CIM_ElementSettingData (8.2.8.4.9.9) (FileShare) Associates a configuration setting to the 
configured element. It is used in this Profile with File-
Share and ExportedFileShareSetting elements.

CIM_ExportedFileShareSetting (8.2.8.4.9.11) The configuration settings for an Exported FileShare 
that is a setting for a FileShare available for exporting. 

CIM_FileShare (8.2.8.4.9.12) Represents the sharing characteristics of a particular 
file element.

CIM_HostedAccessPoint (8.2.8.4.9.14) (CIFS or NFS) Represents the association between a 
CIFS or NFS front end ProtocolEndpoint and the Com-
puter System that hosts it.

CIM_HostedFileSystem (8.2.8.4.9.16) Represents the association between a LocalFileSystem 
and the NAS Head (or FileServer) that hosts it.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 793



 

CIM_HostedShare (8.2.8.4.9.17) Represents that a shared element is hosted by a NAS 
Head Computer System.

CIM_LocalFileSystem (8.2.8.4.9.20) Represents a LocalFileSystem of a NAS Head.
CIM_LogicalDisk (8.2.8.4.9.21) Represents the single Storage Extent on which the NAS 

Head will build a LocalFileSystem.
CIM_LogicalFile (8.2.8.4.9.22) The NAS Head Profile only makes a limited set of Logi-

calFiles (or Directory subclass) instances visible. These 
are any file or directory that is exported as a share.

CIM_NetworkPort (8.2.8.4.9.23) Represents the front end logical port that supports 
access to a local area network.

CIM_ProtocolEndPoint (8.2.8.4.9.24) (CIFS or NFS) Represents the front-end ProtocolEnd-
point used to support NFS and CIFS services.

CIM_SAPAvailableForElement (8.2.8.4.9.26) Represents the association between a ServiceAccess-
Point to the shared element that is being accessed 
through that SAP.

CIM_StorageExtent (8.2.8.4.9.27) This StorageExtent represents the LUNs (StorageVol-
umes) imported from a storage device to the NAS 
Head.

CIM_SystemDevice (8.2.8.4.9.28) This association links all LogicalDevices to the scoping 
system. This is used to represent both front end and 
back end devices.

Optional Classes
CIM_BindsTo (8.2.8.4.9.1) Associates a higher level ProtocolEndpoint to an under-

lying ProtocolEndpoint. This is used in the NAS Head to 
support the TCP/IP Network protocol stack.

CIM_BindsToLANEndpoint (8.2.8.4.9.2) Associates an IPProtocolEndpoint to an underlying 
LANEndpoint in the NAS Head (to support the TCP/IP 
Network protocol stack).

CIM_ConcreteDependency (8.2.8.4.9.6) Represents an association between a FileShare ele-
ment and the actual shared LogicalFile or Directory on 
which it is based.

CIM_DeviceSAPImplementation (8.2.8.4.9.8) (LANEndpoint to NetworkPort) Associates a logical front 
end Port (a NetworkPort) to the LANEndpoint that uses 
that device to connect to a LAN.

CIM_ElementSettingData (8.2.8.4.9.10) (FileSystem) Associates a configuration setting to the 
configured element. It is used in this Profile with Local-
FileSystem and FileSystemSetting elements.

CIM_FileSystemSetting (8.2.8.4.9.13) This element represents the configuration settings of a 
File System. 

CIM_HostedAccessPoint (8.2.8.4.9.15) (TCP, IP or LAN) Represents the association between a 
front end TCP, IP or LAN ProtocolEndpoint and the 
Computer System that hosts it.

CIM_IPProtocolEndpoint (8.2.8.4.9.18) Represents the front-end ProtocolEndpoint used to sup-
port the IP protocol services.

CIM_LANEndpoint (8.2.8.4.9.19) Represents the front-end ProtocolEndpoint used to sup-
port a Local Area Network and its services.

Table 871: CIM Elements for NAS Head

Element Name Description
794



 NAS Head Profile
8.2.8.4.9.1 CIM_BindsTo
Associates a higher level ProtocolEndpoint to an underlying ProtocolEndpoint. This is used in the NAS Head to 
support the TCP/IP Network protocol stack.
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

CIM_ResidesOnExtent (8.2.8.4.9.25) Represents the association between a local FileSystem 
and the underlying LogicalDisk that it is built on.

CIM_TCPProtocolEndpoint (8.2.8.4.9.29) Represents the front-end ProtocolEndpoint used to sup-
port TCP services.

Mandatory Indications
SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_ComputerSystem    AND 
SourceInstance.CIM_ComputerSystem::Operational-
Status[*] <>                       PreviousIn-
stance.CIM_ComputerSystem::OperationalStatus[*]

CQL - Change of Status of a NAS ComputerSystem 
(controller).
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_NetworkPort    AND Source-
Instance.CIM_NetworkPort::OperationalStatus[*] <>                       
PreviousInstance.CIM_NetworkPort::OperationalSta-
tus[*]

CQL - Change of Status of a Port.
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_ProtocolEndpoint    AND 
SourceInstance.CIM_ProtocolEndpoint::Operational-
Status[*] <>                       PreviousIn-
stance.CIM_ProtocolEndpoint::OperationalStatus[*]

CQL - Change of Status of a ProtocolEndpoint
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_LocalFileSystem    AND Sour-
ceInstance.CIM_LocalFileSystem::OperationalStatus[*] 
<>                       PreviousIn-
stance.CIM_LocalFileSystem::OperationalStatus[*]

CQL - Change of Status of a Filesystem. 
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_FileShare    AND SourceIn-
stance.CIM_FileShare::OperationalStatus[*] <>                      
PreviousInstance.CIM_FileShare::OperationalStatus[*]

CQL - Change of Status of a FileShare. 
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_LogicalDisk    AND SourceIn-
stance.CIM_LogicalDisk::OperationalStatus[*] <>                      
PreviousInstance.CIM_LogicalDisk::OperationalSta-
tus[*]

CQL - Change of status of a LogicalDisk. 
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

Table 872: SMI Referenced Properties/Methods for CIM_BindsTo

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

The ProtocolEndpoint that uses a lower 
level ProtocolEndpoint for connectivity.

Table 871: CIM Elements for NAS Head

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 795



 

8.2.8.4.9.2 CIM_BindsToLANEndpoint
Associates an IPProtocolEndpoint to an underlying LANEndpoint in the NAS Head (to support the TCP/IP Network 
protocol stack).
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

8.2.8.4.9.3 CIM_ComputerSystem
This declares that at least one computer system entry will pre-exist. The Name property should be the Unique iden-
tifier for the NAS Head.
Created By : Static
Modified By : External
Deleted By : Static
Class Mandatory: true

Antecedent CIM_ProtocolEndpoint The ProtocolEndpoint that supports a 
higher-level ProtocolEndpoint.

Table 873: SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

A TCPProtocolEndpoint.

Antecedent CIM_LANEndpoint A LANEndpoint.
FrameType uint16 Only supports 1="Ethernet" at this 

point.

Table 874: SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string The actual class of this object, e.g., 
Vendor_NASComputerSystem.

ElementName string User-friendly name
Name string Unique identifier for the NAS Head in a 

format specified by NameFormat. For 
example, IP address or Vendor/Model/
SerialNo.

OperationalStatus uint16[] Overall status of the NAS Head
NameFormat string Format for Name property.
Dedicated uint16[] This shall be a NAS Head (24).
OtherIdentifyingInfo C string[] An array of know identifiers for the NAS 

Head.

Table 872: SMI Referenced Properties/Methods for CIM_BindsTo

Property Flags Type Description & Notes
796



 NAS Head Profile
8.2.8.4.9.4 CIM_ComputerSystem
This declares that at least one computer system that provides File Server capabilities will pre-exist. This could be 
the same as the top-level ComputerSystem but this would not be true in a cluster, so this has a separate entry that 
is not tagged as a top level system. The File Server(s) must be manageable as a computer system and so could be 
exposed through other profiles and so there must be a way to correlate it with other management clients.
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.4.9.5 CIM_ConcreteComponent
Represents the association between a Primordial StoragePool and the underlying StorageExtents that compose it.
Created By : External
Modified By : Static
Deleted By : External

IdentifyingDescriptions C string[] An array of descriptions of the OtherI-
dentifyingInfo.Some of the descriptions 
would be Ipv4 Address, Ipv6 Address 
or Fully Qualified Domain Name.

Optional Properties/Methods
PrimaryOwnerContact M string Owner of the NAS Head
PrimaryOwnerName M string Contact details for owner

Table 875: SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dedicated uint16[] This is a File Server (Dedicated=16).It 
could also support other capabilities, so 
we do not restrict the values that can 
be in the Dedicated array.

NameFormat string Format for Name property. This shall 
be "Other".

Name C string Unique identifier for the NAS Head's 
File Servers. e.g. Vendor/Model/Seri-
alNo+FS+Number. The Fileserver can 
have any number of IP addresses, so 
an IP address does not constitute a sin-
gle unique id. Also, under various load-
balancing or redundancy regimens, the 
IP address could move around, so it 
may not even be correlatable. For that 
reason, the vendor must support a for-
mat that will provide a unique ID for the 
file server.

OperationalStatus uint16[] Overall status of the File Server.

Table 874: SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 797



 

Class Mandatory: true

8.2.8.4.9.6 CIM_ConcreteDependency
Represents an association between a FileShare element and the actual shared LogicalFile or Directory on which it 
is based.
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.8.4.9.7 CIM_DeviceSAPImplementation
(CIFS or NFS to NetworkPort) Represents the association between a CIFS or NFS ProtocolEndpoint and the Net-
workPort that it supports. 
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.8.4.9.8 CIM_DeviceSAPImplementation
(LANEndpoint to NetworkPort) Associates a logical front end Port (a NetworkPort) to the LANEndpoint that uses 
that device to connect to a LAN.
Created By : External
Modified By : Static
Deleted By : External

Table 876: SMI Referenced Properties/Methods for CIM_ConcreteComponent

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_ManagedElement The Primordial StoragePool that is built 
from the StorageExtent.

PartComponent CIM_ManagedElement A StorageExtent that is part of a Pri-
mordial StoragePool.

Table 877: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement The LogicalFile that is being shared. 
Dependent CIM_ManagedElement The Share that represents the Logical-

File being shared.

Table 878: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS 
to NetworkPort)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

The ProtocolEndpont that supports on 
the NetworkPort. These include Proto-
colEndpoints for NFS and CIFS. 

Antecedent CIM_LogicalDevice The NetworkPort supported by the 
Access Point.
798



 NAS Head Profile
Class Mandatory: false

8.2.8.4.9.9 CIM_ElementSettingData
(FileShare) Associates a configuration setting to the configured element. It is used in this Profile with FileShare and 
ExportedFileShareSetting elements.
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.8.4.9.10 CIM_ElementSettingData
(FileSystem) Associates a configuration setting to the configured element. It is used in this Profile with LocalFile-
System and FileSystemSetting elements.
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.8.4.9.11 CIM_ExportedFileShareSetting
The configuration settings for an Exported FileShare that is a setting for a FileShare available for exporting. 
Created By : External
Modified By : External
Deleted By : External

Table 879: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEnd-
point to NetworkPort)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

A LANEndpoint that depends on a Net-
workPort for connecting to its LAN seg-
ment.

Antecedent CIM_LogicalDevice The Logical network adapter device 
that connects to a LAN.

Table 880: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The FileShare.
SettingData CIM_SettingData The current configuration of the File-

Share.

Table 881: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The LocalFileSystem.
SettingData CIM_SettingData The current configuration of the Local-

FileSystem.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 799



 

Class Mandatory: true

8.2.8.4.9.12 CIM_FileShare
Represents the sharing characteristics of a particular file element.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.4.9.13 CIM_FileSystemSetting
This element represents the configuration settings of a File System. 
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

Table 882: SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string A unique ID for the setting.
ElementName string A user-friendly name for a Setting.
FileSharingProtocol uint16 The file sharing protocol supported by 

this share. NFS (2) and CIFS (3) are 
the supported values.

ProtocolVersions string[] An array of the versions of the sup-
ported file sharing protocol. A share 
may support multiple versions of the 
same protocol.

Table 883: SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string A unique id for the FileShare element.
SharingDirectory boolean Indicates if the shared element is a file 

or a directory. This is useful when 
importing but less so when exporting.

Table 884: SMI Referenced Properties/Methods for CIM_FileSystemSetting

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string An opaque, unique id for a File System 
Setting.

ElementName string A User-Friendly Name for this Setting 
element.

ActualFileSystemType uint16 This identifies the type of filesystem 
that this Setting represents.
800



 NAS Head Profile
FilenameCaseAttributes uint16 This specifies the support provided for 
using upper and lower case characters 
in a filename.

ObjectTypes uint16[] This is an array that specifies the differ-
ent types of objects that this filesystem 
may be used to provide and provides 
further details in corresponding entries 
in other attributes.

NumberOfObjectsMin uint64[] This is an array that specifies the mini-
mum number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

NumberOfObjectsMax uint64[] This is an array that specifies the maxi-
mum number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

NumberOfObjects uint64[] This is an array that specifies the 
expected number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

ObjectSize uint64[] This is an array that specifies the 
expected size of a typical object of the 
type specified by the corresponding 
entry in ObjectTypes[].

ObjectSizeMin uint64[] This is an array that specifies the mini-
mum size of an object of the type spec-
ified by the corresponding entry in 
ObjectTypes[].

ObjectSizeMax uint64[] This is an array that specifies the mini-
mum size of an object of the type spec-
ified by the corresponding entry in 
ObjectTypes[].

Optional Properties/Methods
FilenameReservedCharacterSet String[] This string or character array specifies 

the characters reserved (i.e., not 
allowed) for use in filenames.

DataExtentsSharing uint16 This allows the creation of data blocks 
(or storage extents) that are shared 
between files.

CopyTarget uint16 This specifies if support should be pro-
vided for using the created file system 
as a target of a Copy operation.

FileNameStreamFormats uint16[] This is an array that specifies the 
stream formats supported for filenames 
by the created array (e.g., UTF-8).

FilenameFormats uint16[] This is an array that specifies the for-
mats supported for filenames by the 
created array (e.g., DOS 8.3 names).

Table 884: SMI Referenced Properties/Methods for CIM_FileSystemSetting

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 801



 

8.2.8.4.9.14 CIM_HostedAccessPoint
(CIFS or NFS) Represents the association between a CIFS or NFS front end ProtocolEndpoint and the Computer 
System that hosts it.
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.8.4.9.15 CIM_HostedAccessPoint
(TCP, IP or LAN) Represents the association between a front end TCP, IP or LAN ProtocolEndpoint and the Com-
puter System that hosts it.
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

FilenameLengthMax uint16[] This specifies the maximum length of a 
filename supported by this capabilities.

SupportedLockingSemantics uint16[] This array specifies the kind of file 
access/locking semantics supported by 
this capabilities.

SupportedAuthorizationProtocols uint16[] This array specifies the kind of file 
authorization protocols supported by 
this capabilities.

SupportedAuthenticationProtocols uint16[] This array specifies the kind of file 
authentication protocols supported by 
this capabilities.

Table 885: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

The ServiceAccessPoint hosted on the 
FileServer. These include ProtocolEnd-
points for NFS or CIFS. 

Antecedent CIM_System The Computer System hosting this 
Access Point. In the context of the NAS 
Head, these are always FileServers 
(Dedicated=16).

Table 886: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP, IP or LAN)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

The ServiceAccessPoint hosted on the 
FileServer. These include ProtocolEnd-
points for TCPProtocolEndpoints, 
IPProtocolEndpoints, and LANEnd-
points.

Table 884: SMI Referenced Properties/Methods for CIM_FileSystemSetting

Property Flags Type Description & Notes
802



 NAS Head Profile
8.2.8.4.9.16 CIM_HostedFileSystem
Represents the association between a LocalFileSystem and the NAS Head (or FileServer) that hosts it.
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.8.4.9.17 CIM_HostedShare
Represents that a shared element is hosted by a NAS Head Computer System.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.4.9.18 CIM_IPProtocolEndpoint
LAN endpoints supported are: 1="Other",6="Ethernet CSMA/CD", 9="ISO 802.5 Token Ring",
15="FDDI".

Created By : External
Modified By : External
Deleted By : External

Antecedent CIM_System The Computer System hosting this 
Access Point. In the context of the NAS 
Head, these are always FileServers 
(Dedicated=16).

Table 887: SMI Referenced Properties/Methods for CIM_HostedFileSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System The Computer System that hosts a 
LocalFileSystem. The NAS head hosts 
all the file systems made available to 
operational users, while the FileServer 
hosts a local "root" filesystem to sup-
port a filepath naming mechanism.

PartComponent CIM_FileSystem The hosted filesystem.

Table 888: SMI Referenced Properties/Methods for CIM_HostedShare

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_Share The Share that is hosted by a File 
Server Computer System

Antecedent CIM_System The File Server Computer System that 
hosts a FileShare.

Table 886: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP, IP or LAN)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 803



 

Class Mandatory: false

8.2.8.4.9.19 CIM_LANEndpoint
Represents the front-end ProtocolEndpoint used to support a Local Area Network and its services.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

Table 889: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The CIM Class name of the Computer 
System hosting the Protocol Endpoint.

SystemName string The name of the Computer System 
hosting the Protocol Endpoint.

CreationClassName string The CIM Class name of the Protocol 
Endpoint.

Name string The unique name of the Protocol End-
point.

NameFormat string The Format of the Name.
OperationalStatus uint16[] The operational status of the PEP.
Description string This shall be the IP protocol endpoints 

supported by the NAS Head. 
ProtocolIFType uint16 4096="IP v4", 4097="IP v6", and 4098 

is both. (Note that 1="Other" is not sup-
ported)

IPv4Address string An IP v4 address in the format 
"A.B.C.D".

IPv6Address string
SubnetMask string An IP v4 subnet mask in the format 

"A.B.C.D".
PrefixLength uint8 For an IPv6 address.

Optional Properties/Methods
RequestedState uint16
EnabledState uint16
OtherEnabledState string
TimeOfLastStateChange datetime

Table 890: SMI Referenced Properties/Methods for CIM_LANEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The CIM Class name of the Computer 
System hosting the Protocol Endpoint.

SystemName string The name of the Computer System 
hosting the Protocol Endpoint.
804



 NAS Head Profile
8.2.8.4.9.20 CIM_LocalFileSystem
Represents a LocalFileSystem of a NAS Head.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

CreationClassName string The CIM Class name of the Protocol 
Endpoint.

Name string The unique name of the Protocol End-
point.

NameFormat string The Format of the Name.
OperationalStatus uint16[] The operational status of the PEP.
Description string This shall be the LAN protocol end-

points supported by the NAS Head. 
ProtocolIFType uint16 LAN endpoints supported are: 

1="Other",6="Ethernet CSMA/CD", 
9="ISO 802.5 Token Ring", 15="FDDI".

MACAddress string Primary Unicast address for this LAN 
device.

AliasAddresses string[] Other unicast addresses supported by 
this device.

GroupAddresses string[] Multicast addresses supported by this 
device.

MaxDataSize uint32 The max size of packet supported by 
this LAN device.

Optional Properties/Methods
RequestedState uint16
EnabledState uint16
OtherEnabledState string
TimeOfLastStateChange datetime
OtherTypeDescription string If the LAN endpoint is a vendor-exten-

sion specified by "Other" and a descrip-
tion.

LANID N string A unique id for the LAN segment to 
which this device is connected. The 
value will be NULL if the LAN is not 
connected.

Table 891: SMI Referenced Properties/Methods for CIM_LocalFileSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CSCreationClassName string The CIM class of the hosting NAS 
Head Computer System.

Table 890: SMI Referenced Properties/Methods for CIM_LANEndpoint

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 805



 

8.2.8.4.9.21 CIM_LogicalDisk
Represents the single Storage Extent on which the NAS Head will build a LocalFileSystem.
Created By : ExternalExtrinsic(s): 
Modified By : ExternalExtrinsic(s): 
Deleted By : ExternalExtrinsic(s): 

CSName string The Name of the hosting NAS Head 
Computer System.

CreationClassName string The CIM class of this instance.
Name string A unique name for this Filesystem in 

the context of the hosting NAS Head.
OperationalStatus uint16[] The current operational status of the 

LocalFileSystem.
CaseSensitive boolean Whether this filesystem is sensitive to 

the case of characters in filenames.
CasePreserved boolean Whether this filesystem preserves the 

case of characters in filenames when 
saving and restoring.

MaxFileNameLength uint32 The length of the longest filename.
FileSystemType string This matches ActualFileSystemType

Optional Properties/Methods
Root string A path that specifies the root of the file-

system in an unitary Computer Sys-
tems acting as a FileServer.

BlockSize uint64 The size of a block in bytes for certain 
filesystems that use a fixed block size 
when creating filesystems.

FileSystemSize uint64 The total current size of the file system 
in blocks.

AvailableSpace uint64 The space available currently in the file 
system in blocks. NOTE: This value is 
an approximation.

ReadOnly boolean Indicates that this is a read-only filesys-
tem that does not allow modifications.

EncryptionMethod string Indicates if files are encrypted and the 
method of encryption.

CompressionMethod string Indicates if files are compressed before 
being stored, and the methods of com-
pression.

CodeSet uint16[] The codeset used in filenames.
NumberOfFiles uint64 The actual current number of files in 

the filesystem. NOTE: This value is an 
approximation.

Table 891: SMI Referenced Properties/Methods for CIM_LocalFileSystem

Property Flags Type Description & Notes
806



 NAS Head Profile
Class Mandatory: true

8.2.8.4.9.22 CIM_LogicalFile
The NAS Head Profile only makes a limited set of LogicalFiles (or Directory subclass) instances visible. These are 
any file or directory that is exported as a share.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 892: SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string CIM Class of the NAS Head Computer 
System that is the host of this LogicalD-
isk. 

SystemName string  Name of the NAS Head Computer 
System that hosts this LogicalDisk. 

CreationClassName string CIM Class of this instance of LogicalD-
isk. 

DeviceID string Opaque identifier for the LogicalDisk. 
OperationalStatus uint16[] A subset of operational status that is 

applicable for LogicalDisks in a NAS 
Head. 

ExtentStatus uint16[] This LogicalDisk is neither imported 
(16) nor exported (17).

Primordial boolean This represents a Concrete Logical 
Disk that is not primordial.

Name string Identifier for a local LogicalDisk that will 
be used for a filesystem; since this logi-
cal disk will be referenced by a client, it 
must have a unique name. We cannot 
constrain the format here, but the OS-
specific format described in the Block 
Services specification is not appropri-
ate, so "Other" is used.

NameFormat uint16 The format of the Name appropriate for 
LogicalDisks in the NAS Head. This 
shall be coded as 1 (other).

Table 893: SMI Referenced Properties/Methods for CIM_LogicalFile

Property Flags Type Description & Notes
Mandatory Properties/Methods

CSCreationClassName string CIM Class of the Fileserver Computer 
System that hosts the Filesystem of 
this File.

CSName string Name of the Fileserver Computer Sys-
tem that hosts the Filesystem of this 
File.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 807



 

8.2.8.4.9.23 CIM_NetworkPort
LAN endpoints supported are: 1="Other", 6="Ethernet CSMA/CD", 9="ISO 802.5 Token Ring",
15="FDDI".

Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

FSCreationClassName string CIM Class of the LocalFileSystem on 
the Fileserver Computer System that 
contains this File.

FSName string Name of the LocalFileSystem on the 
Fileserver Computer System that con-
tains this File.

CreationClassName string CIM Class of this instance of Logical-
File.

Name string Name of this LogicalFile.

Table 894: SMI Referenced Properties/Methods for CIM_NetworkPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementName string A user-friendly name for this Network 
adapter that provides a network port.

OperationalStatus uint16[] The operational status of the adapter.
SystemCreationClassName string The CIM Class name of the Computer 

System hosting the Network Port.
SystemName string The name of the Computer System 

hosting the Network Port.
CreationClassName string The CIM Class name of the Network 

Port.
DeviceID string A unique ID for the device (in the con-

text of the hosting System).
PermanentAddress C string The hard-coded address of this port.

Optional Properties/Methods
Speed uint64
MaxSpeed uint64
RequestedSpeed uint64
UsageRestriction uint16
PortType uint16
PortNumber uint16 A unique number for the adapter in the 

context of the hosting System.
NetworkAddresses string[] An array of network addresses for this 

port.

Table 893: SMI Referenced Properties/Methods for CIM_LogicalFile

Property Flags Type Description & Notes
808



 NAS Head Profile
8.2.8.4.9.24 CIM_ProtocolEndPoint
(CIFS or NFS) Represents the front-end ProtocolEndpoint used to support NFS and CIFS services.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

LinkTechnology uint16 1="Other", 2="Ethernet", 3="IB", 
4="FC", 5="FDDI", 6="ATM", 7="Token 
Ring", 8="Frame Relay", 9="Infrared", 
10="BlueTooth", 11="Wireless LAN.The 
link technology supported by this 
adapter. 

OtherLinkTechnology string The vendor-specific "Other" link tech-
nology supported by this adapter. 

FullDuplex boolean
AutoSense boolean
SupportedMaximumTransmission-
Unit

uint64

ActiveMaximumTransmissionUnit uint64

Table 895: SMI Referenced Properties/Methods for CIM_ProtocolEndPoint (CIFS or NFS)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The CIM Class name of the Computer 
System hosting the Protocol Endpoint.

SystemName string The name of the Computer System 
hosting the Protocol Endpoint.

CreationClassName string The CIM Class name of the Protocol 
Endpoint.

Name string The unique name of the Protocol End-
point.

NameFormat string The Format of the Name.
OperationalStatus uint16[] The operational status of the PEP.
Description string This shall be one of the NFS or CIFS 

protocol endpoints supported by the 
NAS Head. 

ProtocolIFType uint16 This represents either NFS=4200 or 
CIFS=4201. Other protocol types are 
specified in subclasses of ProtocolEnd-
point.

Optional Properties/Methods
RequestedState uint16
EnabledState uint16
OtherEnabledState string

Table 894: SMI Referenced Properties/Methods for CIM_NetworkPort

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 809



 

8.2.8.4.9.25 CIM_ResidesOnExtent
Represents the association between a local FileSystem and the underlying LogicalDisk that it is built on.
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.8.4.9.26 CIM_SAPAvailableForElement
Represents the association between a ServiceAccessPoint to the shared element that is being accessed through 
that SAP.
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.8.4.9.27 CIM_StorageExtent
This StorageExtent represents the LUNs (StorageVolumes) imported from a storage device to the NAS Head.
Created By : Static or External
Modified By : External
Deleted By : External
Class Mandatory: true

TimeOfLastStateChange datetime

Table 896: SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_LogicalElement The local file system that is built on top 
of a LogicalDIsk.

Antecedent CIM_StorageExtent The LogicalDIsk that underlies a Local-
FileSystem.

Table 897: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The element that is made available 
through a SAP. In the NAS Head, these 
are FileShares configured for either 
export or import.

AvailableSAP CIM_ServiceAccessPoi
nt

The Service Access Point that is avail-
able to this element.

Table 898: SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string

Table 895: SMI Referenced Properties/Methods for CIM_ProtocolEndPoint (CIFS or NFS)

Property Flags Type Description & Notes
810



 NAS Head Profile
8.2.8.4.9.28 CIM_SystemDevice
This association links all LogicalDevices to the scoping system. This is used to represent both front end and back 
end devices.
Created By : External or StaticExtrinsic(s): 
Modified By : ExternalExtrinsic(s): 
Deleted By : ExternalExtrinsic(s): 
Class Mandatory: true

8.2.8.4.9.29 CIM_TCPProtocolEndpoint
Represents the front-end ProtocolEndpoint used to support TCP services.
Created By : External
Modified By : External
Deleted By : External

SystemName string
CreationClassName string
DeviceID string
BlockSize uint64
NumberOfBlocks uint64
ExtentStatus uint16[]
OperationalStatus uint16[]
Name string Identifier for a remote LUN on a stor-

age array; possibly, the array ID plus 
LUN Node WWN. This LUN is imported 
from a remote storage device, so the 
NameFormat identifies the remote LUN 
by identifying the remote array and the 
unique LUN ID at that array. As an 
example below, we have specified a 
16-character hex format for the Name 
taken from the Node WWN format.

Primordial boolean The StorageExtent imported from an 
Array is considered primordial in the 
NAS Head.

Table 899: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System The Computer System that contains 
this device.

PartComponent CIM_LogicalDevice The logical device that is a part of a 
computer system. These include Stora-
geVolumes, NetworkPorts, 'back end' 
LogicalPorts for accessing storage, 
StorageExtents, protocol controllers, 
and so on.

Table 898: SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 811



 

Class Mandatory: false

8.2.8.4.10 Related Standards

Table 900: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The CIM Class name of the Computer 
System hosting the Protocol Endpoint.

SystemName string The name of the Computer System 
hosting the Protocol Endpoint.

CreationClassName string The CIM Class name of the Protocol 
Endpoint.

Name string The unique name of the Protocol End-
point.

NameFormat string The Format of the Name.
OperationalStatus uint16[] The operational status of the PEP.
Description string This shall be the TCP protocol end-

points supported by the NAS Head. 
ProtocolIFType uint16 4111="TCP". Note that no other proto-

col type is supported by this endpoint.
PortNumber uint32 The number of the TCP Port that this 

element represents.
Optional Properties/Methods

RequestedState uint16
EnabledState uint16
OtherEnabledState string
TimeOfLastStateChange datetime

Table 901: Related Standards for NAS Head

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
812



 Self-Contained NAS Profile 
8.2.8.5 Self-Contained NAS Profile 

8.2.8.5.1 Description
The Self-contained NAS profile defines NAS systems that are self-contained in that all the storage they
use to store the NAS data is part of the NAS System (and not exposed). As a result, the Self-contained
NAS profile needs to be able to address aspects of physical storage.

The Self-contained NAS profile reuses a significant portion of the Array Profile. This is illustrated in
Figure 130: "Self-Contained NAS Profile and Subprofiles".

The Self-Contained NAS Profile and its subprofiles provide the following capabilities to SMI-S:

Device Level Configuration

• The Self-Contained NAS Profile defines reporting of physical storage. This includes configuration
of storage at the Disk Drive level.

Figure 130: Self-Contained NAS Profile and Subprofiles

Location

Disk Drive
Lite

Initiator Ports

Self-Contained NAS

Multiple 
Computer System

Access Points

Software

Job Control

Block Services
Package

Device Credentials

PhysicalPackage Package

                  HostedService

HostedService

ComputerSystemPackage

HostedAccessPoint
ConcreteIdentity

ComponentCS

Container

PhysicalElementLocation

InstalledSoftwareIdentity

SystemDevice

FileExportManipulation

OwningJobElement

Filesystem  
Manipulation OwningJobElement

Indications 

Extent 
Composition

ConcreteComponent

ConcreteComponent

BasedOn
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 813



 

• The Self-Contained NAS Profile supports indications on OperationalStatus of the NAS processors.

Connectivity Level Configuration

• The Self-Contained NAS Profile defines reporting on port connectivity to the Self-Contained NAS. 

• The Self-Contained NAS Profile supports indications on OperationalStatus of the NAS Ports and
ProtocolEndpoints.

• The File Export Manipulation Subprofile defines mechanism for establishing file access through
port connectivity to the NAS offering. 

Block Level Configuration

• The Self-Contained NAS Profile defines reporting on logical storage (StoragePools) and
LogicalDisks on those pools.

Note: Filesystems are built on the LogicalDisks.

• The Self-Contained NAS Profile supports indications on OperationalStatus of the LogicalDisks.

File/Record Configuration

• The Self-Contained NAS Profile defines reporting on the file systems and file shares that are
configured out of the storage of the Self-Contained NAS.

• The Self-Contained NAS Profile supports indications on OperationalStatus of the FileSystems and
FileShares.

• The Filesystem Manipulation Subprofile defines the ability to configure file systems out of the
storage of the NAS Profile it supports.

• The File Export Manipulation Subprofile defines mechanism for establishing file shares on local file
systems that can then be accessed by remote clients.
814



 Self-Contained NAS Profile 
8.2.8.5.1.1 Summary Instance Diagram
Figure 131: "Self-Contained NAS Instance Diagram" illustrates the mandatory classes of the Self-
Contained NAS Profile. This figure shows all the classes that are mandatory for the Self-contained NAS
Profile. Later diagrams will review specific sections of this diagram.

The Self-Contained NAS Profile closely parallels the Array Profile in how it models storage. Storage is
assigned to StoragePools and LogicalDisks are allocated from those storage pools for the purpose of
holding local file systems of the NAS. 

Figure 131: Self-Contained NAS Instance Diagram

Block Services Package
ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

AllocatedFromStoragePool

StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingData

HostedStoragePool

LocalFileSystem

HostedFileSystem
ResidesOnExtent

(Optional)

LogicalFile
(Directory)

FileShare
NFS or CIFS

ConcreteDependency
(Optional)

FileStorage

ProtocolEndPoint

ProtocolIFType= 4200 | 4201
('NFS" or "CIFS") NetworkPort

SAPAvailableForElement

FileSystemSetting
(Optional)ElementSettingData

(Optional)

ExportedFileShareSettingElementSettingData

HostedShare

SystemDevice

SystemDevice

DeviceSAPImplementation
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 815



 

As with the Array profile, the Self-contained NAS StoragePools have StorageCapabilities associated to
the StoragePools via ElementCapabilities. Similarly, LogicalDisks have StorageSettings, which are
associated to the LogicalDisk via ElementSettingData. StoragePools are hosted by a ComputerSystem
that represents the NAS “top level” system, and the LogicalDisks have a SystemDevice association to
the “top level” ComputerSystem.

Note: As with Arrays, the StoragePools may be hosted by a component ComputerSystem if the profile
has implemented the Multiple Computer System Subprofile.

As with Arrays, the “top level” ComputerSystem of the Self-Contained NAS does not (and typically isn’t)
a real ComputerSystem. It is merely the ManagedElement upon which all aspects of the NAS offering
are scoped.

Everything above the LogicalDisk is specific to NAS (and does not appear in the Array Profile).
LocalFileSystems are created on the Logicaldisks, LogicialFiles within those LocalFileSystens are
shared (FileShare) through ProtocolEndpoints associated with NetworkPorts.

Note: The classes and associations in the dashed box are from the Block Services Package.

The ConcreteDependency association is optional. It is shown here to illustrate a relationship between a
FileShare and some Directory. However, the Directory need not be part of the LocalFileSystem.
Similarly, the ResidesOnExtent is optional, but is shown here to illustrate that a LocalFileSystem may
map to a LogicalDisk. However, other mappings to storage are also possible.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They
are only shown here to illustrate where they would show up in the model should they be implemented.

In the base Self-Contained NAS profile, these are automatically populated based on how the Self-
Contained NAS is configured. Client modification of the configuration (including configuring storage,
creating extents, local file systems and file shares) are functions found in subprofiles of the profile.
816



 Self-Contained NAS Profile 
8.2.8.5.1.2 NAS Storage Model
Figure 132: "NAS Storage Instance Diagram" illustrates the classes mandatory for modeling of storage
for the Self-Contained NAS Profile.

The Self-Contained NAS Profile uses most of the classes and associations defined in the Array Profile
(including those in the Block Services Package). In doing this, it leverages many of the subprofiles that
are available for Array Profiles. The classes and associations shown in Figure 132: "NAS Storage
Instance Diagram" are the minimum mandatory classes and associations of the Block Services
Package for read only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled,
including the HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the
StoragePool. In addition, in order for storage to be used it shall be allocated to one or more
LogicalDisks. A LogicalDisk shall have an AllocatedFromStoragePool association to the StoragePool
from which it is allocated. And the LogicalDisk shall have an ElementSettingData association to the
settings that were used when the LogicalDisk was created.

Note: At this level, the model for storage is the same for both the Self-contained NAS Profile and the
NAS Head Profile. In the case of the Self-contained NAS, storage for the StoragePools is drawn
from Disk Drives. Modeling of Disk Drives is Optional (See 8.2.8.14 "Disk Drive Lite Subprofile").

For manipulation of Storage, see8.2.8.10 "Block Services Package". For Self-Contained NAS,
LogicalDisks are the ElementType that is supported for storage allocation functions (e.g.,
CreateOrModifyElementFromStoragePool and ReturnToStoragePool) and LogicalDisk creation is
optional. NAS also supports (optionally) the Pool manipulation functions (e.g.,
CreateOrModifyStoragePool and DeleteStoragePool) of the Block Services Package.

8.2.8.5.1.3 NAS Filesystem Model
Figure 133: "NAS Filesystem Instance Diagram" illustrates the classes mandatory for the modeling of
file systems for the NAS Profiles.

Figure 132: NAS Storage Instance Diagram

Block Services Package

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingData

HostedStoragePool

SystemDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 817



 

Note: This part of the model is the same for both the Self-contained NAS and the NAS Head.

The NAS Profile builds on the storage with Filesystems which are established on LogicalDisks. In the
case of NAS Profiles, one Filesystem is established on one LogicalDisk.

Note: One Filesystem may also span multiple LogicalDisks or a Filesystem is may be allocated directly
from a StoragePool, but these methods of storing a FileSystem are not covered by this version of
SMI-S.

A Filesystem shall be represented in the model as instance of LocalFileSystem. A LocalFileSystem
instance may have exactly one ResidesOnExtent association to one exactly one LogicalDisk. In this
case, a client would determine the size (in bytes) of a Filesystem by inspecting the size of the
LogicalDisk on which the filesystem resides. FileSystemSize can also be found as a property of
LocalFileSystem. For other methods of FileSystem storage, the client should use the FileSystemSize
property of the LocalFileSystem.

The FileSystem shall have a HostedFileSystem association to a NAS ComputerSystem. Normally this
will be the top level ComputerSystem of the NAS profile. However, if the Multiple Computer System
Subprofile is implemented, the HostedFileSystem may be associated to a component ComputerSystem
(See 8.2.7.5 "SCSI Multipath Management Subprofile").

The LocalFileSystem instance may also have an ElementSettingData association to the
FileSystemSetting for the Filesystem. However, the FileSystemSetting is optional and may not be
present.

8.2.8.5.1.4 NAS File Share Model
Figure 134: "NAS File Share Instance Diagram" illustrates the classes mandatory for model File Shares
for the NAS Profile.

Figure 133: NAS Filesystem Instance Diagram

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

StorageSetting
ElementSettingData

HostedStoragePool

LocalFileSystem

HostedFileSystem

ResidesOnExtent
(Optional)

FileSystemSetting
(Optional)ElementSettingData

(Optional)

SystemDevice
818



 Self-Contained NAS Profile 
Note: This part of the model is the same for both the Self-contained NAS and the NAS Head.

The NAS Profile shall model any File Shares that have been exported to the network. A File Share shall
be represented as a FileShare instance with associations to the ComputerSystem that hosts the share
(via HostedShare), to the ExportedFileShareSetting (via ElementSettingData) and to the
ProtocolEndpoint through which the Share can be accessed (via SAPAvailableForElement). Optionally,
there may also be an association between the FileShare and the LogicalFile that the share represents
(via ConcreteDependency).

The LogicalFile on which the FileShare is based shall have a FileStorage association to the Filesystem
in which it resides.

Figure 134: NAS File Share Instance Diagram

ComputerSystem

LocalFileSystem

HostedFileSystem

LogicalFile

FileShare
NFS or CIFS

ConcreteDependency
(Optional)

FileStorage

ProtocolEndPoint

ProtocolIFType= 4200 | 4201
('NFS" or "CIFS")

DeviceSAPImplementation

SAPAvailableForElement

FileSystemSetting
(Optional)

ElementSettingData
(Optional)

NetworkPort

ExportedFileShareSetting
ElementSettingData

HostedShare

Hosted
AccessPoint

SystemDevice

BindsTo
(Optional)

TCPProtocolEndPoint
(Optional)

IPProtocolEndPoint
(Optional)

LANProtocolEndPoint
(Optional)

BindsTo
(Optional)

BindsToLANEndpoint
(Optional)

DeviceSAPImplementation
(Optional)

HostedAccessPoint
(Optional)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 819



 

EXPERIMENTAL

8.2.8.5.2 Health and Fault Management Considerations
Self-Contained NAS supports state information (e.g., OperationalStatus) on the following elements of
the model:

• Network Ports (See Table 902)

• Back-end Ports (See 8.2.3.2 "Fibre Channel Initiator Port Subprofile", 8.2.3.1 "Parallel SCSI (SPI)
Initiator Port Subprofile" and 8.2.3.3 "iSCSI Initiator Port Subprofile")

• ComputerSystems (See 8.2.1.6 "Health Package")

• FileShares that are exported (See Table 919: "SMI Referenced Properties/Methods for
CIM_ExportedFileShareSetting")

• Local File Systems (See Table 906, “Supported Subprofiles for Self-contained NAS System”)

• ProtocolEndpoints (See Table 905: "ProtocolEndpoint OperationalStatus")

• DiskDrive (See 8.2.8.14 "Disk Drive Lite Subprofile")

8.2.8.5.2.1 OperationalStatus for Network Ports

8.2.8.5.2.2 OperationalStatus for FileShares

Table 902: NetworkPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 903: FileShare OperationalStatus

OperationalStatus Description

OK FileShare is online

Error FileShare has a failure. This could be due to a Filesys-
tem failure.

Stopped FileShare is disabled

Unknown
820



 Self-Contained NAS Profile 
8.2.8.5.2.3 OperationalStatus for Filesystems

8.2.8.5.2.4 OperationalStatus for ProtocolEndpoints

EXPERIMENTAL

Table 904: Filesystem OperationalStatus

OperationalStatus Description

OK The Filesystem has good status

Stressed Filesystem resources are stressed

Degraded The Filesystem is operating in a degraded mode. This 
could be due to the OperationalStatus of the underly-
ing storage.

Predictive Failure Filesystem might fail

Lost Communications Filesystem cannot be accessed - if this happens in 
real-time, the opStatus is Lost Communication, other-
wise it is Stopped.

Error The Filesystem is not functioning

Non-recoverable Error The Filesystem is not functioning and no SMI-S action 
will fix the problem.

Supporting Entity in Error FileSystem is in an error state because a supporting 
entity is not accessible

Starting The Filesystem is in process of initialization

Stopping The Filesystem is in process of stopping

Stopped The Filesystem is stopped

Dormant The Filesystem is offline

Table 905: ProtocolEndpoint OperationalStatus

OperationalStatus Description

OK ProtocolEndpoint is online

Error ProtocolEndpoint has a failure

Stopped ProtocolEndpoint is disabled

Unknown
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 821



 

8.2.8.5.3 Cascading Considerations
Not Applicable.

8.2.8.5.4 Supported Subprofiles and Packages

8.2.8.5.5 Methods of the Profile

8.2.8.5.5.1 Extrinsic Methods of the Profile
None.

8.2.8.5.5.2 Intrinsic Methods of the Profile
The profile supports read methods and association traversal. Manipulation functions are only supported
for managing Indications (IndicationFilters, IndicationSubscriptions and ListenerDestinations).

8.2.8.5.6 Client Considerations and Recipes
In the NAS recipes, the following subroutines are used (and provided here as forward declarations):

Table 906: Supported Subprofiles for Self-contained NAS System

Registered Subprofile Names Mandatory Version
Indication Yes 1.1.0
Access Points No 1.1.0
Multiple Computer System No 1.1.0
Software No 1.1.0
Location No 1.1.0
Extent Composition No 1.1.0
File System Manipulation No 1.1.0
File Export Manipulation No 1.1.0
Job Control No 1.1.0
Disk Drive Lite No 1.1.0
SPI Initiator Ports No 1.1.0
FC Initiator Ports No 1.1.0
iSCSI Initiator Ports No 1.1.0
Device Credentials No 1.1.0

Table 907: Supported Packages for Self-contained NAS System

Registered Package Names Version
Physical Package 1.1.0
Block Services 1.1.0
Health 1.1.0
822



 Self-Contained NAS Profile 
sub GetFSServer(IN REF CIM_FileSystem $fs,

                 OUT CIM_ComputerSystem $system);

sub GetFSCapabilityFromServer(IN REF CIM_System $server, 

                              OUT CIM_FileSystemConfigurationServiceCapabilities 
$capability,

                              OUT CIM_FileSystemConfigurationService 
$fsconfigurator,

                              IN Optional String $filesystemtype = "",

                              IN Optional String $otherpropertyname = NULL,

                              IN Optional String $otherpropertyvalue = NULL);

sub GetFSCapabilityFromFileSystem(IN REF CIM_FileSystem $fs, 

                   OUT CIM_FileSystemConfigurationServiceCapabilities $capability,

                   OUT CIM_FileSystemConfigurationService $fsconfigurator);

sub GetExportServiceAndCapabilities(IN REF CIM_FileSystem $fs,

                                    IN String $sharetype,

                                    OUT CIM_FileExportService $feservice,

                                    OUT CIM_ExportedFileShareCapabilities 
$efscapability);

Conventions used in the NAS recipes: 

•  When there is expected to be only one association of interest, the first item in the array returned
by the Associators( ) call is used without further validation. Real code will need to be more robust.

• We use Values and Valuemap members as equivalent. In real code, client-side magic is required
to convert the integer representation into the string form given in the MOF.

8.2.8.5.6.1 List Existing Filesystems on the NAS
// DESCRIPTION

// The goal of this recipe is to locate all file systems hosted on the 

// Self-contained NAS.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. A reference to the top-level ComputerSystem was previously discovered

// and is defined in the $SCNAS-> variable.

// Function ListFileSystems

// This function takes a given top-level ComputerSystem and locates the file 

// systems which it hosts.

// Input:

// A reference to the top-level ComputerSystem representing the 

// Self-contained NAS.

// Return:

// An array of instance(s) to the file systems hosted on the Self-contained

// NAS or null if there are no hosted file systems.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 823



 

sub CIMInstance[] ListFileSystems(REF $System->) {

    // Step 1. Locate the file systems hosted directly by the top-level

    // ComputerSystem representing the Self-contained NAS.

    #FSProps[] = {“CSCreationClassName”, “CSName”, “CreationClassName”,

    “Name”}

    $FileSystems[] = Associators($System->, 

    “CIM_HostedFileSystem”,

    “CIM_LocalFileSystem”,

    “GroupComponent”,

    “PartComponent”,

    false,

    false,

    #FSProps[])

    // Step 2. Locate any non-top-level ComputerSystems that may be present in

    // a Self-contained NAS device that supports the Multiple Computer System 

    // Subprofile.

    try {

$ComponentSystems->[] = AssociatorNames($System->,

“CIM_ComponentCS,

“CIM_ComputerSystem”,

“GroupComponent”,

“PartComponent”)

// Step 3. Locate the file systems hosted by each non-top-level

// ComputerSystems and add them to the list of known file systems.

if ($ComponentSystems->[] != null && $ComponentSystems->[].length > 0) {

    $ComponentFS[]

    for (#i in $ComponentSystems->[]) {

#fsCounter = $FileSystems[].length

$ComponentFS[] = Associators($ComponentSystems->[#i], 

“CIM_HostedFileSystem”,

“CIM_LocalFileSystem”,

“GroupComponent”,

“PartComponent”,

false,

false,

#FSProps[])

if ($ComponentFS[] != null && $ComponentFS[].length > 0) {

    for (#j in $ComponentFS[]) {

$FileSystems[#fsCounter] = $ComponentFS[#j]

#fsCounter++

    }

}

    }

}

824



 Self-Contained NAS Profile 
    } catch (CIMException $Exception) {

// ComponentCS may not be included in the model implemented at all if 

// the Multiple Computer System Subprofile is not supported.

if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

    return $FileSystems[]

}

<ERROR! An unexpected failure occured>

    }

    return $FileSystems[]

}

// MAIN

$FS[] = ListFileSystems($SCNAS->)

8.2.8.5.6.2 Get the ComputerSystem that hosts a FileSystem
//

// Get the ComputerSystem that hosts a FileSystem

//

sub GetFSServer(IN REF CIM_FileSystem $fs, 

                OUT CIM_ComputerSystem $system)

{

    $system = Associators($fs,

                          “CIM_HostedFileSystem”,

                          “CIM_ComputerSystem”,

                          “PartComponent”,

                          “GroupComponent”)->[0];

}

8.2.8.5.6.3 List Existing FileShares on the NAS
//

// List the shares on a Server

//

sub ListSystemShares(IN CIM_System $server,

                    OUT CIM_FileSystem $shares[])

{

    //

    // Use the HostedShare Association

    //

    $shares[] = Associators($server, 

                            “CIM_HostedShare”,

                            “CIM_Share”,

                            “Antecedent”,

                            “Dependent”);

}

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 825



 

8.2.8.5.7 Registered Name and Version
Self-contained NAS System version 1.1.0

8.2.8.5.8 CIM Server Requirements

Table 908: CIM Server Requirements for Self-contained NAS System

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No
826



 Self-Contained NAS Profile 
8.2.8.5.9 CIM Elements

Table 909: CIM Elements for Self-contained NAS System

Element Name Description
Mandatory Classes

CIM_ComputerSystem (8.2.8.5.9.3) This declares that at least one computer system entry 
will pre-exist. The Name property should be the Unique 
identifier for the Self-contained NAS System. 

CIM_ComputerSystem (8.2.8.5.9.4) This declares that at least one computer system that 
provides File Server capabilities will pre-exist. This 
could be the same as the top-level ComputerSystem 
but this would not be true in a cluster, so this has a sep-
arate entry that is not tagged as a top-level system. The 
File Server(s) shall be manageable as a computer sys-
tem and so could be exposed through other profiles and 
so there must be a way to correlate it with other man-
agement clients. 

CIM_DeviceSAPImplementation (8.2.8.5.9.6) (CIFS or NFS to NetworkPort) Represents the associa-
tion between a CIFS or NFS ProtocolEndpoint and the 
NetworkPort that it supports. 

CIM_ElementSettingData (8.2.8.5.9.8) (FileShare) Associates a setting to the FileShare that 
the SC NAS System manages actively. 

CIM_ExportedFileShareSetting (8.2.8.5.9.10) The configuration settings for a FileShare that is avail-
able for exporting. 

CIM_FileShare (8.2.8.5.9.11) Represents the sharing characteristics of a particular 
file element. 

CIM_FileStorage (8.2.8.5.9.12) Associates a Logical File or Directory to the LocalFile-
System that contains it. 

CIM_HostedAccessPoint (8.2.8.5.9.14) (CIFS or NFS) Represents the association between a 
front end ProtocolEndpoint and the Computer System 
that hosts it. 

CIM_HostedFileSystem (8.2.8.5.9.16) Represents the association between a LocalFileSystem 
and the SC NAS System (or FileServer) that hosts it. 

CIM_HostedShare (8.2.8.5.9.17) Represents that a shared element is hosted by a SC 
NAS System Computer System. 

CIM_LocalFileSystem (8.2.8.5.9.20) Represents a LocalFileSystem of a SC NAS System 
Computer System. 

CIM_LogicalDisk (8.2.8.5.9.21) Represents LogicalDisks used for building LocalFile-
Systems. 

CIM_LogicalFile (8.2.8.5.9.22) The Self-Contained NAS Profile only makes a limited 
set of LogicalFiles (or Directory subclass) instances vis-
ible. These are any file or directory that is exported as a 
share. 

CIM_NetworkPort (8.2.8.5.9.23) Represents the front end logical port that supports 
access to a local area network. 

CIM_ProtocolEndPoint (8.2.8.5.9.24) Represents the front-end ProtocolEndpoint used to sup-
port NFS and CIFS services. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 827



 

CIM_SAPAvailableForElement (8.2.8.5.9.26) Represents the association between a ProtocolEnd-
point to the shared element that is being accessed 
through that SAP.

CIM_SystemDevice (8.2.8.5.9.27) This association links all LogicalDevices to the scoping 
system. This is used to represent both front end and 
back end devices. 

Optional Classes
CIM_BindsTo (8.2.8.5.9.1) Associates a higher level ProtocolEndpoint to an under-

lying ProtocolEndpoint. This is used in the SC NAS Sys-
tem to support the TCP/IP Network protocol stack.

CIM_BindsToLANEndpoint (8.2.8.5.9.2) Associates an IPProtocolEndpoint to an underlying 
LANEndpoint in the SC NAS System (to support the 
TCP/IP Network protocol stack).

CIM_ConcreteDependency (8.2.8.5.9.5) Represents an association between a FileShare ele-
ment and the actual shared LogicalFile or Directory on 
which it is based. 

CIM_DeviceSAPImplementation (8.2.8.5.9.7) (LANEndpoint to NetworkPort) Associates a logical front 
end Port (a NetworkPort) to the LANEndpoint that uses 
that device to connect to a LAN. 

CIM_ElementSettingData (8.2.8.5.9.9) (FileSystem) Associates a setting to the LocalFileSys-
tem that the SC NAS System manages actively. 

CIM_FileSystemSetting (8.2.8.5.9.13) This element represents the configuration settings of a 
File System. 

CIM_HostedAccessPoint (8.2.8.5.9.15) (TCP, IP or LAN) Represents the association between a 
front end TCP, IP or LAN ProtocolEndpoint and the 
Computer System that hosts it. 

CIM_IPProtocolEndpoint (8.2.8.5.9.18) Represents the front-end ProtocolEndpoint used to sup-
port the IP protocol services. 

CIM_LANEndpoint (8.2.8.5.9.19) Represents the front-end ProtocolEndpoint used to sup-
port a Local Area Network and its services. 

CIM_ResidesOnExtent (8.2.8.5.9.25) Represents the association between a local FileSystem 
and the underlying LogicalDisk that it is built on. 

CIM_TCPProtocolEndpoint (8.2.8.5.9.28) Represents the front-end ProtocolEndpoint used to sup-
port TCP services. 

Mandatory Indications
SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_ComputerSystem    AND 
SourceInstance.CIM_ComputerSystem::Operational-
Status[*] <>             PreviousIn-
stance.CIM_ComputerSystem::OperationalStatus[*]

CQL - Change of Status of a NAS ComputerSystem 
(controller). 
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_NetworkPort    AND Source-
Instance.CIM_NetworkPort::OperationalStatus[*] <>             
PreviousInstance.CIM_NetworkPort::OperationalSta-
tus[*]

CQL - Change of Status of a Port.
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

Table 909: CIM Elements for Self-contained NAS System

Element Name Description
828



 Self-Contained NAS Profile 
8.2.8.5.9.1 CIM_BindsTo
Associates a higher level ProtocolEndpoint to an underlying ProtocolEndpoint. This is used in the SC NAS System 
to support the TCP/IP Network protocol stack.
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.8.5.9.2 CIM_BindsToLANEndpoint
Associates an IPProtocolEndpoint to an underlying LANEndpoint in the SC NAS System (to support the TCP/IP 
Network protocol stack).
Created By : External
Modified By : External
Deleted By : External

SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_ProtocolEndpoint    AND 
SourceInstance.CIM_ProtocolEndpoint::Operational-
Status[*] <>             PreviousIn-
stance.CIM_ProtocolEndpoint::OperationalStatus[*]

CQL - Change of Status of a ProtocolEndpoint 
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_LocalFileSystem    AND Sour-
ceInstance.CIM_LocalFileSystem::OperationalStatus[*] 
<>             PreviousIn-
stance.CIM_LocalFileSystem::OperationalStatus[*]

CQL - Change of Status of a Filesystem. 
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_FileShare    AND SourceIn-
stance.CIM_FileShare::OperationalStatus[*] <>            
PreviousInstance.CIM_FileShare::OperationalStatus[*]

CQL - Change of Status of a FileShare. 
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

SELECT *    FROM CIM_InstModification    WHERE 
SourceInstance ISA CIM_LogicalDisk    AND SourceIn-
stance.CIM_LogicalDisk::OperationalStatus[*] <>            
PreviousInstance.CIM_LogicalDisk::OperationalSta-
tus[*]

CQL - Change of status of a LogicalDisk. 
PreviousInstance is optional, but may be supplied by an 
implementation of the Profile.

Table 910: SMI Referenced Properties/Methods for CIM_BindsTo

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

The ProtocolEndpoint that uses a lower 
level ProtocolEndpoint for connectivity. 

Antecedent CIM_ProtocolEndpoint The ProtocolEndpoint that supports a 
higher-level ProtocolEndpoint. 

Table 909: CIM Elements for Self-contained NAS System

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 829



 

Class Mandatory: false

8.2.8.5.9.3 CIM_ComputerSystem
This declares that at least one computer system entry will pre-exist. The Name property should be the Unique iden-
tifier for the Self-contained NAS System. 
Created By : Static
Modified By : External
Deleted By : Static
Class Mandatory: true

Table 911: SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

A TCPProtocolEndpoint. 

Antecedent CIM_LANEndpoint A LANEndpoint. 
FrameType uint16 Only supports 1="Ethernet" at this 

point. 

Table 912: SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string The actual class of this object, e.g., 
Vendor_NASComputerSystem.

ElementName string User-friendly name
Name string Unique identifier for the Self-contained 

NAS System in a format specified by 
NameFormat. For example, IP address 
or Vendor/Model/SerialNo. 

OperationalStatus uint16[] Overall status of the Self-contained 
NAS System

NameFormat string Format for Name property.
Dedicated uint16[] This shall indicate that this computer 

system is dedicated to operation as a 
Self-contained NAS (25).

OtherIdentifyingInfo C string[] An array of know identifiers for the NAS 
Head.

IdentifyingDescriptions C string[] An array of descriptions of the OtherI-
dentifyingInfo. Some of the descriptions 
would be "Ipv4 Address", "Ipv6 
Address" or "Fully Qualified Domain 
Name".

Optional Properties/Methods
PrimaryOwnerContact M string Owner of the Self-contained NAS Sys-

tem
PrimaryOwnerName M string Contact details for owner
830



 Self-Contained NAS Profile 
8.2.8.5.9.4 CIM_ComputerSystem
This declares that at least one computer system that provides File Server capabilities will pre-exist. This could be 
the same as the top-level ComputerSystem but this would not be true in a cluster, so this has a separate entry that 
is not tagged as a top-level system. The File Server(s) shall be manageable as a computer system and so could be 
exposed through other profiles and so there must be a way to correlate it with other management clients. 
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.5.9.5 CIM_ConcreteDependency
Represents an association between a FileShare element and the actual shared LogicalFile or Directory on which it 
is based. 
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.8.5.9.6 CIM_DeviceSAPImplementation
(CIFS or NFS to NetworkPort) Represents the association between a CIFS or NFS ProtocolEndpoint and the Net-
workPort that it supports. 
Created By : External
Modified By : Static

Table 913: SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dedicated uint16[] This is a File Server (16).
NameFormat string Format for Name property. This shall 

be "Other".
Name C string Unique identifier for the Self-contained 

NAS System's File Servers. E.g., Ven-
dor/Model/SerialNo+FS+Number. The 
Fileserver can have any number of IP 
addresses, so an IP address does not 
constitute a single unique id. Also, 
under various load-balancing or redun-
dancy regimens, the IP address could 
move around, so it may not even be 
correlatable. For that reason, the ven-
dor shall support a format that will pro-
vide a unique id for the file server.

OperationalStatus uint16[] Overall status of the File Server.

Table 914: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement The LogicalFile that is being shared. 
Dependent CIM_ManagedElement The Share that represents the Logical-

File being shared.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 831



 

Deleted By : External
Class Mandatory: true

8.2.8.5.9.7 CIM_DeviceSAPImplementation
(LANEndpoint to NetworkPort) Associates a logical front end Port (a NetworkPort) to the LANEndpoint that uses 
that device to connect to a LAN. 
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.8.5.9.8 CIM_ElementSettingData
(FileShare) Associates a setting to the FileShare that the SC NAS System manages actively. 
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

Table 915: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS 
to NetworkPort)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

The ProtocolEndpont that supports on 
the NetworkPort. These include Proto-
colEndpoints for NFS and CIFS. 

Antecedent CIM_LogicalDevice The NetworkPort supported by the 
Access Point.

Table 916: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEnd-
point to NetworkPort)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

A LANEndpoint that depends on a Net-
workPort for connecting to its LAN seg-
ment. 

Antecedent CIM_LogicalDevice The Logical network adapter device 
that connects to a LAN. 

Table 917: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The FileShare whose configuration set-
tings are specified by the ExportedFile-
ShareSetting. 

SettingData CIM_SettingData The ExportedFileShareSetting that 
specifies a configuration setting for the 
FileShare. 
832



 Self-Contained NAS Profile 
8.2.8.5.9.9 CIM_ElementSettingData
(FileSystem) Associates a setting to the LocalFileSystem that the SC NAS System manages actively. 
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.8.5.9.10 CIM_ExportedFileShareSetting
The configuration settings for a FileShare that is available for exporting. 
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.5.9.11 CIM_FileShare
Represents the sharing characteristics of a particular file element. 
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 918: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The LocalFileSystem whose configura-
tion settings are specified by the File-
SystemSetting. 

SettingData CIM_SettingData The FileSystemSetting that specifies a 
configuration setting for the FileSys-
tem. 

Table 919: SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string A unique ID for the setting. 
ElementName string A user-friendly name for a Setting. 
FileSharingProtocol uint16 The file sharing protocol supported by 

this share. NFS is 2 and CIFS is 3 are 
the ones supported for SMI-S 1.1.0 

ProtocolVersions string[] An array of the versions of the sup-
ported file sharing protocol. A share 
may support multiple versions of the 
same protocol. 

Table 920: SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string A unique id for the FileShare element. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 833



 

8.2.8.5.9.12 CIM_FileStorage
Associates a Logical File or Directory to the LocalFileSystem that contains it. 
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.8.5.9.13 CIM_FileSystemSetting
This element represents the configuration settings of a File System. 
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

SharingDirectory boolean Indicates if the shared element is a file 
or a directory. This is useful when 
importing but less so when exporting.

Table 921: SMI Referenced Properties/Methods for CIM_FileStorage

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_FileSystem The LocalFileSystem that contains the 
LogicalFile. 

PartComponent CIM_LogicalFile The LogicalFile contained in the Local-
FileSystem. 

Table 922: SMI Referenced Properties/Methods for CIM_FileSystemSetting

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string An opaque, unique id for a File System 
Setting.

ElementName string A User-Friendly Name for this Setting 
element.

ActualFileSystemType uint16 This identifies the type of filesystem 
that this Setting represents.

FilenameCaseAttributes uint16 This specifies the support provided for 
using upper and lower case characters 
in a filename. 

ObjectTypes uint16[] This is an array that specifies the differ-
ent types of objects that this filesystem 
may be used to provide and provides 
further details in corresponding entries 
in other attributes.

NumberOfObjectsMin uint64[] This is an array that specifies the mini-
mum number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

Table 920: SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Property Flags Type Description & Notes
834



 Self-Contained NAS Profile 
NumberOfObjectsMax uint64[] This is an array that specifies the maxi-
mum number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

NumberOfObjects uint64[] This is an array that specifies the 
expected number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

ObjectSize uint64[] This is an array that specifies the 
expected size of a typical object of the 
type specified by the corresponding 
entry in ObjectTypes[].

ObjectSizeMin uint64[] This is an array that specifies the mini-
mum size of an object of the type spec-
ified by the corresponding entry in 
ObjectTypes[].

ObjectSizeMax uint64[] This is an array that specifies the mini-
mum size of an object of the type spec-
ified by the corresponding entry in 
ObjectTypes[].

Optional Properties/Methods
FilenameReservedCharacterSet String[] This string or character array specifies 

the characters reserved (i.e., not 
allowed) for use in filenames.

DataExtentsSharing uint16 This allows the creation of data blocks 
(or storage extents) that are shared 
between files.

CopyTarget uint16 This specifies if support should be pro-
vided for using the created file system 
as a target of a Copy operation.

FileNameStreamFormats uint16[] This is an array that specifies the 
stream formats supported for filenames 
by the created array (e.g., UTF-8).

FilenameFormats uint16[] This is an array that specifies the for-
mats supported for filenames by the 
created array (e.g. DOS 8.3 names).

FilenameLengthMax uint16[] This specifies the maximum length of a 
filename supported by this capabilities.

SupportedLockingSemantics uint16[] This array specifies the kind of file 
access/locking semantics supported by 
this capabilities.

SupportedAuthorizationProtocols uint16[] This array specifies the kind of file 
authorization protocols supported by 
this capabilities.

SupportedAuthenticationProtocols uint16[] This array specifies the kind of file 
authentication protocols supported by 
this capabilities.

Table 922: SMI Referenced Properties/Methods for CIM_FileSystemSetting

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 835



 

8.2.8.5.9.14 CIM_HostedAccessPoint
(CIFS or NFS) Represents the association between a front end ProtocolEndpoint and the Computer System that 
hosts it. 
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.8.5.9.15 CIM_HostedAccessPoint
(TCP, IP or LAN) Represents the association between a front end TCP, IP or LAN ProtocolEndpoint and the Com-
puter System that hosts it. 
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.8.5.9.16 CIM_HostedFileSystem
Represents the association between a LocalFileSystem and the SC NAS System (or FileServer) that hosts it. 
Created By : External
Modified By : Static
Deleted By : External

Table 923: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

The ServiceAccessPoint hosted on the 
FileServer. These include ProtocolEnd-
points for NFS and CIFS.

Antecedent CIM_System The Computer System hosting this 
Access Point. In the context of the SC 
NAS System, these are always 
FileServers (Dedicated=16). 

Table 924: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP, IP or LAN)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ServiceAccessPoi
nt

The ServiceAccessPoint hosted on the 
FileServer. These include ProtocolEnd-
points for TCPProtocolEndpoints, 
IPProtocolEndpoints, and LANEnd-
points among others. 

Antecedent CIM_System The Computer System hosting this 
Access Point. In the context of the SC 
NAS System, these are always 
FileServers (Dedicated=16). 
836



 Self-Contained NAS Profile 
Class Mandatory: true

8.2.8.5.9.17 CIM_HostedShare
Represents that a shared element is hosted by a SC NAS System Computer System. 
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.5.9.18 CIM_IPProtocolEndpoint
Represents the front-end ProtocolEndpoint used to support the IP protocol services. 
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

Table 925: SMI Referenced Properties/Methods for CIM_HostedFileSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System The Computer System that hosts a 
LocalFileSystem. The SC NAS System 
hosts all the file systems made avail-
able to operational users, while the 
FileServer hosts a local "root" filesys-
tem to support a filepath naming mech-
anism.

PartComponent CIM_FileSystem The hosted filesystem. 

Table 926: SMI Referenced Properties/Methods for CIM_HostedShare

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_Share The Share that is hosted by a File 
Server Computer System

Antecedent CIM_System The File Server Computer System that 
hosts a FileShare.

Table 927: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The CIM Class name of the Computer 
System hosting the IP Protocol End-
point. 

SystemName string The name of the Computer System 
hosting the IP Protocol Endpoint. 

CreationClassName string The CIM Class name of the IP Protocol 
Endpoint. 

Name string The unique name of the IP Protocol 
Endpoint. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 837



 

8.2.8.5.9.19 CIM_LANEndpoint
Represents the front-end ProtocolEndpoint used to support a Local Area Network and its services. 
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

NameFormat string The Format of the Name of the IP Pro-
tocol Endpoint. 

ProtocolIFType uint16 4096="IP v4", 4097="IP v6", and 4098 
is both. (Note that 1="Other" is not sup-
ported) 

IPv4Address string An IP v4 address in the format 
"A.B.C.D". 

IPv6Address string
SubnetMask string An IP v4 subnet mask in the format 

"A.B.C.D". 
PrefixLength uint8 For an IPv6 address. 

Table 928: SMI Referenced Properties/Methods for CIM_LANEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The CIM Class name of the Computer 
System hosting the LAN Endpoint. 

SystemName string The name of the Computer System 
hosting the LAN Endpoint.

CreationClassName string The CIM Class name of the LAN End-
point. 

Name string The unique name of the LAN Endpoint. 
NameFormat string The Format of the Name for the LAN 

Endpoint. 
ProtocolIFType uint16 LAN endpoints supported are: 

1="Other",6="Ethernet CSMA/CD", 
9="ISO 802.5 Token Ring", 15="FDDI". 

MACAddress string Primary Unicast address for this LAN 
device. 

AliasAddresses string[] Other Unicast addresses supported by 
this device. 

GroupAddresses string[] Multicast addresses supported by this 
device. 

MaxDataSize uint32 The max size of packet supported by 
this LAN device. (If there were a Net-
work subprofile, this would not be 
exposed in a SC NAS System Profile). 

Table 927: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Property Flags Type Description & Notes
838



 Self-Contained NAS Profile 
8.2.8.5.9.20 CIM_LocalFileSystem
Represents a LocalFileSystem of a SC NAS System Computer System. 
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Optional Properties/Methods
OtherTypeDescription string If the LAN endpoint is a vendor-exten-

sion specified by "Other" and a descrip-
tion. 

LANID string A unique id for the LAN segment that 
this device is connected to. Will be 
NULL if the LAN is not connected.

Table 929: SMI Referenced Properties/Methods for CIM_LocalFileSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CSCreationClassName string The CIM class of the hosting SC NAS 
System Computer System. 

CSName string The Name of the hosting SC NAS Sys-
tem Computer System.

CreationClassName string The CIM class of this instance. 
Name string A unique name for this Filesystem in 

the context of the hosting SC NAS Sys-
tem. 

OperationalStatus uint16[] The current operational status of the 
LocalFileSystem.

CaseSensitive boolean Whether this filesystem is sensitive to 
the case of characters in filenames.

CasePreserved boolean Whether this filesystem preserves the 
case of characters in filenames when 
saving and restoring.

MaxFileNameLength uint32 The length of the longest filename.
FileSystemType string This matches ActualFileSystemType

Optional Properties/Methods
Root string A path that specifies the root of the file-

system in an unitary Computer Sys-
tems acting as a FileServer.

BlockSize uint64 The size of a block in bytes for certain 
filesystems that use a fixed block size 
when creating filesystems.

FileSystemSize uint64 The total current size of the file system 
in blocks.

Table 928: SMI Referenced Properties/Methods for CIM_LANEndpoint

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 839



 

8.2.8.5.9.21 CIM_LogicalDisk
Represents LogicalDisks used for building LocalFileSystems. 
Created By : ExternalExtrinsic(s): 
Modified By : ExternalExtrinsic(s): 
Deleted By : ExternalExtrinsic(s): 
Class Mandatory: true

AvailableSpace uint64 The space available currently in the file 
system in blocks. NOTE: This value is 
an approximation.

ReadOnly boolean Indicates that this is a read-only filesys-
tem that does not allow modifications.

EncryptionMethod string Indicates if files are encrypted and the 
method of encryption.

CompressionMethod string Indicates if files are compressed before 
being stored, and the methods of com-
pression.

CodeSet uint16[] The codeset used in filenames.
NumberOfFiles uint64 The actual current number of files in 

the filesystem. NOTE: This value is an 
approximation.

Table 930: SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string CIM Class of the SC NAS System 
Computer System that is the host of 
this LogicalDisk. 

SystemName string  Name of the SC NAS System Com-
puter System that hosts this LogicalD-
isk. 

CreationClassName string CIM Class of this instance of LogicalD-
isk. 

DeviceID string Opaque identifier for the LogicalDisk. 
OperationalStatus uint16[] A subset of operational status that is 

applicable for LogicalDisks in a SC 
NAS System. 

ExtentStatus uint16[] This LogicalDisk is neither imported 
(16) nor exported (17). 

Primordial boolean This represents a Concrete Logical 
Disk that is not primordial. 

NameFormat uint16 The format of the Name appropriate for 
LogicalDisks in the Self-contained NAS 
System. This should be coded as 1 
(other).

Table 929: SMI Referenced Properties/Methods for CIM_LocalFileSystem

Property Flags Type Description & Notes
840



 Self-Contained NAS Profile 
8.2.8.5.9.22 CIM_LogicalFile
The Self-Contained NAS Profile only makes a limited set of LogicalFiles (or Directory subclass) instances visible. 
These are any file or directory that is exported as a share. 
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.5.9.23 CIM_NetworkPort
Represents the front end logical port that supports access to a local area network. 
Created By : External
Modified By : External
Deleted By : External

Name string Identifier for a local LogicalDisk that will 
be used for a filesystem; since this stor-
age extent will be referenced by a cli-
ent, it needs to have a unique name. 
We cannot constrain the format here, 
but the OS-specific format described in 
the Block Services specification is not 
appropriate, so "Other" is used. 

Table 931: SMI Referenced Properties/Methods for CIM_LogicalFile

Property Flags Type Description & Notes
Mandatory Properties/Methods

CSCreationClassName string CIM Class of the Fileserver Computer 
System that hosts the Filesystem of 
this File.

CSName string Name of the Fileserver Computer Sys-
tem that hosts the Filesystem of this 
File.

FSCreationClassName string CIM Class of the LocalFileSystem on 
the Fileserver Computer System that 
contains this File.

FSName string Name of the LocalFileSystem on the 
Fileserver Computer System that con-
tains this File.

CreationClassName string CIM Class of this instance of Logical-
File.

Name string Name of this LogicalFile.

Table 930: SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 841



 

Class Mandatory: true

8.2.8.5.9.24 CIM_ProtocolEndPoint
Represents the front-end ProtocolEndpoint used to support NFS and CIFS services. 
Created By : External
Modified By : External
Deleted By : External

Table 932: SMI Referenced Properties/Methods for CIM_NetworkPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementName string A user-friendly name for this Network 
adapter that provides a network port. 

OperationalStatus uint16[] The operational status of the adapter. 
SystemCreationClassName string The CIM Class name of the Computer 

System hosting the Network Port. 
SystemName string The name of the Computer System 

hosting the Network Port.
CreationClassName string The CIM Class name of the Network 

Port. 
DeviceID string A unique ID for the device (in the con-

text of the hosting System). 
PermanentAddress string The hard-coded address of this port. 

Optional Properties/Methods
Speed uint64  
MaxSpeed uint64  
RequestedSpeed uint64  
UsageRestriction uint16  
PortType uint16  
PortNumber uint16 A unique number for the adapter in the 

context of the hosting System). 
NetworkAddresses string[] An array of network addresses for this 

port. 
LinkTechnology uint16 1="Other", 2="Ethernet", 3="IB", 

4="FC", 5="FDDI", 6="ATM", 7="Token 
Ring", 8="Frame Relay", 9="Infrared", 
10="BlueTooth", 11="Wireless LAN. 
The link technology supported by this 
adapter. 

OtherLinkTechnology string The vendor-specific "Other" link tech-
nology supported by this adapter. 

FullDuplex boolean  
AutoSense boolean  
SupportedMaximumTransmission-
Unit

uint64  

ActiveMaximumTransmissionUnit uint64  
842



 Self-Contained NAS Profile 
Class Mandatory: true

8.2.8.5.9.25 CIM_ResidesOnExtent
Represents the association between a local FileSystem and the underlying LogicalDisk that it is built on. 
Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: false

8.2.8.5.9.26 CIM_SAPAvailableForElement
Represents the association between a ProtocolEndpoint to the shared element that is being accessed through that 
SAP.
Created By : External
Modified By : Static

Table 933: SMI Referenced Properties/Methods for CIM_ProtocolEndPoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The CIM Class name of the Computer 
System hosting the Protocol Endpoint. 

SystemName string The name of the Computer System 
hosting the Protocol Endpoint. 

CreationClassName string The CIM Class name of the Protocol 
Endpoint. 

Name string The unique name of the Protocol End-
point. 

NameFormat string The Format of the Name 
OperationalStatus uint16[] The operational status of the PEP. 
Description string This shall be one of the NFS or CIFS 

protocol endpoints supported by the SC 
NAS System.

ProtocolIFType uint16 This represents either NFS=4200 or 
CIFS=4201. Other protocol types are 
specified in sub-classes of Protoco-
lEndpoint. 

Optional Properties/Methods
RequestedState uint16
EnabledState uint16
OtherEnabledState string
TimeOfLastStateChange datetime

Table 934: SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_LogicalElement The local file system that is built on top 
of a LogicalDIsk. 

Antecedent CIM_StorageExtent The LogicalDIsk that underlies a Local-
FileSystem. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 843



 

Deleted By : External
Class Mandatory: true

8.2.8.5.9.27 CIM_SystemDevice
This association links all LogicalDevicesto the scoping system. This is used to represent both front end and back 
end devices. 
Created By : External or StaticExtrinsic(s): 
Modified By : ExternalExtrinsic(s): 
Deleted By : ExternalExtrinsic(s): 
Class Mandatory: true

8.2.8.5.9.28 CIM_TCPProtocolEndpoint
Represents the front-end ProtocolEndpoint used to support TCP services. 
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: false

Table 935: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The element that is made available 
through the ProtocolEndpoint. In the 
SC NAS System, these are FileShares 
configured for either export or import.

AvailableSAP CIM_ServiceAccessPoi
nt

The ProtocolEndpoint that is available 
to the FileShare.

Table 936: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System The Computer System that contains 
this device.

PartComponent CIM_LogicalDevice The logical device that is a part of a 
computer system. These include Stora-
geVolumes, NetworkPorts, 'back end' 
ports for accessing storage, StorageEx-
tents, protocol controllers, and so on.

Table 937: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The CIM Class name of the Computer 
System hosting the TCP Protocol End-
point. 

SystemName string The name of the Computer System 
hosting the TCP Protocol Endpoint. 

CreationClassName string The CIM Class name of the TCP Proto-
col Endpoint. 
844



 Self-Contained NAS Profile 
8.2.8.5.10 Related Standards

Name string The unique name of the TCP Protocol 
Endpoint. 

NameFormat string The Format of the Name of the TCP 
Protocol Endpoint.

ProtocolIFType uint16 4111="TCP". (Note that no other proto-
col type is supported by this endpoint.) 

PortNumber uint32 The number of the TCP Port that this 
element represents.

Table 938: Related Standards for Self-contained NAS System

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF

Table 937: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 845



 

846



 Filesystem Manipulation Subprofile
EXPERIMENTAL

8.2.8.6 Filesystem Manipulation Subprofile 

8.2.8.6.1 Description
This subprofile provides support for configuring and manipulating filesystems in the context of a NAS
profile.

8.2.8.6.1.1 Instance Diagrams
FileSystem Creation classes and associations
Figure 135: "LocalFileSystem Creation Instance Diagram" illustrate the constructs involved with
creating a LocalFileSystem for NAS. This summarizes the mandatory classes and associations for this
subprofile. Specific areas will be discussed in later sections.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 847



 

If a NAS Profile supports the Filesystem Manipulation Subprofile, it will have at least one instance of the
FilesystemConfigurationService. This service will be hosted on either the top level ComputerSystem of
the NAS or one of the component ComputerSystems. The services offered are CreateFileSystem,
ModifyFileSystem and DeleteFileSystem.

Figure 135: LocalFileSystem Creation Instance Diagram

File System Manipulation Subprofile
FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

CreateGoal()

FileSystemConfigurationService

CreateFileSystem()
DeleteFileSystem()
ModifyFileSystem()

FileSystemSetting

See below

ElementCapabilities

FileSystemSetting

See below

FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

SupportedObjectTypes[]
CreateGoal()

GetRequiredStorageSize()

LocalFileSystem

StoragePool

AllocatedFromStoragePool

ElementSettingData

LogicalDisk

ResidesOnExtent

FileSystemSetting

ActualFileSystemType
DataExtentsSharing

CopyTarget
FilenameCaseAttributes

ObjectTypes[]
NumberOfObjectsMin[], NumberOfObjectsMax[]

NumberOfObjects[]
ObjectSize[]

ObjectSizeMin[], ObjectSizeMax[]
FileNameStreamFormats[]

FileNameFormats[]
FilenameLengthMax[]

FilenameReservedCharacterSet[]
SupportedLockingSemantics[]

SupportedAuthorizationProtocols[]
SupportedAuthenticationProtocols[]

SettingAssociatedToCapabilities

ComputerSystem

ComputerSystem

HostedFileSystem

HostedService

ElementCapabilities

FileSystemConfigurationCapabilities

ActualFileSystemTypesSupported[]
SynchronousMethods[]
AsynchronousMethods[]

InitialAvailability

ElementCapabilities

SystemDevice
848



 Filesystem Manipulation Subprofile
Associated to the FilesystemConfigurationService (via ElementCapabilities) will be one instance of
FilesystemConfigurationCapabilities. This instance describes the capabilities of the service. It will
identify the methods supported, whether they support Job Control or not, the types of filesystems that
can be created and whether or not the filesystem is made available after creation.

For each type of filesystem that can be created, there will be one FilesystemCapabilities instance that
define the range of capabilities supported for that particular filesystem type. One of these instances will
also be identified as a default capability (via DefaultElementCapabilities). This indicates the default
filesystem type (if the client does not care). 

For the convenience of clients a NAS profile may also populate a set of “pre-defined”
FileSystemSettings for each of the FilesystemCapabilities. These will be associated to the
FilesystemCapabilities via the SettingAssociatedToCapabilities association. 

The FilesystemCapabilities instance also supports two methods: CreateGoal and
GetRequiredStorageSize. These methods are described in detail in 8.2.8.6.5.2, "Intrinsic Methods of
the Profile", but their basic function is establishing a client defined FilesystemSetting (goal) and
determining the LogicalDisk size required to support the desired filesystem.

CreateGoal takes an embedded FilesystemSetting structure as input and generates a valid embedded
FilesystemSetting structure. If a client supplies NULL input to this method, the returned
FilesystemSetting structure will be a default setting for the ActualFilesystemType of the
FilesystemCapabilities. If the input embedded FilesystemSetting is not null, the method will return a
“best fit” with the requested setting. The client may iterate on this method until it acquires a setting that
suits its needs. It will use this embedded settings structure when it invokes the CreateFileSystem
method.

The next step is to determine the LogicalDisk size required to support the FilesystemSettting structure.
This is done by invoking the GetRequiredStorageSize method. The inputs are the FilesystemSetting
structure and a StorageSetting that describes the quality of service the client wants for the storage
(e.g., data redundancy, package redundancy, etc.). The method returns three numbers: The expected
size, the minimum size and a maximum usable size. The client would use these numbers in selecting
the appropriate LogicalDisk on which to create the Filesystem.

Armed with the Filesystem goal (embedded FilesystemSetting structure) and a LogicalDisk, the client
can now create the filesystem. It uses the CreateFileSystem method to do this. Creation of the
Filesystem creates a LocalFileSystem and a FilesystemSetting instance. Once a FileSystem is created
several associations are created as a side effect of the method. These associations are:

HostedFilesystem to associate the filesystem to the ComputerSystem that hosts it

ResidesOnExtent to associate the filesystem to the extent that holds the filesystem data

ElementSettingData to associate the filesystem to the settings defined for it

In addition to the CreateFileSystem method there are methods for deleting a filesystem and modifying a
filesystem. Deleting a file straightforward. It deletes the LocalFileSystem and the FilesystemSetting and
the associations to those instances (HostedFileSystem, ElementSettingData and ResidesOnExtent). It
does not, however, delete the LogicalDisk. The LogicalDisk becomes available for use in another
CreateFilesystem operation.

Modifying a Filesystem requires that the client return to the FilesystemCapabilities that was originally
used to create the filesystem. Once the FilesystemCapabilities are found, the client would create the
FilesystemGoal (embedded structure) desired and invoke the CreateGoal method. As with the original
filesystem creation, it may be necessary to iterate on the CreateGoal. Once a desired goal is acquired,
the client would issue the ModifyFileSystem.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 849



 

Note: Depending on what property is being modified, it may also be necessary to invoke the
GetRequiredStorageSize method to verify that the current LogicalDisk will still support the new
goals.

Finding Filesystem Configuration Services, Capabilities and Pre-defined Settings
When creating a filesystem the first step is to determine what can be created. Figure 136:, "Capabilities
and Settings for Filesystem Creation Diagram" illustrates an instance diagram showing the instances
that will exist for supporting filesystem creation.

At least one FileSystemConfigurationService shall exist if the NAS has implemented the Filesystem
Manipulation Subprofile. The instance(s) of this service can be found by following the HostedService
association filtering on the target class of FileSystemConfigurationService.

Note: If no service is found from the Top Level ComputerSystem, the client should look for component
computer systems that may be hosting the service.

Once the service is found an instance of the FilesystemConfigurationCapabilities shall be associated to
the service via the ElementCapabilities association. A client should follow this association (filtering on
FilesystemConfigurationCapabilities) to inspect the configuration capabilities that are supported. One

Figure 136: Capabilities and Settings for Filesystem Creation Diagram

File System Manipulation Subprofile

FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

CreateGoal()

FileSystemConfigurationService

CreateFileSystem()
DeleteFileSystem()
ModifyFileSystem()

FileSystemSetting

ElementCapabilities

FileSystemSetting

FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

SupportedObjectTypes[]
CreateGoal()

GetRequiredStorageSize()

StoragePool

AllocatedFromStoragePool

LogicalDisk

SettingAssociatedToCapabilities

ComputerSystem

HostedService

ElementCapabilities

FileSystemConfigurationCapabilities

ActualFileSystemTypesSupported[]
SynchronousMethods[]
AsynchronousMethods[]

InitialAvailability

ElementCapabilities

StorageSetting
ElementSettingData
850



 Filesystem Manipulation Subprofile
property that should to be considered is the ActualFilesystemTypesSupported array. The client would
decide which of these filesystem types it will want to create.

To determine the particular capabilities of the ActualFileSystemType, one FilesystemCapabilities for
each ActualFilesystemType can be found associated to the FilesystemConfigurationService using the
ElementCapabilities association (filtering on the result of FilesystemCapabilities). This capabilities
instance will identify the range of properties values supported for the ActualFilesystemType in question. 

In addition, an implementation may implement a set of pre-defined FilesystemSettings that may be
used by clients to assist in establishing settings desired by the client. If any of these are established
they can be found by traversing the SettingsAssociatedToCapabilities association.

8.2.8.6.2 Health and Fault Management Considerations
Under Consideration for a future standard.

8.2.8.6.3 Cascading Considerations
Under Consideration for a future standard.

8.2.8.6.4 Supported Subprofiles and Packages

8.2.8.6.5 Methods of the Profile

8.2.8.6.5.1 Extrinsic Methods of the Profile
Table 940: Filesystem Manipulation Methods that cause Instance Creation, Deletion or 

Modification

Table 939: Supported Subprofiles for Filesystem Manipulation

Registered Subprofile Names Mandatory Version
Job Control No 1.1.0

Method Created Instances Deleted Instances Modified Instances
CreateFileSystem LocalFileSystem

FileSystemSetting
ElementSettingData
ResidesOnExtent
HostedFilesystem

N/A N/A

DeleteFileSystem LocalFileSystem
FileSystemSetting
ElementSettingData
ResidesOnExtent
HostedFilesystem

N/A

ModifyFileSystem N/A N/A FileSystemSetting
CreateGoal N/A N/A N/A
GetRequiredStorage-
Size

N/A N/A N/A
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 851



 

8.2.8.6.5.1.1 CreateFileSystem
Start a job to create a filesystem on a LogicalDisk. If the operation completes successfully and did not
require a long-running ConcreteJob, it will return 0. If 4096/0x1000 is returned, a ConcreteJob will be
started to create the element. A Reference to the ConcreteJob will be returned in the output parameter
Job. If any other value is returned, the job will not be started, and no action will be taken. This method
shall return a Error representing that a single named property of a setting (or other) parameter (either
reference or embedded object) has an invalid value or that an invalid combination of named properties
of a setting (or other) parameter (either reference or embedded “object) has been requested.

The parameter TheElement will contain a Reference to the filesystem if this operation completed
successfully.

The LogicalDisk to use is specified by the InExtent parameter. If this is NULL, a default LogicalDisk will
be created in a vendor-specific way and used. One way to create the default LogicalDisk is to use one
of the default settings supported by the StorageConfigurationService hosted by the host hosting the
FileSystemConfigurationService.

The desired settings for the filesystem are specified by the Goal parameter. Goal is an embedded
object of class FileSystemSetting or a derived class, encoded as a string-valued embedded object
parameter; this allows the client to specify the properties desired for the filesystem. The Goal parameter
includes information that can be used by the vendor to compute the size of the Filesystem. If the
LogicalDisk specified here cannot support the goal size, an appropriate error value will be returned, and
no action will be taken.

A ResidesOnExtent association is created between the Filesystem and the InExtent.

   

CreateFileSystem(

[IN, Description (A end user relevant name for the filesystem being created. If NULL, then a system-
supplied default name can be used. The value will be stored in the 'ElementName' property for the
created element.)]

        string ElementName,

                       [OUT, IN (false), Description(Reference to the job (may be null if job completed).") ]

        CIM_ConcreteJob REF Job,

[IN, EmbeddedInstance ("CIM_FileSystemSetting"), Description(The requirements for the
Filesystem element to maintain. This is an element of class CIM_FileSystemSetting, or a derived class,
encoded as a string-valued embedded instance parameter; this allows the client to specify the
properties desired for the filesystem. If NULL or the empty string, the default configuration will be
specified by the FileSystemConfigurationService.)]

        string Goal,

[IN, Description(The LogicalDisk on which the created FileSystem will reside. If this is NULL, a default
LogicalDisk will be created in a vendor-specific way and used. One way to create the default
LogicalDisk is to use one of the default settings supported by the StorageConfigurationService hosted
by the host hosting the FileSystemConfigurationService. ) ]

        CIM_StorageExtent REF InExtent,

[IN, OUT, Description (The newly created FileSystem.) ] 

        CIM_LogicalElement REF TheElement
852



 Filesystem Manipulation Subprofile
Error returns are:

{"Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"StorageExtent is not big enough to satisfy the request.", "StorageExtent specified by default cannot be
created.", "DMTF Reserved", "Method Parameters Checked - Job Started", "Method Reserved",
"Vendor Specific"}

8.2.8.6.5.1.2 ModifyFileSystem
Start a job to modify a previously created FileSystem. If the operation completes successfully and did
not require a long-running ConcreteJob, it will return 0. If 4096/0x1000 is returned, a ConcreteJob will
be started to modify the element. A Reference to the ConcreteJob will be returned in the output
parameter Job. If any other value is returned, either the job will not be started, or if started, no action will
be taken.

This method shall return a Error representing that a single named property of a setting (or other)
parameter (either reference or embedded object) has an invalid value or that an invalid combination of
named properties of a setting (or other) parameter (either reference or embedded object) has been
requested.

The parameter TheElement specifies the FileSystem to be modified. This element shall have been
created by this FileSystemConfigurationService.

The desired settings for the FileSystem are specified by the Goal parameter. Goal is an element of
class FileSystemSetting, or a derived class, encoded as a string-valued embedded instance parameter;
this allows the client to specify the properties desired for the filesystem. The Goal parameter includes
information that can be used by the vendor to compute the size of the FileSystem. If the operation
would result in a change in the size of a filesystem, the ResidesOnExtent association will be used to
determine how to implement the change. If the LogicalDisk specified cannot support the goal size, an
appropriate error value will be returned, and no action will be taken. If the operation succeeds, the
ResidesOnExtent association might reference a different LogicalDisk.

ModifyFileSystem(

[IN, Description (A end user relevant name for the FileSystem being modified. If NULL, then the name
will not be changed. If not NULL, this parameter will supply a new name for the FileSystem element.)]

        string ElementName,

[OUT, IN (false), Description(Reference to the job (may be null if job completed).) ]

        CIM_ConcreteJob REF Job,

[IN, EmbeddedInstance ("CIM_FileSystemSetting"), Description(The requirements for the FileSystem
element to maintain. This is an element of class FileSystemSetting, or a derived class, encoded as a
string-valued embedded instance parameter; this allows the client to specify the properties desired for
the filesystem. If NULL or the empty string, the FileSystem service attributes will not be changed. If not
NULL, this parameter will supply new settings that replace or are merged with the current settings of the
FileSystem element.) ]

        string Goal,

[IN, Description (The FileSystem element to modify.) ] 

        CIM_LogicalElement REF TheElement,

[IN, Description (An enumerated integer that specifies the action to take if the FileSystem is still in use
when this request is made. This option is only relevant if the FileSystem needs to be made unavailable
while the request is being executed.),
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 853



 

ValueMap { "2", "3", "4", "..", "0x1000..0xFFFF" }, 

 Values { "Do Not Execute Request",  "Wait for specified time, then Execute Request

 Immediately", "Try to Quiesce for specified time, then Execute Request Immediately", 

"DMTF Reserved", "Vendor Defined" }]

uint16 InUseOptions,,

[IN, Description (An integer that indicates the time in seconds to wait before performing the request on
this FileSystem. The combination of InUseOptions = '4' and WaitTime ='0' (the default) is interpreted as
'Wait (forever) until Quiescence, then Execute Request.)]

uint16 WaitTime);

Error returns are:

{"Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"FileSystem In Use, cannot Modify", "Cannot satisfy new Goal.", "DMTF Reserved", "Method
Parameters Checked - Job Started", "Method Reserved", "Vendor Specific"}

8.2.8.6.5.1.3 DeleteFileSystem
Start a job to delete a FileSystem. If the FileSystem cannot be deleted, no action will be taken, and the
Return Value will be 4097/0x1001. If the method completed successfully and did not require a long-
running ConcreteJob, it will return 0. If 4096/0x1000 is returned, a ConcreteJob will be started to delete
the FileSystem. A Reference to the ConcreteJob will be returned in the output parameter Job.

The ClearStorage parameter, if 'true', directs that the underlying storage should be cleaned. Note that if
this is not done, the filesystem may be recoverable. 

DeleteFileSystem(

[OUT, IN (false), Description (Reference to the job (may be null if job completed).)]

        CIM_ConcreteJob REF Job,

[IN, Description ("An element or association that uniquely identifies the FileSystem to be deleted.)]        

        CIM_ManagedElement REF TheFileSystem,

[IN, Description (An enumerated integer that specifies the action to take if the FileSystem is still in use
when this request is made.),

ValueMap{ "2", "3", "4”, “..”,"0x1000..0xFFFF" },

Values {"Do Not Delete", "Wait for specified time, then Delete Immediately", "Attempt Quiescence for
specified time, then Delete Immediately", "DMTF Reserved", "Vendor Defined" }]

        uint16 InUseOptions,

[IN, Description (An integer that indicates the time in seconds to wait before deleting this FileSystem.
The combination of InUseOptions = '3' and WaitTime ='0' "(the default) is interpreted as 'Wait (forever)
until Quiescence, then Execute Request.)]     

        uint32 WaitTime);

Error returns are:
854



 Filesystem Manipulation Subprofile
{"Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed, Unspecified
Reasons", "Invalid Parameter", "FileSystem in use, Failed", "DMTF Reserved", "Method Parameters
Checked - Job Started", "Method Reserved", "Vendor Specific"}

8.2.8.6.5.1.4 CreateGoal
Start a job to create a supported FileSystemSetting from a FileSystemSetting provided by the caller. If
the operation completes successfully and did not require a long-running ConcreteJob, it will return 0. If
4096/0x1000 is returned, a ConcreteJob will be started to create the element. A Reference to the
ConcreteJob will be returned in the output parameter Job.

This method may return a Error representing that a single named property of a setting (or other)
parameter (either reference or embedded object) has an invalid value or that an invalid combination of
named properties of a setting (or other) parameter (either reference or embedded object) has been
requested.

If the input TemplateGoal is NULL or the empty string, this method returns a default FileSystemSetting
that is supported by this FileSystemCapabilities.

The output is returned as the SupportedGoal parameter. Both TemplateGoal and SupportedGoal are
embedded objects and do not exist in the provider but are maintained by the client. 

If the TemplateGoal specifies values that cannot be supported this method shall return an appropriate
error and should return a best match for a SupportedGoal.

CreateGoal(

                      [OUT, IN (false), Description (Reference to the job (may be null if job completed).) ]

        CIM_ConcreteJob REF Job,

[IN, EmbeddedInstance("CIM_FileSystemSetting"), Description (TemplateGoal is an element of class
FileSystemSetting, or a derived class, encoded as a string-valued embedded object parameter, that is
used as the template to be matched.) ]

        string TemplateGoal,

[OUT, IN(false), EmbeddedInstance("CIM_FileSystemSetting"), Description (SupportedGoal is an
element of class CIM_FileSystemSetting, or a derived class, encoded as a string-valued embedded
object parameter, that is used to return the best supported match to the TemplateGoal.) ]

        string SupportedGoal);

Error returns are:

{"Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"TemplateGoal is not well-formed", "TemplateGoal cannot be satisfied exactly", "StorageSetting cannot
be used with ActualFileSystemType", "StorageSetting cannot be used with CopyTarget",
"StorageSetting cannot be used with ObjectType", "DMTF Reserved", "Method Parameters Checked -
Job Started", "Method Reserved", "Vendor Specific"}]    

8.2.8.6.5.1.5 GetRequiredStorageSize
This method returns the "expected" size of a LogicalDisk that would support a filesystemfilesystem
specified by the input FileSystemGoal parameter assuming that the other settings for the LogicalDisk
are specified by the ExtentSetting parameter.

If the input FileSystemGoal or the ExtentSetting are NULL, this method returns a value computed by
using the default FileSystemSetting or some vendor-specific canned StorageSetting.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 855



 

A value of 0 is returned if this method is not able to determine a reasonable size or does not restrict
sizes based on setting information. 

GetRequiredStorageSize(

[IN, EmbeddedInstance("CIM_FileSystemSetting"), Description (FileSystemGoal is an element of class
CIM_FileSystemSetting, or a derived class, encoded as a string-valued embedded object parameter,
that is used to specify the settings for the FileSystem to be created.) ]

        string FileSystemGoal,

[IN, EmbeddedInstance("CIM_FileSystemSetting"), Description (ExtentSetting is an element of class
CIM_StorageSetting, or a derived class, encoded as a string-valued embedded object parameter, that
is used to specify the settings of the LogicalDisk to be used for this FileSystem.) ]

        CIM_StorageSetting REF ExtentSetting,

[OUT, Description ( A number that indicates the size of the storage extent that this FileSystem is
expected to need. A value of 0 indicates that there is no expected size.) ]

        uint64 ExpectedSize,

[OUT, Description ( A number that indicates the size of the smallest storage extent that would support
the specified FileSystem. A value of 0 indicates that there is no minimum size.) ]

        uint64 MinimumSizeAcceptable,

[OUT, Description ( A number that indicates the size of the largest storage extent that would be usable
for the specified FileSystem. A value of 0 indicates that there is no maximum size.) ]

        uint64 MaximumSizeUsable);

8.2.8.6.5.2 Intrinsic Methods of the Profile
None.

8.2.8.6.6 Client Considerations and Recipes
In the NAS recipes, the following subroutines are used (and provided here as forward declarations):

sub GetFSSetting(IN REF CIM_FileSystem $fs,

                 OUT CIM_FileSystemSettingData $setting);

sub GetFSServer(IN REF CIM_FileSystem $fs,

                 OUT CIM_ComputerSystem $system);

sub GetFSCapabilityFromServer(IN REF CIM_System $server, 

                              OUT CIM_FileSystemConfigurationServiceCapabilities 
$capability,

                              OUT CIM_FileSystemConfigurationService 
$fsconfigurator,

                              IN Optional String $filesystemtype = "",

                              IN Optional String $otherpropertyname = NULL,

                              IN Optional String $otherpropertyvalue = NULL);

sub GetFSCapabilityFromFileSystem(IN REF CIM_FileSystem $fs, 

                   OUT CIM_FileSystemConfigurationServiceCapabilities $capability,
856



 Filesystem Manipulation Subprofile
                   OUT CIM_FileSystemConfigurationService $fsconfigurator);

sub GetExportServiceAndCapabilities(IN REF CIM_FileSystem $fs,

                                    IN String $sharetype,

                                    OUT CIM_FileExportService $feservice,

                                    OUT CIM_ExportedFileShareCapabilities 
$efscapability);

Conventions used in the NAS recipes: 

•  When there is expected to be only one association of interest, the first item in the array returned
by the Associators( ) call is used without further validation. Real code will need to be more robust.

• We use Values and Valuemap members as equivalent. In real code, client-side magic is required
to convert the integer representation into the string form given in the MOF.

8.2.8.6.6.1 Get the FileSystemSettings associated with a FileSystem
//

// Get the FileSystemSettings associated with a FileSystem

//

sub GetFSSetting(IN REF CIM_FileSystem $fs, 

                 OUT CIM_FileSystemSettingData  $setting)

{

    //

    // Get a client-side copy of the FileSystemSetting associated with the 

    // FileSystem (via ElementSettingData association)

    //

    // In this and other NAS recipes we “cheat” and assume there is one

    // setting in the returned list

    //

    $setting = Associators($fs,

                             “CIM_ElementSettingData”,

                             “CIM_FileSystemSettingData”,

                             “ManagedElement”,

                             “SettingData”)->[0];

}

8.2.8.6.6.2 Creation of a Filesystem on a Storage Extent
//

// Create a Filesystem on a StorageExtent/LogicalDisk

//  

  

//

// Note: A CIM_LogicalDisk ISA CIM_StorageExtent, see above in conventions

//

sub CreateFileSystem(IN CIM_System $server,

                     IN CIM_LogicalDisk $disk,

                     IN uint64 $desiredsize,

                     IN String $fsname,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 857



 

                     IN String $filesystemtype,

                     IN String $otherpropertyname[],    // array of property names 

                     IN String $otherpropertyvalue[],   // corresponding array of 
values

                     OUT CIM_FileSystem $fs,

                     OUT CIM_Job $job)

{

    //

    // Use a subroutine to get a capability from the server.

    //

    &GetFSCapabilityFromServer($server, $filesystemtype, 

                              $capability, $fsconfigurator, $filesystemtype);

    if ($capability == NULL) {

        <raise an error>

        $fs = NULL;

        return;

    }

    //

    // Call FSCSCapabilities.CreateGoal(nullTemplate, Goal) to get a seed 

    // goal for FSSetting, or just use one of the provided default settings 

    // associated with the FSCSCapabilities via AssociatedSetting and 

    // DefaultAssociatedSetting.

    // 

    $fssgoal = NULL;

    $capability.CreateGoal(NULL, $fssgoal);

    //

    // Inspect Goal and modify properties as desired. 

    //

    $fssgoal.ActualFileSystemType = $filesystemtype;

    #i = 0;

    while ($otherpropertyname[#i]) {

        $fssgoal.$otherpropertyname[#i] = $otherpropertyvalue[#i];

        #i++;

    }

     

    //

    // Call FSCSCapabilities.CreateGoal(Goal-N’, Goal-N) to get the next 

    // goal for FSSetting -- iterate until satisfied or give up (beware 

    // infinite loops)  Note: we don’t iterate here, just give up if we

    // don’t get what we want.

    //

    $capability.CreateGoal($fssgoal, $fssgoal2);

    #i = 0;

    while ($otherpropertyname[#i]) {

        //
858



 Filesystem Manipulation Subprofile
        // Note: this pseudocode doesn’t check to see if the property named

        // in $otherpropertyname[#i] is an array.  This additional level

        // of horsing around is left as an exercise for the reader.

        //

        if ($fssgoal.$otherpropertyname[#i] != $otherpropertyvalue[#i] {

            { return NULL; }          // give up

        }

    }

    //

    // Call FSCSCapabilities.GetRequiredStorageSize(Goal, 

    // DesiredUsableCapacity) to find out how large of a 

    // LogicalDisk is needed.

    //

    // (GetRequiredStorageSize also returns the maximum usable 

    // size of the disk, given the settings expressed in Goal, 

    // which is useful if the disk being used can’t be grown 

    // upon demand)

    //

    $requiredsize = $capability.GetRequiredStorageSize($fssgoal2, 

                                  NULL,             // no special requirements

                                  $expectedsize,

                                  $minsize,

                                  $maxsize); 

    

    //

    // If a disk of the required size is already available

    //     Call CreateFileSystem(Goal, LogicalDisk)

    // else

    //     Create LogicalDisk (see StorageExtent recipes)

    //     Call CreateFileSystem(Goal, LogicalDisk)

    //

    if ($requiredsize > $disk.BlockSize * $disk.NumberOfBlocks) {

        <CreateDisk>($requiredsize, $newdisk);

        $disk = $newdisk;        

    }

    $fsconfigurator.CreateFileSystem($fsname, $job, $fssgoal2, $disk, $fs);

    //

    // not shown: managing the $job if it’s not NULL, and managing any

    // CIM_Errors that get sent.

    //

    return $fs;

}

8.2.8.6.6.3 Increase the size of a FileSystem
//
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 859



 

// Increase the size of a FileSystem

//

sub IncreaseFileSystemSize(IN CIM_FileSystem $fs,

                           IN uint64 $desiredsize,

                           OUT CIM_Job $job)

{             

    //

    // Get a client-side copy of the FileSystemSetting associated with the 

    // FileSystem 

    //

    $fssnewgoal = Associators($fs,

                             “CIM_ElementSettingData”,

                             “CIM_FileSystemSettingData”,

                             “ManagedElement”,

                             “SettingData”)->[0];

    //

    // Use a subroutine to get a capability from the server.

    //

    &GetFSCapabilityFromFilesystem($fs, $filesystemtype, $capability);

    if ($capability == NULL) {

        <raise an error>

        return;

    }

    //

    // Get the FileSystemConfiguration Service of NAS server using

    // a HostedService association

    // 

    $fsconfigurator = Associators($server->, 

                                  “CIM_HostedService”,

                                  “CIM_FileSystemConfigurationService”,

                                  “Antecedent”,

                                  “Dependent”)->[0];

    if ($fsconfigurator == NULL) {

        <raise an error>

        return;

    }

    // 

    // Call FSCSCapabilities.GetRequiredStorageSize(NewGoal, 

    // DesiredUsableCapacity) to find out how large of a 

    // LogicalDisk is needed 

    //

    $requiredsize = $capability.GetRequiredStorageSize($fssnewgoal, 

                                  NULL,             // no special requirements

                                  $desiredsize,
860



 Filesystem Manipulation Subprofile
                                  $minsize,

                                  $maxsize);        

    // 

    // Get Underlying SE using ResidesOnExtent association

    //

    $disk = Associators($fs,

                     “CIM_ResidesOnExtent”,

                     “CIM_LogicalDisk”,

                     “Dependent”,

                     “Antecedent”)->[0];

  

    // 

    // If disk is not large enough, increase size of underlying SE

    //

    $job = NULL;

    if ($requiredsize < $disk.BlockSize * $disk.NumberOfBlocks) {

    <increase size of logical disk, returning a job in $job if

                            necessary -- see storage extent recipes>

    }

    //

    // The filesystem itself doesn’t need modification, so we’re done

    //

}

8.2.8.6.6.4 Modify a Filesystem’s Settings
//

// Modify a FileSystem’s settings

//

// Rather than attempt a general-purpose settings modification 

// recipe, we will simply twiddle a couple settings.  The concept

// extends easily to other Settings attributes, or you can use

// the concept of corresponding arrays to pass in arbitrary settings,

// as shown in the CreateFileSystem recipe.

//

sub ModifyFileSystemObjectLimits(IN CIM_FileSystem $fs,

                                 IN OUT uint64 $objecttype,

                                 IN OUT uint64 $minobjects,

                                 IN OUT uint64 $maxobjects,

                                 IN OUT uint64 $normnobjects,

                                 OUT CIM_Job $job)

{

    //

    // Get a client-side copy of the CIM_FileSystemSettingData associated with the 

    // FileSystem (via ElementSettingData association) using GetInstance

    //
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 861



 

    $fssnewgoal = Associators($fs,

                             “CIM_ElementSettingData”,

                             “CIM_FileSystemSettingData”,

                             “ManagedElement”,

                             “SettingData”)->[0];

    //

    // Use a subroutine to get a capability from the server.

    //

    &GetFSCapabilityFromFilesystem($fs, $filesystemtype, $capability);

    if ($capability == NULL) {

        <raise an error>

        return;

    }

    // 

    // Find the index in the object arrays that contains

    // the object type of interest

    //

    #i = 0;

    while($typ = $fssnewgoal.ObjectTypes->[#i]) {

        if ($typ == $objecttype)

            { break; }

        #i++;

    }

    //

    // if the specified type isn’t there, add it

    //

    if ($typ != $objecttype) {

        $fssnewgoal.ObjectTypes->[#i] = $objecttype;

    }

    //

    // modify the other params associated with the object type

    //

    $fssnewgoal.NumberOfObjectsMin->[#i] = $minobjects;

    $fssnewgoal.NumberOfObjectsMax->[#i] = $maxobjects;

    $fssnewgoal.NumberOfObjects->[#i] = $normnobjects;

    //

    // Call FSCSCapabilities.CreateGoal(Goal-N’, Goal-N) to get the next 

    // goal for FSSetting -- iterate until satisfied or give up (beware 

    // infinite loops)  Note: we don’t iterate here, just give up.

    //

    $capability.CreateGoal($fssnewgoal, $fssgoal2);

    if ($fssgoal2.ActualFileSystemType != $filesystemtype)
862



 Filesystem Manipulation Subprofile
        { return NULL; }

    

    //

    // call ModifyFilesystem (management of $job and any CIM_Error not 

    // shown)

    //

    $fsconfigurator.ModifyFileSystem(NULL, $job, $fssgoal2, $fs);

    return $fs;

}

8.2.8.6.6.5  Delete a FileSystem and return underlying StorageExtent
//

// Delete a FileSystem and return underlying LogicalDisk

//

sub DeleteFileSystem(CIM_FileSystem $fs)

//

// This only deletes the filesystem instance, not the underlying

// logical disk, which is returned for further disposition.

//

// NOTE: if you want to “wipe” or zero out the filesystem, you

// must either do that via client-level operations over a 

// FileSystemShare before deleting the filesystem, or by means of 

// vendor-specific operations on the logical disk subsequent to 

// deleting the filesystem.

//

{

    // 

    // Get Underlying SE using ResidesOnExtent association

    //

    $disk = Associators($fs, 

                          “CIM_ResidesOnExtent”,

                          “CIM_LogicalDisk”,

                          “Dependent”,

                          “Antecedent”)->[0];

    //

    // Get configuration service 

    //

    &GetFSCapabilityFromFileSystem($fs, $capability, $fsconfigurator);

    //

    // Call DeleteFileSystem(FS) (error checking not shown)

    //

    $fsconfigurator.DeleteFileSystem($job, $fs);

    // 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 863



 

    // Return REF to SE

    //

    return $disk;

}

8.2.8.6.6.6 Get a FileSystemConfigurationServiceCapabilities from a NASServer
//

// Get a FileSystemConfigurationServiceCapabilities from a NASServer

//

// this routine returns the configurator that matches a capability,

// as well as the capability that matches the other given parameters

//

sub GetFSCapabilityFromServer(IN REF CIM_System $server, 

                              OUT CIM_FileSystemConfigurationServiceCapabilities 
$capability,

                              OUT CIM_FileSystemConfigurationService 
$fsconfigurator,

                              IN OPTIONAL String $filesystemtype = ““,

                              IN OPTIONAL String $otherpropertyname = NULL,

                              IN OPTIONAL String $otherpropertyvalue = NULL)

{

    //

    // Get the FileSystemConfiguration Service of NAS server using

    // a HostedService association

    // 

    $fsconfigurators->[] = Associators($server, 

                                  “CIM_HostedService”,

                                  “CIM_FileSystemConfigurationService”,

                                  “Antecedent”,

                                  “Dependent”);

    #i = 0;

    while ($fsconfigurator = $fsconfigurators->[#i]) {

        //

        // Find FSCapabilities that supports ActualFileSystemType 

        // using ElementCapabilities association from FSConfigurationService. 

        // If client does not care about the ActualFileSystemType, use default 

        // FileSystemConfigurationServiceCapabilities.  NOTE: there may be more 

        // than one FSCSCapabilities for a ActualFileSystemType; each 

        // FSCSCapabilities may support a different set of properties (say 

        // NFS vs CIFS locking), so this needs to be checked for as well.

        //

        $capabilities->[] = Associators($fsconfigurator,

                                        “CIM_ElementCapabilities”,

                                        “CIM_FileSystemCapabilities”,

                                        “ManagedElement”,

                                        “Capabilities”);
864



 Filesystem Manipulation Subprofile
        #j = 0;

        while($capability = $capabilities->[#j]) {

            if ($filesystemtype == ““ ||

                    $capability.SupportedActualFileSystemType == $filesystemtype) {

                if (($otherpropertyname == NULL && $otherpropertyvalue == NULL) ||

                            $capability.$otherpropertyname == $otherpropertyvalue) {

                    //

                    // successful return

                    //

                    return;

                }

            }

            #j++;

        }

    }

    //

    // no luck

    //

    $capability = NULL;

    $fsconfigurator = NULL;

    return;

}

8.2.8.6.6.7 Get a FileSystemConfigurationServiceCapabilities from an existing FileSystem
//

// Get a FileSystemConfigurationServiceCapabilities from an existing FileSystem

//

sub GetFSCapabilityFromFileSystem(IN REF CIM_FileSystem $fs, 

                   OUT FileSystemConfigurationServiceCapabilities $capability,

                   OUT CIM_FileSystemConfigurationService $fsconfigurator)

{

    //

    // Get a client-side copy of the FileSystemSetting associated with the 

    // FileSystem 

    //

    &GetFSSetting($fs, $fssetting);

    //

    // Get the ActualFileSystemType from the FileSystemSetting     

//

    $fstype = $fssetting.ActualFileSystemType;

    //

    // Get the ComputerSystem for the FS (via HostedFileSystem association)     

//

    $system = Associators($fs, 

                          “CIM_HostedFileSystem”,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 865



 

                          “CIM_Filesystem”,

                          “PartComponent”,

                          “GroupComponent”)->[0];

    // 

    // Get the FileSystemConfigurationService from the ComputerSystem    

//   via the HostedService association     

//

    $fsconfigurators->[] = Associators($system, 

                                  “CIM_HostedService”,

                                  “CIM_FileSystemConfigurationService”,

                                  “Antecedent”,

                                  “Dependent”);

    #i = 0;

    while ($fsconfigurator = $fsconfigurators->[#i]) {

        //

        // Find FSCapabilities that supports ActualFileSystemType 

        // using ElementCapabilities association from FSConfigurationService. 

        // If client does not care about the ActualFileSystemType, use default 

        // FileSystemConfigurationServiceCapabilities.  NOTE: there may be more 

        // than one FSCSCapabilities for a ActualFileSystemType; each 

        // FSCSCapabilities may support a different set of properties (say 

        // NFS vs CIFS locking), so this needs to be checked for as well.

        //

        $capabilities->[] = Associators($fsconfigurator,

                                        “CIM_ElementCapabilities”,

                                        “CIM_FileSystemCapabilities”,

                                        “ManagedElement”,

                                        “Capabilities”);

        }

        #j = 0;

        while($capability = $capabilities->[#j]) {

            if ($filesystemtype == ““ ||

                    $capability.SupportedActualFileSystemType == $fstype) {

                //

                // successful return

                //

                return;

            }

            #j++;

        }

    }

    //

    // no luck

    //

    $capability = NULL;
866



 Filesystem Manipulation Subprofile
    $fsconfigurator = NULL;

    return;

}    

8.2.8.6.6.8 Filesystem Manipulation Supported Capabilities Patterns 
Table 941, “Filesystem Manipulation Supported Capabilities Patterns” lists the patterns that are formally
recognized by this version of SMI-S for determining capabilities of various NAS implementations:

Table 941: Filesystem Manipulation Supported Capabilities Patterns

8.2.8.6.7 Registered Name and Version
Filesystem Manipulation version 1.1.0

8.2.8.6.8 CIM Server Requirements

SupportedActualFileSystem
Types

Supported 
SynchronousMethods

Supported 
SynchronousMethods

InitialAvailablity

Any none none none
Any CreateFileSystem, 

DeleteFileSystem, Modi-
fyFileSystem, Create-
Goal,
GetRequiredStorageSize

none Any

Any none CreateFileSystem, 
DeleteFileSystem, Modi-
fyFileSystem, Create-
Goal

Any

Table 942: CIM Server Requirements for Filesystem Manipulation

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 867



 

8.2.8.6.9 CIM Elements

Table 943: CIM Elements for Filesystem Manipulation

Element Name Description
Mandatory Classes

CIM_ElementCapabilities (8.2.8.6.9.1) In this subprofile, associates the Filesystem configura-
tion service to the Filesystem capabilities that it sup-
ports. 

CIM_ElementCapabilities (8.2.8.6.9.2) In this subprofile, associates the Filesystem configura-
tion service to the Filesystem configuration capabilities.

CIM_FileStorage (8.2.8.6.9.4) Associates a Logical File or Directory to the LocalFile-
System that contains it.

CIM_FileSystemCapabilities (8.2.8.6.9.5) This element represents the Capabilities of the Filesys-
tem configuration service for managing Filesystems. 
The Service can be associated with multiple Capabili-
ties that are keyed by the ActualFileSystemType prop-
erty.

CIM_FileSystemConfigurationCapabilities (8.2.8.6.9.6) This element represents the management capabilities 
of the Filesystem configuration service. 

CIM_FileSystemConfigurationService (8.2.8.6.9.7) The FileSystemConfigurationService provides the 
methods to manipulate filesystems.

CIM_HostedFileSystem (8.2.8.6.9.10) Represents the association between a LocalFileSystem 
and the Computer System that hosts it.

CIM_HostedService (8.2.8.6.9.11) In this subprofile, associates the FileSystemConfigura-
tionService to the hosting Computer System.

CIM_LocalFileSystem (8.2.8.6.9.12) Represents a LocalFileSystem that a Computer System 
could make available.

CIM_LogicalFile (8.2.8.6.9.14) A LogicalFile (or Directory subclass) is used to provide 
mountpoints on a Computer System for LocalFIleSys-
tems.

CIM_ResidesOnExtent (8.2.8.6.9.15) Represents the association between a local FileSystem 
and the underlying StorageExtent/LogicalDisk that it is 
built on.

Optional Classes
CIM_ElementSettingData (8.2.8.6.9.3) Associates a configuration setting to the configured ele-

ment. It is used in this subprofile with LocalFileSystem 
and FileSystemSetting elements.

CIM_FileSystemSetting (8.2.8.6.9.8) This element represents sample configuration settings 
of a Filesystem. It represents "pre-defined" settings 
supported by a Filesystem configuration service. A File-
SystemSetting element specifies a single ActualFile-
SystemType which is a weak key with respect to the 
FileSystemConfigurationService.

CIM_FileSystemSetting (8.2.8.6.9.9) This element represents the configuration settings of a 
Filesystem. It gets created by theCreateFileSystem 
extrinsic method when the CIM_LocalFileSystem is cre-
ated.

CIM_LocalFileSystem (8.2.8.6.9.13) The represents LocalFileSystems that are hosted by the 
NAS Head.
868



 Filesystem Manipulation Subprofile
8.2.8.6.9.1 CIM_ElementCapabilities
In this subprofile, associates the Filesystem configuration service to the Filesystem capabilities that it supports. 
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.6.9.2 CIM_ElementCapabilities
In this subprofile, associates the Filesystem configuration service to the Filesystem configuration capabilities.
Created By : Static
Modified By : Static
Deleted By : Static

CIM_SettingAssociatedToCapabilities (8.2.8.6.9.16) Represents the association between a FilesystemCapa-
bilities and a supported FileSystemSetting element.

Mandatory Indications
SELECT *    FROM CIM_InstCreation     WHERE Sour-
ceInstance ISA CIM_LocalFileSystem

CQL - Creation of a LocalFileSystem element. 

SELECT OBJECTPATH(SourceInstance)AS FSPath, 
SourceInstance.Name    FROM CIM_InstDeletion     
WHERE SourceInstance ISA CIM_LocalFileSystem

CQL - Deletion of a LocalFileSystem element.

Optional Indications
SELECT OBJECTPATH(IC.SourceInstance)AS 
FSPath,  IC.Name, IC.FileSystemSize,    IC.Avail-
ableSpace, IC.FileSystemType,    CS.Name, CS.Name-
Format, CS.OtherIdentifyingInfo, 
CS.IdentifyingDescriptions    FROM CIM_InstCreation 
IC, CIM_HostedFileSystem HFS, 
CIM_ComputerSystem CS    WHERE SourceInstance 
ISA CIM_LocalFileSystem    AND OBJECTPATH(CS) = 
A.GroupComponent    AND OBJECTPATH(IC.Source-
Instance) = A.PartComponent

CQL - Creation of a LocalFileSystem element. In addi-
tion to returning important properties of LocalFileSys-
tem, it also returns the name of the ComputerSystem it 
is hosted on. 

SELECT *     FROM CIM_InstModification     WHERE 
SourceInstance ISA CIM_LocalFileSystem

CQL - Modification of a LocalFileSystem element 

Table 944: SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Capabilities)

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The Filesystem configuration service.
Capabilities CIM_Capabilities The FileSystemCapabilties.

Table 943: CIM Elements for Filesystem Manipulation

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 869



 

Class Mandatory: true

8.2.8.6.9.3 CIM_ElementSettingData
Associates a configuration setting to the configured element. It is used in this subprofile with LocalFileSystem and 
FileSystemSetting elements.
Created By : Extrinsic(s): CreateFileSystem
Modified By : Static
Deleted By : Extrinsic(s): DeleteFileSystem
Class Mandatory: false

8.2.8.6.9.4 CIM_FileStorage
Associates a Logical File or Directory to the LocalFileSystem that contains it.
Created By : Extrinsic(s): CreateFileSystem or ModifyFileSystem
Modified By : Static
Deleted By : Extrinsic(s): DeleteFileSystem or ModifyFileSystem
Class Mandatory: true

8.2.8.6.9.5 CIM_FileSystemCapabilities
This element represents the Capabilities of the Filesystem configuration service for managing Filesystems. The 
Service can be associated with multiple Capabilities that are keyed by the ActualFileSystemType property.
Created By : Static
Modified By : Static
Deleted By : Static

Table 945: SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Config Capabili-
ties)

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The Filesystem configuration service.
Capabilities CIM_Capabilities The Filesystem configuration capabili-

ties.

Table 946: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The LocalFileSystem.
SettingData CIM_SettingData The current configuration of the Local-

FileSystem.

Table 947: SMI Referenced Properties/Methods for CIM_FileStorage

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_FileSystem The LocalFileSystem that contains the 
LogicalFile.

PartComponent CIM_LogicalFile The LogicalFile contained in the Local-
FileSystem.
870



 Filesystem Manipulation Subprofile
Class Mandatory: true

8.2.8.6.9.6 CIM_FileSystemConfigurationCapabilities
This element represents the management capabilities of the Filesystem configuration service. 
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

Table 948: SMI Referenced Properties/Methods for CIM_FileSystemCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string An opaque, unique id for a capability of 
a Filesystem configuration service.

ElementName string A User-Friendly Name for this Capabili-
ties element.

ActualFileSystemType uint16 This identifies the type of filesystem 
that this Capabilities represents.

SupportedProperties uint16[] This is the list of configuration proper-
ties (of FileSystemSetting) that are 
supported for specification at creation 
time by this Capabilities element.

CreateGoal() This extrinsic method supports the cre-
ation of a FileSystemSetting that is a 
supported variant of a FileSystemSet-
ting passed in as an embedded IN 
parameter. The method returns the 
supported FileSystemSetting as an 
embedded OUT parameter.

Optional Properties/Methods
GetRequiredStorageSize() This extrinsic method supports deter-

mining the storage space requirements 
for a filesystem specified by the combi-
nation of a FileSystemSetting and a 
StorageSetting. The StorageSetting 
requires redundancy and other storage 
mapping considerations, while the File-
SystemSetting transforms client qual-
ity-of-service specifications to storage 
resource requirements. 

Table 949: SMI Referenced Properties/Methods for CIM_FileSystemConfigurationCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string An opaque, unique id for the capabili-
ties of a Filesystem configuration ser-
vice.

ElementName string A User-Friendly Name for this Capabili-
ties.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 871



 

8.2.8.6.9.7 CIM_FileSystemConfigurationService
The FileSystemConfigurationService provides the methods to manipulate filesystems.
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

SupportedActualFileSystemTypes uint16[] The Service can be associated with 
multiple Capabilities that are keyed by 
the ActualFileSystemType property -- 
the Configuration capabilities lists all of 
the supported ActualFileSystemTypes 
in its SupportedActualFileSystem-
Types property.

SupportedSynchronousMethods N uint16[] The Service supports a number of 
extrinsic methods -- this property identi-
fies the ones that can be called syn-
chronously. Note: A supported method 
shall be listed in this property or in the 
SupportedAsynchronousMethods prop-
erty.

SupportedAsynchronousMethods N uint16[] The Service supports a number of 
extrinsic methods -- this property identi-
fies the ones that can be called asyn-
chronously. Note: A supported method 
shall be listed in this property or in the 
SupportedSynchronousMethods prop-
erty.

InitialAvailability uint16 This represents the state of availability 
of a LocalFileSystem on initial creation.

Table 950: SMI Referenced Properties/Methods for CIM_FileSystemConfigurationService

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementName string A User-friendly name for this Service.
SystemCreationClassName string The CIM Class name of the Computer 

System hosting the Service.
SystemName string The name of the Computer System 

hosting the Service.
CreationClassName string The CIM Class name of the Service.
Name string The unique name of the Service.
CreateFileSystem() Creates a FileSystem specified by 

parameters and Capabilities of the ser-
vice. If appropriate and supported, a 
Job may be created.

Table 949: SMI Referenced Properties/Methods for CIM_FileSystemConfigurationCapabilities

Property Flags Type Description & Notes
872



 Filesystem Manipulation Subprofile
8.2.8.6.9.8 CIM_FileSystemSetting
This element represents sample configuration settings of a Filesystem. It represents "pre-defined" settings sup-
ported by a Filesystem configuration service. A FileSystemSetting element specifies a single ActualFileSystem-
Type which is a weak key with respect to the FileSystemConfigurationService.
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: false

ModifyFileSystem() Modifies a FileSystem specified by 
parameters and Capabilities of the ser-
vice. If appropriate and supported, a 
Job may be created.

DeleteFileSystem() Deletes a FileSystem specified by its 
CIM Reference. If appropriate and sup-
ported, a Job may be created.

Table 951: SMI Referenced Properties/Methods for CIM_FileSystemSetting (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string An opaque, unique id for a Filesystem 
Setting.

ElementName string A provider supplied user-Friendly 
Name for this Setting element.

ActualFileSystemType uint16 This identifies the type of filesystem 
that this Setting represents.

FilenameCaseAttributes uint16 This specifies the support provided for 
using upper and lower case characters 
in a filename.

ObjectTypes uint16[] This is an array that specifies the differ-
ent types of objects that this filesystem 
may be used to provide and provides 
further details in corresponding entries 
in other attributes.

FilenameReservedCharacterSet String[] This string or character array specifies 
the characters reserved (i.e., not 
allowed) for use in filenames.

Optional Properties/Methods
DataExtentsSharing uint16 This allows the creation of data blocks 

(or storage extents) that are shared 
between files.

CopyTarget uint16 This specifies if support should be pro-
vided for using the created Filesystem 
as a target of a Copy operation.

Table 950: SMI Referenced Properties/Methods for CIM_FileSystemConfigurationService

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 873



 

8.2.8.6.9.9 CIM_FileSystemSetting
This element represents the configuration settings of a Filesystem. It gets created by theCreateFileSystem extrin-
sic method when the CIM_LocalFileSystem is created.
Created By : Extrinsic(s): CreateFileSystem
Modified By : Extrinsic(s): ModifyFileSystem
Deleted By : Extrinsic(s): DeleteFileSystem

NumberOfObjectsMin uint64[] This is an array that specifies the mini-
mum number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

NumberOfObjectsMax uint64[] This is an array that specifies the maxi-
mum number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

NumberOfObjects uint64[] This is an array that specifies the 
expected number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

ObjectSize uint64[] This is an array that specifies the 
expected size of a typical object of the 
type specified by the corresponding 
entry in ObjectTypes[].

ObjectSizeMin uint64[] This is an array that specifies the mini-
mum size of an object of the type spec-
ified by the corresponding entry in 
ObjectTypes[].

ObjectSizeMax uint64[] This is an array that specifies the mini-
mum size of an object of the type spec-
ified by the corresponding entry in 
ObjectTypes[].

FileNameStreamFormats uint16[] This is an array that specifies the 
stream formats supported for filenames 
by the created array (e.g., UTF-8).

FilenameFormats uint16[] This is an array that specifies the for-
mats supported for filenames by the 
created array (e.g. DOS 8.3 names).

FilenameLengthMax uint16[] This specifies the maximum length of a 
filename supported by this capabilities.

SupportedLockingSemantics uint16[] This array specifies the kind of file 
access/locking semantics supported by 
this capabilities.

SupportedAuthorizationProtocols uint16[] This array specifies the kind of file 
authorization protocols supported by 
this capabilities.

SupportedAuthenticationProtocols uint16[] This array specifies the kind of file 
authentication protocols supported by 
this capabilities.

Table 951: SMI Referenced Properties/Methods for CIM_FileSystemSetting (Pre-defined)

Property Flags Type Description & Notes
874



 Filesystem Manipulation Subprofile
Class Mandatory: false

Table 952: SMI Referenced Properties/Methods for CIM_FileSystemSetting (Attached to FileSys-
tem)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string An opaque, unique id for a FileSystem-
Setting.

ElementName string A client defined user-Friendly Name for 
this Setting element.

ActualFileSystemType uint16 This identifies the type of filesystem 
that this Setting represents.

FilenameCaseAttributes uint16 This specifies the support provided for 
using upper and lower case characters 
in a filename.

ObjectTypes uint16[] This is an array that specifies the differ-
ent types of objects that this filesystem 
may be used to provide and provides 
further details in corresponding entries 
in other attributes.

FilenameReservedCharacterSet String[] This string or character array specifies 
the characters reserved (i.e., not 
allowed) for use in filenames.

Optional Properties/Methods
DataExtentsSharing uint16 This allows the creation of data blocks 

(or storage extents) that are shared 
between files.

CopyTarget uint16 This specifies if support should be pro-
vided for using the created Filesystem 
as a target of a Copy operation.

NumberOfObjectsMin uint64[] This is an array that specifies the mini-
mum number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

NumberOfObjectsMax uint64[] This is an array that specifies the maxi-
mum number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

NumberOfObjects uint64[] This is an array that specifies the 
expected number of objects of the type 
specified by the corresponding entry in 
ObjectTypes[].

ObjectSize uint64[] This is an array that specifies the 
expected size of a typical object of the 
type specified by the corresponding 
entry in ObjectTypes[].
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 875



 

8.2.8.6.9.10 CIM_HostedFileSystem
Represents the association between a LocalFileSystem and the Computer System that hosts it.
Created By : Extrinsic(s): CreateFileSystem
Modified By : Static
Deleted By : Extrinsic(s): DeleteFileSystem
Class Mandatory: true

8.2.8.6.9.11 CIM_HostedService
In this subprofile, associates the FileSystemConfigurationService to the hosting Computer System.
Created By : Static
Modified By : Static
Deleted By : Static

ObjectSizeMin uint64[] This is an array that specifies the mini-
mum size of an object of the type spec-
ified by the corresponding entry in 
ObjectTypes[].

ObjectSizeMax uint64[] This is an array that specifies the mini-
mum size of an object of the type spec-
ified by the corresponding entry in 
ObjectTypes[].

FileNameStreamFormats uint16[] This is an array that specifies the 
stream formats supported for filenames 
by the created array (e.g., UTF-8).

FilenameFormats uint16[] This is an array that specifies the for-
mats supported for filenames by the 
created array (e.g. DOS 8.3 names).

FilenameLengthMax uint16[] This specifies the maximum length of a 
filename supported by this capabilities.

SupportedLockingSemantics uint16[] This array specifies the kind of file 
access/locking semantics supported by 
this capabilities.

SupportedAuthorizationProtocols uint16[] This array specifies the kind of file 
authorization protocols supported by 
this capabilities.

SupportedAuthenticationProtocols uint16[] This array specifies the kind of file 
authentication protocols supported by 
this capabilities.

Table 953: SMI Referenced Properties/Methods for CIM_HostedFileSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System The Computer System that hosts a 
LocalFileSystem. 

PartComponent CIM_FileSystem The hosted filesystem.

Table 952: SMI Referenced Properties/Methods for CIM_FileSystemSetting (Attached to FileSys-
tem)

Property Flags Type Description & Notes
876



 Filesystem Manipulation Subprofile
Class Mandatory: true

8.2.8.6.9.12 CIM_LocalFileSystem
Represents a LocalFileSystem that a Computer System could make available.
Created By : Extrinsic(s): CreateFileSystem
Modified By : Extrinsic(s): ModifyFileSystem
Deleted By : Extrinsic(s): DeleteFileSystem
Class Mandatory: true

Table 954: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The hosting Computer System.
Dependent CIM_Service The Filesystem configuration service.

Table 955: SMI Referenced Properties/Methods for CIM_LocalFileSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CSCreationClassName string The CIM class of the hosting Computer 
System.

CSName string The Name of the hosting Computer 
System.

CreationClassName string The CIM class of the this instance.
Name string A unique name for this filesystem in the 

context of the hosting Computer Sys-
tem.

OperationalStatus uint16[] The current operational status of the 
LocalFileSystem.

BlockSize uint64 The size of a block in bytes for certain 
filesystems that use a fixed block size 
when creating filesystems.

FileSystemSize uint64 The total current size of the filesystem 
in blocks.

AvailableSpace uint64 The space available currently in the in 
blocks.

CaseSensitive boolean Whether this filesystem is sensitive to 
the case of characters in filenames.

CasePreserved boolean Whether this filesystem preserves the 
case of characters in filenames when 
saving and restoring.

MaxFileNameLength uint32 The length of the longest filename. 
FileSystemType string This matches ActualFileSystemType.
IsFixedSize uint16 Indicates that the filesystem cannot be 

expanded or shrunk.
Optional Properties/Methods

EnabledState uint16 Current state of the local filesystem.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 877



 

8.2.8.6.9.13 CIM_LocalFileSystem
The represents LocalFileSystems that are hosted by the NAS Head.
Created By : Extrinsic(s): CreateFileSystem
Modified By : Extrinsic(s): ModifyFileSystem
Deleted By : Extrinsic(s): DeleteFileSystem
Class Mandatory: false
No specified properties or methods.

8.2.8.6.9.14 CIM_LogicalFile
A LogicalFile (or Directory subclass) is used to provide mountpoints on a Computer System for LocalFIleSystems.
Created By : Extrinsic(s): CreateFileSystem
Modified By : Extrinsic(s): ModifyFileSystem
Deleted By : Extrinsic(s): DeleteFileSystem or ModifyFileSystem
Class Mandatory: true

OtherEnabledState string Vendor-specific state of the local file-
system indicated by EnabledState = 
1("Other").

TimeOfLastStateChange datetime A timestamp indicating when the state 
was last changed.

RequestedState uint16 Not supported.
Root string A path that specifies the root of the file-

system in an unitary Computer Sys-
tems acting as a FileServer.

ReadOnly boolean Indicates that this is a read-only filesys-
tem that does not allow modifications.

EncryptionMethod string Indicates if files are encrypted and the 
method of encryption.

CompressionMethod string Indicates if files are compressed before 
being stored, and the methods of com-
pression.

CodeSet uint16[] The codeset used in filenames.
ClusterSize uint32
NumberOfFiles uint64 The actual current number of files in 

the filesystem.
ResizeIncrement uint64 The size by which to increase the size 

of the filesystem when requested.
RequestStateChange() Not supported.

Table 956: SMI Referenced Properties/Methods for CIM_LogicalFile

Property Flags Type Description & Notes
Mandatory Properties/Methods

CSCreationClassName string CIM Class of the Computer System 
that hosts the Filesystem of this File.

CSName string  Name of the Computer System that 
hosts the Filesystem of this File.

Table 955: SMI Referenced Properties/Methods for CIM_LocalFileSystem

Property Flags Type Description & Notes
878



 Filesystem Manipulation Subprofile
8.2.8.6.9.15 CIM_ResidesOnExtent
Represents the association between a local FileSystem and the underlying StorageExtent/LogicalDisk that it is built 
on.
Created By : Extrinsic(s): CreateFileSystem
Modified By : Static
Deleted By : Extrinsic(s): DeleteFileSystem
Class Mandatory: true

8.2.8.6.9.16 CIM_SettingAssociatedToCapabilities
Represents the association between a FilesystemCapabilities and a supported FileSystemSetting element.
Created By : Static
Modified By : Static
Deleted By : Static

FSCreationClassName string CIM Class of the LocalFileSystem on 
the Computer System that contains this 
File.

FSName string Name of the LocalFileSystem on the 
Computer System that contains this 
File.

CreationClassName string CIM Class of this instance of Logical-
File.

Name string The unique Name of this LogicalFile, 
weak with respect to a containing 
Directory.

Optional Properties/Methods
FileSize uint64 The size of the file, in bytes.
CreationDate datetime A timestamp indicating when the file 

was created.
LastModified datetime A timestamp indicating when the file 

was last modified.
ElementName string A user-friendly name for the file.

Table 957: SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_LogicalElement The local filesystem that is built on top 
of a StorageExtent.

Antecedent CIM_StorageExtent The StorageExtent that underlies a 
LocalFileSystem.

Table 956: SMI Referenced Properties/Methods for CIM_LogicalFile

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 879



 

Class Mandatory: false

8.2.8.6.10 Related Standards

EXPERIMENTAL

Table 958: SMI Referenced Properties/Methods for CIM_SettingAssociatedToCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Capabilities A FileSystemCapabilities element.
Dependent CIM_SettingData A FileSystemSetting element.

Table 959: Related Standards for Filesystem Manipulation

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
880



 File Export Manipulation Subprofile
EXPERIMENTAL

8.2.8.7 File Export Manipulation Subprofile

8.2.8.7.1 Description
The File Export Manipulation Subprofile is an extension of the Self-Contained NAS and NAS Head
Profiles. 

The File Export Manipulation Subprofile provides configuration support for exporting elements ('files') of
a FileSystem. The configuration methods are part of a FileExportService. FileExportService(s) are
hosted by a ComputerSystem that exports the files (these would be the Filers in the NAS offering).
These shared elements (FileShares) are accessed through ServiceAccessPoints hosted by the Filer.
FileShares are associated with the FileExportService via ServiceAffectsElement and with the
ServiceAccessPoint(s) via SAPAvailableToElement.

The File Export Manipulation Subprofile supports creation, modification and deletion of FileShares that
are exported.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 881



 

8.2.8.7.1.1 Instance Diagrams
File Export Creation classes and associations
Figure 137: "File Export Manipulation Subprofile Instance Diagram" illustrate the constructs involved
with creating and exporting File Shares for NAS.

The FileExportService provides configuration support for exporting elements ('files') of a FileSystem.
FileExportService(s) are hosted by a ComputerSystem that exports the files (these would be the Filers
in a NAS Head). These shared elements (FileShares) are accessed through ServiceAccessPoint(s)
hosted by the Filer. FileShares are associated with the Service via ServiceAffectsElement and with the
ServiceAccessPoint(s) via SAPAvailableToElement.

8.2.8.7.2 Health and Fault Management Considerations
Under Consideration for a future standard.

8.2.8.7.3 Cascading Considerations
Not Applicable.

Figure 137: File Export Manipulation Subprofile Instance Diagram

ExportedFileShareCapabilities

NFSVersions[]
CIFSVersions[]

SupportedProperties[]
CreateGoal()

FileExportService

CreateExportedShare()
ModifyExportedShare()
ReleaseExportShare()

FileShare

ElementSettingData

ExportedFileShareSetting

ElementRoot
ElementPath

DefaultReadWrite
DefaultExecute
DefaultUserId
RootAccess

RootAccessHosts[]
MountAccess

MountAccessClients[]
WritePolicy[]

NFSVersions[]
CIFSVersions[]

ExportTime
AccessPoints

AccessPointPorts[]

ElementCapabilities

LogicalFile 
(or Directory)

SharedElement

ProtocolEndPoint

ProtocolIFType="Other"
OtherTypeDescription='NFS" 

or "CIFS"

SAPAvailableForElement

ComputerSystem

HostedShare

ServiceAffectsElement

HostedService
FileExportCapabilities

SupportedExports[]
SynchronousExportMethods[]
AsynchronousExportMethods[]

InitialExportState ElementCapabilities
882



 File Export Manipulation Subprofile
8.2.8.7.4 Supported Subprofiles and Packages

8.2.8.7.5 Methods of the Profile

8.2.8.7.5.1 Extrinsic Methods of the Profile
The extrinsic methods for this profile are defined in Table 961, “FileExportManipulation Methods”.

Creation of a FileShare for export (CreateExportedFileShare), creates a FileShare and a
ExportedFileShareSetting, and the FileShare associations to a ComputerSystem, a LogicalFile (or
Directory), a Protocol Endpoint, the Service that created it and its export Settings. In addition, if an
instance for the LogicalFile (or Directory) does not exist, then the instance will be created.

Releasing a FileShare (via ReleaseExportedFileShare) deletes the FileShare and its
ExportedFileShareSetting, and all the FileShare associations to other instances. In addition, it will result
in deletion of the LogicalFile (or Directory) instance, if it is the last FileShare defined on that LogicalFile
(or Directory).

The only element that can be modified in the File Export Manipulation Subprofile is the
ExportedFileShareSetting.

Table 960: Supported Subprofiles for File Export Manipulation

Registered Subprofile Names Mandatory Version
Job Control No 1.1.0

Table 961: FileExportManipulation Methods

Method Created Instances Deleted Instances Modified Instances

CreateExportedShare FileShare (Export)
ExportedFileShareSetting
ElementSettingData
HostedShare
SharedElement
SAPAvailableForElement
ServiceAffectsElement
LogicalFile (or Directory)

N/A N/A

ModifyExportedShare N/A N/A ExportedFileShareSet-
ting
FileShare

ReleaseExportedShare N/A FileShare (Export)
ExportedFileShareSetting
ElementSettingData
HostedShare
SharedElement
SAPAvailableForElement
ServiceAffectsElement
LogicalFile (or Directory)

N/A

CreateGoal N/A N/A N/A
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 883



 

8.2.8.7.5.1.1 CreateExportedShare
Start a Job to create a FileShare from an element of a FileSystem. Makes an element of a FileSystem
available as a FileShare - this is returned as the parameter TheShare of type FileShare. The
FileSystem whose element is exported is expected to be hosted by the host of the FileExportService.

If 0 is returned, the method completed successfully and no ConcreteJob instance was required. If
0x1000 is returned, a ConcreteJob has been started to create the FileShare. The Job's reference will
be returned in the output parameter Job. If the Job succeeds, the FileShare will be created and
configured and ready to be exported. If the FileShare has been configured to be exported at a later
time, its 'Enabled' attribute will be set to True when it is ready to be exported. The FileShare will have a
HostedShare association to the host ComputerSystem.

The parameter TheElementRoot specifies, using a pathname, the FileSystem whose element is being
exported. If the default local file system of the host is being exported, the pathname would be the root of
the file system hierarchy on the host, but for a re-exported FileSystem, this would be the mount-point at
which the FileSystem was mounted.

The shared sub-element is specified by a path relative to the root of the specified FileSystem.

Goal is an embedded parameter of type ExportedFileShareSetting that allows the client to specify the
properties desired for the share.features.

If the method is successful, it will return a FileShare in the OUT parameter TheShare. The settings on
the FileShare will be specified by the Setting Data associated with the TheShare element via
ElementSettingData.

CreateExportedShare (

[OUT, IN (false), Description(Reference to the job (may be null if job completed).) ]

        CIM_ConcreteJob REF Job, 

[IN, OUT, Description (A reference indicating an element whose sub-element is being exported. The
class that Root references is a FileSystem, a FileShare that has a MountedElement association (or a
derived class of MountedElement) to a LogicalFile (or Directory), or a LogicalFile (or a derived class
such as Directory) that has a MountedElement association to a FileShare or FileSystem. 

If Root is NULL, it indicates the root of the FileExportService host's default local FileSystem, that is
used as the default local name space.)]

        CIM_LogicalElement string Root,

[IN, Description (A string representing a path to the shared element from the Directory indicated by
Root. 

Multiple paths could lead to the same element but the access rights or other privileges could be specific
to the path. The client needs to specify the path. 

If SharedElementPath is NULL or the empty string, it indicates the \”root\” LogicalElement contained by
Root.)]

        string SharedElementPath,

[IN, EmbeddedInstance(“CIM_ExportedFileShareSettingGoal “), Description (The client-specified
requirements for how the specified FileShare element is to be shared or exported by the
FileExportService. This is an element of the CIM_ExportedFileShareSetting class, or a derived class,
encoded as a string-valued embedded object parameter. If NULL or the empty string, the default
configuration will be specified by the FileExportService.)]
884



 File Export Manipulation Subprofile
        string Goal,

[OUT, Description (If successful, this specifies the share.)]

        CIM_FileShare REF TheShare)

[IN, Description (A reference to a concrete derived class of CIM_Identity that indicates the user id to
use for default access to this share. A NULL value indicates that no user id is specified. The provider is
expected to surface this access using the privilege model.)]

      CIM_Identity REF DefaultUserId, 

[IN, Description (An array of strings that specify the hosts that have root access to this Share, if the
CIM_ExportedFileShareSetting.RootAccess property is set to 'Allow Root Access'. Each entry specifies
a host by a vendor-specific host-id, prefixed with '+' or '-' to indicate that access is either Granted or
Denied. The name of the host is its Durable Name, which is expected to be a fully-qualified-domain-
name or its IP Address. If one of the entries is '+*', root access will be allowed from all hosts. If one of
the entries is '-*', root access will be denied to all hosts, effectively overriding the value of the property
CIM_ExportedFileShareSetting.RootAccess. The provider is expected to surface this access using the
privilege model. 

This property needs to be a string because the remote host may not be known to the provider and
therefore a reference to the host may not exist.), 

          ArrayType ( "Indexed" ), 

          ModelCorrespondence { "CIM_ExportedFileShareSetting.RootAccess" }]

      string RootAccessHosts[], 

[IN, Description (An array of strings that specify the ServiceAccessPoints that can connect to this
Share, if the CIM_ExportedFileShareSettings.AccessPoints property is set to 'Named Ports'. Each
entry specifies one or more access points by its Name, unique within the System hosting the FileShare.
The ids may be prefixed with '+' or '-'to indicate that access is to be granted or denied. 

If one of the entries is '+*', all access points supported by the service will be supported. If one of the
entries is '-*', all access points will be denied access, effectively overriding the value of the property
ExportedFileShareSetting.AccessPoints. The provider is expected to surface these access rights
(whether granted or denied) using the privilege model. Any AccessPoints granted access via this
parameter will also be associated to this share with SAPAvailableForElement. If the AccessPoint is not
already enabled it will appear in a disabled state. 

This property needs to be a string because the access point may not be known to the provider and
therefore a reference to the ServiceAccessPoint may not exist.), 

          ArrayType ( "Indexed" ), 

          ModelCorrespondence { CIM_ExportedFileShareSetting.AccessPoints" }]

      string AccessPointPorts[]);;

Error returns are:

{"Job Completed with No Error", "Not Supported",  "Unknown", "Timeout", "Failed", "Invalid Parameter",
"FileExportService Not Accessible", "Root is not accessible", "Base Directory element of Root is Not
Accessible", “Path does not specify a shareable element", "DMTF Reserved", “Method Parameters
Checked - Job Started", "Method Reserved", "Vendor Specific"}
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 885



 

8.2.8.7.5.1.2 ModifyExportedShare    
Start a Job to modify an Exported FileShare. This cannot be used to change the LogicalFile element
that has been exported.

If 0 is returned, the method completed successfully and no ConcreteJob instance was required. If
0x1000 is returned, a ConcreteJob has been started to modify the FileShare. The Job's reference will
be returned in the output parameter Job. If the Job succeeds, the FileShare will be modified and
configured and ready to be exported. If the FileShare has been configured to be exported at a later
time, its 'Enabled' attribute will be set to True when it is ready to be exported. The FileShare will have a
HostedShare association to the host ComputerSystem.

Goal is an embedded parameter of type ExportedFileShareSetting that allows the client to specify the
properties desired for the share.

If the method is successful, it will return a reference to the changed FileShare in the OUT parameter
TheShare.

The input TheShare shall not be NULL.),

ModifyExportedShare (

[OUT, IN (false), Description(Reference to the job (may be null if job completed).) ]

        CIM_ConcreteJob REF Job, 

[IN, Description (A reference indicating an element whose sub-element is being exported. The class
that Root references is a FileSystem, a FileShare that has a MountedElement association (or a derived
class of MountedElement) to a Directory, or a Directory that has a MountedElement association to a
FileShare or FileSystem. If the FileShare being modified is currently exported or imported, this
parameter should indicate the same Root FileSystem or FileShare element. 

If Root is NULL, it indicates no change to the current root.)]

      CIM_LogicalElement REF Root, 

[IN, Description (A string representing a path to the shared element from the Directory element
indicated by Root. If the FileShare being modified is currently exported or imported, this parameter
should specify the same shared element, even if via a different path. 

Multiple paths could lead to the same element but the access rights or other privileges could be specific
to the path. The client needs to specify the path during creation. 

If SharedElementPath is NULL, it indicates no change to the current path. If SharedElementPath is the
empty string, it indicates the element indicated by Root.)]

      string SharedElementPath, 

[IN, Description (The client-specified requirements for how the export settings for the specified
FileShare element are to be modified by the FileExportService. If the FileShare is currently imported
and not exported this will set up the necessary SharedElement, SharedElementRoot, HostedShare,
and other associations. Goal is an element of the CIM_ExportedFileShareSetting class, or a derived
class, encoded as a string-valued embedded object parameter. If NULL or the empty string, the existing
configuration shall include an ExportedFileShareSetting which will not be changed. Any differences in
property values will be merged by the FileExportService.), 

          EmbeddedInstance ( "CIM_ExportedFileShareSetting" )]

        string Goal,
886



 File Export Manipulation Subprofile
[OUT, IN, Description (As an OUT Parameter, if successful, this specifies the share. As an IN
Parameter, it specifies the share that is to be modified or whose settings are being queried.)]

        CIM_FileShare REF TheShare)

[IN, Description (An enumerated integer that specifies the action that the provider should take if the
FileShare is still in use when this request is made. The WaitTime parameter indicates the 'specified
time' used for this function. 

This option is only relevant if the FileShare needs to be made unavailable while the request is being
executed.), 

ValueMap { "2", "3", "4", "..", "0x1000..0xFFFF" }, 

Values { "Do Not Execute Request", "Wait for specified time, then Execute Request Immediately",
"Attempt Quiescence for specified time, then Execute Request Immediately", "DMTF Reserved",
"Vendor Defined" }]

      uint16 InUseOptions, 

[IN, Description (An integer that indicates the time (in seconds) that the provider needs to wait before
executing this request if it cannot be done while the FileShare is in use. If WaitTime is not zero, the
method will create a job, if supported by the provider, and return immediately. If the provider does not
support asynchronous jobs, there is a possibility that the client could time-out before the job is
completed. 

The combination of InUseOptions = '4' and WaitTime ='0' (the default) is interpreted as 'Wait (forever)
until Quiescence, then Execute Request' and will be performed asynchronously if possible.), 

          Units ( "seconds" )]

      uint32 WaitTime, 

[IN, Description (A reference to a concrete derived class of CIM_Identity that indicates the user id to
use for default access to this share. A NULL value indicates that any existing user id is not changed.
The provider is expected to surface this access using the privilege model. This method does not
support disabling the currently specified default user id, which needs to be done using the privilege
model.)]

      CIM_Identity REF DefaultUserId, 

[IN, Description (An array of strings that specify additional hosts that have root access to this Share, if
the CIM_ExportedFileShareSetting.RootAccess property is set to 'Allow Root Access'. Each entry
specifies a host by a vendor-specific host-id, prefixed with '+' or '-' to indicate that access is either
Granted or Denied. The name of the host is its Durable Name, which is expected to be a fully-qualified-
domain-name or its IP Address. If one of the entries is '+*', root access will be allowed from all hosts. If
one of the entries is '-*', root access will be denied to all hosts, effectively overriding the value of the
property CIM_ExportedFileShareSetting.RootAccess. If this is a null entry, the currently configured set
of hosts will not be changed. If this is an empty array, the currently configured set of hosts will be
cleared. The provider is expected to surface this access using the privilege model. 

This property needs to be a string because the remote host may not be known to the provider and
therefore a REF to the host may not exist.), 

          ArrayType ( "Indexed" ), 

          ModelCorrespondence { "CIM_ExportedFileShareSetting.RootAccess" }]

      string RootAccessHosts[], 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 887



 

[IN, Description (An array of strings that specify additional ServiceAccessPoints that can connect to this
Share, if the CIM_ExportedFileShareSettings.AccessPoints property is set to 'Named Ports'. Each
entry specifies one or more access points by its Name, unique within the System hosting the FileShare.
The ids may be prefixed with '+' or '-'to indicate that access is to be granted or denied. 

If one of the entries is '+*', all access points supported by the service will be supported. If one of the
entries is '-*', all access points will be denied access, effectively overriding the value of the property
ExportedFileShareSetting.AccessPoints. If this is a null entry, the currently configured set of access
points will not be changed. If this is an empty array, the currently configured set of access points will be
cleared. The provider is expected to surface these access rights (whether granted or denied) using the
privilege model. Any AccessPoints granted access via this parameter will also be associated to this
share with SAPAvailableForElement. If the AccessPoint is not already enabled it will appear in a
disabled state. 

This property needs to be a string because the access point may not be known to the provider and
therefore a REF to the ServiceAccessPoint may not exist.), 

          ArrayType ( "Indexed" ), 

          ModelCorrespondence { "CIM_ExportedFileShareSetting.AccessPoints" }]

      string AccessPointPorts[]);

Error returns are:

{"Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"FileExportService Not Accessible", "Root is not accessible", "Base Directory element of Root is Not
Accessible", "Path does not specify a shareable element", "Share in use and cannot be Modified,
Failed", "DMTF Reserved", "Method Parameters Checked - Job Started", "Method Reserved", "Vendor
Specific"}]

8.2.8.7.5.1.3 ReleaseExportedShare
Start a Job to release a share exposed by a file system.

If 0 is returned, the method completed successfully and no ConcreteJob instance was required. If
0x1000 is returned, a ConcreteJob will be started to create the service. The Job's reference will be
returned in the OUT parameter Job.

If the method is successful, the FileShare element will have been deleted along with all associated
references. The element will not be exported anymore through this FileShare. If InUseOptions are
specified, this method will succeed only if no more clients are accessing the share.

ReleaseExportedShare (

[OUT, IN (false), Description (Reference to the job (may be null if job completed).)]

        CIM_ConcreteJob REF Job, 

[IN, Description ("The shared element.")]

        CIM_FileShare REF TheShare,

[IN, Description (An enumerated integer that specifies the action that the provider should take if the
FileShare is still in use when this request is made. The WaitTime parameter indicates the 'specified
time' used for this function. 

This option is only relevant if the FileShare needs to be made unavailable while the request is being
executed.), 
888



 File Export Manipulation Subprofile
ValueMap { "2", "3", "4", "..", "0x1000..0xFFFF" }, 

Values { "Do Not Execute Request", "Wait for specified time, then Release Immediately", "Attempt
Quiescence for specified time, then Release Immediately", "DMTF Reserved", "Vendor Defined"}]

    uint16 InUseOptions[]

[IN, Description ("An integer that indicates the time (in seconds) that the provider needs to wait before
releasing this FileShare. If WaitTime is not zero, the method will create a job, if supported by the
provider, and return immediately. If the provider does not support asynchronous jobs, there is a
possibility that the client could time-out before the job is completed. 

The combination of InUseOptions = '4' and WaitTime ='0' (the default) is interpreted as 'Wait (forever)
until Quiescence, then Release' and will be performed asynchronously if possible.), 

          Units ( "seconds" )]

    uint32 WaitSeconds[]

Error returns are:

{"Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Share in use, Failed",  "DMTF Reserved", "Method Parameters Checked - Job Started", "Method
Reserved", "Vendor Specific"}

8.2.8.7.5.1.4 CreateGoal
This method is on the ExportedFileShareCapabilities and starts a job to create a
ExportedFileShareSetting from a ExportedFileShareSetting provided by the caller. If the operation
completes successfully and did not require a long-running ConcreteJob, it will return 0. If 4096/0x1000
is returned, a ConcreteJob will be started to create the element. A Reference to the ConcreteJob will be
returned in the output parameter Job.

If the input TemplateGoal is NULL, this method returns a copy of the ExportedFileShareSetting
identified by the DefaultCapability association.

The output is returned as the SupportedGoal parameter. Both TemplateGoal and SupportedGoal are
embedded objects and are provided by the client.   

CreateGoal(

[OUT, IN (false), Description (Reference to the job (may be null if job completed).) ]

        CIM_ConcreteJob REF Job,

[IN, EmbeddedInstance(“CIM_ExportedFileShareSetting”), Description (A
CIM_ExportedFileShareSetting element that is used as the goal element to be used for matching.") ]

        string TemplateGoal,

[OUT, IN(false), EmbeddedInstance("CIM_ExportedFileShareSetting"), Description (A
CIM_ExportedFileShareSetting element that is returned as the best supported match to the
TemplateGoal.") ]

        string SupportedGoal);

Error returns are:

{"Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Template Goal cannot be matched.", "DMTF Reserved", "Method Parameters Checked - Job Started",
"Method Reserved", "Vendor Specific"}]
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 889



 

8.2.8.7.5.2 Intrinsic Methods of the Profile
None.

8.2.8.7.6 Client Considerations and Recipes
In the NAS recipes, the following subroutines are used (and provided here as forward declarations):

sub GetFSSetting(IN REF CIM_FileSystem $fs,

                 OUT CIM_FileSystemSettingData $setting);

sub GetFSServer(IN REF CIM_FileSystem $fs,

                 OUT CIM_ComputerSystem $system);

sub GetFSCapabilityFromServer(IN REF CIM_System $server, 

                              OUT CIM_FileSystemConfigurationServiceCapabilities 
$capability,

                              OUT CIM_FileSystemConfigurationService 
$fsconfigurator,

                              IN Optional String $filesystemtype = "",

                              IN Optional String $otherpropertyname = NULL,

                              IN Optional String $otherpropertyvalue = NULL);

sub GetFSCapabilityFromFileSystem(IN REF CIM_FileSystem $fs, 

                   OUT CIM_FileSystemConfigurationServiceCapabilities $capability,

                   OUT CIM_FileSystemConfigurationService $fsconfigurator);

sub GetExportServiceAndCapabilities(IN REF CIM_FileSystem $fs,

                                    IN String $sharetype,

                                    OUT CIM_FileExportService $feservice,

                                    OUT CIM_ExportedFileShareCapabilities 
$efscapability);

Conventions used in the NAS recipes: 

•  When there is expected to be only one association of interest, the first item in the array returned
by the Associators( ) call is used without further validation. Real code will need to be more robust.

• We use Values and Valuemap members as equivalent. In real code, client-side magic is required
to convert the integer representation into the string form given in the MOF.

•  It was requested that we use LogicalDisk--a subclass of StorageExtent--instead of StorageExtent
itself in these recipes, for reasons that have nothing to do with the recipes themselves (the extra
properties in LogicalDisk are not used herein). You should be able to simply use StorageExtent in
your code.

8.2.8.7.6.1 Creation of a FileShare for Export
//

// Create an NFS or CIFS FileSystemShare

//

sub CreateFileSystemShare(IN String $sharetype,        // CIFS, NFS, etc.
890



 File Export Manipulation Subprofile
                          IN CIM_FileSystem $fs,       // the filesystem

                          IN String $fspath,           // subpath in the filesystem, 
or ““

                          IN String[] $propnames,      // names of desired properties

                          IN String[] $propvals,       // values of desired 
properties

                          OUT CIM_FileShare $fssh,

                          OUT CIM_Job $job)

{

    //

    // Get the service and capabilities

    //

    &GetExportServiceAndCapabilities($fs, $sharetype, $feservice, $efscapability);

    // 

    // Call ExportedFileShareCapabilities.CreateGoal(nullTemplate, Goal) to get a 

    // seed goal for ExportedFileShareSetting 

    //

 $efscapability.CreateGoal(NULL, $goal);

    // 

    // Inspect Goal and modify properties as desired.

    //

    #i = 0;

    while ($propnames->[#i] != NULL) {

        $goal.$propnames->[#i] = $propvals->[#i];

        #i++;

    }

    //

    // Call ExportedFileShareCapabilities.CreateGoal(Goal-N’, Goal-N) to get the 

    // next goal for ExportedFileShareSetting -- iterate until satisfied or give up 

    // (beware infinite loops).

    //

    // NOTE: this sample code gives up if anything doesn’t work

//

    $efscapability.CreateGoal($goal, $settings);

    #i = 0;

    while ($propnames->[#i] != NULL) {

        if ($goal.$propnames->[#i] != $propvals->[#i]) {

            //

            // give up

            //

            return NULL;

        }

        #i++;

    }
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 891



 

    //

    // Note, the FileSystem in $fs has a name ElementRoot that identifies 

    // the FileSystem within the ComputerSystem that is the Filer.

    // 

    // Call FileExportService.CreateExportedShare(job, ElementRoot, SubElement,

    // Goal, sharename)

    //

    $feservice.CreateExportedShare($job, $fs.ElementRoot, $fspath, 

                                   $settings, $fssh);

    return TRUE;

} 

8.2.8.7.6.2 Modification of an Exported FileShare 
//

// Modify a FileSystemShare

//

sub ModifyFileSystemShare(IN CIM_FileSystemShare $fssh,

                          IN String $propnames[],

                          IN String $propvals[],

                          OUT CIM_Job $job)

{

    //

    // Get a client-side copy of the ExportedFileShareSetting associated with the

    // ExportedFileShare (via ElementSettingData association) using GetInstance

    // 

    $settings = Associators($fssh,

                           “CIM_ElementSettingData”,

                           “CIM_ExportedFileShareSetting”,

                           “ManagedElement”,

                           “SettingData”)->[0];

    #i = 0;

    while ($settings->[#i] != NULL) {

        if ($settings->[#i].IsCurrent) {

            $setting = GetInstance($settings->[#i].Name);

            break;

        }

    }

    // 

    // Modify the copied ExportedFileShareSetting to the new desired properties

    //

    #i = 0;

    while ($propnames->[#i] != NULL) {

        $setting.$propnames->[#i] = $propvals->[#i];

    }
892



 File Export Manipulation Subprofile
    //

    // Get the sharetype from the FileSystemShare

    //

    $sharetype = $settings.FileSharingProtocol;

    //

    // Get the service and capabilities

    //

    &GetExportServiceAndCapabilities($fs, $sharetype, $feservice, $efscapability);

    //

    // Call ExportedFileShareCapabilities.CreateGoal(Goal-N’, Goal-N) to get the 
next 

    // goal for ExportedFileShareSetting -- iterate until satisfied or give up 
(beware 

    // infinite loops) 

    // 

    // Note: this code just gives up if it doesn’t get what it wants

    //

    $efscapability.CreateGoal($goal, $settings);

    #i = 0;

    while ($propnames->[#i] != NULL) {

        if ($goal.$propnames->[#i] != $propvals->[#i]) {

            //

            // give up

            //

            return NULL;

        }

        #i++;

    }

    // 

    // Call FileExportService.ModifyExportedFileShare(job, Goal, Share)

    // 

    $feservice.ModifyExportedFileShare($job, $goal, $fssh);

    return TRUE;

}

8.2.8.7.6.3 Removal of an Exported FileShare
//

// UnExport an ExportedFileShare

//

  

//

// Before calling, decide whether to force connections closed, 

// set a uint16 “force” parameter to 0 or 1 accordingly, and
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 893



 

// set the waittime parameter to the desired number of seconds

// to wait before forcibly disconnecting the share (5 minutes

// is standard).

//

sub UnExportFileSystemShare(IN CIM_FileSystemShare $fssh,

                            IN uint16 $force,

                            IN uint32 $waittime,

                            IN String $notification,

                            OUT CIM_Job $job);

{

    // 

    // If waittime > 0, set force to 2 to disambiguate a force with no wait

    // and a force with wait -- see the specification of ReleaseExportedShare.

    //

    if ($force > 0 && $waittime > 0) {

        $force = 2;

    }

    //

    // clients of the share may have registered for an indication 

    // when a share is disconnected

    //

    <send indication -- see indications recipes>

    //

    // Get the service and capabilities

    //

    &GetExportServiceAndCapabilities($fs, $sharetype, $feservice, $efscapability);

    //

    // Call ReleaseExportedShare()

    // This tells the managed device to wait for an amount of time specified by 

    // $waittime if there are any clients still connected.

    //

    $feservice.ReleaseExportedShare($job, $fssh, $force, $waittime);

    return TRUE;

}

8.2.8.7.6.4 Get a FileExportService and ExportedFileShareCapabilities from a Filesystem
//

//  Get a FileExportService and ExportedFileShareCapabilities from a Filesystem

//

sub GetExportServiceAndCapabilities(IN REF CIM_FileSystem $fs,

                                    IN String $sharetype,

                                    OUT CIM_FileExportService $feservice,

                                    OUT ExportFileShareCapabilities $efscapability)
894



 File Export Manipulation Subprofile
{

    // 

    // Get a FileExportService via the HostedService association to the Filer 

    // ComputerSystem

    //

    &GetFSServer($fs, $system);

    $feservices->[] = Associators($system,

                                   “CIM_HostedService”,

                                   “CIM_FileExportService”,

                                   “Antecedent”,

                                   “Dependent”);

    #i = 0;

    while ($feservices[#i] != NULL) {

        // 

        // Get an ExportedFileShareCapabilities from the FileExportService via the 

        // ElementCapabilities association to the ComputerSystem (it’s indexed by 

        // NFS/CIFS/other sharing service and possibly other properties)    

        // Note: NFS and CIFS are two instances of the same service type with 
different

    // capabilities

    //

        $efscapabilities = Associators($feservices[#i],

                                 “CIM_ElementCapabilities”

                                 “CIM_ExportedFileShareCapabilities”,

                                 “ManagedElement”,

                                 “Capabilities”)->[0];

            #j = 0;

            while ($efscapabilities->[#j] != NULL) {

                if ($efscapabilities->[#j].FileSharingProtocol == $sharetype) {

                    $efscapability = $efscapabilities->[#j];

                    $feservice = $feservices->[#i];

                    break;

                }

            }

            #j++;

        }

        #i++;

    }

    if (#efscapability == NULL) {

        <indicate error>

        return NULL;

    }

}

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 895



 

8.2.8.7.6.5 File Export Manipulation Supported Capabilities Patterns
Table 962, “SMI-S File Export Supported Capabilities Patterns” lists the capabilities patterns that are
formally recognized by this version of SMI-S for determining capabilities of various implementations:

Note: Asterisk (*) means any state is valid.

8.2.8.7.7 Registered Name and Version
File Export Manipulation version 1.1.0

8.2.8.7.8 CIM Server Requirements

Table 962: SMI-S File Export Supported Capabilities Patterns

SupportedExports SynchronousExportMethods AsynchronousExportMethods InitialExportState
NFS, CIFS Export Creation, Export Modifi-

cation, Export Deletion
Null *

NFS, CIFS Null Export Creation, Export Modifica-
tion, Export Deletion

*

NFS, CIFS Null Null Null

Table 963: CIM Server Requirements for File Export Manipulation

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No
896



 File Export Manipulation Subprofile
8.2.8.7.9 CIM Elements

Table 964: CIM Elements for File Export Manipulation

Element Name Description
Mandatory Classes

CIM_ElementCapabilities (8.2.8.7.9.1) In this subprofile, associates the File Export Service to 
the capabilities that it supports. 

CIM_ElementCapabilities (8.2.8.7.9.2) In this subprofile, associates the FileExportService to its 
ExportedFileShareCapabilities.

CIM_ElementSettingData (8.2.8.7.9.3) Associates a configuration setting to the configured ele-
ment. It is used in this subprofile with FileShare and 
ExportedFileShareSetting elements.

CIM_ExportedFileShareCapabilities (8.2.8.7.9.4) This element represents the Capabilities of the File 
Export Service for managing FileShares. The Service 
can be associated with multiple Capabilities that are 
keyed by the FileSharingProtocol property.

CIM_ExportedFileShareSetting (8.2.8.7.9.5) This element represents pre-defined configuration set-
tings of a File Share supported by a FileExportService. 
A ExportedFileShareSetting element specifies a single 
FileSharingProtocol which is a weak key with respect to 
the File Export Service. 

CIM_ExportedFileShareSetting (8.2.8.7.9.6) This element represents the client defined configuration 
settings of a File Share intended for Export. It is created 
as a result of a CreateExportedShare extrinsic. 

CIM_FileExportCapabilities (8.2.8.7.9.7) This element represents the management Capabilities 
of the File Export Service. 

CIM_FileExportService (8.2.8.7.9.8) The File Export Service provides the methods to create 
and export file elements as shares. 

CIM_FileShare (8.2.8.7.9.9) Represents the sharing characteristics of a particular 
file element.

CIM_HostedService (8.2.8.7.9.10) In this subprofile, associates the File Export Service to 
the hosting Computer System.

CIM_HostedShare (8.2.8.7.9.11) Represents that a FileShare element (sharing a Logical-
File or Directory) is hosted by a Computer System.

CIM_LogicalFile (8.2.8.7.9.12) A LogicalFile (or Directory subclass) is available for 
export via a fileshare hosted on a ComputerSystem.

CIM_ServiceAffectsElement (8.2.8.7.9.13) Associates the File Export Service to the elements that 
the service affects (such as a FileShare configured for 
exporting a LogicalFile).

CIM_SettingAssociatedToCapabilities (8.2.8.7.9.14) Represents the association between a ExportedFile-
ShareCapabilities and a supported ExportedFileShare-
Setting element.

CIM_SharedElement (8.2.8.7.9.15) In this subprofile, represents the identity association 
between an exporting FileShare element and the actual 
shared LogicalFile or Directory. The implication is that 
these are the same element even though represented 
by two SMIS objects.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 897



 

8.2.8.7.9.1 CIM_ElementCapabilities
In this subprofile, associates the File Export Service to the capabilities that it supports. 
Created By : Static
Modified By : Static
Deleted By : Static

CIM_SharedElementRoot (8.2.8.7.9.16) In this subprofile, represents the association between 
an exporting FileShare element and a directory or file in 
the file namespace of the hosting ComputerSystem on 
which the LocalFileSystem containing the shared Logi-
calFile or Directory element is mounted.

Mandatory Indications
SELECT *     FROM CIM_InstCreation     WHERE Sour-
ceInstance ISA CIM_SharedElement     AND SourceIn-
stance.SameElement ISA CIM_FileShare

CQL - Creation of an exported file share.

SELECT *     FROM CIM_InstDeletion     WHERE Sour-
ceInstance ISA CIM_SharedElement     AND SourceIn-
stance.CIM_SharedElement::SameElement ISA 
CIM_FileShare

CQL - Deletion of an exported file share.

SELECT *     FROM CIM_InstModification     WHERE 
SourceInstance ISA CIM_FileShare     AND SourceIn-
stance.CIM_FileShare::OperationalStatus[*] <>             
PreviousInstance.CIM_FileShare::OperationalStatus[*]

CQL - Change of state of a FileShare. 
PreviousInstance is optional, but may be supplied by an 
implementation of the subprofile.

Optional Indications
SELECT SourceInstance.* SourceInstance.SameEle-
ment.* SourceInstance.SystemElement.*     FROM 
CIM_InstCreation     WHERE SourceInstance ISA 
CIM_SharedElement     AND SourceIn-
stance.CIM_SharedElement::SameElement ISA 
CIM_FileShare

CQL - Creation of an exported file share.

SELECT OBJECTPATH(IC.SourceInstance)AS Share-
Path,  IC.InstnaceID, IC.SharingDirectory,    
LF.FSName, LF.Name    FROM CIM_InstCreation IC, 
CIM_SharedElement SE, CIM_LogicalFile LF    
WHERE SourceInstance ISA CIM_FileShare    AND 
OBJECTPATH(LF) = A.SystemElement    AND 
OBJECTPATH(IC.SourceInstance) = A.SameElement

CQL - Creation of an exported file share. 
This indication returns properties of the FileShare and 
the name of the FS and the name of the Directory it is 
defined on.

SELECT SourceInstance.* SourceInstance.SameEle-
ment.* SourceInstance.SystemElement.*     FROM 
CIM_InstDeletion     WHERE SourceInstance ISA 
CIM_SharedElement     AND SourceIn-
stance.CIM_SharedElement::SameElement ISA 
CIM_FileShare

CQL - Deletion of an exported file share.

SELECT OBJECTPATH(SourceInstance)AS SharePath    
FROM CIM_InstDeletion     WHERE SourceInstance 
ISA CIM_FileShare

CQL - Deletion of an exported file share.

Table 964: CIM Elements for File Export Manipulation

Element Name Description
898



 File Export Manipulation Subprofile
Class Mandatory: true

8.2.8.7.9.2 CIM_ElementCapabilities
In this subprofile, associates the FileExportService to its ExportedFileShareCapabilities.
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.7.9.3 CIM_ElementSettingData
Associates a configuration setting to the configured element. It is used in this subprofile with FileShare and Export-
edFileShareSetting elements.
Created By : Extrinsic(s): CreateExportedShare
Modified By : Static
Deleted By : Extrinsic(s): ReleaseExportedShare
Class Mandatory: true

8.2.8.7.9.4 CIM_ExportedFileShareCapabilities
This element represents the Capabilities of the File Export Service for managing FileShares. The Service can be 
associated with multiple Capabilities that are keyed by the FileSharingProtocol property.
Created By : Static
Modified By : Static
Deleted By : Static

Table 965: SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileExportCapabili-
ties)

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The FileExportService.
Capabilities CIM_Capabilities The FileExportCapabilities.

Table 966: SMI Referenced Properties/Methods for CIM_ElementCapabilities (ExportedFileShare-
Capabilities)

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The FileExportService.
Capabilities CIM_Capabilities The ExportedFileShareCapabilities.

Table 967: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The FileShare used for exporting an 
element.

SettingData CIM_SettingData The current configuration of the File-
Share.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 899



 

Class Mandatory: true

8.2.8.7.9.5 CIM_ExportedFileShareSetting
This element represents pre-defined configuration settings of a File Share supported by a FileExportService. A 
ExportedFileShareSetting element specifies a single FileSharingProtocol which is a weak key with respect to the 
File Export Service. 
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

Table 968: SMI Referenced Properties/Methods for CIM_ExportedFileShareCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string An opaque, unique id for a capability of 
a File Export Service

ElementName string A provider supplied user-Friendly 
Name for this Capabilities element.

FileSharingProtocol uint16 This identifies the single file sharing 
protocol (e.g., NFS or CIFS) that this 
Capabilities represents. This is a weak 
key with respect to the FileExportSer-
vice. 

ProtocolVersions string[] An array listing the versions of the pro-
tocol specified by the FileSharingProto-
col property. 

SupportedProperties uint16[] This is the list of configuration proper-
ties (of ExportedFileShareSetting) that 
are supported for specification at cre-
ation time by this Capabilities element. 

CreateGoal() This extrinsic method supports the cre-
ation of a ExportedFileShareSetting 
that is a supported variant of a Export-
edFileShareSetting passed in as an 
embedded IN parameter. The method 
returns the supported ExportedFile-
ShareSetting as an embedded OUT 
parameter. 

Table 969: SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Sample on 
Capabilities)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string An opaque, unique id for an exported 
or owned FileShare Setting. 

ElementName string A provider supplied user-Friendly 
Name for this Setting element. 
900



 File Export Manipulation Subprofile
FileSharingProtocol uint16 This, together with ProtocolVersions, 
identifies the protocol for file-sharing 
that is supported by the Computer Sys-
tem. 

ProtocolVersions string[] This, together with FileSharingProtocol, 
identifies the version of the protocol for 
file-sharing that is supported by the 
Computer System. 

Optional Properties/Methods
InitialEnabledState uint16 This indicates the enabled/disabled 

states initially set for a created file 
share element. 

OtherEnabledState string A vendor-specific description of the ini-
tial enabled state of a created fileshare 
if InitialEnabledState=1("Other"). 

DefaultReadWrite uint16 Indicates the default privileges that are 
supported for read and write authoriza-
tion to the newly created fileshare. The 
resulting access privileges will be sur-
faced using the CIM_Privilege model 
when that is supported by SMI-S. 

DefaultExecute uint16 Indicates the default privileges that are 
supported for execute authorization to 
the newly created fileshare. The result-
ing access privileges will be surfaced 
using the CIM_Privilege model when 
that is supported by SMI-S. 

ExecuteSupport uint16 Indicates if the sharing mechanism pro-
vides specialized support for executing 
an element shared through this file-
share (for instance, does it provide 
paging support for text pages). 

DefaultUserIdSupported uint16 Indicates whether the FileShare will 
use a default user id to control access 
to the share if the id of the importing cli-
ent is not provided. The resulting 
access privileges will be surfaced using 
the CIM_Privilege model when that is 
supported by SMI-S. 

RootAccess uint16 Indicates whether the FileShare will 
support default access privileges to 
administrative users from specific hosts 
specified at creation time. The resulting 
access privileges will be surfaced using 
the CIM Privilege model when that is 
supported by SMI-S. 

Table 969: SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Sample on 
Capabilities)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 901



 

8.2.8.7.9.6 CIM_ExportedFileShareSetting
This element represents the client defined configuration settings of a File Share intended for Export. It is created as 
a result of a CreateExportedShare extrinsic. 
Created By : Extrinsic(s): CreateExportedShare
Modified By : Extrinsic(s): ModifyExportedShare
Deleted By : Extrinsic(s): ReleaseExportedShare
Class Mandatory: true

WritePolicy uint16 Indicates whether writes to the shared 
element will be handled synchronously 
or asynchronously by default. This pol-
icy may be overridden or surfaced 
using the CIM Policy model when that 
is supported by SMI-S. 

AccessPoints uint16 Specifies the service access points that 
are available to this FileShare by 
default (to be used by clients for con-
nections). These default access points 
can always be overridden by the privi-
leges explicitly defined by a supported 
authorization mechanism(s). Any Ser-
viceAccessPoints that actually connect 
to this share will be associated to it by 
CIM_SAPAvailableForElement. The 
resulting access privileges will be sur-
faced using the CIM_Privilege model 
when that is supported by SMI-S. 

Table 970: SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (On FileShare)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string An opaque, unique id for an exported 
or owned FileShare Setting. 

ElementName string A client defined user-Friendly Name for 
this Setting element. 

FileSharingProtocol uint16 This, together with ProtocolVersions, 
identifies the protocol for file-sharing 
that is supported by the Computer Sys-
tem. 

ProtocolVersions string[] This, together with FileSharingProtocol, 
identifies the version of the protocol for 
file-sharing that is supported by the 
Computer System. 

Optional Properties/Methods
InitialEnabledState uint16 This indicates the enabled/disabled 

states initially set for a created file 
share element. 

Table 969: SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Sample on 
Capabilities)

Property Flags Type Description & Notes
902



 File Export Manipulation Subprofile
OtherEnabledState string A vendor-specific description of the ini-
tial enabled state of a created fileshare 
if InitialEnabledState=1("Other"). 

DefaultReadWrite uint16 Indicates the default privileges that are 
supported for read and write authoriza-
tion to the newly created fileshare. The 
resulting access privileges will be sur-
faced using the CIM_Privilege model 
when that is supported by SMI-S. 

DefaultExecute uint16 Indicates the default privileges that are 
supported for execute authorization to 
the newly created fileshare. The result-
ing access privileges will be surfaced 
using the CIM_Privilege model when 
that is supported by SMI-S. 

ExecuteSupport uint16 Indicates if the sharing mechanism pro-
vides specialized support for executing 
an element shared through this file-
share (for instance, does it provide 
paging support for text pages). 

DefaultUserIdSupported uint16 Indicates whether the FileShare will 
use a default user id to control access 
to the share if the id of the importing cli-
ent is not provided. The resulting 
access privileges will be surfaced using 
the CIM_Privilege model when that is 
supported by SMI-S. 

RootAccess uint16 Indicates whether the FileShare will 
support default access privileges to 
administrative users from specific hosts 
specified at creation time. The resulting 
access privileges will be surfaced using 
the CIM Privilege model when that is 
supported by SMI-S. 

WritePolicy uint16 Indicates whether writes to the shared 
element will be handled synchronously 
or asynchronously by default. This pol-
icy may be overridden or surfaced 
using the CIM Policy model when that 
is supported by SMI-S. 

Table 970: SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (On FileShare)

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 903



 

8.2.8.7.9.7 CIM_FileExportCapabilities
This element represents the management Capabilities of the File Export Service. 
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

AccessPoints uint16 Specifies the service access points that 
are available to this FileShare by 
default (to be used by clients for con-
nections). These default access points 
can always be overridden by the privi-
leges explicitly defined by a supported 
authorization mechanism(s).Any Ser-
viceAccessPoints that actually connect 
to this share will be associated to it by 
CIM_SAPAvailableForElement. The 
resulting access privileges will be sur-
faced using the CIM_Privilege model 
when that is supported by SMI-S. 

Table 971: SMI Referenced Properties/Methods for CIM_FileExportCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string An opaque, unique id for the capabili-
ties of a File Export Service. 

ElementName string A provider supplied user-Friendly 
Name for this Capabilities element.

FileSharingProtocol uint16[] The Service can be associated with 
multiple ExportedFileShareCapabilities 
that are keyed by the FileSharingProto-
col property -- the Configuration capa-
bilities lists all of the supported 
protocols in this FileSharingProtocol 
array. Duplicate entries are permitted 
because the corresponding entry in the 
ProtocolVersions array property indi-
cates the supported version of the pro-
tocol. 

ProtocolVersions string[] An array listing the versions of the pro-
tocol specified in the corresponding 
entry of the FileSharingProtocol array 
property. 

SupportedSynchronousMethods N uint16[] The Service supports a number of 
extrinsic methods -- this property identi-
fies the ones that can be called syn-
chronously. A supported method shall 
be listed in this property or in the Sup-
portedAsynchronousMethods property.

Table 970: SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (On FileShare)

Property Flags Type Description & Notes
904



 File Export Manipulation Subprofile
8.2.8.7.9.8 CIM_FileExportService
The File Export Service provides the methods to create and export file elements as shares. 
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.7.9.9 CIM_FileShare
Represents the sharing characteristics of a particular file element.
Created By : Extrinsic(s): CreateExportedShare
Modified By : Extrinsic(s): ModifyExportedShare
Deleted By : Extrinsic(s): ReleaseExportedShare

SupportedAsynchronousMethods N uint16[] The Service supports a number of 
extrinsic methods -- this property identi-
fies the ones that can be called asyn-
chronously. Note: A supported method 
shall be listed in this property or in the 
SupportedSynchronousMethods prop-
erty.

Optional Properties/Methods
InitialEnabledState uint16 This represents the state of initialization 

of a FileShare on initial creation. 

Table 972: SMI Referenced Properties/Methods for CIM_FileExportService

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementName string A provider supplied user-friendly name 
for this Service.

SystemCreationClassName string The CIM Class name of the Computer 
System hosting the Service.

SystemName string The name of the Computer System 
hosting the Service.

CreationClassName string The CIM Class name of the Service.
Name string The unique name of the Service.
CreateExportedShare() Create a FileShare element configured 

for exporting a file or directory as a 
share. 

ModifyExportedShare() Modify the configuration of a FileShare 
element setup to export a file or direc-
tory as a share. 

ReleaseExportedShare() Delete the FileShare element that is 
exporting a file or directory as a share, 
thus releasing that element. 

Table 971: SMI Referenced Properties/Methods for CIM_FileExportCapabilities

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 905



 

Class Mandatory: true

8.2.8.7.9.10 CIM_HostedService
In this subprofile, associates the File Export Service to the hosting Computer System.
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.7.9.11 CIM_HostedShare
Represents that a FileShare element (sharing a LogicalFile or Directory) is hosted by a Computer System.
Created By : Extrinsic(s): CreateExportedShare
Modified By : Static
Deleted By : Extrinsic(s): ReleaseExportedShare
Class Mandatory: true

8.2.8.7.9.12 CIM_LogicalFile
A LogicalFile (or Directory subclass) is available for export via a fileshare hosted on a ComputerSystem.
Created By : Extrinsic(s): CreateExportedShare
Modified By : External
Deleted By : Extrinsic(s): ReleaseExportedShare

Table 973: SMI Referenced Properties/Methods for CIM_FileShare

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string A unique id for the FileShare element.
SharingDirectory boolean Indicates if the shared element is a file 

or a directory. This is useful when 
importing but less so when exporting.

Table 974: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The hosting Computer System.
Dependent CIM_Service The FileExportService.

Table 975: SMI Referenced Properties/Methods for CIM_HostedShare

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_Share The FileShare that is hosted by a Com-
puter System

Antecedent CIM_System The Computer System that hosts a 
FileShare.
906



 File Export Manipulation Subprofile
Class Mandatory: true

8.2.8.7.9.13 CIM_ServiceAffectsElement
Associates the File Export Service to the elements that the service affects (such as a FileShare configured for 
exporting a LogicalFile).
Created By : Extrinsic(s): CreateExportedShare
Modified By : Static
Deleted By : Extrinsic(s): ReleaseExportedShare
Class Mandatory: true

8.2.8.7.9.14 CIM_SettingAssociatedToCapabilities
Represents the association between a ExportedFileShareCapabilities and a supported ExportedFileShareSetting 
element.
Created By : Static
Modified By : Static
Deleted By : Static

Table 976: SMI Referenced Properties/Methods for CIM_LogicalFile

Property Flags Type Description & Notes
Mandatory Properties/Methods

CSCreationClassName string CIM Class of the Computer System 
that hosts the Filesystem of this File.

CSName string  Name of the Computer System that 
hosts the Filesystem of this File.

FSCreationClassName string CIM Class of the LocalFileSystem on 
the Computer System that contains this 
File.

FSName string Name of the LocalFileSystem on the 
Computer System that contains this 
File.

CreationClassName string CIM Class of this instance of Logical-
File.

Name string Name of this LogicalFile.

Table 977: SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

AffectedElement CIM_ManagedElement The FileShare.
AffectingElement CIM_Service The File Export Service.
ElementEffects uint16[] In the context of this subprofile, the 

possible element effects are either 
Exclusive use or Element Integrity. We 
allow Other to support vendor exten-
sions.

OtherElementEffectsDescriptions string[] A description of other element effects 
that this association might be exposing.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 907



 

Class Mandatory: true

8.2.8.7.9.15 CIM_SharedElement
In this subprofile, represents the identity association between an exporting FileShare element and the actual 
shared LogicalFile or Directory. The implication is that these are the same element even though represented by 
two SMIS objects.
Created By : Extrinsic(s): CreateExportedShare
Modified By : Static
Deleted By : Extrinsic(s): ReleaseExportedShare
Class Mandatory: true

8.2.8.7.9.16 CIM_SharedElementRoot
In this subprofile, represents the association between an exporting FileShare element and a directory or file in the 
file namespace of the hosting ComputerSystem on which the LocalFileSystem containing the shared LogicalFile or 
Directory element is mounted.
Created By : Extrinsic(s): CreateExportedShare
Modified By : Static
Deleted By : Extrinsic(s): ReleaseExportedShare
Class Mandatory: true

Table 978: SMI Referenced Properties/Methods for CIM_SettingAssociatedToCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Capabilities The ExportedFileShareCapabilities ele-
ment.

Dependent CIM_SettingData The ExportedFileShareSetting ele-
ment.

Table 979: SMI Referenced Properties/Methods for CIM_SharedElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemElement CIM_LogicalElement The LogicalFile or Directory element 
that is being shared.

SameElement CIM_Share The exported FileShare that represents 
the element being shared.

Table 980: SMI Referenced Properties/Methods for CIM_SharedElementRoot

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_Share The FileShare that represents the ele-
ment being exported.

Antecedent CIM_LogicalElement The element that indicates the mount-
point of the FileSystem containing the 
shared LogicalFile or Directory.
908



 File Export Manipulation Subprofile
8.2.8.7.10 Related Standards

EXPERIMENTAL

Table 981: Related Standards for File Export Manipulation

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 909



 

910



 Pool Management Policy Subprofile 
8.2.8.8 Pool Management Policy Subprofile 

8.2.8.8.1 Description
The Pool Management Policy subprofile would be deployed by any Array Profile implementation that
provides Policy management capability. The Profile that supports the Pool Management Policy
subprofile may be referred to as a “Policy based” implementation. The Pool Management Policy
implementation may support the Rules, Conditions and Actions via static instances of the same. For
more information refer to 6.4, "Policy".

The idea of the Pool Management Policy Subprofile is to support the automated filling of a pool that is
nearing exhaustion. This eases the administrative burden of pool management and provides pools
space when more volumes are required. This policy could also be combined with other policies that
create or expand volumes based on filesystem free space, add extents to the primordial pool, etc.

The basic idea is to draw space from the primordial pool into a concrete pool whenever the concrete
pool is in danger of being exhausted. Normally, the volume allocation would fail, then the administrator
would need to add more space to the concrete pool via a manual set of operations. This policy
eliminates that step and simplifies administration as a result.

8.2.8.8.1.1 Instance Diagrams
Support for the Pool Management Policy subprofile entails support for a single QueryCondition, single
MethodAction and a single PolicyRule.

A client (Policy Client) would be able to enumerate these single instances if they are static, and create
them if dynamic support is provided. Additionally, the client will create and instance of
PolicySetAppliesToElement for each pool that this policy applies to. The Policy then takes over and
makes sure that the designated pools always have sufficient free space.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 911



 

The basic constructs used by the Pool Management Policy Subprofile are illustrated in Figure 138:
"Basic Pool Management Instance Diagram" 

The Managed Element in this case is the concrete StoragePool that is desired to be managed.

8.2.8.8.1.2 Query Condition
The QueryCondition Query string that defines the conditions under which to add space to the concrete
pool is shown below:

/*

Pool Exhausted Policy Condition

Preexisting conditions

- 25% of the size of the found concrete Pool remains

   in associated primordial Pool

- The policy set exists and is enabled

Figure 138: Basic Pool Management Instance Diagram

MethodAction

ElementName
CommonName
PolicyKeywords[]
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyActionName
DoActionLogging
Query
QueryLanguage

PolicyRule

ElementName
CommonName
PolicyKeywords[]
PolicyDecisionStrategy
Enabled
SystemCreationClassName
SystemName
CreationClassName
PolicyRuleName
ConditionListType
RuleUsage
SequencedActions
ExecutionStrategy

QueryCondition

ElementName
CommonName
PolicyKeywords[]
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyConditionName
Query
QueryLanguage
Trigger

PolicyConditionInPolicyRule PolicyActionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem
912



 Pool Management Policy Subprofile 
- There is at least one concrete Pool associated to the PolicySet

*/

// Continuously evaluated QueryCondition that 'triggers' policy

select 

OBJECTPATH(primordial) AS POBJ, 

OBJECTPATH(concrete) AS COBJ, 

OBJECTPATH(service) AS SOBJ,

concrete.TotalManagedSpace * .25 AS AmountToIncrease

from 

CIM_PolicyAppliesToElement applies,

CIM_StoragePool concrete,

CIM_StoragePool primordial.

CIM_AllocatedFromStoragePool alloc,

CIM_PolicySet policy,

CIM_HostedService hosted, 

CIM_HostedStoragePool hostedpool,

CIM_ComputerSystem, system,

CIM_StorageConfigurationService service

where (concrete.RemainingManagedSpace/p.TotalManagedSpace * 100) < 75

    and concrete.Primordial = false 

// Join Primordial Pool with Concrete Pools

    and OBJECTPATH(primordial) = alloc.Antecedent

    and OBJECTPATH(concrete) = alloc.Dependent

// Determine what concrete Pools the PolicySet applies to

    and policy.CommonName = "Pool Exhausting Policy Condition"

    and OBJECTPATH(policy) = element.PolicySet

    and OBJECTPATH(concrete) = element.ManagedElement

// Join found primordial Pool with Service

    and OBJECTPATH(primoridal) = hostedpool.PartComponent

    and OBJECTPATH(system) = hostedpool.GroupComponent

    and OBJECTPATH(system) = hosted.Antecedent

    and OBJECTPATH(service) = hosted.Dependent

    and service ISA "CIM_StorageConfigurationService"

8.2.8.8.1.3 Method Action
The MethodAction that invokes the StorageConfigurationService to add more space is shown below:

// Method Action

select

SOBJ, // Service object path

'CreateOrModifyStoragePool', 

NULL, // ElementName parameter

NULL, // Goal parameter, take default Setting

AmountToIncrease, // Size parameter

POBJ, // InPools parameter

NULL, // InExtents parameter

COBJ // Pool parameter

from 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 913



 

CIM_QueryCondition condition,

CIM_QueryResult result,

CIM_PolicySet policy,

CIM_PolicyConditionInPolicyRule inpolicyset

where policy.CommonName = "Pool Exhausting Policy Condition"

    and OBJECTPATH(policy) = inpolicyset.GroupComponent

    and OBJECTPATH(condition) = inpolicyset.PartComponent

    and CLASSNAME(result) = QueryResult.QueryResultSubclassName

8.2.8.8.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.8.8.3 Cascading Considerations
Not defined in this standard.

8.2.8.8.4 Supported Subprofiles and Packages
Table 982, “Pool Management Policy Subprofiles” list the subprofiles available to this subprofile.

8.2.8.8.5 Methods of the Profile

8.2.8.8.5.1 Extrinsic Methods of the Profile
None.

8.2.8.8.5.2 Intrinsic Methods of the Profile
Table 983, “Static Policy Instance Methods” identifies how Policy constructs get created, deleted or
modified. Any class not listed is assumed to be pre-existing (e.g., canned) or manipulated through
another profile or subprofile.

Table 984, “Instance Methods of Dynamic Rules and Static Conditions and Actions” identifies how
Policy constructs get created, deleted or modified. Any class not listed is assumed to be pre-existing
(e.g., canned) or manipulated through another profile or subprofile.

Table 982: Pool Management Policy Subprofiles

Dependency Name Type Mandatory Notes
Policy Subprofile subprofile Yes

Table 983: Static Policy Instance Methods

Method Created Instances Deleted Instances Modified Instances
CreateInstance PolicySetAppliesToElement N/A N/A
DeleteInstance N/A PolicySetAppliesToElement N/A
SetProperty N/A N/A PolicyRule (Enabled)
914



 Pool Management Policy Subprofile 
Table 985, “Dynamic Policy Instance Methods” identifies how Policy constructs get created, deleted or
modified. Any class not listed is assumed to be pre-existing (e.g., canned) or manipulated through
another profile or subprofile.

Table 984: Instance Methods of Dynamic Rules and Static Conditions and Actions

Method Created Instances Deleted Instances Modified Instances
CreateInstance PolicyRule N/A N/A
CreateInstance PolicyConditionInPolicyRule N/A N/A
CreateInstance PolicyActionInPolicyRule N/A N/A
DeleteInstance N/A PolicyRule N/A
DeleteInstance N/A PolicyConditionInPolicyRule N/A
DeleteInstance N/A PolicyActionInPolicyRule N/A
SetProperty N/A N/A PolicyRule (Enabled)
SetProperty N/A N/A QueryCondition (Trigger)

Table 985: Dynamic Policy Instance Methods

Method Created Instances Deleted Instances Modified Instances
CreateInstance PolicyRule N/A N/A
CreateInstance QueryCondition N/A N/A
CreateInstance PolicyConditionInPolicyRule N/A N/A
CreateInstance PolicyConditionIn

PolicyCondition
N/A N/A

CreateInstance ReusablePolicyComponent N/A N/A
ReusablePolicyContainer N/A N/A

CreateInstance MethodAction N/A N/A
CreateInstance PolicyActionInPolicyRule N/A N/A
CreateInstance PolicyActionInPolicyAction N/A N/A
DeleteInstance N/A PolicyRule N/A
DeleteInstance N/A QueryCondition N/A
DeleteInstance N/A MethodAction N/A
DeleteInstance N/A PolicyConditionIn

PolicyRule
N/A

DeleteInstance N/A PolicyActionInPolicyRule N/A
DeleteInstance N/A PolicyConditionIn

PolicyCondition
N/A

DeleteInstance N/A ReusablePolicyComponent N/A
DeleteInstance N/A ReusablePolicyContainer N/A
DeleteInstance N/A PolicyActionInPolicyAction N/A
SetProperty N/A N/A PolicyRule (Enabled)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 915



 

8.2.8.8.6 Client Considerations and Recipes
See 6.4.5, "Policy Recipes" for usage of PolicySetAppliesToElement.

8.2.8.8.7 Required CIM Elements

SetProperty N/A N/A QueryCondition (Trigger)
ModifyInstance N/A N/A QueryCondition
ModifyInstance N/A N/A MethodAction
ModifyInstance N/A N/A PolicyConditionIn

PolicyCondition
ModifyInstance N/A N/A PolicyActionIn

PolicyAction

Table 986: Required CIM Elements

Profile 
Classes & Associations

Notes

MethodAction Defines a Method to be executed as part of a PolicyRule
MethodActionResult
PolicyActionInPolicyRule Associates a MethodAction to the PolicyRules that it is part of.
PolicyCapabilities (EXPERIMENTAL) Defines the capabilities of the Policy Subprofile.
PolicyConditionInPolicyRule Associates a QueryCondition to the PolicyRules that it is part of.
PolicyRule Defines a PolicyRule that is either a Template (with Static Conditions 

or Actions) or a PolicyRule to be effected.
PolicyRuleInSystem Associates PolicyRules to the System that hosts them.
PolicySetAppliesToElement An association that may be referenced in QueryConditions or Meth-

odActions to constrain the application of a PolicyRule.  It associates 
the PolicyRule to ManagedElements.

QueryCapabilities Defines the Query execution capabilities of the Profile or CIMOM.
QueryCondition A Query that is used as a condition of a PolicyRule.  A QueryCondi-

tion where Trigger=TRUE serves as an indication to drive evaluation 
of other QueryConditions in the PolicyRule.

QueryConditionResult (QueryResult)
QueryResult
Profile Indications

Table 987: Instance Creation, Deletion or Modification for Pool Management Policy Subprofile 
Classes 

Class / Association Creation Deletion Modification
CompoundPolicyAction 
CompoundPolicyCondition 

Table 985: Dynamic Policy Instance Methods (Continued)

Method Created Instances Deleted Instances Modified Instances
916



 Pool Management Policy Subprofile 
8.2.8.8.8 Classes Used in the Profile
The flags columns of the tables below employ the values detailed in Table 988, “Valid Flag Values”:

8.2.8.8.8.1 MethodAction Class
MethodAction is a PolicyAction that invokes an action defined by a query. The action is defined by a
method of an ObjectName, which may be an intrinsic method of a CIM Namespace or an extrinsic
method of a CIM_ManagedElement in this case, the Method invoked is. The input parameters to the
method are defined by the query and may be fixed values defined by literals or may be defined by
reference to one or more properties of QueryConditionResult, MethodActionResult, or other instances.

MethodAction PROVIDER SUP-
PLIED or CreateIn-
stance

N/A or
DeleteInstance

N/A

MethodActionResult
PolicyCapabilities (EXPERIMENTAL) PROVIDER SUP-

PLIED
N/A N/A

PolicyCondition (Policy)
PolicyRule (PolicySet)
PolicyRuleInSystem 
(PolicySetInSystem)
PolicySetAppliesToElement CreateInstance DeleteInstance or deletion 

of either end
N/A

PolicyTrigger
QueryCapabilities PROVIDER SUP-

PLIED
N/A N/A

QueryCondition (PolicyCondition)
QueryResult

Table 988: Valid Flag Values

Flag Long Name Meaning
R Required Property is mandatory
C Correlatable An ID (often derived from hardware) that can be correlated between soft-

ware components
D Durable An ID that tends to not change
F Format A property that describes the format of another property, the referenced 

property should be mentioned in Notes
M Modifiable The property can be modified by ModifyInstance
N Null Okay Client may set this property to null

Table 987: Instance Creation, Deletion or Modification for Pool Management Policy Subprofile 
Classes 

Class / Association Creation Deletion Modification
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 917



 

C
P
S

S

P

P  

C

P
D
Q

Q

MethodAction is subclassed from PolicyAction. Its properties are summarized in Table 989, “Properties
for MethodAction”.

Created by: A MethodAction can be “Static” (predefined by the provider) 

Deleted by: “Static” MethodActions shall not be deleted. However, client defined MethodActions may
be deleted using the DeleteInstace intrinsic method.

Modified by: “Static” MethodActions shall not be modified. However, client defined MethodActions may
be modified.

ConditionalRequirements: none

8.2.8.8.8.2 MethodActionResult Class
MethodActionResult is an InstCIMMethodCall class used to communicate the results of one execution
of a method invoked by evaluation of the Query in the referenced MethodAction. MethodActionResult
instances are dynamically instantiated and have a lifecycle that begins and ends in the context of a
single PolicyRule evaluation. The explicit property MethodActionPath identifies the specific
MethodAction instance that produced this result.

MethodActionResult is subclassed from InstCIMMethodCall.

Created by: This is created as a side effect of invocation of a MethodAction.

Deleted by: This is implicitly deleted after execution of a PolicyRule.

Modified by: N/A

Table 989: Properties for MethodAction

Property Type Flags Description / Notes
ommonName string User-friendly name of policy object
olicyKeywords[] string FCAPS strings
ystemCreationClassName string R The name of the class or the subclass used in the creation 

of the System object in whose scope this PolicyAction is 
defined.

ystemName string R The name of the System object in whose scope this Policy-
Action is defined.

olicyRuleCreationClassName string R For a rule-specific PolicyAction, the CreationClassName of 
the PolicyRule object with which this Action is associated. 
For a reusable PolicyAction, a special value, 'NO RULE', 
should be used.

olicyRuleName string R For a rule-specific PolicyAction, the name of the PolicyRule
object with which this Action is associated. For a reusable 
PolicyAction, a special value, 'NO RULE', should be used.

reationClassName string R The name of the class or the subclass used in the creation 
of an instance.

olicyActionName string R A user-friendly name of this policy (method) action
oActionLogging Boolean
uery string R The query that defines the method and the input parame-

ters to that method. See 8.2.8.8.1.2 for the actual query 
string text.

ueryLanguage Uint16 R This defines the query language being used and shall be 
set to « 2 » (CQL).
918



 Pool Management Policy Subprofile 

I

C

I
S

M
M

R

P

M

Conditional Requirements: none

This shall be supported for all Policy Subprofile implementations, except for Policy Subprofiles that only
support “type 1” Static Policy Rules.

8.2.8.8.8.3 PolicyActionInPolicyRule Class
A PolicyRule aggregates zero or more instances of the PolicyAction class, via the
PolicyActionInPolicyRule association. A Rule that aggregates zero Actions is not valid--it may, however,
be in the process of being entered into a PolicyRepository or being defined for a System. Alternately,
the actions of the policy may be explicit in the definition of the PolicyRule. Note that a PolicyRule should
have no effect until it is valid. 

The Actions associated with a PolicyRule may be given a required order, a recommended order, or no
order at all. For Actions represented as separate objects, the PolicyActionInPolicyRule aggregation can
be used to express an order. 

This aggregation does not indicate whether a specified action order is required, recommended, or of no
significance; the property SequencedActions in the aggregating instance of PolicyRule provides this
indication.

PolicyActionInPolicyRule is subclassed from PolicyActionStructure.Its properties are summarized in
Table 991, “Properties for PolicyActionInPolicyRule”.

Created by: PolicyAction can be "Static" (predefined by the provider).

Deleted by: “Static” PolicyActions shall not be deleted.

Modified by: “Static” PoilicyActions shall not be modified.

Table 990: Properties for MethodActionResult

Property Type Flags Description / Notes
ndicationIdentifier string An identifier for the Indication. This property is similar to a key value 

in that it can be used for identification,
orrelatedIndications[] string A list of IndicationIdentifiers whose notifications are correlated with 

(related to) this one.
ndicationTime datetime The time and date of creation of the Method call.
ourceInstance string R A copy of the instance that changed to generate the Indication. 

SourceInstance contains the current values of the properties 
selected by the MethodAction.

ethodName string R The name of the method invoked.
ethodParameters string The parameters of the method, formatted as an EmbeddedObject 

(with a predefined class name of \"__MethodParameters\".
eturnValue string When PreCall is FALSE, ReturnValue contains a string representa-

tion of the method's return value.
reCall Boolean R Boolean indicating whether the Indication is sent before the method 

begins executing (TRUE) or when the method completes (FALSE).
ethodActionPath string R This shall be a fully qualified, WBEM URI Mapping Specification-

based Instance Path to the MethodAction instance that produced 
this result.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 919



 

Conditional Requirements: none

EXPERIMENTAL

8.2.8.8.8.4 PolicyCapabilities Class  
PolicyCapabilities specifies the various aspects of the Policy implementation of the Subprofile.
PolicyCapabilities are scoped by the Profile or subprofile. If the PolicyCapabilities are scoped to the
Profile, then the capabilities would apply to all subprofiles. If the PolicyCapabilities are scoped to a
subprofile, then the capabilities would apply to the Subprofile (and override capabilities specified at the
Profile level).

PolicyCapabilities are subclassed from Capabilities.Its properties are summarized in Table 992,
“Properties for PolicyCapabilities”.

Created by: This is implicitly created by the provider. 

Deleted by: They are never deleted. 

Modified by: They are never modified. 

Conditional Requirements: none

For the Pool Management Policy Subprofile, there shall be at least one PolicyCapabilities for at least
one Profile or Subprofile that supports the Policy Subprofile. That is, if the Profile and no subprofile is
covered by the Policy Subprofile, then the Policy Subprofile shall not be identified as a
RegisteredSubprofileForProfile.

EXPERIMENTAL

Table 991: Properties for PolicyActionInPolicyRule

Property Type Flags Description / Notes
ActionOrder Uint16 ActionOrder is an unsigned integer 'n' that indicates the relative posi-

tion of a PolicyAction in the sequence of actions associated with a 
PolicyRule or CompoundPolicyAction.

GroupComponent REF R This property represents the PolicyRule that contains one or more 
PolicyActions.

PartComponent REF R This property holds the name of a PolicyAction contained by one or 
more PolicyRules.

Table 992: Properties for PolicyCapabilities

Property Type Flags Description / Notes
InstanceID String R
ElementName String R
PolicyLevelsSupported[] string R Values {}
CQLLevelsSupported[] string R Values {}
FCAPSSupported[] string R Values {}
SynchronousMethodsSupported[] string R Values { “” }
AsynchronousMethodsSupported[] string R Values { “” }
920



 Pool Management Policy Subprofile 

E
C
P

8.2.8.8.8.5 PolicyConditionInPolicyRule Class
A PolicyRule aggregates zero or more instances of the PolicyCondition class, via the
PolicyConditionInPolicyRule association. A Rule that aggregates zero Conditions is not valid; it may,
however, be in the process of being defined. Note that a PolicyRule should have no effect until it is
valid.

PolicyConditionInPolicyRule is subclassed from PolicyConditionStructure. Its properties are
summarized in Table 993, “Properties for PolicyConditionInPolicyRule”.

Created by: PolicyAction can be "Static" (predefined by the provider).

Deleted by: "Static" PolicyActions shall not be deleted.

Modified by: “Static” PolicyActions shall not be modified.

Conditional Requirements: none

8.2.8.8.8.6 PolicyRule Class
PolicyRule is subclassed from PolicySet. It is The central class used for representing the 'If Condition
then Action' semantics of a policy rule. Its properties are summarized in Table 995, “Properties for
PolicyRuleInSystem”.

Created by: implicitly by provider. 

Deleted by: intrinsic DeleteInstance and/or implicitly. Indicate whether locking is needed.

Modified by: intrinsic SetInstance and/or implicitly. Indicate whether locking is needed.

Conditional Requirements: none

Table 993: Properties for PolicyConditionInPolicyRule

Property Type Flags Description / Notes
GroupNumber Uint16 Unsigned integer indicating the group to which the contained 

PolicyCondition belongs. This integer segments the Conditions 
into the ANDed sets (when the ConditionListType is \"DNF\") or, 
similarly, into the ORed sets (when the ConditionListType is 
\"CNF\”).

ConditionNegated Boolean Indication of whether the contained PolicyCondition is negated. 
TRUE indicates that the PolicyCondition IS negated, FALSE 
indicates that it IS not negated.

GroupComponent REF R This property represents the PolicyRule that contains one or 
more PolicyConditions.

PartComponent REF R This property holds the name of a PolicyCondition contained by 
one or more PolicyRules.

Table 994: Properties for PolicyRule

Property Type Flags Description / Notes
lementName string Another user-friendly name
ommonName string User-friendly name of policy object
olicyKeywords[] string FCAPS strings
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 921



 

P

E

S
S
C

P
C

R

S

 

olicyDecisionStrategy uint16 PolicyDecisionStrategy defines the evaluation method used for 
policies contained in the PolicySet. FirstMatching enforces the 
actions of the first rule that evaluates to TRUE. It is the only 
value currently defined. 
Values { "First Matching" }

nabled uint16 R Indicates whether this PolicySet is administratively enabled, 
administratively disabled, or enabled for debug. The \"Enabled-
ForDebug\" property value is deprecated and, when it or any 
value not understood by the receiver is specified, the receiving 
enforcement point treats the PolicySet as \"Disabled\". To deter-
mine if a PolicySet is \"Enabled\", the containment hierarchy 
specified by the PolicySetComponent aggregation is examined 
and the Enabled property values of the hierarchy are ANDed 
together. Thus, for example, everything aggregated by a Policy-
Group may be disabled by setting the Enabled property in the 
PolicyGroup instance to \"Disabled\" without changing the 
Enabled property values of any of the aggregated instances. 
The default value is 1 (\"Enabled\").
Values { "Enabled", "Disabled", "Enabled For Debug" }

ystemCreationClassName string R The scoping System's CreationClassName.
ystemName string R The scoping System's Name.
reationClassName string R CreationClassName indicates the name of the class or the sub-

class used in the creation of an instance.
olicyRuleName string R A user-friendly name of this PolicyRule.
onditionListType uint16 Indicates whether the list of PolicyConditions associated with 

this PolicyRule is in disjunctive normal form (DNF), conjunctive 
normal form (CNF), or has no conditions (i.e., is an Uncondition-
alRule) and is automatically evaluated to \"True.\" 
The default value is 1 (\"DNF\").
Values { "Unconditional Rule", "DNF", "CNF" }

uleUsage string A free-form string that can be used to provide guidelines on how 
this PolicyRule should be used.

equencedActions uint16 This property gives a policy administrator a way of specifying 
how the ordering of the PolicyActions associated with this Poli-
cyRule is to be interpreted. Three values are supported: 
- mandatory(1): Do the actions in the indicated order, or don't do
them at all. 
- recommended(2): Do the actions in the indicated order if you 
can, but if you can't do them in this order, do them in another 
order if you can. 
- dontCare(3): Do them -- I don't care about the order. 
The default value is 3 (\"DontCare\").
Values { "Mandatory", "Recommended", "Dont Care" }

Table 994: Properties for PolicyRule

Property Type Flags Description / Notes
922



 Pool Management Policy Subprofile 

E
 

P

A
D

8.2.8.8.8.7 PolicyRuleInSystem Class
An association that links a PolicyRule to the System in whose scope the Rule is defined. It represents a
relationship between a System and a PolicyRule used in the administrative scope of that system (e.g.,
AdminDomain, ComputerSystem). The Priority property is used to assign a relative priority to a
PolicyRule within the administrative scope in contexts where it is not a component of another PolicySet.

PolicyRuleInSystem is subclassed from PolicySetInSystem.

Created by: implicitly by provider. Indicate whether locking is needed.

Deleted by: intrinsic DeleteInstance and/or implicitly. Indicate whether locking is needed.

Modified by: intrinsic SetInstance and/or implicitly. Indicate whether locking is needed.

Conditional Requirements: none

8.2.8.8.8.8 PolicySetAppliesToElement Class
PolicySetAppliesToElement makes explicit which PolicySets (i.e., policy rules and groups of rules) are
currently applied to a particular Element. This association indicates that the PolicySets that are
appropriate for a ManagedElement (specified using the PolicyRoleCollection aggregation) have
actually been deployed in the policy management infrastructure. One or more QueryCondition or
MethodAction instances may reference the PolicySetAppliesToElement association as part of its query.
PolicySetAppliesToElement shall not be used if the associated PolicySet, (collectively though its rules,
conditions, and actions), does not make use of the association. Note that if the named Element refers to
a Collection, then the PolicySet is assumed to be applied to all the members of the Collection. 

For the Pool Management Policy subprofile, PolicySetAppliesToElement shall point to a valid concrete
StoragePool.

xecutionStrategy uint16 ExecutionStrategy defines the strategy to be used in executing 
the sequenced actions aggregated by this PolicyRule. There are
three execution strategies:
Do Until Success - execute actions according to predefined 
order, until successful execution of a single action. 
Do All - execute ALL actions which are part of the modeled set, 
according to their predefined order. Continue doing this, even if 
one or more of the actions fails. 
Do Until Failure - execute actions according to predefined order, 
until the first failure in execution of an action instance.
Values { "Do Until Success", "Do All", "Do Until Failure" }

Table 995: Properties for PolicyRuleInSystem

Property Type Flags Description / Notes
riority Uint16 The Priority property is used to specify the relative priority of the ref-

erenced PolicySet (PolicyRule) when there are more than one Poli-
cySet instances applied to a managed resource that are not 
PolicySetComponents and, therefore, have no other relative priority 
defined. The priority is a non-negative integer; a larger value indi-
cates a higher priority.

ntecedent REF R The System in whose scope a PolicyRule is defined.
ependent REF R A PolicyRule named within the scope of a System.

Table 994: Properties for PolicyRule

Property Type Flags Description / Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 923



 

P

M

E
C
P
S

S

P

P

 

PolicySetAppliesToElement is not subclassed from anything.

Created by: The CreateInstance intrinsic method.

Deleted by: The DeleteInstance intrinsic method (or implicitly on the deletion of either end of the
association).

Modified by: N/A

Conditional Requirements: none

8.2.8.8.8.9 QueryCondition Class
QueryCondition defines the criteria for generating a set of QueryConditionResult instances that result
from the contained query. 

QueryCondition is subclassed from PolicyCondition.

Created by: implicitly by provider. Indicate whether locking is needed.

Deleted by: intrinsic DeleteInstance and/or implicitly. Indicate whether locking is needed.

Modified by: intrinsic SetInstance and/or implicitly. Indicate whether locking is needed.

Conditional Requirements: none

Table 996: Properties for PolicySetAppliesToElement

Property Type Flags Description / Notes
olicySet REF R The PolicyRules and/or groups of rules that are currently applied to 

an Element.
anagedElement REF R The concrete StoragePool to which the PolicySet applies.

Table 997:  Properties for QueryCondition

Property Type Flags Description / Notes
lementName string Another user-friendly name 
ommonName string User-friendly name of policy object 
olicyKeywords[] string FCAPS strings
ystemCreationClassName String R The name of the class or the subclass used in the creation of 

the System object in whose scope this PolicyCondition is 
defined.

ystemName String R The name of the System object in whose scope this Policy-
Condition is defined.

olicyRuleCreationClassName String R For a rule-specific PolicyCondition, the CreationClassName 
of the PolicyRule object with which this Condition is associ-
ated. For a reusable Policy Condition, a special value, 'NO 
RULE', should be used to indicate that this Condition is reus-
able and not associated with a single PolicyRule.

olicyRuleName String R For a rule-specific PolicyCondition, the name of the Poli-
cyRule object with which this Condition is associated. For a 
reusable PolicyCondition, a special value, 'NO RULE', should
be used to indicate that this Condition is reusable and not 
associated with a single PolicyRule.
924



 Pool Management Policy Subprofile 

C

P
Q

Q

T

 

I

C

I
S

 

8.2.8.8.8.10 QueryConditionResult Class
QueryConditionResult is a QueryResult class used to communicate the results of evaluation of the
query specified in the referenced QueryCondition. 

QueryConditionResult is subclassed from QueryResult.

Created by: This is created as a side effect of evaluation of a QueryCondition.

Deleted by: This is implicitly deleted after execution of a PolicyRule.

Modified by: N/A.

Conditional Requirements: none.

This shall be supported for all Policy Subprofile implementations, except for Policy Subprofiles that only
support “type 1” Static Policy Rules.

reationClassName String R CreationClassName indicates the name of the class or the 
subclass used in the creation of an instance.

olicyConditionName String R A user-friendly name of this PolicyCondition.
uery String R A query expression that defines the condition(s) under which 

QueryConditionResult instances will be generated. For the 
EXACT query string that shall be supported see the above 
QueryCondition section.

ueryLanguage Uint16 R The language in which the query is expressed.  SMI-S only 
recognizes “CQL”.   Other query languages may be encoded 
for vendor specific support, but only CQL is supported for 
SMI-S interoperability.
Values {"CQL", "DMTF Reserved", "Vendor Reserved"}

rigger Boolean R If Trigger = true, and with the exception of any PolicyTimePe-
riodConditions, PolicyConditions of this PolicyRule are not 
evaluated until this 'triggering' condition query is true. There 
shall be no more than one QueryCondition with Trigger = true
associated with a particular PolicyRule.

Table 998: Properties for QueryConditionResult

Property Type Flags Description / Notes
ndicationIdentifier string An identifier for the Indication. This property is similar to a key value 

in that it can be used for identification,
orrelatedIndications[] string A list of IndicationIdentifiers whose notifications are correlated with 

(related to) this one.
ndicationTime datetime The time and date of creation of the Method call.
electCriteria string The output of one row of a Query, formatted as an EmbeddedObject 

(with a predefined class name of \"CIM_QueryResultInstance\".  The
embedded properties contained in this property shall match in both 
name and type to a corresponding select-list entry in the select-crite-
ria portion of the Query.

Table 997:  Properties for QueryCondition

Property Type Flags Description / Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 925



 

Q

8.2.8.8.9 Dependencies on Other Standards

8.2.8.8.9.1 CIM Server Requirements
Functional Profiles

Extrinsic Methods
None.

Discovery
As a subprofile, the Pool Management Policy subprofile is not be advertised via SLP. It would, however,
be identified as a RegisteredSubprofile for any advertised Profile that supports any Policy based
function. 

ueryConditionPath string R This shall be a fully qualified, WBEM URI Mapping Specification-
based Object Name to the QueryCondition instance that produced 
this result.

Table 999: Pool Management Policy Profile Subprofile Standards Dependencies

Standard Version Organization
CIM Specification 2.2 DMTF
CIM Operations over HTTP 1.1 DMTF
CIM Query Specification 1.0 DMTF
CIM Schema 2.9 DMTF

Table 1000: Pool Management Policy Subprofile Functional Profile Requirements

Profile Required Functional Group Dependency
YES Basic Read None
YES Basic Write Basic Read
YES Instance Manipulation Basic Write
NO Schema Manipulation Instance Manipulation
YES Association Traversal Basic Read
Limited Query Execution Basic Read
NO Qualifier Declaration Schema Manipulation
YES Indication None

Table 998: Properties for QueryConditionResult

Property Type Flags Description / Notes
926



 Resource Ownership Subprofile
8.2.8.9 Resource Ownership Subprofile

8.2.8.9.1 Description

The Block Services Resource Ownership common subprofile3 models control over the rights of a client
to grant or deny access to block storage resources. By asserting exclusive control over these rights,
one client can control which other clients may access those resources. This subprofile is intended for
environments in which multiple CIM clients may not be completely aware of each other's activities,
making it important that use of the resource not be disrupted by a client that is unaware of shared
resource use. Specific examples include use of a volume by in-band virtualizers and NAS gateways,
where attempts to manage the volume by clients not associated with this use could be seriously
disruptive. An intended configuration is that a CIM client exists in the cascading device that has
exclusive use of the volume. The Resource Ownership subprofile is optional.

This profile concerns itself with the existence and use of two sets of rights which may be realized as two
Privilege instances that are associated via ConcreteDependency to a PrivilegeManagementService.

Figure 139: Resource Ownership for Block Services

3.The CIM Resource Ownership subprofile was formerly known as Ownership. It has been renamed to avoid confu-
sion with the notion of file owner commonly found in filesystems.

Privilege

ElementName = Manage StorageVolume
RepresentsAuthorizationRights = TrueConcreteDependency

SystemDevice

HostedCollection

ConcreteDependency

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

System

1

HostedService **
*

Subprofile: Security RBAC
Subprofile: Security ResourceOwnership

Subprofile: BlockServices ResourceOwnership

Registered Profile

ReferencedProfile

RegisteredSubProfile

RegisteredName = “BlockServices ResourceOwnership”*

*RegisteredSubProfile

RegisteredName = “Security ResourceOwnership”

ReferencedProfile

*

RegisteredSubProfile

RegisteredName = “Security RBAC”
*

*

*

Bold: Required

StorageVolume

StoragePool

1

HostedStoragePool

Subject: Identity
InstanceID: string
CurrentlyAuthenticated: boolean

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromStorageP
ool()
DeleteStoragePool()
ReturnToStoragePool()
CreateOrModifyElementFromElement()

ControllerConfigurationService

AttachDevice()
DetachDevice()
ExposePaths()
HidePaths()

1

HostedService

*

HostedService* *

Privilege

ElementName = Manage Storage
RepresentsAuthorizationRights = True

ElementConformsToProfile

ReferencedProfile
*

*

StorageExtentConcreteComponent

*
*

*

*
RedundancySet

*

*

*

*

SystemDevice

IdentityContext *

*

*

1
*

PrivilegePropagationRule

 ElementName = "SNIA_BSResourceOwnership"

PolicyRuleInSystem

PolicySetAppliesToElement

PolicySetAppliesToElement

*

ConcreteIdentity

*

Registered Profile

RegisteredName = “Security”
SubProfileRequiresProfile

1..*
*

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 927



 

There is one Privilege to "Manage StorageVolume" and a superset of that to "Manage Storage". Each is
described in Table 1001, “Block Service Management Rights”.

This profile assumes that the intrinsic CreateInstance and DeleteInstance methods are not supported
for either StorageVolumes or StoragePools.

With RepresentsAuthorizationRights set to True, the ChangeAccess call may be used to assign
"Manage StorageVolume" rights to a StorageVolume for a particular set of subjects, each represented
by an Identity. Once this assignment is made, only members of that set of subjects are permitted to
assign “Manage StorageVolume” rights to other subjects, (regardless of the setting of
RepresentsAuthorizationRights.   The ShowAccess call may be used to list the rights granted to a
particular subject Identity and target StorageVolume or StoragePool. 

To establish an “Owner” in the sense meant by this profile, only one subject is assigned the "Manage
StorageVolume" privilege with RepresentsAuthorizationRights set both to True and False. 

Table 1001: Block Service Management Rights

ElementName Property Index Value

Manage StorageVolume Activities 0 Execute
QualifiersFormats 0 <class>.method
ActivityQualifiers 0 StorageConfigurationService.

    ReturnToStoragePool
StorageConfigurationService.
    CreateorModifyElementfromElements
StorageConfigurationService.AttachDevice,
StorageConfigurationService.DetachDevice,
StorageConfigurationService.ExposePaths,
StorageConfigurationService.HidePaths,
PrivilegeManagementService.AssignAccess,
PrivilegeManagementService.ChangeAccess,
ModifyInstance,
SetProperty

Manage Storage Activities 0 Execute
QualifiersFormats 0 <class>.method
ActivityQualifiers 0 StorageConfigurationService.

                      CreateOrModifyStoragePool,
StorageConfigurationService.
                      CreateOrModifyElementFromStoragePool,
StorageConfigurationService.
                      DeleteStoragePool,
StorageConfigurationService.
    ReturnToStoragePool,
StorageConfigurationService.
    CreateorModifyElementfromElements,
ControllerConfigurationService.AttachDevice, 
ControllerConfigurationService.DetachDevice,
ControllerConfigurationService.ExposePaths,
ControllerConfigurationService.HidePaths,
PrivilegeManagementService.AssignAccess,
PrivilegeManagementService.ChangeAccess,
ModifyInstance,
SetProperty
928



 Resource Ownership Subprofile
The same strategy is used to assign "Manage Storage" rights to a StoragePool.

Even though the SMI-S 1.1 ExposePaths and HidePaths extrinsics act on StorageVolumes by the LUID
string parameter rather than a reference, nevertheless they are governed by authorization rights.

This profile requires that every StorageVolume allocated from a StoragePool that is governed by
"Manage Storage" rights be assigned the corresponding "Manage StorageVolume" rights to the same
subject. This is an implicit PrivilegePropagationRule, which need not be made explicit to be in affect.
Whenever ChangeAccess, or other means, is used to modify the “Manage StorageVolume” rights of a
particular subject to a StoragePool, those rights are propagated for that subject to all StorageVolumes
that have an AllocatedFromStoragePool association to that StoragePool. 

If an explicit PrivilegePropagationRule is used, it shall have ElementName set to
“SNIA_BSResourceOwnership”. 

Optionally, a QueryCondition, (not shown), may be associated to that PrivilegePropagationRule via
PolicyConditionInPolicyRule, (not shown), if specified the QueryCondition instance shall have its
QueryLanguage property set to “2”, meaning “CQL”, its QueryResultName set to
“SNIA_BSResourceOwnershipCondition” and its Query property set to 

“SELECT (M.SourceInstanceHost || '/' ||  M.SourceInstanceModelPath) AS PMSPath, 
M.MethodParameters.Subject,
M.MethodParameters.Target,
FROM CIM_InstMethodCall M,
WHERE M.MethodName = 'ChangeAccess'
AND       M.ReturnValue = 0
AND       M.PreCall = FALSE
AND       M.MethodParameters.Target ISA CIM_StoragePool
AND       ANY P IN M.MethodParameters.Privileges[*]
              SATISFIES (P.ElementName = 'ManageStorage')

Additionally, if this optional QueryCondition is associated then a corresponding MethodAction instance,
(not shown), shall also be associated to the same PrivilegePropagationRule via
PolicyActionInPolicyRule, (not shown). The MehtodAction instance shall have its QueryLanguage
property set to “2”, meaning “CQL”, its InstMethodCallName set to
“SNIA_BSResourceOwnershipAction” and its Query property set to 

“SELECT (BS.PMSPath || '.' ||  'ChangeAccess') AS MethodName,
BS.Subject AS Subject,
ObjectPath(SV) AS Target,
NULL AS PropagationPolicies,
BS.Privileges AS Privileges
FROM SNIA_BSResourceOwnershipCondition BS,
            CIM_AllocatedFromStoragePool AFSP,
            CIM_StorageVolume SV,
            CIM_Privilege P
WHERE ObjectPath(SV) = AFSP.Dependent
AND       BS.Target = AFSP.Antecedent
AND       P.ElementName = 'Manage StorageVolume'

If AuthorizedSubject/AuthorizedTarget associations are implemented, then these need to be created as
appropriate to reflect the assigned rights. In any case, a client may use ShowAccess to determine what
privileges are in force for particular subject Identity, StorageVolume or StoragePool. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 929



 

If the ChangeAccess request to establish ownership is not permitted, then the return status shall be
CIM_ERR_ACCESS_DENIED. This result may be because the requestor is not permitted to make the
call, or the requestor does not have sufficient rights to modify ownership of the target.

Some vendors may define additional vendor-specific extrinsic operations that need to be restricted in
order to realize the functionality of Resource Ownership. Execution of each such vendor-specific
extrinsics shall be added to the above list of restricted activities. Clients may check for the presence of
at least the above list of restricted activities, but shall not check for an exact match to the above list, as
such a check may fail if there are vendor-specific extrinsics that are also restricted.

8.2.8.9.1.1 Design considerations
This list realizes a number of design decisions:

• For simplicity, the "Manage Storage" Privilege is a superset of the "Manage StorageVolume"
Privilege. The "Manage Storage"s Privilege may be used against both StorageVolumes and
StoragePools. When applied to a StorageVolume, methods called out in that Privilege that do not
affect StorageVolumes are simply ignored.

• The capability to own StoragePools is signaled by a PrivilegeManagementService with a
ConcreteDependency.Dependent ”Manage Storage” Privilege with RepresentsAuthorizationRights
set to True.

• The "Manage StorageVolume" Privilege does not provide the ability to manage StoragePools. 

• DeleteProtocolController is not restricted. The design goal is to control resource management in a
fashion that keeps reasonably well-behaved clients from causing unintended problems. Control of
the StoragePool and StorageVolume instances is sufficient, as a reasonably well-behaved client
should at least call DetachDevice or HidePaths on the associated StorageVolumes before calling
DeleteProtocolController (both DeleteDevice and HidePaths are controlled), or at the very least
understand what the attached volumes are being used for before deleting the protocol controller.
The ProtocolControllerforPort and the associated port (e.g., FCPort) are also not restricted for
similar reasons.

• RemoveAccess and ChangeAccess are not restricted to avoid complexity. These could be
restricted by creating a second type of resource ownership Privilege to control them, and the
corresponding access Privileges to enforce the restrictions, but for 1.1, it seems reasonable to
trust clients that don't know what they're doing to avoid invocations of RemoveAccess and
ChangeAccess.

• ServiceAffectsElement associations are assumed between Services and affected elements. (See
Figure 140: "ServiceAffectsElement associations for ResourceOwnership".)   This subprofile does
not REQUIRE an implementation to present these associations unless there is more than one of a
particular type Service in the profiled Namespace. 

• AuthorizedPrivilege instances are assumed when a Privilege is granted to a subject or assigned to
a target. (See Figure 141: "AuthorizedPrivilege associations for ResourceOwnership".)
AuthorizedTarget and AuthorizedSubject associations are assumed between the
AuthorizedPrivilege and the target and subject entities respectively. This subprofile does not
930



 Resource Ownership Subprofile
REQUIRE the implementation to make these instances explicit. Instead this profile relies on the
ChangeAccess method to grant or deny rights and on the ShowAccess method to display rights.

• PrivilegePropagationRule instances are assumed with appropriate PolicySetAppliesToElement
associations to StoragePool and StorageVolume instances and a PolicyRuleInSystem association
to a System instances. This subprofile does not REQUIRE either the PrivilegePropagationRule
instances nor the related association instances.

Figure 140: ServiceAffectsElement associations for ResourceOwnership

Figure 141: AuthorizedPrivilege associations for ResourceOwnership

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

Privilege

*

Subprofile: Security RBAC
Subprofile: Security ResourceOwnership

Subprofile: BlockServices ResourceOwnership
Bold: Required

StorageVolume

StoragePool*

*
*

*Identity

*

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromStoragePool()
DeleteStoragePool()
ReturnToStoragePool()
CreateOrModifyElementFromElement()

ControllerConfigurationService

AttachDevice()
DetachDevice()
ExposePaths()
HidePaths()

ServiceAffectsElement

*

*

*

*

StorageExtent *

RedundancySet

*

*

ServiceAffectsElement

ServiceAffectsElement
*ServiceAffectsElement

Subprofile : Security RBAC
Subprofile : Security ResourceO w nership

Subprofile : B lockServices ResourceO w nership

Bold: Required

StorageVolum e

StoragePool *

AuthorizedPrivilege*
*

Identity

AuthorizedSubject

*
Privilege

StorageExtent

RedundancySet

*

*

*
AuthorizedTarget
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 931



 

8.2.8.9.1.2 Privilege Propagation
Propagation is a means of restricting the number of AuthorizedTarget associations for a Privilege.
Propagation has two elements:

1) Privilege restrictions on a StoragePool propagate to ConcreteComponent.PartComponent Storag-
eExtents. 

2) Privilege restrictions on a StoragePool propagate across ConcreteIdentity to a StorageExtent 
aspect. (For instance when a Raid 5 extent is used as a StoragePool.)

3) Privilege restrictions on a StorageExtent propagate across ConcreteIdentity to a RedundancySet 
aspect. (For instance when spares are available for a Raid 5 extent.)

To place these rules in force, a PrivilegePropagationRule instance is associated via
PolicySetAppliesToElement to affected StoragePools or StorageVolumes. This rule shall have its
ElementName set to "BlockServices ResourceOwnership" and it shall not have any PolicyCondition or
PolicyAction instances associated with it.

ShowAccess may be used to determine the resulting behavior.

8.2.8.9.2 Client Considerations and Recipes
Resource Ownership Privileges can be distinguished from LUN Mapping/Masking privileges as the
latter contain Execute (instance of Activities[]) cdb=* (ActivityQualifiers[]) SCSI Command
(QualifierFormats[]). 

A cascading provider determines whether or not Resource Ownership is supported by an array by
looking for Block Services Resource Ownership as a RegisteredSubprofile of the Array profile. 

While this subprofile is intended to support cascading, it can be used with any CIM Client that can
authenticate to the CIM Server and thereby obtain an authenticated Identity.

A client can determine whether resource ownership restrictions are enforced on a StorageVolume or
StoragePool by using the ShowAccess method (preferred) or by association traversal via
AuthorizedTarget to resource ownership Privileges.

When CIM Servers are cascaded, it's necessary to be able to associate the embedded CIM client (e.g.,
in a virtualizer or NAS head) with the Identity in the array that is the AuthorizedSubject of the privileges.
Assuming shared secrets, this can be modeled and realized as follows:

• In the virtualizer or NAS Head, a CIM Service instance is associated (ServiceSAPDependency)
with a RemoteServiceAccessPoint that has associated via CredentialContext to a SharedSecret
credential that contains information necessary for authentication. 

• RemoteID: String by which the principal is known. This maps to Account.UserID

• Secret: Password or other secret. This is set, but is not typically readable.

• In the array, the Identity instance is created that is authenticated by the Credential in the previous
step. This Identity may be associated via ConcreteIdentity to an Account. Or, it may be associated
via IdentityContext to a RemoteServiceAccessPoint that provides access to a 3rd Party
Authentication service. If the latter, then the Security 3rd Party Authentication subprofile shall be
present on the Array.   

• When the CIM client uses HTTP authentication with that username and password, the
authenticated Identity is assigned to the CIM client's session.
932



 Resource Ownership Subprofile
There is no requirement that the Identity and Account instances in the array be creatable or
manipulable via CIM. The contents of these instances have significant security implications and hence
the ability to create and change them need to be carefully controlled. This example uses HTTP
authentication, but is not meant to exclude other forms of authentication.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 933



 

934



 Block Services Package
8.2.8.10 Block Services Package

8.2.8.10.1 Description
Many types of devices or applications provide their storage capacity through block-based IO. These
devices or applications provide block services to other devices or applications, block consumers, that
are external to them. This subprofile defines a standard expression of existing storage capacity, the
assignment of capacity to StoragePools, and allocation of capacity for use for external devices or
applications.

A block is:

• The unit in which data is stored and retrieved on disk and tape devices. 

• A unit of application data from a single information category that is transferred within a single
sequence.

Figure 142: "Storage Capacity State" illustrates the state of a block of storage that is discussed in this
subprofile.

A given block of capacity within a storage device or application has a state in this subprofile. The
storage elements, StorageVolume and LogicalDisk, described in this section, are a grouping of blocks.
It is useful put terms to the state transitions that blocks groups by this storage elements to differentiate
the steps in the storage configuration process. A unconfigured storage device or application may have
none of its capacity organized into concrete pools. All blocks within that device or application have an
unassigned state. Once a block is a member of a concrete pool, capacity can be said to be assigned.
Once a block is a member of a storage element, like a Volume or Logical Disk, the capacity has been
allocated for use by a block consumer. Once a block is visible to one or more block consumers, that
capacity is exposed.

Storage Pools
A StoragePool is collection of storage capacity with a given set of capabilities. A Pool has certain
‘StorageCapabilities’, which indicate the range of 'Quality of Service' requirements that can be applied
to objects created from the Pool.

StoragePools are a mandatory part of modeling disk storage systems that support this package.
However, user manipulation of StoragePools is optional and may not be supported by any given disk
storage system. This subprofile defines the support mandatory if the storage system exposes functions
for creating and modifying storage pools.

Figure 142: Storage Capacity State

Unassigned Assigned

Allocated Exposed

Create concrete Pool

create storage element

Make
externally
visible

Start

End
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 935



 

Storage pools are scoped relative to the ComputerSystem (indicated by the HostedStoragePool
association). Objects created from a Pool have the same Computer System scope. 

Child objects (e.g., StorageVolumes, LogicalDisks, or StoragePools) created from a StoragePool are
linked back to the parent pool using an AllocatedFromStoragePool association.

There are two properties on StoragePool that describe the size of the ‘underlying’ storage.
TotalManagedStorage describes the total storage in the pool and RemainingManagedStorage
describes the storage currently remaining in the pool.

Primordial Pool
The Primordial Pool is a type of StoragePool. This Pool may contain unformatted or unprepared
capacity. Or this type of Pool may simply contain unassigned capacity. Storage capacity is drawn from
the Primordial StoragePool to create concrete StoragePools. The Primordial StoragePool aggregates
storage capacity that has not been assigned to a concrete StoragePool. StorageVolumes and
LogicalDisks are allocated from concrete StoragePools. 

At least one primordial Pool shall always exists on the block storage system to represent the
unallocated storage on the storage device. The sum of TotalManagedStorage attributes for all
Primordial StoragePools shall be equal to the total size of the storage of the storage system. The
Primordial property shall be true for Primordial Pools.

Primordial Pool can be used to determine the amount of capacity left on the block storage system; that
is, not already assigned to a concrete StoragePool. 

Concrete Pool
The Concrete Pool is a type of StoragePool. This concrete Pool is the only type of Pool created or
modified by behaviors described in this Package. A concrete Pool is used to subdivide the storage
capacity available in a block server for the creation or modification of StorageVolumes and
LogicalDisks. Concrete Pools can be used to assign capacity based QoS or other factors like cost per
megabyte or ownership of storage. A concrete Pool may aggregate the capacity of one or many RAID
groups or RAID ranks. The RAID group or rank may be created when the StorageVolume or
LogicalDisk is created. 

Blocks, Metadata, and Capacity Reported
This subprofile uses the term “metadata” to signify the capacity drawn for the creation of stripes, data
copies, and the like. The capacity removed for such constructs when creating storage elements, like
Pools, Volumes, and LogicalDisks is reported in the difference between the capacity of the parent Pool
and the capacity of the child storage element allocated from that parent. The TotalManagedSpace
property represents the capacity that may be used to create or expand child storage elements. The
RemainingManagedSpace property represents capacity left to create new storage element or expand
an existing storage element. One may use this profile to calculate capacity used for metadata.

Additionally, there is likely to be a difference between the capacity one can calculate adding up all the
capacity of the disks, as reported by the manufacturers, or LUNs consumed by a block server, as
reported by the block server that exposes them, and the capacity that can be used to create other
storage organizations or constructs from this capacity, like Pools, Volumes, and Logical Disks. For
example, this difference in capacity can be used for disk formatting and the like. The difference in the
capacity of the primordial Pool and the capacity used to produce the primordial Pool is not reported
through this subprofile.
936



 Block Services Package
Pool Management Instance Diagram
Figure 143: "Pool Manipulation Instance Diagram" provide an instance diagram for pool manipulation.

Pool, Volume and Logical Disk Manipulation
Storage Volumes are allocations of storage capacity that shall be exposed from a system through an
external interface. In the CIM class hierarchy, they are a subclass of a StorageExtent. In SCSI terms,
they are Logical Units. 

Logical Disks are the manifestations of the consumption of storage capacity on a general purpose
computer, i.e., a host, as revealed by the operating system or a volume manager. In the CIM class
hierarchy, they are also a subclass of a StorageExtent. Logical Disk are a mandatory part of modeling a
host based Volume Managers. 

Storage Volumes and Logical Disks are consumable storage capacity. That is these storage elements
are the only extents that are available to consumers of the block service and a block device.

However, creation or modification of Volumes or Logical Disks from Pools is optional and may not be
supported by a given disk storage system. This subprofile defines the support mandatory if the storage
system exposes functions for creating storage volumes from storage pools. 

The StorageConfigurationService, in conjunction with the capacity grouping concept of a storage pool,
allows SMI-S clients to configure pools of storage within block storage systems without having to have
specific knowledge about the block storage system configuration. The service has the following Pool
manipulation methods:

Figure 143: Pool Manipulation Instance Diagram

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

ComputerSystem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool

StorageSettingWithHints

SystemDevice

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

DeleteStoragePool()

HostedService

StorageConfigurationCapabilities

ElementCapabilites

StorageSetting

ElementSettingData

StorageSettingsGeneratedFromCapabilities

AllocatedFromStoragePool

StorageSettingWithHints

StorageSettingsAssociatedToCapabilities
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 937



 

• CreateOrModifyStoragePool: Create a pool of storage with some set of Capabilities defined by the
input StorageSetting. The source of the storage can be other Pool(s) or Extents. Alternatively an
existing Pool can be modified. The method can also be used to modify a Pool to increase or
decrease its capacity.

• DeleteStoragePool: Delete a Pool and return the freed up storage to the underlying entities.

The StorageConfigurationService allows SMI-S clients to configure block storage systems with volumes
(ex. LUNs) without having to have specific knowledge about the storage system capacity. The service
has the following methods for storage element manipulation:

• CreateOrModifyElementFromStoragePool: Create Volume or Logical Disk, possibly with a specific
StorageSetting, from a source Pool. The method can also be used to modify a Volume or Logical
Disk to increase or decrease its capacity.

• CreateOrModifyElementFromElements: Create a Volume or Logical Disk using Component
Extents of a parent and source Pool. The method can also be used to alter the set of member
Extents of a Volume or Logical Disk or change the consumption of an existing set of member
Extents.

• ReturnToStoragePool: Return an Element previously created with
CreateOrModifyElementFromStoragePool to the originating StoragePool.

The StorageCapabilities instances provide the ability to create and modify settings for use in volume
creation using the following method (part of the StorageCapabilities class):

• CreateSetting: Creates a setting that is consistent with the StorageCapabilities and may be
modified before use in creating a Pool, Volume, or Logical Disk. 

• GetSupportedStripeLengths and GetSupportStripeLengthRange: Returns the possible stripe
lengths for that capability

• GetSupportedStripeDepths and GetSupportedStripeDepthRange: Returns the possible strip
depths for that capability

• GetSupportedParityLayouts: Returns the possible parity layouts, rotated or non-rotated, for that
capability.

See 8.2.8.10.5.3, "Extrinsic Methods on StorageConfiguration" for details on the associations from
Setting to Capabilities.

The StoragePool instances provide the ability to retrieve the possible sizes for the StorageVolume or
LogicalDisk creation or modification given a StorageSetting as a goal. 

• GetSupportedSizes: Returns a list of discrete sizes given a goal. This method can also be used to
return the discontiguous capacity in the Pool not yet assigned to a concrete Pool or allocated to a
storage element.

• GetSupportedSizeRange: Returns the range of possible sizes given a goal.

• GetAvailableExtents: Returns an array of extent references which match a given goal and are
components of the Pool and are not already members of an existing consumable storage element,
child Pool, Volume, or LogicalDisk. 

Declaring Storage Configuration Options
The StorageConfigurationCapabilities class associated to the StorageConfigurationService (SCS)
defines what behavior is supported by the implementation. 
938



 Block Services Package
 Table 1002, “Supported Actions to Method Mapping” defines how the SupportedSynchronousActions

and SupportedAsynchonousActions array values map to methods in the StorageConfigurationService
class. The presence of an ‘Action’ from Table 1002 in the SupportedSynchronousActions array means
that the associated ‘SCS Method’ does not produce a Job by side-effect. Likewise, the presence of an
‘Action’ from Table 1002 in the SupportAsynchronousActions array means that the associated ‘SCS
Method’ does produce a Job by side-effect and a client may use the Job to monitor the progress of the
work being done. An ‘Action” may be present in both arrays; if so, then the implementation may or may
not produce a Job by side effect.

The SupportedStorageElementTypes array declares what storage elements may be created or
modified by this implementation. Since Pools are a mandatory part of this implementation, a client may
assume that the support of the Pools methods also implies support of creation or modification of
storage elements of type Pool.

The SupportedStoragePoolFeatures array declares what Pool behavior is supported. 

• 2 “InExtents” means that a Pool may be created from Extents. 

• 3 “Single InPools”, 4 “Multiple InPools"
A Pool may be the source of capacity of for Pool creation or modification. In other words, concrete
Pools may be created from other Pools. 

The SupportedStorageElementFeatures array declares what special features the configuration
methods support.

• 2 "StorageExtent Creation", 4 "StorageExtent Modification"
These feature elements declare the ability of the SMI-S implementation to create or modify
StorageExtents respectively. 

• 3 "StorageVolume Creation", 5 "StorageVolume Modification"
These feature elements declare the ability of the SMI-S implementation to create or modify
StorageVolumes respectively.

• 8 "LogicalDisk Creation", 9 "LogicalDisk Modification"
These feature elements declare the ability of the SMI-S implementation to create or modify
LogicalDisks respectively. 

• 6 "Single InPool", 7 "Multiple InPools" 
If a SMI-S implementation supports the creation or modification of storage elements, then the
implementation shall support either the creation or modification of concrete Pools from a single
Pool only or from multiple input Pools

Table 1002: Supported Actions to Method Mapping

Action SCS Method
Storage Pool Creation, 
Storage Pool Modification

CreateOrModifyStoragePool

Storage Pool Deletion DeleteStoragePool
Storage Element Creation, 
Storage Element Modification

CreateOrModifyElementFromStoragePool,

Storage Element Return ReturnToStoragePool
Storage Element from Element Creation, Stor-
age Element From Element Modification

CreateOrModifyElementFromElements
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 939



 

Volume Creation Instance Diagram
Figure 144: "Volume Creation Instance Diagram" provides an instance diagram from volume creation.

Backwards Compatibility
This package is designed to be backward compatible with the “Pool Manipulation Capabilities, and
Settings” Subprofile and the “LUN Creation” Subprofile from IS24775-2006, Storage Management
(SMI-S 1.0). These subprofiles are deprecated. In fact, this package subsumes all the functionality from
these subprofiles. However, to maintain backward compatibility, implementations of this package
produce RegisteredProfile instances for these deprecated subprofiles as supporting IS24775-2006,
Storage Management with one exception. If the BlockServices implementation produces LogicalDisks
and not StorageVolumes, then advertising support for these deprecated subprofiles is discouraged. If
the implementation supports SLP and the deprecated subprofile RegisteredProfile instances are
produced, then these deprecated subprofiles shall be advertised via SLP. See 8.2.4.1, "Server Profile"

Capacity Management
The capacity characteristics of many storage system vary greatly in the cost and performance.
Additionally, the capacity may need to be partitioned by these and other factors. StoragePool provide a
means to aggregate this storage by characteristics determined by the storage administrator or
determined at the factory when the storage system is assembled.

A Storage Pool is an aggregation of storage suitable for configuration and allocation or “provisioning”.
However, it may have been preformatted into a form (such as a RAID group) that makes volume
creation easier. 

StoragePools can be drawn from a StoragePool (the result of which is indicated with the
AllocatedFromStoragePool association). 

A StoragePool has a set of capabilities held in the StorageCapabilities class that reflect the
configuration parameters that are possible for element created from this pool. The StorageCapabilities
define, in terms common across all storage system implementation, what characteristics an

Figure 144: Volume Creation Instance Diagram

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

AllocatedFromStoragePool

ComputerSystem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool

StorageSetting

SystemDevice

StorageConfigurationService

CreateOrModifyElementFrom StoragePool()
ReturnToStoragePool()

HostedService

StorageConfigurationCapabilities

ElementCapabilitesElementSettingData
940



 Block Services Package
administrator can expect from the storage capacity. These capabilities are expressed in ranges. The
storage implementation has the choice to delineate the capabilities and define the ranges of these
capabilities as appropriate. Some implementation may require several narrowly defined capabilities
while others may be more flexible.

The capabilities expressed by the storage system can change over time. 

The number of primordial storage pools can change over time as well.

These storage capabilities are given the scope of the storage system when they are associated to the
StorageConfiguratonService or the scope of a single StoragePool when associated to same. The
capabilities expressed at the service scope is equal to the union of all Primordial StoragePools
capabilities. The capabilities can also be given the scope of a concrete StoragePool. 

The storage administrator has the choice of any capability expressed by the storage system. The
administrator should use this opportunity to partition the capacity. Once storage elements are drawn
from the StoragePool, the administrator can be assured that the elements produced will have the
capabilities previous defined.

The model allows for automation of the allocation process. An automaton can use the capabilities
properties to search across subsystems for storage providing desired capabilities, and having done so
create StoragePools and/or storage elements as necessary. Inventories may be made of the capacity
by capabilities.

The model also provides a means by which some common characteristics of all available storage
system can be inventoried and managed. Note that the storage system will differ in other significant
ways, and these characters can also be the basis for capacity pooling decisions. A sample
configuration is illustrated in Figure 145: "Storage Configuration" 

Figure 145: Storage Configuration

Cluster

StorageSystem

StorageConfigurationService

ConcreteJob

StoragePool

StorageVolume

AffectedJobElement

OwningJobElement

AffectedJobElement

Describes range of 
capabilities of Pools/Volumes 
that can be created
with  the Service

StorageCapabilities

Element
Capabilities

HostedService
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 941



 

See 8.2.1.7, "Job Control Subprofile" for details on the usage of the StorageConfigurationJob,
AssociatedStorageConfigurationJob, and OwningJobElement associations. 

The definition of storage capabilities in this way intentionally avoids vendor specific details of volume
configuration such as RAID types. Although RAID types imply performance and availability levels,
these levels can't be easily compared between vendor implementations - particular in comparisons with
reliability of non-RAID storage (i.e., certain virtualization appliances). Furthermore, there are
capabilities of reliability and availability other than data redundancy. The StorageSetting class is
provided by clients to describe the desired configuration of the allocated storage. In general, the types
of parameters exposed and controlled via the StorageCapabilities/StorageSetting classes are:

• NSPOF (No Single Point of Failure). Indicates whether the pool can support storage configured
with No Single Points of Failure within the storage system. This does not include the path from the
system to the host.

• Data Redundancy. This describes the number of complete copies of data maintained. Examples
would be RAID 5 where 1 copy is maintained and mirroring where 2 or more copies are
maintained.

• Package Redundancy. This describes how many physical components (packages), like disk
spindles, can fail without data loss (including a spare, but not more than a single global spare).
Examples would be RAID5 with a Package Redundancy of 1, RAID6 with 2, RAID 6 with 2 global
(to the system) spares would be 3.

• ExtentStripeLength describes the number of underlying StorageExtents across which data is
striped in the common striping-based storage organizations. This is also known as the number of
'members' or 'columns'. For non-striped organizations (e.g., mirror or JBOD), the
ExtentStripeLength shall be one.

• UserDataStripeDepth describes the number of bytes forming a strip in common striping-based
storage organizations. The strip is defined as the size of the portion of a stripe that lies on one
extent. Thus ExtentStripeLength times UserDataStripeDepth will yield the size of one stripe of user
data.

• ParityLayout specifies whether a parity-based storage organization is using rotated or non-rotated
parity. 

An example of what the Package Redundancy and Data Redundancy means in terms of RAID levels is
defined in Table 1003.
942



 Block Services Package
Mapping of RAID levels to Data Redundancy, Package Redundancy

Table 1003, “RAID Mapping Table” was produced using generally available definitions of RAID levels.
The character ‘N’ represents the variable for the total number of StorageExtents. ‘DP’ is double parity.
‘3/5’ is RAID 5 implementations that are sometimes called RAID 5.

It is the nature of RAID technology that even though the RAID Level is named the same, the storage
service provided could differ depending on the storage device implementations. Expressing the storage
service level provided in end-user terms relieves the SMI-S Client and end-user from having to know
what RAID Levels means for a particular implementation and instead defines the storage provided in
service level terms. 

If a single storage device implements RAID levels that have the same package redundancy and data
redundancy, the implementor should have the SMI-S Client differentiate via StorageSettingsWithHints.
Additionally, the SMI-S Provider author can predefine StorageCapabilities that match exactly with best
practice RAID Levels, including differentiation with StorageSettingWithHints when the StorageVolume
or LogicalDisk exists. In this case, the ElementName property is used to correlate between the
capability and device documentation. Alternatively, it may sense for the capability be expressed in
broader ranges for more flexible storage systems.

For those existing StorageSetting instances whose "ChangableType" property is “0”, “Fixed - Not
Changeable”, (identifying the StorageSettings which represent certain non-changeable sets of preset
storage property data, describing "fixed", or pre-defined Settings, corresponding to preset RAID levels),
the Element name should contain a string value from a comprehensive list of well-known RAID
configuration names. The ElementName string value should be the name of the RAID level, from this
list, which most closely describes the storage characteristics of the StorageSetting in question. This list
of RAID level strings include, but is not limited to: "JBOD", "RAID0", "RAID1", "RAID0+1","RAID01E","
RAID10", RAID3", RAID4", "RAID4DP", "RAID5", "RAID3/5", "RAID5DP", "RAID6", "RAID15",
"RAID50", "RAID51". In addition, the "Description" property of the pre-defined StorageSettings should
(optional) contain similar RAID level information in a more free-form text format, including vendor-
specific and/or value-added annotations, for example: "RAID 3, with spares", or "RAID 5, 7D + 1P".

Table 1003: RAID Mapping Table

RAID 
Level

Package 
Redundancy

Data 
Redundancy

Extent
Stripe
Length

User Data 
Stripe Depth

Parity
Layout

JBOD 0 1 1 NULL NULL
0 (Striping) 0 1 2 to N Vendor Dependent NULL
1 1 2 - N 1 NULL NULL
10 1 2 - N 2 to N Vendor Dependent NULL
0+1 1 2 - N 2 to N Vendor Dependent NULL
3 or 4 1 1 3 to N Vendor Dependent 1
4DP 2 1 4 to N Vendor Dependent 1
5 (3/5) 1 1 3 to N Vendor Dependent 2
6, 5DP 2 1 3 to N Vendor Dependent 2
15 2 2 - N 3 to N Vendor Dependent 2
50 1 1 3 to N Vendor Dependent 2
51 2 2 - N 3 to N Vendor Dependent 2
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 943



 

Storage Setting Associations to Storage Capabilities
Storage Setting instances can be associated its the parent StorageCapabilities instance through either
the StorageSettingsAssociatedToCapabilities and StorageSettingsGeneratedFromCapabilities
association instances. The nature of the associated setting is different depending on the association
instance used. 

A Storage Setting associated via a StorageSettingsAssociatedToCapabilities instance shall not be
modifiable by the client (ChangeableType = 0 “Fixed - Not Changeable”). These types of setting are
used to define the possible configurations of Storage Pools, Storage Volumes or Logical Disks where
the number of possibilities are small because the capabilities of the device itself is likewise limited.
When a Capabilities is created by side-effect of creating a concrete Pool, this type of Storage Setting
may also be created or an existing Storage Setting associated to this new Capabilities as well. A client
can use the StorageSettingsAssociatedToCapabilities association to find the default goal for the
Capabilities, using the DefaultSetting property. There shall be one default per combination of a
StoragePool instance, associated StorageCapabilities instances, and associated StorageSetting
instances.

A Storage Setting associated via a StorageSettingsGeneratedFromCapabilities instance may be
modified by a client (ChangeableType = 1 “Changeable - Transient” or Changeable = 2 “Changeable -
Persistent”). When a Setting is created from a capabilities, it is transient (e.g., ChangeableType = 1).
This means that the Setting instance may not remain for long. This Setting may be removed from the
CIMOM after reboots and simply after some period of time. The client should create and use the Setting
as soon as possible. Alternatively, some implementations will allow the client to request that the Setting
be retained. This request is made by changing the ChangeableSettingType to 3 “Changeable -
Persistent”. SMI-S does not define normative behavior for the changing of the ChangeableType
property.

Read-Only Model Requirements
This package defines that classes and behavior to both express the assignment and allocation of
storage capacity as well as the mechanism for configuring the storage capacity. The expression of the
assignment and allocation of storage capacity through the StoragePool, StorageVolume,
StorageExtent, LogicalDisk and related associations is mandatory. An implementation should offer the
configuration of one or more classes of storage elements. The expression of the support for the
configuration of storage is through the support of the StorageConfigurationService. If an instance of this
class is not provided, then a client can assume that no configuration operations are supported. A
implementation shall not provide an instance of the StorageConfigurationService if none of the extrinsic
methods of the service are supported.

If the implementation is only supporting read-only information about the capacity assignment and
allocation but does not offer modification of the capacity configuration, then that implementation is said
be a read-only implementation. In such a model, only classes listed in Table 1004, “Classes Required In
Read-Only Implementation” are required. Classes not explicitly stated are not required for read-only
implementations. 

Table 1004: Classes Required In Read-Only Implementation

Required Classes Reason for Requirement
StoragePool, StorageVolume and/or 
LogicalDisk, HostedStoragePool and 
AllocatedFromStoragePool

Reporting of unassigned, assigned, and allo-
cated capacity

StorageCapabilities and ElementCapabilities Reporting of block server capabilities
StorageSetting and ElementSettingData used is 
associated to StorageVolume and LogicalDisk

Reporting of the capabilities of existing Stora-
geVolumes and LogicalDisks
944



 Block Services Package
Extent Conservation
Extent Conservation is the construct where the remaining capacity after the partial use of an extent is
itself represented as an extent, based on the antecedent extent. Note that the StorageExtent class itself
does not report the amount of capacity that is used by another extent that draws capacity from it. In
order to calculate the remaining space from an extent model without Extent Conservation, the client
would have to calculate the existence of remaining capacity through finding unused ranges of blocks as
expressed by the extent’s BasedOn associations. 

This notion allows a client to use those remaining Extents to determine the physical components like
disk drives and network ports that are associated to this remaining space in order to pick the extent best
suiting its needs for, for example, storage network redundancy or performance history. 

The general use of Extents, which is optional for this subprofile, is subject to the following requirements: 

• Allocating capacity from a Pool shall not reduce the total size of the Pool.

• A given extent instance shall not be a component of more than one Pool. However, an given block
may be accounted for in the range of blocks represented by more than one extent instance. In
other words, a given block may be associated to more than one Pool.

• The use of all or some of the capacity of an extent directly, by passing the reference to the extent
in a method call, or indirectly, by passing the size of the desired storage element, shall result in the
creation of new Extents that are components of the new Volume or LogicalDisk. 

• Any remaining capacity from the extent shall be represented by a new component extent of the
source Pool that is based on the partitioned extent. This extent is called a remaining extent.

1) If the Size requested is smaller than the total consumable size of the Extents or Pools, then 
these resources are partially used. In this case, the model shall reflect what capacity was 
used and what capacity remains of the Extents or Pools passed as arguments to CreateOr-
ModifyStoragePool and CreateOrModifyElementFromElements methods.

2) Once the capacity represented by a remaining extent is used to assign or allocate capacity, 
the remaining extent either shrinks in size or is removed from the model. A remaining extent 
shall not be molded to have other extents based on it.

• An extent that was split or partially used may be made whole by the deletion of the storage
element whose creation or modification gave rise to the partial use of the extent in the first place.

Figure 146, Figure 147, and Figure 148 illustrate the use of Extents to represent the partitioning of an
extent’s capacity. An implementation of this subprofile may implement the 8.2.8.16, "Extent
Composition Subprofile" as well. Extent Conservation requires the instantiation of additional
Component Extents that represent remaining space. These Extents are in addition to those modeled by
the Extent Composition Subprofile. Available extents, (including remaining space Extents), which meet
specific goal requirements, are found using the GetAvailableExtents method of the
StorageConfigurationService.

The modeling of remaining Extents is not within the scope of the Extent Composition Subprofile.
However, the recipes written for the Extent Composition Subprofile will tolerate these additional extents.
The modeling of free/unused extents is defined only in the Extent Conservation section of Block
Services package.

Support of the GetAvailableExtents and CreateOrModifyElementFromElements methods are not
required by the Block Services package nor the Extent Composition Subprofile. An implementation may
support the representation of StorageVolume or LogicalDisk structure through the Extent Composition
Subprofile, but not support these methods.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 945



 

If a implementation supports the GetAvailableExtents and CreateOrModifyElementFromElements
methods and the Block Services Package, then it shall also implement the Extent Composition
Subprofile (see 8.2.8.10.5.3, "Extrinsic Methods on StorageConfiguration"). Additionally, the
implementation shall implement both methods if it implements one of the methods or neither of the
methods.

Figure 146, Figure 147, and Figure 148 represent how Extents are partitioned to represent the partial
usage of the capacity in the construction of a concrete Pool and a concrete Volume. For the purposes
of illustration all the numbers in the figures are expressed in blocks even though some of the class
properties are in blocks and others are in bytes. The solid line box around the elements in the diagram
group those classes that are defined in the Extent Composition Subprofile. 

The initial state in Figure 146: "Extent Conservation, Step 1" starts with a Primordial Pool that is
realized by a Primordial Extent. This extent is part of the initial capacity of the device or added to the
device in process defined outside of this subprofile. The process of assigning capacity to a Pool and
allocating capacity to a Volume or Logical Disk is defined inside of this subprofile. To make the diagram
simpler, the Pool has only one component extent box that represents many Extents. The “SUM_” prefix
states that the size of the Extents as a summation. Both the Pool and extent start with 1000 blocks of
storage capacity.

A concrete Pool is drawn from the primordial Pool in Figure 147: "Extent Conservation, Step 2". The
next three figures group the instances modeled using the Extent Composition Subprofile with a dark
box. The concrete Pool takes only half the capacity of the parent Pool. In this particular example, the
metadata required by the implementation is written to the storage after this step. Another extent is
create to represent the remaining capacity of the primordial Pool that was not used in the creation of the
concrete Pool. ConsumableBlocks remain constant after the creation of the extent as a representation
of the space actually available for use is other storage elements that are based on the extent. The
remaining space extent can used to used for the creation of other Volumes or Logical Devices. If
GetAvailableExtents were called on the primordial Pool at this point, only a reference to the remaining

Figure 146: Extent Conservation, Step 1

ConcreteComponent
RemainingManagedSpace = 1000
TotalManagedSpace = 1000

Primordial:
StoragePool

Primordial:
StorageExtent

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000
946



 Block Services Package
extent is be returned and not a reference to the primordial extent because the primordial extent is
entirely used. 

A Volume is created in the Figure 148: "Extent Conservation, Step 3". This particular implementation
draws storage capacity for metadata (for itsown house keeping) during the creation of the Volume. Not
shown is the case where the metadata is drawn from capacity during the creation of the concrete Pool.
A RAID 1 stripe is written over three Extents. These Extents are likely to be something like disk drives.
Again, a remaining extent is created to represent the capacity of the parent concrete Pool that is not

Figure 147: Extent Conservation, Step 2

ConcreteComponent

BasedOn

ConcreteComponent

BasedOn

AllocatedFromStoragePool
SpaceConsumed = 500

ConcreteComponent

RemainingManagedSpace = 250
TotalManagedSpace = 250

Concrete:
StoragePool

RemainingManagedSpace = 500
TotalManagedSpace = 1000

Primordial:
StoragePool

Primordial:
StorageExtent

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000

ConsumableBlocks =  250
NumberOfBlocks = 250

Concrete:
CompositeStorageExtent

SUM_ConsumableBlocks =  500
SUM_NumberOfBlocks = 500

Remaining:
StorageExtent

SUM_ConsumableBlocks =  500
SUM_NumberOfBlocks = 500

Concrete:
StorageExtent

BasedOn
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 947



 

used in the creation of the Volume. Like before, a call to the concrete Pool’s GetAvailableExtents
method would yield a reference to the remaining extent. 

In all cases, the TotalManagedSpace and RemainingSpace attributes reflect the total capacity and the
capacity that can be drawn from a Pool, respectively. In this figuremetadata, the metadata is drawn from
the capacity in the creation of the storage element. 

• The capacity drawn by the metadata from the parent Pool is reflected by the sum of associated
AllocatedFromStoragePool.SpaceConsumed minus the StoragePool.TotalManagedSpace of the
child Pool. 

• The capacity drawn by the metadata from each StorageVolume or LogicalDisk is reflected by
SpaceConsumed minus NumberOfBlocks times BlockSize.

Figure 148: Extent Conservation, Step 3

ConcreteComponent

ConcreteComponent

AllocatedFromStoragePool
SpaceConsumed = 30

BasedOn

BasedOn

BasedOn

AllocatedFromStoragePool
SpaceConsumed = 500

ConcreteComponent

ConcreteComponent

RemainingManagedSpace = 220
TotalManagedSpace = 250

ConcretePool:
StoragePool

RemainingManagedSpace = 500
TotalManagedSpace = 1000

Primordial:
StoragePool

NumberOfBlocks = 30

StorageVolume

SUM_ConsumableBlocks =  220
SUM_NumberOfBlocks = 220

Remaining:
StorageExtent

Primordial:
StorageExtent

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000

SUM_ConsumableBlocks =  500
SUM_NumberOfBlocks = 500

Remaining:
StorageExtent

SUM_ConsumableBlocks =  500
SUM_NumberOfBlocks = 500

Concrete:
StorageExtent

BasedOn

ConsumableBlocks =  250
NumberOfBlocks = 250

Concrete:
CompositeStorageExtent

BasedOn
948



 Block Services Package
Formulas For Calculating Capacity
The following formulas define what calculations shall be valid in a conferment implementation. 

• RemainingManagedSpace plus AllocatedFromStoragePool.SpaceConsumed from all of the
Storage Volumes, Logical Disks, and Storage Pools allocated from the Pool shall equal
TotalManagedSpace.

• A parent Pool’s TotalManagedSpace equals RemainingManagedSpace plus the sum of all related
AllocatedFromStoragePool SpaceConsumed.

• If the extent Composition Subprofile is implemented

1) The Pool’s TotalManagedSpace is equal to the sum of all the ConcreteComponent Storage-
Extent’s BlockSize times ConsumableBlocks. The StorageExtents shall be concrete or pri-
mordial, but not remaining StorageExtents.

2) Using the BasedOn association from the Pool’s component Extents (found using Concrete-
Component), the sum of the dependent extent’s NumberOfBlocks is equal to the Consum-
ableBlocks of the antecedent extent.

Storage Element Manipulation
The StorageConfigurationService class contains methods to allow creation, modification and deletion of
StorageVolumes or LogicalDisks. The capabilities of a StorageConfigurationService or StoragePool to
provide storage are indicated using the StorageCapabilities class. This class allows the Service or Pool
to advertise its capabilities (using implementation independent attributes) and a client to set the
attributes it desires. 

The concept of ‘hints’ is also included that allows a client to provide general requirements to the system
as to how it expects to use the storage. ‘Hints’ allow a client to provide extra information to 'tune' a
StorageVolume or LogicalDisk. If a client chooses to supply these hints when creating a StorageVolume
or LogicalDisk, the StorageSystem can either use them in determining a matching configuration or it
may choose to ignore the hints.

When creating a StorageVolume or LogicalDisk, an reference to an instance of StorageSetting is
passed as a parameter to the StorageConfigurationService.CreateOrModifyElementFromStoragePool
or CreateOrModifyElementFromElements methods. This forms a goal for that element to attempt to
meet. 

The current ‘service level’ being achieved is reported via the StorageVolume or LogicalDisk class itself.
For example, data redundancy reported in the Setting associated to the storage element may be
different from the data redundancy reported in the storage element itself because, for some reason, a
copy of the data is no longer available.

StorageVolumes or LogicalDisks are created from StoragePools via a StorageConfigurationService’s
CreateOrModifyElementFromStoragePool( ) method. A volume create operation may take some period
of time, however, and a Client needs to be aware that the operation is not complete until the
StorageVoume.OperationalStatus is OK. A Client may also follow the progress of the operation using
the ConcreteJob class and its properties.

8.2.8.10.2 Health and Fault Management Considerations
The extrinsic methods should produce Errors instead of some of the failure return codes. CIM Errors
can include parameter errors, hardware efforts, time-out errors, and so on. See 8.2.1.6, "Health
Package" for details.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 949



 

EXPERIMENTAL

The standard messages specific to this profile are listed in Table 1005. See 6.5, "Standard Messages"
for a list and description of all standard messages.

EXPERIMENTAL

8.2.8.10.3 Cascading Considerations
Not defined in this standard.

8.2.8.10.4 Supported Subprofiles and Packages.
Not defined in this standard.

8.2.8.10.5 Methods of this Profile

8.2.8.10.5.1 Extrinsic Methods on StorageCapabilities
CreateSetting
CreateSetting is a method in StorageCapabilities and is invoked in the context of a specific
StorageCapabilities instance.

uint32 CreateSetting(
[In] uint16 SettingType,
[Out] CIM_StorageSetting REF NewSetting)

This method on the StorageCapabilities class is used to create a StorageSetting using the
StorageCapabilities as a template. The purpose of this method is to create a StorageSetting that is
associated directly with the StorageCapabilities on which this method is invoked and has properties set
in line with those StorageCapabilities. The contract defined by the StorageCapabilities shall constrain
the StorageSetting used as the Goal.

The StorageCapabilities associated with the StoragePool defines what type of storage can be
allocated.  The client shall determine what subset of the parent StoragePool capabilities to use, albeit a
Primordial StoragePool or a concrete StoragePool. The StorageSetting provided to the StoragePool
creation method defines what measure of capabilities are desired for the following storage allocation.
First, the client retrieves a StorageSetting or creates and optionally modifies an existing StorageSetting.
If no satisfactory StorageSetting exists, then the client uses this method to create a StorageSetting.

The client has the option to have a StorageSetting generated with the default capabilities from the
StorageCapabilities. If a '2' (“Default”) is passed for the Setting Type parameter, the Max, Goal, and Min
setting attributes are set to the default values of the parent StorageCapabilities. Otherwise, with using
‘3’ (“Goal”), the new StorageSetting attributes are set to the related attributes of the parent
StorageCapabilities, e.g., Min to Min and Max to Max. If the StorageSetting requested already exists,

Table 1005: Standard Messages for Block Services Package

Message ID Message Name
MP17 Invalid Property Combination during instance creation or modifi-

cation
DRM19 Stolen Capacity
DRM20 Invalid extent passed
DRM21 Invalid deletion attempted
950



 Block Services Package
associated to the StorageCapabilities, then the method returns this existing StorageSetting. This type of
StorageSetting, newly created or already existing, is associated to the StorageCapabilities via the
GeneratedStorageSetting association. 

Only a StorageSetting created in this manner may be modified or deleted by the client. The client uses
the NewSetting parameter to set the new StorageSetting to the values desired (using ModifyInstance or
SetProperties intrinsic methods). 

The implementation shall not generate a Setting whose values fall outside of the range of the parent
Capabilities.

The StorageSetting can not be used to create storage that is more capable than the parent
StorageCapabilities. The ModifyInstance and SetProperties CIM Operations shall fail when the Setting
has a Max value greater (or a Min value less) than the parent StorageCapabilities. 

If the storage device supports hints, then the new StorageSetting contains the default hint values for the
parent StorageCapabilities. The client can use these values as a starting point for hint modification
(using intrinsic methods). 

StorageSetting instances associated with StorageVolume or Logical Disk shall not be modified or
deleted directly. 

Once this type of StorageSetting is used as the Goal for the creation or modification of a StoragePool,
the Goal setting properties and are copied into a new StorageCapabilities instance. The new
StorageCapabilities instance is associated to the newly created or modified StoragePool. If the
StoragePool was modified, then the previous StorageCapabilities shall be removed. The new
StorageCapabilities instance, associated with the new StoragePool should describe the parameters
used in its creation or modification. 

Once this type of StorageSetting is used as the Goal for the creation or modification of a
StorageVolume or LogicaDisk, the Goal StorageSetting shall be duplicated, with the exception of the
instance keys. The duplicate Setting is associated to the newly created or modified StoragePool,
StorageVolume, or LogicalDisk. The generated Setting may be removed thereafter. The new
StorageSetting instance, associated with the new storage element, should describe the parameters
used in its creation or modification.

The following set of methods can be implemented to allow a client to be more specific about the
configuration of the stripe length, stripe depth, and parity in a Setting. Thereby the client can get
specific RAID levels or quality of service characteristics. 

The stripe length, stripe depth, and party extrinsic methods may be supported. These methods may be
supported in the content of one capabilities and not in another within the same implementation.
Sometimes the block striping in done as part of the creation of the concrete Pool and sometimes the
block striping is done as part of the creation of a StorageVolume or LogicalDisk. There may be
implementations that allow striping to be done in both steps.

StorageSettingHints may be used to by a client to imply what striping characteristics are desired,
amongst other characteristics. The striping and parity methods and properties may be used in
combination with hints. However, the hints express a ranking of preference. While the striping and
parity methods and properties are much more explicit. When the hints and the stripe and parity Settings
properties are used in combination, the striping and parity properties of the Setting are also considered
hints and the implementation may still create or modify the Pool or storage element using its best effort. 

This specification does not define how the ranking of hints relates to the exact nature of the Pool or
storage element created or the nature of their modification. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 951



 

Getting Stripe Length
uint32 GetSupportedStripeLengths(

[Out] unint16 StripeLengths[])

This method is used to report discrete ExtentStripeLengths for Volume, LogicalDisk, or Pool creation.
Some systems may only support discrete stripe lengths. 

uint32 GetSupportedStripeLengthRange(
[Out] uint16 MinimumStripeLength,
[Out] uint16 MaximumStripeLength,
[Out] uint32 StripeLengthDivisor)

This method is used to report a range of possible ExtentStripeLengths for Volume, Logical, or Pool
creation. Some systems may only support a range of sizes. This method reports the minimum and
maximum sizes in bytes and a divisor that defines what the candidate size shall be a multiple of.

Either method may be supported. Return codes:

• 0, “Method completed OK”, means success.

• 1, “Method not supported”,

• 2, “Choices not available for this Capability”. Although the method may be supported by
Capabilities in this implementation, it not supported for this Capability. Usually, this return code
indicates that the stripe length has already been set in the parent Pool and may not be changed. 

• 3, “Use [GetSupportedStripeLengths|GetSupportStripeLengthRange] instead”. This return code
tells the client that the stripe method is not supported, but the other one is supported.

Getting Stripe Depth
uint32 GetSupportedStripeDepths(

[Out] uint64 StripeDepths)

This method is used to report discrete UserDataStripeDepths for Volume, LogicalDisk, and Pool
creation. Some systems may only support discrete depth byte sizes.

uint32 GetSupportStripeDepthRange(
[Out] uint64 MinimumStripeDepth,
[Out] uint64 MaximumStripeDepth,
[Out] uint64 StripeDepthDivisor

This method is used to report a range of possible UserDataStripeDepths for Volume, Logical, or Pool
creation. Some system may only support a range of sizes. This method reports the minimum and
maximum sizes in bytes and a divisor that defines what the candidate size shall be a multiple of.

Either method may be supported. Return codes:

• 0, “Method completed OK”, means success.

• 1, “Method not supported”,

• 2, “Choices not available for this Capability”. Although the method may be supported by a
Capabilities in this implementation, it not supported for this Capability. Usually, this return code
indicates that the stripe depth has already been set in the parent Pool and may not be changed. 

• 3, “Use [GetSupportedStripeDepths | GetSupportStripeDepthRange] instead”. This return code
tells the client that the stripe method is not supported, but the other one is supported.

Getting Parity
uint32 GetSupportedParityLayouts(

[Out] ParityLayout[])

This method is used to return the type of parity, non-rotated or rotated, that the capabilities supports. 
952



 Block Services Package
Return codes:

• 0, “Method completed OK” means success

• 1, “Method not supported”

• 2. “Choice not available for this Capability”. Although the method may be supported by Capabilities
in this implementation, it not supported for this Capability. Usually, this return code indicates that
the parity has already been set in the parent Pool and may not be changed. 

8.2.8.10.5.2 Intrinsic Methods on StorageSetting
In addition to this extrinsic, the following Intrinsic write methods are supported on StorageSetting:

• DeleteInstance;

• ModifyInstance

8.2.8.10.5.3 Extrinsic Methods on StorageConfiguration
Element Naming
Several of the following methods allow for a client to specify a name for the storage element that is
being create or to change the name of an storage element being modified.

If the implementation supports the naming of storage elements, then the ElementName property reports
the name assigned to the storage element. If the implementation creates a name even when the client
does not specify one, then this element contains that system defined name. If the implementation does
not create a name for the storage element when the client does not specify a name, then this property
should be null. If the implementation does not support the naming of elements and the client provides a
value in the ElementName parameter of one of the following methods that specify an ElementName
parameter, then the implementation shall reject the method call.

CreateOrModifyStoragePool
uint32 CreateOrModifyStoragePool(
[In] string ElementName
[Out] CIM_ConcreteJob ref Job,
[In] CIM_StorageSetting ref Goal,
[In,out] Uint64 Size,
[In] string InPools[ ],
[In] string InExtents[ ],
[Out] CIM_StoragePool ref Pool);

This method is used to create a Pool from either a source pool or a list of storage extents. Any required
associations (such as HostedStoragePool) are created in addition to the instance of Storage Pool. The
parameters are as follows:

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that
Job is returned through this parameter. 

• Goal: This is the Service Level that the Pool is expected to provide. This may be a null value in
which case a default setting is used.

• Size: As an input this is the desired size of the pool. If it is not possible to create a pool of the
desired size, a return code of “Size not supported” is returned with size set to the nearest
supported size.

• InPools[]: This is an array of strings containing Object references (see 4.11.5 of CIM Operations for
format) to source Storage Pools. At least one of the Pool references shall be a primordial Storage
Pool.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 953



 

• InExtents[]: This is an array of strings containing Object references (see 4.11.5 of CIM Operations
for format) to source Storage Extents. Note that an array of source Pools or an array of source
Extents or both can be defined. See “Extent Conservation” on page 945 in 8.2.8.10.1.

• TheElement: If the method completes without creating a Job, then the TheElement is the storage
element that is created. Otherwise, TheElement may or may not be Null. When the TheElement is
NULL, then storage element that is created can be determined by using the Job model.

The CreateOrModifyStoragePool method and the Primordial Pool
A client may pass a reference to a primordial Pool in order to be explicit from which primordial Pool a
concrete Pool needs to be created. If a no Pool references are passed in the creation of a Volume or
LogicalDisk, then the implementation shall determine the parent Pool based on the Goal and the Size. 

A client may also pass a reference to a primordial Pool to express from what reserve to draw capacity if
the capacity needed is greater than the total capacity represented by the input Pools and Extents. Any
capacity request, using the Size parameter, not satisfied by the referenced Pools and Extents is drawn
from the primordial Pool referenced. If no primordial Pool reference is passed and the capacity
requested is greater than the referenced Pools and Extents, then the method shall fail with the “Size not
supported” return code. The use of a primordial Pool reference in this manner is not recommended, but
the behavior is retained to maintain backward compatibility. It is recommended that the client align the
size requested to what can be satisfied by the concrete Pools and Extents referenced.

A client should pass only concrete Pools when creating a Pool from several Pools.

DeleteStoragePool
 Uint32 DeleteStoragePool(

[Out] CIM_ConcreteJob ref Job,
[in] CIM_StoragePool ref Pool);

This method is provided to allow a client to delete a previously created storage pool. All associations to
the deleted StoragePool are also removed as part of the action. In addition, the
RemainingManagedStorage of the associated parent primordial Pool will change accordingly.

Note: This method will be denied (“Failed”) if there are any AllocatedFromStoragePool associations
where the deleted pool is the Dependent.

CreateOrModifyElementFromStoragePool
 uint32 CreateOrModifyElementFromStoragePool (
[In, 
string ElementName 
Values {“StorageVolume”, “StorageExtent”, “LogicalDisk”},
 ValueMap{”2”,”3”, “4”}]
Uint16 ElementType;
[Out] CIM_ConcreteJob ref Job,
[In] CIM_StorageSetting ref Goal,
[In, Out] Uint64 Size,
[In] CIM_StoragePool ref InPool,
[In, Out] CIM_LogicalElement ref TheElement );

This method allows an Element of a type specified by the enumeration ElementType to be created from
the input Storage Pool. The parameters are as follows:

• ElementType: This enumeration specifies what type of object to create.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that
Job is returned through this parameter. See 8.2.1.7, "Job Control Subprofile"
954



 Block Services Package
• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a
subset of the Capabilities available from the parent Storage Pool. Goal may be a null value, in
which case the default Setting for the Pool is used.

• Size: As an input this is the desired size of the element. If it is not possible to create a volume of
the desired size, a return code of “Size not supported” is returned with size set to the nearest
supported size.

• InPool: This shall contain the reference to the source Storage Pool.

• TheElement: 

• As Input: If the TheElement parameter is not null, then this method shall attempt to modify the
reference element. Otherwise, then this method shall attempted to create a new element.

• As Output: If the method completes without creating a Job, then the TheElement is the
storage element that is created. Otherwise, TheElement may be NULL. When the
TheElement is NULL, then storage element that is created can be determined by using the
Job model.

CreateOrModifyElementFromElements
unint32 CreateOrModifyElementFromElements(
[In,
Values {“StoragePool”, “StorageVolume”, “StorageExtent”, “LogicalDisk”},
 ValueMap{”2”,”3”, “4”, “5”}] 
unit16 ElementType,
[In, Out] CIM_ConcreteJob REF Job,
[In] CIM_ManagedElement REF Goal,
[In, Out] unit64 Size,
[In] CIM_StorageExtent REF InElements[],
[In, Out] CIM_LogicalElement REF TheElement);

The parameters are as follows:

• ElementType: This enumeration specifies what type of object to create.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that
Job is returned through this parameter. 8.2.1.7, "Job Control Subprofile"

• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a
subset of the Capabilities available from the parent Storage Pool. Goal may be a null value, in
which case the default Setting for the Pool is used.

• Size: As an input this is the desired size of the element. If it is not possible to create a volume of
the desired size, a return code of “Size not supported” is returned with size set to the nearest
supported size.

• InElements: References to the Extents to be used for the storage element creation or modification. 

• TheElement: 

• As Input: If the TheElement parameter is not null, then this method shall attempt to modify the
reference element. Otherwise, then this method shall attempted to create a new element.

• As Output: If the method completes without creating a Job, then the TheElement is the
storage element that is created. Otherwise, TheElement may be NULL. When the
TheElement is NULL, then storage element that is created can be determined by using the
Job model.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 955



 

ReturnToStoragePool
 Uint32 ReturnToStoragePool (

[Out] CIM_ConcreteJob ref Job,
[In] CIM_LogicalElement ref Element);

This method is provided to allow a client to delete a previously created element such as a Storage
Volume.

Return Values
Each method has this set of defined return codes:

 ValueMap {“0”, “1”, “2”, “3”, “4”, “5”, “..”, “0x1000”,”0x1001”},

 Values {“Job completed with no error”, “Not Supported”, “Unknown”, “Timeout”, 
“Failed”, 
“Invalid Parameter”, “DMTF Reserved”, “Method parameters checked - job 
started”, 
“Size not supported”}]

• If the method completes immediately with no errors (and with no asynchronous execution
required), “Job completed with no error” is returned.

• If the method parameters have been checked and the method is being executed asynchronously,
“Method parameters checked - job started” is returned.

• If, for a Create/Modify method, the requested size is not supported then “Size not supported” is
returned and the Size parameter is set to the nearest supported size.

• If one of the method parameters is incorrect (for instance invalid object paths), then “Invalid
Parameter” is returned.

• “Timeout” or “Failed” may be returned if the provider has problems accessing the hardware or for
other implementation specific reasons.

• A vendor shall not extend the Value map to express vendor specific error situations not catered for
by the standard messages.

8.2.8.10.5.4 Extrinsic Methods on StoragePool
All the following methods return sizes in units of bytes.

GetSupportedSizes
unit32 GetSupportedSizes(

[In] uint16 ElementType,
[In] CIM_StorageSetting ref Goal,
[Out] uint64 Sizes[ ]);

• ElementType: This enumeration specifies what type of object to create.

• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a
subset of the Capabilities available from the parent Storage Pool. Goal may be a null value, in
which case the default Setting for the Pool is used.

• Sizes: An array containing all the possible sizes an element of type can take on either as a
creation or modification operation. If a possible value would be repeated in the array, then that
value shall be repeated. The sum of the sizes is the total remaining space for that goal.

This method is used to determine the possible sizes of child elements, ex. StoragePool, StorageVolume
or LogicalDisk, that can be created or modified using capacity from the StoragePool. The method is
used for storage system where discrete sizes are possible. This method is useful if the possible sizes
do not differ from a fixed amount. One of the reported sizes can be used directly along with the Goal in
956



 Block Services Package
the creation of a StoragePool, StorageVolume, or LogicalDisk. The sizes reported may not differ from
each other by a fixed size. 

GetSupportedSizeRange

unint32 GetSupportedSizeRange(
[In] uint16 ElementType,
[In] CIM_StorageSetting ref Goal,
[Out] uint64 MinimumVolumeSize,
[Out] uint64 MaximumVolumeSize,
[Out] uint64 VolumeSizeDivisor);

• ElementType: This enumeration specifies what type of object to create.

• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a
subset of the Capabilities available from the parent Storage Pool. Goal may be a null value, in
which case the default Setting for the Pool is used.

• MinimumVolumeSize: The minimum size an element can take on either as a creation of
modification operation.

• MaximumVolumeSize: The maximum size an element can take on either as a creation of
modification operation

• VolumeSizeDivisor: The value used to determine what the sizes between the MinimumVolumeSize
and the MaximumVolumeSize numbers.

This method is used to determine the possible sizes of child element, ex. StoragePool, LogicalDisk, and
StorageVolume, that can be created or modified using capacity drawn from the StoragePool. The out
parameters tell the minimum element size, maximum element size, and possible sizes in that range.
This method can prove useful when the number of possible sizes is so voluminous that reporting each
discrete size would be impractical.

Both or either method may be supported by a storage subsystem, either as a decision made at
implementation time or varies depending on the state of the StoragePool. For example, when a
StoragePool is first created that allows for possible sizes to be in 1024 byte blocks, then the
GetSupportedSizeRange method would be better to report the possible sizes. This example
StoragePool does not relocate blocks to avoid fragmentation of the capacity. As StorageVolumes or
LogicalDisks are drawn from and returned to the StoragePool, the capacity becomes fragmented. In
this case, the GetSupportedSizes method is better in reporting the non-continuous regions of capacity
that may be used for element creation. Another example, there are some storage system that can only
allocate the StorageVolume or Logical Disk in whole disks and these disks need not be of a uniform
size. In this case, the storage system would only support the GetSupportedSizes method. 

However, both methods may be supported at the same time and report different values when
discontiguous and contiguous capacity is present in the Pool. In this case, the GetSupportSizes method
would be used to report the fragments of available capacity. The remaining contiguous capacity is
reported as the largest element size possible. The GetSupportSizeRange would be used to report what
elements sizes may be drawn from the contiguous capacity. 

If there is no notion of continuity as being a stable state of the system, as in capacity is continuously
and automatically being defragmented, then only support of the GetSupportSizeRange method is
warranted.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 957



 

Return Values

Each method has this set of return codes:

ValueMap {"0", "1", "2"},

Values {"Method completed OK", "Method not supported", "Use <the other method 
name> instead"} ]

If the above methods did not complete successfully, then either the method is not supported or it is
suggested to use the other method instead. The GetSupportSizes method can notify the SMI-S client
that it should use the GetSupportSizeRanges instead or the GetSupportedSizeRange method can
notify the SMI-S client that it should use the GetSupportedSizes method instead.

GetAvailableExtents

unit32 GetAvailableExtents(
[In] CIM_StorageSetting REF Goal,
[Out] CIM_StorageExtent REF AvailableExtents[ ]);

This method is used to retrieve that component Extents of the Pool that do not form that basis for
Volumes and LogicalDisks allocated from the Pool - the available Extents - and can support the passed
Goal parameter. If a NULL is passed for a Goal, then all the available, component Extents of the Pool
are returned. 

This method is designed as a companion for the CreateOrModifyElementFromElements method. A
client may fetch the Pool’s available, component Extents and attempt to call
CreateOrModifyElementFromElement, or the client may use this method and have the agent provide
the available Extents. However, note it is possible that even though a extent may appear to be available
from the agent’s model, the implementation may not allow the extent to be used for vendor specific
reasons.

Return Values
Each method has this set of defined return codes:

 ValueMap {“0”, “1”, “2”, “3”, “4”, “5”},

 Values {“Job completed with no error”, “Not Supported”, “Unknown”,
“Timeout”, “Failed”, “Invalid Parameter”}]

If the method completes immediately with no errors (and with no asynchronous execution required),
“Job completed with no error” is returned.

If the implementation does not support the method, then a “Not Supported” return code is returned.

If one of the method parameters is incorrect (for instance invalid object paths), then “Invalid Parameter”
is returned.

“Timeout” or “Failed” may be returned if the provider has problems accessing the hardware or for other
implementation specific reasons.
958



 Block Services Package
8.2.8.10.6 Client Considerations and Recipes
Representative Instance Diagram
Figure 149: "Representative Block Service Instance Diagram" shows the classes and associations
needed to model a single Pool with two StorageVolumes

Goals and Settings
A implementation may persist the properties of the Setting as they were when the Setting was used to
perform a configuration operation. However, the implementation may also construct the Setting given
the current quality of service provided. An implementation of this package should retain the properties
of the Setting as they were when the Setting was used as a Goal. For example, a client requests a
package redundancy 2, the implementation is restarted and therefore can not retrieve, the
implementation sets this value to the current value of 1. Unless the client maintained the state of Setting
as well, it will not be able to detect the different between the initial Setting state and the current state for
package redundancy, for example, that is in the StorageVolume or LogicalDisk. 

If a client specifies a goal asking for no single point of failure, the implementation shall return an error if
the system is not capable of supporting that goal. However, if a client specifies that single points of
failure are allowed, the implementation may return storage that has potential single points of failure or it
may return storage that has no single points of failure. In other words, the system may return a storage
that is more capable than what the client has asked for.

A client may request more data redundancy and package redundancy than what is required for the
particular RAID level. An implementation may provide more of these redundancies than is required for
its RAID levels. If allowed, the client request of additional data redundancy means that additional copies

Figure 149: Representative Block Service Instance Diagram

SystemDevice

Single controller

ComputerSystem

Pool owned by one controller,
redundant access through the
other

StoragePool

HostedStoragePool

AllocatedFromStoragePool

Current state of volume

StorageSetting

Element
Setting

Element
Capabilities

Optional extention to publish
'hints' from the client for
 optimization

StorageSettingWithHints

SystemDevice

HostedService

ElementCapabilities

Describes range of 
capabilities of the Service

StorageCapabilities

Element
Setting

AllocatedFromStoragePool

Describes range of 
capabilities of the Pool

StorageCapabilities

StorageConfigurationService

LUN

StorageVolume

StorageVolume

LUN
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 959



 

of the data will be made. If allowed, the client request of additional package redundancy means that
additional drives, for example, will be assigned to this storage element. The redundant package may be
overassigned, that is assign as extra packages for more than one storage element, or they may be
dedicated. See 8.2.8.15, "Disk Sparing Subprofile" for details on modeling the sparing functionality
itself. In other words, these Goal properties can be used to assign additional copies of the data and
redundancy at creation or modification time of a StoragePool, StorageVolume, or LogicalDisk.

Representative Storage Pool Creation Example.
Figure 150: "Pool Creation, Initial State" shows the initial state of the block storage system - a single
‘primordial pool that advertises its capabilities. One can make use of the GetSupportedSizes() and
GetSupportedSizeRange() methods to determine what sizes of pools can be created from the
Primordial Pool, given a goal StorageSetting. Alternatively, if the Pool is to be created from Extents,
then one can make use of the GetAvailableExtents() to obtain a list of available component Extents of
the Pool that also match the Goal. 

Next, (Figure 151: "Pool Creation - Step 2") the client uses the CreateSetting method on the
StorageCapabilities instance to create an instance of a StorageSetting. This Setting object can be
altered as desired. If the block storage system supports StorageSettingWithHints, an instance of this
subclass is created rather than the StorageSetting superclass. Alternatively, the client can use one of
the predefined StorageSetting instances. Pre-existing Settings can be located by using the
StorageSettingsAssociatedToCapabilities association, for factory or pre-defined settings, or by using
the StorageSettingsGeneratedFromCapabilities class, where the StorageSetting.ChageableType = “2”
(“Changeable - Persistent”); these Settings have been generated but were modified to persist.

Figure 150: Pool Creation, Initial State

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

HostedPool

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()
960



 Block Services Package
  

Once this generated Setting as been altered as required or alternatively a pre-defined Setting is used,
the Goal Setting is passed as an argument to the CreateOrModifyStoragePool method in the
StorageConfigurationService. (Shown in Figure 152: "Pool Creation - Step 3"). Alternatively, the client
can create the Pool by passing the Goal, the desired component Extents, and a “Pool” ElementType to
CreateOrModifyElementFromElement. If a Size is passed as well, the size shall be equal to or less than
the consumable size (in blocks) of the desired, component, Extents. The list of available Extents is best
retrieved using the GetAvailableExtents() method. If the Size is less than the desired Extents by a size
less than smallest extent passed, then one of the Extents is partitioned into the used and free parts.
See “Extent Conservation” on page 945 in 8.2.8.10.1.)

Figure 151: Pool Creation - Step 2

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

HostedService

StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

HostedPool

ElementCapabilities
StorageCapabilities

CreateSetting()

FixedSetting:
StorageSetting

StorageSettingAssociatedToCapabilities
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 961



 

.

The Pool is then created. If the generated Setting was used as the Goal, then this ‘temporary’
StorageSetting is replaced with an equivalent object linked to the new pool with ElementCapabilities.
(Shown in Figure 153: "Pool Creation - Step 4").

Figure 152: Pool Creation - Step 3

Figure 153: Pool Creation - Step 4

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool(NewSetting | FixedSetting)
CreateOrModifyElementFromElements(NewSetting | FixedSetting)

HostedService

NewSetting:
StorageSetting

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

HostedPool

StorageSettingGeneratedFromCapabilities

FixedSetting:
StorageSetting

StorageSettingAssociatedToCapabilities

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

NewPool:
StoragePool ElementCapabilities

NewCapability:
StorageCapabilities

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvaillableExtents()

HostedPool

AllocatedFromStoragePool
962



 Block Services Package
Representative example of Storage Volume or Logical Disk Creation
Similarly to with Storage Pools, a client chooses a suitable source Pool by referencing the
StorageCapabilities objects and using the GetSupportedSizes() and GetSupportSizeRange() methods,
given a goal Setting. Alternatively, a client can retrieve the available, component Extents of the Pool,
given a goal StorageSetting, with the GetAvailableExtents() methods. The client may either create a
Volume or LogicalDisk by specifying a size, source Extents, or a combination. This is indicated in
Figure 154: "Volume Creation - Initial State"

Once a suitable pool is found, a StorageSetting instance can be created using the CreateSetting
method on the StorageCapabilities object (see Figure 154: "Volume Creation - Initial State"). If a
suitable StorageSetting already exists it could be used instead. Pre-existing Settings can be located by
using the StorageSettingsAssociatedToCapabilities association, for factory or pre-defined settings, or
by using the StorageSettingsGeneratedFromCapabilities where the StorageSetting.ChageableType =
“2” (“Changeable - Persistent”); these Settings have been generated but were modified to persist. This
is illustrated in Figure 155: "Volume Creation - Step 1". Another Setting already associated to a storage
element can be used as a goal, but it shall not be modifiable. 

Figure 154: Volume Creation - Initial State

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

HostedService

StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

HostedPool

ElementCapabilities StorageCapabilities

CreateSetting()
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 963



 

If a new Setting is created, it is linked back to the originating StorageCapabilities object until it is used
as an argument in a StorageConfiguration method. (see Figure 156: "Volume Creation - Step 2").
Alternatively, the client can create the Volume or LogicalDisk, for example, by passing the Goal, the
desired component Extents, and a ElementType to CreateOrModifyElementFromElement. If a Size is
passed as well, the size shall be equal to or less than the consumable size (in blocks) of the desired,
component, Extents. The list of available Extents is best retrieved using the GetAvailableExtents()
method. If the Size is less than the desired Extents by a size less than smallest extent passed, then one
of the Extents is partitioned into the used and free parts. See “Extent Conservation” on page 945 in
8.2.8.10.1.

Figure 155: Volume Creation - Step 1

ComputerSystem

dedicated[x] 

StorageCapabilities

CreateSetting()
ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

HostedPool

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

FixedSetting:
StorageSetting

StorageSettingsAssociatedToCapabilities
964



 Block Services Package
Once the Volume has been created, the new or existing Setting is associated to the new storage
element using the ElementSettingData association. The new Setting and the Goal setting may not be
the very same instance. The client can not assume that the instances are the same instance. (see
Figure 157: "Volume Creation - Step 3")

Figure 156: Volume Creation - Step 2

ComputerSystem

dedicated[x] 

StorageConfigurationService

CreateOrModifyElementFromStoragePool(NewSetting | FixedSetting)
CreateOrModifyElementFromElements(NewSetting | FixedSetting)

HostedService

StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

HostedPool

ElementCapabilities

StorageCapabilities

CreateSetting()

NewSetting:
StorageSetting

StorageSettingsGeneratedFromCapabilities

FixedSetting:
StorageSetting

StorageSettingsAssociatedToCapabilities
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 965



 

8.2.8.10.6.1 Summarize the Pools in a block storage system and verify the capacity reported.
// DESCRIPTION 

//  This recipe retrieves and validates the total, remaining and consumed 

// storagepool space on a block server.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1.  The object name for the device, CIM_ComputerSystem, of interested has

//     previously been identified and defined in the $BlockServer variable.

// Step 1. Retrieve the storage pools on the device.

$Pools[] = Associators($BlockServer->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

“GroupComponent”,

“PartComponent”,

false,

false,

{“TotalManagedSpace”, “RemainingManagedSpace”})

// Step 2. Summarize the space consumed and available in each storage pool.

for (#i in $Pools[]) {

Figure 157: Volume Creation - Step 3

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

HostedService

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

GetAvailableExtents()

HostedPool

ElementCapabilities
StorageCapabilities

CreateSetting()

NewSetting:
StorageSetting

NewVolume:
StorageVolume

AllocatedFromStoragePool

ElementSettingData
966



 Block Services Package
    #totalSpace = $Pools[#i].TotalManagedSpace

    #remainingSpace = $Pools[#i].RemainingManagedSpace

    $Pool-> = $Pools[#i].getObjectPath()

    // Step 3. Retrieve the space consumed by each element allocated from the

    // storage pool.

    $Allocs[] = References($Pool->,

    “CIM_AllocatedFromStoragePool”,

    “Antecedent”,

    false,

    false,

    {“SpaceConsumed”})

    #allocSpace = 0

    for (#j in $Allocs[]) {

#allocSpace = #allocSpace + $Allocs[#j].SpaceConsumed

    }

    if (#totalSpace != #allocSpace + #remainingSpace) {

<ERROR! Device does not correctly represent capacity>

    }

}

8.2.8.10.6.2 Create Storage Pool and Storage Element on Block Server (e.g., Array or Volume Manger)
// DESCRIPTION

// The goal of this recipe is to create a storage element with the 

// maximum capabilities of the block server.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2.The settings for the new Storage Pool and Storage Volume or Logical Disk have 

// following size:

// #RequestedSize     = 10 * 1024 * 1024 * 1024 // 10 GB

// 3.#StorageElementClass is set to the class name of the element being created

// like CIM_StorageVolume or CIM_LogicalDisk.

// 4.   #ElementType is set to the element to created

// See CreateOrModifyElementFromStoragePool.ElementType

// Function GetMostCapable 

// Get the capabilities that have the maximum DataRedundancy and 
PackageRedundancy

// Input:

// An array of StorageCapabilities instances associated to the StoragePool.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 967



 

sub REF GetMostCapable($CapabilitiesOffered[])

{

<Sort the $CapabilitiesOffered[] so that the capability with the 

 greatest DataRedundanctMax, PackageRedundancyMax, and 

 NoSinglePointOfFailure in the last element in the array. 

 NoSinglePointOfFailure == true is greater than 

 NoSinglePointOfFailure == false

>

return $CapabilitiesOffered[$CapabilitiesOffered.length-1]

}

// Function PoolSizeAvailable 

// A return value of 0 means that no size is available

sub unit32 PoolSizeAvailable($PoolToDrawFrom->, 

$StorageSetting->, #RequestedSize, #RequestedElementType)

#ResultSize = 0

%InArguments[“ElementType”] = #RequestedElementType

%InArguments[“Goal”] = $StorageSetting->

#MethodReturn = InvokeMethod(

$PoolToDrawFrom->, 

“GetSupportedSizes”, 

%InArguments, 

%OutArguments)

if(#MethodReturn == 0) 

{ 

         // this method is supported

#SupportedSizes[] = %OutArguments[“Sizes”]

#i = 0

#max = #SupportedSizes[].length

while(#i < #max && #RequestedSize > #ResultSize) 

{

#ResultSize = #SupportedSizes[#i++]

}

if(#RequestedSize > #ResultSize) 

{

// we did not find a size

#ResultSize = 0

}

}

     else if (#MethodReturn == 2)

{ // call GetSupportedSizeRange

#MethodReturn = 

InvokeMethod(

$PooltoDrawFrom->, 

“GetSupportedSizeRange”,
968



 Block Services Package
%InArguments, 

%OutArguments)

if(#MethodReturn != 1 && #MethodReturn != 2)

{

// this method is supported

#MaximumVolumeSize = %OutArguments[“MaximumVolumeSize”]

#MinimumVolumeSize = %OutArguments[“MinimumVolumeSize”]

#VolumeSizeDivisor = %OutArguments[“VolumeSizeDivisor”]

if(#RequestedSize >= #MinimumVolumeSize &&

   #RequestedSize <= #MaximumVolumeSize) 

{

// Rounding up to next Size, which is dividable by Divisor

#ResultSize = (#RequestedSize  + (#VolumeSizeDivisor - 

(#RequestedSize MOD #VolumeSizeDivisor)))

}

}

}

return #ResultSize

}

// MAIN

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage 

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

    $Services->[] = AssociatorNames($BlockServer->,

    “CIM_HostedService”,

    “CIM_StorageConfigurationService”,

    null,

    null)

    // StorageConfigurationService and HostedService may not be implemented

    // in the SMI Agent.

    if ($Services->[] == null) {

<EXIT: Storage Configuration is not supported.>

    }

} catch (CIMException $Exception) {

    // StorageConfigurationService and/or HostedService may not be included in

    // the model implemented at all if Storage Configuration is not supported.

    if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<EXIT: Storage Configuration is not supported.>

    }

}

// There should be only one storage configuration service

// Associated with the system

$StorageConfigurationService-> = $Services->[0] 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 969



 

$ServiceCapabilities[] = Associators(

$StorageConfigurationService->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null,

null,

false,

false,

null)

// There should be only one StorageConfigurationCapabilities instance

#SupportsPoolCreation = contains( 

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedSynchronousActions[]) ||

contains(

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[]))

#PoolCreationProducesJob = contains( 

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsyncronousActions[])

#SupportsElementCreation1 = contains( 

5, // Storage Element Creation

$ServiceCapabilities[0].SupportedSynchronousActions[])

#SupportsElementCreation2 = contains( 

3, // StorageElementCreation

$ServiceCapabilities[0].SupportedStorageElementFeatures[])

#ElementCreationProducesJob = contains( 

5, // Storage Element Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[])

// If a storage element can not be created and that storage element is 

// neither created synchronously or asynchronously, then fail the test

if (!#SupportedElementCreation2 &&    

!(#SupportedElementCreation1 || #ElementCreationProducesJob)) 

{

<EXIT: The StoragePool can be created, but the 

StorageElement creation is not supported.>

}

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find 

// all the StoragePools from which storage elements might be created.

$StoragePools[] = Associators(

$BlockServer->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null, 

null,

false, 
970



 Block Services Package
false, 

{“InstanceID”, “Primordial”})

// Step 3. For each StoragePool, follow the CIM_ElementCapabilities 

// asociation to the StorageCapabilities of that pool. Compare the

// StorageCapabilities to the desired StorageSetting and find the 

// best match. 

$PoolToDrawFrom-> = null

for #i in $StoragePools[] 

{

// If we can not create Storage Pool, then find a ‘concrete’

// Storage Pool from which to create a Storage Element

#UsePrimordial = false

if(#SupportsPoolCreation) 

{

#UsePrimordial = true

#RequestedElementType = 2 // StoragePool

}

else

{

#RequestedElementType = #ElementType

}

if ($StoragePools[#i].Primodial == #UsePrimordial)

{

$CapabilitiesOffered[] = Associators(

$StoragePools[#i].getObjectPath(),

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = &GetMostCapable($CapabilitiesOffered[]) 

$PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()

// Step 4. Determine if the selected pool has enough space for 

// another pool.

// If the block server supports hints, then the Storage Setting returned 

// will contain default hints

// Create a setting

%InArguments[“SettingType”] = 3 // Goal

#ReturnValue = InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(),

“CreateSetting”,

%InArguments,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 971



 

%OutArguments)

if (#ReturnValue != 0 || null) 

{

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

// Determine the possible size, closest to the requested size

#PossibleSize = &PoolSizeAvailable(

$PoolToDrawFrom->,

$GeneratedStorageSetting->,

#RequestedSize

#RequestedElementType)

if(0 != #PossibleSize) // we found a size close to #RequestedSize

{ }

break;

}

else

{

// Cause failure if there are no more candidate Pools

$PoolToDrawFrom-> = NULL;

}

}

}

if ($PoolToDrawFrom-> == NULL) 

{

<ERROR! Unable to find a suitable pool from which to create the storage 
element >

} 

// Step 5. Register for indications on configuration jobs

If(#PoolCreationProducesJob || #ElementCreateProducesJob)

{

// ‘17’ (“Completed”) ‘2’ (“OK”) 

#Filter1 = “SELECT * FROM CIM_InstModification 

   WHERE SourceInstance ISA CIM_ConcreteJob 

     AND ANY SourceInstance.OperationalStatus[*] = 17 

 AND ANY SourceInstance.OperationalStatus[*] = 2 “

@{Determine if Indications already exist or have to be 
created}&createIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”) 

#Filter2 = “SELECT * FROM CIM_InstModification 

   WHERE SourceInstance ISA CIM_ConcreteJob 

     AND ANY SourceInstance.OperationalStatus[*] = 17 

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be 
created}&createIndication(#Filter2)
972



 Block Services Package
}

// Step 6. Create the Storage Pool 

if(#SupportsPoolCreation) 

{

%InArguments[“ElementName”] = NULL// we do not care what 

// the name is

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = #PossibleSize

%InArguments[“InExtents”] = null 

%InArguments[“Pool”] = null

%InArguments[“InPools”] = $PoolToDrawFrom->

#ReturnValue = InvokeMethod(

$StorageConfigurationService->,

“CreateOrModifyStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{   // Storage Pool was not created

<ERROR! Failed >

}

$PoolToDrawFrom-> = %OutArguments[“Pool”]

$PoolCreationJob-> = %OutArguments[“Job”]

if(#PoolCreationProducesJob && $PoolCreationJob-> != null)

 {

<Wait until the completion of the job

   using $PoolCreationJob-> as a filter>

 

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully

>

}

$CapabilitiesOffered[] = Associators(

$PoolToDrawFrom->,

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = $CapabilitiesOffered[0]

}

// Step 7. Create Storage Element.  
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 973



 

%InArguments[“SettingType”] = 3 // “Goal”

#ReturnValue = InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(), 

“CreateSetting”,

%InArguments, 

%OutArguments)

if (#ReturnValue != 0) 

{

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

%InArguments[“ElementName”] = NULL

%InArguments[“ElementType”] = #ElementType 

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = #PossibleSize

$InArguments[“InPool”] = $PoolToDrawFrom->

%InArguments[“TheElement”] = null

#ReturnValue = InvokeMethod(

$StorageConfigurationService->,

“CreateOrModifyElementFromStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 || #ReturnValue != 4096)

{   // Method did not succeeded or succeeded but did not create a job

<ERROR! Failed >

}

else if(#ReturnValue == 0 ||

(#ReturnValue == 4096 && %OutArguments[“TheElement”] != null)))

{

$CreatedElement-> = %OutArguments[“TheElement”]

}

else // a Job was created and TheElement is null

{

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully

>

<Once the ‘Job’ has completed successfully, see step 5, then 

 follow the AffectedJobElement association from the ‘Job’ to 

 retrieve the storage element that was created.>

$CreateElements[] = Associators(

$Job->, // Object Name coersed from %OutArguments[“Job”]

“CIM_AffectedJobElement”,

#StorageElementClass,

null,
974



 Block Services Package
null,

false,

false,

null)

// Only one storage element will be created, 

    $CreatedElement-> = $CreatedElement[0].getObjectPath()

}

8.2.8.10.6.3 Expand Storage Element on Block Server 
// DESCRIPTION

// In this recipe, we attempt to expand a LUN on an array by 50%.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to the CIM_ComputerSystem that represents the array 

// $BlockServer->

// 2.A reference to the particular storage element we wish to expand.

// $ElementToExpand->

// 3.It is assumed that to expand a storage element there needs to be 

// enough space available in the parent StoragePool to contain 

// another copy of the storage element whose size is equal to the 

// new size requested.    This is especially the case if we were 

// modifying the settings as well as the size.

// 4.#ElementClassName is set to the class name of the storage element be 
modified.

// (e.g. CIM_StorageVolume or CIM_LogicalDisk)

// 5.   #ElementType is set to the storage element to modified

// See CreateOrModifyElementFromStoragePool.ElementType

// Step 1. Get the configuration services and determine the service 

// capabilities

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage 

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

    $Services->[] = AssociatorNames($BlockServer->,

    “CIM_HostedService”,

    “CIM_StorageConfigurationService”,

    null,

    null)

    // StorageConfigurationService and HostedService may not be implemented

    // in the SMI Agent.

    if ($Services->[] == null) {

<EXIT: Storage Configuration is not supported.>

    }

} catch (CIMException $Exception) {

    // StorageConfigurationService and/or HostedService may not be included in
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 975



 

    // the model implemented at all if Storage Configuration is not supported.

    if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<EXIT: Storage Configuration is not supported.>

    }

}

// There should be only one storage configuration service

// Associated with the system

$StorageConfigurationService-> = $Services->[0] 

$ServiceCapabilities[] = Associators(

$BlockServer->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null,

null,

false,

false,

null)

// There should be only one StorageConfigurationCapabilities instance

#SupportsElementModification1 = contains( 

7, // Storage Element Modification

$ServiceCapabilities[0].SupportedSynchronousActions[]) ||

contains(

7, // Storage Element Modification

$ServiceCapabilities[0].SupportedAsynchronousActions[])

#SupportsElementModification2 = contains( 

5, // Storage Element Modification

$ServiceCapabilities[0].SupportedStorageElementFeatures[])

#ElementModificationProducesJob = contains( 

7, // Storage Element Modification

$ServiceCapabilities[0].SupportedAsynchronousActions[])

if(!#SupportedElementModification1 || !#SupportedElementModification2) 

{

<EXIT: The ability to modify an existing Storage Element must be supported

 to continue.>

}

 

// Step 2. Read the current size of the Storage Element.

$StorageElement = GetInstance(

$ElementToExpand->, 

false, 

false, 

false, 

{“BlockSize”, “NumberOfBlocks”})

#PreviousSize = $StorageElement.BlockSize * $StorageElement.NumberOfBlocks 
976



 Block Services Package
// Step 3. Follow the AllocatedFromStoragePool association from the 

// storage element to find the pool from whence it came.

$Pools->[] = AssociatorNames(

$ElementToExpand->,

“CIM_AllocatedFromStoragePool”,

“CIM_StoragePool”,

null,

null)

// A Storage Element has only one Pool parent

$ParentPool-> = $Pools->[0] 

// Step 4. Determine whether the desired space for which to expand the 

// storage element exists within the pool. 

$StorageSetting->[] = AssociatorNames(

$ElementToExpand->,

“CIM_ElementSettingData”,

“CIM_StorageSetting”,

null,

null)

$CurrentElementSetting-> = $StorageSetting->[0]

// Calculate the additional space needed

#SizeToExpand   = 0.5 * #PreviousSize 

// Calculate 150% of previous storage element size

#SizeToExpandTo = #PreviousSize + (0.5 * #PreviousSize)

#NewSizeAvailable = 

@<Create Storage Pool and Storage Element on Block Server> 

&PoolSizeAvailable(

$ParentPool->, 

$CurrentElementSetting->,

#SizeToExpand,

#ElementType)

if (0 == #NewSizeAvailable) 

{

<ERROR! Unable to proceed because the requested size is unavailable >

}

// Step 5. Register for indications on configuration jobs

If(#ElementModificationProducesJob)

{

// ‘17’ (“Completed”) ‘2’ (“OK”) 

#Filter1 = “SELECT * FROM CIM_InstModification 

   WHERE SourceInstance ISA CIM_ConcreteJob 

     AND ANY SourceInstance.OperationalStatus[*] = 17 

 AND ANY SourceInstance.OperationalStatus[*] = 2 “

@{Determine if Indications already exist or have to be 
created}&createIndication(#Filter1)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 977



 

// ‘17’ (“Completed”) ‘6’ (“Error”) 

#Filter2 = “SELECT * FROM CIM_InstModification 

   WHERE SourceInstance ISA CIM_ConcreteJob 

     AND ANY SourceInstance.OperationalStatus[*] = 17 

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be 
created}&createIndication(#Filter2)

}

// Step 6. Modify the Storage Element 

// If there is a Job produced, wait for Job completion

%InArguments[“ElementName”] = null// we do not care what the name is

%InArguments[“ElementType”] = #ElementType

%InArguments[“Goal”] = $CurrentElementSetting 

%InArguments[“Size”] = #SizeToExpandTo

%InArguments[“InPool”] = $ParentPool->

%InArguments[“TheElement”] = $ElementToExpand->

#ReturnValue = InvokeMethod(

$StorageConfigurationService->

“CreateOrModifyElementFromStoragePool”

%InArguments

%OutArgument

)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{   // Method succeeded or validated arguments and started a job

<ERROR! Failed >

}

else if(#ReturnValue == 0)

{

$CreatedElement-> = %OutArguments[“TheElement”]

}

else // a Job was created and TheElement is null

{

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully

>

<Once the ‘Job’ has stopped, see step 4,then follow the 

 AffectedJobElement association from the ‘Job’ to retrieve 

 the storage element that was created.>

$CreateElements[] = Associators(

$Job->, // Object Name coersed from %OutArguments[“Job”]

“CIM_AffectedJobElement”,

#ElementClassName,

null,

null,
978



 Block Services Package
false,

false,

null)

// Only one Storage Element will be created, 

    $CreatedElement-> = $CreatedElement[0].getObjectPath()

}

// Step 7. Check the value of the “Size” out parameter.  See if it is  

// equal to size expected. If so, we got what we asked for and we’re done.

#SizeExpandedTo = %OutArguments[“Size”]

if (#SizeExpandedTo == #SizeToExpandTo) 

{

< indicate the storage element was successfully expanded >

} 

else 

{

if (#SizeExpandedTo <= #PreviousSize) 

{

< indicate the storage element was not expanded >

} 

else 

{

< indicate the storage element was only partially expanded to 
#SizeExpandedTo >

}

}

8.2.8.10.6.4 Create Storage Element from Elements on Block Server
// DESCRIPTION

// The goal of this recipe is to create a storage element with the maximum 

// capabilities of the block server. If supported, the pool creation specifies

// the disk(s) to use as input rather than the size.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a CIM_ComputerSystem Host is previously

// defined in the $Host-> variable

// 2.   The references for input disks that are to be used for creating the pool

//      are in  $DisksForPool->[] array. All these must be associated to the

//      primordial pool with CIM_ConcreteComponent association.

//      On being transferred to a Concrete pool they will be disassociated from

//      the primordial pool.

// 3.   The storage element will be created using available disks in the 

// concrete returned by GetAvailableExtents.

// 4.The settings for the new Storage Pool and Logical Disk are defined in 

// the following variables:

// #RequestedSize = 10 * 1024 * 1024 * 1024 // 10 GB

// 5.#StorageElementClass is set to the class name of the element being 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 979



 

// createdlike CIM_StorageVolume or CIM_LogicalDisk.

// 6.   #ElementType is set to the element to created

//        2 - StorageVolume

//        4 - LogicalDisk

// See CreateOrModifyElementFromStoragePool.ElementType

// MAIN

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage 

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

    $Services->[] = AssociatorNames($Host->,

    “CIM_HostedService”,

    “CIM_StorageConfigurationService”,

    null,

    null)

    // StorageConfigurationService and HostedService may not be implemented

    // in the SMI Agent.

    if ($Services->[] == null) {

<EXIT: Storage Configuration is not supported.>

    }

} catch (CIMException $Exception) {

    // StorageConfigurationService and/or HostedService may not be included in

    // the model implemented at all if Storage Configuration is not supported.

    if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<EXIT: Storage Configuration is not supported.>

    }

}

// There should be only one storage configuration service

// Associated with the system

$StorageConfigurationService-> = $Services->[0] 

$ServiceCapabilities[] = Associators($StorageConfigurationService->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null,

null,

false,

false,

null)

// There should be only one StorageConfigurationCapabilities instance

#SupportsPoolCreation = contains(2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedSynchronousActions[])

|| contains(2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[]))
980



 Block Services Package
#PoolCreationProducesJob = contains(2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsyncronousActions[])

#SupportsElementCreation1 = contains(12, // Storage Element from Element Creation

$ServiceCapabilities[0].SupportedSynchronousActions[])

#SupportsElementCreation2 = contains(3, // LogicalDiskCreation

$ServiceCapabilities[0].SupportedStorageElementFeatures[])

#ElementCreationProducesJob = contains(12, // Storage Element from Element 
Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[])

#SupportsInExtents = contains(2, // InExtents

$ServiceCapabilities[0].SupportedStoragePoolFeatures[])

// If StorageExtent creation is not supported, the set of specific disks from

// which to allocate the StoragePool is not supported by the device.

if (!#SupportsInExtents) {

<EXIT: The StoragePool cannot be created from a specific set of disks.>

}

// If a storage element can not be created and that storage element is 

// neither created synchronously or asynchronously, then fail the test

if (!#SupportedElementCreation2 &&    

!(#SupportedElementCreation1 || #ElementCreationProducesJob)) {

<EXIT: The StoragePool can be created, but the 

    storage element from element creation is not supported.>

}

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find 

// all the StoragePools from which storage elements might be created.

$StoragePools[] = Associators($Host->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null, 

null,

false, 

false, 

{“InstanceID”, “Primordial”})

// Step 3. For each StoragePool, follow the CIM_ElementCapabilities 

// asociation to the StorageCapabilities of that pool. Compare the

// StorageCapabilities to the desired StorageSetting and find the 

// best match. 

$PoolToDrawFrom-> = null

for (#i in $StoragePools[]) {

// If we can not create Storage Pool, then find a ‘concrete’

// Storage Pool from which to create a Storage Element

#UsePrimordial = false

if (#SupportsPoolCreation) {

#UsePrimordial = true
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 981



 

#RequestedElementType = 2 // StoragePool

} else {

#RequestedElementType = #ElementType

}

if ($StoragePools[#i].Primodial == #UsePrimordial) {

$CapabilitiesOffered[] = Associators(

$StoragePools[#i].getObjectPath(),

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = &GetMostCapable($CapabilitiesOffered[]) 

$PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()

// Step 4. Determine if the selected pool has enough space for 

// another pool. If the block server supports hints, then 

// the StorageSetting returned will contain default hints

// Create a setting

%InArguments[“SettingType”] = 3 // Goal

#ReturnValue = InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(),

“CreateSetting”,

%InArguments,

%OutArguments)

if (#ReturnValue != 0 || null) {

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

// Determine the possible size, closest to the requested size

#PossibleSize = &PoolSizeAvailable(

$PoolToDrawFrom->,

$GeneratedStorageSetting->,

#RequestedSize,

#RequestedElementType)

if (0 != #PossibleSize) {

// Located a size close to #RequestedSize

break;

} else {

// Cause failure if there are no more candidate Pools

$PoolToDrawFrom-> = NULL;

}

}

}

982



 Block Services Package
if ($PoolToDrawFrom-> == NULL) {

<ERROR! Unable to find a suitable pool from which to create the storage 
element>

}

// Step 5. Register for indications on configuration jobs

if (#PoolCreationProducesJob || #ElementCreateProducesJob) {

// ‘17’ (“Completed”) ‘2’ (“OK”) 

#Filter1 = “SELECT * FROM CIM_InstModification 

WHERE SourceInstance ISA CIM_ConcreteJob 

AND ANY SourceInstance.OperationalStatus[*] = 17 

AND ANY SourceInstance.OperationalStatus[*] = 2 “

@{Determine if Indications already exist or have to be 
created}&createIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”) 

#Filter2 = “SELECT * FROM CIM_InstModification 

WHERE SourceInstance ISA CIM_ConcreteJob 

AND ANY SourceInstance.OperationalStatus[*] = 17 

AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be 
created}&createIndication(#Filter2)

}

// Step 6. Create the Storage Pool 

if (#SupportsPoolCreation) {

%InArguments[“ElementName”] = NULL// leave up to the device

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = null

%InArguments[“InExtents”] = $DisksForPool->[] 

%InArguments[“Pool”] = null

$InPools->[0] = $PoolToDrawFrom->

%InArguments[“InPools”] = $InPools->[]

#ReturnValue = InvokeMethod($StorageConfigurationService->,

“CreateOrModifyStoragePool”,

%InArguments, %OutArguments)

if (#ReturnValue != 0 && #ReturnValue != 4096) {

// Storage Pool was not created

<ERROR! Failed>

}

$PoolToDrawFrom-> = %OutArguments[“Pool”]

$PoolCreationJob-> = %OutArguments[“Job”]

if (#PoolCreationProducesJob && $PoolCreationJob-> != null) {

<Wait until the completion of the job

   using $PoolCreationJob-> as a filter>

 

<Wait for indication from either filters defined in step 5
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 983



 

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully>

}

$CapabilitiesOffered[] = Associators($PoolToDrawFrom->,

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = $CapabilitiesOffered[0]

}

// Step 7. Call GetAvailableExtents to find available extents for creating 

// the storage element.

%InArguments[“Goal”] = $GeneratedStorageSetting->

#ReturnValue = InvokeMethod($PoolToDrawFrom->,

“GetAvailableExtents”,

%InArguments, %OutArguments)

if (#ReturnValue != 1) {

// Not supported

<EXIT! Method not supported, can not finish this recipe>

} else if (#ReturnValue != 0) {

// Method did not succeeded or succeeded but did not create a job

<ERROR! Failed>

}

$DisksForElement->[] = %OutArguments[“AvailableExtents”]

// Step 8. Create Storage Element

%InArguments[“SettingType”] = 3 // “Goal”

InvokeMethod($StorageCapabilitiesOffered.getObjectPath(), 

“CreateSetting”,

%InArguments, 

%OutArguments)

if (#ReturnValue != 0) {

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

%InArguments[“ElementName”] = NULL

%InArguments[“ElementType”] = #ElementType 

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = #PossibleSize

$InPools->[0] = $PoolToDrawFrom->

%InArguments[“InPool”] = $InPools->
984



 Block Services Package
%InArguments[“InElements”] = $DisksForElement->[] 

%InArguments[“TheElement”] = null  // Create new element

#ReturnValue = InvokeMethod($StorageConfigurationService->,

“CreateOrModifyElementFromElements”,

%InArguments, %OutArguments)

if (#ReturnValue != 0 && #ReturnValue != 4096) {

// Method did not succeeded or succeeded but did not create a job

<ERROR! Failed>

} else if (#ReturnValue == 0 ||

(#ReturnValue == 4096 && %OutArguments[“TheElement”] != null))) {

$CreatedElement-> = %OutArguments[“TheElement”]

} else // a Job was created and TheElement is null {

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully>

 

<Once the ‘Job’ has completed, see step 5, then follow the 

 AffectedJobElement association from the ‘Job’ to retrieve 

 the storage element that was created.>

$CreateElements[] = Associators(

$Job->, // Object Name coersed from %OutArguments[“Job”]

“CIM_AffectedJobElement”,

#StorageElementClass,

null,

null,

false,

false,

null)

// Only one LogicalDisk will be created, 

$CreatedElement-> = $CreatedElements[0].getObjectPath()

}

8.2.8.10.6.5 Optional RECIPE: Intentionally General a CIM Error.
// DESCRIPTION

// Validate reporting an error/exception

// when InvokeMethod is called with an invalid parameter. 

//

// This recipe intentionally supplies an invalid “ElementType”.

//

// This recipe attempts to optionally utilize properties of CIM_Error

// if CIM_Error is implemented.

// 1. Insert an error

// 2. Catch the exception

// 3. Report the error
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 985



 

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a storage setting is previously defined

// in the $StorageSetting-> variable.

// 2.A size that is possible for the creation of a storage element

// is provided in the #PossibleSize, 

// 3.A reference to Pool is previous defined in the $PoolToDrawFrom-> variable

// 4.A object paths for source input Pools is previous defined in the

// $InPools variable

// 5. A reference to the StorageConfigurationService is already defined

// in the StorageConfiguratonServivce-> variable

//              

%InArguments[“ElementType”] = 1000 // Invalid ElementType

%InArguments[“Goal”] = $StorageSetting->

%InArguments[“Size”] = #PossibleSize

%InPools->[0] = $PoolToDrawFrom->

%InArguments[“InPool”] = $InPools->

%InArguments[“TheElement”] = null

try

{

    #ReturnValue = InvokeMethod(

      $StorageConfigurationService->,

      “CreateOrModifyElementFromStoragePool”,

      %InArguments, %OutArguments)

}

catch (CIM Exception $Exception) {

    // For SMI-S 1.1, optionally allow for implementation of CIM_Error. 

    if($Exception.MessageID <> null) {  // CIM_Error is implemented

       // For example

       if($Exception.MessageArguments[2] ==         

          “CreateOrModifyElementFromStoragePool”) &&

          $Exception.MessageArguments[0] == “1” && // Second method parameter

  $Exception.MessageID = “MP5”)

       {

          <EXIT: Success -- CIM_Error is constructed properly>

       }

       else {

          <ERROR! Improperly constructed CIM_Error>

       }

    }

    else {

       <display, optional CIM_Error is not implemented>

       if($Exception.CIMStatusCode != CIM_ERR_INVALID_PARAMETER) {

          <ERROR! Improper CIM status code returned>

       }

       else {

          <EXIT: Success -- correct CIM status code reported>

       }     
986



 Block Services Package
    }

}

if (#ReturnValue != CIM_ERR_INVALID_PARAMETER) { // 5 = Invalid parameter

 <ERROR! Invalid return value >

}

8.2.8.10.7 Registered Name and Version
Block Services version 1.1.0

8.2.8.10.8 CIM Server Requirements

Table 1006: CIM Server Requirements for Block Services

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 987



 

8.2.8.10.9 CIM Elements

Table 1007: CIM Elements for Block Services

Element Name Description
Mandatory Classes

CIM_AllocatedFromStoragePool (8.2.8.10.9.1) AllocationFromStoragePool as defined in the Array Pro-
file

CIM_ElementCapabilities (8.2.8.10.9.2) Associates StorageConfigurationCapabilities withStor-
ageConfigurationService.

CIM_ElementSettingData (8.2.8.10.9.3)
CIM_LogicalDisk (8.2.8.10.9.5) A LogicalDisk is allocated from a concrete StoragePool.
CIM_StorageCapabilities (8.2.8.10.9.6)
CIM_StoragePool (8.2.8.10.9.9) Common elements to Primordial and Concrete Pools.
CIM_StoragePool (8.2.8.10.9.10) The Primordial Storage Pool. It is created by the pro-

vider and cannot be deleted or modified. It cannot be 
used to allocate any storage element other than con-
crete StoragePools. 

CIM_StoragePool (8.2.8.10.9.11) The Concrete Storage Pools. A concrete StoragePool 
shall be allocated from another StoragePool. It shall be 
used for allocating StorageVolumes and LogicalDisks 
as well as other concrete StoragePools.

CIM_StorageSetting (8.2.8.10.9.12)
CIM_StorageSettingsGeneratedFromCapabilities 
(8.2.8.10.9.15)

This class associates the StorageCapabilies with the 
StorageSetting generated from it via the CreateSetting 
method. StorageSettings instances generated in this 
manner, as identified with this association, may be 
removed from the model at any time by the implementa-
tion if the ChangeableType of the associated setting is 
set to "2" ("Changeable - Transient"). All StorageSet-
tings associated with this class shall be changeable, 
ChangeableType is "2" or "3". Some implementations 
may permit the modification of the ChangeableType 
property itself on StorageSetting instances associated 
via this class. Provided this is allowed, an client may 
change the ChangeableType to "3" ("Changeable - Per-
sistent") to have this setting retained either after gener-
ation of the instance or after its modification by the 
client. The DefaultSetting property of the StorageSetting 
instances linked with this association is meaningless.

CIM_StorageVolume (8.2.8.10.9.16) A SCSI logical unit representing a virtual disk. A Stora-
geVolume is allocated from a concrete StoragePool. 

Optional Classes
CIM_HostedService (8.2.8.10.9.4)
CIM_StorageConfigurationCapabilities (8.2.8.10.9.7)
CIM_StorageConfigurationService (8.2.8.10.9.8)
CIM_StorageSettingWithHints (8.2.8.10.9.13)
988



 Block Services Package
CIM_StorageSettingsAssociatedToCapabilities 
(8.2.8.10.9.14)

This class associates the StorageCapabilities with the 
preset setting. Any StorageSetting instance associated 
with this association shall work, unmodified, to create a 
storage element. The preset settings should not change 
overtime and represent possible settings for storage 
elements are set of design time rather than runtime. All 
StorageSetting instances linked with this association 
shall have a ChangeableType of "0" ("Fixed - Not 
Changeable").

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_StoragePool

Creation/Deletion of StoragePool

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_StoragePool

Deletion of StoragePool

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA    CIM_StorageVolume

Creation of StorageVolume, if the StorageVolume stor-
age element is implemented.

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA    CIM_StorageVolume

Deletion of StorageVolume, if the StorageVolume stor-
age element is implemented.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA    CIM_StorageVolume AND SourceIn-
stance.OperationalStatus <>    
PreviousInstance.OperationalStatus

Deprecated WQL - Change of status of a Storage Vol-
ume, if Storage Volume is implemented.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_StorageVolume AND SourceIn-
stance.CIM_StorageVolume::OperationalStatus <> 
PreviousInstance.CIM_StorageVolume::OperationalSta-
tus

CQL - Change of status of a Storage Volume, if Storage 
Volume is implemented.

Optional Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_LogicalDisk

Creation of LogicalDisk, if the LogicalDisk storage ele-
ment is implemented.

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_LogicalDisk

Deletion of LogicalDisk, if the LogicalDisk storage ele-
ment is implemented.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA    CIM_LogicalDisk AND SourceIn-
stance.OperationalStatus <>    
PreviousInstance.OperationalStatus

Deprecated WQL - Change of status of LogicalDisk, if 
LogicalDisk is implemented.

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_LogicalDisk AND SourceIn-
stance.CIM_LogicalDisk::OperationalStatus <> 
PreviousInstance.CIM_LogicalDisk::OperationalStatus

CQL - Change of status of LogicalDisk, if LogicalDisk is 
implemented.

Table 1007: CIM Elements for Block Services

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 989



 

8.2.8.10.9.1 CIM_AllocatedFromStoragePool
AllocationFromStoragePool as defined in the Array Profile
Class Mandatory: true

8.2.8.10.9.2 CIM_ElementCapabilities
Associates StorageConfigurationCapabilities withStorageConfigurationService.
Class Mandatory: true

8.2.8.10.9.3 CIM_ElementSettingData
Class Mandatory: true

Table 1008: SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_StoragePool
Dependent CIM_LogicalElement
SpaceConsumed uint64

Table 1009: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The managed element.
Capabilities CIM_Capabilities The Capabilities object associated with 

the element.

Table 1010: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The ManagedElement.
SettingData CIM_SettingData The Setting Data object associated 

with the ManagedElement.
IsDefault uint16 An enumerated integer indicating that 

the referenced setting is a default set-
ting for the element, or that this infor-
mation is unknown."),||ValueMap {"0", 
"1", "2"}, ||Values {"Unknown", "Is 
Default", "Is Not Default"}

IsCurrent uint16 An enumerated integer indicating that 
the referenced setting is currently being 
used in the operation of the element, or 
that this information is unknown."),||Val-
ueMap {"0", "1", "2"}, ||Values 
{"Unknown", "Is Current", "Is Not Cur-
rent"}
990



 Block Services Package
8.2.8.10.9.4 CIM_HostedService
Class Mandatory: false

8.2.8.10.9.5 CIM_LogicalDisk
A LogicalDisk is allocated from a concrete StoragePool.
Deleted By : Extrinsic(s): StorageConfigurationService.ReturnToStoragePool
Class Mandatory: true

Table 1011: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The hosting System.
Dependent CIM_Service The Service hosted on the System.

Table 1012: SMI Referenced Properties/Methods for CIM_LogicalDisk

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifier
Name string OS Device Name
NameFormat uint16 Format for name
ExtentStatus uint16[]
OperationalStatus uint16[]
BlockSize uint64
NumberOfBlocks uint64 The number of blocks as reported by 

the volume manager.
ConsumableBlocks uint64 The number of usable blocks.
IsBasedOnUnderlyingRedun-
dancy

boolean

NoSinglePointOfFailure boolean
DataRedundancy uint16
PackageRedundancy uint16
DeltaReservation uint8

Optional Properties/Methods
ElementName string User-friendly name
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 991



 

8.2.8.10.9.6 CIM_StorageCapabilities
Created By : Static
Class Mandatory: true

Table 1013: SMI Referenced Properties/Methods for CIM_StorageCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string The user-friendly name for this instance 

of Capabilities. In addition, the user-
friendly name can be used as a index 
property for a search or query. (Note: 
ElementName does not have to be 
unique within a namespace) If the 
capabilities are fixed, then this property 
should be used as a means for the cli-
ent application to correlate between 
capabilities and device documentation. 

ElementType uint16 Enumeration indicating the type of 
instance to which this StorageCapabili-
ties applies. Only "6", StorageConfigu-
rationService and "5" StoragePool are 
valid.

NoSinglePointOfFailure boolean Indicates whether or not the associated 
instance supports no single point of fail-
ure. Values are: FALSE = does not sup-
port no single point of failure, and 
TRUE = supports no single point of fail-
ure.

NoSinglePointOfFailureDefault boolean Indicates the default value for the NoS-
inglePointOfFailure property.

DataRedundancyMin uint16 DataRedundancyMin describes the 
minimum number of complete copies of 
data that can be maintained. Examples 
would be RAID 5 where 1 copy is main-
tained and RAID 1 where 2 or more 
copies are maintained. Possible val-
ues are 1 to n.

DataRedundancyMax uint16 DataRedundancyMax describes the 
maximum number of complete copies 
of data that can be maintained. Exam-
ples would be RAID 5 where 1 copy is 
maintained and RAID 1 where 2 or 
more copies are maintained. Possible 
values are 1 to n.
992



 Block Services Package
DataRedundancyDefault uint16 DataRedundancyDefault describes the 
default number of complete copies of 
data that can be maintained. Examples 
would be RAID 5 where 1 copy is main-
tained and RAID 1 where 2 or more 
copies are maintained. Possible val-
ues are 1 to n.

PackageRedundancyMin uint16 PackageRedundancyMin describes the 
minimum number of spindles or logical 
devices that can be used. Package 
redundancy describes how many disk 
spindles or logical devices can fail with-
out data loss including, at most, one 
spare.Examples would be RAID5 with a 
Package Redundancy of 1, RAID6 with 
2. Possible values are 0 to n.

PackageRedundancyMax uint16 PackageRedundancyMax describes 
the maximum number of spindles or 
logical devices that can be used. Pack-
age redundancy describes how many 
disk spindles or logical devices can fail 
without data loss including, at most, 
one spare. Examples would be RAID5 
with a Package Redundancy of 1, 
RAID6 with 2. Possible values are 0 to 
n.

PackageRedundancyDefault uint16 PackageRedundancyDefault describes 
the default number of spindles or logi-
cal devices that can be used. Package 
redundancy describes how many disk 
spindles or logical devices can fail with-
out data loss including, at most, one 
spare.Examples would be RAID5 with a 
Package Redundancy of 1, RAID6 with 
2. Possible values are 0 to n.

CreateSetting() Generate a setting to use as a goal for 
creating or modifying storage elements.

Optional Properties/Methods
ExtentStripeLengthDefault uint16 ExtentStripeLengthDefault describes 

what the default stripe length, the num-
ber of members or columns, a storage 
element will have when created or 
modified using this capabilities. A NULL 
means that the setting of stripe length 
is not supported at all or not supported 
at this level of storage element alloca-
tion or assignment.

Table 1013: SMI Referenced Properties/Methods for CIM_StorageCapabilities

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 993



 

8.2.8.10.9.7 CIM_StorageConfigurationCapabilities
Created By : Static
Class Mandatory: false

ParityLayoutDefault uint16 ParityLayoutDefault describes what the 
default parity a storage element will 
have when created or modified using 
this capabilities. A NULL means that 
the setting of the parity is not supported 
at all or is not supported at this level of 
storage element allocation or assign-
ment

UserDataStripeDepthDefault uint64 UserDataStripeDepthDefault describes 
what the number of bytes forming a 
stripe that a storage element will have 
when created or modified using this 
capabilities. A NULL means that the 
setting of stripe depth is not supported 
at all or not supported at this level of 
storage element allocation orassign-
ment.

GetSupportedStripeLengths() List the possible discrete stripe lengths 
supported at this time of this method's 
execution.

GetSupportedStripe-
LengthRange()

List the possible stripe length ranges 
supported at the time of this method's 
execution

GetSupportedParityLayouts() List the possible parity layouts sup-
ported at the time of this method's exe-
cution.

GetSupportedStripeDepths() List the possible stripe depths sup-
ported at the time of this method's exe-
cution.

GetSupportedStripeDepthRange() List the possible strip depth ranges 
supported at the time of this method's 
execution.

Table 1014: SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
SupportedStoragePoolFeatures uint16[] Lists what StorageConfigurationService 

functionalities are implemented.
SupportedStorageElementTypes uint16[] Lists the type of storage elements that 

are supported by this implementation.

Table 1013: SMI Referenced Properties/Methods for CIM_StorageCapabilities

Property Flags Type Description & Notes
994



 Block Services Package
8.2.8.10.9.8 CIM_StorageConfigurationService
Created By : Static
Class Mandatory: false

8.2.8.10.9.9 CIM_StoragePool
Common elements to Primordial and Concrete Pools.

SupportedStorageElementFea-
tures

uint16[] Lists actions supported through the 
invocation of StorageServiceSer-
vice.CreateOrModifyElementFromStor-
agePool(). 

Optional Properties/Methods
SupportedSynchronousActions uint16[] Lists what actions, invoked through 

StorageConfigurationService methods, 
shall not produce Concrete jobs.

SupportedAsynchronousActions uint16[] Lists actions, invoked through Storage-
ConfigurationService methods, that 
may produce Concrete jobs.

Table 1015: SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
Name string
CreateOrModifyStoragePool() Create (or modify) a StoragePool. A job 

may be created as well.
DeleteStoragePool() Start a job to delete a StoragePool. 
CreateOrModifyElementFromStor-
agePool()

Create or modify a storage element. A 
job may be created as well.

ReturnToStoragePool() Release the capacity represented by 
this storage element back to the Pool.

Optional Properties/Methods
CreateOrModifyElement-
FromElements()

Create or modify a storage element 
using component StorageExtents of the 
Pool. A job may be created as well.

Table 1014: SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 995



 

Class Mandatory: true

8.2.8.10.9.10 CIM_StoragePool
The Primordial Storage Pool. It is created by the provider and cannot be deleted or modified. It cannot be used to 
allocate any storage element other than concrete StoragePools. 
Created By : Static
Class Mandatory: true

8.2.8.10.9.11 CIM_StoragePool
The Concrete Storage Pools. A concrete StoragePool shall be allocated from another StoragePool. It shall be used 
for allocating StorageVolumes and LogicalDisks as well as other concrete StoragePools.
Created By : Extrinsic(s): StorageConfigurationService.CreateOrModifyStoragePool
Modified By : Extrinsic(s): StorageConfigurationService.CreateOrModifyStoragePool
Deleted By : Extrinsic(s): StorageConfigurationService.DeleteStoragePool

Table 1016: SMI Referenced Properties/Methods for CIM_StoragePool

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
PoolID string A unique name in the context of this 

system that identifies this Pool.
TotalManagedSpace uint64
RemainingManagedSpace uint64
Primordial boolean Default is FALSE, TRUE for Primordial 

Pools.
GetSupportedSizes() List the discrete storage element sizes 

that can be created or expanded from 
this Pool.

GetSupportedSizeRange() List the size ranges for storage element 
that can be created or expanded from 
this Pool.

Optional Properties/Methods
ElementName string
GetAvailableExtents() List the StorageExtents from this Pool 

that may be used to create or expand a 
storage element. The StorageExtents 
may not already be in use as support-
ing capacity for existing storage ele-
ment.

Table 1017: SMI Referenced Properties/Methods for CIM_StoragePool

Property Flags Type Description & Notes
Mandatory Properties/Methods

Primordial boolean
996



 Block Services Package
Class Mandatory: true

8.2.8.10.9.12 CIM_StorageSetting
Created By : Extrinsic(s): StorageCapabilities.CreateSetting
Class Mandatory: true

Table 1018: SMI Referenced Properties/Methods for CIM_StoragePool

Property Flags Type Description & Notes
Mandatory Properties/Methods

Primordial boolean

Table 1019: SMI Referenced Properties/Methods for CIM_StorageSetting

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string The user-friendly name for this instance 

of SettingData. In addition, the user-
friendly name can be used as a index 
property for a search of query. (Note: 
Name does not have to be unique 
within a namespace.)

NoSinglePointOfFailure boolean Indicates the desired value for No Sin-
gle Point of Failure. Possible values are 
false = single point of failure, and true = 
no single point of failure.

DataRedundancyMin uint16 DataRedundancyMin describes the 
minimum number of complete copies of 
data to be maintained. Examples would 
be RAID 5 where 1 copy is maintained 
and RAID 1 where 2 or more copies are 
maintained. Possible values are 1 to n.

DataRedundancyMax uint16 DataRedundancyMax describes the 
maximum number of complete copies 
of data to be maintained. Examples 
would be RAID 5 where 1 copy is main-
tained and RAID 1 where 2 or more 
copies are maintained. Possible val-
ues are 1 to n.

DataRedundancyGoal uint16
PackageRedundancyMin uint16 PackageRedundancyMin describes the 

minimum number of spindles or logi-
caldevices to be used. Package redun-
dancy describes how many disk 
spindles or logical devices can fail with-
out data loss including, at most, one 
spare.Examples would be RAID5 with a 
Package Redundancy of 1, RAID6 with 
2. Possible values are 0 to n.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 997



 

8.2.8.10.9.13 CIM_StorageSettingWithHints
Class Mandatory: false

PackageRedundancyMax uint16 PackageRedundancyMax describes 
the maximum number of spindles or 
logical devices to be used. Package 
redundancy describes how many disk 
spindles or logical devices can fail with-
out data loss including, at most, one 
spare. Examples would be RAID5 with 
a Package Redundancy of 1, RAID6 
with 2. Possible values are 0 to n.

PackageRedundancyGoal uint16
ChangeableType uint16 This property informs a client if the set-

ting can be modified. It also tells the cli-
ent how long this setting is expected to 
remain in the model. If the implementa-
tion allows it, the client can use the 
property to request that the setting's 
existence be not transient.

Optional Properties/Methods
ExtentStripeLength uint16 ExtentStripeLength describes the 

desired stripe length goal.
ExtentStripeLengthMin uint16 ExtentStripeLengthMin describes the 

minimum acceptable stripe length.
ExtentStripeLengthMax uint16 ExtentStripeLengthMax describes the 

maximum acceptable stripe length.
ParityLayout uint16 ParityLayout describes the desired par-

ity layout.
UserDataStripeDepth uint64 UserDataStripeDepth describes the 

desired stripe depth.
UserDataStripeDepthMin uint64 UserDataStripeDepthMin describes the 

minimum acceptable stripe depth.
UserDataStripeDepthMax uint64 UserDataStripeDepthMax describes 

the maximum acceptable stripe depth.

Table 1020: SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string The user-friendly name for this instance 

of SettingData. In addition, the user-
friendly name can be used as a index 
property for a search of query. (Note: 
Name does not have to be unique 
within a namespace.)

Table 1019: SMI Referenced Properties/Methods for CIM_StorageSetting

Property Flags Type Description & Notes
998



 Block Services Package
8.2.8.10.9.14 CIM_StorageSettingsAssociatedToCapabilities
This class associates the StorageCapabilities with the preset setting. Any StorageSetting instance associated with 
this association shall work, unmodified, to create a storage element. The preset settings should not change over-
time and represent possible settings for storage elements are set of design time rather than runtime. All Storage-
Setting instances linked with this association shall have a ChangeableType of "0" ("Fixed - Not Changeable").

NoSinglePointOfFailure boolean
DataRedundancyMin uint16
DataRedundancyMax uint16
PackageRedundancyMin uint16
PackageRedundancyMax uint16
DataAvailabilityHint uint16 This hint is an indication from a client of 

the importance placed on data avail-
ability. Values are 0=Don't Care to 
10=Very Important.

AccessRandomnessHint uint16 This hint is an indication from a client of 
the randomness of accesses. Values 
are 0=Entirely Sequential to 
10=Entirely Random.

AccessDirectionHint uint16 This hint is an indication from a client of 
the direction of accesses. Values are 
0=Entirely Read to 10=Entirely Write

AccessSizeHint uint16[] This hint is an indication from a client of 
the optimal access sizes. Several sizes 
can be specified. Units("Megabytes")

AccessLatencyHint uint16 This hint is an indication from a client 
how important access latency is. `Val-
ues are 0=Don't Care to 10=Very 
Important.

AccessBandwidthWeight uint16 This hint is an indication from a client of 
bandwidth prioritization. Values are 
0=Don't Care to 10=Very Important.

StorageCostHint uint16 This hint is an indication of the impor-
tance the client places on the cost of 
storage. Values are 0=Don't Care to 
10=Very Important. A StorageVolume 
provider might choose to place data on 
low cost or high cost drives based on 
this parameter.

StorageEfficiencyHint uint16 This hint is an indication of the impor-
tance placed on storage efficiency by 
the client. Values are 0=Don't Care to 
10=Very Important. A StorageVolume 
provider might choose different RAID 
levels based on this hint.

ChangeableType uint16

Table 1020: SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 999



 

Class Mandatory: false

8.2.8.10.9.15 CIM_StorageSettingsGeneratedFromCapabilities
This class associates the StorageCapabilies with the StorageSetting generated from it via the CreateSetting 
method. StorageSettings instances generated in this manner, as identified with this association, may be removed 
from the model at any time by the implementation if the ChangeableType of the associated setting is set to "2" 
("Changeable - Transient"). All StorageSettings associated with this class shall be changeable, ChangeableType is 
"2" or "3". Some implementations may permit the modification of the ChangeableType property itself on Storage-
Setting instances associated via this class. Provided this is allowed, an client may change the ChangeableType to 
"3" ("Changeable - Persistent") to have this setting retained either after generation of the instance or after its modi-
fication by the client. The DefaultSetting property of the StorageSetting instances linked with this association is 
meaningless.
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: true

8.2.8.10.9.16 CIM_StorageVolume
A SCSI logical unit representing a virtual disk. A StorageVolume is allocated from a concrete StoragePool. 
Deleted By : Extrinsic(s): StorageConfigurationService.ReturnToStoragePool
Standard Names: The Name, NameFormat,NameNamespace, OtherIdentifyingInfo, and IdentifyingDescriptions 

properties shall follow the requirements in 6.2.4.5.1

Table 1021: SMI Referenced Properties/Methods for 
CIM_StorageSettingsAssociatedToCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_StorageCapabilitie
s

The StorageCapabilities reference.

Dependent CIM_StorageSetting The StorageSetting reference.
DefaultSetting boolean This boolean designates the setting 

that will be used if the CreateSet-
ting()method is called with providing 
the NewSetting parameter. However, 
some implementations may require that 
the NewSetting parameter be non null. 
There may be only one default setting 
per the combination of StorageCapabil-
ities and associated StoragePool as 
associated through ElementCapabili-
ties. 

Table 1022: SMI Referenced Properties/Methods for 
CIM_StorageSettingsGeneratedFromCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_StorageCapabilitie
s

The StorageCapabilities reference.

Dependent CIM_StorageSetting The StorageSetting reference.
1000



 Block Services Package
Class Mandatory: true

8.2.8.10.10 Related Standards

Table 1023: SMI Referenced Properties/Methods for CIM_StorageVolume

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifier
Name CD string SCSI identifier for this volume 
NameFormat uint16 Format for Name property.
ExtentStatus uint16[]
OperationalStatus uint16[]
BlockSize uint64
NumberOfBlocks uint64 The number of blocks as reported by 

the hardware.
ConsumableBlocks uint64 The number of usable blocks.
IsBasedOnUnderlyingRedun-
dancy

boolean

NoSinglePointOfFailure boolean
DataRedundancy uint16
PackageRedundancy uint16
DeltaReservation uint8

Optional Properties/Methods
ElementName string User-friendly name
OtherIdentifyingInfo CD string[] Additional correlatable names
IdentifyingDescriptions string[]

Table 1024: Related Standards for Block Services

Specification Revision Organization
CIM Infrastructure 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1001



 

1002



 Block Server Performance Subprofile
8.2.8.11 Block Server Performance Subprofile 

8.2.8.11.1 Description
The Block Server Performance Subprofile defines classes and methods for managing performance
information in block servers (e.g., Arrays, Storage Virtualizers and Volume Management). Not all of the
objects for which statistics are defined apply to all these profiles. For example, Storage Virtualizers
don’t have Disk Drives and Volume Management Profiles don’t have Ports. In these cases, the profile
would not support the statistics for the object that does not apply to it. 

Note: Performance analysis is broader than just Arrays, Storage Virtualizers and Volume Managers.
Complete analysis requires performance information from hosts and fabric. These are (or will be)
addressed separately as part of the appropriate profiles.

One of the key SRM disciplines for managing block servers (e.g., arrays) is Performance Management.
Currently, there are no common statistics defined that can be used to manage multiple vendor arrays
from a performance perspective. Some of the key tasks commonly performed in the discipline of
Performance Management are:

• Performance Capacity Planning,

• Performance Problem Isolation,

• Peak Window Analysis,

• Block server Workload Analysis,

• Block server Performance Tuning.

In order to manage performance, a number of processes need to be in place:

• Ability to measure the performance and saturation points of components within the storage
network. This subprofile describes the first increment of measurement, that of the storage system.
Examples of this include:

• Read and Write I/O counts for a LUN or a disk,

• Number of blocks transferred per unit time,

• Cache hit ratios.

Both specific measurements and methods to make these measurements available to SRM applications
will be part of this subprofile.

• Ability to understand the relationship of facilities within the storage network and their relationship
to the actual application: This is provided by mapping functions which are described in the
standard SMI specification. Mapping functions are listed within the specification today. As new
objects (like cache which is currently not defined) and new relationships between objects are
defined, these parts of the SMI specification will have to be upgraded;

• Ability to understand the status and configuration of the storage network components: There is
some level of this information within the SMI specification today, and there are expected future
improvements to this area that will be in future releases. Examples of this include:

• Cache status on or off for read or write cache,

• How much Cache is installed,

• Storage Volume (LUN) status, normal or degraded,

• Cache configuration parameters,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1003



 

• LUN status,

• Error counts on a port.

Methods to be able to tune the configuration of a storage network component. This would include
setting RAID levels, setting stripe widths, setting cache tunable parameters, etc. This is an area for
future development. Given that there is a wide diversity of storage architectures, this may be an area
where SMI provides a framework and vendors supply the custom extensions required for their systems.

Performance Management is optimized when all four components are in place. Performance
Measurement is the key deliverable that is the focus of this subprofile.

Block storage devices usually have one or more of the following elements:

• Block Server (Top level ComputerSystem),

• I/O Ports (e.g., FCPorts),

• Front-end Ports,

• Back-end Ports,

Note: Port Statistics in block servers need to be coordinated with Port statistics in the Fabric Profile by
applications. A mapping between fabric statistics and block server statistics is identified in the
section 8.2.8.11.7, "Registered Name and Version".

• Individual Controllers (ComponentCS),

• Front-end controller(s) (ComponentCS),

• Back-end controller(s) (ComponentCS),

• Exported Elements (e.g., Volumes or Logical Disks),

• Imported Elements (e.g., Extents with ConcreteComponent association to Pools),

• Disk Drives.

In order to monitor and manage these components, it is necessary to identify performance counters for
each of the above elements in the block server and externalize an interface to obtain these counters at
some SRM-determined periodicity. An SRM product will also need to be able to associate these
counters to the appropriate block server elements as defined in the appropriate SMI-S profiles in order
to complete the full picture of the performance analysis (e.g., what disks are part of this LUN and what
other LUNs have portions on this disk).

The function of this subprofile is to support the aforementioned SRM applications.

The Block Server Performance Subprofile augments the profiles and subprofiles for Arrays, Storage
Virtualizers   and Volume Management Profiles. Instead of being an isolated subprofile, it adds
modeling constructs to existing profiles and subprofiles. Together these enhancements make up the
Block Server Performance Subprofile (as would be registered in the Server Profile as a
RegisteredSubprofile).

8.2.8.11.1.1 Performance Additions Overview
Figure 158: "Block Server Performance Subprofile Summary Instance Diagram" provides an overview
of the model (independent of profiles and subprofiles). The new classes added by the Block Server
Performance Subprofile are the shaded grey boxes.
1004



 Block Server Performance Subprofile
Figure 158: Block Server Performance Subprofile Summary Instance Diagram

Server Profile

ComputerSystem

FCPort

StorageVolume

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=6

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=8

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs

ReadHitIOs
WriteIOs

WriteHitIOs

ElementStatisticalData

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

MemberOfCollection

MemberOfCollection

HostedCollection

ComputerSystem ComputerSystem

StorageExtent:
RAID Rank

StoragePool

AllocatedFromStoragePool

ConcreteComponent
BlockStorageStatisticalData

InstanceID
ElementType=9

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

ElementType=5

BlockStorageStatisticalData

ElementType=3

ElementStatisticalData

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=10

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs

StorageExtent

ElementStatisticalData

DiskDrive

MediaPresent

BasedOn

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()
CreateManifestCollection()

AddOrModifyManifest()
RemoveManifest()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

ElementCapabilities

RegisteredProfile

RegisteredName=
 ‘Block Server Performance’

RegisteredSubprofile
SubprofileRequiresProfile

ElementConformsToProfile

ComponentCS
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1005



 

Note:  The properties listed for the statistics classes are the mandatory properties. Optional Properties
are not listed in order to save space in the diagram. Optional properties can be found in
8.2.8.11.9, "CIM Elements".

What this figure shows is a single instance of StatisticsCollection for the entire profile. This is the anchor
point from which all statistics being kept by the profile can be found. Block statistics are defined as a
BlockStorageStatisticalData class, instances of which hold the statistics for particular elements (e.g.,
StorageVolumes, ComputerSystems, Ports, Extents and Disk Drives). The type of element is recorded
in the instance of BlockStorageStatisticalData in the ElementType property.

All the statistics instances are related to the elements they meter via the ElementStatisticalData
association (e.g., BlockStorageStatisticalData for a StorageVolume can be found from the Volume by
traversing the ElementStatisticalData association).

All the statistics instances kept in the profile are associated to the one StatisticsCollection instance.
Access to all the statistics for the profile is through the StatisticsCollection. The StatisticsCollection has
a HostedCollection association to the “top level” computer system of the profile.

Note that statistics may be kept for a number of elements in the profile, including elements in
subprofiles. The elements that are metered are:

The Top Level ComputerSystem – This provides a summary of all statistics for the whole profile (e.g.,
ReadIOs are all read IOs handled by the array, storage virtualizer or volume manager). 

Component ComputerSystems – This provides a summary of all statistics that derive from a
particular processor in the system cluster (e.g., all ReadIOs handled by a particular processor). These
statistics are kept in BlockStorageStatisticalData instances (one for each component computer system).

Port – This provides a summary of all the statistics that derive from a particular Port on the Array or
Storage Virtualizer (e.g., all ReadIOs that go through the particular port). These statistics are kept in
BlockStorageStatisticalData instances (one for each Port in the system).

Note: This element does not apply to the Volume Management Profile. Volume managers do not have
front-end ports. The back-end ports for volume managers are HBAs. Statistics for volume manager
back end ports would be kept by the HBAs. 

StorageVolume – (or LogicalDisk). This provides a summary of statistics for a particular
StorageVolume (or LogicalDisk). For example, all the ReadIOs to the particular StorageVolume (or
LogicalDisk). These statistics are kept in BlockStorageStatisticalData instances (one for each
StorageVolume or LogicalDisk in the system).

StorageExtent – This provides a summary of statistics that derive from access to a particular
StorageExtent. Note: StorageExtent support is ONLY PROVIDED for extents with a
ConcreteComponent association to a concrete StoragePool. That is, this is not offered for intermediate
extents. These statistics are kept in BlockStorageStatisticalData instances (one for each Extent that is
modeled in the system).

SCSI Arbitrary Logical Units – This provides summary of statistics that derive from access to LUNs
that are not StorageVolumes (e.g., controller commands).

Finally, Figure 168: "Block Server Performance Manifest Collections" illustrates the
BlockStatisticsService for Bulk retrieval of all the statistics data and creation of manifest collections.
These methods will be discussed later. They are shown here for completeness. Associated with the
BlockStatisticsService is a BlockStatisticsCapabilities instance that identifies the specific capabilities
implemented by the performance support. Specifically, it includes an “ElementsSupported” property that
identifies the elements for which statistics are kept and the various retrieval mechanisms that are
implemented (e.g., Extrinsic, Association Traversal, Indications and/or Query).
1006



 Block Server Performance Subprofile
8.2.8.11.1.2 Performance Additions to base Array Profile
Figure 159: "Base Array Profile Block Server Performance Instance Diagram" illustrates the class
instances that would be supported if an Array only implemented the base Array Profile and the Block
Server Performance Subprofile. Only the StatisticsCollection, the BlockStorageStatisticalData instance
for the top level computer system, BlockStorageStatisticalData instances for front end ports and
BlockStorageStatisticalData instances for Storage Volumes would be supported.

And only the GetStatisticsCollection method of the BlockStatisticsService would be supported. The
actual elements for which the statistics would be kept would be reported in the “ElementsSupported”
property of the BlockStatisticsCapabilities instance.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1007



 

Figure 159: Base Array Profile Block Server Performance Instance Diagram

Server Profile

ComputerSystem

LogicalPort

SCSIProtocolController

StorageVolume

StoragePool

ProtocolControllerForUnit

AllocatedFromStoragePool

AllocatedFromStoragePool

SystemDevice

HostedStoragePool

SystemDevice

ElementStatisticalData

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2
StatisticTime

TotalIOs
KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled
ClockTickInterval (E)

BlockStorageStatisticalData

InstanceID
ElementType=6
StatisticTime

TotalIOs
KBytesTransferred

BlockStorageStatisticalData

InstanceID
ElementType=8
StatisticTime

TotalIOs
KBytesTransferred

ReadIOs
ReadHitIOs
WriteIOs

WriteHitIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]

ElementCapabilities

RegisteredName=’Array’

RegisteredProfile

RegisteredName= 
‘Block Server Performance’

RegisteredSubprofileSubprofileRequiresProfile

ElementConformsToProfile

ManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedManifestCollection

BlockManifest

MemberOfCollection

DeviceSAPImplementation

SCSIProtocolEndpoint

SAPAvailableForElement
1008



 Block Server Performance Subprofile
Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties
are not listed in order to save space in the diagram. Optional properties can be found in
8.2.8.11.9, "CIM Elements".

8.2.8.11.1.3 Performance Additions to base Storage Virtualizer Profile
Figure 160: "Base Storage Virtualizer Profile Block Server Performance Instance Diagram" illustrates
the class instances that would be supported if a Storage Virtualizer only implemented the base Storage
Virtualizer Profile and the Block Server Performance Subprofile. Only the StatisticsCollection, the
BlockStorageStatisticalData instance for the top level computer system, BlockStorageStatisticalData
instances for front-end and back-end ports, BlockStorageStatisticalData instances for Storage Volumes
and BlockStorageStatisticalData for StorageExtents would be supported.

 Only the GetStatisticsCollection method of the BlockStatisticsService would be supported. The actual
elements for which the statistics would be kept would be reported in the “ElementsSupported” property
of the BlockStatisticsCapabilities instance.

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties
are not listed in order to save space in the diagram. Optional properties can be found in
8.2.8.11.9, "CIM Elements".

8.2.8.11.1.4 Performance Additions to base Volume Management Profile
Figure 161: "Base Volume Management Profile Block Server Performance Instance Diagram"
illustrates the class instances that would be supported if the volume manager only implemented the
base Volume Management Profile and the Block Server Performance Subprofile. Only the
StatisticsCollection, the BlockStorageStatisticalData instance for the top level computer system,
BlockStorageStatisticalData instances for LogicalDisks (lower extents) and BlockStorageStatisticalData
instances for LogicalDisks (exported Logical Disks) would be supported.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1009



 

Figure 160: Base Storage Virtualizer Profile Block Server Performance Instance Diagram

Server Profile

Dedicated[*]=’Storage Virtualizer’

ComputerSystem

LogicalPort

SCSIProtocolController

StorageVolume

StoragePool

ProtocolControllerForUnit

AllocatedFromStoragePool

AllocatedFromStoragePool

HostedStoragePool

ElementStatisticalData

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2
StatisticTime

TotalIOs
KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled
ClockTickInterval (E)

BlockStorageStatisticalData

InstanceID
ElementType=6
StatisticTime

TotalIOs
KBytesTransferred

BlockStorageStatisticalData

InstanceID
ElementType=8
StatisticTime

TotalIOs
KBytesTransferred

ReadIOs
ReadHitIOs
WriteIOs

WriteHitIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]

ElementCapabilities

RegisteredName=’Storage Virtualization’

RegisteredProfile

RegisteredName= 
‘Block Server Performance’

RegisteredSubprofileSubprofileRequiresProfile

ElementConformsToProfile

ManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedManifestCollection

BlockManifest

MemberOfCollection

DeviceSAPImplementation

SCSIProtocolEndpoint

SAPAvailableForElement

SystemDevice

LogicalPort

StorageExtent

ConcreteComponent

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=7
StatisticTime

TotalIOs

BlockStorageStatisticalData

InstanceID
ElementType=9
StatisticTime

TotalIOs
KBytesTransferred

ElementStatisticalData

SystemDevice
1010



 Block Server Performance Subprofile
And only the GetStatisticsCollection method of the BlockStatisticsService would be supported. The
actual elements for which the statistics would be kept would be reported in the “ElementsSupported”
property of the BlockStatisticsCapabilities instance.

Figure 161: Base Volume Management Profile Block Server Performance Instance Diagram

Server Profile

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

AllocatedFromStoragePool

HostedStoragePool

SystemDevice

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2
StatisticTime

TotalIOs
KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=8
StatisticTime

TotalIOs
KBytesTransferred

ReadIOs
ReadHitIOs
WriteIOs

WriteHitIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

ElementCapabilities

RegisteredName=’Volume Management'

RegisteredProfile

RegisteredName= 
‘Block Server Performance’

RegisteredSubprofileSubprofileRequiresProfile

ElementConformsToProfile

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

LogicalDisk

ConcreteComponent

BlockStorageStatisticalData

InstanceID
ElementType=9
StatisticTime

TotalIOs
KBytesTransferred

ElementStatisticalData
BasedOn

BasedOn

SystemDevice

BlockStatisticsManifest
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1011



 

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties
are not listed in order to save space in the diagram. Optional properties can be found in
8.2.8.11.9, "CIM Elements".

8.2.8.11.1.5 Summary of BlockStorageStatisticsData support by Profile
Table 1025: “Summary of Element Types by Profile” defines the Element Types (for
BlockStorageStatisticalData instances) that may be supported by profile.

YES means that this specification defines the element type for the profile. Actual support by any given
implementation would be implementation dependent. But the specification covers defining the element
type for the profile. NO means that this specification does not specify this element type for the profile.

8.2.8.11.1.6 Server Profile Support for the Block Server Performance Subprofile
At the top of Figure 159: "Base Array Profile Block Server Performance Instance Diagram" is a dashed
box that illustrates a part of the Server Profile for the Array. A similar dashed box appears for Storage
Virtualizer and Volume Management Profiles. The part illustrated is the particulars for the Block Server
Performance Subprofile. If performance support has been implemented, then there shall be a
RegisteredSubprofile instance for the Block Server Performance Subprofile. 

8.2.8.11.1.7 Default Manifest Collection 
Associated with the instance of the StatisticsCollection shall be a provider supplied (Default)
CIM_BlockStatisticsManifestCollection that represents the statistics properties that are kept by the
profile. The default manifest collection is indicated by the IsDefault property (=True) of the
CIM_BlockStatisticsManifestCollection. For each metered object of the profile implementation the
default manifest collection will have exactly one manifest that will identify which properties are included
for that metered object. If a an object is not metered, then there shall not be a manifest for that element
type. If an element type (e.g., StorageVolume) is metered, then there shall be a manifest for that
element type.

8.2.8.11.1.8 Performance Additions applied to Multiple Computer Systems
Figure 162: "Multiple Computer System Subprofile Block Server Performance Instance Diagram"
illustrates the class instances that would be supported if an Array, Storage Virtualizer or Volume
Management Profile also implemented the Multiple Computer System Subprofile (and the Block Server
Performance Subprofile). In this case, additional BlockStorageStatisticalData instances would exist for
the component computer systems, as well as the top level computer system. 

Table 1025: Summary of Element Types by Profile

ElementType Array Storage Virtualizer Volume Management
Computer System YES YES YES

Front-end Computer System YES YES YES

Peer Computer System YES YES YES

Back-end Computer System YES YES YES

Front-end Port YES YES NO

Back-end Port YES YES NO

Volume YES YES YES

Extent YES YES YES

Disk Drive YES NO NO

Arbitrary LUs YES YES NO

Remote Replica Group YES YES YES
1012



 Block Server Performance Subprofile
The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Front-end
Computer System”, “Back-end Computer System” and/or “Peer Computer System”. 

Note: Support for both the Multiple Computer System Subprofile and the Block Server Performance
Subprofile does not imply support for statistics at the Component Computer System level. This
support is ONLY implied by the “ElementsSupported” property of the BlockStatisticsCapabilities
instance.

Figure 162: Multiple Computer System Subprofile Block Server Performance Instance Diagram

ComputerSystem
(Front-end)

ComputerSystem
Top level System

ComputerSystem
(Back-end)

ComponentCSComponentCS

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=3

StatisticTime
TotalIOs
ReadIOs

ReadHitIOs
WriteIOs

WriteHitIOs

BlockStorageStatisticalData

InstanceID
ElementType=5

StatisticTime
TotalIOs

MemberOfCollection

ElementStatisticalData

ElementStatisticalData

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1013



 

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties
are not listed in order to save space in the diagram. Optional properties can be found in
8.2.8.11.9, "CIM Elements".

8.2.8.11.1.9 Performance Additions to Backend Ports
Figure 163: "Fibre Channel Initiator Port Subprofile Block Server Performance Instance Diagram"
illustrates the class instances that would be supported if an Array also implemented the Fibre Channel
Initiator Port Subprofile (and the Block Server Performance Subprofile). In this case, additional
BlockStorageStatisticalData instances would exist for the back-end ports, as well as the front-end ports. 

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Back-end
Ports”. 

Note: Support for both the Fibre Channel Initiator Port Subprofile and the Block Server Performance
Subprofile DOES not imply support for statistics at the Back-end Port level. This support is ONLY
implied by the “ElementsSupported” property of the BlockStatisticsCapabilities instance.

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties
are not listed in order to save space in the diagram. Optional properties can be found in the
“8.2.8.11.9, "CIM Elements" section.

Figure 163: Fibre Channel Initiator Port Subprofile Block Server Performance Instance Diagram

StorageExtent

ComputerSystem

FCPort
UsageRestriction = 

‘Back-end only’

StorageExtent

SCSIProtocolEndpointFCPort
UsageRestriction = 

‘Back-end only’

DeviceSAPImplementation

SCSIInitiatorTargetLogicalUnitPath

StorageExtent

SCSIInitiatorTargetLogicalUnitPath
SCSIInitiatorTargetLogicalUnitPath

SystemDevice

ElementStatisticalData

BlockStorageStatisticalData

ElementType=7

MemberOfCollection

ElementStatisticalData

BlockStorageStatisticalData

ElementStatisticalData

HostedCollection

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled
ClockTickInterval (E)

BlockStorageStatisticalData

InstanceID
ElementType=7

StatisticTime
TotalIOs

SCSIProtocolEndpoint

DeviceSAPImplementation
1014



 Block Server Performance Subprofile
8.2.8.11.1.10 Performance Additions to Extent Composition
Figure 164: "Extent Composition Subprofile Block Server Performance Instance Diagram" illustrates
the class instances that would be supported if an Array also implemented the Extent Composition
Subprofile (and the Block Server Performance Subprofile). In this case, BlockStorageStatisticalData
instances would exist for the Extents that are modeled. 

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Extents”. 

Note: The Storage Virtualizer and Volume Management Profiles would use the “Extents” statistics for
Storage Volumes (or LogicalDisks) that are imported instead of Disk extent statistics (since they
do not have disk drives). Also note that an Array may model both “Extents” and “Disks” extents. 

Note: Support for both the Extent Composition Subprofile and the Block Server Performance
Subprofile DOES not imply support for statistics at the Extent level. This support is ONLY implied
by the “ElementsSupported” property of the BlockStatisticsCapabilities instance.

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties
are not listed in order to save space in the diagram. Optional properties can be found in
8.2.8.11.9, "CIM Elements".

Figure 164: Extent Composition Subprofile Block Server Performance Instance Diagram

StorageVolume

CompositeStorageExtent

BasedOn

StoragePool

AllocatedFromStoragePool

ConcreteComponent

ElementStatisticalData

BlockStorageStatisticalData

ElementType=8

MemberOfCollectionElementStatisticalData

StatisticsCollection

InstanceID
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=9

StatisticTime
TotalIOs

KBytesTransferred

StorageExtent StorageExtent StorageExtent

CompositeExtentBasedOn
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1015



 

Note: The low level extents represent Disk Drive Extents and they would not be part of the Storage
Virtualizer or Volume Management Profiles.

8.2.8.11.1.11 Performance Additions to Disk Drives
Figure 165: "Disk Drive Lite Subprofile Block Server Performance Instance Diagram" illustrates the
class instances that would be supported if an Array also implemented the Disk Drive Lite (or Disk Drive)
Subprofile (and the Block Server Performance Subprofile). In this case, BlockStorageStatisticalData
instances would exist for each of the Disk Drives in the Array. 

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Disks”. 

Note: The Storage Virtualizer and Volume Management Profiles would NEVER show the “Disks”
statistics. Also note that an Array may model both “Extents” and “Disks”. Note: Support for both
the Disk Drive Lite Subprofile and the Block Server Performance Subprofile DOES not imply
support for statistics at the Disk Drive level. This support is ONLY implied by the
“ElementsSupported” property of the BlockStatisticsCapabilities instance.

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties
are not listed in order to save space in the diagram. Optional properties can be found in
8.2.8.11.9, "CIM Elements".

Figure 165: Disk Drive Lite Subprofile Block Server Performance Instance Diagram

StorageVolume or 
StorageExtent

StorageExtent DiskDrive

PhysicalPackage

MediaPresent*

Realizes
*

Basedon 

SoftwareIdentitty
DeviceSoftwareIdentity

StoragePool

ConcreteComponent

PhysicalPackage
(System)

Container

ElementStatisticalData

MemberOfCollection

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=10

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs
1016



 Block Server Performance Subprofile
8.2.8.11.1.12 Performance Additions to SCSIArbitraryLogicalUnits (Controller LUNs)

Figure 166: "SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram" illustrates the
class instances that would be supported if an Array (or Storage Virtualizer) has Controller LUNs (e.g.,
SCSIArbitraryLogicalUnits). In this case, BlockStorageStatisticalData instances would exist for each of
the Controller LUNs (LogicalDevices or SCSIArbitraryLogicalUnits) supported by the Array (or Storage
Virtualizer).   

Note: There is no ElementStatisticalData association to any element. This is because the Controller
LUNs are not actually part of the Array or Storage Virtualizer Profiles. But the statistics may still
be collected in and kept in BlockStorageStatisticalData instances with ElementType=11.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Arbitrary
LUs”. 

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties
are not listed in order to save space in the diagram. Optional properties can be found in
8.2.8.11.9, "CIM Elements".

Figure 166: SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram

ComputerSystem

MemberOfCollection

HostedCollection StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=11

StatisticTime
TotalIOs

KBytesTransferred
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1017



 

EXPERIMENTAL

8.2.8.11.1.13 Performance Additions for Remote Mirrors 

Figure 167: "Remote Mirrors Block Server Performance Instance Diagram" illustrates the class
instances that would be supported if an Array also implemented the Remote Mirroring of the Copy
Services Subprofile (and the Block Server Performance Subprofile). In this case,
BlockStorageStatisticalData instances would exist for non-volume (e.g., meta data) IO requests. In this
case, the BlockStorageStatisticalData instance is associated with the Network instance that represents
the connection to the remote system. Note: Statistics attributed to the Network are control IOs between
the mirroring arrays. Statistics that actually move data to the remote mirror are attributed to the targeted
StorageVolume (or logical disk).

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Remote
Replica Group”. 

Note: Support for both the Copy Services Subprofile and the Block Server Performance Subprofile
DOES not imply support for statistics at the Remote Replica Group level. This support is ONLY
implied by the “ElementsSupported” property of the BlockStatisticsCapabilities instance.

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties
are not listed in order to save space in the diagram. Optional properties can be found in the
“8.2.8.11.9, "CIM Elements" section.

EXPERIMENTAL

Figure 167: Remote Mirrors Block Server Performance Instance Diagram

ComputerSystem

Network

ElementName = 
“ReplicationServiceNetwork”

ProtocolEndpoint

ProtocolIFType = “Other”
OtherTypeDescription = 
   “ReplicationEndpoint”

NetworkPipe

ElementName,
OperationalStatus,
DirectionalityHostedNetworkPipe

EndpointOfNetworkPipe

ElementStatisticalData

HostedCollection
StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=12

StatisticTime
TotalIOs

KBytesTransferred

HostedCollection

MemberOfCollection

HostedAccessPoint

SystemComponent
1018



 Block Server Performance Subprofile
8.2.8.11.1.14 Client Defined Manifest Collections 
Manifest collections are either provider supplied
(CIM_BlockStatisticsManifestCollection.IsDefault=True) for the profile implementation or client defined
collections (CIM_BlockStatisticsManifestCollection.IsDefault=False) that indicate what statistics
properties the client would like to retrieve using the GetStatisticsCollection method. For a discussion of
provider supplied manifest collections, see 8.2.8.11.1.7, "Default Manifest Collection".

Client defined manifest collections are a mechanism for restricting the amount of data returned on a
GetStatisticsCollection request. A client defined manifest collection is identified by the IsDefault
property of the collection is set to False. For each block statistics class (e.g., Computer System,
Volume, Disk, etc.) a manifest can be defined which identifies which properties of the particular
statistics class are to be returned on a GetStatisticsCollection request. Each of the classes of block
statistic may have 0 or 1 manifest in any given manifest collection. This is illustrated in Figure 168:
"Block Server Performance Manifest Collections".
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1019



 

In this figure, manifest classes are defined for Volumes (StorageVolumes or LogicalDisks) and Disk
Drives. Each property of the manifest is a Boolean that indicates whether the property is to be returned
(true) or omitted (false).

Figure 168: Block Server Performance Manifest Collections

BlockStorageStatisticalData

InstanceID
ElementName
StatisticTime

TotalIOs
KBytesTransferred

ReadIOs
ReadHitIOs

W riteIOs
W riteHitIOs

BlockStorageStatisticalData

InstanceID
StatisticTime

TotalIOs
KBytesTransferred

IOTime
MaintOp
ReadIOs

StorageVolume

ElementStatisticalData

BlockStatisticsManifestCollection

InstanceID
ElementName

IsDefault=False

BlockStatisticsManifest

ElementType=8
StatisticTimeInclude

TotalIOsInclude
KBytesTransferredInclude

ReadIOsInclude
ReadHitIOsInclude

WriteIOsInclude
WriteHitIOsInclude

MemberOfCollection

StatisticsCollection

InstanceID
ElementName

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

BlockStorageStatisticalData

InstanceID
ElementType=8

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs

ReadHitIOs
WriteIOs

WriteHitIOs

BlockStorageStatisticalData

InstanceID
ElementType=10

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs

StorageExtent

ElementStatisticalData

BasedOn

BlockStatisticsManifest

ElementType=10
StatisticTimeInclude

TotalIOsInclude
KBytesTransferredInclude

ReadIOsInclude

ComputerSystem

HostedCollectionBlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()
CreateManifestCollection()

AddOrModifyManifest()
RemoveManifest()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport []

AsynchronousMethodsSupported []
ClockTickInterval

ElementCapabilities

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

Server Profile
RegisteredProfile

RegisteredName=
 ‘Block Server Performance’

RegisteredSubprofile
SubprofileRequiresProfile

ElementConformsToProfile

BlockStatisticsManifest
1020



 Block Server Performance Subprofile
Multiple client defined manifest collections can be defined in the profile. So different clients or different
client applications can define different manifests for different application needs. A manifest collection
can completely omit a whole class of statistics (e.g., no ComputerSystem statistics are shown in
Figure 168: "Block Server Performance Manifest Collections"). Since manifest collections are “client
objects”, they are named (ElementName) by the client for the client’s convenience. The CIM server will
generate an instance ID to uniquely identify the manifest collection in the CIM Server.

Client defined manifest collections are created using the CreateManifestCollection method. Manifests
are added or modified using the AddOrModifyManifest method. And a manifest may be removed from
the manifest collection using the RemoveManifest method.

Note: Use of manifest collections is optional with the GetStatisticsCollection method. If NULL for the
manifest collection is passed on input, then all statistics instances are assumed.

8.2.8.11.1.15 Capabilities Support for Block Server Performance Subprofile 
There are two dimensions to determining what is supported with a Block Server Performance
Subprofile implementation. First, there are the RegisteredSubprofiles supported by the Block server
(Array, Storage Virtualizer or Volume Management Profile). In order to support statistics for a particular
class of metered element, the corresponding object shall be modeled. So, if an Array has not
implemented the Disk Drive Lite (or Disk Drive) Subprofile, then it shall not implement the
BlockStorageStatisticalData for Disk Drives in the Block Server Performance Subprofile (and
implementation of the Disk Drive Lite or Disk Drive Subprofile does not guarantee implementation of the
BlockStorageStatisticalData for disk drives).

Both of these dimensions are captured in the BlockStatisticsCapabilities class instance. This is
populated by the provider (not created or modified by Clients) and it has three properties of interest.
The second dimension is techniques supported for retrieving statistics and manipulating manifest
collections.

ElementsSupported
The values of interest are “Computer System”, “Front-end Computer System”, “Peer Computer
System”, “Back-end Computer System”, “Front-end Port”, “Back-end Port”, “Volume”, “Extent”, “Disk
Drive”, “Arbitrary LUs”, “Remote Replica Group”

SynchronousMethodsSupported
The values of interest are ”Exec Query”, “Indications”, “Query Collection”, “GetStatisticsCollection”,
“Manifest Creation”, “Manifest Modification”, and “Manifest Removal”

AsynchronousMethodsSupported
For this version of SMI-S this should be NULL.

ClockTickInterval
An internal clocking interval for all timer counters kept in the subsystem, measured in microseconds
(Unit of measure in the timers, measured in microseconds). Time counters are monotonically
increasing counters that contain 'ticks'. Each tick represents one ClockTickInterval.

To be a valid implementation of the Block Server Performance Subprofile, at least one of the values
listed for ElementsSupported shall be supported. ElementsSupported is an array, such that all of the
values can be identified. 

For the methods supported properties any or all of these values can be missing (e.g., the arrays can be
NULL). If all the methods supported are NULL, this means that manifest collections are not supported
and neither GetStatisticsCollection nor Query are supported for retrieval of statistics. This leaves
enumerations or association traversals as the only methods for retrieving the statistics.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1021



 

8.2.8.11.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.8.11.3 Cascading Considerations
Not applicable.

8.2.8.11.4 Supported Subprofiles and Packages

Note: Each of these subprofiles is mandatory if the element in question is to be metered. For example,
in order to keep statistics on Disk Drives, it will be necessary for Disk Drives to be modeled.

8.2.8.11.5 Methods of the Profile

8.2.8.11.5.1 Extrinsic Methods of the Profile 

8.2.8.11.5.1.1 Overview
The methods supported by this subprofile are summarized in Table 1027: “Creation, Deletion and
Modification Methods in Block Server Performance Subprofile”, and detailed in the sections that follow
it.

Table 1026: Supported Subprofiles for Block Server Performance

Registered Subprofile Names Mandatory Version
Multiple Computer System No 1.1.0
Extent Composition No 1.1.0
SPI Target Ports No 1.1.0
FC Target Ports No 1.1.0
iSCSI Target Ports No 1.1.0
DA Target Ports No 1.1.0
SPI Initiator Ports No 1.1.0
FC Initiator Ports No 1.1.0
iSCSI Initiator Ports No 1.1.0
Disk Drive Lite No 1.1.0
Copy Services No 1.1.0

Table 1027: Creation, Deletion and Modification Methods in Block Server Performance 
Subprofile

Method Created Instances Deleted Instances Modified Instances
GetStatisticsCollection None None None
CreateManifestCollection BlockStatisticsManifest-

Collection
AssociatedBlockStatis-
ticsManifestCollection

None None
1022



 Block Server Performance Subprofile
8.2.8.11.5.1.2 GetStatisticsCollection
This method retrieves statistics in a well-defined bulk format. The set of statistics returned by this list is
determined by the list of element types passed in to the method and the manifests for those types
contained in the supplied manifest collection. The statistics are returned through a well-defined array of
strings that can be parsed to retrieve the desired statistics as well as limited information about the
elements that those metrics describe.

GetStatisticsCollection(

       [IN (false), OUT, Description(Reference to the job (shall be null in this version of SMI-S).)]

       CIM_ConcreteJob REF Job,

       [IN, Description(Element types for which statistics should be returned.)

ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "..",  "32768..65535" }, 

        Values { "Unknown", "Reserved", “Computer System”, “Front-end Computer System”, 

"Peer Computer System”, « Back-end Computer System” “Front-end Port”, “Back-end Port”, 

“Volume”, “Extent”, “Disk Drive”, “Arbitrary LUs” , “Remote Replica Group”, 

"DMTF Reserved", "Vendor Specific" }]

       uint16 ElementTypes[],

       [IN, Description(The manifest collection that contains the manifests that list the metrics that 

should be returned for each element type.)]

       CIM_BlockStatisticsManifestCollection REF ManifestCollection,

       [IN, Description("Specifies the format of the Statistics output parameter.")

ValueMap { "2" }, 

  Values ( "CSV"  )]

       Uint16 StatisticsFormat,

       [OUT, Description(The statistics for all the elements as determined by the Elements and 

                        ManifestCollection parameters.)]

       string Statistics[]  );

Error returns are:

AddOrModifyManifest BlockStatisticsManifest 
(subclass)
MemberOfCollection

None BlockStatisticsManifest 
(subclass)

RemoveManifest None BlockStatisticsManifest 
(subclass)
MemberOfCollection

None

Table 1027: Creation, Deletion and Modification Methods in Block Server Performance Subprofile 
(Continued)

Method Created Instances Deleted Instances Modified Instances
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1023



 

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Method Parameters Checked - Job Started", "Element Not Supported", “Statistics
Format Not Supported”, "Method Reserved",  "Vendor Specific" }

Note: In this version of the standard, Job Control is not supported for the GetStatisticsCollection
method. This method should always return NULL for the Job parameter.

If the ElementTypes[] array is empty, then no data is returned. If the ElementTypes[] array is NULL, then
all data specified in the manifest collection is returned.

If the manifest collection is empty, then no data is returned. If the manifest collection parameter is
NULL, then the default manifest collection is used (Note: In SMI-S, a default manifest collection shall
exist if the GetStatisticalCollection method is supported).

Note: The ElementTypes[] and ManifestCollection parameters may identify different sets of element
types. The effect of this will be for the implementation to return statistics for the element types
that are in both lists (that is, the intersection of the two lists). This intersection could be empty. In
this case, no data will be returned.

For this version of SMI-S, the only recognized value for StatisticsFormat is “CSV”. The method may
support other values, but they are not specified by SMI-S (i.e., they would be vendor specific).

Given a client has an inventory of the metered objects with Statistics InstanceIDs that may be used to
correlate with the BlockStorageStatisticalData instances, a simple CSV format is sufficient and the most
efficient human-readable format for transferring bulk statistics. More specifically, the following rules
constrain that format and define the content of the String[] Statistics output parameter to the
GetStatisticsCollection() method:

• The Statistics[] array may contain multiple statistics records per array entry. In such cases, the total
length of the concatenated record strings will not exceed 64K bytes. And a single statistics record
will not span Array entries. 

• There shall be exactly one statistics record per line in the bulk Statistics parameter. A line is
terminated by:

• a line-feed character    

• the end of a String Array Element (i.e., a statistics record cannot overlap elements of the
String[] Statistics output parameter).

• Each statistics record shall contain the InstanceID of the BlockStorageStatisticalData instance, the
value map (number) of the ElementType of the metered object and one value for each property
that the relevant BlockStatisticsManifest specifies as “true”. 

• Each value in a record shall be separated from the next value by a Semi-colon (“;”). This is to
support internationalization of the CSV format. A provider creating a record in this format should
not include white space between values in a record. A client reading a record it has received would
ignore white-space between values.

• The InstanceID value is an opaque string that shall correspond to the InstanceID property from
BlockStorageStatisticalData instance. The ElementType value shall be a decimal string
representation of the Element Type number (e.g., “8” for StorageVolume). The StatisticTime shall
be a string representation of DateTime. All other values shall be decimal string representations of
their statistical values.

• NULL values shall be included in records for which a statistic is returned (specified by the manifest
or by a lack of manifest for a particular element type) but there is no meaningful value available for
the statistic. A NULL statistic is represented by placing a comma in the record without a value in
1024



 Block Server Performance Subprofile
the position the value would have otherwise been included. A record in which the last statistic has
a NULL value shall end in a comma.

• The first three values in a record shall be the InstanceID, ElementType and StatisticTime values
from the BlockStorageStatisticalData instance. The remaining values shall be returned in the order
in which they are defined by the MOF for the BlockStatisticsManifest class or subclass the record
describes.

As an additional convention, a provider should return all the records for a particular element type in
consecutive String elements, and the order of the element types should be the same as the order in
which the element types were specified in the input parameter to GetStatisticsCollection(). 

Example output as it might be transmitted in CIM-XML. It shows records for 5 Volumes and 5 disks,
assuming that 6 statistics were specified in the BlockStatisticsManifest instance for both disks and
volumes. The sixth statistic is unavailable for volumes, and the fourth statistic is unavailable for disks:

<METHODRESPONSE NAME="GetStatisticsCollection">

<RETURNVALUE PARAMTYPE="uint32">

<VALUE>

0

</VALUE>

</RETURNVALUE>

<PARAMVALUE NAME="Statistics" PARAMTYPE="string">

<VALUE.ARRAY>

<VALUE>

STORAGEVOLUMESTATS1;7;20040811133015.0000010-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS2;7;20040811133015.0000020-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS3;7;20040811133015.0000030-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS4;7;20040811133015.0000040-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS5;7;20040811133015.0000050-300;11111;22222;33333;44444;55555;

</VALUE>

<VALUE>

DISKSTATS1;9;20040811133015.0000100-300;11111;22222;33333;;55555;66666;

DISKSTATS2;9;20040811133015.0000110-300;11111;22222;33333;;55555;66666;

DISKSTATS3;9;20040811133015.0000120-300;11111;22222;33333;;55555;66666;

DISKSTATS4;9;20040811133015.0000130-300;11111;22222;33333;;55555;66666;

DISKSTATS5;9;20040811133015.0000140-300;11111;22222;33333;;55555;66666;

</VALUE>

</VALUE.ARRAY>

</PARAMVALUE>

</METHODRESPONSE>

8.2.8.11.5.1.3 CreateManifestCollection
Creates a new manifest collection whose members serve as a filter for metrics retrieved through the
GetStatisticsCollection method.

CreateManifestCollection(

       [IN, Description(The collection of statistics that will be filtered using the new 

manifest collection.)]
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1025



 

       CIM_StatisticsCollection REF Statistics,

       [IN, Description(Client-defined name for the new manifest collection)]

       string ElementName,

       [OUT, Description(Reference to the new manifest collection.)]

       CIM_BlockStatisticsManifestCollection REF ManifestCollection );

Error returns are:

{ "Ok",  "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",  "Method Reserved",
"Vendor Specific" }

8.2.8.11.5.1.4 AddOrModifyManifest
This is an extrinsic method that either creates or modifies a statistics manifest for this statistics service.
A client supplies a manifest collection in which the new manifest collection will be placed or an existing
manifest will be modified, the element type of the statistics that the manifest will filter, and a list of
statistics that should be returned for that element type using the GetStatisticsCollection method.

AddOrModifyManifest(

       [IN, Description(Manifest collection that the manifest is or should be a member of.)]

       CIM_BlockStatisticsManifestCollection REF ManifestCollection,

       [IN, Description(The element type whose statistics the manifest will filter.)

ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "..",  "32768..65535" }, 

       Values { "Unknown", "Reserved", “Computer System”, “Front-end Computer System”, 

"Peer Computer System”, « Back-end Computer System” “Front-end Port”, “Back-end Port”, 

“Volume”, “Extent”, “Disk Drive”, “Arbitrary LUs” , “Remote Replica Group”, 

"DMTF Reserved", "Vendor Specific" }]

       uint16 ElementType,

            [IN, Description(The client-defined string that identifies the manifest created or modified by this
method.)]

       string ElementName,

           [IN, Description(The statistics that will be supplied through the GetStatisticsCollection method.)]

       string StatisticsList[],

           [OUT, Description(The Manifest that is created or modified on successful execution of the
method.)]

       CIM_BlockStatisticsManifest REF Manifest );

Error returns are:

{ “Success”,  "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",  "Method
Reserved", "Element Not Supported",  "Metric not supported", "ElementType Parameter Missing",
"Method Reserved", "Vendor Specific" }
1026



 Block Server Performance Subprofile
If the StatisticsList[] array is empty, then only InstanceID and ElementType will be returned when the
manifest is referenced. If the StatisticsList[] array parameter is NULL, then all supported properties is
assumed 

Note: This would be the BlockStatisticsManifest from the default manifest collection.

8.2.8.11.5.1.5 RemoveManifest
This is an extrinsic method that removes manifests from a manifest collection.

RemoveManifest(

       [IN, Description(Manifest collection from which the manifests will be removed.)]

   CIM_BlockStatisticsManifestCollection REF ManifestCollection,

       [IN, Description(List of manifests to be removed from the manifest collection.)]

    CIM_BlockStatisticsManifest REF Manifests[]  );

Error returns are:

{ “Success”,  "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",  "Method
Reserved", "Manifest not found",  "Method Reserved", "Vendor Specific" }

8.2.8.11.5.2 Intrinsic Methods of the Profile

Note: Basic Write intrinsic methods are not specified for StatisticsCollection, HostedCollection,
BlockStorageStatisticalData, MemberOfCollection or ElementStatisticalData. 

DeleteInstance (of a CIM_BlockStatisticsManifestCollection)
This will delete the CIM_BlockStatisticsManifestCollection where IsDefault=False, the
CIM_AssociatedBlockStatisticsManifestCollection association to the StatisticsCollection and all
manifests collected by the manifest collection (and the MemberOfCollection associations to the
CIM_BlockStatisticsManifestCollection).

Association Traversal
One of the ways of retrieving statistics is through association traversal from the StatisticsCollection to
the individual Statistics following the MemberOfCollection association. This shall be supported by all
implementations of the Block Server Performance Subprofile and would be available to clients if the
provider does not support EXEC QUERY or GetStatisticsCollection approaches.

EXPERIMENTAL

CreateInstance (of a ListenerDestinationCIMXML, IndicationSubscription and possibly
IndicationFilters)
CreateInstance would be required to establish subscriptions and ListenerDestinations for retrieval of
statistics via indications. Depending on the support in the profile, it may also be required to create the
IndicationFilter.

DeleteInstance (of a ListenerDestinationCIMXML, IndicationSubscription and possibly
IndicationFilters)
DeleteInstance would be required to delete subscriptions and ListenerDestinations that were defined
for retrieval of statistics via indications. Depending on the support in the profile, it may also be required
to delete the IndicationFilter.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1027



 

ModifyInstance (of an IndicationFilter)
ModifyInstance may also be supported for modifying IndicationFilters, assuming the profile supports
client defined filters. It would not be supported for “pre-defined” filters.

EXEC QUERY
This is one of the ways of retrieving statistics.

GetInstance on QueryStatisticalCollection 
This is yet another means of retrieving statistics. In this technique an instance of the
QueryStatisticalCollection class is created that defines a Query for statistics and the format in which the
query results are to be represented. The key properties of the QueryStatisticalCollection class are:

• Query - This is a query string that defines the statistics to be populated in the
QueryStatisticalCollection instance.

• QueryLanguage - This defines the query language that is used in the query. For this version of
SMI-S, only CQL should be encoded.

• SelectedEncoding - This defines the encoding of the data that is to be populated in the
QueryStatisticalCollection instance. For this version of SMI-S, this should be CSV (for Comma
Separated Values).

• SelectedNames - This is the list of statistics property names to be retrieved. These correspond to
the Select List of the Query. The encoding of these names is as defined by the SelectedEncoding
(for this version of SMI-S, this would be CSV).

• SelectedTypes - This is the list of data types for the columns of the query result. Each data type
specified corresponds to a column in the SelectedValues property.

• SelectedValues - This is a table of values that correspond to the query results (for the query
specified in the Query property). The data types of the column of values are defined by
SelectedTypes. The name of each column in the table is defined by SelectedNames. And the
values are encoded as defined by SelectedEncoding (i.e., CSV for this version of SMI-S).

An example CQL query would be:

SELECT Stats.* 

FROM  CIM_BlockStorageStatisticalData Stats, CIM_QueryStatisticsCollection 
QSC,      

 CIM_MemberOfCollection MoC

  WHERE ObjectPath(QSC) = ObjectPath(SELF) 

        AND ObjectPath(QSC) = MoC.Collection 

        AND ObjectPath(Stats) = MoC.Member 

        AND CurrentDateTime() >= 

            Stats.StatisticTime + Stats.SampleInterval 

A client would define a QueryStatisticalCollection instance as means of specifying what the client
wants. This would be done with the CreateInstance intrinsic method. The client would delete such an
instance using the DeleteInstance method. If the client wishes to change the query, the client would use
the ModifyInstance intrinsic method.
1028



 Block Server Performance Subprofile
Retrieving the data would be done via the GetInstance intrinsic. This would retrieve the
QueryStatisticalCollection instance, which includes the table of comma separated values which are the
statistics.

EXPERIMENTAL

8.2.8.11.6 Client Considerations and Recipes

8.2.8.11.6.1 Bulk Performance Statistics Gathering 
// DESCRIPTION

//

// This recipe describes how to determine what elements are metered, what 

// retrieval methods are supported and what statistics are kept for each 

// metered element in Arrays, Storage Virtualizers or Volume Managers that 

// support the Block Server Performance Subprofile and how to retrieve the 

// statistical data.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS: 

// 1. The names of the top-level ComputerSystem instances for Array, Storage 

// Virtualizer, or Volume Manager implementations supporting the Block Server 

// Performance Subprofile have previously been discovered via SLP and are known 

// as $StorageSystems->[].

//

// Function GetNumStatsIncluded

//

// This function counts of the number of metrics that should be included in a

// statistics record built using the supplied BlockManifest instance.

//

sub GetNumStatsIncluded($BlockManifest) {

    #numIncluded = 0

    if ($BlockManifest.IncludeStatisticTime)

#numIncluded++

    if ($BlockManifest.IncludeTotalIOs)

#numIncluded++

    if ($BlockManifest.IncludeKBytesTransferred)

#numIncluded++

    if ($BlockManifest.IncludeIOTimeCounter)

#numIncluded++

    if ($BlockManifest.IncludeReadIOs)

#numIncluded++

    if ($BlockManifest.IncludeReadHitIOs)

#numIncluded++

    if ($BlockManifest.IncludeReadIOTimeCounter)

#numIncluded++

    if ($BlockManifest.IncludeReadHitIOTimeCounter)

#numIncluded++
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1029



 

    if ($BlockManifest.IncludeKBytesRead)

#numIncluded++

    if ($BlockManifest.IncludeWriteIOs)

#numIncluded++

    if ($BlockManifest.IncludeWriteHitIOs)

#numIncluded++

    if ($BlockManifest.IncludeWriteIOTimeCounter)

#numIncluded++

    if ($BlockManifest.IncludeWriteHitIOTimeCounter)

#numIncluded++

    if ($BlockManifest.IncludeKBytesWritten)

#numIncluded++

    if ($BlockManifest.IncludeIdleTimeCounter)

#numIncluded++

    if ($BlockManifest.IncludeMaintOp)

#numIncluded++

    if ($BlockManifest.IncludeMaintTimeCounter)

#numIncluded++

    return #numIncluded

}

// Function ValidateRecords

//

// This function validates the records of a set of statistics supplied in the 

// Bulk Statistics Format defined in the Block Server Performance Subprofile. 

// Every statistics record should contain an InstanceID, ElementType and the

// number of statistics indicated by the BlockManifest. This functional

// verifies that a non-empty InstanceID was specified and that the format of

// metrics populated is appropriate for the data type defined each supported

// metric.  It also checks if the metrics are null, which could occur if a 

// client included a metric in the BlockManifest used by the 

// GetStatisticsCollection function that cannot be populated.

sub ValidateRecords(#BulkStatistics[], 

$BlockManifests[], 

$BSSDs[]) {

    for (#i in #BulkStatistics[]) {

// The function split() below parses the content of an element in

// #BulkStatistics[] into multiple sub-strings based on occurrences

// of carriage return. (i.e.,“\n”)

#Records[] = #BulkStatistics[#i].split(“\n”)

for (#j in #Records[]) {

    // The function split() below further parses the content of an

    // element in #Records[] into multiple sub-strings based on 

    // occurrences of semi-colon. The resulting elements contain (in
1030



 Block Server Performance Subprofile
    // order) the InstanceID and ElementType properties followed by the 

    // metrics supported. 

    #RecordElements[] = #Records[#j].split(“;”)

    // Each element MUST contain at least InstanceID and ElementType.

    if (#RecordElements[].length < 2) {

<ERROR! Statistics Record does not contain InstanceID and/or 

ElementType>

    }

    // The InstanceID in the record MUST match the InstanceID of a BSSD.

    $StatsData = null

    for (#k in $BSSDs[]) {

if ($BSSDs[#k]->InstanceID == #RecordElements[0]) {

    $StatsData = $BSSDs[#k]

    break

}

    }

    if ($StatsData == null) {

<ERROR! Statistics instance could not be found for record>

    }

    // The function Integer() below is used to convert a string 

    // representation of an integer to an int value.

    #elementType = Integer(#RecordElements[1])

    if (#elementType != $StatsData.ElementType) {

<ERROR! ElementTypes for statistics record and instance do not

match>

    }

    // Get the BlockManifest that describes this record. If none exists 

    // then the record does not contain a valid ElementType.

    $BlockManifest = &GetBlockManifestByType($BlockManifests[],

    #elementType)

    if ($BlockManifest == null) {

<ERROR! ElementType in Statistics Record not recognized>

    }

    // There MUST be two elements in the record (i.e.,InstanceID and

    // ElementType) in addition to one element for each supported 

    // metric.

    if (#RecordElements.length != 

    &GetNumStatsIncluded($BlockManifest) + 2) {

<ERROR! Statistics record does not contain the expected number 

of metrics>

    }

    // All default manifests MUST contain StatisticTime
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1031



 

    if (!$BlockManifest.IncludeStatisticTime) {

<ERROR! Default manifest does not specify required property

value IncludeStatisticTime=true>

    }

    // The function Datetime() below is used to convert a string

    // representation of a DateTime value into a DateTime object

    #statisticTime = Datetime(#RecordElements[2])

    // Copy instance for local modification

    $Manifest = $BlockManifest

    // Validate the metrics in each record

    #CurrentProperty = 0

    #CurrentPropertyName = “Unknown”

    #k = 3

    while (#k < #RecordElements[].length) {

// The remaining record elements should be integral values

// Parse the next element in the record and save the relevant

// property from the BSSD instance (and its name for inclusion 

// in error codes)

#CurrentElement = Integer(#RecordElements[#k])

if ($Manifest.IncludeTotalIOs) {

    #CurrentProperty = $StatsData.TotalIOs

    #CurrentPropertyName = “TotalIOs”

    // Avoid double-checking for inclusion of this metric

    $Manifest.IncludeTotalIOs = false

} else if ($Manifest.IncludeKBytesTransferred) {

    #CurrentProperty = $StatsData.KBytesTransferred

    #CurrentPropertyName = “KBytesTransferred”

    // Avoid double-checking for inclusion of this metric

    $Manifest.IncludeKBytesTransferred = false

} else if ($Manifest.IncludeIOTimeCounter) {

    #CurrentProperty = $StatsData.IOTimeCounter

    #CurrentPropertyName = “IOTimeCounter”

    // Avoid double-checking for inclusion of this metric

    $Manifest.IncludeIOTimeCounter = false

} else if ($Manifest.IncludeReadIOs) {

    #CurrentProperty = $StatsData.ReadIOs

    #CurrentPropertyName = “ReadIOs”

    // Avoid double-checking for inclusion of this metric

    $Manifest.IncludeReadIOs = false

} else if ($Manifest.IncludeReadHitIOs) {

    #CurrentProperty = $StatsData.ReadHitIOs
1032



 Block Server Performance Subprofile
    #CurrentPropertyName = “ReadHitIOs”

    // Avoid double-checking for inclusion of this metric

    $Manifest.IncludeReadHitIOs = false

} else if ($Manifest.IncludeReadIOTimeCounter) {

    #CurrentProperty = $StatsData.ReadIOTimeCounter

    #CurrentPropertyName = “ReadIOTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeReadIOTimeCounter = false

} else if ($Manifest.IncludeReadHitIOTimeCounter) {

#CurrentProperty = $StatsData.ReadHitIOTimeCounter

#CurrentPropertyName = “ReadHitIOTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeReadHitIOTimeCounter = false

} else if ($Manifest.IncludeKBytesRead) {

#CurrentProperty = $StatsData.KBytesRead

#CurrentPropertyName = “KBytesRead”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeKBytesRead = false

} else if ($Manifest.IncludeWriteIOs) {

#CurrentProperty = $StatsData.WriteIOs

#CurrentPropertyName = “WriteIOs”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteIOs = false

} else if ($Manifest.IncludeWriteHitIOs) {

#CurrentProperty = $StatsData.WriteHitIOs

#CurrentPropertyName = “WriteHitIOs”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteHitIOs = false

} else if ($Manifest.IncludeWriteIOTimeCounter) {

#CurrentProperty = $StatsData.WriteIOTimeCounter

#CurrentPropertyName = “WriteIOTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteIOTimeCounter = false

} else if ($Manifest.IncludeWriteHitIOTimeCounter) {

#CurrentProperty = $StatsData.WriteHitIOTimeCounter

#CurrentPropertyName = “WriteHitIOTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteHitIOTimeCounter = false

} else if ($Manifest.IncludeKBytesWritten) {
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1033



 

#CurrentProperty = $StatsData.KBytesWritten

#CurrentPropertyName = “KBytesWritten”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeKBytesWritten = false

} else if ($Manifest.IncludeIdleTimeCounter) {

#CurrentProperty = $StatsData.IdleTimeCounter

#CurrentPropertyName = “IdleTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeIdleTimeCounter = false

} else if ($Manifest.IncludeMaintOp) {

#CurrentProperty = $StatsData.MaintOp

#CurrentPropertyName = “MaintOp”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeMaintOp = false

} else if ($Manifest.IncludeMaintTimeCounter) {

#CurrentProperty = $StatsData.MaintTimeCounter

#CurrentPropertyName = “MaintTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeMaintTimeCounter = false

}

if (#statisticTime == $BlockStats.StatisticTime) {

    // record and instance property should be equal

    if (#CurrentElement != #CurrentProperty) {

<ERROR! Record Element inconsistent with BSSD 

property #CurrentPropertyName>

    }

} else if (#statisticTime > $BlockStats.StatisticTime) {

    // record should be >= instance property

    if (#CurrentElement < #CurrentProperty) {

<ERROR! Record Element inconsistent with BSSD property

#CurrentPropertyName. The counter may have 

rolled back to 0>

    }

} else {

    // record should be <= instance property

    if (#CurrentElement > #CurrentProperty) {

<ERROR! Record Element inconsistent with BSSD property

#CurrentPropertyName. The counter may have 

rolled back to 0>

    }

}

k++
1034



 Block Server Performance Subprofile
    } // while (#k < #RecordElements[].length)...

} // for (#j in #Records[])

    } // for (#i in #BulkStatistics[])

}

// This function takes a container of BlockManifest instances and locates the

// instance that represents the specified element type. Null is returned if 

// the specified instance cannot be located in the container.

sub CIMInstance GetBlockManifestByType($BlockManifests[], #elementType) {

    for (#i in $BlockManifests[]) {

if ($BlockManifests[#i].ElementType == #elementType) {

    return $BlockManifests[#i]

}

    }

    return null

}

// MAIN

//

// 1. Loop through the top-level ComputerSystems and retrieve the 

// hosted BlockStatisticsService.

for (#i in $StorageSystems->[]) {

    // Step 1. Retrieve the hosted BlockStatisticsService.

    $StorageSystem-> = $StorageSystems->[#i]

    $StatServices->[] = AssociatorNames($StorageSystem->,

    “CIM_HostedService”,

    “CIM_BlockStatisticsService”,

    “Antecedent”,

    “Dependent”)

    // There should be one and only one BlockStatisticsService.

    $StatService-> = $StatServices->[0]

    // Step 2. Retrieve the capabilities describing the BlockStatisticService.

    $StatCapabilities[] = Associators($StatService->,

    “CIM_ElementCapabilities”,

    “CIM_BlockStatisticsCapabilities”,

    “ManagedElement”,

    “Capabilities”,

    false,

    false,

    {“ElementTypesSupported”, “SynchronousMethodsSupported”})

    // There should be one and only one BlockStatisticsCapabilities.

    $Capabilities = $StatCapabilities[0]

    #SynchCollectionRetrieval = contains(5,    // “GetStatisticsCollection”
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1035



 

    $Capabilities.SynchronousMethodsSupported)

    // Step 3. Locate the StatisticsCollection

    $StatCollections->[] = AssociatorNames($StorageSystem->,

    “CIM_HostedCollection”,

    “CIM_StatisticsCollection”,

    “Antecedent”,

    “Dependent”)

    // There should be one and only one StatisticsCollection.

    $StatCollection-> = $StatCollections->[0]

    // Step 4. Locate the default ManifestCollection

    $ManifestCollections[] = Associators($StatCollection->,

    “CIM_AssociatedBlockStatisticsManifestCollection”,

    “CIM_BlockStatisticsManifestCollection”,

    “Statistics”,

    “ManifestCollection”,

    false,

    false,

    {“IsDefault”})

    $DefaultManifestCollection = null

    for (#j in $ManifestCollections[]) {

if ($ManifestCollections[#j].IsDefault) {

    $DefaultManifestCollection = $ManifestCollections[#j]

    break

}

    }

    if ($DefaultManifestCollection == null) {

<ERROR! A default ManifestCollection MUST exist>

    }

    // Step 5. Locate the default BlockManifests which identify what statistical

    // data is supported for each element type. (e.g. disk, volume, etc.)

    #PropList = {“InstanceID”, “ElementName”, “ElementType”, 

    “IncludeStatisticTime”, “IncludeTotalIOs”, 

    “IncludeKBytesTransferred”, “IncludeIOTimeCounter”, 

    “IncludeReadIOs”, “IncludeReadHitIOs”, “IncludeReadIOTimeCounter”, 

    “IncludeReadHitIOTimeCounter”, “IncludeKBytesRead”, 

    “IncludeWriteIOs”, “IncludeWriteHitIOs”, 

    “IncludeWriteIOTimeCounter”, “IncludeWriteHitIOTimeCounter”, 

    “IncludeKBytesWritten”, “IncludeIdleTimeCounter”, “IncludeMaintOp”, 

    “IncludeMaintTimeCounter”}

    $DefaultBlockManifests[] = Associators(

    $DefaultManifestCollection.getObjectPath(),

    “CIM_MemberOfCollection”,

    “CIM_BlockStatisticsManifest”,

    “Collection”,

    “Member”,

    false,
1036



 Block Server Performance Subprofile
    false,

    #PropList)

    // There MUST be one default Block Manifest for each element type supported.

    if ($Capabilities.ElementTypesSupported[].length 

    != $DefaultBlockManifest[].length) {

<ERROR! Required default BlockManifests do not exist>

    }

    // Step 6. Traverse from the StatisticsCollection to the 

    // BlockStorageStatisticalData. If SyncCollectionRetrieval is supported, 

    // then this is necessary for validation of the Manifest data retrieved 

    // through the GetStatisticsCollection method. If it is not supported, 

    // then these instances must be used to retrieve the statistics directly.

    $BlockStats[] = Associators($StatCollection->,

    “CIM_MemberOfCollection”,

    “CIM_BlockStorageStatisticalData”,

    “Collection”,

    “Member”,

    false,

    false,

    #PropList)

    if (#SynchCollectionRetrieval) {

// Step 7a. Retrieve the data specified by the default 

// ManifestCollection in bulk.

%InArguments[“ElementTypes”] = $Capabilities.ElementTypesSupported[]

%InArguments[“ManifestCollection”] = 

$DefaultManifestCollection.getObjectPath()

%InArguments[“StatisticsFormat”] = 2// “CSV”

#MethodReturn = InvokeMethod($StatService->, 

“GetStatisticsCollection”, 

%InArguments, 

%OutArguments)

if (#MethodReturn == 0) {

    #Statistics[] = %OutArguments[“Statistics”]

    // Step 8. Parse the bulk statistical data retrieved to validate

    // the values (at least as much as is feasible)

    &ValidateRecords(#Statistics[], $DefaultBlockManifests[#j],

    $BlockStats[])

} else {

    <ERROR! Bulk statistical data retrieval failed>

}

    } else {

// Step 7b. Since bulk statistics retrieval is not supported, the

// statistical data must be retrieved directly.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1037



 

for (#j in $BlockStats[]) {

    $BlockStat = $BlockStats[#j]

    $BlockManifest = GetBlockManifestByType($DefaultBlockManifests[],

    $BlockStat.ElementType)

    if ($BlockManifest == null) {

<ERROR! The required default BlockManifest does not exist for

this element type>

    }

    // Determine the supported statistical properties specified by

    // $BlockManifest, and retrieve the corresponding property values

    // for this element type from $BlockStat.

}

    }

}

EXPERIMENTAL

8.2.8.11.6.2 Building an Object Map of Metered Elements 
// DESCRIPTION

//

// This recipe describes how to build a record of all metered object instances 

// and a topology of how the instances are related. (e.g. volume mapping to 

// disk drives, ports used to access volumes, etc.)

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS: 

// 1. The name of a top-level ComputerSystem instance for an Array, Storage 

// Virtualizer, or Volume Manager implementation supporting the Block Server 

// Performance Subprofile has previously been discovered via SLP and is known 

// as $StorageSystem->.

// 2. The element types that support performance statistics are known as

// #ElementTypes[] whose content is populated from the property value of

// CIM_BlockStatisticsCapabilities.ElementTypesSupported.

// 3. The performance statistics properties supported for each element type are

// know as #<ElementType>DataPropList[]. (e.g. #VolumeDataPropList[], 

// #DiskDataPropList[], etc.) The content of the property lists is determine 

// from the default instance of CIM_BlockStatisticsManifest for each element type.

// 4. The required properties for each element type are know as 

// #<ElementType>PropList[]. (e.g. #VolumePropList[], #DiskDataPropList[], etc.)

// Function GetAssociatedStats

//

// This function retrieves the instance data of BlockStorageStatisticalData

// associated to the specified metered object. If there is no instance data 

// associated, null is returned.

//

sub CIMInstance[] GetAssociatedStats(CIMObjectPath $MeteredObject->, 

string[] #PropList) {
1038



 Block Server Performance Subprofile
    $StatData[] = Associators($MeteredObject->,

“CIM_ElementStatisticalData”,

“CIM_BlockStorageStatisticalData”,

“ManagedElement”,

“Stats”,

false,

false,

#PropList)

    return $StatData[]

}

// This function retrieves the performance statistics of a CompositeExtent 

// then recursively traverses the hierarchy beneath it.

sub void traverseComposition(REF $Composite->) {

    // Retrieve the performance statistics of the Composite Extent.

    $CompositeExtentStatData[] = &GetAssociatedStats($Composite->,

    #ExtentDataPropList[])

    // There may not be BlockStorageStatisticalData for each and every level 

    // of Composite Extents.

    if ($CompositeExtentStatData[] != null) {

$CompositeExtentStats = $CompositeExtentStatData[0]

    }

    // Retrieve the associations in which this Composite Extent is the 

    // Dependent reference. The association instances retrieved should be 

    // either BasedOn or CompositeExtentBasedOn.

    $Associations[] = References($Composite->,

    “CIM_BasedOn”,

    “Dependent”,

    false,

    false,

    NULL)

    // There must be one or more associations involving the Composite Extent

    // as the Antecedent reference.

    if ($Associations[] == null || $Associations[].length == 0) {

<EXIT! Required associations not found>

    }

    // Determine which association class was discovered.

    #AssocClass = “CIM_BasedOn”

    if ($Associations[0] ISA CIM_CompositeExtentBasedOn) {

#AssocClass = “CIM_CompositeExtentBasedOn”

    }

    // Retrieve the underlying Extents.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1039



 

    $TargetExtents->[] = AssociatorNames($Composite->,

    #AssocClass,

    NULL,

    “Dependent”,

    “Antecedent”)

    // Examine the QOS of the current level’s Composite Extent

    $CompositeExtent = GetInstance($Composite->,

    false,

    false,

    false,

    {“IsConcatenated”, “ExtentStripeLength”})

    // For each underlying extent at this level, traverse the sub-tree it is 

    // the sub-root of. If the extent is a CompositeExtent, then this is part 

    // of a complex RAID level; recursively invoke the Composition Algorithm. 

    // Otherwise it is just a regular StorageExtent and thus must be decomposed 

    // from its Antecedent, so invoke the recursive Decomposition Algorithm.

    for (#i in $TargetExtents->[]) {

if ($TargetExtents->[#i] ISA CIM_CompositeExtent) {

    &traverseComposition($TargetExtents->[#i++])

        } else {

    &traverseDecomposition($TargetExtents->[#i++])

}

    }

}

// This function recursively traverses the hierarchy below a non-Composite 

// StorageExtent.

sub void traverseDecomposition(REF $StartingExtent->) {

    // The Starting Extent is allocated partially or in full from the

    // Antecedent Extent, so a single BasedOn is expected.

    $TargetExtents[] = Associators($StartingExtent->,

    “CIM_BasedOn”,

    “CIM_StorageExtent”,

    “Dependent”,

    “Antecedent”,

    false,

    false,

    {“Primordial”})

    // Since the Starting Extent is allocated from the Antecedent, there must 

    // be only one Antecedent.

    if ($TargetExtents[] == null || $TargetExtents[].length != 1) {

<ERROR! Extent allocated from multiple Antecedents>

    }
1040



 Block Server Performance Subprofile
    $TargetExtent = $TargetExtents[0]

 

    if ($TargetExtent ISA CIM_CompositeExtent) {

// This is a Composite Extent representing a RAID Level. Since we 

// encountered the Composite in a decomposition, it is the “top” 

// extent in a pool and the Dependent/Antecedent relationship falls 

// into one of the following scenarios:

// 

// o The Starting Extent is a StorageVolume that is one-to-one with 

//   the Target Composite Extent.

//

// o The Starting Extent is a StorageVolume partially allocated from 

//   the Target Composite Extent, where the Composite is one-to-one 

//   with the Storage Pool which is a RAID Group.

//

// o The Starting Extent is a ComponentExtent of a Child Concrete 

//   pool and is partially allocated from the Target Composite Extent 

//   where the Composite is one-to-one with the parent RAID Group pool.

//

// Call the (recursive) function to analyze the sub-hierarchy 

// composed by the Target Extent.

//

&traverseComposition($TargetExtent.getObjectPath())

    } else {

// Check here to see if we have reached the leaves of the hierarchy

if ($TargetExtent.Primordial == true) {

    // Recursion ends with each Primordial Extent.

    return

} else {

    // Since the Dependent was a regular StorageExtent, and not 

    // Primordial, it must be decomposed from an Antecedent, so invoke 

    // ourselves recursively.

    &traverseDecomposition($TargetExtent.getObjectPath())

}

    }

}

// This function locates the logical devices on the specified ComputerSystem

// and retrieves the supported statistical information. Note that the

// ComputerSystem specified may be a top-level, peer, front-end or back-end

// system.

sub void discoverSupportedDeviceStats(REF $System->) {

    // Retrieve all ports on the system.

    $Ports[] = Associators($System.getObjectPath(),

    “CIM_SystemDevice”,

    “CIM_LogicalPort”,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1041



 

    “GroupComponent”,

    “PartComponent”,

    false,

    false,

    #PortPropList[])

    if ($Ports[] != null && $Ports[].length > 0) {

// Determine if performance statistics are supported for any type of 

// port.

#SupportsPortStats = contains(6, #ElementTypes[])  // “Front-end Port”

|| contains(7, #ElementTypes[])// “Back-end Port”

for (#j in $Ports[]) {

    if (#SupportsPortStats) {

// Retrieve the performance statistics of the system’s port.

$PortStatData[] = &GetAssociatedStats(

$Ports[#j].getObjectPath(), 

#PortDataPropList[])

// NOTE: Performance statistics may not be supported for 

// this particular type of port. (i.e.,Front-end vs. Back-end)

if ($PortStatData[] != null && $PortStatData[].length > 0) {

    // There should be one and only one 

    // BlockStorageStatisticalData.

    $PortStats[#j] = $PortStatData[0]

    // Determine the type of this port.

    #PortType[#j] = $PortStats.ElementType

}

    }

}

    }

    // Retrieve all volumes on the system. 

    $Volumes[] = Associators($System.getObjectPath(),

    “CIM_SystemDevice”,

    “CIM_StorageVolume”,

    “GroupComponent”,

    “PartComponent”,

    false,

    false,

    #VolumePropList[])

    if ($Volumes[] != null && $Volumes[].length > 0) {

// Determine if performance statistics are supported for volume.

#SupportsVolumeStats = contains(8, #ElementTypes[])// “Volume”

for (#k in $Volumes[]) {

    if (#SupportsVolumeStats) {
1042



 Block Server Performance Subprofile
// Retrieve the performance statistics of the volumes

$VolumeStatData[] = &GetAssociatedStats(

$Volumes[#k].getObjectPath(), 

#VolumeDataPropList[])

// There should be one and only one BlockStorageStatisticalData.

$VolumeStats = $VolumeStatData[0]

    }

    // Retrieve the protocol controllers through which the volume is 

    // visible.

    $ProtocolControllers[] = Associators($Volumes[#k].getObjectPath(), 

    “CIM_ProtocolControllerForUnit”,

    “CIM_SCSIProtocolController”,

    “Dependent”,

    “Antecedent”,

    false,

    false,

    #ProtocolControllerPropList[])

    if ($ProtocolControllers[] != null 

&& $ProtocolControllers[].length > 0) {

for (#l in ($ProtocolControllers[]) {

    // Retrieve the protocol controller’s endpoint.

    $ProtocolEndpoints[] = Associators(

    $ProtocolControllers[#l].getObjectPath(), 

    “CIM_SAPAvailableForElement”,

    “CIM_SCSIProtocolEndpoint”,

    “ManagedElement”,

    “AvailableSAP”,

    false,

    false,

    #ProtocolControllerPropList[])

    if ($ProtocolEndpoints[] != null) {

    for (#pe in (#ProtocolEndpoints[]) {

// There should be one and only one ProtocolEndpoint

$ProtocolEndpoint = $ProtocolEndpoints[#pe]

// Retrieve the ports that access this ProtocolEndpoint.

$AccessingPorts[] = Associators(

$ProtocolEndpoint.getObjectPath(),

“CIM_DeviceSAPImplementation”,

“CIM_LogicalDevice”,

“Dependent”,

“Antecedent”,

false,

false,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1043



 

#PortPropList[])

    }

}

    }

    // Determine if performance statistics are supported for Extents.

    #SupportsExtentStats = contains(9, #ElementTypes[])// “Extent”

    // NOTE: StorageExtents are investigated ONLY if performance

    // statistics are supported for “Extent” and/or “Disk Drive”.

    // Performance statistics support for “composite” StorageExtents

    // is indicated by the “Extent” capability. Performance statistics 

    // support for “primordial” StorageExtents is indicated by the 

    // “Disk Drive” capability.

    //

    // StorageExtents may not be present if the Extent Composition

    // Subprofile is not supported.

    if (#SupportsExtentStats) {

// Retrieve the StorageExtents that comprise the StorageVolume.

$ComponentExtents[] = Associators(

$Volumes[#k].getObjectPath(),

“CIM_BasedOn”,

“CIM_StorageExtent”, 

“Dependent”, 

“Antecedent”, 

false, 

false, 

#ExtentPropList)

// Retrieve the performance statistics of the composite 

// Storage Extent(s).

if ($ComponentExtents[] != null 

&& $ComponentExtents[].length > 0) {

    &traverseComposition($ComponentExtents[0].getObjectPath())

}

    }

    // Determine if performance statistics are supported for Disk Drive.

    #SupportsDiskStats = contains(10, #ElementTypes[])// “Disk Drive”

    if (#SupportsDiskStats) {

// Retrieve the primordial StorageExtents to which the disk 

// performance statistics will be associated.

$DiskExtents[] = &findPrimordials(

$Volumes[#k].getObjectPath())

if ($DiskExtents[] == null || $DiskExtents[].length == 0) {
1044



 Block Server Performance Subprofile
    <ERROR! Required primordial StorageExtents not found>

}

for (#m in $DiskExtents[]) {

    $DiskExtentStatData[] = &GetAssociatedStats(

    $DisExtents[#m].getObjectPath(),

    #DiskDataPropList[])

    // There should be one and only one 

    // BlockStorageStatisticalData.

    $DiskExtentStats = $DiskExtentStatData[0]

}

    }

}

    }

}

// MAIN

//

// Step 1. Retrieve the performance statistics for the top-level system.

if (contains(2,// “Computer System”

#ElementTypes[]) {

    $TopSystemStatData[] = &GetAssociatedStats($StorageSystem->,

    #TopSystemDataPropList[])

    // There should be one and only one BlockStorageStatisticalData.

    $TopSystemStats = $TopSystemStatData[0]

}

// Step 2. Discover the logical devices on the top-level system and their 

// related performance statistics

&discoverSupportedDeviceStats($StorageSystem->)

// Step 3. Retrieve the component systems in a multiple system device.

// NOTE: Traversing ComponentCS from the top-level system to its component

// systems will retrieve ALL component systems. In the case of a device that

// supports 2-tier redundancy, the relationship between the component systems 

// (i.e.,first redundancy tier) to the sub-component systems would be determined

// by investigating the ConcreteIdentity and MemberOfCollection relationships 

// to a RedundancySet. See the Multiple Computer System Subprofile for more 

// detail.

$ComponentSystems[] = Associators($StorageSystem->,

“CIM_ComponentCS”,

“CIM_ComputerSystem”,

“GroupComponent”,

“PartComponent”,

false,

false,

#ComponentSystemPropList[])

if ($ComponentSystems[] != null && $ComponentSystems[].length > 0) {
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1045



 

    // Step 4. Determine if performance statistics are supported for any type 

    // of component system.

    #SupportsComponentSystemStats = 

    contains(3, #ElementTypes[])// “Front-end Computer System”

    || contains(4, #ElementTypes[])// “Peer Computer System”

    || contains(5, #ElementTypes[])// “Back-end Computer System”

    for (#i in $ComponentSystems[]) {

$ComponentSystemPath = $ComponentSystems[#i].getObjectPath()

if (#SupportsComponentSystemStats) {

    // Step 5. Retrieve the performance statistics of the component

    // system.

    $ComponentSystemStatData[] = &GetAssociatedStats(

    $ComponentSystemPath, 

    #ComponentSystemDataPropList[])

    // NOTE: Performance statistics may not be supported for this 

    // particular type of component system. (i.e.,Front-end vs. 

    // Back-end vs. Peer Computer Systems)

    if ($ComponentSystemStatData[] != null 

    && $ComponentSystemStatData[].length > 0) {

// There should be one and only one BlockStorageStatisticalData.

$ComponentSystemStats[#i] = $ComponentSystemStatData[0]

// Step 6. Determine the type of this component system.

#ComponentSystemType[#i] = $ComponentSystemStats.ElementType

    }

// Step 7. Discover the Topology of the component computer systems by

// finding the RedundancySet that each of the ComponentSystems belong

// to (if any), and the ComputerSystem that has a concrete identity

// relationship with that RedundancySet. The computer system that is

// one tier above the current component system is stored in an array

// of ParentComputerSystems, with each entry corresponding to the

// component system at the same index in the ComponentSystems array.

$RedundancySets->[] = AssociatorNames($ComponentSystemPath->,

“CIM_MemberOfCollection”,

“CIM_RedundancySet”,

“Member”,

“Collection”)

if(RedundancySets->[] != null && $RedundancySets->[].length > 0)

{

if($RedundancySets->[].length > 1)

{

<ERROR! Component System belongs to more than one Redundancy

Set>
1046



 Block Server Performance Subprofile
}

$AggregateSystems->[] = AssociatorNames($RedundancySets->[0],

“CIM_ConcreteIdentity”,

“CIM_ComputerSystem”,

“SameElement”,

“SystemElement”)

if($AggregateSystems->[] == null ||

$AggregateSystems->[].length != 1)

{

<ERROR! Could not find Concrete Computer System for Redundancy

Set>

}

$ParentComputerSystems->[#i] = $AggregateSystems->[0]

}

}

// Step 8. Discover the logical devices on the component system and 

// their related performance statistics

&discoverSupportedDeviceStats($ComponentSystemPath->)

    }

}

EXPERIMENTAL

8.2.8.11.6.3 Retrieving Statistics for a Specific Volume
// DESCRIPTION

//

// This recipe describes how to retrieve the supported performance statistics 

// for a specific set of StorageVolumes.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS: 

// 1. The name of a top-level ComputerSystem instance for an Array, Storage 

// Virtualizer, or Volume Manager implementation supporting the Block Server 

// Performance Subprofile has previously been discovered via SLP and is known 

// as $StorageSystem->.

// 2. A specific set of StorageVolumes is known as $StorageVolume->[].

//

// MAIN

//

// Step 1. Retrieve the hosted BlockStatisticsService.

$StatServices->[] = AssociatorNames($StorageSystem->,

    “CIM_HostedService”,

    “CIM_BlockStatisticsService”,

    “Antecedent”,

    “Dependent”)

// There should be one and only one BlockStatisticsService.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1047



 

$StatService-> = $StatServices->[0]

// Step 2. Retrieve the capabilities describing the BlockStatisticService.

$StatCapabilities[] = Associators($StatService->,

    “CIM_ElementCapabilities”,

    “CIM_BlockStatisticsCapabilities”,

    “ManagedElement”,

    “Capabilities”,

    false,

    false,

    {“ElementTypesSupported”})

// There should be one and only one BlockStatisticsCapabilities.

$Capabilities = $StatCapabilities[0]

if !contains(8,// “Volume”

    $Capabilities.ElementTypesSupported) {

    <EXIT! StorageVolume performance statistics not supported>

}

// Step 3. Locate the default ManifestCollection

$ManifestCollections[] = Associators($StatCollection->,

    “CIM_AssociatedBlockStatisticsManifestCollection”,

    “CIM_BlockStatisticsManifestCollection”,

    “Statistics”,

    “ManifestCollection”,

    false,

    false,

    {“IsDefault”})

$DefaultManifestCollection = null

for #i in $ManifestCollections[] {

    if ($ManifestCollections[#i].IsDefault) {

$DefaultManifestCollection = $ManifestCollections[#i]

break

    }

}

if ($DefaultManifestCollection == null) {

    <ERROR! A default ManifestCollection MUST exist>

}

// Step 4. Locate the default BlockManifest which identifies the statistical

// data supported for StorageVolumes.

$VolumeManifest = null

string[] #PropList = {“ElementType”, “IncludeStatisticTime”, “IncludeTotalIOs”, 

“IncludeKBytesTransferred”, “IncludeIOTimeCounter”, “IncludeReadIOs”, 

“IncludeReadHitIOs”, “IncludeReadIOTimeCounter”, 

“IncludeReadHitIOTimeCounter”, “IncludeKBytesRead”, “IncludeWriteIOs”, 

“IncludeWriteHitIOs”, “IncludeWriteIOTimeCounter”, 
1048



 Block Server Performance Subprofile
“IncludeWriteHitIOTimeCounter”, “IncludeKBytesWritten”, 

“IncludeIdleTimeCounter”, “IncludeMaintOp”, “IncludeMaintTimeCounter”}

$DefaultBlockManifests[] = Associators(

    $DefaultManifestCollection.getObjectPath(),

    “CIM_MemberOfCollection”,

    “CIM_BlockStatisticsManifest”,

    “Collection”,

    “Member”,

    false,

    false,

    #PropList)

for #i in $DefaultBlockManifests[] {

    if ($DefaultBlockManifests[#i].ElementType == 8) {

$VolumeManifest = $DefaultBlockManifests[#i]

break

    }

}

if ($VolumeManifest == null) {

    <ERROR! Required default BlockManifest for StorageVolume not found>

}

// Step 5. Retrieve the performance statistics for each specified StorageVolume.

for (#i in $StorageVolume->[]) {

    $VolumeStatData[] = Associators($StorageVolume->[#i],

    “CIM_ElementStatisticalData”,

    “CIM_BlockStorageStatisticalData”,

    “ManagedElement”,

    “Stats”,

    false,

    false,

    null)

    // There should be one and only one BlockStorageStatisticalData.

    if ($VolumeStatData[] == null || $VolumeStatData[].length != 1) {

<ERROR! The required staticistics were not found>

    }

    $VolumeStats = $VolumeStatData[0]

    // Step 6. Extract the performance statistics supported by the 

    // StorageVolume.

    if ($VolumeManifest.IncludeStatisticTime) {

#StatisticTime = VolumeStats.StatisticTime

    } else {

<ERROR! StatisticTime is a required property for Volumes and should 

        be set to “true” in the default BlockManifest>

    }

    if ($VolumeManifest.IncludeTotalIOs) {

#TotalIOs = VolumeStats.TotalIOs
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1049



 

    } else {

<ERROR! TotalIOs is a required property for Volumes and should 

        be set to “true” in the default BlockManifest>

    }

    if ($VolumeManifest.IncludeKBytesTransferred) {

#KBytesTransferred = VolumeStats.KBytesTransferred

    } else {

<ERROR! KBytesTransferred is a required property for Volumes and 

        should be set to “true” in the default BlockManifest>

    }

    if ($VolumeManifest.IncludeIOTimeCounter) {

#IOTimeCounter = VolumeStats.IOTimeCounter

    }

    if ($VolumeManifest.IncludeReadIOs) {

#ReadIOs = VolumeStats.ReadIOs

    } else {

<ERROR! ReadIOs is a required property for Volumes and should 

        be set to “true” in the default BlockManifest>

    }

    if ($VolumeManifest.IncludeReadHitIOs) {

#ReadHitIOs = VolumeStats.ReadHitIOs

    } else {

<ERROR! ReadHitIOs is a required property for Volumes and should 

        be set to “true” in the default BlockManifest>

    }

    if ($VolumeManifest.IncludeReadIOTimeCounter) {

#ReadIOTimeCounter = VolumeStats.ReadIOTimeCounter

    }

    if ($VolumeManifest.IncludeReadHitIOTimeCounter) {

#ReadHitIOTimeCounter = VolumeStats.ReadHitIOTimeCounter

    }

    if ($VolumeManifest.IncludeKBytesRead) {

#KBytesRead = VolumeStats.KBytesRead

    }

    if ($VolumeManifest.IncludeWriteIOs) {

#WriteIOs = VolumeStats.WriteIOs

    } else {

<ERROR! WriteIOs is a required property for Volumes and should 

        be set to “true” in the default BlockManifest>

    }

    if ($VolumeManifest.IncludeWriteHitIOs) {

#WriteHitIOs = VolumeStats.WriteHitIOs

    } else {

<ERROR! WriteHitIOs is a required property for Volumes and should 

        be set to “true” in the default BlockManifest>

    }

    if ($VolumeManifest.IncludeWriteIOTimeCounter) {
1050



 Block Server Performance Subprofile
#WriteIOTimeCounter = VolumeStats.WriteIOTimeCounter

    }

    if ($VolumeManifest.IncludeWriteHitIOTimeCounter) {

#WriteHitIOTimeCounter = VolumeStats.WriteHitIOTimeCounter

    }

    if ($VolumeManifest.IncludeKBytesWritten) {

#KBytesWritten = VolumeStats.KBytesWritten

    }

    if ($VolumeManifest.IncludeIdleTimeCounter) {

#IdleTimeCounter = VolumeStats.IdleTimeCounter

    }

}

8.2.8.11.6.4 Summary of Statistics Support by Element
Not all statistics properties are kept for all elements. Table 1028 illustrates the statistics properties that
are kept for each of the metered elements.

Table 1028: Summary of Block Statistics Support by Element
Statistic 
Property

Top Level 
Computer 

System

Compon-
ent 

Computer 
System

(Front-end)

Component 
Computer 

System
(Peer)

Component 
Computer 

System
(Back-end)

Front-
end 
Port

Back-
end 
Port

Volume
(Logic-
alDisk)

Com-
posite 
Extent

Disk

StatisticTime R R R R R R R R R

TotalIOs R R R R R R R R R

KBytes
Transferred

R O O O R O R R R

IOTime-
Counter

O O O O O O O N O

ReadIOs O R R N N N R N R

ReadHitIOs O R R N N N R N N

ReadIOTime-
Counter

O O O N N N O N O

ReadHitIO
TimeCounter

O O O N N N O N N

KBytesRead O O O O N N O N O

WriteIOs O R R N N N R N O

WriteHitIOs O R R N N N R N N

WriteIOTime-
Counter

O O O N N N O N O

WriteHitIO
TimeCounter

O O O N N N O N N

KBytesWritten O O O O N N O N O

IdleTime-
Counter

N N N O O N O O O

MaintOp N N N N N N N O O

MaintTime-
Counter

N N N N N N N O O
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1051



 

The legend is:

R – Required

O – Optional

N – Not specified

Notice that there is a difference between the “front-end” port and “back-end” port elements. And there is
a difference between the Top Level Computer System (i.e., the Array, Storage Virtualizer or Volume
Management Profile) and the component computer systems. Furthermore, there can be variations in
the component computer systems. This is based on how component computer systems are configured.
In some cases, these computer systems are “front-end” and “back-end” controllers. In other
subsystems, they are “peer” controllers. 

Note: Controller LUNs (SCSIArbitraryLogicalUnits) and RemoteReplicaGroup are not shown in Table
1028:, "Summary of Block Statistics Support by Element"5: Summary of Block Statistics Support by
Element. They only require StatisticTime, TotalIOs and KBytesTransferred. All other properties are not
SPECIFIED.

A complete list of definitions of the metered elements as defined by the ElementType property of
BlockStorageStatisticalData are below:

• ElementType = 2 (Computer System) - These are statistics for the whole Array (virtualizer or
volume manager). 

• ElementType = 3 (Front-end Computer System) - This is the Computer System (controller) that
provides the support for receiving the IO from host systems. The Front-end function acts as an
target of IO.

• ElementType = 4 (Peer Computer System) - This is a Computer System that acts as both a front-
end and back-end Computer System.

• ElementType = 5 (Back-end Computer System) - This is the Computer System (controller) that
provides the support for driving the IO to the back-end storage (disk drives or external volumes).
The back-end function acts as an initiator of IO.

• ElementType = 6 (Front-end Port) - A port in a disk array that connects the disk array (or Storage
Virtualizer) to hosts using the storage. The Front End port is usually connected to either the Peer
Computer System (controller) or to the Front-end Computer System (controller) in some Disk
Arrays or Storage Virtualizers.

• ElementType = 7 (Back-end Port) - A port that can be inside the disk array housing that connects
to the disk drives. This is connected to either the Peer Computer system (controller) or to the
Back-end Computer System (controller) in some Disk Arrays or Storage Virtualizers. 

• ElementType = 8 (Volume) - This is a Logical Unit that is the target of data IOs for storing or
retrieving data. This would be a StorageVolume for Arrays or Storage Virtualizers. It would be a
LogicalDisk for Volume Management Profiles.

• ElementType = 9 (Extent) - This is an intermediate Storage Extent. That is, it is not a Volume and it
is not a Disk Drive. An example of the use of an Extent would be a RAID rank that creates a logical
storage extent from multiple disk drives. In the case of Storage Virtualizers, this is used to
represent the volumes that are imported from Arrays.

• ElementType = 10 (Disk Drive) - This is a disk drive.
1052



 Block Server Performance Subprofile
• ElementType = 11 (Arbitrary LUs) - This is a Logical Unit that is the target of “control” IO functions.
The Logical Unit does not contain data, but supports invocation of control functions in an Array or
Storage Virtualizer. 

• ElementType = 12 (Remote Replica Group) - Replication requires a local disk array and a remote
disk array (in some “safe” location). The remote replica group is a group of disk drives in the
remote disk array used to replicated defined data from the local disk array.

8.2.8.11.6.5 Formulas and Calculations
Table 1028:, "Summary of Block Statistics Support by Element" identifies the set of statistics that are
recommended for the various storage components in the array. These metrics, once collected, can be
further enhanced through the definition of formulas and calculations that create additional ‘derived’
statistics.

Table 1029: “Formulas and Calculations” defines a set of such derived statistics. They are by no means
the only possible derivations but serve as examples of the most commonly asked for statistics.

8.2.8.11.6.6 Block Server Performance Supported Capabilities Patterns 
The Capabilities patterns summarized in Table 1030: “Block Server Performance Subprofile Supported
Capabilities Patterns” are formally recognized by the Block Server Performance Subprofile of this
version of SMI-S

Table 1029: Formulas and Calculations

Calculated Statistics
New statistic Formula

TimeInterval delta StatisticTime

% utilization 100 * (delta StatisticTime - delta IdleTime)/ delta StatisticTime

I/O rate delta TotalIOs / delta StatisticTime

I/O response time delta IOTime / delta TotalIOs

Queue depth delta I/O rate * delta  I/O response time

Service Time utilization / I/O rate

Wait Time Response Time - Service Time

Average Read Size delta KBytesRead / delta ReadIOs

Average Write Size delta KBytesWritten / delta WriteIOs

% Read 100 * (delta ReadIOs / delta TotalIOs)

% Write 100 * (delta WriteIOs / delta TotalIOs)

% Hit 100 * ((delta ReadHitIOs + delta WriteHitIOs) / delta TotalIOs)

Table 1030: Block Server Performance Subprofile Supported Capabilities Patterns

ElementSupported SynchronousMethods
Supported

AsynchronousMethods
Supported

Any (at least one) NULL NULL

Any (at least one) Neither GettatisticsCollection nor Exec Query NULL

Any (at least one) GetStatisticsCollection NULL

Any (at least one) Any NULL

Any (at least one) Exec Query NULL

Any (at least one) GetStatisticsCollection, Query NULL

Any (at least one) Exec Query NULL
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1053



 

An implementation will support GetStatisticsCollection, Query, GetStatisticsCollection and Query or
neither. But if the implementation supports GetStatisticsCollection, it will shall support Synchronous
execution.

If manifest collections are supported, then ALL three methods shall be supported (Creation,
modification and removal).

8.2.8.11.7 Registered Name and Version
Block Server Performance version 1.1.0

8.2.8.11.8 CIM Server Requirements

Any (at least one) “Manifest Creation”, “Manifest Modification”, and “Mani-
fest Removal”

NULL

Any (at least one)  “Indications”, “Query Collection” NULL

Table 1031: CIM Server Requirements for Block Server Performance

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 1030: Block Server Performance Subprofile Supported Capabilities Patterns (Continued)
1054



 Block Server Performance Subprofile
8.2.8.11.9 CIM Elements

Table 1032: CIM Elements for Block Server Performance

Element Name Description
Mandatory Classes

CIM_AssociatedBlockStatisticsManifestCollection 
(8.2.8.11.9.1)

This is an association between the StatisticsCollection 
and a provider supplied (pre-defined) manifest collec-
tion that defines the statistics properties supported by 
the profile implementation.

CIM_BlockStatisticsCapabilities (8.2.8.11.9.3) This defines the statistics capabilities supported by the 
implementation of the profile.

CIM_BlockStatisticsManifest (8.2.8.11.9.4) An instance of this class defines the statistics properties 
supported by the profile implementation for one element 
type.

CIM_BlockStatisticsManifestCollection (8.2.8.11.9.6) An instance of this class defines the predefined collec-
tion of default block statistics manifests (one manifest 
for each element type).

CIM_BlockStatisticsService (8.2.8.11.9.8) This is a Service that provides (optional) services of 
bulk statistics retrieval and manifest set manipulation 
methods.

CIM_BlockStorageStatisticalData (8.2.8.11.9.9) This is a Subclass of CIM_StatisticalData for Block serv-
ers. It would be instantiated as specific block statistics 
for particular components.

CIM_ElementCapabilities (8.2.8.11.9.10) This associates the BlockStatisticsCapabilities to the 
BlockStatisticsService.

CIM_ElementStatisticalData (8.2.8.11.9.11) This associates a BlockStorageStatisticalData instance 
to the element for which the statistics are collected.

CIM_HostedCollection (8.2.8.11.9.12) This would associate the StatisticsCollection to the top 
level system for the profile (e.g., array).

CIM_HostedService (8.2.8.11.9.13) This associates the BlockStatisticsService to the Com-
puterSystem that hosts it.

CIM_MemberOfCollection (8.2.8.11.9.14) This would associate all block statistics instances to the 
StatisticsCollection.

CIM_MemberOfCollection (8.2.8.11.9.15) This would associate pre-defined Manifests to default 
manifest collection.

CIM_StatisticsCollection (8.2.8.11.9.17) This would be an collection point for all Statistics that 
are kept for a Block Server.

Optional Classes
CIM_AssociatedBlockStatisticsManifestCollection 
(8.2.8.11.9.2)

This is an association between the StatisticsCollection 
and a client defined manifest collection.

CIM_BlockStatisticsManifest (8.2.8.11.9.5) An instance of this class defines the statistics properties 
of interest to the client for one element type.

CIM_BlockStatisticsManifestCollection (8.2.8.11.9.7) An instance of this class defines one client defined col-
lection of block statistics manifests (one manifest for 
each element type).

CIM_MemberOfCollection (8.2.8.11.9.16) This would associate Manifests to client defined mani-
fest collections.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1055



 

8.2.8.11.9.1 CIM_AssociatedBlockStatisticsManifestCollection
The CIM_AssociatedBlockStatisticsManifestCollection associates an instance of a
CIM_BlockStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it applies.
The default manifest collection defines the CIM_BlockStorageStatisticalData properties that are
supported by the profile implementation. 

CIM_AssociatedBlockStatisticsManifestCollection is not subclassed from anything. 

One instance of the CIM_AssociatedBlockStatisticsManifestCollection shall exist for the default
manifest collection if the Block Server Performance Subprofile is implemented.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.11.9.2 CIM_AssociatedBlockStatisticsManifestCollection
The CIM_AssociatedBlockStatisticsManifestCollection associates an instance of a
CIM_BlockStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it applies.
Client defined manifest collections identify the Manifests (properties) for retrieval of block statistics. 

CIM_AssociatedBlockStatisticsManifestCollection is not subclassed from anything. 

There will be one instance of the CIM_AssociatedBlockStatisticsManifestCollection class, for each
client defined manifest collection that has been created.

Created By : Extrinsic(s): CreateManifestCollection
Modified By : Static
Deleted By : DeleteInstance
Class Mandatory: false

8.2.8.11.9.3 CIM_BlockStatisticsCapabilities
An instance of the CIM_BlockStatisticsCapabilities class defines the specific support provided with the
block statistics implementation. Note: There would be zero or one instance of this class in a profile.

Table 1033: SMI Referenced Properties/Methods for 
CIM_AssociatedBlockStatisticsManifestCollection (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Statistics CIM_StatisticsCollection The StatisticsCollection to which the 
manifest collection applies

ManifestCollection CIM_BlockStatisticsMan
ifestCollection

The manifest collection.

Table 1034: SMI Referenced Properties/Methods for 
CIM_AssociatedBlockStatisticsManifestCollection (Client defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Statistics CIM_StatisticsCollection The StatisticsCollection to which the 
manifest collection applies

ManifestCollection CIM_BlockStatisticsMan
ifestCollection

The manifest collection.
1056



 Block Server Performance Subprofile
There would be none if the profile did not support the Block Server Performance Subprofile. There
would be exactly one instance if the profile did support the Block Server Performance Subprofile. 

CIM_BlockStatisticsCapabilities class is subclassed from CIM_Capabilities.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.11.9.4 CIM_BlockStatisticsManifest
The CIM_BlockStatisticsManifest class is Concrete class that defines the
CIM_BlockStorageStatisticalData properties that supported by the Provider. These Manifests are
established by the Provider for the default manifest collection. 

CIM_BlockStatisticsManifest is subclassed from CIM_ManagedElement. 

At least one Provider supplied instance of the CIM_BlockStatisticsManifest class shall exist, if the Block
Server Performance Subprofile is supported.

Table 1035: SMI Referenced Properties/Methods for CIM_BlockStatisticsCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
ElementTypesSupported uint16[] ValueMap { "2", "3", "4", "5", "6", "7", 

"8", "9", "10", "11", "12" }, 
Values {"Computer System", "Front-
end Computer System", "Peer Com-
puter System", "Back-end Computer 
System", "Front-end Port", "Back-end-
Port", "Volume", "Extent", "Disk Drive", 
"Arbitrary LUs" , "Remote Replica 
Group"}

SynchronousMethodsSupported uint16[] ValueMap { "2", "3", "4", "5", "6", "7", 
"8"}, 
Values {"Exec Query", "Indications", 
"QueryCollection", "GetStatisticsCollec-
tion", "Manifest Creation", "Manifest 
Modification", "Manifest Removal" }

ClockTickInterval uint64 An internal clocking interval for all tim-
ers in the subsystem, measured in 
microseconds (Unit of measure in the 
timers, measured in microseconds). 
Time counters are monotanically 
increasing counters that contain "ticks". 
Each tick represents one ClockTick-
Interval. If ClockTickInterval contained 
a value of 32 then each time counter 
tick would represent 32 microseconds. 

Optional Properties/Methods
AsynchronousMethodsSupported uint16[] Not supported in current version of 

SMI-S.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1057



 

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

Table 1036: SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Pre-defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementName string A Provider defined string that identifies 
the manifest in the context of the 
Default Manifest Collection.

InstanceID string The instance Identification. Within the 
scope of the instantiating Namespace, 
InstanceID opaquely and uniquely 
identifies an instance of this class.

ElementType uint16 This value is required AND the current 
version of SMI-S specifies the following 
values: 
ValueMap {"2", "3", "4", "5", "6", "7", "8", 
"9", "10", "11", "12"} 
Values { "Computer System", "Front-
end Computer System", "Peer Com-
puter System", "Back-endComputer 
System", "Front-end Port", "Back-end 
Port", "Volume", "Extent", "Disk Drive", 
"Arbitrary LUs" , "Remote Replica 
Group"}

IncludeStatisticTime boolean
IncludeTotalIOs boolean
IncludeKBytesTransferred boolean
IncludeIOTimeCounter boolean
IncludeReadIOs boolean
IncludeReadHitIOs boolean
IncludeReadIOTimeCounter boolean
IncludeReadHitIOTimeCounter boolean
IncludeKBytesRead boolean
IncludeWriteIOs boolean
IncludeWriteHitIOs boolean
IncludeWriteIOTimeCounter boolean
IncludeWriteHitIOTimeCounter boolean
IncludeKBytesWritten boolean
IncludeIdleTimeCounter boolean
IncludeMaintOp boolean
IncludeMaintTimeCounter boolean
1058



 Block Server Performance Subprofile
8.2.8.11.9.5 CIM_BlockStatisticsManifest
The CIM_BlockStatisticsManifest class is Concrete class that defines the
CIM_BlockStorageStatisticalData properties that should be returned on a GetStatisticsCollection
request. 

CIM_BlockStatisticsManifest is subclassed from CIM_ManagedElement. 

In order for a client defined instance of the CIM_BlockStatisticsManifest class to exist, the all the
manifest collection manipulation functions shall be identified in the "SynchronousMethodsSupported"
property of the CIM_BlockStatisticsCapabilities instance, AND a client must have created at least ONE
instance of CIM_BlockStatisticsManifestCollection.

Created By : Extrinsic(s): AddOrModifyManifest
Modified By : Extrinsic(s): AddOrModifyManifest
Deleted By : Extrinsic(s): RemoveManifest
Class Mandatory: false

Table 1037: SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

ElementName string A Client defined string that identifies 
the manifest.

InstanceID string The instance Identification. Within the 
scope of the instantiating Namespace, 
InstanceID opaquely and uniquely 
identifies an instance of this class.

ElementType uint16 This value is required AND the current 
version of SMI-S specifies the following 
values: 
ValueMap {"2", "3", "4", "5", "6", "7", "8", 
"9", "10", "11", "12"} 
Values { "Computer System", "Front-
end Computer System", "Peer Com-
puter System", "Back-endComputer 
System", "Front-end Port", "Back-end 
Port", "Volume", "Extent", "Disk Drive", 
"Arbitrary LUs" , "Remote Replica 
Group"}

IncludeStatisticTime boolean
IncludeTotalIOs boolean
IncludeKBytesTransferred boolean
IncludeIOTimeCounter boolean
IncludeReadIOs boolean
IncludeReadHitIOs boolean
IncludeReadIOTimeCounter boolean
IncludeReadHitIOTimeCounter boolean
IncludeKBytesRead boolean
IncludeWriteIOs boolean
IncludeWriteHitIOs boolean
IncludeWriteIOTimeCounter boolean
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1059



 

8.2.8.11.9.6 CIM_BlockStatisticsManifestCollection
An instance of a default CIM_BlockStatisticsManifestCollection defines the set of Manifests that define
the properties supported for each ElementType supported for the implementation. It can also be used
by clients in retrieval of Block statistics by the GetStatisticsCollection method. 

CIM_BlockStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection. 

At least ONE CIM_BlockStatisticsManifestCollection shall exist if the Block Server Performance
Subprofile is implemented. This would be the default manifest collection that defines the properties
supported by the implementation.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.11.9.7 CIM_BlockStatisticsManifestCollection
An instance of a client defined CIM_BlockStatisticsManifestCollection defines the set of Manifests to be
used in retrieval of Block statistics by the GetStatisticsCollection method. 

CIM_BlockStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection. 

In order for a client defined instance of the CIM_BlockStatisticsManifestCollection class to exist, then all
the manifest collection manipulation functions shall be identified in the
"SynchronousMethodsSupported" property of the CIM_BlockStatisticsCapabilities instance and a client
must have created a Manifest Collection.

Created By : Extrinsic(s): CreateManifestCollection
Modified By : Static
Deleted By : DeleteInstance

IncludeWriteHitIOTimeCounter boolean
IncludeKBytesWritten boolean
IncludeIdleTimeCounter boolean
IncludeMaintOp boolean
IncludeMaintTimeCounter boolean

Table 1038: SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Pre-
defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string For the default manifest collection, this 

should be set to "DEFAULT". 
IsDefault boolean Denotes whether or not this manifest 

collection is a provider defined default 
manifest collection. For the default 
manifest collection this is set to "true".

Table 1037: SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client defined)

Property Flags Type Description & Notes
1060



 Block Server Performance Subprofile
Class Mandatory: false

8.2.8.11.9.8 CIM_BlockStatisticsService
The CIM_BlockStatisticsService class provides methods for statistics retrieval and Manifest Collection
manipulation. 

The CIM_BlockStatisticsService class is subclassed from CIM_Service. 

There shall be an instance of the CIM_BlockStatisticsService, if the Block Server Performance
Subprofile is implemented. It is not necessary to support any methods of the service, but the service
shall be populated. 

The methods that are supported can be determined from the SynchronousMethodsSupported and
AsynchronousMethodsSupported properties of the CIM_BlockStatisticsCapabilities.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

Table 1039: SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Cli-
ent defined)

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string A client defined user-friendly name for 

the manifest collection. It is set during 
creation of the Manifest Collection 
through the ElementName parameter 
of the CreateManifestCollection 
method.

IsDefault boolean Denotes whether or not this manifest 
collection is a provider defined default 
manifest collection. For the client 
defined manifest collections this is set 
to "false".

Table 1040: SMI Referenced Properties/Methods for CIM_BlockStatisticsService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
Name string

Optional Properties/Methods
GetStatisticsCollection() Support for this method is optional. 

This method retrieves all statistics kept 
for the profile as directed by a manifest 
collection.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1061



 

8.2.8.11.9.9 CIM_BlockStorageStatisticalData
The CIM_BlockStorageStatisticalData class defines the block statistics properties that may be kept for
an metered element of the block storage entity (such as a ComputerSystem, StorageVolume, Port or
Disk Drive). 

CIM_BlockStorageStatisticalData is subclassed from CIM_StatisticalData. 

Instances of this class will exist for each of the metered elements if the 'ElementTypesSupported'
property of the CIM_BlockStatisticsCapabilities indicates that the metered element is supported. For
example, 'Computer System' is identified in the 'ElementTypesSupported' property, then this indicates
support for metering of the Top level computer system or 'Component Computer System'.

Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

CreateManifestCollection() Support for this method is optional. 
This method is used to create client 
defined manifest collections.

AddOrModifyManifest() Support for this method is optional. 
This method is used to add or modify 
block statistics manifests in a client 
defined manifest collection.

RemoveManifests() Support for this method is optional. 
This method is used to remove a block 
statistics manifest from a client defined 
manifest collection.

Table 1041: SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
StatisticTime datetime Time statistics table by object was last 

updated (Time Stamp in CIM 2.2 speci-
fication format) 

ElementType uint16 This value is required AND current ver-
sion of SMI-S specifies the following 
values: 
ValueMap {"2", "3", "4", "5", "6", "7", "8", 
"9", "10", "11", "12"} 
Values { "Computer System", "Front-
end Computer System", "Peer Com-
puter System", "Back-end Computer 
System", "Front-end Port", "Back-end 
Port", "Volume", "Extent", "Disk Drive", 
"Arbitrary LUs" , "Remote Replica 
Group"}

TotalIOs uint64 The cumulative count of I/Os for the 
object

Table 1040: SMI Referenced Properties/Methods for CIM_BlockStatisticsService

Property Flags Type Description & Notes
1062



 Block Server Performance Subprofile
Optional Properties/Methods
KBytesTransferred uint64 The cumulative count of data trans-

ferred in KBytes (1024bytes = 1KByte). 
Note: This is mandatory for the Top 
level computer system and Front-end 
Ports, but is optional for the component 
computer systems and Back-end Ports.

IOTimeCounter uint64 The cumulative elapsed I/O time (num-
ber of Clock Tick Intervals) for all cumu-
lative I/Os as defined in "Total I/Os" 
above. ( I/O response time is added to 
this counter at the completion of each 
measured I/O using ClockTickInterval 
units. This value can be divided by 
number of IOs to obtain an average 
response time. 
Note: This is not SPECIFIED for Com-
positeExtents.

ReadIOs uint64 The cumulative count of all reads. 
Note: This is mandatory for "Front-end" 
and "Peer" component ComputerSys-
tems, but it is optional for the Top level 
computer system and not mandatory 
for "Back-end" component computer 
systems. 
Note: This is not SPECIFIED for Ports 
or CompositeExtents.

ReadHitIOs uint64 The cumulative count of all read cache 
hits (Reads from Cache). 
Note: This is mandatory for "Front-end" 
and "Peer" component ComputerSys-
tems, but it is optional for the Top level 
computer system and not mandatory 
for "Back-end" component computer 
systems. 
Note: This is not SPECIFIED for Ports, 
CompositeExtents or DiskDrives.

ReadIOTimeCounter uint64 The cumulative elapsed time for all 
Read I/Os) for all cumulative Read I/
Os. 
Note: This is optional for "Front-end" 
and "Peer" component ComputerSys-
tems and the Top level computer sys-
tem and not mandatory for "Back-end" 
component computer systems. 
Note: This is not SPECIFIED for Ports 
or CompositeExtents.

Table 1041: SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1063



 

ReadHitIOTimeCounter uint64 The cumulative elapsed time for all 
Read I/Os read from cache for all 
cumulative Read I/Os. 
Note: This is optional for "Front-end" 
and "Peer" component ComputerSys-
tems and the Top level computer sys-
tem and not mandatory for "Back-end" 
component computer systems. 
Note: This is not SPECIFIED for Ports, 
CompositeExtents or DiskDrives.

KBytesRead uint64 The cumulative count of data read in 
KBytes (1024bytes = 1KByte). 
Note: This is not SPECIFIED for Ports 
or CompositeExtents.

WriteIOs uint64 The cumulative count of all writes. 
Note: This is mandatory for "Front-end" 
and "Peer" component ComputerSys-
tems, but it is optional for the Top level 
computer system and not mandatory 
for "Back-end" component computer 
systems. 
Note: This is not SPECIFIED for Ports 
or CompositeExtents.

WriteHitIOs uint64 The cumulative count of Write Cache 
Hits (Writes that went directly to Cache 
without blocking). 
Note: This is mandatory for "Front-end" 
and "Peer" component ComputerSys-
tems, but it is optional for the Top level 
computer system and not mandatory 
for "Back-end" component computer 
systems. 
Note: This is not SPECIFIED for Ports, 
CompositeExtents or DiskDrives. 

WriteIOTimeCounter uint64 The cumulative elapsed time for all 
Write I/Os for all cumulative Writes. 
Note: This is optional for "Front-end" 
and "Peer" component ComputerSys-
tems and the Top level computer sys-
tem and not mandatory for "Back-end" 
component computer systems. 
Note: This is not SPECIFIED for Ports 
or CompositeExtents.

Table 1041: SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Property Flags Type Description & Notes
1064



 Block Server Performance Subprofile
8.2.8.11.9.10 CIM_ElementCapabilities
CIM_ElementCapabilities represents the association between ManagedElements
(i.e.,CIM_BlockStatisticsService) and their Capabilities (e.g., CIM_BlockStatisticsCapabilities). Note
that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementCapabilities association for the referenced instance of Capabilities.
ElementCapabilities describes the existence requirements and context for the referenced instance of

WriteHitIOTimeCounter uint64 The cumulative elapsed time for all 
Write I/Os written to cache for all cumu-
lative Write I/Os. 
Note: This is optional for "Front-end" 
and "Peer" component ComputerSys-
tems and the Top level computer sys-
tem and not mandatory for "Back-end" 
component computer systems. 
Note: This is not SPECIFIED for Ports, 
CompositeExtents or DiskDrives. 

KBytesWritten uint64 The cumulative count of data written in 
KBytes (1024bytes = 1KByte).
Note: This is not SPECIFIED for Ports 
or CompositeExtents.

IdleTimeCounter uint64 The cumulative elapsed idle time using 
ClockTickInterval units (Cumulative 
Number of Time Units for all idle time in 
the array). 
Note: This is optional for "Back-end" 
component ComputerSystems and not 
mandatory for the Top level computer 
system and for "Front-end" and "Peer" 
other component computer systems. 
Note: This is not SPECIFIED for Front-
end Ports.

MaintOp uint64 The cumulative count of all disk mainte-
nance operations (SCSI commands 
such as: Verify, skip-mask, XOR read, 
XOR write-read, etc.) This is needed to 
understand the load on the disks that 
may interfere with normal read and 
write operations. 
Note: This is not SPECIFIED for Com-
puterSystems, Ports or StorageVol-
umes.

MaintTimeCounter uint64 The cumulative elapsed disk mainte-
nance time. maintenance response 
time is added to this counter at the 
completion of each measured mainte-
nance operation using ClockTickInter-
val units. 
Note: This is not SPECIFIED for Com-
puterSystems, Ports or StorageVol-
umes.

Table 1041: SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1065



 

ManagedElement. Specifically, the ManagedElement shall exist and provides the context for the
Capabilities. 

CIM_ElementCapabilities is not subclassed from anything.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.11.9.11 CIM_ElementStatisticalData
CIM_ElementStatisticalData is an association that relates a ManagedElement (StorageVolume,
LogicalDisk, FCPort or ComputerSystem) to its statistics. Note that the cardinality of the
ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of BlockStatistics.
ElementStatisticalData describes the existence requirements and context for the BlockStatistics,
relative to a specific ManagedElement. 

CIM_ElementStatisticalData is not subclassed from anything.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.8.11.9.12 CIM_HostedCollection
CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System.In the Block Server Performance Subprofile, it is used to
indicate that the StatisticsCollection presents an aspect of the top level Computer System. 

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By : Static
Modified By : Static

Table 1042: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The managed element (BlockStatis-
ticsService)

Capabilities CIM_Capabilities The Capabilities instance associated 
with the element.

Table 1043: SMI Referenced Properties/Methods for CIM_ElementStatisticalData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement A reference to a StorageVolume, Logi-
calDisk, FCPort, or ComputerSystem 
for which the Statistics apply

Stats CIM_StatisticalData A reference to the BlockStorageStatisti-
calData that hold the statistics for the 
managed element. 
1066



 Block Server Performance Subprofile
Deleted By : Static
Class Mandatory: true

8.2.8.11.9.13 CIM_HostedService
CIM_HostedService is an association between a Service (CIM_BlockStatisticsService) and the System
(ComputerSystem) on which the functionality resides. Services are weak with respect to their hosting
System. Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures
that implement the Service are located. 

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.11.9.14 CIM_MemberOfCollection
This use of MemberOfCollection is to collect all BlockStorageStatisticalData instances (in the
StatisticsCollection). Each association is created as a side effect of the metered object getting created.

Created By : External
Modified By : Static
Deleted By : External
Class Mandatory: true

8.2.8.11.9.15 CIM_MemberOfCollection
This use of MemberOfCollection is to Collect all Manifests instances in the default manifest collection

Created By : Static

Table 1044: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The top level ComputerSystem of the 
profile

Dependent CIM_SystemSpecificColl
ection

The StatisticsCollection

Table 1045: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The hosting System.
Dependent CIM_Service The Service hosted on the System.

Table 1046: SMI Referenced Properties/Methods for CIM_MemberOfCollection (Collect Statistics)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The StatisticsCollection
Member CIM_ManagedElement An individual Statistics Instance that is 

part of the set. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1067



 

Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.11.9.16 CIM_MemberOfCollection
This use of MemberOfCollection is to Collect all Manifests instances in a client defined manifest
collection.

Created By : Extrinsic(s): AddOrModifyManifest
Modified By : Static
Deleted By : Extrinsic(s): RemoveManifest
Class Mandatory: false

8.2.8.11.9.17 CIM_StatisticsCollection
The CIM_StatisticsCollection collects all block statistics kept by the profile. There is one instance of the
CIM_StatisticsCollection class and all individual element statistics can be accessed by using
association traversal (using MemberOfCollection) from the StatisticsCollection. 

CIM_StatisticsCollection is subclassed from CIM_SystemSpecificCollection.

Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

Table 1047: SMI Referenced Properties/Methods for CIM_MemberOfCollection (Collect pre-
defined manifests)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The default manifest collection
Member CIM_ManagedElement The individual Manifest Instance that is 

part of the set.

Table 1048: SMI Referenced Properties/Methods for CIM_MemberOfCollection (Collect client 
defined manifests)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection A client defined manifest collection
Member CIM_ManagedElement The individual Manifest Instance that is 

part of the set.

Table 1049: SMI Referenced Properties/Methods for CIM_StatisticsCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
SampleInterval datetime Minimum recommended polling interval 

for an array, storage virtualizer system 
or volume manager. It is set by the pro-
vider and cannot be modified.
1068



 Block Server Performance Subprofile
8.2.8.11.10 Related Standards

TimeLastSampled dateTime Time statistics table by object was last 
updated (Time Stamp in SMI 2.2 speci-
fication format) 

Table 1050: Related Standards for Block Server Performance

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.11.0 DMTF

Table 1049: SMI Referenced Properties/Methods for CIM_StatisticsCollection

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1069



 

1070



 Copy Services Subprofile
8.2.8.12 Copy Services Subprofile
This subprofile contains both standard and experimental content. Experimental sections, clauses and
paragraphs are marked with beginning and ending tags. Most experimental content is associated with
two new features: remote replication and delta snapshot management.

This version of the copy services subprofile maintains backward compatibility with the preceding
version. See “Backward Compatibility” in 8.2.8.12.1 in the instrumentation section for a description of
maintaining backward compatibility with the earlier version.

8.2.8.12.1 Description
The Copy Services Subprofile is an optional subprofile for the Array, Virtualization and Volume Manager
profiles.

The subprofile defines a management interface for local and remote mirror management, local
snapshot management and clone management. A provider may allow local snapshot management to
use a remote mirror as a source element. This capability indirectly provides remote snapshot
management.

The subprofile specification uses terminology consistent with the SNIA dictionary of storage networking
except for the term clone. A clone is a fully copied replica the same size as the source element created
with the intent of becoming an independent element.

Two types of synchronization views are supported. A replica may be synchronized to the current view of
the source element or may be synchronized to a point-in-time view. Snapshots and clones always
represent a point-in-time view of the source element. A mirror can represent either a current view or a
point-in-time view as indicated by the synchronization state property of the association. A provider
maintains a stateful view of a source element as long as the source and replica association is
maintained. The synchronization view is modeled with a StorageSynchronized association. A client can
determine the type and state of the synchronized view by inspecting properties of the association
instance.

The subprofile supports two types of storage elements. Replicas can be instances of StorageVolume or
LogicalDisk. The source and replica elements shall be the same element type. All of the instance
diagrams that follow show StorageVolume replicas but apply equally to LogicalDisk replicas.

A copy service for storage elements deploys some type of copy engine. Copy techniques for storage
elements include full background copy, copy-on-write and copy-on-read. Most aspects of copy engines
are opaque to clients. A provider may allow the client to manage the copy engine for background copy
operations. This optional capability is discussed in "Managing Background Copy"  in 8.2.8.12.5.

EXPERIMENTAL

The subprofile includes special considerations for remote replication. Local replication assumes that an
associated source element and replica element are hosted in a single managed system such as an
array platform. Remote replication assumes that source and replica elements are hosted in separate
systems. The client shall discover both system elements whether controlled by a single SMI-S server/
CIMOM or separate SMI-S server/CIMOMs. The client uses interfaces to both system instances but
only invokes remote replication methods to a single instance of StorageConfigurationService. The
subprofile requires that any stitching is handled by a cascading provider when two SMI-S servers/
CIMOMs are involved.

The subprofile includes a variable space consumption model that a provider may use for delta replica
elements. Most storage elements receive a fixed allocation of space when the element is created and
the consumed space is a contiguous block set. Delta replicas may not receive any space allocation
when created and, subsequently, consume space one block at a time as the associated source element
is updated. The resulting block set for a delta replica is typically scattered throughout a container
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1071



 

element such as a storage pool. The subprofile includes optional management techniques such as
space consumption limits for delta replicas based on the variable model.

EXPERIMENTAL

The Copy Services Subprofile provides the following SMI-S management disciplines summarized in
Table 1051: “Copy Services Subprofile FCAPS Support”.

The Copy Services Subprofile enables a provider to deploy all of the modeled replication capabilities in
a single service instance. For example, one service instance may support local mirrors, remote mirrors
and delta snapshots. A client discovers and analyzes each of these capabilities as shown in Figure 169:
"Copy Services Discovery".

A provider exposes one instance of StorageReplicationCapabilities for each CopyType capability
supported. The CopyType property as defined in CIM_StorageSynchronized describes the replication
policies supported by the subprofile.

Async: Create and maintain an asynchronous mirror copy of the source. May be used to maintain
a remote copy when the latency of a synchronous copy is unacceptable.

Sync: Create and maintain a synchronous mirror copy of the source. Writes done to the source
element are reflected to the mirror before signalling the host that the write is complete. Used to
maintain a copy requiring guaranteed consistency during a recovery operation.

UnSyncAssoc: Creates an un-synchronized copy associated to the source element. This type of
copy is called a “snapshot” and represents a point-in-time image of the source element.

UnSyncUnAssoc: Creates an un-synchronized clone of the source element and does not
maintain the source association after completing the copy operation.

The StorageReplicationCapabilities class defines informational properties with un-modifiable values
that guide a client using the various capabilities of the service. For example:

• Instance 1 defines the capability to create local mirrors. SupportedSynchronizationType is set to a
value of “Sync” and the AttachOrModifyReplica method is the only method supported for mirror
creation. The InitialReplicaState is “Synchronized”.

• Instance 2 defines the capability to create snapshots. SupportedSynchronizationType is set to a
value of “UnSyncAssocDelta” and the CreateReplica method is the only method supported for
snapshot creation. The InitialReplicaState is “Idle”.

Further details concerning discovery and the use of capability properties are included in the client
considerations section. The extrinsic methods invoked to create and manage replicas are defined in the
StorageConfigurationService class shown in the discovery instance diagram.

Table 1051: Copy Services Subprofile FCAPS Support

Level / FCAPS Fault 
Mgmt

Configuration 
Mgmt

Accounting 
Mgmt

Performance 
Mgmt

Security 
Mgmt

Application
File/Record
Block YES
Connectivity YES YES
Device
1072



 Copy Services Subprofile
Figure 169: Copy Services Discovery

SystemDevice

Discovered array provider supporting the copy services subprofile including remote replication capability. The 
Network, NetworkPort and ProtocolEndpoint elements are optional. These elements are exposed by a 
provider supporting managed peer-to-peer connections.

HostedAccessPoint

ComputerSystem

// Array

StorageConfigurationService

HostedService

StorageConfigurationCapabilities

// includes some copy services
// capability properties

ElementCapabilities

StorageReplicationCapabilities

// one instance per supported
// CopyType

Copy Services Instance

Network

// optional element for remote replication.
// Aggregation group element for
// ComputerSystem and NetworkPipe
// elements.

ProtocolEndpoint

ProtocolIFType = “Other”
OtherTypeDescription = value of  
private peer connection protocol
Name = FCPort WWN value
SystemName = Array name

SystemComponent

ProtocolEndpoint

// One or more lower-level
// protocol layers.

NetworkPort

// Fibre Channel or Ethernet port
// supporting the private peer
// connection protocol.

BindsTo

DeviceSAPImplementation
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1073



 

Figure 170: "Local Replica" shows the basic model of a local replica.

A local replica is created by invoking either the CreateReplica or the AttachOrModifyReplica extrinsic
methods. CreateReplica creates a new storage element in a storage pool. AttachOrModifyReplica
transforms an existing, independent storage element into a replica. The new replica is the same
element type as the source element. Several associations are implicitly created for all replica elements.
A StorageSynchronized association shall be created if the new replica remains associated with its
source element. A SystemDevice association shall be created or shall already exist. An
AllocatedFromStoragePool association shall be created or shall already exist. An ElementSettingData
association with an instance of StorageSetting is created or shall already exist for the replica element.
An optional BasedOn association may exist if AttachOrModifyReplica is invoked to transform an
existing element into an associated replica.

EXPERIMENTAL

A remote replica is created by invoking either the CreateReplica or the AttachOrModifyReplica extrinsic
method. A peer-to-peer connection may be required by a provider before creating a remote replica.
Peer-to-peer connections are explained later in this section. The basic remote replication model
associates two existing storage elements with a new instance of StorageSynchronized. If the remote
replica pair is managed within the context of a peer-to-peer connection, the target storage element is
also associated to a NetworkPipe element as shown in Figure 171: "Remote Mirror Replica".

Figure 170: Local Replica

StorageVolume

// source

StorageVolume

// target
StorageSynchronized

ElementSettingData

AllocatedFromStoragePool

SystemDevice

BasedOn
(or sub-class)

ComputerSystem

// array
1074



 Copy Services Subprofile
Instances of StorageConfigurationService shall exist for both the source system element and the target
system element. The RemoteReplicationServicePointAccess property in
StorageReplicationCapabilities indicates the service instance that is used for invocation of remote
replication methods. The provider may indicate the service instance hosted on the source system or on
the target system.

Figure 171: "Remote Mirror Replica" shows the basic model of a remote mirror replica when both
source and target elements are controlled by one SMI-S server:

Figure 171: Remote Mirror Replica

Array1:ComputerSystem

Network NetworkPipe

// top-level NetworkPipe

HostedNetworkPipe

Array2:ComputerSystem

StorageVolume

// source

SystemDevice

StorageVolume

// target

SystemDevice

StorageSynchronized

SystemComponent

SystemComponent

ConcreteDependency
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1075



 

Remote replication may involve separate SMI-S servers/CIMOMs for each peer system element. A
cascading provider shall provide stitching between the two SMI-S servers that enables a client to
manage replica pairs and peer-to-peer connections through either server. This may be deployed using
leaf elements as shown in Figure 172: "Cascading the Copy Services Subprofile".

The provider ensures that leaf elements representing real instances of ComputerSystem,
ProtocolEndpoint and an element such as StorageVolume are created in each CIMOM. Correlatable
name properties and other key properties are copied from the real elements to the leaf elements. The
provider shall ensure that state and status properties such as OperationalStatus and SyncState have
consistent values between the leaf elements and real elements for all properties required by the
subprofile.

Peer systems can be arrays, volume managers or any element type supporting the subprofile. Both
peers shall be the same element type. Two peer systems are correlated using durable name properties
when a connection is established. Real and leaf elements are correlated using durable name properties

Figure 172: Cascading the Copy Services Subprofile

Array1:ComputerSystem

Network

Array2:ComputerSystem

// leaf peer system element
Name value copied from real 
Array2 CS

Dependency

StorageVolume

// source

StorageVolume

// leaf remote mirror
// real element on Array2

StorageSynchronized

SystemDevice

SystemDevice

SystemComponent

SystemComponent

SMI-S Server/CIMOM for Array1

Array2:ComputerSystem

Network

Array1:ComputerSystem

// leaf peer system element
Name value copied from real 
Array1 CS

Dependency

StorageVolume

// target

StorageVolume

// leaf remote source
// real element on Array1

StorageSynchronized

SystemDevice

SystemDevice

SystemComponent

SystemComponent

SMI-S Server/CIMOM for Array2
1076



 Copy Services Subprofile
when leaf elements are created. The Name value of the real element is stored as the Name value of the
leaf element. If a provider allows connections to be monitored and managed, a special instance of
Network is exposed to clients as an aggregation point for NetworkPipe elements that identify
connections. NetworkPipe instances can be static or can be created by extrinsic method invocation. All
connections (NetworkPipe instances) and ComputerSystem instances supporting managed
connections are associated to this Network element.

Figure 173: "Peer-to-Peer Connection" shows the complete model of a peer-to-peer connection:

Remote replication requires a transport connection between two peer systems before remote replicas
can be created. These connections are called “peer-to-peer connections”. The Copy Services
Subprofile does not provide for managing the topology of these connections. Any managed routing for
switched connections must be completed by an external action before establishing a connection. The
underlying network and lower-level protocols are transparent to the peer-to-peer connection model.
Any network protocols supported by SMI-S can bind to peer-to-peer protocol endpoints.

Figure 173: Peer-to-Peer Connection

Array1:ComputerSystem

ProtocolEndpoint

ProtocolIFType = “Other”
OtherTypeDescription = value of private peer 
connection protocol
Name = FCPort WWN value (key, durable)
SystemName = Array1 CS durable name

ProtocolEndpoint

ProtocolIFType = “Other”
OtherTypeDescription = value of private peer 
connection protocol
Name = FCPort WWN value (key, durable)
SystemName = Array2 CS durable name

Array2:ComputerSystem

Network NetworkPipe

OperationalStatus,
Directionality,
AggregationBehavior = 4

HostedNetworkPipe

EndpointOfNetworkPipe

EndpointOfNetworkPipe
SystemComponent

SystemComponent

HostedAccessPoint

HostedAccessPoint

NetworkPipe

Directionality,
AggregationBehavior = 2

NetworkPipeComposition
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1077



 

The subprofile allows use of either point-to-point or switched topologies for connections. Point-to-point
connections are static connections that may be discovered and monitored by a client. Switched
connections are dynamic connections and a client can manage the performance and availability
characteristics of the connection.

Peer-to-peer connections may be uni-directional or bi-directional connections between two peer
systems. One peer is the host of the source storage element and the other peer is the host of the
replica target element. Peer systems can be either the top-level ComputerSystem in the array or a
tiered ComputerSystem located by traversing a ComponentCS association from the top-level element.
Managed connections use a special instance of Network to aggregate all of the system elements
supporting remote replication. An established connection is modeled as a two-level NetworkPipe
composition. The top-level NetworkPipe provides an operational status property and a directionality
property. The peer-to-peer ProtocolEndpoint instances correlate the source and target peer systems
using the SystemName key property. This correlation is necessary because a peer can establish
connections with many other peers. A provider can support remote replication without using
connections. AttachOrModifyReplica method providers receive a REF to a top-level NetworkPipe if
connections are supported. The peer-to-peer ProtocolEndpoint instances may associate to port
elements or may bind to lower-level ProtocolEndpoint instances. The provider may dedicate these ports
for peer-to-peer connections or may allow the ports to be shared with host connections. This behavior
is opaque to clients.

EXPERIMENTAL

The subprofile supports both multiple replicas per associated source element and multi-level
replication. Properties in StorageReplicationCapabilities allow the provider to indicate the maximum
number of replicas for one source element and the maximum depth for multi-level replication.
Figure 174: "Multi-Level Local Replication" and Figure 175: "Multi-Level Remote Replication" show the
basic models for local multi-level replication and remote multi-level replication.

Figure 174: Multi-Level Local Replication

StorageVolume

// level 1 source

StorageVolume

// mirror replica
// level 2 source

StorageSynchronized

Local multi-level replication

StorageVolume

// mirror replica
// level 3 source

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized
1078



 Copy Services Subprofile
If remote replication depth exceeds two levels, the mid-level peer systems contain both remote source
and remote target elements as shown in Figure 175: "Multi-Level Remote Replication":

Snapshots are created using CopyType “UnSyncAssoc” when either the CreateReplica or
AttachOrModifyReplica extrinsic method is invoked. Snapshots may be created as full replicas or delta
replicas. A provider supporting delta replicas may enable several optional capabilities used with the
variable space consumption model described in the client considerations section.

Figure 175: Multi-Level Remote Replication

StorageVolume

// source element
// hosted on array 1

StorageVolume

// target and source element
// hosted on array 2

StorageSynchronized

Remote multi-level replication

StorageVolume

// target element
// hosted on array 3

StorageSynchronized

NetworkPipe

// array 2 to array 3
// top-level

ConcreteDependency

NetworkPipe

// array 1 to array 2
// top-level

ConcreteDependency

HostedNetworkPipe

Network
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1079



 

Figure 176: "Multi-Level Snapshots" shows the basic model of snapshots created as delta replicas.

EXPERIMENTAL

The optional capabilities are

• Specialized storage pools to contain delta replicas

• Space limits and warning thresholds

• Space reservation for delta replicas

These capabilities are described in detail in the client considerations section. A client uses these
capabilities to ensure sufficient but not excessive availability of space for groups of delta replicas.
Action can be taken by a client to prevent failure of delta replica elements caused by lack of
consumable space.

EXPERIMENTAL

8.2.8.12.1.1 Durable Names and Correlatable IDs of the Profile
Durable names and Correlatable IDs are used to manage remote replication.

Figure 176: Multi-Level Snapshots

AllocatedFromStoragePool

StoragePool

// Pool for delta replicas

StorageVolume

// source

Multiple delta snapshots per source element

StorageVolume

// snapshot

StorageVolume

// snapshot

StorageVolume

// snapshot

ReplicaPoolForStorage

StorageSynchronized
1080



 Copy Services Subprofile
The Name property of the ComputerSystem instance representing a peer system is used to correlate
two peers when a peer-to-peer connection is established. When a leaf instance of ComputerSystem is
created by a cascaded provider, the value of the Name property is copied from the instance of the real
ComputerSystem element.

ProtocolEndpoint elements eligible for use in peer-to-peer connections should have a Name value
equivalent to the PermanentAddress value of the associated port. This is typically a port WWN for a FC
port and is considered durable. These elements have a SystemName value equal to the Name value of
the hosting system element.

The Name property of the storage element is used to correlate a leaf element on one peer with a local,
realized element on the other peer if each peer has a separate SMI-S server/CIMOM. The Name value
from a local, realized element on one peer is assigned as the Name value of the leaf element on the
other peer.

8.2.8.12.1.2 Instrumentation Requirements
The subprofile recommends that method providers for replica creation methods make all replica
elements and associations accessible when the method response is returned to the client. This
includes the case when the provider returns “job started” to the client. This allows the client to
immediately monitor and manage the replica, new associations to the replica and new associated
elements. 

If the provider returns “job completed”, all new elements and associations shall be accessible. If “job
started” is returned, new elements may not be immediately accessible. There are two cases the
provider should consider:

Case 1: a new element and new associations are created (CreateReplica, CreateReplicationBuffer).

If the provider returns a reference to the new element as a method output parameter, all new
associations shall also be accessible and AffectedJobElement shall now reference the new element for
the returned job reference. No instance creation indications need to be generated. If the provider does
not return a reference to the new element, an instance creation indication shall be generated when the
new element is accessible. When the job completes successfully, AffectedJobElement shall reference
the new element. The new element and all new associations shall be accessible when the instance
creation indication is generated or the job completes successfully, whichever occurs first. Instance
creation indications are not generated for new associations.

Case 2: a new association is created for an existing element (AttachOrModifyReplica, AttachReplica).

If the provider returns “job started”, AffectedJobElement already references the existing element and
the client may attempt to access the new StorageSynchronized association. If the new association is
not accessible, an instance creation indication for StorageSynchronized shall be generated when the
association is accessible. The new association shall be accessible when the instance creation
indication is generated or the job completes successfully, whichever occurs first.

For both cases, at the time an element or association is accessible to the client, all manageable
element and association properties have valid values.

8.2.8.12.1.3 Completion of Long Operations
The subprofile supports three ways of indicating the completion of long running operations when a
replica element is created or modified. This does not apply to a detach operation.

Option 1:

1) Provider returns “job completed” status.

2) SyncState value set to “… In Progress”.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1081



 

3) Instance modification or instance deletion indication when SyncState value changes to final, 
steady state.

Option 2:

1) Provider returns “job started” status and REF to replica element.

2) SyncState value set to “… In Progress”.

3) Instance modification or instance deletion indication when SyncState value changes to final, 
steady state.

4) Instance modification when ConcreteJob ends.

Option 3:

1) Provider returns “job started” status but no REF to replica element.

2) Instance creation indication for StorageSynchronized when element is available. May indicate “… 
In Progress” state or final state.

3) Instance modification or instance deletion indication when SyncState value changes to final, 
steady state.

4) Instance modification when ConcreteJob ends.

Options 2 and 3 based on job control allow a provider to indicate “percent complete” for long operations
and report job failure information with an instance of Error.

Any option may be selected for un-associated replicas if the provider creates a temporary instance of
StorageSynchronized that is implicitly deleted when the replica is finished. If a temporary instance is not
created, then only options 2 and 3 may be selected and steps 2 and 3 are bypassed.

The ModifySynchronization detach operation and the ReturnToStoragePool method cause element and
association deletion. There are two ways to indicate completion of long delete operations.

Option 1:

Provider returns “job completed”. All affected elements and associations are no longer accessible. No
instance deletion indications should be generated.

Option 2: 

1) Provider returns “job started” status. Client assumes elements and associations are no longer 
accessible.

2) An instance deletion indication is generated for StorageSynchronized for a detach operation or for 
a replica element for a ReturnToStoragePool invocation. The element is successfully deleted when 
either job completion occurs or the instance deletion indication is generated, whichever occurs 
first.

State Management For Associated Replicas
Both mirror and snapshot replicas maintain stateful associations with source elements. The SyncState
property of a StorageSynchronized association identifies the state. All providers shall support the
ModifySynchronization extrinsic method that allows a client to manage the synchronization state of an
associated replica unless a provider only allows un-associated replicas. All of the modify operations
supported by the subprofile are classified as mandatory, optional or not supported by type of replica.
1082



 Copy Services Subprofile
Mirror replicas are the only type of replica created for CopyType values “Sync” and “Async”. Snapshot
replicas are the only type of replica created for CopyType value “UnSyncAssoc”. Table 1052:
“Synchronization Operation Support Requirements” shows the classification.

All instances of StorageReplicationCapabilities shall indicate all mandatory operations plus all
supported optional operations in the value list assigned to the SupportedModifyOperations[] property.
Undeployed, optional operations should be implemented as a stubbed “no operation” to ensure
backward compatibility with earlier versions of the subprofile. Modify operations perform the following
actions:

Resync: Causes a fractured mirror replica to change from a point-in-time (PIT) view to a synchronized
mirror replica representing the current view of the source element. The provider can execute a full or
incremental copy as needed to realize a synchronized state. Causes a snapshot to be restarted as a
new PIT image with a new value assigned to WhenSynced. May release all space previously
consumed by the snapshot.

Fracture: Splits a synchronized mirror replica from its source element, changing the replica from a
current view of the source element to a PIT view.

Restore: Copies a fractured mirror or a snapshot to the source element. At the completion of the
restore operation, the source and replica represent the same PIT view. The Restore operation for each
supported CopyType can be implemented as an incremental restore or a full restore based on the
capabilities of the provider.

Detach: Removes the association between the source and replica elements. The StorageSynchronized
association is deleted. If the replica is still a valid PIT image, the provider sets OperationalStatus to
“OK”. If not a valid image but the storage element can be reused, the provider sets OperationalStatus to
“Error”. A Detach operation does not delete the replica element. A client should invoke
ReturnToStoragePool if the element is to be deleted following the Detach operation.

 Start Copy: Starts a background copy operation for a snapshot replica. At the completion of the copy
operation, the snapshot enters “Frozen” state.

Stop Copy: Stops a background copy operation for a snapshot replica. The snapshot state changes
from “Copy In Progress” to “Idle”.

Table 1052: Synchronization Operation Support Requirements

ModifySynchronization 
Operation

Mirror Replicas Snapshot Replicas

Detach Mandatory Optional
Resync Mandatory Mandatory
Fracture Mandatory Not supported
Quiesce Optional Optional
Unquiesce Optional Not supported
Prepare Optional Optional
Unprepare Optional Optional
Restore Optional Optional
Start Copy Not supported Optional
Stop Copy Not Supported Optional
Reset To Sync Optional Not supported
Reset To Async Optional Not supported
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1083



 

Quiesce/Unquiesce: This operation has optional, vendor-specific behavior for mirror replicas that is
opaque to clients. The Quiesce operation stops the copy engine for snapshots and the snapshot no
longer consumes space. A snapshot is no longer a valid PIT image if the source element is updated
after the snapshot enters “Quiesced” state.

Prepare/Unprepare: This operation has optional, vendor-specific behavior for all replica types that may
also depend on the entry state. A prepare operation typically starts a copy engine if entered from
“Initialized” state.

Reset To Sync: Changes the CopyType value of a mirror replica from “Async” to “Sync”.

Reset To Async: Changes the CopyType value of a mirror replica from “Sync” to “Async”.

This information is summarized in Table 1053: “SyncState Values”.

All providers shall have access to a time service that allows the provider to assign a date/time value to
the WhenSynced property of StorageSynchronized at the time a replica becomes a valid PIT view of its
source element. The WhenSynced value for mirror replicas shall be non-null for the “Fractured” and
“Restore In Progress” synchronization states. The WhenSynced value for snapshot replicas shall be
non-null for any synchronization state allowing host access to the replica.

A provider shall enforce state transition rules for associated replicas. If a client initiates a
ModifySynchronization operation that causes a state transition violation, the provider returns an error
response of “Invalid State Transition”. The provider shall allow a client to bypass certain transitions
related to operations not supported by the provider. For example, a snapshot transition from “Idle” to
“Resync In Progress” is allowed if the provider does not support Quiesce and Prepare operations.

Synchronization states have the following behavior:

Initialized: A source element and replica element are associated and all implicitly created associations
are accessible. The copy engine has not started.

Synchronized: A mirror replica is fully copied and represents the current view of the source element.

Table 1053: SyncState Values

Synchronization State
(SyncState value)

Mirror Replicas Snapshot Replicas Required ModifySynchronization
Operations For Optional States

Initialized Optional Optional Prepare
Prepare In Progress Optional Optional  
Prepared Optional Optional Unprepare
Resync In Progress Mandatory Mandatory
Synchronized Mandatory Not specified
Idle Not specified Mandatory
Quiesce In Progress Optional Optional Quiesce
Quiesced Optional Optional Quiesce
Fracture In Progress Mandatory Not specified
Fractured Mandatory Not specified
Copy In Progress Not specified Optional Start Copy
Frozen Not specified Mandatory
Restore In Progress Optional Optional Restore
Broken Optional Optional
1084



 Copy Services Subprofile
Idle: A snapshot is accessible but not copied and represents a PIT view of the source element. A copy
engine is actively executing copy-on-write operations.

Fractured: A mirror element is split from its source element and is now a PIT view.

Frozen: A snapshot is accessible and fully copied and represents a PIT view of the source element.
The copy engine is stopped.

Broken: A replica is not a valid view of the source element and OperationalStatus of the replica
element may have a value of “Error” if a repair action is necessary. The provider may allow access to a
replica in this state if indicated in HostAccesibleState[] of StorageReplicationCapabilities. The subprofile
currently does not specify how to recover from “Broken” state. A ModifySynchronization Detach
operation may be invoked to a replica in this state.

Values of the SyncMaintained and WhenSynced properties in a StorageSynchronized association are
maintained as shown in Table 1054. The table does not apply to CopyType “UnSyncUnAssoc”.

SyncMaintained “True” means that a copy engine is actively copying updated blocks from the source
element to the target element. “False” means either the copy engine is stopped or copying the target to
the source during “Restore In Progress” state. WhenSynced can contain two forms of a Date/Time
value. A non-null value indicates either the date/time a frozen image is created or the date/time that the
source element is completely copied to the target mirror element. The Fracture, Resync and Restore
operations for ModifySynchronization may cause the WhenSynced value to change.

Table 1054: SyncMaintained and WhenSynced Properties

Synchronization State SyncMaintained WhenSynced
Sync/Async UnSyncAssoc Sync/Async UnSyncAssoc

Initialized True or False True or False Null Date/Time frozen
Prepare In Progress True or False True or False Null Date/Time frozen
Prepared True or False True or False Null Date/Time frozen
Resync In Progress True or False True or False Null Date/Time frozen
Synchronized True Not specified Null or

D/T copy done
Null

Idle Not specified True or False Null Date/Time frozen
Quiesce In Progress True or False False Null or

D/T copy done
Null

Quiesced True or False False Null or
D/T copy done

Null

Fracture In Progress True or False Not specified Null or
D/T copy done

Null

Fractured False Not specified Date/Time frozen Null
Copy In Progress Not specified True or False Null Date/Time frozen
Frozen Not specified False Null Date/Time frozen
Restore In Progress False False Date/Time frozen Date/Time frozen
Broken False False Null Null
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1085



 

Figure 177: "State Transitions for Mirrors" shows state transitions for mirrors:

The replication state machine is entered as a result of invoking any of the copy services extrinsic
methods that create a StorageSynchronized association. Exit the state machine by invoking the
ModifySynchronization Detach operation.

Figure 177: State Transitions for Mirrors

Prepared

Synchronized

Initialized

Prepare 
in

Progress

Resync
in 

Progress

Quiesce in
Progress

Quiesced

Prepare

Resync

Unprepare

Prepare

Fractured

Restore 
in

Progress

Restore

Fracture in
Progress

Fracture

Unquiesce

Quiesce
1086



 Copy Services Subprofile
Figure 178: "State Transitions for Snapshots" shows state transitions for snapshots:

The preceding state diagrams for mirrors and snapshots use the following conventions:

• The state diagram is entered when any of the three replica creation methods is invoked. Exit
occurs when a ModifySynchronization Detach operation is invoked.

Figure 178: State Transitions for Snapshots

P re p a re d

Id le

In itia lize d

F ro ze n

P re p a re  
in

P ro g re ss

R e syn c
in  

P ro g re ss

C o p y
in  

P ro g re ss

R e s to re  
in

P ro g re ss

Q u ie sce  in
P ro g re ss

Q u ie sce d

P re p a re

R e sy n c

R e s to re

R e s to re

Q u ie s ce

S ta rt C o p y

Q u ie s ce

U n p re p a re

P re p a re

S to p  
C o p y
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1087



 

• A transition from a steady state to an in progress state is shown by a solid arrow line and is
initiated by a ModifySynchronization operation other than Detach.

• An automatic transition from an in progress state to a steady state is shown by a dashed arrow
line.

8.2.8.12.1.4 Host Access Restrictions
The Copy Services Subprofile does not provide any services for managing access to replicas.
However, replication services often restrict access to replicas for the following reasons:

1) Replicas have the same volume signature as their source element. Exposing both the source and 
replica to the same host may cause problems with a duplicate volume signature.

2) Delta replicas created by embedded software elements such as a volume manager may be 
unavailable for export to a secondary host.

The subprofile uses two properties in StorageReplicationCapabilities to indicate host access
restrictions:

1) ReplicaHostAccessibility

2) HostAccessibleState[]

A provider may set values for these two properties indicating any host access restrictions imposed on
replicas. These restrictions apply to all replicas created with the same CopyType value. Access control
for a specific replica by a specific host is normally managed using services described in the Masking
and Mapping subprofile.

EXPERIMENTAL

8.2.8.12.1.5 Settings, Specialized Elements and Pools for Replicas
A copy services provider shall support StorageSetting with the additional properties defined to manage
replica elements and replication operations. These properties are listed in the definition of
StorageSetting in this subprofile. This definition extends the basic list of required StorageSetting
properties listed in the Block Services Package. The CreateSetting method should return a REF to a
StorageSetting instance with all of the replication properties initialized to values consistent with the
capabilities indicated in StorageReplicationCapabilities. Many of the replication properties allow an
initial value of “not applicable” if the provider does not use the property. The provider should set the
SupportedSpecializedElements[] value list in StorageReplicationCapabilities to indicate which values of
StorageSetting.IntendedUsage are supported by the provider.

A provider may require specialized pools to contain delta replicas, specialized elements as replica
targets and specialized extents as concrete components for delta replica pools. The provider may
require the client to manage creation of these specialized elements – this is explained in detail in the
client considerations section. Alternatively, the provider may automatically create specialized elements
and make them available for discovery by clients. In either case, the IntendedUsage property in
StorageSetting shall be supported by the provider as part of the goal parameter for pool/element
creation methods and pool search methods such as GetAvailableExtents.

When IntendedUsage is set for GetAvailableExtents, GetSupportedSizes or GetSupportedSizeRange,
the value constrains the method provider. GetAvailableExtents should only return extents eligible to
create specialized replica pools. GetSupportedSizes and GetSupportedSizeRange should only return
non-null values if the selected pool is allowed to contain replica elements.
1088



 Copy Services Subprofile
When IntendedUsage is set in the goal parameter for an element creation method, the value acts as an
additional parameter indicating a special element subtype. The provider ensures that the required
element type is created and IntendedUsage is retained in the persistent setting element associated with
the new replica element.

8.2.8.12.1.6 Provider Configurations for Remote Replication
Remote replication always involves two peer system instances that may be managed through an
established peer-to-peer connection. Provider developers can implement either one provider or two
provider configurations for controlling remote replication service access points. The remote replication
model allows connections that are bi-directional or uni-directional.

Configuration 1: one provider instance controls both peers. A client interfaces to one SMI-S server and
CIMOM. The only stitching required between arrays uses a StorageSynchronized association between
storage elements in separate arrays.

Configuration 2: A separate provider instance controls each peer system. Each provider has its own
SMI-S server/CIMOM instance. The provider shall deploy stitching and cascading mechanisms based
on the use of leaf elements.

The two-provider configuration can be used with either proxy or embedded providers. The two-provider
configuration may provide higher availability in a cluster environment supporting failover and failback.

The client managing a remote replication service shall discover both the source system and target
system instances. The instance of StorageReplicationCapabilities for CopyType values “Sync” and
“Async” are probed to determine the service access point for remote replication. These are SMI-S
server access points for method invocation of StorageConfigurationService methods. Two properties
indicate the service access point(s):

RemoteReplicationServicePointAccess indicates the primary access point:

• Source: client interfaces to provider hosting the source storage elements.

• Target: client interfaces to provider hosting the target storage elements.

• Proxy: client interfaces to a cascading proxy provider for all operations [reserved for future
use].

AlternateReplicationServicePointAccess indicates an alternate access point that may be used if the
primary server fails or is not responding:

• None: no alternate access point is available.

• Source, Target, Proxy: same definition as above

Each provider instance exposes all peer-to-peer connection elements and all replica pair elements
needed for client management through multiple service access points.

EXPERIMENTAL

8.2.8.12.1.7 Backward Compatibility
A 1.1 copy services provider can maintain backward compatibility with a 1.0 copy services client. The
following conditions are necessary for backward compatibility:

1) The instance of StorageConfigurationCapabilities should set replication capability property values 
in the same way indicated for a 1.0 copy services provider. A 1.1 copy services client should 
ignore these properties and use StorageReplicationCapabilities instead.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1089



 

2) The provider should treat AttachReplica as an alias for AttachOrModifyReplica.

3) The provider should treat StorageSynchronized.SyncState values “Synchronized” and “Idle” as 
equivalent for CopyType “UnSyncAssoc”.

8.2.8.12.1.8 Mutually Exclusive Capabilities
Both StorageReplicationCapabilities and StorageConfigurationCapabilities contain the
SupportedSynchronousActions[] and SupportedAsynchronousActions[] properties. The provider shall
not include the value corresponding to an action in both properties. An action can run synchronously or
asynchronously but not both. An action indicated in one of the StorageConfigurationCapabilities
properties shall also be indicated in a corresponding instance of StorageReplicationCapabilities.

8.2.8.12.2 Health and Fault Management Considerations
Certain capabilities of the subprofile use alert, instance modification and instance deletion indications
for health and fault management. In general, instance modification indications when the
OperationalStatus values of a replica element or a peer connection element change may indicate a
fault. Instance modification indications when StorageSynchronized.SyncState automatically changes
from any other value to “Broken” indicates a fault.If delta replicas are supported with either space limits
or special pools with warning thresholds, certain alert indications may be generated by the provider:

• Alert indication when a delta replica reaches the space limit warning threshold.

• Alert indication when a delta replica attempts to exceed its space limit or is unable to
consume space from its associated pool.

• Alert indication when remaining space in a pool falls below a warning threshold or is
completely consumed.

The information in the alert indications is described in Table 1056: “Copy Services Alert Indications”.

Instance deletion indications as faults are supported for StorageSynchronized when a delta snapshot is
automatically deleted for exceeding its space limit.

If remote replication is supported using managed connections, the provider shall generate instance
modifications when OperationalStatus values change for a top-level NetworkPipe identifying a peer-to-
peer connection. A client may locate all replica pairs associated with the faulty connection by traversing
ConcreteDependency associations from the pipe to the target elements of the pairs. The values listed
in Table 1055: “OperationalStatus Values for NetworkPipe”are supported for
NetworkPipe.OperationalStatus[]:

When OperationalStatus indicates “Supporting Entity in Error”, a client should search for instances of
RelatedElementCausingError associations to a NetworkPipe as the dependent element. These
associations identify endpoints for connections paths with a fault.

Table 1055: OperationalStatus Values for NetworkPipe

OperationalStatus Description
2: OK Peer-to-peer connection is fully operational
3: Degraded One or more connection paths is unavailable
6: Error Connection has failed and copy operations cannot be completed
10: Stopped Connection suspended by the provider [reserved for future use]
16: Supporting Entity in Error One or more elements associated with the connection has a fault
1090



 Copy Services Subprofile
EXPERIMENTAL

The Copy Services Subprofile generates alert indications that allow monitoring of dynamic space
consumption by delta replica elements. All of the alert indications indicate an AlertType value of “Device
Alert” and an OwnerEntity value of “SNIA”. Alerts are generated for CIM_StoragePool elements to
indicate that remaining consumable space is below a warning threshold percentage of total space or
that all space in the pool has been consumed. The LowSpaceWarningThreshold, TotalManagedSpace
and RemainingManagedSpace properties can be analyzed to determine an appropriate response.
Alerts are generated for CIM_AllocatedFromStoragePool associations to indicate that a delta replica
has consumed space either to a warning threshold level or to an allowable limit. The SpaceConsumed,
SpaceLimit and SpaceLimitWarningThreshold can be analyzed to determine an appropriate response.

The Copy Services Subprofile returns the error responses listed in Table 1057: “Copy Services Error
Responses” for the extrinsic methods supported by the subprofile. The subprofile uses MessageID
values defined in the common error registry and the storage error registry.

8.2.8.12.3 Cascading Considerations
The Copy Services Subprofile is both a cascading subprofile and a leaf subprofile. Any remote
replication provider that supports the cascading role shall also support the leaf role.

Table 1056: Copy Services Alert Indications
AlertingManaged

Element
PerceivedSeverity ProbableCause ProbableCauseDescription

Replica pool 
association

Minor (4) Threshold Crossed
(52)

Delta replica at space warning threshold:
   SpaceConsumed/SpaceLimit

Replica pool 
association

Major (5) Out of Memory
(33)

Delta replica at space limit

Storage pool Minor (4) Threshold Crossed
(52)

Pool at low space warning threshold:
   RemainingManagedSpace/
   TotalManagedSpace

Storage pool Major (5) Out of Memory
(33)

No remaining space in storage pool

Table 1057: Copy Services Error Responses

MessageID Message Name
MP2 Operation Not Supported
MP3 Property Not Found
MP5 Parameter Error
MP11 Too Busy To Respond
MP17 Invalid Property Combination During Instance Modification
DRM20 Invalid Extent Passed
DRM24 Invalid State Transition
DRM25 Invalid SAP For Method
DRM26 Resource Not Available
DRM27 Resource Limit Exceeded
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1091



 

Cascading shall be supported by remote replication providers that allow separate SMI-S servers and
CIMOMs for service access to the source system and the target system hosting remote replica
elements.

A cascaded provider design does not eliminate the need for the client to interface to both SMI-S servers
when managing remote replication operations. Cascading eliminates the need for the client to invoke a
method twice in order to complete a single operation. The cascading provider discovers a leaf provider
as necessary when the client invokes a method with cascading privileges. A cascading provider sets
the RemoteReplicationServicePointAccess property to a value of “Source” or “Target” for instances of
StorageReplicationCapabilities that support remote replication. This has two purposes:

• The client can determine the correct service access point for invocation of remote replication
methods.

• The method provider can determine if it has the cascading role or the leaf role.

A cascading copy services provider supports stitching with leaf elements of the following types:

• ComputerSystem representing peer system instances.

• ProtocolEndpoint representing ports/paths assigned to peer-to-peer connections.

• StorageVolume representing source and target elements in a remote mirror pair.

Values of key properties, durable name properties and Correlatable ID properties are copied from the
real elements to leaf elements at the time leaf elements are instantiated. A cascading provider shall
ensure that state/status properties return the same value for leaf elements and corresponding real
elements. Associations required by the subprofile for two real elements are also required between real
and leaf elements. Three extrinsic methods of the subprofile have cascading privileges:

• AttachOrModifyReplica

• CreateOrModifyReplicationPipe

• ModifySynchronization

Leaf elements are created and deleted as a side effect when these three methods are invoked. These
three methods are reflective. The client invokes the method to the cascading provider which, in turn,
invokes the method to the leaf provider. If an error is detected by the leaf provider, the cascading
provider shall reflect an instance of CIM_Error to the client when appropriate. Other extrinsic methods
of the subprofile do not cascade.

The subprofile supports a single topology with two SMI-S servers providing service access to two peer
systems. This topology allows both uni-directional and bi-directional connections between peers. The
cascading relationship is identified with a dependency association between instances of
ComputerSystem representing the cascading and leaf peers. Both SMI-S servers populate their
CIMOM repositories with all of the cascading and leaf elements representing a connection or a remote
mirror pair.

Cascading imposes the following limitations on a copy services provider:

1) If the provider supports job control for extrinsic methods, jobs shall only be created by a method 
provider operating in the cascading role.

2) Indications related to leaf elements shall only be generated by a provider operating in the cascad-
ing role for these elements.

EXPERIMENTAL
1092



 Copy Services Subprofile
8.2.8.12.4 Supported Subprofiles and Packages
The Block Services Package is a mandatory prerequisite for the Copy Services Subprofile. Clients
require methods and recipes from block services for the following purposes:

• Identify replica target candidates

• Identify extents and pools to be used as replica containers

• Create and delete replica container elements

• Create and delete replica target elements

• Create generated setting objects with additional properties required by the copy services
subprofile.

Many classes and methods defined in Block Services are used in Copy Services without extensions or
additional properties. In this case, the classes and methods are not redefined in Copy Services.

The Job Control Subprofile is required if any of the copy services extrinsic methods run asynchronously
with created job elements.

The Cascading subprofile is required when remote replication supports a two SMI-S server topology.

Copy services defines instance indications and alert indications using required and optional properties
described in the Indications Subprofile.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1093



 

8.2.8.12.5 Methods of this Profile
The Copy Services Subprofile is dependent on many of the extrinsic methods provided by block
services. The subprofile also requires the provider to support the CreateInstance, GetInstance,
ModifyInstance and DeleteInstance intrinsic methods for certain optional capabilities of the subprofile.
The ReturnToStoragePool extrinsic method defined by block services is used to delete a replica
element. ReturnToStoragePool may receive an MP3 (property not found) error response for replica
elements that are implicitly deleted by a ModifySynchronization Detach operation.

All of the subprofile methods return one of three status codes or return an error response. The
supported status codes are:

• 0: Job completed with no error

• 1: Method not supported

• 0x1000: Job started

Table 1058 summarizes the extrinsic methods for replica creation and management.

Table 1058: Extrinsic Methods of ReplicationServices Subprofile

Method Described in
ModifySynchronization() Table 1059: “ModifySynchronization”
CreateReplica() Table 1060: “CreateReplica Method”
AttachOrModifyReplica() Table 1061: “AttachOrModifyReplica Method”
CreateReplicationBuffer() Table 1062: “CreateReplicationBuffer Method”
CreateOrModifyReplicationPipe() Table 1063: “CreateOrModifyReplicationPipe 

Method”

Table 1059: ModifySynchronization

Method: ModifySynchronization
Errors: DRM24, MP2, DRM25
Parameters:
Qualifiers Name Type Description/Values
IN, REQ Operation uint16 Type of operation to modify the 

replica:
2: Detach
3: Fracture
4: Resync
5: Restore
6: Prepare
7: Unprepare
8: Quiesce
9: Unquiesce
10: Reset to Sync
11: Reset to Async
12: Start Copy
13: Stop Copy

OUT Job ConcreteJob REF Returned if job started.
1094



 Copy Services Subprofile
“Detach” operation deletes the StorageSynchronized association. An instance deletion indication is
generated for this operation.

All ModifySynchronization operations are described in 8.2.8.12.1.2 "Instrumentation Requirements". If
“job completed” is returned and the replica association indicates an “… in progress” SyncState value,
an instance modification indication should follow when the replica enters its final, expected state. If “job
started” is returned, the replica association indicates an “… in progress” SyncState value. In this case,
two instance modification indications may follow. One should indicate the final SyncState value of the
replica association when the job completes with no error. The other should indicate job completion for
the instance of ConcreteJob.

Method notes:

• Creates a storage element of the same type as the source element.

• Creates a StorageSynchronized association”.

• Creates a SystemDevice association.

• Creates an AllocatedFromStoragePool association.

• Creates a StorageSetting instance with an ElementSettingData association.

• May create a BasedOn association.

• All CopyType values may be supported.

IN, REQ Synchronization StorageSynchronized REF Association to replica that is 
modified

Table 1060: CreateReplica Method

Method: CreateReplica
Errors: DRM26, DRM27, DRM25, MP5
Parameters:
Qualifiers Name Type Description/Values
IN ElementName string Client-assigned, friendly name
OUT Job ConcreteJob REF
IN, REQ SourceElement LogicalElement REF
OUT TargetElement LogicalElement REF
IN TargetSettingGoal StorageSetting REF
IN TargetPool StoragePool REF
IN, REQ CopyType uint16 Copy type created:

2: Async
3: Sync
4: UnSyncAssoc
5: UnSyncUnAssoc

Table 1059: ModifySynchronization

Method: ModifySynchronization
Errors: DRM24, MP2, DRM25
Parameters:
Qualifiers Name Type Description/Values
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1095



 

If TargetSettingGoal is not supplied by the client, the provider generates a default StorageSetting
element for the replica. If TargetPool is not supplied by the client, the provider selects a pool to contain
the created replica element. If “job started' is returned, a Target Element reference may or may not be
returned by the provider. 8.2.8.12.1.2 "Instrumentation Requirements" explains when a reference to the
new replica element is available to the client.

EXPERIMENTAL

Method notes:

Uses an existing, independent storage element selected as a local replica target.
Creates a StorageSynchronized association.
May create a leaf storage element corresponding to a real element on a remote peer.
May create a ConcreteDependency association for the target if managed connections are supported.
Only CopyType values “Sync” and “Async” may be indicated for remote replicas.

Table 1061: AttachOrModifyReplica Method

Method: AttachOrModifyReplica  
Errors: DRM25, DRM26, DRM27, MP5, MP7
Parameters:
Qualifiers Name Type Description/Values
OUT Job ConcreteJob REF
IN, REQ SourceElement ManagedElement REF
IN, REQ TargetElement ManagedElement REF
IN, REQ CopyType uint16 Copy type created:

2: Async
3: Sync
4: UnSyncAssoc
5: UnSyncUnAssoc

IN, EmInst Goal string Setting element as an embed-
ded instance.

IN ReplicationPipe NetworkPipe REF

Method: AttachReplica
Errors: DRM25, DRM26, DRM27, MP5, MP7
Parameters:
Qualifiers Name Type Description/Values
OUT Job ConcreteJob REF
IN, REQ SourceElement ManagedElement REF
IN, REQ TargetElement ManagedElement REF
IN, REQ CopyType uint16 Copy type created:

2: Async
3: Sync
4: UnSyncAssoc
5: UnSyncUnAssoc
1096



 Copy Services Subprofile
Either CreateReplica or AttachOrModifyReplica shall be provided if local replicas are supported. Both
may be provided if required by the provider. AttachOrModifyReplica shall be provided if remote replicas
are supported. Replica elements are deleted using the ReturnToStoragePool method in block services.
All associations and associated setting elements are automatically deleted at the same time the
element is deleted.

If the method returns “job completed”, the new StorageSynchronized association is accessible to the
client. If the method returns “job started”, the association may not be accessible. In this case, an
instance creation indication should be generated by the provider when the association is accessible.

If the provider supports replica modification, a Goal parameter may be passed by the client to change
the value of modifiable setting properties.

If the provider supports managed peer-to-peer connections for remote replication, the client shall
supply the ReplicationPipe parameter to scope a remote replica pair within a connection.

AttachReplica is supported for backward compatibility with earlier versions of the copy services
subprofile. Refer to the description of AttachOrModifyReplica that follows. AttachReplica is identical to
AttachOrModifyReplica with the omission of the Goal and ReplicationPipe parameters.

The subprofile uses the following optional methods for managing peer-to-peer connections for remote
replication:

Method notes:

Creates an instance of Memory as the private buffer element.
Creates a AssociatedMemory association to either a hosting ComputerSystem or a replication
NetworkPipe. Hosting system may be top-level or tiered.
Creates a SystemDevice association.
Creates an AllocatedFromStoragePool association.
May create a BasedOn association.

The client may pass either a TargetElement parameter or TargetPool parameter but not both. If
TargetElement is passed, the buffer element is created with a BasedOn association to the extent and
consumes the full extent. If a TargetPool is passed, the buffer element is created in the pool and the
size is determined by the provider. If neither parameter is passed, the provider determines the size and
location of the buffer.

Table 1062: CreateReplicationBuffer Method

Method: CreateReplicationBuffer  
Errors: DRM20, DRM26, MP5
Parameters:
Qualifiers Name Type Description/Values
OUT Job ConcreteJob REF
IN, REQ Host ManagedElement REF Reference to either a host Com-

puterSystem or a top-level repli-
cation NetworkPipe.

IN TargetElement StorageExtent REF
IN TargetPool StoragePool REF
OUT ReplicaBuffer Memory REF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1097



 

Error response DRM20 is returned if the client passes a pool or extent that is not eligible for use as
replication buffer space. Error response DRM26 is returned if the client passes an extent that is too
small. The DRM26 response data indicates the minimum size required for the passed extent.

The rules for “job completed” and “job started” follow the pattern described above for CreateReplica.

Method notes:

Creates a NetworkPipe composition with one top-level pipe and lower-level pipes for each supplied
ProtocolEndpoint pair.
Creates HostedNetworkPipe associations for all pipes and NetworkPipeComposition associations for
all lower-level pipes.
Creates EndpointOfNetworkPipe associations for all supplied ProtocolEndpoint elements.
May create a leaf ComputerSystem instance with SystemComponent and Dependency associations.
SourceSystem and TargetSystem may be top-level or tiered elements located by traversing a
ComponentCS association.
May create one or more leaf ProtocolEndpoint instances with same associations as real endpoint
elements.

If the provider supports client assignment of selected ports to peer-to-peer connections, the client may
pass SourceEndpoint[] and TargetEndpoint[] parameters with the same number of endpoint references
in each parameter. If a new connection is created, a reference to the new top-level replication
NetworkPipe is returned to the client. If an existing connection is modified, ReplicationPIpe is passed as
an input parameter and the new endpoint lists replace the previous endpoint lists.

EXPERIMENTAL

Table 1063: CreateOrModifyReplicationPipe Method

Method: CreateOrModifyReplicationPipe  
Errors: DRM25, DRM27, MP5, MP11
Parameters:

Qualifiers Name Type Description/Values
IN PipeElementName string
IN, REQ SourceSystem ComputerSystem REF
IN, REQ TargetSystem ComputerSystem REF
IN SourceEndpoint[] ProtocolEndpoint REF
IN TargetEndpoint[] ProtocolEndpoint REF
IN, EmInst Goal string Setting element as an embed-

ded instance. Reserved for 
future use.

IN, OUT ReplicationPipe NetworkPipe REF
1098



 Copy Services Subprofile
8.2.8.12.6 Client Considerations and Recipes
A single instance of a Copy Services provider may support mirrors, snapshots and clones. A client
follows these steps to fully discover and understand all capabilities of the provider:

• Locate the hosted instance of StorageConfigurationService.

• Enumerate and get all of the informational capability objects associated with
StorageConfigurationService

Block services shall be supported by the provider. The Copy Services Subprofile shall be registered by
the provider. The provider shall host one instance of StorageConfigurationService. 

The properties of StorageConfigurationCapabilities and StorageReplicationCapabilities indicate
precisely how the provider supports each copy service feature. The client should find one instance of
StorageReplicationCapabilities for each CopyType/replica type combination supported by the provider.
Types “Sync” and “Async” are used to manage both local and remote mirrors. Type “UnSyncAssocFull”
is used to manage full size snapshots and type “UnSyncAssocDelta” is used to manage delta
snapshots. Type “UnSyncUnAssoc” is used to create a clone that becomes an independent storage
element when finished. Each instance shows the client:

• Replica type supported (full or delta) 

• Methods supported and ModifySynchronization operations supported

• Any restrictions on host access to replicas

• Upper limits such as maximum replicas for one source element

• Specialized features by CopyType

Instances of StorageReplicationCapabilities for a specific CopyType value may indicate support for
both local and remote replication. The value lists for SupportedSynchronousActions[] and
SupportedAsynchronousActions[] should include multiple values indicating all of the local and remote
replication capabilities that are supported. The client should understand that many of the properties in
the capabilities instances return value lists indicating multiple capabilities.

The PersistentReplicasSupported property in each instance of StorageReplicationCapabilities is set to
“true” if the client can manage replicas as elements that persist across system reset events and power
off events.

Most of the properties in StorageReplicationCapabilities are optional. The client first analyzes
SupportedSynchronousActions[], SupportedAsynchronousActions[], SupportedModifyOperations[] and
SupportedSpecializedElements[]. Support for the remaining optional properties is conditional on the
values indicated for these properties.

If the provider supports remote replication, the client shall determine if peer-to-peer connections are
used. If PeerConnectionProtocol has a non-null value, locate a Network element associated to the top-
level ComputerSystem element. There shall be a Network element with a name of the form:

• NameFormat = “Other”

• Name = “RemoteReplicationNetwork.<value of PeerConnectionProtocol>”

This Network element is private and does not have a durable, correlatable name value. If a correctly
named Network element is discovered, the provider supports peer-to-peer connections between any
pair of arrays associated to the element. Two such elements with the same name in different SMI-S
servers are assumed to be compatible if the provider supports cascading. If peer-to-peer connections
are supported and SupportedSynchronousActions[] includes the value “Network Pipe Creation”, the
provider supports dynamic, managed connections.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1099



 

EXPERIMENTAL

8.2.8.12.6.1 Managing Peer-to-peer Connections
Remote replication is supported if CopyType “Sync” or “Async” is supported and any of the remote
replication operations are in the list of supported actions for either of these CopyType values. A client
may need to establish a connection between two peer systems before remote replicas can be created
and managed. The client selects two peer systems as source and target hosts. The two peers may be
controlled by one SMI-S server or each may be controlled by a different SMI-S server.

Step 1: The client may verify the compatibility of two peer systems. Both peers shall be the same
element type, e.g., both are arrays. Both peers shall represent the same vendor (Product.Vendor or
SoftwareIdentity.Manufacturer – a requirement for SMI-S 1.1).

• There shall be a SupportedSynchronizationType value match: both support “Sync” or both
support “Async”.

• There shall be a SupportedSynchronousActions[] and SupportedAsynchronousActions[]
value match. Both shall support the same set of remote replication operations. Use of Job
Control shall match for all operations.

• If peer-to-peer connections are supported, both peers shall either be associated to the same
Network instance or, if managed from different SMI-S servers, both shall be associated to
identically named Network instances.

• If managed peer-to-peer connections are supported, there shall be a value match for the
BidirectionalConnectionsSupported and RemoteReplicationServicePointAccess properties.

Step 2: If peer-to-peer connections are supported, search for an existing connection between two peer
systems. Begin the search from the top-level system element providing the service access point as
indicated by RemoteReplicationServicePointAccess. If a connection is not found, continue the search
from any lower-level system element located with a ComponentCS association. The search traverses
four levels of association: ComputerSystem --> ProtocolEndpoint --> NetworkPipe --> ProtocolEndpoint
--> ComputerSystem. If a match is found, follow the NetworkPipeComposition association from the
lower-level pipe to the top-level pipe identifying the connection. A reference to this top-level pipe is
subsequently used to create remote replicas within the context of this connection.

Step 3: If an existing connection is not found, a new connection is created by invoking the
CreateOrModifyReplicationPipe method. Select a set of endpoint pairs as required. The provider may
limit the maximum number of endpoint pairs per connection, maximum connections per peer system
and the maximum number of connections handled by one endpoint. Limits are indicated by properties
in an instance of StorageReplicationCapabilities. Select the same number of endpoints from each peer
to form endpoint pairs. All of the endpoints eligible for assignment to peer connections have a
ProtocolIFType value of “Other” and an OtherTypeDescription value equal to the value of
PeerConnectionProtocol. Invoke the CreateOrModifyReplicationPipe method. A provider supports uni-
directional connections if BidirectionalConnectionsSupported is “false”. The SourceSystem and
TargetSystem parameters shall reference the system elements that should host all of the source
elements and all of the target elements respectively if uni-directional connections are supported.
Otherwise, either parameter can reference either system element. The client may assign an element
name value to the new NetworkPipe instance. The selected endpoint pairs are passed as
SourceEndpoint[] and TargetEndpoint[] corresponding to SourceSystem and TargetSystem. The client
invokes the method to the service access point identified by RemoteReplicationServicePointAccess.
The provider creates a NetworkPipe composition with directionality properties set. There is one top-
level pipe plus lower-level pipes corresponding to each ProtocolEndpoint pair assigned to the
connection. The provider returns a reference to the top-level pipe. The model construction for the peer-
to-peer connection is described in Figure 173: "Peer-to-Peer Connection".
1100



 Copy Services Subprofile
Step 4: A write ahead buffer may be required by one or both peers as indicated by the
RemoteBufferSupported property in StorageReplicationCapabilities. Four properties in
StorageReplicationCapabilities indicate how to manage remote buffers:

• RemoteBufferSupported indicates if buffers are not supported, required or optional

• RemoteBufferLocation indicates if the buffer is hosted on the source system, target system or
both.

• RemoteBufferHost indicates if a buffer is required for each system element, each component
system element or each NetworkPipe element.

• RemoteBufferElementType indicates if the client supplies a reference to a concrete extent, a
pool or neither as the container element for the buffer.

If the client supplies a concrete extent, the client determines the necessary size of the buffer element. If
the client supplies a target pool, the provider determines the size. If the client does not specify the
target, the provider determines both the size and location. When the provider determines the location,
the buffer can be realized in volatile DRAM or persistent disk space. The client invokes
CreateReplicationBuffer to create the buffer element.

Buffer elements are deleted by invoking DeleteInstance.

Once the connection is established, endpoint pairs may be attached to or detached from the connection
as necessary using the CreateOrModifyReplicationPipe method. This allows a client to manage the
amount of transport bandwidth assigned to each connection. A connection is removed be invoking

Figure 179: Remote Replication Buffer

Network NetworkPipe

// top-level pipe

HostedNetworkPipe

Memory

// write buffer element

StorageExtent

// optional

BasedOn

AssociatedMemory

StoragePool

// optional

AllocatedFromStoragePool

CopyType = “Async” or “Sync” write buffer for remote replication

ComputerSystem

// Array or component CS
// within the array

SystemComponent

SystemDevice

The write buffer element can be allocated from volatile storage such as DRAM or persistent 
storage such as disk space. The AssociatedMemory association can reference either a 
NetworkPipe element or a ComputerSystem element as required by the provider.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1101



 

DeleteInstance for a top-level NetworkPipe. The entire NetworkPipe composition is deleted along with
corresponding associations. Deletion fails if any replica pairs remain associated with the connection.

EXPERIMENTAL

8.2.8.12.6.2 Using StorageSetting for Replicas
The StorageSetting class has several properties used to create and manage replicas. Instances of this
class are used as goal parameters for many of the methods used by the subprofile. These instances
are serially reusable for a short sequence of operations ending with creation of a pool or an element.
The client should follow these steps:

1) Invoke CreateSetting with SettingType value “Goal” for a selected storage pool.

2) Set values for all of the properties used to create and manage replicas. These properties are listed 
in the definition of StorageSetting in this subprofile. Property values can be changed by the Modi-
fyInstance intrinsic method. The SupportedSpecializedElements[] property in StorageReplication-
Capabilities indicates which values of IntendedUsage are supported. Other replication properties 
may have been returned to the client with an initial value of “not applicable”. The client should not 
modify the value of any property with a value of “not applicable”.

3) The generated setting may initially be used one or more times as a goal parameter for the 
GetAvailableExtents, GetSupportedSizes and GetSupportedSizeRange methods. The setting may 
then be used once as a goal parameter for a pool or element creation method.

4) When the client no longer needs the generated setting instance, invoke the DeleteInstance intrin-
sic method.

8.2.8.12.6.3 Finding and Creating Target Elements
If a provider supports the AttachReplica and/or the AttachOrModifyReplica methods, the client finds or
creates target elements eligible to become replicas. A provider may restrict replica target candidates to
a specialized set of elements if the IntendedUsage property of StorageSetting is supported. The client
should follow these steps:

1) Determine the required size of the target element. Use the size of the source element unless a 
delta replica is created. If a delta replica is created, the size may be smaller than the associated 
source element.

2) Create a goal setting instance. Set IntendedUsage to one of the values “local mirror”, “remote mir-
ror”, “delta snapshot” or “full snapshot”. Set other replication setting property values as desired. 
Refer to the “Creating and Managing Snapshots” section in 8.2.8.12.6 for guidelines on using delta 
reservation properties. Use this goal instance in all the remaining steps.

3) Search for existing StorageVolume instances that can be used as replica targets. If the setting ele-
ment associated with the volume has the necessary IntendedUsage value and the volume is not 
presently a replica target (no existing StorageSynchronized associations), the client can screen 
and possibly select the volume as a new replica target. Note: if the provider does not support ele-
ment specialization for replicas, there is no other way presently defined in the subprofile for 
screening existing volumes as candidates. If the target is to become a remote mirror, the selected 
pool shall be hosted on the peer system containing the target in this step and subsequent steps.

4) If a candidate becomes a delta replica and the provider supports element modification, the client 
can change the values of the delta reservation properties before invoking AttachOrModifyReplica. 
The client should ensure that all of the goal properties are first set to the same values as the val-
ues in the existing StorageSetting element associated to the candidate volume. Next, modify only 
the delta reservation properties to the values required by the client. Pass the completed instance 
as the Goal parameter when AttachOrModifyReplica is invoked.
1102



 Copy Services Subprofile
5) If no candidates exist, follow block services client considerations and recipes to create a new ele-
ment as the replica target. Target elements may be created in pools or from extents. As in step 2, 
set IntendedUsage and all of the other replication setting properties to the desired values before 
creating a new element. If a virtual element is created in a special delta replica pool (described in 
subsequent sections), the Size parameter value shall be zero when the element is created.

EXPERIMENTAL

8.2.8.12.6.4 Creating and Managing Pools for Delta Replicas
A provider may require specialized pools as containers for delta replicas. Such a pool only contains
delta replicas based on the variable space consumption model explained below. The client should
inspect the values of StorageReplicationCapabilities.DeltaReplicaPoolAccess. Values are:

• “Any” – Specialized pools not required for delta replicas

• “Shared” – a single shared pool is required for all delta replicas. If the pool already exists, it is
associated to StorageConfigurationService with a ReplicaPoolForStorage association.

• “Exclusive” – each source element requires an exclusive, special pool for associated delta
replicas. If the pool already exists, it is associated to the source element with a
ReplicaPoolForStorage association.

The client may create the pool from another pool or from a set of extents as allowed by the provider.
The StorageConfigurationCapabilities.SupportedStoragePoolFeatures[] property indicates the options
for pool creation and modification. If the provider supports warning thresholds and space limits, the
recommended approach is to create the pool from small extents. This allows the pool size to be
increased by adding extents when a pool space warning is indicated. A provider that supports warning
thresholds is also likely to support pool modification so that the pool size can be increased.

Calculate a size value for the pool. Select a candidate container pool and create a goal setting instance.
Set IntendedUsage to “Delta Pool”. If the pool is created within a pool, invoke GetSupportedSizes or
GetSupportedSizeRange to verify that a pool of the required size can be created.If the pool is created
from extents, select a set of candidate extents from the candidate pool using the GetAvailableExtents
method. If a provider supports the IntendedUsage property, all candidates should have the same
IntendedUsage value. Finally, invoke CreateOrModifyStoragePool to create the pool. Refer to 8.2.8.10,
"Block Services Package" for recipes that show this sequence of operations. If new component extents
shall be created, set IntendedUsage to “Delta Pool Component” and create a set of extents with the
required size. Refer to the Block Services recipes for element creation and set the created element type
to “Storage Extent”. The pool size can be increased following a pool alert indication. Use the block
services pool modification recipe(s) supported by the provider.

The delta replica pool is automatically associated to the appropriate managed element by the provider.
A ReplicaPoolForStorage association to the StorageConfigurationService is created during the
CreateOrModifyStoragePool operation. If the pool is “exclusive”, the association antecedent is modified
to reference the source element during the first CreateReplica operation that refers to the pool. The
ReplicaPoolForStorage association only identifies the association of the specialized pool to elements
that may consume space in the pool. The AllocatedFromStoragePool association is used to manage
and monitor space consumption by individual snapshot elements. If warning thresholds are supported,
the client may invoke ModifyInstance to modify the value of StoragePool.LowSpaceWarningThreshold.

The provider may optionally provision the special pool with a set of virtual devices before returning
completion status to the provider. These virtual devices are subsequently be used as
AttachOrModifyReplica target elements. This allows the provider to maintain a higher degree of control
over replica properties and the maximum number of replicas. This type of virtual device always has an
initial SpaceConsumed value of zero and does not have a StorageSynchronized association until
AttachOrModifyReplica is subsequently invoked by the client.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1103



 

Capacity management for a delta replica pool should not depend on the capacity relationship formulas
specified in Block Services, Extent Mapping and Extent Conservation. The standard capacity
relationship is:

TotalManagedSpace = RemainingManagedSpace + SUM(SpaceConsumed)

where SpaceConsumed is a sum for all elements created in the pool. RemainingManagedSpace and
SpaceConsumed properties may have volatile values for a delta replica pool and the elements in the
pool. Additionally, if a snapshot service provider allows multiple snapshots to share a consumed block,
it is difficult for a client to predict the space consumption rate for the pool. The most important capacity
management role for the client is to correctly size the delta replica pool. The sizing should be based on
the maximum number of snapshots retained in the pool and the expected space consumption per
snapshot. The client should delegate much of the capacity management role to the provider using the
following techniques:

Client: set LowSpaceWarningThreshold for the pool if the provider supports warning thresholds.
Provider: generate an alert indication at the threshold point.

Client: set DeltaReservationMin for a new snapshot if provider supports space reservation.
Provider: return “Failed” to method invocation if insufficient space to create the snapshot.

The provider is responsible for maintaining accurate values of RemainingManagedSpace and
SpaceConsumed when multiple snapshots share a consumed block.

Extent mapping and extent conservation are not supported for elements created in a specialized delta
replica pool.

EXPERIMENTAL

8.2.8.12.6.5 Creating and Managing Mirrors
A mirror replica is the same size as the associated source element and is fully copied from the source
element. A provider may allow the mirror element to be a larger size than the source element. A full
background copy is normally initiated by the provider when a mirror replica is created. If the provider
defers the background copy, the client may need to initiate the copy at a later time.

 A provider normally runs a copy engine that maintains a mirror as the current image of the associated
source element. The copy engine may operate in either synchronous or asynchronous mode. If the
client requests CopyType “Sync” when the replica is created, the copy engine runs in synchronous
mode and any write I/O operation to the source does not receive ending status until the write operation
is also completed for the mirror. If the client requests CopyType “Async”, the copy engine runs in
asynchronous mode and write I/O operations receive ending status when the operation completes for
the source element.

A mirror may be changed from a current image of the source element to a point-in-time image using a
fracture operation. A mirror in the “Fractured” state is called a split mirror and is equivalent to a
snapshot. A mirror can also be converted to an independent storage element by a “Detach” operation
following a fracture operation. The detached mirror is equivalent to a clone element created with a
CopyType “UnSyncUnAssoc” request (discussed below).

The subprofile supports both local mirrors and remote mirrors. A local mirror target element is hosted
on the same system as the source element. A remote mirror target element is hosted on a different
system than the source element and a remote mirror may require a managed connection between two
peer systems. An operation to create a mirror includes the following steps:
1104



 Copy Services Subprofile
Step 1: locate a candidate pool eligible to contain a new mirror or locate an element in the pool eligible
to be a replica target. The client interfaces to the host system for the source element if a local mirror is
created. Otherwise, the client interfaces to the host system for the remote target element.

Step 2: for the pool being screened, access the associated StorageCapabilities instance and invoke
CreateSetting to generate a modifiable setting object that is used as a goal parameter for one or more
method invocations. Set IntendedUsage to either “Local mirror” or “Remote mirror”.

Step 3: screen the candidate pool or the elements contained in the pool. The client shall provide a
replica size value for the screening operation. Normally, this is the same size value as the source
element. The generated setting created in step 2 is used as the goal parameter for the screening
methods. Search existing volumes for replica target candidates as described in “Finding and Creating
Target Elements” in 8.2.8.12.6. Select a returned volume based on best fit or some other appropriate
filter. Invoke GetSupportedSizes or GetSupportedSizeRange if CreateReplica is used. Proceed to step
4 if an eligible pool or extent is found. Otherwise, proceed to the next candidate pool. If no candidates
are located from existing pools, the client may follow recipes in block services to create a new
candidate pool or extent. Note: a client may elect to bypass screening and require a user to manually
select a candidate pool or target element.

Step 4: invoke AttachOrModifyReplica or CreateReplica to create a new mirror replica. If the provider
returns “job completed” status, the client can immediately access the StorageSynchronized association
instance for the new replica. If the provider returns “job started” status, the client may need to wait for
accessibility to the StorageSynchronized association as described in 8.2.8.12.1.2 "Instrumentation
Requirements". The client may need to initiate additional operations to bring the new replica to the
required synchronization state. If the provider supports an InitialReplicationState of “Initialized”, the
copy engine has not started a background copy operation and the client may invoke
ModifySynchronization requesting a “Prepare” or “Resync” operation as needed.

Creation of remote mirrors requires special client consideration. The client inspects the
StorageReplicationCapabilities.RemoteReplicationServicePointAccess to locate the service access
point for invoking AttachRemoteReplica Refer to the Instrumentation Requirements section under
8.2.8.12.1.6 "Provider Configurations for Remote Replication".

The ModifySynchronization method can be invoked to manage existing mirrors. The subprofile
supports the following operations:

1) Mirrors can be split from their associated source element using a “Fracture” operation. A split mir-
ror is a point-in-time image of the source element. The split mirror can be used as a source for a 
backup operation or can be treated as a temporary clone. A split mirror can be changed back to a 
current image of the source element using a “Resync” operation.

2) Mirrors can be converted to independent storage elements by a sequence of operations including 
“Fracture” and “Detach”.

3) The source element can be restored from a mirror by invoking a “Restore” operation. This should 
normally follow a client action that blocks host I/O to both the source element and all associated 
replica elements until the restore operation is completed.

4) A provider may support “ResetToSync” and “ResetToAsync” operations if availability and perfor-
mance QoS policies change over time. Invoke “ResetToSync” when availability QoS changes to a 
higher priority than performance QoS. Invoke “ResetToAsync” when the reverse relationship 
occurs.

If ModifySynchronization is invoked for a remote replica association, follow the same rules described
above to determine the service access point.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1105



 

8.2.8.12.6.6 Creating a Clone and Redirected Restore Operations
A clone is a full size, fully copied local replica that becomes an independent storage element as soon
as the background copy operation is completed. A clone is usually created by invoking the
AttachOrModifyReplica or CreateReplica methods with the CopyType parameter set to a value of
“UnSyncUnAssoc”. Alternatively, a clone may be created by detaching a split mirror or a frozen
snapshot.

The provider shall automatically initiate a background copy operation when CopyType
“UnSyncUnAssoc” is requested by a client. If the provider deploys the method as an asynchronous
operation, then the provider may elect to create a temporary StorageSynchronized association that
allows the client to manage copy priority for the background copy operation. This temporary association
should only indicate a SyncState value of “Resync in progress” and the provider shall automatically
delete the association when the background copy operation is completed. The client can modify the
value of CopyPriority while the copy operation is in progress. The temporary association cannot be
used for any other purpose and the client shall never invoke ModifySynchronization against this type of
association.

A provider may allow a frozen snapshot to be treated as a clone. The client observes that a replica
previously created with CopyType “UnSyncAssoc” has a SyncState value of “Frozen”. If the provider
supports the ModifySynchronization Start Copy operation, this operation may be invoked to bring the
replica from idle state to frozen state. The provider may allow copy priority to be managed as described
in the next section.

The clone is a point-in-time image of the source element. The client shall supply any needed date/time
value for the point-in-time because a guaranteed WhenSynced property value is not available for a
clone created by a CopyType “UnSyncUnAssoc” operation. A provider may create a clone as either a
synchronous or asynchronous operation. When the operation is completed, the client assumes the
clone is ready to manage as an independent element if the OperationalStatus property indicates a
value of “OK”.

The Restore operation for the ModifySynchronization method only allows restoration to the source
element associated with a replica. If a provider supports multi-level replication, a variation of clone
creation may be used to restore a replica to a redirected location. Invoke a replica creation method
supported by the provider passing a replica element as the source parameter and also indicate
CopyType “UnSyncUnAssoc”. The target may be a new element or an existing independent element.
1106



 Copy Services Subprofile
EXPERIMENTAL

8.2.8.12.6.7 Creating and Managing Snapshots
Snapshot replicas are point-in-time images created with CopyType value “UnSyncAssoc”. Snapshots
can be created as full size replicas of a source element or as delta replicas of a source element.
Snapshots usually have lower space consumption and lower copy engine overhead than either split
mirrors or clones used as point-in-time images. Snapshots are only supported as local replicas hosted
on the same storage system as the associated source element. Separate instances of
StorageReplicationCapabilities are used to manage full size snapshots and delta snapshots:

• Full size: SupportedSynchronizationType = “UnSyncAssoc-Full”

• Delta: SupportedSynchronizationType = “UnSyncAssoc-Delta”

Snapshot providers may deploy either a fixed space consumption model or a variable space
consumption model for snapshot replicas. A full size replica always uses a fixed space consumption
model. A delta replica may use either a fixed or a variable model. Replica elements based on the
variable model shall be created in special pools for delta replicas. A provider indicates support for
special pools by including the value “Delta Replica Pool” in SupportedSpecializedElements[]. The
replica AllocatedFromStoragePool.SpaceConsumed property has a constant value for the fixed model
and a volatile, increasing value for the variable model. The RemainingManagedSpace property for the
corresponding pool has a volatile, decreasing value if the pool contains replicas based on the variable
model. Figure 180: "Fixed Space Consumption" and Figure 181: "Variable Space Consumption" show
the fixed and variable space consumption models for delta snapshots:

Figure 180: Fixed Space Consumption

StorageVolume

// delta replica
NumberOfBlocks = N
BlockSize = M
DeltaReservation = D

StorageSynchronized

StorageExtent (optional)

// container element
NumberOfBlocks = S1
BlockSize = M
ConsumableBlocks = S2

BasedOn

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = 0

StartingAddress = A
EndingAddress = A + SpaceConsumed/M - 1

StoragePool (required)

// container element
// any concrete pool
TotalManagedSpace = S3
RemainingManagedSpace = S4

AllocatedFromStoragePool

SpaceConsumed = (N*M*D)/100 rounded up to nearest multiple of M
SpaceLimit = SpaceConsumed
SpaceLimitWarningThreshold = T1

StorageSetting

DeltaReservationMin = D1
DeltaReservationGoal = D2
DeltaReservationMax = D3
IntendedUsage = “Delta Snapshot”

ElementSettingData

CopyType = “UnSyncAssoc”
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1107



 

For full size snapshots, NumberOfBlocks and BlockSize indicate the actual size of the target element
which is as large or larger than the source element. For delta snapshots, NumberOfBlocks and
BlockSize have the same values as the associated source element. Delta reservation properties are
not used for full size snapshots. SpaceLimit and SpaceLimitWarningThreshold are not used for
snapshots with fixed space consumption.

The instances of StorageReplicationCapabilities for “UnSyncAssoc-Delta” and “UnSyncAssoc-Full”
may use the patterns detailed in Table 1064: “Patterns Supported for StorageReplicationCapabilities”.

The steps required to create a snapshot vary for each pattern. There are a number of common steps.

Figure 181: Variable Space Consumption

Table 1064: Patterns Supported for StorageReplicationCapabilities

SupportedSynchronizati
onType

Supported…Actions[n] DeltaReplicaPoolAccess Space 
Consumption

UnSyncAssoc-Delta “Local Replica Attachment” Any pool or extent Fixed
UnSyncAssoc-Delta “Local Replica Creation” Any pool or extent Fixed
UnSyncAssoc-Delta “Local Replica Attachment” Shared or Exclusive Variable
UnSyncAssoc-Delta “Local Replica Creation” Shared or Exclusive Variable
UnSyncAssoc-Full “Local Replica Attachment” n/a Fixed
UnSyncAssoc-Full “Local Replica Creation” n/a Fixed

StorageSynchronized

StorageVolume

// delta replica
NumberOfBlocks = N
BlockSize = M
DeltaReservation = D

StoragePool

// container element
// delta replica pool
TotalManagedSpace = S
RemainingManagedSpace = variable
LowSpaceWarningThreshold = T2

AllocatedFromStoragePool

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = 0

SpaceConsumed = variable
SpaceLimit = L
SpaceLimitWarningThreshold = T1

StorageConfigurationService

ReplicaPoolForStorage

StorageSetting

// delta replica
DeltaReservationMin = D1
DeltaReservationGoal = D2
DeltaReservationMax = D3
IntendedUsage = “Delta Snapshot”

ElementSettingData

CopyType = “UnSyncAssoc”
1108



 Copy Services Subprofile
Step 1 the provider may limit the maximum number of replicas per source element. Verify that the limit
is not exceeded when a new replica is created. The provider may restrict snapshots to independent
source elements. If the source element is a replica, verify that the provider allows snapshots of local or
remote replicas.

Step 2: locate a candidate pool eligible to contain a new snapshot. This is a special pool if the
DeltaReplicaPoolAccess value is “Shared” or “Exclusive”. A shared, special pool is created as a
separate step before the client begins creating delta replicas. The special pool may be populated with
virtual devices that do not consume space until the AttachOrModifyReplica method is invoked at a later
time. An exclusive, special pool is created the first time a new delta replica is created for a source
element that currently has no associated delta replicas. The operation for creating a special pool for
delta replicas is described in "Creating and Managing Pools for Delta Replicas" in 8.2.8.12.5. If
snapshots can be created in any pool, enumerate all existing pool instances and begin screening the
pools for eligibility. If snapshots are created by the AttachOrModifyReplica method, all existing extents
in each candidate pool should be screened for eligibility in a subsequent step.

Step 3: For the special pool or for the pool being screened, access the associated StorageCapabilities
instance and invoke CreateSetting to generate a modifiable setting object to be used as a goal
parameter for one or more method invocations. Set IntendedUsage to either “Full snapshot” or “Delta
snapshot”.

If the provider indicates SpaceReservationSupported “true”, the DeltaReservationMin,
DeltaReservationGoal and DeltaReservationMax properties are set by the client to appropriate values
for a new delta replica. The values are set in the unassociated StorageSetting element to be passed as
a goal parameter to an extrinsic method. The client cannot modify the values of delta reservation
properties in a StorageSetting element associated to an existing storage element.The values set by the
client satisfy the relationship:

DeltaReservationMin <= DeltaReservationGoal <= DeltaReservationMax

as constrained by the provider. The client cannot decrease the value of DeltaReservationMin and
cannot increase the value of DeltaReservationMax returned by the provider. The delta reservation
properties are always used when CreateReplica is invoked. The properties are only used by
AttachOrModifyReplica when the input target element is a virtual volume with a SpaceConsumed value
of zero. If the provider supports a fixed space consumption model, the client estimates the fixed size of
the delta replica as a percentage of the source element size. If the provider supports a variable space
consumption model, DeltaReservationGoal should be set to a value that is the best estimate of space
consumption as a function of the source element volatility and the replica retention period. All three of
the delta reservation properties are set to the same value if the client wants to guarantee a specific
amount of space is reserved. The provider determines the actual amount of space reserved within the
range requested by the client. If the provider cannot satisfy the minimum reservation request, the client
receives an error response indicating resource limit exceeded. If the request is satisfied, the provider
sets SpaceConsumed to reflect the initial amount of space reserved for the snapshot. The
DeltaReservation property for the snapshot storage element is set to the ratio of snapshot
SpaceConsumed to source SpaceConsumed.

Step 4: Skip this step if CreateReplica is used to create a delta replica with variable space consumption.
For all other cases, screen the candidate pool or the extents contained in the pool. If
AttachOrModifyReplica is used to create a delta replica with variable space consumption, search the
special delta replica pool for a virtual storage element not in use as a replica target. For all fixed space
consumption cases, the client calculates a replica size value for the screening operation. Use the
source element size if a full snapshot replica is created. Use the DeltaReplicaMax percentage times the
source element size if a delta snapshot replica is created. The generated setting created in step 3 is
used as the goal parameter for the screening methods. Search existing volumes for replica target
candidates as described in “Finding and Creating Target Elements” in 8.2.8.12.5 if
AttachOrModifyReplica is used as the method to create the replica. Select a returned volume based on
best fit or some other appropriate filter. Invoke GetSupportedSizes or GetSupportedSizeRange and
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1109



 

verify that the replica size is supported by the candidate pool if CreateReplica is used. Proceed to step
5 if an eligible candidate element is found. Otherwise, proceed to the next candidate pool. If no
candidates are located from existing pools, the client may follow recipes in block services to create a
new candidate pool or extent. Be sure to use a Size value of zero whenever a virtual replica element is
created. Note: a client may elect to bypass screening and require a user to manually select a candidate
pool or target element.

Step 5: invoke AttachOrModifyReplica or CreateReplica to create a new snapshot. The setting values
from the goal parameter apply to the new replica. If a delta replica is created, the NumberOfBlocks and
BlockSize values of the source element are assigned to the target. If space limits apply, the initial value
of AllocatedFromStoragePool.SpaceLimit is set to a default value determined by the provider and
SpaceConsumed may not exceed Spacelimit. SpaceLimitWarningThreshold is set to an initial value of
SpaceLimitWarningThresholdDefault.

The properties listed in Table 1065: “Space Consumption Properties” are used to monitor and manage
space consumption for delta replicas using a variable space consumption pattern.

Table 1065: Space Consumption Properties

Delta Replica Property – Variable Space Consumption Value Modifiable
StorageExtent.NumberOfBlocks: valid for all elements. Same value as associated 
source element.

constant no

StorageExtent.BlockSize: valid for all elements. Same value as associated source 
element.

constant no

StorageExtent.DeltaReservation: valid for target elements. Value 0 to 100 set by 
CreateReplica and AttachOrModifyReplica method providers.

constant no

StoragePool.RemainingManagedSpace: valid for all pools. Value decreases by 
BlockSize each time replica consumes a block in the pool.

volatile no

StoragePool.TotalManagedSpace: valid for all pools. constant no
StoragePool.LowSpaceWarningThreshold: valid for special delta replica pools if 
provider supports pool warning thresholds. Value 0 to 100.

constant yes

AllocatedFromStoragePool.SpaceConsumed: valid for all elements. Value 
increases by BlockSize each time replica consumes a block in the pool.

volatile no

AllocatedFromStoragePool.SpaceLimitWarningThreshold: valid if provider sup-
ports replica warning thresholds.

constant yes

AllocatedFromStoragePool.SpaceLimit: valid if provider supports space limits for 
replicas in special delta replica pools.

constant yes

StorageSetting.DeltaReservationMin: Minimum space reserved when space res-
ervation is supported.

constant yes (goal)

StorageSetting.DeltaReservationMax: Maximum space reserved when space res-
ervation is supported.

constant yes (goal)

StorageSetting.DeltaReservationGoal: Client goal for space reserved when space 
reservation is supported.

constant yes (goal)
1110



 Copy Services Subprofile
The properties listed in Table 1066: “Space Consumption Properties, Fixed Pattern” are used to monitor
and manage space consumption for delta replicas using a fixed space consumption pattern.

Two of the above properties have volatile values automatically changed by the provider when a delta
replica uses a variable space consumption model. SpaceConsumed increases and
RemainingManagedSpace decreases as the associated source element is updated. When a delta
replica consumes an additional block, SpaceConsumed increases by the value of BlockSize and
RemainingManagedSpace decreases by the value of BlockSize. If the replica uses a fixed space
consumption model, the values of these two properties are constant and change only when an extrinsic
method is invoked to create or modify the replica element. The value of SpaceConsumed at the instant
the delta replica is created is zero if no space is reserved or greater than zero if space is reserved. The
value of RemainingManagedSpace is decreased by the value of SpaceConsumed at the instant the
replica is created.

The ModifyInstance intrinsic method can be invoked to manage space limits for delta snapshots when
SpaceLimitSupported is “true”. The client should set the SpaceLimitWarningThreshold and SpaceLimit
properties to the desired values in the AllocatedFromStoragePool association to the delta replica. The
client should also listen for all alert indications defined for space limit management,

The ModifySynchronization method can be invoked to manage existing snapshots. The subprofile
supports the following operations:

1) A snapshot can be reused by invoking a “Resync” operation. This releases all of the space con-
sumed by a snapshot using the variable space consumption model. The WhenSynced property in 
StorageSynchronized is reset to a new date/time value.

2) A “Detach” operation releases all of the space consumed by a snapshot using the variable space 
consumption model. The detached target element can be reused for another purpose or deleted 
by invoking the ReturnToStoragePool method. If the snapshot was not previously detached, invo-
cation of ReturnToStoragePool deletes the StorageSynchronized association.

Table 1066: Space Consumption Properties, Fixed Pattern

Delta Replica Property – FixedSpace Consumption Value Modifiable
StorageExtent.NumberOfBlocks: valid for all elements. Same value as associated 
source element.

constant no

StorageExtent.BlockSize: valid for all elements. Same value as associated source 
element.

constant no

StorageExtent.DeltaReservation: valid for target elements. Value set by Creat-
eReplica and AttachOrModifyReplica method providers.

constant no

StoragePool.RemainingManagedSpace: valid for all pools. Value decreases by 
fixed element size when element is created.

constant no

StoragePool.TotalManagedSpace: valid for all pools. constant no
AllocatedFromStoragePool.SpaceConsumed: valid for all elements. Value set to 
fixed element size when element is created.

constant no

StorageSetting.DeltaReservationMin: Value is % of source element size that is min-
imum fixed size. Used only with CreateReplica  method.

constant yes (goal)

StorageSetting.DeltaReservationMax: Value is % of source element size that is 
maximum fixed size. Used only with CreateReplica  method.

constant yes (goal)

StorageSetting.DeltaReservationGoal: Value is % of source element size that is the 
client goal for the fixed size. Used only with CreateReplica  method.

constant yes (goal)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1111



 

3) Snapshot space consumption can be stopped by invoking a “Quiesce” operation. If the associated 
source element is updated while the snapshot is in “Quiesced” state it is no longer a valid point-in-
time image.

4) The source element can be restored from a snapshot by invoking a “Restore” operation. This may 
follow a client action that blocks host I/O to both the source element and all associated snapshot 
elements until the restore operation is completed.

A group of delta replicas may be incrementally dependent from the oldest to the newest. The newest
element in a group is always independent. If the IncrementalDeltasSupported property has a value of
“true”, then “Resync” and “Detach” operations should only be invoked for the oldest element in a group.

8.2.8.12.6.8 Managing Background Copy
Background copy is a full copy operation that copies all blocks from a source element to a replica
element. An initial background copy is normally started by a provider when a mirror or a clone is
created. Initial background copy is not normally started when a snapshot is created. A provider may
allow a client to initiate a deferred background copy. Management of background copy is an optional
provider capability indicated to a client for each supported CopyType value using properties in
StorageReplicationCapabilities. Deferred background copy for snapshots is supported if
SupportedModifyOperations[] includes “Start Copy” and “Stop Copy”. Deferred background copy for
mirrors is supported if InitialSynchronizationDefault has a value other than “Not Managed” or “Not
Applicable”. Copy priority can be managed for any CopyType if ReplicationPriorityDefault has a value
other than “Not Managed” or “Not Applicable”.

A ModifySynchronization Operation value of “Start Copy” or “Stop Copy” may be invoked for full size
snapshots or delta snapshots without space limits. A “Start Copy” operation causes a snapshot to
transition from “Idle” state to “Copy In Progress” state to “Frozen” state. A “Stop Copy” operation causes
a snapshot to transition from “Copy In Progress” state to “Idle” state.

If initial background copy is not initiated when a mirror is created, a subsequent sequence of
ModifySynchronization operations that may include Prepare and Resync should start a background
copy operation.

The InitialSynchronization property in the goal parameter may be set to indicate whether or not an initial
background copy operation is initiated at the time a replica is created. The ReplicationPriority property
in the goal parameter may be set to override the default copy I/O rate priority.

A client may invoke ModifyInstance to modify the value of CopyPriority for a StorageSynchronized
association. This allows a client to manage the copy I/O rate and the priority of peer I/O operations
relative to host I/O operations. CopyPriority may be modified before or during a background copy
operation. Standard CopyPriority values are:

• Low – peer I/O is lower priority than host I/O

• Medium – peer I/O is the same priority as host I/O

• High – peer I/O is higher priority than host I/O

EXPERIMENTAL

8.2.8.12.6.9 Recipes
The Copy Services recipes show usage of all methods used to manage local and remote replication.
There is at least one invocation of each method. The ModifySynchronization method has many
variations. Preceding discussion in the client considerations section explains usage of all
ModifySynchronization operations not shown in recipes. The set of recipes references recipes in block
1112



 Copy Services Subprofile
services but does not duplicate recipe logic from this or other subprofiles. The recipes assume that the
client subscribes to all provider-supplied filters for instance creation, modification and deletion
indications. The recipes assume that the client does all setup for job control such as waiting for job
completion and checking job completion results.

Recipes supporting remote replication require the client to discover the SAP for both source and target
hosting systems such as arrays. Extrinsic method invocation is directed to the correct SAP based on
the value of the RemoteReplicationServicePointAccess property in a StorageReplicationCapabilities
instance.

Recipes that create replicas all follow three basic patterns that cover most known providers:

• Locate an existing element to attach as the replica target.

• Create a new replica element in a target pool.

• Create a new storage element then attach the element as the replica target.

Much of the recipe logic may seem similar to Block Services recipes. Copy Services recipes have two
fundamental differences:

• The IntendedUsage property in a StorageSetting goal or instance is used to manage special
purpose pools, component extents or target replica elements.

• Component extents with special purposes may be created by extrinsic method invocation.

8.2.8.12.6.9.1 Establish Peer-to-Peer Connection

// NAME: Establish Peer-to-Peer Connection

// FILE: CopyServicesSP_Recipe1of7

//

// DESCRIPTION: Establish a peer-to-peer connection between two storage

// arrays. The connection is used to manage data transport for remote

// replication. The user selects two array systems to be connected and 

// symmetric endpoint sets for each array. Endpoint sets are optional and

// may be null lists. The recipe supplies a number of validity checks

// to ensure that the two arrays are compatible.

// The  CreateOrModifyReplicationPipe method is invoked to establish 

// the connection. Output is a NetworkPipe composition with one top-level

// NetworkPipe element and one or more second-level NetworkPipe elements

// corresponding to the number of supplied endpoint pairs.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

//

// Provider supports remote replication using CopyType “Async” or “Sync”

// $SourceSystem is a top-level or leaf ComputerSystem

// $TargetSystem is a top-level or leaf ComputerSystem

// $SourceEnd[] is a list of ProtocolEndpoint instances for ports on

// the source array

// $TargetEnd[] is a list for the target array

// #ConnectionName is a string value assigned to the ElementName

// property of the new top-level pipe
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1113



 

//

// OUTPUT: $Pipe is a reference to the new top-level NetworkPipe.

//

// Setup control variables for the recipe.

$L[] = Associators(

$SourceSystem->,

“CIM_HostedService”,

“CIM_StorageConfigurationService”,

null, null, false, false, null)

$SourceSCS = $L[0]

$L[] = Associators(

$TargetSystem->,

“CIM_HostedService”,

“CIM_StorageConfigurationService”,

null, null, false, false, null)

$TargetSCS = $L[0]

$SourceSRC, $TargetSRC = null

$SRC[] = Associators(

         // locate StorageReplicationCapabilities for source array

$SourceSCS->,

“CIM_ElementCapabilities”,

“CIM_StorageReplicationCapabilities”,

null, null, false, false, null)

for #i in $SRC[]

{

if (($SRC[#i].SupportedSynchronizationType == 2) ||

                                   ($SRC[#i].SupportedSynchronizationType == 3)) 

{ // found “Async” or “Sync”

if (contains(9, $SRC[#i].SupportedSynchronousActions[]))

{ // found “NetworkPipe Creation”

$SourceSRC = $SRC[#i]

break

}

}

}

$SRC[] = Associators(

         // locate StorageReplicationCapabilities for target array

$TargetSCS->,

“CIM_ElementCapabilities”,

“CIM_StorageReplicationCapabilities”,

null, null, false, false, null)

for #i in $SRC[]

{

if (($SRC[#i].SupportedSynchronizationType == 2) ||

                                   ($SRC[#i].SupportedSynchronizationType == 3)) 

{ // found “Async” or “Sync”
1114



 Copy Services Subprofile
if (contains(9, $SRC[#i].SupportedSynchronousActions[]))

{ // found “NetworkPipe Creation”

$TargetSRC = $SRC[#i]

break

}

}

}

#protocol = $SourceSRC.PeerConnectionProtocol // all endpoints must match

// Verify that the peer systems are compatible for remote replication

if (($SourceSRC == null) || ($TargetSRC == null)

{

<error: peer connections not supported>

}

if (($TargetSRC.PeerConnectionProtocol != #protocol) ||

    ($SourceSRC.BidirectionalConnectionsSupported != 

         $TargetSRC.BidirectionalConnectionsSupported) ||

    ($SourceSRC.RemoteReplicationServicePointAccess !=

         $TargetSRC.RemoteReplicationServicePointAccess))

{

<error: peer systems not compatible>

}

// All verification checks passed. Invoke CreateOrModifyReplicationPipe

// at the right SAP to establish the connection.

%InArguments[“PipeElementName”] = #ConnectionName

%InArguments[“SourceSystem”] = $SourceSystem->

%InArguments[“TargetSystem”] = $TargetSystem->

%InArguments[“SourceEndpoint”] = $SourceEnd->[]

%InArguments[“TargetEndpoint”] = $TargetEnd->[]

%InArguments[“Goal”] = null

if ($SourceSRC.RemoteReplicationServicePointAccess != 4)

{ // invoke to source system service

#r = InvokeMethod(

$SourceSCS->,

“CreateOrModifyReplicationPipe”,

%InArguments,

%OutArguments)

} else 

{ // invoke to target system service

#r = InvokeMethod(

$TargetSCS->,

“CreateOrModifyReplicationPipe”,

%InArguments,

%OutArguments)

}

if (#r != 0)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1115



 

{

<error: failed to establish connection>

}

// Reference to the new top-level pipe. 

$Pipe-> = %OutArguments[“ReplicationPipe”]

// Recipe complete. Connection is established and remote replicas can now

// be created for this connected pair of arrays. The connection is either

// bi-directional or uni-directional as set by the provider.

8.2.8.12.6.9.2 Create Local Mirror Or Clone

// NAME: Create Local Mirror Or Clone

// FILE: CopyServicesSP_Recipe2of7

//

// DESCRIPTION: Create a new, local mirror replica element or a clone

// element. Client indicates CopyType “Sync”, “Async” or “UnSyncUnAssoc”.

// The replica element or clone element is fully copied from the source

// element and is hosted on the same array as the source element.

// The recipe supports both CreateReplica and AttachOrModifyReplica

// extrinsic methods. If the attach method is supported, search for a

// target element to attach. If no target element is found, search for

// a target pool, create an element in the pool and attach the new

// element. If the create method is supported, search for a target pool

// and create the new replica in the pool.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

//

// $SCC is the instance of CIM_StorageConfigurationCapabilities

// controlling the recipe.

// $SRC is the instance of CIM_StorageReplicationCapabilities

// controlling the recipe.

// $SRC is for SupportedSynchronizationType “Sync”, “Async” or “UnSyncUnAssoc”.

// $SCS is the instance of CIM_StorageConfigurationService controlling

// the recipe.

// $System is the instance of CIM_ComputerSystem identifying the array.

// $SV is the instance of CIM_StorageVolume identifying the

// replica source.

//

//

// MakeGoalParameter subroutine. Creates a modifiable goal parameter and

// sets the IntendedUsage value. Caller must delete the goal parameter

// when no longer needed. Caller can pass $ModSetting as EmbeddedInstance

// or can pass REF to repository copy. 

//
1116



 Copy Services Subprofile
sub uint8 MakeGoalParameter (IN $Pool, IN #IntendedUsage, OUT $ModSetting)

{

$CL[] = Associators(

$Pool->,

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null, null, false, false, null)

$Capabilities = $CL[0]

%InArguments[“SettingType”] = 3 // Goal

#g = InvokeMethod(

$Capabilities->,

“CreateSetting”,

%InArguments,

%OutArguments)

if (#g != 0)

{

< error: cannot create setting element>

}

$GenSetting-> = %OutArguments[“NewSetting”]

$ModSetting = GetInstance( // make local client copy

$GenSetting->,

false, false, false, null)

$ModSetting.IntendedUsage = #IntendedUsage

$ModSetting-> = $ModSetting.getObjectPath()

ModifyInstance( // update in CIMOM repository

$ModSetting->,

false, null)

} // end of MakeGoalParameter

//

// DeleteGoal subroutine corresponding to above MakeGoalParameter.

//

sub uint8 DeleteGoal (IN $ModSetting)

{

$ModSetting-> = $ModSetting.getObjectPath()

DeleteInstance ($ModSetting->)

}

//

// SizeCheck subroutine. Return 0 if element of requested size and type

// can be created in the pool. Return 1 if size not supported. Searches

// for size or range greater than or equal to the requested size. A

// client could also be designed to search for an exact match.

//

sub uint8 SizeCheck

            (IN $Pool, IN #ElementType, IN #ElementSize, IN $ModSetting)

{

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1117



 

%InArguments[“ElementType”] = #ElementType

%InArguments[“Goal”] = $ModSetting.getObjectPath()

#c = InvokeMethod(

$Pool->,

“GetSupportedSizes”,

%InArguments,

%OutArguments)

if (#c == 0)

{ // method supported -- check size

#sizes[] = %OutArguments[“Sizes”]

for #k in #sizes[]

{

if (#ElementSize <= #sizes[#k])

{

return 0

}

}

} else // try next method

{

#c = InvokeMethod(

$Pool->,

“GetSupportedSizeRange”,

%InArguments,

%OutArguments)

if (#c != 0)

{

return 1

}

#max = %OutArguments[“MaximumVolumeSize”]

#min = %OutArguments[“MinimumVolumeSize”]

if ((#ElementSize >= #min) && (#ElementSize <= #max))

{

return 0

}

}

return 1

} // end of SizeCheck 

//

// FindTargetElementOrPool subroutine. Searches the selected pool for a

// target element of the correct size eligible for the intended usage.

// Sets $TV if target element is found and returns 0. If no target element

// is found but selected pool allows the intended usage, returns 1.

// Otherwise, returns 2. If 1 returned, $ModSetting retained for use

// by caller.

//

sub uint8 FindTargetElementOrPool (IN $Pool, IN #IntendedUsage, IN #Size, 
1118



 Copy Services Subprofile
OUT $TV, OUT $ModSetting)

{

$Vols[] = Associators(

$Pool->,

“CIM_AllocatedFromStoragePool”,

“CIM_StorageVolume”,

null, null, false, false, null)

for #i in $Vols[]

{

// Volume is a candidate if not a replica source or target

// and the IntendedUsage value is a match. Client sets

      // IntendedUsage to zero if provider does not support

      // element specialization. 

$Refs[] = ReferenceNames(

$Vols[#i].getObjectPath(),

“CIM_StorageSynchronized”,

null)

if ($Refs[].size() == 0) // element is not already a replica

{

if (($Vols[#i].NumberOfBlocks * $Vols[#i].BlockSize) >= #Size)

{

$SL[] = Associators(

$Vol[#i].getObjectPath(),

“CIM_ElementSettingData”,

“CIM_StorageSetting”,

null, null, false, false,

“IntendedUsage”)

$VolSetting = $SL[0]

if ($VolSetting.IntendedUsage == #IntendedUsage)

{

$TV = $Vols[#i]

return 0

}

}

}

}

// Did not find target element. Search for a target pool.

// Create a setting element for the search and perhaps element creation.

#r = &MakeGoalParameter ($Pool, #IntendedUsage, $ModSetting)

// Search pool trying the first method.

#r = &SizeCheck ($Pool, 2, #Size, $ModSetting)

if (#r == 0)

{

return 1 // size supported in pool
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1119



 

}

// Pool is not a candidate

#d = &DeleteGoal ($ModSetting)

return 2

} // *** end of FindTargetElementOrPool subroutine

// Main section of recipe

#CrEl, #AttRep, #CrRep = false

if ((contains(3, $SCC.SupportedStorageElementFeatures[])) &&

(contains(6, $SCC.SupportedStorageElementFeatures[]) ||

 contains(7, $SCC.SupportedStorageElementFeatures[]))) 

{

#CrEl = true // CreateOrModifyElementFromStoragePool supported?

}

if (contains(2, $SRC.SupportedSynchronousActions[] ||

contains(2, $SRC.SupportedAsynchronousActions[])

{

#CrRep = true // CreateReplica method supported

}

if (contains(6, $SRC.SupportedSynchronousActions[] ||

contains(6, $SRC.SupportedAsynchronousActions[])

{

#AttRep = true // AttachOrModifyReplica method supported

}

// Step 1: find a target element and/or a target pool for the local

// mirror. Request same usable size as source element

#Size = $SV.NumberOfBlocks * $SV.BlockSize

#IntendedUsage = 0 // “Not specialized” indicated for a clone or a

                   // provider not supporting specialized elements.

if (($SRC.SupportedSynchronizationType != 6) && // “UnSyncUnAssoc”

    (contains(5, $SRC.SupportedSpecializedElements[])) // “Local Mirror”

{

#IntendedUsage = 5 // “Local mirror” indicated for a local mirror

}

$PoolList[] = Associators(

$System->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null, null, false, false, null)

for #ii in $PoolList[]

{

$Pool = $PoolList[#ii]

#rr = &FindTargetElementOrPool

                        ($Pool, #IntendedUsage, #Size, $TV, $ModSetting)
1120



 Copy Services Subprofile
if (#rr != 2)

{

break

}

}

if (#rr == 2)

{

<error: cannot create a local mirror/no target element or pool>

}

// Step 2: if $TV returned as target and #AttRep is true, invoke

// the AttachOrModifyReplica method.

if ((#rr == 0) && #AttRep)

{

%InArguments[“SourceElement”] = $SV->

%InArguments[“TargetElement”] = $TV->

%InArguments[“CopyType”] = $SRC.SupportedSynchronizationType

%InArguments[“ReplicationPipe”] = null // for local mirror or clone

#r = InvokeMethod(

$SCS->,

“AttachOrModifyReplica”,

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: attach failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: attach job failed, stop and examine CIM_Error>

}

}

if ($SRC.SupportedSynchronizationType != 6) // not a clone

{ // locate new StorageSynchronized association for a mirror

$SL[] = References(

$TV->,

“CIM_StorageSynchronized”,

“SyncedElement”,

false, false, null)

$SS = $SL[0]
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1121



 

if ($SS.SyncState != $SRC.InitialReplicationState)

{

<wait for $SS.SyncState instance mod indication>

$SS = GetInstance( // refresh the SyncState value

$SS->,

false, false, false, null)

}

}

// stop recipe if step 2 was executed.

}

// Step 3: if a target pool was returned and #CrRep is true, invoke

// the CreateReplica method.

if ((#rr == 1) && #CrRep)

{

%InArguments[“SourceElement”] = $SV->

%InArguments[“CopyType”] = $SRC.SupportedSynchronizationType

%InArguments[“TargetSettingGoal”] = $ModSetting.getObjectPath()

%InArguments[“TargetPool”] = $Pool->

#r = InvokeMethod(

$SCS->,

“CreateReplica”,

%InArguments,

%OutArguments)

#d = &DeleteGoal ($ModSetting)

if (#r != 0 && #r != 4096)

{

<error: create failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: create job failed, stop and examine CIM_Error>

}

$TL[] = Associators(

$Job->,

“CIM_AffectedJobElement”,

“CIM_StorageVolume”,

null, null, false, false, null)

$TV = $TL[0]

} else
1122



 Copy Services Subprofile
{

$TV-> = %OutArguments[“TargetElement”]

$TV = GetInstance(

$TV->,

false, false, false, null)

}

if ($SRC.SupportedSynchronizationType != 6) // not a clone

{ // locate new StorageSynchronized association for a mirror

$SL[] = References(

$TV->,

“CIM_StorageSynchronized”,

“SyncedElement”,

false, false, null)

$SS = $SL[0]

if ($SS.SyncState != $SRC.InitialReplicationState)

{

<wait for $SS.SyncState instance mod indication>

$SS = GetInstance( // refresh the SyncState value

$SS->,

false, false, false, null)

}

}

// stop recipe if step 3 was executed.

}

// Step 4: if a target pool was returned and #AttRep is true, invoke

// the CreateOrModifyElementFromStoragePool method followed by the

// AttachOrModifyReplica method.

if ((#rr == 1) && #AttRep && #CrEl)

{

%InArguments[“ElementType”] = 2 // StorageVolume

%InArguments[“Goal”] = $ModSetting

%InArguments[“Size”] = #Size

%InArguments[“InPool”] = $Pool->

%InArguments[“TheElement”] = null

#r = InvokeMethod(

$SCS->,

“CreateOrModifyElementFromStoragePool”,

%InArguments,

%OutArguments)

#d = &DeleteGoal ($ModSetting)

if (#r != 0 && #r != 4096)

{

<error: element creation failed, stop and examine CIM_Error>

}

if (#r == 4096)

{

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1123



 

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: creation job failed, stop and examine CIM_Error>

}

$TL[] = Associators(

$Job->,

“CIM_AffectedJobElement”,

“CIM_StorageVolume”,

null, null, false, false, null)

$TV = $TL[0]

} else

{

$TV-> = %OutArguments[“TheElement”]

$TV = GetInstance(

$TV->,

false, false, false, null)

}

%InArguments[“SourceElement”] = $SV->

%InArguments[“TargetElement”] = $TV->

%InArguments[“CopyType”] = $SRC.SupportedSynchronizationType

%InArguments[“ReplicationPipe”] = null // for local mirror or clone

#r = InvokeMethod(

$SCS->,

“AttachOrModifyReplica”,

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: attach failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: attach job failed, stop and examine CIM_Error>

}

}

1124



 Copy Services Subprofile
if ($SRC.SupportedSynchronizationType != 6) // not a clone

{ // locate new StorageSynchronized association for a mirror

$SL[] = References(

$TV->,

“CIM_StorageSynchronized”,

“SyncedElement”,

false, false, null)

$SS = $SL[0]

if ($SS.SyncState != $SRC.InitialReplicationState)

{

<wait for $SS.SyncState instance mod indication>

$SS = GetInstance( // refresh the SyncState value

$SS->,

false, false, false, null)

}

}

} else

{

<error: cannot create a local mirror/cannot create a target element>

#d = &DeleteGoal ($ModSetting)

} // end of step 4.

// End of recipe. If successful, $TV is an instance of the local mirror

// or clone and $SS is an instance of the StorageSynchronized association

// to the mirror.

8.2.8.12.6.9.3 Create Remote Mirror Or Clone

// NAME: Create Remote Mirror Or Clone

// FILE: CopyServicesSP_Recipe3of7

//

// DESCRIPTION: Create a new, remote mirror replica element or a clone 

// element. Client indicates CopyType “Sync”, “Async” or “UnSyncUnAssoc”.

// The replica element or clone element is fully copied from the source

// element. The recipe supports CreateReplica and AttachOrModifyReplica

// extrinsic methods. If the attach method is supported, search for a

// target element to attach. If no target element is found, search for a

// target pool, create an element in the pool and attach the new element.

// If the create method is supported, search for a target pool and

// create the new replica in the pool. The replica source and replica 

// target are hosted target are hosted on different arrays. 

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

//

// $SourceSystem is the instance of CIM_ComputerSystem for the source

// array. $TargetSystem is the instance of CIM_ComputerSystem identifying

// the target array.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1125



 

// $SV is the instance of CIM_StorageVolume identifying the replica

// source hosted by $SourceSystem.

// $Pipe is an optional instance of CIM_NetworkPipe identifying a

// peer-to-peer connection between $SourceSystem and $TargetSystem.

// If supplied, $Pipe must reference a top-level pipe in a 2-level

// NetworkPipe composition.

// Client must create a replica buffer, if required, prior to

// creation of any remote replica pairs.

// #CopyType indicates “Sync”, “Async” or “UnSyncUnAssoc”. 

//

// Calls the FindTargetElementOrPool subroutine in the “Create Local

// Mirror Or Clone” recipe.

//

if (#CopyType != 2 || #CopyType != 3 || #CopyType != 6)

{

<error: invalid CopyType parameter for remote mirror creation>

}

// Locate instances of StorageReplicationCapabilities for source and

// target arrays corresponding to #CopyType

$SRS_S, $SRS_T = null

$SL[] = Associators (

$SourceSystem->,

“CIM_HostedService”,

“CIM_StorageConfigurationService”,

null, null, false, false, null)

$SCS_S = $SL[0]

$SL[] = Associators (

$SCS_S->,

“CIM_ElementCapabilities”,

“CIM_StorageReplicationCapabilities”,

null, null, false, false, null)

for #i in $SL[]

{

if ($SL[#i].SupportedSynchronizationType == #CopyType)

{

$SRS_S = $SL[#i]

break

}

}

$SL[] = Associators (

$TargetSystem->,

“CIM_HostedService”,

“CIM_StorageConfigurationService”,

null, null, false, false, null)
1126



 Copy Services Subprofile
$SCS_T = $SL[0]

$SL[] = Associators (

$SCS_T->,

“CIM_ElementCapabilities”,

“CIM_StorageReplicationCapabilities”,

null, null, false, false, null)

for #i in $SL[]

{

if ($SL[#i].SupportedSynchronizationType == #CopyType)

{

$SRS_T = $SL[#i]

break

}

}

if ($SRS_S == null || $SRS_T == null)

{

<error: requested CopyType not supported>

}

 

// Verify that source and target arrays are compatible

if (($SRS_S.RemoteReplicationServicePointAccess !=

$SRS_T.RemoteReplicationServicePointAccess) ||

    ($SRS_S.PeerConnectionProtocol !=

$SRS_T.PeerConnectionProtocol))

{

<error: source and target arrays not compatible>

}

if (($SRS_S.MaximumPeerConnections > 0) && ($Pipe == null))

{

<error: connection required before creating remote mirrors>

}

// Use RemoteReplicationServicePointAccess to select method SAP.

if ($SRS_S.RemoteReplicationServicePointAccess == 4)

{

$SCS = $SCS_T // invoke replication methods to target provider

$SRS = $SRS_T

} else

{

$SCS = $SCS_S // invoke to source array provider

$SRS = $SRS_S

}

// Always reference StorageConfigurationCapabilities for target array

$SL[] = Associators (

$SCS_T->,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1127



 

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null, null, false, false, null)

$SCC = $SL[0]

// Remaining steps are nearly identical for local & remote mirror creation 

#CrEl, #AttRep, #CrRep = false

if ((contains(3, $SCC.SupportedStorageElementFeatures[])) &&

(contains(6, $SCC.SupportedStorageElementFeatures[]) ||

 contains(7, $SCC.SupportedStorageElementFeatures[]))) 

{

#CrEl = true // CreateOrModifyElementFromStoragePool supported

}

if (contains(3, $SRC.SupportedSynchronousActions[] ||

contains(3, $SRC.SupportedAsynchronousActions[])

{

#CrRep = true // CreateReplica method supported

}

if (contains(7, $SRC.SupportedSynchronousActions[] ||

contains(7, $SRC.SupportedAsynchronousActions[])

{

#AttRep = true // AttachOrModifyReplica method supported

}

// Step 1: find a target element and/or a target pool for the remote

// mirror or clone. Search on target array. Request same usable size as

// source element

#Size = $SV.NumberOfBlocks * $SV.BlockSize

#IntendedUsage = 0 // “Not specialized” indicated for a clone or a

                   // provider not supporting specialized elements.

if (($SRC.SupportedSynchronizationType != 6) && // “UnSyncUnAssoc”

    (contains(4, $SRC.SupportedSpecializedElements[])) // “Remote Mirror”

{

#IntendedUsage = 4 // “Remote mirror” indicated for a remote mirror

}

$PoolList[] = Associators (

$TargetSystem->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null, null, false, false, null)

for #ii in $PoolList[]

{

$Pool = $PoolList[#ii]

#rr = &FindTargetElementOrPool

                      ($Pool, #IntendedUsage, #Size, $TV, $ModSetting)

if (#rr != 2)

{

1128



 Copy Services Subprofile
break

}

}

if (#rr == 2)

{

<error: cannot create a remote mirror/no target element or pool>

}

// Step 2: if $TV returned as target and #AttRep is true, invoke

// the AttachOrModifyReplica method.

if ((#rr == 0) && #AttRep)

{

%InArguments[“SourceElement”] = $SV->

%InArguments[“TargetElement”] = $TV->

%InArguments[“CopyType”] = $SRC.SupportedSynchronizationType

%InArguments[“ReplicationPipe”] = $Pipe->

#r = InvokeMethod(

$SCS->,

“AttachOrModifyReplica”,

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: attach failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance mod indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: attach job failed, stop and examine CIM_Error>

}

}

if ($SRC.SupportedSynchronizationType != 6) // not a clone

{ // locate new StorageSynchronized association if mirror created

$SL[] = References(

$TV->,

“CIM_StorageSynchronized”,

“SyncedElement”,

false, false, null)

$SS = $SL[0]

if ($SS.SyncState != $SRC.InitialReplicationState)

{

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1129



 

<wait for $SS.SyncState instance mod indication>

$SS = GetInstance( // refresh the SyncState value

$SS->,

false, false, false, null)

}

}

// stop recipe if step 2 was executed.

}

// Step 3: if a target pool was returned and #CrRep is true, invoke

// the CreateReplica method. This option for remote mirrors and clones

// requires either a single SMI server as the SAP for the source and

// target arrays or cascading support by the method provider.

if ((#rr == 1) && #CrRep)

{

%InArguments[“SourceElement”] = $SV->

%InArguments[“CopyType”] = $SRC.SupportedSynchronizationType

%InArguments[“TargetSettingGoal”] = $ModSetting.getObjectPath()

%InArguments[“TargetPool”] = $Pool->

#r = InvokeMethod(

$SCS->,

“CreateReplica”,

%InArguments,

%OutArguments)

#d = &DeleteGoal ($ModSetting)

if (#r != 0 && #r != 4096)

{

<error: create failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: create job failed, stop and examine CIM_Error>

}

$TL[] = Associators(

$Job->,

“CIM_AffectedJobElement”,

“CIM_StorageVolume”,

null, null, false, false, null)

$TV = $TL[0]

} else
1130



 Copy Services Subprofile
{

$TV-> = %OutArguments[“TargetElement”]

$TV = GetInstance(

$STV->,

false, false, false, null)

}

if ($SRC.SupportedSynchronizationType != 6) // not a clone

{ // locate new StorageSynchronized association if mirror created

$SL[] = References(

$TV->,

“CIM_StorageSynchronized”,

“SyncedElement”,

false, false, null)

$SS = $SL[0]

if ($SS.SyncState != $SRC.InitialReplicationState)

{

<wait for $SS.SyncState instance mod indication>

$SS = GetInstance( // refresh the SyncState value

$SS->,

false, false, false, null)

}

}

// stop recipe if step 3 was executed.

}

// Step 4: if a target pool was returned and #AttRep is true, invoke

// the CreateOrModifyElementFromStoragePool method followed by the

// AttachOrModifyReplica method.

if ((#rr == 1) && #AttRep && #CrEl)

{

%InArguments[“ElementType”] = 2 // StorageVolume

%InArguments[“Goal”] = $ModSetting.getObjectPath()

%InArguments[“Size”] = #Size

%InArguments[“InPool”] = $Pool->

%InArguments[“TheElement”] = null

#r = InvokeMethod(

$SCS_T->,

“CreateOrModifyElementFromStoragePool”,

%InArguments,

%OutArguments)

#d = &DeleteGoal ($ModSetting)

if (#r != 0 && #r != 4096)

{

<error: element creation failed, stop and examine CIM_Error>

}

if (#r == 4096)

{

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1131



 

$Job-> = %OutArguments[“Job”]

<wait for instance mod indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: creation job failed, stop and examine CIM_Error>

}

$TL[] = Associators(

$Job->,

“CIM_AffectedJobElement”,

“CIM_StorageVolume”,

null, null, false, false, null)

$TV = $TL[0]

} else

{

$TV-> = %OutArguments[“TheElement”]

$TV = GetInstance(

$STV->,

false, false, false, null)

}

%InArguments[“SourceElement”] = $SV->

%InArguments[“TargetElement”] = $TV->

%InArguments[“CopyType”] = $SRC.SupportedSynchronizationType

%InArguments[“ReplicationPipe”] = $Pipe->

#r = InvokeMethod(

$SCS->,

“AttachOrModifyReplica”,

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: attach failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: attach job failed, stop recipe examine CIM_Error>

}

}

1132



 Copy Services Subprofile
if ($SRC.SupportedSynchronizationType != 6) // not a clone

{ // locate new StorageSynchronized association if mirror created

$SL[] = References(

$TV->,

“CIM_StorageSynchronized”,

“SyncedElement”,

false, false, null)

$SS = $SL[0]

if ($SS.SyncState != $SRC.InitialReplicationState)

{

<wait for $SS.SyncState instance mod indication>

$SS = GetInstance( // refresh the SyncState value

$SS->,

false, false, false, null)

}

}

} else

{

<error: cannot create a remote mirror/cannot create a target element>

#d = &DeleteGoal ($ModSetting)

} // end of step 4.

// End of recipe. If successful, $TV is an instance of the remote mirror

// or clone and $SS is an instance of the StorageSynchronized association

// to the mirror.

8.2.8.12.6.9.4 Create Snapshot
The Create Snapshot recipe has a long section showing how to create a special purpose storage pool
that may contain only delta replicas. These specialized pools may be shared or exclusive, created from
special extents or within another pool and may be populated with virtual storage elements that do not
consume space until attached to a source element as a replica.

// NAME: Create Snapshot

// FILE: CopyServicesSP_Recipe4of7

//

// DESCRIPTION: Create a snapshot of a source element. The snapshot is a

// PIT image. Client indicates CopyType “UnSyncAssoc”.

// The replica element is hosted on the same array as

// the source element. The recipe supports both CreateReplica and

// AttachOrModifyReplica extrinsic methods. If the attach method is

// supported, search for a target element to attach. If no target element

// is found, search for a target pool, create an element in the pool and

// attach the new element. If the create method is supported, search for

// a target pool and create the new replica in the pool.

//

// Delta replicas may require a special storage pool as a container. The

// recipe searches for an existing special pool. If a special pool is not

// found, one is created.

//
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1133



 

// Snapshots are created with a setting element that requires the

// DeltaReservationMin, DeltaReservationGoal and DeltaReservationMax

// properties to have assigned values.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

//

// $SCC: instance of CIM_StorageConfigurationCapabilities controlling

// the recipe.

// $SRC: instance of CIM_StorageReplicationCapabilities controlling

// the recipe.

// $SRC is for copy type “UnSyncAssoc-Delta” or “UnSyncAssoc-Full”. 

// $SCS is the instance of CIM_StorageConfigurationService controlling

//  the recipe.

// $System is the instance of CIM_ComputerSystem identifying the array.

// $SV is the the replica source instance of CIM_StorageVolume.

// #UseDeltaReservationDefault: if false, user supplies 3 variables:

// #DRMin: user-assigned value for DeltaReservationMin.

// #DRGoal: user-assigned value for DeltaReservationGoal.

// #DRMax: user-assigned value for DeltaReservationMax.

// If a special delta replica pool may be created, user 

// supplies 3 variables:

// #PoolSize: requested size of the special pool.

// #ComponentSize: size of component extents. Multiple of #PoolSize.

// #NumVirtVols: number of 0MB virtual volumes to create in the pool.

//

// CreateSpecialUsageExtent subroutine. Creates a component extent for

// the special purpose indicated by #IntendedUsage:

//  3: component for special delta replica storage pool

//  8: component for remote replication buffer

//

sub uint8 CreateSpecialUsageExtent

                        (IN $Pool, IN #IntendedUsage, IN #Size, OUT $TX) 

{

// Create a setting element for the component creation.

#r = &MakeGoalParameter ($Pool, #IntendedUsage, $ModSetting)

// Create the component extent in $Pool

%InArguments[“ElementType”] = 3 // StorageExtent

%InArguments[“Goal”] = $ModSetting.getObjectPath()

%InArguments[“Size”] = #Size

%InArguments[“InPool”] = $Pool->

%InArguments[“TheElement”] = null

#r = InvokeMethod(

$SCS->,

“CreateOrModifyElementFromStoragePool”,

%InArguments,

%OutArguments)
1134



 Copy Services Subprofile
#d = &DeleteGoal ($ModSetting)

if (#r != 0 && #r != 4096)

{

<error: element creation failed, stop and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: creation job failed, stop and examine CIM_Error>

}

$L[] = Associators(

$Job->,

“CIM_AffectedJobElement”,

“CIM_StorageExtent”,

null, null, false, false, null)

$TX = $L[0]

} else

{

$TX-> = %OutArguments[“TheElement”]

$TX = GetInstance(

$TX->,

false, false, false, null)

}

return 0

} // *** end of CreateSpecialUsageExtent subroutine

// Main section of recipe

// Control variables based on configuration and replication capabilities.

#CrEl, #AttRep, #CrRep, #CrPoolFrExt, #CrPoolFrPool, #CrExt = false

if (contains(3, $SCC.SupportedStorageElementFeatures[]) &&

(contains(6, $SCC.SupportedStorageElementFeatures[]) ||

 contains(7, $SCC.SupportedStorageElementFeatures[])) 

{

// CreateOrModifyElementFromStoragePool supported for volumes

#CrEl = true 

}

if (contains(2, $SCC.SupportedStorageElementFeatures[]) &&

(contains(6, $SCC.SupportedStorageElementFeatures[]) ||

 contains(7, $SCC.SupportedStorageElementFeatures[])) 

{

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1135



 

// CreateOrModifyElementFromStoragePool supported for extents

#CrExt = true 

}

if (contains(2, $SCC.SupportedSynchronousActions[]) ||

contains(2, $SCC.SupportedAsynchronousActions[]))

{

if (contains(3, $SCC.SupportedStoragePoolFeatures[]) ||

    contains(4, $SCC.SupportedStoragePoolFeatures[]))

{

#CrPoolFrPool = true

}

if (contains(2, $SCC.SupportedStoragePoolFeatures[]))

{

#CrPoolFrExt = true

}

}

if (contains(2, $SRC.SupportedSynchronousActions[]) ||

contains(2, $SRC.SupportedAsynchronousActions[]))

{

#CrRep = true // CreateReplica method supported

}

if (contains(6, $SRC.SupportedSynchronousActions[]) ||

contains(6, $SRC.SupportedAsynchronousActions[]))

{

#AttRep = true // AttachOrModifyReplica method supported

}

#IntendedUsage = 0 // assume specialized elements not supported

if ($SRC.SupportedSynchronizationType == 4) // “UnSyncAssoc-Full”

{

      if (contains(6, $SupportedSpecializedElements[]))

{

#IntendedUsage = 6 // “Full Snapshot”

}

} else // must be “UnSyncAssoc-Delta”

{

if (contains(7, $SupportedSpecializedElements[]))

{

#IntendedUsage = 7 // “Delta Snapshot”

}

}

#drpa = $SRC.DeltaReplicaPoolAccess 

// Step 1: Find the special delta replica pool if it already exists.

// Create a special pool if required and it does not exist.

if (#drpa != 2)

{ // a special delta replica pool is required

$PoolList[] = Associators( // an exclusive pool for source element?
1136



 Copy Services Subprofile
$SV->,

“CIM_ReplicaPoolForStorage”,

“CIM_StoragePool”,

null, null, false, false, null)

if ($PoolList[].size() == 0)

{ // an exclsuive pool does not exist. Look for a shared pool.

$PoolList[] = Associators( // a shared pool for the service?

$SCS->,

“CIM_ReplicaPoolForStorage”,

“CIM_StoragePool”,

null, null, false, false, null)

}

if ($PoolList[].size() == 0) // Special pool does not exist

{ // Find a container pool and component extents for a new pool

// Search all hosted storage pools. Find the pool with the most remaining

// capacity as well as the pool with a set of component extents with

// either the best match to #PoolSize or the most component space.

#poolspace, #maxsize = 0

#bestsize = 0xFFFFFFFF

$MostSP, $BestSP, $MaxSP = null

$BestXL[], $MaxXL[] = null

$SPL[] = Associators( // all hosted storage pools

$System->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null, null, false, false, null)

for #i in $SPL[]

{

// Make setting for GetAvailableExtents Goal parameter

$CP = $SPL[#i]

#rr = &MakeGoalParameter ($CP, 3, $ModSetting)

%InArguments[“Goal”] = $ModSetting.getObjectPath()

#rr = InvokeMethod(

$CP->,

“GetAvailableExtents”,

%InArguments,

%OutArguments)

if (#rr == 1)

{

break // method not supported

}

if (#rr != 0)

{

<error: method invocation failed>

}

$SPX->[] = %OutArguments[“AvailableExtents”]
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1137



 

#k, #xmax, #xbest = 0

$CXL[] = null

for #j in $SPX->[]

{

$SX = GetInstance(

$SPX->[#j],

false, false, false, null)

#xsize = $SX.NumberOfBlocks * $SX.BlockSize

if (#xbest < #PoolSize)

{

#xbest = #xbest + #xsize

$CXL[#k] = $SX

#k++

}

#xmax = #xmax + 1

}

if (#xmax > #maxsize)

{ // current pool has largest collected extent size

$MaxXL[] = $CXL[]

$MaxSP = $CP

#maxsize = #xmax

}

if ((#xbest >= #PoolSize) && (#xbest < #bestsize))

{ // current pool provides best fit collected extents

$BestXL[] = $CXL[]

$BestSP = $CP

#bestsize = #xbest

}

// done analyzing component extents.

#d = &DeleteGoal ($ModSetting)

// Make a setting for the GetSupported_ methods

#rr = &MakeGoalParameter ($CP, 2, $ModSetting)

// will current pool allow creating #PoolSize pool?

#rr = &SizeCheck ($CP, 2, #PoolSize, $ModSetting)

if (#rr == 0) // current pool supports #PoolSize

{

if($CP.RemainingManagedSpace > #poolspace)

{ // current pool has most remaining space

$MostSP = $CP

#poolspace = $CP.RemainingManagedSpace

}

}

} // done analyzing the current pool

} // done searching all pools

// 

// Finished searching all pools for best candidate to contain a new delta
1138



 Copy Services Subprofile
// replica pool. May need to create one or more component extents before

// creating the new pool. Will create the new pool based on one of these

// policies:

//   1. DeltaReplicaPoolAccess is “Shared” and #maxsize >= #PoolSize.

//      Will make the new pool as large as possible from the located set

//      of extents.

//   2. DeltaReplicaPoolAccess is “Shared” and #maxsize <= #PoolSize.

//      Will create additional extents of #ComponentSize for the best

//      fit >= #PoolSize.

//   3. DeltaReplicaPoolAccess is “Exclusive” and #bestsize >= #PoolSize.

//      Will make the new pool a best fit >= #PoolSize from $BestXL[].

//   4. DeltaReplicaPoolAccess is “Exclusive” and #bestsize < #PoolSize.

//      Will create additional extents of #ComponentSize for the best

//      fit >= #PoolSize.

//   5. Cannot create special pool from a set of extents. Create from an

//      eligible pool.

//

$CP, $CX[] = null

if (#CrPoolFrExt)

{

if (((#drpa == 3) && (#bestsize < #PoolSize)) ||

  ((#drpa == 4) && (#maxsize < #PoolSize) && (#maxsize > 0)))

{ // policies 2 and 4: best fit from new and existing extents

if (#CrExt)

{

$CP = $BestSP

#inext = $BestXL[].size()

#ilast = #inext + 

                             ((#PoolSize - #bestsize)/#ComponentSize) + 1

                     // start by using the existing eligible extents

$CX[] = $BestXL[]

while (#inext < #ilast)

{ // add additional new extents as needed

#rr = &CreateSpecialUsageExtent

                                            ($CP, 2, #ComponentSize, $TX)

$CX[#inext] = $TX

#inext++

}

}

} else

{

if (#drpa == 4)

{ // policy 1: largest possible shared pool

$CP = $MaxSP

$CX[] = $MaxXL[]

} else

{ // policy 3: best fit from existing extents
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1139



 

$CP = $BestSP

$CX[] = $BestXL[]

}  

}

}

if ($CP == null && #CrPoolFrPool) // policy 5:

{ // No component extents available. 

        // May be possible to create in a pool.

$CP = $MostSP

}  

  

// Create the specialized delta replica pool. Will be created from either

// a located set of component extents or in an eligible pool.

if ($CP == null)

{

<error: cannot create a delta replica pool>

}

if ($CX[].size() > 0)

{ // setup to create from component extents

%InArguments[“InExtents”] = $CX->[]

%InArguments[“InPools”] = null

} else // setup to create in a pool

{

%InArguments[“InExtents”] = null

$InPools->[0] = $CP->

%InArguments[“InPools”] = $InPools->[]

}

#rr = &MakeGoalParameter ($CP, 2, $ModSetting)

%InArguments[“Goal”] = $ModSetting.getObjectPath()

%InArguments[“Size”] = #PoolSize

#rr = InvokeMethod (

$SCS->,

“CreateOrModifyStoragePool”,

%InArguments,

%OutArguments)

#d = &DeleteGoal ($ModSetting)

if (#r != 0 && #r != 4096)

{

<error: pool creation failed, stop; examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance mod indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)
1140



 Copy Services Subprofile
if (!contains(2, $Job.OperationalStatus[])

{

<error: creation job failed, examine CIM_Error>

}

$L[] = Associators(

$Job->,

“CIM_AffectedJobElement”,

“CIM_StoragePool”,

null, null, false, false, null)

$Pool = $L[0]

} else

{

$Pool-> = %OutArguments[“Pool”]

$Pool = GetInstance(

$Pool->,

false, false, false, null)

}

// Populate the delta replica pool with virtual volumes if requested.

if ((#NumVirtVols > 0) && (#IntendedUsage == 7)) 

{

#i = 0

while (#i < #NumVirtVols)

{

                  // goal for usage=delta snapshot

#rr = &MakeGoalParameter ($Pool, 7, $ModSetting) 

%InArguments[“ElementType”] = 2 // StorageVolume

%InArguments[“Goal”] = $ModSetting.getObjectPath()

%InArguments[“Size”] = 0

%InArguments[“InPool”] = $Pool->

%InArguments[“TheElement”] = null

#r = InvokeMethod(

$SCS->,

“CreateOrModifyElementFromStoragePool”,

%InArguments,

%OutArguments)

#d = &DeleteGoal ($ModSetting)

if (#r != 0 && #r != 4096)

{

<error: element creation failed, stop 

                                                and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance mod indication 

                                                    for job completion>
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1141



 

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: creation job failed, 

                                                     examine CIM_Error>

}

}

#i++

}

}

} // finished locating or creating a delta replica pool 

// Step 2: find a target element and/or a target pool for the snapshot.

// If a special pool is used for delta replicas, $Pool is already set.

if (#drpa != 2)

{

#Size = 0 // May have size=0 virtual volumes available 

} else

{

      // Request same size as source element

#Size = $SV.NumberOfBlocks * $SV.BlockSize

$PoolList[] = Associators (

$System->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null, null, false, false, null)

}

for #ii in $PoolList[]

{

$Pool = $PoolList[#ii]

if (#Size != 0)

{

$L[] = Associators(

$Pool->,

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null, null, false, false, null)

$Capabilities = $L[0]

// adjust #Size value based on DeltaReservationDefault

// or DeltaReservationGoal.

if (!#UseDeltaReservationDefault)

{

if (($Capabilities.DeltaReservationMin 

                                                      <= #DRMin) &&

             (#DRMin <= #DRGoal) && (#DRGoal <= #DRMax) &&
1142



 Copy Services Subprofile
      (#DRMax <= $Capabilities.DeltaReservationMax))

{

#Size = (#Size * #DRGoal) / 100 

} else

{

<error: invalid Delta Reservation values>

}

} else

{

#Size = (#Size * 

                           $Capabilities.DeltaReservationDefault) / 100

}

}

#rr = &FindTargetElementOrPool ($Pool, #IntendedUsage, #Size, $TV)

if (#rr != 2)

{

break

}

}

if (#rr == 2)

{

<error: cannot create a snapshot/no target element or pool>

}

// Step 3: Modify the setting element so all of the DeltaReservation

// properties are set to valid values. This setting will be used to

// create a new snapshot element or modify the setting properties for

// an existing target element that becomes a snapshot.

if (!#UseDeltaReservationDefault)

{

if (($ModSetting.DeltaReservationMin <= #DRMin) &&

          (#DRMin <= #DRGoal) && (#DRGoal <= #DRMax) &&

          (#DRMax <= $ModSetting.DeltaReservationMax))

{

$ModSetting.DeltaReservationMin = #DRMin 

$ModSetting.DeltaReservationGoal = #DRGoal 

$ModSetting.DeltaReservationMax = #DRMax

} else

{

<error: invalid Delta Reservation values>

}

} 

// Step 4: if $TV returned as target and #AttRep is true, invoke

// the AttachOrModifyReplica method.

if ((#rr == 0) && #AttRep)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1143



 

{

%InArguments[“SourceElement”] = $SV->

%InArguments[“TargetElement”] = $TV->

%InArguments[“CopyType”] = 4

%InArguments[“Goal”] = $ModSetting

%InArguments[“ReplicationPipe”] = null // for snapshot

#r = InvokeMethod(

$SCS->,

“AttachOrModifyReplica”,

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: attach failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance mod indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: creation job failed, stop and examine CIM_Error>

}

}

// locate new StorageSynchronized association if snapshot created

$L[] = References(

$TV->,

“CIM_StorageSynchronized”,

“SyncedElement”,

false, false, null)

$SS = $L[0]

if ($SS.SyncState != $SRC.InitialReplicationState)

{

<wait for $SS.SyncState instance modification indication>

$SS = GetInstance( // refresh SyncState value

$SS->,

false, false, false, null)

}

// stop recipe if step 4 was executed.

}

// Step 5: if a target pool was returned and #CrRep is true, invoke

// the CreateReplica method.
1144



 Copy Services Subprofile
if ((#rr == 1) && #CrRep)

{

%InArguments[“SourceElement”] = $SV->

%InArguments[“CopyType”] = 4

%InArguments[“TargetSettingGoal”] = $ModSetting.getObjectPath()

%InArguments[“TargetPool”] = $Pool->

#r = InvokeMethod(

$SCS->,

“CreateReplica”,

%InArguments,

%OutArguments)

#d = &DeleteGoal ($ModSetting)

if (#r != 0 && #r != 4096)

{

<error: attach failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: creation job failed, stop and examine CIM_Error>

}

$L[] = Associators(

$Job->,

“CIM_AffectedJobElement”,

“CIM_StorageVolume”,

null, null, false, false, null)

$TV = $L[0]

} else

{

$TV-> = %OutArguments[“TheElement”]

$TV = GetInstance(

$TV->,

false, false, false, null)

}

// locate new StorageSynchronized association if snapshot created

$SS = References(

$TV->,

“CIM_StorageSynchronized”,

“SyncedElement”,

false, false, null)

if ($SS.SyncState != $SRC.InitialReplicationState)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1145



 

{

<wait for $SS.SyncState instance modification indication>

$SS = GetInstance( // refresh SyncState value

$SS->,

false, false, false, null)

}

// stop recipe if step 5 was executed.

}

// Step 6: if a target pool was returned and #AttRep is true, invoke

// the CreateOrModifyElementFromStoragePool method followed by the

// AttachOrModifyReplica method.

if ((#rr == 1) && #AttRep && #CrEl)

{

%InArguments[“ElementType”] = 2 // StorageVolume

%InArguments[“Goal”] = $ModSetting.getObjectPath()

%InArguments[“Size”] = #Size // was calculated earlier

%InArguments[“InPool”] = $Pool->

%InArguments[“TheElement”] = null

#r = InvokeMethod(

$SCS->,

“CreateOrModifyElementFromStoragePool”,

%InArguments,

%OutArguments)

#d = &DeleteGoal ($ModSetting)

if (#r != 0 && #r != 4096)

{

<error: element creation failed, stop and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance mod indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: creation job failed, stop and examine CIM_Error>

}

$L[] = Associators(

$Job->,

“CIM_AffectedJobElement”,

“CIM_StorageVolume”,

null, null, false, false, null)

$TV = $L[0]

} else
1146



 Copy Services Subprofile
{

$TV-> = %OutArguments[“TheElement”]

$TV = GetInstance(

$TV->,

false, false, false, null)

}

%InArguments[“SourceElement”] = $SV->

%InArguments[“TargetElement”] = $TV->

%InArguments[“CopyType”] = 4

%InArguments[“Goal”] = null // already applied setting

%InArguments[“ReplicationPipe”] = null // for snapshot

#r = InvokeMethod(

$SCS->,

“AttachOrModifyReplica”,

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: attach failed, stop and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance mod indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: creation job failed, stop and examine CIM_Error>

}

}

// locate new StorageSynchronized association if snapshot created

$L[] = References(

$TV->,

“CIM_StorageSynchronized”,

“SyncedElement”,

false, false, null)

$SS = $L[0]

if ($SS.SyncState != $SRC.InitialReplicationState)

{

<wait for $SS.SyncState instance modification indication>

$SS = GetInstance( // refresh SyncState value

$SS->,

false, false, false, null)

}

} else
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1147



 

{

<error: cannot create a snapshot/cannot create a target element>

#d = &DeleteGoal ($ModSetting)

} // end of step 6.

// End of recipe. If successful, $TV is an instance of StorageVolume 

// representing the snapshot. $SS is an instance of StorageSynchronized

// associating the snapshot to its source element.

8.2.8.12.6.9.5 Modify Replica

// NAME: Modify Replica

// FILE: CopyServicesSP_Recipe5of7

//

// DESCRIPTION: The synchronization state of an associated replica target  

// is modified by invocation of the ModifySynchronization extrinsic

// method. The client verifies that the requested operation is supported

// by the provider before the method is invoked. The provider fails the

// operation and returns a CIM_Error instance if an invalid state

// transition is attempted.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

//

// $SourceSystem and $TargetSystem are instances of ComputerSystem for

// the arrays hosting the source volume and target volume respectively.

// Will be the same if replication is local and different if replication

// is remote.

// $SourceVolume and $TargetVolume are instances of StorageVolume

// representing the replica source and replica target respectively on

// their hosting arrays.

// #operation is the modify operation to be executed.

//

//

// SetupServiceAndCapabilities subroutine: locate the service and

// capabilities instances used to invoke modify operations. Determine

// the SAP for modify operations. Locate the StorageSynchronized

// association for the replica pair.

//

sub uint8 SetupServiceAndCapabilities (IN $SourceSystem, IN $SourceVolume,

     IN $TargetSystem, IN $TargetVolume, OUT $SCS, OUT $SRC, OUT $StgSync)

{

// locate the modify SAP for the replica. If this is a local replica, the

// SAP is always the source host.

// For a remote replica, StorageReplicationCapabilities indicates if

// the SAP is the source or the target host.

$L[] = References(
1148



 Copy Services Subprofile
$TargetVolume->,

"CIM_StorageSynchronized",

"SyncedElement",

false, false,

{"CopyType", "SyncState"})

If ($L[].size() != 1)

{

<error: volume is not an associated replica target>

}

$StgSync = $L[0]

$L[] = Associators(

            // locate StorageConfigurationService for source array

$SourceSystem->,

"CIM_HostedService",

"CIM_StorageConfigurationService",

null, null, false, false, null)

$SCS = $L[0]

$L[] = Associators(

            // locate StorageReplicationCapabilities for the service

$SCS->,

"CIM_ElementCapabilities",

"CIM_StorageReplicationCapabilities",

null, null, false, false, null)

#CT = $StgSync.CopyType

if ($StgSync.CopyType == 5) // adjust before comparison loop

        // SupportedSynchronizationType defines UnSyncUnAssoc as 6 while

        // CopyType defines it as 5. Refer to MOF file.

{ // (2|3|4|5) -> (2|3|4|6)

#CT++

}

for #i in $L[]

{

if ($L[#i].SupportedSynchronizationType == #CT)

{

$SRC = $L[#i]

break

}

}

// $SCS and $SRC are set for source array. Should they be set for

// the target array instead?

if ($SourceSystem.Name != $TargetSystem.Name)

      // Name values != implies remote

{ // if remote, is SAP the target array?

if ($SRC.RemoteReplicationServicePointAccess == 4)

{ // switch $SCS and $SRC to target array

$L[] = Associators(

                  // locate StorageConfigurationService for target
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1149



 

$TargetSystem->,

"CIM_HostedService",

"CIM_StorageConfigurationService",

null, null, false, false, null)

$SCS = $L[0]

$L[] = Associators(

                  // locate StorageReplicationCapabilities

$SCS->,

"CIM_ElementCapabilities",

"CIM_StorageReplicationCapabilities",

null, null, false, false, null)

for #i in $L[]

{

if ($L[#i].SupportedSynchronizationType == #CT)

{

$SRC = $L[#i]

break

}

}

} else

{ // SAP is source array. Need StorageSynchronized

  // instance in source SMI-S server/CIMOM.

if ($SRC.RemoteReplicationServicePointAccess == 3)

{ // switch $StgSync to source array CIMOM

$L[] = Associators(

$SourceVolume->,

"CIM_StorageSynchronized",

"CIM_StorageVolume",

"SystemElement",

"SyncedElement",

false, false,

"Name")

for #i in $L[]

{

if ($L[#i].Name == $TargetVolume.Name)

{

$LL[] = References(

$L[#i].getObjectPath(),

"CIM_StorageSynchronized",

"SyncedElement",

false, false,

{"CopyType", "SyncState"})

$StgSync = $LL[0]

break

}

}

}

1150



 Copy Services Subprofile
}

}

return 0

} // end of subroutine

// Main section of recipe

#r = &SetupServiceAndCapabilities($SourceSystem, $SourceVolume,

                      $TargetSystem,$TargetVolume, $SCS, $SRC, $StgSync)

if (!contains(#operation, $SRC.SupportedModifyOperations[]))

{

<error: requested ModifySynchronization operation unsupported>

} 

%InArguments["Synchronization"] = $StgSync->

%InArgument["Operation"] = #operation

#r = InvokeMethod(

$SCS->,

"ModifySynchronization",

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: modify failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job=> = %OutArguments["Job"]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[]) // is it "OK"?

{

<error: modify job failed, stop and examine CIM_Error>

}

}

if (#operation != 2)

// if not "detach" get a fresh copy of StorageSynchronized

{

$StgSync = GetInstance(

$StgSync->,

false, false, false,

{"CopyType", "SyncState"})

      // list of replica "...In Progress" association states

#InProgress = {3,5,7,8,10,15}

if (contains($StgSync.SyncState, #InProgress)) // In a transition?

{ // This is an optional wait for an instance mod indication 

  // showing a steady state.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1151



 

<wait for instance mod indication for $StgSync.SyncState>

$StgSync = GetInstance( // refresh to show steady state

$StgSync->,

false, false, false,

{"CopyType", "SyncState"})

}

}

// Recipe complete -- $StgSync is now the StorageSynchronized association

// instance showing the final SyncState for the modify operation unless

// the operation was "detach". If the operation is detach, the 

// StorageSynchronized association was deleted.

8.2.8.12.6.9.6 Delete Replica

// NAME: Delete Replica

// FILE: CopyServicesSP_Recipe6of7

//

// DESCRIPTION: An associated replica target element is deleted and its 

// consumed space is returned to the containing storage pool. If the

// provider supports detach operations, the StorageSynchronized

// association will be detached/deleted before the replica element

// is deleted. The recipe includes safety checks to ensure that the

// replica target is not in use when the delete request is received.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

//

// $SourceSystem and $TargetSystem are instances of ComputerSystem for

// the arrays hosting the source volume and target volume respectively.

// Will be the same if replication is local and different if replication

// is remote.

// $SourceVolume and $TargetVolume are instances of StorageVolume

// representing the replica source and replica target respectively on

// their hosting arrays.

//

// Recipe uses the SetupServiceAndCapabilities subroutine in the

// Modify Replica recipe.

//

// Main section of recipe

#r = &SetupServiceAndCapabilities($SourceSystem, $SourceVolume,

                    $TargetSystem,$TargetVolume, $SCS, $SRC, $StgSync)

// Verify that ReturnToStoragePool is supported.

$L[] = Associators(

$TargetSystem->,

“CIM_HostedService”,
1152



 Copy Services Subprofile
“CIM_StorageConfigurationService”,

null, null, false, false, null)

$TargetSAP = $L[0] 

$L[] = Associators(

$TargetSAP->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null, null, false, false, null)

$TargetSCC = $L[0]

if ((!contains(6, $TargetSCC.SupportedSynchronousActions[])) &&

    (!contains(6, $TargetSCC.SupportedAsynchronousActions[])))

{

<error: storage element return operation not supported>

}

// The safety checks are illustrative of possible client best

// practices and should not be included in CTP test cases.

// Do two safety checks before deleting the element

$Refs[] = ReferenceNames(

$TargetVolume->,

“CIM_ProtocolControllerForUnit”,

null)

if ($Refs[].size() > 0)

{

<error: replica target is exposed for host access>

}

$Refs[] = ReferenceNames(

$TargetVolume->,

“CIM_StorageSynchronized”,

“SystemElement”)

if ($Refs[].size() > 0)

{

<error: replica target is also a replica source>

}

// If provider supports detach operation, detach before deleting element.

if (contains(2, $SRC.SupportedModifyOperations[]))

{

%InArguments[“Synchronization”] = $StgSync->

%InArgument[“Operation”] = 2 // detach

#r = InvokeMethod(

$SCS->,

“ModifySynchronization”,

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1153



 

<error: modify failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job=> = %OutArguments[“Job”]

<wait for instance mod indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[]) // is it “OK”?

{

<error: modify job failed, stop and examine CIM_Error>

}

}

}

// End of safety checks. The remainder of the recipe is required for CTP.

// Delete the replica target element

%InArguments[“TheElement”] = $TargetVolume->

#r = InvokeMethod(

$TargetSAP->,

“ReturnToStoragePool”,

  %InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: return failed, stop recipe and examine CIM_Error>

// if the error MessageID is MP3, “Property Not Found”,

// the replica may have been implicitly deleted by the

// preceding Detach operation.

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[]) // is it “OK”?

{

<error: modify job failed, stop recipe and examine CIM_Error>

}

}

// end of recipe.

8.2.8.12.6.9.7 Create Remote Replication Buffer
1154



 Copy Services Subprofile
// NAME: Create Remote Replication Buffer

// FILE: CopyServicesSP_Recipe7of7

//

// DESCRIPTION: Create a private element used as a write-ahead buffer 

// for CopyType “Async” or “Sync” for remote replication. The buffer is 

// modeled as an instance of CIM_Memory created by the 

// CreateReplicationBuffer extrinsic method.

// The flow of the recipe is directed by three

// properties in the instance of StorageReplicationCapabilities:

// RemoteBufferElementType, RemoteBufferHost and RemoteBufferLocation.

// The outputs are references $SourceBuffer and $TargetBuffer.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

//

// Provider supports remote replication using CopyType “Async” or “Sync”

// $SourceSystem is a top-level or leaf ComputerSystem for source array

// $TargetSystem is a top-level or leaf ComputerSystem for target array

// $SourcePipe is a NetworkPipe representing the source/target connection.

// $TargetPipe is a NetworkPipe representing the target/source connection.

// $SourcePipe and $TargetPipe may reference the same instance if the

// source and target arrays share a single SMI-S server/CIMOM. Both must

// reference a top-level pipe.

// $_Pipe references may be null unless RemoteBufferHost == “Pipe”.

// #BufferSize indicates extent size if RemoteBufferElementType

//      = “InExtent”.

//

// This recipe uses subroutines &MakeGoalParameter, &SizeCheck and

// &CreateSpecialUsageExtent in prior recipes in the subprofile.

//

// Setup control variables for the recipe.

$L[] = Associators(

$SourceSystem->,

“CIM_HostedService”,

“CIM_StorageConfigurationService”,

null, null, false, false, null)

$SourceSCS = $L[0]

$L[] = Associators(

$TargetSystem->,

“CIM_HostedService”,

“CIM_StorageConfigurationService”,

null, null, false, false, null)

$TargetSCS = $L[0]

$SRC[] = Associators(

$SourceSCS->,

“CIM_ElementCapabilities”,

“CIM_StorageReplicationCapabilities”,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1155



 

null, null, false, false, null)

$ReplicaSRC = null

for #i in $SRC[]

{

if (($SRC[#i].SupportedSynchronizationType == 2) || 

          ($SRC[#i].SupportedSynchronizationType == 3))

          // CopyType “Async” or “Sync”   

{ // action 8 is “Buffer Creation”

if ((contains(8, $SRC[#i].SupportedSynchronousActions[])) ||

    (contains(8, $SRC[#i].SupportedAsynchronousActions[])))

{

$ReplicaSRC = $SRC[#i]

break

}

}

}

if ($ReplicaSRC == null)

{

<error: buffer creation not supported>

}

#host = $ReplicaSRC.RemoteBufferHost // top-level CS, leaf CS or pipe

#location = $ReplicaSRC.RemoteBufferLocation // source, target or both

#container = $ReplicaSRC.RemoteBufferElementType

                        // buffer is extent, element in a pool or opaque

// Locate pools to contain the replication buffers

$SourcePool, $TargetPool = null

if (#container != 2)

{

#BufferSize = 0

}

if (#container != 0) // need pool unless “not specified”

{

if ((#location == 2) || (#location == 4))

{ // need pool on source array

$PoolList[] = Associators (

$SourceSystem->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null, null, false, false, null)

for #i in $PoolList[]

{

$Pool = $PoolList[#i]

// Make a setting for the GetSupported_ methods

#r = &MakeGoalParameter ($Pool, 8, $ModSetting)

// will current pool allow creating a replication buffer?

#r = &SizeCheck ($Pool, 3, #BufferSize, $ModSetting)
1156



 Copy Services Subprofile
#d = &DeleteGoal ($ModSetting)

if (#r == 0) // current pool supports replication buffers

{

$SourcePool = $Pool

break

}

}

if ($SourcePool == null)

{

<error: eligible pool not found>

} 

}

if ((#location == 3) || (#location == 4))

{ // need pool on target array

$PoolList[] = Associators (

$TargetSystem->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null, null, false, false, null)

for #i in $PoolList[]

{

$Pool = $PoolList[#i]

// Make a setting for the GetSupported_ methods

#r = &MakeGoalParameter ($Pool, 8, $ModSetting)

// will pool allow creating a replication buffer?

#r = &SizeCheck ($Pool, 3, #BufferSize, $ModSetting)

#d = &DeleteGoal ($ModSetting)

if (#r == 0) // pool supports replication buffers?

{

$TargetPool = $Pool

break

}

}

if ($TargetPool == null)

{

<error: eligible pool not found>

} 

}

}

// Create component extents if required

$SourceExtent->, $TargetExtent-> = null

if (#container == 2)

{

if ((#location == 2) || (#location == 4))

{ // need extent on source array

#r = &CreateSpecialUsageExtent
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1157



 

                           ($SourcePool, 8, #BufferSize, $SourceExtent)

$SourcePool-> = null

}

if ((#location == 3) || (#location == 4))

{ // need extent on target array

#r = &CreateSpecialUsageExtent

                           ($SourcePool, 8, #BufferSize, $TargetExtent)

$TargetPool-> = null

}

}

// Create the replication buffers

if ((#location == 2) || (#location == 4)) // need buffer on source array

{

if (#host == 4) // buffer associated to connection pipe

{

%InArguments[“Host”] = $SourcePipe->

} else

{

%InArguments[“Host”] = $SourceSystem->

}

%InArguments[“TargetElement”] = $SourceExtent->

%InArguments[“TargetPool”] = $SourcePool->

#r = InvokeMethod(

$SourceSCS->,

“CreateReplicationBuffer”,

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: buffer creation failed, stop and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance mod indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: creation job failed, stop and examine CIM_Error>

}

$L[] = Associators(

$Job->,

“CIM_AffectedJobElement”,
1158



 Copy Services Subprofile
“CIM_Memory”,

null, null, false, false, null)

$SourceBuffer-> = $L->[0] 

} else

{

$SourceBuffer-> = %OutArguments[“ReplicaBuffer”]

}

}

if ((#location == 3) || (#location == 4)) // need buffer on target array

{

if (#host == 4) // buffer associated to connection pipe

{

%InArguments[“Host”] = $TargetPipe->

} else

{

%InArguments[“Host”] = $TargetSystem->

}

%InArguments[“TargetElement”] = $TargetExtent->

%InArguments[“TargetPool”] = $TargetPool->

#r = InvokeMethod(

$TargetSCS->,

“CreateReplicationBuffer”,

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: buffer creation failed, stop and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance mod indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if (!contains(2, $Job.OperationalStatus[])

{

<error: creation job failed, stop and examine CIM_Error>

}

$L[] = Associators(

$Job->,

“CIM_AffectedJobElement”,

“CIM_Memory”,

null, null, false, false, null)

$TargetBuffer-> = $L->[0]

} else
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1159



 

{

$TargetBuffer-> = %OutArguments[“ReplicaBuffer”]

}

} // end of recipe

8.2.8.12.7 Registered Name and Version
Copy Services version 1.1.0

8.2.8.12.8 CIM Server Requirements

Table 1067: CIM Server Requirements for Copy Services

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No
1160



 Copy Services Subprofile
8.2.8.12.9 CIM Elements

Table 1068: CIM Elements for Copy Services

Element Name Description
Mandatory Classes

CIM_AllocatedFromStoragePool (8.2.8.12.9.1) Base definition is in Block Services Package.
CIM_ComputerSystem (8.2.8.12.9.4) Base definition is in Array Profile. Adds associations 

used for stitched remote peer connections.
CIM_ElementCapabilities (8.2.8.12.9.6)
CIM_HostedService (8.2.8.12.9.9)
CIM_LogicalDisk (8.2.8.12.9.10) Base definition in Volume Management Profile. Refer to 

description of CIM_StorageVolume in this subprofile.
CIM_StorageCapabilities (8.2.8.12.9.17) Base definition is in Block Services Package.
CIM_StorageConfigurationCapabilities (8.2.8.12.9.18) Base definition is in Block Services Package. Adds two 

properties.
CIM_StorageConfigurationService (8.2.8.12.9.19) Base definition is in Block Services Package. Methods 

are described in the Extrinsic Methods clause.
CIM_StoragePool (8.2.8.12.9.21) Base definition is in Block Services Package.
CIM_StorageReplicationCapabilities (8.2.8.12.9.22) A set of properties that describe the capabilities of a 

copy services provider.
CIM_StorageSetting (8.2.8.12.9.23) Base definition is in Block Services Package.
CIM_StorageSynchronized (8.2.8.12.9.24) Associates replica target element to a source element.
CIM_StorageVolume (8.2.8.12.9.25) Base definition is in Array Profile. Adds associations 

used when the element is a replica source or a replica 
target.

Optional Classes
CIM_AssociatedMemory (8.2.8.12.9.2) Associates remote replication buffer to a peer system 

element or a replication pipe.
CIM_BasedOn (8.2.8.12.9.3) May be used for replica buffer element created from a 

concrete extent.
CIM_ConcreteDependency (8.2.8.12.9.5) Associates remote replica target element to a peer-to-

peer connection.
CIM_EndpointOfNetworkPipe (8.2.8.12.9.7) Associates peer-to-peer ProtocolEndpoint to lower-level 

NetworkPipe.
CIM_HostedNetworkPipe (8.2.8.12.9.8) Associates replication NetworkPipe to replication Net-

work domain element.
CIM_Memory (8.2.8.12.9.11) Write ahead buffer element for a remote replication ser-

vice.
CIM_Network (8.2.8.12.9.12) Specialized peer-to-peer network for a remote replica-

tion service.
CIM_NetworkPipe (8.2.8.12.9.13) Identifies peer-to-peer connection for a remote replica-

tion service.
CIM_NetworkPipeComposition (8.2.8.12.9.14) Associates one top-level NetworkPipe to one or more 

lower-level pipes.
CIM_ProtocolEndpoint (8.2.8.12.9.15) Base definition is in Fabric Profile. Special purpose end-

point that controls a peer-to-peer connection.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1161



 

8.2.8.12.9.1 CIM_AllocatedFromStoragePool
SpaceLimit and SpaceLimitWarningThreshold are only applicable when the dependent storage element
is a delta replica with SpaceConsumed limits enforced by the provider.

CIM_ReplicaPoolForStorage (8.2.8.12.9.16) Associates special storage pool for delta replicas to 
StorageConfigurationService or to a source element.

CIM_StorageExtent (8.2.8.12.9.20) Concrete extent components for delta replica pools or 
remote replication buffers.

CIM_SystemComponent (8.2.8.12.9.26) Associates peer system element to remote replication 
network domain.

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_StorageSynchronized

All instance creation indications for StorageSynchro-
nized.

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_StorageSynchronized

All instance deletion indications for StorageSynchro-
nized.

SELECT * FROM CIM_InstModification                                      
WHERE SourceInstance ISA 
CIM_StorageSynchronized                                       AND 
SourceInstance.CIM_StorageSynchronized::SyncState 
<>                                            PreviousIn-
stance.CIM_StorageSynchronized::SyncState

CQL - CQL -- Synchronization state transition for a rep-
lica association.

SELECT * FROM CIM_InstModification                                      
WHERE SourceInstance ISA 
CIM_StorageSynchronized                                       AND 
SourceInstance.SyncState <>                                            
PreviousInstance.SyncState

Deprecated WQL - Deprecated WQL -- Synchronization 
state transition for a replica association.

Optional Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_Memory

All instance creation indications for replication buffers.

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_Memory

All instance deletion indications for replication buffers.

SELECT * FROM CIM_InstModification                                      
WHERE SourceInstance ISA CIM_NetworkPipe                                       
AND SourceInstance.CIM_NetworkPipe::Operational-
Status <>                                            PreviousIn-
stance.CIM_NetworkPipe::OperationalStatus

Change of peer-to-peer connection operational status.

SELECT * FROM CIM_AlertIndication                                        
WHERE OwnerEntity = "SNIA" AND AlertingMan-
agedElement ISA CIM_StoragePool

Remaining pool space either below warning threshold 
set for the pool or there is no remaining space in the 
pool.

SELECT * FROM CIM_AlertIndication                                        
WHERE OwnerEntity = "SNIA" AND AlertingMan-
agedElement ISA CIM_AllocatedFromStoragePool

Delta replica space consumed has either reached the 
warning threshold or has exceeded the space limit set 
for the replica.

Table 1068: CIM Elements for Copy Services

Element Name Description
1162



 Copy Services Subprofile
Class Mandatory: true

8.2.8.12.9.2 CIM_AssociatedMemory
Associates remote replication buffer to a peer system element or a replication pipe.
Created By : Extrinsic(s): CreateReplicationBuffer
Modified By : Extrinsic(s): Not modifiable
Deleted By : DeleteInstance
Class Mandatory: false

8.2.8.12.9.3 CIM_BasedOn
May be used for replica buffer element created from a concrete extent.
Class Mandatory: false

8.2.8.12.9.4 CIM_ComputerSystem
Base definition is in Array Profile. Adds associations used for stitched remote peer connections.
Class Mandatory: true
No specified properties or methods.

8.2.8.12.9.5 CIM_ConcreteDependency
Associates remote replica target element to a peer-to-peer connection.
Created By : Extrinsic(s): CreateReplica, AttachReplica, AttachOrModifyReplica
Deleted By : Extrinsic(s): ModifySynchronization

Table 1069: SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_StoragePool
Dependent CIM_LogicalElement

Optional Properties/Methods
SpaceLimit M uint64 Space limit for a delta replica. If space 

limits are enforced, SpaceConsumed 
cannot exceed this value.

SpaceLimitWarningThreshold M uint16 Percentage of SpaceLimit. An indica-
tion is generated when SpaceCon-
sumed reaches or exceeds the warning 
threshold level.

Table 1070: SMI Referenced Properties/Methods for CIM_AssociatedMemory

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Memory
Dependent CIM_LogicalElement

Table 1071: SMI Referenced Properties/Methods for CIM_BasedOn

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_StorageExtent
Dependent CIM_StorageExtent
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1163



 

Class Mandatory: false

8.2.8.12.9.6 CIM_ElementCapabilities
Class Mandatory: true

8.2.8.12.9.7 CIM_EndpointOfNetworkPipe
Associates peer-to-peer ProtocolEndpoint to lower-level NetworkPipe.
Class Mandatory: false

8.2.8.12.9.8 CIM_HostedNetworkPipe
Associates replication NetworkPipe to replication Network domain element.
Created By : Extrinsic(s): CreateOrModifyReplicationPipe
Deleted By : DeleteInstance
Class Mandatory: false

Table 1072: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement Top-level NetworkPipe identifying the 
connection.

Dependent CIM_ManagedElement Remote replica target element.

Table 1073: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement
Capabilities CIM_Capabilities

Table 1074: SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ServiceAccessPoi
nt

Dependent CIM_NetworkPipe
Optional Properties/Methods

SourceOrSink uint16 Indicates endpoint for source or target 
host when the connection is uni-direc-
tional. Values:
 0: Unknown
 1: Source
 2: Target (sink)
 3: Not applicable

Table 1075: SMI Referenced Properties/Methods for CIM_HostedNetworkPipe

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_Network
1164



 Copy Services Subprofile
8.2.8.12.9.9 CIM_HostedService
Class Mandatory: true

8.2.8.12.9.10 CIM_LogicalDisk
Base definition in Volume Management Profile. Refer to description of CIM_StorageVolume in this subprofile.
Class Mandatory: true
No specified properties or methods.

8.2.8.12.9.11 CIM_Memory
A remote replication buffer element may be created from a concrete StorageExtent element, in volatile
DRAM, in a StoragePool or in a way opaque to a client. The buffer is a private element never exposed
as a LUN. A buffer element has one AssociatedMemory association to either a hosting system or a top-
level replication connection pipe.

Created By : Extrinsic(s): CreateReplicationBuffer
Deleted By : DeleteInstance
Class Mandatory: false

8.2.8.12.9.12 CIM_Network
Providers that support a remote replication service scoped by managed peer-to-peer connections must
provide a primordial instance of CIM_Network discovered at the same time that all associated peer
systems are discovered. All peer systems eligible to use a remote replication service must have a
SystemComponent association to the Network instance.

Class Mandatory: false

Dependent CIM_NetworkPipe

Table 1076: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
Dependent CIM_Service

Table 1077: SMI Referenced Properties/Methods for CIM_Memory

Property Flags Type Description & Notes
Mandatory Properties/Methods

DeviceID string
SystemCreationClassName string
CreationClassName string
SystemName string

Table 1078: SMI Referenced Properties/Methods for CIM_Network

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string

Table 1075: SMI Referenced Properties/Methods for CIM_HostedNetworkPipe

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1165



 

8.2.8.12.9.13 CIM_NetworkPipe
A two-level NetworkPipe composition identifies a peer-to-peer connection between two peer system
elements. Two peer protocol endpoints are associated to each lower-level pipe. All of the lower-level
pipes are associated to a top-level pipe. The top-level pipe properties allow the connection state and
directionality to be monitored and managed.

Created By : Extrinsic(s): CreateOrModifyReplicationConnection
Modified By : Extrinsic(s): CreateOrModifyReplicationConnection
Deleted By : DeleteInstance
Class Mandatory: false

8.2.8.12.9.14 CIM_NetworkPipeComposition
Associates one top-level NetworkPipe to one or more lower-level pipes.
Created By : Extrinsic(s): CreateOrModifyReplicationPipe
Deleted By : DeleteInstance
Class Mandatory: false

Name string
NameFormat string

Optional Properties/Methods
ElementName string

Table 1079: SMI Referenced Properties/Methods for CIM_NetworkPipe

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName MN string
OperationalStatus uint16[] Described in Health and Fault Manage-

ment clause.
AggregationBehavior uint16 Identifies pipe as top-level or lower-

level:
 2: lower-level pipe with two endpoints
 4: top-level pipe

Directionality uint16 Indicates bi-directional or uni-direc-
tional connection. Values:
 0: unknown
 2: bi-directional
 3: uni-directional

Table 1080: SMI Referenced Properties/Methods for CIM_NetworkPipeComposition

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_NetworkPipe
PartComponent CIM_NetworkPipe

Table 1078: SMI Referenced Properties/Methods for CIM_Network

Property Flags Type Description & Notes
1166



 Copy Services Subprofile
8.2.8.12.9.15 CIM_ProtocolEndpoint
Base definition is in Fabric Profile. Special purpose endpoint that controls a peer-to-peer connection.
Class Mandatory: false

8.2.8.12.9.16 CIM_ReplicaPoolForStorage
Associates special storage pool for delta replicas to StorageConfigurationService or to a source element.
Class Mandatory: false

8.2.8.12.9.17 CIM_StorageCapabilities
Base definition is in Block Services Package.
Class Mandatory: true

8.2.8.12.9.18 CIM_StorageConfigurationCapabilities
This class is only defined to maintain SMI-S 1.0 backward compatibility. SMI-S 1.1 providers indicate
copy services capabilities using instances of the StorageReplicationCapabilities class.

Table 1081: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

ProtocolIFType uint16 Value is always "Other".
OtherTypeDescription string String identifying the peer-to-peer con-

nection protocol.

Table 1082: SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_EnabledLogicalEle
ment

Dependent CIM_StoragePool

Table 1083: SMI Referenced Properties/Methods for CIM_StorageCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

DeltaReservationMin uint16 Refer to property descriptions for 
CIM_StorageSetting class.

DeltaReservationMax uint16
DeltaReservationDefault uint16 Initial value for 

CIM_StorageSetting.DeltaReservation-
Goal.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1167



 

Class Mandatory: true

8.2.8.12.9.19 CIM_StorageConfigurationService
Base definition is in Block Services Package. Methods are described in the Extrinsic Methods clause.
Class Mandatory: true

Table 1084: SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

SupportedAsynchronousActions N uint16[] Identify replication methods using job 
control. Values:
 8: Replica Creation
 9: Replica Modification
 10: Replica Attachment

SupportedSynchronousActions N uint16[] Identify replication methods not using 
job control. Values:
 8: Replica Creation
 9: Replica Modification
 10: Replica Attachment

SupportedStorageElementTypes uint16[] Storage element types that can be rep-
licated. Values:
 2: Storage Volume
 4: Logical Disk

SupportedCopyTypes uint16[] CopyType values:
 2: Async
 3: Sync
 4: UnSyncAssoc
 5: UnSyncUnAssoc

InitialReplicationState uint16 The initial SyncState when replica cre-
ation is completed. Values:
 2: Initialized
 3: Prepared
 4: Synchronized

Table 1085: SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Property Flags Type Description & Notes
Mandatory Properties/Methods

ModifySynchronization()
Optional Properties/Methods

CreateOrModifyReplicationPipe()
CreateReplicationBuffer()
CreateReplica()
AttachReplica() Defined for 1.0.2 downward compatibil-

ity. Behaves as AttachOrModifyReplica 
without Goal and replicationPipe 
parameters.

AttachOrModifyReplica()
1168



 Copy Services Subprofile
8.2.8.12.9.20 CIM_StorageExtent
The Copy Services Subprofile supports explicit creation of concrete extents for two specialized uses.
Concrete extents may be used as components for a specialized pool that will only contain delta
replicas. Concrete extents may be used as an input parameter for CreateReplicationBuffer.

Created By : Extrinsic(s): CreateOrModifyElementFromStoragePool, CreateOrModifyElementFromElements
Modified By : Extrinsic(s): CreateOrModifyElementFromStoragePool, CreateOrModifyElementFromElements
Deleted By : Extrinsic(s): ReturnToStoragePool
Class Mandatory: false

8.2.8.12.9.21 CIM_StoragePool
LowSpaceWarningThreshold only applies to specialized pools created as containers for delta replica
elements using dynamic, variable space consumption. The specialized pool is associated to either the
StorageConfigurationService or to a single replica source element.

Class Mandatory: true

8.2.8.12.9.22 CIM_StorageReplicationCapabilities
This class defines all of the capability properties for a replication service. A provider must supply one
instance for each CopyType value supported.

Table 1086: SMI Referenced Properties/Methods for CIM_StorageExtent (Copy Services)

Property Flags Type Description & Notes
Mandatory Properties/Methods

Name string
SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string

Table 1087: SMI Referenced Properties/Methods for CIM_StoragePool

Property Flags Type Description & Notes
Mandatory Properties/Methods
Optional Properties/Methods

LowSpaceWarningThreshold M uint16 Percentage of TotalManagedSpace 
triggering an alert indication. When 
RemainingManagedSpace reaches or 
falls below this percentage, the indica-
tion is generated.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1169



 

Class Mandatory: true

Table 1088: SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

SupportedSynchronizationType uint16 Provider must supply one instance of 
this class for each supported CopyType 
value. Values:
 2: Async
 3: Sync
 4: UnSyncAssoc-Full
 5: UnSyncAssoc-Delta
 6: UnSyncUnAssoc

SupportedAsynchronousActions N uint16[] Identify replication methods using job 
control. Values:
 2: Local Replica Creation
 3: Remote Replica Creation
 4: Local Replica Modification
 5: Remote Replica Modification
 6: Local Replica Attachment
 7: Remote Replica Attachment
 8: Buffer Creation

SupportedSynchronousActions N uint16[] Identify replication methods not using 
job control. Values:
 2: Local Replica Creation
 3: Remote Replica Creation
 4: Local Replica Modification
 5: Remote Replica Modification
 6: Local Replica Attachment
 7: Remote Replica Attachment
 8: Buffer Creation
 9: NetworkPipe Creation

InitialReplicationState uint16 The initial SyncState when replica cre-
ation is completed. Values:
 2: Initialized
 3: Prepared
 4: Synchronized
 5: Idle
1170



 Copy Services Subprofile
SupportedModifyOperations uint16[] Identify ModifySynchronization opera-
tions supported for this CopyType. Val-
ues:
 2: Detach
 3: Fracture
 4: Resync
 5: Restore
 6: Prepare
 7: Unprepare
 8: Quiesce
 9: Unquiesce
 10: Reset To Sync
 11: Reset To Async
 12: Start Copy
 13: Stop Copy

ReplicaHostAccessibility uint16 Host access restrictions. Values:
 2: Not accessible
 3: Any host may access
 4: Only accessible by the associated 
source element host
 5: Accessible by hosts other than the 
source element host

HostAccessibleState uint16[] Associated replicas are host accessible 
for these SyncState values:
 2: Initialized
 3: Prepare In Progress
 4: Prepared
 5: Resync In Progress
 6: Synchronized
 7: Fracture In Progress
 8: Quiesce In Progress
 9: Quiesced
 10: Restore In Progress
 11: Idle
 12: Broken
 13: Fractured
 14: Frozen
 15: Copy In Progress

PersistentReplicasSupported boolean true: replicas persist during power off or 
reset
 false: not persistent. May be in invalid 
state after power off or reset

MaximumReplicasPerSource uint16 Maximum replicas of all types allowed 
for one source element.

MaximumLocalReplicationDepth uint16 Volume A mirrors Volume B mirrors 
Volume C to this maximum allowable 
depth.

Table 1088: SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1171



 

Optional Properties/Methods
SupportedSpecializedElements uint16[] Identify specialized element types sup-

ported. Values:
 2: Delta replica pool
 3: Delta pool component extent
 4: Remote mirror
 5: Local mirror
 6: Full snapshot
 7: Delta snapshot
 8: Replication buffer

SpaceLimitSupported boolean Only valid for CopyType "UnSyncAs-
soc-Delta":
 true: space limits are enforced
 false: not enforced

SpaceReservationSupported boolean Only valid for CopyType "UnSyncAs-
soc-Delta":
 true: space reserved at creation
 false: no space reserved at creation

LocalMirrorSnapshotSupported boolean Only valid for CopyType "Sync" and 
"Async":
 true: local mirror replicas can be snap-
shot source element
 false: local mirrors cannot be snapshot 
source

RemoteMirrorSnapshotSupported boolean Only valid for CopyType "Sync" and 
"Async":
 true: remote mirror replicas can be 
snapshot source element
 false: remote mirrors cannot be snap-
shot source

IncrementalDeltasSupported boolean Only valid for CopyType "UnSyncAs-
soc-Delta":
 true: all delta replicas associated with 
a source element are incrementally 
dependent. Only the oldest replica may 
be deleted or resynced
 false: not dependent

BidirectionalConnectionsSup-
ported

boolean Only valid for CopyType "Sync" and 
"Async" remote replicas:
 true: connections are bi-directional
 false: connections are uni-directional

MaximumPortsPerConnection uint16 Maximum ports assigned to one peer-
to-peer connection.

MaximumConnectionsPerPort uint16 Maximum peer-to-peer connections for 
one port.

MaximumPeerConnections uint16 Maximum peer-to-peer connections for 
one system element.

Table 1088: SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Property Flags Type Description & Notes
1172



 Copy Services Subprofile
MaximumRemoteReplication-
Depth

uint16

InitialSynchronizationDefault uint16 Refer to CIM_StorageSetting.InitialSyn-
chronization

ReplicationPriorityDefault uint16 Refer to CIM_StorageSetting.Replica-
tionPriority

LowSpaceWarningThresholdDe-
fault

uint8 Default value for LowSpaceWarningTh-
reshold. Percentage value between 0 
and 100.

SpaceLimitWarningThresholdDe-
fault

uint8 Default value for SpaceLimitWarn-
ingThreshold. Percentage value 
between 0 and 100.

RemoteReplicationService-
PointAccess

uint16 Primary SAP for a remote replication 
service. Values:
 2: Not specified
 3: Source hosting system
 4: Target hosting system
 5: Proxy service

AlternateReplicationService-
PointAccess

uint16 Alternate SAP for a remote replication 
service. Used when primary SAP is not 
available. Values:
 2: No alternate SAP
 3: Source hosting system
 4: Target hosting system
 5: Proxy service

DeltaReplicaPoolAccess uint16 Indicates if a specialized pool is 
required as a container for delta repli-
cas. Values:
 2: Any pool may contain delta replicas
 3: Exclusive special pool per source 
element
 4: Shared special pool for all source 
elements

RemoteBufferElementType uint16 Indicates target container element type 
for remote replication buffers. Values:
 2: Not specified by client
 3: Storage pool
 4: Storage extent

RemoteBufferHost uint16 Indicates hosting element for replica-
tion buffers. Values:
 2: Associated to top-level system ele-
ment
 3: Associated to a ComponentCS sys-
tem element
 4: Associated to a NetworkPipe ele-
ment

Table 1088: SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1173



 

8.2.8.12.9.23 CIM_StorageSetting
Base definition is in Block Services Package.
Class Mandatory: true

RemoteBufferLocation uint16 Indicates location for replication buff-
ers. Values:
 2: Source systems only
 3: Target systems only
 4: Both source and target require a 
buffer

RemoteBufferSupported uint16 Indicates if a peer-to-peer connection 
may use a remote replication buffer. 
Values:
 0: Not supported
 2: Required
 3: Optional

UseReplicationBufferDefault uint16 Indicates if replication buffer usage is 
managed by individual replica pairs. 
Values:
 0: Not managed at the pair level
 1: Pair uses the buffer
 2: Pair does not use the buffer

PeerConnectionProtocol string Opaque string identifying the peer-to-
peer transport protocol supported by 
the hosting system.

Table 1089: SMI Referenced Properties/Methods for CIM_StorageSetting

Property Flags Type Description & Notes
Mandatory Properties/Methods

DeltaReservationMin M uint8 Minimum space reserved for a delta 
replica at time of creation. Value 0 to 
100 is a percentage of the source ele-
ment size.

DeltaReservationMax M uint8 Maximum space reserved for a delta 
replica at time of creation. Value 0 to 
100 is a percentage of the source ele-
ment size.

DeltaReservationGoal M uint8  Goal for space reserved for a delta 
replica at time of creation. Value 0 to 
100 is a percentage of the source ele-
ment size.

PersistentReplica M boolean  True indicates the replica persists dur-
ing power off or reset.

Table 1088: SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Property Flags Type Description & Notes
1174



 Copy Services Subprofile
8.2.8.12.9.24 CIM_StorageSynchronized
Associates replica target element to a source element.
Created By : Extrinsic(s): CreateReplica, AttachReplica, AttachOrModifyReplica
Modified By : Extrinsic(s): ModifySynchronization
Deleted By : Extrinsic(s): ModifySynchronization
Class Mandatory: true

IntendedUsage M uint16 Indicates that a storage element is cre-
ated for a specialized use. Values:
 0: Not specialized
 2: Special pool for delta replica ele-
ments
 3: Component extent for delta replica 
pool
 4: Remote mirror target element
 5: Local mirror target element
 6: Full size snapshot element
 7: Delta snapshot element
 8: Remote replication buffer element

Optional Properties/Methods
IncrementalDeltas M boolean  True indicates delta replicas for source 

are incrementally dependent in the 
order created.

UseReplicationBuffer M uint16 Indicates that a remote mirror pair may 
use a replication buffer. Values:
 0: Not applicable
 1: Not managed
 2: Use the buffer
 3: Do not use the buffer

InitialSynchronization M uint16 Indicates that the source element 
should be fully copied to the target ele-
ment when a replica is created. Values:
 0: Not applicable
 1: Not managed
 2: Start copy operation
 3: Do not start copy operation

ReplicationPriority M uint16 Priority of copy engine I/O relative to 
host I/O. Values:
 0: Not applicable
 1: Not managed
0: Not managed
 2: Lower than host I/O
 3: Same as host I/O
 4: Higher than host I/O

Table 1090: SMI Referenced Properties/Methods for CIM_StorageSynchronized

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemElement CIM_ManagedElement Replica source element.

Table 1089: SMI Referenced Properties/Methods for CIM_StorageSetting

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1175



 

8.2.8.12.9.25 CIM_StorageVolume
A StorageVolume element that is an associated replica source or target requires a
StorageSynchronized association. The StorageSetting element associated to a replica target may use
several additional properties not applicable to an independent storage element. If the element is a
remote replica target, an AttachedElement association may be used to stitch the element to the top-
level pipe of a managed connection.

Created By : Extrinsic(s): Target may be created by CIM_StorageConfigurationService.CreateReplica

SyncedElement CIM_ManagedElement Replica target element.
WhenSynced N datetime If the replica is a PIT image, this value 

is the date/time created.
SyncMaintained boolean Boolean indicating whether synchroni-

zation is maintained.
CopyType uint16 Type of association between source 

and target. Values:
 2: Sync
 3: Async
 4: UnSyncAssoc
 5: UnSyncUnAssoc

SyncState uint16 State of the association between 
source and target. Values:
 2: Initialized
 3: PrepareInProgress
 4: Prepared
 5: ResyncInProgress
 6: Synchronized
 7: FractureInProgress
 8: QuiesceInProgress
 9: Quiesced
 10: RestoreInProgress
 11: Idle
 12: Broken
 13: Fractured
 14: Frozen
 15: CopyInProgress

Optional Properties/Methods
ReplicaType uint16 Informational property describing the 

type of replication. Values:
 0: Not specified
 2: Full Copy
 3: Before Delta
 4: After Delta
 5: Log

CopyPriority M uint16 Priority of copy engine I/O relative to 
host I/O. Values:
 0: Not managed
 1: Lower than host I/O
 2: Same as host I/O
 3: Higher than host I/O

Table 1090: SMI Referenced Properties/Methods for CIM_StorageSynchronized

Property Flags Type Description & Notes
1176



 Copy Services Subprofile
Class Mandatory: true

8.2.8.12.9.26 CIM_SystemComponent
Associates peer system element to remote replication network domain.
Class Mandatory: false

8.2.8.12.10 Related Standards

Table 1091: SMI Referenced Properties/Methods for CIM_StorageVolume (Array Profile)

Property Flags Type Description & Notes
Mandatory Properties/Methods
Optional Properties/Methods

DeltaReservation uint8  Actual space reserved percentage if 
the created element is a delta replica . 
Value 0 to 100 is a percentage of the 
source element size.

Table 1092: SMI Referenced Properties/Methods for CIM_SystemComponent

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_ManagedSystemEl

ement

Table 1093: Related Standards for Copy Services

Specification Revision Organization
CIM Infrastructure 2.3 DMTF
CIM Operations over HTTP 1.2 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1177



 

1178



 Disk Drive Subprofile (DEPRECATED)
DEPRECATED

8.2.8.13 Disk Drive Subprofile (DEPRECATED)
The functionality of the Disk Drive Subprofile has been subsumed by the 8.2.8.14, "Disk Drive Lite
Subprofile".

The Disk Drive Subprofile is defined in IIS24775-2006, Storage Management. 

DEPRECATED
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1179



 

1180



 Disk Drive Lite Subprofile
8.2.8.14 Disk Drive Lite Subprofile

8.2.8.14.1 Description
The Disk Drive Lite subprofile is used to model disk drive devices. This subprofile assumes the drive is
linked to a larger system (e.g., Array). The model supports asset information, health and status, and
Physical information. The model also supports external links to Pool membership, extent mapping,
backend port modeling, SCSI buss and address mapping, and physical containment in system
packages. The subprofile also includes active management of an optional location indicator.

8.2.8.14.1.1 Base model
A disk drive is modeled as a MediaAccessDevice (DiskDrive) linked to a StorageExtent (representing
the storage in the drive) by a MediaPresent association. The StorageExtent class represents the
storage of the drive and contains its size. Other classes further refine the model. PhysicalPackage
contains asset information for the device and is connected by a Realizes association. The model can
optionally contain SoftwareIdentity that contains information about the firmware and is linked by a
DeviceSoftware association.

8.2.8.14.1.2 Associations to external classes
The Disk Drive subprofile ties into the rest of the system via a number of key associations. 

• ConcreteComponent - To associate an extent exported by the Disk Drive to the StoragePool that it
is part of.

• BasedOn - To associate an extent exported by the Disk Drive to another (higher level) extent (or a
Volume).

• Container - To associate the physical package of the disk drive to the physical package of the
system.

• SystemDevice - To scope the Disk to the system containing it.

• ProtocolControllerAccessUnit - To link the Disk to system port it is accessed through.

8.2.8.14.1.3 Active Management
The DiskDrive class has been enhanced by the addition of a property (LocationIndicator) to read or set
the state of a location indicator. When read the property returns a value that can be used to determine
of the indicator is support and it's value. When written the indicator's state is set.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1181



 

Instance Diagram

Figure 182: "Disk Drive Lite Instance Model" illustrates a sample instance diagram.

Durable Names and Correlatable IDs of the Profile
None.

Required External Associations
When implementing the Disk Drive subprofile, the ConcreteComponent association to StoragePools is
mandatory (because LogicalStorage is required in the Profile). 

The Container association to a higher level physical package is also mandatory (because the
PhysicalPackage for the System is required). However, in the case of the Container association, it is
possible that the Disk Drive PhysicalPackage is not directly contained in the System PhysicalPackage.
It shall be possible for a client to traverse the container associations from the System PhysicalPackage
to the Disk Drive PhysicalPackage, even if the client is required to go through intermediate steps (that
is, intermediate physical packages).

The ProductParentChild association from the disk drive product to the higher level product is also
mandatory. It is not necessary for the System Product to be the next level up the ProductParentChild
association, but it may be.

Optional External Associations
The BasedOn association that ties a Disk Drive extent to a higher level extent (or volume) is only
required if the ExtentMapping subprofile is also implemented.Health and Fault Management

Figure 182: Disk Drive Lite Instance Model

StorageExtent

StorageExtent
DiskDrive

OperationalStatus[]
DeviceID

PhysicalPackage

Manufacturer
Model

SerialNumber
PartNumber

MediaPresent*
*

Realizes*
*

Basedon 

*

*

ProtocolController

ConcreteComponent

PhysicalPackage
(System)

Container

ComputerSystem

SystemDevice

SoftwareIdentity
ElementSoftwareIdentity

StoragePool

ProtocolControllerAccessUnit
1182



 Disk Drive Lite Subprofile
8.2.8.14.2 Health and Fault Management Considerations
The DiskDrive.OperationalStatus contains the overall status of the disk, summarized in Table 1094,
“OperationalStatus for a Disk”.

If the reason for StorageVolume's or LogicalDisks' state/status change from normal operating
conditions is in the form of a lack of performance or redundancy qualities caused by a disk drive failure,
then the Volume OperationalStatus shall be expressed as in Table 1095, “Volume-Level
OperationalStatus”.

*SV - StorageVolume, LD - LogicalDisk

8.2.8.14.3 Cascading Considerations
Not defined in this standard.

8.2.8.14.4 Supported Subprofiles and Packages
Not defined in this standard.

8.2.8.14.5 Methods of this Profile
Not defined in this standard.

Table 1094: OperationalStatus for a Disk

OperationalStatus Description
 OK Disk Drive is on line 
 Error Disk Drive is no longer functioning
 Stopped Disk Drive is disabled
 Stopping Disk Drive is being disabled
 Starting Disk Drive is becoming enabled
 Predictive Failure Disk Drive is functionality nominally but is 

predicting a failure in the near future

Table 1095: Volume-Level OperationalStatus

SV/LD* OperationalStatus SV/LD ExtentStatus DD OperationalStatus
Degraded One or more DiskDrives may 

have the "Error" Operational-
Status

Degraded Rebuild One or more DiskDrives may 
have the "Error" Operational-
Status

Degraded Spare In Use One or more DiskDrives has 
the "Error" OperationalStatus

Error One or more DiskDrives may 
have the "Error" Operational-
Status

Error Broken One or more DiskDrives may 
have the "Error" Operational-
Status

Error Data Loss One or more DiskDrives may 
have the "Error" Operational-
Status
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1183



 

8.2.8.14.6 Registered Name and Version
Disk Drive Lite version 1.1.0

8.2.8.14.7 CIM Server Requirements

8.2.8.14.8 CIM Elements

8.2.8.14.8.1 CIM_DiskDrive
Class Mandatory: true

Table 1096: CIM Server Requirements for Disk Drive Lite

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 1097: CIM Elements for Disk Drive Lite

Element Name Description
Mandatory Classes

CIM_DiskDrive (8.2.8.14.8.1)
CIM_ElementSoftwareIdentity (8.2.8.14.8.2)
CIM_MediaPresent (8.2.8.14.8.3)
CIM_PhysicalPackage (8.2.8.14.8.4)
CIM_Realizes (8.2.8.14.8.5)
CIM_SoftwareIdentity (8.2.8.14.8.6)
CIM_StorageExtent (8.2.8.14.8.7)
CIM_SystemDevice (8.2.8.14.8.8)

Table 1098: SMI Referenced Properties/Methods for CIM_DiskDrive

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
Name string
OperationalStatus uint16[]
1184



 Disk Drive Lite Subprofile
8.2.8.14.8.2 CIM_ElementSoftwareIdentity
Class Mandatory: true

8.2.8.14.8.3 CIM_MediaPresent
Class Mandatory: true

8.2.8.14.8.4 CIM_PhysicalPackage
Class Mandatory: true

8.2.8.14.8.5 CIM_Realizes
Class Mandatory: true

Table 1099: SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_SoftwareIdentity
Dependent CIM_ManagedElement

Table 1100: SMI Referenced Properties/Methods for CIM_MediaPresent

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_MediaAccessDevic
e

Dependent CIM_StorageExtent

Table 1101: SMI Referenced Properties/Methods for CIM_PhysicalPackage

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Tag string
Manufacturer string
Model string

Optional Properties/Methods
SerialNumber string
PartNumber string

Table 1102: SMI Referenced Properties/Methods for CIM_Realizes

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_PhysicalElement
Dependent CIM_LogicalDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1185



 

8.2.8.14.8.6 CIM_SoftwareIdentity
Class Mandatory: true

8.2.8.14.8.7 CIM_StorageExtent
Class Mandatory: true

8.2.8.14.8.8 CIM_SystemDevice
Class Mandatory: true

Table 1103: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
VersionString string

Optional Properties/Methods
Manufacturer string
BuildNumber uint16
MajorVersion uint16
RevisionNumber uint16
MinorVersion uint16

Table 1104: SMI Referenced Properties/Methods for CIM_StorageExtent

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
BlockSize uint64
NumberOfBlocks uint64 The number of blocks as reported by 

the hardware.
ConsumableBlocks uint64 The number of usable blocks.
ExtentStatus uint16[]
OperationalStatus uint16[]

Table 1105: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System
PartComponent CIM_LogicalDevice
1186



 Disk Drive Lite Subprofile
8.2.8.14.9 Related Standards

Table 1106: Related Standards for Disk Drive Lite

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1187



 

1188



 Disk Sparing Subprofile
8.2.8.15 Disk Sparing Subprofile

8.2.8.15.1 Description
Many block service systems enhance availability by providing backup storage capacity to be used in
place of a failed component. The failure of the component may be caused by the failure of a physical
component that realizes that component or the invalidation or corruption of the component itself.

The end result of the failure is that block server is degraded by performance or spare redundancy. In
the first case, it is important that the cause of the performance degradation is known so the appropriate
response may be taken. In the second case, the administrator will have to know of the loss of
redundancy. The administrator can then plan to replace the used redundancy and fix the broken
component. A sample instance diagram is provided in Figure 183: "Sparing Instance Diagram".    

The Extent Composition Subprofile (8.2.8.16) focuses on the mapping of storage to storage elements,
StorageVolume and LogicalDisk. This subprofile enhances that picture by representing how spare
physical storage components like disk drives or purely logical constructs like LUNs or even host
partitions, can be used to provide redundancy for storage elements. The spare elements are
represented as StorageExtents themselves.

Figure 183: Sparing Instance Diagram

Current Failover

Previous Failover

ComputerSystem

SpareConfigurationCapabilities ElementCapabilities

StorageExtent

failed

StorageExtent

StorageExtent

StorageRedundacySet

ConcreteDependency

ConcreteDependency

ConcreteDependency

MemberOfCollection

MemberOfCollection

StorageExtent

Spared

AffectedJobElement

AffectedJobElement

ConcreteJob

FailoverStorageExtentsCollection

MemberOfCollection

HostedCollection

StorageExtent

(failed drive)

AffectedJobElement

StorageExtent

IsSpare

IsSpare

MemberOfCollection

StorageVolume,  
LogicalDisk, or 
StoragePool
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1189



 

This Disk Drive Lite Subprofile (8.2.8.14) can be used to supplement this subprofile by explicitly listing
the changes in operational status resulting from the failure of disks and the affect of this failure on the
StorageVolumes or LogicalDisks they support. In conjunction with the Health Package (8.2.1.6) and the
RelatedElementCausingError association, a client can tell, unambiguously the effect and cause of the
storage component failure.

Fail Over is the name of the process by which the capacity provided by one StorageExtent is replaced
by that of the spare StorageExtent.  The block contents of the original StorageExtent is copied to the
replacement StorageExtent.  During this process a ConcreteJob shall be created to represent this
process and report the progress and status of the fail over.

The functionality provided by this subprofile includes:

• The representation of the current state of the spares whether they are not in use, are in use, or in
transition  from not in use to being put into service.  All three of these states can be present at
once.

• The detection of the addition of another spare element and whether the implementation requires
client intervention to assign the spare element.

• Client initiated fail over.  A client may cause the fail over process to start. 

• Client initiated rebuild of Extent data.

• Client initiated check and rebuild of Extent parity.

Durable Names and Correlatable IDs of the Profile
The StorageVolumes are required to provide the correlatable ID, Name. See 6.2.4.2, "Guidelines for
SCSI Logical Unit Names".

Sparing Model
StorageExtents are used as the unit of redundancy in this model. StorageExtents can be said to be a
grouping of capacity.   For the question of what component of the system has failed, the StorageExtent
should be realized by a DiskDrive or some of component to which the failure is meaningful. This model
represents how the capacity is used in the protection of the data. Other models define how
StorageExtents are realized by other components or devices.

A spare is, functionally, the union of the StorageExtent representation and the associated component
representation that realizes the Extent. This subprofile uses this term in this union. 

The sparing model provides for mechanisms to:

• Group StorageExtents that have failed.

• Group new StorageExtents that have been added to the Block Server, but not yet assigned to a
Primordial StoragePool.

• Group spares that can be used to replace failed components. The group of spares may be shared
across StorageVolumes, LogicalDisks, or StoragePools.

• Report what component is being spared or replaced by the spare

• Report the process of a fail over, sparing reconfiguration, storage extent rebuild, or parity check

• Report the capabilities of the Sparing implementation
1190



 Disk Sparing Subprofile
Note: For this version of SMI-S, all control and configuration operations and the grouping of failed and
unassigned extents will be EXPERIMENTAL. Each of these functionality require the use of
EXPERIMENTAL SNIA_ classes.

StorageVolume and LogicalDisk is used to represent that capacity exposed to clients of the Block
Server.

StoragePool is used to represent that grouping of capacity for later allocation to StorageVolumes or
LogicalDisks.

StorageVolume and LogicalDisk is used to represent that capacity exposed to clients of the Block
Server.

StorageExtent is used to represent that capacity on which the StorageVolume or LogicalDisk is based.
The StorageExtent is the representation of a component that can fail can potential cause data loss. It is
likely that these StorageExtents will be primordial StorageExtents. These StorageExtents shall not be
the representation of RAID stripes, but the StorageExtents may be copies of the data. 

The StorageRedundancySet class is used to group spares. There may be a single
StorageRedundancySet per StorageVolume or LogicalDisk. Multiple StorageVolumes or LogicalDisks
may share a single StorageRedudancySet.   In the first case, the spares grouping can be said to be
dedicated to that StorageVolume or LogicalDisk. In the second case, the spares grouping can be said
to be global; that is, the spares will be used for all the StorageVolumes or LogicalDisks that are
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1191



 

associated to a StorageRedundancySet. This is illustrated in Figure 184: "Variations of RS per Storage
Element".

In the case where spares are not dedicated, the decision to group Extents with a given
StorageRedundancySet depends of the rules of the implementation. Some implementations require
particular types of spares to be used together. For example, some implementations may require that a
DiskDrive is spared by another DiskDrive of the same size and/or type. If an implementation supports
such rules then a StorageRedundancySet shall be created per rule. When StorageVolumes or
LogicalDisk are created or modified, the implementation can select the StorageRedundancySet to
associate to the created or modified storage element using on the PackageRedundancy Goal. An
implementation that supports global spares that supported both the 8.2.8.10, "Block Services Package"
and this subprofile, would match this Goal with StorageRedundancySet that had at least that number of
spares.

The “CIM_LogicalDisk” is used to collect the spares that have failed and the Extents that are not yet
assigned to a Primordial StoragePool (PSP). These are the components that need to be diagnosed,
repaired, and, possibly, replaced or assigned to the PSP.

The “CIM_HostedCollection” is used report the capabilities of the implementation. Not all sparing
functionality is required. This class is used to report what optional functionality is implemented. The
properties and methods of the class are defined later. Table 1107, “Supported Methods to Method

Figure 184: Variations of RS per Storage Element

StorageVolume or
LogicalDisk

StorageExtent

StorageExtent

StorageExtent

StorageRedundacySet

ConcreteDependency

ConcreteDependency

ConcreteDependency

MemberOfCollection

MemberOfCollection

MemberOfCollection

StorageVolume or
LogicalDisk

StorageExtent

StorageExtent

StorageExtent

StorageRedundacySet

ConcreteDependency

ConcreteDependency

ConcreteDependency

MemberOfCollection

MemberOfCollection

MemberOfCollection

StorageExtent

StorageExtent

StorageVolume or
LogicalDisk

ConcreteDependency

ConcreteDependency
MemberOfCollection

MemberOfCollection

StorageExtent

failed

StorageExtent

IsSpare

IsSpare

Dedicated

Global

 or       StoragePool
StorageVolume or

LogicalDisk

StorageExtent

StorageExtent

StorageExtent

StorageRedundacySet

ConcreteDependency

ConcreteDependency

ConcreteDependency

MemberOfCollection

MemberOfCollection

MemberOfCollection

StorageVolume or
LogicalDisk

StorageExtent

StorageExtent

StorageExtent

StorageRedundacySet

ConcreteDependency

ConcreteDependency

ConcreteDependency

MemberOfCollection

MemberOfCollection

MemberOfCollection

StorageExtent

StorageExtent

StorageVolume or
LogicalDisk

ConcreteDependency

ConcreteDependency
MemberOfCollection

MemberOfCollection

StorageExtent

failed

StorageExtent

IsSpare

IsSpare

Dedicated

Global

 or       StoragePool

 or       StoragePool

 or       StoragePool
1192



 Disk Sparing Subprofile
Mapping” describes how to map the functionality names in the SupportedSynchronousActions and
SupportedAsynchronousActions arrays.

Table 1107: Supported Methods to Method Mapping

Action Method
Assign Spares SpareConfigurationService.AssignSpares
Unassign Spares SpareConfigurationService.UnassignSpares
Rebuild Storage Extent SpareConfigurationService.RebuildStorageExtent
Check Parity Consistency SpareConfigurationService.CheckParityConsistency
Repair Parity SpareConfigurationService.RepairParity
Fail Over StorageRedundancySet.Failover
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1193



 

Modeling Fail Over, Past and Present
This section illustrates the requirements for modeling spare fail over in three cases, before the failure,
during the fail over, and after the fail over.

Figure 185: "Before Failure" shows a dedicated RedundancySet with a single spare.

Once the failure has occurred, a ConcreteJob is created to represent the fail over process, as shown in
Figure 186: "During Failure". 

The AffectJobElement association shall associate the LogicalDisk or StorageVolume that is being failed
over, the StorageExtent that has failed and is causing the fail over, and the spare StorageExtent. The
associations shall remain for some period of time as per the rules in the 8.2.1.7, "Job Control
Subprofile". For these rules consider the two extents as Input values to the
StorageRedundancySet.Failover( ) method.

Figure 185: Before Failure

Figure 186: During Failure

StorageExtent

StorageExtent

StorageRedundacySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency MemberOfCollection

MemberOfCollection
StorageVolume,  
LogicalDisk, or 
StoragePool

IsSpare

StorageExtent

StorageExtent

StorageRedundacySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency MemberOfCollection

MemberOfCollection
StorageVolume,  
LogicalDisk, or 
StoragePool

ConcreteJob

IsSpare

AffectedJobElement

AffectedJobElement

Spared

Failed
AffectedJobElement
1194



 Disk Sparing Subprofile
This subprofile supports fail over initiated by the implementation or by the client. So that an observer
can tell what this fail over ConcreteJob is doing, the implementation shall model the ConcreteJob as if
another client initiated the fail over, even though the implementation did the initiation. In other words,
the ConcreteJob shall be associated to the StorageRedundancySet associated to the two Extents in
question via the OwningJobElement association. The MethodResult instance, as defined in 8.2.1.7,
"Job Control Subprofile", shall contain the StorageRedundancySet.Failover() method name and
parameters.

Once the fail over is complete, the failed Extent shall no longer have a ConcreteDependency
association to StorageVolume or LogicalDisk that was once based on it. The spare StorageExtent shall
now participate in a MemberOfCollection associated to the StorageRedundancySet instead of the
IsSpare association. The failed over Volume or LogicalDisk shall now participate in
aConcreteDependency relationship with the spare Extent, as illustrated in  Figure 187: "After Failure".

Figure 187: After Failure

StorageExtent

StorageExtent

StorageRedundacySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency
MemberOfCollection

MemberOfCollection
StorageVolume,  
LogicalDisk, or 
StoragePool

failed

MemberOfCollection

FalloverStorageExtentsCollection
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1195



 

EXPERIMENTAL

Sparing Configuration and Control  

All five methods defined or used in this subprofile, AssignSpares, UnassignSpares,
RebuildStorageExtent, CheckParityConsistency, and RepairParity can be initiated by the
implementation or the client. If the method execution is not instantaneous, then information about what
method invocation gave rise to the job follows the rules in 8.2.1.7, "Job Control Subprofile". These
methods can also be initiated by the implementation itself. The implementation shall represent the
execution of the job, job name, and method parameters in said manner even it initiated the Job. If the
implementation supports this functionality but does not allow the client to initiate the action, it shall still
represent the execution of the functionality, as represented by a method execution, in said manner.

The purpose of these rules to allow an observer to tell that, for example, a RepairParity task is
executing.

8.2.8.15.2 Health and Fault Management Considerations
One of the primary reasons for this subprofile to allow a client to determine if the cause of performance
degradation of a block server is caused by spare fail over, volume rebuild, or parity repair. 

There are several failure cases possible with this subprofile:

• There may be failures of the several configuration and control methods of this subprofile for
reasons other than the parameters provided by the client.

The StorageExtents used in the configuration and control methods may be invalid.

8.2.8.15.3 Cascading Conjurations
Not defined in this standard.

8.2.8.15.4 Supported Subprofiles and Packages
Not defined in this standard.

8.2.8.15.5 Methods of the Profile
Assign Spares

uint32 AssignSpares(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StoragePool REF InPool
[In] CIM_StorageExtent REF InExtents[]
[In] CIM_StorageRedundancySet REF RedundancySet)

This method is used to assign spared to a particular RedundancySet. If there is more than one
primordial StoragePool in this implementation, then the arguments to the method shall contain the
references to StorageExtents and references to the primorial StoragePools of which they are
components. This method shall not permit the assignment of spare from more than one Primordial
StoragePool.  This method is more directed at an implementation whose spare Extents are Pyramidal
Extents

This method may return the follow error codes. Many of the return codes a normal return codes., see
8.2.8.10.5.3, "Extrinsic Methods on StorageConfiguration" for a description of the unlisted return codes.
The following documents the return codes unique to this method. This method shall not return vendor
specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

          "4097", "4098", "4099", "4101..32767", "32768..65535" }, 

Values { "Job Completed with No Error", "Not Supported",
1196



 Disk Sparing Subprofile
          "Unknown", "Timeout", "Failed", "Invalid Parameter",

          "In Use", "DMTF Reserved",

          "Method Parameters Checked - Job Started",

          "Multiple Primordial StoragePools", 

          "Spares Are Not Compatible", 

          "StorageExtent is in use", 

          "Method Reserved", "Vendor Specific" }

• 4097, “Multiple Primordial StoragePools”, means the client passed Extents that are components of
more than one Primordial StoragePool.

• 4098, “Spares Are Not Compatible”, means the client pass Extents than may not be used together.
There is no mechanism at this time to tell a client, through the model, what spares can be used
together.

• 4099, “StorageExtent is in use”, means that one or more of the Extents passes are already in use
as a spare or as part of a StorageVolume or LogicalDisk.

UnassignSpares
uint32 UnassignSpares(

[Out] CIM_ConcreteJob REF Job
[In] CIM_StoragePool REF InPool
[In] CIM_StorageExtent REF InExtents[])

This method is used to remove a spare from a StorageRedundancy and also unassign that Extent as a
spare.  The unassigned spare may end up as a member of the FailoverStorageExtentsCollection.  The
rules for the parameters and the same descriptions  of AssignSpares are true for the parameters and
return codes shared between the two method definitions. This method shall not return vendor specific
return codes.

RebuildStorageExtent
uint32 RebuildStorageExtent(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StorageExtent REF Target)

This method is used to rebuild the data distribution on the passed Extent with the other member Extents
associated to a single StorageRedundancySet. If the Job execution fails, then use
ConcreteJob.GetError() to get the CIM_Error that states what the error was.  In this case, the Target
Extent shall report the appropriate, non “OK”, OperationalStatus.

The method may return the following error codes. Many of the return codes a normal return codes., see
8.2.8.10.5.3, "Extrinsic Methods on StorageConfiguration" for a description of the unlisted return codes.
The following documents the return codes unique to this method. This method shall not return vendor
specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

          "4097", "4098", "4101..32767", "32768..65535" }, 

Values { "Job Completed with No Error", "Not Supported",

          "Unknown", "Timeout", "Failed", "Invalid Parameter",

          "In Use", "DMTF Reserved",

          "Method Parameters Checked - Job Started",

          "Target is Not a Member of a StorageRedundancySet",

          "Rebuild already in Progress",

          "Method Reserved", "Vendor Specific" }

• 4097 "Target is Not a Member of a StorageRedundancySet", means that the Extent passed is not
a member of StorageRedundancySet
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1197



 

• 4098 "Rebuild already in Progress", means that a rebuild of the data and/or parity on the passed
Extent or one or more of the other member Extents of the same StorageRedundancySet is already
in progress.

CheckParityConsistency
uint32 CheckParityConsistency(

[Out] CIM_ConcreteJob REF Job
[In] CIM_StorageExtent REF Target)

This method is used to check of the parity distribution on the passed Extent with the other member
Extents associated to a single StorageRedundancySet. If the Job execution fails, then use
ConcreteJob.GetError() to get the Error that states what the error was. In this case, the Target Extent
shall report the appropriate, non “OK”, OperationalStatus. If method execution determines that the
parity is inconsistent, the ConcreteJob shall report successful completion and one of Operational
Statuses of the passed Extent shall be 6 “Error”.

The method may return the following error codes. Many of the return codes a normal return codes., see
8.2.8.10.5.3, "Extrinsic Methods on StorageConfiguration" for a description of the unlisted return codes.
The following documents the return codes unique to this method. This method shall not return vendor
specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

          "4097", "4098", "4099..32767", "32768..65535" }, 

Values { "Job Completed with No Error", "Not Supported",

          "Unknown", "Timeout", "Failed", "Invalid Parameter",

          "In Use", "DMTF Reserved",

          "Method Parameters Checked - Job Started",

          "Consistency Check Already in Progress",
"No Parity to Check",

          "Method Reserved", "Vendor Specific" }

• 4097 "Consistency Check Already in Progress", means that a check and rebuild of the data parity
on the passed Extent or one or more of the other member Extents of the same
StorageRedundancySet is already in progress.

• 4098 "No Parity to Check", means that the member Extents of the StorageRedundancySet are not
build with parity distribution.  Recheck the Virtualization modeled.

RepairParity
uint32 RepairParity(

[In] CIM_ConcreteJob REF Job,
[Out] CIM_StorageExtent REF Target)

This method is used to rebuild of the parity distribution on the passed Extent with the other member
Extents associated to a single StorageRedundancySet. The intent is that this method would be run after
finding out that the CheckParityConsistency) reported that the Extent pair is inconsistent. If the Job
execution fails, then use ConcreteJob.GetError() to get the Error that states what the error was. In this
case, the Target Extents shall report the appropriate, non “OK”, OperationalStatus and HealthState.

The method may return the following error codes. Many of the return codes are normal return codes;
see 8.2.8.10.5.3, "Extrinsic Methods on StorageConfiguration" for a description of the unlisted return
codes. There are no return codes that are unique to this method. This method shall not return vendor-
specific return codes.

EXPERIMENTAL
1198



 Disk Sparing Subprofile
8.2.8.15.6 Client Considerations and Recipes
The sparing implementation may cause the sparing configuration changes (i.e., jobs start and run) on
its own  in response to other clients. 

The number of StorageRedundancySets may change over time because the physical components,
realizing the spare StorageExtent, like disk drives are added or remove from the block server.
Additionally, purely logical realizations of the spare StorageExtent may change as well.   The
StorageRedundancySets themselves once empty may remain in the model, but be empty, or may be
removed from the model entirely for this or other reasons.  

The sparing implementation shall report the correct RedundancyStatus, either ‘Unknown’ 0,
‘Redundant’ 1, or ‘Redundancy Lost’ 2. See Table 1118:, "SMI Referenced Properties/Methods for
CIM_StorageRedundancySet"for details. 

8.2.8.15.6.1 Determine if spare model is constructed correctly
// DESCRIPTION

// The goal of this recipe is to verify that the Sparing model

// is correctly instantiated.

// This type of instance traversal would be used by a client

// to determine if a particular storage element has spare

// coverage.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a storage element, either a StorageVolume,

// a LogicalDisk, or a StoragePool, is previously defined in the 

// $StorageElement-> variable

$SparedExtents->[] =

AssociatorNames($StorageElement->,

“CIM_ConcreteDependency”,

“CIM_StorageExtent”,

“Dependent”, “Antecedent”)

for i in SparedExtents->[] {

#RedundancySets->[] = 

AssociatorNames($SparedExtents->[#i],

“CIM_MemberOfCollection”,

“CIM_StorageRedundancySet”,

“Member”, “Collection”)

// We should find at least one RS per spared SE

if(1 != #RedundancySets.length) {

<ERROR! There should be at least one RedundancySet per spared 
StorageExtent>

}

for j in RedundancySets->[] {

#SpareSEs->[] = 

AssociatorNames($RedundancySets->[#j],

“CIM_IsSpare”,

“CIM_StorageExtent”,

“Dependent”, “Antecedent”) // SRE has the Dependent role

if (0 < #SpareSEs->[]) {
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1199



 

<EXIT: Successfully found at least one spare StorageExtent

}

else {

<ERROR! The SRE associated to the subject StorageElement

 must have at least one Spare>

}

}

}

<ERROR! At least one Spared Extent MUST have been found.  

 If one or more was found, an successful exit would have occured 

 before this point in the code.>

8.2.8.15.7 Registered Name and Version
Disk Sparing version 1.1.0

8.2.8.15.8 CIM Server Requirements

Table 1108: CIM Server Requirements for Disk Sparing

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
1200



 Disk Sparing Subprofile
8.2.8.15.9 CIM Elements

8.2.8.15.9.1 CIM_ConcreteDependency
Class Mandatory: true

8.2.8.15.9.2 CIM_HostedCollection
Associates FailoverStorageExtentsCollection with the Block Server's ComputerSystem instance. 
Class Mandatory: false

Table 1109: CIM Elements for Disk Sparing

Element Name Description
Mandatory Classes

CIM_ConcreteDependency (8.2.8.15.9.1)
CIM_IsSpare (8.2.8.15.9.3) Represents the spare that may be used as a spare for 

any StorageExtents that is not a spare.
CIM_LogicalDisk (8.2.8.15.9.4)
CIM_MemberOfCollection (8.2.8.15.9.5)
CIM_Spared (8.2.8.15.9.6) Represents the relationship between the spare and the 

StorageExtent that has failed and is being spared
CIM_StorageExtent (8.2.8.15.9.7)
CIM_StoragePool (8.2.8.15.9.8) Common elements to Primordial and Concrete Pools.
CIM_StorageRedundancySet (8.2.8.15.9.9)
CIM_StorageVolume (8.2.8.15.9.10) Commonly known as a LUN but without the semantics 

of mapping to a host (which is covered by Masking and 
Mapping).

Optional Classes
CIM_HostedCollection (8.2.8.15.9.2) Associates FailoverStorageExtentsCollection with the 

Block Server's ComputerSystem instance. 
SNIA_FailoverStorageExtentsCollection (8.2.8.15.9.11) The collection of StorageExtents that have failed or are 

not yet assigned to a Primordial StoragePool.
SNIA_SpareConfigurationCapabilities (8.2.8.15.9.12) Instances of this class define the behavior supported by 

this sparing implementation.
SNIA_SpareConfigurationService (8.2.8.15.9.13) Control the spares configuration and control of Storage-

Extent data and parity consistency.

Table 1110: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement The spare StorageExtent. 
Dependent CIM_ManagedElement The storage element being spared. 

Table 1111: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1201



 

8.2.8.15.9.3 CIM_IsSpare
Represents the spare that may be used as a spare for any StorageExtents that is not a spare.
Class Mandatory: true

8.2.8.15.9.4 CIM_LogicalDisk
Class Mandatory: true

Dependent CIM_SystemSpecificColl
ection

Table 1112: SMI Referenced Properties/Methods for CIM_IsSpare

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement
Dependent CIM_RedundancySet
SpareStatus uint16
FailoverSupported uint16

Table 1113: SMI Referenced Properties/Methods for CIM_LogicalDisk

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifier
Name string OS Device Name
NameFormat uint16 Format for name
ExtentStatus uint16[]
OperationalStatus uint16[]
BlockSize uint64
NumberOfBlocks uint64 The number of blocks that make of this 

LogicalDisk.
IsBasedOnUnderlyingRedun-
dancy

boolean

NoSinglePointOfFailure boolean
DataRedundancy uint16
PackageRedundancy uint16
DeltaReservation uint8

Optional Properties/Methods
ElementName string User-friendly name

Table 1111: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
1202



 Disk Sparing Subprofile
8.2.8.15.9.5 CIM_MemberOfCollection
Class Mandatory: true

8.2.8.15.9.6 CIM_Spared
Represents the relationship between the spare and the StorageExtent that has failed and is being spared
Class Mandatory: true

8.2.8.15.9.7 CIM_StorageExtent
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.15.9.8 CIM_StoragePool
Common elements to Primordial and Concrete Pools.
Class Mandatory: true

Table 1114: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The StorageRedundancySet 
Member CIM_ManagedElement The storage element being spared. 

Table 1115: SMI Referenced Properties/Methods for CIM_Spared

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement
Dependent CIM_ManagedElement

Table 1116: SMI Referenced Properties/Methods for CIM_StorageExtent

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
HealthState uint16 Reports the state of the StorageExtents 

underlying component.
OperationalStatus uint16[] Reports the operational status of the 

StorageExtent.

Table 1117: SMI Referenced Properties/Methods for CIM_StoragePool

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
ElementName string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1203



 

8.2.8.15.9.9 CIM_StorageRedundancySet
Class Mandatory: true

8.2.8.15.9.10 CIM_StorageVolume
Commonly known as a LUN but without the semantics of mapping to a host (which is covered by Masking and 
Mapping).
Class Mandatory: true

PoolID string A unique name in the context of this 
system that identifies this Pool. 

Table 1118: SMI Referenced Properties/Methods for CIM_StorageRedundancySet

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
RedundancyStatus uint16 The redundancy status shall be either 

'Unknown' 0,'Redundant' 2, or 'Redun-
dancy Lost' 3. The implementation 
should report 2 or 3 most of the time, 
although it may report 0 sometimes. It 
should report 2 when there is at least 
one spare per the StorageRedundancy-
Set. It should report 3 when there are 
no more spares (via IsSpare associa-
tion) per the StorageRedundancySet. 

TypeOfSet uint16[] 'Limited Sparing', 5, is the type of spar-
ing supported in the subprofile

MinNumberNeeded uint32
MaxNumberSupported uint32
Failover() For block servers that do not do auto-

matically fail over failed components, 
this method is used to cause the fail 
over to occur. More commonly, block 
server implementations automatically 
maintain the availability of their capac-
ity. In this case, the method would only 
be used to cause a fail back to occur, if 
that also does not occur automatically.

Table 1119: SMI Referenced Properties/Methods for CIM_StorageVolume

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifier

Table 1117: SMI Referenced Properties/Methods for CIM_StoragePool

Property Flags Type Description & Notes
1204



 Disk Sparing Subprofile
8.2.8.15.9.11 SNIA_FailoverStorageExtentsCollection
The collection of StorageExtents that have failed or are not yet assigned to a Primordial StoragePool.
Class Mandatory: false
No specified properties or methods.

8.2.8.15.9.12 SNIA_SpareConfigurationCapabilities
Instances of this class define the behavior supported by this sparing implementation.
Class Mandatory: false

Name string VPD 83 identifier for this volume (ide-
ally a LUN WWN)

NameFormat uint16 Format for name
ExtentStatus uint16[]
OperationalStatus uint16[]

Optional Properties/Methods
ElementName string User-friendly name

Table 1120: SMI Referenced Properties/Methods for SNIA_SpareConfigurationCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

SupportedAsynchronousActions N uint16[] Enumeration indicating what opera-
tions will be executed as asynchronous 
jobs. If an operation is included in both 
this and SupportedSynchronousAc-
tions then the underlying implementa-
tion is indicating that it may or may not 
create

SupportedSynchronousActions N uint16[] Enumeration indicating what opera-
tions will be executed without the cre-
ation of a job. If an operation is 
included in both this and Supporte-
dAsynchronousActions then the under-
lying instrumentation is indicating that it 
may or may not create a job.

SystemConfiguredSpares boolean Set to true if this storage system auto-
matically configures spares. If set to 
false, the client shall use the extrinsic 
methods AssignSpares and Unas-
signSpares.

AutomaticFailOver boolean Set to true if this storage system auto-
matically fails over. If set to false, the 
client shall use the FailOver extrinsic 
method, although that method may not 
be supported. 

Table 1119: SMI Referenced Properties/Methods for CIM_StorageVolume

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1205



 

8.2.8.15.9.13 SNIA_SpareConfigurationService
Control the spares configuration and control of StorageExtent data and parity consistency.
Class Mandatory: false

8.2.8.15.10 Related Standards

MaximumSpareStorageExtents uint16 States the maximum number of Storag-
eExtents that can be configured as 
spares for the entire block server. A 0 
means that all primordial StorageEx-
tents can be configured as spares.

Table 1121: SMI Referenced Properties/Methods for SNIA_SpareConfigurationService

Property Flags Type Description & Notes
Mandatory Properties/Methods

AssignSpares()
UnassignSpares()
RebuildStorageExtent()
CheckParityConsistency()
RepairParity()

Table 1122: Related Standards for Disk Sparing

Specification Revision Organization
CIM Infrastructure 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF

Table 1120: SMI Referenced Properties/Methods for SNIA_SpareConfigurationCapabilities

Property Flags Type Description & Notes
1206



 Extent Composition Subprofile
8.2.8.16 Extent Composition Subprofile

8.2.8.16.1 Description
The Extent Composition Subprofile allows an implementation that supports the Block Services package
to optionally provide an abstraction of how it virtualizes exposable block storage elements from the
underlying Primordial storage pool. The abstraction is presented to the client as a representative
hierarchy of extents. These extents are instances of CompositeExtents and StorageExtents linked by a
combination of CompositeExtentBasedOn and BasedOn associations. The foundation of the hierarchy
is a set of Primordial extents.

This subprofile is used optionally with the Array, Virtualization, Self-Contained NAS, NAS Head, and
Volume Management profiles.

A Primordial storage extent can represent a Disk Drive in the Array or Self-contained NAS, a
downstream virtualized Volume used by the Virtualizer or NAS Head profiles, or a OS Logical Disk in
the Volume Management profile.

An exposable block storage element as used in this subprofile is defined as a Storage Volume or a
Logical Disk.

In the presented hierarchy each extent (the dependent) is formed from those that it “precede” it (the
antecedents) by a process of either decomposition or composition. 

Decomposition
Decomposition is used to allocate space from an antecedent extent, in order to form a new dependent
extent. This allocation may be partial or complete consumption. Complete consumption is the
degenerate case in which all space in the antecedent extent is used. In this case the decomposed
dependent extent may be either modeled even though it is one to one with the antecedent extent or
omitted and the antecedent extent used in its stead.

Composition
Composition is used to form an a dependent extent from antecedent extents for the purpose of either
concatenating the antecedent blocks to achieve a size goal, or to achieve a Quality Of Service goal
such as mirroring the antecedent extents for redundancy, striping the antecedent extents for
performance, or striping the antecedent extents with the addition of parity to achieve redundancy.

These extent “productions” can be assembled in a multi-layer hierarchy.

8.2.8.16.1.1 Model Element Summary
This subprofile uses the following CIM Classes:

LogicalDisk & StorageVolume - These are used to model the exposable block storage element.

StorageExtent - Used to represent the decomposition (partial allocation) of an Antecedent extent.

CompositeExtent - Used to represent the composition of several antecedent extents into a virtualized
set of blocks with desired size and Quality-Of-Service.

BasedOn - Used to associate a Dependent and Antecedent extent in the subprofile hierarchy for both
composition and decomposition. It is also used in one special case as a one-to-one (neither composing
or decomposing), always associating the StorageVolume or LogicalDisk to the antecedent
CompositeExtent. This is because, as a sibling of StorageExtent and LogicalDisk, CompositeExtent
cannot be exposed directly.

CompositeExtentBasedOn - A subclass of BasedOn that is used in a composition production when the
Dependent is a CompositeExtent which is describing striping; it contains Stripe Depth information.
Stripe Depth is the number of blocks written to an Antecedent extent before moving on to the next
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1207



 

extent Although this property is on the association class, its values shall be the same for each instance
of the association with the same Dependent CompositeExtent.

ConcreteComponent - Used to associate extents that are playing the Pool Component role to their
parent StoragePool (See “Component Extents” in 8.2.8.16.1.2).

StoragePool and AllocatedStoragePool are shown in instance diagrams for context but are part of the
Block Service package Read Only sub-package.

Refer to the section “Required CIM Elements” for detailed class descriptions.

8.2.8.16.1.2 Relation to other Packages and Subprofiles
Block Services StoragePool hierarchy.
The Block Services package defines the model for the hierarchy of pools from the exposable storage
element to the Primordial Pool. The hierarchy defined in this subprofile parallels that pool hierarchy and
is layered so that the virtualization can be presented within the pool level in which it actually takes
place. 

Component Extents
Component Extents of a pool are the most antecedent extents in the pool; they are also the only extents
that are directly manageable by the methods in the Block Services Package. They are also the only
extents that figure into the reconciliation of managed space in the pool (see “Block Services Extent
Conservation” in 8.2.8.16.1.2).

Although a given implementation may choose a low level (i.e., detailed) or high-level presentation of
how it virtualizes a storage element from a pool, or how space in a pool is itself virtualized, the Pool
Component extents that are part of an exposable block storage element’s hierarchy shall be modeled
along with their associations to the parent pool.

Block Services Extent Conservation
The Block Services package describes the concept of Extent Conservation, which describes the result
of allocating storage from Pool Component extents using “Remain Space Extents”. These extents are
not modeled by the Extent Composition subprofile, they are discoverable by the GetAvailableExtents
method in Block Services.

Block Services Common RAID Levels
The Block Services Package describes a set of RAID Levels and in addition, properties on
StorageSetting such as ExtentStripeLength and UserDataStripeDepth which allow creation of a subset
of those RAID levels, using CreateOrModifyElementFromElements.

However, the Extent Composition subprofile is capable of describing general organizations, such as
heterogeneous, multi-layer RAID such as can be create by the Volume Management profile. An
example of this would be a RAID 5 mirrored against a RAID 0, a RAID (5,0)+1. Another example would
be a three layer RAID organization such as a RAID 10 where the bottom layer RAID 1 members were
concatenations of available extents.
1208



 Extent Composition Subprofile
8.2.8.16.1.3 Scenarios
The following example scenarios are common abstractions of the use-cases that were used when this
subprofile was being defined. The scenarios are not intended to cover all possible variations of the use
of Extent Composition.

Volume Composition
Figure 188: "Volume Composition from General QOS Pool" shows extent composition when a single
RAID QOS/Level is applied directly to the construction of a StorageVolume. The Storage Volume or
Logical Disk and the underlying CompositeExtent represent the same virtual extent and range of
blocks; The initial BasedOn association between them is a one-to-one “dummy” association. The
Storage Volume and Logical Disk classes do not have the necessary properties to describe the RAID
information and the CompositeExtent which is a sibling class of StorageVolume and LogicalDisk, can
not be directly exposed. This Based on association does not represent composition or decomposition,
but the main recipe (see 8.2.8.16.6.1) for this subprofile makes use of the decomposition function (i.e.,
complete consumption) to make this initial traversal.

Figure 188: Volume Composition from General QOS Pool

Concrete:
StorageExtent

ConcretePool:
StoragePool

ConcreteComponent

StorageVolume/
LogicalDisk

AllocatedFromStoragePool

CompositeExtent

BasedOn/
CompositedExtentBasedOn

PartialAllocOfConcrete:
StorageExtent

BasedOn

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

ConcreteComponent
BasedOn

StorageSetting
ElementSettingData

Primordial:
StorageExtent

Concrete:
StorageExtent

BasedOn

PartialAllocOfConcrete:
StorageExtent ...

BasedOn

...

...

BasedOn
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1209



 

Figure 189: "Single QOS Pool Composition (RAID Groups)" shows a single composition (such as a
RAID 5 or RAID 1). Not shown is the scenario where there may be two or more such back to back
productions (such as a RAID 10). Also not shown is the scenario where the two productions may be in
different concrete pools in the hierarchy. A RAID 10 Volume may be constructed as a RAID 0
composition from a concrete pool that is itself a RAID 1 pool (see the “Pool Composition” scenario
8.2.8.16.1.3 )

In this scenario, note that the extents below the StorageVolume and the Component Extents are not
part of the pool, but allocated from it.

In fact this StorageVolume and its companion CompositeExtent could be composed from member
extents (labeled PartialAllocOfConcrete in the diagram) from different pools.

Pool Composition
Certain pools can be created or modified to contain one or more extents each with a single specific
quality of service. These extents are known as Raid Groups. The bound space in each of these RAID
Groups is represented by this sub-profile as a single CompositeExtent at the top of an extent sub-
1210



 Extent Composition Subprofile
hierarchy in that pool. Volumes created from this type of Pool are partially allocated (decomposed) from
the CompositeExtent playing the role of the RAIDGroup.

Figure 189: Single QOS Pool Composition (RAID Groups)

ConcretePool:
StoragePool

ConcreteComponent

StorageVolume

AllocatedFromStoragePool

RAIDGroup:
CompositeExtent

BasedOn/
CompositedExtentBasedOn

BasedOn

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

ConcreteComponent

StorageSetting
ElementSettingData

Primordial:
StorageExtent ...

Complete 
Consumption of 

Primordials
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1211



 

Figure 190: "SIngle QOS Pool Composition - Two Concretes" extends this scenario by allocating a child
concrete pool from the RAID Group instead of a Volume and then allocating the Volume from the child
concrete. In this example the child pool contains a single component extent that has a single Quality of
Service (that of the parent RAID Group concrete pool). The Storage Volume or Logical Disk is allocated
or decomposed directly from the pool component extent. 

Example RAID Compositions from Block Services
Table 1123, “Supported Common RAID Levels” is an abridged version of Table 1003, “RAID Mapping
Table” in Block Services. Table 1003 describes the RAID Levels commonly used at the time this version
of SMI-S was released. Table 1123 lists the subset of those RAID Levels that can be modeled by using
the Extent Composition subprofile, and the Properties used to distinguish them.

Figure 190: SIngle QOS Pool Composition - Two Concretes

ConcretePool:
StoragePool

ConcreteComponent

AllocatedFromStoragePool

RAIDGroup:
CompositeExtent

BasedOn/
CompositedExtentBasedOn

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

ConcreteComponent

Primordial:
StorageExtent ...

ConcretePool:
StoragePool

PartialAllocOfConcrete:
StorageExtent

BasedOn

ConcreteComponent

BasedOn

StorageVolume

AllocatedFromStoragePool

Complete 
Consumption of 

Primordials
1212



 Extent Composition Subprofile
Following the table are some example instance diagrams, showing the use of CompositeExtent,
StorageExtent, BasedOn and CompositeExtentBasedOn to represent the construction of many of the
RAID levels. In these cases there will be at most, two levels of CompositeExtent and
CompositeExtentBasedOn/BasedOn. 

In complex compositions, such as RADI 10, there is no intermediate decomposition modeled; each
extent Antecedent to the top level CompositeExtent is itself a CompositeExtent.

Table 1123: Supported Common RAID Levels

RAID Level Package
Redundancy

Data
Redundancy

Extent
Stripe
Length

User Data
Stripe
Depth

JBOD 0 1 1 Null
0 (Striping) 0 1 2 - n Vendor 

Dependent
1 1 2 - n 1 Null
10 1 2 - n 2 - n Vendor

Dependent
0+1 1 2 - n 2 - n Vendor

Dependent
3 or 4 1 1 3 - n Vendor

Dependent
4DP 2 1 4 - n Vendor

Dependent
5 (3/5) 1 1 3 - n Vendor

Dependent
6, 5DP 2 1 4 - n Vendor

Dependent
15 2 2 - n 3 - n Vendor

Dependent
50 1 1 3 - n Vendor

Dependent
51 2 2 - n 3 - n Vendor

Dependent
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1213



 

8.2.8.16.1.4 JBOD (Concatenation)
Figure 191: "Concatenation Composition" shows an partial instance diagram for a JBOD Volume or
Pool, in which the Antecedent Extents are concatenated.

8.2.8.16.1.5 RAID 0 (Striping)
Figure 192: "RAID 0 Composition" shows an partial instance diagram for a RAID 0 Volume or Pool.

Figure 191: Concatenation Composition

Figure 192: RAID 0 Composition

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = true
ExtentStripeLength = 1
NumberOfBLocks = x

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress StorageExtent

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth
1214



 Extent Composition Subprofile
8.2.8.16.1.6 RAID 1
Figure 193: "RAID 1 Composition" shows an partial instance diagram for a RAID 1 Volume or Pool.

8.2.8.16.1.7 RAID 10
Figure 194: "RAID 10 Composition" shows an partial instance diagram for a RAID 10 Volume or Pool. In
this example the Data and Package Redundancy reflect the Quality of Service of the combined RAID
Level, not just the top level composition which by itself is a non-redundant stripeset. That is, the top

Figure 193: RAID 1 Composition

StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

StorageExtent

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1215



 

level is a RAID 0, but the DataRedundancy value for the corresponding CompositeExtent is 2, reflecting
two complete copies of the data. 

Figure 194: RAID 10 Composition

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

BasedOn
OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress
1216



 Extent Composition Subprofile
8.2.8.16.1.8 RAID 0+1
Figure 195: "RAID 0+1 Composition" shows an partial instance diagram for a RAID 0+1 Volume or Pool

Figure 195: RAID 0+1 Composition

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1217



 

8.2.8.16.1.9 RAID 4 or 5
Figure 196: "RAID 4, 5 Composition" shows a partial instance diagram for a RAID 4 or 5 Volume or
Pool.

Figure 196: RAID 4, 5 Composition

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth
1218



 Extent Composition Subprofile
8.2.8.16.1.10 RAID 6, 5DP, and 4DP
Figure 197: "RAID 6, 5DP, 4DP" shows a partial instance diagram for a RAID 6, 5DP, or 4DP Volume or
Pool. Note that the PackageRedundancy is 2, indicating that two of the antecedent extents can fail
simultaneously without loss of data. Four extents are shown, the minimum required for these double
parity RAID organizations.

Figure 197: RAID 6, 5DP, 4DP

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 2
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 4
NumberOfBLocks = x

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent

CompositeExtentBasedOn

OrderIndex = 4
StartingAddress
EndingAddress
UserDataStripeDepth
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1219



 

8.2.8.16.1.11 RAID 15
Figure 198: "RAID 15 Composition" shows an partial instance diagram for a RAID 15 Volume or Pool. In
this example the Data and Package Redundancy reflect the Quality of Service of the combined RAID
Level, not just the top level composition which by itself is a simple RAID 5.

NOTE: only CompositeExtent members 1 and 3 of the Raid 5 layer are shown.

Figure 198: RAID 15 Composition

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy= true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 2
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundanc= true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x

BasedOn
OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

BasedOn
OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress
1220



 Extent Composition Subprofile
8.2.8.16.1.12 RAID 50
Figure 199: "RAID 50 Composition" shows an partial instance diagram for a RAID 50 Volume or Pool. In
this example the Data and Package Redundancy reflect the Quality of Service of the combined RAID
Level, not just the top level composition which by itself is a non-redundant stripeset.

NOTE: In the Raid 5 layer, CompositeExtent member 2 in each stripe member is not shown.

Figure 199: RAID 50 Composition

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1221



 

8.2.8.16.1.13 RAID 51
Figure 200: "RAID 51 Composition" shows an partial instance diagram for a RAID 51 Volume or Pool. In
this example the Data and Package Redundancy reflect the Quality of Service of the combined RAID
Level, not just the top level composition which by itself is a simple mirror. That is, the top level is a RAID
1, but the PackageRedundancy is 2, indicating the QOS for the entire hierarchy.

Note: In the Raid 5 layer, CompositeExtent member 2 in each mirror is not shown.

8.2.8.16.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.8.16.3 Cascading Considerations
None.

8.2.8.16.4 Supported Subprofiles and Packages
None.

Figure 200: RAID 51 Composition

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 2
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth
1222



 Extent Composition Subprofile
8.2.8.16.5 Methods of the Profile
None.

8.2.8.16.6 Client Considerations and Recipes

8.2.8.16.6.1 Traverse the virtualization hierarchy of a StorageVolume or LogicalDisk

// DESCRIPTION

// 

// This recipes defines a mechanism for traversing the extent hierarchy between

// the Exposable Block Storage Element and the Primordial Extents it makes use 

// of, determining the RAID level structure, Concrete and Primordial pool 

// membership.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The instance name for an exposable block storage element (e.g. 

// StorageVolume, LogicalDisk) of interest has been previously identified as 

// $BlockElement->.

// This function determines if an Extent is a Primary(non-remaining) Component

// of a Pool.

//

sub boolean IsPrimaryComponent(REF $TargetExtent->) {

$Pools->[] = AssociatorNames($TargetExtent->,

“CIM_ConcreteComponent”,

“CIM_StoragePool”,

“PartComponent”,

“GroupComponent”)

if ($Pools->[] != null && $Pools->[].length == 1) {

    // This Extent is a Component Extent of either a Concrete 

    // or Primoridal pool

    return true

}

else

    return false

}

// This function determines the RAID Level or Quality of Service of a 

// CompositeExtent and then recursively traverses the hierarchy beneath it.

//

sub void traverseComposition(REF $Composite->) {
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1223



 

    // See if this composite is a Primary(non-remaining) Component

    // Extent of a Pool (for information only.)

#PrimaryComponent = &IsPrimaryComponent($Composite->)

    // Get the instances of the associations in which this Extent is the 

    // Dependent reference. The association instances retrieved should be 

    // either BasedOn or CompositeExtentBasedOn.

    $Associations[] = References($Composite->,

    NULL,

    “Dependent”,

    false,

    false,

    NULL)

    // Now get the underlying extents

    $TargetExtents->[] = AssociatorNames($Composite->,

    Associations[0].getClassName(),

    NULL,

    “Dependent”,

    “Antecedent”)

    // Examine the QOS of the current level’s Composite Extent

    $CompositeExtent = GetInstance($Composite->,

    false,

    false,

    false,

    {“IsConcatenated”, “ExtentStripeLength”, 

    “IsBasedOnUnderlyingRedundancy”})

    if ($CompositeExtent.IsConcatenated == false)

    && ($CompositeExtent.ExtentStripeLength > 1)) {

        // The TargetExtents are striped together.

        //

        // If the provider is surfacing a CIM_CompositeExtentBasedOn

        // get the Stripe Depth from the first association.

        // The assumption here is that this property is 

    // the same for each association instance.

    #StripeDepth = 0;

        if (($Associations[0] ISA CIM_CompositeExtentBasedOn) {

            #StripeDepth = $Associations[0].UserDataStripeDepth

        }

    // Inspect the RAID level.

    #RAID = 0

    if ($CompositeExtent.IsBasedOnUnderlyingRedundancy) {

        #RAID = 5
1224



 Extent Composition Subprofile
    }

    } else {

    // This is either a Mirror or a Concatenation

    if (($CompositeExtent.IsBasedOnUnderlyingRedundancy == true)

    && ($CompositeExtent.IsConcatenated == false)

    && ($CompositeExtent.ExtentStripeLength == 1)) {

        // The TargetExtents are mirrored together,

        // This level is a RAID 1

    } else if (($CompositeExtent.IsBasedOnUnderlyingRedundancy == false)

    && ($CompositeExtent.IsConcatenated == true)

    && ($CompositeExtent.ExtentStripeLength == 1)) {

            // The TargetExtents are concatenated together,

            // This level is a JBOD.

        } else {

            <ERROR! Illegal combination of property values; does not

                correspond to supported composition type.>

        }

    }

 

// Now for each underlying extent at this level, traverse the sub-tree 

// it is the sub-root of. If the extent is a CompositeExtent, then this 

// is part of a complex RAID level; recursively invoke the Composition

// Algorithm. Otherwise it is just a regular StorageExtent and thus

// either a Primoridal or decomposed from an Antecedent, so invoke the

// recursive Decomposition Algorithm.

for (#i in $TargetExtents->[]) {

    if ($TargetExtents->[#i] ISA CIM_CompositeExtent) {

    &traverseComposition($TargetExtents->[#i])

        } else {

    &traverseDecomposition($TargetExtents->[#i])

    }

    }

    

}

// This function recursively traverses the hierarchy below a non-Composite 

// Storage Extent.

sub void traverseDecomposition(REF $SubjectExtent->) {

    // See if this composite is a Primary(non-remaining) Component

    // Extent of a Pool (for information only.)

#PrimaryComponent = &IsPrimaryComponent($SubjectExtent->)

// Check here to see if we have reached the leaves of the hierarchy

    $SubjectExtent = GetInstance($SubjectExtent->,

    false,

    false,
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1225



 

    false,

    {“Primordial”})

if ($SubjectExtent.Primordial == true) {

    // Recursion ends with each Primordial Extent.

    <EXIT: Recursion ends with each Primordial Extent.>

} else {

        // The Subject Extent is allocated partially or in full from the

        // Antecedent Extent, so a single BasedOn is expected.

        $TargetExtents[] = Associators($SubjectExtent->,

        “CIM_BasedOn”,

        “CIM_StorageExtent”,

        “Dependent”,

        “Antecedent”,

        false,

        false,

        {“Primordial”})

        // Since the Subject Extent is allocated from the Antecedent, there can 

        // only be one Antecedent.

        if ($TargetExtents[] == null || $TargetExtents[].length != 1) {

        <ERROR! Extent allocated from multiple Antecedents>

        }

        $TargetExtent = $TargetExtents[0]

 

        if ($TargetExtent ISA CIM_CompositeExtent) {

        // This is a Composite Extent representing a RAID Level. Since we 

        // encountered the Composite in a decomposition, the

        // Dependent/Antecedent relationship falls into one of the

        // following scenarios:

        // 

        // o The Subject Extent is a StorageVolume that is one-to-one with 

        //   the Target Composite Extent.

        //

        // o The Subject Extent is a StorageVolume partially allocated from 

        //   the Target Composite Extent, where the Composite is a RAID Group.

        //

        // o The Subject Extent is a ComponentExtent of a Concrete pool and is

        //  partially allocated from the Target Composite Extent where the

        //  Composite is a RAID Group.

        //

        // Call the (recursive) function to analyze the sub-hierarchy 

        // composed by the Target Extent.

        //

        &traverseComposition($TargetExtent.getObjectPath())

        } else {
1226



 Extent Composition Subprofile
        // The Antecedent is a regular StorageExtent and was not 

        // Primordial, so it must be in turn a dependent decomposed

        // from an Antecedent, so invoke 

        // ourselves recursively.

        &traverseDecomposition($TargetExtent.getObjectPath())

        }

     

    }

}

// MAIN

// Since the exposable block element is either one-to-one with the initial 

// CompositeExtent, or a partial allocation of it (in the case of a RAID Group),

// decompose the block hierarchy.

//

&traverseDecomposition($BlockElement->)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1227



 

8.2.8.16.6.2 Find the Primordial Extents used by a Storage Volume or Logical Disk
A storage administrator may want the information provided by this recipe for several reasons:

Failure Exposure: To understand what Drive or virtualized Volume failures may affect the health of a
block storage element, or conversely what block storage elements are affected by a given Drive failure. 

Performance and Loading: To avoid locating frequently accessed Volumes on the same Disk Drive.

Utilization: To avoid locating portions of too many volumes on the same Drive while leaving other drives
under utilized.

// DESCRIPTION

// 

// This recipe defines a mechanism for finding the Primordial Storage Extents 

// used by a Storage Volume in an Array or Virtualizer, or a LogicalDisk in

// a Volume Manager or NAS system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The instance name for an exposable block storage element (e.g. 

// StorageVolume, LogicalDisk) of interest has been previously identified as 

// $BlockElement->.

// This function recursively searches for the Primordial Storage Extents that

// comprise the specified block storage element. 

sub $PrimordialExtents[] findPrimordials(REF $SubjectExtent->) {

    // Get the Extents that are Antecedent to the specified Extent.

    //

    $TargetExtents[] = Associators($SubjectExtent->,

    "CIM_BasedOn",

    "CIM_StorageExtent",

    "Dependent",

    "Antecedent",

    false,

    false,

    {"Primordial"})

    // Examine each Extent at the next level to determine if its Primordial.

    #i = 0

    for (#j in $TargetExtents[]) {

if ($TargetExtents[#j].Primordial == true) {

    // The Extent is Primordial, the recursion ends here. Add it to 

    // the group of Primordials gathered at this level or below.

    $PrimordialExtents[#i++] = TargetExtents[j]

} else {

    // The Extent is not Primordial, but it must be based on a

    // sub-hierarchy in which each leaf is a Primordial, so call this 

    // function Recursively.
1228



 Extent Composition Subprofile
    $SubordinatePrimordialExtents[] = 

    &findPrimordials(TargetExtents[#j].getObjectPath())

    if ($SubordinatePrimordialExtents[] == null

    || $SubordinatePrimordialExtents[].length == 0) {

<ERROR! Found a Leaf Extent that is not a Primordial>

    }

    for (#k in $SubordinatePrimordialExtents[]) {

// The recursion delivers the bottom for each branch

// These need to be collected and added into the whole

$PrimordialExtents[#i++] = SubordinatePrimordialExtents[#k]

    }

}

    }

    return ($PrimordialExtents[])

}

// MAIN

// Make initial call to the recursive function.

$PrimordialExtents[] = &findPrimordials($BlockElement->)

if ($PrimordialExtents[] == null || $PrimordialExtents[].length == 0) {

    <ERROR! No Primordials Found>

} else {

    <EXIT: Primordial Extents accumulated>

}

8.2.8.16.7 Registered Name and Version
Extent Composition version 1.1

8.2.8.16.8 CIM Server Requirements

Table 1124: CIM Server Requirements for Extent Composition

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1229



 

8.2.8.16.9 CIM Elements

8.2.8.16.9.1 CIM_BasedOn
Used to associate a Dependent and Antecedent extent in the subprofile hierarchy for both composition and decom-
position. It is also used in one special case as a one-to-one (neither composing or decomposing) , always associ-
ating the StorageVolume or LogicalDisk to the antecedent CompositeExtent. This is because, as a sibling of 
StorageExtent and LogicalDisk, CompositeExtent cannot be exposed directly.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 1125: CIM Elements for Extent Composition

Element Name Description
Mandatory Classes

CIM_BasedOn (8.2.8.16.9.1) Used to associate a Dependent and Antecedent extent 
in the subprofile hierarchy for both composition and 
decomposition. It is also used in one special case as a 
one-to-one (neither composing or decomposing) , 
always associating the StorageVolume or LogicalDisk to 
the antecedent CompositeExtent. This is because, as a 
sibling of StorageExtent and LogicalDisk, CompositeEx-
tent cannot be exposed directly.

CIM_CompositeExtent (8.2.8.16.9.2) Used to represent the composition of several anteced-
ent extents into a range of blocks with desired size or 
Quality-Of-Service.

CIM_CompositeExtentBasedOn (8.2.8.16.9.3) A subclass of BasedOn that is used in a composition 
production when the Dependent is a CompositeExtent 
which is describing striping; it contains Stripe Depth and 
Extent ordering information.

CIM_ConcreteComponent (8.2.8.16.9.4) Used to associate extents that are playing the Pool 
Component role to their parent StoragePool.

CIM_StorageExtent (8.2.8.16.9.5) Used to represent the decomposition (partial allocation) 
of an Antecedent extent.

Table 1126: SMI Referenced Properties/Methods for CIM_BasedOn

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_StorageExtent
Dependent CIM_StorageExtent
OrderIndex uint16 When the association is used in a con-

catenation composition, indicates the 
order in which the extents (and thus 
their block ranges) are concatenated.

Optional Properties/Methods
StartingAddress uint64
EndingAddress uint64
1230



 Extent Composition Subprofile
8.2.8.16.9.2 CIM_CompositeExtent
Used to represent the composition of several antecedent extents into a range of blocks with desired size or Quality-
Of-Service.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.16.9.3 CIM_CompositeExtentBasedOn
A subclass of BasedOn that is used in a composition production when the Dependent is a CompositeExtent which 
is describing striping; it contains Stripe Depth and Extent ordering information.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

Table 1127: SMI Referenced Properties/Methods for CIM_CompositeExtent

Property Flags Type Description & Notes
Mandatory Properties/Methods

Name CD string
Primordial boolean Always False.
SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
ExtentStatus uint16[]
DataRedundancy uint16
PackageRedundancy uint16
NoSinglePointOfFailure boolean
IsBasedOnUnderlyingRedun-
dancy

boolean

IsConcatenated boolean
ExtentStripeLength uint64
NumberOfBlocks uint64 If the extent maps to a hardware 

extent, the number of blocks as 
reported by the hardware.

ConsumableBlocks uint64 The number of usable blocks.
BlockSize uint64

Table 1128: SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_StorageExtent
Dependent CIM_CompositeExtent
OrderIndex uint16 Indicates the order in which the extents 

have blocks striped onto them.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1231



 

8.2.8.16.9.4 CIM_ConcreteComponent
Not part of subprofile when used by Volume Manager profile

Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.16.9.5 CIM_StorageExtent
Used to represent the decomposition (partial allocation) of an Antecedent extent.
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

UserDataStripeDepth uint64 The number of blocks written to an 
Antecedent extent before moving on to 
the next extent Although this property is 
on the association class, its values 
SHALL be the same for each instance 
of the association with the same 
Dependent CompositeExtent.

Optional Properties/Methods
StartingAddress uint64
EndingAddress uint64

Table 1129: SMI Referenced Properties/Methods for CIM_ConcreteComponent

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_ManagedElement
PartComponent CIM_ManagedElement

Table 1130: SMI Referenced Properties/Methods for CIM_StorageExtent

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string
ExtentStatus uint16[]
NumberOfBlocks uint64 If this extent maps to hardware, the 

number of blocks as reported by the 
hardware.

ConsumableBlocks uint64 The number of usable blocks.
BlockSize uint64

Table 1128: SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn

Property Flags Type Description & Notes
1232



 Extent Composition Subprofile
8.2.8.16.10 Related Standards

Primordial boolean This property is set to true if the Storag-
eExtent represents the        base of the 
StorageExtent hierarchy. In other 
words, the StorageExtents that are 
most        Antecedent. For Arrays, these 
StorageExtents are generally related 
via        MediaPresent with DiskDrives, 
see Disk Drive Lite Subprofile. For        
Storage Virtualizer, these Extents are 
generally associated to LUNs, see       
Storage Virtualizer Subprofile. Other-
wise, this property should be set        to 
false.

Table 1131: Related Standards for Extent Composition

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
Representation of CIM using XML 2.2.0 DMTF
CIM Schema 2.11.0 DMTF

Table 1130: SMI Referenced Properties/Methods for CIM_StorageExtent

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1233



 

1234



 Extent Mapping Subprofile (DEPRECATED)
DEPRECATED

8.2.8.17 Extent Mapping Subprofile (DEPRECATED)
The functionality of the Extent Mapping Subprofile (in IS24775-2006, Storage Management) has been
subsumed by 8.2.8.16, "Extent Composition Subprofile".

DEPRECATED
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1235



 

1236



 LUN Creation Subprofile (DEPRECATED)
DEPRECATED

8.2.8.18 LUN Creation Subprofile (DEPRECATED)
The functionality of the LUN Creation and Pool Manipulation Capabilities, and Settings Subprofiles
have been subsumed by the 8.2.8.10, "Block Services Package".

The LUN Creation Subprofile is defined in IS24775-2006, Storage Management. 

DEPRECATED
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1237



 

1238



 LUN Mapping and Masking Subprofile
DEPRECATED

8.2.8.19 LUN Mapping and Masking Subprofile
The LUN Mapping and Masking Subprofile (in IIS24775-2006, Storage Management) has been
replaced by 8.2.8.20, "Masking and Mapping Subprofile". 

8.2.8.19.1 Compatibility with IS24775-2006, Storage Management (SMI-S 1.0) clients.
Problems with the functionality and complexity of the LUN Mapping and Masking subprofile in
IIS24775-2006, Storage Management required some changes that may not be backwards compatible
in this version of SMI-S. The mapping and Masking Subprofile now reduces the complexity by replacing
the extrinsic methods specified in IS24775-2006, Storage Management and severely constraining the
valid combinations of parameters. Additionally, changes made to support non-FC transports and non-
SCSI protocols also affect backwards compatibility. Specifically, associating the SCSIProtocolController
to a SCSIProtocolEndpoint instead of LogicalPort. SCSIProtocolEndpoint is associated to the
LogicalPort. Separating the port from the protocol allows the port to be used with non-SCSI protocols
such as IP. Most of the model is identical, but new classes, properties, and methods have been added
to simplify its operation. Some of the old methods are still used in this version of SMI-S. 

Class and association changes to the model for this version of SMI-S:

• SAPAvailableForElement replaces the ProtocolControllerForPort association

• SCSIProtocolEndpoint replaces LogicalPort

• LogicalPort is associated to SCSIProtocolEndpoint via PortImplementsEndpoint )

• AuthorizedPrivilege associations to SystemSpecificCollection via AuthorizedSubject associations
are no longer allowed

Instrumentation may be able to provide 1.0 compliant implementations (as specified in IIS24775-2006,
Storage Management) in a single namespace, if the following conditions are met:

• ProtocolControllerMaskingCapabilities.ProtocolControllerSupportsCollections is false
(StorageHardwareID instances are referenced directly by AuthorizedSubject associations).

• There is exactly a 1-1-1 relationship between instance of AuthorizedSubject, AuthorizedPrivilege,
and AuthorizedTarget. In other words, Privilege instances cannot be shared.

If these criteria are not met, instrumentation could provide separate 1.0 and current (1.1)
implementations in separate CIM namespaces.

DEPRECATED
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1239



 

1240



 Masking and Mapping Subprofile
8.2.8.20 Masking and Mapping Subprofile

8.2.8.20.1 Description

Many disk arrays provide an interface for the administrator to specify which initiators can access what
volumes through which target ports. The effect is that the given volume is only visible to SCSI
commands that originate from the specified initiators through specific sets of target ports. There may
also be a capability to select the SCSI Logical Unit Number as seen by an initiator through a specific set
of ports. The ability to limit access is called Device Masking; the ability to specify the device address
seen by particular initiators is called Device Mapping (For SCSI systems, these terms are known as
LUN Masking and LUN Mapping.)

Given a storage system with no LUN masking or mapping, all hosts/initiators see the same elements
when they discover a storage system. In a storage system supporting LUN Masking, logical units are
masked (hidden) from SCSI initiators (Host Bus Adaptors) by default. The administrator uses the
Masking and Mapping subprofile to determine which logical units are visible (exposed) to specific
initiators through which target ports. The LUN masking and mapping interfaces allow an administrator
to customize the “view” of elements that are discovered. The effect is that the real storage system
appears to be a number of subsets - each subset exposing a view customized for a particular set of
initiators.

The management model is built on these “views” of a storage system - each view is a subset of
components the administrator exposes to certain hosts - and the classes that model the authorization
and access rights.

The model described here is generalized to include access management in disks arrays, virtualization
systems, and routers used in tape libraries. The model is also generalized beyond just SCSI and Fibre
Channel implementations. Many of the examples and use cases refer to LUN masking in Fibre Channel
arrays, but the model is general.

Views and Paths
The key concepts for Device Masking and Mapping are view and path. A “view” is a list of logical units
exposed to a list of initiators through a list of target ports, modeled as SCSIProtocolController (SPC)
with associated LogicalDevices, StorageHardwareIDs, and SCSIProtocolEndpoints. The logical
devices have logical unit numbers and access permissions relative to the view, modeled as
DeviceNumber and DeviceAccess properties of the ProtocolControllerForUnit association. A full “path”
is a combination of one each logical unit, initiator port, and target port - the concept of path is
independent from a CIM model, but a view expresses a combinations of paths that comply with SCSI
rules. In essence, an SPC serves as a collection of paths - each initiator ID is granted access to each
logical unit through each target port. 

In addition, there are partial and invalid states. A partial path is a path missing associations to instances
of logical unit, initiator port, or target port. In practice, some arrays do not support partial paths and
other arrays support some, but not all, configurations with partial paths. An SPC lacking associations to
logical units, initiator ports, or target ports - as required by the underlying implementation - is in an
invalid partial path state.

An invalid view state is a combination of classes and associations in the provider that does not map to
a committed configuration of the underlying implementation. The IS24775-2006, Storage Management
(1.0) LUN Masking and Mapping interfaces required clients to perform multiple transactions to achieve
a valid view, forcing providers to maintain invalid view states while waiting for the client to complete a
sequence of transactions. This created non-interoperability when the providers only supported

See “8.2.8.19.1, "Compatibility with IS24775-2006, Storage Management (SMI-S 1.0) clients."” for 
notes on compatibility with the LUN Mapping and Masking Subprofile in IIS24775-2006, Storage 
Management.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1241



 

transactions in a certain order, and when a second client looked at the model before a sequence of
transactions was completed.

An SPC with no instances of one type of association (to initiators, targets, or LUs) with support from the
instrumentation is in a valid partial path state. The result is that the SPC does not expose any valid
SCSI paths. Instrumentation may support these states as convenience to clients - allowing a client to
quickly activate/deactivate a configuration by adding/removing associations - or as an intermediate
state between multiple ExposePath or HidePath requests. It is not mandatory in SMI-S to support these
partial path states, but clients need to understand which partial path states are and are not valid.

Model Elements
The model uses three basic types of objects:

LogicalDevice, the superclass of volumes and tape drives representing SCSI logical units

SCSIProtocolController - models the “view” described above.

SCSIProtocolEndpoint – models the SCSI protocol aspects of a port. A SCSIProtocolEndpoint is
associated to one or more ports (modeled as subclasses of LogicalPort). SCSIProtocolEnpoint and
classes (such as FCPort) representing ports are part of target port subprofiles.

These objects are related by two associations:

ProtocolControllerForUnit associates a SCSIProtocolController with its LogicalDevices; the
controller-relative address (such as a SCSI Logical Unit Number) is modeled as the DeviceNumber
property of ProtocolControllerForUnit.

SAPAvailableForElement associates a SCSIProtocolController to one or more
SCSIProtocolEndpoints.

In this subprofile, the existence of a ControllerConfigurationService with a ConcreteDependency
association to a SCSIProtocolController governs the high-level device mapping and masking policy for
that protocol controller.

If the service does not exist, then regardless of host port, the policy is that
SAPAvailableForElementassociates SCSIProtocolController to all SCSIProtocolEndpoints that
represent SCSI target behavior (that is, have Role property set to “Target”).

If the service is present, then for a particular host port, the policy is that SAPAvailableForElement
connects a SCSIProtocolController to a SCSIProtocolEndpoint only when access is explicitly granted.

Figure 201: "Generic System with no Configuration Service" and Figure 202: "Generic System with
ControllerConfigurationService"“depict an instance diagram of a generic storage system with dual-port
access to four logical devices and an implementation with no device mapping and masking services. All
1242



 Masking and Mapping Subprofile
of the LogicalDevices are exposed to all initiators with the same DeviceNumber. Figure 201: "Generic
System with no Configuration Service" depicts a configuration with no LUN Masking capabilities. 

Figure 202: "Generic System with ControllerConfigurationService" depicts the same configuration in an
implementation with an ControllerConfigurationService defined. In this case, access to the
ProtocolController is denied to each host port unless it is specifically granted access.

8.2.8.20.1.1 SCSIProtocolController Views
Device Masking limits the devices seen by particular host initiators (such as HBAs). For example, when
a host discovers a device (using SCSI Report LUNs and Inquiry commands), it may see two of four
LogicalDevices, other hosts may see no LogicalDevices, and yet other hosts may only see
LogicalDevices through a subset of target ports.

Device Mapping allows the same LogicalDevice to be assigned different DeviceNumber (LUN) as seen
by different host HBAs. This would allow each of four LogicalDevices to appear to be Logical Unit zero
to four different hosts.

An initiator sees a single view (SCSIProtocolController) through a target port. This view includes
LogicalDevices explicitly exposed to specified initiators and “default access” LogicalDevices (that are
exposed to all initiators). 

Figure 201: Generic System with no Configuration Service

Figure 202: Generic System with ControllerConfigurationService

ProtocolController
ForUnit

LogicalDeviceLogicalDevice

SCSIProtocolController

LogicalDeviceLogicalDevice

SCSIProtocolController

ProtocolController
ForUnit

SCSIProtocolEndpoint

SCSIProtocolEndpoint

SAPAvailable
ForElement

SAPAvailable
ForElement

LogicalDeviceLogicalDeviceLogicalDeviceLogicalDevice

SCSIProtocolController

ProtocolControllerForUnit

ControllerConfigurationService

ConcreteDependency

SCSIProtocolEndpoint

SAPAvailable
ForElement

SAPAvailable
ForElement

SCSIProtocolEndpoint
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1243



 

An administrator can use the ControllerConfigurationService interfaces to create “views”
(SCSIProtocolControllers) of a storage system – each view exposes a subset of components that are
intended to behave as a cohesive subset. In particular, a view:

• is associated with a set of LogicalDevices;

• may be exposed to zero or more host ports;

• is associated with one or more target device ports;

• shall not be exposed through a particular host / target port pair that is in use by another view. (In
other words, a view corresponds to the logical unit inventory provided by SCSI REPORT LUNS
and INQUIRY commands.

• For systems where access is granted through all or no target ports (where
ProtocolControllerMaskingCapabilities.PortsPerView is set to “All Ports share the same
View”), this rule is simpler – an initiator StorageHardwareID shall not be associated with more
than one view (SCSIProtocolController).

• each LogicalDevice in a view shall have a unique DeviceNumber (SCSI logical unit number);

• a LogicalDevice may be in multiple views, and in each may be assigned the same or different
DeviceNumbers (Logical Units);

The device uses the initiator port identifier to authorize access and to determine the view to present to
the HBA. The initiator ID (such as FC Port WWN) is modeled as a subclass of Identity called
StorageHardwareID. As used in this subprofile, AuthorizedSubject associates a AuthorizedPrivilege
with a StorageHardwareID. As used in this subprofile, AuthorizedTarget associates an
AuthorizedPrivilege with a SCSIProtocolController.

In this version of the subprofile, there is exactly a one-to-one-to-one relationship between
AuthorizedSubject, AuthorizedPrivilege, and AuthorizedTarget. In other words, for each
StorageHardwareID associated to a SCSIProtocolController, there will be unique instances of
AuthorizedSubject, AuthorizedPrivilege, and AuthorizedTarget

Figure 203: Relationship of Initiator IDs, Endpoints, and Logical Units

SCSIProtocolController

AuthorizedPrivilege

SystemSpecificCollection
(optional)

AuthorizedTarget

MemberOfCollection

StorageHardwareID

AuthorizedSubject

* *1

*

*

1

SCSIProtocolEndpoint

ProtocolController
ForUnit* *

SAPAvailable
ForElement

LogicalDevice
(StorageVolume)
1244



 Masking and Mapping Subprofile
Initiator ID Collections 
An implementation may optionally model collections of Initiator IDs. This is modeled as depicted in
Figure 203. If the implementation supports collection of initiator IDs, the instrumentation shall set
ProtocolControllerMaskingCapabilities.ProtocolControllerSupportsCollections to True

Default View / Default Logical Unit Access
An implementation may expose some logical units to all initiators while restricting access to others. A
default LUN exposes the same SCSI logical unit to all initiators, so adding a default LUN requires that
the instrumentation assure that no existing logical-unit-view map uses that same logical unit address.
Whenever a new SCSIProtocolController is created, it is automatically attached to all default LUNs

This is modeled with a SCSIProtocolController that is associated via AuthorizedTarget to a
AuthorizedPrivilege that is associated via AuthorizedSubject to a StorageHardwareID with an Name
property set to null (not the zero-length string “”). These are known as default protocol controllers -
exposing a view that is granted by default to all initiators, regardless or masking rules. If the
implementation supports default protocol controllers, the instrumentation shall instantiate at least one
default protocol controller when the instrumentation starts. The instrumentation shall reject any client
attempt to delete a default protocol controller. 

Only one null-name StorageHardwareID is allowed. It is associated to all default SPCs. No other
StorageHardwareIDs may be associated to default SPCs. A target port can be associated with at most
one default SPC.

If ProtocolControllerMaskingCapabilities.PortsPerView is not set to “All Ports share the same View”, the
instrumentation may support multiple default protocol controllers, but a target port shall not be
associated to more than one default protocol controller.

A client requests a logical unit be given default access by associating with the default protocol controller
using ExposeDefaultLUs method. The instrumentation shall ensure that the requested unit number is
not used in any SCSIProtocolController connected to target ports associated with the default protocol
controller. If the unit number is available, the logical unit is attached to the default protocol controller
and all the other protocol controllers that share its target ports. Similarly, a client requests default
access be removed from a logical unit by calling HideDefaultLUs, passing in a reference to the default
protocol controller and the logical unit’s ID.

Arbitrary Logical Units
If the implementation supports logical units for management (rather than storage), they shall be
modeled with SCSIArbitraryLogicalUnit. If these management units are exposed regardless of masking
access then they shall be associated to the default protocol controller.

Read-only verses Read-Write access
ExposePaths includes a DeviceAccess parameter that is used to set the DeviceAccess property of
ProtocolControllerForUnit association. 

Read-Only Volumes
An implementation may model a volume that is readable, but not writable to any initiator by setting
StorageVolume.Access to “Readable” (1).

Finding Volumes that are not Mapped
A StorageVolume is considered mapped if it is exposed to an initiator. Instrumentation shall inform
clients whether a volume is or is not mapped using the “In-Band Access Granted” value in
StorageVolume.ExtentStatus array property. If a volume is associated with one or more protocol
controllers and one of the associated protocol controllers is associated with one or more
StorageHardwareIDs, the instrumentation shall set “In-Band Access Granted” in ExtentStatus.
Otherwise, “In-Band Access Granted” shall not be set.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1245



 

Limits on Map counts per Logical Unit
ProtocolControllerMaskingCapabilities.MaximumMapCount is the maximum number of times the
underlying implementation allows a logical unit to be mapped (in other words, the maximum number of
ProtocolControllerForUnit associations that can be associated to the logical unit represented by the
LogicalDevice subclass. The instrumentation sets this to 0 if it has no limit.

Deactivated Logical Units
Instrumentation may describe inaccessibility of a logical unit through a path using
ProtocolControllerForUnit.AccessState. This property may be read, but not written by clients. Possible
values are Active, Inactive, “Replication In Progress”, and “Mapping Inconsistency”.

Since default protocol controllers were not defined in IS24775-2006, Storage Management, a client
could have created a configuration that does not comply with the semantics in this version of SMI-S
(which are intended to mimic SCSI's). Similarly, a non-compliant configuration could have been created
using non-SMI-S interfaces. Instrumentation may set AccessState to “Mapping Inconsistency” to
express these states. A client request to set a valid mapping configuration using ExposePaths should
clear this state and reset AccessState to Active.
1246



 Masking and Mapping Subprofile
SCSIProtocolController Properties

There are two clarifications to the property descriptions in Figure 1132: "SCSIProtocolController
Property Description". If the implementation supports partial path SPCs, the intrinsic DeleteInstance is
used to delete an SPC with no full paths. If DeleteInstance is called to delete an SPC with full paths, the
instrumentation shall return CIM Error with CIM_ERR_FAILED status code.

Initiator Setting Data
Some storage systems allow a customer (or host-side agent) to provide information about OS hosting
initiators. The storage system uses this information to provide OS-specialized behavior (for example,
SCSI responses). This information is modeled as StorageClientSettingData.
StorageClientSettingData.ClientTypes[] is an array of OS names. This array property allows a single
StorageClientSettingData instance to apply to multiple OS Types. 

The instrumentation should provide a meaningful name for each StorageClientSettingData instance;
typically this will be names already exposed via existing management tools and documentation.

StorageClientSettingData instances are not created by clients; any storage system that provides OS
type behavior advertises these instances (via EnumerateInstance and GetInstance) and associates
them (using ElementSettingData) with elements previous configured with the setting behavior.

Table 1132: SCSIProtocolController Property Description

Property Description Impact on Expose-
Paths (see 1)

Impact on HidePaths

SPCAllowsNoLUs It is valid to have no 
LogicalDevices associ-
ated with an SPC

If true, LUNames, 
DeviceNumbers, and 
DeviceAccess may be 
null.  If false, LUNa-
mes and DeviceAc-
ceses shall be non-
null; DeviceNumbers 
depends on ClientSe-
lectableDeviceNum-
bers

If true, then all associ-
ated LogicalDevices 
may be specified in 
LUNames.  If false and 
client specifies names 
of all associated LUs in 
LUNames, then see 2

SPCAllowsNoTargets It is valid to have no 
target ports associ-
ated with an SPC

If true, TargetPortIDs 
may be null.  If false, 
TargetPortIDs shall be 
non-null.

If true, then all associ-
ated target ports may 
be specified in Target-
PortIDs.  If false, and 
client specifies names 
of all associated target 
ports in TargetPortIDs, 
then see 2

SPCAllowsNoInitiators In is valid to have no 
initiator port IDs asso-
ciated with an SPC

If true, InitiatorPortIDs 
may be null.  If false, 
InitiatorPortIDs shall 
be non-null.

If true, then all associ-
ated initiator port IDs 
may be specified in Ini-
tiatorPortIDs.  If false, 
and client specifies 
names of all associ-
ated initiator port IDs in 
InitatorPortIDs, then 
see 2

1. This only applies to the "Create a new view" use case for ExposePaths
2. The result of this HidePaths request would be an invalid partial path state; therefore, the instrumenta-
tion shall delete the SPC and all its associations.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1247



 

A client can associate StorageHardwareIDs to a StorageClientSettingData instance (when a customer
or host agent maps an initiator to an OS type). This is done by specifying the Setting parameter to
CreateStorageHardwareID). A client can also associate an StorageClientSettingData instance to a
storage system element (such as a Port, a SCSIProtocolController, or a StorageVolume) to request that
this element exhibit the setting-specific behavior. Figure 204: "StorageClientSettingData Model"
provides an example.

Figure 204: StorageClientSettingData Model

StorageClientSettingData

ClientTypes[] = "AIX", 
"Solaris", "Solaris"

ElementSettingData

FCPort FCPort

ElementSettingData

StorageClientSettingData

ClientTypes[] = "Windows"

ElementSettingData

FCPort FCPort

ElementSettingData

StorageHardwareID

ID="5100123412341234"

StorageHardwareID

ID="5100123412341235"

StorageHardwareID

ID="5100123412341236"

ElementSettingData

ElementSettingData
ElementSettingData

StorageHardwareID

ID="5100123412341237"

ElementSettingData

StorageHardwareID

ID="5100123412341236"

ElementSettingData

StorageHardwareID

ID="5100123412341255"

ElementSettingData

Array:
ComputerSystem

Element
Setting
Data

Element
Setting
Data
1248



 Masking and Mapping Subprofile
Figure 205: "Entire Model" depicts the entire model.

Durable Names and Correlatable IDs of the Profile
The Masking and Mapping subprofile uses the durable names/correlatable ID for logical devices as
defined by the parent profile.

Instrumentation Requirements
If a PrivilegeManagementService is not present, then all access is assumed. If an
PrivilegeManagementService is present, then access shall be specifically granted.

A LogicalDevice may have ProtocolControllerForUnit associations to multiple SCSIProtocolControllers
- this models a device shared by different subject sets.

Clients may need to know the range of possible unit numbers supported by a storage system. The
agent should set SCSIProtocolController.MaxUnitsControlled.

8.2.8.20.2 Health and Fault Management Considerations
None.

8.2.8.20.3 Cascading Considerations
None.

8.2.8.20.4 Supported Subprofiles, and Packages
None.

Figure 205: Entire Model

Target Ports 
Subprofiles

ProtocolControllerSAPAvailable
ForElement

SCSIProtocol
Endpoint

LogicalDevice
(e.g. StorageVolume)

ProtocolController
ForUnit

AuthorizedPrivilege

SystemSpecificCollection

AuthorizedTarget

StorageHardwareID

MemberOfCollection

ControllerConfigurationService

CIM_ProtocolController
MaskingCapabilities

Privilege
ManagementService

StorageHardwareID
ManagementService

ComputerSystem
HostedService

HostedService

Hosted
Service

ConcreteDependency

ConcreteDependency

Element
Capabilities

*

*

*

**

*

*

*

Concrete
Dependency

ConcreteDependency

*
*

CIM_StorageClient
SettingData

ElementSettingData

Hosted
Collection

AuthorizedSubject
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1249



 

8.2.8.20.5 Methods of the Profile

8.2.8.20.5.1 ExposePaths
ExposePaths is used in place of the AssignAccess and AttachDevice methods used in IS24775-2006,
Storage Management (SMI-S 1.0). The problem with these methods was that they required the clients
to perform multiple transactions to achieve a valid view. This forced providers to maintain invalid view
states while waiting for the client to complete a sequence of transactions. This also created non-
interoperability when the providers only supported transactions in a certain order, and when a second
client looked at the model before a sequence of transactions was completed.

ExposePaths performs the mapping and masking operation in one method call. It exposes a list of
SCSI logical units (such as RAID volumes or tape drives) to a list of initiators through a list of target
ports, through one or more SCSIProtocolControllers (SPCs). Support for the 1.0 equivalent functionality
is available by passing in an existing SCSIProtocolController.

There are two modes of operation, create and modify. If a NULL value is passed in for the SPC, then
the instrumentation will create at least one SPC that satisfies the request. Depending upon the
instrumentation capabilities, more than one SPC may be created. (e.g., if
ProtocolControllerMaskingCapabilities.OneHardwareIDPerView is true and more than one initiatorID
was passed in, then one SPC per initiatorID will be created). If an SPC is passed in, then the
instrumentation attempts to add the new paths to the existing SPC. Depending upon the
instrumentation capabilities, this may result in the creation of additional SPCs. The instrumentation
shall return an error if honoring this request would violate SCSI semantics.

For creating an SPC, the parameters that need to be specified are dependent upon the SPCAllows*
properties in ProtocolControllerMaskingCapabilities. If SPCAllowsNoLUs is false, the caller shall
specify a list of LUNames. If it is true, the caller may specify a list of LUNames or may pass in null. If
SPCAllowsNoTargets is false and PortsPerView is not 'All Ports share the same view' the caller shall
specify a list of TargetPortIDs. If it is true, the caller may specify a list of TargetPortIDs or may pass in
null. If SPCAllowsNoInitiators is false, the caller shall specify a list of InitiatorPortIDs. If it is true, the
caller may specify a list of InitiatorPortIDs or may pass in null. If LUNames is not null, the caller shall
specify the DeviceAccess for each logical unit. If the provider's ProtocolControllerMaskingCapabilities
ClientSelectableDeviceNumbers property is TRUE then the client shall either provide a list of device
numbers (LUNs) to use for the paths to be created or pass in NULL. If is false, the client shall pass in
NULL for this parameter. 

The LUNames, DeviceNumbers, and DeviceAccesses parameters are mutually indexed arrays - any
element in DeviceNumbers or DeviceAccesses will set a property relative to the LogicalDevice instance
named in the corresponding element of LUNames. LUNames and DeviceAccesses shall have the
same number of elements. DeviceNumbers shall be null (asking the instrumentation to assign
numbers) or have the same number of elements as LUNames. If these conditions are not met, the
instrumentation shall return a 'Invalid Parameter' status. 

For modifying an SPC, there are three specific use cases identified. The instrumentation shall support
these use cases. Other permutations are allowed, but are vendor-specific. The use cases are: Add LUs
to a view, Add initiator IDs to a view, and Add target port IDs to a view. 

Add LUs to a view requires that the LUNames parameter not be null and that the InitiatorIDs and
TargetPortIDs parameters be null. DeviceNumbers may be null if ClientSelectableDeviceNumbers is
false. DeviceAccess shall be specified. 

Add initiator IDs to a view requires that the LUNames parameter be null, that the InitiatorIDs not be null,
and that the TargetPortIDs parameters be null. DeviceNumbers and DeviceAccess shall be null. 

Add target port IDs to a view requires that the LUNames and InitiatorPortIDs parameters be null and is
only possible is PortsPerView is 'Multiple Ports Per View'. DeviceNumbers and DeviceAccess shall also
be null.
1250



 Masking and Mapping Subprofile
If a client calls ExposePaths specifying logical units already associated to the SPC and specifies
different DeviceNumber or DeviceAccess values, the instrumentation shall change these properties in
the appropriate ProtocolControllerForUnit instance(s).

There are four valid use cases for ExposePaths - create plus the three modify use cases above. These
four use cases and the requirements for parameters are summarized in Table 1133.

The relevant rules of SCSI semantics are: 

- an SPC shall not be exposed through a particular host/target port pair that is in use by another SPC.
(In other words, an SPC and its associated logical units and ports together correspond to the logical
unit inventory provided by SCSI REPORT LUNS and INQUIRY commands) 

- each LogicalDevice associated to an SPC shall have a unique ProtocolControllerForUnit
DeviceNumber (logical unit number) 

The instrumentation shall report an error if the client request would violate one of these rules. 

If the instrumentation provides PrivilegeManagementService, the results of setting DeviceAccesses
shall be synchronized with PrivilegeManagementService as described in the ProtocolControllerForUnit
DeviceAccess description.

Uint32 ExposePaths
OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

Table 1133: ExposePath Use Cases
parameters/
use cases

LUNames InitiatorPortIDs TargetPortIDs DeviceNumbers DeviceAccesses ProtocolContro
llers (on input)

Create a new 
view

See 1) See 1) See 1)
See 2)

See 3) Mandatory, see 
4)

NULL

Add LUs to a 
view

Manda-
tory

NULL NULL See 3) Mandatory, see 
4)

contains a sin-
gle SPC ref

Add initiator 
IDs to a view 
(see 5)

NULL Mandatory NULL NULL NULL contains a sin-
gle SPC ref

Add target port 
IDs to a view 
(see 6)

NULL NULL Mandatory NULL NULL containsa sin-
gle SPC ref

Vendor-spe-
cific

As long as all the previous usecases are implemented, the instrumentation may support other 
vendor-specific combinations of parameters.

1) Dependent on values of new SPCAllowsNo* capability properties described below 
2) If PortsPerView is "All ports share same view", TargetPortIDs parameter shall be null.
3) If ClientSelectableDeviceNumbers is true, shall either be null or have same number of

               elements as LUNames.  If ClientSelectableDeviceNumbers is false, shall be null.
4) Shall have same number of elements as LUNames
5) Only valid if OneHardwareIDPerView is false
6) Only valid if PortsPerView is "Multiple Ports per View"
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1251



 

An array of IDs of logical unit instances. The LU instances need to already exist. The members of
this array shall match the Name property of LogicalDevice instances that represent SCSI logical
units. See the method description for conditions where this parameter may be null.

IN string InitiatorPortIDs[]

IDs of initiator ports. If existing StorageHardwareID instances exist, they shall be used. If no
StorageHardwareID instance matches, then one is implicitly created. See the method description
for conditions where this may be null. 

IN string TargetPortIDs[]

IDs of target ports. See the method description for conditions where this may be null.

IN string DeviceNumber[]

A list of logical unit numbers to assign to the corresponding logical unit in the LUNames parameter.
(within the context of the elements specified in the other parameters). If the LUNames parameter
is null, then this parameter shall be null. Otherwise, if this parameter is null, all LU numbers are
assigned by the hardware or instrumentation. This shall be formatted as unseparated uppercase
hexadecimal digits, with no leading “0x”.

IN uint16 DeviceAccess[]

A list of permissions to assign to the corresponding logical unit in the LUNames parameter. This
specifies the permission to assign within the context of the elements specified in the other
parameters. Setting this to 'No Access' assigns the DeviceNumber for the associated initiators, but
does not grant read or write access. If the LUNames parameter is not null then this parameter shall
be specified.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain
exactly one element; if null on input, the instrumentation will create one or more new SPC
instances. 

On output, this will be either null (if a job was created) or the set of SPCs affected (those created
or modified). If a job was started, references to the SPCs affected will be found by following the
AffectedJobElement association from the job.

8.2.8.20.5.2 HidePaths
HidePaths is used in place of the HideAccess and DetachDevice methods used in IS24775-2006,
Storage Management. The problem with these methods is the same as AssignAccess and
AttachDevice, in that they required the clients to perform multiple transactions to achieve a valid view.
This forced providers to maintain invalid view states while waiting for the client to complete a sequence
of transactions. This also created non-interoperability when the providers only supported transactions
in a certain order, and when a second client looked at the model before a sequence of transactions was
completed.

HidePaths is the inverse of ExposePaths. It hides a list of SCSI logical units (such as RAID volumes or
tape drives) from a list of initiators through a list of target ports, through one or more
SCSIProtocolControllers (SPCs). Support for the IS24775-2006, Storage Management (1.0) equivalent
functionality is available by passing in an existing SCSIProtocolController.

When hiding logical units, there are three specific use cases identified. The instrumentation shall
support these use cases. Other permutations are allowed, but are vendor-specific. The use cases are:
Remove LUs from a view, Remove initiator IDs from a view, and Remove target port IDs from a view. 
1252



 Masking and Mapping Subprofile
Remove LUs from a view requires that the LUNames parameter not be null and that the InitiatorIDs and
TargetPortIDs parameters be null. 

Remove initiator IDs from a view requires that the LUNames parameter be null, that the InitiatorIDs not
be null, and that the TargetPortIDs parameters be null. 

Remove target port IDs from a view requires that the LUNames and InitiatorPortIDs parameters be null. 

The disposition of the SPC when the last logical unit, initiator ID, or target port ID is removed depends
upon the ProtocolControllerMaskingCapabilites SPCAllowsNo* properties. If SPCAllowsNoLUs is false,
then the SPC is automatically deleted when the last logical unit is removed. If SPCAllowsNoTargets is
false, then the SPC is automatically deleted when the last target port ID is removed. If
SPCAllowsNoInitiators is false, then the SPC is automatically deleted when the last initiator port ID is
removed. In all other cases, the SPC needs to be explicitly deleted via the DeleteInstance intrinsic
function. The use cases for HidePaths() are summarized in Table 1134, “HidePaths Use Cases”.

uint32 HidePaths
OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances need to already exist. See the method
description for conditions where this parameter may be null.

IN string InitiatorPortIDs[]

IDs of initiator ports. See the method description for conditions where this may be null. 

IN string TargetPortIDs[]

IDs of target ports. See the method description for conditions where this may be null.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain
exactly one element. The instrumentation will attempt to remove associations (LUNames,
InitiatorPortIDs, or TargetPortIDs) from this SPC. Depending upon the specific implementation, the
instrumentation may need to create new SPCs with a subset of the remaining associations. 

Table 1134: HidePaths Use Cases

Parameters/use cases LUNames InitiatorPortIDs TargetPortIDs ProtocolController (on 
input) see 1

Remove LUs from a view Mandatory NULL NULL contains a single SPC ref
Remove initiator IDs from a view NULL Mandatory NULL contains a single SPC ref
Remove target ports from a view 
(see 2)

NULL NULL Mandatory contains a single SPC ref

Hide full paths from a view Mandatory Mandatory Mandatory contains a single SPC ref
Vendor-specific As long as all the previous usecases are implemented, the instrumentation 

may support other vendor-specific combinations of parameters.
1. On output, the provider returns a list of refs to SPCs that have been created or modified.
2. Only valid if PortsPerView is "Multiple Ports per View"
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1253



 

On output, this will be either null (if a job was created) or the set of SPCs affected (those created
or modified). If a job was started, references to the SPCs affected will be found by following the
AffectedJobElement association from the job.

8.2.8.20.5.3 ExposeDefaultLUs
ExposeDefaultLUs is similar to ExposePaths, except ExposeDefaultLUs works with 'default view'
SPCs. The 'default view' SPC exposes logical units to all initiators. This SPC is identified by an
association to a StorageHardwareID with Name property set to the empty string. ExposeDefaultLUs
exposes a list of SCSI logical units (such as RAID volumes or tape drives) through a 'default view'
SCSIProtocolController (SPC) through a list of target ports.

ExposeDefaultLUs and HideDefaultLUs are optional methods of this subprofile. However, they are
linked. If an instrumentation implements one of these methods, it shall also implement the other.

As with ExposePaths, there are two modes of operation, create and modify. If a NULL value is passed
in for the SPC, then the instrumentation will attempt to create a new default view. If PortsPerView is 'All
Ports share the same view', then there is at most one default view SPC. If PortsPerView is not 'All Ports
share the same view', then there may be multiple default view SPCs as long as different ports are
associated with each. If an SPC is passed in, then the instrumentation adds the new paths to the
existing SPC. The instrumentation may return an error if honoring this request would violate SCSI
semantics. 

For creating a default view SPC, the parameters that need to be specified are dependent upon the
SPCAllows* properties in ProtocolControllerMaskingCapabilities. If SPCAllowsNoLUs is false, the
caller shall specify a list of LUNames. If it is true, the caller may specify a list of LUNames or may pass
in null. If SPCAllowsNoTargets is false, the caller shall specify a list of TargetPortIDs. If it is true, the
caller may specify a list of TargetPortIDs or may pass in null. If LUNames is not null, the caller shall
specify the DeviceAccess for each logical unit. If the provider's ProtocolControllerMaskingCapabilities
ClientSelectableDeviceNumbers property is TRUE then the client shall either provide a list of device
numbers (LUNs) to use for the paths to be created or pass in NULL. If is false, the client shall pass in
NULL for this parameter.

The LUNames, DeviceNumbers, and DeviceAccesses parameters are mutually indexed arrays - any
element in DeviceNumbers or DeviceAccesses will set a property relative to the LogicalDevice instance
named in the corresponding element of LUNames. LUNames and DeviceAccesses shall have the
same number of elements. DeviceNumbers shall be null (asking the instrumentation to assign
numbers) or have the same number of elements as LUNames. If these conditions are not met, the
instrumentation shall return a 'Invalid Parameter' status. 

For modifying an SPC, there are two specific use cases identified. The instrumentation shall support
one and the other is required depending on a how a property is set. Other permutations are allowed,
but are vendor-specific. 

The required use case is - Add LUs to a default view. Add LUs to a default view requires that the
LUNames parameter not be null and that the TargetPortIDs parameters be null. DeviceNumbers may
be null if ClientSelectableDeviceNumbers is false. DeviceAccess shall be specified. 

Add target port IDs to a default view is only valid if PortsPerView is set to 'Multiple Ports per View'. It
requires that the LUNames, DeviceNumbers, and DeviceAccess shall also be null. The use cases for
ExposeDefaultLUs() are summarized in Table 1135, “Use Cases for ExposeDefaultLUs”.

The relevant rules of SCSI semantics are: 

• an SPC shall be exposed through a particular host/target port pair that is in use by another SPC.
(In other words, an SPC and its associated logical units and ports together correspond to the
logical unit inventory provided by SCSI REPORT LUNS and INQUIRY commands) 
1254



 Masking and Mapping Subprofile
• each LogicalDevice associated to an SPC shall have a unique ProtocolControllerForUnit
DeviceNumber (logical unit number) 

The instrumentation shall report an error if the client request would violate one of these rules. 

If the instrumentation provides PrivilegeManagementService, the results of setting DeviceAccesses
shall be synchronized with PrivilegeManagementService as described in the ProtocolControllerForUnit
DeviceAccess description.

uint32 ExposeDefaultLUs
OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances shall already exist. The members of this
array shall match the Name property of LogicalDevice instances that represent SCSI logical units.
See the method description for conditions where this parameter may be null.

IN string TargetPortIDs[]

IDs of target ports. See the method description for conditions where this may be null.

IN string DeviceNumber[]

A list of logical unit numbers to assign to the corresponding logical unit in the LUNames parameter.
(within the context of the elements specified in the other parameters). If the LUNames parameter
is null, then this parameter shall be null. Otherwise, if this parameter is null, all LU numbers are
assigned by the hardware or instrumentation. Each element shall be formatted as unseparated
uppercase hexadecimal digits, with no leading “0x”. 

IN uint16 DeviceAccess[]

Table 1135: Use Cases for ExposeDefaultLUs 

Parameters/
use cases

LUNames TargetPortIDs DeviceNumbers DeviceAccesses ProtocolControllers 
(on input)

Create a new 
default view 
(see 1)

See 2) See 2) See 3) Mandatory, see 4) Shall be null

Add LUs to a 
view

Mandatory shall be null See 3) Mandatory, see 4) Shall contain a single 
SPC ref

Add target port 
IDs to a view 
(see 5)

shall be 
null

Mandatory shall be null shall be null Shall contain a single 
SPC ref

Vendor-
Specific

As long as all the previous usecases are implemented, the instrumentation may support 
other vendor-specific combinations of parameters.

1. Only valid if PortsPerView is not "All Ports share the same View"
2. Dependent on values of SPCAllows* capability properties described above
3. If ClientSelectableDeviceNumbers is true, shall either be null or have same number of elements as                

LUNames. If ClientSelectableDeviceNumbers is false, shall be null.
4. Shall have same number of elements as LUNames
5. Only valid if PortsPerView is "Multiple Ports per View"
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1255



 

A list of permissions to assign to the corresponding logical unit in the LUNames parameter. This
specifies the permission to assign within the context of the elements specified in the other
parameters. Setting this to 'No Access' assigns the DeviceNumber for the associated initiators, but
does not grant read or write access. If the LUNames parameter is not null then this parameter shall
be specified.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain
exactly one element; there may be multiple references on output. If null on input, the
instrumentation will create one or more new SPC instances. 

On output, this will be either null (if a job was created) or the set of SPCs affected (those created
or modified). If a job was started, references to the SPCs affected will be found by following the
AffectedJobElement association from the job. 

8.2.8.20.5.4 HideDefaultLUs
HideDefaultLUs is similar to HidePaths, except HideDefaultLUs works with 'default view' SPCs. The
'default view' SPC exposes logical units to all initiators. This SPC is identified by an association to a
StorageHardwareID with Name property set to the empty string. HideDefaultLUs hides a list of SCSI
logical units (such as RAID volumes or tape drives) through a 'default view' SCSIProtocolController
(SPC) through a list of target ports.

HideDefaultLUs is the inverse of ExposeDefaultLUs. It hides a list of SCSI logical units (such as RAID
volumes or tape drives) from a list of initiators through a list of target ports, through one or more
SCSIProtocolControllers (SPCs). 

ExposeDefaultLUs and HideDefaultLUs are optional methods of this subprofile. However, they are
linked. If an instrumentation implements one of these methods it shall also implement the other

When hiding logical units, there are two specific use cases identified. The use cases are: Remove LUs
from a default view and Remove target port IDs from a default view. Remove LUs from a default view
requires that the LUNames parameter not be null and that the TargetPortIDs parameter be null.
Remove target port IDs from a default view is required if PortsPerView is Multiple Ports per view. It
requires that the LUNames parameter be null.

The instrumentation shall support the Remove LUs case and shall support the remove target port IDs if
PortsPerView is set to 'Multiple Ports per View'. Other permutations are allowed, but are vendor-
specific. 

If both LUNames and TargetIDs parameters are non-null and
ProtocolControllerMaskingCapabilities.MaximumMapCount is 0, then the instrumentation shall create
new SPCs and change associations as necessary to meet the client request and maintain the relevant
rules of SCSI in the ExposeDefaultLUs description. If both LUNames and TargetIDs parameters are
non-null and ProtocolControllerMaskingCapabilities.MaximumMapCount is greater than 0, then any
client that cannot be honored by changing associations to the specified SPC shall receive a 'Maximum
Map Count Error' response. The use cases for HideDefaultLUs are summarized in Table 1136, “Use
Cases for HideDefaultLUs”

Table 1136: Use Cases for HideDefaultLUs

parameters/
use cases

LUNames TargetPortIDs ProtocolController (on input)

Remove LUs from a 
default view

Mandatory Shall be null Mandatory

Remove target ports from 
a view (see 1)

Shall be null Mandatory Mandatory
1256



 Masking and Mapping Subprofile
The disposition of the SPC when the last logical unit or target port ID is removed depends upon the
ProtocolControllerMaskingCapabilites SPCAllows* properties. If SPCAllowsNoLUs is false, then the
SPC is automatically deleted when the last logical unit is removed. If SPCAllowsNoTargets is false,
then the SPC is automatically deleted when the last target port ID is removed. In all other cases, the
SPC shall be explicitly deleted via the DeleteInstance intrinsic function. 

uint32 HideDefaultLUs
OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances shall already exist. See the method
description for conditions where this parameter may be null.

IN string TargetPortIDs[]

IDs of target ports. See the method description for conditions where this may be null.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this shall contain exactly one
element. The instrumentation will attempt to remove associations (LUNames or TargetPortIDs)
from this SPC. Depending upon the specific implementation, the instrumentation may need to
create new SPCs with a subset of the remaining associations. 

On output, this will be either null (if a job was created) or the set of SPCs affected (those created
or modified). If a job was started, references to the SPCs affected will be found by following the
AffectedJobElement association from the job.

8.2.8.20.5.5 CreateStorageHardwareID 
CreateStorageHardwareID creates a StorageHardwareID and the ConcreteDependency association
between this service and the new StorageHardwareID.

Uint32 CreateStorageHardwareID(
IN string ElementName

The ElementName of the new StorageHardwareID instance.

IN string StorageID

StorageID is the value used by the SecurityService to represent identity - in this case, a hardware
worldwide unique name.

IN Uint16 IDType

The type of the StorageID property.

IN string OtherIDType

Vendor-specific As long as all the previous usecases are implemented, the instrumentation may 
support other vendor-specific combinations of parameters.

1. Only valid if PortsPerView is "Multiple Ports per View"

Table 1136: Use Cases for HideDefaultLUs

parameters/
use cases

LUNames TargetPortIDs ProtocolController (on input)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1257



 

The type of the storage ID, when IDType is 'Other'.

IN CIM_StorageClientSettingData REF Setting

REF to the StorageClientSettingData containing the OSType appropriate for this initiator. If left
NULL, the instrumentation assumes a standard OSType - i.e., that no OS-specific behavior for this
initiator is defined.

IN CIM_StorageHardwareID REF HardwareID

REF to the new StorageHardwareID instance.

8.2.8.20.5.6 DeleteStorageHardwareID
DeleteStorageHardwareID deletes a StorageHardwareID and the ConcreteDependency association
between the ID and the service.

Uint32 DeleteStorageHardwareID
IN CIM_StorageHardwareID REF HardwareID

REF to the StorageHardwareID to delete

8.2.8.20.5.7 CreateHardwareIDCollection
Create a group of StorageHardwareIDs as a new instance of SystemSpecificCollection. This is useful to
define a set of authorized subjects that can access volumes in a disk array. This method allows the
client to make a request of a specific Service instance to create the collection and provide the
appropriate class name. When these capabilities are standardized in CIM/WBEM, this method can be
deprecated and intrinsic methods used. In addition to creating the collection, this method causes the
creation of the HostedCollection association (to this service's scoping system) and
MemberOfCollection association to members of the IDs parameter.

uint32 CreateHardwareIDCollection
IN string ElementName

The ElementName to be assigned to the created collection.

IN string HardwareIDs[]

Array of strings containing representations of references to StorageHardwareID instances that will become
members of the new collection.

IN CIM_SystemSpecificCollection REF Collection

The new instance of SystemSpecificCollection that is created.

8.2.8.20.5.8 AddHardwareIDsToCollection
Create MemberOfCollection instances between the specified Collection and the StorageHardwareIDs.
This method allows the client to make a request of a specific Service instance to create the
associations. When these capabilities are standardized in CIM/WBEM, this method can be deprecated
and intrinsic methods used.

uint32 AddHardwareIDsToCollection
IN string HardwareIDs[]

Array of strings containing representations of references to StorageHardwareID instances that will
become members of the collection.

IN CIM_SystemSpecificCollection REF Collection
1258



 Masking and Mapping Subprofile
The Collection which groups the StorageHardwareIDs.

8.2.8.20.6 Client Considerations and Recipes

8.2.8.20.6.1 Expose and Hide LUNs
// DESCRIPTION: 

//

// Test the accuracy of the Masking and Mapping  

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. A reference to a storage element, a Storage Volume or Logical Disk

//    is defined in the $StorageElement-> variable

//   This storage element must not already be masked to any initiator

// 2. The WWN of two different Initiator Ports to be masked to is defined in the

//    #InitiatorWWN1 and #InitiatorWWN2 variables.

// 3. The value of 

//    CIM_ProtocolControllerMaskingCapabilities.ClientSelectableDeviceNumbers

//    is stored in #ClientSelectableDeviceNumbers

// 4. If #ClientSelectableDeviceNumbers is TRUE, the device number to be used 

//    for mapping is defined in #DeviceNumber.

// 5. The value of CIM_ProtocolControllerMaskingCapabilities.PortsPerView is

//    stored in #PortsPerView

// 6. If #PortsPerView != 4 (All ports share the same view), the target port WWN

//    is contained in the #TargetPortWWN variable.

// 7. The ControllerConfigurationService has been found and the object path 

//    value is stored in $ControllerConfigService->

// 8. The value of CIM_ProtocolControllerMaskingCapabilities.OneHardwareIDPerView 
is

//    stored in #OneHardwareIDPerView

// Determine if there is a job created by method

// and wait for the job to complete

// Input:

// #ReturnCode : The return code of the method

// $ConcreteJob-> :The output parameter that may have a ConcreteJob REF.

// This method will return control if the recipe was not exited because of error

sub void WaitForJob(#ReturnCode, $ConcreteJob->) {

    if (4096 == #ReturnCode) {

if ($ConcreteJob-> != null) {

    /*Wait until the completion of the job using $ConcreteJob-> as 

a filter Verify that the OperationalStatus contains 2 (“OK”), 

or 17 (“Completed”) */

    $JobInstance = GetInstance($ConcreteJob->, 

    false, false, false, null)

    if ($JobInstance.JobState != 7) {// 7 - Completed

<ERROR! Job failed! >

    }
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1259



 

} else {

    <ERROR! Missing Job reference>

}

    }

}

// Step 1. Subscribe for indications on the Job

// Job success -- Status is ‘17’ (“Completed”) and ‘2’ (“OK”)

#Filter1 = “SELECT FROM CIM_InstModification 

            WHERE SourceInstance ISA CIM_ConcreteJob 

            AND ANY SourceInstance.OperationalStatus[*] = 17 

            AND ANY SourceInstance.OperationalStatus[*] = 2 “

// Determine if the Indication already exists

// If it doesn’t, create it

// Job failure -- Status is ‘17’ (“Completed”) and ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

            WHERE SourceInstance ISA CIM_ConcreteJob

            AND ANY SourceInstance.OperationalStatus[*] = 17

            AND ANY SourceInstance.OperationalStatus[*] = 6 “

// Determine if the Indication already exists

// If it doesn’t, create it

// Step 2. Expose a new LUN to an initiator

$StorageElement = GetInstance($StorageElement->, 

false, false, false, {“Name”})

%InputArguments[“LUNames”] = {$StorageElement.Name}

%InputArguments[“DeviceAccesses”]   = {2} // Read-Write

%InputArguments[“InitiatorPortIDs”] = {#InitiatorWWN1}

if (#PortsPerView != 4) {// 4 = All ports share the same view

    %InputArguments[“TargetPortIDs”] = {#TargetPortWWN}

}

if (#ClientSelectableDeviceNumbers == TRUE) {

  %InputArguments[“DeviceNumbers”] = {#DeviceNumber}

}

else {

  %InputArguments[“DeviceNumbers”] = NULL

}

#ReturnCode = InvokeMethod($ControllerConfigService->,

                “ExposePaths”, 

                %InputArguments, 

                %OutputArguments)

// 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

if (#ReturnCode != 0 || #ReturnCode != 4096) {
1260



 Masking and Mapping Subprofile
<ERROR! Method failure>

}

$MMJob-> = %OutputArguments[“Job”]

if ($MMJob-> == null) {

    $CreatedOrModifiedSPCs->[] = %OutputArguments[“ProtocolControllers”]

}

else {

    // Wait until job is finished

    &WaitForJob(#ReturnCode, $MMJob->)

 

    // Now get the SPCs

    $CreatedOrModifiedSPCs->[] = Associators(

        $MMJob->, 

        “CIM_AffectedJobElement”, 

        “CIM_ProtocolController”,

        “AffectingElement”, 

        “AffectedElement”,

        false, false, null)

}

// Verify results

if ($CreatedOrModifiedSPCs->[].length == 0) {

    <ERROR! There must be one or more SPC created or modified>

}

#Found = false

for #i in $CreatedOrModifiedSPCs->[] {

    $CheckSPCForUnits[] = References($CreatedOrModifiedSPCs->[#i],

    “CIM_ProtocolControllerForUnit”,

    “Antecedent”,

    false, false, null)

    for #u in $CheckSPCForUnits[] {

        if (#ClientSelectableDeviceNumbers == TRUE) {

            if ($CheckSPCForUnits[#u].DeviceNumber != #DeviceNumber ||

                $CheckSPCForUnits[#u].DeviceAccess != 2) {

                // no match found try next one (if any)

                continue

            }

        }

        // Validate Initiator ID

        $CheckAuthTargets->[]  = AssociatorNames($CheckSPCForUnits[#u].Antecedent,

                                “CIM_AuthorizedTarget”,

                                “CIM_AuthorizedPrivilege”,   

                                null, null)   

                                    
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1261



 

        for #k in $CheckAuthTargets->[] {

            $StorageHWIDs[] = Associators($CheckAuthTargets->[#k],

                    “CIM_AuthorizedSubject”,

                    “CIM_StorageHardwareID”,

                    null, null, false, false, null)

            for #j in $StorageHWIDs[] {

                if ($StorageHWIDs[#j].StorageID == #InitiatorWWN1) {

                    #Found = true

                    break

                }

            }

            if (#Found == true) {

                break

            }

        }

        // Validate StorageElement

        if (#Found == true) {// If we didn’t find initiator then don’t bother

            $CheckStorageElement = GetInstance($CheckSPCForUnits[#u].Dependent,

                    false, false, false, null)

            if ($StorageElement.Name != $CheckStorageElement.Name) {

                <ERROR! Masked and Mapped Storage Element not found>

            }

        }

    }

}

if (#Found == false) {

    <ERROR! Created mapping and masking was not found>

}

// Note: since we created one SPC, there should only be one entry here

$AllCreatedOrModifiedSPCs->[] = $CreatedOrModifiedSPCs->[]

// Step 3. Expose a currently exposed LUN to a different initiator

if (#OneHardwareIDPerView == FALSE) {

  %InputArguments[“LUNames”]          = NULL

  %InputArguments[“InitiatorPortIDs”] = {#InitiatorWWN2}

  %InputArguments[“TargetPortIDs”]    = NULL

  %InputArguments[“DeviceAccesses”]   = NULL

  // Note: ExposePaths on a modify operation takes an array containing 

  // one and only one SPC, which is what we have here

  %InputArguments[“ProtocolControllers”] = { $CreatedOrModifiedSPCs->[0]}

  #ReturnCode = InvokeMethod($ControllerConfigService->,

                              “ExposePaths”, 

                              %InputArguments, 

                              %OutputArguments)

  // 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”
1262



 Masking and Mapping Subprofile
  if (#ReturnCode != 0 || #ReturnCode != 4096) {

      <ERROR! Method failure>

  }

  

  $MMJob-> = %OutputArguments[“Job”]

  if ($MMJob-> == null) {

      $CreatedOrModifiedSPCs->[] = %OutputArguments[“ProtocolControllers”]

  }

  else {

      // Wait until job is finished

      &WaitForJob(#ReturnCode, $MMJob->)

   

      // Now get the SPCs

      $CreatedOrModifiedSPCs->[] = Associators($MMJob->, 

          “CIM_AffectedJobElement”, 

          “CIM_ProtocolController”,

          “AffectingElement”, 

          “AffectedElement”,

          false, false, null)

  }

  

  // Verify results

  if ($CreatedOrModifiedSPCs->[].length == 0) {

      <ERROR! There must be one or more SPC created or modified>

  }

  

  #Found = false

  for #i in $CreatedOrModifiedSPCs->[] {

      $CheckSPCForUnits[] = References($CreatedOrModifiedSPCs->[#i],

              “CIM_ProtocolControllerForUnit”,

              “Antecedent”,

              false, false, null)

      for #u in $CheckSPCForUnits[] {

          // Validate Initiator ID

          $CheckAuthTargets->[] =

                  AssociatorNames($CheckSPCForUnits[#u].Antecedent,

                          “CIM_AuthorizedTarget”, 

                          “CIM_AuthorizedPrivilege”,

                          null, null)

          for #k in $CheckAuthTargets->[] {

              $StorageHWIDs[] = Associators($CheckAuthTargets->[#k],

                      “CIM_AuthorizedSubject”, 

                      “CIM_StorageHardwareID”, 

                      null, null, false, false, null)

              for #j in $StorageHWIDs[] {

                  if ($StorageHWIDs[#j].StorageID == #InitiatorWWN2) {

                      #Found = true
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1263



 

                      break

                  }

              }

              if (#Found == true) {

                  break

              }

          }

          // Validate StorageElement

          if (#Found == true) {// If we didn’t find initiator then don’t bother

              $CheckStorageElement = 

                      GetInstance($CheckSPCForUnits[#u].Dependent,

                              false, false, false, null)

              if ($StorageElement.Name != $CheckStorageElement.Name) {

                  <ERROR! Masked and Mapped Storage Element not found>

              }

          }

      }

  }

  if (#Found == false) {

      <ERROR! Created mapping and masking was not found>

  }

  $AllCreatedOrModifiedSPCs->[] = $AllCreatedOrModifiedSPCs->[] +

                                  $CreatedOrModifiedSPCs->[]

  /* Current contents of $AllCreatedOrModifiedSPCs->[] array 

   plus any new, unique SPC REFs */

} // if #OneHardwareIDPerView == FALSE

// Step 4. Hide the paths previously exposed

// Since we can only pass in one SPC to HidePaths, we need to loop

// through the SPCs and call HidePaths for each one

$ModifiedSPCs->[] = null

for #spc in $AllCreatedOrModifiedSPCs->[] {

  $StorageElement = GetInstance($StorageElement->, 

                  false, false, false, {“Name”})

  %InputArguments2[“LUNames”]          = {$StorageElement.Name}

  if (#OneHardwareIDPerView == FALSE) {

    %InputArguments2[“InitiatorPortIDs”] = {#InitiatorWWN1,#InitiatorWWN2}

  }

  else {

    %InputArguments2[“InitiatorPortIDs”] = {#InitiatorWWN1}

  }  

  

  if (#PortsPerView != 4) { // All ports share the same view

      %InputArguments[“TargetPortIDs”] = {#TargetPortWWN}

  }
1264



 Masking and Mapping Subprofile
  %InputArguments2[“ProtocolControllers”] = {$AllCreatedOrModifiedSPCs->[#spc]}

  

  #ReturnCode = InvokeMethod($ControllerConfigService->,

                    “HidePaths”, 

                    %InputArguments2, %OutputArguments2)

  // 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

  if(#ReturnCode != 0 || #ReturnCode != 4096) {

          <ERROR! Method failure>

  }

  

  // Save any SPCs returned for later validation

  $MMJob-> = %OutputArguments[“Job”]

  if ($MMJob == null) {

      $ModifiedSPCs->[] = %OutputArguments[“ProtocolControllers”]

  }

  else {

      // Wait until job is finished

      &WaitForJob(#ReturnCode, $MMJob->)

      

      // Now get the SPCs

      $CreatedOrModifiedSPCs->[] = Associators(

          $MMJob->, 

          “CIM_AffectedJobElement”, 

          “CIM_ProtocolController”,

          “AffectingElement”, 

          “AffectedElement”,

          false,

          false,

          null)

      $ModifiedSPCs->[] = $ModifiedSPCs->[] + $CreatedOrModifiedSPCs->[]

      /* Current contents of $ModifiedSPCs->[] array 

  plus any new, unique SPC REFs from $CreatedOrModifiedSPCs->[]

          this list may be null */

  }

}

  

// Verify results

#Found = false

// See if the storage element is still associated to one of the SPCs

$CheckSPCs->[] = AssociatorNames($StorageElement->,

                     “CIM_ProtocolControllerForUnit”,

                     “CIM_ProtocolController”, 

                     // Assumes StorageElement LogicalDevice

                     null, null)

for #x in $CheckSPCs->[] {

    for #i in $ModifiedSPCs->[] {

        if($CheckSPCs->[#x].DeviceID == $ModifiedSPCs->[#i].DeviceID) {
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1265



 

                #Found = true

                break

        }

    }

    if (#Found == true) {

       <ERROR! Element still mapped>

    }

}

// See if the Initiator WWNs are still associated to one of the SPCs

for #i in $ModifiedSPCs->[] {

    $CheckAuthPrivilege->[] = AssociatorNames($ModifiedSPCs->[#i],

                               “CIM_AuthorizedTarget”,

                               “CIM_AuthorizedPrivilege”,

                               null, null)

                               

    for #k in $CheckAuthPrivilege->[] {

      $StorageHWIDs[] = Associators($CheckAuthPrivilege->[#k],

                             “CIM_AuthorizedSubject”,

                             “CIM_StorageHardwareID”,

                             null, null, false, false, { “StorageID” })

      for #j in $StorageHWIDs[] {

          if($StorageHWIDs[#j].StorageID == #InitiatorWWN1 || 

             $StorageHWIDs[#j].StorageID == #InitiatorWWN2 ) {

              #Found = true

              break

          }

      }

      

      if(#Found == true) {

        break  // CheckAuthTargets loop

      }

    }

    if(#Found == true) {

      <ERROR! Element still masked>

    }

}

8.2.8.20.7 Registered Name and Version
Masking and Mapping version 1.1.0
1266



 Masking and Mapping Subprofile
8.2.8.20.8 CIM Server Requirements

8.2.8.20.9 CIM Elements

Table 1137: CIM Server Requirements for Masking and Mapping

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No

Table 1138: CIM Elements for Masking and Mapping

Element Name Description
Mandatory Classes

CIM_AuthorizedPrivilege (8.2.8.20.9.1)
CIM_AuthorizedSubject (8.2.8.20.9.2)
CIM_AuthorizedTarget (8.2.8.20.9.3)
CIM_ConcreteDependency (8.2.8.20.9.4)
CIM_ControllerConfigurationService (8.2.8.20.9.5)
CIM_ElementCapabilities (8.2.8.20.9.6)
CIM_ElementSettingData (8.2.8.20.9.7)
CIM_HostedService (8.2.8.20.9.9)
CIM_LogicalDevice (8.2.8.20.9.10)
CIM_PrivilegeManagementService (8.2.8.20.9.12)
CIM_ProtocolController (8.2.8.20.9.13)
CIM_ProtocolControllerForUnit (8.2.8.20.9.14)
CIM_ProtocolControllerMaskingCapabilities 
(8.2.8.20.9.15)
CIM_SAPAvailableForElement (8.2.8.20.9.16)
CIM_SCSIProtocolEndpoint (8.2.8.20.9.17)
CIM_StorageClientSettingData (8.2.8.20.9.18)
CIM_StorageHardwareID (8.2.8.20.9.19)
CIM_StorageHardwareIDManagementService 
(8.2.8.20.9.20)

Optional Classes
CIM_HostedCollection (8.2.8.20.9.8)
CIM_MemberOfCollection (8.2.8.20.9.11)
CIM_SystemSpecificCollection (8.2.8.20.9.21)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1267



 

8.2.8.20.9.1 CIM_AuthorizedPrivilege
Created By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Modified By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Deleted By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Class Mandatory: true

8.2.8.20.9.2 CIM_AuthorizedSubject
Created By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Modified By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Deleted By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Class Mandatory: true

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_ProtocolController

Creation of a ProtocolController

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_ProtocolController

Deletion of a ProtocolController

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_ProtocolControllerForUnit

Creation of a ProtocolControllerForUnit association

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_ProtocolControllerForUnit

Deletion of a ProtocolControllerForUnit association

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ProtocolControllerForUnit

Modification of a ProtocolControllerForUnit association 
(e.g.,changing DeviceNumber)

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_AuthorizedSubject

Creation of an AuthorizedSubject association

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_AuthorizedSubject

Deletion of an AuthorizedSubject association

Table 1139: SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque and unique identifer
PrivilegeGranted boolean Indicates if the privilege is granted or 

not
Activities uint16[] For SMI-S, must be "Read", "Write"

Optional Properties/Methods
ElementName string User friendly name

Table 1138: CIM Elements for Masking and Mapping

Element Name Description
1268



 Masking and Mapping Subprofile
8.2.8.20.9.3 CIM_AuthorizedTarget
Created By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Modified By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Deleted By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Class Mandatory: true

8.2.8.20.9.4 CIM_ConcreteDependency
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.20.9.5 CIM_ControllerConfigurationService
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.20.9.6 CIM_ElementCapabilities
Created By : Static
Modified By : Static

Table 1140: SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Property Flags Type Description & Notes
Mandatory Properties/Methods

Privilege CIM_AuthorizedPrivileg
e

The Privilege either granted or denied 
to an Identity or group of Identities col-
lected by a Role

PrivilegedElement CIM_ManagedElement The Subject for which Privileges are 
granted or denied

Table 1141: SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Property Flags Type Description & Notes
Mandatory Properties/Methods

Privilege CIM_AuthorizedPrivileg
e

The Privilege affecting the target 
resource

TargetElement CIM_ManagedElement The target set of resources to which the 
Privilege applies

Table 1142: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ManagedElement Represents the independent object in 
this association

Dependent CIM_ManagedElement Represents the object dependent on 
the Antecedent.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1269



 

Deleted By : Static
Class Mandatory: true

8.2.8.20.9.7 CIM_ElementSettingData
Created By : Extrinsic(s): CIM_StorageHardwareIDManagementService.CreateStorageHardwareID
Modified By : ModifyInstance
Deleted By : Extrinsic(s): CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID
Class Mandatory: true

8.2.8.20.9.8 CIM_HostedCollection
Created By : Extrinsic(s): CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection
Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: false

8.2.8.20.9.9 CIM_HostedService
Created By : Static
Modified By : Static

Table 1143: SMI Referenced Properties/Methods for CIM_ControllerConfigurationService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System CreationClass-
Name

SystemName string The scoping System Name
CreationClassName string The name of the concrete subclass
Name string Unique identifer for the Service
ExposePaths()
HidePaths()

Optional Properties/Methods
ExposeDefaultLUs()
HideDefaultLUs()

Table 1144: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The ComputerSystem
Capabilities CIM_Capabilities The ProtocolControllerMaskingCapabil-

ities

Table 1145: SMI Referenced Properties/Methods for CIM_ElementSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The managed element (e.g., computer 
system)

SettingData CIM_SettingData The SettingData object associated with 
the element
1270



 Masking and Mapping Subprofile
Deleted By : Static
Class Mandatory: true

8.2.8.20.9.10 CIM_LogicalDevice
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

8.2.8.20.9.11 CIM_MemberOfCollection
Created By : Extrinsic(s): 

CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection,CIM_StorageHardwareIDM
anagementService.AddHardwareIDsToCollection

Modified By : ModifyInstance
Deleted By : DeleteInstance
Class Mandatory: false

Table 1146: SMI Referenced Properties/Methods for CIM_HostedCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The ComputerSystem
Dependent CIM_SystemSpecificColl

ection
The SystemSpecificCollection

Table 1147: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The ComputerSystem hosting the ser-
vice

Dependent CIM_Service The Service hosted

Table 1148: SMI Referenced Properties/Methods for CIM_LogicalDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System CreationClass-
Name

CreationClassName string The name of the concrete subclass
SystemName string The scoping System Name
DeviceID string Unique identifer

Table 1149: SMI Referenced Properties/Methods for CIM_MemberOfCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

Collection CIM_Collection The SystemSpecificCollection
Member CIM_ManagedElement The StorageHardwareID
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1271



 

8.2.8.20.9.12 CIM_PrivilegeManagementService
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.20.9.13 CIM_ProtocolController
Created By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Modified By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Deleted By : Extrinsic(s): CIM_ControllerConfigurationService.Expose-

Paths,CIM_ControllerConfigurationService.HidePaths
Class Mandatory: true

8.2.8.20.9.14 CIM_ProtocolControllerForUnit
Created By : Extrinsic(s): 

CIM_ControllerConfigurationService.ExposePaths,CIM_ControllerConfigurationService.HidePaths,CIM_
ControllerConfigurationService.ExposeDefaultLUs,CIM_ControllerConfigurationService.HideDefaultLUs

Modified By : Extrinsic(s): 
CIM_ControllerConfigurationService.ExposePaths,CIM_ControllerConfigurationService.HidePaths,CIM_
ControllerConfigurationService.ExposeDefaultLUs,CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By : Extrinsic(s): 
CIM_ControllerConfigurationService.ExposePaths,CIM_ControllerConfigurationService.HidePaths,CIM_
ControllerConfigurationService.ExposeDefaultLUs,CIM_ControllerConfigurationService.HideDefaultLUs

Class Mandatory: true

8.2.8.20.9.15 CIM_ProtocolControllerMaskingCapabilities
Created By : Static
Modified By : Static

Table 1150: SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System CreationClass-
Name

CreationClassName string The name of the concrete subclass
SystemName string The scoping System Name
Name string Uniquely identifies the Service 
ElementName string User friendly name

Table 1151: SMI Referenced Properties/Methods for CIM_ProtocolController

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System CreationClass-
Name

CreationClassName string The name of the concrete subclass
SystemName string The scoping SystemsName'
DeviceID string Unique name for the ProtocolController
1272



 Masking and Mapping Subprofile
Deleted By : Static
Class Mandatory: true

Table 1152: SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ProtocolController The ProtocolController
Dependent CIM_LogicalDevice The logical unit (eg StorageVolume) 

behind the ProtocolController
DeviceNumber string Address (e.g. LUN) of the associated 

Device. Shall be formatted as unsepa-
rated uppercase hexadecimal digits, 
with no leading 0x.

DeviceAccess uint16 The access rights granted to the refer-
enced logical unit as exposed through 
referenced ProtocolController

Table 1153: SMI Referenced Properties/Methods for CIM_ProtocolControllerMaskingCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque and unique identifer
ElementName string User-friendly name
ValidHardwareIdTypes uint16[] A list of the valid values for Strorage-

HardwareID.IDType
PortsPerView uint16 Indicates the way that ports per view 

(ProtocolController) are handled
ClientSelectableDeviceNumbers boolean Indicates if the client can specify the 

DeviceNumbers parameter when call-
ing ControllerConfigurationSer-
vice.ExposePaths().

OneHardwareIDPerView boolean Set to true if this storage system limits 
configurations to a single subject hard-
ware ID per view.

PrivilegeDeniedSupported boolean Set to true if this storage system allows 
a client to create a Privilege instance 
with PrivilegeGranted set to FALSE.

UniqueUnitNumbersPerPort boolean Indicates if different ProtocolContollers 
attached to a SCSIProtocolEndpoint 
can expose the same unit numbers 
(e.g. multiple LUN 0s) or if the numbers 
must be unique

ExposePathsSupported boolean Set to true if this storage system sup-
ports the ExposePaths and HidePaths 
methods.

CreateProtocolControllerSup-
ported

boolean This property was used in the SMI-S 
1.0 LUN Mapping and Masking subpro-
file. It is not required in SMI-S 1.1 and 
shall be set to false.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1273



 

8.2.8.20.9.16 CIM_SAPAvailableForElement
Created By : Extrinsic(s): 

CIM_ControllerConfigurationService.ExposePaths,CIM_ControllerConfigurationService.HidePaths,CIM_
ControllerConfigurationService.ExposeDefaultLUs,CIM_ControllerConfigurationService.HideDefaultLUs

Modified By : Extrinsic(s): 
CIM_ControllerConfigurationService.ExposePaths,CIM_ControllerConfigurationService.HidePaths,CIM_
ControllerConfigurationService.ExposeDefaultLUs,CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By : Extrinsic(s): 
CIM_ControllerConfigurationService.ExposePaths,CIM_ControllerConfigurationService.HidePaths,CIM_
ControllerConfigurationService.ExposeDefaultLUs,CIM_ControllerConfigurationService.HideDefaultLUs

Class Mandatory: true

8.2.8.20.9.17 CIM_SCSIProtocolEndpoint
Created By : External
Modified By : External
Deleted By : External
Class Mandatory: true

MaximumMapCount uint16 The maximum number of ProtocolCOn-
trollerForUnit associations that can be 
associated with a single  LogicalDevice 
(for example, StorageVolume). Zero 
indicates there is no limit

SPCAllowsNoLUs boolean Set to true if a client can create an SPC 
with no LogicalDevices

SPCAllowsNoTargets boolean Set to true if a client can create an SPC 
with no target SCSIProtocolEndpoints

SPCAllowsNoInitiators boolean Set to true if a client can create an SPC 
with no StorageHardwareIDs

SPCSupportsDefaultViews boolean Set to true if it the instrumentation sup-
ports default view SPCs that exposes 
logical units to all initiators

Optional Properties/Methods
ProtocolControllerSupportsCollec-
tions

boolean Indicates the storage system supports 
SystemSpecificCollections of Storage-
HardwareIDs

OtherValidHardwareIDTypes string[] An array of strings describing types for 
valid StorageHardwareID.IDType. Used 
when the ValidHardwareIdTypes 
includes Other

Table 1154: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The ManagedElement (ProtocolCon-
troller) for which the SAP is available

AvailableSAP CIM_ServiceAccessPoi
nt

The Service Access Point (SCSIProto-
colEndpoint) that is available

Table 1153: SMI Referenced Properties/Methods for CIM_ProtocolControllerMaskingCapabilities

Property Flags Type Description & Notes
1274



 Masking and Mapping Subprofile
8.2.8.20.9.18 CIM_StorageClientSettingData
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.20.9.19 CIM_StorageHardwareID
Created By : Extrinsic(s): CIM_StorageHardwareIDManagementService.CreateStorageHardwareID
Modified By : Static
Deleted By : Extrinsic(s): CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID
Standard Names: For FibreChannel attached initiators, the StorageID Property shall follow the requirements in 

6.2.4.5.2 and IDType shall be PortWWN (2). For iSCSI attached initiators, the StorageID Property shall 
follow the requirements in 6.2.4.5.4 and IDType shall be iSCSI Name (5).

Class Mandatory: true

8.2.8.20.9.20 CIM_StorageHardwareIDManagementService
Created By : Static
Modified By : Static
Deleted By : Static
Class Mandatory: true

8.2.8.20.9.21 CIM_SystemSpecificCollection
Created By : Extrinsic(s): CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection
Modified By : ModifyInstance

Table 1155: SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System CreationClass-
Name

SystemName string The scoping System Name
CreationClassName string The name of the concrete subclass

Table 1156: SMI Referenced Properties/Methods for CIM_StorageClientSettingData

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque and unique identifier
ElementName string A user-friendly name 
ClientTypes uint16[] Array of OS names

Table 1157: SMI Referenced Properties/Methods for CIM_StorageHardwareID

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque and unique identifier
StorageID N string The worldwide unique ID
IDType uint16 StorageID type. Values are Other, 

PortWWN, NodeWWN, Hostname, and 
iSCSI Name
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1275



 

Deleted By : DeleteInstance
Class Mandatory: false

8.2.8.20.10 Related Standards

Table 1158: SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string The scoping System CreationClass-
Name

SystemName string The scoping System Name
CreationClassName string The name of the concrete subclass
Name string Uniquely identifies the Service 
CreateStorageHardwareID()
DeleteStorageHardwareID()

Optional Properties/Methods
CreateHardwareIDCollection()
AddHardwareIDsToCollection()

Table 1159: SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Opaque and unique identifier
ElementName string A user-friendly name 

Table 1160: Related Standards for Masking and Mapping

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
1276



 Pool Manipulation Capabilities, and Settings Subprofile (DEPRECATED)
DEPRECATED

8.2.8.21 Pool Manipulation Capabilities, and Settings Subprofile (DEPRECATED)
The functionality of the LUN Creation and Pool Manipulation Capabilities, and Settings Subprofiles has
been subsumed by the 8.2.8.10, "Block Services Package".

The Pool Manipulation Capabilities, and Settings Subprofile is defined in IS24775-2006, Storage
Management. 

DEPRECATED
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1277



 

1278



 Storage Library Profile
8.2.8.22 Storage Library Profile

8.2.8.22.1 Description
The schema for a storage library provides the classes and associations necessary to represent various
forms of removable media libraries. This profile is based upon the CIM 2.11.0 model and defines the
subset of classes that supply the necessary information for robotic storage libraries.

This profile further describes how the classes are to be used to satisfy various use cases and offers
suggestions to agent implementers and client application developers. Detailed descriptions of classes
are from the CIM 2.11.0 schema.

The relevant objects for a storage library should be instantiated in the name space of the provider (or
agent) for a storage library resource. Whenever an instance of a class for a resource may exist in
multiple name spaces a durable name is defined to aid clients in correlating the objects across name
spaces. For storage libraries, durable names are defined for the following resources:

• ChangerDevice

• ComputerSystem

• MediaAccessDevice

The durable names are defined in 8.2.8.22.1.6, "Durable Names and Correlatable IDs of the Profile". All
other objects do not require durable names and have instances within a single name space.

8.2.8.22.1.1 Instance Diagrams
The following instance diagrams represent five related views of the storage library profile: 

a) System Level

b) MediaAccessDevice and its physical and logical relationships

c) ChangerDevice and its connections to SoftwareIdentity, ProtocolController, and 
StorageMediaLocation

d) StorageMediaLocation and its relationship to PhysicalMedia and other physical classes

e) StorageMediaLocation and its required Realizes relationships.

8.2.8.22.1.2 System Level View
Figure 206: "Storage Library-centric Instance Diagram" shows the required components for a
ComputerSystem. Note that LogicalDevice subclasses shall be associated with ComputerSystem via
SystemDevice.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1279



 

Note: Classes using a red outline and associations using a dotted outline represent optional
components that have been included in the diagram as an aid to understanding.

8.2.8.22.1.3 MediaAccessDevice-centric View
Figure 207: "MediaAccessDevice-centric Instance Diagram" shows the required classes related to
MediaAccessDevice. Though not shown in this figure, both MediaAccessDevice and ProtocolController
are connected to a ComputerSystem instance through the SystemDevice association. In some
libraries, notably small autoloaders, external hosts access a library’s ChangerDevice through the
ProtocolController of a MediaAccessDevice. For such libraries, an additional ProtocolControllerForUnit
association should be instantiated between the MediaAccessDevice’s ProtocolController and the
affected ChangerDevice. ProtocolControllerForUnit is a many-to-many association, so a single
ProtocolController can be connected to multiple LogicalDevices if this accurately represents a library’s
configuration.

Figure 206: Storage Library-centric Instance Diagram

ComputerSystem
(representing a 
Storage Library)

Product

Chassis

MediaAccessDevice

ChangerDevice

ComputerSystemPackage

TapeDrive

RemoteServiceAccessPoint

HostedAccessPoint

FCPort

SCSIProtocolController

LogicalPort

LimitedAccessPort

SAPAvailable
ForElement

SoftwareIdentity

InstalledSoftwareIdentity

ProtocolControllerForUnit

ProtocolController
ForUnit

SystemDevice

SystemDevice

SystemDevice

SystemDevice

SystemDevice

ProductPhysicalComponent

StorageLibraryCapabilities

Element
Capabilities
1280



 Storage Library Profile
8.2.8.22.1.3.1 ChangerDevice-centric View
Figure 208: "ChangerDevice-centric Instance Diagram" shows the required classes related to
ChangerDevice.

8.2.8.22.1.4 Physical View
Figure 209: "Physical View Instance Diagram" shows important physical components of a storage
library and how they relate. With regard to StorageMediaLocation and Magazine, one of two
implementation alternatives shall be selected:

a) Instantiate multiple Magazines associated to Chassis via Container, then instantiate 
StorageMediaLocations that are contained (again via Container) within each Magazine;

Figure 207: MediaAccessDevice-centric Instance Diagram

Figure 208: ChangerDevice-centric Instance Diagram

MediaAccessDevice

TapeDrive

PhysicalPackage

SoftwareIdentity

SCSIProtocolController

Realizes

ElementSoftwareIdentity

ProtocolController
ForUnit

StorageMediaLocation

Realizes

ComputerSystem

System
Device

System
Device

ComputerSystem

SoftwareIdentity

ChangerDevice

SystemDevice

ElementSoftware
Identity

SCSIProtocolController

ProtocolController
ForUnit

StorageMediaLocation

Realizes

SystemDevice

PhysicalPackage

Realizes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1281



 

b) Instantiate multiple StorageMediaLocations directly associated to Chassis via Container, without 
the use of Magazines. Other optional classes, such as Panel, can also be used to group Storage-
MediaLocations, but this is not mandatory.

8.2.8.22.1.5 StorageMediaLocation Instance Diagram
Figure 210: "StorageMediaLocation Instance Diagram" shows relationships between various
LogicalDevices (i.e., MediaAccessDevices, LimitedAccessPort, and ChangerDevice) and
StorageMediaLocation. For each LogicalDevice that can hold media, at least one
StorageMediaLocation shall be associated via Realizes. 

The figure also shows how PhysicalMedia is conceptually placed “inside” a LogicalDevice by
associating PhysicalMedia with a StorageMediaLocation that Realizes a LogicalDevice (see
Figure 210: "StorageMediaLocation Instance Diagram"). All tapes, irrespective of the location, are
associated with the chassis using PackagedComponent. 

8.2.8.22.1.6 Durable Names and Correlatable IDs of the Profile
Different implementations use different approaches to uniquely identify the SCSI units pertinent to
Storage Media Libraries (i.e., Changer Devices and Media Access Devices). The agent should utilize
the same Durable Name techniques described for volumes in the Disk Array section. The chosen name
is stored in the Name attribute of the logical device with the corresponding setting for the NameFormat
attribute. Allowable name formats and device pairings for the storage library profile are:

Figure 209: Physical View Instance Diagram

Figure 210: StorageMediaLocation Instance Diagram

C h a ss is

P h ys ica lM e d ia
S to ra g e M e d ia L o ca tio n

C o n ta in e r

P a cka g e d C o m p o n e n t

P h ys ic a lM e d ia In L o ca tio n

M a g a z in e

C o n ta in e r

StorageMediaLocationMediaAccessDevice

ChangerDevice StorageMediaLocation

Realizes

Realizes

PhysicalMedia

PhysicalMediaInLocation

PhysicalMedia

PhysicalMediaInLocation
1282



 Storage Library Profile
• FCPort: FCPort.PermanentAddress = Fibre Channel Port World Wide Name. NameFormat should
be set to “WWN”

• ChangerDevice.DeviceID = Vendor+Product+Serial Number+(optional instance number). Vendor,
Model and Serial number should be taken from the ChangerDevice’s associated
ComputerSystem, Product, and/or Chassis. An option instance number may be added to uniquely
denote more than one ChangerDevice “inside” a ComputerSystem

• MediaAccessDevice (or TapeDrive).DeviceID = Vendor+Product+Serial number for the
MediaAccessDevice

• ComputerSystem.Name = Vendor+Product+Serial number for the storage library and/or its
associated Product and Chassis. NameFormat should be set to “Vendor+Product+Serial”

Refer to 6.2.4.5, "Standard Formats for Correlatable Names" for additional information.

8.2.8.22.2 Health and Fault Management Considerations
None

8.2.8.22.3 Cascading Considerations
None

Supported Subprofiles and Packages

8.2.8.22.4 Methods of this Profile
None

Table 1161: Supported Subprofiles for Storage Library

Registered Subprofile Names Mandatory Version
Access Points No 1.1.0
Location No 1.1.0
FC Target Ports No 1.1.0
Software No 1.1.0
Storage Library Limited Access Port Elements No 1.1.0
Storage Library Media Movement No 1.1.0
Storage Library Capacity No 1.1.0
Storage Library Element Counting No 1.1.0
Storage Library InterLibraryPort Connection No 1.1.0
Storage Library Partitioned Library No 1.1.0

Table 1162: Supported Packages for Storage Library

Registered Package Names Version
Physical Package 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1283



 

8.2.8.22.5 Client Considerations and Recipes

8.2.8.22.5.1 Recipe Overview
While no pseudo-code-based recipes have been written for this profile, this section provides some
helpful information for writing management applications and suggests techniques for addressing
common use cases.

8.2.8.22.5.2 Discover a Storage Media Library
Discovery of Storage Media Libraries is achieved by looking up instances of ComputerSystem which
are subclassed from System and have a corresponding Name and NameFormat property as described
above under “Durable Names and Correlatable IDs of the Profile”. Specifically, NameFormat shall be
set to “VendorModelSerial” and the Name shall be of the form Vendor+Product+Serial

8.2.8.22.5.3 Determine Library Physical Media Capacity
The physical media capacity of a library is the number of physical media objects that may be stored in
the currently installed configuration of a Storage Media Library. This capacity may be determined by
enumerating the StorageMediaLocation instances that are associated with each of the library’s Chassis
objects. 

In implementations that choose to include the Capacity subprofile, minimum and maximum slot
capacities for a Storage Library are modeled in the ConfigurationCapacity, which is described earlier in
the section on Capacity Constraints. Since this use case relies on an optional part of the profile, it may
not be supported by each agent implementation.

8.2.8.22.5.4 Determine Physical Media Inventory
To determine the physical media inventory of a storage library, clients should discover the Chassis
instance associated with a particular ComputerSystem (via the ComputerSystemPackage association),
and enumerate the PhyscialMedia instances associated with the Chassis through the
PackagedComponent association.

8.2.8.22.5.5 Discover Storage Library Control Type
The control mechanism to a library is either:

• SCSI Media Changer Commands directed to the library’s changer device,

• Library control commands directed to a Library Control service.

If a library does not have a ProtocolController instance associated via ProtocolControllerForUnit to the
ChangerDevice then the client should conclude that an alternate mechanism for controlling the library is
required. This mechanism may vary, but should be represented by an instance of Service as described
in the section on Software/Service View for a library’s hosted services

8.2.8.22.5.6 Determine Library Drive Capacity
The current drive capacity of a library may be determined by enumerating the MediaAccessDevice
instances through the SystemDevice association of the library. 

When the optional Capacity subprofile is implemented, the number of drives discovered should be
within the range indicated by the minimum and maximum capacity attribute found on the library
Chassis’ ElementCapacity association with ConfigurationCapacity for tape drives. This bounds check is
not available if the Capacity subprofile is not implemented.

8.2.8.22.5.7 Determine Drive Data Path Technology
Clients can discover the data path protocol of each drive within a storage library by enumerating
MediaAccessDevice instances, then following the ProtocolControllerForUnit association linking a
MediaAccessDevivce with a ProtocolController. Properties within Contoller can then be queried for
1284



 Storage Library Profile
more information. If the MediaAccessDevice has a fibre channel interface, an FCPort instance is linked
to its ProtocolController by a ProtocolControllerForPort association. See 8.2.2.2, "FC Target Port
Subprofile" for more information on fibre channel connectivity.

8.2.8.22.5.8 Find asset Information
Information about the entire storage library is modeled in the Chassis instances associated with the
ComputerSystem. Chassis properties include Manufacturer, Model, Version, and Tag. Tag is an
arbitrary identifying string.

To identify asset information for the logical devices, a client should access the corresponding logical
device through the ComputerSystem object’s SystemDevice association. For each logical device
instance the client may then check for asset information from the PhysicalElement associated through
a Realizes association. Product information may also be available through the corresponding
ProductPhysicalElement/ProductPhysicalComponent aggregation.

8.2.8.22.5.9 Discovery of Mailslots, Import/Export Elements or LimitedAccessPorts in a Storage Library
Clients may determine the number of LimitedAccessPorts in a library by enumerating the
LimitedAccessPorts connected to a ComputerSystem instance via the SystemDevice association.

Note that some smaller libraries do not have the type of import/export element modeled by
LimitedAccessPort. As a result, LimitedAccessPort elements are included in an (optional) subprofile
(see 8.2.8.29, "Limited Access Port Elements Subprofile"). 

8.2.8.22.5.10 Counting assets in large storage libraries
Very large libraries may contain dozens of MediaAccessDevices and many thousands of
StorageMediaLocations and PhysicalMedia. The intrinsic enumerateInstances() method is commonly
used to count or gather CIM object instances of this type. Clients may find that using
enumerateInstances() to count assets in very large libraries requires an excessive amount of time and
processing resources. Providers supporting large libraries may also find that excessive time and
resources are consumed attempting to return the bulk of data requested in enumerateInstances() calls.
The following suggestions may be of help in situations where large libraries are of interest:

• Omit Qualifiers from enumerateInstances() or getInstance() requests;

• Request only the lowest-level child class of interest for examination or counting;

• Request only the properties of interest in enumerateInstances() or getInstance() requests. When
only a count of existing objects is desired, omit all properties from the request;

• Use the intrinsic enumerateInstanceNames() or associatorNames() method instead of
enumerateInstances() when only a count of existing objects is desired. The
enumerateInstanceNames() and associatorNames() calls are much “lighter weight” overall than
enumerateInstances();

• If the provider supports it, use the Physical Elements Count subprofile to quickly count
PhysicalMedia and StorageMediaLocation instances. Note that this subprofile is optional and
experimental and may not be supported by some providers.

8.2.8.22.6 Registered Name and Version
Storage Library version 1.1.0
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1285



 

8.2.8.22.7 CIM Server Requirements

8.2.8.22.8 CIM Elements

Table 1163: CIM Server Requirements for Storage Library

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 1164: CIM Elements for Storage Library

Element Name Description
Mandatory Classes

CIM_ChangerDevice (8.2.8.22.8.1)
CIM_Chassis (8.2.8.22.8.2)
CIM_ComputerSystem (8.2.8.22.8.3) 'Top level' system that represents the whole Storage 

Library.
CIM_ComputerSystemPackage (8.2.8.22.8.4)
CIM_ElementSoftwareIdentity (8.2.8.22.8.6)
CIM_ElementSoftwareIdentity (8.2.8.22.8.7)
CIM_MediaAccessDevice (8.2.8.22.8.8)
CIM_PackagedComponent (8.2.8.22.8.9)
CIM_PhysicalMedia (8.2.8.22.8.10)
CIM_PhysicalMediaInLocation (8.2.8.22.8.11)
CIM_ProtocolControllerForUnit (8.2.8.22.8.12)
CIM_Realizes (8.2.8.22.8.13)
CIM_SCSIProtocolController (8.2.8.22.8.14)
CIM_SoftwareIdentity (8.2.8.22.8.15)
CIM_StorageMediaLocation (8.2.8.22.8.17)
CIM_SystemDevice (8.2.8.22.8.18) This association links all LogicalDevices to the scoping 

system.
Optional Classes

CIM_ElementCapabilities (8.2.8.22.8.5) Class to implement the association between the top-
level ComputerSystem representing a Storage Library 
and its StorageLibraryCapabilities

CIM_StorageLibraryCapabilities (8.2.8.22.8.16) Describes the capabilities of the Storage Library repre-
sented by the top level ComputerSystem this is associ-
ated with
1286



 Storage Library Profile
Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_ComputerSystem

Creation of a storage library instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_ComputerSystem

Deletion of a storage library instance

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_PhysicalMedia

Creation of a physical media instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_PhysicalMedia

Deletion of a physical media instance

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_MediaAccessDevice

Creation of a media access device instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_MediaAccessDevice

Deletion of a media access device instance

SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_ChangerDevice

Creation of a Changer Device instance

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_ChangerDevice

Deletion of a Changer Device instance

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem AND Previ-
ousInstance.OperationalStatus <> 
SourceInstance.OperationalStatus

Deprecated WQL - Change in OperationalStatus of a 
storage library

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_MediaAccessDevice AND Previ-
ousInstance.OperationalStatus <> 
SourceInstance.OperationalStatus

Deprecated WQL - Change in OperationalStatus for a 
media access device

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ChangerDevice AND PreviousIn-
stance.OperationalStatus <> 
SourceInstance.OperationalStatus

Deprecated WQL - Change in OperationalStatus for a 
Changer Device

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ComputerSystem AND Previ-
ousInstance.CIM_ComputerSystem::OperationalStatus 
<> SourceInstance.CIM_ComputerSystem::Operation-
alStatus

CQL - Change in OperationalStatus of a storage library

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_MediaAccessDevice AND Previ-
ousInstance.CIM_MediaAccessDevice::OperationalStat
us <> SourceInstance.CIM_MediaAccessDevice::Oper-
ationalStatus

CQL - Change in OperationalStatus for a media access 
device

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_ChangerDevice AND PreviousIn-
stance.CIM_ChangerDevice::OperationalStatus <> 
SourceInstance.CIM_ChangerDevice::OperationalSta-
tus

CQL - Change in OperationalStatus for a Changer 
Device

Table 1164: CIM Elements for Storage Library

Element Name Description
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1287



 

8.2.8.22.8.1 CIM_ChangerDevice
Class Mandatory: true

8.2.8.22.8.2 CIM_Chassis
Class Mandatory: true

8.2.8.22.8.3 CIM_ComputerSystem
'Top level' system that represents the whole Storage Library.
Created By : External
Class Mandatory: true

Table 1165: SMI Referenced Properties/Methods for CIM_ChangerDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
DeviceID string
MediaFlipSupported boolean
ElementName string
OperationalStatus uint16[] Status of the changer device.

Optional Properties/Methods
StatusDescriptions string[] Additional information related to the 

values in OperationalStatus.

Table 1166: SMI Referenced Properties/Methods for CIM_Chassis

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Tag string
LockPresent boolean
SecurityBreach uint16
IsLocked boolean
ElementName string
Manufacturer string
Model string
SerialNumber string

Table 1167: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
1288



 Storage Library Profile
8.2.8.22.8.4 CIM_ComputerSystemPackage
Created By : External
Class Mandatory: true

8.2.8.22.8.5 CIM_ElementCapabilities
Class to implement the association between the top-level ComputerSystem representing a Storage Library and its 
StorageLibraryCapabilities
Class Mandatory: false

Name string Unique identifier for the storage library. 
This should take the form of a string 
consisting of Vendor+Product+Serial-
Number, derived from SCSI Inquiry 
Pages.

Dedicated uint16[] Indicates that this computer system is 
dedicated to operation as a storage 
library

NameFormat string Format for Name property. HID is a 
required format. Others are optional.

OperationalStatus uint16[] Overall status of the library
ElementName string User-friendly name

Optional Properties/Methods
StatusDescriptions string[] Additional information related to the 

values in OperationalStatus.
PrimaryOwnerContact M string Contact details for storage library 

owner
PrimaryOwnerName M string Owner of the storage library

Table 1168: SMI Referenced Properties/Methods for CIM_ComputerSystemPackage

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_PhysicalPackage The PhysicalPackage
Dependent CIM_ComputerSystem The top-level ComputerSystem repre-

senting the Storage Library.

Table 1169: SMI Referenced Properties/Methods for CIM_ElementCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

ManagedElement CIM_ManagedElement The top-level ComputerSystem repre-
senting the Storage Library

Capabilities CIM_Capabilities The capabilities of the Storage Library

Table 1167: SMI Referenced Properties/Methods for CIM_ComputerSystem

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1289



 

8.2.8.22.8.6 CIM_ElementSoftwareIdentity
Class Mandatory: true

8.2.8.22.8.7 CIM_ElementSoftwareIdentity
Class Mandatory: true

8.2.8.22.8.8 CIM_MediaAccessDevice
Class Mandatory: true

8.2.8.22.8.9 CIM_PackagedComponent
Class Mandatory: true

Table 1170: SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_SoftwareIdentity The software asset.
Dependent CIM_ManagedElement The device that uses the software.

Table 1171: SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

Dependent CIM_ManagedElement
Antecedent CIM_SoftwareIdentity

Table 1172: SMI Referenced Properties/Methods for CIM_MediaAccessDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
DeviceID string
OperationalStatus uint16[]
NeedsCleaning boolean If unknown, set to False.
MountCount uint64

Optional Properties/Methods
StatusDescriptions string[] Additional information related to the 

values in OperationalStatus.

Table 1173: SMI Referenced Properties/Methods for CIM_PackagedComponent

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_PhysicalPackage
PartComponent CIM_PhysicalCompone

nt
1290



 Storage Library Profile
8.2.8.22.8.10 CIM_PhysicalMedia
Class Mandatory: true

8.2.8.22.8.11 CIM_PhysicalMediaInLocation
Class Mandatory: true

8.2.8.22.8.12 CIM_ProtocolControllerForUnit
Class Mandatory: true

Table 1174: SMI Referenced Properties/Methods for CIM_PhysicalMedia

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Tag string
Capacity uint64 0 = unknown. If CleanerMedia=True, 

then ignore Capacity value.
MediaType uint16
CleanerMedia boolean If unknown, set to False
DualSided boolean
LabelStates uint16[]
LabelFormats uint16[]
PhysicalLabels string[]
RemovalConditions uint16

Optional Properties/Methods
MediaDescription string

Table 1175: SMI Referenced Properties/Methods for CIM_PhysicalMediaInLocation

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_StorageMediaLoca
tion

Dependent CIM_PhysicalMedia

Table 1176: SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_ProtocolController The ProtocolController.
Dependent CIM_LogicalDevice The MediaAccessDevice or Changer-

Device.
Optional Properties/Methods

DeviceNumber string The target device visible through the 
controller.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1291



 

8.2.8.22.8.13 CIM_Realizes
Class Mandatory: true

8.2.8.22.8.14 CIM_SCSIProtocolController
This is only required if FC Ports claim backwards compatibility with SMI-S 1.0

Class Mandatory: true

8.2.8.22.8.15 CIM_SoftwareIdentity
Class Mandatory: true

Table 1177: SMI Referenced Properties/Methods for CIM_Realizes

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_PhysicalElement
Dependent CIM_LogicalDevice

Table 1178: SMI Referenced Properties/Methods for CIM_SCSIProtocolController

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
SystemName string
CreationClassName string
DeviceID string Opaque identifier
OperationalStatus uint16[]

Optional Properties/Methods
ElementName string
StatusDescriptions string[] Additional information related to the 

values in OperationalStatus.
MaxUnitsControlled uint32

Table 1179: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string
VersionString string The software of firmware version of the 

device (ChangerDevice, MediaAccess-
Device, or a SCSIProtocolController)

Manufacturer string
Optional Properties/Methods

Classifications uint16[] 4 = Application Software, 10 = Firm-
ware

BuildNumber uint16
MajorVersion uint16
RevisionNumber uint16
1292



 Storage Library Profile
8.2.8.22.8.16 CIM_StorageLibraryCapabilities
Describes the capabilities of the Storage Library represented by the top level ComputerSystem this is associated 
with
Class Mandatory: false

8.2.8.22.8.17 CIM_StorageMediaLocation
Class Mandatory: true

8.2.8.22.8.18 CIM_SystemDevice
This association links all LogicalDevices to the scoping system.
Class Mandatory: true

MinorVersion uint16

Table 1180: SMI Referenced Properties/Methods for CIM_StorageLibraryCapabilities

Property Flags Type Description & Notes
Mandatory Properties/Methods

InstanceID string Unique Identifier for this Capabilities 
class. See MOF for specific format

ElementName string A user-friendly name
Optional Properties/Methods

Capabilities uint16[] Array of general capabilities for the 
Storage Library (see MOF)

MaxAuditTime uint64 Number of seconds it takes for the 
library to complete an audit or "inven-
tory" operations.

Table 1181: SMI Referenced Properties/Methods for CIM_StorageMediaLocation

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Tag string
LocationType uint16
LocationCoordinates string
MediaTypesSupported uint16[]
MediaCapacity uint32

Table 1182: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System The top-level ComputerSystem repre-
senting the Storage Library.

PartComponent CIM_LogicalDevice The logical devices on the Storage 
Library.

Table 1179: SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Property Flags Type Description & Notes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1293



 

8.2.8.22.9 Related Standards

Table 1183: Related Standards for Storage Library

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
1294



 Element Counting Subprofile
EXPERIMENTAL

8.2.8.23 Element Counting Subprofile  

8.2.8.23.1 Description
The Element counting subprofile defines methods to count the number of physical tapes, storage media
locations, and other classes within a storage library (or other system type). Such methods allow clients
to avoid retrieving all instances of physical element classes simply to count them. Therefore, network
traffic will be saved between client applications and storage library providers. These methods are
modeled by the ConfigurationReportingService hosted by the storage library’s (or other system type’s)
top-level ComputerSystem.

Instance Diagram
Figure 211: "Instance Diagram" provides a sample instance diagram.

Discovery
The Element counting subprofile, as currently defined, is not an advertised profile. Support for the
Element Counting Subprofile can be obtained through the Storage Library Profile (or other top-level
system profile as appropriate).

8.2.8.23.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.8.23.3 Cascading Considerations
Not defined in this standard.

8.2.8.23.4 Supported Subprofiles and Packages
The Element counting subprofile requires the Storage Library profile. Other top-level device profiles
may also be able to make use of this subprofile, but such compatibility is not guaranteed.

8.2.8.23.5 Methods of the Profile

8.2.8.23.5.1 GetClassTypes
GetClassTypes returns the list of class types that a given ManagedElement – typically, a storage
library’s top-level ComputerSystem or Chassis – supports or has installed. Calling GetClassTypes in
the first step in a three step process to obtain a count of desired elements. (See  8.2.8.23.6, "Client
Considerations and Recipes" for an overview and example). 

The GetClassTypes method uses the following parameters:

Figure 211: Instance Diagram

ConfigurationReportingService

uint32 GetClassTypes(…);
uint32 GetUnitTypes(…);
uint32 ReportCapacity(…);

ComputerSystem

Hosted
Service
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1295



 

[IN] uint16 InquiryType = “Installed” or “Supports”

When “Installed” is specified, the method will return the list of countable classes that the associated
ComputerSystem currently has installed or contained within its scope. When “Supports” is specified, the
method will return the list of countable classes that the associated ComputerSystem potentially
supports, though no such class instances may currently be installed or contained within its scope.

[IN] boolean Recursive = true or false

For the purposes of the current subprofile, the value of the Recursive parameter is not relevant. Until
defined otherwise, clients should specify “false”, and expect that the value will not affect operation of
the GetClassTypes method in any way.

[IN] CIM_ManagemedElement REF Target = a CIM object pointer to the to the top-level
ComputerSystem to which ConfigurationReportingService is associated. In some cases, a
pointer the ComputerSystem’s Chassis may be appropriate. This parameter reinforces that the
ConfigurationReportingService is returning information on the storage library’s (or other top-level
profile’s) ComputerSystem or Chassis. Classes to be returned or counted are considered to be
uniquely within the scope of this top-level ComputerSystem or Chassis.

[IN (false], OUT] string ClassTypes[] = an array of class types that can be counted by the
service. One value of this parameter will be selected by the client and used when calling
GetUnitTypes() and ReportCapacity(), described below. The method/service provider may return a
string representation of any valid CIM class which it can report a count on. For example, a storage
library provider might return “CIM_PhysicalMedia” to indicate that this service allows clients to obtain a
count of PhysicalMedia instances currently associated with the Target ComputerSystem or Chassis
instance. Other example values would be “CIM_StorageMediaLocation” and
“CIM_MediaAccessDevice”

The GetClassTypes method also returns one of the following status values:

“Success”, “Not Supported”, “Unknown”, “Timeout”, “Failed”, “DMTF Reserved”, “Vendor Specific”. In
general, it is expected that “Success” will be returned on successful execution and “Failed” or “Timeout”
will be returned when errors occur in executing this method on the provider/server side. If “Not
Supported” is returned, the client may still attempt to call the GetUnitTypes and ReportCapacity
methods, but a known value for the ClassType parameter will not be available to the client up front.
“Unknown” indicates  that the result cannot be determined for the given parameter combination at this
time.

8.2.8.23.5.2 GetUnitTypes
GetUnitTypes returns the type of “unit” relationships that can be specified by the client when counting
class instances associated with a top-level ComputerSystem or Chassis. Calling GetUnitTypes in the
second step in a three step process to obtain a count of desired elements. (See 8.2.8.23.6, "Client
Considerations and Recipes" for an overview and example). 

The GetUnitTypes method uses many of the same parameters as GetClassTypes, including:

[IN] uint16 InquiryType: see details in 8.2.8.23.5.1, "GetClassTypes". “Supported” or “Installed” are
valid enumerated values.

[IN] boolean Recursive: see details under in 8.2.8.23.5.1, "GetClassTypes". Generally, a value of
“false” is expected.

[IN] CIM_ManagedElement REF Target: see details in 8.2.8.23.5.1, "GetClassTypes". A pointer to the
top-level ComputerSystem associated with this ConfigurationReportingService. In some cases, a
pointer to the top-level Chassis may be appropriate.
1296



 Element Counting Subprofile
[IN] string ClassType: see details see details in 8.2.8.23.5.1, "GetClassTypes". The class type to be
counted.

[IN (false) OUT] uint16 UnitTypes[] = an array of “relationship types” to help specify how the
class instances to be counted are associated with the top-level ComputerSystem or Chassis
specified by Target. Many values are available for UnitTypes, but clients should expect that only
“Contained” or “Connected” will be returned by storage library providers. Other values, such as “None”,
“Front Side”, and “Memory” should not be returned until future definition of their meaning is
documented. Clients will use one of the values returned in this parameter when calling ReportCapacity.

The GetUnitTypes method also returns one of the following status values:

“Success”, “Not Supported”, “Unknown”, “Timeout”, “Failed”, “DMTF Reserved”, “Vendor Specific”. In
general, it is expected that “Success” will be returned on successful execution and “Failed” or “Timeout”
will be returned when errors occur in executing this method on the provider/server side. If “Not
Supported” is returned, the client may still attempt to call the ReportCapacity method, but a known
value for the UnitType parameter will not be available to the client up front. In general, clients should
attempt to specify “Contained” or “Connected” when calling ReportCapacity. “Unknown” indicates  that
the result cannot be determined for the given parameter combination at this time.

8.2.8.23.5.3 ReportCapacity
ReportCapacity returns the number or count of a given class types that the given
ManagementElement – typically, a storage library’s top-level ComputerSystem or Chassis – supports or
has installed. Calling ReportCapacity in the third step in a three step process to obtain a count of
desired elements. (See 8.2.8.23.6, "Client Considerations and Recipes" for an overview and example). 

The ReportCapacity method uses many of the same parameters as GetClassTypes and GetUnitTypes,
including:

[IN] uint16 InquiryType: see details in 8.2.8.23.5.1, "GetClassTypes". “Supported” or “Installed” are
valid enumerated values.

[IN] boolean Recursive: see details in 8.2.8.23.5.1, "GetClassTypes". Generally, a value of “false” is
expected.

[IN] CIM_ManagedElement REF Target: see details in 8.2.8.23.5.1, "GetClassTypes". A pointer to the
top-level ComputerSystem associated with this ConfigurationReportingService. In some cases, a
pointer to the top-level Chassis may be appropriate.

[IN] string ClassType: see details in 8.2.8.23.5.1, "GetClassTypes". The class type to be counted.

[IN] uint16 UnitType: see details in 8.2.8.23.5.1, "GetClassTypes". Generally, the “Contained” or
“Connected” enumerated value will be used.

[IN (false), OUT] uint64 NumberOfUnits = the number of “supported” or “installed” ClassType
instances “contained” or “connected” in a given Target ComputerSystem’s (or Chassis’s)
scope. Obtaining this count is the purpose of the ConfigurationReportingService.

The ReportCapacity method also returns one of the following status values:

“Success”, “Not Supported”, “Unknown”, “Timeout”, “Failed”, “DMTF Reserved”, “Vendor Specific”. In
general, it is expected that “Success” will be returned on successful execution and “Failed” or “Timeout”
will be returned when errors occur in executing this method on the provider/server side. If “Not
Supported” is returned, it may indicate that the Target, ClassType, or UnitType parameters are in error.
Supported values for ClassType and UnitType should be obtained by calling GetClassTypes and
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1297



 

GetUnitTypes prior to calling ReportCapacity. “Unknown” indicates  that the result cannot be
determined for the given parameter combination at this time.

8.2.8.23.6 Client Considerations and Recipes
ConfigurationReportingService may be used by clients interested in quickly obtaining a count or
“number of” desired instances. For example, a client may want to know the number of PhysicalMedia
instances associated with a particular storage library, but the time and overhead associated with
enumerating the instances of these objects – through the extrinsic enumerateInstances() or
enumerateInstanceNames() methods – can be excessive.

To use ConfigurationReportingService, clients call three methods in succession: GetClassTypes,
GetUnitTypes, and ReportCapacity. GetClassTypes returns the list of class types that can be counted.
This information is then used to call GetUnitTypes, which returns a list of “unit” relationships (e.g.,
“Connected” or “Contained”). This value and other information is then passed to ReportCapacity, which
returns the count of desired class instances.

An example: A client wants to count the number of PhysicalMedia instances associated with a storage
library (itself represented by a top-level ComputerSystem and Chassis instance). Having discovered a
ConfigurationReportingService associated with the ComputerSystem of interest, the client will call:

uint32 GetClassTypes (

InquiryType = “Installed”,

Recursive = “false”,

Target = CIM object path to the ComputerSystem of interest,

&ClassTypes[] = pointer to the countable classes, as returned by the 
provider/service)

Assuming that GetClassTypes returns a value of “Success”, the client may examine the ClassTypes[]
array and find that it contains “CIM_MediaAccessDevice”, “CIM_PhysicalMedia”,
“CIM_StorageMediaLocation”, and “CIM_MediaTranferDevice”. Since this client is interested in
PhysicalMedia, it would use the “CIM_PhysicalMedia” value use to call GetUnitTypes:

uint32 GetUnitTypes (

InquiryType = “Installed”,

Recursive = “false”,

Target = CIM object path to the ComputerSystem of interest,

ClassType = “CIM_PhysicalMedia”

&UnitTypes[] = pointer to the supported “unit” relationship types, as 
returned by the provider/service)

Assuming that GetUnitTypes returns a value of “Success”, the client may examine the UnitTypes[] array
and find that it contains only “Contained”. The client would then use this value to call ReportCapacity:

uint32 ReportCapacity (

InquiryType = “Installed”,

Recursive = “false”,

Target = CIM object path to the ComputerSystem of interest,

 ClassType = “CIM_PhysicalMedia”,

UnitType = “Contained”

&NumberOfUnits)

Assuming that ReportCapacity returns a value of “Success”, the client should examine the
NumberOfUnits value to determine the number of CIM_PhysicalMedia “contained” or currently
“installed” in the Target ComputerSystem.

In general, it is expected that “Success” will be returned on successful execution of these three
methods, and “Failed” or “Timeout” will be returned when errors occur in executing these methods on
1298



 Element Counting Subprofile
the provider/server side. If “Not Supported” is returned, it may indicate that the Target, ClassType, or
UnitType parameters are in error.

8.2.8.23.7 Registered Name and Version
Storage Library Element Counting version 1.1.0

8.2.8.23.8 CIM Server Requirements

8.2.8.23.9 CIM Elements

8.2.8.23.9.1 CIM_ConfigurationReportingService
Class Mandatory: true

Table 1184: CIM Server Requirements for Storage Library Element Counting

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 1185: CIM Elements for Storage Library Element Counting

Element Name Description
Mandatory Classes

CIM_ConfigurationReportingService (8.2.8.23.9.1)
CIM_HostedService (8.2.8.23.9.2)

Table 1186: SMI Referenced Properties/Methods for CIM_ConfigurationReportingService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
Name string
GetClassTypes()
GetUnitTypes()
ReportCapacity()
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1299



 

8.2.8.23.9.2 CIM_HostedService
Class Mandatory: true

8.2.8.23.10 Related Standards

EXPERIMENTAL

Table 1187: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The hosting Storage Library.
Dependent CIM_Service The configuration reporting service.

Table 1188: Related Standards for Storage Library Element Counting

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
1300



 InterLibraryPort Connection Subprofile
EXPERIMENTAL

8.2.8.24 InterLibraryPort Connection Subprofile  

8.2.8.24.1 Description

Support of InterLibraryPort devices, a.k.a. pass-thru ports or cartridge exchange mechanisms, is
designated as optional in this profile. However, when such a device exists the agent representing the
library should instantiate this class for each port. When one or more libraries are connected via an Inter-
Library Port and the corresponding agents are working with separate name spaces a mechanism is
required for correlating the LibraryExchange association that represents the port connection.

Instance Diagrams
Figure 212: "InterLibraryPort Connection Instance Diagram" provides a sample instance diagram.

Durable Names and Correlatable IDs
A Durable Name is not defined by this profile for InterLibraryPort instances and remains unspecified.
This is not an issue when associated InterLibraryPort instances are within the same name space.

8.2.8.24.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.8.24.3 Cascading Considerations
Not defined in this standard.

8.2.8.24.4 Supported Subprofiles and Packages
None.

Figure 212: InterLibraryPort Connection Instance Diagram
ComputerSystem

InterLibraryPort

SystemDevice

InterLibraryPort
LibraryExchange

ComputerSystem

SystemDevice

StorageMediaLocation

PhysicalMedia

PhysicalMediaInLocation

StorageMediaLocation

Realizes Realizes

Magazine

ContainerAdditional relationships that are possible} {

PhysicalPackage PhysicalPackage

RealizesRealizes
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1301



 

8.2.8.24.5 Methods of the Profile
None.

8.2.8.24.6 Client Considerations and Recipes
None.

8.2.8.24.7 Registered Name and Version
Storage Library InterLibraryPort Connection version 1.1.0

8.2.8.24.8 CIM Server Requirements

Table 1189: CIM Server Requirements for Storage Library InterLibraryPort Connection

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
1302



 InterLibraryPort Connection Subprofile
8.2.8.24.9 CIM Elements

8.2.8.24.9.1 CIM_InterLibraryPort
InterLibraryPorts represent hardware that transports Physical Media between connected Storage Libraries. 
The LibraryExchange association identifies the connected Libraries, by identifying the connected InterLibraryPorts.
Class Mandatory: true

Table 1190: CIM Elements for Storage Library InterLibraryPort Connection

Element Name Description
Mandatory Classes

CIM_InterLibraryPort (8.2.8.24.9.1) InterLibraryPorts represent hardware that transports 
Physical Media between connected Storage Libraries. 
The LibraryExchange association identifies the con-
nected Libraries, by identifying the connected InterLi-
braryPorts.

CIM_LibraryExchange (8.2.8.24.9.2) This relationship identifies that two storage libraries are 
connected through their InterLibraryPorts.

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_InterLibraryPort

Creation of an instance of InterLibraryPort

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_InterLibraryPort

Deletion of an instance of InterLibraryPort

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_InterLibraryPort                          
AND SourceInstance.OperationalStatus <> PreviousIn-
stance.OperationalStatus

Deprecated WQL - Change in OperationalStatus of a 
InterLibraryPort

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_InterLibraryPort                          
AND SourceInstance.CIM_InterLibraryPort::Operation-
alStatus <> PreviousIn-
stance.CIM_InterLibraryPort::OperationalStatus

CQL - Change in OperationalStatus of a InterLibrary-
Port

Table 1191: SMI Referenced Properties/Methods for CIM_InterLibraryPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
DeviceID string
LastAccessed datetime Last access time of the port by the 

library
ImportCount uint64 The number of times the port was used 

to move physical media into the stor-
age library

ExportCount uint64 The number of times the port was used 
to move physical media out of the stor-
age library
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1303



 

8.2.8.24.9.2 CIM_LibraryExchange
This relationship identifies that two storage libraries are connected through their InterLibraryPorts.
Class Mandatory: true

8.2.8.24.10 Related Standards

EXPERIMENTAL

Direction uint16 Identifies whether the port can be used 
to import physical media, export physi-
cal media or both

OperationalStatus uint16[] Status of the InterLibrary port.
Optional Properties/Methods

StatusDescriptions string[] Additional information related to the 
values in OperationalStatus.

Table 1192: SMI Referenced Properties/Methods for CIM_LibraryExchange

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_InterLibraryPort The InterLibraryPort of one storage 
library

Dependent CIM_InterLibraryPort The InterLibraryPort of the connected 
library

Table 1193: Related Standards for Storage Library InterLibraryPort Connection

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF

Table 1191: SMI Referenced Properties/Methods for CIM_InterLibraryPort

Property Flags Type Description & Notes
1304



 Partitioned/Virtual Library Subprofile
EXPERIMENTAL

8.2.8.25 Partitioned/Virtual Library Subprofile  

8.2.8.25.1 Description

Many libraries allow “partitioning”: the splitting up of library resources into pools used by different clients
or hosts. Partitioning may also involve “virtualization”, used here to mean the representation of a single
physical ChangerDevice as multiple logical ChangerDevices that can each be accessed or controlled
independently. Each “virtual” ChangerDevice accesses its own group of StorageMediaLocations. No
methods for configuration of partitioning, virtualization, or access control are provided in this profile.
Instead, a simple model is given to allow multiple (virtual) ChangerDevices to exist within a single
storage library, where each ChangerDevice can access a specific subset of pre-existing
StorageMediaLocations within that storage library

Instance Diagrams
In this example, three “virtual” ChangerDevices within a single StorageLibrary have orthogonal access
to three sets of Magazines or StorageMediaLocations, all contained within the Chassis (see Figure 213:
"Virtual ChangerDevices").

8.2.8.25.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.8.25.3 Cascading Considerations
Not defined in this standard.

8.2.8.25.4 Supported Subprofiles and Packages
None.

8.2.8.25.5 Methods of the Profile
None.

Figure 213: Virtual ChangerDevices 
C o m p u t e r S y s t e m C h a s s i s

C o m p u t e r S y s t e m
P a c k a g e

M a g a z in e

M a g a z in e

M a g a z in e

C o n t a in e r

S t o r a g e M e d ia L o c a t i o nS t o r a g e M e d ia L o c a t i o nS t o r a g e M e d ia L o c a t io nS t o r a g e M e d ia L o c a t io nS t o r a g e M e d ia L o c a t io n

S t o r a g e M e d ia L o c a t io nS t o r a g e M e d ia L o c a t io nS t o r a g e M e d ia L o c a t i o nS t o r a g e M e d ia L o c a t i o nS t o r a g e M e d ia L o c a t io n

S t o r a g e M e d ia L o c a t io nS t o r a g e M e d ia L o c a t i o nS t o r a g e M e d ia L o c a t i o nS t o r a g e M e d ia L o c a t io nS t o r a g e M e d ia L o c a t io n

C o n t a in e r

C o n t a in e r

C o n t a in e r

C h a n g e r D e v i c e

C h a n g e r D e v i c e

C h a n g e r D e v i c e

C o n t a in e r

C o n t a in e r

S y s t e m D e v ic e

S y s t e m D e v ic e

S y s t e m D e v ic e

D e v i c e S e r v i c e s L o c a t i o n

D e v i c e S e r v i c e s L o c a t i o n

D e v i c e S e r v i c e s L o c a t i o n
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1305



 

See parent sections.

8.2.8.25.6 Client Considerations and Recipes
None.

8.2.8.25.7 Registered Name and Version
Storage Library Partitioned Library version 1.1.0

8.2.8.25.8 CIM Server Requirements

8.2.8.25.9 CIM Elements

8.2.8.25.9.1 CIM_Container
The containment relationship of Magazines within a Chassis or StorageMediaLocations within a Magazine.
Class Mandatory: true

Table 1194: CIM Server Requirements for Storage Library Partitioned Library

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 1195: CIM Elements for Storage Library Partitioned Library

Element Name Description
Mandatory Classes

CIM_Container (8.2.8.25.9.1) The containment relationship of Magazines within a 
Chassis or StorageMediaLocations within a Magazine.

CIM_DeviceServicesLocation (8.2.8.25.9.2)
CIM_Magazine (8.2.8.25.9.3)

Table 1196: SMI Referenced Properties/Methods for CIM_Container

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_PhysicalPackage The container.
PartComponent CIM_PhysicalElement The elements in the container.
1306



 Partitioned/Virtual Library Subprofile
8.2.8.25.9.2 CIM_DeviceServicesLocation
Class Mandatory: true

8.2.8.25.9.3 CIM_Magazine
Class Mandatory: true

8.2.8.25.10 Related Standards

EXPERIMENTAL

Table 1197: SMI Referenced Properties/Methods for CIM_DeviceServicesLocation

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_MediaTransferDevi
ce

MediaTransferDevice that handles 
media from the StorageMediaLocation.

Dependent CIM_StorageMediaLoca
tion

The StorageMediaLocation that is ser-
viced.

Table 1198: SMI Referenced Properties/Methods for CIM_Magazine

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Tag string
LocationType uint16 "Magazine"
LocationCoordinates string
MediaTypesSupported uint16[]

Optional Properties/Methods
MediaCapacity uint32 The maximum number of PhysicalMe-

dia that this Partitioned library can hold.

Table 1199: Related Standards for Storage Library Partitioned Library

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.9 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1307



 

1308



 Library Capacity Subprofile
EXPERIMENTAL

8.2.8.26 Library Capacity Subprofile  

8.2.8.26.1 Description
By adding two classes (ConfigurationCapacity and ElementCapacity) servers can publish the minimum
and maximum number of slots, drives, magazines, media changers, and other elements associated
with a given storage library.

Instance Diagrams
Figure 214: "Library Capacity Instance Diagram" illustrates the use of ConfigurationCapacity and
ElementCapacity in conjunction with the basic storage library profile.

8.2.8.26.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.8.26.3 Cascading Considerations
Not defined in this standard.

8.2.8.26.4 Supported Subprofiles and Packages
None.

8.2.8.26.5 Client Considerations and Recipes
None.

8.2.8.26.6 Registered Name and Version
Storage Library Capacity version 1.1.0

Figure 214: Library Capacity Instance Diagram

C h a s s is

C o m p u te r S y s te m P a c k a g e

C o m p u te r S y s te m

C o n f ig u r a t io n C a p a c i t y

N a m e  =  
“ T a p e C o Z 3 4 0 0 S e r ia l1 2 3 4 5 -
M a x im u m  S lo ts ”

O b je c tT y p e  =  
“ S to r a g e M e d ia L o c a t io n  
S lo ts ”

O th e r T y p e D e s c r ip t io n  =  
“ M a x im u m  s lo t s  in  t h is  
l ib r a r y  e n c lo s u r e ”

M a x im u m C a p a c i t y  =  6 9 8

E le m e n tC a p a c i t y

C o n f ig u r a t io n C a p a c i t y

N a m e  =  
“ T a p e C o Z 3 4 0 0 S e r ia l1 2 3 4 5 -
M a x im u m  D r iv e s ”

O b je c tT y p e  =  
“ M e d ia A c c e s s D e v ic e s  
( D r iv e s ) ”

O th e r T y p e D e s c r ip t io n  =  
“ M a x im u m  d r iv e s  in  t h is  
l ib r a r y  e n c lo s u r e ”

M a x im u m C a p a c i t y  =  8

E le m e n tC a p a c i t y

C o n ta in e r
M a g a z in e

C o n f ig u r a t io n C a p a c i t y

N a m e  =  
“ T a p e C o Z 3 4 0 0 S e r ia l1 2 3 4 5 -
M a g a z in e  6 - C a p a c i t y ”

O b je c tT y p e  =  
“ S to r a g e M e d ia L o c a t io n  
S lo t s ”

O th e r T y p e D e s c r ip t io n  =  
“ M a x im u m  s lo t s  in  th is  
m a g a z in e ”  

M a x im u m C a p a c i t y  =  1 0

E le m e n tC a p a c i t y
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1309



 

8.2.8.26.7 CIM Server Requirements

8.2.8.26.8 CIM Elements

8.2.8.26.8.1 CIM_ConfigurationCapacity
ConfigurationCapacity provides information on the minimum and maximum number of slots, drives, magazines, 
media changers, and other elements associated with a given storage library.
Class Mandatory: true

Table 1200: CIM Server Requirements for Storage Library Capacity

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications No
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 1201: CIM Elements for Storage Library Capacity

Element Name Description
Mandatory Classes

CIM_ConfigurationCapacity (8.2.8.26.8.1) ConfigurationCapacity provides information on the mini-
mum and maximum number of slots, drives, magazines, 
media changers, and other elements associated with a 
given storage library.

CIM_ElementCapacity (8.2.8.26.8.2)

Table 1202: SMI Referenced Properties/Methods for CIM_ConfigurationCapacity

Property Flags Type Description & Notes
Mandatory Properties/Methods

Name string
ObjectType uint16 Other, Processors, Power Supplies, 

see MOF
MinimumCapacity uint64
MaximumCapacity uint64

Optional Properties/Methods
OtherTypeDescription string
1310



 Library Capacity Subprofile
8.2.8.26.8.2 CIM_ElementCapacity
Class Mandatory: true

8.2.8.26.9 Related Standards

EXPERIMENTAL

Table 1203: SMI Referenced Properties/Methods for CIM_ElementCapacity

Property Flags Type Description & Notes
Mandatory Properties/Methods

Capacity CIM_PhysicalCapacity
Element CIM_PhysicalElement

Table 1204: Related Standards for Storage Library Capacity

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1311



 

1312



 LibraryAlert Events/Indications for Library Devices
EXPERIMENTAL

8.2.8.27 LibraryAlert Events/Indications for Library Devices  

8.2.8.27.1 Description
Historically, media libraries have been managed using both SCSI and SNMP interfaces. A number of
library management standards have been defined based on these interfaces, including the “TapeAlert”
error events flags. These events alert subscribing clients to current or pending error conditions related
to a library, drives, or media. The SCSI implementation of TapeAlert is described in the SCSI Stream
Commands (SSC-2) and SCSI Media Changer Commands (SMC-2) specifications.

In order to carry these useful asynchronous events into the WBEM/CIM domain, the TapeAlert events
have been mapped into instances of the AlertIndication class. This CIM class provides a general means
for communicating asynchronous events to subscribing clients and TapeAlert events/indications --
hereafter referred to more generally as “LibraryAlert” indications -- shall be specified by filling in
standard values for the properties of an AlertIndication.

8.2.8.27.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.8.27.3 Cascading Considerations
Not defined in this standard.

8.2.8.27.4 Supported Subprofiles and Packages
None.

8.2.8.27.5 Methods of the Profile
None.

8.2.8.27.6 Client Considerations and Recipes
For all LibraryAlert indications, the following properties of AlertIndication shall be static and set to the
values shown in Table 1205, “LibraryAlert Property Settings”.

Clients may identify a received AlertIndication as a LibraryAlert indication primarily by the value of
“LibraryAlert Indication” in the Description property. The following Query attribute on an IndicationFilter
instance should be provided by the agent for these alerts:

SELECT * FROM CIM_Alert 
WHERE Description=”LibraryAlert Indication”

Table 1205: LibraryAlert Property Settings

Property Name Property type Property Value
Description string “LibraryAlert Indication”
AlertType Uint16 (enumeration) 5 = “Device Alert”
ProabableCause Uint16 (enumeration) 1 = “other”
Trending Uint16 (enumeration) 1 = “Not Applicable”
SystemCreationClassName string “CIM_ComputerSystem”
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1313



 

The following AlertIndication properties for LibraryAlert indications shall be vendor-specific and no
specification or restriction of values is made here:

A small number of AlertIndication properties for LibraryAlert indications shall have variable values that
are restricted within a small range, as follows:

The remaining AlertIndication properties for LibraryAlert indications shall have values derived from the
SCSI TapeAlert specifications: SCSI Stream Commands (SSC-2) and SCSI Media Changer
Commands (SMC-2).

Note that a small number of indications apply only to Tape libraries, while all other indications apply
generically to any library type. Those indications that are tape-specific may be identified by the
following strings in the OtherAlertType property:

Table 1206: Vendor Specific Properties of LibraryAlert

Property Name Property type Property Value
OtherSeverity string specified by vendor
EventID string specified by vendor
ProviderName string specified by vendor

Table 1207: Variable Alert Properties for LibraryAlert

Property Name Property type Property Value
SystemName string Name property value for the StorageLi-

brary instance that is associated with this 
unique indication

AlertingManagedElement string CIMInstance in string format for element 
to which this indication applies: MediaAc-
cessDevice, StorageLibrary, or Physical-
Media

Table 1208: SCSI TapeAlert-based Properties

Property Name Property type Property Value
OtherAlertType string “Tape snapped/cut in the drive where 

media can be de-mounted.”
OtherAlertType string “Tape snapped/cut in the drive where 

media cannot be de-mounted.”
OtherAlertType string “The drive is having severe trouble read-

ing or writing, which will be resolved by a 
retension cycle.”
1314



 LibraryAlert Events/Indications for Library Devices
The remaining AlertIndication properties and values for all LibraryAlert indications are shown in
Table 1209, “LibraryAlert AlertIndication Properties”. Note that the OtherAlertType property, in
particular, serves to uniquely identify each of the LibraryAlert indications.

Table 1209: LibraryAlert AlertIndication Properties

Event/Alert
Summary

AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs
OtherAlert

Type
Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
Read Warning “The drive is having 

severe trouble read-
ing.” 

“3” = “Degraded/Warn-
ing”  

“The drive is having 
problems reading data. 
No data has been lost, 
but there has been a 
reduction in the perfor-
mance.”  

Write Warning “The drive is having 
severe trouble writing.”

“4” = “Warning” “Worn out Media” “1. Discard the worn 
out media”
“2. Use a new cleaning 
media” 

Hard Error “The drive had a hard 
read or write error.”

“5” = “Warning” “Bad Media or Drive. 
The operation has 
stopped because an 
error has occurred 
while reading or writing 
data that the drive can-
not correct.”

Media “Media can no longer 
be written/read, or per-
formance is severely 
degraded.”

“6” = “Critical” “Bad Media” “1. Copy any data you 
require from this 
media.”
“2. Do not use this 
media again.”
“3. Restart the opera-
tion with a different 
media.”

Read Failure “The drive can no 
longer read data from 
the storage media.”

“6” = “Critical” “Worn out media”  “1. Replace media.”
“2. Call the drive sup-
plier help line.”

Write Failure “The drive can no 
longer write data to the 
media.”

“6” = “Critical” “The media is from a 
faulty batch or the 
drive is faulty: “

“1. Use known-good 
media to test the drive. 
“
“2. If the problem per-
sists, call the media 
drive supplier”

Media Life “The media has 
exceeded its specified 
life.“

“3” = “Degraded/Warn-
ing”

“The media has 
reached the end of its 
calculated useful life: “

“1. Copy any data you 
need to another 
media.”
2. Discard the old 
media.”
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1315



 

Not Data Grade “The cartridge is not 
data-grade. Any data 
you write to the media 
is at risk. Replace the 
cartridge with a data-
grade media.”

“3” = “Degraded/Warn-
ing”

“The cartridge is not 
data-grade. Any data 
you write to the media 
is at risk.” 

“Replace the cartridge 
with a data-grade 
media.”

Write Protect “Write command is 
attempted to a write 
protected media.”

“6” = “Critical” “Replace with writable 
media”

“You are trying to write 
to a write protected 
cartridge. Remove the 
write protection or use 
another media.” 

No Removal “Manual or software 
unload attempted 
when prevent media 
removal is on.”

“2” = “Information” “Wait until drive is not 
in-use”

“You cannot eject the 
cartridge because the 
drive is in use. Wait 
until the operation is 
complete before eject-
ing the cartridge.”

Cleaning Media “Cleaning media 
loaded into drive”

“2” = “Information”  “The media in the 
drive is a cleaning car-
tridge.”

“Replace this media 
with writeable media”

Unsupported 
Format

“Attempted load of 
unsupported media 
format (e.g., DDS2 in 
DDS1 drive).”

“2” = “Information”  “You have tried to load 
a cartridge of a type 
that is not supported 
by this drive.”

“Insert media of a type 
supported by this 
drive”

Recoverable 
Snapped Tape

“Tape snapped/cut in 
the drive where media 
can be de-mounted.”

“6” = “Critical” “The operation has 
failed because the tape 
in the drive has 
snapped:”

“1. Discard the old 
tape.”
“2. Restart the opera-
tion with a different 
tape.”

Unrecoverable 
Snapped Tape

“Tape snapped/cut in 
the drive where media 
cannot be de-
mounted.”

“6” = “Critical”  “The operation has 
failed because the tape 
in the drive has 
snapped:”

“1. Do not attempt to 
extract the tape car-
tridge.”
“2. Call the tape drive 
supplier help line.”

Memory Chip In 
Cartridge Failure

“Memory chip failed in 
cartridge.”

“3” = “Degraded/Warn-
ing”

“The memory in the 
media has failed, 
which reduces perfor-
mance. 

“Do not use the car-
tridge for further write 
operations.”

Forced Eject “Manual or forced eject 
while drive actively 
writing or reading.”

“6” = “Critical”  “The operation has 
failed because the 
media was manually 
de-mounted while the 
drive was actively writ-
ing or reading.” 

Table 1209: LibraryAlert AlertIndication Properties (Continued)

Event/Alert
Summary

AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs
OtherAlert

Type
Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
1316



 LibraryAlert Events/Indications for Library Devices
Read Only For-
mat

“Media loaded that is 
read-only format.”

“3” = “Degraded/Warn-
ing”

“You have loaded a 
cartridge of a type that 
is read-only in this 
drive. The cartridge will 
appear as write pro-
tected.” 

Directory Cor-
rupted On Load

“Drive powered down 
while loaded, or per-
manent error pre-
vented the directory 
being updated.”

“3” = “Degraded/Warn-
ing”

“The directory on the 
cartridge has been cor-
rupted. File search per-
formance will be 
degraded. “

“The directory can be 
rebuilt by reading all 
the data on the car-
tridge.”

Nearing Media 
Life

“Media may have 
exceeded its specified 
number of passes.”

“2” = “Information” “The storage media is 
nearing the end of its 
calculated life.”

“1. Use another stor-
age media for your 
next backup.
“2. Store this storage 
media in a safe place 
in case you need to 
restore data from it.”

Clean Now “The drive thinks it has 
a head clog or needs 
cleaning.”

“6” = “Critical” “The drive needs 
cleaning:”

“1. If the operation has 
stopped, eject the stor-
age media and clean 
the drive.”
“2. If the operation has 
not stopped, wait for it 
to finish and then clean 
the drive. Check the 
drive user’s manual for 
device specific clean-
ing 

Clean Periodic “The drive is ready for 
a periodic cleaning.”

“3” = “Degraded/Warn-
ing”

“The drive is due for 
routine cleaning:”

“1. Wait for the current 
operation to finish.”
“2. Then use a clean-
ing cartridge.
Check the drive user’s 
manual for device spe-
cific cleaning instruc-
tions.”

Expired Clean-
ing Media

“The cleaning media 
has expired.”

“6” = “Critical” “The last cleaning car-
tridge used in the drive 
has worn out:”

“1. Discard the worn 
out cleaning cartridge.”
“2. Wait for the current 
operation to finish.”
“3. Then use a new 
cleaning cartridge.”

Table 1209: LibraryAlert AlertIndication Properties (Continued)

Event/Alert
Summary

AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs
OtherAlert

Type
Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1317



 

Invalid Cleaning 
Media

“Invalid cleaning media 
type used.”

“6” = “Critical” “The last cleaning car-
tridge used in the drive 
was an invalid type:”

“1. Do not use this 
cleaning cartridge in 
this drive.”
“2. Wait for the current 
operation to finish.”
“3. Then use a valid 
cleaning cartridge.”

Retension 
Requested

“The drive is having 
severe trouble reading 
or writing, which will be 
resolved by a retension 
cycle.”

“3” = “Information” “The drive has 
requested a retension 
operation.”

Dual-Port Inter-
face Error

“Failure of one inter-
face port in a dual-port 
configuration (i.e., 
Fibre Channel)”

“3” = “Degraded/Warn-
ing”

“A redundant interface 
port on the drive has 
failed.”

Cooling Fan 
Failure

“Fan failure inside 
drive mechanism or 
drive enclosure.”

“3” = “Degraded/Warn-
ing”

“A drive cooling fan 
has failed.”

“Replace cooling fan or 
drive enclosure”

Power Supply 
Failure

“Redundant power 
supply unit failure 
inside the drive enclo-
sure or rack sub-
system.”

“3” = “Degraded/Warn-
ing”

 “A redundant power 
supply has failed inside 
the drive enclosure.”

“Check the enclosure 
user’s manual for 
instructions on replac-
ing the failed power 
supply.” 

Power Con-
sumption

“Power consumption of 
the drive is outside 
specified range.”

“3” = “Degraded/Warn-
ing”

“The drive power con-
sumption is outside the 
specified range.” 

Drive Mainte-
nance

“The drive requires 
preventive mainte-
nance (not cleaning).“

“3” = “Degraded/Warn-
ing”

“Preventive mainte-
nance of the drive is 
required.”

Check the drive users 
manual for device spe-
cific preventive mainte-
nance tasks or call the 
drive supplier help 
line.”

Hardware A “The drive has a hard-
ware fault that requires 
reset to recover.”

“6” = “Critical” “The drive has a hard-
ware fault”

“1. Eject the media or 
magazine.”
“2. Reset the drive.”
“3. Restart the opera-
tion.”

Hardware B “The drive has a hard-
ware fault that is not 
read/write related or 
requires a power cycle 
to recover.”

“6” = “Critical” “The drive has a hard-
ware fault”

“1. Turn the drive off 
and then on again.”
“2. Restart the opera-
tion.”
“3. If the problem per-
sists, call the drive sup-
plier help line.” 

Table 1209: LibraryAlert AlertIndication Properties (Continued)

Event/Alert
Summary

AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs
OtherAlert

Type
Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
1318



 LibraryAlert Events/Indications for Library Devices
Interface “The drive has identi-
fied an interface fault.”

“3” = “Degraded/Warn-
ing”

“Bad cable or drive 
interface.“

“1. Check the cables 
and cable connec-
tions.”
“2. Restart the opera-
tion.” 

Eject Media “Error recovery action: 
Media Ejected”

“6” = “Critical” “1. Eject the media or 
magazine.”
“2. Insert the media or 
magazine again.”
“3. Restart the opera-
tion.”

Download Fail-
ure

“Firmware download 
failed.”

“3” = “Degraded/Warn-
ing”

“The firmware down-
load has failed 
because you have tried 
to use the incorrect 
firmware for this drive.”

“Obtain the correct 
firmware and try 
again.” 

Drive Humidity “Drive humidity limits 
exceeded.”

“3” = “Degraded/Warn-
ing”

“Bad drive fan“ “Replace fan or drive 
enclosure” 

Drive Tempera-
ture

“Drive temperature lim-
its exceeded.”

“3” = “Degraded/Warn-
ing”

“Bad cooling fan“ “Replace fan or drive 
enclosure”

Drive Voltage “Drive voltage limits 
exceeded.”

“3” = “Degraded/Warn-
ing”

“Bad drive power sup-
ply“

“Check the drive users 
manual for device spe-
cific preventive mainte-
nance tasks or call the 
drive supplier help 
line.” 

Predictive Fail-
ure

“Predictive failure of 
drive hardware.”

“6” = “Critical” “A hardware failure of 
the drive is predicted. 
Call the drive supplier 
help line.”

Diagnostics 
Required

“The drive may have a 
hardware fault that 
may be identified by 
extended diagnostics 
(i.e., SEND DIAGNOS-
TIC command).”

“3” = “Degrading/Warn-
ing”

“The drive may have a 
hardware fault.”

“1. Run extended diag-
nostics to verify and 
diagnose the problem. 
Check the drive user’s 
manual for device spe-
cific instructions on 
running extended diag-
nostic tests.”

Loader Hard-
ware A

“Loader mechanism is 
having trouble commu-
nicating with the drive.”

“6” = “Critical” “The changer mecha-
nism is having difficulty 
communicating with 
the drive:”

“1. Turn the auto-
loader off then on.”
“2. Restart the opera-
tion.”
“3. If a problem per-
sists, call the drive sup-
plier help line.”

Table 1209: LibraryAlert AlertIndication Properties (Continued)

Event/Alert
Summary

AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs
OtherAlert

Type
Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1319



 

Loader Stray 
Media

“Stray media left in 
loader after previous 
error recovery.”

“6” = “Critical” “A media has been left 
in the autoloader by a 
previous hardware 
fault:”

“1. Insert an empty 
magazine to clear the 
fault.”
“2. If the fault does not 
clear, turn the auto-
loader off and then on 
again.”
“3. If the problem per-
sists, call the drive sup-
plier help line.”

Loader Hard-
ware B

“Loader mechanism 
has a hardware fault.”

“3“= “Degrading/Warn-
ing”

“There is a problem 
with the autoloader 
mechanism.”

Loader Door “Changer door open.” “6” = “Critical” “The operation has 
failed because the 
autoloader door is 
open:”

“1. Clear any obstruc-
tions from the auto-
loader door.”
“2. Eject the magazine 
and then insert it 
again.”
“3. If the fault does not 
clear, turn the auto-
loader off and then on 
again.”
“4. If the problem per-
sists, call the drive sup-
plier help line.”

Loader Hard-
ware C

“The loader mecha-
nism has a hardware 
fault that is not 
mechanically related.”

“6” = “Critical” “The autoloader has a 
hardware fault:”

“1. Turn the auto-
loader off and then on 
again.”
“2. Restart the opera-
tion.”
“3. If the problem per-
sists, call the drive sup-
plier help line. Check 
the autoloader user’s 
manual for device spe-
cific instructions on 
turning the device 
power on and off.” 

Loader Maga-
zine

“Loader magazine not 
present.”

“6” = “Critical” “The autoloader can-
not operate without the 
magazine: “

“1. Insert the magazine 
into the autoloader.”
“2. Restart the opera-
tion.”

Table 1209: LibraryAlert AlertIndication Properties (Continued)

Event/Alert
Summary

AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs
OtherAlert

Type
Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
1320



 LibraryAlert Events/Indications for Library Devices
Loader Predic-
tive Failure

“Predictive failure of 
loader mechanism 
hardware”

“3” = “Degrading/Warn-
ing”

“A hardware failure of 
the changer mecha-
nism is predicted. Call 
the drive supplier help 
line.” 

Load Statistics “Drive or library pow-
ered down with media 
loaded.”

“3” = “Degrading/Warn-
ing”

“Media statistics have 
been lost at some time 
in the past.” 

Media Directory 
Invalid at Unload

“Error preventing the 
media directory being 
updated on unload.”

“3” = “Degrading/Warn-
ing”

“The directory on the 
media just unloaded 
has been corrupted.”

“The directory can be 
rebuilt by reading all 
the data.” 

Media System 
area Write Fail-
ure

“Write errors while writ-
ing the system area on 
unload.”

“6” = “Critical” “The media just 
unloaded could not 
write its system area 
successfully: “

“1. Copy data to 
another cartridge.”
“2. Discard the old car-
tridge.”

Media System 
Area Read Fail-
ure

“Read errors while 
reading the system 
area on load.”

“6” = “Critical” “The media system 
area could not be read 
successfully at load 
time: “

“1. Copy data to 
another cartridge.”

No Start of Data “Media damaged, bulk 
erased, or incorrect 
format.”

“6” = “Critical” “The start of data could 
not be found on the 
media:”

“1. Check that you are 
using the correct for-
mat media.”
“2. Discard the media 
or return the media to 
your supplier.”

Loading Failure “The drive is unable to 
load the media”

“6” = “Critical” “The operation has 
failed because the 
media cannot be 
loaded and threaded.”

“1. Remove the car-
tridge, inspect it as 
specified in the product 
manual, and retry the 
operation.”
“2. If the problem per-
sists, call the drive sup-
plier help line.”

Library Hard-
ware A

“Changer mechanism 
is having trouble com-
municating with the 
internal drive”

“6” = “Critical” “The library mecha-
nism is having difficulty 
communicating with 
the drive: “

“1. Turn the library off 
then on.”
“2. Restart the opera-
tion.”
“3. If the problem per-
sists, call the library 
supplier help line.” 

Library Hard-
ware B

“Changer mechanism 
has a hardware fault”

“3” = “Degrading/Warn-
ing”

“There is a problem 
with the library mecha-
nism. If problem per-
sists, call the library 
supplier help line.” 

Table 1209: LibraryAlert AlertIndication Properties (Continued)

Event/Alert
Summary

AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs
OtherAlert

Type
Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1321



 

Library Hard-
ware C

“The changer mecha-
nism has a hardware 
fault that requires a 
reset to recover.”

“6” = “Critical” “The library has a 
hardware fault”

“1. Reset the library.”
“2. Restart the opera-
tion. Check the library 
user’s manual for 
device specific instruc-
tions on resetting the 
device.” 

Library Hard-
ware D

“The changer mecha-
nism has a hardware 
fault that is not 
mechanically related or 
requires a power cycle 
to recover.”

“6” = “Critical” “The library has a 
hardware fault:”

“1. Turn the library off 
then on again.”
“2. Restart the opera-
tion.”
“3. If the problem per-
sists, call the library 
supplier help line. 
Check the library 
user’s manual for 
device specific instruc-
tions on turning the 
device power on and 
off.” 

Library Diagnos-
tic Required

“The changer mecha-
nism may have a hard-
ware fault which would 
be identified by 
extended diagnostics.”

“3” = “Degrading/Warn-
ing”

“The library mecha-
nism may have a hard-
ware fault.”

Run extended diag-
nostics to verify and 
diagnose the problem. 
Check the library 
user’s manual for 
device specific instruc-
tions on running 
extended diagnostic 
tests.” 

Library Interface “The library has identi-
fied an interface fault”

“6” = “Critical” “Bad cable” “1. Check the cables 
and connections.”
“2. Restart the opera-
tion.”

Failure Predic-
tion

“Predictive failure of 
library hardware”

“3” = “Degrading/Warn-
ing”

“A hardware failure of 
the library is predicted. 
Call the library sup-
plier help line.” 

Library Mainte-
nance

“Library preventative 
maintenance required.”

“3” = “Degrading/Warn-
ing”

“Preventive mainte-
nance of the library is 
required. Check the 
library user’s manual 
for device specific pre-
ventative maintenance 
tasks, or call your 
library supplier help 
line.” 

Table 1209: LibraryAlert AlertIndication Properties (Continued)

Event/Alert
Summary

AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs
OtherAlert

Type
Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
1322



 LibraryAlert Events/Indications for Library Devices
Library Humidity 
Limits

“Library humidity limits 
exceeded“

“6” = “Critical” “Library humidity range 
is outside the opera-
tional conditions”

 

Library Temper-
ature Limits

“Library temperature 
limits exceeded”

“6” = “Critical” “Library temperature is 
outside the opera-
tional conditions”

Library Voltage 
Limits

“Library voltage limits 
exceeded”

“6” = “Critical” “Potential problem with 
a power supply.”

Library Stray 
Media

“Stray cartridge left in 
library after previous 
error recovery”

“6” = “Critical” “Cartridge left in picker 
or drive”

“1. Insert an empty 
magazine to clear the 
fault.”
“2. If the fault does not 
clear, turn the library 
off and then on again.”
“3. If the problem per-
sists, call the library 
supplier help line.“

Library Pick 
Retry

“Operation to pick a 
cartridge from a slot 
had to perform an 
excessive number of 
retries before succeed-
ing”

“3” = “Degrading/Warn-
ing”

“There is a potential 
problem with the drive 
ejecting cartridges or 
with the library mecha-
nism picking a car-
tridge from a slot.”

“1.Run diagnostics to 
determine the health of 
the Library.”
“2. If the problem per-
sists, call the library 
supplier help line.” 

Library Place 
Retry

“Operation to place a 
cartridge in a slot had 
to perform an exces-
sive number of retries 
before succeeding”

“3” = “Degrading/Warn-
ing”

“Worn cartridge or bad 
storage slot/magazine”

“1. No action needs to 
be taken at this time.”
“2. If the problem per-
sists, call the library 
supplier help line.” 

Library Load 
Retry

“Operation to load a 
cartridge in a drive had 
to perform an exces-
sive number of retries 
before succeeding”

“3” = “Degrading/Warn-
ing”

“Worn cartridge or 
picker”

“1. Run diagnostics to 
determine the health of 
the library.” 

Library Door “Library door open is 
preventing the library 
from functioning”

“6” = “Critical” “The library has failed 
because the door is 
open:”

“1. Clear any obstruc-
tions from the library 
door.”
“2. Close the library 
door.”
“3. If the problem per-
sists, call the library 
supplier help line.” 

Library Mailslot “Mechanical problem 
with import/export 
mailslot”

“6” = “Critical” “There is a mechani-
cal problem with the 
library media mailslot.”

“1. Check for wedged 
storage media in 
import/export mailslot” 

Table 1209: LibraryAlert AlertIndication Properties (Continued)

Event/Alert
Summary

AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs
OtherAlert

Type
Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1323



 

Library Maga-
zine

“Library magazine not 
present”

“6” = “Critical” “Administrator has 
removed the library’s 
magazine”

“1. Insert the magazine 
into the library.”
“2. Restart the opera-
tion.” 

Library Security “Library door opened 
then closed during 
operation”

“3” = “Degrading/Warn-
ing”

“Administrator is trying 
to remove or insert a 
storage media”

Library Security 
Mode

“Library security mode 
changed”

“2” = “Information” “Administrator 
changed security 
mode”

“The library security 
mode has been 
changed. The library 
has either been put 
into secure mode, or 
the library has exited 
the secure mode. This 
is for information pur-
poses only. No action 
is required.” 

Library Offline “Library manually 
turned offline”

“2” = “Information” “The library has been 
manually turned offline 
and is unavailable for 
use.” 

Library Drive 
Offline

“Library turned internal 
drive offline.”

“2” = “Information” “Drive failure” “A drive inside the 
library has been taken 
offline. This is for infor-
mation purposes only. 
No action is required.” 

Library Scan 
Retry

“Operation to scan the 
bar code on a cartridge 
had to perform an 
excessive number of 
retries before succeed-
ing”

“3” = “Degrading/Warn-
ing”

“There is a potential 
problem with the bar 
code label or the scan-
ner hardware in the 
library mechanism.”

“1. No action needs to 
be taken at this time.”
“2. If the problem per-
sists, call the library 
supplier help line.” 

Library Inventory “Inconsistent media 
inventory”

“6” = “Critical” “Media label has 
changed or bad Bar 
code scanner sub-
system problem.”

“1. Redo the library 
inventory to correct 
inconsistency.”
“2. Restart the opera-
tion. Check the appli-
cations user’s manual 
or the hardware user’s 
manual for specific 
instructions on redoing 
the library inventory.” 

Library Illegal 
Operation

“Illegal operation 
detected”

“3” = “Degrading/Warn-
ing”

“A library operation has 
been attempted that is 
invalid at this time.” 

Table 1209: LibraryAlert AlertIndication Properties (Continued)

Event/Alert
Summary

AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs
OtherAlert

Type
Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
1324



 LibraryAlert Events/Indications for Library Devices
8.2.8.27.7 Registered Name and Version
SML_Events version 1.1.0

Dual-Port Inter-
face Error

“Failure of one inter-
face port in a dual-port 
configuration”

“3” = “Degrading/Warn-
ing”

“A redundant interface 
port on the library has 
failed.” 

Cooling Fan 
Failure

“One or more fans 
inside the library have 
failed. Internal flag 
state only cleared 
when all flags are 
working again”

“3” = “Degrading/Warn-
ing”

“Bad cooling Fan”  

Power Supply “Redundant power 
supply failure inside 
the library subsystem”

“3” = “Degrading/Warn-
ing”

“Bad Power Supply” “A redundant power 
supply has failed inside 
the library. Check the 
library user’s manual 
for instructions on 
replacing the failed 
power supply. “

Power Con-
sumption

“Power consumption of 
one or more devices 
inside the library is out-
side the specified 
range”

“3” = “Degrading/Warn-
ing”

“The library power con-
sumption is outside the 
specified range.” 

Pass Through 
Mechanism Fail-
ure

“Error occurred in 
pass-through mecha-
nism during self test or 
while attempting to 
transfer a cartridge 
between library mod-
ules”

“6” = “Critical” “A failure has occurred 
in the cartridge pass-
through mechanism 
between two library 
modules.” 

Cartridge in 
Pass-through 
Mechanism

“Cartridge left in the 
pass-through mecha-
nism between two 
library modules”

“6” = “Critical” “A cartridge has been 
left in the pass-through 
mechanism from a pre-
vious hardware fault. 
Check the library users 
guide for instructions 
on clearing this fault.” 

Unreadable bar-
code Labels

“Unable to read a bar 
code label on a car-
tridge during library 
inventory/scan”

“2” = “Information” “Bad Bar Code Labels 
or Scanner”

“The library was 
unable to read the bar 
code on a cartridge.” 

Table 1209: LibraryAlert AlertIndication Properties (Continued)

Event/Alert
Summary

AlertIndication “Mapped” Properties from SSC-2 and SMC-2 Specs
OtherAlert

Type
Perceived
Severity

ProbableCause
Description

Recommended
Action[]

string Uint16 string string
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1325



 

8.2.8.27.8 CIM Server Requirements

8.2.8.27.9 CIM Elements

8.2.8.27.9.1 CIM_AlertIndication
Class Mandatory: true

Table 1210: CIM Server Requirements for SML_Events

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No

Table 1211: CIM Elements for SML_Events

Element Name Description
Mandatory Classes

CIM_AlertIndication (8.2.8.27.9.1)

Table 1212: SMI Referenced Properties/Methods for CIM_AlertIndication

Property Flags Type Description & Notes
Mandatory Properties/Methods

Description string "LibraryAlertIndication"
AlertType uint16 5 = "Device Alert"
ProbableCause uint16 1 = "other"
Trending uint16 1 = "Not Applicable"
SystemCreationClassName string CIM_ComputerSystem
OtherSeverity string Specified by vendor
EventID string Specified by vendor
ProviderName string Specified by vendor
SystemName string
AlertingManagedElement string
OtherAlertType string
PerceivedSeverity uint16
ProbableCauseDescription string
1326



 LibraryAlert Events/Indications for Library Devices
8.2.8.27.10 Related Standards

EXPERIMENTAL

Table 1213: Related Standards for SML_Events

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1327



 

1328



 Media Movement Subprofile 
EXPERIMENTAL

8.2.8.28 Media Movement Subprofile  

8.2.8.28.1 Description
The Media Movement Subprofile defines a method to physically move a PhysicalMedia element from
its current StorageMediaLocation to another StorageMediaLocation within the library with which the
media is compatible. Such a method is convenient for purposes including library maintenance, self test,
and demonstration. The method is implemented by a HostedService associated with the
ComputerSystem which models the storage library. The method supports asynchronous operation
according to the Job Control Subprofile. 

Instance Diagram: Library-centric View
Figure 215: "Storage Library Centric View" illustrates the subprofile from the library perspective.

Figure 215: Storage Library Centric View

ServiceComputerSystem

Hosted
Service

MediaMovementService

MoveMedia(
[IN] MediaToMove:CIM_PhysicalMedia,
[IN] Destination:CIM_StorageMediaLocation,
[IN,Required(false)] ForceUnload:boolean,
[IN] TimeoutSeconds:uint32): MoveMediaJob 
REF

Owning
JobElement

ConcreteJob

MoveMediaJob

errorCode: uint16 {override, 
enum}

Affected
JobElement

StorageMediaLocation

StorageMediaLocation

PhysicalMedia

Affected
JobElement

Affected
JobElement

ChangerDevice

Affected
JobElement

Source
Location

Destination
Location
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1329



 

Instance Diagram: Media-centric view
When the move media operation is performed, the storage library shall physically move the medium,
and then update the storage library’s CIM object model. In particular, the StorageMediaInLocation
association between the PhyscialMedia instance and the source StorageMediaLocation instance shall
be removed and a new association made between the PhysicalMedia instance and the destination
StorageMediaLocation. This is illustrated in Figure 216: "Media-centric View".

8.2.8.28.2 Health and Fault Management Considerations

8.2.8.28.2.1 NULL Instance Handling
If a non-null instance of ConcreteJob is returned by the MoveMedia method, the implementation shall
report errors which occur during the execution of the job through the ConcreteJob.GetError() method.
See 8.2.1.6, "Health Package" for details.

8.2.8.28.2.2 8.1 Media Movement Subprofile Standard Messages
The standard messages specific to this profile are listed Table 1214:, "Media Movement Standard
Messages".

Figure 216: Media-centric View

Table 1214: Media Movement Standard Messages

Message ID Message Name
1 Source Media not Found
2 Destination Location Full
3 Invalid Source Media
4 Invalid Destination Location
5 Media not Compatible with Destination
6 Reservation Conflict
7 Busy
8 Hardware Error
9 Internal Model Error
10 Command Sequence Error

MediaAccessDevice

TapeDrive

PhysicalPackage

SoftwareIdentity

SCSIProtocolController

Realizes

ElementSoftwareIdentity

ProtocolController
ForUnit

StorageMediaLocation

Realizes

ComputerSystem

System
Device

System
Device
1330



 Media Movement Subprofile 
8.2.8.28.3 Cascading Considerations
Not defined in this standard.

8.2.8.28.4 Supported Subprofiles and Packages
None.

8.2.8.28.5 Methods of the Profile

8.2.8.28.5.1 Moving a piece of PhysicalMedia
uint32 MoveMedia(

        [OUT, Description(“Reference to the job (may be null if job completed.)”)]

          CIM_ConcreteJob REF MoveMediaJob,

 [IN, Description( "The piece of media to be moved" ) ]

 CIM_PhysicalMedia REF MediaToMove,

 [IN, Description( "The destination location" ) ]

 CIM_StorageMediaLocation REF Destination,
          [IN, Required(false),

              Description( "Optional parameter instructing the storage library to "

              "first unload the media if it is loaded in a MediaAccessDevice." ) ]

          boolean ForceUnload,

 [IN, Required(false),

           Description( "The timeout time in seconds" ) ]
 unit32 Timeout )

Error returns are:

{ "Job Completed with No Error", "Not Supported”, "Unknown", "Timeout", 

  "Failed", "Invalid Parameter", "In Use", "DMTF Reserved",

  "Method Parameters Checked - Job Started", "Busy", "Method Reserved", 

  "Vendor Specific" }

The MoveMedia method takes as input references to the media to be moved, the destination location,
and a timeout value. The method attempts to initiate a process on the Storage Library which will
perform the media movement. If the process is successfully initiated, the MoveMedia returns a
ConcreteJob object and an integer return code indicating the status of the job creation. If a non-null
instance of ConcreteJob is returned, the instance shall be associated with an instance of MethodResult
as specified by the Job Control Subprofile. See 8.2.1.7, "Job Control Subprofile" for details of job
creation and execution.

Timeout parameter
The optional Timeout parameter allows the MediaMovementService process or a sub-process to
handle job timeout rather than delegating the responsibility to the SMI client. If the Timeout parameter is
omitted (set to “null”), the method shall use the library’s default behavior, which may be vendor or library
specific.

ForceUnload parameter
When set to “true”, the optional ForceUnload parameter instructs the Storage Library to first unload the
PhysicalMedia if it is loaded in a MediaAccessDevice. If the ForceUnload parameter is set to “false” and
the PhysicalMedia is loaded in a MediaAccessDevice, the job shall fail and the ConcreteJob’s
GetError() method shall return an instance of 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1331



 

Error indicating “Media Loaded in Access Device”, an error message specific to the Media Movement
Subprofile. If the ForceUnload parameter is omitted (set to “null”), the method shall use the library’s
default behavior, which may be vendor or library specific.

8.2.8.28.6  Client Considerations and Recipes

8.2.8.28.6.1 Concurrent library access by SMI clients and other applications.
The MoveMedia method introduces an alternate path to modify the configuration of the storage library,
possibly interfering with the operation of other applications using the library concurrently.  The
MoveMedia method shall be used with caution in situations where applications other than the SMI client
are moving media in the storage library.

8.2.8.28.6.2 Use of the ForceUnload parameter
Forcing a MediaAccessDevice to unload media while in use by other applications may cause data loss.

8.2.8.28.6.3 Job Lifecycle Indications
SMI Servers implementing the Job Control profile are required to support a set of indications which
indicate transitions in the operational status of the job. In particular, an indication shall be provided
when a job stops, either successfully or with an error condition. The server may also generate
indications for change in job status or percent complete. See 8.2.1.7.9, "CIM Elements"  of “Job Control
Subprofile” for indication subscription details.

8.2.8.28.7 Registered Name and Version
Storage Library Media Movement version 1.1.0

8.2.8.28.8 CIM Server Requirements

Table 1215: CIM Server Requirements for Storage Library Media Movement

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write Yes
Indications Yes
Instance Manipulation Yes
Qualifier Declaration No
Query No
Schema Manipulation No
1332



 Media Movement Subprofile 
8.2.8.28.9 CIM Elements

8.2.8.28.9.1 CIM_HostedService
The relationship between the top-level ComputerSystem representing the Storage Library and the MediaMove-
mentService
Class Mandatory: true

8.2.8.28.9.2 SNIA_MediaMovementService
Class Mandatory: true

8.2.8.28.10 Related Standards

EXPERIMENTAL

Table 1216: CIM Elements for Storage Library Media Movement

Element Name Description
Mandatory Classes

CIM_HostedService (8.2.8.28.9.1) The relationship between the top-level ComputerSys-
tem representing the Storage Library and the MediaM-
ovementService

SNIA_MediaMovementService (8.2.8.28.9.2)

Table 1217: SMI Referenced Properties/Methods for CIM_HostedService

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_System The Storage Library
Dependent CIM_Service The MediaMovementService

Table 1218: SMI Referenced Properties/Methods for SNIA_MediaMovementService

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
Name string
MoveMedia()

Table 1219: Related Standards for Storage Library Media Movement

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1333



 

1334



 Limited Access Port Elements Subprofile
8.2.8.29 Limited Access Port Elements Subprofile

8.2.8.29.1 Description
Most libraries contain Limited Access Ports elements (a.k.a., mailslots, cartridge access ports, or
import/export elements). This subprofile defines the classes necessary to publish information about
these common components.

Instance Diagram
Figure 217: "LimitedAccessPort Linkages" shows the relationship between LimitedAccessPorts and
other portions of the Storage Library profile.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1335



 

Figure 217: LimitedAccessPort Linkages

ComputerSystem

(top level)

LimitedAccessPort

SystemDevice

Magazine

StorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocationStorageMediaLocation

PhysicalMedia

Container

Chassis

Realizes

Realizes

PhysicalMediaInLocation

LimitedAccessPort

StorageMediaLocationPhysicalMedia

Realizes

PhysicalMediaInLocation

1

*

Tape Libraries with Magazines in LimitedAccessPorts

Tape Libraries with no Magazines in LimitedAccessPorts

1

1

1

*

*

*

Container

ComputerSystemPackage

ComputerSystem

(top level)

SystemDevice Chassis

Realizes

1

*

ComputerSystemPackage

Container

1

*

*

1

1

1

*

*

1336



 Limited Access Port Elements Subprofile
8.2.8.29.2 Health and Fault Management Considerations
Not defined in this standard.

8.2.8.29.3 Cascading Considerations
Not defined in this standard.

8.2.8.29.4 Supported Subprofiles and Packages
None.

8.2.8.29.5 Methods of the Profile
None.

8.2.8.29.5.1 Client Considerations and Recipes
None

8.2.8.29.6 Registered Name and Version
Storage Library Limited Access Port Elements version 1.1.0

8.2.8.29.7 CIM Server Requirements

Table 1220: CIM Server Requirements for Storage Library Limited Access Port Elements

Profile Mandatory
Association Traversal Yes
Basic Read Yes
Basic Write No
Indications Yes
Instance Manipulation No
Qualifier Declaration No
Query No
Schema Manipulation No
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1337



 

8.2.8.29.8 CIM Elements

8.2.8.29.8.1 CIM_Container
The containment relationship of Magazines within a Chassis or StorageMediaLocations within a Magazine.
Class Mandatory: true

8.2.8.29.8.2 CIM_LimitedAccessPort
LimitedAccessPorts represent hardware that transports physical media into or out of a Storage Library. 
They are identified as 'limited' since these ports do not provide access to all the PhysicalMedia or StorageMediaLo-
cations in a Library, but only to a subset.

Table 1221: CIM Elements for Storage Library Limited Access Port Elements

Element Name Description
Mandatory Classes

CIM_Container (8.2.8.29.8.1) The containment relationship of Magazines within a 
Chassis or StorageMediaLocations within a Magazine.

CIM_LimitedAccessPort (8.2.8.29.8.2) LimitedAccessPorts represent hardware that transports 
physical media into or out of a Storage Library. 
They are identified as 'limited' since these ports do not 
provide access to all the PhysicalMedia or StorageMe-
diaLocations in a Library, but only to a subset.

CIM_Magazine (8.2.8.29.8.3)
CIM_Realizes (8.2.8.29.8.4) The relationship between a LimitedAccessPort and the 

StorageMediaLocations, Magazines or Chassis to 
which it has access.

CIM_SystemDevice (8.2.8.29.8.5) The relationship between a LimitedAccessPort and its 
hosting top-level ComputerSystem which represents 
the Storage Library.

Mandatory Indications
SELECT * FROM CIM_InstCreation WHERE SourceIn-
stance ISA CIM_LimitedAccessPort

Creation of an instance of LimitedAccessPort

SELECT * FROM CIM_InstDeletion WHERE SourceIn-
stance ISA CIM_LimitedAccessPort

Deletion of an instance of LimitedAccessPort

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_LimitedAccessPort                          
AND SourceInstance.OperationalStatus <> PreviousIn-
stance.OperationalStatus

Deprecated WQL - Change in OperationalStatus of a 
LimitedAccessPort

SELECT * FROM CIM_InstModification WHERE Sour-
ceInstance ISA CIM_LimitedAccessPort                          
AND SourceInstance.CIM_LimitedAccessPort::Opera-
tionalStatus <> PreviousIn-
stance.CIM_LimitedAccessPort::OperationalStatus

CQL - Change in OperationalStatus of a LimitedAccess-
Port

Table 1222: SMI Referenced Properties/Methods for CIM_Container

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_PhysicalPackage The container.
PartComponent CIM_PhysicalElement The elements in the container.
1338



 Limited Access Port Elements Subprofile
Class Mandatory: true

8.2.8.29.8.3 CIM_Magazine
Class Mandatory: true

8.2.8.29.8.4 CIM_Realizes
The relationship between a LimitedAccessPort and the StorageMediaLocations, Magazines or Chassis to which it 
has access.

Table 1223: SMI Referenced Properties/Methods for CIM_LimitedAccessPort

Property Flags Type Description & Notes
Mandatory Properties/Methods

SystemCreationClassName string
CreationClassName string
SystemName string
DeviceID string
Extended boolean When true, the port's StorageMediaLo-

cations are accessible to a human 
operator. When false, the StorageMedi-
aLocations are accessible to a Picker-
Element.

ElementName string User-friendly name
OperationalStatus uint16[] Status of the LimitedAccessPort.

Optional Properties/Methods
StatusDescriptions string[] Additional information related to the 

values in OperationalStatus.

Table 1224: SMI Referenced Properties/Methods for CIM_Magazine

Property Flags Type Description & Notes
Mandatory Properties/Methods

CreationClassName string
Tag string
LocationType uint16 "Magazine"
LocationCoordinates string
MediaTypesSupported uint16[]
MediaCapacity uint32 The maximum number of PhysicalMe-

dia that this StorageMediaLocation can 
hold.

Optional Properties/Methods
PhysicalLabels string[]
LabelStates uint16[]
LabelFormats uint16[]
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1339



 

Class Mandatory: true

8.2.8.29.8.5 CIM_SystemDevice
The relationship between a LimitedAccessPort and its hosting top-level ComputerSystem which represents the 
Storage Library.
Class Mandatory: true

8.2.8.29.9 Related Standards

Table 1225: SMI Referenced Properties/Methods for CIM_Realizes

Property Flags Type Description & Notes
Mandatory Properties/Methods

Antecedent CIM_PhysicalElement The StorageMediaLocation, Maga-
zines or Chassis to which the Limite-
dAccessPort has access.

Dependent CIM_LogicalDevice The LimitedAccessPort.

Table 1226: SMI Referenced Properties/Methods for CIM_SystemDevice

Property Flags Type Description & Notes
Mandatory Properties/Methods

GroupComponent CIM_System The Storage Library.
PartComponent CIM_LogicalDevice The LimitedAccessPort.

Table 1227: Related Standards for Storage Library Limited Access Port Elements

Specification Revision Organization
CIM Infrastructure Specification 2.3.0 DMTF
CIM Operations over HTTP 1.2.0 DMTF
CIM Schema 2.11.0 DMTF
1340



 Cross Profile Considerations
8.3 Cross Profile Considerations

8.3.1 Overview
Many applications access data from multiple profiles to perform operations. This section describes
algorithms that can be used to associate objects from different profiles to understand connections
between the profiles. The algorithms use Durable Names to match objects from different profiles. Below
are simplified instance diagrams that are used to illustrate the algorithms.

8.3.2 HBA model
This model represents a simple “Host Bus Adapter”. The model includes objects that represent a single
port Fibre channel HBA. The model also includes a storage volume being accessed through the HBA.

8.3.2.1 Recipes

8.3.2.1.1 Disclaimer
The recipes in this section are included for illustrative purposes only. As of this version of SMI-S, these
recipes are not part of CTP and may not have been validated.

Figure 218: System Diagram

Figure 219: Host Bus Adapter Model

Array Agent Switch Agent Host/HBA Agent

Client Application

Virtualization
Provider

StorageVolume

DeviceId: Durable 
Name

ComputerSystem

SCSIProtocolController

FcPort

LogicalPortGroup

ProtocolControllerForPort

MemberOfCollection

ProtocolControllerAccessesUnitSystemDevice

SCSIProtocolEndpoint

DeviceSAPImplementation

HostedAccess
Point
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1341



 

8.3.3 Switch Model
This model represents a two-port Fibre channel switch. The model also includes objects representing
links to remote ports the switch agent knows about, and ComputerSystems

8.3.3.1 Recipes

8.3.3.1.1 Create MAP

// DESCRIPTION 

// Create a map of how elements in a SAN are connected together via Fibre-Channel 
ports

//

// The map is built in array $attachedFcPorts->[], where the index is a

// WWN of any device port on the SAN, and the value at that index is

// the object path of the connected switch port.

//

// First find all the switches in a SAN.  Get all the FCPorts for each

Figure 220: Switch Model

FCPort

ComputerSystem

dedicated[x] '= 'Switch'

Product
ComputerSystemPackage

FCPortProtocolEndpointProtocolEndpoint

CIM_SystemDeviceCIM_DeviceSAPImplementationCIM_ActiveConnectionCIM_DeviceSAPImplementation

FCPort FCPortProtocolendpoint

CIM_DeviceSAPImplementationCIM_ActiveConnection

ProtocolEndpoint

CIM_DeviceSAPImplementation

ComputerSystem

dedicated[x] '= 'Unknown'

CIM_SystemDevice

ComputerSystem

dedicated[x] '= 'Unknown'

CIM_SystemDevice
1342



 Cross Profile Considerations
// switch and get the Attached FCPorts for each Switch FCPort.  Save

// these device ports in the map described above.

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// 1.  All agents/namespaces supporting Fabric Profile previously identified using 
SLP

// Do this for each CIMOM supporting Fabric Profile

switches[] = enumerateInstances(“CIM_ComputerSystem”, true, false, true, true, 
null)

for #i in $switches[]

{

    if (!contains(5, $switches[#i].Dedicated)) 

        continue // only process switches, not other computer systems

    $fcPorts->[] = AssociatorNames(

        $switches[#i].getObjectPath(),

        “CIM_SystemDevice”,

        “CIM_FCPort”,

        “GroupComponent”,

        “PartComponent”)

    for #j in $fcPorts->[]

    {

        $protocolEndpoints->[] = AssociatorNames(

             fcPorts->[#j],

             “CIM_DeviceSAPImplementation”,

             “CIM_ProtocolEndpoint”,

             “Antecedent”,

             “Dependent”);

        // NOTE - It is possible for this collection to be empty (ports that are not 

        // connected).  It is NOT possible for this collection to have more than 
one

        // element

        if ($protocolEndpoints->[].length == 0)

            continue

        $attachedProtocolEndpoints->[] = AssociatorNames(

            $protocolEndpoints->[0],

        “CIM_ActiveConnection”,

            “CIM_ProtocolEndpoint”,

            null, null) // NOTE: role & resultRole are null as the

                        // direction of the association is not

                        // dictated by the specification
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1343



 

        for #k in $attachedProtocolEndpoints->[] {

            // $attachedFcPort is either a device port or an ISLÂ’d

    // switch port from another switch. We store this result

    // (i.e. which device FCPort is connected to which switch

    // FCPort) in a suitable data structure for subsequent

    // correlation to ports discovered on devices.

            $attachedFcPorts->[] = Associators(

    $attachedProtocolEndpoints->[#k],

    “CIM_DeviceSAPImplementation”,

    “CIM_FCPort”,

                “Dependent”,

                “Antecedent”,

                false,

                false,

                [“PermanentAddress”])

            $attachedFcPort = $attachedFcPorts[0] // Exactly one member guaranteed 
by model

            #wwn = $attachedFcPort.PermanentAddress

    $attachedFcPorts->[#wwn] = $fcPorts->[#j]

        }

    }

}

8.3.3.1.2 HBA to Switch Physical Path

// DESCRIPTION

// Determine physical path from HBA to switch.

//

// For each HBA port on every host, determine the connected switch

// port.  NOTE: Not every HBA port will be connected to a switch port,

// and not every switch port will be connected to a device port.  Only

// the connections between HBA ports and switch ports are discovered

// by this recipe

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.  All agents/namespaces supporting HBA Profile previously identified using 
SLP

// 2.  Array $attachedFcPorts->[] is a map of how elements in a SAN are

// connected together via Fibre-Channel ports. Each index is a WWN of

// any device port on the SAN, and the value at that index is the

// connected switch port.

// Do this for each CIMOM supporting HBA Profile

$hosts[] = enumerateInstances(“CIM_ComputerSystem”)
1344



 Cross Profile Considerations
for #i in $hosts->[]

{

    if (!contains(0, $hosts[#i].Dedicated)) 

        continue // only process systems that are “not dedicated”

    $fcPorts[] = Associators(

        $hosts[#i].getObjectPath(),

        “CIM_SystemDevice”,

        “CIM_FCPort”,

        “GroupComponent”,

        “PartComponent”,

        false,

        false,

        [“PermanentAddress”])

    for #j in $fcPorts[]

    {

        // Get the FCPort WWN

        #wwn = $fcPorts[#j].PermanentAddress

        // Match this device port WWN to one (or less) switch 

        // ports, by using the mapping table

        $attachedSwitchPort-> = $attachedFcPorts->[#wwn]

       // Note - if there is no entry in the mapping array, this 

       // port is not connected to any switch

    }

}

8.3.3.1.3 Array to Switch Physical Path

// DESCRIPTION 

// Determine physical path from Storage Arrays to Switches

//

// For each fibre-channel port on every array, determine the connected

// switch port.  NOTE: This identifies the FrontEnd I/O Controllers

// (and Storage Arrays) whose ports are physically connected to

// some of the ports of some of the Switches. This recipe does not

// distinguish and does not filter the front-end FC Port from the

// back-end FC Ports.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.  All agents/namespaces supporting Array Profile previously identified using 
SLP
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1345



 

// 2.  Array $attachedFcPorts[] is a map of how elements in a SAN are

// connected together via Fibre-Channel ports. Each index is a WWN of

// any device port on the SAN, and the value at that index is the

// connected switch port.

// Do this for each CIMOM supporting the Array Profile

$storageArrays[] = enumerateInstances(“CIM_ComputerSystem”);

// NOTE: Some of the ports contained will be back-end ports, but they will 

// have no connectivity to switches, so we won’t distinguish them 

// from unconnected front-end ports

for #i in $storageArrays[]

{

    if (!contains(3, $storageArrays[#i].Dedicated)) 

        continue // only process systems that are dedicated “storage”

    if (!contains(15, $storageArrays[#i].Dedicated)) 

        continue // only process systems that are dedicated “block server”

    $fcPorts[] = Associators(

        $storageArrays[#i].getObjectPath(),

“CIM_SystemDevice”,

“CIM_FCPort”,

        “GroupComponent”,

        “PartComponent”,

        false,

        false,

        [“PermanentAddress”])

    for #j in $fcPorts[]

    {

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// Match this device port WWN to one (or less) switch 

// ports, by using the mapping table

        $attachedSwitchPort-> = $attachedFcPorts->[#wwn]

       // Note - if there is no entry in the mapping array, this 

       // port is not connected to any switch

    }

}

1346



 Cross Profile Considerations
8.3.4 Array Model
This is a simple model of a disk array. The array has a single controller with a single Fibre channel port
on the front end and a single parallel SCSI port for the disks. The model shows two disks that are
members of a single redundancy group. Part of the redundancy group is made available over the Fibre
channel as a single volume.

Figure 221: Array Instance

SCSIProtocolController

ConnectionRole=”Server”

 CIM_ComputerSystem

dedicated[x] '= 'Block 
Server'

StorageVolume

DeviceId: Durable 
Name

StorageVolume

DeviceId: Durable 
Name

FCPort

AllocatedFromPool

ProtocolControllerForPort

SCSIProtocolController

ConnectionRole=”Client”
ProtocolControllerAccessesUnit

StorageVolume

DeviceId: Durable 
Name

StoragePool

SystemDevice

ProtocolControllerForUnit

ConcreateComponentConcreateComponent

SCSIProtocol
Endpoint

DeviceSAPImplementation
SystemDevice

SCSIProtocol
Endpoint

DeviceSAPImplementation

FCPort

ProtocolControllerForPortSystemDevice
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1347



 

8.3.4.1 Storage Virtualization Model
This is a simple model of a Storage Virtualizer. The model shows the basic controller and pool. The
model also shows a single volume being used and a single volume being served to a host.

Figure 222: Virtualization Instance

dedicated[x] =
 "StorageVirtualizer"

ComputerSystem

StorageVolume

Name: //VPD pg 83 ID
DefaultAccessMode

StorageConfiguration
Service

ProtocolControllerAccessesUnit

StoragePool

AllocatedFromStoragePool

FCPort

SCSIProtocolController

ConnectionRole=”Server”

ProtocolControllerForUnit

StorageVolume

LUID: //VPD pg 83 ID
DefaultAccessMode

SCSIProtocolController

ConnectionRole=”Client”

FCPort

ProtocolControllerForPort

SystemDevice

SCSIProtocol 
Endpoint

HostedAccessPoint

HostedService

Component

SAPAvailable
ForElementDeviceSAPImplemetation

SCSIProtocol 
Endpoint

DeviceSAPImplemetation

SystemDevice

HostedAccessPoint

ProvidesServiceTo
1348



 Cross Profile Considerations
8.3.5 Fabric Topology (HBA, Switch, Array)

A map of a SAN that shows all the elements and the connections between them is very useful. To
create the map all the elements in the SAN with their Fibre channel ports are first located. Next the
ports are linked together.

To locate all the elements in a SAN, you start by locating the agents. SMI-S agents are located using
SLP. Once the agents are located, intrinsic methods are used to enumerate ComputerSystem objects.
Each ComputerSystem object represents an element in the SAN. The ComputerSystem object’s
“Dedicated” attribute can be used to identify the type of the element.

After the elements are located, Fibre channel ports for each element are discovered. For each
ComputerSystem object follow SystemDeviceFCPort objects and ProtocolController objects. For each
ProtocolController object follow the ProtocolControllerForPort associations to FCPort objects. Use the
information in the FCPort objects found to determine the Durable Name for the FCPort object. The
Durable Name is used to match the ports to objects in other profiles.

Now to link the elements’ ports together find the Switch elements. Switches know about ports on
elements logged into their ports. To find this information start by locating the ComputerSystem objects
that represents switches. Switches can be identified by the “Dedicated” attribute of the
ComputerSystem object being set to “Switch”. For each switch follow the SystemDeviceFCPort objects

Figure 223: Logical and Physical Topology Across Components of a Fabric

S torage 
V o lum e

 

D eviceSA PIm plem entation P hysica l Path   B e tw een  the  H B A  
P ort (o f the  Log ica l Pa th) and  its  
correspond ing  S torage A rray Port 
(o f the  Log ica l P a th) th rough one or 
m ore  S w itches in  the  Fabric

P ro toco l 
EndP o in t

S w itch  P rofile

FC  P ort

C om puter 
System  
(S w itch)

0 or m ore 
Sw itches

H ost  &  H B A  P rofile

P rotoco lC ontro lle rA ccessesU nit

C om puter 
S ystem  
(H ost)

S C SIP ro toco l 
C ontro lle r

S ystem D evice

Protoco lC ontro lle rForP ort

FC  P ort

P ro toco l 
EndPo in t

D eviceSAPIm plem entation System D evice

D eviceSA PIm plem entation

P ro toco l 
EndPo in t

P ro toco l 
EndPo in t

FC  P ort

S torage P rofile

FC  Port

S C S IP ro toco l 
C ontro lle r

C om puter 
S ystem  

(S torage A rray)

P rotoco lC ontro lle rForPort

S to rage 
V o lum e

Protoco lC ontro lle rForPort

Logica l P ath   
Betw een V o lum es 

accessed th rough an  
H B A  P ort and  V o lum e 

served th rough a  
S torage A rray P ort

D eviceSAP Im plem entation

C om puter 
S ystem  
(S w itch)

System D evice

ActiveC onnection
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1349



 

that represent the ports of the switch. Next look for ActiveConnection ActiveConnectionFCPort objects.
These FCPort objects represent the ports on the other side of a link. Use attributes from the FCPort
object to determine the Durable Name. These identifiers are then matched to identifiers found in other
profiles to complete the connections.

8.3.5.1 Overview
The Logical Disk Composition Recipe traces the objects and associations that make up a LogicalDisk
across profile boundaries. It serves performance and fault identification use-cases by allowing the user
to map out all the objects in the I/O stack that may contribute to the storage services a LogicalDisk
provides to applications. It covers the Disk Partition, Volume Manager, Disk,Multipath, Common
Initiator, Fabric, iSCSI Target, Storage Virtualizer and Array profiles and subprofiles. This recipe also
shows how Correlatable Naming conventions may be used to identify and correlate instances of objects
within, and across profiles.

8.3.5.2 Main Recipe

Logical Disk Composition Recipe

This main recipe is profile-independent.  It 

uses subroutines which are profile-dependent.

Description: 

By stitching together information from 

multiple profiles, determine the logical composition

a host LogicalDisk in terms of its constituent 

LogicalDevices, ProtocolControllers, Ports, StoragePools,

etc. and the associations between them.

Collect sufficient information to allow a graph to be drawn.

Where possible, allow network topologies to be attached.

Preexisting Conditions and Assumptions:

That all providers relevant to the logical composition

of the disk have been discovered (see the Server Profile

recipe “Find Servers Supporting a Given Profile), 

can be queried for the information they have to contribute, 

and follow SMI-S 1.1

Durable Names naming conventions to allow stitching

across profiles and providers. Correlatable, unique

and durable names are assumed if this is to work.

In particular, this must be true of instances of:

CIM_LogicalDisk

CIM_FCPort

CIM_SCSIProtocolEndpoint

Which are node objects, included in multiple profiles.
1350



 Cross Profile Considerations
Subroutines:

Each subroutine of this recipe has access to all 

providers relevant to the path under consideration.

// Add $node to $nodes[] if it has not already been added.

// If a new node was added, set #new_added to true.

sub AddIfNotAlreadyAdded(IN     CIM_LogicalElement   $node,

                         IN/OUT CIM_LogicalElement[] $nodes[],

                         OUT boolean #new_added,

                         OUT int #error_code);

// Add $link to $links[] if it has not already been added.

// If a new link was added, set #new_added to true.

sub AddLinkIfNotAlreadyAdded(IN     CIM_Dependency   $link,

                             IN/OUT CIM_Dependency[] $links[],

                             OUT boolean #new_added,

                             OUT int #error_code);

// Compare two LogicalElement references to determine if 

// they represent the same modeled object. The two nodes

// may come from entirely different providers/profiles.

// This method uses correlatable naming conventions defined

// for the classes in question by the Profiles/SubProfiles. 

sub RepresentsTheSameObject(IN     CIM_LogicalElement   $node1,

                            IN     CIM_LogicalElement   $node2,

                            OUT int #error_code);

// Compare two Dependency references to determine if 

// they represent the same modeled association. The two links

// may come from entirely different providers/profiles.

// This method uses correlatable naming conventions defined

// for the endpoints in question by the Profiles/SubProfiles. 

sub RepresentsTheSameAssociation(IN     CIM_Dependency   $link1,

                                 IN     CIM_Dependency   $link2,

                                 OUT int #error_code) {

// Given the Names and NameFormats of two object instances,

// determine if the two instances represent the same modeled object

// unambiguously according to Correlatable names semantics.

// Return true only if the match is unambiguous.

sub MatchUnambiguouslyByNameNameFormat(string name1, 

                                       string nameFormat1,

                                       string name2,

                                       string nameFormat2
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1351



 

                                      );

// Given the IdentifyingDescriptions and OtherIDentifyingInfo

// arrays of two object instances,

// determine if the two instances represent the same object

// unambiguously according to Correlatable names semantics

// for ComputerSystem names.

// Return true only if the match is unambiguous.

sub MatchUnambiguouslyByIdentifyingInfo(string info1[], 

                                        string desc1[],

                                        string info2[],

                                        string desc2[]

                                       );

// Given an instance of an object from one provider,

// find the instance of the same object in the current

// provider.  Return null if not found.

sub GetProviderInstanceOf(IN CIM_LogicalElement  $that_node,

                          OUT CIM_LogicalElement $this_node,

                          OUT int #error_code);

             

// In this function, the layer is passed references

// to the working graph.  It is expected that the layer

// will search the structures for objects it recognizes

// and can add new objects and associations to the graph.

// If the layer does not exist or does not recognize

// any of the objects or associations in the graph 

// as objects it manages or knows about, it adds nothing.

// Set #new_added to true if the layer contributed anything new to 

// contribute to the graph.

sub AddToGraphFromLayerXXX( IN/OUT CIM_LogicalElement $nodes[],

                            IN/OUT CIM_Dependency     $links[],

                            OUT boolean #new_added,

                            OUT int #error_code

                          );

// This fictitious function would draw a node in 

// this logical composition on a canvas.  The net effect

// of drawing all the nodes would be

// an arrangement of boxes containing CIM class names 

// and identifiers of those objects.

sub DrawNode($node);

// This fictitious function would draw a line representing

// the specified association between two nodes.  The net
1352



 Cross Profile Considerations
// result would be a graph directed graph of the nodes 

// with their associations.

sub DrawLinkBetweenNodes($link);

Main Recipe:

// Begin with a CIM_LogicalDisk reference representing a 

// volume on which a filesystem has been placed or is 

// being used “raw” by an application managing its own

// block structures.

$logicaldisk;

// The goal is to build two arrays: An array of objects

// representing nodes in the logical topology graph, and

// an array of Associations linking those objects to form

// a directed graph.

CIM_LogicalElement[] $nodes[];

CIM_Dependency[]     $links[];

// Define some other flow control variables.

boolean #new_objects_added = true;

int #error_code = 0;

// Start by adding the top level volume.

$node[0] = $logicaldisk;

#new_objects_added = true;

// Now, build down through the layers building what

// should be a breadth-first traversal of the tree graph.

// Repeatedly cycle through the layers until no new objects

// have been added. This allows for multiple layers of  

// virtualization and network to kick in if new objects are found 

// from the layers above added in previous passes.

while (#new_objects_added) {

 

   boolean #added;

   #new_objects_added = false;

   &AddToGraphFromLayerVolumeManager($nodes[], 

                                     $links[], 

                                     #added,

                                     #error_code);
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1353



 

   #new_objects_added |= #added;

   if (0 != #error_code) { return #error_code; }

   &AddToGraphFromLayerDiskPartitioning($nodes[], 

                                        $links[], 

                                        #added,

                                        #error_code);

   #new_objects_added |= #added;

   if (0 != #error_code) { return #error_code; }

   &AddToGraphFromLayerLocalDiskDrive($nodes[], 

                                      $links[], 

                                      #new_objects_added,

                                      #error_code);

   if (0 != #error_code) { return #error_code; }

   &AddToGraphFromLayerMultipath($nodes[], 

                                 $links[], 

                                 #added,

                                 #error_code);

   #new_objects_added |= #added;

   if (0 != #error_code) { return #error_code; }

   &AddToGraphFromLayerCommonInitiator($nodes[], 

                                       $links[], 

                                       #added,

                                       #error_code);

   #new_objects_added |= #added;

   if (0 != #error_code) { return #error_code; }

   &AddToGraphFromLayerFabric($nodes[], 

                              $links[], 

                              #added,

                              #error_code);

   #new_objects_added |= #added;

   if (0 != #error_code) { return #error_code; }

   &AddToGraphFromLayerIPNetwork($nodes[], 

                                 $links[], 

                                 #added,

                                 #error_code);

   #new_objects_added |= #added;

   if (0 != #error_code) { return #error_code; }

   &AddToGraphFromLayerStorageVirtualizer($nodes[], 

                                          $links[], 

                                          #added,
1354



 Cross Profile Considerations
                                          #error_code);

   #new_objects_added |= #added;

   if (0 != #error_code) { return #error_code; }

   &AddToGraphFromLayerArray($nodes[], 

                             $links[], 

                             #added,

                             #error_code);

   #new_objects_added |= #added;

   if (0 != #error_code) { return #error_code; }

} // while.

// Now “draw” the logical disk composition. In reality these functions

// would need to rather sophisticated with geometric constraints

// to draw a nice looking graph. 

for #i in $nodes[] {

   &DrawNode($nodes[#i]);

}

for #i in $links[] {

   &DrawLinkBetweenNodes($link[#i]);

}

sub AddIfNotAlreadyAdded(IN     CIM_LogicalElement   $node,

                         IN/OUT CIM_LogicalElement[] $nodes[],

                         OUT boolean #new_added,

                         OUT int #error_code) {

    boolean #wasFound = false;

    boolean #new_added = false;

    

    // Search through the nodes looking for a match.

    // Not a particularly efficient way of doing it, but functional.

    for #i in $nodes[] {

        if (&RepresentsTheSameObject($node, $nodes[i], #error_code)) {

            if (#error_code == 0) {

               #wasFound = true;

            }

            break;

        }  

    }

    // If we did not find a match, and there were no errors, add it.

    if ( (!#wasFound) && (#error_code == 0)) {
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1355



 

        $nodes[].add($node);

        #new_added = true;

    }

} // AddIfNotAlreadyAdded.

sub AddIfNotAlreadyAdded(IN     CIM_Dependency   $link,

                         IN/OUT CIM_Dependency[] $links[],

                         OUT int #error_code) {

    boolean #wasFound = false;

    #new_added = false;

    

    // Search through the nodes looking for a match.

    // Not a particularly efficient way of doing it, but functional.

    for #i in $links[] {

        if (&RepresentsTheSameAssociation($link, $links[#i], #error_code)) {

            if (#error_code == 0) {

               #wasFound = true;

            }

            break;

        }  

    }

    // If we did not find a match, and there were no errors, add it.

    if ( (!#wasFound) && (#error_code == 0)) {

        $links[].add($link);

        #new_added = true;

    }

} // AddIfNotAlreadyAdded.

sub RepresentsTheSameAssociation(IN     CIM_Dependency   $link1,

                                 IN     CIM_Dependency   $link2,

                                 OUT int #error_code) {

    // Determine if the links are the same by comparing thier class

    // and the correlatable identifiers of their endpoints.

    if ( ($link1.getObjectClass() == $link2.getObjectClass()

         (&RepresentsTheSameObject($link1.Antecedent, $link2.Antecedent, 
#error_code) &&

         (&RepresentsTheSameObject($link1.Dependent, $link2.Dependent, 
#error_code)

        ) {

        return true;

    } else {

        return false;

    }

}

1356



 Cross Profile Considerations
sub RepresentsTheSameObject(IN     CIM_LogicalElement   $node1,

                            IN     CIM_LogicalElement   $node2,

                            OUT int #error_code) {

    int #error_code = 0;

    boolean #result;

    // First, check if this is the same instance by checking object path.

    if ($node1.getObjectPath() == $node2.getObjectPath()) {

       return true;

    }

    

    // These objects can be handled by Name&NameFormat.

    if ( (($node1 ISA CIM_LogicalDisk) && ($node2 ISA CIM_LogicalDisk)) ||

          ($node1 ISA CIM_StorageVolume) && ($node2 ISA CIM_StorageVolume)) || 

          ($node1 ISA CIM_StorageExtent) && ($node2 ISA CIM_StorageExtent)) || 

          ($node1 ISA CIM_SCSIProtocolEndpoint) && ($node2 ISA 
CIM_SCSIProtocolAEndpoint)) || 

       ) { 

       #result = &MatchUnambiguouslyByNameNameFormat($node1.Name, 
$node1.NameFormat,

                                                     $node2.Name, $node2.NameFormat);

     

    // ComputerSystems are compared by two methods.  

    } else if ($node1 ISA CIM_ComputerSystem) && ($node2 ISA CIM_ComputerSystem)) {                           

         #result = &MatchUnambiguouslyByNameNameFormat($node1.Name, 
$node1.NameFormat,

                                                     $node2.Name, $node2.NameFormat);

       if (!#result) {

         #result = 
&MatchUnambiguouslyByIdentifyingInfo($node1.OtherIdentifyingInfo[], 

                                                        
$node1.IdentifyingDescriptions[],

                                                        $node2.OtherIdentifyingInfo[], 

                                                        
$node2.IdentifyingDescriptions[]);          

       }                  

    // These objects are compared by name.

    } else if (($node1 ISA CIM_GenericDiskPartition) && ($node2 ISA 
CIM_GenericDiskPartition)) {

       #result = ($node1.Name == $node2.Name);

    } else if (($node1 ISA CIM_FCPort) && ($node2 ISA CIM_FCPort)) {

       #result = ($node1.Name == $node2.Name);

    // These DiskDrive and StoragePool have their own monikers.

    } else if (($node1 ISA CIM_DiskDrive) && ($node2 ISA CIM_DiskDrive)) {

       #result = ($node1.DeviceID == $node2.DeviceID);
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1357



 

    } else if (($node1 ISA CIM_StoragePool) && ($node2 ISA CIM_StoragePool)) {

       #result = ($node1.InstanceID == $node2.InstanceID);

    } else {

       < this method can’t handle this type >

       #error_code = 1;

       return false;

    }

    return #result;

   

} // RepresentsTheSameObject.

sub MatchUnambiguouslyByNameNameFormat(string name1, 

                                       string nameFormat1,

                                       string name2,

                                       string nameFormat2

                                      ) {

    if (nameFormat1 != nameFormat2) {

        return false;

    } else {

        if (name1 == name2) {

           return true;

        }

    }

    return false;

}

sub MatchUnambiguouslyByIdentifyingInfo(string info1[], 

                                        string desc1[],

                                        string info2[],

                                        string desc2[]

                                       ) {

    boolean #matchFound = false;

    // Loop through both arrays looking for a match.

    for (#i=0; #i<info1[].length; #i++) {

        for (#j=0; #j<info2[].length; #j++) {

            if (MatchUnambiguouslyByNameNameFormat(desc1[#i],

                                                   info1[#i],

                                                   desc2[#j],

                                                   info2[#j]

                                                  )

               ) {

                #matchFound = true;

                break;  

        }
1358



 Cross Profile Considerations
        if (#matchFound) {

           break;

        }

    }   

    return #matchFound;

}

sub GetProviderInstanceOf(IN CIM_LogicalElement  $that_node,

                          OUT CIM_LogicalElement $this_node,

                          OUT int #error_code) {

 

    CIM_LogicalElement $possible_matches[];

    $this_node = null;

    // Enumerate through all the instances of this class in this provider 

    // looking for a match to $that_node.

    $possible_matches = EnumInstances($that_node.getClass(), false, false);

    for #i in $possible_matches[] {

        if ( &RepresentsTheSameObject($that_node, $possible_matches[#i], 
#error_code)

             && !#error_code) {

           $this_node = $possible_matches[#i];

        )

    }   

}  // GetProviderInstanceOf.

8.3.5.3 Array paths

Array layer piece of the Logical Disk Composition Recipe

This is based on the

Array Profile, which uses the Target Port Subprofile.  

It connects StorageVolumes left by the SCSI initiator 

side to their FCPorts on the array side to allow 

network and logical disk topologies to be correlated.

sub AddToGraphFromLayerArray(IN/OUT CIM_LogicalElement $nodes[], 

                             IN/OUT CIM_Dependency $links[],

                             OUT    boolean #new_added,

                             OUT    int     #error_code) {
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1359



 

   CIM_SCSIProtocolController      $found_protocol_controllers[];

   CIM_ProtocolControllerForUnit   $found_for_unit_associations[];

   CIM_ProtocolEndpoint            $found_protocol_endpoints[];

   CIM_DeviceSAPImplementation     $found_sap_associations[];

   CIM_LogicalPort                 $found_ports[];

   CIM_SAPAvailableForElement      $found_available_associations[];

   boolean #added = false;

   #new_added = false;

   for #i in $nodes[] {

      if ($nodes[#i] ISA CIM_StorageVolume) {

       &GetProviderInstanceOf($nodes[#i], $node, #error_code);

       if (#error_code) { return;}

       if ($node != null) {

         // First, work up the path to include the network port

         // for stitching in the network topology.

         // Question: Could there be multiple ports?

         // Follow an ProtocolControllerForUnit to a SCSIProtocolController.

         $found_protocol_controllers[] = Associators(

                                  $node.getObjectPath(),

                                  “CIM_SCSIProtocolControllerForUnit”,

                                  “CIM_SCSIProtocolController”,    

                                  “Dependent”,

                                  “Antecedent”

                                        );

         $found_for_unit_associations[] = References($node.getObjectPath(),

                                                      “CIM_SCSIProtocolController”,

                                                      “Dependent”

                                                     );

         &AddIfNotAlreadyAdded($found_protocol_controllers[0],

                               $nodes[], #added, #error_code);

         #new_added |= #added;

         &AddLinkIfNotAlreadyAdded($found_for_unit_associations[0],

                                   $links[], #added, #error_code);

         #new_added |= #added;   

         // Follow an SAPAvailableForElement to a SCSIProtocolEndpoint.
1360



 Cross Profile Considerations
         $found_protocol_endpoints[] = Associators(

                                  $found_protocol_controllers[0],

                                  “CIM_SAPAvailableForElement”,

                                  “CIM_ProtocolEndpoint”,    

                                  “ManagedElement”,

                                  “AvailableSAP”

                                        );

         $found_available_associations[] = 
References($found_protocol_controllers[],

                                                      “CIM_ProtocolEndpoint”,

                                                      “ManagedElement”

                                                     );

         &AddIfNotAlreadyAdded($found_protocol_endpoints[0],

                               $nodes[], #added, #error_code);

         #new_added |= #added;

         &AddLinkIfNotAlreadyAdded($found_available_associations[0],

                                   $links[], #added, #error_code);

         #new_added |= #added;   

         

         // Follow the DeviceSAPImplementation to a LogicalPort.

         $found_ports[] = 
Associators($found_protocol_endpoints[0].getObjectPath(),

                                                 “CIM_DeviceSAPImplementation”,

                                                 “CIM_LogicalPort”,

                                                 “Dependent”,

                                                 “Antecedent”

                                                );

         $found_sap_associations[] = 
References($found_protocol_endpoints.getObjectPath(),

                                                      “CIM_LogicalPort”,

                                                      “Dependent”

                                                     );

         &AddIfNotAlreadyAdded($found_ports[0],

                               $nodes[], #added, #error_code);

         #new_added |= #added;

         &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

                                   $links[], #added, #error_code);

         #new_added |= #added; 

   } // for #i.

} // AddToGraphFromLayerArray.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1361



 

8.3.5.4 Host Discovered Resource
// Host Discovered Resources layer piece of the Logical Disk Composition Recipe

// It uses the Host Discovered Resources Profile.

sub AddToGraphFromLayerHostDiscoveredResources(

                                  IN/OUT CIM_LogicalElement $nodes[], 

                                  IN/OUT CIM_LogicalElement $links[],

                                  OUT boolean #new_added, 

                                  OUT int     #error_code) {

boolean #added = false;

#new_added = false;

for #i in $nodes[] {

   

   // CIM_SCSIInitiatorTargetLogicalUnitPath $scsi_paths[];

   // CIM_SCSIProtocolEndpoint $initiator_endpoint;

   // CIM_SCSIProtocolEndpoint $target_endpoint;

   #i =0;

   if ($nodes[#i] ISA CIM_LogicalDisk) {

       &GetProviderInstanceOf($nodes[#i], $node, #error_code);

       if (#error_code) { return; }

       if ($node != null) {

          // Find all CIM_SCSIInitiatorTargetLogicalUnitPath

          // with $node as the LogicalUnit reference.

          $scsi_paths[] = References(

                            $node.getObjectPath(),

                            “CIM_SCSIInitiatorLogicalUnitPath”,  //ResultClass

                            “LogicalUnit”                        // Role

                                    );  

          for (#j=0; #j<$scsi_paths.length; #j++) { 

              &AddLinkIfNotAlready($scsi_paths[#j], $links[], 

                                   #added, #error_code);

              #new_added |= #added;

              $initiator_endpoint = $scsi_paths[#j].Initiator;

              $target_endpoint = $scsi_paths[#j].Target;

              &AddIfNotAlreadyAdded($initiator_endpoint, $nodes[], 

                                    #added, #error_code);

              #new_added |= #added;

              &AddIfNotAlreadyAdded($target_endpoint, $nodes[], 
1362



 Cross Profile Considerations
                                    #added, #error_code);

              #new_added |= #added;

          }   

      } // if $node != null. 

   } // if $node ISA.

}  // For #i. 

} // AddToGraphFromLayerHostDiscoveredResources.

8.3.5.5 Common Initiator Port

Common Initiator layer piece of the Logical Disk Composition Recipe

It uses the Common Initiator Port Subprofile.

sub AddToGraphFromCommonInitiator(IN/OUT CIM_LogicalElement $nodes[], 

                                  IN/OUT CIM_LogicalElement $links[],

                                  OUT boolean #new_added, 

                                  OUT int     #error_code) {

boolean #added = false;

#new_added = false;

for #i in $nodes[] {

   

   CIM_SCSIInitiatorTargetLogicalUnitPath $scsi_paths[];

   CIM_SCSIProtocolEndpoint $initiator_endpoint;

   CIM_SCSIProtocolEndpoint $target_endpoint;

   #i =0;

   if ($nodes[#i] ISA CIM_LogicalDisk) {

       &GetProviderInstanceOf($nodes[#i], $node, #error_code);

       if (#error_code) { return; }

       if ($node != null) {

          // Find all CIM_SCSIInitiatorTargetLogicalUnitPath

          // with $node as the LogicalUnit reference.

          $scsi_paths[] = References($node.getObjectPath(),

                                     “CIM_SCSIInitiatorLogicalUnitPath”,  //
ResultClass

                                     “LogicalUnit”                        // Role
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1363



 

                                    );  

          for (#i=0; #i<$scsi_paths.length; #i++) { 

              &AddLinkIfNotAlready($scsi_paths[#i], $links[], #added, #error_code);

              #new_added |= #added;

              $initiator_endpoint = $scsi_paths[#i].Initiator;

              $target_endpoint = $scsi_paths[#i].Target;

              &AddIfNotAlreadyAdded($initiator_endpoint, $nodes[], #added, 
#error_code);

              #new_added |= #added;

              &AddIfNotAlreadyAdded($target_endpoint, $nodes[], #added, 
#error_code);

              #new_added |= #added;

          }   

      } // if $node != null. 

   } // if $node ISA.

}  // For over nodes.

// Relate the protocol endpoints to ports.

for #i in $nodes[] {

    

   CIM_LogicalPort $ports[];

   CIM_DeviceSAPImplementation $sap_associations[];

 

   if ($nodes[#i] ISA CIM_SCSIProtocolEndpoint) {

      &GetProviderInstanceOf($nodes[#i], $node, #error_code);

      if (#error_code) { return; }

      if ($node != null) {

      // Follow the DeviceSAPImplementation assocation

      // to the LogicalPort object

      $ports[] = Associators($node.getObjectPath(),

                             “CIM_DeviceSAPImplementation”,

                             “CIM_LogicalPort”,

                             “Dependent”,

                             “Antecedent”

                             );

      $sap_associations[] = References($node.getObjectPath(),

                                       “CIM_LogicalPort”,

                                       “Dependent”

                                      );

      // Add the port objects and associations to the graph.
1364



 Cross Profile Considerations
      for #j in $ports[] {

         if ((null != $sap_associations[#j]) && 

             (null != $ports[#j]) 

            ) {

            &AddLinkIfNotAlreadyAdded($sap_associations[#j], $links[], #added, 
#error_code);

            #new_added |= #added;

            &AddIfNotAlreadyAdded($ports[#j], $nodes[], #added, #error_code);

            #new_added |= #added;

         }

      } for #j.

   

      } // if $node != null.

   } // if $node ISA.

} // AddToGraphFromLayerCommonInitiator.

8.3.5.6 Fabric Layer

Fibre Channel Fabric layer piece of the Logical Disk Composition Recipe

It uses the Fabric profile.

Sub AddToGraphFromLayerFabric($nodes, $links, #error_code){

// This function does the following

//

// 1. Identifies all the Switches and adds their objects paths and the object 

// paths of the FC Ports belonging to these Switches to the $nodes array

//

// 2. Creates a suitable Association instance (e.g. a SystemDevice Association

// instance between a Switch and a FC Port), setting its GroupComponent and 

// PartComponent. Adds the object path of the Association to the $links array

//

// 3. Creates a map of all connected FC Ports (i.e., belonging to Switches 

// that are ISL’d together and to Host HBAs and Storage System Front End 

// Controllers)

// 

// In this map, the FC Ports (i.e., the ones that are connected) are 

// cross-connected.

//

// e.g., For a pair of FC Ports, one belonging to a Switch and the other 

// belonging to a Host (HBA), the map indexed by the Switch Port WWN returns 

// the Host (HBA) FC Port object path and the map indexed by the Host (HBA) FC // 
Port WWN returns the Switch FC Port object path.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1365



 

//

// The Object stored in this Map is a composite of five objects and four 

// associations. They are Switch, Switch FC Port, Switch end Protocol End Point, 

// Attached Protocol End Point and Attached FC Port. The Associations are 

// System Device, Device SAPImplementation, ActiveConnection, The attached side 

// DeviceSAPImplementation.

// This information is kept in the Map. While traversing the Host-HBA part of

// the topology, the HBA FC Ports are matched in this Map to find out if there

// is a corresponding Switch side FC Port. If yes, only then all the objects 

// are that lie on that path are saved in the Nodes Array and the corresponding

// Associations that lie on the path are stored in the Links Array.

//

// Similar relationship exists between the pairs of FC Ports where one belongs // 
to a Switch and the other belonging belongs to a Storage System Front End 

// Controller and for FC Ports each of which belongs to a Switch.

//

// 4. Identifies all the Hosts and adds their objects paths to the $nodes array.

// Note that the object paths of the FC Ports (HBA Ports) belonging to these

// Hosts are already added to the $nodes array in step-3.

//

// 5. Creates a suitable Association instance (e.g. a SystemDevice Association

// instance between a Host and a FC Port), setting its GroupComponent and 

// PartComponent. Adds the object path of the Association to the $links array.

//

// 6. Identifies all the Storage Systems and adds their objects paths to the 

// $nodes array.

// Note that the object paths of the FC Ports (i.e., Front End Controller FC

// Ports) belonging to these Storage Systems are already added to the $nodes

// array in step-3.

//

// 7. Creates a suitable Association instance (e.g. a SystemDevice Association

// instance between a Storage System and a FC Port), setting its GroupComponent // 
and PartComponent. Adds the object path of the Association to the $links 

// array.

//

// First find all the switches in a SAN. Get all the FC Ports for each

// switch and get the Attached FC Ports for each Switch FC Port. Save these 

// device FC ports in the map described above.

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// 1. All agents/namespaces supporting Fabric Profile previously identified

// using SLP. Do this for each CIMOM supporting Fabric Profile

// A composite elementsOnPath object is created. This object will be populated

// as we go along and will be stored in elementsOnPathMap with the index

// of attached FC Port WWN

ElementsOnPath #elementsOnPath = new ElementsOnPath();
1366



 Cross Profile Considerations
ElementsOnPathMap #elementsOnPathMap = new ElementsOnPathMap();

switches[] = enumerateInstances(“CIM_ComputerSystem”, true, false, true,

true, null)

for #i in $switches[]

{

if (!contains(5, $switches[#i].Dedicated))

continue // only process switches, not other computer systems

// Add the switch to the elementsOnPath object

#elementsOnPath.switch = $switches[#i];

// Get all the SystemDevice associations between this switch and its FC Ports

$sysDevAssoc[] = ReferenceNames($switches[#i], 

                                “CIM_FCPort”, 

                                “GroupComponent”);

// Add the system device associations to the links array

for #a in $sysDevAssoc-[]

$links.addIfNotAlreadyAdded ($sysDevAssoc[#a];

$fcPorts->[] = AssociatorNames(

$switches[#i].getObjectPath(),

“CIM_SystemDevice”,

“CIM_FCPort”,

“GroupComponent”,

“PartComponent”)

for #j in $fcPorts->[]

{

// Add the FC Port to the elementsOnPathObject 

#elementsOnPath.swFCPort = fcPorts->[#j];

$protocolEndpoints->[] = AssociatorNames(

fcPorts->[#j],

“CIM_DeviceSAPImplementation”,

“CIM_ProtocolEndpoint”,

“Antecedent”,

“Dependent”);

// NOTE - It is possible for this collection to be empty (i.e., ports that are not

// connected). It is NOT possible for this collection to have more than one

// element
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1367



 

if ($protocolEndpoints->[].length == 0)

continue

// Add the Protocol End Point to the elementsOnPathObject

#elementsOnPath.prorEP = protocolEndpoints[0];

// Add the associations between the fcPort and the Protocol end point to the 

// links array

$devSAPImplassoc[]  = ReferenceNames($fcPorts->[#j], 

                                     “CIM_ProtocolEndpoint”, 

                                     “Antecedent”);

for #a in $devSAPImplassoc->[]

$links.addIfNotAlreadyAdded ($devSAPImplassoc->[#a];

$attachedProtocolEndpoints->[] = AssociatorNames(

$protocolEndpoints->[0],

“CIM_ActiveConnection”,

“CIM_ProtocolEndpoint”,

 null, null) 

//Add the AttachedProtocolEndPoint to the elementsOnPath object

elementsOnPath.attachedPEP = attachedProtocolEndpoints->[0];

// Get the associations between the Protocol end point and the Attached

// protocol endpoint

$actConnassoc[]  = ReferenceNames($protocolEndpoint->[#0], 

                                  “CIM_ActiveConnection”, 

                                   “Antecedent”);

// Add it to the elementsOnPath object

elementsOnPath.actConn = actConnAssoc->[0];

// NOTE: role & resultRole are null as the direction of the association is not

// dictated by the specification

// $attachedFcPort is either a device FC port or an ISL’d switch FC port from 

// another switch. We store this result is stored (i.e. which device   

// FC Port is connected // to which switch FC Port) in a suitable data 

// structure for subsequent correlation to ports discovered on devices.

for #k in $attachedProtocolEndpoints->[] {

$attachedFcPorts->[] = Associators(
1368



 Cross Profile Considerations
$attachedProtocolEndpoints->[#k],

“CIM_DeviceSAPImplementation”,

“CIM_FCPort”,

“Dependent”,

“Antecedent”,

false,

false,

[“PermanentAddress”]);

$attachedFcPort = $attachedFcPorts[0] // Exactly one member guaranteed by model

// Add the attached FC Port to the elementsOnPath object

if $attachedFcPort != null 

  #elementsOnPath.attFCPort = $attachedFcPort);

// Save the elementsOnPath object in elementsOnPath Map with the index of

// wwn of the attached fc port

elementsOnPathMap.put ($attachedfcPort.PermanentAddress, elementsOnPath);

} 

}

}

 //   HBA to switch paths

// DESCRIPTION

// Determine physical path from HBA to switch.

//

// For each HBA FC port on every host, determine the connected switch

//FC port. NOTE: Not every HBA FC port will be connected to a switch FC port,

// and not every switch FC port will be connected to a device FC port. Only

// the connections between HBA FC ports and switch FC ports are discovered

// by this recipe

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. All agents/namespaces supporting HBA Profile previously identified

// using SLP

// 2. Array $attachedFcPorts->[] is a map of how elements in a SAN are

// connected together via Fibre-ChannelFC ports. Each index is a WWN of

// any device port on the SAN, and the value at that index is the

// connected switch FC port.

// Do this for each CIMOM supporting HBA Profile

$hosts[] = enumerateInstances(“CIM_ComputerSystem”)

for #i in $hosts->[]

{

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1369



 

if (!contains(0, $hosts[#i].Dedicated))

continue // only process systems that are “not dedicated”

$fcPorts[] = Associators(

$hosts[#i].getObjectPath(),

“CIM_SystemDevice”,

“CIM_FCPort”,

“GroupComponent”,

“PartComponent”,

false,

false,

[“PermanentAddress”])

// If the Host has FC Ports, add the Host to the $nodes array

if $fcPorts[] != null

$nodes.addIfNotAlreadyAdded ($hosts[#i]);

// Get all the SystemDevice associations between this host and its FC Ports

$sysDevAssoc[] = ReferenceNames($hosts[#i], 

                                “CIM_FCPort”, 

                                “GroupComponent”);

// Add these associations to the $links array

for #a in $sysDevAssoc-[]

$links.addIfNotAlreadyAdded ($sysDevAssoc[#a];

for #j in $fcPorts[]

{

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// Match this device port WWN to one (or less) switch FC ports, by using the 

// mapping table built above

$elementsOnPath = elementsOnPathMap.get(#wwn);

// If a match is found, then add all the elements from the elementsOnPath 

// object to nodes and links array.

// This will ensure that only those Switches and Switch FC Ports etc that are on a 
path will be entered in the nodes and links array

if elementsOnPath != null

{

   $nodes.addIfNotAlreadyAdded (elementsOnPath.getSwitch());
1370



 Cross Profile Considerations
   $nodes.addIfNotAlreadyAdded (elementsOnPath.getswFCPort());

   $nodes.addIfNotAlreadyAdded (elementsOnPath.getPEP());

   $nodes.addIfNotAlreadyAdded (elementsOnPath.geAttPEP());

   $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttFCPort());

   $links.addIfNotAlreadyAdded (elementsOnPath.getDevSAPImpl());

   $nodes.addIfNotAlreadyAdded (elementsOnPath.getActConn());

   $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttDevSAPImpl());

}

}

//    Determine physical path from Switch to Storage Arrays

// DESCRIPTION

// Determine physical path from Storage Arrays to Switches

//

// For each fibre-channelFC port on every array, determine the connected

// switch FC port. NOTE: This identifies the FrontEnd I/O Controllers

// (and Storage Arrays) whose FC ports are physically connected to

// some of the FC ports of some of the Switches. This recipe does not

// distinguish and does not filter the front-end FC Port from the

// back-end FC Ports.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. All agents/namespaces conforming to the Array profile previously

// identified

// 2. Array $attachedFcPorts[] is a map of how elements in a SAN are

// connected together via Fibre-ChannelFC ports. Each index is a WWN of

// any device FC port on the SAN, and the value at that index is the

// connected switch FC port.

// Do this for each CIMOM supporting the Array Profile:

// First identify upper-level computer systems for storage arrays -

// see the Server Profile clause  for how to use the Server profile to do this,

// or (as here) enumerate all systems within a conforming namespace

$computerSystems[] = enumerateInstances(“CIM_ComputerSystem”);

#n = 0

for #i in $computerSystems[]

{

if (!contains(3, $computerSystems[#i].Dedicated))

continue // only process systems that are dedicated “storage”

if (!contains(15, $computerSystems[#i].Dedicated))

continue // only process systems that are dedicated “block server”

$storageSystems[#n++] = $computerSystems[#i]

}

// Now accumulate all subsidiary computerSystems (cluster members or

// storage controllers) - treat $storageSystems[] as a queue and stuff

// newly discovered subsidiaries onto the end, so that ComponentCS
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1371



 

// associations are followed to arbitrary depth

#i = 0

while (#i < #n)

{

$subsidiaries[] = Associators(

$storageSystems[#i].getObjectPath(),

“CIM_ComponentCS”,

“CIM_ComputerSystem”,

“GroupComponent”,

“PartComponent”,

false,

false,

null)

for #j in $subsidiaries[]

{

$storageSystems[#n++] = $subsidiaries[#j]

}

#i++;

}

// Now get scoped FC ports for all the systems that have been accumulated

// NOTE: Some of the FC ports contained will be back-end ports, but they will

// have no connectivity to switches, so we won’t distinguish them

// from unconnected front-end FC ports

for #i in $storageSystems[]

{

$fcPorts[] = Associators(

$storageSystems[#i].getObjectPath(),

“CIM_SystemDevice”,

“CIM_FCPort”,

“GroupComponent”,

“PartComponent”,

false,

false,

[“PermanentAddress”])

for #j in $fcPorts[]

{

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// If the Storage System has FC Ports, add the storage system to the $nodes array

if $fcPorts[] != null

$nodes.addIfNotAlreadyAdded ($storageSystems[#i]);

// Get all the SystemDevice associations between this host and its FC Ports
1372



 Cross Profile Considerations
$sysDevAssoc[] = ReferenceNames($storageSystems[#i], 

                                “CIM_FCPort”, 

                                “GroupComponent”);

// Add these associations to the $links array

for #a in $sysDevAssoc-[]

$links.addIfNotAlreadyAdded ($sysDevAssoc[#a];

for #j in $fcPorts[]

{

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// Match this device port WWN to one (or less) switch FC ports, by using the 

// mapping table built above

$elementsOnPath = elementsOnPathMap.get(#wwn);

// If a match is found, then add all the elements from the elementsOnPath 

// object to nodes and links array.

// This will ensure that only those Switches and Switch FC Ports etc that are on a 
path will be entered in the nodes and links array

if elementsOnPath != null

{

   $nodes.addIfNotAlreadyAdded (elementsOnPath.getSwitch());

   $nodes.addIfNotAlreadyAdded (elementsOnPath.getswFCPort());

   $nodes.addIfNotAlreadyAdded (elementsOnPath.getPEP());

   $nodes.addIfNotAlreadyAdded (elementsOnPath.geAttPEP());

   $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttFCPort());

   $links.addIfNotAlreadyAdded (elementsOnPath.getDevSAPImpl());

   $nodes.addIfNotAlreadyAdded (elementsOnPath.getActConn());

   $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttDevSAPImpl());

}

}

}

}

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1373



 

8.3.5.7 IP Network Layer

IP Network piece of the Logical Disk Composition Recipe

It uses the iSCSITarget profile(s).

sub AddToGraphFromLayerIPNetwork(IN/OUT CIM_LogicalElement $nodes[], 

                                 IN/OUT CIM_Dependency $links[],

                                 OUT boolean #new_added,

                                 OUT int     #error_code) {

CIM_EnpointOfNetworkPipe    $found_endpoints_of_pipe[];

CIM_iSCSISession            $found_sessions[];

CIM_EthernetPort            $found_ports[];

CIM_DeviceSAPImplementation $found_sap_associations[];

boolean #added;

for #i in $nodes[] {

    if ($nodes[#i] instanceof iSCSIProtocolEndpoint) {

       

       // Find the iSCSIProtocolEndpoints left for us by the iSCSI

       // Initiator Port subprofile. These are correlated by Name-NameFormat.

       &GetProviderInstanceOf($nodes[#i], $node, #error_code);

       if ($node != null) {

       // Using the EndpointOfNetworkPipe, follow the association

       // to an iSCSISession.  This represents the topology contribution

       // if the IP Network.

         $found_sessions[] = Associators(

                                  $node.getObjectPath(),

                                  “CIM_EndpointOfNetworkPipe”,

                                  “CIM_iSCSISession”,    

                                  “Antecedent”,

                                  “Dependent”

                                        );

         $found_endpoints_of_pipe[] = References($node.getObjectPath(),

                                                      “CIM_iSCSISession”,

                                                      “Antecedent”

                                                     );

         &AddIfNotAlreadyAdded($found_protocol_endpoints[0],

                               $nodes[], #added, #error_code);
1374



 Cross Profile Considerations
         #new_added |= #added;

         &AddLinkIfNotAlreadyAdded($found_available_associations[0],

                                   $links[], #added, #error_code);

         #new_added |= #added;   

         // Also follow the DeviceSAPImplementation association 

         // from the protocol endpoint to the EthernetPort for completeness.

         $found_ports[] = 
Associators($found_protocol_endpoints[0].getObjectPath(),

                             “CIM_DeviceSAPImplementation”,

                             “CIM_EthernetPort”,

                             “Dependent”,

                             “Antecedent”

                             );

         $found_sap_associations[] = 
References($found_protocol_endpoints[0].getObjectPath(),

                                       “CIM_EthernetPort”,

                                       “Dependent”

                                      );

         // Add the ports and sap associations.

         &AddIfNotAlreadyAdded($found_ports[0],

                               $nodes[], #added, #error_code);

         #new_added |= #added;

         &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

                                   $links[], #added, #error_code);

         #new_added |= #added;   

       } // if $node != null.

    } // if $nodes[#i] instanceof.

} // for #i.

} // AddToGraphFromLayerIPNetwork.

8.3.5.8 Local Disk Layer

Local Disk layer piece of the Logical Disk Composition Recipe

It uses the Disk Subprofile.

// Given a CIM_StorageExtent, recursively traverse the CIM_BasedOn
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1375



 

// associations finding other CIM_StorageExtents on which this extent is based

// and adding the extents and associations to the found_extents

// and found_basedon_associations as you go.

sub RecursivelyAddStorageExtents( IN CIM_StorageExtent $found_extent,

                                  IN/OUT CIM_StoragePool $found_extents[],

                                  IN/OUT CIM_AllocatedFromStoragePool 
$found_basedon_associations[],

                                  OUT boolean #new_added

                                );

sub AddToGraphFromLayerLocalDiskDrive(IN/OUT CIM_LogicalElement $nodes[], 

                                      IN/OUT CIM_Dependency     $links[], 

                                      OUT boolean               #new_added,

                                      OUT int                   #error_code) {

// Make sure we’ve recursively tracked down all the StorageExtents.

boolean           #added = false;

CIM_StorageExtent $found_extents[];

CIM_BasedOn       $found_associations[];

#new_added = false;

for #i in $nodes[] {

   

   if ($nodes[#i] ISA CIM_StorageExtent) {

      &GetProviderInstanceOf($nodes[#i], $node, #error_code);

      if (#error_code) { return; }

      if ($node != null) {

         &RecursivelyAddStorageExtents($node, 

                                       $found_extents[], 

                                       $found_associations[],

                                       #added);

         #new_added |= #added;

      }

      } // if $node != null.

   } // if $node ISA.

}  // For over nodes.

// Add the newly found extents to the master nodes and links.

for (#i=0; #i<$found_extents.length; #i++) {

  &AddIfNotAlreadyAdded($found_extents[#i], $nodes[], 
1376



 Cross Profile Considerations
                        #added, #error_code);

  #new_added |= #added;

  &AddLinkIfNotAlreadyAdded($found_associations[#i], $links[], 

                            #added, #error_code);

  #new_added |= #added;

}    

// Now see if there are any local disk drives making

// up those extents through the MediaPresent association.

CIM_DiskDrive $disk_media[];

CIM_MediaPresent $mediapresent_associations[];

for #i in $nodes[] {

   if ($nodes[#i] ISA CIM_StorageExtent) {

      &GetProviderInstanceOf($nodes[#i], $node, #error_code);

      if (#error_code) { return;}

      if ($node != null) {

         $disk_media[] = Associators($node.getObjectPath(),

                                     “CIM_MediaPresent”,

                                     “CIM_DiskDrive”,

                                     “Dependent”,

                                     “Antecedent”

                                    );

         $mediapresent_associations[] = References($node.getObjectPath(),

                                                   “CIM_DiskDrive”,

                                                   “Dependent”

                                                  );

      }

 

      // There should be only one asociation found for each extent.

      if (0 != $disk_media.length) {

         &AddIfNotAlreadyAdded($disk_media[0], $nodes[], #added, #error_code);

         #new_added |= #added;

         &AddLinkIfNotAlreadyAdded($mediapresent_associations[0], $links[],

                                   #added, #error_code);

         #new_added |= #added;

      }

      } if $node != null.

   } if $node ISA .
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1377



 

} // for.

} // AddToGraphFromLayerLocalDiskDrive.

sub RecursivelyAddExtents( IN CIM_StorageExtent $found_extent,

                           IN/OUT CIM_StorageExtent $found_extents[],

                           IN/OUT CIM_BasedOn $found_basedon_associations[],

                           OUT boolean #new_added

                          ) {

      CIM_StorageExtent $new_found_extents[];

      CIM_BasedOn $new_found_associations;

      #new_added = false;

      $new_found_extents[] = Associators($found_extent.getObjectPath(),

                                         “CIM_BasedOn”,

                                         “CIM_StorageExtent”,

                                         “Dependent”,

                                         “Antecedent”

                                        );

      $new_found_associations[] = References($node.getObjectPath(),

                                             “CIM_StorageExtent”,

                                             “Dependent”

                                            );

      for #i in $new_found_associations[] {

          $found_basedon_associations[].add($new_found_associations[#i]);

          #new_added = true;

      }

      for #i in $new_found_extents[] {

          $found_extents[].add($new_found_extents[#i]);

          &RecursivelyAddExtents($new_found_extents[#i], $found_extents[], 
$found_basedon_associations[]);

          #new_added = true;

      }     

                

}  // RecursivelyAddExtents.
1378



 Cross Profile Considerations
8.3.5.9 Logical Disk Layers

Logical Disk Partitioning piece of the Logical Disk Composition Recipe

It uses the Disk Partition Subprofile.

// Given a CIM_GenericDiskPartition, recursively traverse the CIM_BasedOn

// associations finding other CIM_GenericDiskPartitions on which this partition is 
based

// and adding the partitions and associations to the found_partitions

// and found_partition_associations as you go.

sub RecursivelyAddPartitions( IN CIM_GenericDiskPartition $found_partition,

                              IN/OUT CIM_GenericDiskPartition[] $found_partitions[],

                              IN/OUT CIM_BasedOn[] $found_partition_associations[],

                              OUT boolean #new_added

                            );

sub AddToGraphFromLayerDiskPartitioning(IN/OUT CIM_LogicalElement $nodes[], 

                                        IN/OUT CIM_LogicalElement $links[], 

                                        #new_added,

                                        #error_code) {

CIM_GenericDiskPartition        $found_partitions[];

CIM_LogicalDiskBasedOnPartition $found_partition_associations[];

CIM_StorageExtent               $found_extents[];

CIM_BasedOn                     $found_extent_associations[];

boolean $added = false;

#new_added = false;

for #j in $nodes[] {

    // In the Disk Partitioning Profile

    // start with a LogicalDisk DiskPartition object, as it is defined

    // as that on which storage applications (volume managers or

    // filesystems) may be placed.

    // The LogicalDisk object has DeviceID and Name attributes

    // that should be set to OS device names like 

    // (/dev/sda1 on Linux or \\.\PHYSICALDRIVEX  on windows)

    if ($nodes[#j] ISA CIM_LogicalDisk) {

    &GetProviderInstanceOf($nodes[#j], $node, #error_code);

    if (#error_code) { return; }
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1379



 

    if ($node != null) {

       // One would then follow the LogicalDiskBasedOn Partition

       // association to a GenericDiskPartition object.

      

      $found_partitions[] = Associators($node.getObjectPath(),

                                         “CIM_LogicalDiskBasedOnPartition”,

                                         “CIM_GenericDiskPartition”,

                                         “Dependent”,

                                         “Antecedent”

                                        );

      $found_partition_associations[] = References($node.getObjectPath(),

                                                 “CIM_GenericDiskPartition”,

                                                 “Dependent”

                                                );  

  

      // To found paritions, add all recursive BasedOn associations to 

      // and their partitions.

      for (#i=0; #i<$found_partitions[].length; #i++) {

         &RecursivelyAddPartitions($found_partitions[#i], 

                                   $found_partitions[],

                                   $found_partition_associations[]);

      }

     // Now add all parititons and associations found so far.

     for (#i=0; #i<$found_partitions[].length; #i++) {

         &AddIfNotAlreadyAdded($found_partitions[#i], $nodes[], 

                               #added, #error_code);

         #new_added |= #added;

         &AddLinkIfNotAlreadyAdded($found_partition_associations[#i],

                                   $links[], #added, #error_code);

         #new_added |= #added;

     }

    // Now follow the BasedOn associations from partitions

    // to extents.

    for #k in $found_partitions[] {

 

       // look for a BasedOn association that 

       // leads to a StorageExtent. 

       $found_extents[] = Associators($found_partitions[#k].getObjectPath(),

                                         “CIM_BasedOn”,

                                         “CIM_StorageExtent”,
1380



 Cross Profile Considerations
                                         “Dependent”,

                                         “Antecedent”

                                        );

       $found_extent_associations[] = References($node.getObjectPath(),

                                                 “CIM_StorageExtent”,

                                                 “Dependent”

                                                );  

   

       if (  ($found_extents[0] != null) &&

             ($found_extent_associations[0] != null) &&

          ) {

           &AddLinkIfNotAlreadyAdded($found_extent_associations[0], $links[],

                                     #added, #error_code);

           #new_added |= #added;

           &AddIfNotAlreadyAdded($found_extents[0], $nodes[], 

                                 #added, #error_code); 

           #new_added |= #added;

       }

    }  // For over partitions.

    // The DeviceID field of those StorageExents that are 

    // StorageVolumes should be correlatable

    // to a StorageVolume object maintained by the Array profile.

    // (see Host Discovered Resources profile).

    } // if $null != $node.

    } // if $node ISA.

}  // For over nodes.

} // AddToGraphFromLayerDiskPartitioning.

sub RecursivelyAddPartitions( IN CIM_GenericDiskPartition $found_partition,

                              IN/OUT CIM_GenericDiskPartition[] $found_partitions[],

                              IN/OUT CIM_BasedOn[] $found_partition_associations[],

                              OUT #new_added

                            ){

      CIM_GenericDiskPartition $new_found_partitions[];

      CIM_BasedOn $new_found_associations;
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1381



 

      $new_found_partitions[] = Associators($found_partition.getObjectPath(),

                                         “CIM_BasedOn”,

                                         “CIM_GenericDiskPartition”,

                                         “Dependent”,

                                         “Antecedent”

                                        );

      $new_found_associations[] = References($node.getObjectPath(),

                                             “CIM_GenericDiskPartition”,

                                             “Dependent”

                                            );

      for #i in $new_found_associations[] {

          $found_basedon_associations[].add($new_found_associations[#i]);

          #new_added = true;

      }

      

      for #i in $new_found_partitions[] {

          $found_partitions[].add($new_found_partitions[#i]);

          &RecursivelyAddPartitions($new_found_partitions[#i], 

                                    $found_partitions[], 

                                    $found_partition_associations[]);

          #new_added = true;

      }     

           

     

}  // RecursivelyAddPartitions.

8.3.5.10 Multipath Layer
Multipath layer piece of the Logical Disk Composition Recipe

It uses the SCSI Multipath Management Subprofile

sub AddToGraphFromLayerMultipath(IN/OUT CIM_LogicalElement $nodes[], 

                                 IN/OUT CIM_Dependency $links[], 

                                 OUT boolean #new_added,

                                 OUT int    #error_code) {

boolean #added = false;

#new_added = false;

for #j in $nodes[] {

   

   CIM_SCSIInitiatorTargetLogicalUnitPath $scsi_paths[];

   CIM_SCSIProtocolEndpoint $initiator_endpoint;

   CIM_SCSIProtocolEndpoint $target_endpoint;

   

   #i =0;
1382



 Cross Profile Considerations
   if ($nodes[#j] ISA CIM_LogicalDisk) {

  

          &GetProviderInstanceOf($nodes[#j], $node, #error_code);

          if (#error_code) { return; }

          if ($node != null) {

          // Find all CIM_SCSIInitiatorTargetLogicalUnitPath

          // with $node as the LogicalUnit reference.

          $scsi_paths[] = References($node.getObjectPath(),

                                     “CIM_SCSIProtocolEndpoint”,  // ResultClass

                                     “LogicalUnit”                // Role

                                    );  

          for (#i=0; #i<$scsi_paths.length; #i++) { 

              &AddLinkIfNotAlreadyAdded($scsi_paths[#i], $links[], #added, 
#error_code);

              #new_added |= #added;

              $initiator_endpoint = $scsi_paths[#i].Initiator;

              $target_endpoint = $scsi_paths[#i].Target;

              &AddIfNotAlreadyAdded($initiator_endpoint, $nodes[], #added, 
#error_code);

              #new_added |= #added;

              &AddIfNotAlreadyAdded($target_endpoint, $nodes[], #added, 
#error_code);

              #new_added |= #added;

          }    // for.

          } // if $node != null.

   } // if $node ISA.

}  // For over nodes.

} // AddToGraphFromLayerMultipath.

8.3.5.11 Virtualizer Layer
Multipath layer piece of the Logical Disk Composition Recipe

It is based on the Storage Virtualizer Profile,

 which includes the Target Port Subprofile, 

the Block Services Package, and the

Initiator Port Subprofile.  It stitches StorageVolumes

it finds up to their ingress ports, across the layers

of virtualization, and out their egress ports.

// Given a CIM_StoragePool, recursively traverse the CIM_AllocatedFromStoragePool
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1383



 

// associations finding other CIM_StoragePools on which this pool is based

// and adding the pools and associations to the found_pools

// and found_allocated_associations as you go.  This method is implemented

// in with the LayerVolumeManager subroutine of this recipe. 

sub RecursivelyAddPools( IN CIM_StoragePool$found_pool,

                         IN/OUT CIM_StoragePool $found_pools[],

                         IN/OUT CIM_AllocatedFromStoragePools 
$found_allocated_associations[],

                         OUT boolean #new_added

                       );

sub AddToGraphFromLayerStorageVirtualizer(IN/OUT CIM_LogicalElement $nodes[], 

                                          IN/OUT CIM_Dependency $links[], 

                                          OUT    boolean #new_added,

                                          int    #error_code) {

   CIM_SCSIProtocolController      $found_protocol_controllers[];

   CIM_ProtocolControllerForUnit   $found_for_unit_associations[];

   CIM_ProtocolEndpoint            $found_protocol_endpoints[];

   CIM_DeviceSAPImplementation     $found_sap_associations[];

   CIM_LogicalPort                 $found_ports[];

   CIM_SAPAvailableForElement      $found_available_associations[];

   CIM_StorageVolume               $found_storage_volumes[];

   CIM_StoragePool                 $found_storage_pools[];

   CIM_AllocatedFromStoragePool    $found_allocated_associations[];

   CIM_StorageExtent               $found_component_disks[];

   CIM_ConcreteComponent           $found_component_associations[];

   boolean #added = false;

   #new_added = false;

   for #i in $nodes[] {

      if ($nodes[#i] ISA CIM_StorageVolume) {

       &GetProviderInstanceOf($nodes[#i], $node, #error_code);

       if (#error_code) { return;}

       if ($node != null) {

         // First, work up the path to include the network port

         // for stitching in the network topology.

         // Question: Could there be multiple ports?

         // Follow an ProtocolControllerForUnit to a SCSIProtocolController.

         $found_protocol_controllers[] = Associators(
1384



 Cross Profile Considerations
                                  $node.getObjectPath(),

                                  “CIM_SCSIProtocolControllerForUnit”,

                                  “CIM_SCSIProtocolController”,    

                                  “Dependent”,

                                  “Antecedent”

                                        );

         $found_for_unit_associations[] = References($node.getObjectPath(),

                                                      “CIM_SCSIProtocolController”,

                                                      “Dependent”

                                                     );

         &AddIfNotAlreadyAdded($found_protocol_controllers[0],

                               $nodes[], #added, #error_code);

         #new_added |= #added;

         &AddLinkIfNotAlreadyAdded($found_for_unit_associations[0],

                                   $links[], #added, #error_code);

         #new_added |= #added;   

         // Follow an SAPAvailableForElement to a SCSIProtocolEndpoint.

         $found_protocol_endpoints[] = Associators(

                                  $found_protocol_controllers[0],

                                  “CIM_SAPAvailableForElement”,

                                  “CIM_ProtocolEndpoint”,    

                                  “ManagedElement”,

                                  “AvailableSAP”

                                        );

         $found_available_associations[] = 
References($found_protocol_controllers[],

                                                      “CIM_ProtocolEndpoint”,

                                                      “ManagedElement”

                                                     );

         &AddIfNotAlreadyAdded($found_protocol_endpoints[0],

                               $nodes[], #added, #error_code);

         #new_added |= #added;

         &AddLinkIfNotAlreadyAdded($found_available_associations[0],

                                   $links[], #added, #error_code);

         #new_added |= #added;   

         

         // Follow the DeviceSAPImplementation to a LogicalPort.

         $found_ports[] = 
Associators($found_protocol_endpoints[0].getObjectPath(),

                                                 “CIM_DeviceSAPImplementation”,

                                                 “CIM_LogicalPort”,

                                                 “Dependent”,

                                                 “Antecedent”
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1385



 

                                                );

         $found_sap_associations[] = 
References($found_protocol_endpoints.getObjectPath(),

                                                      “CIM_LogicalPort”,

                                                      “Dependent”

                                                     );

         &AddIfNotAlreadyAdded($found_ports[0],

                               $nodes[], #added, #error_code);

         #new_added |= #added;

         &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

                                   $links[], #added, #error_code);

         #new_added |= #added;

             

         // Now, work down the path through the virtualization layer

         // and out the other side to the network ports.

         

         // Follow the AllocatedFromStoragePool to a StoragePool.

         $found_storage_pools[] = Associators(

                                  $node.getObjectPath(),

                                  “CIM_AllocatedFromStoragePool”,

                                  “CIM_StoragePool”,

                                  “Dependent”,

                                  “Antecedent”

                                        );

         $found_allocated_associations[] = References($node.getObjectPath(),

                                                      “CIM_StoragePool”,

                                                      “Dependent”

                                                     );  

         // Recursively add other StoragePools by following additional

         // AllocatedFromStoragePool associations.

         for #j in $found_storage_pools[] {

                &RecursivelyAddPools($found_storage_pools[#j],

                                     $found_storage_pools[],

                                     $found_allocated_associations[],

                                     #added

                                    );

                #new_added |= #added;

         } // for #j.

         for #j in $found_storage_pools[] {

             // Add the pools and allocated associations.

             &AddIfNotAlreadyAdded($found_storage_pools[#j],

                                   $nodes[], #added, #error_code);

             #new_added |= #added;
1386



 Cross Profile Considerations
             &AddLinkIfNotAlreadyAdded($found_allocated_associations[#j],

                                       $links[], #added, #error_code);

             #new_added |= #added;

               

             // Follow the ConcreteComponent associations to StorageExtents.

             $found_component_disks[] = 
Associators($found_storage_pools[#j].getObjectPath(),

                                                “CIM_ConcreteComponent”,

                                                “CIM_CIMLogicalDisk”,

                                                “Dependent”,

                                                “Antecedent”

                                               );

             $found_component_associations[] = 
References($found_storage_pools[#j].getObjectPath(),

                                                      “CIM_LogicalDisk”,

                                                      “Dependent”

                                                     );  

 

             for #k in $found_component_disks {

                // Add the disks and component associations.

                &AddIfNotAlreadyAdded($found_component_disks[#k],

                                      $nodes[], #added, #error_code);

                #new_added |= #added;

                &AddLinkIfNotAlreadyAdded($found_component_associations[#k],

                                          $links[], #added, #error_code);

                #new_added |= #added;

                // Follow the SAPAvailableForElement to 

                // a ProtocolEndpoint.

                $found_protocol_endpoints[] = Associators(

                                  $found_component_disks[#k].getObjectPath(),

                                  “CIM_SAPAvailableForElement”,

                                  “CIM_ProtocolEndpoint”,

                                  “ManagedElement”,

                                  “AvailableSAP”

                                        );

                $found_available_associations[] = References($node.getObjectPath(),

                                                      “CIM_ProtocolEndpoint”,

                                                      “ManagedElement”

                                                     );               

                

                // Add the endpoints and available associations.

                &AddIfNotAlreadyAdded($found_protocol_endpoints[0],

                                      $nodes[], #added, #error_code);

                #new_added |= #added;
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1387



 

                &AddLinkIfNotAlreadyAdded($found_available_associations[0],

                                          $links[], #added, #error_code);

                #new_added |= #added;  

               

                // Follow the DeviceSAPImplementation assocation

                // to the LogicalPort object.

                $found_ports[] = 
Associators($found_protocol_endpoints[0].getObjectPath(),

                             “CIM_DeviceSAPImplementation”,

                             “CIM_LogicalPort”,

                             “Dependent”,

                             “Antecedent”

                             );

                $found_sap_associations[] = 
References($found_protocol_endpoints[0].getObjectPath(),

                                       “CIM_LogicalPort”,

                                       “Dependent”

                                      );

                // Add the ports and sap associations.

                &AddIfNotAlreadyAdded($found_ports[0],

                                      $nodes[], #added, #error_code);

                #new_added |= #added;

                &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

                                          $links[], #added, #error_code);

                #new_added |= #added;   

            

             } // for #k.

         } // for #j.

      } // if $node ISA.

      } // if $node != null.

   } // for #i.

} // AddToGraphFromLayerStorageVirtualizer.

8.3.5.12 Volume Manager Layer
Volume Manager layer piece of the Logical Disk Composition Recipe

It uses the Volume Management Profile.

// Given a CIM_StoragePool, recursively traverse the CIM_AllocatedFromStoragePool

// associations finding other CIM_StoragePools on which this pool is based

// and adding the pools and associations to the found_pools
1388



 Cross Profile Considerations
// and found_allocated_associations as you go.

sub RecursivelyAddPools( IN CIM_StoragePool$found_pool,

                         IN/OUT CIM_StoragePool $found_pools[],

                         IN/OUT CIM_AllocatedFromStoragePools 
$found_allocated_associations[],

                         OUT boolean #new_added

                       );

// Given a CIM_LogicalDisk, recursively traverse the CIM_BasedOn

// associations finding other CIM_LogicalDisks on which this pool is based

// and adding the disks and associations to the found_disks

// and found_basedon_associations as you go.

sub RecursivelyAddDisks( IN CIM_LogicalDisk $found_disk,

                         IN/OUT CIM_LogicalDisk $found_disks[],

                         IN/OUT CIM_AllocatedFromStoragePools 
$found_basedon_associations[],

                         OUT boolean #new_added

                       );

// We want the CIM_StoragePools to be part of the 

// composition topology if they exist.

sub AddToGraphFromLayerVolumeManager(IN/OUT CIM_LogicalElement $nodes[], 

                                     IN/OUT CIM_Dependency     $links[], 

                                     OUT    boolean #new_added,

                                     OUT    int #error_code) {

#added = false;

for #j in $nodes[] {

   CIM_StoragePool $found_storage_pools[];

   CIM_AllocatedFromStoragePool $found_allocated_associations[];

   if ($nodes[#j] ISA CIM_LogicalDisk) {

   &GetProviderInstanceOf($nodes[#j], $node, #error_code);

   if (#error_code) { return;}

   

   if (($node != null)) {

      // This first method looks for cases where volume groups 

      // have been created as StoragePools.      

      // Follow the CIM_AllocatedFromStoragePool association

      // to a CIM_StoragePool.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1389



 

      $found_storage_pools[] = Associators($node.getObjectPath(),

                                         “CIM_AllocatedFromStoragePool”,

                                         “CIM_StoragePool”,

                                         “Dependent”,

                                         “Antecedent”

                                        );

      $found_allocated_associations[] = References($node.getObjectPath(),

                                                 “CIM_StoragePool”,

                                                 “Dependent”

                                                );  

      // Then, recursively follow any CIM_AllocatedFromStoragePool

      // associations to other CIM_StoragePools, adding associations

      // and strorage pools as you go.

      for (#i=0; #i<$found_storage_pools[].length, #i++) {

          &RecursivelyAddPools( $found_storage_pools[#i],

                                $found_storage_pools[],

                                $found_allocated_associations,

                                #added

                              );

          #new_added |= #added;

      }   

      

      for #k in $found_allocated_associations[] {

          &AddLinkIfNotAlreadyAdded($found_allocated_association[#k], $links[], 

                                    #added, #error_code);

          #new_added |= #added;

      }

      for #k in $found_storage_pools[] {

          &AddIfNotAlreadyAdded($found_pool_storage_pools[#k], 

                                $nodes[], #added, #error_code);

          #new_added |= #added;

      }

      // Now find the component disks of the storage pools.

      CIM_LogicalDisk[] $found_component_disks[];

      for #k in $found_storage_pools[] {

         $found_component_disks[] = 
Associators($found_storage_pools[#k].getObjectPath(),

                                                “CIM_ConcreteComponent”,

                                                “CIM_CIMLogicalDisk”,

                                                “Dependent”,

                                                “Antecedent”

                                               );

         $found_component_associations[] = 
References($found_storage_pools[#k].getObjectPath(),

                                                      “CIM_LogicalDisk”,
1390



 Cross Profile Considerations
                                                      “Dependent”

                                                     );  

      

      }

      for (#i=0; i < $found_component_disks[].length; #i++) {

            &AddLinkIfNotAlreadyAdded($found_component_associations[#i],

                                      $links[],

                                      #added,

                                      #error_code);

            #new_added |= #added;

      }

      // If this implementation does not use volume groups,

      // look for the BasedOn associations to find the disks.

      

      CIM_LogicalDisk[] $found_logical_disks[];

      CIM_BasedOn[] $found_basedon_associations[];

      $found_logical_disks[] = Associators($node.getObjectPath(),

                                         “CIM_BasedOn”,

                                         “CIM_LogicalDisk”,

                                         “Dependent”,

                                         “Antecedent”

                                          );

      $found_basedon_associations[] = References($node.getObjectPath(),

                                                 “CIM_LogicalDisk”,

                                                 “Dependent”

                                                );              

      // Add these disks to the component_disks.

      for (#i=0; #i<$found_basedon_associations[].length; #i++) {

         &AddLinkIfNotAlreadyAdded($found_basedon_associations[#i], $links[].

                                   #added, #error_code);

         #new_added |= #added;

         &AddIfNotAlreadyAdded($found_logical_disks[#i], 

                               $found_component_disks, 

                               #added, #error_code);

         #new_added |= #added;

      }

      // Follow all BasedOn associations to find more component disks

      // recursively.

      for (#i=0; #i<$found_component_disks[].length; #i++) {              
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1391



 

         &RecursivelyAddDisks($found_component_disks[#i], 

                              $nodes[], 

                              $links[],

                              #added);

      }

           

   } // if $node != null.

   } // if $node ISA.

}  // For over nodes.

} // AddToGraphFromLayerVolumeManager.

sub RecursivelyAddPools( IN CIM_StoragePool$found_pool,

                         IN/OUT CIM_StoragePool $found_pools[],

                         IN/OUT CIM_AllocatedFromStoragePools 
$found_allocated_associations[],

                         OUT boolean #new_added

                       ) {

      CIM_StoragePool $new_found_pools;

      CIM_AllocatedFromStoragePool $new_found_associations;

      #new_added = false;

      $new_found_pools[] = Associators($found_pool.getObjectPath(),

                                         “CIM_AllocatedFromStoragePool”,

                                         “CIM_StoragePool”,

                                         “Dependent”,

                                         “Antecedent”

                                        );

      $new_found_associations[] = References($node.getObjectPath(),

                                             “CIM_StoragePool”,

                                             “Dependent”

                                            );

      for #i in $new_found_associations[] {

          $found_allocated_associations[].add($new_found_associations[#i]);

          #new_added = true;

      }

      for #i in $new_found_pools[] {

          $found_pools[].add($new_found_pools[#i]);

          &RecursivelyAddPools($new_found_pools[#i], $found_pools[], 
$found_allocated_associations[], #new_added);

          #new_added = true;          

      }     
1392



 Cross Profile Considerations
           

     

}  // RecursivelyAddPools.

sub RecursivelyAddDisks( IN CIM_LogicalDisk $found_disk,

                         IN/OUT CIM_LogicalDisk $found_disks[],

                         IN/OUT CIM_BasedOn $found_basedon_associations[],

                         OUT boolean #new_added

                       ) {

      CIM_StoragePool $new_found_disks[];

      CIM_AllocatedFromStoragePool $new_found_associations;

      #new_added = false;

      $new_found_disks[] = Associators($found_disk.getObjectPath(),

                                         “CIM_BasedOn”,

                                         “CIM_LogicalDisk”,

                                         “Dependent”,

                                         “Antecedent”

                                        );

      $new_found_associations[] = References($node.getObjectPath(),

                                             “CIM_LogicalDisk”,

                                             “Dependent”

                                            );

      for #i in $new_found_associations[] {

          $found_basedon_associations[].add($new_found_associations[#i]);

          #new_added = true;

      }

      for $new_found_disk in $new_found_disks[] {

          $found_disks[].add($new_found_disks[#i]);

          &RecursivelyAddDisks($new_found_disks[#i], $found_disks[], 
$found_basedon_associations[], #new_added);

          #new_added = true;

      }     

           

     

}  // RecursivelyAddDisks.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1393



 

1394



 SMI-S Roles
Clause 9: SMI-S Roles

9.1 Introduction
As shown in Figure 224: "Complete Reference Model" above, the complete reference model shows the
roles for the various entities of the management system. Any given host, network device or storage
device may implement one or more of these roles as described later in this clause.

Here we present a concise definition of each of these roles and the requirements on implementations of
these roles in a management system. For each of these roles, specific functions are required to be
implemented in one or more functional areas:

a) SLP Discovery Functions – the required discovery capabilities that the role performs in the overall 
management system;

b) Basic CIM-XML Operations – the management model operations that the role performs;

c) Security – the security requirements that the role is expected to satisfy;

d) Lock Management Operations – the locking operations that the role is expected to perform.

Figure 224: Complete Reference Model

Device or Subsystem

CIMxml
CIM operations over HTTP

TCP/IP

SLP
TCP/IP

SA

Lock Manager

0...n

Directory Server

0...nDirectory
Agent

SMI-S Client

0...nUser
Agent

SA

SMI-S Server

0...n SA

SMI-S Server

0...n

0...n

Provider

SMI-S Server

Device or Subsystem

Prop
rietar

y
SA

Device or Subsystem

Prop
rietar

y
Proxy Model

Embedded Model

proprietary

proprietary
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1395



 

The detail of these responsibilities for each of the roles is described in the following sections.

9.2 SMI-S Client

9.2.1 Overview
The SMI-S Client role in the overall management system is performed by software that is capable of
performing management operations on the resources under management. This includes monitoring,
configuration, and control of the operations on the resources. Typical clients include user interface
consoles, complete management frameworks, and higher-level management applications and services
such as policy based management systems.

There can be zero or more SMI-S clients in the overall management system. These clients can all
coexist simultaneously and can perform independent or overlapping operations in the management
system. It is outside the scope of this specification to specify client cooperation with other clients in any
way. The semantics of the described management system is that the last successful client operation is
valid and persists in the absence of any other client operations (last write wins).

It is expected that development kits for the management system will provide code for the required
functions implemented in clients. Consoles, frameworks and management applications can then use
this common code in order to comply with this specification. The specification of an API for this client
code, and specific language bindings for applications is outside the scope of this specification, but is a
candidate for follow-on work.

9.2.2 SLP Functions
The SMI-S Client role is required to implement SLP User Agent (UA) functionality as specified in 10.6,
"User Agents (UA)". The Client discovers all SMI-S servers within its configured scope that are required
for its operations by querying for service specific attributes that match the criteria for those operations.

9.2.3 CIM-XML Protocol Functions
The SMI-S Client role shall implement CIM-Client functionality as specified by CIM-XML standard and
should implement CIM-Listener functionality as specified by CIM-XML standard.

9.2.4 Security Considerations
The SMI-S Client role shall implement security as specified in 8.2.4.1.1.4, "HTTP Security".

SMI-S Client support for HTTP security is REQUIRED. This includes the following requirements
applicable to clients:

• SSL 3.0 and TLS shall be supported.

• HTTP Basic Authentication shall be supported. HTTP Digest Authentication should be supported.

• HTTP Realms shall be supported.

• All certificates, including CA Root Certificates used by clients for certificate validation, shall be
replaceable.

• The DER encoded X.509, Base64 encoded X.509 and PKCS#12 certificate formats shall be
supported.

• Certificate Revocation Lists shall be supported in the DER encoded X.509 and Base64 encoded
X.509 formats.

The above list is not comprehensive; see 8.2.4.1.1.4, "HTTP Security" for the complete requirements. If
there is any conflict between this text and 8.2.4.1.1.4, the text in 8.2.4.1.1.4 is the final specification of
the requirements.
1396



 SMI-S Roles
9.2.5 Lock Management Functions
There are no requirements for locking in this release of the specification.

9.3 Dedicated SMI-S Server

9.3.1 Overview
The intention of the SMI-S server role in a management system is to provide device management
support in the absence of any other role. A simple management system could consist of just a SMI-S
Client and a SMI-S Server and all management functions can be performed on the underlying resource.
This means that a vendor can offer complete management for the resource by shipping a standalone
client for the resource and not depend on any other management infrastructure. Although, at the same
time, the SMI-S Server can participate in a more complex management environment through the use of
the standard mechanisms described here.

• Embedded SMI-S Server – the SMI-S Server functions are incorporated into the resource directly
and do not involve separate installation steps to become operational.

• Proxy SMI-S Server – the SMI-S Server is hosted on a system separate from the resource and
communicates with the resource via either a standard or proprietary remote protocol. This typically
involves an installation operation for the SMI-S Server and configuration for, or independent
discovery of, the desired resource.

In order to minimize the footprint on the resource or proxy hosts, the required functions of the SMI-S
Server role have purposely been scaled back from those of a typical general purpose CIM Server
running on host with more significant resources. These required functions are described in the sections
below.

9.3.2 SLP Functions
The SMI-S Server role is required to implement SLP Service Agent (SA) functionality as specified in
10.7, "Service Agents (SAs)". Optionally, it should implement Service Agent Server functionality or use
an existing SA Server if one exists. The SMI-S Server shall advertise service-specific attributes that
allow the Client to locate it based on its profile, as defined in 10.10, "‘Standard WBEM’ Service Type
Templates".

9.3.3 CIM-XML Protocol Functions

9.3.3.1 General
The SMI-S Server role shall implement CIM-Server functionality as specified by the CIM-XML standard.

9.3.3.2 Required Intrinsic Methods
An SMI-S Server is required to implement a set of intrinsic methods as defined for each profile. The
intrinsic methods are grouped by “functional profile” as specified in the CIM-XML standard:

Table 1228: Functional Profiles

Functional Group Dependency Methods
Basic Read None GetClass

EnumerateClasses
EnumerateClassNames
GetInstance
EnumerateInstances
EnumerateInstanceNames
GetProperty

Basic Write Basic Read SetProperty
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1397



 

SMI-S Servers shall implement intrinsic methods as specified in the “CIM Server Requirements” section
of the Profile specification. 

9.3.3.3 Required Model Support
The SMI-S Server shall implement the Server Profile as detailed in the Server Profile (8.2.4.1).

9.3.4 Security Considerations
The SMI-S Server role shall implement security as specified in 8.2.4.1.1.4, "HTTP Security". 

9.3.5 Lock Management Functions
There are no requirements for locking in this release of the specification.

9.4 General Purpose SMI-S Server

9.4.1 Overview
The General Purpose SMI-S Server role in an overall management system is intended to reduce the
number of network connections needed by a Client to manage large numbers of resources. It is also
envisioned as a convenient place to perform operations across multiple resources, further off-loading
these from the Client as well.

In addition, the General Purpose SMI-S Server role can provide a hosting environment for the plug-in
instrumentation of host-based resources and management proxies for resources with remote
management protocols. These plug-ins are called providers and considered sub roles of the General
Purpose SMI-S Server.

A General Purpose SMI-S Server is not required in a management system, but is expected to be
deployed at least as a common infrastructure for host-based resources. In any large storage network,
there may be several General Purpose SMI-S Servers (as many as one per host). Communication
between General Purpose SMI-S Servers may be standardized in the future, but this capability is
outside the scope of this specification. General Purpose SMI-S Servers may act as a point of
aggregation for multiple SMI-S Profiles as described in the Server Profile (8.2.4.1) using existing
standard mechanisms as specified here.

Instance Manipulation Basic Write CreateInstance
ModifyInstance
DeleteInstance

Schema Manipulation Instance Manipulation CreateClass
ModifyClass
DeleteClass

Association Traversal Basic Read Associators
AssociatorNames
References
ReferenceNames

Query Execution Basic Read ExecQuery
Qualifier Declaration Schema Manipulation GetQualifier

SetQualifier
DeleteQualifier
EnumerateQualifiers

Indication None

Table 1228: Functional Profiles

Functional Group Dependency Methods
1398



 SMI-S Roles
As General Purpose SMI-S Servers are expected to be deployed on hosts with more resources and
less footprint concerns than other managed resources, the required functions, specified below, are
more extensive that of an Dedicated SMI-S Server.

9.4.2 SLP Functions
The General Purpose SMI-S Server role is required to implement SLP Service Agent (SA) functionality
as specified in 10.7, "Service Agents (SAs)". The General Purpose SMI-S Server shall advertise
service specific attributes that allow the Client to locate it based on the profiles it supports, as defined in
10.10, "‘Standard WBEM’ Service Type Templates".

9.4.3 CIM-XML Protocol Functions

9.4.3.1 General
The General Purpose SMI-S Server role shall implement CIM-Server functionality as specified by the
CIM-XML standard. 

9.4.3.2 Required Intrinsic Methods
The General Purpose SMI-S Server is required to implement the minimum profile as specified in CIM-
XML standard. In addition, it shall implement the intrinsic methods needed to support the Profiles that it
supports. 

9.4.3.3 Required Model Support
The General Purpose SMI-S Server shall implement the Server Profile as detailed in the Server Profile
section (8.2.4.1, "Server Profile").

9.4.3.4 Security Considerations
The General Purpose SMI-S Server role shall implement security as specified in 8.2.4.1.1.4, "HTTP
Security".

9.4.4 Lock Management Functions
There are no requirements for locking in this release of the specification.

9.4.5 Provider Subrole

9.4.5.1 Overview
A sub-role within a General Purpose SMI-S Server that can be used to provide management support
for the resource, especially useful when the resource is host-based (i.e., HBA or Host Software) and
the platform provides an CIM Server as part of its operating system.

9.4.5.2 Required Model Support
The Provider shall implement the Provider Subprofile as detailed in the object model shown in the
Server Profile section (8.2.4.1, "Server Profile").

9.5 Directory Server
The Directory Server role is used to facilitate Discovery of instances of the various roles in a
management system, but may also be used by management systems to store common configurations,
user credentials and management policies. Functions outside of Discovery are outside the scope of this
specification. The Directory Server role is optional for a compliant management system.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1399



 

9.5.1 SLP Functions
The Directory Server role is required to implement SLP Directory Agent (DA) functionality as specified
in 10.8, "Directory Agents (DAs)". The Directory registers all Agents and Object Managers within its
configured scope and allows queries for their respective service specific attributes.

9.5.2 CIM-XML Protocol Functions
There are no additional CIM-XML requirements for this role.

9.5.3 Security Considerations
There are no additional security requirements for this role.

9.5.4 Lock Management Functions
There are no requirements for locking in this release of the specification.

9.6 Combined Roles on a Single System

9.6.1 Overview
As mentioned previously, the various roles of the management system can be deployed in different
combinations to different systems throughout the managed environment. In general, there are no
restrictions on what roles can be deployed on any given system, but some examples are given below to
illustrate typical situations.

9.6.2 General Purpose SMI-S Server as a Profile Aggregator

9.6.2.1 SLP Functions
The General Purpose SMI-S Server role may implement SLP User Agent (UA) functionality as specified
in 10.6, "User Agents (UA)". The General Purpose SMI-S Server discovers all Profiles within its
configured scope that are aggregated by querying for service specific attributes that match the criteria
for those aggregations.

9.6.2.2 CIM-XML Protocol Functions
The General Purpose SMI-S Server role may implement CIM-Client functionality as specified by CIM-
XML standard and may implement CIM-Listener functionality as specified by CIM-XML standard. A
General Purpose SMI-S Server may reflect instances and classes from the aggregated Profiles
(perhaps by delegating operations to the Dedicated SMI-S Servers), but is not required to do so. The
Profile’s Model instances should be reflected in the advertised default namespace of the General
Purpose SMI-S Server. The hierarchy of General Purpose SMI-S Servers and Dedicated SMI-S
Servers in a multi-level system needs to be reflected in the model such that it can be administrated.

9.6.2.3 Security Considerations
There are no requirements for security for this role.

9.6.2.4 Lock Manager Functions
There are no requirements for locking in this release of the specification.
1400



 Service Discovery
Clause 10: Service Discovery

10.1 Objectives
Service discovery in the context of SMI-S refers to the discovery of dedicated SMI-S servers, general
purpose SMI-S servers, and directory servers, and the functions they offer in an SMI-S managed
environment. The specific objectives to be addressed by the discovery architecture are:

a) Provide a mechanism that allows SMI-S clients to discover the SMI-S constituents in a storage 
network environment so that they may communicate with these constituents using CIM Operations 
over HTTP protocol. This includes:

1) Finding the address for the SMI-S constituent;

2) Finding the capabilities of the server, including communications capabilities, security capabili-
ties, CIM operational capabilities and the functional capabilities (CQL, Batch operations sup-
port, etc.);

b) Provide a mechanism that is efficient in the amount of information exchanged with minimal 
exchanges to acquire the information;

c) Provide a mechanism that accurately defines the services in the network, independent of whether 
or not those services are currently available;

d) Provide a mechanism that provides information on namespaces provided and the CIM Schema 
supported;

e) Provide a mechanism that allows SMI-S clients the profile(s) supported by agents and object man-
agers;

f) Provide a mechanism that scales to enterprise environments;

g) Utilize existing standard mechanisms to effect the SMI-S service discovery to enable rapid deploy-
ment;

h) Provide a mechanism that allows SMI-S clients to determine the level of (SMI-S) support provided 
by the constituents (e.g., R1, R2, etc.

10.2 Overview
SMI-S Release 1 uses the Service Location Protocol Version 2 (SLPv2), as defined by IETF RFC2608,
for its basic discovery mechanism. SLPv2 is used to locate constituents (agents, object managers,
etc.), but complete discovery of all the services offered involves traversing the interoperability model for
the SMI-S profile supported. This clause of the SMI-S specification deals primarily with the information
discovered using SLPv2. There are references to information discovered by traversing the
interoperability model, but details on this are provided in 9.3, "Dedicated SMI-S Server".

Note: SLPv1 is not supported in SMI-S as discovery mechanism. SMI-S requires capabilities that were
introduced in SLPv2 in order to support the discovery of SMI-S agents and object managers.
SLPv2 defines discovery protocols among three constituents:

User Agent (UA): A process that attempts to establish contact with one or more services. A User Agent
retrieves service information from Service Agents or Directory Agents. In SMI-S, a “user agent” would
be part of an SMI-S Client.

Service Agent (SA): A process working on behalf of one or more services to advertise the services. In
SMI-S, a “service agent” would be supported by SMI-S dedicated or general purpose servers.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1401



 

Directory Agent (DA): A process that caches SLP service advertisements registered by Service Agents
and forwards the service advertisements to User Agents on demand. In SMI-S, the SLP “Directory
agent” is defined as the main function of the “directory server” role in the SMI-S Reference Model.

SLPv2 provides a framework for client applications, represented by User Agents, to find and utilize
services, represented by Service Agents. The Directory Agent represents an optional part that
enhances the performance and scalability of the protocol by acting as a cache for all services that have
been advertised. Directory Agents also reduce the load on Service Agents, making simpler
implementations of Service Agents possible. User Agents can then query the Directory Agent for
services. Service Agents register with Directory Agents and are required to re-register as the
registrations expire. If no Directory Agent is present, User Agents may request service information
directly from the Service Agents.

Using SLPv2, a client can discover SMI-S servers and SLPv2 Directory Agents in the storage network.
In the case of SMI-S servers, the basic information discovered is the profiles supported and the URL of
the service. Details on the specific services provided with the profile are then found by traversing the
service structure modeled for the profile.

Using SLPv2, a “service agent” advertises its services. These advertisements have an expiration time
period. To avoid getting an advertisement deleted, a service agent shall reregister before the time
period expires. SMI-S servers may deregister as part of a graceful shutdown.

A service advertisement consists of file components: 

• Service type name – describes the general type of service being advertised (ex. Printing, faxing,
etc.). The working assumption is that DMTF wants “WBEM Servers” advertised with the service
type WBEM. This is used by SMI-S servers (both dedicated and general purpose servers).;

• Attributes – The collection of attributes describes the particular instance of the service in more
detail. For SMI-S, these would be the attributes defined by the service type template for WBEM.
The attributes are defined in 10.5.2, "Service Attributes";

• Service Access point – the service access point defines the point of connection that the software
client of the UA uses to connect to the service over the network.;

• Scopes – These are administrative groupings of services. The default value (“default”) should be
used for SMI-S servers. Other scopes may be defined by the customer, but care must be taken
when this is done. The administrator must do this correctly or SMI-S servers will not be visible. All
the SMI-S recipes assume that DEFAULT is set for scopes;

• Language – Services advertisements contain human readable strings. These are provided in
English, but may also be in other languages.

SLPv2 provides for authentication of service URLs and service attributes. This provides user agents
(UAs) and directory agents (DAs) with assurances of the integrity of service URLs and attributes
included in SLP messages. The only systems which can generate digital signatures are those which
have been configured by administrators in advance. Agents that verify signed data may assume it is
trustworthy inasmuch as administrators have assured trustworthiness through the cryptographic keying
of SAs and DAs. The SLPv2 security model assumes that service information is public, and therefore
does not require confidentiality.

Section 2.5 of RFC 3723 - Securing Block Storage Protocols over IP states that the SA advertisements
as well as UA requests and/or responses are vulnerable to the following security threats:

1) An attacker could insert or alter service agent (SA) advertisements or responses to a UA requests 
in order to masquerade as the real peer or launch a denial of service attack.
1402



 Service Discovery
2) An attacker could gain knowledge about an SA or a UA through sniffing, and launch an attack 
against the peer. 

3) An attacker could spoof DA advertisements and thereby cause UAs and SAs to use a rogue DA.
Section 2.5 of RFC 3723 also outlines the capabilities required to address these threats, but notes that
SLP (as defined in RFC 2608) does not satisfy these security requirements. SLPv2 only provides end-
to-end authentication (i.e., does not support confidentiality), but with this authentication, there is no way
to authenticate zero result responses. Thus an attacker could mount a denial of service attack by
sending UAs a zero results Service Reply (SrvRply) or Attribute Reply (AttrRply) with a source address
corresponding to a legitimate DA advertisement.

The RFC 3723 mitigation strategies include reliance on digital signatures for authentication of service
URLs and attributes as well as IPsec. For SMI-S environments that require security in conjunction with
the use of SLPv2, the major RFC 3723 recommendations are not necessary as long as the SLP
messages are not fully trusted and SSL or TLS with server certificates are used. Additional security
guidance is provided in the sections associated with UAs and SAs.

10.3 SLP Messages
SLP v2 divides the base set of SLP messages into required and optional subsets. 

Note: SLP v2 also includes a new feature, an extension format. Extension messages are attached to
base messages. SMI-S does not use extensions. The discussion of messages introduces the
following terms that define the SLP services:

Attribute Reply (AttrRply): A reply to an Attribute Request. (optional)

Attribute Request (AttrRqst): A request for attributes of a given type of service or attributes of a given
service. (optional)

DA Advertisements (DAAdvert): A solicited (unicast) or unsolicited (multicast) advertisement of
Directory Agent availability.

SA Advertisement (SAAdvert): Information describing a service that consists of the Service Type,
Service Access Point, lifetime, and Attributes.

Service Acknowledgement (SrvAck): A reply to a SrvReg request.

Service Deregister (SrvDereg): A request to deregister a service or some attributes of a service.
(optional)

Service Register (SrvReg): A request to register a service or some attributes of a service. 

Service Reply (SrvRply): A reply to a Service Request.

Service Request (SrvRqst): A request for a service on the network.

Service Type Reply (SrvTypeRply): A reply to a Service Type Request. (optional)

Service Type Request (SrvTypeRqst): A request for all types of service on the network. (optional)

Service Agents (SAs) and User Agents (UAs) shall support Service Request, Service Reply, and
DAAdvertisement message types. Service Agents shall additionally support Service Registration, SA
Advertisement, and Service Acknowledgement message types. The remaining message types may be
supported by Service Agents and User Agents. Directory Agents (DAs) shall support all message types
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1403



 

with the exception of SA Advertisement. Table 1229, “Message Types” lists each base message type,
its abbreviation, function code, and required/optional status.

Note: The requirements in Table 1229 extend the requirements defined for SLP V2. SMI-S adds
additional requirements for AttrRqst and AttrRply beyond those defined by the RFC.

10.4 Scopes
SLPv2 defines a scope as follows:

Scope: A set of services, typically making up a logical administrative group.

Scopes are sets of service instances. The primary use of Scopes is to provide the ability to create
administrative groupings of services. A set of services may be assigned a scope by network
administrators. A User Agent (UA) seeking services is configured to use one or more scopes. The UA
only discovers those services that have been configured for it to use. By configuring UAs and Service
Agents with scopes, administrators may make services available. Scopes strings are case insensitive.
The default SCOPE string is “DEFAULT”.

SMI-S does not dictate how Scopes are set. That is, scopes can be set by customers to match their
needs. However, SMI-S requires that SMI-S servers use the “default” scope as a means of making
SMI-S advertisements visible to SMI-S clients. 

To be compliant with SMI-S, User Agents (SMI-S clients) and Service Agents (SMI-S servers) shall not
require scope settings that interfere with administrative use of scopes. Specifically, this means:

• SMI-S clients and servers shall allow an administrator to set scopes to define what is to be
searched, and,

• SMI-S clients and servers shall allow an administrator to configure scopes, including turning off the
“default” scope.

10.5 Services Definition
Services definition uses the following terms defined in SLPv2:

Table 1229: Message Types

Message Type Abbreviation Function
Code

Required (R)/
Optional (O)

DAs SAs UAs
Service Request SrvRqst 1 R R R
Service Reply SrvRply 2 R R R
Service Registration SrvReg 3 R R O
Service Deregistration SrvDereg 4 R O O
Service Acknowledge-
ment

SrvAck 5 R R O

Attribute Request AttrRqst 6 R R R
Attribute Reply AttrRply 7 R R R
DA Advertisement DAAdvert 8 R R R
Service Type Request SrvTypeRqst 9 R O O
Service Type Reply SrvTypeRply 10 R O O
SA Advertisement SAAdvert 11 N/A R O
1404



 Service Discovery
Service Type Template: A formalized, computer-readable description of a Service Type. The template
defines the format of the service URL and attributes supported by the service type.

Service URL: A Uniform Resource Locator for a service containing the service type name, network
family, Service Access Point, and any other information needed to contact the service.

Services are defined by two components: the Service URL and the Service Type Template. The Service
URL defines an access point for the service and identifies a unique resource in the network. Service
URLs may be either existing generic URLs or URLs from the service: URL scheme.

The second component in a Service definition is a Service Type Template. Service Type Templates
define the attributes associated with a service. These attributes, through inclusion in registrations and
queries, allow clients to differentiate between similar services.

SMI-S servers use a Service Type Template defined by DMTF for advertising “WBEM Servers” (e.g.,
CIMOMs). The template name for WBEM Servers is “WBEM”.

10.5.1 Service Type
Service Type: The class of a network service represented by a unique string (for example a namespace
assigned by IANA).

The service type describes a class of services that share the same attributes (e.g., the service printer or
the service “WBEM”). DMTF is considering an SLP-based discovery mechanism that locates “WBEM”
(e.g., CIMOMs). The SMI-S design builds on the DMTF proposal.

The basic function of SLP discovery is the identification of the service offered by a constituent. In the
case of SMI-S, the service type advertised by all constituents is “WBEM.” This follows a DMTF proposal
for advertising WBEM Servers. The only exception to this is the Directory Server, which advertises itself
as a “directory-agent.” That is, SMI-S uses a standard SLP directory service. SMI-S does not require a
unique SMI-S directory server.

For other roles (SMI-S servers) the role advertises its services as a WBEM services (e.g., “WBEM”).

10.5.2 Service Attributes
Attributes: A collection of tags and values describing the characteristics of a service.

SMI-S servers shall advertise a standard set of attributes. These attributes are the following:

• Service-hi-name – This is the name of the service for use in human interfaces. 

• Service-hi-description – This is a description of the CIM service that is suitable for use in human
interfaces.

• Service-id – A unique id for the CIM Server that is providing the service.

• Service-location-tcp – This is a list of TCP addresses that can be used to reach the service. NOTE:
This need only be one (for CIM-XML). But it could hold others (for other communications
protocols).

• CommunicationMechanism – “cim-xml” (at least). The SMI-S server could support others, but
“cim-xml” is mandatory for SMI-S servers.

• OtherCommunicationMechanismDescription – used only if “other” is also specified for
CommunicationMechanism.

• InteropSchemaNamespace – The Namespace within the SMI-S server where the CIM Interop
Schema can be accessed. Each namespace provided shall contain the complete information and
if multiple namespaces are provided they shall contain the same information. Even though multiple
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1405



 

InteropSchemaNamespaces may be provided, an SMI-S client may rely on the first namespace as
the definitive namespace for accessing the Interop Schema (including the class instances of the
Server Profile). 

• ProtocolVersion – The Version of the cim-xml protocol if this is the defined. This is mandatory for
SMI-S servers.

• FunctionalProfilesSupported: Permissible values are “Unknown”, “Other”, “Basic Read”, “Basic
Write”, “Schema Manipulation”, “Instance Manipulation”, “Association Traversal”, “Query
Execution”, “Qualifier Declaration”, “Indications”. This defines the CIM Operation Profiles
supported by the SMI-S server. Can return multiple values.

• FunctionalProfileDescriptions - If the “other” value is used in the FunctionalProfilesSupported
attribute, this shall be populated. If provided it shall be derived from the
CommunicationMechanism.FunctionalProfileDescriptions property. Use of this attribute is not
specified by SMI-S. 

• MultipleOperationsSupported – A Boolean that defines whether the SMI-S server supports batch
operations. 

• AuthenticationMechanismsSupported – Permissible values are “Unknown”, “None”, “Other”,
“Basic”, “Digest”. Defines the authentication mechanism supported by the SMI-S server. Can
return multiple values.

• AuthenticationMechanismDescriptions - Defines other Authentication mechanism supported by
the SMI-S server. The value shall be supplied if the “Other” value is set in the
AuthenticationMechanismSupported attribute. This attribute is optional. It is to be provided only
when the AuthenticationMechanismSupported attribute is “other”.

• Namespace - Namespace(s) supported on the SMI-S server. This attribute may have multiple
values (one for each namespace defined in the SMI-S server), and is literal (L) because the
namespace names may not be translated into other languages.

• Classinfo - The values are taken from the interop schema Namespace.classinfo property. The
values represent the classinfo (CIM Schema version, etc.) for the namespaces defined in the
corresponding namespace listed in the namespace attribute. Each entry in this attribute shall
correspond to the namespace defined in the same position of the namespace attribute. There shall
be one entry in this attribute for each entry in the namespace attribute.

• RegisteredProfilesSupported – The SMI-S profile(s) supported by the server, prefixed by “SNIA”
(at least). An SMI-S server may also support other RegisteredProfiles, but it shall support at least
one “SNIA” profile. In addition, this attributed can also be used to advertise subprofiles, when
subprofiles are to be advertised. The RegisteredProfilesSupported is an array. Each entry includes
a RegisteredOrganization (i.e., SNIA), a Profile name and an optional subprofile name. Each
name is separated by a colon.

Note that a single SMI-S server can support multiple profiles. As a result, the profile attribute is an array
of values. 

Additional attributes, such as specific profile services supported, model subprofiles supported and the
SMI-S release level are not discovered via SLP. They would be found by traversing the model
presented by the SMI-S server.

10.6 User Agents (UA)
A User Agent is a Client process working on the user’s behalf to establish contact with some service. A
User Agent retrieves service information from Service Agents (See 10.7, "Service Agents (SAs)") or
1406



 Service Discovery
Directory Agents (10.8, "Directory Agents (DAs)"). Further description of a Client and its role may be
found in 9.2, "SMI-S Client".

The only required feature of a User Agent is that it can issue SrvRqsts and interpret DAAdverts,
SAAdverts and SrvRply messages. If Directory Agents exist, User Agents shall issue requests as
Directory Agents are discovered.

An SMI-S Client should act as an SLP user agent (UA) using the query functions of SLP V2 to
determine location and other attributes of the “WBEM” SLP Service Type Template defined in 10.10,
"‘Standard WBEM’ Service Type Templates".

The basic search methodology for SMI-S clients is to search for directory agents and service agents
within their scope. If all SMI-S servers are supported by a directory agent, then the search yields
nothing but directory agents. The client can then obtain a list of services (and their URLs) for
management of the SMI-S servers.

If any Service agents are not covered by a directory agent (i.e., are not within its scope), then the client
obtains service replies from those service agents.

An client would typically search for all service types available in their scope(s). This returns a list of
service types available in the network. However, an SMI-S client can be assumed to be searching for
“WBEM” service types. If a client only manages selected devices (e.g., switches or arrays), the SMI-S
client can issue a request for the specific services by using predicates on the
“RegisteredProfilesSupported” attribute.

When a SMI-S client uses SLPv2 and security is an issue, the following should be considered:

• SSL and TLS should be used with a certificate-based cipher suite along with a certificate installed
on each SMI-S server (SA) for communications with discovered SAs (SMI-S servers).

• SLPv2 Service Agents (SA) and Directory Agents (DA) may advertise (SAAdverts and DAAdverts,
respectively) their presence on the network, using multicast; however, SMI-S clients should treat
these advertisements as advisory (i.e., identity must be verified as described below).

• SMI-S clients should maintain and use a negative authentication cache to avoid repeatedly
contacting an SMI-S server that fails to authenticate as part of the SSL or TLS handshake.

10.7 Service Agents (SAs)
A Service Agent supports an SMI-S server process working on behalf of one or more services to
advertise the services. 

See Clause 9:, "SMI-S Roles" for further description of SMI-S servers.

Service Agents shall accept multicast service requests and unicast service requests. SAs may accept
other requests (Attribute and Service Type Requests). An SA shall reply to appropriate SrvRqsts with
SrvRply or SAAdvert messages. The SA shall also register with all DAs as they are discovered. 

To provide for SMI-S Client discovery of SMI-S servers, a CIM Server shall act as a Service agent (SA)
for the IETF Service Level Protocol (SLP) V2 as defined in IETF RFC 2608. The service shall
correspond to V2 of SLP (IETF RFC 2608 and 2609) and shall use the Service Templates defined in
10.10, "‘Standard WBEM’ Service Type Templates" of this specification for advertisements. An SMI-S
server acting as an SA shall provide a separate SLP advertisement for each address/port that the CIM
Server advertises.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1407



 

When a SMI-S server uses SLPv2 and security is an issue, the following should be considered:

• SMI-S servers should accept SSL and TLS unicast connections from SMI-S clients as well as
selecting a certificate-based cipher suite.

• SMI-S servers that advertise their existence as SLPv2 SAs (SAAdverts) should minimize leakage
of information, by minimizing the information that is contained in the multicast advertisements.

• SMI-S servers, functioning as SAs, should register with all discovered DAs, which advertise any of
its configured scopes and establish connections with these DAs over unicast.

• When SMI-S servers are also functioning as clients (e.g., cascading), they should follow the
security guidance provided in 10.6.

10.8 Directory Agents (DAs)
SMI-S supports existing SLPv2 Directory Agents (without modification). That is, SMI-S makes no
assumptions on Directory Agents that are not made by SLPv2. Note that this cannot quite be said for
User Agents, which are looking for SMI-S specific services, or Service Agents, which are advertising
SMI-S specific services. 

10.9 Service Agent Server (SA Server)

10.9.1 General Information
The reserved listening port for SLP is 427, the destination port for all SLP messages. Service Agents
(SAs) are required to listen for both unicast and multicast requests. A Directory Agent (DA) shall listen
for unicast request and specific multicast DA discovery service requests. SAs and User Agents (UAs)
that perform passive DA discovery shall listen for multicast DA Advertisements (DAAdverts).

TCP/IP requires that a single server process per network interface control all incoming messages to a
port. That requirement necessitates a mechanism to share the SLP port (427).

Sharing the SLP port (427) is accomplished with a Service Agent Server (SA Server) process that
‘owns’ the port on behalf of all SAs, UAs and optional DA that are listening for SLP messages. The SA
Server listens for incoming messages that request advertisement information and either answer each
request or forward it to the appropriate SA. The SA Server also performs passive DA discovery and
distribute the DA addresses and scopes to the SAs and UAs that it serves.

A SA Server may also function as a DA if the SA Server is implemented so that it answers requests for
advertisement information rather than forwarding each request to the appropriate SA. The combined
DA/SA Server is acting as an intermediary between a SA that registered an advertisement and a UA
requesting information about the advertisement.

10.9.2 SA Server (SAS) Implementation
The RFC 2614 document describes APIs for both the C and Java languages. Both APIs are designed
for standardized access to the Service Location Protocol (SLP).

The goals of the C API are:

• Directly reflect the structure of SLP messages in API calls and return types as character buffers
and other simple data structures.

• Simplify memory management to reduce API client requirements.

• Provide API coverage of just the SLP protocol operations to reduce complexity.
1408



 Service Discovery
• Allow incremental and asynchronous access to return values, so small memory implementations
are possible.

• Support multithreaded library calls on platforms where thread packages are available.

The Java API goals are:

• Provide complete coverage of all protocol features, including service type templates, through a
programmatic interface.

• Encourage modularity so that implementations can omit parts of the protocol that are not needed.

• In conformance with Java’s object-oriented nature, reflect the important SLP entities as objects
and make the API itself object-oriented.

• Use flexible collection data types consistently in the API to simplify construction of parameters and
analysis of results.

• Designed for small code size to help reduce download time in networked computers.

10.9.3 SA Server (SAS) Clients

10.9.3.1 Description
An SAS Client is a Service Agent (SA), User Agent (UA), or Directory Agent (DA) that is associated with
a SA Server. The SA Server listens on the SLP port (427) and appropriately handle all incoming
messages for each SAS Client. A DA acting as a SAS Client is separately configured on the same host
as the SA Server.

10.9.3.2 SAS Client Requests – SA Server Responses
A SA Server responds when appropriate, to incoming unicast and multicast messages from SAS
Clients. The SA Server may answer with the appropriate advertisement, if available, or forward the
request on to the appropriate SAS Client. If the SA Server is also functioning as a DA, it discards a
multicast SrvRqst of “service:directory-agent” that has either a missing scope list or the scope list does
not contain a scope the Service Agent Server/DA is configured with.

10.9.4 SA Server Configuration

10.9.4.1 Overview
SA Servers may be configured via an individual SLP configuration file, programmatically, or a
combination of the two. DHCP may also be used obtain the scope list for a SA Server. Figure 225: "SA
Server Configuration" illustrates the various means of configuring a SA Server.

10.9.4.2 SLP Configuration File

10.9.4.2.1 If a SA Server is also functioning as a DA, the following DA configuration properties shall be set:

The DA attribute/value pair of “SA-Server=true” allows a query to be used when a SA Server/DA needs
to be identified. In addition, when the SA Server/DA responds to a SrvRqst message with a DAAdvert
message, the DA attribute/value pair is included.

Table 1230: Required Configuration Properties for SA as DA

Keyword Data Type Value
net.slp.isDA boolean true
net.slp.DAAttributes string (SA-Server=true)
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1409



 

10.9.4.2.2 The remaining DA configuration property, net.slp.DAHeartBeat, with a default of 10,800 seconds,
may be set as appropriate. If a SA Server is not functioning as a DA, the following SA configuration
property shall be set:

10.9.4.3 Programmatic Configuration
Both the C and Java language API’s provide access to SLP properties contained in the SLP
configuration file. The actual SLP configuration file is not accessed or modified via the interfaces. Once
the file is loaded into memory at the start of execution, the configuration property accessors work on the
in-memory representation.

The C language API provides the SLPGetProperty() and SLPSetProperty() functions. The
SLPGetProperty() function allows read access to the SLP configuration properties while the
SLPSetProperty() function allows modification of the configuration properties.

The SLPSetProperty() function has the following prototype:

void SLPSetProperty(const char *pcName, const char *pcValue);

The SLPSetProperty() function takes two string parameters: pcName and pcValue. The pcName
parameter contains the property name and pcValue contains the property value. The following example
uses the SLPSetProperty() function to configure a SA Server that is not functioning as a DA:

void setSAAttributes() {

char value[80]; /* A buffer for storing the attribute string. */

value = “SA Server=true”;

SLPSetProperty(“net.slp.SAAttributes”, value);

}

10.9.4.4 DHCP Configuration
If the Service Agent Server is also functioning as a DA, its scope list may be obtained via DHCP.
Scopes discovered via DHCP take precedence over the net.slp.useScopes property in the SLP
configuration file.

10.9.4.5 Scope
A Service Agent Server is configured with a minimum scope of DEFAULT. If a Service Agent Server is
not functioning as a DA, DEFAULT is the only scope configured. If a Service Agent Server is functioning
as a DA, it may have additional scopes configured. Use of the DEFAULT scope enables the associated
SAS Clients (UAs, SAs and DA) to actively discover the Service Agent Server using a well-known value
for scope.

Table 1231: Required Configuration Properties for SA

Keyword Data Type Value
net.slp.SAAttributes string (SA-Server=true)
1410



 Service Discovery
1) The SA Server may obtain specific configuration values via an individual SLP Configuration file.

2) The C or Java API provides programmatic access to the configuration file properties.

3) The SA Server may obtain its scope values from a DHCP Server.

10.9.5 SA Server Discovery
“Discovery” of a SA Server by its SAS Clients is accomplished by successfully establishing the required
communication link between the two entities. There is no need for active or passive discovery as
described by SLP since both the SA Server and SAS Clients reside on the same host system.

10.9.6 SAS Client Registration
Service Agents (SAs) that are SAS Clients register and deregister with the local SA Server using the
SrvReg/SrvDereg messages. The SA Server responds with a Service Acknowledgement (SrvAck)
message. The SA Server store a service advertisement until either its lifetime expires or a SrvDereg
message is received.

If the SA Server is also functioning as a DA, the DA registration requirement is also met. The SA server
also forwards any SA registration to other DAs that have the same scope as the SA.

10.10 ‘Standard WBEM’ Service Type Templates

Note: For each description in the template that states the value shall be the ClassName.PropertyName
value, the format/rules for these values are defined in the Interop Model of the CIM Schema and
in the “Server Profile” section of this specification. This SLP Template requires a minimum
Schema version of 2.7 to support the required values. Some of the optional values require CIM
Schema version 2.8.

Name of submitter: “DMTF” <technical@dmtf.org>

Language of service template: en

Figure 225: SA Server Configuration

SA Server

DHCP 
Server1

2C or Java API

SLP
Configuration

File

3
SA Server

DHCP 
Server
DHCP 
Server1

2C or Java API

SLP
Configuration

File

SLP
Configuration

File

3

SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1411



 

Security Considerations:

Information about the specific CIM Server implementation or the

Operating System platform may be deemed a security risk in certain

environments. Therefore these attributes are optional but

recommended.

Template Text:

-------------------------template begins here-----------------------

template-type=wbem

template-version=1.0

template-description=

    This template describes the attributes used for advertising

    WBEM Servers.

template-url-syntax=string

#The template-url-syntax MUST be the wbem URI encoding of

#the location of one service access point offered by the WBEM Server

#over TCP transport. This attribute must provide sufficient addressing

#information so that the WBEM Server can be addressed directly using 

#the url.

service-hi-name=string O

# This string is used as a name of the CIM service for human

# interfaces. This attribute MUST be the

# CIM_ObjectManager.ElementName property value.

service-hi-description=string O

# This string is used as a description of the CIM service for

# human interfaces.This attribute MUST be the 

# CIM_ObjectManager.Description property value.

service-id=string L

# The ID of this WBEM Server. The value MUST be the 

# CIM_ObjectManager.Name property value.

CommunicationMechanism=string L

# The communication mechanism (protocol) used by the CIM Object Manager for

# this service-location-tcp defined in this advertisement. This information 

# MUST be the CIM_ObjectManagerCommunicationMechanism.CommunicationMechanism

# property value.

# CIM-XML is defined in the CIM Operations over HTTP specification which can 

# be found at http://dmtf.org/
1412



 Service Discovery
“Unknown”, “Other”, “cim-xml”

OtherCommunicationMechanismDescription = String L O

# The other communication mechanism defined for the CIM Server in the case

# the “Other” value is set in the CommunicationMechanism string.

# This attribute MUST be the 
CIM_ObjectManagerCommunicationMechanism.OtherCommunicationMechanism

# property value. This attribute is optional because it is only required if the

# “other” value is set in CommunicationMechansim. The value returned is

# a free-form string.

InteropSchemaNamespace=string L M

# Namespace within the target WBEM Server where the CIM Interop Schema can be

# accessed. Multiple namespaces may be provided. Each namespace provided

# MUST contain the same information.

 

ProtocolVersion=String O L

# The version of the protocol. It MUST be the

# CIM_ObjectManagerCommunicationMechanism.Version property value.

FunctionalProfilesSupported=string L M

# ProfilesSupported defines the CIM Operation profiles supported by the

# CIM Object Manager. This attribute MUST be the

# CIM_ObjectManagerCommunicationMechansim.FunctionalProfilesSupported 

# property value.

“Unknown”, “Other”, “Basic Read”, “Basic Write”,

“Schema Manipulation”, “Instance Manipulation”,

“Association Traversal”, “Query Execution”,

“Qualifier Declaration”, “Indications”

FunctionalProfileDescriptions=string L O M

# Other profile description if the “other” value is set in the ProfilesSupported

# attribute.  This attribute is optional because it is returned only if the “other”

# value is set in the ProfilesSupported attribute. If provided it MUST

# be equal to the 
CIM_ObjectManagerCommunicationMechanism.FunctionalProfileDescriptions

# property value.

MultipleOperationsSupported=Boolean

# Defines whether the CIM Object Manager supports batch operations.

# This attribute MUST be the 

# CIM_ObjectManagerCommunicationMechanism.MultipleOperationsSupported

# property value.

AuthenticationMechanismsSupported=String L M

# Defines the authentication mechanism supported by the CIM Object Manager.

# This attributed MUST be the
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1413



 

# CIM_ObjectManagerCommunicationMechanism.AuthenticationMechanismsSupported 
property value.

“Unknown”, “None”, “Other”, “Basic”, “Digest”

 

AuthenticationMechansimDescriptions=String L O M

# Defines other Authentication mechanisms supported by the CIM Object Manager

# in the case where the “Other” value is set in any of the

# AuthenticationMechanismSupported attribute values. If provided, this attribute 
MUST be the

# CIM_ObjectManagerCommunicationMechanism.AuthenticationMechansimDescriptions

# property value.

Namespace=string L M O

# Namespace(s) supported on the CIM Object Manager.

# This attribute MUST be the 

# CIM_Namespace.name property value for each instance of CIM_Namespace

# that exists. This attribute is optional.  

# NOTE: This value is literal (L) because

# the namespace names MUST not be translated into other languages.

 

Classinfo=string M O

# This attributes is optional but if used, the values MUST be the

# CIM_Namespace.classinfo property value.

# The values represent the classinfo (CIM Schema version, etc.) for

# the namespaces defined in the corresponding namespace listed in the

# Namespace attribute. Each entry in this attribute MUST correspond

# to the namespace defined in the same position of the namespace

# attribute. There must be one entry in this attribute for each

# entry in the namespace attribute.

RegisteredProfilesSupported=string L M 

# RegisteredProfilesSupported defines the Profiles that 

# this WBEM Server has support for. Each entry in this 

# attribute MUST be in the form of 

# Organization:Profile Name{:Subprofile Name} 

#

# examples: 

#     DMTF:CIM Server 

#     DMTF:CIM Server:Protocol Adapter 

#     DMTF:CIM Server:Provider Registration 

# The Organization MUST be the 

# CIM_RegisteredProfile.RegisteredOrganization property value.

# The Profile Name MUST be the 

# CIM_RegisteredProfile.RegisteredName property value. 

# The subprofile Name MUST be the 

# CIM_RegisteredProfile.RegisteredName property value when it is 

# used as a Dependent in the CIM_SubProfileRequiresProfile
1414



 Service Discovery
# association for the specified Profile Name (used as the antecedent).

--------------------------template ends here------------------------

10.11 SLP Bibliography
The following reference materials on SLP are recommended to assist in vendor implementations of
SLP processes.

Kempf, J. and P. St. Pierre. _Service Location Protocol for Enterprise Networks_. New York: John Wiley
and Sons, Inc., 1999.

Perkins, C. and E. Guttman. “DHCP Options for Service Location Protocol.” IETF RFC 2610, June
1999.

Guttman, E., C. Perkins, and J. Veizades, and M. Day. “Service Location Protocol, Version 2." IETF
RFC 2608, June 1999.

Guttman, E., C. Perkins, and J. Kempf. “Service Templates and service: Schemes.” IETF RFC 2609,
June 1999.

Kempf, J. and E. Guttman. “An API for Service Location.” IETF Informational RFC 2614, June 1999.

Guttman, E. “The serviceid: URI Scheme for Service Location.” draft-guttman-svrloc-serviceid-01.txt,
IETF Informational Draft, Network Working Group, January 4, 1999
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1415



 

1416



 Installation and Upgrade
Clause 11: Installation and Upgrade

11.1 Introduction
The interoperability of the management communications in a storage network gives customers a choice
in vendors of their management solutions, but it also can introduce ease-of-use problems when these
different vendors each supply the functions shown in Figure 3: "Example Client Server Distribution in a
SAN". In order to supply a complete management solution, many management vendors provide not
only WBEM Clients, Providers and other Management Interfaces, but also software components that
provide other pieces of the management infrastructure (e.g., Directory Services, WBEM Services,
Database Management). Problems are possible when multiple vendors install or remove these
components in the same configuration and conflicts can arise. One of the goals of creating
management interoperability is to reduce the time and expense end-users apply to the management of
their SANs. Thus, SAN management should be easy to install, easy to upgrade, and easy to
reconfigure. Mature management products using SMI-S technology should experience seamless and
almost completely automated installation, upgrade, and reconfiguration.

This clause deals with issues in installation, upgrade and uninstallation of products using SMI-S
technology, and recommends some steps that vendors should take to minimize the problems, leading
to better customer satisfaction with the overall management solution.

11.2 Role of the Administrator
Ultimately, a vendor’s installation software cannot make perfect decisions when the conflicts referenced
above arise, since there may be valid reasons why a customer has deployed software of similar
function from multiple vendors. In the situation where two software components are both installed that
perform the same shared function, and only one can reasonably operate without conflicts, the
administrator must be able to resolve these conflicts and remove or disable the redundant
component(s).

Installation software should, however, make a best effort to detect any conflicts and notify the
administrator of possible conflicts during its installation and initialization. A vendor’s installation
software should allow the administrator to install and uninstall the various infrastructure components on
an individual basis should such a conflict arise. The implications of this are that vendors are motivated
to support interoperation with other vendor’s components. The advantage to the vendor is that a
customer is more likely to install a component that can demonstrate the most interoperability with other
components.

11.3 Goals

11.3.1 Non-Disruptive Installation and De-installation
WBEM Clients & Services, Providers, and Directory Services may be capable of being installed and de-
installed without disrupting the operation of other constituents in a SMI-S management environment. As
SANs are often deployed in mission critical environments the up-time of the solution is critical and thus,
the uptime of the management backbone as a key component of the solution is equally critical.
Additionally, the installation and de-installation of SMI-S interface constituents should not compromise
the availability of mission critical applications.

11.3.2 Plug-and-Play
The ultimate goal of management interoperability is zero administration of the management system
itself. A customer should be able to install new storage hardware and software and have the new
component become part of the management system automatically. Use of the Service Discovery
process (see Clause 10:, "Service Discovery"), the discovery-related aspects of the SMI-S Role
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1417



 

definitions (see Clause 9:, "SMI-S Roles"), and the Server profile (see 8.2.4.1, "Server Profile") are
intended to assist in achieving this goal.

During the reconfiguration of the management system, the schema that Clients see should remain
consistent (Schema forward compatibility is ensured via CIM standard).

11.4 Device Support
Manufacturers of storage hardware and software typically install their product and the accompanying
management support at the same time. The SMI-S Reference model (see 4.3, "Reference Model")
defines a number of different models for this management support.

Conflicts are possible between Agents if multiple vendors attempt to install support for the same device.
Also, when a device vendor needs to upgrade an Agent or Provider for a device, the installation
software needs to determine all of the locations of the previous installations to insure there is not
duplicate management paths to the device and thus, insure reliable on-going operation of the device.

11.4.1 Installation
Installation software for devices needs to be able to locate existing CIM Servers that may control the
device in order to offer an administrator a choice in management constituents for the device. In
addition, the installation software may desire to locate existing Agents and Providers that provide
device support in order to reliably upgrade that support. For these reasons, an installation software
program may want to act as a SMI-S Client during installation. This will allow it to employ the Service
Discovery (see Clause 10:, "Service Discovery") to locate the appropriate functions, and to make the
automated decisions that eliminate the need for an administrator to manually configure or adjust certain
aspects of the management system.

The RegisteredProfile part of the model described in Server Profile in 8.1.4.1 shows what device
support is already installed and installation software should consult this schema before installing new
software. If the installation software is changing the device support from one configuration to another,
the installation software needs to uninstall or disable the previous software support elements. 

11.4.2 Discovery and Initialization of Device Support
The SMI-S Reference Model (see 4.3, "Reference Model") defines two “Proxy Models” in which
management support is provided via an Agent or through an Object Manager (with providers). In these
models, the device support is expected to provide a means for establishing a reliable connection
between the device itself and the Agent or Object Manager. Also, a special Client with administration/
installation capability (as supplied by the vendor) is required to supply the relevant credentials for
device access to the Agent or Object Manager designated to manage the device. This special Client
may obtain the IP address of the device via automated means (not defined in this standard) or via
manual means (e.g., by requiring a system manager to manually input the IP address of the device/
subsystem from documentation supplied by the vendor).

11.4.3 Uninstallation
During the uninstallation of a device, the installation/uninstallation software (if available) should
automatically detect existing management support software for the device in order to shutdown and
remove it in a consistent manner. This detection process need to be cognizant that SMI-S Clients may
be actively using the device and that the device may need to be disabled for new management
operations and administrated through an orderly shut-down procedure prior to uninstallation. The
implementation of such procedures and any order dependency is outside the scope of this
specification, but may need to be considered by implementors.

11.4.4 Update
During the update of device support software, installation software should automatically detect any
existing device support software in order to successfully complete the upgrade. This device support
1418



 Installation and Upgrade
may exist on multiple hosts, but that situation is not specified in this version. If the update includes
installing a new provider, the installation software needs to use the provider installation/upgrade method
that is supported by the existing Object Manager.

When a software update involves a major schema version upgrade (e.g., 2.x to 3.x), the installation
software needs to be cognizant of the effect of the schema upgrade on existing clients. For example, it
may choose to simultaneously support both versions for some period of time.

11.4.5 Reconfiguration
When device support update requires an update of an agent or provider, the device support installation
software should configure the new provider with the same subscriptions that exist in the old agent or
provider before removing it, unless those subscriptions are specifically defined as being periodically
cleaned up. This can be done via the instances of the subscriptions in the agent or object manager that
currently exist.

11.4.6 Failure
Agents can become unavailable for several reasons. This includes the managed device being powered
off and transient network failures. If a device’s model becomes unavailable, it is recommended that
Clients do not immediately remove that device from its visualization. If the device model reappears in
another location, the old visualization should be updated to remove the previous occurrence. Also, the
client can keep track of how long the device was down for purposes of availability management, etc.
Clients may have to restore indication subscriptions when the agent subsequently becomes available.
In the case of the two Proxy Models in the SMI-S Reference Model, the agent (or its host, or the Object
Manager) may go down, or its network connection could fail, but the device may still be available and
this needs to be considered in designing availability management. In the case of a provider, the
provider to device communication channel may also fail, but the device may still be available for
access.

11.5 WBEM Service Support & Related Functions

11.5.1 Installation
Customers are increasingly sensitive to the size of the memory footprint for management software. The
goal is to minimize the impact on hosts that are not dedicated to running management software by
making appropriate choices during installation and giving the administrator control over these issues. 

It is recommended that vendors take advantage of an existing Object Manager where one exists, by
installing a provider that communicated with that Object Manager for device support. Additional support
for such “multi-tenant” Object Managers will be included in a future version of this document.

If an object manager does not exist, or the device support does not work with the existing object
manager (e.g., due to interface requirements) it is recommended that the vendor supply a Agent that is
lightweight for device support. Another option is to offer to install an Object Manager that the vendor
does have provider support for, allowing other vendors to further leverage that installation.

Providers that use an in-band connection to devices have an issue where zoning may alter the
management path to the device from a provider or agent. In this case, the device support may need to
be installed on multiple hosts in the network and the vendor needs to provide some way to coordinate
which provider or agent is responsible for a particular device.

Vendors should install their providers in a unique namespace for isolation and qualification reasons.
The installer should employ the Service Discovery process (see Clause 10:, "Service Discovery"), and/
or the Server profile (see 8.2.4.1, "Server Profile") to discover the existing namespaces and insure that
the one created for the new device is truly unique.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1419



 

11.5.2 Multiple CIM Servers on a Single Server System
At installation and setup, a user interface should be provided by the CIM Server installation utility that
allows an administrator to manually set the TCP port number in a persistent fashion.

To support discovery, the SLP Service Agent (see 10.7, "Service Agents (SAs)") associated with a
newly-installed CIM Server should register its TCP port number along with all the other necessary
discovery information with the Discovery Service. This requirement applies to both automated port
selection as well as manually configured installations. Clients, working through their SLP User Agent
(see 10.6, "User Agents (UA)"), then use this information to establish contact with the CIM Server.

11.5.3 Uninstallation/Upgrade
An Object Manager may be upgraded without needing to change the Providers that it supports.
Depending on the Object Manager, the Providers may have to be reinstalled and reconfigured following
such an upgrade. In this case, an administrator may need to re-run the device support installation
software and such software should be able to restore the previous configuration.

11.5.4 Reconfiguration
Device Support Reconfiguration (see 11.4, "Device Support") identifies issues that may also be
applicable to Object Managers.

11.5.5 Failure
Temporary failure of an object manager (for example, a host being powered off) can result in bad
installation decisions for installation software. In this case, it is advisable that the installation software
provide for manual input of the characteristics of additional components of the management system
that the installation process needs to consider.

11.6 Client 

11.6.1 Uninstallation
When Client software is removed, the uninstallation software should ensure that all client-defined
information (settings, policies etc.), and any subscriptions for that client that exist in any agent or object
manager, are also removed.

11.6.2 Reconfiguration
Client software can include a Listener that is configured to listen on a specific port. When this port is
reconfigured, the client should redirect any Indication Handlers in existing agent and object managers
as a result.

11.7 Directory Service 

11.7.1 Installation
The installation of more than one Directory Agent (see 10.6, "User Agents (UA)") or Service Agent
Server (see 10.7, "Service Agents (SAs)") providing a Directory Service in a management system does
not impose a significant burden for management clients and adds to the overall availability. Vendors
should recommend to administrators of their products that one or more SA Servers or Directory Agents
should be deployed in the management system. This may also be done for network or system
management reasons.

11.7.2 Uninstallation/Failure
SLP Clients are defined to handle failure and uninstallation of DAs as per the specification (see Clause
10:, "Service Discovery").
1420



 Installation and Upgrade
11.8 Issues with Discovery Mechanisms
Experience with existing SMI-S installations has indicated that some sites have policies that can impact
the Service Discovery process (see Clause 10:, "Service Discovery"). This subject will be addressed in
greater detail in a future revision of this document, but two specific items of guidance are given here, as
follows:

a) Where the site policy has caused multicast to be disabled, the DHCP option for SLP defined in 
RFC 2610 is recommended as an alternate method of locating Service Agent Servers or Directory 
Agents. Also note that the shipping configuration of many network routers has multicast disabled.

b) Where the site policy has caused support for SLP itself to be disabled, an out of band method of 
providing a list of IP addresses for CIM Servers is recommended, after which the Server profile 
(see 8.2.4.1, "Server Profile") should be used to obtain the information about Registered Profiles 
usually retrieved via SLP.
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1421



 

1422



 Annex A: (Informative) Mapping CIM Objects to SNMP MIB Structures
Annex A: (Informative) Mapping CIM Objects to SNMP MIB Structures

A.1 Purpose of this appendix

In order to encourage adoption of the WBEM initiative, its associated data model (CIM), protocol
(xmlCIM), and profiles (described in previous sections of this specification), the Storage Media Library
(SML) workgroup defined a means of mapping CIM objects to SNMP MIB objects, or ìfields.î At the time
of this writing, SNMP (Simple Network Management Protocol) is the dominant non-proprietary network
management protocol used by the storage devices described above. This ìCIM-to-MIBî mapping
methodology has been successfully used by members of SNIA-SML to demonstrate ñ at minimal cost
in development time -- WBEM-based interoperability in ìplugfests and industry demonstrations such as
Storage Networking World. The SML workgroupís ìCIM-to-MIBî mapping methodology is mentioned in
this specification in order to: 

• Document that a standard path of backward compatibility is obtainable between WBEM and
SNMP-based management paradigms, 

• Document one successful method of CIM-to-MIB mapping, 

• Recommend this method as the standard CIM-to-MIB mapping method in order to avoid a
proliferation of deviant de facto standards, and 

• Allow SNIA member companies outside the SML workgroup to benefit from earlier experience and
work. 

A.2 CIM-to-MIB Mapping Overview

CIM is an object-based modeling schema that supports all common object-oriented principles, including
abstract class objects, instance objects, inheritance, single- and multiple-association, aggregation,
properties, methods, and qualifiers. In contrast, SNMPís ASN.1-based modeling schema is strictly
hierarchical, involving such structures as nested parent and child nodes, and scalar and tabular fields.
While unique CIM objects are typically referenced by parent class name (or Creation Class Name) and
key properties, SNMP objects are typically referenced by an Object Identifier (OID) that points to their
position in the SNMP Management Information Base (MIB) hierarchy or ìtree.î (In the case of tabular
fields, additional indexes are appended to a base OID to identify unique instances of information.) The
task of any CIM-to-MIB mapping methodology is primarily to create a one-to-one mapping between
object-oriented information and tree-based hierarchical information. Naming constraints within the CIM
and MIB domains must also be adhered to in a way that prevents ambiguities in uniquely identifying
and referencing information, particularly in the SNMP/MIB domain. Therefore, SMLs mapping
methodology provides the following: 

• A description of mapping CIM data -- classes, instances, properties, associations ñ into an SNMP
format involving nodes, fields, and tables,

• A naming convention in the SNMP/MIB domain that allows for unambiguous identification of the
original CIM data,

• A data type mapping that allows common CIM data to be represented by existing ASN.1 data
types.

A.3 The SML MIB

As the CIM object model continues to change and expand, the SML MIB has also changed and
expanded. As a result, it has become impractical to include the full MIB in each revision of this SMI
specification. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1423



 

SMI client application vendors or others interested in obtaining the latest SML MIB, or more information
on the CIM-to-MIB mapping methodology in general, should contact the Technical Council Managing
Director at tcmd@snia.org.
1424



 Annex B: (Normative) Compliance with the SNIA SMI Specification
Annex B: (Normative) Compliance with the SNIA SMI Specification

B.1 Compliance Statement
The declaration of SMI-S compliance of a given CIM Instance within a CIM Server also declares that
any CIM Instance associated, directly or indirectly, to the first CIM Instance will also be SMIS compliant
if SMIS itself declares compliance rules for either CIM Instance or instances of their superclasses.

B.2 How Compliance Is Declared

• The declaration of SMI-S compliance is made through the use of the server profile and the
declaration of supported profiles. 

• Direct association between CIM Instances is made through instance of a CIM Association. 

• Indirect association between CIM Instance is made through more than one CIM Association. 

• SMI-S Compliance is assessed against CIM Instances that are directly or indirectly associated to
the CIM Instance declared as part of the declaration of supported registered profiles. These CIM
Instances comprise the compliance test set. 

• All CIM Instances / CIM Classes included in the compliance test set for whom compliance rules
are defined in SMI-S or for superclasses thereof shall be themselves be compliant to the rules
defined in SMI-S. 

• Compliance tests on a superclass of a given CIM Instance are limited to the attributes and
behaviors defined for the superclass. 

B.3 The Server Profile and Compliance
Compliance is declared by the implementation of the Server Profile. All profiles require the Server
profile. The server profile defines the means by which a SMI-S Client determines the profiles and
subprofiles supported and the ComputerSystems associated. (see 8.2.4.1, "Server Profile"for more
details.)

B.3.1 Example

A CIM Agent for Vendor X declares compliance to the Array Profile and the Pool Manipulation
Capabilities, and Setting Subprofile through the Server Profile. Once the association (via the
ElementConformsToProfile association) is made to from the Array Profile declaration to the
ComputerSystem that realizes the Array Profile, then compliance tests begin testing compliance.
Vendor X decided to extend the StorageVolume class with additional properties. StorageVolume is
associated to the ComputerSystem via SystemDevice association. ComputerSystem, StorageVolume,
and SystemDevice are defined in SMI-S as required CIM elements (see Table 8.2.8.1.9, “CIM
Elements” in the “Array Profile”).

In implementing FCPort, Vendor X decided to not provide ElementName but did provide the rest of the
required properties. Vendor X decided to not use to WWN and instead used a vendor specific value for
the PermanentAddress (see 6.2.4, "Correlatable and Durable Names") Additionally, Vendor X added
FRUStatus to their subclass of FCPort. Vendor X also decided to model the back-end fibre channel, but
not use an SMI-S model to do so. These back-end FCPorts are associated to the ComputerSystem via
the ConsumedSystemDevice association, a subclass of SystemDevice without properties overridden.
These back-end fibre channel ports where modeled using a Vendor X specific class, BackendFCPorts,
that is not derived from FCPort. This BackendFCPorts were associated to the ComputerSystem with
the ConsumedSystemDevice.PartComponent role. 
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1425



 

The compliance test includes FCPort because compliance declaration identified a particular
ComputerSystem the entry point into compliant CIM instantiation of the Array Profile. the compliance
test includes FCPorts as part of the test set because the SystemDevice association, also defined as
part of the profile, includes the FCPort realized in that implementation. The compliance test also
includes BackendFCPorts because the ConsumedSystemDevice association to the ComputerSystem
for these instances is a SystemDevice association. 

The compliance test locates the StorageConfigurationService, StoragePools including a Primordial
StoragePool, and StorageCapabilities associated to the ComputerSystem. Vendor X's implementation
supports the creation of a StoragePool. The test attempts to create a StoragePool given one of the
sizes reported by the Primordial StoragePool.getSupportedSizes() method using the Primordial
StoragePool reference and a StorageSetting generated from one of the StorageCapabilities. 

The compliance test for Vendor X's Array Profile implementation fails because:

• FCPort.PermanentName property has a noncompliance value. Specifically, the
FCPort.PermanentAddress is required to be WWN, 16 unseperated uppercase hex digits;

• ElementName property was not provided (i.e., was null);

• the SystemDevice associations contained references to BackendFCPort in the PartComponent
property. CIM defined that the PartComponent is a LogicalDevice. Since BackendFCPort is not a
LogicalDevice, then the test failed;

• The “Size not supported” return code was returned from CreateOrModifyStoragePool even though
one of the supported sizes was used verbatim.

The compliance test for Vendor X's Array Profile implementation did not fail because:

• StorageVolume was extended;

• SystemDevice was extended.

B.4 Backward Compatibility
Backward compatibility between versions of SMI-S profiles is a requirement with very few exceptions.
The goals of backwards compatibility include:

a) New profile implementations that are deployed in a customer environment work with existing SMI-
S Clients. This includes:

1) SMI-S operations, including recipes and CTP, continue to work against the new profile imple-
mentation;

2)  SMI-S Clients can support a given profile version and above (later minor version numbers);

b) No guarantee of backwards compatibility is implied between major version numbers (i.e., 1.x to 
2.x);

c) If a profile in a newer version of SMI-S cannot maintain backward compatibility, it shall be renamed 
(and the old profile deprecated). Otherwise the client may assume that the newer profile is back-
wards compatible and that all operations in the earlier version will continue to work in this newer 
version.

d) It shall be possible for SMI-S provider and client implementations to support older versions of an 
incompatible profile.

e) Content marked experimental is not standard in this version of the specification. Future versions of 
the specification may not be backwards compatible to content marked experimental in this version. 
1426



 Annex B: (Normative) Compliance with the SNIA SMI Specification
Content marked experimental in this version of the specification may be removed in a future ver-
sion.

B.4.1 Overview

SMI-S backward compatibility is necessary to ensure that customer environments are minimally
disrupted by newer implementations of SMI-S. Deployment of several concurrent implementations of
multiple minor versions of SMI-S shall be possible in a customer environment. Compatibility is required
from both the Client side and from the provider side. Compatibility also has aspects both in the
specification of newer functionality via SMI-S and in the implementation of both providers and clients.

Figure B.1: "Provider Migration" shows the interaction between a Client coded to an older minor version
of SMI-S (M.m) acting against a later minor version (M.n) provider implementation

As shown in the diagram, the newer implementation shall support all of the old operations from the
previous minor version of SMI-S in order to maintain compatibility. The Client will not be able to take
advantage of any newer features that have been added in the later version of the specification, but will
still be able to accomplish all of the functions it was coded for in the previous version. This allows
minimum disruption to the customer environment.

Clients shall be written to take advantage of the functionality of implementations that are currently
shipping and that are or will soon be deployed in customer environments. This client functionality needs
to be careful in how it makes use of each SMI-S version's new features. Any client code that uses a
specific version's features shall also include a version check against the profile or subprofile version in
the RegisteredProfile (Subprofile) instance for that functionality. This version check shall verify that the
functionality is at a specific minor version and above (up to the next major release). If a client were only
to check for a specific version, it would not be able to use newer implementations of that functionality. A
client will, over time, contain multiple such code blocks as newer versions are supported. Each piece of
code will be written to the functionality introduced in a specific version and continue to work against that
functionality in later minor releases.

Figure B.1: Provider Migration

CompoundPolicyCondition
ConditionListType:  uint16

PolicyTimePeriodCondition

TimePeriod:  string
MonthOfYearMask: uint8[ ][Octetstring]
DayOfMonthMask: uint8[ ][Octetstring]
DayOfWeekMask:  uint8[ ][Octetstring]
TimeOfDayMask:  string
LocalOrUtcTime:  uint16

PolicyCondition

SystemCreationClassName:  string[key]
SystemName:  string[key]
PolicyRuleCreationClassName:  string[key]

PolicyRuleName:  string[key]
CreationClassName:  string[key]
PolicyConditionName:  string[key]

PolicyConditionInPolicyRule
  GroupNumber:  uint16
  ConditionNegated:  boolean

VendorPolicyCondition

Constraint: Octetstring[ ]
ConstraintEncoding:  string[OID]

PolicyRuleValidityPeriod

*

*

Association

Aggregation
Association with WEAK reference

Inheritance

w

* equivalent to:  0 .. n

PolicyConditionInPolicyCondition
  GroupNumber:  uint16
  ConditionNegated:  boolean

*

*

PolicyConditionStructure
  GroupNumber:  uint16
  ConditionNegated:  boolean

*

CommonName:  string
PolicyKeywords:  string[ ]

Policy

CreationClassName:  string[key]
PolicyRuleName:  string[key]

Enabled:  uint16
ConditionListType:  uint16
RuleUsage:  string
Mandatory:  boolean
SequencedActions:  uint16
ExecutionStrategy:  uint16

PolicyRule

Object 
Manager

SMI- S profile Provider implements 
specific version of 
profile

Storage Device

M.m
Client

Definition of Backward 
Compatibility:

M.n Provider shall 
support all former M.m 
client operations 
against its M.n 
implementation

M.n 
Implementation

M.n providers shall 
pass the M.m version of 
CTP to prove their 
compatibility M = major version number

m = minor version number
n = next minor version
SMI-S 1.1.1 Revision 1 (June 5, 2007) SNIA Technical Position 1427



 

B.4.2 Requirements

In order to maintain backwards compatibility with older minor versions of the specification, profile
authors have followed specific rules in developing the specification. The requirements that were
followed in profile versioning and shall be followed by subsequent implementations include:

Support for required classes: A newer minor version of an SMI-S profile shall support all required
classes of the previous minor version of the profile and shall continue to require them.

Deprecation of classes: A newer minor version of an SMI-S profile may deprecate or include
deprecated (via the CIM schema) classes introduced in previous minor version(s), but shall continue to
require their implementation.

Support for required properties: A newer minor version of an SMI-S profile shall support all required
properties of classes in the previous minor version(s) of the profile and shall continue to require them.

Deprecation of properties: A newer minor version of an SMI-S profile may deprecate or include
deprecated (via the CIM schema) properties of classes introduced in previous minor version(s), but
shall continue to require their implementation.

Support for subprofiles: A newer minor version of an SMI-S profile shall support the functionality of all
subprofiles of the previous minor version(s) of the profile and shall continue to require them if they were
required in the previous version. A newer minor version of an SMI-S profile may require a subprofile
that was optional in the previous minor version, but shall not make optional a subprofile that was
required in a previous minor version. If a newer minor version of an SMI-S profile does not have
subprofiles by the same name as previous minor version(s), it shall still require implementation of the
Registered (Sub)Profile with the previous version information such that the client will be able to find and
use the subsumed functionality.

Profile renaming: A newer minor version of an SMI-S profile that cannot remain backwards compatible
shall either become a major revision of the profile or shall be renamed to a different profile name such
that a client will not find newer, incompatible, versions of that functionality.

B.4.3 Implementation Considerations

Even in the case of a newer minor version of an SMI-S profile that was unable to retain backward
compatibility, an implementation may support clients with a separate implementation of the previous
minor version's functionality. Implementations shall not implement these earlier versions in such a way
that a client of the previous minor version would become confused or break when accessing this
functionality. This may happen if the previous version's functionality is implemented in the same
namespace as the later version, but a careful evaluation needs to be done by the implementer to
determine this. Particular attention should be paid to the recipes from the earlier version, but since
recipes are not exhaustive, a fuller evaluation is necessary.
1428


	Typographical Conventions
	List of Tables
	List of Figures
	Foreword
	Introduction
	Clause 1: Scope
	Clause 2: Definitions, Symbols, Abbreviations, and Conventions
	2.1 Definitions
	2.2 Symbols and abbreviations
	2.3 Keywords
	2.4 Conventions

	Clause 3: Business Overview
	3.1 Preamble
	3.2 Business Rationale
	3.3 Interface Definition
	3.4 Technology Trends
	3.5 Management Environment
	3.6 Architectural Objectives
	3.7 Disclaimer

	Clause 4: Overview
	4.1 Base Capabilities
	4.1.1 Object Oriented
	4.1.2 Messaging Based

	4.2 Functionality Matrix
	4.2.1 Overview
	4.2.2 Multi-Level Model Of Networked Storage Management Functionality
	4.2.3 FCAPS
	4.2.4 Management Functionality Within Each Level Of The Model
	4.2.4.1 (Level 1) Device Level Functionality
	4.2.4.2 (Level 2) Connectivity Level Functionality
	4.2.4.3 (Level 3) Block Level Functionality
	4.2.4.4 (Level 4) File/Record Level Functionality
	4.2.4.5 (Level 5) Application Level Functionality

	4.2.5 Referring To Levels And Capabilities In The Multi-level Model
	4.2.6 Functionality Descriptions in SMI-S Profiles

	4.3 Capabilities of This Version
	4.3.1 Device Level
	4.3.1.1 Fault Management
	4.3.1.2 Configuration Management
	4.3.1.3 Accounting Management
	4.3.1.4 Performance Management
	4.3.1.5 Security Management

	4.3.2 Connectivity Level
	4.3.2.1 Fault Management
	4.3.2.2 Configuration Management
	4.3.2.3 Accounting Management
	4.3.2.4 Performance Management
	4.3.2.5 Security Management

	4.3.3 Block Level
	4.3.3.1 Fault Management
	4.3.3.2 Configuration Management
	4.3.3.3 Accounting Management
	4.3.3.4 Performance Management
	4.3.3.5 Security Management

	4.3.4 File/Record Level
	4.3.4.1 Fault Management
	4.3.4.2 Configuration Management
	4.3.4.3 Accounting Management
	4.3.4.4 Performance Management
	4.3.4.5 Security Management

	4.3.5 Application Level

	4.4 Operational Environment
	4.5 Using this Specification
	4.6 Language Bindings

	Clause 5: Transport and Reference Model
	5.1 Introduction
	5.1.1 Overview
	5.1.2 Language Requirements
	5.1.3 Communications Requirements
	5.1.4 XML Message Syntax and Semantics

	5.2 Transport Stack
	5.3 Reference Model
	5.3.1 Overview
	5.3.2 Roles for Interface Constituents
	5.3.2.1 Client
	5.3.2.2 Agent
	5.3.2.3 CIM Server
	5.3.2.4 Provider
	5.3.2.5 Lock Manager
	5.3.2.6 Directory Server (SLP Directory Agent)

	5.3.3 Cascaded Agents


	Clause 6: Object Model General Information
	6.1 Model Overview (Key Resources)
	6.1.1 Overview
	6.1.2 Introduction to CIM UML Notation

	6.2 Techniques
	6.2.1 CIM Fundamentals
	6.2.2 Modeling Profiles
	6.2.3 CIM Naming
	6.2.4 Correlatable and Durable Names
	6.2.4.1 Overview
	6.2.4.2 Guidelines for SCSI Logical Unit Names
	6.2.4.3 Guidelines for Port Names
	6.2.4.4 Guidelines for Storage System Names
	6.2.4.5 Standard Formats for Correlatable Names
	6.2.4.6 Case Sensitivity
	6.2.4.7 Testing Equality of correlatable Names
	6.2.4.8 Operating System Device Names
	6.2.4.9 iSCSI Names


	6.3 Health and Fault Management
	6.3.1 Objectives
	6.3.2 Overview
	6.3.3 Terms
	6.3.4 Description of Health and Fault Management
	6.3.4.1 Operational Status and Health State (Polling)
	6.3.4.2 Standard Errors and Events
	6.3.4.3 Indications
	6.3.4.4 Event Correlation and Fault Containment
	6.3.4.5 Fault Regions
	6.3.4.6 Examples


	6.4 Policy
	6.4.1 Objectives
	6.4.2 Overview
	6.4.3 Policy Terms
	6.4.4 Policy Definition
	6.4.4.1 Query Condition
	6.4.4.2 Method Action
	6.4.4.3 Query Condition Result
	6.4.4.4 Method Action Result
	6.4.4.5 Capabilities

	6.4.5 Policy Recipes

	6.5 Standard Messages
	6.5.1 Overview
	6.5.2 Required Characteristics of Standard Messages
	6.5.2.1 Common Messages
	6.5.2.2 Storage Messages
	6.5.2.3 Fabric Messages


	6.6 Recipe Overview
	6.6.1 Recipe Definition
	6.6.2 Recipe Pseudo Code Conventions
	6.6.2.1 Overview
	6.6.2.2 General Syntax
	6.6.2.3 CIM related variable and methods
	6.6.2.4 Data Structure
	6.6.2.5 Operations
	6.6.2.6 Control Operations
	6.6.2.7 Functions
	6.6.2.8 Exception Handling
	6.6.2.9 Built-in Functions
	6.6.2.10 Extrinsic method calls



	Clause 7: Normative References
	7.1 Introduction to Profiles
	7.1.1 Profile Content
	7.1.1.1 Profile Definition
	7.1.1.2 Format for Profile Specifications



	Clause 8: Object Model
	8.1 Registry of Profiles and Subprofiles
	8.2 Packages, Subprofiles and Profile
	8.2.1 Common Profiles
	8.2.1.1 Access Points Subprofile
	8.2.1.2 Cascading Subprofile
	8.2.1.3 Cluster Subprofile (DEPRECATED)
	8.2.1.4 Device Credentials Subprofile
	8.2.1.5 Extra Capacity Set Subprofile (DEPRECATED)
	8.2.1.6 Health Package
	8.2.1.7 Job Control Subprofile
	8.2.1.8 Location Subprofile
	8.2.1.9 Multiple Computer System Subprofile
	8.2.1.10 Physical Package Package
	8.2.1.11 Policy Package
	8.2.1.12 Software Installation Service Subprofile
	8.2.1.13 Software Package
	8.2.1.14 Software Subprofile
	8.2.1.15 Software Repository Subprofile

	8.2.2 Common Target Port Subprofiles Overview
	8.2.2.1 Parallel SCSI (SPI) Target Ports Subprofile
	8.2.2.2 FC Target Port Subprofile
	8.2.2.3 iSCSI Target Ports Subprofile
	8.2.2.4 Direct Attach (DA) Port Subprofile

	8.2.3 Common Initiator Port Subprofiles Overview
	8.2.3.1 Parallel SCSI (SPI) Initiator Port Subprofile
	8.2.3.2 Fibre Channel Initiator Port Subprofile
	8.2.3.3 iSCSI Initiator Port Subprofile
	8.2.3.4 Back End Ports Subprofile (DEPRECATED)

	8.2.4 CIM Server Related Profiles
	8.2.4.1 Server Profile
	8.2.4.2 Indications Subprofile
	8.2.4.3 Object Manager Adapter Subprofile

	8.2.5 Security Profiles and Subprofiles
	8.2.5.1 Security Profile
	8.2.5.2 Authorization Subprofile
	8.2.5.3 Security Resource Ownership Subprofile
	8.2.5.4 Security Role Based Access Control Subprofile
	8.2.5.5 IdentityManagement Subprofile
	8.2.5.6 CredentialManagement Subprofile
	8.2.5.7 3rd Party Authentication Subprofile

	8.2.6 Fabric Topology Profiles
	8.2.6.1 Fabric Profile
	8.2.6.2 Enhanced Zoning Subprofile
	8.2.6.3 Zone Control Subprofile
	8.2.6.4 FDMI Subprofile
	8.2.6.5 Fabric Path Performance Subprofile
	8.2.6.6 Switch Profile
	8.2.6.7 Switch Configuration Data Subprofile
	8.2.6.8 Blades Subprofile
	8.2.6.9 Extender Profile

	8.2.7 Host Profiles
	8.2.7.1 FC HBA Profile
	8.2.7.2 iSCSI Initiator Profile
	8.2.7.3 Host Discovered Resources Profile
	8.2.7.4 Disk Partition Subprofile
	8.2.7.5 SCSI Multipath Management Subprofile

	8.2.8 Storage Profiles
	8.2.8.1 Array Profile
	8.2.8.2 Storage Virtualizer Profile
	8.2.8.3 Volume Management Profile
	8.2.8.4 NAS Head Profile
	8.2.8.5 Self-Contained NAS Profile
	8.2.8.6 Filesystem Manipulation Subprofile
	8.2.8.7 File Export Manipulation Subprofile
	8.2.8.8 Pool Management Policy Subprofile
	8.2.8.9 Resource Ownership Subprofile
	8.2.8.10 Block Services Package
	8.2.8.11 Block Server Performance Subprofile
	8.2.8.12 Copy Services Subprofile
	8.2.8.13 Disk Drive Subprofile (DEPRECATED)
	8.2.8.14 Disk Drive Lite Subprofile
	8.2.8.15 Disk Sparing Subprofile
	8.2.8.16 Extent Composition Subprofile
	8.2.8.17 Extent Mapping Subprofile (DEPRECATED)
	8.2.8.18 LUN Creation Subprofile (DEPRECATED)
	8.2.8.19 LUN Mapping and Masking Subprofile
	8.2.8.20 Masking and Mapping Subprofile
	8.2.8.21 Pool Manipulation Capabilities, and Settings Subprofile (DEPRECATED)
	8.2.8.22 Storage Library Profile
	8.2.8.23 Element Counting Subprofile
	8.2.8.24 InterLibraryPort Connection Subprofile
	8.2.8.25 Partitioned/Virtual Library Subprofile
	8.2.8.26 Library Capacity Subprofile
	8.2.8.27 LibraryAlert Events/Indications for Library Devices
	8.2.8.28 Media Movement Subprofile
	8.2.8.29 Limited Access Port Elements Subprofile


	8.3 Cross Profile Considerations
	8.3.1 Overview
	8.3.2 HBA model
	8.3.2.1 Recipes

	8.3.3 Switch Model
	8.3.3.1 Recipes

	8.3.4 Array Model
	8.3.4.1 Storage Virtualization Model

	8.3.5 Fabric Topology (HBA, Switch, Array)
	8.3.5.1 Overview
	8.3.5.2 Main Recipe
	8.3.5.3 Array paths
	8.3.5.4 Host Discovered Resource
	8.3.5.5 Common Initiator Port
	8.3.5.6 Fabric Layer
	8.3.5.7 IP Network Layer
	8.3.5.8 Local Disk Layer
	8.3.5.9 Logical Disk Layers
	8.3.5.10 Multipath Layer
	8.3.5.11 Virtualizer Layer
	8.3.5.12 Volume Manager Layer



	Clause 9: SMI-S Roles
	9.1 Introduction
	9.2 SMI-S Client
	9.2.1 Overview
	9.2.2 SLP Functions
	9.2.3 CIM-XML Protocol Functions
	9.2.4 Security Considerations
	9.2.5 Lock Management Functions

	9.3 Dedicated SMI-S Server
	9.3.1 Overview
	9.3.2 SLP Functions
	9.3.3 CIM-XML Protocol Functions
	9.3.3.1 General
	9.3.3.2 Required Intrinsic Methods
	9.3.3.3 Required Model Support

	9.3.4 Security Considerations
	9.3.5 Lock Management Functions

	9.4 General Purpose SMI-S Server
	9.4.1 Overview
	9.4.2 SLP Functions
	9.4.3 CIM-XML Protocol Functions
	9.4.3.1 General
	9.4.3.2 Required Intrinsic Methods
	9.4.3.3 Required Model Support
	9.4.3.4 Security Considerations

	9.4.4 Lock Management Functions
	9.4.5 Provider Subrole
	9.4.5.1 Overview
	9.4.5.2 Required Model Support


	9.5 Directory Server
	9.5.1 SLP Functions
	9.5.2 CIM-XML Protocol Functions
	9.5.3 Security Considerations
	9.5.4 Lock Management Functions

	9.6 Combined Roles on a Single System
	9.6.1 Overview
	9.6.2 General Purpose SMI-S Server as a Profile Aggregator
	9.6.2.1 SLP Functions
	9.6.2.2 CIM-XML Protocol Functions
	9.6.2.3 Security Considerations
	9.6.2.4 Lock Manager Functions



	Clause 10: Service Discovery
	10.1 Objectives
	10.2 Overview
	10.3 SLP Messages
	10.4 Scopes
	10.5 Services Definition
	10.5.1 Service Type
	10.5.2 Service Attributes

	10.6 User Agents (UA)
	10.7 Service Agents (SAs)
	10.8 Directory Agents (DAs)
	10.9 Service Agent Server (SA Server)
	10.9.1 General Information
	10.9.2 SA Server (SAS) Implementation
	10.9.3 SA Server (SAS) Clients
	10.9.3.1 Description
	10.9.3.2 SAS Client Requests - SA Server Responses

	10.9.4 SA Server Configuration
	10.9.4.1 Overview
	10.9.4.2 SLP Configuration File
	10.9.4.3 Programmatic Configuration
	10.9.4.4 DHCP Configuration
	10.9.4.5 Scope

	10.9.5 SA Server Discovery
	10.9.6 SAS Client Registration

	10.10 ‘Standard WBEM’ Service Type Templates
	10.11 SLP Bibliography

	Clause 11: Installation and Upgrade
	11.1 Introduction
	11.2 Role of the Administrator
	11.3 Goals
	11.3.1 Non-Disruptive Installation and De-installation
	11.3.2 Plug-and-Play

	11.4 Device Support
	11.4.1 Installation
	11.4.2 Discovery and Initialization of Device Support
	11.4.3 Uninstallation
	11.4.4 Update
	11.4.5 Reconfiguration
	11.4.6 Failure

	11.5 WBEM Service Support & Related Functions
	11.5.1 Installation
	11.5.2 Multiple CIM Servers on a Single Server System
	11.5.3 Uninstallation/Upgrade
	11.5.4 Reconfiguration
	11.5.5 Failure

	11.6 Client
	11.6.1 Uninstallation
	11.6.2 Reconfiguration

	11.7 Directory Service
	11.7.1 Installation
	11.7.2 Uninstallation/Failure

	11.8 Issues with Discovery Mechanisms

	Annex A: (Informative) Mapping CIM Objects to SNMP MIB Structures
	A.1 Purpose of this appendix
	A.2 CIM-to-MIB Mapping Overview
	A.3 The SML MIB

	Annex B: (Normative) Compliance with the SNIA SMI Specification
	B.1 Compliance Statement
	B.2 How Compliance Is Declared
	B.3 The Server Profile and Compliance
	B.4 Backward Compatibility


