
Storage Management Technical Specification,
Part 4 File Systems
Version 1.2.0, Revision 6

"This document has been released and approved by the SNIA. The SNIA believes that the
ideas, methodologies and technologies described in this document accurately represent the
SNIA goals and are appropriate for widespread distribution. Suggestion for revision should be
directed to the Technical Council Managing Director at tcmd@snia.org.”

SNIA Technical Position

22 October, 2007

mailto:tcmd@snia.org.%E2%80%9D

Errata/Change Log

20071022

No errata have been identified for 1.2.0.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position iii

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety with no alteration,
and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced must acknowledge the SNIA copyright on that material, and must credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

Copyright © 2003-2007 Storage Networking Industry Association.
iv

mailto:tcmd@snia.org

INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying, and promoting
interoperable multi-vendor SANs through the SNIA organization.

DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no warranty of
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2007 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of
their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed Management Task
Force (DMTF). The CIM classes that are documented have been developed and reviewed by both the Storage
Networking Industry Association (SNIA) and DMTF Technical Working Groups. However, the schema is still in
development and review in the DMTF Working Groups and Technical Committee, and subject to change.

CHANGES TO THE SPECIFICATION
Each publication of this specification is uniquely identified by a three-level identifier, comprised of a version
number, a release number and an update number. The current identifier for this specification is version 1.2.0.
Future publications of this specification are subject to specific constraints on the scope of change that is
permissible from one publication to the next and the degree of interoperability and backward compatibility that
should be assumed between products designed to different publications of this standard. The SNIA has defined
three levels of change to a specification:

• Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x x). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

• Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of the
specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

• Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.x.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

This specification has been structured to convey both the formal requirements and assumptions of the SMI-S API
and its emerging implementation and deployment lifecycle. Over time, the intent is that all content in the
specification will represent a mature and stable design, be verified by extensive implementation experience, assure
consistent support for backward compatibility, and rely solely on content material that has reached a similar level of
maturity. Unless explicitly labeled with one of the subordinate maturity levels defined for this specification, content
is assumed to satisfy these requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three subordinate levels
of implementation maturity that identify important aspects of the content’s increasing maturity and stability. Each
subordinate maturity level is defined by its level of implementation experience, its stability and its reliance on other
 SMI-S 1.2.0 Revision 6 SNIA Technical Position v

http://www.snia.org/feedback

emerging standards. Each subordinate maturity level is identified by a unique typographical tagging convention
that clearly distinguishes content at one maturity model from content at another level.

Experimental Maturity Level
No material is included in this specification unless its initial architecture has been completed and reviewed. This
material is referred to as “Experimental”. It is presented here as an aid to implementers who are interested in likely
future developments within the SMI specification. Some content included in this specification has complete and
reviewed design, but lacks implementation experience and the maturity gained through implementation
experience. This content is included in order to gain wider review and to gain implementation experience. The
contents of an Experimental profile may change as implementation experience is gained. There is a high likelihood
that the changed content will be included in an upcoming revision of the specification. Experimental material can
advance to a higher maturity level as soon as implementations are available. Figure 1 is a sample of the
typographical convention for Experimental content.

Implemented Maturity Level
Profiles for which initial implementations have been completed are classified as “Implemented”. This indicates that
at least two different vendors have implemented the profile, including at least one provider implementation. At this
maturity level, the underlying architecture and modeling are stable, and changes in future revisions will be limited to
the correction of deficiencies identified through additional implementation experience. Should the material become
obsolete in the future, it must be deprecated in a minor revision of the specification prior to its removal from
subsequent releases. Figure 2 is a sample of the typographical convention for Implemented content.

Stable Maturity Level
Once content at the Implemented maturity level has garnered additional implementation experience, it can be
tagged at the Stable maturity level. Material at this maturity level has been implemented by three different vendors,
including both a provider and a client. Should material that has reached this maturity level become obsolete, it may
only be deprecated as part of a minor revision to the specification. Material at this maturity level that has been
deprecated may only be removed from the specification as part of a major revision. A profile that has reached this
maturity level is guaranteed to preserve backward compatibility from one minor specification revision to the next.

Figure 1: Experimental Maturity Level Tag

EXPERIMENTAL

Experimental content appears here.

EXPERIMENTAL

Figure 2: Implemented Maturity Level Tag

IMPLEMENTED

Implemented content appears here.

IMPLEMENTED
vi

As a result, Profiles at or above the Stable maturity level shall not rely on any content that is Experimental. Figure 3
is a sample of the typographical convention for Implemented content.

Finalized Maturity Level
Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying the
requirements for the Stable maturity level, content at the Finalized maturity level must solely depend upon or refine
material that has also reached the Finalized level. If specification content depends upon material that is not under
the control of the SNIA, and therefore not subject to its maturity level definitions, then the external content is
evaluated by the SNIA to assure that it has achieved a comparable level of completion, stability, and
implementation experience. Should material that has reached this maturity level become obsolete, it may only be
deprecated as part of a major revision to the specification. A profile that has reached this maturity level is
guaranteed to preserve backward compatibility from one minor specification revision to the next. Over time, it is
hoped that all specification content will attain this maturity level. Accordingly, there is no special typographical
convention, as there is with the other, subordinate maturity levels. Unless content in the specification is marked
with one of the typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material
Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections identified as
“Deprecated” contain material that is obsolete and not recommended for use in new development efforts. Existing
and new implementations may still use this material, but shall move to the newer approach as soon as possible.
The maturity level of the material being deprecated determines how long it will continue to appear in the
specification. Implemented content shall be retained at least until the next revision of the specialization, while
Stable and Finalized material shall be retained until the next major revision of the specification. Providers shall
implement the deprecated elements as long as it appears in the specification in order to achieve backward
compatibility. Clients may rely on deprecated elements, but are encouraged to use non-deprecated alternatives
when possible.

Deprecated sections are documented with a reference to the last published version to include the deprecated
section as normative material and to the section in the current specification with the replacement. Figure 4 contains
a sample of the typographical convention for deprecated content.

Figure 3: Stable Maturity Level Tag

STABLE

Stable content appears here.

STABLE

Figure 4: Deprecated Tag

DEPRECATED

Content that has been deprecated appears here.

DEPRECATED
 SMI-S 1.2.0 Revision 6 SNIA Technical Position vii

USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration.

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.
viii

mailto:tcmd@snia.org

Contents
Errata/Change Log... iii
List of Tables.. xi
List of Figures ... xv
Foreword.. xvii
1. Scope ...1
2. Normative References..3

2.1 General.. 3
2.2 Approved references ... 3
2.3 References under development .. 3
2.4 Other references.. 3

3. Terms and definitions ..5
3.1 General.. 5
3.2 Definitions.. 5

4. File Export Profile ...7
4.1 Description... 7
4.2 Health and Fault Management Consideration ... 9
4.3 Cascading Considerations... 9
4.4 Supported Profiles, Subprofiles, and Packages .. 9
4.5 Methods of the Profile.. 9
4.6 Client Considerations and Recipes ... 10
4.7 Registered Name and Version .. 10
4.8 CIM Elements .. 11

5. File Export Manipulation Subprofile ...17
5.1 Description... 17
5.2 Health and Fault Management Considerations ... 22
5.3 Cascading Considerations... 24
5.4 Supported Subprofiles and Packages ... 24
5.5 Methods of the Profile.. 25
5.6 Client Considerations and Recipes ... 40
5.7 Registered Name and Version .. 51
5.8 CIM Elements .. 52

6. File Storage Profile ...69
6.1 Description... 69
6.2 Health and Fault Management Consideration ... 70
6.3 Cascading Considerations... 70
6.4 Supported Profiles, Subprofiles, and Packages .. 72
6.5 Methods of the Profile.. 72
6.6 Client Considerations and Recipes ... 73
6.7 Registered Name and Version .. 73
6.8 CIM Elements .. 73

7. Filesystem Profile ...75
7.1 Description... 75
7.2 Health and Fault Management Consideration ... 78
7.3 Cascading Considerations... 79
7.4 Supported Profiles, Subprofiles, and Packages .. 80
7.5 Methods of the Profile.. 80
7.6 Client Considerations: Use Cases... 80
7.7 Registered Name and Version .. 90
7.8 CIM Elements .. 91

8. Filesystem Manipulation Subprofile ...107
8.1 Description... 107
8.2 Health and Fault Management Considerations ... 114
 SMI-S 1.2.0 Revision 6 SNIA Technical Position ix

8.3 Cascading Considerations... 116
8.4 Supported Subprofiles and Packages ... 116
8.5 Methods of the Profile.. 117
8.6 Client Considerations and Recipes ... 139
8.7 Registered Name and Version .. 158
8.8 CIM Elements .. 159

9. Filesystem Quotas Profile..193
9.1 Description... 193
9.2 Health and Fault Management Considerations ... 196
9.3 Supported Profiles, Subprofiles, and Packages .. 196
9.4 Methods of the Profile.. 196
9.5 Client Considerations and sample code .. 199
9.6 Registered Name and Version .. 205
9.7 CIM Elements .. 206

10. NAS Head Profile ..215
10.1 Description... 215
10.2 Health and Fault Management Considerations ... 222
10.3 Cascading Considerations... 223
10.4 Supported Subprofiles and Packages ... 223
10.5 Methods of the Profile.. 224
10.6 Client Considerations and Recipes ... 225
10.7 Registered Name and Version .. 225
10.8 CIM Elements .. 226

11. Self-Contained NAS Profile ...249
11.1 Description... 249
11.2 Health and Fault Management Considerations ... 254
11.3 Cascading Considerations... 255
11.4 Supported Subprofiles and Packages ... 255
11.5 Methods of the Profile.. 256
11.6 Client Considerations and Recipes ... 256
11.7 Registered Name and Version .. 257
11.8 CIM Elements .. 258

Annex A. (Informative) State Transitions from Storage to File Shares............................277
x

List of Tables

Table 1. FileShare OperationalStatus ..9
Table 2. Supported Profiles for File Export...9
Table 3. CIM Elements for File Export..11
Table 4. SMI Referenced Properties/Methods for CIM_ConcreteDependency..12
Table 5. SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)..12
Table 6. SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Setting) ...13
Table 7. SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share) ..14
Table 8. SMI Referenced Properties/Methods for CIM_HostedShare..15
Table 9. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..15
Table 10. SMI Referenced Properties/Methods for SNIA_SharedElement ..15
Table 11. Operational Status for FileExport Service ..22
Table 12. Operational Status for File Server ComputerSystem ...23
Table 13. Supported Profiles for File Export Manipulation ...24
Table 14. FileExportManipulation Methods ..25
Table 15. Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings ..27
Table 16. Parameters for Extrinsic Method FileExportServices.CreateExportedShare ...30
Table 17. Parameters for Extrinsic Method FileExportServices.ModifyExportedShare..34
Table 18. Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare ...39
Table 19. SMI-S File Export Supported Capabilities Patterns..51
Table 20. CIM Elements for File Export Manipulation ..52
Table 21. SMI Referenced Properties/Methods for SNIA_FileExportService...54
Table 22. SMI Referenced Properties/Methods for CIM_HostedService ...55
Table 23. SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configuration)55
Table 24. SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration) ..57
Table 25. SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES Capabilities)57
Table 26. SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities) ...58
Table 27. SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)..59
Table 28. SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined).......................................61
Table 29. SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Setting)...............................61
Table 30. SMI Referenced Properties/Methods for SNIA_FileShare (Exported File Share) ..63
Table 31. SMI Referenced Properties/Methods for SNIA_HostedShare..64
Table 32. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement ..65
Table 33. SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)..65
Table 34. SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)...66
Table 35. SMI Referenced Properties/Methods for SNIA_SharedElement ..66
Table 36. SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)..67
Table 37. SMI Referenced Properties/Methods for CIM_ConcreteDependency..67
Table 38. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..68
Table 39. Cascaded Storage..72
Table 40. CIM Elements for File Storage ...73
Table 41. SMI Referenced Properties/Methods for CIM_ResidesOnExtent...74
Table 42. Filesystem OperationalStatus...79
Table 43. Supported Profiles for Filesystem...80
Table 44. CIM Elements for Filesystem..91
Table 45. SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem) ...92
Table 46. SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)93
Table 47. SMI Referenced Properties/Methods for CIM_FileStorage ..93
 SMI-S 1.2.0 Revision 6 SNIA Technical Position xi

Table 48. SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable ..94
Table 49. SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access Required).................................94
Table 50. SMI Referenced Properties/Methods for CIM_Dependency ..95
Table 51. SMI Referenced Properties/Methods for SNIA_FileSystemSetting..95
Table 52. SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)..97
Table 53. SMI Referenced Properties/Methods for SNIA_LocalFileSystem ..97
Table 54. SMI Referenced Properties/Methods for CIM_LogicalFile ...99
Table 55. SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting ...100
Table 56. SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)105
Table 57. LocalFileSystem OperationalStatus ...114
Table 58. Supported Profiles for Filesystem Manipulation ...116
Table 59. Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modification....................................117
Table 60. Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings ..119
Table 61. Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize..120
Table 62. Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoalSettings123
Table 63. Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem ..127
Table 64. Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem...134
Table 65. Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem...138
Table 66. Filesystem Manipulation Supported Capabilities Patterns ...158
Table 67. CIM Elements for Filesystem Manipulation ..159
Table 68. SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService..163
Table 69. SMI Referenced Properties/Methods for CIM_HostedService ...164
Table 70. SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities ...165
Table 71. SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FS Configuration Capabilities)168
Table 72. SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities ..168
Table 73. SMI Referenced Properties/Methods for SNIA_ElementCapabilities (At Least One)...169
Table 74. SMI Referenced Properties/Methods for SNIA_ElementCapabilities (At Least One)...169
Table 75. SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Pre-defined FS Settings)170
Table 76. SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined FS Settings)171
Table 77. SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSystem)172
Table 78. SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesystem)...............................174
Table 79. SMI Referenced Properties/Methods for SNIA_LocalFileSystem ..175
Table 80. SMI Referenced Properties/Methods for CIM_HostedFileSystem ...177
Table 81. SMI Referenced Properties/Methods for CIM_FileStorage (Root Directory)..177
Table 82. SMI Referenced Properties/Methods for CIM_LogicalFile (Shared Files and Directories).....................................178
Table 83. SMI Referenced Properties/Methods for CIM_FileStorage (Shared Files and Directories)179
Table 84. SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting ...179
Table 85. SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)184
Table 86. SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined Local Access Settings).185
Table 87. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Configuration Capabilities)186
Table 88. SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities186
Table 89. SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File System)..............................188
Table 90. SMI Referenced Properties/Methods for CIM_HostedDependency (Pre-Defined) ..189
Table 91. SMI Referenced Properties/Methods for CIM_HostedDependency (Pre-Defined) ..189
Table 92. SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)190
Table 93. SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable ..190
Table 94. Supported Profiles for FileSystem Quotas ...196
Table 95. CIM Elements for FileSystem Quotas ..206
Table 96. SMI Referenced Properties/Methods for SNIA_FSDomainIdentity ..207
xii

Table 97. SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities..207
Table 98. SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord ..208
Table 99. SMI Referenced Properties/Methods for SNIA_FSQuotaIndication ...209
Table 100. SMI Referenced Properties/Methods for SNIA_FSQuotaManagementService ...210
Table 101. SMI Referenced Properties/Methods for SNIA_FSQuotaConfigEntry..211
Table 102. SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToElement ...212
Table 103. SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToPrincipal...212
Table 104. SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToTree ...212
Table 105. NetworkPort OperationalStatus ..222
Table 106. ProtocolEndpoint OperationalStatus ..222
Table 107. Supported Profiles for NAS Head...223
Table 108. CIM Elements for NAS Head..226
Table 109. SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS) ...229
Table 110. SMI Referenced Properties/Methods for CIM_BindsTo (TCP)...229
Table 111. SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint ..230
Table 112. SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)..230
Table 113. SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server) ..232
Table 114. SMI Referenced Properties/Methods for CIM_ConcreteComponent ...233
Table 115. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)233
Table 116. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)234
Table 117. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS) ...234
Table 118. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)...235
Table 119. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)...235
Table 120. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN) ...235
Table 121. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint..236
Table 122. SMI Referenced Properties/Methods for CIM_LANEndpoint ...237
Table 123. SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS) ...239
Table 124. SMI Referenced Properties/Methods for CIM_NetworkPort...240
Table 125. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS) ...242
Table 126. SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial) ..243
Table 127. SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extents)...245
Table 128. SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks) ...246
Table 129. SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)..246
Table 130. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint ..246
Table 131. NetworkPort OperationalStatus ..255
Table 132. ProtocolEndpoint OperationalStatus ..255
Table 133. Supported Profiles for Self-contained NAS System ...255
Table 134. CIM Elements for Self-contained NAS System ..258
Table 135. SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS) ...261
Table 136. SMI Referenced Properties/Methods for CIM_BindsTo (TCP)...261
Table 137. SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint ..261
Table 138. SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)..262
Table 139. SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server) ..263
Table 140. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)265
Table 141. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)265
Table 142. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS) ...266
Table 143. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)...266
Table 144. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)...266
Table 145. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN) ...267
 SMI-S 1.2.0 Revision 6 SNIA Technical Position xiii

Table 146. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint..267
Table 147. SMI Referenced Properties/Methods for CIM_LANEndpoint ...268
Table 148. SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS) ...270
Table 149. SMI Referenced Properties/Methods for CIM_NetworkPort...271
Table 150. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS) ...273
Table 151. SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks) ...274
Table 152. SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)..275
Table 153. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint ..275
xiv

List of Figures

Figure 1. Experimental Maturity Level Tag..vi
Figure 2. Implemented Maturity Level Tag ..vi
Figure 3. Stable Maturity Level Tag.. vii
Figure 4. Deprecated Tag... vii
Figure 5. File Export Instance.. 8
Figure 6. File Export Manipulation Subprofile Instance ... 18
Figure 7. Capabilities and Settings for Exported File Share Creation ... 21
Figure 8. File Storage Instance ... 69
Figure 9. Cascading File Storage .. 71
Figure 10. Filesystem Instance.. 76
Figure 11. LocalFileSystem Creation Instance Diagram ... 108
Figure 12. Capabilities and Settings for Filesystem Creation ... 113
Figure 13. Filesystem Quotas Instance Diagram .. 196
Figure 14. NAS Head Profiles and Subprofiles ... 216
Figure 15. NAS Head Instance.. 217
Figure 16. NAS Storage Instance.. 219
Figure 17. NAS Head Cascading Support Instance .. 221
Figure 18. Self-Contained NAS Profile and Subprofiles .. 250
Figure 19. Self-Contained NAS Instance... 251
Figure 20. NAS Storage Instance.. 253
Figure 21. State Transitions From LogicalDisk to FileShare ... 278
 SMI-S 1.2.0 Revision 6 SNIA Technical Position xv

xvi

Foreword

The Filesystems Part of the Storage Management Technical Specifications contains Profiles and other clauses for
management of devices and programs that support filesystems. A filesystem is a specific formatting of storage for
storing and accessing files on external storage. This part describes how filesystems are created, modified and
deleted, as well as how they can be found and reported. This part also describe modeling for how filesystems are
exported for access from remote systems. The filesystem profiles use information from other parts of the Storage
Management Technical Specifications. Specifically, they reference profiles in the Common Profiles and the Block
Devices parts of the specification. This part describes how these profiles are used in filesystem profiles.

Parts of this Standard
This standard is subdivided in the following parts:

• Storage Management Technical Specification, Part 1 Common Architecture

• Storage Management Technical Specification, Part 2 Common Profiles

• Storage Management Technical Specification, Part 3 Block Devices

• Storage Management Technical Specification, Part 4 File Systems

• Storage Management Technical Specification, Part 5 Fabric

• Storage Management Technical Specification, Part 6 Host Elements

• Storage Management Technical Specification, Part 7 Information Lifecycle Management

• Storage Management Technical Specification, Part 8 Media Libraries

Acknowledgements
The SNIA SMI Technical Steering Group, which developed and reviewed this standard, would like to recognize the
significant contributions made by the following members:

Organization RepresentedName of Representative
Brocade Communications SystemsJohn Crandall
EMC Corporation ...Kamesh Aiyer
...Edgar St. Pierre
Hewlett-Packard...Steve Peters
Hitachi Data Systems...Steve Quinn
IBM...Duane Baldwin
...Jack Gelb
...Mike Walker
iStor Networks, Inc. ..Scott Baker
Network Appliance ...Alan Yoder
Sun Microsystems..Mark Carlson
Symantec ...Steve Hand
...Paul von Behren
SNIA Web Site
Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org
 SMI-S 1.2.0 Revision 6 SNIA Technical Position xvii

http://www.snia.org

SNIA Address
Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage
Networking Industry Association, 500 Sansome Street, Suite #504, San Francisco, CA 94111, U.S.A.
xviii

http://www.snia.org/feedback

 Scope
Clause 1: Scope

The Filesystems Part of the Storage Management Technical Specification defines management profiles for
Autonomous (top level) profiles for programs and devices whose central function is providing support and access
to file data. In addition, it provides documentation of component profiles (or subprofiles) that deal with filesystems
and management interface functions that may be used by other autonomous profiles not included in this part of the
specification.

There is an informative annex that describes how storage is mapped from block storage to file shares exported by
the file system and the mechanisms involved in that establishing those mappings. This annex is recommended for
getting an overview of how the filesystem models work.

This version of the Filesystems part of the Storage Management Technical Specification includes two autonomous
profiles:

• The NAS Head Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users and gets
its storage from a SAN (array devices attached to the NAS Head device).

• The Self-Contained NAS Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users, but gets
its storage from disk drives that are internal to the NAS device (instead of externally attached arrays).

In addition to these autonomous profiles, this part of the specification defines a number of component profiles,
which are used by the autonomous NAS profiles and might also be used by other autonomous profiles that feature
filesystem elements and services. The component profiles (subprofiles) defined in this version of the specification
include:

• The File Export (component) Profile

This component profile defines the elements used to model the exporting of filesystems or directories for any
autonomous profile that exports file data to remote systems.

• The File Export Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
the file shares (the representation of exported filesystems or directories) for any autonomous profile that
provides manipulation of exported filesystems or directories.

• The File Storage (component) Profile

This component profile defines the elements used to model the storage of filesystems on logical disks. This
profile does not have services for maintaining the mapping of filesystems to logical disks. These services are
addressed in the Filesystem Manipulation Profile.

• The Filesystem (component) Profile

This component profile defines the elements used to model filesystems and its related elements, such as
logical files, directories and information on how the filesystem is addressed when mounted to a specific
system. The services for defining and maintaining the information in the Filesystem Profile are contained in the
Filesystem Manipulation Profile.

• The Filesystem Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
filesystems and their related elements.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 1

Scope
• The Filesystem Quotas (component) Profile

This component profile defines the elements used to model the elements associated with creating, maintaining
and reporting on quotas on various filesystem elements.
2

 Normative References
Clause 2: Normative References

2.1 General
The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

2.2 Approved references
ISO/IEC 14776-452, SCSI Primary Commands - 2 (SPC-2) [ANSI INCITS.351-2001]

ISO/IEC 24775 Storage Management

2.3 References under development
Storage Management Technical Specification, Part 1 Common Architecture

Storage Management Technical Specification, Part 2 Common Profiles

Storage Management Technical Specification, Part 3 Block Devices

ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]

2.4 Other references
DMTF DSP0214:2004 CIM Operations over HTTP
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 3

Normative References
4

 Terms and definitions
Clause 3: Terms and definitions

3.1 General
For the purposes of this document, the terms and definitions given in Storage Management Technical
Specification, Part 1 Common Architecture and the following apply.

3.2 Definitions

3.2.1 CIFS
Common Internet File System.

3.2.2 directory
A subtree within a filesystem. A directory may contain files or other directories.

3.2.3 file
A logical file in a filesystem.

3.2.4 file server
A system configuration which supports the exporting of files and files systems. A file server may be a virtual
system element.

3.2.5 file share
Sharing protocols applied to a directory. A directory is exported to remote users through a file share.

3.2.6 filesystem
A filesystem is the way in which files are named and where they are placed logically for storage and retrieval.

3.2.7 FS quota
A quota (hard or soft limit) placed on filesystem resource usage.

3.2.8 logical disk
This refers to block storage on which filesystems are built. A logical disk would be formatted for a particular
filesystem.

3.2.9 NAS
Network Attached Storage. In the context of this specification this refers to devices that serve files to a network.

3.2.10 NAS Head
A NAS device that gets its physical storage from one or more arrays that are externally attached to the NAS device.

3.2.11 NFS
Network File System.

3.2.12 Self-Contained NAS
A NAS device that has its own internal (to the NAS device) storage.

3.2.13 quota
A hard or soft limit defined for users, user groups or resource collections on the amount of resources that may be
consumed.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 5

Terms and definitions
6

 File Export Profile
STABLE

Clause 4: File Export Profile

4.1 Description

4.1.1 Synopsis

Profile Name: File Export

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: SNIA_FileShare

Scoping Class: CIM_ComputerSystem

4.1.2 Overview

The File Export Profile is a subprofile for autonomous profiles that support exporting of filesystems. Specifically, in
this release of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles. In some of these autonomous
profiles the File Export is required. In others it may not be. See the parent profile to see if this profile is required or
not.

EXPERIMENTAL

NOTE: The ExportedFileShareSetting is defined as SNIA_ classes. While this is defined to hold new properties,
the CIM version of this class will be supported for backward compatibility.

EXPERIMENTAL

4.1.3 Implementation

Figure 5 illustrates the classes mandatory for modeling the export of File Shares for the filesystem profiles. This
profile is supported by the Self-contained NAS and the NAS Head Profiles. Figure 1 shows the ComputerSystem
that hosts the LocalFileSystem (“Filesystem Host”) as different from the ComputerSystem hosting the FileShare
(“File server”). While they may be different ComputerSystems, they may also be the same ComputerSystem
instance.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 7

File Export Profile
The referencing profile shall model any File Shares that have been exported to the network. A File Share shall be
represented as a FileShare instance with associations to the ComputerSystem that hosts the share (via
HostedShare), to the ExportedFileShareSetting (via ElementSettingData) and to the ProtocolEndpoint (via
SAPAvailableForElement) through which the Share can be accessed.

EXPERIMENTAL

The FileShare also has a SharedElement association to the LocalFileSystem on which the share is based.

EXPERIMENTAL

In addition, there may also be an association between the FileShare and the LogicalFile that the share represents
(via ConcreteDependency). This is provided for backward compatibility with SMI-S 1.1.0.

4.1.3.1 Associations to FileShare
The SAPAvailableForElement is a many to many association. That is, multiple FileShares may be exported through
the same ProtocolEndpoint and multiple ProtocolEndpoints may support the same FileShare.

The SharedElement association between the FileShare and a LocalFileSystem is many to one association. Zero or
more FileShares may be associated to one LocalFileSystem. But each FileShare shall only reference one
LocalFileSystem.

Figure 5: File Export Instance

File Export
Profile

File server

ComputerSystem

LogicalFile
(for Backward Compatibility to 1.1)

FileShare
NFS or CIFS SNIA_ExportedFileShareSetting

HostedShare SNIA_SharedElement

ProtocolEndPoint

ProtocolIFType = 4200 | 4201
('NFS" or "CIFS")

LocalFileSystem

Filesystem Host

ComputerSystem

FileStorage
(For Backward Compatibility to 1.1)

HostedFileSystem

SAPAvailableForElement

*

*

1

0..*

ElementSettingData
1 1

ConcreteDependency
(Optional)

(For Backward Compatibility to 1.1)

1

0..*
8

 File Export Profile
The ConcreteDependency association between the FileShare and the LogicalFile is a many to one association.
Zero or more FileShares may be associated to one LogicalFile. But each FileShare shall only reference one
LogicalFile.

The ElementSettingData association between the FileShare and the ExportedFileShareSetting is a one to one
association. That is, a FileShare shall have an ExportedFileShareSetting and that ExportedFileShareSetting shall
be associated to exactly one FileShare.

4.2 Health and Fault Management Consideration
The File Export Profile supports state information (e.g., OperationalStatus) on the following element of the model:

• FileShares that are exported (See section 4.2.1)

4.2.1 OperationalStatus for FileShares

4.3 Cascading Considerations
None

4.4 Supported Profiles, Subprofiles, and Packages

4.5 Methods of the Profile

4.5.1 Extrinsic Methods of the Profile

None

Table 1: FileShare OperationalStatus

OperationalStatus Description

OK FileShare is online

Error FileShare has a failure. This could be due to a Filesys-
tem failure.

Stopped FileShare is disabled

Unknown

Table 2: Supported Profiles for File Export

Registered Profile Names Mandatory Version

Indication Yes 1.2.0
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 9

File Export Profile
4.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

4.6 Client Considerations and Recipes

4.6.1 List Existing FileShares on the system

A client shall be able to find FileShares attached to a system (e.g., a file server) by doing an association traversal
from the ComputerSystem that represents the system using the HostedShare association.

4.7 Registered Name and Version
File Export version 1.2.0
10

 File Export Profile
4.8 CIM Elements

4.8.1 CIM_ConcreteDependency

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Optional

Table 3: CIM Elements for File Export

Element Name Requirement Description

 CIM_ConcreteDependency (4.8.1) Optional Represents an association between a
FileShare element and the actual shared
LogicalFile or Directory on which it is based.
This is provided for backward compatibility.

 CIM_ElementSettingData (FileShare) (4.8.2) Mandatory Associates a FileShare and
ExportedFileShareSetting elements.

 SNIA_ExportedFileShareSetting (Setting)
(4.8.3)

Mandatory The configuration settings for an Exported
FileShare that is a setting for a FileShare
available for exporting.

 CIM_FileShare (Exported File Share) (4.8.4) Mandatory Represents the sharing characteristics of a
particular file element.

 CIM_HostedShare (4.8.5) Mandatory Represents that a shared element is hosted
by a Computer System.

 CIM_SAPAvailableForElement (4.8.6) Mandatory Represents the association between a
ServiceAccessPoint to the shared element
that is being accessed through that SAP.

 SNIA_SharedElement (4.8.7) Mandatory Associates a FileShare to the
LocalFileSystem on which it is based.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FileShare
AND
SourceInstance.CIM_FileShare::OperationalS
tatus[*] <>
PreviousInstance.CIM_FileShare::Operational
Status[*]

Optional Experimental CQL - Change of Status of a
FileShare. PreviousInstance is optional, but
may be supplied by an implementation of the
Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FileShare
AND SourceInstance.OperationalStatus[*] <>
PreviousInstance.OperationalStatus[*]

Mandatory Deprecated WQL - Change of Status of a
FileShare. PreviousInstance is optional, but
may be supplied by an implementation of the
Profile.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 11

File Export Profile
Table 4 describes class CIM_ConcreteDependency.

4.8.2 CIM_ElementSettingData (FileShare)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Mandatory

Table 5 describes class CIM_ElementSettingData (FileShare).

4.8.3 SNIA_ExportedFileShareSetting (Setting)

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 4: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Antecedent Mandatory The LogicalFile that is being shared.

Dependent Mandatory The Share that represents the LogicalFile being shared.

Table 5: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)

Properties Flags Requirement Description & Notes

IsDefault N Optional Not Specified in this version of the Profile

IsCurrent N Optional Not Specified in this version of the Profile

IsNext N Optional Not Specified in this version of the Profile

IsMinimum N Optional Not Specified in this version of the Profile

IsMaximum N Optional Not Specified in this version of the Profile

ManagedElement Mandatory The FileShare.

SettingData Mandatory The settings define on creation of the FileShare.
12

 File Export Profile
Table 6 describes class SNIA_ExportedFileShareSetting (Setting).

4.8.4 CIM_FileShare (Exported File Share)

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 6: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Setting)

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique ID for the setting.

ElementName Mandatory A user-friendly name for the Setting.

FileSharingProtocol Mandatory The file sharing protocol supported by this share. NFS (2)
and CIFS (3) are the supported values.

ProtocolVersions Mandatory An array of the versions of the supported file sharing
protocol. A share may support multiple versions of the
same protocol.

InitialEnabledState N Optional Valid values are '1|2|3|7|8|9' for ('Other' | 'Enabled' |
'Disabled' | 'In Test' | 'Deferred' | 'Quiesce')

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is '1'.

DefaultUserIdSuppor
ted

N Optional Valid values are '2|3|4' for ('No Default User Id' | 'System-
Specified Default User Id' | 'Share-Specified Default User
Id').

RootAccess N Optional Valid values are '2|3' for ('No Root Access' | 'Allow Root
Access').

AccessPoints N Optional Valid values are '2|3|4|5' for ('None' | 'Service Default' | 'All' |
'Named Points').

Caption N Optional Not Specified in this version of the Profile

Description N Optional Not Specified in this version of the Profile

DefaultReadWrite N Optional Not Specified in this version of the Profile

DefaultExecute N Optional Not Specified in this version of the Profile

ExecuteSupport N Optional Not Specified in this version of the Profile

WritePolicy N Optional Not Specified in this version of the Profile
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 13

File Export Profile
Table 7 describes class CIM_FileShare (Exported File Share).

4.8.5 CIM_HostedShare

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 7: SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.

Name Mandatory This shall be an opaque string that uniquely identifies the
path to the directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is
useful when importing but less so when exporting.

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in
section 4.2.1

Description N Optional This a comment describing the file share.

Caption N Optional Not Specified in this version of the Profile

InstallDate N Optional Not Specified in this version of the Profile

StatusDescriptions N Optional Not Specified in this version of the Profile

HealthState N Optional Not Specified in this version of the Profile

EnabledState N Optional Not Specified in this version of the Profile

OtherEnabledState N Optional Not Specified in this version of the Profile

RequestedState N Optional Not Specified in this version of the Profile

EnabledDefault N Optional Not Specified in this version of the Profile

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile

RequestStateChange
()

Optional Not Specified in this version of the Profile
14

 File Export Profile
Table 8 describes class CIM_HostedShare.

4.8.6 CIM_SAPAvailableForElement

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Mandatory

Table 9 describes class CIM_SAPAvailableForElement.

4.8.7 SNIA_SharedElement

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Mandatory

Table 10 describes class SNIA_SharedElement.

Table 8: SMI Referenced Properties/Methods for CIM_HostedShare

Properties Flags Requirement Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile

Dependent Mandatory The Share that is hosted by a Computer System

Antecedent Mandatory The Computer System that hosts the FileShare.

Table 9: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The element that is made available through a SAP. In the
File Export subprofile, these are FileShares configured for
either export.

AvailableSAP Mandatory The Service Access Point that is available to this FileShare.

Table 10: SMI Referenced Properties/Methods for SNIA_SharedElement

Properties Flags Requirement Description & Notes

SystemElement Mandatory The LocalFileSystem that is exporting some contained file
or directory as a FileShare.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 15

File Export Profile
STABLE

SameElement Mandatory The FileShare that exposes a contained file or directory of
the LocalFileSystem as an exported object.

Table 10: SMI Referenced Properties/Methods for SNIA_SharedElement

Properties Flags Requirement Description & Notes
16

 File Export Manipulation Subprofile
EXPERIMENTAL

Clause 5: File Export Manipulation Subprofile

5.1 Description

5.1.1 Synopsis

Profile Name: File Export Manipulation

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: FileExportService

Scoping Class: File server ComputerSystem element (with Dedicated property containing ”16”)

5.1.2 Overview

The File Export Manipulation Subprofile is a subprofile of autonomous profiles that support filesystems. It makes
use of elements of the Filesystem subprofiles and supports creation, modification and deletion of FileShares that
are exported by the File Export subprofile. A number of other profiles and subprofiles also make use of elements of
the Filesystem subprofile and will be referred to in this specification as “filesystem related profiles” -- these include
but are not limited to the Filesystem subprofile, the Filesystem Manipulation subprofile, the File Export subprofile,
the NAS Head profile, the Self-Contained NAS profile, and so on.

In this release of SMI-S, the autonomous profiles that use the File Export Manipulation Subprofile are the NAS
Head and Self-Contained NAS profiles.

Annex A:, "(Informative) State Transitions from Storage to File Shares" describes the states that a storage element,
initially an unused LogicalDisk, goes through before it can be exported as a CIFS or NFS file share. The
Filesystem Manipulation subprofile provides the methods to create the filesystem as a LocalFileSystem and make
it locally accessible at a file server ComputerSystem (associated to the file server ComputerSystem via the
LocalAccessAvailable association). This profile (the File Export Manipulation Profile) provides the methods to
"Export a file share" from the file server that allows the file server to share its contents with remote operational
users. Sharing the contents of a LocalFileSystem can be from the root directory or some contained internal
directory, or some contained internal file. When a directory (root or otherwise) is shared, all files and sub-directories
of that directory are also automatically shared (recursively). The semantics of sharing are ultimately controlled by
the Authorization profiles and by the filesystem implementation, so sharing cannot violate the access rules
specified internally to the filesystem. In addition to specifying the object (file or directory) to be shared, the
filesystem implementation shall specify the protocol to use (CIFS, NFS, or other protocol) for sharing.

In SMI-S we use a FileShare element to represent the externally accessible file share. A SharedElement
association will exist between the FileShare and the LocalFileSystem. The FileShare.Name property indicates the
shared object (it is the filesystem-specific path to the contained file or directory that is being shared). The format of
Name is specific to the filesystem type indicated by the associated FileSystemSetting.ActualFileSystemType
property; the LocalFileSystem.PathnameSeparatorString property indicates the "separator string" that may be used
to split the PathName into the components of a hierarchical path name from the root of the associated file system
(indicated by the LocalFileSystem).

Note: Some incompatibilities with SMI-S 1.1 (in which this profile was also "EXPERIMENTAL") have been
introduced in the parameters to some of the extrinsic methods.
SMI-S 1.2.0 Revision 6 SNIA Technical Position 17

File Export Manipulation Subprofile
5.1.3 Instance Diagrams

5.1.3.1 File Export Creation classes and associations
Figure 6 illustrates the constructs involved with creating a FileShare for a File Export subprofile. This summarizes

the mandatory classes and associations for this subprofile. Specific areas are discussed in later sections.

The FileExportService provides configuration support for exporting elements ('files' and ’directories’) of a
LocalFileSystem as FileShare elements. A FileExportService is hosted by the file server ComputerSystem that
exports the directories/files (these would be the file server ComputerSystems in the Filesystem subprofile that were
given local access to the filesystem). FileShares are accessed through ServiceAccessPoint(s) hosted by the file
server ComputerSystem. FileShares are associated with the FileExportService via ServiceAffectsElement and with
the ServiceAccessPoint(s) via SAPAvailableToElement.

If a filesystem related profile supports the File Export Manipulation Subprofile, it shall have at least one
FileExportService element. This FileExportService shall be hosted on the top level ComputerSystem of the File
Export subprofile (which shall be a file server ComputerSystem element in the filesystem related profiles). The
methods offered are CreateFileShare, ModifyFileShare, and ReleaseFileShare.

Associated to the FileExportService (via ElementCapabilities) shall be one FileExportCapabilities element that
describes the capabilities of the service. It identifies the methods supported, whether the methods support Job

Figure 6: File Export Manipulation Subprofile Instance

ExportedFileShareCapabilities

FileSharingProtocol
// ProtocolVersions[]

SupportedProperties[]
CreateGoalSettings()

FileExportService

CreateExportedShare()
ModifyExportedShare()

ReleaseExportedShare()

FileShare

Name=”path to shared
element”

ElementSettingData

ExportedFileShareSetting

FileSharingProtocol
// ProtocolVersions[]
InitialEnabledState
OtherEnabledState
DefaultReadWrite
DefaultExecute
ExecuteSupport

DefaultUserIdSupported
RootAccess
WritePolicy

AccessPoints

ElementCapabilities

LogicalFile
(or Directory)

(BC 1.1)

SharedElement

ProtocolEndPoint

ProtocolIFType="Other"
OtherTypeDescription='NFS"

or "CIFS"

SAPAvailableForElement

Dedicated[]=”File Server” 16

ComputerSystem

HostedShare

ServiceAffectsElement

HostedService

FileExportCapabilities

FileSharingProtocols[]
// ProtocolVersions[]

SynchronousExportMethods[]
AsynchronousExportMethods[]

InitialEnabledState
ElementCapabilities

HostedAccessPoint

ExportedFileShareSetting

SettingsDefineCapabilities

FileStorage
(BC 1.1)

LocalFileSystem

ConcreteDependency
(BC 1.1)

*

1

*

*
1

1

1

1

ElementCapabilities
Characteristics={“Default”}

1

1

*

1

1

1

1

1

1

*

*

*

1

*

1

*

*

1

LocalAccessAvailable
18

 File Export Manipulation Subprofile
Control or not, the protocols that the created file share can support, and whether or not the file share shall be made
available after creation.

For each file sharing protocol that is supported, there shall be one ExportedFileShareCapabilities element that
defines the range of capabilities supported for that particular file sharing protocol. The
ExportedFileShareCapabilities elements shall be associated via ElementCapabilities to the FileExportService.
One of the ExportedFileShareCapabilities may be identified as a default (by setting the property
ElementCapabilities.IsDefault). The default ExportedFileShareCapabilities element also indicates the default file
sharing protocol to be supported. These defaults apply if any of the extrinsic methods of the FileExportService are
invoked with a NULL value for the Capabilities parameter.

Each ExportedFileShareCapabilities element is defined by a set of ExportedFileShareSettings that are associated
to it by the SettingsDefineCapabilities association. These ExportedFileShareSettings may be structured to indicate
a range of supported and unsupported property values and shall have the same value for the FileSharingProtocol
property as the ExportedFileShareCapabilities element.

For the convenience of clients the File Export Manipulation subprofile may populate a set of “pre-defined”
ExportedFileShareSettings for each of the ExportedFileShareCapabilities. These shall be associated to the
ExportedFileShareCapabilities via the SettingsDefineCapabilities association -- the association shall have its
SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and
theSettingsDefineCapabilities.ValueRole property set to "Supported".

Note: That they are pre-defined and therefore exist at all times does not imply that these
ExportedFileShareSettings must be made persistent by the implementation.

The ExportedFileShareCapabilities instance supports the CreateGoalSettings method, described in detail in 5.5.1,
"Extrinsic Methods of the Profile". This method supports establishing one client-defined ExportedFileShareSettings
(as a goal).

CreateGoalSettings takes an array of embedded SettingData elements as the input TemplateGoalSettings and
SupportedGoalSettings parameters and may generates an array of embedded SettingData elements as the output
SupportedGoalSettings parameter. However, in this profile, we only use a single embedded
ExportedFileShareSettings element in the input parameters (both TemplateGoalSettings and
SupportedGoalSettings) and generate a single valid embedded ExportedFileShareSettings element as output
(SupportedGoalSettings). If a client supplies a NULL ExportedFileShareSettings (i.e., the empty string) as input
to this method, the returned ExportedFileShareSettings structure shall be a default setting for the parent
ExportedFileShareCapabilities. If the input (the embedded ExportedFileShareSettings) is not NULL, the method
may return a “best fit” to the requested setting. The client may iterate on the CreateGoalSettings method until it
acquires a setting that suits its needs. This embedded settings structure may then be used when the
CreateFileShare or ModifyFileShare methods are invoked. The details of how iterative negotiation can work are
discussed in 5.5.1.1, "ExportedFileShareCapabilities.CreateGoalSettings". Note that the file sharing protocol
indicated by the FileSharingProtocol property is invariant in all of these interactions. It is an error if the client
changes the FileSharingProtocol property for a Setting and submits it as a goal to the Capabilities element that
provided the original Setting.

Note: It is not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back
mechanism is needed. This profile does not require negotiation -- an implementation may support only
a set of pre-defined correlated point settings that a client can preload and use without modification. The
implementation could also support only settings whose properties are selectable from an arithmetic
progression or from a fixed enumeration, so that the client may construct a goal setting that is
guaranteed to be supported without negotiation.

Note: That a client has obtained a goal setting supported by the implementation does not guarantee that a
create or modify request will succeed. Such a setting only specifies a supported static configuration not
that the current dynamic environment has the resources to implement a specific request.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 19

File Export Manipulation Subprofile
Armed with the goal (the embedded ExportedFileShareSettings element), a reference to a LocalFileSystem, and a
path to a file or directory contained within that LocalFileSystem, the client can now use the CreateFileShare
method to create the file share for export. The CreateFileShare method creates a FileShare element, and a new
ExportedFileShareSettings instance as well as several necessary associations. These associations are:

• HostedFileShare association between the FileShare and the file server ComputerSystem that hosts it.

• SharedElement association between the FileShare and the LocalFileSystem. In addition, the FileShare
element specifies the pathname for the shared element (file or directory) relative to the root of the
LocalFileSystem (using the Name property).

• ElementSettingData to associate the FileShare to the ExportedFileShareSetting defined for it

• For backward compatibility with the SMI-S 1.1 File Export subprofile:

• The file or directory of the LocalFileSystem that is being shared is represented as a LogicalFile

• A FileStorage association is created between the LogicalFile and the LocalFileSystem

• A ConcreteDependency association is created between the FileShare and the LogicalFile.

• In addition, optional parameters to the method can cause other classes to be created:

• DefaultUserId could create a Privilege (see Clause 5: File Export Manipulation Subprofile of Storage
Management Technical Specification, Part 2 Common Profiles) associated to the FileShare as
AuthorizationTarget and to a UserIdentity as AuthorizationSource

• RootAccessHosts array parameter could create root access Privileges from a number of remote Host
ComputerSystems to the FileShare (also using the Security Authorization subprofile)

• AccessPointPorts array parameter could create SAPAvailableForElement associations to a number of
ProtocolEndPoints representing TCP/IP ports through which access is provided to this FileShare.

The ReleaseFileShare method is straightforward -- it deletes the FileShare and the ExportedFileShareSetting, and
the associations to those elements (HostedFileShare, the ElementSettingData element, SharedElement, all the
SAPAvailableForElement associations and all Privileges that reference this FileShare as an AuthorizationTarget).
Any ComputerSystem elements created to represent remote hosts with root access to this FileShare that have no
further references may also be removed. A LogicalFile element associated to the LocalFileSystem via FileStorage
will not necessarily be deleted (the implementation may keep track of the other users of this element and be able to
delete it). For similar reasons, a ProtocolEndPoint created as a result of being specified in the AccessPointPorts
parameter may not be deleted. In both these cases, if the element has no associations other than the scoping one
(FileStorage to LocalFileSystem for LogicalFile and HostedAccessPoint to ComputerSystem for ProtocolEndPoint)
the provider may stop surfacing it at any time.

The ModifyFileShare method modifies an existing FileShare -- this requires a new ExportedFileShareSetting
element to be used as a goal. But not any ExportedFileShareSetting will do; the client shall use the
ExportedFileShareCapabilities.CreateGoalSettings method which would have been used to create the file share,
or an appropriate compatible ExportedFileShareCapabilities instance. The CreateGoalSettings method is used to
establish a new ExportedFileShareSetting goal (as with the original file share creation, it may be necessary to
iterate on the CreateGoalSettings method). Since only properties controlled by Settings can be changed by
ModifyFileShare, elements surfaced as a side-effect of creating or modifying a file share (i.e., any
ComputerSystems created to represent remote hosts with root access or an ProtocolEndPoints created to
represent access points for the share, or any user id created as a default user id) cannot be deleted, though new
ones can be created and/or added), the effect of ModifyFileShare is to change some properties of the FileShare or
of the associated ExportedFileShareSetting.
20

 File Export Manipulation Subprofile
5.1.3.2 Finding File Export Services, Capabilities and Pre-defined Settings
When creating a file share the first step is to determine what can be created. Figure 7:, "Capabilities and Settings
for Exported File Share Creation" illustrates an instance diagram showing the elements that shall exist for
supporting fileshare creation.

At least one FileExportService shall exist if the File System Profile has implemented the File Export Manipulation
Subprofile. The instance(s) of this service can be found by following the HostedService association and filtering on
the target class of FileExportService.

Note: If no service is found from the Top Level file server ComputerSystem, the client should look for other
component file server ComputerSystems that may be hosting the service. This is not recommended,
but permitted for backward compatibility with SMI-S 1.1.

An instance of the FileExportCapabilities shall be associated to the FileExportService via the ElementCapabilities
association. A client should follow this association (filtering on the result value of "CIM_FileExportCapabilities") to
inspect the configuration capabilities that are supported. The client would choose between the file sharing
protocols specified in the array property FileSharingProtocol.

For each entry in the FileSharingProtocol array, there shall be one instance of ExportedFileShareCapabilities with
the same value for the FileSharingProtocol property that shall be associated to the FileExportService using the
ElementCapabilities association (filtering on the result value of "CIM_ExportedFileShareCapabilities"). This
ExportedFileShareCapabilities element shall specify the supported capabilities for that FileSharingProtocol using a

Figure 7: Capabilities and Settings for Exported File Share Creation

ExportedFileShareCapabilities

FileSharingProtocol
// ProtocolVersions[]

SupportedProperties[]
CreateGoalSettings()

FileExportService

CreateExportedShare()
ModifyExportedShare()

ReleaseExportedShare()

FileShare
Name=”path to

LogicalFile”

LogicalFile
(or Directory)

(BC 1.1)

SharedElement

ProtocolEndPoint

ProtocolIFType="Other"
OtherTypeDescription='NFS"

or "CIFS"

SAPAvailableForElement

Dedicated[]=”File Server” 16

ComputerSystem

HostedShare

ServiceAffectsElement

HostedService

FileExportCapabilities

FileSharingProtocols[]
// ProtocolVersions[]

SynchronousExportMethods[]
AsynchronousExportMethods[]

InitialEnabledState

ElementCapabilities

HostedAccessPoint

ExportedFileShareSetting

FileSharingProtocol

FileStorage
(BC 1.1)

LocalFileSystem

ConcreteDependency
(BC 1.1)

ExportedFileShareCapabilities

FileSharingProtocol
// ProtocolVersions[]

SupportedProperties[]
CreateGoalSettings()

ElementCapabilities

ElementCapabilities
Characteristics={“Default”}

ExportedFileShareSetting

FileSharingProtocol

SettingsDefineCapabilities

ElementSettingData

1
1

*

LocalAccessAvailable
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 21

File Export Manipulation Subprofile
collection of ExportedFileShareSetting elements. These ExportedFileShareSetting shall be associated the
ExportedFileShareCapabilities via SettingsDefineCapabilities.

An implementation may support a set of pre-defined ExportedFileShareSetting that clients could use directly if
desired. The SettingsDefineCapabilities association from the ExportedFileShareCapabilities to the pre-defined
ExportedFileShareSettings shall have the PropertyPolicy property be "Correlated", the ValueRole property be
"Supported" and the ValueRange property be "Point". Other pre-defined combinations of property values may be
specified by ExportedFileShareSetting whose SettingsDefineCapabilities association has the PropertyPolicy be
"Independent", ValueRole property be "Supported" and the ValueRange array property contain "Minimums",
"Maximums", or "Increment". These settings can be used by the client to compose ExportedFileShareSetting that
are more likely to be directly usable.

5.2 Health and Fault Management Considerations
The key elements of this profile are the FileExportService and the file server ComputerSystem.

5.2.1 OperationalStatus for FileExportService

Table 11: Operational Status for FileExport Service

Primary OperationalStatus Description

2 “OK” The service is running with good status

3 “Degraded” The service is operating in a degraded mode. This could be due to the
health state of the underlying file server, or of the storage being
degraded or in error.

4 “Stressed” The services resources are stressed

5 “Predictive Failure” The service might fail because some resource or component is predicted
to fail

6 “Error” An error has occurred causing the service to become unavailable. Oper-
ator intervention through SMI-S to restore the service may be possible.

6 “Error” An error has occurred causing the service to become unavailable. Auto-
mated recovery may be in progress.

7 “Non-recoverable Error” The service is not functioning. Operator intervention through SMI-S will
not fix the problem.

8 “Starting” The service is in process of initialization and is not yet available opera-
tionally.

 9 “Stopping” The service is in process of stopping, and is not available operationally.

10 “Stopped” The service cannot be accessed operationally because it is stopped -- if
this did not happened because of operator intervention or happened in
real-time, the OperationalStatus would have been “Lost Communication”
rather than “Stopped”.

11 “In Service” The service is offline in maintenance mode, and is not available opera-
tionally.
22

 File Export Manipulation Subprofile
5.2.2 OperationalStatus for File Server ComputerSystem

13 “Lost Communications” The service cannot be accessed operationally -- if this happened
because of operator intervention it would have been “Stopped” rather
than “Lost Communication”.

14 “Aborted” The service is stopped but in a manner that may have left it in an incon-
sistent state.

15 “Dormant” The service is offline; and the reason for not being accessible is
unknown.

16 “Supporting Entity in Error” The service is in an error state, or may be OK but not accessible,
because a supporting entity is not accessible.

Table 12: Operational Status for File Server ComputerSystem

Primary OperationalStatus Description

2 “OK” The file server is running with good status

3 “Degraded” The file server is operating in a degraded mode. This could be
due to the health state of some component of the Computer-
System, due to load by other applications, or due to the health
state of backend or front-end network interfaces.

4 “Stressed” The file server resources are stressed

5 “Predictive Failure” The file server might fail because some resource or compo-
nent is predicted to fail

6 “Error” An error has occurred causing the ComputerSystem to
become unavailable. Operator intervention through SMI-S to
restore the service may be possible.

6 “Error” An error has occurred causing the ComputerSystem to
become unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error” The file server ComputerSystem is not functioning. Operator
intervention through SMI-S will not fix the problem.

8 “Starting” The ComputerSystem is in process of initialization and is not
yet available operationally.

 9 “Stopping” The ComputerSystem is in process of stopping, and is not
available operationally.

Table 11: Operational Status for FileExport Service

Primary OperationalStatus Description
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 23

File Export Manipulation Subprofile
5.3 Cascading Considerations
Not Applicable.

5.4 Supported Subprofiles and Packages

10 “Stopped” The ComputerSystem cannot be accessed operationally
because it is stopped -- if this did not happened because of
operator intervention or happened in real-time, the Operation-
alStatus would have been “Lost Communication” rather than
“Stopped”.

11 “In Service” The ComputerSystem is offline in maintenance mode, and is
not available operationally.

13 “Lost Communications” The ComputerSystem cannot be accessed operationally -- if
this happened because of operator intervention it would have
been “Stopped” rather than “Lost Communication”.

14 “Aborted” The ComputerSystem is stopped but in a manner that may
have left it in an inconsistent state.

15 “Dormant” The ComputerSystem is offline; and the reason for not being
accessible is unknown.

16 “Supporting Entity in Error” The ComputerSystem is in an error state, or may be OK but
not accessible, because a supporting entity is not accessible.

Table 13: Supported Profiles for File Export Manipulation

Registered Profile Names Mandatory Version

Job Control No 1.2.0

File Export Yes 1.2.0

Security No 1.2.0

Indication Yes 1.2.0

Table 12: Operational Status for File Server ComputerSystem

Primary OperationalStatus Description
24

 File Export Manipulation Subprofile
5.5 Methods of the Profile

5.5.1 Extrinsic Methods of the Profile

5.5.1.1 ExportedFileShareCapabilities.CreateGoalSettings
This extrinsic method of the ExportedFileShareCapabilities class validates support for a caller-proposed
ExportedFileShareSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage of this
method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
ExportedFileShareSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type ExportedFileShareSetting. As
such, these settings do not exist in the implementation but are the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to this
method. To assist the implementation in tracking the progress of the negotiation, the client may pass previously
returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation

Table 14: FileExportManipulation Methods

Method Created Instances Deleted Instances Modified Instances

CreateExportedShare FileShare (Export)
ExportedFileShareSetting

ElementSettingData
HostedShare

SharedElement
SAPAvailableForElement
ServiceAffectsElement

LogicalFile (or Directory)
(for bc to 1.1)

ProtocolEndPoint

N/A N/A

ModifyExportedShare ExportedFileShareSetting
FileShare (Export)
ProtocolEndPoint

ReleaseExportedShare N/A FileShare (Export)
ExportedFileShareSetting

ElementSettingData
HostedShare

SharedElement
ServiceAffectsElement

ProtocolEndPoint
LogicalFile

N/A

CreateGoalSettings N/A N/A N/A
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 25

File Export Manipulation Subprofile
may determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are
the same. A client may infer from the same result that the TemplateGoalSettings must be modified.

5.5.1.1.1 Client Considerations
It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges with respect to the filesystem, the filesystem host, or the file server or
the file share. During negotiation, the client will show the current state to the user -- the SupportedGoalSettings
received to date (either the latest or some subset), the TemplateGoalSettings proposed (the most recent, but
possibly more). But the administrator needs a representation of what is available, possibly the range or sets of
values that the different setting properties can take. Some decisions are assumed to have been made already,
such as the file-sharing protocol to be used or the filesystem element to be shared or the resources allocated for
providing local access to the filesystem from the file server.

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified using ExportedFileShareSettings -- these points
can be further qualified to indicate whether these are supported (or not), and even whether they represent some
ideal point in the space -- a "minimum", or a "maximum", or an "optimal" point. Other settings can provide ranges
for properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can
be specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for
a property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a user is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
ExportedFileShareSetting elements that are associated to the ExportedFileShareCapabilities via SettingDefi-
nesCapabilities association with the following property values:

• SettingDefinesCapabilities.PropertyPolicy = "Correlated"

• SettingDefinesCapabilities.ValueRole = "Supported"

• SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the ExportedFileShareSetting elements that are
associated to the ExportedFileShareCapabilities via SettingDefinesCapabilities association with the following
property values:

• SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

• The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified
26

 File Export Manipulation Subprofile
5.5.1.1.2 Signature and Parameters of CreateGoalSettings

Table 15: Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings

Parameter
Name

Qualifier Type Description & Notes

TemplateGoalSe
ttings[]

IN string EmbeddedInstance
("SNIA_ExportedFileShareSetting")

TemplateGoalSettings is a string array containing
embedded instances of class
ExportedFileShareSetting, or a derived class. This
parameter specifies the client’s requirements and
is used to locate matching settings that the
implementation can support.

SupportedGoalS
ettings[]

INOUT string EmbeddedInstance
("SNIA_ExportedFileShareSetting")

SupportedGoalSettings is a string array containing
embedded instances of class
ExportedFileShareSetting, or a derived class. On
input, it specifies a previously returned set of
Settings that the implementation could support. On
output, it specifies a new set of Settings that the
implementation can support. If the output set is
identical to the input set, both client and
implementation may conclude that this is the best
match for the TemplateGoalSettings that is
available.
If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method shall
return "Alternative Proposed".
If the output is NULL, the method shall return an
“Failed”.

Normal Return

Status uint32 "Success",
"Failed",
"Timeout",
"Alternative Proposed"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 27

File Export Manipulation Subprofile
5.5.1.2 FileExportServices.CreateExportedShare
This extrinsic method creates a FileShare providing access to a contained sub-element of a LocalFileSystem
(either a LogicalFile or its sub-class Directory). A reference to the created FileShare is returned as the output
parameter TheShare. This FileShare element is hosted by the same file server ComputerSystem that hosts the
FileExportService. The LocalFileSystem whose element is exported shall be locally accessible to the file server
ComputerSystem (and need not be hosted by it), as represented by the LocalAccessAvailable association from the
file server ComputerSystem to the LocalFileSystem.

The LocalFileSystem whose sub-element is being exported is specified by the input parameter Root. The input
string parameter SharedElementPath specifies a pathname from the root directory of the Root to the sub-element
to be exported. If SharedElementPath is NULL or the empty string, it specifies the root directory of Root. The
format of SharedElementPath is implementation-specific -- the most common format is as a sequence of directory
names separated by a character or short string indicated by the FileSystemSetting.PathNameSeparatorString
property.

Note: The root directory of Root is the base from which a path to the LogicalFile being shared is specified. In
the simplest and possibly the most common case, the LogicalFile element is the root directory of Root
and the path is NULL or the empty string.

The desired settings for the FileShare are specified by the Goal parameter (a string-valued EmbeddedInstance
object of class ExportedFileShareSetting). An ExportedFileShareSetting element shall be created that represents
the settings of the created FileShare and will be associated via ElementSettingData to the FileShare. (This
ExportedFileShareSetting may be identical to the Goal or may be its equivalent). The created element shall be
returned as the output Goal parameter.

The input Goal parameter can be NULL, in which case the ExportedFileShareSetting associated with the default
ExportedFileShareCapabilities of the FileExportService is used as the goal. In that case, the following references
to Goal are to the output value of the Goal parameter.

If Goal.DefaultUserIdSupported="Share-Specified Default User Id" and the input parameter DefaultUserId is not
NULL, the FileShare will support the specified user id as the default user when the share is accessed. This access
privilege will be represented by creating instances of the Privilege class as described in the Security Authorization
subprofile. The Security Authorization subprofile shall be used for fine-grained access to, or modification of, the
default user.

Note: If the Security Authorization subprofile is not supported, this parameter may be set at creation but
cannot be accessed later. It can only be replaced with a new DefaultUserId using the
ModifyExportedShare method.

Note: The format of the user id is not specified by this sub-profile. If a Security Principal sub-profile or a
Filesystem Quota subprofile is defined, the user id format defined therein may be used.

If Goal.RootAccess="Allow Root Access" then the input parameter RootAccessHosts will be an array of URIs of
ComputerSystems from which root access will be permitted. This access privilege will be represented by creating
instances of the Privilege class as described in the Security Authorization subprofile. The Security Authorization
subprofile shall be used for fine-grained access to, or modification of, the set of hosts with root access.

Note: If the Security Authorization subprofile is not supported, this parameter may be set at creation but
cannot be accessed later. It can only be replaced by specifying a new RootAccessHosts array using
the ModifyExportedShare method.

Note: The computer systems may not be managed by this implementation, so they may not be represented
by ComputerSystem references.

If Goal.AccessPoints="Named Points", then the input parameter AccessPointPorts will be an array of references to
ProtocolEndpoints that provide access to this FileShare. This will be represented by creating instances of the
SAPAvailableForElement association between the FileShare and the specified ProtocolEndpoint. Fine-grained
28

 File Export Manipulation Subprofile
access to this set of ProtocolEndpoints or modification this set can be performed using the ModifyExportedShare
method.

Note: This changes the type of the AccessPointPorts parameter from a string array in the previous version to
an array of references to ProtocolEndpoints (or more generally to ServiceAccessPoints).
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 29

File Export Manipulation Subprofile
5.5.1.2.1 Signature and Parameters of CreateExportedShare

Table 16: Parameters for Extrinsic Method FileExportServices.CreateExportedShare

Parameter
Name

Qualifier Type Description & Notes

ElementName IN string An end user relevant name for the FileShare being
created. If NULL, then a system-supplied default
name can be used.

The value shall be stored in the 'ElementName'
property for the created element.

Comment IN string An end user relevant comment for the FileShare
being created. If NULL, then a system-supplied
default comment can be used.

The value shall be stored in the 'Description'
property for the created element.

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

Root IN, REF SNIA_LocalF
ileSystem

A reference indicating a LocalFileSystem element
whose sub-element is being exported. The
LocalFileSystem shall be locally available (either
explicitly or implicitly) to the file server
ComputerSystem that hosts the FileExportService.

SharedElement
Path

IN, OUT string An opaque string representing a path to the shared
element from the root directory of the FileSystem
indicated by the Root parameter. The format of
this is as a sequence of directory names (from the
\”root\”) separated by the
PathNameSeparatorString property.

Multiple paths could lead to the same element but
the access rights or other privileges could be
specific to the path. The client needs to specify the
path.

If SharedElementPath is NULL or is the empty
string, it indicates the \”root\” directory of the file
system indicated by Root.

The value shall be stored in the 'Name' property for
the created element.
30

 File Export Manipulation Subprofile
Goal IN, OUT, EI string EmbeddedInstance
("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the
specified FileShare element is to be shared or
exported by the FileExportService. This is an
element of the SNIA_ExportedFileShareSetting
class, or a derived class, encoded as a string-
valued embedded object parameter. If NULL or the
empty string, the default configuration will be
specified by the FileExportService.

TheShare OUT, REF CIM_FileSha
re

If successful, this returns a reference to the created
file share.

DefaultUserId IN, OUT,
REF, NULL
allowed,

CIM_identity A reference to a concrete derived class of
CIM_Identity that indicates the user id to use for
default access to this share. A NULL value on input
indicates that no user id is requested. A NULL
value on output indicates that no user id has been
assigned, even by default. The provider is
expected to surface this access using the
Authorization subprofile.

A default user id per share is not supported by the
CIFS Protocol so this is ignored if the Goal
specifies creating a CIFSShare.

RootAccessHost
s[]

IN, OUT,
URI, NULL
allowed

string An array of strings that specify the hosts that have
root access to this Share, if the
SNIA_ExportedFileShareSetting.RootAccess
property is set to 'Allow Root Access'. Each entry
specifies a host by a URI. All entries up to the first
empty string are allowed root access; the entries
after the first empty string are denied root access.
If this parameter is NULL, root access will be
denied to all hosts, effectively overriding the value
of the property
SNIA_ExportedFileShareSetting.RootAccess. If
the first entry is the empty string, root access will
be allowed from all hosts, and subsequent entries
will be denied root access. The provider is
expected to surface this access using the
Authorization subprofile. This property needs to be
an array of URIs because the remote host may not
be known to the provider and therefore a reference
to the host may not exist.

Root Access is not supported by the CIFS Protocol
so this is ignored if the Goal specifies creating a
CIFSShare.

Table 16: Parameters for Extrinsic Method FileExportServices.CreateExportedShare

Parameter
Name

Qualifier Type Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 31

File Export Manipulation Subprofile
5.5.1.3 FileExportServices.ModifyExportedShare
This extrinsic method modifies a FileShare element that is exporting a contained sub-element of a LocalFileSystem
(either a LogicalFile or its sub-class Directory). The FileShare is specified by the reference parameter TheShare.
TheShare cannot be NULL and it shall be hosted by the same file server ComputerSystem that hosts the
FileExportService. The input parameters Root and SharedElementPath shall be NULL or shall be the same as the
corresponding parameters when the FileShare was created (i.e., these cannot be changed using this method).

The precise constraint is that the sub-element shall not be changed even if the Root and SharedElementPath are
different. For instance, this would allow a different path that leads to the same sub-element. However, in this
subprofile we do not allow this flexibility.

AccessPointPort
s[]

IN, OUT,
REF, NULL
Allowed

CIM_Service
AccessPoints

An array of references to the ProtocolEndpoints
that can connect to this Share, if the
SNIA_ExportedFileShareSetting.AccessPoints
property is set to 'Named Ports'.

If the parameter is NULL, all access points will be
denied access, effectively overriding the value of
the property
ExportedFileShareSetting.AccessPoints.

If the array has multiple entries and the first entry in
the array is NULL, all access points supported by
the service will be supported, and subsequent
entries will be denied access.

The provider is expected to surface these access
rights (whether granted or denied) using the
Authorization subprofile. Any AccessPoints granted
access via this parameter will also be associated to
this share with SAPAvailableForElement. If the
AccessPoint is not already enabled it will appear in
a disabled state.

The CIFS protocol does not support multiple
ProtocolEndpoints, so this is ignored if the Goal
specifies creating a CIFSShare.

Normal Return

Status OUT uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 16: Parameters for Extrinsic Method FileExportServices.CreateExportedShare

Parameter
Name

Qualifier Type Description & Notes
32

 File Export Manipulation Subprofile
The new desired settings for the FileShare are specified by the input parameter Goal (a string-valued
EmbeddedInstance object of class ExportedFileShareSetting). An ExportedFileShareSetting element that
represents the settings of the created FileShare (either identical to the Goal or its equivalent) will be associated via
ElementSettingData to the FileShare. The implementation shall modify the existing ExportedFileShareSetting.
The Setting that is actually established will be returned as the output parameter Goal.

The Goal parameter can be NULL on input, in which case, the settings for the FileShare are not changed. This can
happen if this method is being called to provide new values for DefaultUserId, RootAccessHosts, or
AccessPointPorts without changing any settings. In that case, the following references to Goal are to the output
value or the parameter.

If Goal.DefaultUserIdSupported="Share-Specified Default User Id" and the input parameter DefaultUserId is not
NULL, the FileShare will support the specified user id as the default user when the share is accessed. Any
existing DefaultUserId specified will be overridden. This access privilege will be represented by creating instances
of the Privilege class as described in the Security subprofile. The Security subprofile shall also be used to access
or modify this privilege. If DefaultUserId is NULL, the existing specification will not be changed.

Note: If the Security subprofile is not supported, this parameter may be set but cannot be accessed later. It
can only be replaced with a new DefaultUserId using the ModifyExportedShare method.

If Goal.RootAccess="Allow Root Access" then the non-NULL input parameter RootAccessHosts will be an array of
URIs of ComputerSystems from which root access will be permitted. This access privilege will be represented by
creating instances of the Privilege class as described in the Security subprofile. Any existing specification of root
access by hosts will be overridden. If RootAccessHosts is NULL, the existing specification will not be changed.

Note: If the Security subprofile is not supported, this parameter may be set at creation but cannot be
accessed later. It can only be replaced by specifying a new RootAccessHosts array using the
ModifyExportedShare method.

If Goal.AccessPoints="Named Points", then the non-NULL input parameter AccessPointPorts will be an array of
references to ProtocolEndpoints that provide access to this FileShare. This will be represented by creating
instances of the SAPAvailableForElement association between the FileShare and the specified ProtocolEndpoint.
Any existing specification of access points to the FileShare will be overridden. If AccessPointPorts is NULL, the
existing specification will not be changed.

Note: This changes the type of the AccessPointPorts parameter from a string array to an array of references
to ProtocolEndpoints (or more generally to ServiceAccessPoints).

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this method if
the FileShare is in use and the method requires that no operations be in progress during that execution.

Note: The WaitTime and InUseOptions parameters are supported if the
ExportedFileShareCapabilities.SupportedProperties includes the "RequireInUseOptions" option. This
requires a change to the MOF that may not show up in this document as enumerations are not
documented in the spec?.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 33

File Export Manipulation Subprofile
5.5.2 Signature and Parameters of ModifyExportedShare

Table 17: Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier Type Description & Notes

ElementName IN string A new end-user relevant name for the FileShare
being modified. If NULL or the empty string, the
existing name stored in the 'ElementName'
property for the created element not be changed.

Comment IN string A new end-user relevant comment for the
FileShare being modified. If NULL or the empty
string, the existing comment stored in the
'Description' property will not be changed.

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

Root IN, OUT,
REF

CIM_Manage
dElement

A reference indicating a LocalFileSystem element
whose sub-element is being exported. In the
ModifyExportedShare method, this shall not
indicate a different filesystem from the one
indicated when the file share was created (even if
the reference is to a different instance of
LocalFileSystem).

If Root is NULL on input it is ignored.

As an OUT parameter, a reference to the
LocalFileSystem is returned.

SharedElement
Path

IN, OUT string A string representing a path to the shared element
from the root directory of the LocalFileSystem
indicated by Root.

The ModifyExportedShare method cannot be used
to change the object indicated by the path, but the
path itself can be different as multiple paths could
lead to the same element. Such a change may
have side-effects, for instance, the access rights or
other privileges could be specific to the path.

If SharedElementPath is NULL, it indicates no
change to the current path. If SharedElementPath
consists of a single empty string, it indicates the
root directory of the FileSystem indicated by Root.

As an OUT parameter, the current path is returned.

The value shall be stored in the 'Name' property for
the created element.
34

 File Export Manipulation Subprofile
Goal IN, OUT, EI string EmbeddedInstance
("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the
specified FileShare element is to be shared or
exported by the FileExportService. This is an
element of the SNIA_ExportedFileShareSetting
class, or a derived class, encoded as a string-
valued embedded instance parameter. If NULL or
the empty string, the current setting will be re-
applied.

As an OUT parameter, the current Setting is
returned.

TheShare IN, OUT,
REF

CIM_FileSha
re

As an IN Parameter, it specifies the share that is to
be modified or whose settings are being queried.
As an OUT Parameter, this specifies the share if
the request is successful.

DefaultUserId IN, OUT,
REF, NULL
allowed,

CIM_identity As an IN parameter, this is a reference to a
concrete derived class of CIM_Identity that
indicates the user id to use for default access to
this share. A NULL value indicates no change to
the existing user id, if one has been specified. The
provider is expected to surface this access using
Authorization subprofile. As an OUT Parameter,
this returns a reference to the current
DefaultUserId.

A default user per share is not supported by the
CIFS Protocol so this is ignored if the file share is a
CIFSShare.

Table 17: Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier Type Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 35

File Export Manipulation Subprofile
RootAccessHost
s[]

IN, OUT,
URI, NULL
allowed

string An array of strings that specify the hosts that have
root access to this Share, if the
SNIA_ExportedFileShareSetting.RootAccess
property is set to 'Allow Root Access'. Each entry
specifies a host by a URI. The set of hosts
specified is added to the existing set of hosts with
root access.

If this parameter is NULL, root access will be
denied to all hosts, including the ones currently
allowed root access, effectively overriding the
value of the property
SNIA_ExportedFileShareSetting.RootAccess.

Each entry specifies a host by a URI. All entries up
to the first empty string are allowed root access;
the entries after the first empty string are denied
root access.

If the first entry is the empty string, root access will
continue to be allowed from the existing hosts, and
subsequent entries in the array will be denied root
access.

The provider is expected to surface this access
using the Authorization subprofile.

This property needs to be an array of URIs
because the remote host may not be known to the
provider and therefore a reference to the host may
not exist.

Root Access is not supported by the CIFS Protocol
so this is ignored if the Goal specifies creating a
CIFSShare.

Table 17: Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier Type Description & Notes
36

 File Export Manipulation Subprofile
AccessPointPort
s[]

IN, OUT,
REF, NULL
Allowed

CIM_Service
AccessPoints

An array of references to the ProtocolEndpoints
that can connect to this Share, if the
SNIA_ExportedFileShareSettings.AccessPoints
property is set to 'Named Ports'. The set of access
points specified in the array is added to the existing
set of access points.

If the parameter is NULL, all access points will be
denied access, effectively overriding the value of
the property
SNIA_ExportedFileShareSetting.AccessPoints.

If the first entry in the array is NULL, existing
access points supported by the service will be
supported, and subsequent entries in the array will
be access points that are denied access.

The provider is expected to surface these access
rights (whether granted or denied) using the
Authorization subprofile. Any AccessPoints granted
access via this parameter will also be associated to
this share with SAPAvailableForElement. If the
AccessPoint is not already enabled it will appear in
a disabled state.

The CIFS protocol does not support multiple
ProtocolEndpoints, so this is ignored if the Goal
specifies creating a CIFSShare.

InUseOptions IN uint16 An enumerated integer that specifies the action
that the provider should take if the FileShare is still
in use when this request is made. The WaitTime
parameter indicates the specified time used for this
function.

This option is only relevant if the FileShare needs
to be made unavailable while the request is being
executed.

WaitTime IN uint16 An integer that indicates the time (in seconds) that
the provider needs to wait before executing this
request if it cannot be done while the FileShare is
in use. If WaitTime is not zero, the method will
create a job, if supported by the provider, and
return immediately. If the provider does not support
asynchronous jobs, there is a possibility that the
client could time-out before the job is completed.

The combination of InUseOptions = '4' and
WaitTime ='0' (the default) is interpreted as 'Wait
(forever) until Quiescence, then Execute Request'
and will be performed asynchronously if possible.

Table 17: Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier Type Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 37

File Export Manipulation Subprofile
5.5.2.1 FileExportServices.ReleaseExportedShare
This is an extrinsic method that will delete a FileShare specified by the parameter TheShare and delete any
associated instances and associations that are no longer needed. The deleted instances will include the Directory
(or LogicalFile) if it had been created only for the purpose of representing the shared sub-element.

Note: Deleting the Directory or LogicalFile deletes only the representation of the file or directory for
management and does not delete the underlying operational element

The deleted associations include HostedShare, ElementSettingData, and any elements and associations created
to support the DefaultUserId, RootAccessHosts, and AccessPointPorts parameters. In addition, the
ExportedFileShareSetting will be deleted if appropriate.

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this method if
the FileShare is in use and the method requires that no operations be in progress during that execution.

Note: The WaitTime and InUseOptions parameters are supported if the
ExportedFileShareCapabilities.SupportedProperties includes the "RequireInUseOptions" option.

Normal Return

Status OUT uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 17: Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier Type Description & Notes
38

 File Export Manipulation Subprofile
5.5.3 Signature and Parameters of ReleaseExportedShare

5.5.4 Intrinsic Methods of the Profile

Table 18: Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare

Parameter
Name

Qualifier Type Description & Notes

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

TheShare IN, OUT,
REF

CIM_FileSha
re

As an IN Parameter, it specifies the share that is to
be modified or whose settings are being queried.
As an OUT Parameter, this specifies the share if
the request is successful.

InUseOptions IN uint16 An enumerated integer that specifies the action
that the provider should take if the FileShare is still
in use when this request is made. The WaitTime
parameter indicates the specified time used for this
function.

This option is only relevant if the FileShare needs
to be made unavailable while the request is being
executed.

WaitTime IN uint16 An integer that indicates the time (in seconds) that
the provider needs to wait before executing this
request if it cannot be done while the FileShare is
in use. If WaitTime is not zero, the method will
create a job, if supported by the provider, and
return immediately. If the provider does not support
asynchronous jobs, there is a possibility that the
client could time-out before the job is completed.

The combination of InUseOptions = '4' and
WaitTime ='0' (the default) is interpreted as 'Wait
(forever) until Quiescence, then Execute Request'
and will be performed asynchronously if possible.

Normal Return

Status OUT uint32 ValueMap{}, Values{}

"Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 39

File Export Manipulation Subprofile
The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

5.6 Client Considerations and Recipes

EXPERIMENTAL

Conventions used in all the filesystem related profiles for recipes:

• When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is used without further validation. Real code will need to be more robust.

• We use Values and Valuemap members as equivalent. In real code, client-side magic is required to convert the
integer representation into the string form given in the MOF.

• Error returns using the CIM_Error mechanism are not explicitly handled; the client shall implement handlers for
these asynchronous returns.

• These recipes do not show the details of negotiating a setting acceptable to both client and provider.

• The recipes do not show the details of managing a Job if a method returns after setting one up.

All the recipes show very simple examples of the operations that should be supported. Some recipes have been
simplified so that they would not even be minimally useful to a real client, but only show how more complete
functionality would be implemented.

5.6.1 Creation of a FileShare for Export

// DESCRIPTION

// GOAL: Create an NFS or CIFS FileShare that makes a specified

// directory or file of a filesystem available to clients

// and supports the properties specified in the array

// parameter $propertynames[].

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file server ComputerSystem host of the FileExportService

// will also be the host of the FileShare that will be

// made available to NFS or CIFS clients.

//

// FUNCTION CreateFileSystemShare

// This function takes a filesystem and a file server host

// ComputerSystem and creates a file share that will
40

 File Export Manipulation Subprofile
// support the specified properties.

// INPUT Parameters:

// sharetype: The file sharing protocol (NFS or CIFS) that this

// share should support.

// fs: A reference to the LocalFileSystem whose element is

// to be shared.

// server: A reference to the file server ComputerSystem that

// provides local access to the filesystem $fs.

// fspath: A path to the sub-element that is to be shared.

// name: A name for the created file share.

// comment: A comment to be associated with the created file share.

// propnames: An array of property names that the capabilities

// element should support.

// propvals: An array of property values corresponding to the

// property names that specify values for those properties.

// OUTPUT Parameters:

// fssh: A reference to the newly created FileShare element

// job: A reference to a ConcreteJob that is executing a long-term job.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub CreateFileSystemShare(IN String $sharetype, // CIFS, NFS, etc.

 IN REF CIM_FileSystem $fs, // the filesystem

 IN REF CIM_ComputerSystem $server // the File Server

 IN String $fspath, // subpath in the filesystem,
or ““

 IN String $name,

 IN String $comment,

 IN String[] $propnames, // names of desired properties

 IN String[] $propvals, // values of desired
properties

 OUT REF CIM_FileShare $fssh,

 OUT REF CIM_Job $job)

{

 //

 // Get the service and capabilities

 //

//// &GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,
$efscapability);

 //

 // Get a FileExportService via the HostedService association to

 // the file server ComputerSystem

 //

 $feservice = Associators($server,

 “CIM_HostedService”,

 “SNIA_FileExportService”,
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 41

File Export Manipulation Subprofile
 “Antecedent”,

 “Dependent”)->[0];

 // Assumption: There is only one FileExportService per File Server

 //

 // Get an ExportedFileShareCapabilities from the FileExportService

 // via the ElementCapabilities association to the ComputerSystem

 // (it’s indexed by NFS/CIFS/other sharing service and possibly

 // other properties)

 // Note: NFS and CIFS are two capabilities of the same service

 // with different values of the FileSharingProtocol property

 // In this example, we look for the

 // ExportedFileShareCapabilities.IsDefault property to get a

 // default sharetype.

 //

 $efscapabilities = Associators($feservice,

 “CIM_ElementCapabilities”

 “SNIA_ExportedFileShareCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($efscapabilities->[] == NULL || $efscapabilities-[].length == 0) {

 #j = 0;

 while (($efscapability = $efscapabilities->[#j]) != NULL) {

 if (($sharetype == ““) && $efscapability.IsDefault ||

 ($efscapabilities->[#j].FileSharingProtocol == $sharetype)) {

 $sharetype = $efscapability.FileSharingProtocol;

 // Should check here that the properties named in

 // $propnames-[] are supported by this capabilities

 // element. If not, the method should fail as this profile

 // does not support multiple capabilities with the same

 // file sharing protocol that may have different.

 break;

 }

 #j++;

 }

 // Handle the error if any

 if (#j == $efscapabilities-[].length) {

 <indicate error>

 return false;

 }

 //

 // Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to
get

 // the next goal for EFSSetting -- iterate until satisfied or give up

 // (beware of infinite loops) Note: we don’t iterate here, just give

 // up if we don’t get what we want.
42

 File Export Manipulation Subprofile
 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 &CreateGoal($efscapability, NULL, $goal);

 //

 // Inspect Goal and modify properties as desired.

 //

 #i = 0;

 while ($propnames->[#i] != NULL) {

 $goal.$propnames->[#i] = $propvals->[#i];

 #i++;

 }

 // Iterate over the goal at least once

 &CreateGoal($efscapability, $goal, $settings);

 #i = 0;

 while ($propnames->[#i] != NULL) {

 // funky syntax for propnames property of settings

 if ($settings.$propnames->[#i] != $propvals->[#i]) {

 //

 // give up

 //

 return false;

 }

 #i++;

 }

 // Verify that the FileSystem is locally accessible

 // Does this fileserver have local access -- if not, there is no setting!

 $laassocs->[] = ReferenceNames($server,

 “SNIA_LocalAccessAvailable”,

 “FileSystem”

 $fs);

 if ($laassocs->[] == NULL || $laassocs->[].length != 1) {

 {

 // If the filesystem is not locally accessible from the server

 // there is no setting to be found

 return false;

 }

 $laassoc = $laassocs->[0];

 //
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 43

File Export Manipulation Subprofile
 // Get all the LocallyAccessibleFileSystemSettings

 // associated with the CIM_FileSystem (via ElementSettingData)

 //

 $lasettings->[] = Associators($fs,

 “CIM_ElementSettingData”,

 “SNIA_LocallyAccessibleFileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 if ($lasettings->[] == NULL || $lasettings->[].length == 0) {

 // This is an ERROR but for now we return with no results

 return NULL;

 }

 #i = 0;

 $lasetting = NULL;

 while ($lasettings->[#i] != NULL) {

 // Get the association that points to this setting

 $reference->[] = References($lasettings->[#i],

 “CIM_ElementSettingData”,

 “SettingData”);

 // There should be exactly one association to this SettingData

 if ($reference->[] == NULL || $reference->[].length != 1) {

 // This is an error -- should we continue?

 continue;

 // return NULL;

 }

 // The following test assumes that we only look at a setting

 // that is marked as IsCurrent. There may be many such

 // settings but they will be scoped to other file servers.

 if ($reference->[0].IsCurrent == “Is Current”) {

 // Is this scoped to the fileserver?

 $servers = Associators($settings->[#i],

 “CIM_ScopedSetting”,

 “CIM_ComputerSystem”,

 “Dependent”,

 “Antecedent”);

 if ($servers->[] != NULL && $servers->[].length != 0 && $servers->[0]
== $fileserver) {

 $lasetting = GetInstance($lasettings->[#i]);

 break;

 }

 }

 #i++;

 }

 // if not found return NULL

 if ($lasetting == NULL) {

 return false;
44

 File Export Manipulation Subprofile
 }

 //

 // Note, this profile uses the FileSystem $fs as the Root

 // parameter to CreateExportedShare and does not support

 // other classes.

 // The fspath is a string that is FileSystemType-specific

 // If path is NULL or empty, it

 // identifies the root directory of the File System.

 //

// $feservice.CreateExportedShare($name, $comment,

// $job, $fs, $fspath, $settings, $fssh);

 #result = $feservice.CreateExportedShare(

 $name, // share name

 $comment, // comment associated with share

 $job, // OUTPUT parameter if needed

 $fs, // file system of the shared element

 $fspath, // relative path to shared element

 $settings, // EmbeddedInstance of Goal

 $fssh, // OUTPUT parameter -- reference to File Share

 NULL, // $defaultUserId -- not being set in this example

 NULL, // $RootAccessHosts[] -- not being set

 NULL // $AccessPointPEs[] -- not being set

)

 // Should handle failure and other errors here.

 return true;

}

5.6.2 Modification of an Exported FileShare

// DESCRIPTION

// GOAL: Modify the creation-time settings of a NFS or

// CIFS FileShare.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file share already exists and has been surfaced through

// SMI-S.

// 2. The file share has been defined with an associated

// ExportedFileShareSettings element and hosted on an

// surfaced file server ComputerSystem.

// 3. There is a FileExportService element hosted by

// the same file server ComputerSystem that provides

// this method.

//

// FUNCTION ModifyFileSystemShare

// This function modifies the settings and some mutable

// properties of an existing file share hosted by the
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 45

File Export Manipulation Subprofile
// same ComputerSystem as the host of the service.

// This routine cannot be used to change

// the filesystem, the sharetype, or the file server.

// It can be used to change the name, the comment, and

// setting property values.

// INPUT Parameters:

// name: A new name for the file share.

// comment: A comment to be associated with the created file share.

// fssh: A reference to the newly created FileShare element

// propnames: An array of property names that the capabilities

// element should support.

// propvals: An array of property values corresponding to the

// property names that specify values for those properties.

// OUTPUT Parameters:

// job: A reference to a ConcreteJob that is executing a long-term job.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub ModifyFileSystemShare(IN String $name,

 IN String $comment,

 IN CIM_FileShare $fssh,

 IN String $propnames[],

 IN String $propvals[],

 OUT CIM_Job $job)

{

 //

 // Get a client-side copy of the ExportedFileShareSetting

 // associated with the ExportedFileShare (via ElementSettingData

 // association) using GetInstance

 //

 $settings = Associators($fssh,

 “CIM_ElementSettingData”,

 “CIM_ExportedFileShareSetting”,

 “ManagedElement”,

 “SettingData”)->[0];

 #i = 0;

 while ($settings->[#i] != NULL) {

 if ($settings->[#i].IsCurrent) {

 $setting = GetInstance($settings->[#i].Name);

 break;

 }

 }

 //

 // Get the sharetype from the FileSystemShare
46

 File Export Manipulation Subprofile
 // -- this cannot be changed by this method

 //

 $sharetype = $setting.FileSharingProtocol;

 //

 // Get the File Server

 //

// &GetFileExportServer($fs, $server);

 //

 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)

 // There should be exactly one.

 $server = Associators($fssh,

 “CIM_HostedFileShare”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 //

 // Get the service and capabilities

 //

// &GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,
$efscapability);

 //

 // Get a FileExportService via the HostedService association to

 // the file server ComputerSystem

 //

 $feservice = Associators($server,

 “CIM_HostedService”,

 “SNIA_FileExportService”,

 “Antecedent”,

 “Dependent”)->[0];

 // Assumption: There is only one FileExportService per File Server

 //

 // Get an ExportedFileShareCapabilities from the FileExportService

 // via the ElementCapabilities association to the ComputerSystem

 // (it’s indexed by NFS/CIFS/other sharing service and possibly

 // other properties)

 // Note: NFS and CIFS are two capabilities of the same service

 // with different values of the FileSharingProtocol property

 // The $sharetype must match the property

 // ExportedFileShareCapabilities.FileSharingProtocol.

 //

 $efscapabilities = Associators($feservice,

 “CIM_ElementCapabilities”

 “SNIA_ExportedFileShareCapabilities”,

 “ManagedElement”,

 “Capabilities”);
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 47

File Export Manipulation Subprofile
 if ($efscapabilities->[] == NULL || $efscapabilities-[].length == 0) {

 #j = 0;

 while (($efscapability = $efscapabilities->[#j]) != NULL) {

 if ($efscapabilities->[#j].FileSharingProtocol == $sharetype) {

 // Should check here that the properties named in

 // $propnames-[] are supported by this capabilities

 // element. If not, the method should fail as this profile

 // does not support multiple capabilities with the same

 // file sharing protocol that may have different.

 break;

 }

 #j++;

 }

 // Handle the error if any

 if (#j == $efscapabilities-[].length) {

 <indicate error>

 return false;

 }

 //

 // Modify the copied ExportedFileShareSetting to the new

 // desired properties

 //

 #i = 0;

 while ($propnames->[#i] != NULL) {

 // Note funky syntax for accessing a named property of

 // the setting

 $setting.$propnames->[#i] = $propvals->[#i];

 }

 // Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to
get

 // the next goal for EFSSetting -- iterate until satisfied or give up

 // (beware of infinite loops) Note: we don’t iterate here, just give

 // up if we don’t get what we want.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 &CreateGoal($efscapability, $setting, $newsetting);

 // Did we get a goal back?

 if ($newsetting==MULL)

 #i = 0;

 while ($propnames->[#i] != NULL) {

 if ($newsetting.$propnames->[#i] != $propvals->[#i]) {
48

 File Export Manipulation Subprofile
 //

 // give up

 //

 return NULL;

 }

 #i++;

 }

 //

 #result = feservice.ModifyExportedShare(

 $name, // new name (no change if NULL)

 $comment, // new comment (no change if NULL)

 $job, // OUTPUT parameter if needed

 NULL, // $rootfilesystem - Cannot be changed

 NULL, // $Subelement -- cannot be changed

 $newsetting, // EmbeddedInstance of Goal

 $fssh, // reference to File Share

 NULL, // $defaultUserId -- not being changed in this example

 NULL, // $RootAccessHosts[] -- not being changed

 NULL, // $AccessPointPEs[] -- not being changed

 NULL, // $InUseOptions -- take default

 NULL // $WaitTime -- take default

)

 // Should handle failure and other errors here.

 return TRUE;

}

5.6.3 Removal of an Exported FileShare

// DESCRIPTION

// GOAL: UnExport an exported NFS or CIFS FileShare.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file share already exists and has been surfaced through

// SMI-S.

// 2. The file share has been defined with an associated

// ExportedFileShareSettings element and hosted on an

// surfaced file server ComputerSystem.

// 3. There is a FileExportService element hosted by

// the same file server ComputerSystem that provides

// this method.

//

// FUNCTION UnExportFileSystemShare

// This function removes an NFS or CIFS file share that is

// hosted by the same ComputerSystem as the host of the

// service.

// INPUT Parameters:
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 49

File Export Manipulation Subprofile
// fssh: A reference to the newly created FileShare element

// force: Whether the method should force all clients of the

// file share to be disconnected.

// waittime: The time in seconds to wait before implementing the

// specified force option (default 300 seconds).

// notification: A string used to notify clients that the file

// share is going to be unavailable. This is included in

// the alert indication sent to clients that subscribe for

// them (but... shouldn’t this go to operational clients?)

// OUTPUT Parameters:

// job: A reference to a ConcreteJob that is executing a long-term job.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub UnExportFileSystemShare(IN REF CIM_FileShare $fssh,

 IN uint16 $force,

 IN uint32 $waittime,

 IN String $notification,

 OUT REF CIM_Job $job);

{

 //

 // If waittime > 0, set force to 2 to distinguish between

 // a force with no wait and a force with wait

 // -- see the specification of ReleaseExportedShare.

 //

 if ($force > 0 && $waittime > 0) {

 $force = 2;

 }

 //

 // clients of the share may have registered for an indication

 // when a share is disconnected

 //

 <send indication -- see indications recipes>

 // Get the File Server

 //

// &GetFileExportServer($fs, $server);

 //

 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)

 // There should be exactly one.

 $server = Associators($fssh,

 “CIM_HostedFileShare”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];
50

 File Export Manipulation Subprofile
 //

 // Get a FileExportService via the HostedService association to

 // the file server ComputerSystem

 //

 $feservice = Associators($server,

 “CIM_HostedService”,

 “SNIA_FileExportService”,

 “Antecedent”,

 “Dependent”)->[0];

 //

 // Call ReleaseExportedShare() with the $force and $waittime values

 // which tell the share to wait for the specified time

 // if there are any clients still connected.

 //

 $feservice.ReleaseExportedShare($job, $fssh, $force, $waittime);

 // Should handle failure and other errors here.

 return TRUE;

}

EXPERIMENTAL

5.6.4 File Export Manipulation Supported Capabilities Patterns

Table 19 lists the capabilities patterns that are formally recognized by SMI-S 1.2.0 for determining capabilities of
various implementations:

Note: Asterisk (*) means any state is valid.

5.7 Registered Name and Version
File Export Manipulation version 1.2.0

Table 19: SMI-S File Export Supported Capabilities Patterns

FileSharingProtocols SynchronousMethods AsynchronousMethods InitialExportState

NFS, CIFS Export Creation, Export
Modification, Export
Deletion

Null *

NFS, CIFS Null Export Creation, Export
Modification, Export
Deletion

*

NFS, CIFS Null Null Null
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 51

File Export Manipulation Subprofile
5.8 CIM Elements

Table 20: CIM Elements for File Export Manipulation

Element Name Requirement Description

 SNIA_FileExportService (5.8.1) Mandatory The File Export Service provides the methods
to create and export file elements as shares.

 CIM_HostedService (5.8.2) Mandatory Associates the File Export Service to the
hosting File Server Computer System.

 SNIA_FileExportCapabilities (FES
Configuration) (5.8.3)

Mandatory This element represents the management
capabilities of the File Export Service.

 CIM_ElementCapabilities (FES
Configuration) (5.8.4)

Mandatory Associates the File Export Service to the
FileExportCapabilities element that describes
the service capabilities.

 SNIA_ExportedFileShareCapabilities (FES
Capabilities) (5.8.5)

Mandatory This element represents the Capabilities of
the File Export Service for managing
FileShares of a specific file sharing protocol
(and version). The file sharing protocol is
specified by the FileSharingProtocol and
ProtocolVersions properties.

 SNIA_ElementCapabilities (FES Capabilities)
(5.8.6)

Mandatory Associates the File Export Service to at least
one ExportedFileShareCapabilities element
that indicates that support is available for
managing an exported FileShare for at least
one of the file sharing protocols recognized by
this profile. These include: "NFS"/2, "CIFS"/3,
"DAFS"/4, "WebDAV"/5, "HTTP"/6, or "FTP"/7.

 SNIA_ExportedFileShareSetting (Pre-
defined) (5.8.7)

Optional This element represents a pre-defined
configuration settings for exported FileShares
that is used to define a Capabilities element
associated with the FileExportService.

 SNIA_SettingsDefineCapabilities (Pre-
defined) (5.8.8)

Optional Represents the association between a
ExportedFileShareCapabilities and a pre-
defined ExportedFileShareSetting element
that specifies what the Capabilities can
support.

 SNIA_ExportedFileShareSetting (FileShare
Setting) (5.8.9)

Mandatory The configuration settings for an Exported
FileShare; i.e., a setting for a FileShare
available for exporting.

 This setting may have been created or
modified by the extrinsic methods of this
profile. Note that CIFS allows in-band
creation, modification, or deletion of
FileShares; also, some systems might define
pre-existent FileShares. All of these will be
surfaced.

 SNIA_FileShare (Exported File Share)
(5.8.10)

Mandatory Represents the sharing characteristics of a
particular file element.
52

 File Export Manipulation Subprofile
 SNIA_HostedShare (5.8.11) Mandatory Represents that a shared element is hosted
by a ComputerSystem.

 CIM_ServiceAffectsElement (5.8.12) Mandatory Associates the File Export Service to the
elements that the service manages (such as a
FileShare configured for exporting a
LogicalFile).

 CIM_ElementSettingData (FileShare Setting)
(5.8.13)

Mandatory Associates a FileShare and
ExportedFileShareSetting elements.

 CIM_LogicalFile (Subelement) (5.8.14) Conditional Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

 A LogicalFile (or Directory subclass) that is a
sub-element of a LocalFileSystem that is
made available for export via a fileshare
hosted on a ComputerSystem. This is
included for backward compatibility with the
SMI Specification Release 1.1.

 SNIA_SharedElement (5.8.15) Mandatory Associates a FileShare to the
LocalFileSystem on which it is based.

 CIM_FileStorage (Subelement) (5.8.16) Conditional Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

Represents that a file or directory that is made
available for export is contained by a
LocalFileSystem specified as a dangling
reference.

 CIM_ConcreteDependency (5.8.17) Conditional Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

Represents an association between a
FileShare element and the actual shared
LogicalFile or Directory on which it is based.
This is provided for backward compatibility
with FileExport Subprofile v1.1.

 CIM_SAPAvailableForElement (5.8.18) Mandatory Represents the association between a
ServiceAccessPoint to the shared element
that is being accessed through that SAP.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA SNIA_FileShare

Mandatory Creation of an exported file share.

This indication returns the newly created
FileShare.

Table 20: CIM Elements for File Export Manipulation

Element Name Requirement Description
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 53

File Export Manipulation Subprofile
5.8.1 SNIA_FileExportService

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 21 describes class SNIA_FileExportService.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA SNIA_FileShare

Mandatory Deletion of an exported file share.

This indication returns the model path to the
deleted file share and its unique instance id.
(Question: Should this return the pathname of
the shared directory as well?) Note that a
model path is like a CIM object path but not
exactly the same.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA SNIA_FileShare
AND
SourceInstance.SNIA_FileShare::Operational
Status[*] <>
PreviousInstance.SNIA_FileShare::Operation
alStatus[*]

Optional Experimental CQL - Change of state of a
FileShare.

PreviousInstance is optional, but may be
supplied by an implementation of the
subprofile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA SNIA_FileShare
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL - Change of state of a
FileShare.

PreviousInstance is optional, but may be
supplied by an implementation of the
subprofile.

Table 21: SMI Referenced Properties/Methods for SNIA_FileExportService

Properties Flags Requirement Description & Notes

ElementName Mandatory A provider supplied user-friendly name for this Service.

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Service.

SystemName Mandatory The name of the Computer System hosting the Service.

CreationClassName Mandatory The CIM Class name of the Service.

Name Mandatory The unique name of the Service.

CreateExportedShar
e()

Mandatory Create a FileShare element configured for exporting a file
or directory as a share.

Table 20: CIM Elements for File Export Manipulation

Element Name Requirement Description
54

 File Export Manipulation Subprofile
5.8.2 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 22 describes class CIM_HostedService.

5.8.3 SNIA_FileExportCapabilities (FES Configuration)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 23 describes class SNIA_FileExportCapabilities (FES Configuration).

ModifyExportedShar
e()

Mandatory Modify the configuration of a FileShare element setup to
export a file or directory as a share.

ReleaseExportedSha
re()

Mandatory Delete the FileShare element that is exporting a file or
directory as a share, thus releasing that element.

Table 22: SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting Computer System.

Dependent Mandatory The FileExportService

Table 23: SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configura-
tion)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the capabilities of a File Export
Service.

ElementName Mandatory A provider supplied user-friendly name for this Capabilities
element.

Table 21: SMI Referenced Properties/Methods for SNIA_FileExportService

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 55

File Export Manipulation Subprofile
5.8.4 CIM_ElementCapabilities (FES Configuration)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

FileSharingProtocol Mandatory An array listing all the protocols for file sharing supported
by the FileExportService represented by this
FileExportCapabilities element. Duplicate entries are
permitted because the corresponding entry in the
ProtocolVersions array property indicates the supported
version of the protocol.

 Each entry must correspond to an
ExportedFileShareCapabilities element associated via
ElementCapabilities to the FileExportService -- the
FileSharingProtocol and ProtocolVersion properties of that
element must match the entry.

ProtocolVersions Optional An array listing all the versions of the file sharing protocol
specified in the corresponding entry of the
FileSharingProtocol array property. A NULL entry indicates
support for all versions of the protocol.

 At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this property is optional in this
subprofile.

SupportedSynchrono
usMethods

N Mandatory An array listing the extrinsic methods of the
FileExportService that can be called synchronously.

 Note: Every supported method shall be listed either in this
property or in the SupportedAsynchronousMethods array
property.

SupportedAsynchron
ousMethods

N Mandatory An array listing the extrinsic methods of the
FileExportService that can be called synchronously.

 Note: Every supported method shall be listed either in this
property or in the SupportedSynchronousMethods array
property.

InitialEnabledState Optional This represents the state of initialization of a FileShare on
initial creation.

Table 23: SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configura-
tion)

Properties Flags Requirement Description & Notes
56

 File Export Manipulation Subprofile
Table 24 describes class CIM_ElementCapabilities (FES Configuration).

5.8.5 SNIA_ExportedFileShareCapabilities (FES Capabilities)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 25 describes class SNIA_ExportedFileShareCapabilities (FES Capabilities).

Table 24: SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The FileExportCapabilities.

ManagedElement Mandatory The FileExportService.

Table 25: SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES
Capabilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a capability of a File Export
Service

ElementName Mandatory A provider supplied user-Friendly Name for this Capabilities
element.

FileSharingProtocol Mandatory This identifies the single file sharing protocol (e.g., NFS or
CIFS) that this Capabilities represents.

ProtocolVersions Optional An array listing the versions of the protocol specified by the
FileSharingProtocol property. A NULL value or entry
indicates support for all versions of this protocol.

 At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional. If
the property is NULL, all versions of the protocol are
supported.

SupportedProperties Mandatory This is the list of configuration properties (of
ExportedFileShareSetting) that are supported for
specification at creation time by this Capabilities element.

Properties that can appear in this array are:
"DefaultReadWrite" ("2"), "DefaultExecute" ("3"),
"DefaultUserId" ("4"), "RootAccess" ("5"), "WritePolicy"
("6"), "AccessPoints" ("7"), and "InitialEnabledState" ("8").
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 57

File Export Manipulation Subprofile
5.8.6 SNIA_ElementCapabilities (FES Capabilities)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 26 describes class SNIA_ElementCapabilities (FES Capabilities).

5.8.7 SNIA_ExportedFileShareSetting (Pre-defined)

Created By: Static_or_External

Modified By: External

Deleted By: External

Class Mandatory: Optional

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a
ExportedFileShareSetting that is a supported variant of a
ExportedFileShareSetting passed in as an embedded IN
parameter TemplateGoalSettings[0]. The method returns
the supported ExportedFileShareSetting as an embedded
OUT parameter SupportedGoalSettings[0].

Table 26: SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities)

Properties Flags Requirement Description & Notes

Characteristics Mandatory If this array enum includes the value mapped to "Default",
it indicates that the ExportedFileShareCapabilities element
identified by this association is the default to be used for
any extrinsic method of the associated FileExportService
element.

Capabilities Mandatory The FileExportCapabilities.

ManagedElement Mandatory The FileExportService.

Table 25: SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES
Capabilities)

Properties Flags Requirement Description & Notes
58

 File Export Manipulation Subprofile
Table 27 describes class SNIA_ExportedFileShareSetting (Pre-defined).

Table 27: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this Setting element.

ElementName Mandatory A provider supplied user-friendly name for this Setting
element.

FileSharingProtocol Mandatory The file sharing protocol to which this Setting element
applies. The entries in the ProtocolVersions property
identify the specific versions of the protocol that are
supported. This profile only supports "NFS" (2) and "CIFS"
(3).

ProtocolVersions Optional This array identifies the versions of the file sharing protocol
(specified by FileSharingProtocol) to which this Setting
element applies. If NULL, it indicates support for all
versions.

 At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional.

InitialEnabledState Optional This indicates the enabled/disabled states initially set for a
created FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3"
("Disabled"), "7" ("In Test"), "8" ("Deferred") or "9"
("Quiesce")

OtherEnabledState Optional A vendor-specific description of the initial enabled state of a
created fileshare if InitialEnabledState=1("Other").

DefaultUserIdSuppor
ted

Optional Indicates whether a FileShare created or modified by using
this Setting element will use a default user id to control
access to the share if the id of the importing client is not
provided.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

 Valid values are "2" ("No Default User Id"), "3" ("System-
Specified Default User Id") or "4" ("Share-Specified Default
User Id").

RootAccess Optional Indicates whether a FileShare created or modified by using
this Setting element will support default access privileges to
administrative users from specific hosts specified at
creation time.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root
Access").
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 59

File Export Manipulation Subprofile
AccessPoints Optional An enumerated value that specifies the service access
points that are available to a FileShare created or modified
by using this Setting element by default (to be used by
clients for connections). These default access points can
always be overridden by the privileges explicitly defined by
a supported authorization mechanism(s). Any
ServiceAccessPoints that actually connect to this share will
be associated to it by CIM_SAPAvailableForElement.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

 Valid values are "2" ("None"), "3" ("Service Default"), "4"
("All") or "5" ("Named Points").

Caption N Optional Not Specified in this version of the Profile

Description N Optional Not Specified in this version of the Profile

DefaultReadWrite Optional Indicates the default privileges that are supported for read
and write authorization when creating or modifying a
FileShare using this Setting element.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Not Specified in this version of the Profile

DefaultExecute Optional Indicates the default privileges that are supported for
execute authorization when creating or modifying a
FileShare using this Setting element.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Not Specified in this version of the Profile

ExecuteSupport Optional Indicates if the sharing mechanism provides specialized
support for executing a shared element when creating or
modifying a FileShare using this Setting element (for
instance, does it provide paging support for text pages).

Not Specified in this version of the Profile

WritePolicy Optional Indicates whether writes through a FileShare (created or
modified by using this Setting element) to the shared
element will be handled synchronously or asynchronously
by default.

 This policy may be overridden or surfaced using the Policy
sub-profile.

Not Specified in this version of the Profile

Table 27: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties Flags Requirement Description & Notes
60

 File Export Manipulation Subprofile
5.8.8 SNIA_SettingsDefineCapabilities (Pre-defined)

Created By: Static_or_External

Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 28 describes class SNIA_SettingsDefineCapabilities (Pre-defined).

5.8.9 SNIA_ExportedFileShareSetting (FileShare Setting)

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 29 describes class SNIA_ExportedFileShareSetting (FileShare Setting).

Table 28: SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined)

Properties Flags Requirement Description & Notes

PropertyPolicy Mandatory

ValueRole Mandatory

ValueRange Mandatory

GroupComponent Mandatory An Exported FileShare Capabilities element that is defined
by a collection of ExportedFileShareSetting Settings.

PartComponent Mandatory A Exported FileShare Setting that provides a point or a
partial definition for a Exported FileShare Capabilities
element.

Table 29: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Set-
ting)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique ID for the Setting.

ElementName Mandatory A client-defined user-friendly name for the Setting.

FileSharingProtocol Optional The file sharing protocol supported by this share. NFS (2)
and CIFS (3) are the supported values.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 61

File Export Manipulation Subprofile
ProtocolVersions Mandatory An array of the versions of the supported file sharing
protocol. A share may support multiple versions of the
same protocol. A NULL value or a NULL entry indicates
support for all versions.

 At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional.

InitialEnabledState N Optional This indicates the enabled/disabled states initially set for a
created FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3"
("Disabled"), "7" ("In Test"), "8" ("Deferred") or "9"
("Quiesce")

 Note: We need to rethink the usage of this property once
the file share has been created. Maybe it should apply to
when the file share is re-activated when the share or
system is rebooted after a shutdown. With the current
definition, neither this nor OtherEnabledState make sense.

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is "1"
("Other").

DefaultUserIdSuppor
ted

N Optional Indicates whether the associated FileShare will use a
default user id to control access to the share if the id of the
importing client is not provided.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Default User Id"), "3" ("System-
Specified Default User Id") or "4" ("Share-Specified Default
User Id").

RootAccess N Optional Indicates whether the associated FileShare will support
default access privileges to administrative users from
specified hosts.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root
Access").

Table 29: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Set-
ting)

Properties Flags Requirement Description & Notes
62

 File Export Manipulation Subprofile
5.8.10 SNIA_FileShare (Exported File Share)

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 30 describes class SNIA_FileShare (Exported File Share).

AccessPoints N Optional An enumerated value that specifies the service access
points that are available to this FileShare element by
default (to be used by clients for connections). Any
ServiceAccessPoint elements that actually connect to this
FileShare element will be associated to it by a
SAPAvailableForElement association.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile. The default or built-in
access points can always be overridden by the privileges
explicitly defined through the Authorization sub-profile.

 Valid values are "2" ("None"), "3" ("Service Default"), "4"
("All") or "5" ("Named Points").

Caption N Optional Not Specified in this version of the Profile

Description N Optional Not Specified in this version of the Profile

DefaultReadWrite N Optional Not Specified in this version of the Profile

DefaultExecute N Optional Not Specified in this version of the Profile

ExecuteSupport N Optional Not Specified in this version of the Profile

WritePolicy N Optional Not Specified in this version of the Profile

Table 30: SMI Referenced Properties/Methods for SNIA_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.

Name Mandatory This shall be an opaque string that uniquely identifies the
path to the directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is
useful when importing but less so when exporting.

Table 29: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Set-
ting)

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 63

File Export Manipulation Subprofile
5.8.11 SNIA_HostedShare

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 31 describes class SNIA_HostedShare.

5.8.12 CIM_ServiceAffectsElement

Created By: Extrinsic: CreateExportedShare

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in the
Health and Fault Management Clause.

Description N Optional This a comment describing the file share.

Caption N Optional Not Specified in this version of the Profile

InstallDate N Optional Not Specified in this version of the Profile

StatusDescriptions N Optional Not Specified in this version of the Profile

HealthState N Optional Not Specified in this version of the Profile

EnabledState N Optional Not Specified in this version of the Profile

OtherEnabledState N Optional Not Specified in this version of the Profile

RequestedState N Optional Not Specified in this version of the Profile

EnabledDefault N Optional Not Specified in this version of the Profile

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile

RequestStateChange
()

Optional Not Specified in this version of the Profile

Table 31: SMI Referenced Properties/Methods for SNIA_HostedShare

Properties Flags Requirement Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile

Dependent Mandatory The Share that is hosted by a Computer System

Antecedent Mandatory The Computer System that hosts a FileShare.

Table 30: SMI Referenced Properties/Methods for SNIA_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes
64

 File Export Manipulation Subprofile
Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 32 describes class CIM_ServiceAffectsElement.

5.8.13 CIM_ElementSettingData (FileShare Setting)

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 33 describes class CIM_ElementSettingData (FileShare Setting).

Table 32: SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement Description & Notes

ElementEffects Mandatory In this profile, the service provides management for the
element. We allow Other to support vendor extensions.

OtherElementEffects
Descriptions

Mandatory A description of other element effects that this association
might be exposing.

AffectedElement Mandatory The FileShare.

AffectingElement Mandatory The FileExportService.

Table 33: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)

Properties Flags Requirement Description & Notes

IsCurrent N Optional Is always true in this version of the sub-profile because we
only support one setting per share. However support for the
other flags, specifically, IsDefault and IsNext, could be
added in future releases.

IsDefault N Optional Not Specified in this version of the Profile

IsNext N Optional Not Specified in this version of the Profile

IsMinimum N Optional Not Specified in this version of the Profile

IsMaximum N Optional Not Specified in this version of the Profile

ManagedElement Mandatory The FileShare used for exporting an element.

SettingData Mandatory A Setting that specifies possible configurations of the
FileShare. In this version, we default this to
isCurrent="true"
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 65

File Export Manipulation Subprofile
5.8.14 CIM_LogicalFile (Subelement)

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: BC1.1

Table 34 describes class CIM_LogicalFile (Subelement).

5.8.15 SNIA_SharedElement

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 35 describes class SNIA_SharedElement.

Table 34: SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)

Properties Flags Requirement Description & Notes

CSCreationClassNa
me

Mandatory CIM Class of the Computer System that hosts the
Filesystem of this File.

CSName Mandatory Name of the Computer System that hosts the Filesystem of
this File.

FSCreationClassNa
me

Mandatory CIM Class of the LocalFileSystem on the Computer System
that contains this File.

FSName Mandatory Name of the LocalFileSystem on the Computer System that
contains this File.

CreationClassName Mandatory CIM Class of this instance of LogicalFile.

Name Mandatory Name of this LogicalFile.

Table 35: SMI Referenced Properties/Methods for SNIA_SharedElement

Properties Flags Requirement Description & Notes

SystemElement Mandatory The LocalFileSystem that is sharing a directory or file
through a SNIA_FileShare alter ego.

SameElement Mandatory The FileShare that is the alter ego for a directory or file in a
LocalFileSystem.
66

 File Export Manipulation Subprofile
5.8.16 CIM_FileStorage (Subelement)

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: BC1.1

Table 36 describes class CIM_FileStorage (Subelement).

5.8.17 CIM_ConcreteDependency

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: BC1.1

Table 37 describes class CIM_ConcreteDependency.

5.8.18 CIM_SAPAvailableForElement

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 36: SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)

Properties Flags Requirement Description & Notes

PartComponent Mandatory The file or directory that is made available for export.

GroupComponent Mandatory The Local File System that contains the exported File or
Directory.

Table 37: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Antecedent Mandatory The LogicalFile that is being shared.

Dependent Mandatory The Share that represents the LogicalFile being shared.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 67

File Export Manipulation Subprofile
Table 38 describes class CIM_SAPAvailableForElement.

EXPERIMENTAL

Table 38: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The element that is made available through a SAP. In the
File Export subprofile, these are FileShares configured for
either export.

AvailableSAP Mandatory The Service Access Point that is available to this FileShare.
68

 File Storage Profile
STABLE

Clause 6: File Storage Profile

6.1 Description

6.1.1 Synopsis

Profile Name: File Storage

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: N/A

Scoping Class: ComputerSystem

6.1.2 Overview

The File Storage Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in this release
of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles.

6.1.3 Implementation

Figure 8 illustrates the mandatory and optional classes for the modeling of file storage for the profiles that support
filesystems. This profile is supported by the Self-contained NAS and the NAS Head Profiles.

Figure 8: File Storage Instance

C o m p u te rS ys te m

L o g ica lD isk

L o ca lF ile S ys te m

H o s te d F ile S ys te m

R e s id e sO n E x te n t
(C o n d it io n a l)

F ile S to ra g e
P ro file

S ys te m D e v ic e
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 69

File Storage Profile
The File Storage profile models the mapping of Filesystems to LogicalDisks. For the NAS Head and Self-contained
NAS profiles each Filesystem shall be established on one LogicalDisk. The relationship between the
LocalFileSystem and the LogicalDisk is represented by the ResidesOnExtent association. This association is listed
as conditional on the parent profile being either the NAS Head or the Self-contained NAS profile.The LogicalDisk
may be a LogicalDisk as defined in the Block Services Package or part of the parent profile.

The FileStorage Profile is a “read-only” profile. That is, the methods for creating, modifying or deleting a
LocalFileSystem are external to the File Storage Profile. The SMI-S prescribed way of performing these functions
are covered by the Filesystem Manipulation Profile.

6.2 Health and Fault Management Consideration
None.

EXPERIMENTAL

6.3 Cascading Considerations
In some cases, the parent profile does not implement Block Services Package. In this case, the parent profile
would implement a LogicalDisk that is “imported” from another Profile (e.g., a Volume Management Profile). This
section discusses those cascading considerations.

6.3.1 Cascaded Resources

A File Storage profile may get its storage from the operating system (HDR Profile), a volume manager, an Array or
Storage Virtualizer. As such, there is a cascading relationship between the File Storage Profile and the Profiles
(e.g., Volume Management Profiles) that provide the storage for the File Storage Profile. Figure 9 illustrates the
constructs to be used to model this cascading relationship.
70

 File Storage Profile
Figure 9 shows 2 filesystems (LocalFileSystem). Both reside on one LogicalDisk. But the LogicalDisk on the right is
a composite of lower level LogicalDisks. The storage that is imported from the remote profile are LogicalDisks at
the lowest level of the Filesystem Profile. So, in the first (left side) case, the LogicalIdentity is between the
LogicalDisk on which the filesystem resides to the imported LogicalDisk (or StorageVolume). In the second case
(the right side) the LogicalIdentity is between the “lowest level” LogicalDisks in Volume Composition and the
imported LogicalDisks (or StorageVolumes).

Note: LogicalIdentity is an abstract class and would be subclassed by an implementation.

The ComputerSystem in the Filesystem Profile would be the computer system that hosts the filesystem. The
“Virtual” ComputerSystem is the top level ComputerSystem of the HDR, Volume Manager, Array or Storage
Virtualizer. There shall be a Dependency association between these computer systems. LogicalDisks (or
StorageVolumes) that are in use by the Filesystem Profile would have a MemberOfCollection association to the
SNIA_AllocatedResources collection. All the LogicalDisks (or StorageVolumes) that the Filesystem Profile can see
(including the ones that are allocated) would have a MemberOfCollection association to the
SNIA_RemoteResources instance.

The RemoteServiceAccessPoint associated to the virtual computer system via SAPAvailableForElement would be
information on the management interface for the HDR, Volume Manager, Array or Storage Virtualizer.

Figure 9: Cascading File Storage

V o lu m e C o m p o s it io n S u b p ro f i le

F i le S to ra g e P ro f i le

 C a s c a d in g S u b p ro f i le

C o m p u te r S y s te m

L o g ic a lD is k

N a m e = ” In te rn a l N a m e ”
O th e r Id e n t i fy in g In fo []= ” O S X ”

C o m p u te rS y s te m
(V ir tu a l)

L o g ic a lD is k
(V ir tu a l)

N a m e = “O S X ”

L o g ic a lD is k
(V ir tu a l)

S N IA _ R e m o te R e s o u rc e s

D e p e n d e n c y

R e m o te S e rv ic e A c c e s s P o in t

S A P A v a i la b le F o rE le m e n t

S y s te m D e v ic e

S N IA _ A llo c a te d R e s o u rc e s

M e m b e rO fC o lle c t io n

M e m b e rO fC o l le c t io n

S y s te m D e v ic e

L o g ic a lId e n t ity

L o c a lF ile S y s te m

R e s id e s O n E x te n t

L o g ic a lD is k

N a m e = ” In te rn a l N a m e ”

L o c a lF i le S y s te m

R e s id e s O n E x te n t

L o g ic a lD is k

N a m e = ” In te rn a l N a m e ”
O th e r Id e n t i fy in g In fo []= ”O S Y ”

L o g ic a lD is k

N a m e = ” In te r n a l N a m e ”
O th e r Id e n t i fy in g In fo []= ”O S Z ”

B a s e d O n B a s e d O n

C o m p o s ite E x te n t

B a s e d O n

L o g ic a lD is k
(V ir tu a l)

N a m e = “O S Y ”

L o g ic a lD is k
(V ir tu a l)

N a m e = “O S Z ”

L o g ic a lId e n t ity

L o g ic a lId e n t ity

M e m b e rO fC o lle c t io n

M e m b e rO fC o lle c t io n

M e m b e r O fC o l le c t io n
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 71

File Storage Profile
Table 39 provides the specific cascading information for cascading file storage.

6.3.2 Ownership Privileges

In support of the cascading File Storage, an implementation may assert ownership over the LogicalDisks (or
StorageVolumes) that they import. If the Volume Management implementation supports Ownership, the File
Storage implementation may assert ownership using the following Privileges:

• Activity - Execute

• ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool

• FormatQualifier - Method

Note: HDR does not support Block Storage Resource Ownership, so this cannot be supported if the
underlying profile is HDR.

6.3.3 Limitations on Cascading Subprofile

The File Storage Profile support for cascading places the following limitations and restrictions on the Cascading
Subprofile:

• Dependency - The Dependency may exist, even when there are no resources that are imported. This signifies
that the File Storage implementation has discovered the Volume Management or HDR profile, but has no
access to any of their LogicalDisks.

EXPERIMENTAL

6.4 Supported Profiles, Subprofiles, and Packages

Not defined in this standard.

6.5 Methods of the Profile

6.5.1 Extrinsic Methods of the Profile

None

Note: The methods for defining the various mappings would be handled by the Filesystem Manipulation
subprofile.

Table 39: Cascaded Storage

File Storage
Resource

Leaf Profile Leaf Resource Association Notes

LogicalDisk Volume Manage-
ment or HDR

LogicalDisk LogicalIdentity

LogicalDisk Array or Storage
Virtualizer

StorageVolume LogicalIdentity
72

 File Storage Profile
6.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

6.6 Client Considerations and Recipes
None.

6.7 Registered Name and Version
File Storage version 1.2.0

6.8 CIM Elements

6.8.1 CIM_ResidesOnExtent

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: NASHead|SCNAS

Table 40: CIM Elements for File Storage

Element Name Requirement Description

 CIM_ResidesOnExtent (6.8.1) Conditional Represents the association between a local
FileSystem and the underlying LogicalDisk
that it is built on.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 73

File Storage Profile
Table 41 describes class CIM_ResidesOnExtent.

STABLE

Table 41: SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Properties Flags Requirement Description & Notes

Dependent Mandatory The LocalFileSystem that is built on top of a LogicalDIsk.

Antecedent Mandatory The LogicalDIsk that underlies a LocalFileSystem.
74

 Filesystem Profile
STABLE

Clause 7: Filesystem Profile

7.1 Description

7.1.1 Synopsis

Profile Name: Filesystem

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: LocalFileSystem

Scoping Class: ComputerSystem

The Filesystem Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in this release
of SMI-S, this includes the NAS Head and the Self-Contained NAS profiles. A number of other profiles and
subprofiles make use of elements of the Filesystem profile and will be referred to in this specification as
“Filesystem related profiles” -- these include but are not limited to the Filesystem Manipulation subprofile, File
Export subprofile, File Export Manipulation subprofile, NAS Head profile, and so on.

The state transitions involved when an appropriate storage element is transformed into a filesystem are described
in Annex A: (Informative) State Transitions from Storage to File Shares.

7.1.2 Instance Diagrams

Figure 10 illustrates the mandatory, optional, and conditional classes for the modeling of filesystems for the profiles
that support filesystems. This profile is supported by the Self-contained NAS and the NAS Head profiles. The
dashed box contains the elements that this profile supports -- the elements outside the dashed box depend on
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 75

Filesystem Profile
other profiles or subprofiles for their maintenance (creation, deletion, and modification). There are two

ComputerSystems shown outside the box that represent different dedicated roles that could be performed by
different actual computers (or could be performed by a single computer).

A filesystem shall be represented in the model as an instance of LocalFileSystem. A LocalFileSystem instance
shall have a ResidesOnExtent association to a LogicalDisk (shown, but outside this profile). A client would
determine the size (in bytes) of a filesystem by inspecting the size of the LogicalDisk on which the LocalFileSystem
resides.

Note: The Filesystem related profiles build LocalFileSystems on a LogicalDisk(s). In the cases supported in
this release of SMI-S, one LocalFileSystem may be established on one LogicalDisk. In a future release,
more elaborate mappings may exist between FileSystems and one or more LogicalDisks.

The LocalFileSystem shall have a HostedFileSystem association to a ComputerSystem. Normally this will be the
top level ComputerSystem of the parent profile (typically one of the Filesystem related profiles such as the NAS
Head or the Self-Contained NAS Profile). However, if the Multiple Computer System Subprofile is implemented, the
HostedFileSystem may be associated to a component ComputerSystem. See Clause 32: Multiple Computer
System Subprofile in Storage Management Technical Specification, Part 2 Common Profiles.

The LocalFileSystem element may also have an ElementSettingData association to the FileSystemSetting for that
filesystem. However, the FileSystemSetting and ElementSettingData are optional in this profile.

There may be zero or more FileShare elements associated to the LocalFileSystem element via the SharedElement
association. An implementation would be required to populate only those FileShare elements representing files (or
directories) that are exported using a supported file sharing protocol (such as CIFS or NFS). The path to the file or
directory from the root of the LocalFileSystem is specified by the FileShare.PathName property.

Note: In order to support backward compatibility with the NAS Head and Self-contained NAS profiles in SMI-
S 1.1, the class LogicalFile (shown outside the dashed box in the figure) and two associations

Figure 10: Filesystem Instance

File System Profile

FileSystem Host

ComputerSystem

SNIA_LocalFileSystem
LocalAccessDefinitionRequired

PathnameSeparatorString=”/”

HostedFileSystem

SNIA_FileSystemSetting
(Optional)

ElementSettingData
(Optional)

SNIA_FileShare

PathName=”/users/me”

SNIA_SharedElement

SNIA_LocallyAccessibleFileSystemSetting
(Optional)

ElementSettingData
(Optional)

File Server

ComputerSystem

SNIA_LocalAccessAvailable
LocalAccessPoint=”/etc/mnt”

(Conditional)

LogicalDisk

ResidesOnExtent

*

*

*

1

1

1
1

1

1

1

HostedDependency
(Optional)

SNIA_HostedShare

1

* *

*

1
*

LogicalFile
(BC 1.1)FileStorage

(BC 1.1)

ConcreteDependency
(BC 1.1)*

*

1

1

1

Dependency
(Conditional)

1

.

76

 Filesystem Profile
(ConcreteDependency outside the dashed box and FileStorage shown inside the dashed box) must be
supported. These duplicate the functionality provided by specifying FileShare.PathName, at the cost of
requiring that certain LogicalFiles, but not all, be surfaced.

EXPERIMENTAL

7.1.2.1 Local Access Requirement
In addition, if the property LocalFileSystem.LocalAccessDefinitionRequired is set to true, the filesystem must be
made exportable via a file server. In that case, there shall be a LocalAccessAvailable association from the
LocalFileSystem element to the file server ComputerSystem and, optionally, a
LocallyAccessibleFileSystemSettings element associated via an ElementSettingData association to the
LocalFileSystem. The LocallyAccessibleFileSystemSettings element is an instance of ScopedSettingData and is
associated to the file server ComputerSystem via a ScopedSetting association. The ScopedSetting association
indicates that this setting is constrained by the associated file server. The LocalAccessAvailable association is
required but conditional on LocalAccessDefinitionRequired being true, while the
LocallyAccessibleFileSystemSettings element and the ScopedSetting association are not required (i.e., optional).

Note: They are still conditional on LocalAccessDefinitionRequired being true, but in this version of SMI-S we
are unable to represent that in the XML file.

Since LocalAccessAvailable is an association, there can only be ONE instance per LocalFileSystem for each
FileServer. This is a common restriction . For each LocalAccessAvailable association, there should only be zero (if
optionally not implemented) or one (if optionally implemented) instances of LocallyAccessibleFileSystemSettings.

EXPERIMENTAL

EXPERIMENTAL

7.1.2.2 Directory Service Use
A filesystem needs to be supported by a directory service that resolves user and group identifiers (referred to as
UID, GID, or SID) to specific operational users and groups. The enumerated property
LocalFileSystem.DirectoryServiceUsage indicates the kind of support a filesystem requires from a directory service
-- the options include “Not Used”, “Optional”, and “Required”. If “Required”, the filesystem will be associated to a
computer system that provides infrastructure support for such identity resolution.

The directory service may be hosted by any ComputerSystem, but it must be accessible in real-time to the
ComputerSystem that makes the filesystem available to operational users -- this is either a file server
ComputerSystem (one may already be required if LocalFileSystem.LocalAccessDefinitionRequired is true, but it is
optional otherwise) or the ComputerSystem hosting the filesystem. The directory service may be “natively” hosted
on that ComputerSystem (file server or filesystem host) or may be identified by that ComputerSystem in some way.

The support relationship between a LocalFileSystem element and the ComputerSystem that identifies and uses
the directory service shall be represented by a Dependency association with the ComputerSystem element as the
Antecedent and the LocalFileSystem element as the Dependent.

In the instance diagram above, the Dependency association has been shown between the LocalFileSystem and a
file server ComputerSystem (with Dedicated[]=”16”). A LocalFileSystem element shall only identify one
ComputerSystem for directory service access. In addition, the consistency of filesystem security implementation
requires that all the file server ComputerSystems that make a filesystem locally available must use the same
directory service or use mutually consistent directory services.

EXPERIMENTAL
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 77

Filesystem Profile
7.2 Health and Fault Management Consideration
The Filesystem Profile supports state information (e.g., OperationalStatus) on the following elements of the model:

• Local File Systems (See Table 53: SMI Referenced Properties/Methods for SNIA_LocalFileSystem)
78

 Filesystem Profile
7.2.1 OperationalStatus for Filesystems

7.3 Cascading Considerations
None.

Table 42: Filesystem OperationalStatus

Primary OperationalStatus Description

2 “OK” The filesystem has good status

3 “Degraded” The filesystem is operating in a degraded mode. This could be
due to the health state of the underlying storage being
degraded or in error.

4 “Stressed” The filesystem resources are stressed

5 “Predictive Failure” The filesystem might fail because some resource or compo-
nent is predicted to fail

6 “Error” An error has occurred causing the filesystem to become
unavailable. Operator intervention through SMI-S (managing
the LocalFileSystem) to restore the filesystem may be possi-
ble.

6 “Error” An error has occurred causing the filesystem to become
unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error” The filesystem is not functioning. Operator intervention
through SMI-S will not fix the problem.

8 “Starting” The filesystem is in process of initialization and is not yet avail-
able operationally.

 9 “Stopping” The filesystem is in process of stopping, and is not available
operationally.

10 “Stopped” The filesystem cannot be accessed operationally because it is
stopped -- if this did not happened because of operator inter-
vention or happened in real-time, the OperationalStatus would
have been “Lost Communication” rather than “Stopped”.

11 “In Service” The filesystem is offline in maintenance mode, and is not avail-
able operationally.

13 “Lost Communications” The filesystem cannot be accessed operationally -- if this hap-
pened because of operator intervention it would have been
“Stopped” rather than “Lost Communication”.

14 “Aborted” The filesystem is stopped but in a manner that may have left it
in an inconsistent state.

15 “Dormant” The Filesystem is offline; and the reason for not being accessi-
ble is unknown.

16 “Supporting Entity in Error” The filesystem is in an error state, or may be OK but not
accessible, because a supporting entity is not accessible.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 79

Filesystem Profile
7.4 Supported Profiles, Subprofiles, and Packages

7.5 Methods of the Profile

7.5.1 Extrinsic Methods of the Profile

None.

7.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

7.6 Client Considerations: Use Cases
The following client use cases are supported by this profile:

• List Existing Filesystems hosted by the Referencing Profile (parent Filesystem related profile).

• Get FileSystemSettings for a FileSystem

• Get the ComputerSystem that hosts a FileSystem

• Get all File Servers and Access Paths that have Local Access to this FileSystem

• Get the Access Path to this FileSystem on the specified File Server

• Get the Local Access Settings for this FileSystem on the specified File Server

• Get the FileShares and shared File path of this FileSystem on all File Servers

• Get the FileShares and shared File path of this FileSystem on the specified FileServer

Table 43: Supported Profiles for Filesystem

Registered Profile Names Mandatory Version

Indication Yes 1.2.0
80

 Filesystem Profile
EXPERIMENTAL

These use cases have been elaborated as prototype recipes in the following sections.

7.6.1 List Existing Filesystems hosted by the Referencing Profile (parent filesystem related profile

// DESCRIPTION

// Goal: Locate all LocalFileSystems hosted on the top level

// ComputerSystem of the Filesystem Profile.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the top level ComputerSystem was previously

// discovered and is defined in the $System-> variable.

//

// FUNCTION ListFileSystems

// This function takes a given top level ComputerSystem and locates

// the LocalFileSystems which it hosts or are hosted by any component

// ComputerSystem.

// INPUT Parameters:

// System: A reference to the top level ComputerSystem of

// the Filesystem Profile.

// OUTPUT Parameters:

// None

// RESULT:

// Returns: An array of reference(s) to the LocalFileSystems

// hosted by the top level ComputerSystem or component

// ComputerSystems. It returns NULL if it does not find

// any hosted LocalFileSystems.

sub CIMInstance[] ListFileSystems(REF CIM_ComputerSystem $System->) {

 // Step 1. Locate the LocalFileSystems hosted directly by the

 // top-level ComputerSystem of the Filesystem Profile.

 #FSProps[] = {“CSCreationClassName”, “CSName”, “CreationClassName”,

 “Name”, “OperationalStatus”, “CaseSensitive”, “CasePreserved”,

 “MaxFileNameLength”, “FileSystemType”,

 “MultipleDisksSupported”,

 “LocalAccessDefinitionRequired”,

 “PathNameSeparatorString” }

 $FileSystems[] = Associators($System->,

 “CIM_HostedFileSystem”,

 “CIM_LocalFileSystem”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 #FSProps[])

 // Step 2. Locate all the component ComputerSystems of the top level
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 81

Filesystem Profile
 // ComputerSystem of the Filesystem Profile implementation.

 // This assumes that the top level ComputerSystem of the Filesystem

 // Profile is the same as the top level ComputerSystem of the

 // Multiple Computer System Subprofile. This recipe does not

 // check if this assumption is correct.

 try {

 REF CIM_ComputerSystem $ComponentSystems->[] =

 AssociatorNames($System->,

 “CIM_ComponentCS,

 “CIM_ComputerSystem”,

 “GroupComponent”,

 “PartComponent”)

 // Step 3. Locate the LocalFileSystems hosted by the component

 // ComputerSystem and add to the list of found LocalFileSystems.

 if ($ComponentSystems->[] != null &&

 $ComponentSystems->[].length > 0) {

 REF CIM_FileSystem $ComponentFS[]

 #fsCounter = $FileSystems[].length

 for (#i in $ComponentSystems->[]) {

 $ComponentFS[] =

 Associators($ComponentSystems->[#i],

 “CIM_HostedFileSystem”,

 “CIM_LocalFileSystem”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 #FSProps[])

 if ($ComponentFS[] != null && $ComponentFS[].length > 0) {

 for (#j in $ComponentFS->[]) {

 $FileSystems[#fsCounter] = $ComponentFS[#j]

 #fsCounter++

 }

 }

 }

 }

 } catch (CIMException $Exception) {

 // ComponentCS may not be included in the model implemented at all if

 // the Multiple Computer System Subprofile is not supported.

 if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

 return $FileSystems[]

 }

 <ERROR! An unexpected failure occured>

 }

 return $FileSystems[]

}

82

 Filesystem Profile
// MAIN

$HostedFileSystems[] = ListFileSystems($TopLevelComputerSystem->)

7.6.2 Get FileSystemSettings for a FileSystem

// DESCRIPTION

// Goal: Get the FileSystemSettings associated with a LocalFileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. There is only one setting for the file system

//

// FUNCTION GetFSSetting

// This function takes a given LocalFileSystem and returns the

// FileSystemSetting element that specifies its configuration.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem .

// OUTPUT Parameters:

// setting: A reference to the FileSystemSetting element is returned.

// RESULT:

// Returns: Nothing

//

sub GetFSSetting(IN REF CIM_LocalFileSystem $fs,

 OUT CIM_FileSystemSetting $setting)

{

 //

 // Get a reference to the FileSystemSetting associated with the

 // LocalFileSystem (via ElementSettingData association)

 $setting = Associators($fs,

 “CIM_ElementSettingData”,

 “CIM_FileSystemSetting”,

 “ManagedElement”,

 “SettingData”)->[0];

}

7.6.3 Get the ComputerSystem that hosts a FileSystem

// DESCRIPTION

// Goal: Get the ComputerSystem that hosts a LocalFileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

//

// FUNCTION GetFileSystemHost

// This function takes a given LocalFileSystem and returns the

// ComputerSystem that hosts it.

// INPUT Parameters:
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 83

Filesystem Profile
// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// system: A reference to the hosting ComputerSystem is returned.

// RESULT:

// Returns: Nothing

//

sub GetFileSystemHost(IN REF CIM_LocalFileSystem $fs,

 OUT CIM_ComputerSystem $system)

{

 $system = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

}

// Retained for backward compatability with SMI-S 1.1

sub GetFSServer(IN REF CIM_FileSystem $fs,

 OUT CIM_ComputerSystem $system)

{

GetFileSystemHost($fs, $system);

}

7.6.4 Get all File Servers and Access Paths that have Local Access to this FileSystem

// DESCRIPTION

// Goal: Get the file server ComputerSystems that access the

// LocalFileSystem and the local access points on those

// ComputerSystems

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

//

// FUNCTION GetFileSystemServersAndPaths

// This function takes a given LocalFileSystem and returns the

// file server ComputerSystems that have local access to it

// and the local access points on those ComputerSystems.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// systems: An array of references to the file server ComputerSystems.

// paths: An array of strings that are the local access points on the

// corresponding file server

// RESULT:

// Returns: Number of entries in the returned arrays.

//

sub uint32 GetFileSystemServersAndPaths(IN REF CIM_LocalFileSystem $fs,

 OUT REF CIM_ComputerSystem $systems[],
84

 Filesystem Profile
 OUT string #paths[])

{

 REF CIM_LocalAccessAvailable $assocs->[] = References($fs,

 “SNIA_LocalAccessAvailable”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”);

 #counter = 0;

 if ($assocs->[] != null && $assocs->[].length > 0) {

 #count = $assocs->[].length;

 for (#i in $assocs->[]) {

 $systems->[#counter] = $assocs->[#i].FileServer;

 #paths->[#counter] = $assocs->[#i].LocalAccessPoints;

 #counter++;

 }

 }

 return #counter;

}

7.6.5 Get the Access Path to this FileSystem on the specified File Server

// DESCRIPTION

// Goal: Get the local access point to this LocalFileSystem on the

// specified file server ComputerSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously

// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemServerPath

// This function takes a given LocalFileSystem and file server

// ComputerSystem that has access to the filesystem and returns

// the local access point on that file server ComputerSystem.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// None

// RESULT:

// Returns: A string representing the local access path to the

// filesystem on the file server

//

sub string GetFileSystemServerPath(IN REF CIM_FileSystem $fs,

 IN REF CIM_ComputerSystem $server)

{

 REF CIM_LocalAccessAvailable $assocs->[] = References($fs,

 “SNIA_LocalAccessAvailable”,
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 85

Filesystem Profile
 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”);

 #path = ““;

 if ($assocs->[] != null && $assocs->[].length > 0) {

 for (#i in $assocs->[]) {

 if ($server == $assocs->[#i].FileServer) {

 #path = $assocs->[#i].LocalAccessPoint;

 break;

 }

 }

 }

 return #path;

}

7.6.6 Get the Local Access Settings for this FileSystem on the specified File Server

// DESCRIPTION

// Goal: Get the LocallyAccessibleFileSystemSetting for this

// LocalFileSystem on the specified file server ComputerSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously

// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemServerAccessSettings

// This function takes a given LocalFileSystem and file server

// ComputerSystem that has access to the filesystem and returns

// the LocallyAccessibleFileSystemSetting for that FileSystem

// in the context of that file server ComputerSystem

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// setting: A reference to the SNIA_LocallyAccessibleFileSystemSetting

// RESULT:

// Returns: Nothing

// (Optionally) A string containing the setting as an EmbeddedInstance

//

sub GetFileSystemServerAccessSettings(IN REF CIM_FileSystem $fs,

 IN REF CIM_ComputerSystem $server,

 OUT REF SNIA_LocallyAccessibleFileSystemSetting
setting)

{

 REF SNIA_LocallyAccessibleFileSystemSetting $settings->[] =
AssociatorNames($fs,

 “CIM_ElementSettingData”,
86

 Filesystem Profile
 “SNIA_LocallyAccessibleFileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 $setting = NULL;

 $settingEI = ““;

 if ($settings->[] != null && $settings->[].length > 0) {

 for (#i in $settings->[]) {

 // Find the server that scopes this setting; assumes at least one is
returned

 REF CIM_ComputerSystem scope = AssociatorNames($settings->[#i],

 “CIM_ScopedSetting”,

 “CIM_ComputerSystem”,

 “ScopedSettingData,

 “ManagedElement”)->[0];

 if ($server == $scope) {

 $setting = $settings->[#i];

 $settingEI = $setting->GetInstance();

 break;

 }

 }

 } else {

 // There is no setting => it is defaulted by the server and opaque to the
client

 // Is this an Error?

 #ERROR(“Cannot find LocallyAccessibleFileSystemSetting for
LocalFileSystem.”);

 }

 return $settingEI;

}

7.6.7 Get the FileShares and shared File path of this FileSystem on all File Servers

// DESCRIPTION

// Goal: Get all the FileShare elements and filesystem-relative

// path to the shared file or directory of this LocalFileSystem

// on all file server ComputerSystems (that

// support local access to this LocalFileSystem)

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

//

// FUNCTION GetFileSystemServersSharesAndSharedPaths

// This function takes a given LocalFileSystem and returns the

// FileShare elements that provide access to a file or directory

// of the FileSystem. For each FileShare, this also returns

// the file server ComputerSystems that provides local access to

// it and the path to the shared file or directory relative to the
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 87

Filesystem Profile
// filesystem.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// shares: An array of references to the FileShares that provide access.

// servers: An array of references to the file server ComputerSystems.

// dirpaths: An array of strings that are the filesystem-relative paths

// to the shared directory or file

// RESULT:

// Returns: Number of entries in the returned arrays.

//

sub uint32 GetFileSystemServersSharesAndSharedPaths(

 IN REF CIM_FileSystem $fs,

 OUT REF CIM_FileShare $shares[],

 OUT string #dirpaths[],

 OUT REF CIM_ComputerSystem $servers[])

{

 REF CIM_FileShares $shares->[] = Associators($fs,

 “CIM_SharedElement”,

 “CIM_FileShare”,

 “SystemElement”,

 “SameElement”);

 #counter = 0;

 if ($shares->[] != null && $shares->[].length > 0) {

 for (#i in $shares->[]) {

 // A share must be hosted

 $servers->[#counter] = AssociatorNames($shares->[#i],

 “CIM_HostedShare”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 $assoc = References($shares->[#i],

 “CIM_SharedElement”,

 “CIM_FileSystem”,

 “SameElement”,

 “SystemElement”)->[0];

 $dirpaths[#counter] = $assoc.PathName;

 #counter++;

 }

 }

 return #counter;

}

7.6.8 Get the FileShares and shared File path of this FileSystem on the specified FileServer

// DESCRIPTION

// Goal: Get all the FileShare elements and filesystem-relative

// path to the shared file or directory of this LocalFileSystem

// on this file server ComputerSystem
88

 Filesystem Profile
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously

// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemSharesAndSharedPathsOnServer

// This function takes a given LocalFileSystem and returns the

// FileShare elements that provide access to a file or directory

// of the FileSystem. For each FileShare this also returns the

// file server ComputerSystem that supports local access to it

// and the filesystem-relative path to the shared file or directory.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// shares: An array of references to the FileShares that provide access.

// dirpaths: An array of strings that are the file system-relative paths

// to the shared directory or file

// RESULT:

// Returns: Number of entries in the returned arrays.

//

sub uint32 GetFileSystemSharesAndSharedPathsOnServer(

 IN REF CIM_FileSystem $fs,

 IN REF CIM_ComputerSystem $server,

 OUT REF CIM_FileShare $shares[],

 OUT string #dirpaths[])

{

 REF CIM_FileShares $allshares->[] = Associators($fs,

 “CIM_SharedElement”,

 “CIM_FileShare”,

 “SystemElement”,

 “SameElement”);

 #counter = 0;

 if ($allshares->[] != null && $allshares->[].length > 0) {

 for (#i in $shares->[]) {

 // A share must be hosted

 $host = AssociatorNames($allshares->[#i],

 “CIM_HostedShare”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 // Is this share hosted by the server?

 if ($host == $server) {

 $assoc = References($allshares->[#i],

 “CIM_SharedElement”,
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 89

Filesystem Profile
 “CIM_FileSystem”,

 “SameElement”,

 “SystemElement”)->[0];

 $shares[#counter] = $allshares->[#i];

 $dirpaths[#counter] = $assoc.PathName;

 #counter++;

 }

 }

 }

 return #counter;

}

EXPERIMENTAL

7.7 Registered Name and Version
Filesystem version 1.2.0
90

 Filesystem Profile
7.8 CIM Elements

Table 44: CIM Elements for Filesystem

Element Name Requirement Description

 CIM_ElementSettingData (FileSystem)
(7.8.1)

Optional Associates a LocalFileSystem to its
FileSystemSetting element.

 CIM_ElementSettingData (Local Access
Required) (7.8.2)

Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a LocalFileSystem to
LocallyAccessibleFileSystemSetting
elements, one for each file server that has
local access.

 CIM_FileStorage (7.8.3) Mandatory Associates a LogicalFile (or Directory) to the
LocalFileSystem that contains it. This is
provided for backward compatibility with SMI-
S 1.1

 SNIA_LocalAccessAvailable (7.8.4) Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a LocalFileSystem to a
file server ComputerSystem that can export
files or directories as shares.

 CIM_HostedDependency (Local Access
Required) (7.8.5)

Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a file server
ComputerSystem to the
LocallyAccessibleFileSystemSetting elements
that get scoping information from that file
server.

 CIM_Dependency (7.8.6) Mandatory Associates a ComputerSystem that indicates
a directory service that supports the
dependent LocalFileSystem.

 SNIA_FileSystemSetting (7.8.7) Optional This element represents the configuration
settings of a filesystem represented by a
LocalFileSystem.

 CIM_HostedFileSystem (LocalFileSystem)
(7.8.8)

Mandatory Associates a LocalFileSystem to the
ComputerSystem that hosts it.

 SNIA_LocalFileSystem (7.8.9) Mandatory Represents a filesystem in a Filesystem
related profile.

 CIM_LogicalFile (7.8.10) Mandatory In SMI-S 1.1. the Filesystem related profiles
made a limited set of LogicalFiles (or Directory
subclass) instances visible (these were any
file or directory that was exported as a share.
This element is required by the SMI-S 1.2
profiles to maintain backward compatibility
with clients conforming to SMI-S 1.1.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 91

Filesystem Profile
7.8.1 CIM_ElementSettingData (FileSystem)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Optional

Table 45 describes class CIM_ElementSettingData (FileSystem).

 SNIA_LocallyAccessibleFileSystemSetting
(7.8.11)

Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. This element represents the
configuration settings of a LocalFileSystem
that can be made locally accessible (i.e., can
have a file or directory made accessible to
operational users) from a file server
ComputerSystem. This Setting provides
further details on the functionality supported
and the parameters of that functionality when
locally accessible.

 CIM_Dependency (Uses Directory Services
From) (7.8.12)

Conditional Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is
either "Required" or "Optional". Associates a
ComputerSystem that indicates a directory
service that supports the dependent
LocalFileSystem.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
SNIA_LocalFileSystem AND
SourceInstance.SNIA_LocalFileSystem::Oper
ationalStatus[*] <>
PreviousInstance.SNIA_LocalFileSystem::Op
erationalStatus[*]

Optional Experimental CQL - Change of Status of a
Filesystem. PreviousInstance is optional, but
may be supplied by an implementation of the
Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
SNIA_LocalFileSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL - Change of Status of a
Filesystem. PreviousInstance is optional, but
may be supplied by an implementation of the
Profile.

Table 45: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem.

Table 44: CIM Elements for Filesystem

Element Name Requirement Description
92

 Filesystem Profile
7.8.2 CIM_ElementSettingData (Local Access Required)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: LocalAccessDefinitionRequired

Table 46 describes class CIM_ElementSettingData (Local Access Required).

7.8.3 CIM_FileStorage

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 47 describes class CIM_FileStorage.

7.8.4 SNIA_LocalAccessAvailable

SettingData Mandatory The settings established on the LocalFileSystem when first
created or as modified.

Table 46: SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access
Required)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.

SettingData Mandatory The local access settings of the LocalFileSystem, specified
when first created or established later.

Table 47: SMI Referenced Properties/Methods for CIM_FileStorage

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The LocalFileSystem that contains the LogicalFile.

PartComponent Mandatory The LogicalFile contained in the LocalFileSystem.

Table 45: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 93

Filesystem Profile
Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: LocalAccessDefinitionRequired

Table 48 describes class SNIA_LocalAccessAvailable.

7.8.5 CIM_HostedDependency (Local Access Required)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: LocalAccessDefinitionRequired

Table 49 describes class CIM_HostedDependency (Local Access Required).

Table 48: SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties Flags Requirement Description & Notes

LocalAccessPoint Optional The name used by the file server ComputerSystem to
identify the filesystem. Sometimes referred to as a mount-
point.

For many UNIX-based systems, this will be a qualified full
pathname.

For Windows systems this could also be the drive letter
used for the LogicalDisk that the filesystem is resident on.

FileSystem Mandatory The LocalFileSystem that is being made available to the file
server ComputerSystem.

FileServer Mandatory The ComputerSystem that will be able to export shares
from this LocalFileSystem.

Table 49: SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access
Required)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that provides the scope for the
LocallyAccessibleFileSystemSetting.

Dependent Mandatory The local access settings of the LocalFileSystem,
established when first created or as modified later, that is
dependent on some information provided by the file server
that is the scoping ComputerSystem.
94

 Filesystem Profile
7.8.6 CIM_Dependency

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory:

Table 50 describes class CIM_Dependency.

7.8.7 SNIA_FileSystemSetting

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 51 describes class SNIA_FileSystemSetting.

Table 50: SMI Referenced Properties/Methods for CIM_Dependency

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s)
that support user, group and other security principal
identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other
security principal identities is supported by the antecedent
ComputerSystem.

Table 51: SMI Referenced Properties/Methods for SNIA_FileSystemSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A user-friendly name for this FileSystemSetting element.

ActualFileSystemTyp
e

Mandatory This identifies the type of filesystem that this
FileSystemSetting represents.

FilenameCaseAttribu
tes

Mandatory This specifies the support provided for using upper and
lower case characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 95

Filesystem Profile
NumberOfObjectsMin Mandatory This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

NumberOfObjectsMa
x

Mandatory This is an array that specifies the maximum number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

NumberOfObjects Mandatory This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSize Mandatory This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMin Mandatory This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMax Mandatory This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[].

FilenameReservedC
haracterSet

Optional This string or character array specifies the characters
reserved (i.e., not allowed) for use in filenames of a
filesystem with this setting.

DataExtentsSharing Optional This specifies whether a filesystem with this setting
supports the creation of data blocks (or storage extents)
that are shared between files.

CopyTarget Optional This specifies that, if possible, support should be provided
for using a filesystem created with this setting as a target of
a Copy operation.

FilenameStreamFor
mats

Optional This is an array that specifies the stream formats (e.g.,
UTF-8) supported for filenames by a filesystem with this
setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by a filesystem with this
setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported
by a filesystem with this setting.

SupportedLockingSe
mantics

Optional This array specifies the set of file access/locking semantics
supported by a filesystem with this setting.

SupportedAuthorizati
onProtocols

Optional This array specifies the kind of file authorization protocols
supported by a filesystem with this setting.

SupportedAuthentica
tionProtocols

Optional This array specifies the kind of file authentication protocols
supported by a filesystem with this setting.

Table 51: SMI Referenced Properties/Methods for SNIA_FileSystemSetting

Properties Flags Requirement Description & Notes
96

 Filesystem Profile
7.8.8 CIM_HostedFileSystem (LocalFileSystem)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Mandatory

Table 52 describes class CIM_HostedFileSystem (LocalFileSystem).

7.8.9 SNIA_LocalFileSystem

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 53 describes class SNIA_LocalFileSystem.

Table 52: SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that hosts a LocalFileSystem.

PartComponent Mandatory The LocalFileSystem that represents the hosted filesystem.

Table 53: SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes

CSCreationClassNa
me

Mandatory The CIM class of the hosting ComputerSystem element.

CSName Mandatory The Name property of the hosting ComputerSystem
element.

CreationClassName Mandatory The CIM class of this LocalFileSystem element.

Name Mandatory A unique name for this LocalFileSystem element in the
context of the hosting ComputerSystem.

OperationalStatus Mandatory The current operational status of the filesystem
represented by this LocalFileSystem element.

Root Optional A path that specifies the "mount point" of the filesystem in
an unitary computer system that is both the host of the
filesystem and is the file server that makes it available.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 97

Filesystem Profile
BlockSize Optional The size of a block in bytes for certain filesystem types that
require a fixed block size when creating a filesystem.

FileSystemSize Optional The total current size of the filesystem in blocks.

AvailableSpace Optional The space available currently in the filesystem in blocks.
NOTE: This value is an approximation as it can vary
continuously when the filesystem is in use.

ReadOnly Optional Indicates that this is a read-only filesystem that does not
allow modifications to contained files and directories.

EncryptionMethod Optional Indicates if files are encrypted by the filesystem
implementation and the method of encryption.

CompressionMethod Optional Indicates if files are compressed by the filesystem
implementation before being stored, and the methods of
compression.

CaseSensitive Mandatory Whether this filesystem is sensitive to the case of
characters in filenames.

CasePreserved Mandatory Whether this filesystem implementation preserves the case
of characters in filenames when saving and restoring.

CodeSet Optional The codeset used in filenames by the filesystem
implementation.

MaxFileNameLength Mandatory The length of the longest filename supported by the
filesystem implementation.

FileSystemType Mandatory This is a string that matches
FileSystemSetting.ActualFileSystemType property used to
create the filesystem.

NumberOfFiles Optional The actual current number of files in the filesystem. NOTE:
This value is an approximation as it can vary continuously
when the filesystem is in use.

LocalAccessDefinitio
nRequired

Mandatory This boolean property indicates whether or not this
LocalFileSystem must be made locally accessible
("mounted") from a file server ComputerSystem before it
can be shared or otherwise made available to operational
clients.

PathNameSeparator
String

Mandatory This indicates the string of characters used to separate
directory components of a canonically formatted path to a
file from the root of the filesystem. This string is expected to
be specific to the ActualFileSystemType and so is vendor/
implementation dependent. However, by surfacing it we
make it possible for a client to parse a pathname into the
hierarchical sequence of directories that compose it.

Table 53: SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes
98

 Filesystem Profile
7.8.10 CIM_LogicalFile

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 54 describes class CIM_LogicalFile.

DirectoryServiceUsa
ge

Optional This enumeration indicates whether the filesystem
supports security principal information and therefore
requires support from a file server that uses one or more
directory services. If the filesystem requires such support,
there must be a concrete subclass of Dependency between
the LocalFileSystem element and the specified file server
ComputerSystem. The values supported by this property
are:

 "Not Used" indicates that the filesystem will not support
security principal information and so will not require support
from a directory service.

 "Optional" indicates that the filesystem may support
security principal information. If it does, it will require
support from a directory service and the Dependency
association described above must exist.

 "Required" indicates that the filesystem supports security
principal information and will require support from a
directory service. The Dependency association described
above must exist.

Table 54: SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement Description & Notes

CSCreationClassNa
me

Mandatory Class Name of the ComputerSystem that hosts the
filesystem containing this file.

CSName Mandatory The Name property of the ComputerSystem that hosts the
filesystem containing this file.

FSCreationClassNa
me

Mandatory Class Name of the LocalFileSystem that represents the
filesystem containing this file.

FSName Mandatory The Name property of the LocalFileSystem that represents
the filesystem containing this file.

Table 53: SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 99

Filesystem Profile
7.8.11 SNIA_LocallyAccessibleFileSystemSetting

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: LocalAccessDefinitionRequired

Table 55 describes class SNIA_LocallyAccessibleFileSystemSetting.

CreationClassName Mandatory Class Name of this instance of LogicalFile that represents
the file.

Name Mandatory The Name property of the LogicalFile that represents the
file.

ElementName Mandatory The pathname from the root of the containing
LocalFileSystem to this LogicalFile. The root of the
LocalFileSystem is indicated if this is NULL or the empty
string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of
directories from the root, the separator string is specified by
the SNIA_LocalFileSystem.PathNameSeparatorString
property.

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a
LocallyAccessibleFileSystemSetting.

ElementName Mandatory A user-friendly name for this
LocallyAccessibleFileSystemSetting element.

Table 54: SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement Description & Notes
100

 Filesystem Profile
InitialEnabledState Optional InitialEnabledState is an integer enumeration that indicates
the enabled/disabled states initially set for a locally
accessible filesystem (LAFS). The element functions by
passing commands onto the underlying filesystem, and so
cannot indicate transitions between requested states
because those states cannot be requested. The following
text briefly summarizes the various enabled/disabled initial
states:

 Enabled (2) indicates that the element will execute
commands, will process any queued commands, and will
queue new requests.

 Disabled (3) indicates that the element will not execute
commands and will drop any new requests.

 In Test (7) indicates that the element will be in a test state.

 Deferred (8) indicates that the element will not process any
commands but will queue new requests.

 Quiesce (9) indicates that the element is enabled but in a
restricted mode. The element's behavior is similar to the
Enabled state, but it only processes a restricted set of
commands. All other requests are queued.

OtherEnabledState Optional A string describing the element's initial enabled/disabled
state when the InitialEnabledState property is set to 1
("Other"). This property MUST be set to NULL when
InitialEnabledState is any value other than 1.

FailurePolicy Optional An enumerated value that specifies if the operation to
make a filesystem locally accessible to a scoping
ComputerSystem should be attempted one or more times
in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by
the corresponding RetriesMax property of the setting.

RetriesMax Optional An integer specifying the maximum number of attempts
that should be made by the scoping ComputerSystem to
make a LocalFileSystem locally accessible. A value of '0'
specifies an implementation-specific default.

RequestRetryPolicy Optional An enumerated value representing the policy that is
supported by the operational file server on a request to the
operational filesystem that either failed or left the file server
hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout
happens, or, to try repeatedly. If the request can be
performed in the background, the request will be tried
repeatedly until stopped.

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 101

Filesystem Profile
TransmissionRetries
Max

Optional An integer specifying the maximum number of
retransmission attempts to be made from the operational
file server to the operational filesystem when the
transmission of a request fails or makes the file server
hang. A value of '0' specifies an implementation-specific
default. This is only relevant if there is a transmission
channel between the file server and the underlying
filesystem.

RetransmissionTime
outMin

Optional An integer specifying the minimum number of milliseconds
that the operational file server must wait before assuming
that a request to the operational filesystem has failed. '0'
indicates an implementation-specific default. This is only
relevant if there is a transmission channel between the
operational file server and the operational filesystem.

CachingOptions Optional An enumerated value that specifies if a local cache is
supported by the operational file server when accessing the
underlying operational filesystem.

BuffersSupport Optional An array or enumerated values that specifies the buffering
mechanisms supported by the operational file server for
accessing the underlying operational filesystem." If
supported, other properties will establish the level of
support. If the property is NULL or the empty array,
buffering is not supported.

ReadBufferSizeMin Optional An integer specifying the minimum number of bytes that
must be allocated to each buffer used for reading. A value
of '0' specifies an implementation-specific default.

ReadBufferSizeMax Optional An integer specifying the maximum number of bytes that
may be allocated to each buffer used for reading. A value of
'0' specifies an implementation-specific default.

WriteBufferSizeMin Optional An integer specifying the minimum number of bytes that
must be allocated to each buffer used for writing. A value of
'0' specifies an implementation-specific default.

WriteBufferSizeMax Optional An integer specifying the maximum number of bytes that
may be allocated to each buffer used for writing. A value of
'0' specifies an implementation-specific default.

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
102

 Filesystem Profile
AttributeCaching Optional An array of enumerated values that specify whether
attribute caching is (or is not) supported by the operational
file server when accessing specific types of objects from
the underlying operational filesystem. The object type and
the support parameters are specified in the corresponding
AttributeCachingObjects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

 Object types contained by a filesystem that can be
accessed locally are represented by an entry in these
arrays. The entry in the AttributeCaching array can be 'On',
'Off', or 'Unknown'. Implementation of this feature requires
support from other system components, so it is quite
possible that specifying 'On' may still not result in caching
behavior. 'Unknown' indicates that the access operation will
try to work with whatever options the operational file server
and filesystem can support. In all cases,
AttributeCachingTimeMin and AttributeCachingTimeMax
provide the minimum and maximum time for which the
attributes can be cached. When this Setting is used as a
Goal, the client may specify 'Unknown', but the Setting in
the created object should contain the supported setting,
whether 'On' or 'Off'.

AttributeCachingObje
cts

Optional An array of enumerated values that specify the attribute
caching support provided to various object types by the
operational file server when accessing the underlying
operational filesystem. These", types represent the types of
objects stored in a filesystem -- files and directories as well
as others that may be defined in the future. The
corresponding properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object. 'None'
and 'All' cannot both be specified; if either one is specified,
it must be the first entry in the array and the entry is
interpreted as the default setting for all objects. If neither
'None' or 'All' are specified, the caching settings for other
objects are defaulted by the implementation. If 'Rest' is
specified, the entry applies to all known object types other
than the named ones. If 'Unknown' is specified it applies to
object types not known to this application (this can happen
when foreign filesystems are made locally accessible).

AttributeCachingTime
Min

Optional An array of integers specifying, in milliseconds, the
minimum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of '0' indicates an implementation-specific default.

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 103

Filesystem Profile
AttributeCachingTime
Max

Optional An array of integers specifying, in milliseconds, the
maximum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of '0' indicates an implementation-specific default.

ReadWritePolicy Optional An enumerated value that specifies the Read-Write policy
set on the operational filesystem and supported by the
operational file server when accessing it. 'Read Only'
specifies that the access to the operational filesystem by
the operational file server is set up solely for reading.
'Read/Write' specifies that the access to the operational
filesystem by the operational file server is set up for both
reading and writing. 'Force Read/Write' specifies that
'Read-Only' has been overridden by a client with write
access to the operational filesystem. This option is
intended for use when the associated filesystem has been
made 'Read Only' by default, as might happen if it were
created to be the target of a Synchronization or Mirror
operation.

LockPolicy Optional An enumerated value that specifies the Locking that will be
enforced on the operational filesystem by the operational
file server when accessing it. 'Enforce None' does not
enforce locks. 'Enforce Write' does not allow writes to
locked files. 'Enforce Read/Write' does not allow reads or
writes to locked files.

EnableOnSystemStar
t

Optional An enumerated value that specifies if local access from the
operational file server to the operational filesystem should
be enabled when the file server is started.

ReadWritePref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about access to
elements contained in the operational filesystem. The
provider is expected to surface this access using the CIM
privilege model.

ExecutePref Optional An enumerated value that specifies if support should be
provided on the operational file server for executing
elements contained in the operational filesystem accessed
through this local access point. This may require setting up
specialized paging or execution buffers either on the
operational file server or on the operational filesystem side
(as appropriate for the implementation). Note that this does
not provide any rights to actually execute any element but
only specifies support for such execution, if permitted.

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
104

 Filesystem Profile
7.8.12 CIM_Dependency (Uses Directory Services From)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: DirectoryServiceUsage

Table 56 describes class CIM_Dependency (Uses Directory Services From).

STABLE

RootAccessPref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about privileged access
by appropriately privileged System Administrative users on
the operational file server ('root' or 'superuser') to the
operational filesystem and its elements. The provider is
expected to surface this access using the CIM privilege
model.

 Support for the privileged access might require setup at
both the operational file server as well as the operational
filesystem, so there is no guarantee that the request can be
satisfied.

Table 56: SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services
From)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s)
that support user, group and other security principal
identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other
security principal identities is supported by the antecedent
ComputerSystem.

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 105

Filesystem Profile
106

 Filesystem Manipulation Subprofile
EXPERIMENTAL

Clause 8: Filesystem Manipulation Subprofile

8.1 Description

8.1.1 Synopsis

Profile Name: Filesystem Manipulation

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: FileSystemConfigurationService

Scoping Class: ComputerSystem

8.1.2 Overview

The Filesystem Manipulation Profile is a subprofile provides support for configuring and manipulating filesystems in
the context of Filesystem Profiles (currently consisting of the NAS Head and the Self Contained NAS profiles). A
number of other profiles and subprofiles make use of elements of the Filesystem profiles and will be referred to in
this specification as “Filesystem related profiles” -- these include but are not limited to the Filesystem subprofile,
File Export subprofile, File Export Manipulation subprofile, NAS Head profile, and so on.

The state transitions involved when an appropriate storage element is transformed into a filesystem are described
in Annex A: (Informative) State Transitions from Storage to File Shares.

8.1.2.1 Backward Compatibility Note
This profile has seen some incompatible changes from SMI-S 1.1. It is still "Experimental". Three major changes to
the methods CreateFileSystem and ModifyFileSystem are intended to accommodate requirements from a
proposed Hosted Filesystem profile (now postponed to a future release of SMI-S) and to support the local access
("mount") related changes. First, we now allow a LocalFileSystem to be built at the same time that the
LogicalDisk(s) are built -- previously, a LogicalDisk had to be built first in an independent operation; second,
multiple LogicalDisks can be specified in the method parameters and these are combined into a single LogicalDisk
using the Volume Composition subprofile -- the old methods only supported a single LogicalDisk, which is still
supported as a special case of the new method. Third, we now support parameters that make the LocalFileSystem
immediately available locally (i.e., "mount"-ed) at a File Server-provided pathname -- the previous version
assumed that this would be done in a vendor-specific default. Both these extensions in functionality are optional on
new properties specified in the FileSystemSetting and LocalFileSystem, and the SMI-S 1.1 behavior is supported
by the default values of these properties.

8.1.3 Instance Diagrams

8.1.3.1 Filesystem Creation classes and associations
Figure 11 illustrate the constructs involved with creating a LocalFileSystem for a Filesystem Profile. This
summarizes the mandatory classes and associations for this subprofile. Specific areas are discussed in later
sections.
SMI-S 1.2.0 Revision 6 SNIA Technical Position 107

Filesystem Manipulation Subprofile
If a Filesystem-related Profile supports the Filesystem Manipulation Subprofile, it shall have at least one instance
of the FileSystemConfigurationService. This service shall be hosted on the top level ComputerSystem of the
Filesystem-related Profile. The methods offered are CreateFileSystem, ModifyFileSystem, and DeleteFileSystem.

Figure 11: LocalFileSystem Creation Instance Diagram

Filesystem Manipulation Subprofile

 Filesystem Subprofile

FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

CreateGoal()

FileSystemConfigurationService

CreateFileSystem()
DeleteFileSystem()
ModifyFileSystem()

FileSystemSetting

See below

ElementCapabilities
Characteristics={“Default”}

FileSystemSetting

See below

FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

SupportedObjectTypes[]
CreateGoalSettings()

GetRequiredStorageSize()

LocalFileSystem

StoragePool

AllocatedFromStoragePool

ElementSettingData

FileSystemSetting

...

SettingsDefineCapabilities

ComputerSystem

Dedicated=24|25
Filesystem Host

HostedFileSystem

HostedService

ElementCapabilities

FileSystemConfigurationCapabilities

ActualFileSystemTypesSupported[]
SynchronousMethods[]
AsynchronousMethods[]

InitialAvailability

ElementCapabilities

LogicalDisk

ResidesOnExtent

SharedElement

ComputerSystem

Dedicated=16
File Server

File Export Subprofile

LocalAccessAvailable
(Optional)

HostedDependency
(Conditional)

FileShare

HostedShare

ElementSettingData
(Conditional)

LocallyAccessibleFileSystemCapabilities
(Optional)

CreateGoalSettings()

SettingsDefineCapabilities

LogicalFile
(BC 1.1)

FileStorage
(BC 1.1)

ConcreteDependency
(BC 1.1)

HostedDependency
(optional)

File Storage Subprofile

ElementCapabilities
(optional)

Dependency
(Conditional)

NAS Head/SC NAS (1.2)
File Server Management (1.3)

LocallyAccessibleFileSystemSetting
(Optional)
See below

LocallyAccessibleFileSystemSetting
(Conditional)

Block Services (Read-only)
108

 Filesystem Manipulation Subprofile
Associated to the FileSystemConfigurationService (via ElementCapabilities) shall be one instance of
FileSystemConfigurationCapabilities that describes the capabilities of the service. It identifies the methods
supported, whether the methods support Job Control or not, the types of filesystems that are supported, and
whether or not the filesystem shall be made operationally available after creation.

For each type of filesystem that can be created, there shall be one FileSystemCapabilities element that defines the
range of capabilities supported for that particular filesystem type. An ElementCapabilities association links each
FileSystemCapabilities to the FileSystemConfigurationService. One of these FileSystemCapabilities may also be
identified as a default capability (by setting “Default” as one of the entries in the array property Characteristics of its
ElementCapabilities association). This default FileSystemCapabilities element is used when the client does not
specify a goal element when requesting the CreateFileSystem method. The default FileSystemCapabilities
element implicitly indicates the default filesystem type to be used for creation.

For the convenience of clients a Filesystem Manipulation profile may populate a set of “pre-defined”
FileSystemSettings for each of the FileSystemCapabilities. These shall be associated to the
FileSystemCapabilities via the SettingsDefineCapabilities association (the association must have its
SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and the
SettingsDefineCapabilities.ValueRole property must include "Supported" as an entry) and shall be for the same
filesystem type as the associated capabilities element (same value for the ActualFileSystemType property in both
classes).

Note: That they are pre-defined and exist at all times does not imply that these FileSystemSettings must be
made persistent by the implementation -- rather it should be possible for the implementation to
regenerate them if requested, though a simple re-generating implementation may not necessarily
scale.

The FileSystemCapabilities element supports two methods: CreateGoalSettings and GetRequiredStorageSize.
These methods are described in detail in 8.5.1, "Extrinsic Methods of the Profile", but their basic function is to
establish at least one client-approved FileSystemSettings element (as a goal) and to determine the size of the
LogicalDisk required to support the desired Filesystem.

CreateGoalSettings takes an array of embedded-instance SettingData elements as the input
TemplateGoalSettings and SupportedGoalSettings parameters and can generate an array of embedded-instance
SettingData elements as the output SupportedGoalSettings parameter. However, in this profile, we only use a
single embedded-instance FileSystemSetting element in the input parameters (both TemplateGoalSettings and
SupportedGoalSettings) and generate a single valid embedded-instance FileSystemSetting element as output
(SupportedGoalSettings). If a client supplies a NULL (or the empty string) FileSystemSetting as input to this
method, the returned FileSystemSetting embedded-instance shall be a default setting for the
ActualFileSystemType of the FileSystemCapabilities. If the input (the embedded-instance FileSystemSetting
element) is not NULL, the method may return a “best fit” to the requested setting. The client may iterate on this
method until it acquires a setting that suits its needs. This embedded-instance settings structure may be used
when the CreateFileSystem or ModifyFileSystem methods are invoked. The details of how iterative negotiation can
work are discussed in 8.5.1.1, "FileSystemCapabilities.CreateGoalSettings". Note that the FileSystemType
remains unchanged in all of these interactions. It is an error if the client or server changes the FileSystemType
unilaterally.

Note: It is not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back
mechanism is needed. This profile does not require negotiation -- an implementation may support only
a set of pre-defined correlated point settings that a client can preload and use without modification. The
implementation could also support only settings whose properties are selectable from an arithmetic
progression or from a fixed enumeration, so that the client may construct a goal setting that is
guaranteed to be supported without negotiation.

Note: That a client has obtained a goal setting supported by the implementation does not guarantee that a
create or modify request will succeed. Such a setting only specifies a supported static configuration not
that the current dynamic environment has the resources to implement a specific request.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 109

Filesystem Manipulation Subprofile
After obtaining a goal FileSystemSetting, the next step is to determine the LogicalDisk size required to support the
FileSystemSetting. This is done by invoking the FileSystemCapabilities.GetRequiredStorageSize method of this
subprofile. The inputs are the embedded-instance FileSystemSetting structure and an embedded-instance
StorageSetting structure that describes the quality of service the client wants for the storage (e.g., data
redundancy, package redundancy, etc.). The method returns three numbers corresponding to the StorageSetting:
the expected size, the minimum size, and a maximum usable size. The client would use these numbers in
specifying or evaluating the appropriate LogicalDisk(s) on which to create the FileSystem. The method also returns
as output the actual StorageSetting used as an EmbeddedInstance structure (assuming that these can be
substituted for the input StorageSetting).

Note: This profile recommends that GetRequiredStorageSize() be used only if a LocalFileSystem is to be
created on a single LogicalDisk. If the intent is to use more than one LogicalDisk for the
LocalFileSystem, this profile recommends using the CreateFileSystem method to make the
implementation create or select the LogicalDisks to use.

• Armed with the FileSystem goal (the embedded-instance FileSystemSetting structure) and one or more
LogicalDisks, the client can now use the CreateFileSystem method to create the filesystem. The
CreateFileSystem method creates a LocalFileSystem instance, and a new FileSystemSetting instance as well
as several necessary associations. These associations are:

• HostedFileSystem association between the LocalFileSystem and the ComputerSystem that hosts it

• ResidesOnExtent association between the Filesystem and one of the LogicalDisk(s) for the Filesystem data

Note: Even when multiple LogicalDisks are created or used for the LocalFileSystem, only one LogicalDisk will
have the ResidesOnExtent association.

• ElementSettingData to associate the Filesystem to the FileSystemSetting defined for it

CreateFileSystem allows LogicalDisks to be obtained from a number of StoragePools using an array of embedded-
instance StorageSettings. The CreateFileSystem implementation must use the capabilities of the StoragePools
(and the associated StorageConfigurationService) to create the necessary LogicalDisks. The LogicalDisks used for
this purpose are returned as output values for the InExtents parameter.

If the property FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that CreateFileSystem
method provides the optional parameters for establishing local access ("mounting") from file server
ComputerSystems, the LocalFileSystem.LocalAccessDefinitionRequired will be set to true and the
LocalFileSystem will need to be made locally accessible from the specified file server ComputerSystems. The
following elements are created:

• A LocalAccessAvailable association representing local access by a file server ComputerSystem to the
LocalFileSystem from within its namespace is created using the provided (or defaulted)
LocallyAccessibleFileSystemSetting parameter (as an EmbeddedInstance parameter). This association goes
between the File Server ComputerSystem and the LocalFileSystem; its LocalAccessPoint property specifies
the local access point (or "mount-point") in the file server ComputerSystem.

• An instance of LocallyAccessibleFileSystemSetting is optionally created and associated to:

• The LocalFileSystem via an optional ElementSettingData association.

• The file server ComputerSystem via an optional HostedDependency (ScopedSetting) association (this
represents that a LocalFileSystem could be mounted on many file server ComputerSystems with different
"mount" parameters, so these parameters are specific to the pair of LocalFileSystem and file server
ComputerSystem).

• For backward compatibility with the SMI-S 1.1 Filesystem subprofile:

• The root directory of the LocalFileSystem is represented as a LogicalFile
110

 Filesystem Manipulation Subprofile
• A FileStorage association is created between the LogicalFile and the LocalFileSystem

The DeleteFileSystem method is straightforward -- it deletes the LocalFileSystem and the FileSystemSetting, and
the associations to those instances (HostedFileSystem, both ElementSettingData elements, ResidesOnExtent,
LocalAccessAvailable, and LocallyAccessibleFileSystemSetting). Any created LogicalFiles associated to the
LocalFileSystem via FileStorage will also be deleted as a side-effect of deleting the LocalFileSystem (so there is no
separate requirement necessary for backward compatibility to the SMI-S 1.1 Filesystem subprofile). The
implementation may delete the LogicalDisk(s), however, this is not required by this profile. If the LogicalDisk(s) are
not deleted, they become available for use in another CreateFileSystem operation.

The ModifyFileSystem method modifies an existing LocalFileSystem -- this requires a new FileSystemSetting
structure to be used as a goal. But not any FileSystemSetting structure will do -- the client must use one created
with the same FileSystemCapabilities.CreateGoalSettings method that would have been used to create the
Filesystem, or an appropriate compatible FileSystemCapabilities instance. The CreateGoalSettings method is
used to establish a new FileSystemSetting goal (as with the original Filesystem creation, it may be necessary to
iterate on the CreateGoalSettings method). Since only properties controlled by Settings can be changed by
ModifyFileSystem (i.e., the LogicalDisk(s) already created cannot be changed, though new ones can be created
and/or added), the effect of ModifyFileSystem is to change some properties of the LocalFileSystem or of the
associated FileSystemSetting.

Note: Depending on what property is being modified, it may also be necessary to invoke the
GetRequiredStorageSize method to verify that the current LogicalDisk still supports the new goals.

8.1.3.1.1 Dependency on support for Locally Accessible Filesystem Capabilities
Both CreateFileSystem and ModifyFileSystem need a LocallyAccessibleFileSystemSetting element for each file
server ComputerSystem. The client first obtains a LocallyAccessibleFileSystemCapabilities element by following
ElementCapabilities association from the FileSystemConfigurationService to a
LocallyAccessibleFileSystemCapabilities that is associated via ScopedCapabilities (HostedDependency) to the
File Server ComputerSystem.

Note: We expect that there will only be one LocallyAccessibleFileSystemCapabilities element per file server
ComputerSystem. All the variability can be found by following SettingsDefineCapabilities to
LocallyAccessibleFileSystemSetting elements. It is a requirement that the
LocallyAccessibleFileSystemSettings that define the LocallyAccessibleFileSystemCapabilities be
associated via HostedDependency (ScopedSetting) to the same file server ComputerSystem as the
one indicated by the HostedDependency (ScopedCapabilities).

The client calls LocallyAccessibleFileSystemCapabilities.CreateGoalSettings() with the appropriate parameters.to
obtain an appropriate LocallyAccessibleFileSystemSetting element -- CreateGoalSettings can be used to negotiate
if necessary.

8.1.3.1.2 Dependency on support for Directory Services
A filesystem may support security principal identifiers associated with filesystem objects for access (typically, read/
write/execute) as well as for tracking usage (as would be needed for supporting user and/or group quotas). If the
filesystem supports such identifiers, it would requires support from a directory service for validating these identifiers
(relating them to accounts and other user-related information). Operationally, computer systems (and not
filesystems) are associated to directory services or configured for directory services. Directory service
configurations of computer systems are much more complex than needed or appropriate for filesystems. This
makes it easier to make the filesystem depend on a computer system, usually a file servier, for providing access to
directory services for resolving security principal identifiers.

A filesystem that requires support from a directory service will have the property.DirectoryServicesUsage of its
LocalFileSystem element set to ”Required”. In that case, there shall be a Dependency association between the
LocalFileSystem element and a file server ComputerSystem.element (with Dedicated=”16”). The associated file
server must be configured for access to directory services that it provides for the filesystem.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 111

Filesystem Manipulation Subprofile
Note: If DirectoryServicesUsage is “Optional”, a client can look for the Dependency association to determine
if the filesystem supports security principal identifiers. This is not supported in this release of the
profile.

8.1.3.1.3 Summary of this profile
This profile consists of the following classes, associations, and methods:

1) One LocallyAccessibleFileSystemCapabilities scoped to the file server ComputerSystem

2) ElementCapabilities association to the FileSystemConfigurationService

3) SettingsDefineCapabilities association to LocallyAccessibleFileSystemSetting

4) LocallyAccessibleFileSystemSetting for defining LocallyAccessibleFileSystemCapabilities

5) HostedDependency (ScopedSetting) association from the File Server ComputerSystem to LocallyAccessi-
bleFileSystemSetting

6) A HostedDependency association from the same file server ComputerSystem to the defined LocallyAccessi-
bleFileSystemCapabilities

7) LocallyAccessibleFileSystemCapabilities.CreateGoalSettings extrinsic method to create LocallyAccessible-
FileSystemSetting elements scoped to the file server ComputerSystem to use as Goals. Note that this
method is different from the method described as part of the FileSystemCapabilities element.

8) A Dependency association from the LocalFileSystem element to a file server ComputerSystem.
112

 Filesystem Manipulation Subprofile
8.1.3.2 Finding FileSystem Configuration Services, Capabilities and Pre-defined Settings
When creating a filesystem the first step is to determine what can be created. Figure 12:, "Capabilities and Settings
for Filesystem Creation" illustrates an instance diagram showing the instances that shall exist for supporting
filesystem creation.

At least one FileSystemConfigurationService shall exist if the Filesystem profile has implemented the Filesystem
Manipulation Subprofile. The instance(s) of this service can be found by following the HostedService association
filtering on the target class of FileSystemConfigurationService.

Note: If no service is found from the Top Level ComputerSystem, the client should look for component
computer systems that may be hosting the service. This is not recommended, but permitted for
backward compatibility with SMI-S 1.1.

An instance of the FileSystemConfigurationCapabilities shall be associated to the FileSystemConfigurationService
via the ElementCapabilities association. A client should follow this association (filtering on the result value of
"FileSystemConfigurationCapabilities") to inspect the configuration capabilities that are supported. The client would
choose between the filesystem types specified in the array property SupportedActualFileSystemTypes.

Figure 12: Capabilities and Settings for Filesystem Creation

File System Manipulation Subprofile Capabilities/Settings

FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

CreateGoal()

FileSystemConfigurationService

CreateFileSystem()
DeleteFileSystem()
ModifyFileSystem()

FileSystemSetting

ElementCapabilities

FileSystemSetting

FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

SupportedObjectTypes[]
CreateGoalSettings()

GetRequiredStorageSizes()

StoragePool

AllocatedFromStoragePool

LogicalDisk

SettingsDefineCapabilities

ComputerSystem

HostedService

ElementCapabilities

FileSystemConfigurationCapabilities

ActualFileSystemTypesSupported[]
SynchronousMethods[]
AsynchronousMethods[]

InitialAvailability
LocalAccessOptions

ElementCapabilities

StorageSetting

ElementSettingData

LocallyAccessibleFileSystemSetting
(Conditional)

ElementSettingData
(Conditional)

LocalAccessAvailable
(Optional)

ScopedSetting
(Conditional)

ComputerSystemLocalFileSystem

LocalAccessDefinitionRequired

ResidesOnExtent

ElementSettingData

LocallyAccessibleFileSystemCapabilities
(Conditional)

CreateGoalSettings()

ElementCapabilities
(Conditional)

LocallyAccessibleFileSystemSetting
(optional)

SettingsDefineCapabilities
(Optional)

HostedDependency
(Optional)

HostedDependency
(Optional)
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 113

Filesystem Manipulation Subprofile
For each entry in the SupportedActualFileSystemTypes array, there shall be one instance of
FileSystemCapabilities with the same value for the ActualFileSystemType property that shall be associated to the
FileSystemConfigurationService using the ElementCapabilities association (filtering on the result value of
FileSystemCapabilities). This FileSystemCapabilities element shall specify the supported capabilities for that
ActualFileSystemType using a collection of FileSystemSettings. These FileSystemSettings shall be associated to
the FileSystemCapabilities via SettingsDefineCapabilities.

An implementation may support a set of pre-defined FileSystemSettings that clients could use directly if desired.
The SettingsDefineCapabilities association from the FileSystemCapabilities to the pre-defined FileSystemSettings
shall have the PropertyPolicy property be "Correlated", the ValueRole property be "Supported" and the
ValueRange property be "Point". Other pre-defined combinations of property values may be specified by
FileSystemSettings whose SettingsDefineCapabilities association has the PropertyPolicy be "Independent",
ValueRole property be "Supported" and the ValueRange array property contain "Minimums", "Maximums", or
"Increment" (see 8.5.1.1.1 for further details on the interpretation of the ValueRange property). These settings can
be used by the client to compose FileSystemSettings that are more likely to be directly usable.

8.2 Health and Fault Management Considerations
The key element of this profile is the FileSystemConfigurationService and the hosting ComputerSystem. The
operational status of the hosting ComputerSystem should possibly be part of the referring autonomous profile
(NAS Head or SC NAS), the Filesystem sub-profile or in the Multiple Computer System sub-profile.

8.2.1 OperationalStatus for FileSystemConfigurationService

8.2.2 OperationalStatus for LocalFileSystem

Table 57: LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary
OperationalStatus Description

2 “OK” The filesystem has good status

2 “OK” 4 “Stressed” The filesystem resources are
stressed

2 “OK” 5 “Predictive Failure” The filesystem might fail
because some resource or com-
ponent is predicted to fail

2 “OK” 16 “Supporting Entity in Error” The filesystem may be OK, but
is not accessible because a sup-
porting entity is not accessible.

3 “Degraded” The filesystem is operating in a
degraded mode. This could be
due to the health state of the
underlying storage being
degraded or in error.
114

 Filesystem Manipulation Subprofile
6 “Error” An error has occurred causing
the filesystem to become
unavailable. Operator interven-
tion through SMI-S (managing
the LocalFileSystem) to restore
the filesystem may be possible.

6 “Error” An error has occurred causing
the filesystem to become
unavailable. Automated recov-
ery may be in progress.

6 “Error” 7 “Non-recoverable Error” The filesystem is not functioning.
Operator intervention through
SMI-S will not fix the problem.

6 “Error” 16 “Supporting Entity in Error” The filesystem is in an error
state because a supporting
entity is not accessible.

8 “Starting” The filesystem is in process of
initialization and is not yet avail-
able operationally.

 9 “Stopping” The filesystem is in process of
stopping, and is not available
operationally.

10 “Stopped” The filesystem cannot be
accessed operationally because
it is stopped -- if this did not hap-
pened because of operator inter-
vention or happened in real-
time, the OperationalStatus
would have been “Lost Commu-
nication” rather than “Stopped”.

11 “In Service” The filesystem is offline in main-
tenance mode, and is not avail-
able operationally.

13 “Lost Communications” The filesystem cannot be
accessed operationally -- if this
happened because of operator
intervention it would have been
“Stopped” rather than “Lost
Communication”.

14 “Aborted” The filesystem is stopped but in
a manner that may have left it in
an inconsistent state.

Table 57: LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary
OperationalStatus Description
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 115

Filesystem Manipulation Subprofile
8.3 Cascading Considerations
Under Consideration for a future standard.

8.4 Supported Subprofiles and Packages

15 “Dormant” The Filesystem is offline; and
the reason for not being accessi-
ble is unknown.

Table 58: Supported Profiles for Filesystem Manipulation

Registered Profile Names Mandatory Version

Job Control No 1.2.0

Filesystem Yes 1.2.0

Indication Yes 1.2.0

Volume Composition No 1.2.0

Table 57: LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary
OperationalStatus Description
116

 Filesystem Manipulation Subprofile
8.5 Methods of the Profile

8.5.1 Extrinsic Methods of the Profile

8.5.1.1 FileSystemCapabilities.CreateGoalSettings

Table 59: Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modifica-
tion

Method Created Instances Deleted Instances Modified Instances

FileSystemConfiguration
Service.CreateFileSyste
m

LocalFileSystem
LogicalFile

FileSystemSetting
ElementSettingData

FileStorage
ResidesOnExtent
HostedFileSystem

LogicalDisk(s)
StorageSetting(s)

LocalAccessAvailable(s)
LocallyAccessibleFileSyst

emSetting(s)
ElementSettingData(s)

HostedDependency
LogicalFile (BC 1.1)
FileStorage (BC 1.1)

Dependency

N/A StoragePool(s)
LogicalDisk(s)

FileSystemConfiguration
Service.DeleteFileSystem

LocalFileSystem
LogicalFile

FileSystemSetting
ElementSettingData

FileStorage
ResidesOnExtent
HostedFileSystem

LocalAccessAvailable(s)
LocallyAccessibleFileSyst

emSetting(s)
ElementSettingData(s)

HostedDependency
Dependency

N/A

FileSystemConfiguration
Service.ModifyFileSystem

(IF REQUESTED)
LogicalDisk(s)

StorageSetting(s)
LocalAccessAvailable

LocallyAccessibleFileSyst
emSetting

ElementSettingData(s)
HostedDependency

(if Local Access is
modified)

LocalAccessAvailable
LocallyAccessibleFileSyst

emSetting
ElementSettingData(s)

HostedDependency

FileSystemSetting (if
changed)

ResidesOnExtent (if
added)

FileSystemCapabilities.Cr
eateGoalSettings N/A N/A N/A

LocallyAccessibleFileSys
stemCapabilities.CreateG

oalSettings
N/A N/A N/A

FileSystemCapabilities.G
etRequiredStorageSize N/A N/A N/A
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 117

Filesystem Manipulation Subprofile
This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed
FileSystemSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage of this method
to a single entry array for both TemplateGoalSettings and SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
FileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and SupportedGoalSettings
are string arrays containing embedded instances of type FileSystemSetting. As such, these settings do not exist in
the implementation but are the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to this
method. To assist the implementation in tracking the progress of the negotiation, the client may pass previously
returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation
may determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are
the same. A client may infer from the same result that the TemplateGoalSettings must be modified.

8.5.1.1.1 Client Considerations
It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges with respect to the filesystem or the filesystem host. During
negotiation, the client will show the current state to the user -- the SupportedGoalSettings received to date (either
the latest or some subset), the TemplateGoalSettings proposed (the most recent, but possibly more). But the
administrator needs a representation of what is available, possibly the range or sets of values that the different
setting properties can take. Some decisions are assumed to have been made already, such as the type of
Filesystem to be created and the number of LogicalDisks to use and their StorageSettings. It is possible that the
LogicalDisks for use by this Filesystem have already been designated by the user; if not, the StoragePool(s) from
which they will be created is already designated or will be selected by an independent process.

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified using FileSystemSettings -- these points can be
further qualified to indicate whether these are supported (or not), and even whether they represent some ideal
point in the space -- a "minimum", or a "maximum", or an "optimal" point. Other settings can provide ranges for
properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can be
specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for a
property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a user is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client considers only the canned settings that are specified exactly. The canned settings are specified by the
FileSystemSettings that are associated to the FileSystemCapabilities via SettingDefinesCapabilities associa-
tion with the following property values:

• SettingDefinesCapabilities.PropertyPolicy = "Correlated"

• SettingDefinesCapabilities.ValueRole = "Supported"

• SettingDefinesCapabilities.ValueRange = "Point"
118

 Filesystem Manipulation Subprofile
2) Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the FileSystemSettings that are associated to
the FileSystemCapabilities via SettingDefinesCapabilities association with the following property values:

• SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

• The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

8.5.1.1.2 Signature and Parameters of FileSystemCapabilities.CreateGoalSettings

Table 60: Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings

Parameter
Name

Qualifier Type Description & Notes

TemplateGoalSe
ttings[]

IN string EmbeddedInstance
("SNIA_FileSystemSetting")

TemplateGoalSettings is a string array containing
embedded instances of class FileSystemSetting, or
a derived class. This parameter specifies the
client’s requirements and is used to locate
matching settings that the implementation can
support.

SupportedGoalS
ettings[]

INOUT string EmbeddedInstance("SNIA_FileSystemSetting")

SupportedGoalSettings is a string array containing
embedded instances of class FileSystemSetting, or
a derived class. On input, it specifies a previously
returned set of Settings that the implementation
could support. On output, it specifies a new set of
Settings that the implementation can support. If the
output set is identical to the input set, both client
and implementation may conclude that this is the
best match for the TemplateGoalSettings that is
available.
If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method must
return "Alternative Proposed".
If the output is NULL, the method must return an
“Failed”.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",
"Failed",
"Timeout",
"Alternative Proposed"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 119

Filesystem Manipulation Subprofile
8.5.1.2 GetRequiredStorageSize
This extrinsic method returns the minimum, expected, and maximum size for a LogicalDisk that would support a
Filesystem specified by the input FileSystemGoal parameter. The caller may provide relevant settings of the
LogicalDisk via the ExtentSetting parameter. The minimum, maximum, and expected sizes are returned as output
parameters.

If the input FileSystemGoal is NULL, the implementation may return an error or use a default FileSystemSetting
associated with this FileSystemCapabilities element. The actual FileSystemSetting used is returned as an OUT
parameter.

If the input ExtentSetting parameter is NULL or is an empty array, the implementation may use a default
StorageSetting associated with the StorageConfigurationService hosted on the same ComputerSystem as the
FileSystemConfigurationService associated with this FileSystemCapabilities element. The actual StorageSetting
used is returned as an OUT parameter.

Note: The actual FileSystemSetting and StorageSetting used are being returned as OUT parameters. This is
a non-backward-compatible change from SMI-S 1.1.

8.5.1.2.1 Signature and Parameters of GetRequiredStorageSize

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 61: Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize

Parameter
Name

Qualifier Type Description & Notes

FileSystemGoal INOUT, EI string EmbeddedInstance
("SNIA_FileSystemSetting")

FileSystemGoal is an Embedded Instance element
of class CIM_FileSystemSetting, or a derived
class, that specifies the settings for the FileSystem
to be created.
If NULL on input, a default for this
FileSystemCapabilities is used.
On output, this returns the actual
FileSystemSetting that was used.

ExtentSetting INOUT, EI string EmbeddedInstance("CIM_StorageSetting")

ExtentSetting is an Embedded Instance element of
class CIM_StorageSetting, or a derived class, that
specifies the settings for the LogicalDisk to be used
for building this FileSystem.
If NULL on input, a default StorageSetting will be
obtained from a StorageConfigurationService
hosted on the same ComputerSystem as this
FileSystemConfigurationService.
On output, this returns the actual StorageSetting
that was used.
If the output is NULL, the method must return an
“Failed”.

Table 60: Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings
120

 Filesystem Manipulation Subprofile
8.5.1.3 LocallyAccessibleFileSystemCapabilities.CreateGoalSettings
This extrinsic method of the LocallyAccessibleFileSystemCapabilities class validates support for a caller-proposed
LocallyAccessibleFileSystemSetting passed as the TemplateGoalSettings parameter. This profile restricts the
usage of this method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings
parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
LocallyAccessibleFileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type
LocallyAccessibleFileSystemSetting. As such, these settings do not exist in the implementation but are the
responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation engage in a negotiation process that may require iterative calls to this method.
To assist the implementation in tracking the progress of the negotiation, the client may pass previously returned
values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation may

ExpectedSize OUT uint64 An integer that indicates the size of the storage
extent that this FileSystem is expected to need. An
entry value of 0 indicates that there is no expected
size.

MinimumSizeAc
ceptable

OUT uint64 An integer that indicates the size of the smallest
storage extent that would support the specified
FileSystem. A value of 0 indicates that there is no
minimum size.

MaximumSizeU
sable

OUT uint64 An integer that indicates the size of the largest
storage extent that would be usable for the
specified FileSystem. A value of 0 indicates that
there is no maximum size.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",
"Failed",
"Timeout"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 61: Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize (Con-

Parameter
Name

Qualifier Type Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 121

Filesystem Manipulation Subprofile
determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are the
same. A client may infer from the same result that the TemplateGoalSettings must be modified.

8.5.1.3.1 Client Considerations
It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges to the Filesystem. During negotiation, the client will show the current
state to the user -- the SupportedGoalSettings received to date (either the latest or some subset), the
TemplateGoalSettings proposed (the most recent, but possibly more). But the administrator needs a representation
of what is available, possibly the range or sets of values that the different setting properties can take. Some
decisions are assumed to have been made already, such as whether the local access is read-only or the file server
that is going to access the Filesystem.

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified supported points in the space of properties -- these
points can be further qualified to indicate whether these are supported or not, or whether they represent some ideal
point in the space -- a "minimum", or a "maximum", or an "optimal" point. Other settings can provide ranges for
properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can be
specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for a
property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a user is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
LocallyAccessibleFileSystemSetting elements that are associated to the LocallyAccessibleFileSystemCapa-
bilities via SettingDefinesCapabilities association with the following property values:

• SettingDefinesCapabilities.PropertyPolicy = "Correlated"

• SettingDefinesCapabilities.ValueRole = "Supported"

• SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the LocallyAccessibleFileSystemSetting ele-
ments that are associated to the LocallyAccessibleFileSystemCapabilities via SettingDefinesCapabilities
association with the following property values:

• SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

• The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

Comparing the two CreateGoalSettings extrinsic methods of this profile, the
FileSystemCapabilities.CreateGoalSettings() can be significantly more complex than
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings(). The client can choose to implement a simpler
negotiation protocol for one -- this specification does not mandate the extent to which the client must use this
protocol.
122

 Filesystem Manipulation Subprofile
8.5.1.3.2 Signature and Parameters of CreateGoalSettings

Table 62: Parameters for Extrinsic Method
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings

Parameter
Name

Qualifier Type Description & Notes

TemplateGoalSe
ttings[]

IN string EmbeddedInstance
("SNIA_LocallyAccessibleFileSystemSetting")

TemplateGoalSettings is a string array containing
embedded instances of class
LocallyAccessibleFileSystemSetting, or a derived
class. This parameter specifies the client’s
requirements that is used to locate matching
settings that the implementation can support.

SupportedGoalS
ettings[]

INOUT string EmbeddedInstance("SNIA_LocallyAccessibleFi
leSystemSetting")

SupportedGoalSettings is a string array containing
embedded instances of class
LocallyAccessibleFileSystemSetting, or a derived
class. On input, it specifies a previously returned
set of Settings that the implementation could
support. On output, it specifies a new set of
Settings that the implementation can support. If
the output set is identical to the input set, both
client and implementation may conclude that this is
the best match for the TemplateGoalSettings that is
available.
If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method must
return \"Alternative Proposed\".
If the output is NULL, the method must return an
“Failed”.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",
"Failed",
"Timeout",
"Alternative Proposed"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 123

Filesystem Manipulation Subprofile
8.5.1.4 FileSystemConfigurationService.CreateFileSystem
This extrinsic method creates a LocalFileSystem and returns it as the value of the parameter TheElement. The
desired settings for the LocalFileSystem are specified by the Goal parameter (a string-valued EmbeddedInstance
object of class FileSystemSetting).

Filesystem vendors differ in their models for creating a filesystem. Some vendors require that the storage element
already exist; others create the storage element at the same time as the filesystem. Some vendors require a local
access point ("mount-point") that supports defining a name or pathname that allows a file server to access the
filesystem; others do not require any such object (though it could be argued that they provide a default local access
mechanism). This extrinsic method supports variant mechanisms for specifying, at create time, storage element
creation as well as local access by a file server. The FileSystemConfigurationCapabilities associated with the
FileSystemConfigurationServices contains the property BlockStorageCreationSupport that specifies support for
create-time storage element creation; the property LocalAccessibilitySupport that specifies support for local access
by a file server at creation; the property DirectoryServerParameterSupported that specifies support for specifying a
file server that provides access to a Directory Service (if enabled separarely).

To support backward compatibility with the SMI-S 1.1 Filesystem subprofile, an instance of Directory (a derived
class of LogicalFile) is created representing the root directory of the newly created filesystem. This Directory
element is associated to the LocalFileSystem via FileStorage.

A FileSystemSetting element that represents the settings of the LocalFileSystem (either identical to the Goal or
equivalent) shall be associated via ElementSettingData to the LocalFileSystem. The implementation shall create a
new FileSystemSetting for this purpose.

The output parameter TheElement shall contain a reference to the newly created LocalFileSystem. Even if this
operation does not complete but creates a job, an implementation may return a valid reference in TheElement. If
the job fails subsequently, it is possible for this reference to become invalid.

8.5.1.4.1 Specifying Storage Underlying the Filesystem
BlockStorageCreationSupport is an array of enumerated values that specifies if:

• An enumerated value that specifies whether the extrinsic methods may use an already existing LogicalDisk --
this is either required, optional, or not allowed. If "Not Allowed", the Pools and ExtentSettings parameters must
be used to create LogicalDisk(s) for this LocalFileSystem and the InExtents parameter must be NULL. If
"Optional", either the Pools and ExtentSettings parameters or the InExtents parameter should be specified, but
not both. If "Required", on the InExtents parameter may be specified and the Pools and ExtentSettings
parameters must be NULL.

• (optional) An integer that specifies an upper limit to the number of storage elements that can be specified,
either as InExtents parameters or as Pools and ExtentSettings.

• (optional) An integer that specifies the number of distinct storage pools that the Pools parameters can specify -
- zero, if Pools is not supported or if there is no limit, and a specific number if there is a limit. In practice we
expect that the value will be either zero or one.

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 62: Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoal-
Settings (Continued)

Parameter
Name

Qualifier Type Description & Notes
124

 Filesystem Manipulation Subprofile
• (optional) A truth value represented as ’0’ for false and ’1’ for true that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating that a default setting is to be used).

The storage used for creating the LocalFileSystem is specified by the InExtents parameter that must be an array of
LogicalDisks. If InExtents is NULL and BlockStorageCreationSupport indicates that Pools are optional or required,
the parameter Pools must specify an array of StoragePools from which storage may be allocated -- the
requirements for the LogicalDisks allocated from this Pool is specified in the ExtentSettings array parameter. The
Pools may use an associated StorageConfigurationService. The LocalFileSystem is associated to one of the
LogicalDisk(s) via the ResidesOnExtent association. The other LogicalDisks extend the distinguished LogicalDisk
(as modeled by the Volume Composition Sub-Profile).

8.5.1.4.2 Specifying Local Access to the Filesystem
LocalAccessibilitySupport is an enumeration that specifies whether the implementation requires a local access
specification, or makes it optional (thus using a vendor default), or does not require one ("local access" does not
have a meaning for the vendor).

The LocalFileSystem shall be hosted on the same ComputerSystem as the FileSystemConfigurationService.

Note: The requirement that the LocalFileSystem have the same host as the Service is too restrictive but we
can extend this method in the future with a FileSystemHost parameter (implicitly NULL in 1.2).

If LocalAccess is supported, whether optional or required, this method supports specifying one file server
ComputerSystem (the reference parameter FileServer) that is given local access to this Filesystem. If LocalAccess
is optional, the FileServer parameter may be NULL. The local access name on the FileServer is specified in the
LocalAccessPoint string parameter -- if the implementation uses pathnames, this will be formatted as a pathname
(directory names separated by the PathNameSeparatorString). The implementation could also use a differently
formatted local access name (for instance, a simple name). The settings to be used for this are specified in the
LocalAccessSetting, an EmbeddedInstance element of class LocallyAccessibleFileSystemSetting.

Note: If a second file server ComputerSystem is to be given local access, the ModifyFileSystem method
would be used.

Corresponding to the LocalAccessPoint parameter, a LocalAccessAvailable association instance and a
LocallyAccessibleFileSystemSettings element are created with the following properties and associations:

• The LocalAccessAvailable association goes between the FileServer parameter and the created
LocalFileSystem (TheElement parameter).

• The LocalAccessAvailable.LocalAccessPoints property is set to the value of the LocalAccessPoint string.

• The LocallyAccessibleFileSystemSetting element has an ElementSettingData association to the
LocalFileSystem (TheElement).

• The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

If LocalAccess is supported, the FileServer parameter should not be NULL.

Note: If it is NULL, the implementation may leave the filesystem operationally inaccessible -- however, this
can be corrected by calling the ModifyFileSystem method. This is not an Error.

If LocalAccess is supported and the FileServer parameter is not NULL, the LocalAccessPoint string may be NULL
or the empty string. In this case, the LocalAccessSetting parameter should indicate the implementation-specific
default format. The default value that is used is returned as the OUT value of the LocalAccessPoint parameter. It is
an Error if the LocalAccessSetting parameter does not provide an appropriate default mechanism for constructing
a local access name.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 125

Filesystem Manipulation Subprofile
The LocalAccessSetting parameter will return an EmbeddedInstance of the LocallyAccessibleFileSystemSetting
actually used on output.

8.5.1.4.3 Specifying access to Directory Services
DirectoryServerParameterSupported is a property that specifies whether the filesystem must have access to a file
server that provides access to directory services so that security principal information may be supported. If the
newly created filesystem must be able to resolve such information, the DirectoryServer parameter must be
specified to the CreateFileSystem method.

The DirectoryServer parameter specifies a file server ComputerSystem that is configured to access a directory
service that resolves security principal identifies (UIDs, GIDs, or SIDs) used by the filesystem. This profile does
not specify the configuration of any directory service (if there is one), any directory server, or the file server that is
specified by the DirectoryServer parameter. For operational efficiency reasons, this must be a file server since
security principal information such as usage and detection of threshold violations must happen in real-time.

If the DirectoryServer is required and is specified, an association, a concrete subclass of Dependency, shall be
surfaced between the newly created LocalFileSystem element (as Dependent) and the specified file server (as
Antecedent). The CreateFileSystem method will return a reference to this file server as the return value of the
parameter. In this case, the LocalFileSystem.DirectoryServiceUsage property shall be set to “Supported”.

Any file server that is configured with write access to a filesystem must use the same or a compatible directory
service (effectively the same) as the file server indicated by the Dependency association.
126

 Filesystem Manipulation Subprofile
8.5.2 Signature and Parameters of CreateFileSystem.

Table 63: Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes

ElementName IN string An end user relevant name for the FileSystem
being created. The value shall be stored in the
'ElementName' property for the created element.
This parameter shall not be NULL or the empty
string.

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

Goal IN, OUT, EI string EmbeddedInstance
("CIM_FileSystemSetting")

The FileSystemSetting requirements for the
FileSystem. If NULL or the empty string, a default
FileSystemSetting shall be specified by the
FileSystemCapabiltiies element associated to the
FileSystemConfigurationService by the
DefaultElementCapabilities association. The actual
FileSystemSetting used is returned on output.

TheElement OUT, REF CIM_LocalFil
eSystem

The newly created FileSystem.

InExtents[] IN, OUT,
REF, NULL
allowed,

CIM_Logical
Disk

The LogicalDisk(s) on which the created
FileSystem shall reside. If this is NULL, the Pools
and ExtentSettings parameters cannot be NULL
and are used to create LogicalDisk(s). The
LogicalDisk(s) actually used will be returned on
output.

Pools[] IN, REF,
NULL
allowed

CIM_Storage
Pool

An array of concrete StoragePool elements
corresponding to the ExtentSettings parameter
from which to create LogicalDisks in case the
InExtents parameter is NULL. If InExtents is not
NULL, this must be NULL.

ExtentSettings[] IN, EI, NULL
Allowed

string EmbeddedInstance
("CIM_StorageSetting")

An array of embedded StorageSetting structures
that specify the settings to use for creating
LogicalDisks if the InExtents parameter is NULL
and Pools is specified. Each LogicalDisk will be
created from the corresponding entry in Pools, so
each StorageSetting entry must be supported by
the capabilities of the corresponding Pools entry.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 127

Filesystem Manipulation Subprofile
Sizes[] IN, OUT,
NULL
Allowed

uint64 An array of numbers that specifies the size in bytes
of the LogicalDisks to be created corresponding to
the Pools and ExtentSettings parameters. The sum
of Sizes should be at least as much as (or greater
than) the FileSystem size needed.

FileServer IN, OUT,
REF, NULL
Allowed

ComputerSy
stem

A reference to a ComputerSystem element that will
access the created LocalFileSystem and is capable
of exporting the filesystem as a file share. The local
access point with respect to the file server is
specified by the LocalAccessPoint parameter. If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points are
supported but implementation-defaulted, the
corresponding entry in the LocalAccessPoint
parameter should be NULL or the empty string as
the LocalAccessPoint name is constructed as per
the vendor default algorithm. A
LocalAccessAvailable association is created
between the FileServer and the LocalFIleSystem.
The parameters for local access are specified by
the LocalAccessSetting parameter.

Since this Filesystem has just been created, the
LocalAccessSetting can support Write privileges. If
the LocalAccessSetting entry is NULL or the empty
string, the implementation uses a default
associated with the
LocallyAccessibleFileSystemCapabilities
associated to the FileServer.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that a local access point is
required and FileServer is NULL, no
LocalAccessAvailable associations are created
and the Filesystem may not be accessible. This
shall not cause an Error.

On output, this parameter contains a reference to
the actual FileServer that has access to the created
LocalFileSystem.

Table 63: Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes
128

 Filesystem Manipulation Subprofile
LocalAccessPoi
nt

IN, OUT,
REF, NULL
Allowed

string A string to use as a pathname in the name space of
the file server ComputerSystem. The format of the
string is vendor-dependent and it should be
considered opaque from the client’s standpoint. It
could be interpreted as a hierarchical fully-qualified
name for the local access point (say in a Unix-
based operating environment), or it could be a
drive letter (as in a Windows operating
environment). A LocalAccessAvailable association
is created going between the new LocalFileSystem
and the FileServer parameter. The
LocalAccessAvailable.LocalAccessPoint property
will be set to this parameter.

The parameters for local access are specified by
the LocalAccessSetting parameter.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points are
required, then LocalAccessPoint shall not be NULL
or an empty string.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points can
be vendor-defaulted, then LocalAccessPoint can
be NULL or an empty string and the
implementation shall create a name using a
vendor-specific algorithm.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points
cannot be vendor-defaulted, then
LocalAccessPoint shall not be NULL and the
implementation shall not create a default
pathname. This is an Error.

On output, this parameter contains the actual
LocalAccessPoint used (including any name
created by vendor-default).

Table 63: Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 129

Filesystem Manipulation Subprofile
LocalAccessSett
ing

IN, EI, OUT,
NULL
Allowed

string EmbeddedInstance
("CIM_LocallyAccessibleFileSystemSett
ing")

An embedded LocallyAccessibleFileSystemSetting
element that specifies the settings to use to
establish a local access point. This element will be
used to create a LocalAccessAvailable association
and will be cloned to create a
LocallyAccessibleFileSystemSetting element that
is scoped via HostedDependency (ScopedSetting)
to the FileServer and associated via
ElementSettingData to the LocalFileSystem.

If a LocallyAccessibleFileSystemSetting entry is
NULL or the empty string, the implementation shall
use the default provided by the
LocallyAccessibleFileSystemCapabilities element
of the FileSystemConfigurationService that is
associated to the FileServer via CIM_Dependency.
The LocalAccessSetting may specify a Write
Privilege.

The LocalAccessSetting actually used is returned
as the OUT EmbeddedInstance parameter.

Table 63: Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes
130

 Filesystem Manipulation Subprofile
DirectoryServer IN, OUT,
NULL
Allowed

ComputerSy
stem

A reference to a ComputerSystem element that
has access to directory services. The newly
created filesystem can use it to support security
principal information associated with filesystem
objects, such as quotas for users and groups. This
is represented by providing a Dependency
association between the LocalFileSystem element
and the ComputerSystem indicated by this
parameter. The requirements for this parameter
are further specified by
FileSystemConfigurationCapabilities.DirectoryServ
erParameterSupported.

If DirectoryServerParameterSupported specifies
'Not Used', or 'Supported, Defaulted to FileServer',
or 'Supported, Defaulted to FileSystem host', it is
an Error if DirectoryServer is not NULL.

Otherwise, (i.e., if
DirectoryServerParameterSupported specifies
'Supported'), and if the DirectoryServer is not
NULL, the new filesystem will use the directory
services made available by the specified
DirectoryServer. If DirectoryServer is NULL, it will
be defaulted to the FileServer parameter. If the
FileServer parameter is also NULL, the
DirectoryServer will be defaulted to the host of the
newly created filesystem.

On output, this parameter contains a reference to
the actual DirectoryServer if one was established.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 63: Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 131

Filesystem Manipulation Subprofile
8.5.2.1 FileSystemConfigurationService.ModifyFileSystem
This extrinsic method modifies a LocalFileSystem specified by the parameter TheElement. The desired settings for
the LocalFileSystem are specified by the Goal parameter (a string-valued EmbeddedInstance object of class
FileSystemSetting).

As with CreateFileSystem, the FileSystemConfigurationCapabilities associated with the
FileSystemConfigurationService specifies support for some of the optional behaviors of this method.
BlockStorageCreationSupport indicates whether this method only uses previously existing storage elements or if it
can create them at the same time as modifying or creating the filesystem. In addition this can specify if additional
LogicalDisks can be added to the existing set of LogicalDisks and whether the implementation limits the number of
LogicalDisks underlying a filesystem. LocalAccessibilitySupport indicates whether the implementation requires
support for local access points (or if they are optional or not required at all).

This element shall have a FileSystemSetting use ActualFileSystemType property is supported by the
FileSystemConfigurationService (as specified by the SupportedActualFileSystemTypes property of the associated
FileSystemConfigurationCapabilities). The existing LogicalDisks used by the LocalFileSystem cannot be released
by this method, but this method may add LogicalDisks. These LogicalDisks may be specified by the InExtents
parameter (if that is either required or optional) or, if InExtents is NULL (if Pools are optional or required), the set of
LogicalDisks is not changed. New LogicalDisks may also be added by specifying an array of StoragePools in the
Pools parameter and an array of StorageSettings that can be used to create them.

If the operation would result in a change in the size of a filesystem, the ResidesOnExtent association shall be used
to determine how to implement the change. If the existing or additional LogicalDisk(s) specified, or any additional
LogicalDisks created, cannot support the goal size, an appropriate error value shall be returned, and no action
shall be taken. If the operation succeeds, the ResidesOnExtent association shall reference the same LogicalDisk
as before (however, the LogicalDisk will be built upon a larger number of underlying LogicalDisks, as modeled by
the Volume Composition subprofile).

If the new Goal is different from the old FileSystemSetting element associated to the LocalFileSystem element,
then the implementation must change the setting properties of the LocalFileSystem. This may be accomplished by
modifying the old FileSystemSetting element directly, or by deleting it and then re-creating a new
FileSystemSetting element with the same InstanceId. Just like the old element, the new FileSystemSetting element
shall be associated to the LocalFileSystem element via an ElementSettingData association.

If local access is supported, whether optional or required, any change is specified by providing the FileServer
parameter (which shall be a reference to a ComputerSystem). If a FileServer is not being added to the set or
modified or removed from the set, the FileServer parameter may be NULL.

If the specified FileServer does not duplicate a ComputerSystem that has already been specified as having local
access, this method adds it to the set. The pathname is specified by the LocalAccessPoint string array parameter.
The settings to be used for these are specified in the LocalAccessSetting, an EmbeddedInstance element of class
LocallyAccessibleFileSystemSetting.

If the specified FileServer duplicates a ComputerSystem that has already been specified as having local access,
this method either modifies the local access or removes it from the set. If the LocalAccessPoint parameter is NULL
or consists of an empty string, this call removes the FileServer from the set. If the LocalAccessPoint parameter is
not NULL but specifies the current path, then this call modifies the settings of the local access -- the new settings
are specified by the LocalAccessSetting parameter. If the LocalAccessPoint parameter is not NULL but specifies a
path other than the current path, then this call modifies the pathname as well as the settings. If this filesystem is in
operational use when such a request is made, the request may have to be suspended until the filesystem can be
put into an appropriate state for making the change.

The settings to be used for adding or modifying are specified by the LocalAccessSetting parameter, an
EmbeddedInstance element of class LocallyAccessibleFileSystemSetting.

To add a local access point, a LocalAccessAvailable association and a LocallyAccessibleFileSystemSettings
element are created with the following properties and associations:
132

 Filesystem Manipulation Subprofile
• A LocalAccessAvailable association goes between the FileServer parameter and the LocalFileSystem
(TheElement parameter).

• A LocalAccessAvailable.LocalAccessPoint property is set to the LocalAccessPoint string.

• A LocallyAccessibleFileSystemSetting element with a ElementSettingData association to the LocalFileSystem
(TheElement parameter).

• The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

Note: The WaitTime and InUseOptions parameters are supported if the
FileSystemCapabilities.SupportedProperties includes the "RequireInUseOptions" option.

Note: A client can identify all local access specifications for a filesystem by looking for the
LocalAccessAvailable association from the LocalFileSystem to a file server ComputerSystem and the
LocallyAccessibleFileSystemSetting associated to the LocalFileSystem via ElementSettingData and
the same file server ComputerSystem via HostedDependency (ScopedSetting).
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 133

Filesystem Manipulation Subprofile
8.5.3 Signature and Parameters of ModifyFileSystem.

Table 64: Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter
Name

Qualifi
er

Type Description & Notes

ElementNam
e

IN, OUT string An end user relevant name for the filesystem being modified. If NULL,
the existing TheElement.ElementName property is not changed. If not
NULL, this parameter will supply a new name for the Element
parameter. The actual ElementName is returned as the output value.

Job OUT, REF CIM_Con
creteJob

Reference to the job (may be null if job completed).

Goal IN, OUT,
EI

string EmbeddedInstance ("CIM_FileSystemSetting")

The FileSystemSetting requirements for the filesystem specified by the
TheElement parameter. If NULL or the empty string, the settings for
TheElement will not be changed. If not NULL, this parameter will
supply new settings that replace or are merged with the current
settings of TheElement.

TheElement IN, REF CIM_Loca
lFileSyste
m

The LocalFileSystem element to modify.

InExtents[] IN, OUT,
REF,
NULL
allowed,

CIM_Logi
calDisk

The LogicalDisk(s) used to extend the current set of LogicalDisks used
for the TheElement filesystem. If this is not NULL, the Pool and
ExtentSettings must be NULL. If both this and Pool are NULL, the
current set will not be changed. The current set of LogicalDisk(s) will
be returned as the output.

Pools[] IN, REF,
NULL
allowed

CIM_Stor
agePool

An array of concrete storage pools corresponding to the ExtentSettings
array parameter. These storage pools are used to create additional
LogicalDisks to extend the TheElement filesystem. The InExtents
parameter must be NULL and the ExtentSettings parameter must not
be NULL. Otherwise, the current set of LogicalDisks is not changed.

ExtentSetting
s[]

IN, EI,
NULL
Allowed

string EmbeddedInstance ("CIM_StorageSetting")

An array of embedded StorageSetting structures that specify the
settings to use for creating additional LogicalDisks for the TheElement
filesystem. The InExtents parameter must be NULL and Pools must be
specified. Each LogicalDisk will be created from the corresponding
Pool, so each StorageSetting entry must be supported by the
capabilities of the corresponding Pool entry.

Sizes[] IN,NULL
Allowed

uint64 An array of numbers that specifies the size in bytes of the LogicalDisks
to be created corresponding to the ExtentSettings array parameter.
134

 Filesystem Manipulation Subprofile
FileServer IN, OUT,
REF,
NULL
Allowed

REF
Computer
System

A reference to a ComputerSystem element representing a file server.

If this parameter is NULL, no change is made to the local access configuration.
If it is not NULL, the change to the configuration consists of the following
cases:

1.) If the FileServer does not already support local access to the TheElement, it
will be added and made capable of exporting the filesystem as file shares. The
local access point is specified by the LocalAccessPoint parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that
local access points are vendor-defaulted, the corresponding entry in the
LocalAccessPoints parameter should be NULL or the empty string as the
LocalAccessPoint name is constructed by a vendor-default algorithm.

A LocalAccessAvailable association is created between the FileServer and the
TheElement. The parameters for local access are specified by the
LocalAccessSetting parameter, an EmbeddedInstance element of class
LocallyAccessibleFileSystemSetting.

If the LocalAccessSetting parameter is NULL or the empty string, the
implementation uses a default associated with the
LocallyAccessibleFileSystemCapabilities of the
FileSystemConfigurationService associated to the FileServer by
HostedDependency (ScopedSetting). At most one of the
LocalAccessSettings entries for all the file server ComputerSystems that
provide local access to this filesystem shall specify an element with Write
Privileges.

2) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is NULL or a set of empty strings, this will remove
the FileServer from the configured set. If there are existing operational users of
the TheElement filesystem, they will need to be informed and the
implementation might have to wait to reach a consistent state before the
request can be completed.

3) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is the same as the current configuration, then this
is a request to change the settings but not the local access point. The
LocalAccessSetting parameter will specify the new setting. Depending on the
precise change, the filesystem may need to suspend operations. If there are
existing operational users of the filesystem, they will need to be informed and
the implementation might have to wait to reach a consistent state before the
request can be completed.

4) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is different from the current configuration, then
this is equivalent to removing local access and then restoring it with different
settings. If there are existing operational users of the filesystem, they will need
to be informed and the implementation might have to wait to reach a consistent
state before the request can be completed. Note that existing operational users
will not be able to reconnect as the share name may have changed.

Table 64: Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter
Name

Qualifi
er

Type Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 135

Filesystem Manipulation Subprofile
LocalAccess
Point

IN, OUT,
REF,
NULL
Allowed

string A string to use as a pathname in the name space of the file server
ComputerSystem specified by the FileServer parameter. The format of
the string is vendor-dependent and it should be considered opaque to
the client. It could be interpreted as a hierarchical fully-qualified name
for the local access point (say in a Unix-based operating environment),
or it could be a drive letter (as in a Windows operating environment). A
LocalAccessAvailable association is created going between the
TheElement and the FileServer. The
LocalAccessAvailable.LocalAccessPoint property will be set to the
value of this parameter.

The parameters for local access are specified by the
LocalAccessSetting parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport
specifies that local access points are required, then LocalAccessPoint
shall not be NULL or an empty string if this is a new FileServer that
does not have local access to TheElement. This is an Error.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport
specifies that local access points can be vendor-defaulted, then
LocalAccessPoint can be NULL or an empty string and the
implementation shall create a name using a vendor-specific algorithm.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport
specifies that local access points cannot be vendor-defaulted, and this
is a new FileServer that does not have local access to TheElement,
then LocalAccessPoint shall not be NULL and the implementation shall
not create a default pathname. This is an Error.

On output, this parameter contains the actual LocalAccessPoint used
(including any name created by vendor-default).

LocalAccess
Setting

IN, EI,
OUT,
NULL
Allowed

string EmbeddedInstance
("SNIA_LocallyAccessibleFileSystemSetting")

An embedded LocallyAccessibleFileSystemSetting element that
specifies the settings to use for establishing a local access point. Each
entry will be used to create or modify a LocalAccessAvailable
association and will be cloned to create a
LocallyAccessibleFileSystemSetting element that is scoped via
ScopedSetting (or HostedDependency) to the file server
ComputerSystem specified by the FileServer parameter. The clone will
be associated via ElementSettingData to the LocalFileSystem.

If this parameter is NULL or the empty string, and a new value is
needed, the implementation shall use the default provided by the
LocallyAccessibleFileSystemCapabilities associated to the FileServer
parameter. The LocalAccessSetting actually used is returned as the
OUT parameter.

Table 64: Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter
Name

Qualifi
er

Type Description & Notes
136

 Filesystem Manipulation Subprofile
8.5.3.1 FileSystemConfigurationService.DeleteFileSystem
This is an extrinsic method that shall delete a LocalFileSystem specified by the parameter TheElement and delete
any associated elements and associations that are no longer needed. The deleted elements include the
LogicalFile/Directory and FileStorage, if they were surfaced; the LocalAccessAvailable association, the
LocallyAccessibleFileSystemSetting element and its associations, ElementSettingData, HostedDependency
(ScopedSetting); HostedFileSystem, ResidesOnExtent, and any associations that might be orphaned by the
deletion of TheElement. The LogicalDisk(s) that TheElement used shall be released but an implementation is not
required to delete or re-allocate it.

Note: The WaitTime and InUseOptions parameters are supported if the
FileSystemCapabilities.SupportedProperties includes the "RequireInUseOptions" option.

InUseOption
s

IN uint16 An enumerated integer that specifies the action to take if the filesystem
is still in operational use when this request is made. This option is only
relevant if the FileSystem needs to be made unavailable while the
request is being executed.

WaitTime IN uint16 An integer that indicates the time in seconds to wait before performing
the request on this filesystem. The combination of InUseOptions = '4'
and WaitTime ='0' (the default) is interpreted as 'Wait (forever) until
Quiescence, then Execute Request.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid
Property
Value

OUT,
Indication

CIM_Erro
r

A single named property of an instance parameter (either reference or
embedded) has an invalid value

Invalid
Combination
of Values

OUT,
Indication

CIM_Erro
r

An invalid combination of named properties of an instance parameter
(either reference or embedded) has been requested.

Table 64: Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter
Name

Qualifi
er

Type Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 137

Filesystem Manipulation Subprofile
8.5.4 Signature and Parameters of DeleteFileSystem.

8.5.5 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

Table 65: Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem

Parameter
Name

Qualifier Type Description & Notes

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

TheElement IN, REF CIM_LocalFil
eSystem

The filesystem element to delete.

InUseOptions IN uint16 An enumerated integer that specifies the action to
take if TheElement is still in use when this request
is made. This option is only relevant if the
filesystem needs to be made unavailable while the
request is being executed.

WaitTime IN uint16 An integer that indicates the time in seconds to wait
before performing the request on TheElement
filesystem. The combination of InUseOptions = '4'
and WaitTime ='0' (the default) is interpreted as
'Wait (forever) until Quiescence, then Execute
Request.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.
138

 Filesystem Manipulation Subprofile
8.6 Client Considerations and Recipes

EXPERIMENTAL

Conventions used in the NAS recipes:

• When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is (often) used without further validation. Real code will need to be more robust.

• We use Values and Valuemap members as equivalent. In real code, client-side magic is required to convert the
integer representation into the string form given in the MOF.

• Error returns using the CIM_Error mechanism are not explicitly handled -- the client must implement handlers
for these asynchronous returns.

• These recipes do not show the details of negotiating a setting acceptable to both client and provider.

• The recipes do not show the details of managing a Job if a method returns after setting one up.

• All the recipes show very simple examples of the operations that should be supported. Some recipes have
been simplified so that they would not even be minimally useful to a real client, but only show how more
complete functionality would be implemented.

Note: We need to add at least one recipes that supports local access from a file server.

In the Filesystem Manipulation Profile recipes, the following subroutines are used (and provided here as forward
declarations):

sub CreateGoal(

IN REF CIM_FileSystemCapabilities $fscapability,

IN String $goalSetting,

INOUT String $supportedFileSystemSetting);

// The above subroutine uses the $fscapability.CreateGoalSettings method

// to get the single $supportedFileSystemSetting used in these recipes.

sub GetRequiredStorageSize(

IN REF CIM_FileSystemCapabilities $fscapability,

IN String $fssgoal,

IN String $ldSetting,

OUT uint64 $expectedsize,

OUT uint64 $minsize,

OUT uint64 $maxsize);

// The above subroutine uses the $fscapability.GetRequiredStorageSize

// method to get the single output size used in these recipes.

8.6.1 Creation of a FileSystem on a Storage Extent

//

// DESCRIPTION

// Goal: Create a LocalFilesystem on a LogicalDisk

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of the created LocalFileSystem.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 139

Filesystem Manipulation Subprofile
// 2. The client does not negotiate to get an acceptable setting but

// fails if one is not found

// 3. We do not use the FSCS to create a LogicalDisk from a StoragePool

// 4. We do not set up local access to a file server at this time

//

// FUNCTION CreateFileSystem

// This function takes a given ComputerSystem and LogicalDisk and

// constructs a filesystem that satisfies the requested property values.

// INPUT Parameters:

// hostsystem: A reference to the ComputerSystem.

// disk: A reference to the LogicalDisk on which to build the

// filesystem.

// desiredsize: An integer specifying the size of filesystem to

// build in bytes

// fsname: The string name of the filesystem

// filesystemtype: An integer enumeration of the filesystem type

// to construct

// otherpropertyname: An array of property names with corresponding

// values in the otherpropertyvalue parameter.

// otherpropertyvalue: An array of property values corresponding to the

// names in the otherpropertyname parameter.

// OUTPUT Parameters:

// fs: A reference to the LocalFileSystem that is built by this

// function.

// job: A reference to a job created by the implementation if this

// function will take a long time to complete.

// RESULT:

// Failure return consists of fs=NULL and job=NULL

// NOTES

// 1. This recipe does not show how to use the LocalAccess functionality

// to “mount” the file system to a mount-point of a file server.

sub CreateFileSystem(IN REF CIM_System $hostsystem,

 IN REF CIM_LogicalDisk $disk,

 IN uint64 $desiredsize,

 IN String $fsname,

 IN String $filesystemtype,

 IN String $otherpropertyname[], // array of property names

 IN String $otherpropertyvalue[], // corresponding array of
values

 OUT REF CIM_FileSystem $fs,

 OUT REF CIM_Job $job)

{

 //

 // Get the FileSystemConfigurationService of the NAS server using

 // a HostedService association

 //

 $fsconfigurators->[] = Associators($hostsystem,
140

 Filesystem Manipulation Subprofile
 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $fs = NULL;

 $job = NULL;

 return;

 }

 $fsconfigurator = $fsconfigurators->[0];

 //

 // Find FSCapabilities that supports $filesystemtype

 // as the ActualFileSystemType using ElementCapabilities

 // association from FSConfigurationService.

 //

 // There is only one Capability of a particular ActualFileSystemType

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

 “CIM_FileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($capabilities->[] == null || $capabilities->[].length == 0) {

 // No Capabilities found -- error

 $fs = NULL;

 $job = NULL;

 return;

 }

 #j = 0;

 while($capability = $capabilities->[#j]) {

 if (($capability.ActualFileSystemType == $filesystemtype) ||

 (($filesystemtype == NULL) && ($capability.IsDefault))) {

 if ($otherpropertyname->[] == NULL || $otherpropertyname->[].length ==
““ ||

 Contains(%capability.SupportedProperties, $otherpropertyname->[]))
{

 // This Contains function is left to the client to implement

 // found a matching capabilities element

 //

 break;

 } else {

 // Found capabilities element failed to match

 $fs = NULL;

 $job = NULL;

 return;

 }

 #j++;
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 141

Filesystem Manipulation Subprofile
 }

 $capability = $capabilities->[#j];

 // If $filesystemtype was NULL or empty string the default was returned

 if ($filesystemtype == NULL || $filesystemtype == ““)

 $filesystemtype = $capability.ActualFileSystemType;

 // At this point the $capability will be for $filesystemtype

 //

 // Call FileSystemCapabilities.CreateGoalSettings(nullTemplate, Goal) to

 // get a seed goal for FileSystemSetting, or just use one of the provided

 // default settings associated with the FileSystemCapabilities via

 // SettingsDefineCapabilities.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 $fssgoal = NULL;

 CreateGoal($capability, NULL, $fssgoal);

 //

 // Inspect Goal and modify properties as desired.

 //

 #i = 0;

 while ($otherpropertyname[#i]) {

 // funky syntax on left-hand side -- dot-operator on an a variable

 $fssgoal.$otherpropertyname[#i] = $otherpropertyvalue[#i];

 #i++;

 }

 //

 // Call FSCSCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to get

 // the next goal for FSSetting -- iterate until satisfied or give up

 // (beware of infinite loops) Note: we don’t iterate here, just give

 // up if we don’t get what we want.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 CreateGoal($capability, $fssgoal, $fssgoal2);

 #i = 0;

 while ($otherpropertyname[#i]) {

 //
142

 Filesystem Manipulation Subprofile
 // Note: this pseudocode doesn’t check to see if the property named

 // in $otherpropertyname[#i] is an array. This additional level

 // of horsing around is left as an exercise for the reader.

 //

 if ($fssgoal.$otherpropertyname[#i] != $otherpropertyvalue[#i] {

 { return NULL; } // give up

 }

 }

 //

 // Call FileSystemCapabilities.GetRequiredStorageSize(Goal,

 // DesiredUsableCapacity) to find out how large of a

 // LogicalDisk is needed.

 //

 // GetRequiredStorageSize returns the maximum and minimum

 // sizes that might be needed to satisfy the fssgoal2 request

 // If the LogicalDisk in use for the FileSystem cannot be grown

 // upon demand, then it might be worth growing to $minsize (which

 // would be optimistic); if there is any reason to believe that

 // the user is underestimating what they will need, then it might

 // be worth growing to $maxsize (pessimistic); in the normal case,

 // plan to grow to $expectedsize.

 //

 $ldsetting = NULL;

 $requiredsize = $capability.GetRequiredStorageSize(

 $fssgoal2,

 $ldsetting, // NULL input, returns
setting

 $expectedsize,

 $minsize,

 $maxsize);

 //

 // If a disk of the required size is already available

 // Call CreateFileSystem(Goal, LogicalDisk)

 // else

 // Create LogicalDisk (see StorageExtent recipes)

 // Call CreateFileSystem(Goal, LogicalDisk)

 //

 if ($requiredsize > $disk.BlockSize * $disk.NumberOfBlocks) {

 <CreateDisk>($requiredsize, $newdisk);

 $disk = $newdisk;

 }

 $diskArray->[0] = $disk;

 $status = $fsconfigurator.CreateFileSystem(

 $fsname,

 $job, // Job returned if necessary

 $fssgoal2, // Filesystem Setting
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 143

Filesystem Manipulation Subprofile
 $fs, // Filesystem returned

 $diskArray->[], // LogicalDisk to use

 NULL // No storagepools

 NULL, // No settings to create LDs

 NULL, // No size parameters

 NULL, // No File server specified for Local Access

 NULL, // No local access points provided

 NULL // No local access settings

);

 //

 // not shown:

 // 1) Managing the $job if it’s not NULL,

 // 2) Looking at the status result to figure out what to do

 // 3) Managing any CIM_Errors that get returned asynchronously.

 //

 return $fs;

}

8.6.2 Increase the size of a FileSystem

//

// DESCRIPTION

// Goal: Increase the size of a FileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// is also the host of the LocalFileSystem being modified.

// 2. The client does not negotiate to get an acceptable setting but

// fails if one is not found

// 3. Then desiredsize is greater than the current size

//

// FUNCTION CreateFileSystem

// This function takes a given LocalFileSystem and a desired

// increase in size in bytes and expands the size of the

// filesystem by at least the desired size.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// desiredsize: The desired size of the filesystem

// OUTPUT Parameters:

// job: A reference to a job created by the implementation if this

// function will take a long time to complete.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub IncreaseFileSystemSize(IN REF CIM_FileSystem $fs,
144

 Filesystem Manipulation Subprofile
 IN REF uint64 $desiredsize,

 OUT CIM_Job $job)

{

 //

 // Get a client-side copy of the FileSystemSetting

 // associated with the CIM_FileSystem (via ElementSettingData

 // association) using GetInstance

 //

 $settings = Associators($fs,

 “CIM_ElementSettingData”,

 “CIM_FileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 if ($settings ->[] == NULL || $settings ->[].length == 0) {

 // No FileSystemSetting found -- error

 $job = NULL;

 return;

 }

// One of the settings must be marked IsCurrent -- if not, there is an error

 #i = 0;

 $setting = NULL;

 while ($settings->[#i] != NULL) {

 if ($settings->[#i].IsCurrent) {

 $setting = GetInstance($settings->[#i]);

 break;

 }

 #i++;

 }

 if ($setting == NULL) {

 $job = NULL;

 return;

 }

 $fssnewgoal = $setting;

 // Note that this syntax conflicts with earlier use of funky syntax for

 // accessing properties. Also “add” method applied to an array-value

 // changes the array in-place

 $fssnewgoal.ObjectTypes->[].add(“Bytes”);

 $fssnewgoal.ObjectSizeMin->[].add($desiredsize);

 // Get the FileSystemCapabilities element from the hosting NAS Server

 //

 // a) Get the ActualFileSystemType from the FileSystemSetting

 //

 $filesystemtype = $fssnewgoal.ActualFileSystemType;

 //
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 145

Filesystem Manipulation Subprofile
 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)

 // There should be exactly one.

 $system = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 //

 // Get the FileSystemConfigurationService from the ComputerSystem

 // via the HostedService association. There is exactly one,

 // but check that one is found.

 //

 $fsconfigurators->[] = Associators($system,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $job = NULL;

 return;

 }

 $fsconfigurator = $fsconfigurators->[0];

 //

 // Find FSCapabilities that supports $filesystemtype

 // as the ActualFileSystemType using ElementCapabilities

 // association from FSConfigurationService.

 //

 // There is only one Capability of a particular ActualFileSystemType

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

 “CIM_FileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($capabilities->[] == null || $capabilities->[].length == 0) {

 // No Capabilities found -- error

 $job = NULL;

 return;

 }

 #j = 0;

 while($capability = $capabilities->[#j]) {

 if ($capability.ActualFileSystemType == $filesystemtype)

 break;

 #j++;
146

 Filesystem Manipulation Subprofile
 }

 if (#j == $capabilities->[].length) {

 // No Capabilities for this filesystem type was found -- error

 $job = NULL;

 return;

 } else

 $capability = $capabilities->[#j];

 //

 // Call FileSystemCapabilities.GetRequiredStorageSize(NewGoal,

 // DesiredUsableCapacity) to find out how large of a

 // LogicalDisk is needed

 //

 // Changed from: $requiredsize =
$capability.GetRequiredStorageSize($fssnewgoal,

 $ldsetting = ““;

 $requiredsize = GetRequiredStorageSize($capability,

 $fssnewgoal,

 $ldsetting, // Returns actual setting used

 $disksize,

 $diskminsize,

 $diskmaxsize);

 //

 // Get Underlying LogicalDisk using ResidesOnExtent association

 // There must be exactly one

 //

 $disk = Associators($fs,

 “CIM_ResidesOnExtent”,

 “CIM_LogicalDisk”,

 “Dependent”,

 “Antecedent”)->[0];

 //

 // If disk is not large enough, increase size of underlying SE

 //

 $job = NULL;

 if ($disksize < $disk.BlockSize * $disk.NumberOfBlocks) {

 <increase size of logical disk, returning a job in $job if

 necessary -- see storage extent recipes>

 }

 //

 // The filesystem itself doesn’t need modification, so we’re done

 //

 // This is NOT correct. The ModifyFileSystem method must be called

 // with the new file system setting so that the filesystem can be

 // modified as needed.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 147

Filesystem Manipulation Subprofile
 // It isn’t clear what the call would be -- probably specify NULL for

 // the InExtents parameter and the desiredsize parameter would indicate

 // that the filesystem was being resized.

 // Operationally, the appended storage space would need to be formatted

 // as inodes and their inode numbers would need to be legitimized in

 // the filesystem meta-data.

 //

 // The call would be

 // $fsconfigurator.ModifyFileSystem(

 // NULL, // Keep the old element name for the filesystem

 // $job, // return Job if created

 // $fssgoal, // Goal setting

 // $fs, // filesystem

 // NULL, // Don’t add any logicaldisks

 // NULL, // No storage pools

 // NULL, // No LogicalDisk settings

 // $disksize, // New LD size

 // NULL, // No File server for local access

 // NULL, // No Local access point name

 // NULL, // No Local access setting

 // NULL, // Default in use option

 // NULL, // Default wait time

 //);

 //

}

8.6.3 Modify a FileSystem’s Settings

//

// DESCRIPTION

// Goal: Modify the settings and other properties of a LocalFileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of the LocalFileSystem to be modified.

// 2. The client does not negotiate to get an acceptable setting but

// fails if one is not found.

// 3. This recipe only shows how the number of supported objects

// of a particular type is modified. The model can be easily

// extended to other individual properties of the LocalFileSystem.

// 4. The CreateFileSystem method uses an array of property names

// and values and can be useful to show how ModifyFileSystem

// may change many propertynames in a single call at the same time.

//

// FUNCTION ModifyFileSystemObjectLimits

// This function takes a given LocalFileSystem and a specification

// of an object type (file and/or directories) to be supported

// and modifies the filesystem (increases its size) so that it

// satisfies the newly requested size.
148

 Filesystem Manipulation Subprofile
// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// objecttype: The object type whose support is being modified

// minobjects: The minimum number of objects of the specified

// type to be supported.

// maxobjects: The maximum number of objects of the specified

// type to be supported.

// expectedobjects: The client’s expectations of the number of

// objects of the specified type to be supported.

// OUTPUT Parameters:

// objecttype: The object type whose support has being modified

// minobjects: The minimum number of objects of the specified

// type that will be supported by the implementation.

// maxobjects: The maximum number of objects of the specified

// type that will be supported by the implementation.

// expectedobjects: The implementation’s expectations of the

// number of objects of the specified type to be supported.

// job: A reference to the job implementing the ModifyFileSystem

// method, if necessary.

// RESULT:

// None

// NOTES

// 1. This recipe does not show how to specify multiple object

// types at the same time.

// 2. This recipe does not show how to change the local access

// setup (add or delete local access).

sub ModifyFileSystemObjectLimits(IN REF CIM_FileSystem $fs,

 IN OUT uint64 $objecttype,

 IN OUT uint64 $minobjects,

 IN OUT uint64 $maxobjects,

 IN OUT uint64 $expectedobjects,

 OUT REF CIM_Job $job)

{

 //

 // Get a client-side copy of the FileSystemSetting

 // associated with the CIM_FileSystem (via ElementSettingData

 // association) using GetInstance

 //

 $settings = Associators($fs,

 “CIM_ElementSettingData”,

 “CIM_FileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 if ($settings ->[] == NULL || $settings ->[].length == 0) {

 // No FileSystemSetting found -- error

 $job = NULL;
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 149

Filesystem Manipulation Subprofile
 return;

 }

// One of the settings must be marked IsCurrent -- if not, there is an error

 #i = 0;

 $setting = NULL;

 while ($settings->[#i] != NULL) {

 if ($settings->[#i].IsCurrent) {

 $setting = GetInstance($settings->[#i]);

 break;

 }

 #i++;

 }

 if ($setting == NULL) {

 $job = NULL;

 return;

 }

 $fssnewgoal = $setting;

 // Get the FileSystemCapabilities element from the hosting NAS Server

 //

 // a) Get the ActualFileSystemType from the FileSystemSetting

 //

 $filesystemtype = $setting.ActualFileSystemType;

 //

 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)

 // There should be exactly one.

 $system = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 //

 // Get the FileSystemConfigurationService from the ComputerSystem

 // via the HostedService association. There is exactly one.

 //

 $fsconfigurators->[] = Associators($system,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $job = NULL;

 return;

 }
150

 Filesystem Manipulation Subprofile
 $fsconfigurator = $fsconfigurators->[0];

 //

 // Find FSCapabilities that supports $filesystemtype

 // as the ActualFileSystemType using ElementCapabilities

 // association from FSConfigurationService.

 //

 // There is only one Capability of a particular ActualFileSystemType

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

 “CIM_FileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($capabilities->[] == null || $capabilities->[].length == 0) {

 // No Capabilities found -- error

 $job = NULL;

 return;

 }

 #j = 0;

 while($capability = $capabilities->[#j]) {

 if ($capability.ActualFileSystemType == $filesystemtype)

 break;

 #j++;

 }

 if (#j == $capabilities->[].length) {

 $job = NULL;

 return;

 } else

 $capability = $capabilities->[#j];

 //

 // Find the index in the object arrays that contains

 // the object type of interest

 //

 #i = 0;

 while($typ = $fssnewgoal.ObjectTypes->[#i]) {

 if ($typ == $objecttype)

 { break; }

 #i++;

 }

 //

 // if the specified type isn’t there, add it

 //

 if ($typ != $objecttype) {

 $fssnewgoal.ObjectTypes->[#i] = $objecttype;

 }
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 151

Filesystem Manipulation Subprofile
 //

 // modify the other params associated with the object type

 //

 $fssnewgoal.NumberOfObjectsMin->[#i] = $minobjects;

 $fssnewgoal.NumberOfObjectsMax->[#i] = $maxobjects;

 $fssnewgoal.NumberOfObjects->[#i] = $expectedobjects;

 //

 // Call FSCSCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to get the next

 // goal for FSSetting -- iterate until satisfied or give up (beware

 // infinite loops) Note: we don’t iterate here, just give up.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 CreateGoal($capability, $fssnewgoal, $fssgoal2);

 if ($fssgoal2.ActualFileSystemType != $filesystemtype) {

 $job = NULL;

 return;

 }

 // Since this may increase the size of the file system it is necessary to

 // pass in a new extent or a new logical disk or a pool that can provide

 // the storage.

 //

 // call ModifyFilesystem (management of $job and any CIM_Error not

 // shown)

 //

 $fsconfigurator.ModifyFileSystem(

 NULL, // Keep the old element name for the filesystem

 $job, // return Job if created

 $fssgoal2, // Goal setting

 $fs, // filesystem

 NULL, // Don’t add any logicaldisks

 NULL, // No storage pools

 NULL, // No LogicalDisk settings

 NULL, // No LD sizes

 NULL, // No File server for local access

 NULL, // No Local access point name

 NULL, // No Local access setting

 NULL, // Default in use option

 NULL, // Default wait time

);
152

 Filesystem Manipulation Subprofile
 return $fs;

}

8.6.4 Delete a FileSystem and return underlying StorageExtent

//

// DESCRIPTION

// Goal: Delete a FileSystem and return underlying LogicalDisk

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// is also the host of the created LocalFileSystem.

// 2. The filesystem is built on a single LogicalDisk

// 3. The LogicalDisk is not automatically returned to a StoragePool

// but is left allocated to the NAS Server and available for use

// by a filesystem client.

// 4. No job is needed

//

// FUNCTION DeleteFileSystem

// This function deletes a given LocalFileSystem and

// returns a reference to the LogicalDisk on which it resided

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// disk: A reference to the LogicalDisk is returned.

// RESULT:

// Success or Failure

// NOTES

// 1. This recipe does not show how to clean up any local access

// or file shares that may have been set up for accessing the

// filesystem.

// 2. To “wipe” or zero out the filesystem, the client must either

// use client-level operations over a FileSystem or FileShare

// prior to deleting the filesystem, or by vendor-specific

// operations on the LogicalDisk after deleting the filesystem.

//

sub DeleteFileSystem(IN REF CIM_FileSystem $fs, OUT REF CIM_LogicalDisk $disk)

{

 //

 // Get underlying LogicalDisk using ResidesOnExtent association

 // In SMI-S 1.2. we assume that there will be exactly one

 //

 $disks->[] = Associators($fs,

 “CIM_ResidesOnExtent”,

 “CIM_LogicalDisk”,

 “Dependent”,

 “Antecedent”)->[0];

 if ($disks->[] == null || $disks->[].length == 0) {
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 153

Filesystem Manipulation Subprofile
 // No LogicalDisk found -- error

 $disk = NULL;

 return;

 }

 $disk = $disks->[0];

 //

 // Get the NAS Server of the FileSystem using

 // a HostedFileSystem association. There should be

 // exactly one filesystem host.

 $hosts->[] = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “Antecedent”,

 “Dependent”);

 if ($hosts->[] == null || $hosts->[].length == 0) {

 // No ComputerSystem found -- error

 $disk = NULL;

 return;

 }

 $hostsystem= $hosts->[0];

 //

 // Get the FileSystemConfigurationService of the NAS server using

 // a HostedService association

 //

 $fsconfigurators->[] = Associators($hostsystem,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $fs = NULL;

 $job = NULL;

 return;

 }

 $fsconfigurator = $fsconfigurators->[0];

 //

 // Call DeleteFileSystem(FS) (error checking not shown)

 //

 $fsconfigurator.DeleteFileSystem($job, $fs);

 return;

}

154

 Filesystem Manipulation Subprofile
8.6.5 Make a FileSystem Locally Accessible from a File Server ComputerSystem

//

// DESCRIPTION

// GOAL: Get a LocallyAccessibleFileSystemCapabilities from a

// filesystem host that is dependent on a specific file server

// and supports the properties specified in the array

// parameter $propertynames[].

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of any LocalFileSystem that will be

// made locally accessible using a capabilities element.

//

// FUNCTION GetLocallyAccessibleFileSystemCapabilities

// This function takes a filesystem host ComputerSystem and

// gets a capabilities element for making a filesystem

// locally accessible on a file server ComputerSystem.

// INPUT Parameters:

// hostsystem: A reference to the ComputerSystem that hosts

// filesystems.

// fileserver: A reference to the file server ComputerSystem that

// provides local access to filesystems.

// propertynames: An array of property names that the capabilities

// element should support.

// OUTPUT Parameters:

// allcapabilities: An array of references to the capabilities

// for local access on the file server.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub GetLocallyAccessibleFileSystemCapabilities(

 IN REF CIM_ComputerSystem $hostsystem,

 IN REF CIM_ComputerSystem $fileserver,

 IN String $propertynames[],

 OUT REF SNIA_LocallyAccessibleFileSystemCapabilities $allcapabilities[])

{

 //

 // Get the FileSystemConfigurationService from the ComputerSystem

 // $hostsystem via the HostedService association

 //

 $fsconfigurators->[] = Associators($hostsystem,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 155

Filesystem Manipulation Subprofile
 #i = 0;

 #k = 0; // the index for $allcapabilities.

 while ($fsconfigurator = $fsconfigurators->[#i]) {

 #i++;

 //

 // Find LocallyAccessibleFileSystemCapabilities that supports the

 // file server using ElementCapabilities association from

 // FSConfigurationService.

 // If client does not care about the file server ($fileserver = NULL),

 // return all the LocallyAccessibleFileSystemCapabilities that

 // are associated to the FileSystemConfigurationService

 // There is one and only one LocallyAccessibleFileSystemCapabilities

 // for each server+FileSystemConfigurationService pair.

 // The SupportedProperties property lists the supported setting

 // properties.

 //

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

“SNIA_LocallyAccessibleFileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 // Skip to next if empty

 if ($capabilities->[] == NULL ||$capabilities->[].length == 0) continue;

 #j = 0;

 while($capability = $capabilities->[#j]) {

 #j++;

 if (propertyname == NULL || propertyname == ““ ||

 Contains($capability.SupportedProperties, propertyname)) {

 // If the server is null then skip the next step

 if ($server != NULL) {

 $capservers[] = Associators($capability,

 “SNIA_ScopedCapability”,

 “CIM_ComputerSystem”,

 “Dependent”,

 “Antecedent”);

 if ($capservers == NULL || $capservers->[].length != 1 ||

 $server != $capservers->[0])

 continue;

 }

 $allcapabilities->[#k] = $capability;

 #k++;

 }

 }

 }

 return;

}

156

 Filesystem Manipulation Subprofile
8.6.6 Get the Local Access Setting for a FileSystem on a File Server ComputerSystem

// DESCRIPTION

// GOAL: Get a LocallyAccessibleFileSystemSetting from a

// filesystem host that is dependent on a specific file server

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of any LocalFileSystem that will be

// made locally accessible using a capabilities element.

//

// FUNCTION GetLocallyAccessibleFileSystemSetting

// This function takes a filesystem host ComputerSystem and

// gets a capabilities element for making a filesystem

// locally accessible on a file server ComputerSystem.

// INPUT Parameters:

// filesystem: A reference to the LocalFileSystem that is to

// be made locally accessible from a file server.

// fileserver: A reference to the file server ComputerSystem that

// provides local access to filesystems.

// OUTPUT Parameters:

// setting: An embedded instance of a LocallyAccessibleFileSystemSetting

// that supports making the filesystem locally accessible.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub GetLocallyAccessibleFileSystemSetting(

 IN REF CIM_FileSystem $filesystem,

 IN REF CIM_ComputerSystem $fileserver,

 OUT String(“SNIA_LocallyAccessibleFileSystemSetting”) $setting)

{

 // Does this fileserver have local access to this filesystem

 // -- if not, there is no setting!

 $localaccess->[] = ReferenceNames($filesystem,

 “SNIA_LocalAccessAvailable”,

 “FileSystem”);

 if ($localaccess->[] == NULL || $localaccess->[].length == 0)

 return;

 //

 // Get all the LocallyAccessibleFileSystemSettings

 // associated with the CIM_FileSystem (via ElementSettingData

 //

 $assoc = References($filesystem,

 “CIM_ElementSettingData”,

 “ManagedElement”);
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 157

Filesystem Manipulation Subprofile
 if ($assoc->[] == NULL || $assoc->[].length == 0) {

 // This is an ERROR but for now we return with no results

 return;

 }

 #i = 0;

 while ($assoc->[#i] != NULL) {

 if ($assoc->[#i].IsCurrent) {

 // Is this scoped to the fileserver?

 $servers = Associators($assoc->[#i].SettingData,

 “CIM_ScopedSetting”,

 “CIM_ComputerSystem”,

 “Dependent”,

 “Antecedent”);

 if ($servers->[] != NULL && $servers->[].length != 0 && $servers->[0]
== $fileserver) {

 $setting = GetInstance($assoc->[#i].SettingData);

 return;

 }

 }

 #i++;

 }

 $setting = NULL;

}

EXPERIMENTAL

8.6.7 Filesystem Manipulation Supported Capabilities Patterns

Table 66, “Filesystem Manipulation Supported Capabilities Patterns” lists the patterns that are formally recognized
by SMI-S 1.1.0 for determining capabilities of various NAS implementations:

Table 66: Filesystem Manipulation Supported Capabilities Patterns

8.7 Registered Name and Version
Filesystem Manipulation version 1.2.0

Supported
ActualFileSystem

Types

Supported
Synchronous

Methods

Supported
Asynchronous

Methods

Initial
Availability

Any none none none

Any

CreateFileSystem,
DeleteFileSystem,
ModifyFileSystem,

CreateGoalSettings,
GetRequiredStorageSizes

none Any

Any CreateGoalSettings,
GetRequiredStorageSizes

CreateFileSystem,
DeleteFileSystem,
ModifyFileSystem

Any
158

 Filesystem Manipulation Subprofile
8.8 CIM Elements

Table 67: CIM Elements for Filesystem Manipulation

Element Name Requirement Description

 SNIA_FileSystemConfigurationService
(8.8.1)

Mandatory The Filesystem Configuration Service
provides the methods to manipulate file
systems.

 CIM_HostedService (8.8.2) Mandatory In this subprofile, associates the Filesystem
Configuration Service to the hosting
ComputerSystem. This is expected to be the
top-level ComputerSystem of the parent
Filesystem Profile.

 SNIA_FileSystemConfigurationCapabilities
(8.8.3)

Mandatory This element represents the management
Capabilities of the Filesystem Configuration
Service.

 SNIA_ElementCapabilities (FS Configuration
Capabilities) (8.8.4)

Mandatory In this subprofile, associates the Filesystem
Configuration Service to the Capabilities
element that represents the capabilities that it
supports.

 SNIA_FileSystemCapabilities (8.8.5) Mandatory This element represents the Capabilities of
the Filesystem Configuration Service for
managing Filesystems. The Service can be
associated with multiple
FileSystemCapabilities elements, one per
ActualFileSystemType property value. For
each value that is in the array property
FileSystenConfigurationCapabilities.Supporte
dActualFileSystemTypes, there will be exactly
one corresponding FileSystemCapabilities
element with the matching
ActualFileSystemType property.

 SNIA_ElementCapabilities (At Least One)
(8.8.6)

Mandatory In this subprofile, associates the Filesystem
Configuration Service to the
FileSystemCapabilities elements that
represent all the types of filesystems that it
can configure.

 SNIA_ElementCapabilities (At Least One)
(8.8.7)

Mandatory This entry represents the single default
FileSystemCapabilities element for the
Filesystem Configuration Service.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 159

Filesystem Manipulation Subprofile
 SNIA_FileSystemSetting (Pre-defined FS
Settings) (8.8.8)

Optional This element represents sample configuration
settings usable for creating or modifying a
LocalFileSystem. It represents "pre-defined"
settings supported by the
FileSystemConfigurationService and is
associated with a FileSystemCapabilities
element by a SettingsDefineCapabilities
association. The
FileSystemSetting.ActualFileSystemType
property must specify the same value as the
associated
FileSystemCapabilities.ActualFileSystemType
property.

 SNIA_SettingsDefineCapabilities (Pre-
defined FS Settings) (8.8.9)

Optional These Setting elements provide detailed
information about the FileSystemSettings
supported by the associated
FileSystemCapabilities element.

 SNIA_FileSystemSetting (Attached to
FileSystem) (8.8.10)

Optional This element represents the configuration
settings of a LocalFileSystem. One instance of
this class is created by the CreateFileSystem
extrinsic method when the LocalFileSystem
was created.

 This profile does not specify how other
instances of this class might be created.

 CIM_ElementSettingData (Attached to
Filesystem) (8.8.11)

Optional Associates a FileSystemSetting element to a
LocalFileSystem. One of these association
elements is created by CreateFileSystem
when the LocalFileSystem is first created.

 The profile does not specify how other
instances of this association may be surfaced
by the implementation.

 SNIA_LocalFileSystem (8.8.12) Mandatory Represents a LocalFileSystem hosted by and
made available through a ComputerSystem
(usually the top-level ComputerSystem of a
Filesystem Profile).

 CIM_HostedFileSystem (8.8.13) Mandatory Associates a LocalFileSystem to the
ComputerSystem that hosts it.

 CIM_Directory (Root Directory) (8.8.14) Conditional Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

 The root directory of a LocalFileSystem that is
always present when a FileSystem is created.
This is retained for backward compatibility
with SMI Specification 1.1.

Table 67: CIM Elements for Filesystem Manipulation

Element Name Requirement Description
160

 Filesystem Manipulation Subprofile
 CIM_FileStorage (Root Directory) (8.8.15) Conditional Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

Associates the root Directory to its parent
LocalFileSystem.

 CIM_LogicalFile (Shared Files and
Directories) (8.8.16)

Conditional Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

A LogicalFile (or Directory subclass) that is
exported as a FileShare is also visible as a
sub-element of the LocalFileSystem.

Maybe this class should be defined only in the
File Export subprofile.

 CIM_FileStorage (Shared Files and
Directories) (8.8.17)

Conditional Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

Associates an exported Logical File or
Directory to the LocalFileSystem that contains
it.

 SNIA_LocallyAccessibleFileSystemSetting
(8.8.18)

Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true.. This element represents the
configuration settings of a LocalFileSystem
that has a contained file or directory that has
been made locally accessible from a file
server ComputerSystem. This Setting
provides further details on the functionality
supported and the parameters of that
functionality when locally accessible.

 CIM_Dependency (Uses Directory Services
From) (8.8.19)

Conditional Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is
either
Required'or'Optional'.AssociatesaComputerS
ystemthatindicatesadirectoryservicethatsuppo
rtsthedependentLocalFileSystem.'

 SNIA_SettingsDefineCapabilities (Pre-
defined Local Access Settings) (8.8.20)

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
LocalAccessRequired,Defaulted'or'LocalAcce
ssRequired,NotDefaulted'.TheSettingelement
sthatareassociatedtothisCapabilitieselementar
escopedtotheFileServerComputerSystemthat
providestheoperationalcontextforlocalaccess.'

Table 67: CIM Elements for Filesystem Manipulation

Element Name Requirement Description
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 161

Filesystem Manipulation Subprofile
 CIM_ElementCapabilities (Local Access
Configuration Capabilities) (8.8.21)

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
LocalAccessRequired,Defaulted'or'LocalAcce
ssRequired,NotDefaulted'.Inthissubprofile,ass
ociatestheFilesystemConfigurationServicetoth
eCapabilitiesinstancethatrepresentsthecapabil
itiesforLocalAccessthatitsupports.'

SNIA_LocallyAccessibleFileSystemCapabilitie
s (8.8.22)

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
LocalAccessRequired,Defaulted'or'LocalAcce
ssRequired,NotDefaulted'.Theelementreprese
ntstheLocalAccessconfigurationCapabilitiesoft
heFileSystemConfigurationService.Thisclassp
rovidesaCreateGoalSettingsmethodthatwillret
urnaSNIA_LocallyAccessibleFileSystemSettin
gelementasanEmbedddInstancethatmaybeus
edformakingafilesystemlocallyaccessibletoafil
eserverComputerSystem(bythemethodsCreat
eFileSystemandModifyFileSystem).Sincether
eturnedEmbeddedInstancesettingelementisan
instanceofaScopedSettingclass,itmustbeasso
ciatedwithaComputerSystemviaScopedSettin
gDatawhenitisinstantiated.'

 CIM_HostedDependency (Attached to File
System) (8.8.23)

Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true.. Associates a Local Access
configuration setting to the file server
ComputerSystem that provides the
operational scope for its functionality.

 CIM_HostedDependency (Pre-Defined)
(8.8.24)

Optional Associates a pre-defined
SNIA_LocallyAccessibleFileSystemSetting to
the file server ComputerSystem that provides
the operational scope for its functionality.

 CIM_HostedDependency (Pre-Defined)
(8.8.25)

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
LocalAccessRequired,Defaulted'or'LocalAcce
ssRequired,NotDefaulted'.AssociatesaLocalA
ccessCapabilitiestotheFileServerthatprovidest
heoperationalscopeforitsfunctionality.AlloftheS
ettingsassociatedtothereferencedCapabilities
elementmustbescopedbythesameFileServerC
omputerSystem.ThisscopingallowstheCreate
GoalSettingmethodoftheCapabilitieselementto
knowwhichFileServerprovidesthescopeforany
Goalelementthatitcreates.'

Table 67: CIM Elements for Filesystem Manipulation

Element Name Requirement Description
162

 Filesystem Manipulation Subprofile
8.8.1 SNIA_FileSystemConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 68 describes class SNIA_FileSystemConfigurationService.

 CIM_ElementSettingData (Local Access
Required) (8.8.26)

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
LocalAccessRequired,Defaulted'or'LocalAcce
ssRequired,NotDefaulted'.AssociatesaLocalFi
leSystemandtheLocallyAccessibleFileSystem
Settingelements.'

 SNIA_LocalAccessAvailable (8.8.27) Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true.. Associates a LocalFileSystem to a
File Server Computer System that can export
files or directories as shares.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA SNIA_LocalFileSystem

Optional Experimental CQL - Creation of a
LocalFileSystem element.

SELECT OBJECTPATH(SourceInstance)AS
FSPath, SourceInstance.Name FROM
CIM_InstDeletion WHERE SourceInstance
ISA SNIA_LocalFileSystem

Optional Experimental CQL - Deletion of a
LocalFileSystem element.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
SNIA_LocalFileSystem

Optional Experimental CQL - Modification of a
LocalFileSystem element.

Table 68: SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Service.

SystemCreationClas
sName

Mandatory The CIM Class name of the ComputerSystem hosting the
Service.

SystemName Mandatory The Name property of the ComputerSystem hosting the
Service.

CreationClassName Mandatory The CIM Class name of the Service.

Table 67: CIM Elements for Filesystem Manipulation

Element Name Requirement Description
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 163

Filesystem Manipulation Subprofile
8.8.2 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 69 describes class CIM_HostedService.

8.8.3 SNIA_FileSystemConfigurationCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Name Mandatory The unique name of the Service.

CreateFileSystem() Mandatory Creates a LocalFileSystem as specified by parameters and
Capabilities of the service and returns a reference to it. If
appropriate and supported, a Job may be created and a
reference to the Job will be returned.

ModifyFileSystem() Optional Modifies a LocalFileSystem indicated by a reference and
as specified by referenceparameters and Capabilities of the
service. If appropriate and supported, a Job may be
created and a reference to the Job will be returned.

DeleteFileSystem() Mandatory Deletes a LocalFileSystem indicated by reference. If
appropriate and supported, a Job may be created and a
reference to the Job will be returned.

Table 69: SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory The Filesystem Configuration Service.

Antecedent Mandatory The hosting ComputerSystem.

Table 68: SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService

Properties Flags Requirement Description & Notes
164

 Filesystem Manipulation Subprofile
Table 70 describes class SNIA_FileSystemConfigurationCapabilities.

Table 70: SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this element representing the
capabilities of a Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

SupportedActualFile
SystemTypes

Mandatory The Service can be associated with multiple Capabilities
elements, one per ActualFileSystemType property value.
This property lists all of the supported
ActualFileSystemTypes. Each entry in this array must have
exactly one corresponding FileSystemCapabilties element
with that entry as the value of the ActualFileSystemType
property.

SupportedSynchrono
usMethods

N Mandatory The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called
synchronously. Note: A supported method shall be listed in
this property or in the SupportedAsynchronousMethods
property or both.

SupportedAsynchron
ousMethods

N Mandatory The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called
asynchronously. Note: A supported method shall be listed
in this property or in the SupportedSynchronousMethods
property or both.

InitialAvailability Mandatory This property represents the state of availability of a
LocalFileSystem on initial creation using the
FileSystemConfigurationService associated with this
Capabilities element.

LocalAccessibilitySu
pport

Optional This specifies whether a LocalFileSystem created or
modified by this FileSystemConfigurationService needs to
be made locally accessible at a local access point before a
file server ComputerSystem can make it available to
operational clients or for export as a share. This is typical of
some NAS and filesystem implementations. If not specified,
the default is "Local Access Not Required".
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 165

Filesystem Manipulation Subprofile
BlockStorageCreatio
nSupport

Optional BlockStorageCreationSupport is an ordered array of
enumerated values that place a number of restrictions on
the use of parameters for CreateFileSystem and
ModifyFileSystem.

 1. The first entry is an enumerated value that specifies if an
already existing LogicalDIsk may be used -- this is either
required, optional, or not allowed. "Not Allowed" indicates
that the Pools and ExtentSettings parameters must be used
to create LogicalDisk(s) for this file system and the
InExtents parameter must be NULL. "Optional" indicates
that either the Pools and ExtentSettings parameters or the
InExtents parameter should be specified, but not both.
"Required" indicates that the InExtents parameter may be
specified and the Pools and ExtentSettings parameters
must be NULL.

 2. (optional) An integer that specifies an upper limit to the
number of StorageElements that can be specified, either as
InExtents parameters or as Pools and ExtentSettings.

 3. (optional) An integer that specifies the number of distinct
pools that the Pools parameters can specify -- zero, if Pools
is not supported or if there is no limit, and a specific number
if there is a limit. In practice we expect that the value will be
either zero or one.

 4. (optional) A boolean value, represented by '0' for false
and '1' for true, that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating
that a default setting is to be used).

Table 70: SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes
166

 Filesystem Manipulation Subprofile
8.8.4 SNIA_ElementCapabilities (FS Configuration Capabilities)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

DirectoryServerPara
meterSupported

Optional This enumeration indicates support for the DirectoryServer
parameter to the extrinsic method
FileSystemConfigurationService.CreateFileSystem(). The
options are:

 'Not Used' indicates that the filesystem does not support
security principal information associated with filesystem
objects. The LocalFileSystem will not be associated to a
DirectoryServer.

 'Supported' indicates that the filesystem supports security
principal information associated with filesystem objects.
The LocalFileSystem will be associated to a directory
server ComputerSystem. And the DirectoryServer
parameter of CreateFileSystem is required. If it is not
specified, it will be defaulted to the FileServer parameter in
the same call. If the FileServer parameter is also not
specified, the DirectoryServer parameter will be defaulted
to the host of the FileSystemConfigurationService.

 'Supported, Defaulted to FileServer' indicates that the
filesystem supports security principal information
associated with filesystem objects. The LocalFileSystem
will be associated to a directory server ComputerSystem.
The DirectoryServer parameter of CreateFileSystem is
NOT supported, but is automatically defaulted to the
FileServer parameter of the same call. If the FileServer
parameter is not specified, the DirectoryServer parameter
will be defaulted to the host of the
FileSystemConfigurationService.

 'Supported, Defaulted to FileSystem host' indicates that
the filesystem supports security principal information
associated with filesystem objects. The LocalFileSystem
will be associated to a directory server ComputerSystem.
The DirectoryServer parameter of CreateFileSystem is
NOT supported, but is automatically defaulted to the host of
the FileSystem created by CreateFileSystem().

Table 70: SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 167

Filesystem Manipulation Subprofile
Table 71 describes class SNIA_ElementCapabilities (FS Configuration Capabilities).

8.8.5 SNIA_FileSystemCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 72 describes class SNIA_FileSystemCapabilities.

Table 71: SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FS Configuration
Capabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The Filesystem Configuration Service

Capabilities Mandatory The Filesystem Configuration Capabilties element

Table 72: SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the FileSystemCapabilities
element of a Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

ActualFileSystemTyp
e

Mandatory This identifies the type of filesystem that this
FileSystemCapabilities represents.

SupportedProperties Mandatory This is the list of configuration properties (of
FileSystemSetting) that are supported for specification at
creation time by this FileSystemCapabilities element.

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a set of
FileSystemSettings that is a supported variant of an array
of FileSystemSettings passed in as an embedded IN
parameter. The method returns the supported
FileSystemSetting in an array of embedded OUT
parameters. This profile only supports arrays with a single
entry.

GetRequiredStorage
Size()

Optional This extrinsic method supports determining the storage
space requirements for a filesystem specified by the
combination of a FileSystemSetting and a StorageSetting.
The StorageSetting specifies the required redundancy,
multiple Logical Disk usage, and other storage mapping
considerations, while the FileSystemSetting transforms
client quality-of-service specifications to storage resource
requirements.
168

 Filesystem Manipulation Subprofile
8.8.6 SNIA_ElementCapabilities (At Least One)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 73 describes class SNIA_ElementCapabilities (At Least One).

8.8.7 SNIA_ElementCapabilities (At Least One)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 74 describes class SNIA_ElementCapabilities (At Least One).

8.8.8 SNIA_FileSystemSetting (Pre-defined FS Settings)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Optional

Table 73: SMI Referenced Properties/Methods for SNIA_ElementCapabilities (At Least One)

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 74: SMI Referenced Properties/Methods for SNIA_ElementCapabilities (At Least One)

Properties Flags Requirement Description & Notes

Characteristics Optional

Capabilities Mandatory

ManagedElement Mandatory
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 169

Filesystem Manipulation Subprofile
Table 75 describes class SNIA_FileSystemSetting (Pre-defined FS Settings).

Table 75: SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Pre-defined FS Set-
tings)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A provider supplied user-friendly name for this
FileSystemSetting element.

ActualFileSystemTyp
e

Mandatory This identifies the type of filesystem that this
FileSystemSetting represents. It shall match the
corresponding property of FileSystemCapabilities.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents)
that are shared between files.

CopyTarget Optional This specifies if support should be provided for using the
created filesystem as a target of a Copy operation.

FilenameCaseAttribu
tes

Mandatory This specifies the support provided for using upper and
lower case characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin Optional This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that will be supportable by a
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMa
x

Optional This is an array that specifies the maximum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by a LocalFileSystem
configured by this FileSystemSetting element.

NumberOfObjects Optional This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSize Optional This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMin Optional This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[] that will be supportable by a
LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax Optional This is an array that specifies the maximum size of an
object of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by a LocalFileSystem
configured by this FileSystemSetting element.
170

 Filesystem Manipulation Subprofile
8.8.9 SNIA_SettingsDefineCapabilities (Pre-defined FS Settings)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Optional

Table 76 describes class SNIA_SettingsDefineCapabilities (Pre-defined FS Settings).

FilenameStreamFor
mats

Optional This is an array that specifies the stream formats (e.g.,
UTF-8) supported for filenames by a filesystem with this
setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by a filesystem with this
setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported
by a filesystem with this setting.

FilenameReservedC
haracterSet

Optional This string or character array specifies the characters
reserved (i.e., not allowed) for use in filenames that will be
required by a filesystem with this setting.

SupportedLockingSe
mantics

Optional This array specifies the set of file access/locking semantics
supported by a filesystem with this setting.

SupportedAuthorizati
onProtocols

Optional This array specifies the kind of file authorization protocols
supported by a filesystem with this setting.

SupportedAuthentica
tionProtocols

Optional This array specifies the kind of file authentication protocols
supported by a filesystem with this setting.

Table 76: SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined
FS Settings)

Properties Flags Requirement Description & Notes

PropertyPolicy Mandatory PropertyPolicy defines whether or not the non-null, non-
key properties of the associated FileSystemSetting element
are treated independently or as a correlated set.

ValueRole Mandatory ValueRole is an array that further specifies the semantics
of the non-null, non-key properties of the associated
FileSystemSetting element, such as whether they are
supported or unsupported, and if supported, whether they
are a default and/or an optimal value or an average of
some kind.

Table 75: SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Pre-defined FS Set-
tings)

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 171

Filesystem Manipulation Subprofile
8.8.10 SNIA_FileSystemSetting (Attached to FileSystem)

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: Optional

Table 77 describes class SNIA_FileSystemSetting (Attached to FileSystem).

ValueRange Mandatory ValueRange is an array that further specifies the semantics
of the non-null, non-key properties of the associated
FileSystemSetting element, such as whether they are point
properties, or whether they represent maximum or
minimum values for the properties. If some properties
already have maximums and/or minimums specified by
another FileSystemSetting instance, this could specify
increments of the property value that are supported.

GroupComponent Mandatory A Filesystem Capabilities element that is defined by a
collection of Filesystem Settings.

PartComponent Mandatory A Filesystem Setting that provides a point or a partial
definition for a Filesystem Capabilities element.

Table 77: SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSys-
tem)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a FileSystemSetting element.

ElementName Mandatory A client defined user-friendly name for this
FileSystemSetting element.

ActualFileSystemTyp
e

Mandatory This identifies the type of filesystem that this
FileSystemSetting represents.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents)
that are shared between files.

CopyTarget Optional This specifies if support should be provided for using the
created filesystem as a target of a Copy operation.

FilenameCaseAttribu
tes

Mandatory This specifies the support provided for using upper and
lower case characters in a filename.

Table 76: SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined
FS Settings)

Properties Flags Requirement Description & Notes
172

 Filesystem Manipulation Subprofile
ObjectTypes Mandatory This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin Optional This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that will be supportable by the
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMa
x

Optional This is an array that specifies the maximum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjects Optional This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSize Optional This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMin Optional This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[] that will be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax Optional This is an array that specifies the maximum size of an
object of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

FilenameStreamFor
mats

Optional This is an array that specifies the stream formats (e.g.,
UTF-8) supported for filenames by the LocalFileSystem
configured by this FileSystemSetting element.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by the LocalFileSystem
configured by this FileSystemSetting element.

FilenameLengthMax Optional This specifies the maximum length of a filename that will
be supported by the FileSystem configured by this
FileSystemSetting element.

FilenameReservedC
haracterSet

Optional This string or character array specifies the characters
reserved (i.e., not allowed) for use in filenames that will be
required by the FileSystem configured by this
FileSystemSetting element.

Table 77: SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSys-
tem)

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 173

Filesystem Manipulation Subprofile
8.8.11 CIM_ElementSettingData (Attached to Filesystem)

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: Optional

Table 78 describes class CIM_ElementSettingData (Attached to Filesystem).

8.8.12 SNIA_LocalFileSystem

 The following properties of LocalFileSystem are defined by the MOF, but the way we model LocalFileSystem has
changed significantly. The setting/configuration properties are not supported using these properties, and so all of
these are "Not Supported". The run-time properties will be supported by a statistics/performance profile and that
has yet to be defined.

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: Mandatory

SupportedLockingSe
mantics

Optional This array specifies the set of file access/locking semantics
supported by the FileSystem configured by this
FileSystemSetting element.

SupportedAuthorizati
onProtocols

Optional This array specifies the kind of file authorization protocols
supported by the FileSystem configured by this
FileSystemSetting element.

SupportedAuthentica
tionProtocols

Optional This array specifies the set of file authentication protocols
that can be supported by the FileSystem configured by this
FileSystemSetting element.

Table 78: SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesys-
tem)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem element representing a filesystem.

SettingData Mandatory The configuration of the LocalFileSystem.

Table 77: SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSys-
tem)

Properties Flags Requirement Description & Notes
174

 Filesystem Manipulation Subprofile
Table 79 describes class SNIA_LocalFileSystem.

Table 79: SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes

LocalAccessDefinitio
nRequired

Mandatory This boolean property indicates whether or not a
LocalFileSystem with this FileSystemSetting must be made
locally accessible ("mounted") from a file server
ComputerSystem before it can be shared or otherwise
made available to operational clients.

PathNameSeparator
String

Mandatory This indicates the string of characters used to separate
directory components of a canonically formatted path to a
file from the root of the filesystem. This string is expected to
be specific to the ActualFileSystemType and so is vendor/
implementation dependent. However, by surfacing it we
make it possible for a client to parse a pathname into the
hierarchical sequence of directories that compose it.

DirectoryServiceUsa
ge

Optional This enumeration indicates whether the filesystem
supports security principal information and therefore
requires support from a file server that uses one or more
directory services. If the filesystem requires such support,
there must be a concrete subclass of Dependency between
the LocalFileSystem element and the specified file server
ComputerSystem. The values supported by this property
are:

 'Not Used' indicates that the filesystem will not support
security principal information and so will not require support
from a directory service.

 'Optional' indicates that the filesystem may support
security principal information. If it does, it will require
support from a directory service and the Dependency
association described above must exist.

 'Required' indicates that the filesystem supports security
principal information and will require support from a
directory service. The Dependency association described
above must exist.

CSCreationClassNa
me

Mandatory The CIM class name of the hosting ComputerSystem.

CSName Mandatory The Name property of the hosting ComputerSystem.

CreationClassName Mandatory The CIM class name of the this element.

Name Mandatory A unique name for this LocalFileSystem in the context of
the hosting ComputerSystem.

EnabledState Optional Current state of enablement of the LocalFileSystem.

OtherEnabledState Optional Vendor-specific state of the LocalFileSystem indicated by
EnabledState = 1("Other").
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 175

Filesystem Manipulation Subprofile
TimeOfLastStateCha
nge

Optional A timestamp indicating when the state was last changed.

RequestedState Optional Not supported.

OperationalStatus Mandatory The current operational status of the LocalFileSystem.

Root Optional A path that specifies the "mount point" of the filesystem in
an unitary computer system that is both the host of the file
system and is the file server that makes it available.

BlockSize Mandatory The size of a block in bytes that the implementation used
as a fixed block size when creating this filesystem.

FileSystemSize Mandatory The total current size of the filesystem in blocks.

AvailableSpace Mandatory The space available currently in the filesystem in blocks.

ReadOnly Optional Indicates that this is a read-only filesystem that does not
allow modifications.

EncryptionMethod Optional Indicates if files are encrypted and the method of
encryption.

CompressionMethod Optional Indicates if files are compressed before being stored, and
the methods of compression..

CaseSensitive Optional Whether this filesystem is sensitive to the case of
characters in filenames.

CasePreserved Optional Whether this filesystem preserves the case of characters
in filenames when saving and restoring.

CodeSet Optional The codeset used in filenames.

MaxFileNameLength Optional The length of the longest filename supported by the
implementation.

ClusterSize Optional Not supported.

FileSystemType Optional This is a string that matches
FileSystemSetting.ActualFileSystemType property used to
create the filesystem.

 Pragmatically, this property should be ignored.

NumberOfFiles Optional The actual current number of files in the filesystem. NOTE:
This value is an approximation as it can vary continuously
when the filesystem is in use.

IsFixedSize Optional Indicates that the filesystem cannot be expanded or shrunk.

ResizeIncrement Optional The size by which to increase the size of the filesystem
when requested.

RequestStateChange
()

Optional Not supported.

Table 79: SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes
176

 Filesystem Manipulation Subprofile
8.8.13 CIM_HostedFileSystem

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: Mandatory

Table 80 describes class CIM_HostedFileSystem.

8.8.14 CIM_Directory (Root Directory)

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem or ModifyFileSystem

Class Mandatory: BC1.1

8.8.15 CIM_FileStorage (Root Directory)

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem or ModifyFileSystem

Class Mandatory: BC1.1

Table 81 describes class CIM_FileStorage (Root Directory).

Table 80: SMI Referenced Properties/Methods for CIM_HostedFileSystem

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The ComputerSystem that hosts a LocalFileSystem. The
Dedicated property must be one of 24 (NAS Head), 25 (SC
NAS), 16 (File Server).

PartComponent Mandatory The hosted filesystem.

Table 81: SMI Referenced Properties/Methods for CIM_FileStorage (Root Directory)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The LocalFileSystem that contains the associated root
Directory.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 177

Filesystem Manipulation Subprofile
8.8.16 CIM_LogicalFile (Shared Files and Directories)

Created By: Extrinsic: CreateExportedShare or ModifyExportedShare

Modified By: Extrinsic: CreateExportedShare or ModifyExportedShare

Deleted By: Extrinsic: DeleteExportedShare or ModifyExportedShare

Class Mandatory: BC1.1

Table 82 describes class CIM_LogicalFile (Shared Files and Directories).

8.8.17 CIM_FileStorage (Shared Files and Directories)

PartComponent Mandatory The Root Directory of the LocalFileSystem.

Table 82: SMI Referenced Properties/Methods for CIM_LogicalFile (Shared Files and Directories)

Properties Flags Requirement Description & Notes

CSCreationClassNa
me

Mandatory CIM Class Name of the ComputerSystem that hosts the
Filesystem containing this file.

CSName Mandatory Name property of the ComputerSystem that hosts the
Filesystem of this file.

FSCreationClassNa
me

Mandatory CIM Class Name of the LocalFileSystem on the
ComputerSystem that contains this file.

FSName Mandatory Name of the LocalFileSystem that contains this file.

CreationClassName Mandatory CIM Class of this instance of LogicalFile.

Name Mandatory The unique Name of this LogicalFile, weak with respect to a
containing Directory.

ElementName Mandatory The pathname from the root of the containing
LocalFileSystem to this LogicalFile. The root of the
LocalFileSystem is indicated if this is NULL or the empty
string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of
directories from the root, the separator string is specified by
the SNIA_LocalFileSystem.PathNameSeparatorString
property.

FileSize Optional The size of the file, in bytes.

CreationDate Optional A timestamp indicating when the file was created.

LastModified Optional A timestamp indicating when the file was last modified.

Table 81: SMI Referenced Properties/Methods for CIM_FileStorage (Root Directory)

Properties Flags Requirement Description & Notes
178

 Filesystem Manipulation Subprofile
Created By: Extrinsic: CreateExportedShare or ModifyExportedShare

Modified By: Static

Deleted By: Extrinsic: DeleteExportedShare or ModifyExportedShare

Class Mandatory: BC1.1

Table 83 describes class CIM_FileStorage (Shared Files and Directories).

8.8.18 SNIA_LocallyAccessibleFileSystemSetting

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem or ModifyFileSystem

Class Mandatory: LocalAccessDefinitionRequired

Table 84 describes class SNIA_LocallyAccessibleFileSystemSetting.

Table 83: SMI Referenced Properties/Methods for CIM_FileStorage (Shared Files and Directories)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The LocalFileSystem that contains the LogicalFile or
Directory.

PartComponent Mandatory An exported File or Directory of the LocalFileSystem.

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a
LocallyAccessibleFileSystemSetting.

ElementName Mandatory A user-friendly name for this
LocallyAccessibleFileSystemSetting element.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 179

Filesystem Manipulation Subprofile
InitialEnabledState Optional InitialEnabledState is an integer enumeration that indicates
the enabled/disabled states initially set for a locally
accessible file system (LAFS). The element functions by
passing commands onto the underlying filesystem, and so
cannot indicate transitions between requested states
because those states cannot be requested. The following
text briefly summarizes the various enabled/disabled initial
states:

 'Enabled' (2) indicates that the element will execute
commands, will process any queued commands, and will
queue new requests.

 'Disabled' (3) indicates that the element will not execute
commands and will drop any new requests.

 'In Test' (7) indicates that the element will be in a test state.

 'Deferred' (8) indicates that the element will not process
any commands but will queue new requests.

 'Quiesce' (9) indicates that the element is enabled but in a
restricted mode. The element's behavior is similar to the
Enabled state, but it only processes a restricted set of
commands. All other requests are queued.

OtherEnabledState Optional A string describing the element's initial enabled/disabled
state when the InitialEnabledState property is set to 1
("Other"). This property MUST be set to NULL when
InitialEnabledState is any value other than 1.

FailurePolicy Optional An enumerated value that specifies if the operation to
make a FileSystem locally accessible to a scoping
ComputerSystem should be attempted one or more times
in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by
the corresponding RetriesMax property of the setting.

RetriesMax Optional An integer specifying the maximum number of attempts
that should be made by the scoping ComputerSystem to
make a Filesystem locally accessible. A value of "0"
specifies an implementation-specific default.

RequestRetryPolicy Optional An enumerated value representing the policy that is
supported by the operational file server on a request to the
operational file system that either failed or left the file server
hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout
happens, or, to try repeatedly. If the request can be
performed in the background, the request will be tried
repeatedly until stopped.

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
180

 Filesystem Manipulation Subprofile
TransmissionRetries
Max

Optional An integer specifying the maximum number of
retransmission attempts to be made from the operational
file server to the operational file system when the
transmission of a request fails or makes the file server
hang. A value of "0" specifies an implementation-specific
default. This is only relevant if there is a transmission
channel between the file server and the underlying file
system.

RetransmissionTime
outMin

Optional An integer specifying the minimum number of milliseconds
that the operational file server must wait before assuming
that a request to the operational file system has failed. "0"
indicates an implementation-specific default. This is only
relevant if there is a transmission channel between the
operational file server and the operational file system.

CachingOptions Optional An enumerated value that specifies if a local cache is
supported by the operational file server when accessing the
underlying operational file system.

BuffersSupport Optional An array or enumerated values that specifies the buffering
mechanisms supported by the operational file server for
accessing the underlying operational file system." If
supported, other properties will establish the level of
support. If the property is NULL or the empty array,
buffering is not supported.

ReadBufferSizeMin Optional An integer specifying the minimum number of bytes that
must be allocated to each buffer used for reading. A value
of "0" specifies an implementation-specific default.

ReadBufferSizeMax Optional An integer specifying the maximum number of bytes that
may be allocated to each buffer used for reading. A value of
"0" specifies an implementation-specific default.

WriteBufferSizeMin Optional An integer specifying the minimum number of bytes that
must be allocated to each buffer used for writing. A value of
"0" specifies an implementation-specific default.

WriteBufferSizeMax Optional An integer specifying the maximum number of bytes that
may be allocated to each buffer used for writing. A value of
"0" specifies an implementation-specific default.

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 181

Filesystem Manipulation Subprofile
AttributeCaching Optional An array of enumerated values that specify whether
attribute caching is (or is not) supported by the operational
file server when accessing specific types of objects from
the underlying operational file system. The object type and
the support parameters are specified in the corresponding
AttributeCachingObjects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

 Filesystem object types that can be accessed locally are
represented by an entry in these arrays. The entry in the
AttributeCaching array can be "On", "Off", or "Unknown".
Implementation of this feature requires support from other
system components, so it is quite possible that specifying
"On" may still not result in caching behavior. "Unknown"
indicates that the access operation will try to work with
whatever options the operational file server and file system
can support. In all cases, AttributeCachingTimeMin and
AttributeCachingTimeMax provide the minimum and
maximum time for which the attributes can be cached.
When this Setting is used as a Goal, the client may specify
"Unknown", but the Setting in the created object should
contain the supported setting, whether "On" or "Off".

AttributeCachingObje
cts

Optional An array of enumerated values that specify the attribute
caching support provided to various object types by the
operational file server when accessing the underlying
operational file system. These", types represent the types
of objects stored in a FileSystem -- files and directories as
well as others that may be defined in the future. The
corresponding properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object.
"None" and "All" cannot both be specified; if either one is
specified, it must be the first entry in the array and the entry
is interpreted as the default setting for all objects. If neither
"None" or "All" are specified, the caching settings for other
objects are defaulted by the implementation. If "Rest" is
specified, the entry applies to all known object types other
than the named ones. If "Unknown" is specified it applies to
object types not known to this application (this can happen
when foreign file systems are mounted.

AttributeCachingTime
Min

Optional An array of integers specifying, in milliseconds, the
minimum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of "0" indicates an implementation-specific default.

AttributeCachingTime
Max

Optional An array of integers specifying, in milliseconds, the
maximum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of "0" indicates an implementation-specific default.

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
182

 Filesystem Manipulation Subprofile
ReadWritePolicy Optional An enumerated value that specifies the Read-Write policy
set on the operational file system and supported by the
operational file server when accessing it. 'Read Only'
specifies that the access to the operational file system by
the operational file server is set up solely for reading.
'Read/Write' specifies that the access to the operational file
system by the operational file server is set up for both
reading and writing. 'Force Read/Write' specifies that
'Read-Only' has been overridden by a client with write
access to the operational file system. This option is
intended for use when the associated FileSystem has been
made 'Read Only' by default, as might happen if it were
created to be the target of a Synchronization or Mirror
operation.

LockPolicy Optional An enumerated value that specifies the Locking that will be
enforced on the operational file system by the operational
file server when accessing it. 'Enforce None' does not
enforce locks. 'Enforce Write' does not allow writes to
locked files. 'Enforce Read/Write' does not allow reads or
writes to locked files.

EnableOnSystemStar
t

Optional An enumerated value that specifies if local access from the
operational file server to the operational file system should
be enabled when the file server is started.

ReadWritePref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about access to
elements contained in the operational file system. The
provider is expected to surface this access using the CIM
privilege model.

ExecutePref Optional An enumerated value that specifies if support should be
provided on the operational file server for executing
elements contained in the operational file system accessed
through this local access point. This may require setting up
specialized paging or execution buffers either on the
operational file server or on the operational file system side
(as appropriate for the implementation). Note that this does
not provide any rights to actually execute any element but
only specifies support for such execution, if permitted.

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 183

Filesystem Manipulation Subprofile
8.8.19 CIM_Dependency (Uses Directory Services From)

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: DirectoryServiceUsage

Table 85 describes class CIM_Dependency (Uses Directory Services From).

8.8.20 SNIA_SettingsDefineCapabilities (Pre-defined Local Access Settings)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: LocalAccessSupported

RootAccessPref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about privileged access
by appropriately privileged System Administrative users on
the operational file server ("root" or "superuser") to the
operational file system and its elements. The provider is
expected to surface this access using the CIM privilege
model.

 Support for the privileged access might require setup at
both the operational file server as well as the operational
file system, so there is no guarantee that the request can
be satisfied.

Table 85: SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services
From)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s)
that support user, group and other security principal
identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other
security principal identities is supported by the antecedent
ComputerSystem.

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
184

 Filesystem Manipulation Subprofile
Table 86 describes class SNIA_SettingsDefineCapabilities (Pre-defined Local Access Settings).

8.8.21 CIM_ElementCapabilities (Local Access Configuration Capabilities)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: LocalAccessSupported

Table 86: SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined
Local Access Settings)

Properties Flags Requirement Description & Notes

PropertyPolicy Mandatory PropertyPolicy defines whether or not the non-null, non-
key properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance are
treated independently or as a correlated set.

ValueRole Mandatory ValueRole is an array that further specifies the semantics
of the non-null, non-key properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are supported or unsupported, and if
supported, whether they are a default and/or an optimal
value or an average of some kind.

ValueRange Mandatory ValueRange is an array that further specifies the semantics
of the non-null, non-key properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are point properties, or whether they
represent maximum or minimum values for the properties.
If some properties already have maximums and/or
minimums specified by another
SNIA_LocallyAccessibleFileSystemSetting instance, this
could specify increments of the property value that are
supported.

GroupComponent Mandatory A Capabilities element of the filesystem that is defined by a
collection of SNIA_LocallyAccessibleFileSystemSetting
elements, each being scoped to the File Server
ComputerSystem with which it can be used.

PartComponent Mandatory A SNIA_LocallyAccessibleFileSystemSetting that provides
a point or a partial definition for a
SNIA_LocallyAccessibleFileSystemCapabilities element.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 185

Filesystem Manipulation Subprofile
Table 87 describes class CIM_ElementCapabilities (Local Access Configuration Capabilities).

8.8.22 SNIA_LocallyAccessibleFileSystemCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: LocalAccessSupported

Table 88 describes class SNIA_LocallyAccessibleFileSystemCapabilities.

Table 87: SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Con-
figuration Capabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The Filesystem Configuration Service

Capabilities Mandatory The Filesystem Configuration Capabilties element

Table 88: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the
SNIA_LocallyAccessibleFileSystemCapabilities associated
to a Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this
SNIA_LocallyAccessibleFileSystemCapabilities element.
186

 Filesystem Manipulation Subprofile
SupportedProperties Mandatory An array of property names of the
LocallyAccessibleFileSystemSetting that this
SNIA_LocallyAccessibleFileSystemCapabilities element
supports.

 2 'FailurePolicy'

 3 'RetriesMax'

 4 'InitialEnabledState'

 5 'RequestRetryPolicy'

 6 'TransmissionRetriesMax'

 7 'RetransmissionTimeout'

 8 'CachingOptions'

 9 'ReadBufferSize'

 10 'WriteBufferSize'

 11 'AttributeCaching'

 12 'ReadWritePolicy'

 13 'LockPolicy'

 14 'EnableOnSystemStart'

 15 'ReadWritePref'

 16 'ExecutePref'

 17 'RootAccessPref'

Table 88: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 187

Filesystem Manipulation Subprofile
8.8.23 CIM_HostedDependency (Attached to File System)

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: LocalAccessDefinitionRequired

Table 89 describes class CIM_HostedDependency (Attached to File System).

SupportedObjectsFor
AttributeCaching

Optional If AttributeCaching is supported, this specifies the array of
objects that can be set up for caching. A subset of these
entries will become the entries of the
AttributeCachingObjects property in the Setting.

 These classes represent types of objects stored in a
filesystem implementation -- files and directories as well as
others that may be defined in the future. The corresponding
Setting properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object. 'None'
and 'All' cannot both be specified; if either one is specified,
it must be the first entry in the array and the entry is
interpreted as the default setting for all objects. If neither
'None' or 'All' are specified, the caching settings for other
objects are defaulted by the implementation. If 'Rest' is
specified, the entry applies to all known object types other
than the named ones. If 'Unknown' is specified it applies to
object types not known to this application (this can happen
when foreign file systems are mounted.

 0 'Unknown'

 1 'None'

 2 'All'

 3 'Rest'

 4 'File'

 5 'Directory'

Table 89: SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File Sys-
tem)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping File Server ComputerSystem.

Table 88: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement Description & Notes
188

 Filesystem Manipulation Subprofile
8.8.24 CIM_HostedDependency (Pre-Defined)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Optional

Table 90 describes class CIM_HostedDependency (Pre-Defined).

8.8.25 CIM_HostedDependency (Pre-Defined)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: LocalAccessSupported

Table 91 describes class CIM_HostedDependency (Pre-Defined).

8.8.26 CIM_ElementSettingData (Local Access Required)

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

Table 90: SMI Referenced Properties/Methods for CIM_HostedDependency (Pre-Defined)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

Table 91: SMI Referenced Properties/Methods for CIM_HostedDependency (Pre-Defined)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The SNIA_LocallyAccessibleFileSystemCapabilities that is
scoped by the file server ComputerSystem.

Table 89: SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File Sys-
tem)

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 189

Filesystem Manipulation Subprofile
Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: LocalAccessSupported

Table 92 describes class CIM_ElementSettingData (Local Access Required).

8.8.27 SNIA_LocalAccessAvailable

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: LocalAccessDefinitionRequired

Table 93 describes class SNIA_LocalAccessAvailable.

Table 92: SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access
Required)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.

SettingData Mandatory The local access settings of the LocalFileSystem, specified
on creation or modification.

Table 93: SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties Flags Requirement Description & Notes

LocalAccessPoint Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true..
The name used by the file server to identify the file system.
Sometimes referred to as a mount-point. For many UNIX-
based systems, this will be a qualified full pathname. For
Windows systems this could also be the drive letter used
for the LogicalDisk that the filesystem is resident on.

FileSystem Mandatory The LocalFileSystem that is being made available to the file
server ComputerSystem.

FileServer Mandatory The file server ComputerSystem that will be able to export
shares from this LocalFileSystem.
190

 Filesystem Manipulation Subprofile
EXPERIMENTAL
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 191

Filesystem Manipulation Subprofile
192

 Filesystem Quotas Profile
EXPERIMENTAL

Clause 9: Filesystem Quotas Profile

• Profile Name: Filesystem

• Version: 1.2.0

• Organization: SNIA

• CIM schema version: 2.13

• Central Class: LocalFileSystem

• Scoping Class: ComputerSystem

9.1 Description
The Filesystem Quotas Profile is intended to provide management of quotas on the use of filesystem resources--
raw space and inodes especially--by the common filesystem principals. User, group and tree quotas are modeled.
Trees means directories (rooted directory hierarchy structures) within filesystems. Some systems allow quotas only
on directories that have some special distinguishing feature, others allow them on arbitrary directories.

Quota systems work by keeping statistics-in real time-on the space used by each monitored principal/container pair
e.g. a user and her home share. They then trigger events when filesystem writes cause the space used by the
principal to exceed some threshold. There are four common varieties of quota thresholds:

1. Hard. Hitting a hard quota threshold causes subsequent writes by the principal to the affected container to
fail. In POSIX, the error returned to the client is ENOSPC (no space). An indication is also thrown.

2. Soft. A soft threshold causes the system to issue a warning. Systems variously issue warnings via CLI,
SNMP traps, pop-up windows at the user station, audit log entries, email and other proprietary methods. This
profile provides required indications for this purpose.

3. Soft, with grace period. This type of quota is really a refinement of soft quotas. It functions like a soft quota
until the grace period expires, at which point it begins behaving like a hard quota.

4. Monitoring. When a monitoring quota is in effect, there are no thresholds, and no warnings are issued. This
type of quota is useful because the underlying system keeps track of the relevant usage statistics in real time
for all quotas. A monitoring quota permits an administrator to simply issue a command to print a quota report
instead of having to do a complete filesystem scan to get the usage information of interest.

In general, it is not possible to have a quota system that meets the above semantics without some level of access
to the data path. More loosely coupled systems may need to relax the semantics of the hard limit, for example, and
may not actually trigger an event until a file is closed, for example. This profile allows these semantic variations.

Some systems allow "default" quotas for users, groups and/or trees. A default user quota, by way of example, is
used for every user of the system who does not have a quota entry specific to them.

9.1.1 Tree Quotas

Tree quotas are quotas on directory trees with an identifiable root. Mounts and symlinks are not followed. In other
words, a directory which contains nothing but mount points and symbolic links may satisfy a very small quota, even
though the amount of data addressable by entries in the container is large.

Hard links are another matter. The policy is system-dependent, but a common behavior is that if a file or directory is
hard-linked in two separate trees with separate tree quotas, the space used is charged against both quotas.

Pure tree quotas apply no matter which principal does the writing. There are some caveats however.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 193

Filesystem Quotas Profile
• Root on some systems is not constrained by quotas.
• An entity with sufficient privilege may not be constrained by quotas on some systems (e.g. a Windows user

with BackupOperator privilege).
Some systems may support tree quotas only on directories with certain special characteristics. Directories may be
constrained to being top-level, for example. This profile does not specify a means for determining whether a given
directory may have a tree quota set on it.

9.1.2 User Quotas

User quotas are limits on how much space a principal with a given User ID can use. They may be either global or
restricted by namespace tree, as well as by filesystem.

9.1.3 Group Quotas

Group quotas set limits on how much all the members of a group with a given Group ID can use in the aggregate.
They are not, therefore, quotas which apply to each member of a group. This follows Unix usage. Group quotas
only work on systems which have the concept of a primary group id (PGID), as the system needs to know which
group to charge writes against. As NTFS does not have the concept of a primary group, it does not do group
quotas. (Note: There is a primary group field that can be discovered on a file in NTFS. This is for POSIX support,
however, and does not always contain anything meaningful)

Group quotas may be global or applicable to a given namespace tree and/or filesystem.

9.1.4 Container Boundaries

Quotas may be system-wide, or scoped to an individual filesystem. Not all systems support both of these, however,
so provision is made for both. The SupportedPrincipalTypes array in the FSQuotaCapabilities class distinguishes
between User, Group, Tree, User-Tree and Group-Tree quotas as follows:

• User Quotas and Group quotas are described in 9.1.2 and 9.1.3.
• A Tree Quota is a limit on the storage (or other limit such as number of inodes) used by a directory tree. This

quota is not specific to a user or a group but applies to all users and groups creating files and directories
within the tree.

• A User-Tree quota is a limit on the storage used by a user within a directory tree and is applied in parallel with
the Tree Quota (both must be satisfied).

• A Group-Tree quota is a limit on the aggregate storage used by a group of users within a directory tree and is
applied in parallel with the Tree Quota (both must be satisfied).

If a Tree is configured with a Tree Quota as well as User-Tree and Group-Tree quotas, they must all be satisfied.

9.1.5 Quota types

Quotas are usually limits on disk space. Some systems, however, also support limits on the number of files and/or
directories.

9.1.6 Class design considerations

9.1.6.1 New Classes
This profile uses several new classes—FSDomainIdentity, FSQuotaCapabilities, FSQuotaReportRecord,
FSQuotaConfigEntry, FSQuotaManagementService, and FSQuotaIndication

9.1.6.1.1 FSDomainIdentity
Due to the in-band nature of quota tracking, the identifier of the principal being managed needs to be small and
easily optimized. Traditional systems use Unix UIDs and GIDs, which are 32-bit quantities, or SIDs which are short
strings. To tie these into CIM, this new class is specified. Each instance contains a string with the UID, GID or SID,
respectively, in it, and enums for the type of domain and principal.
194

 Filesystem Quotas Profile
9.1.6.1.2 FSQuotaCapabilities
This Capabilities subclass lists the properties in a FSQuotaConfigEntry that are supported by the underlying
system. The client shall not attempt to set any properties which are not listed as supported in the instance of this
class associated to the service. It shall instead always populate unsupported properties with null.

There shall exist exactly one instance of this class per FSQuotaManagementService instance.

9.1.6.1.3 FSQuotaReportRecord
When running a quota report, the underlying system generally issues a text file, each line or group of lines
representing the status of a filesystem principal with respect to one quota configuration entry. There may be
hundreds of thousands of these records, and they are not keyed, meaning that there is no way to go back and fetch
any given one of them. Therefore FSQuotaReportRecord is derived from a new proposed abstract root class called
ReportRecord, which carries the Indication qualifier. Note that this qualifier does not mean that these classes are
subclasses of CIM_Indication. It's used because it's the only way, currently, to construct a class in CIM which does
not require a key.

9.1.6.1.4 FSQuotaConfigEntry
An FSQuotaConfigEntry instance represents a single quota entry supported by the system. For example, one
FSFQuotaConfigEntry instance may specify that on filesystem “foo,” in directory “/bar,” the user “joe” is restricted to
1GB of space, and should receive a warning at 0.97GB.

A quota entry has been defined as a complex of several classes and associations. If implementation experience
turns up performance considerations related to this, this design may need to be revisited.

Many systems do not support any method of identifying individual FSQuotaConfigEntry instances, as they simply
represent lines in a text file, and the underlying system may not care about duplicates or conflicts. However,
FSQuotaConfigEntry instances need to be modified; this corresponds to editing the corresponding line in the file.
Therefore, if the underlying system does not expose a key, one may be created by composing the PrincipalID
property, a unique reference to the FileSystem or ComputerSystem to which the entry applies (from the association
FSQuotaAppliesToElement), the TreeName property (if a tree quota), the measured quantity type (the
ResourceType property), the quota type (QuotaType property), and its default status (the Default property). An
implementation may expose the algorithm used to compose the key so that the client may decompose it, but this is
not required by this version of the profile. Upon creation of a new quota instance, clients shall verify that no quota
with the same key already exists. Upon modification of an instance, clients shall modify all instances whose keys
match that instance key.

• PrincipalID: This indicates a user by the user’s UID or SID, or a group by the group’s GID or SID, or it can be
the empty string. It is interpreted in the context of a directory service specified for the file server
ComputerSystem that is associated to the FileSystem by a Dependency association.

• InstanceID. This property is a unique identifier for this FSQuotaConfigEntry. This property shall be unique in
the presence of multiple instances of ComputerSystem and FileSystem, and multiple properties of QuotaType,
Default, ResourceType and PrincipalID. It may be constructible by the client, but this profile does not specify
this format.

9.1.6.1.5 FSQuotaManagementService
The FSQuotaManagementService provides the interface to the underlying system for most operations which are
overtly related to quotas. There shall be at most one instance of a FSQuotaManagementService for each
underlying ComputerSystem.

9.1.6.1.6 FSQuotaIndication
The FSQuotaIndication class provides information about threshold crossing events, meaning that a quota has just
been exceeded.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 195

Filesystem Quotas Profile
9.1.7 Instance Diagram

Figure 13 shows the Filesystem Quotas instance diagram.

9.2 Health and Fault Management Considerations
None currently applicable.

9.3 Supported Profiles, Subprofiles, and Packages
The Filesystem and Indications Profiles are required by this profile.

9.4 Methods of the Profile
All profile methods are contained in the FSQuotaManagementService.

Figure 13: Filesystem Quotas Instance Diagram

Table 94: Supported Profiles for FileSystem Quotas

Registered Profile Names Mandatory Version

Filesystem Yes 1.2.0

Indication Yes 1.2.0

Job No 1.2.0

System

FSQuotaManagementService

HostedService

ElementCapabilities

FSQuotaAppliesToElement

FSQuotaAppliesToPrincipal

IdentityContext

FSQuotaReportRecord

FSQuotaCapabilities
-(directory)
LogicalFile

FSQuotaConfigEntry

FSQuotaDomainIdentity

ManagedElement

FSQuotaAppliesToTree
196

 Filesystem Quotas Profile
9.4.1 FindQuotaEntries

uint32 FindQuotaEntries(

IN string IdentityId,

IN ManagedElement REF Element,

IN string Tree,

IN uint16 QuotaType,

OUT EmbeddedInstance("SNIA_FSQuotaConfigEntry")string QuotaEntries[],

Given a combination of inputs, FindQuotaEntries() searches the quota entry database on the managed device for
quota entries that match, and returns a list. On systems that support it, long-running queries may return a job.
Possible quota entries are:

1) IdentityId

IdentityId is an optional string that can specify the UID, GID, or SID or can specify a pattern. The following rules
apply to IdentityId:

a) If IdentityId is NULL or the empty string, no identity-based quotas should be returned.

b) If IdentityID is NULL, default quotas will be returned.

c) If IdentityId is “*”, this matches all identity-based quotas entries.

d) IdentityId may also be a specific ID, or the prefix of an ID followed by "*". Standard prefix string matching
is used to determine which entries match in this case.

2) Element

Element is an optional reference to a ManagedElement (declared as CIM_ManagedElement REF Element). The
following rules apply to Element:

a) When a ComputerSystem is passed for Element, the returned entries may be default or other entries for
both the ComputerSystem and its contained FileSystems.

b) When a FileSystem is passed in for Element, only entries pertaining to that FileSystem shall be returned.
This may include default entries applicable to that FileSystem.

c) If NULL is passed in for Element, the FSQuotaManagementService assumes that the ComputerSystem it
is hosted on is the Element.

Element is an optional reference to a ComputerSystem or a LocalFileSystem, but is declared as a reference to a
ManagedElement, which is the only common parent class.

3) Tree

Tree is an optional string that identifies a tree (or trees) contained within a filesystem. The following rules apply to
Tree:

a) A null or empty string indicates that no tree quota entries should be returned.

b) A “*” tree parameter matches all tree quota entries defined within the filesystem(s) indicated by Element,
if any.

c) If Tree contains a path, it matches that path only. On some systems, this may result in multiple matches,
one for the same-named tree in each of several filesystems.

d) Prefix string matching may be used for the Tree parameter. E.g. the path "/x/y/*" will match tree quotas on
both "/x/y/m" and "/x/y/p".
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 197

Filesystem Quotas Profile
4) QuotaType

QuotaType is an enumerated optional parameter that describes what type of quota entries should be returned. The
following rules apply to QuotaType:

a) NULL or Unknown matches any entry (i.e., it is a wildcard).

b) If Tree is specified, then entries which are pure tree quotas (not user-tree or group-tree) match.

c) If User-Tree or Group-Tree is specified, then only user-tree or group-tree quotas match.

9.4.2 DeleteQuotaEntry

uint32 DeleteQuotaEntry(IN string EntryID);

This routine deletes a given quota entry from the managed device’s quota entry database. Recall that the
ManagedElement’s name is specified as part of a QuotaEntry’s InstanceID, above. A CIMOM managing multiple
devices may use that to find which device to address when deleting the actual entry.

9.4.3 ModifyQuotaEntry

uint32 ModifyQuotaEntry(

IN string EntryId,

IN EmbeddedInstance("SNIA_FSQuotaConfigEntry") string QuotaEntry,

OUT CIM_Job REF Job;

);

Given the InstanceID of an existing quota entry, ModifyQuotaEntry() replaces it with a new entry specified as an
EmbeddedInstance.

9.4.4 AddQuotaEntry

uint32 AddQuotaEntry(

IN EmbeddedInstance("SNIA_FSQuotaConfigEntry") string QuotaEntry,

OUT CIM_Job REF Job;

);

This routine adds a new quota entry to the quota entry database on the appropriate managed element.

The ConflictingEntriesUsage property in FSQuotaCapabilities (see 9.7) will govern what happens if an entry
already exists with the same combination of PrincipalID, ManagedElement, TreeName, ResourceType,
QuotaType, and Default.

9.4.5 GetQuotaReport

uint32 GetQuotaReport(

IN CIM_ManagedElement REF Element,

IN string Tree,

IN string User,

IN EmbeddedInstance("FSQuotaDomainIdentity") string Group,

IN, OUT string Cursor,

IN, OUT uint64 NQuotas,

OUT CIM_Job REF Job,

OUT EmbeddedInstance("SNIA_FSQuotaReportRecord") string ReportRecs[];

);
198

 Filesystem Quotas Profile
This routine gets a quota report from a managed element. As there may be millions of records in this report, a
chunking mechanism is provided so that the client does not become overwhelmed by the quantity of data furnished
by the server.

The initial call to GetQuotaReport shall pass in NULL as a Cursor. Subsequent calls shall pass back the cursor
exactly as received from the server, without modification, as an indication of where to continue the report from.

Clients which do not wish to use the chunking mechanism may pass a number such as 263 - 1 in NQuotas.

On many systems, the initial phase of preparing a quota report may take some time. A job is returned in this case.

9.4.6 EnableQuotas

uint32 EnableQuotas(

IN Boolean OnOff,

IN CIM_ManagedElement element,

OUT CIM_Job REF Job

);

This routine turns quota management on or off on a given managed element. This routine shall always be
supported when the element is a CIM_ComputerSystem. On systems that support it, the ManagedElement may
alternatively be a filesystem. If an attempt is made to change the state on an unsupported ManagedElement, the
routine shall return an appropriate error (“Operation unsupported for individual MEs of this type”).

9.4.7 InitializeQuotas

uint32 InitializeQuotas(

 IN CIM_ComputerSystem REF Server,

 OUT CIM_Job REF Job);

Some systems require an explicit initialization step before quotas may be used. If this step takes some time, a job
shall be returned. Systems which do not require this step shall return “Success”.

9.5 Client Considerations and sample code
Because quota management capabilities vary so widely from device to device, clients must be prepared to receive
"unsupported" errors. These can be kept to a minimum by inspecting the QuotaCapabilities of the managed device.
See the QuotaGetCapabilities routine in 9.5.1.

There are five fundamental operations on quotas:

1. Initialize the quota management system
2. Turn quota tracking on or off
3. Add or modify a quota table entry
4. Read the quota table
5. Get a report on quota usage for one or all entries in the quota table

The QuotaManagementService class contains extrinsics for all of these things, so each task reduces to getting the
service instance and invoking the desired method.

The following example code is advisory, not normative.

EXPERIMENTAL

9.5.1 Common subroutines

In the Filesystem Quotas sample routines, the following subroutines are used (and declared inline here):
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 199

Filesystem Quotas Profile
sub CIM_QuotaManagementService QuotaGetQMService(

IN REF CIM_System system);

{

services = Associators(system,

"CIM_HostedService",

"CIM_QuotaManagementService",

"Antecedent",

"Dependent",

false, false, NULL);

return services[0];

}

sub CIM_QuotaCapabilities QuotaGetCapabilities(

IN REF CIM_System system)

{

service = QuotaGetQMService(system);

caps = Associators(service,

"CIM_ElementCapabilities",

"CIM_QuotaCapabilities",

"CIM_ManagedElement",

"ManagedElement",

"Capabilities",

false, false, NULL);

return caps[0];

}

sub boolean QuotaSupportsPrincipalType(

IN REF CIM_System system,

IN uint16 type)

{

capabilities = QuotaGetCapabilities(system);

for(i = 0; capabilities.SupportedPrincipalTypes[i] != NULL; ++) {

if (capabilities.SupportedPrincipalTypes[i] == type) {

return TRUE;

}

}

return FALSE;

}

200

 Filesystem Quotas Profile
All of the following routines may return errors indicating that the supplied managed element is not supported. In
most cases this will be because the operation (e.g. initializing quotas) is a system-wide operation, and cannot be
done on a per-filesystem basis.

EXPERIMENTAL

EXPERIMENTAL

9.5.2 Initialize quotas

sub uint_16 InitializeQuotas(

IN REF CIM_System system)

{

qms = QuotaGetQMService(system);

result = qms->InitializeQuotas(system, job);

//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return result;

}

EXPERIMENTAL

EXPERIMENTAL

9.5.3 Enable or disable quota tracking

//

// enable or disable quotas

//

// See the mof for the EnableQuotas extrinsic for possible

// return values

//

sub uint16 EnableQuotas(IN REF CIM_System system,

 IN REF CIM_ManagedElement me,

 IN boolean onoff)

{

qms = QuotaGetQMService(system);

result = qms->EnableQuotas(onoff, me, job);

//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return result;
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 201

Filesystem Quotas Profile
}

EXPERIMENTAL

EXPERIMENTAL

9.5.4 Add a quota entry

sub uint16 AddQuotaEntry(IN REF CIM_System system,

IN REF CIM_ManagedElement me,

IN String tree,

IN REF CIM_DomainIdentity principal,

IN uint64 hardlimit,

IN uint64 softlimit,

IN uint64 graceperiod,

IN boolean active,

IN string restype,

IN uint16 quotatype,

IN REF logicalfile,

IN REF me,

IN boolean default)

{

service = QuotaGetQMService(system);

entry = CreateInstance(“SNIA_FSQuotaConfigEntry”);

entry->HardLimit = hardlimit;

entry->SoftLimit = softlimit;

entry->SoftLimitGracePeriod = graceperiod;

entry->Active = active;

switch (restype) {

case “Bytes”: entry->ResourceType = 2;

case “Files”: entry->ResourceType = 3;

case “Directories”: entry->ResourceType = 4;

case “Files+Directories”: entry->ResourceType = 5;

case “Inodes”: entry->ResourceType = 6;

default: entry->ResourceType = 0;

 }

switch (quotatype) {

case “User”: entry->QuotaType = 2;

case “Group”: entry->QuotaType = 3;

case “Tree”: entry->QuotaType = 4;

default: entry->QuotaType = 0;

}

if (principal != NULL) {

entry->PrincipalID = principal->PrincipalID;

else

entry->PrincipalID = NULL;

if (logicalfile != NULL) {

entry->TreeName = logicalfile->Name;
202

 Filesystem Quotas Profile
else

entry->TreeName = NULL;

entry->ManagedElement = me;

entry->Default = default;

entry->InstanceID = NULL;

result = service->AddQuotaEntry(entry, job);

//

// analyse error, if there is one: the above code

// cannot return ‘1’ or ‘3’, so only ‘2’ is left.

// And that means there’s already an identical

// entry, so declare victory and move on.

//

return result; // could return 0, if you prefer

}

EXPERIMENTAL

EXPERIMENTAL

9.5.5 Delete a quota entry

//

// See the mof for the DeleteQuotaEntry extrinsic for possible

// return values

//

sub uint16 DeleteQuotaEntry(IN REF CIM_System system,

 IN string entryid,

 OUT REF CIM_Job job)

{

service = QuotaGetQMService(system);

result = service->DeleteQuotaEntry(entryid);

return result;

}

EXPERIMENTAL

EXPERIMENTAL

9.5.6 Modify a quota entry

//

// There are many ways to modify a quota entry. Here are

// a couple examples

//
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 203

Filesystem Quotas Profile
sub uint16 ModifyQuotaHardLimit(IN REF CIM_System system,

IN string entryid,

IN uint64 newlimit)

{

service = QuotaGetQMService(system);

entry = GetInstance(entryid);

entry->HardLimit = newlimit;

result = service->ModifyQuotaEntry(entryid, entry, job);

//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return result;

sub uint16 SpecificUserToDefault(IN REF CIM_System system,

IN string uid)

{

//

// change Alice’s quota to be the default for

// all users

//

service = QuotaGetQMService(system);

//

// Need to search through all the quota entry instances

// for the given uid.

//

qes[] = EnumerateInstances(“SNIA_FSQuotaConfigEntry”,

true, false, false, false, “PrincipalID”);

foreach qe (qes[]) {

if (qe->PrincipalID == uid) {

qe->PrincipalID = NULL);

qe->Default = true;

return 0;

}

}

return 1; // not found

}

EXPERIMENTAL

EXPERIMENTAL

9.5.7 Read the quota entries

//

// Warning: on some systems, this may return 10’s of
204

 Filesystem Quotas Profile
// thousands of entries

//

sub FSQuotaConfigEntry[] ReadQuotaEntries(IN REF CIM_System system)

{

service = QuotaGetQMService(system);

service->FindQuotaEntries(NULL, system, NULL, NULL, NULL,

qes[], job);

//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return qes[];

}

EXPERIMENTAL

EXPERIMENTAL

9.5.8 Get a report on quota usage

sub FSQuotaReportRecord[] GetQuotaReport(IN REF CIM_System system)

{

cursor = NULL;

service = QuotaGetQMService(system);

nrecs = 1000;

r = service->GetQuotaReport(system, NULL, NULL, NULL,

cursor, nrecs, job, recs[]);

<manage job>;

<do something with recs>;

while (r != “No more data”) {

r = service->GetQuotaReport(system, NULL, NULL, NULL,

cursor, nrecs, job, recs[]);

<manage job>;

<do something with recs>;

}

}

}

EXPERIMENTAL

9.6 Registered Name and Version
FileSystem Quotas version 1.2.0
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 205

Filesystem Quotas Profile
9.7 CIM Elements

9.7.1 SNIA_FSDomainIdentity

Created By: CreateInstance_or_Static_or_External

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 95: CIM Elements for FileSystem Quotas

Element Name Requirement Description

 SNIA_FSDomainIdentity (9.7.1) Mandatory A small class containing the unique ID of a
user or group in a Unix or Windows domain

 SNIA_FSQuotaCapabilities (9.7.2) Mandatory The supported targets, quota types, resource
types and behaviors of the
FSQuotaManagementService associated to
this class instance.

 SNIA_ReportRecord (9.7.3) Mandatory An abstract keyless class proposed as the
root of a tree of report record classes

 SNIA_FSQuotaReportRecord (9.7.4) Mandatory A class representing a single line in a quota
report generated by a call to the
QuotaReport() extrinsic of the
FSQuotaManagementService

 SNIA_FSQuotaIndication (9.7.5) Optional An indication specially referring to quota
events. Note that the threshold and current
value are passed in the parent class, in
ThresholdValue and ObservedValue

 SNIA_FSQuotaManagementService (9.7.6) Mandatory Quota Management Service class.

 SNIA_FSQuotaConfigEntry (9.7.7) Mandatory A single quota entry in the configuration
database.

 SNIA_FSQuotaAppliesToElement (9.7.8) Mandatory An association between a quota config entry
and a managed element

 SNIA_FSQuotaAppliesToPrincipal (9.7.9) Mandatory An association between a quota config entry
and a Filesystem principal entity

 SNIA_FSQuotaAppliesToTree (9.7.10) Mandatory An association between a quota config entry
and a directory

SELECT * FROM SNIA_FSQuotaIndication
WHERE WhichLimit = 2

Mandatory Hard quota threshold crossed

SELECT * FROM SNIA_FSQuotaIndication
WHERE WhichLimit = 3

Mandatory Soft quota threshold crossed
206

 Filesystem Quotas Profile
Table 96 describes class SNIA_FSDomainIdentity.

9.7.2 SNIA_FSQuotaCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 97 describes class SNIA_FSQuotaCapabilities.

Table 96: SMI Referenced Properties/Methods for SNIA_FSDomainIdentity

Properties Flags Requirement Description & Notes

PrincipalID Mandatory The unique ID of a principal. This may be a UID, GID or a
SID.

DomainType Mandatory The type of domain the Principal belongs to. Possible
values are "Unknown", "Other", "Unix", and "Active
Directory".

PrincipalType Mandatory The type of Principal represented by this identity instance.
Possible values are "Unknown", "Other", "User" and
"Group"

Table 97: SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique ID for the capabilities instance.

ElementName Mandatory A user-friendly name for the instance in the format
SystemName:ManagedElementName:Capabilities.

SupportedTargetType
s

Mandatory The target types supported by the Service. Possible values
are "ComputerSystem" and "FileSystem"

SupportedPrincipalTy
pes

Mandatory An array of the types of Principal supported by the Service.
Possible values are "User", "Group", "User-tree", "Group-
tree" and "Tree".

ConflictingEntriesUsa
ge

Mandatory The behavior of the system when it encounters quota
entries with duplicate keys

SupportedResourceT
ypes

Mandatory An array of resource types that may have quotas placed on
them by this Service. Possible values are"Unknown",
"Other", "Bytes", "Files", "Directories", "Files+Directories",
"Inodes" and "Blocks"

DefaultSupported Mandatory An array that indicates which resource types may have
default quotas set upon them by this Service. Possible
values are the same as for SupportedResourceTypes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 207

Filesystem Quotas Profile
9.7.3 SNIA_ReportRecord

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

9.7.4 SNIA_FSQuotaReportRecord

Created By: Extrinsic

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 98 describes class SNIA_FSQuotaReportRecord.

IsActiveSettingPerEn
trySupported

Mandatory Indicates whether quotas may be made active or inactive
per entry

IsMonitoredSettingPe
rEntrySupported

Mandatory Indicates whether quota monitoring may be turned on or off
per entry

IsGracePeriodSuppo
rted

Mandatory Indicates whether a grace period may be set on a quota. If
it can, then crossing over a soft threshold for more then the
period of time specified in the grace period effectively
converts the soft threshold to a hard limit, cutting off further
allocation of the resource.

Table 98: SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord

Properties Flags Requirement Description & Notes

HardLimit Optional The hard threshold associated with this quota report record,
if any

SoftLimit Optional The soft threshold associated with this quota report record,
if any

SoftLimitGracePeriod Optional The grace period associated with the soft limit associated
with this report record, if any

Active Optional Whether the quota associated with this report record is
being actively enforced. If not, this indicates the quota is
being used for tracking purposes only.

Table 97: SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities

Properties Flags Requirement Description & Notes
208

 Filesystem Quotas Profile
9.7.5 SNIA_FSQuotaIndication

Created By: External

Modified By: Static

Deleted By: Static

Class Mandatory: Optional

Table 99 describes class SNIA_FSQuotaIndication.

Monitored Optional Whether or not thresholds on this quota are being
monitored. If a system reports quotas that aren't being
monitored, this value may be false.

ResourceType Mandatory The type of resource whose use is counted in this quota
report record

QuotaType Mandatory The type of Principal to which this quota applies. Possible
values are "Unknown", "Other", "User", "Group" and "Tree".

AmountUsed Mandatory The amount of resource used by the combination of
Principal, Resource type, Tree, and ManagedElement
specified in the quota configuration entry that generated
this quota report record (and reported in other fields in the
record).

TreeName Optional The URI of the filesystem tree upon which the quota was
set, if any

PrincipalID Optional The FSDomainIdentity for the Principal associated with this
quota report record, if any

FileSystem Optional The name of the filesystem over which the quota entry that
generated the report record was placed, if any

Table 99: SMI Referenced Properties/Methods for SNIA_FSQuotaIndication

Properties Flags Requirement Description & Notes

IdentityID Mandatory The InstanceID of the FSDomainIdentity involved in
causing the event. If there is none, NULL shall be passed in
this property.

EntryID Mandatory The InstanceID of the FSQuotaConfigEntry involved in
causing the event..

Path Mandatory The complete path of the tree involved in causing the event.
If there is none, NULL shall be passed in this property.

WhichLimit Mandatory Either "hard" or "soft"

Table 98: SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 209

Filesystem Quotas Profile
9.7.6 SNIA_FSQuotaManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 100 describes class SNIA_FSQuotaManagementService.

ResourceType Mandatory "Bytes", "Files", "Directories","Files+Directories" or "Inodes"

QuotaType Mandatory Either "user", "group" or "tree".

Limit Mandatory The limit set by the quota entry

AmountUsed Optional Amount of resource actually used at the time the indication
was generated.

FileSystem Mandatory The Name of the FileSystem in which the event occurred.

Table 100: SMI Referenced Properties/Methods for SNIA_FSQuotaManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

FindQuotaEntries() Mandatory Retrieve one or more quota entries based on a set of input
criteria.

DeleteQuotaEntry() Mandatory Delete a specified quota entry

ModifyQuotaEntry() Mandatory Modify a specified quota entry

AddQuotaEntry() Mandatory Add a new quota entry.

GetQuotaReport() Mandatory Obtain a report on usage against the quota entries on a
system.

EnableQuotas() Mandatory Turn quota monitoring on or off.

InitializeQuotas() Mandatory Initialize the quota reporting system.

Table 99: SMI Referenced Properties/Methods for SNIA_FSQuotaIndication

Properties Flags Requirement Description & Notes
210

 Filesystem Quotas Profile
9.7.7 SNIA_FSQuotaConfigEntry

Created By: Extrinsic_or_External

Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

Table 101 describes class SNIA_FSQuotaConfigEntry.

9.7.8 SNIA_FSQuotaAppliesToElement

Created By: CreateInstance

Modified By: Extrinsic_or_External

Deleted By: DeleteInstance

Class Mandatory: Mandatory

Table 101: SMI Referenced Properties/Methods for SNIA_FSQuotaConfigEntry

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique ID for the entry.

HardLimit Mandatory The hard limit for this quota

SoftLimit Mandatory The soft limit for this quota

SoftLimitGracePeriod Optional Length of the grace period, if any exists.

Active Optional Whether or not this quota is to be actively monitored. If
NULL, the system does not support activation of individual
quotas.

Monitor Mandatory Whether or not this is a monitor-only quota. If this is TRUE,
no enforcement of any kind is done.

ResourceType Mandatory The type of resource being managed

QuotaType Mandatory The type of quota to create (user, group, etc.)

TreeName Mandatory Path of the tree over which this quota is applicable, if any.

PrincipalID Mandatory The user or group being constrained by this quota, if any.

FileSystem Mandatory A The name of the FileSystem, if any, over which this quota
is monitored.

Default Mandatory Whether or not this is a default quota.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 211

Filesystem Quotas Profile
Table 102 describes class SNIA_FSQuotaAppliesToElement.

9.7.9 SNIA_FSQuotaAppliesToPrincipal

Created By: CreateInstance

Modified By: Extrinsic_or_External

Deleted By: DeleteInstance

Class Mandatory: Mandatory

Table 103 describes class SNIA_FSQuotaAppliesToPrincipal.

9.7.10 SNIA_FSQuotaAppliesToTree

Created By: CreateInstance

Modified By: Extrinsic_or_External

Deleted By: DeleteInstance

Class Mandatory: Mandatory

Table 104 describes class SNIA_FSQuotaAppliesToTree.

Table 102: SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToElement

Properties Flags Requirement Description & Notes

Antecedent Mandatory The managed element

Dependent Mandatory The quota config entry

Table 103: SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToPrincipal

Properties Flags Requirement Description & Notes

Antecedent Mandatory The filesystem principal

Dependent Mandatory The quota config entry

Table 104: SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToTree

Properties Flags Requirement Description & Notes

Antecedent Mandatory The filesystem directory tree

Dependent Mandatory The quota config entry
212

 Filesystem Quotas Profile
EXPERIMENTAL
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 213

Filesystem Quotas Profile
214

 NAS Head Profile
STABLE

Clause 10: NAS Head Profile

10.1 Description

10.1.1 Synopsis

Profile Name: NAS Head

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: ComputerSystem

Scoping Class: ComputerSystem

10.1.2 Overview

The NAS Head Profile exports File elements (contained in a FileSystem) as FileShares. The storage for the
FileSystem is obtained from external SAN storage, for example, a Storage Array that exports Storage Volumes as
LUNs. The storage array may also provide storage to other hosts or devices (or other NAS Heads), and the storage
on the array might be visible to other external management tools, and may be actively managed independently.

This profile models the necessary Filesystem and NAS concepts and defines how the connections to the
underlying storage is managed. The details of how a Storage Array exports storage to the NAS Head is not
covered in this profile but is covered by the Array profile.

The NAS Head Profile reuses a significant portion of Clause 23: Storage Virtualizer Profile in Storage Management
Technical Specification, Part 3 Block Devices.

The NAS Head Profile and its subprofiles and packages are illustrated in Figure 14.
SMI-S 1.2.0 Revision 6 SNIA Technical Position 215

NAS Head Profile
.

10.1.3 Implementation

10.1.3.1 Summary Instance Diagram
Figure 15 illustrates the mandatory classes for the NAS Head Profile. This figure shows all the classes that are
mandatory for the NAS Head Profile. Later diagrams will review specific sections of this diagram.

Figure 14: NAS Head Profiles and Subprofiles

Location

NAS Head

Multiple
ComputerSystem

Access Points

Software

Job Control

Block
Services
Package

Device Credentials

PhysicalPackage Package

 HostedService

HostedService

ComputerSystemPackage

HostedAccessPoint

ConcreteIdentity

ComponentCS

PhysicalElementLocation

InstalledSoftwareIdentity

FileExport
Manipulation

SystemDevice

Initiator Ports

Filesystem
Manipulation

OwningJobElement

Cascading

CascadingDependency

Extent
Composition

ConcreteComponent

FileSystem

HostedFileSystem

FSQuota

File Storage

File Export
HostedShare

Indications
216

 NAS Head Profile
Figure 15: NAS Head Instance

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

AllocatedFromStoragePool StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingData

HostedStoragePool

SNIA_LocalFileSystem

HostedFileSystem
ResidesOnExtent

(Conditional)

LogicalFile
(Directory)

FileShare
NFS or CIFS

ConcreteDependency
(For Backward Compatibility)

FileStorage
(For Backward Compatibility)

ProtocolEndPoint

ProtocolIFType = 4200 | 4201
('NFS" or "CIFS") NetworkPort

SAPAvailableForElement

FileSystemSetting
(Optional)ElementSettingData

(Optional)

SNIA_ExportedFileShareSettingElementSettingData

HostedShare

ConcreteComponent
(Optional)

StorageExtent
(Optional)

SCSIProtocolController FCPort
UsageRestriction =

‘Back-end only’

ProtocolControllerForEndpoint

StorageExtent
(Optional)

Initiator Ports Subprofile (Optional)

SystemDevice

SystemDevice
(Optional)

Initiator
ProtocolEndpoint

DeviceSAPImplementation

Block Services Package

SystemDevice

DeviceSAPImplementation

FileSystem
Profile

File Export
Profile

File Storage
Profile

SNIA_SharedElement

SNIA_LocallyAccessibleFileSystemSetting
(Conditional)

ElementSettingData
(Conditional)

HostedDependency
(Conditional)

SNIA_LocalAccessAvailable
(Conditional)

Target
ProtocolEndpoint

InitiatorTarget
LogicalUnitPath
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 217

NAS Head Profile
The NAS Head Profile closely parallels the Storage Virtualizer Profile in how it models storage. Storage is assigned
to StoragePools and LogicalDisks are allocated from those storage pools for the purpose of holding local
filesystems of the NAS.

As with the Storage Virtualizer Profile, the NAS Head StoragePools have StorageCapabilities associated to the
StoragePools via ElementCapabilities. Similarly, LogicalDisks that are allocated from those StoragePools have
StorageSettings, which are associated to the LogicalDisk via ElementSettingData. StoragePools are hosted by a
ComputerSystem that represents the NAS “top level” system, and the StorageExtents have a SystemDevice
association to the “top level” ComputerSystem.

Note: As with Self-Contained NAS, the StoragePools may be hosted by a component ComputerSystem if the
Profile has implemented the Multiple Computer System Subprofile.

As with the Storage Virtualizer Profile, the “top level” ComputerSystem of the NAS Head does not (and typically
isn’t) a real ComputerSystem. It is merely the ManagedElement upon which all aspects of the NAS offering are
scoped.

As with Storage Virtualizer Profile, the NAS Head draws its storage from an open SAN. That is, the actual disk
storage is addressable independent of the NAS Head. As a result, the NAS head shall model the Initiator ports and
the StorageExtents that it acquires from the SAN. The NAS Head supports at least one of the Initiator Ports
Subprofiles (the dashed box at the bottom of Figure 15) to effect the support for backend ports. The NAS Head
includes the Block Services Package to effect the logical storage management (the dashed box just above the
Initiator Ports dashed box in Figure 15).

Everything above the LogicalDisk is specific to NAS (and does not appear in the Storage Virtualizer Profile).
LocalFileSystems are created on the LogicalDisks, LogicalFiles within those LocalFileSystems are shared
(FileShare) through ProtocolEndpoints associated with NetworkPorts.

Note: The classes and associations in the dashed boxes are from the required packages and subprofiles (as
indicated by the labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with SMI-S 1.1.0. It represents a
relationship between a FileShare and a Directory.

The ResidesOnExtent is conditional on the use by NAS Profiles (NAS Head and Self-contained NAS) in the File
Storage Profile. In the NAS Head a LocalFileSystem shall map to a LogicalDisk.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are only
shown here to illustrate where they would show up in the model should they be implemented.

In the base NAS Head profile, the classes and associations shown in Figure 15 are automatically populated based
on how the NAS Head is configured. Client modification of the configuration (including configuring storage, creating
extents, local filesystems and file shares) are functions found in subprofiles of the NAS Head Profile.
218

 NAS Head Profile
10.1.3.2 NAS Storage Model
Figure 16 illustrates the classes mandatory for modeling of storage for the NAS Head Profile.

The NAS Head Profile uses most of the classes and associations used by the Storage Virtualizer Profile (including
those in the Block Services Package). In doing this, it leverages many of the subprofiles that are available for
Storage Virtualizer Profiles. The classes and associations shown in Figure 16 are the minimum mandatory for read
only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled, including the
HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the StoragePool. In addition,
for NAS Heads, which get their storage from a SAN, the StorageExtents that compose the primordial StoragePools
shall also be modeled with ConcreteComponent associations to the StoragePool to which they belong and they will
be primordial.

In addition, in order for storage to be used it shall be allocated to one or more LogicalDisks. A LogicalDisk shall
have an AllocatedFromStoragePool association to the StoragePool from which it is allocated. The LogicalDisk shall
have an ElementSettingData association to the settings that were used when the LogicalDisk was created.

For manipulation of Storage, see Clause 5: Block Services Package of Storage Management Technical
Specification, Part 3 Block Devices. LogicalDisks are the ElementType that is supported for storage allocation
functions (e.g., CreateOrModifyElementFromStoragePool and ReturnToStoragePool), but the Block Services
methods for managing LogicalDisks are optional for the NAS Head Profile. The NAS Head Profile also supports
(optionally) the Pool manipulation functions (e.g., CreateOrModifyStoragePool and DeleteStoragePool) of the
Block Services Package.

10.1.3.3 NAS Head Use of Filesystem Profile (Mandatory)
The NAS Head Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the NAS Head, the
Filesystem Profile shall be supported. See Clause 7: Filesystem Profile for details on this modeling.

Figure 16: NAS Storage Instance

Block Services Package

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingDataHostedStoragePool

StorageExtent
(Optional)

SystemDevice

StorageExtent
(Optional)

ConcreteComponent
(Optional)

SystemDevice
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 219

NAS Head Profile
10.1.3.4 NAS Head Use of File Storage Profile (Mandatory)
The NAS Head Profile uses the File Storage Profile for modeling of its file storage constructs. For the NAS Head,
the Filesystem Profile shall be supported. See Clause 6: File Storage Profile for details on the file storage
modeling.

10.1.3.5 NAS Head Use of File Export Profile (Mandatory)
The NAS Head Profile uses the File Export Profile for modeling of its file export constructs. For the NAS Head, the
File Export Profile shall be supported. See Clause 4: File Export Profile for details on this modeling.
220

 NAS Head Profile
EXPERIMENTAL

10.1.3.6 NAS Head Support of Cascading
Figure 17 illustrates the NAS Head support for cascading. Support for the Cascading Subprofile is optional (and
the Cascading Subprofile is experimental). It is provided here to illustrate stitching between the NAS Head and
Array or Storage Virtualizer Profiles.

The lower dashed box in the figure illustrates the classes and associations of the Cascading Subprofile. The
dashed classes are virtual instances (copies cached from the Array or Storage Virtualizer Profile). The other
classes of the Cascading Subprofile represent NAS Head usage of those classes. For example, the collection

Figure 17: NAS Head Cascading Support Instance

 Cascading Subprofile

Block Services Package

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingDataHostedStoragePool

ComputerSystem
(Virtual)

StorageExtent

SystemDevice

StorageExtent

ConcreteComponent

StorageVolume
(Virtual)

StorageVolume
(Virtual)

RemoteResources

Dependency

RemoteServiceAccessPoint

SAPAvailableForElement

SystemDevice

AllocatedResources

MemberOfCollection

MemberOfCollection

LogicalIdentity
LogicalIdentity

SystemDevice
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 221

NAS Head Profile
AllocatedResources collects all the Array volumes that are used in StoragePools of the NAS Head. The
RemoteResources collection collects all volumes that the NAS Head has discovered (whether used or not).

The RemoteServiceAccessPoint is the URL of the management interface that the NAS Head uses for managing
the Array or Storage Virtualizer Profiles. This may or may not be an SMI-S Server URL.

EXPERIMENTAL

10.2 Health and Fault Management Considerations
The NAS Head supports state information (e.g., OperationalStatus) on the following elements of the model:

• Network Ports (See 10.2.1)

• Back-end Ports (See 17.3.1 Health and Fault Management Considerations in Storage Management Technical
Specification, Part 2 Common Profiles)

• ComputerSystems (See 28.1.5 Computer System Operational Status in Storage Management Technical
Specification, Part 2 Common Profiles)

• FileShares that are exported (See 4.2.1)

• LocalFileSystems (See 7.2.1)

• ProtocolEndpoints (See 10.2.2)

10.2.1 OperationalStatus for Network Ports

10.2.2 OperationalStatus for ProtocolEndpoints

Table 105: NetworkPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 106: ProtocolEndpoint OperationalStatus

OperationalStatus Description

OK ProtocolEndpoint is online

Error ProtocolEndpoint has a failure

Stopped ProtocolEndpoint is disabled

Unknown
222

 NAS Head Profile
EXPERIMENTAL

10.3 Cascading Considerations
The NAS Head is a cascading Profile, but the Cascading Subprofile is Experimental in this release of SMI-S; see
Clause 26: Cascading Subprofile in Storage Management Technical Specification, Part 2 Common Profiles. As
such, the Cascading Subprofile is defined as an optional subprofile. A NAS Head may cascade storage. The
cascading considerations for this are discussed in the following sections.

10.3.1 Cascading Resources for the NAS Head Profile

By definition, a NAS Head gets its storage from the network. As such, there is a cascading relationship between
the NAS Head Profile and the Profiles (e.g., Array Profiles) that provide the storage for the NAS Head. Figure 17
illustrates the constructs to be used to model this cascading relationship.

• The NAS Head Cascaded Resources are Primordial StorageExtents (used to populate Primordial
StoragePools)

• The NAS Head obtains the storage for these from Array or Storage Virtualizer Profiles

• Each Primordial StorageExtent maps (via ConcreteIdentity) to a StorageVolume (from the Array or Storage
Virtualizer Profile).

10.3.2 Ownership Privileges Asserted by NAS Heads

In support of the Cascading NAS Heads may assert ownership over the StorageVolumes that they import. If the
Array or Storage Virtualizer implementation supports Ownership, NAS Heads would assert ownership using the
following Privilege:

• Activity - Execute

• ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool

• FormatQualifier - Method

10.3.3 NAS Head Limitations on use of the Cascading Subprofile

The NAS Head support for Cascading places the following limitations and restrictions on the Cascading Subprofile:

• The AllocationService is not supported. - Allocation is done as a side effect of assigning the extents to the
Primordial pool.

• CascadingDependency - The CascadingDependency may exist, even when there are no resources that are
imported. This signifies that the NAS Head has discovered the Array or Virtualizer, but has no access to any of
their volumes.

EXPERIMENTAL

10.4 Supported Subprofiles and Packages

Table 107: Supported Profiles for NAS Head

Registered Profile Names Mandatory Version

Indication Yes 1.2.0
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 223

NAS Head Profile
10.5 Methods of the Profile

10.5.1 Extrinsic Methods of the Profile

None.

10.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

Filesystem Yes 1.2.0

File Storage Yes 1.2.0

File Export Yes 1.2.0

Cascading No 1.2.0

Access Points No 1.2.0

Multiple Computer System No 1.2.0

Software No 1.2.0

Location No 1.2.0

Extent Composition No 1.2.0

Filesystem Manipulation No 1.2.0

File Export Manipulation No 1.2.0

Job Control No 1.2.0

SPI Initiator Ports No 1.2.0

FC Initiator Ports No 1.2.0

Device Credentials No 1.2.0

Physical Package Yes 1.2.0

Block Services Yes 1.2.0

Health Yes 1.2.0

Table 107: Supported Profiles for NAS Head

Registered Profile Names Mandatory Version
224

 NAS Head Profile
• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

Manipulation functions are supported in subprofiles of the profile.

10.6 Client Considerations and Recipes
Not defined in this version of the specification.

10.7 Registered Name and Version
NAS Head version 1.2.0
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 225

NAS Head Profile
10.8 CIM Elements

Table 108: CIM Elements for NAS Head

Element Name Requirement Description

 CIM_BindsTo (CIFS or NFS) (10.8.1) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists. Associates a
CIFS or NFS ProtocolEndpoint to an
underlying TCPProtocolEndpoint. This is used
in the NAS Head to support the TCP/IP
Network protocol stack.

 CIM_BindsTo (TCP) (10.8.2) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists. Associates a
TCPProtocolEndpoint to an underlying
IPProtocolEndpoint. This is used in the NAS
Head to support the TCP/IP Network protocol
stack.

 CIM_BindsToLANEndpoint (10.8.3) Conditional Conditional requirement: This is required if a
LANEndpoint exists. Associates an
IPProtocolEndpoint to an underlying
LANEndpoint in the NAS Head (to support the
TCP/IP Network protocol stack).

 CIM_ComputerSystem (Top Level) (10.8.4) Mandatory This declares that at least one computer
system entry will pre-exist. The Name
property should be the Unique identifier for the
NAS Head.

 CIM_ComputerSystem (File Server) (10.8.5) Mandatory This declares that at least one computer
system that provides File Server capabilities
will pre-exist. This could be the same as the
top-level ComputerSystem but this would not
be true in a cluster, so this has a separate
entry that is not tagged as a top level system.
The File Server(s) must be manageable as a
computer system and so could be exposed
through other profiles and so there must be a
way to correlate it with other management
clients.

 CIM_ConcreteComponent (10.8.6) Optional Represents the association between a
Primordial StoragePool and the underlying
StorageExtents that compose it.

 CIM_DeviceSAPImplementation (CIFS or
NFS to NetworkPort) (10.8.7)

Mandatory (CIFS or NFS to NetworkPort) Represents the
association between a CIFS or NFS
ProtocolEndpoint and the NetworkPort that it
supports.

 CIM_DeviceSAPImplementation
(LANEndpoint to NetworkPort) (10.8.8)

Conditional Conditional requirement: This is required if a
LANEndpoint exists. (LANEndpoint to
NetworkPort) Associates a logical front end
Port (a NetworkPort) to the LANEndpoint that
uses that device to connect to a LAN.
226

 NAS Head Profile
 CIM_HostedAccessPoint (CIFS or NFS)
(10.8.9)

Mandatory (CIFS or NFS) Represents the association
between a CIFS or NFS front end
ProtocolEndpoint and the Computer System
that hosts it.

 CIM_HostedAccessPoint (TCP) (10.8.10) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists. Represents the
association between a front end
TCPProtocolEndpoint and the Computer
System that hosts it.

 CIM_HostedAccessPoint (IP) (10.8.11) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists. Represents the
association between a front end
IPProtocolEndpoint and the Computer System
that hosts it.

 CIM_HostedAccessPoint (LAN) (10.8.12) Conditional Conditional requirement: This is required if a
LANEndpoint exists. Represents the
association between a front end LANEndpoint
and the Computer System that hosts it.

 CIM_IPProtocolEndpoint (10.8.13) Optional Represents the front-end ProtocolEndpoint
used to support the IP protocol services.

 CIM_LANEndpoint (10.8.14) Optional Represents the front-end ProtocolEndpoint
used to support a Local Area Network and its
services.

 CIM_LogicalDisk (LD for FS) (10.8.15) Mandatory Represents the single Storage Extent on
which the NAS Head will build a
LocalFileSystem.

 CIM_NetworkPort (10.8.16) Mandatory Represents the front end logical port that
supports access to a local area network.

 CIM_ProtocolEndpoint (CIFS or NFS)
(10.8.17)

Mandatory (CIFS or NFS) Represents the front-end
ProtocolEndpoint used to support NFS and
CIFS services.

 CIM_StorageExtent (Primordial) (10.8.18) Optional This StorageExtent represents the LUNs
(StorageVolumes) imported from a storage
device to the NAS Head.

 CIM_SystemDevice (Storage Extents)
(10.8.19)

Conditional Conditional requirement: This is required if
primordial StorageExtents exist. This
association links all StorageExtents to the
scoping system.

 CIM_SystemDevice (Logical Disks) (10.8.20) Mandatory This association links all LogicalDisks to the
scoping system.

 CIM_SystemDevice (Network Ports)
(10.8.21)

Mandatory This association links all NetworkPorts to the
scoping system. This is used to represent
both front end and back end ports.

Table 108: CIM Elements for NAS Head

Element Name Requirement Description
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 227

NAS Head Profile
 CIM_TCPProtocolEndpoint (10.8.22) Optional Represents the front-end ProtocolEndpoint
used to support TCP services.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::Oper
ationalStatus <>
PreviousInstance.CIM_ComputerSystem::Op
erationalStatus

Optional Experimental CQL - Change of Status of a
NAS ComputerSystem (controller).

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL - Change of Status of a NAS
ComputerSystem (controller).

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_NetworkPort AND
SourceInstance.CIM_NetworkPort::Operation
alStatus <>
PreviousInstance.CIM_NetworkPort::Operatio
nalStatus

Optional Experimental CQL - Change of Status of a
Port.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_NetworkPort AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL - Change of Status of a Port.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ProtocolEndpoint AND
SourceInstance.CIM_ProtocolEndpoint::Oper
ationalStatus <>
PreviousInstance.CIM_ProtocolEndpoint::Ope
rationalStatus

Optional Experimental CQL - Change of Status of a
ProtocolEndpoint

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ProtocolEndpoint AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Optional Experimental CQL - Change of Status of a
ProtocolEndpoint

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::Operationa
lStatus <>
PreviousInstance.CIM_LogicalDisk::Operation
alStatus

Optional Experimental CQL - Change of status of a
LogicalDisk.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

Table 108: CIM Elements for NAS Head

Element Name Requirement Description
228

 NAS Head Profile
10.8.1 CIM_BindsTo (CIFS or NFS)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: TCPProtocolEndpoint

Table 109 describes class CIM_BindsTo (CIFS or NFS).

10.8.2 CIM_BindsTo (TCP)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: IPProtocolEndpoint

Table 110 describes class CIM_BindsTo (TCP).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL - Change of status of a
LogicalDisk.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

Table 109: SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ProtocolEndpoint that uses a lower level
ProtocolEndpoint for connectivity.

Antecedent Mandatory The TCPProtocolEndpoint that supports a CIFS or NFS
ProtocolEndpoint.

Table 110: SMI Referenced Properties/Methods for CIM_BindsTo (TCP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The TCPProtocolEndpoint that uses an IPProtocolEndpoint
for connectivity.

Antecedent Mandatory The IPProtocolEndpoint that supports a
TCPProtocolEndpoint.

Table 108: CIM Elements for NAS Head

Element Name Requirement Description
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 229

NAS Head Profile
10.8.3 CIM_BindsToLANEndpoint

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: LANEndpoint

Table 111 describes class CIM_BindsToLANEndpoint.

10.8.4 CIM_ComputerSystem (Top Level)

Created By: Static

Modified By: External

Deleted By: Static

Class Mandatory: Mandatory

Table 112 describes class CIM_ComputerSystem (Top Level).

Table 111: SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Properties Flags Requirement Description & Notes

FrameType Mandatory Only supports 1="Ethernet" at this point.

Dependent Mandatory An IPProtocolEndpoint.

Antecedent Mandatory A LANEndpoint.

Table 112: SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory The actual class of this object, e.g.,
Vendor_NASComputerSystem.

ElementName Mandatory User friendly name

Name Mandatory Unique identifier for the NAS Head in a format specified by
NameFormat. For example, IP address or Vendor/Model/
SerialNo.

OperationalStatus Mandatory Overall status of the NAS Head

NameFormat Mandatory Format for Name property.

PrimaryOwnerContac
t

M Optional Owner of the NAS Head

PrimaryOwnerName M Optional Contact details for owner
230

 NAS Head Profile
10.8.5 CIM_ComputerSystem (File Server)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Dedicated Mandatory This shall be a NAS Head (24).

OtherIdentifyingInfo C Mandatory An array of know identifiers for the NAS Head.

IdentifyingDescription
s

C Mandatory An array of descriptions of the OtherIdentifyingInfo. Some
of the descriptions would be "Ipv4 Address", "Ipv6 Address"
or "Fully Qualified Domain Name".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDesc
riptions

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Table 112: SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 231

NAS Head Profile
Table 113 describes class CIM_ComputerSystem (File Server).

Table 113: SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)

Properties Flags Requirement Description & Notes

Dedicated Mandatory This is a File Server (Dedicated=16). It could also support
other capabilities, so we do not restrict the values that can
be in the Dedicated array.

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the NAS Head's File Servers, e.g.,
Vendor/Model/SerialNo+FS+Number. The Fileserver can
have any number of IP addresses, so an IP address does
not constitute a single unique id. Also, under various load-
balancing or redundancy regimens, the IP address could
move around, so it may not even be correlatable. For that
reason, the vendor must support a format that will provide a
unique ID for the file server.

OperationalStatus Mandatory Overall status of the File Server.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDesc
riptions

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

PrimaryOwnerContac
t

N Optional Not Specified in this version of the Profile.

PrimaryOwnerName N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.
232

 NAS Head Profile
10.8.6 CIM_ConcreteComponent

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Optional

Table 114 describes class CIM_ConcreteComponent.

10.8.7 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Mandatory

Table 115 describes class CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort).

10.8.8 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Table 114: SMI Referenced Properties/Methods for CIM_ConcreteComponent

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Primordial StoragePool that is built from the
StorageExtent.

PartComponent Mandatory A StorageExtent that is part of a Primordial StoragePool.

Table 115: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS
to NetworkPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ProtocolEndpont that supports on the NetworkPort.
These include ProtocolEndpoints for NFS and CIFS.

Antecedent Mandatory The NetworkPort supported by the Access Point.

Table 113: SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 233

NAS Head Profile
Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: LANEndpoint

Table 116 describes class CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort).

10.8.9 CIM_HostedAccessPoint (CIFS or NFS)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Mandatory

Table 117 describes class CIM_HostedAccessPoint (CIFS or NFS).

10.8.10 CIM_HostedAccessPoint (TCP)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: TCPProtocolEndpoint

Table 116: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint
to NetworkPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory A LANEndpoint that depends on a NetworkPort for
connecting to its LAN segment.

Antecedent Mandatory The Logical network adapter device that connects to a
LAN.

Table 117: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ServiceAccessPoint hosted on the file server. These
include ProtocolEndpoints for NFS or CIFS.

Antecedent Mandatory The Computer System hosting this Access Point. In the
context of the NAS Head, these are always file servers
(Dedicated=16).
234

 NAS Head Profile
Table 118 describes class CIM_HostedAccessPoint (TCP).

10.8.11 CIM_HostedAccessPoint (IP)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: IPProtocolEndpoint

Table 119 describes class CIM_HostedAccessPoint (IP).

10.8.12 CIM_HostedAccessPoint (LAN)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: LANEndpoint

Table 120 describes class CIM_HostedAccessPoint (LAN).

Table 118: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The TCPProtocolEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.

Table 119: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The IPProtocolEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.

Table 120: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)

Properties Flags Requirement Description & Notes

Dependent Mandatory The LANEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 235

NAS Head Profile
10.8.13 CIM_IPProtocolEndpoint

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 121 describes class CIM_IPProtocolEndpoint.

Table 121: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha
nge

Optional

Description Mandatory This shall be the IP protocol endpoints supported by the
NAS Head.

ProtocolIFType Mandatory 4096="IP v4", 4097="IP v6", and 4098 is both. (Note that
1="Other" is not supported)

IPv4Address Mandatory An IP v4 address in the format "A.B.C.D".

IPv6Address Mandatory

SubnetMask Mandatory An IP v4 subnet mask in the format "A.B.C.D".

PrefixLength Mandatory For an IPv6 address.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.
236

 NAS Head Profile
10.8.14 CIM_LANEndpoint

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 122 describes class CIM_LANEndpoint.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

AddressOrigin N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 122: SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha
nge

Optional

Table 121: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 237

NAS Head Profile
10.8.15 CIM_LogicalDisk (LD for FS)

Created By: Extrinsic_or_External

Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

Description Mandatory This shall be the LAN protocol endpoints supported by the
NAS Head.

ProtocolIFType Mandatory LAN endpoints supported are: 1="Other",6="Ethernet
CSMA/CD", 9="ISO 802.5 Token Ring", 15="FDDI".

OtherTypeDescriptio
n

Optional If the LAN endpoint is a vendor-extension specified by
"Other" and a description.

LANID N Optional A unique id for the LAN segment to which this device is
connected. The value will be NULL if the LAN is not
connected.

MACAddress Mandatory Primary Unicast address for this LAN device.

AliasAddresses Mandatory Other unicast addresses supported by this device.

GroupAddresses Mandatory Multicast addresses supported by this device.

MaxDataSize Mandatory The max size of packet supported by this LAN device.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 122: SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement Description & Notes
238

 NAS Head Profile
Table 123 describes class CIM_LogicalDisk (LD for FS).

Table 123: SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory CIM Class of the NAS Head Computer System that is the
host of this LogicalDisk.

SystemName Mandatory Name of the NAS Head Computer System that hosts this
LogicalDisk.

CreationClassName Mandatory CIM Class of this instance of LogicalDisk.

DeviceID Mandatory Opaque identifier for the LogicalDisk.

OperationalStatus Mandatory A subset of operational status that is applicable for
LogicalDisks in a NAS Head.

ExtentStatus Mandatory This LogicalDisk is neither imported (16) nor exported (17).

Primordial Mandatory This represents a Concrete Logical Disk that is not
primordial.

Name Mandatory Identifier for a local LogicalDisk that will be used for a
filesystem; since this logical disk will be referenced by a
client, it must have a unique name. We cannot constrain
the format here, but the OS-specific format described in the
Block Services specification is not appropriate, so "Other"
is used.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the
NAS Head. This shall be coded as "1" ("other").

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 239

NAS Head Profile
10.8.16 CIM_NetworkPort

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 124 describes class CIM_NetworkPort.

DataOrganization N Optional Not Specified in this version of the Profile.

Purpose N Optional Not Specified in this version of the Profile.

Access N Optional Not Specified in this version of the Profile.

ErrorMethodology N Optional Not Specified in this version of the Profile.

SequentialAccess N Optional Not Specified in this version of the Profile.

NameNamespace N Optional Not Specified in this version of the Profile.

OtherNameNamespa
ce

N Optional Not Specified in this version of the Profile.

OtherNameFormat N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 124: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Network adapter that provides
a network port.

OperationalStatus Mandatory The operational status of the adapter.

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Network Port.

SystemName Mandatory The name of the Computer System hosting the Network
Port.

CreationClassName Mandatory The CIM Class name of the Network Port.

DeviceID Mandatory A unique ID for the device (in the context of the hosting
System).

Speed Optional

Table 123: SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Properties Flags Requirement Description & Notes
240

 NAS Head Profile
MaxSpeed Optional

RequestedSpeed Optional

UsageRestriction Optional

PortType Optional

PortNumber Optional A unique number for the adapter in the context of the
hosting System.

PermanentAddress C Mandatory The hard-coded address of this port.

NetworkAddresses Mandatory An array of network addresses for this port.

LinkTechnology Optional 1="Other", 2="Ethernet", 3="IB", 4="FC", 5="FDDI",
6="ATM", 7="Token Ring", 8="Frame Relay", 9="Infrared",
10="BlueTooth", 11="Wireless LAN. The link technology
supported by this adapter.

OtherLinkTechnology Optional The vendor-specific "Other" link technology supported by
this adapter.

FullDuplex Optional

AutoSense Optional

SupportedMaximumT
ransmissionUnit

Optional

ActiveMaximumTrans
missionUnit

Optional

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

Name N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

Table 124: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 241

NAS Head Profile
10.8.17 CIM_ProtocolEndpoint (CIFS or NFS)

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 125 describes class CIM_ProtocolEndpoint (CIFS or NFS).

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

OtherPortType N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 125: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha
nge

Optional

Description Mandatory This shall be one of the NFS or CIFS protocol endpoints
supported by the NAS Head.

Table 124: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes
242

 NAS Head Profile
10.8.18 CIM_StorageExtent (Primordial)

Created By: Static_or_External

Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 126 describes class CIM_StorageExtent (Primordial).

ProtocolIFType Mandatory This represents either NFS=4200 or CIFS=4201. Other
protocol types are specified in subclasses of
ProtocolEndpoint.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 126: SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

Table 125: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 243

NAS Head Profile
ExtentStatus Mandatory

OperationalStatus Mandatory

Name Mandatory Identifier for a remote LUN on a storage array; possibly, the
array ID plus LUN Node WWN. This LUN is imported from
a remote storage device, so the NameFormat identifies the
remote LUN by identifying the remote array and the unique
LUN ID at that array. As an example below, we have
specified a 16-character hex format for the Name taken
from the Node WWN format.

Primordial Mandatory The StorageExtent imported from an Array is considered
primordial in the NAS Head.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

DataOrganization N Optional Not Specified in this version of the Profile.

Purpose N Optional Not Specified in this version of the Profile.

Access N Optional Not Specified in this version of the Profile.

ErrorMethodology N Optional Not Specified in this version of the Profile.

ConsumableBlocks N Optional Not Specified in this version of the Profile.

IsBasedOnUnderlyin
gRedundancy

N Optional Not Specified in this version of the Profile.

Table 126: SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial)

Properties Flags Requirement Description & Notes
244

 NAS Head Profile
10.8.19 CIM_SystemDevice (Storage Extents)

Created By: Extrinsic_or_External_or_Static

Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External

Class Mandatory: StorageExtents

Table 127 describes class CIM_SystemDevice (Storage Extents).

10.8.20 CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static

Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External

SequentialAccess N Optional Not Specified in this version of the Profile.

NoSinglePointOfFailu
re

N Optional Not Specified in this version of the Profile.

DataRedundancy N Optional Not Specified in this version of the Profile.

PackageRedundancy N Optional Not Specified in this version of the Profile.

DeltaReservation N Optional Not Specified in this version of the Profile.

NameNamespace N Optional Not Specified in this version of the Profile.

OtherNameNamespa
ce

N Optional Not Specified in this version of the Profile.

OtherNameFormat N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 127: SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extents)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The primordial StorageExtent that is imported to a
computer system in the NAS Head.

Table 126: SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial)

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 245

NAS Head Profile
Class Mandatory: Mandatory

Table 128 describes class CIM_SystemDevice (Logical Disks).

10.8.21 CIM_SystemDevice (Network Ports)

Created By: Extrinsic_or_External_or_Static

Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

Table 129 describes class CIM_SystemDevice (Network Ports).

10.8.22 CIM_TCPProtocolEndpoint

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 130 describes class CIM_TCPProtocolEndpoint.

Table 128: SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The LogicalDisk that is a part of a computer system.

Table 129: SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The NetworkPort that is a part of a computer system.

Table 130: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Protocol Endpoint.
246

 NAS Head Profile
STABLE

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha
nge

Optional

Description Mandatory This shall be the TCP protocol endpoints supported by the
NAS Head.

ProtocolIFType Mandatory 4111="TCP". Note that no other protocol type is supported
by this endpoint.

PortNumber Mandatory The number of the TCP Port that this element represents.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 130: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 247

NAS Head Profile
248

 Self-Contained NAS Profile
STABLE

Clause 11: Self-Contained NAS Profile

11.1 Description

11.1.1 Synopsis

Profile Name: Self-Contained NAS

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: ComputerSystem

Scoping Class: ComputerSystem

11.1.2 Overview

The Self-contained NAS (SC NAS) profile exports File elements (contained in a filesystem) as FileShares. The
storage for the filesystem is obtained from captive storage. In the simplest case, this could be a set of directly
connected disks, but it could also be a captive storage array that is not shared with any other hosts or devices
(though it could be visible to external management tools and even actively managed independently).

This profile models the necessary filesystem and NAS concepts and defines how the connections to the underlying
storage is managed. The details of how a directly attached set of disks is used by the SC NAS profile is covered
as part of the Disk Drive or Disk Drive Lite subprofile. The details of how an underlying Storage Array might export
storage to the SC NAS is not covered in this profile but is covered by Clause 4: Array Profile in Storage
Management Technical Specification, Part 3 Block Devices.

The Self-contained NAS profile reuses a significant portion of Clause 4: Array Profile in Storage Management
Technical Specification, Part 3 Block Devices.
SMI-S 1.2.0 Revision 6 SNIA Technical Position 249

Self-Contained NAS Profile
The Self-Contained NAS Profile and its subprofiles and packages are illustrated in Figure 18.

11.1.3 Implementation

Figure 18: Self-Contained NAS Profile and Subprofiles

Location

Disk Drive
Lite

Initiator Ports

Self-Contained NAS

Multiple
Computer System

Access Points

Software

Job Control

Block Services
Package

Device Credentials

PhysicalPackage Package

 HostedService

HostedService

ComputerSystemPackage

HostedAccessPoint

ConcreteIdentity

ComponentCS

Container

PhysicalElementLocation

InstalledSoftwareIdentity

SystemDevice

FileExportManipulation

OwningJobElement

Filesystem
Manipulation OwningJobElement

Indications

Extent
Composition

ConcreteComponent

BasedOn

FS Quota

FileSystem

HostedFileSystem

File Storage

File Export
HostedShare
250

 Self-Contained NAS Profile
11.1.3.1 Summary Instance Diagram
Figure 19 illustrates the mandatory classes of the Self-Contained NAS Profile. This figure shows all the classes
that are mandatory for the Self-contained NAS Profile. Later diagrams will review specific sections of this diagram.

Figure 19: Self-Contained NAS Instance

Block Services Package
ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

AllocatedFromStoragePool

StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingData

HostedStoragePool

SNIA_LocalFileSystem

HostedFileSystem
ResidesOnExtent

(Conditional)

LogicalFile
(Directory)

FileShare
NFS or CIFS

ConcreteDependency
(For Backward Compatibility)

FileStorage
(For Backward Compatibility)

ProtocolEndPoint

ProtocolIFType= 4200 | 4201
('NFS" or "CIFS")

NetworkPort

SAPAvailableForElement

FileSystemSetting
(Optional)ElementSettingData

(Optional)

SNIA_ExportedFileShareSettingElementSettingData

HostedShare

SystemDevice

SystemDevice

DeviceSAPImplementation

FileSystem
Profile

File Export
Profile

File Storage
Profile

SNIA_SharedElement

SNIA_LocallyAccessibleFileSystemSetting
(Conditional)

HostedDependency
(Conditional)

ElementSettingData
(Conditional)

SNIA_LocalAccessAvailable
(Conditional)
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 251

Self-Contained NAS Profile
The Self-Contained NAS Profile closely parallels the Array Profile in how it models storage. Storage is assigned to
StoragePools and LogicalDisks are allocated from those storage pools for the purpose of holding local filesystems
of the NAS.

As with the Array profile, the Self-contained NAS StoragePools have StorageCapabilities associated to the
StoragePools via ElementCapabilities. Similarly, LogicalDisks have StorageSettings, which are associated to the
LogicalDisk via ElementSettingData. StoragePools are hosted by a ComputerSystem that represents the NAS “top
level” system, and the LogicalDisks have a SystemDevice association to the “top level” ComputerSystem.

Note: As with Arrays, the StoragePools may be hosted by a component ComputerSystem if the profile has
implemented the Multiple Computer System Subprofile.

As with Arrays, the “top level” ComputerSystem of the Self-Contained NAS does not (and typically isn’t) a real
ComputerSystem. It is merely the ManagedElement upon which all aspects of the NAS offering are scoped.

Everything above the LogicalDisk is specific to NAS (and does not appear in the Array Profile). LocalFileSystems
are created on the LogicalDisks, LogicialFiles within those LocalFileSystems are shared (FileShare) through
ProtocolEndpoints associated with NetworkPorts.

Note: The classes and associations in the dashed boxes are from the required packages and subprofiles (as
indicated by the labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with SMI-S 1.1.0. It represents a
relationship between a FileShare and a Directory.

The ResidesOnExtent is conditional on the use by NAS Profiles (NAS Head and Self-contained NAS) in the File
Storage Profile. In the Self-contained NAS a LocalFileSystem shall map to a LogicalDisk.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are only
shown here to illustrate where they would show up in the model should they be implemented.

In the base Self-Contained NAS profile, the classes and associations shown in Figure 19 are automatically
populated based on how the Self-Contained NAS is configured. Client modification of the configuration (including
configuring storage, creating extents, local filesystems and file shares) are functions found in subprofiles of the
profile.

EXPERIMENTAL

11.1.3.2 Combination Profile Considerations
Some devices combine the function of an array with the function of a Self-contained NAS. There are a number of
approaches that may be used to model such a device. One way is to present two seemly independent profiles in
the SAN (e.g., Array and SC NAS). In this case, there may be duplication of instances. These duplicates would be
recognized by clients via correlated ids.

Another approach would be to use one, shared top level ComputerSystem that reflects both the SC NAS and the
Array in its ComputerSystem.Dedicated property. In this case, care must be taken to ensure the sharing of
instances between the profiles do not conflict with their respective profile definitions.

For more information on the rules for combination profiles, see section B.5 of Annex B: (Normative) Compliance
with the SNIA SMI Specification in Storage Management Technical Specification, Part 1 Common Architecture.

EXPERIMENTAL
252

 Self-Contained NAS Profile
11.1.3.3 NAS Storage Model
Figure 20 illustrates the classes mandatory for modeling of storage for the Self-Contained NAS Profile.

The Self-Contained NAS Profile uses most of the classes and associations defined in the Array Profile (including
those in the Block Services Package). In doing this, it leverages many of the subprofiles that are available for Array
Profiles. The classes and associations shown in Figure 20 are the minimum mandatory classes and associations
of the Block Services Package for read only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled, including the
HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the StoragePool. In addition,
in order for storage to be used it shall be allocated to one or more LogicalDisks. A LogicalDisk shall have an
AllocatedFromStoragePool association to the StoragePool from which it is allocated. And the LogicalDisk shall
have an ElementSettingData association to the settings that were used when the LogicalDisk was created.

Note: At this level, the model for storage is the same for both the Self-contained NAS Profile and the NAS
Head Profile. In the case of the Self-contained NAS, storage for the StoragePools is drawn from Disk
Drives. Modeling of Disk Drives is Optional (See Clause 11: Disk Drive Lite Subprofile of Storage
Management Technical Specification, Part 3 Block Devices).

For manipulation of Storage, see Clause 5: Block Services Package in the Block Devices Book. For Self-Contained
NAS, LogicalDisks are the ElementType that is supported for storage allocation functions (e.g.,
CreateOrModifyElementFromStoragePool and ReturnToStoragePool), but the Block Services methods for
managing LogicalDisks are optional for the Self-Contained NAS Profile. The Self-Contained NAS Profile also
supports (optionally) the Pool manipulation functions (e.g., CreateOrModifyStoragePool and DeleteStoragePool) of
the Block Services Package.

11.1.3.4 Self-Contained NAS Use of Filesystem Profile (Mandatory)
The Self-Contained NAS Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the Self-
Contained NAS, the Filesystem Profile shall be supported. See Clause 7: Filesystem Profile for details on this
modeling.

Figure 20: NAS Storage Instance

Block Services Package

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingData

HostedStoragePool

SystemDevice
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 253

Self-Contained NAS Profile
11.1.3.5 Self-Contained NAS Use of File Storage Profile (Mandatory)
The Self-Contained NAS Profile uses the File Storage Profile for modeling of its file storage constructs. For the
Self-Contained NAS, the Filesystem Profile shall be supported. See Clause 6: File Storage Profile for details on the
file storage modeling.

11.1.3.6 Self-Contained NAS Use of File Export Profile (Mandatory)
The Self-Contained NAS Profile uses the File Export Profile for modeling of its file export constructs. For the Self-
Contained NAS, the File Export Profile shall be supported. See Clause 4: File Export Profile for details on this
modeling.

11.2 Health and Fault Management Considerations
Self-Contained NAS supports state information (e.g., OperationalStatus) on the following elements of the model:

• Network Ports (See 11.2.1 OperationalStatus for Network Ports)

• Back-end Ports (See 17.3.1 Health and Fault Management Considerations ofStorage Management Technical
Specification, Part 2 Common Profiles)

• ComputerSystems (See 28.1.5 Computer System Operational Status of Storage Management Technical
Specification, Part 2 Common Profiles)

• FileShares that are exported (See 4.2.1 OperationalStatus for FileShares)

• LocalFileSystems (See 7.2.1 OperationalStatus for Filesystems)

• ProtocolEndpoints (See 11.2.2 OperationalStatus for ProtocolEndpoints)

• DiskDrive (See 11.2 Health and Fault Management Considerations of Storage Management Technical
Specification, Part 3 Block Devices)
254

 Self-Contained NAS Profile
11.2.1 OperationalStatus for Network Ports

11.2.2 OperationalStatus for ProtocolEndpoints

11.3 Cascading Considerations
Not Applicable.

11.4 Supported Subprofiles and Packages

Table 131: NetworkPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 132: ProtocolEndpoint OperationalStatus

OperationalStatus Description

OK ProtocolEndpoint is online

Error ProtocolEndpoint has a failure

Stopped ProtocolEndpoint is disabled

Unknown

Table 133: Supported Profiles for Self-contained NAS System

Registered Profile Names Mandatory Version

Indication Yes 1.2.0

Filesystem Yes 1.2.0

File Storage Yes 1.2.0

File Export Yes 1.2.0

Access Points No 1.2.0

Multiple Computer System No 1.2.0

Software No 1.2.0

Location No 1.2.0

Extent Composition No 1.2.0
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 255

Self-Contained NAS Profile
11.5 Methods of the Profile

11.5.1 Extrinsic Methods of the Profile

None.

11.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

Manipulation functions are supported in subprofiles of the profile.

11.6 Client Considerations and Recipes
Not defined in this version of the specification

Filesystem Manipulation No 1.2.0

File Export Manipulation No 1.2.0

Job Control No 1.2.0

Disk Drive Lite No 1.2.0

SPI Initiator Ports No 1.2.0

FC Initiator Ports No 1.2.0

iSCSI Initiator Ports No 1.2.0

Device Credentials No 1.2.0

Physical Package Yes 1.2.0

Block Services Yes 1.2.0

Health Yes 1.2.0

Table 133: Supported Profiles for Self-contained NAS System

Registered Profile Names Mandatory Version
256

 Self-Contained NAS Profile
11.7 Registered Name and Version
Self-contained NAS System version 1.2.0
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 257

Self-Contained NAS Profile
11.8 CIM Elements

Table 134: CIM Elements for Self-contained NAS System

Element Name Requirement Description

 CIM_BindsTo (CIFS or NFS) (11.8.1) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists. Associates a
CIFS or NFS ProtocolEndpoint to an
underlying TCPProtocolEndpoint. This is used
in the Self-contained NAS System to support
the TCP/IP Network protocol stack.

 CIM_BindsTo (TCP) (11.8.2) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists. Associates a
TCPProtocolEndpoint to an underlying
IPProtocolEndpoint. This is used in the Self-
contained NAS System to support the TCP/IP
Network protocol stack.

 CIM_BindsToLANEndpoint (11.8.3) Conditional Conditional requirement: This is required if a
LANEndpoint exists. Associates an
IPProtocolEndpoint to an underlying
LANEndpoint in the Self-contained NAS
System (to support the TCP/IP Network
protocol stack).

 CIM_ComputerSystem (Top Level) (11.8.4) Mandatory This declares that at least one computer
system entry will pre-exist. The Name
property should be the Unique identifier for the
Self-contained NAS System.

 CIM_ComputerSystem (File Server) (11.8.5) Mandatory This declares that at least one computer
system that provides File Server capabilities
will pre-exist. This could be the same as the
top-level ComputerSystem but this would not
be true in a cluster, so this has a separate
entry that is not tagged as a top-level system.
The File Server(s) shall be manageable as a
computer system and so could be exposed
through other profiles and so there shall be a
way to correlate it with other management
clients.

 CIM_DeviceSAPImplementation (CIFS or
NFS to NetworkPort) (11.8.6)

Mandatory (CIFS or NFS to NetworkPort) Represents the
association between a CIFS or NFS
ProtocolEndpoint and the NetworkPort that it
supports.

 CIM_DeviceSAPImplementation
(LANEndpoint to NetworkPort) (11.8.7)

Conditional Conditional requirement: This is required if a
LANEndpoint exists. (LANEndpoint to
NetworkPort) Associates a logical front end
Port (a NetworkPort) to the LANEndpoint that
uses that device to connect to a LAN.

 CIM_HostedAccessPoint (CIFS or NFS)
(11.8.8)

Mandatory (CIFS or NFS) Represents the association
between a front end ProtocolEndpoint and the
Computer System that hosts it.
258

 Self-Contained NAS Profile
 CIM_HostedAccessPoint (TCP) (11.8.9) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists. Represents the
association between a front end
TCPProtocolEndpoint and the Computer
System that hosts it.

 CIM_HostedAccessPoint (IP) (11.8.10) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists. Represents the
association between a front end
IPProtocolEndpoint and the Computer System
that hosts it.

 CIM_HostedAccessPoint (LAN) (11.8.11) Conditional Conditional requirement: This is required if a
LANEndpoint exists. Represents the
association between a front end LANEndpoint
and the Computer System that hosts it.

 CIM_IPProtocolEndpoint (11.8.12) Optional Represents the front-end ProtocolEndpoint
used to support the IP protocol services.

 CIM_LANEndpoint (11.8.13) Optional Represents the front-end ProtocolEndpoint
used to support a Local Area Network and its
services.

 CIM_LogicalDisk (Disk for FS) (11.8.14) Mandatory Represents LogicalDisks used for building
LocalFileSystems.

 CIM_NetworkPort (11.8.15) Mandatory Represents the front end logical port that
supports access to a local area network.

 CIM_ProtocolEndpoint (CIFS or NFS)
(11.8.16)

Mandatory (CIFS or NFS) Represents the front-end
ProtocolEndpoint used to support NFS and
CIFS services.

 CIM_SystemDevice (Logical Disks) (11.8.17) Mandatory This association links all LogicalDisks to the
scoping system.

 CIM_SystemDevice (Network Ports) (11.8.18) Mandatory This association links all NetworkPorts to the
scoping system.

 CIM_TCPProtocolEndpoint (11.8.19) Optional Represents the front-end ProtocolEndpoint
used to support TCP services.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::Oper
ationalStatus[*] <>
PreviousInstance.CIM_ComputerSystem::Op
erationalStatus[*]

Optional Experimental CQL - Change of Status of a
NAS ComputerSystem (controller).

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

Table 134: CIM Elements for Self-contained NAS System

Element Name Requirement Description
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 259

Self-Contained NAS Profile
11.8.1 CIM_BindsTo (CIFS or NFS)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: TCPProtocolEndpoint

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL - Change of Status of a NAS
ComputerSystem (controller).

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_NetworkPort AND
SourceInstance.CIM_NetworkPort::Operation
alStatus[*] <>
PreviousInstance.CIM_NetworkPort::Operatio
nalStatus[*]

Optional Experimental CQL - Change of Status of a
Port.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_NetworkPort AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL - Change of Status of a Port.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ProtocolEndpoint AND
SourceInstance.CIM_ProtocolEndpoint::Oper
ationalStatus[*] <>
PreviousInstance.CIM_ProtocolEndpoint::Ope
rationalStatus[*]

Optional Experimental CQL - Change of Status of a
ProtocolEndpoint

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL - Change of status of a
LogicalDisk.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

Table 134: CIM Elements for Self-contained NAS System

Element Name Requirement Description
260

 Self-Contained NAS Profile
Table 135 describes class CIM_BindsTo (CIFS or NFS).

11.8.2 CIM_BindsTo (TCP)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: IPProtocolEndpoint

Table 136 describes class CIM_BindsTo (TCP).

11.8.3 CIM_BindsToLANEndpoint

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: LANEndpoint

Table 137 describes class CIM_BindsToLANEndpoint.

Table 135: SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ProtocolEndpoint that uses a lower level
ProtocolEndpoint for connectivity.

Antecedent Mandatory The TCPProtocolEndpoint that supports a CIFS or NFS
ProtocolEndpoint.

Table 136: SMI Referenced Properties/Methods for CIM_BindsTo (TCP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The TCPProtocolEndpoint that uses an IPProtocolEndpoint
for connectivity.

Antecedent Mandatory The IPProtocolEndpoint that supports a
TCPProtocolEndpoint.

Table 137: SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Properties Flags Requirement Description & Notes

FrameType Mandatory Only supports 1="Ethernet" at this point.

Dependent Mandatory A IPProtocolEndpoint.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 261

Self-Contained NAS Profile
11.8.4 CIM_ComputerSystem (Top Level)

Created By: Static

Modified By: External

Deleted By: Static

Class Mandatory: Mandatory

Table 138 describes class CIM_ComputerSystem (Top Level).

Antecedent Mandatory A LANEndpoint.

Table 138: SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory The actual class of this object, e.g.,
Vendor_NASComputerSystem.

ElementName Mandatory User-friendly name

Name Mandatory Unique identifier for the Self-contained NAS System in a
format specified by NameFormat. For example, IP address
or Vendor/Model/SerialNo.

OperationalStatus Mandatory Overall status of the Self-contained NAS System

NameFormat Mandatory Format for Name property.

PrimaryOwnerContac
t

M Optional Owner of the Self-contained NAS System

PrimaryOwnerName M Optional Contact details for owner

Dedicated Mandatory This shall indicate that this computer system is dedicated to
operation as a Self-contained NAS (25).

OtherIdentifyingInfo C Mandatory An array of know identifiers for the Self-contained NAS.

IdentifyingDescription
s

C Mandatory An array of descriptions of the OtherIdentifyingInfo. Some
of the descriptions would be "Ipv4 Address", "Ipv6 Address"
or "Fully Qualified Domain Name".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

Table 137: SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Properties Flags Requirement Description & Notes
262

 Self-Contained NAS Profile
11.8.5 CIM_ComputerSystem (File Server)

Created By: Static

Modified By: Static

Deleted By: Static

Class Mandatory: Mandatory

Table 139 describes class CIM_ComputerSystem (File Server).

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDesc
riptions

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Table 139: SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)

Properties Flags Requirement Description & Notes

Dedicated Mandatory This is a File Server (16).

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the Self-contained NAS System's File
Servers. Eg Vendor/Model/SerialNo+FS+Number. The
Fileserver can have any number of IP addresses, so an IP
address does not constitute a single unique id. Also, under
various load-balancing or redundancy regimens, the IP
address could move around, so it may not even be
correlatable. For that reason, the vendor shall support a
format that will provide a unique id for the file server.

OperationalStatus Mandatory Overall status of the File Server.

Caption N Optional Not Specified in this version of the Profile.

Table 138: SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 263

Self-Contained NAS Profile
11.8.6 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Mandatory

Description N Optional Not Specified in this version of the Profile.

ElementName Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDesc
riptions

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

PrimaryOwnerContac
t

N Optional Not Specified in this version of the Profile.

PrimaryOwnerName N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Table 139: SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)

Properties Flags Requirement Description & Notes
264

 Self-Contained NAS Profile
Table 140 describes class CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort).

11.8.7 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: LANEndpoint

Table 141 describes class CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort).

11.8.8 CIM_HostedAccessPoint (CIFS or NFS)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Mandatory

Table 140: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS
to NetworkPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ProtocolEndpoint that supports on the NetworkPort.
These include ProtocolEndpoints for NFS and CIFS.

Antecedent Mandatory The NetworkPort supported by the Access Point.

Table 141: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEnd-
point to NetworkPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory A LANEndpoint that depends on a NetworkPort for
connecting to its LAN segment.

Antecedent Mandatory The Logical network adapter device that connects to a
LAN.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 265

Self-Contained NAS Profile
Table 142 describes class CIM_HostedAccessPoint (CIFS or NFS).

11.8.9 CIM_HostedAccessPoint (TCP)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: TCPProtocolEndpoint

Table 143 describes class CIM_HostedAccessPoint (TCP).

11.8.10 CIM_HostedAccessPoint (IP)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: IPProtocolEndpoint

Table 144 describes class CIM_HostedAccessPoint (IP).

Table 142: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ServiceAccessPoint hosted on the FileServer. These
include ProtocolEndpoints for NFS and CIFS.

Antecedent Mandatory The Computer System hosting this Access Point. In the
context of the Self-contained NAS System, these are alway
FileServers (Dedicated=16).

Table 143: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The TCPProtocolEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.

Table 144: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The IPProtocolEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.
266

 Self-Contained NAS Profile
11.8.11 CIM_HostedAccessPoint (LAN)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: LANEndpoint

Table 145 describes class CIM_HostedAccessPoint (LAN).

11.8.12 CIM_IPProtocolEndpoint

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 146 describes class CIM_IPProtocolEndpoint.

Table 145: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)

Properties Flags Requirement Description & Notes

Dependent Mandatory The LANEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.

Table 146: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
IP Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the IP Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the IP Protocol Endpoint.

Name Mandatory The unique name of the IP Protocol Endpoint.

NameFormat Mandatory The Format of the Name of the IP Protocol Endpoint.

ProtocolIFType Mandatory 4096="IP v4", 4097="IP v6", and 4098 is both. (Note that
1="Other" is not supported.)

IPv4Address Mandatory An IP v4 address in the format "A.B.C.D".

IPv6Address Mandatory
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 267

Self-Contained NAS Profile
11.8.13 CIM_LANEndpoint

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 147 describes class CIM_LANEndpoint.

SubnetMask Mandatory An IP v4 subnet mask in the format "A.B.C.D".

PrefixLength Mandatory For an IPv6 address.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

AddressOrigin N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 147: SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
LAN Endpoint.

SystemName Mandatory The name of the Computer System hosting the LAN
Endpoint.

CreationClassName Mandatory The CIM Class name of the LAN Endpoint.

Name Mandatory The unique name of the LAN Endpoint.

Table 146: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes
268

 Self-Contained NAS Profile
11.8.14 CIM_LogicalDisk (Disk for FS)

Created By: Extrinsic_or_External

Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

NameFormat Mandatory The Format of the Name for the LAN Endpoint.

ProtocolIFType Mandatory LAN endpoints supported are: 1="Other",6="Ethernet
CSMA/CD", 9="ISO 802.5 Token Ring", 15="FDDI".

OtherTypeDescriptio
n

Optional If the LAN endpoint is a vendor-extension specified by
"Other" and a description.

LANID Optional A unique id for the LAN segment that this device is
connected to. Will be NULL if the LAN is not connected.

MACAddress Mandatory Primary Unicast address for this LAN device.

AliasAddresses Mandatory Other unicast addresses supported by this device.

GroupAddresses Mandatory Multicast addresses supported by this device.

MaxDataSize Mandatory The max size of packet supported by this LAN device. (If
there were a Network subprofile, this would not be exposed
in a Self-contained NAS System Profile).

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 147: SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 269

Self-Contained NAS Profile
Table 148 describes class CIM_LogicalDisk (Disk for FS).

Table 148: SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory CIM Class of the Self-contained NAS System Computer
System that is the host of this LogicalDisk.

SystemName Mandatory Name of the Self-contained NAS System Computer System
that hosts this LogicalDisk.

CreationClassName Mandatory CIM Class of this instance of LogicalDisk.

DeviceID Mandatory Opaque identifier for the LogicalDisk.

OperationalStatus Mandatory A subset of operational status that is applicable for
LogicalDisks in a Self-contained NAS System.

ExtentStatus Mandatory This LogicalDisk is neither imported (16) nor exported (17).

Primordial Mandatory This represents a Concrete Logical Disk that is not
primordial.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the
Self-contained NAS System. This should be coded as "1"
("other").

Name Mandatory Identifier for a local LogicalDisk that will be used for a
filesystem; since this storage extent will be referenced by a
client, it needs to have a unique name. We cannot
constrain the format here, but the OS-specific format
described in the Block Services specification is not
appropriate, so "Other" is used.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.
270

 Self-Contained NAS Profile
11.8.15 CIM_NetworkPort

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 149 describes class CIM_NetworkPort.

LocationIndicator N Optional Not Specified in this version of the Profile.

DataOrganization N Optional Not Specified in this version of the Profile.

Purpose N Optional Not Specified in this version of the Profile.

Access N Optional Not Specified in this version of the Profile.

ErrorMethodology N Optional Not Specified in this version of the Profile.

SequentialAccess N Optional Not Specified in this version of the Profile.

NameNamespace N Optional Not Specified in this version of the Profile.

OtherNameNamespa
ce

N Optional Not Specified in this version of the Profile.

OtherNameFormat N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 149: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Network adapter that provides
a network port.

OperationalStatus Mandatory The operational status of the adapter.

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Network Port.

SystemName Mandatory The name of the Computer System hosting the Network
Port.

CreationClassName Mandatory The CIM Class name of the Network Port.

DeviceID Mandatory A unique ID for the device (in the context of the hosting
System).

Table 148: SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 271

Self-Contained NAS Profile
Speed Optional

MaxSpeed Optional

RequestedSpeed Optional

UsageRestriction Optional

PortType Optional

PortNumber Optional A unique number for the adapter in the context of the
hosting System).

PermanentAddress Mandatory The hard-coded address of this port.

NetworkAddresses Optional An array of network addresses for this port.

LinkTechnology Optional 1="Other", 2="Ethernet", 3="IB", 4="FC", 5="FDDI",
6="ATM", 7="Token Ring", 8="Frame Relay", 9="Infrared",
10="BlueTooth", 11="Wireless LAN. The link technology
supported by this adapter.

OtherLinkTechnology Optional The vendor-specific "Other" link technology supported by
this adapter.

FullDuplex Optional

AutoSense Optional

SupportedMaximumT
ransmissionUnit

Optional

ActiveMaximumTrans
missionUnit

Optional

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

Name N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

Table 149: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes
272

 Self-Contained NAS Profile
11.8.16 CIM_ProtocolEndpoint (CIFS or NFS)

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 150 describes class CIM_ProtocolEndpoint (CIFS or NFS).

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

OtherPortType N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 150: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha
nge

Optional

Description Mandatory This shall be one of the NFS or CIFS protocol endpoints
supported by the Self-contained NAS System.

Table 149: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 273

Self-Contained NAS Profile
11.8.17 CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static

Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

Table 151 describes class CIM_SystemDevice (Logical Disks).

11.8.18 CIM_SystemDevice (Network Ports)

Created By: Extrinsic_or_External_or_Static

ProtocolIFType Mandatory This represents either NFS=4200 or CIFS=4201. Other
protocol types are specified in subclasses of
ProtocolEndpoint.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 151: SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The LogicalDisk that is a part of a computer system. These
include NetworkPorts.

Table 150: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement Description & Notes
274

 Self-Contained NAS Profile
Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

Table 152 describes class CIM_SystemDevice (Network Ports).

11.8.19 CIM_TCPProtocolEndpoint

Created By: External

Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 153 describes class CIM_TCPProtocolEndpoint.

Table 152: SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The NetworkPort that is a part of a computer system.

Table 153: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
TCP Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the TCP
Protocol Endpoint.

CreationClassName Mandatory The CIM Class name of the TCP Protocol Endpoint.

Name Mandatory The unique name of the TCP Protocol Endpoint.

NameFormat Mandatory The Format of the Name of the TCP Protocol Endpoint.

ProtocolIFType Mandatory 4111="TCP". (Note that no other protocol type is supported
by this endpoint.)

PortNumber Mandatory The number of the TCP Port that this element represents.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 275

Self-Contained NAS Profile
STABLE

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 153: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes
276

 Annex A: (Informative) State Transitions from Storage to File Shares
Annex A: (Informative) State Transitions from Storage to File Shares

A filesystem is an abstract class that abstractly describes a hierarchical structuring of data into “files” contained
within a tree of “directories” with a single “root” directory. A LocalFileSystem is a concrete class derived from
FileSystem that implements it using one or more storage elements in which the storage element(s) has been
structured to contain information about multiple files organized into directories as well as the content of these files.
This internal organization of a LocalFileSystem, viz., what parts represent the components of files, what parts
constitute directories, what the names of these files and directories are, how they are organized into a hierarchy,
even the representation of the path to a file from the root directory through a sequence of sub-directories etc., is
called “metadata” and is stored persistently inside the storage element(s). In addition to metadata, the internal
organization contains information about ownership of files and directories, rights of users or other entities to access
files and directories, and other attributes of files and directories. This information is sometimes included in
metadata, but sometimes referred to independently as “attribute” information and is also stored persistently within
the storage element(s). Finally, the contents of files are also stored persistently in the storage element(s).

In filesystem-related profiles, the collection of storage elements used by a LocalFileSystem is called a
LogicalDisk(s). There are multiple formats (both open and proprietary) for structuring a LogicalDisk into a
LocalFileSystem—how the metadata, attributes, and content are stored and so on—that are referred to as the
“type” of the LocalFileSystem. The information about the type of the LocalFileSystem (and possibly variant
versions of the type) is also persistently stored in the LogicalDisk. We represent the type of the LocalFileSystem in
this and related profiles as the “FileSystemType”.

Note: The Volume Composition SubProfile describes how multiple LogicalDisks can be merged into a single
one. It is assumed that if more than one storage element is used, they are composed into a single
LogicalDisk using the Volume Composition profile (see Clause 24: Volume Composition Profile) or
other profile that similarly merges multiple storage elements into a single LogicalDisk.

A LocalFileSystem is not an autonomous entity but is a hosted component of a larger system, usually a
ComputerSystem. We represent this using the HostedFileSystem association between a ComputerSystem and the
LocalFileSystem. Since the LogicalDisk is a SystemDevice of a ComputerSystem, it is frequently the case that the
LocalFileSystem will be hosted by the same ComputerSystem, but this is not required. It is generally the case that
a LocalFileSystem will have an independent internal name that may be used to refer to it but it is not necessary that
the name be constructed independently of the name of the LogicalDisk or the name of the hosting
ComputerSystem. Some systems require that this internal name be globally unique, but others rely on the
uniqueness of the LogicalDisk’s name or on other identifiers. In SMI-S we require that a LocalFileSystem have a
unique Name property relative to the hosting ComputerSystem (Name being one of the key properties of the
FileSystem class).

The process by which an element of storage is finally made available as a FileShare is represented by Figure 21.
We begin with an unused LogicalDisk that is owned by, or has been allocated to, the ComputerSystem for this
purpose. The operation "Create a Filesystem", converts an unused LogicalDisk to a LocalFileSystem—in Figure 21
we show the name and the ComputerSystem that has a HostedFileSystem association to the LocalFileSystem. We
skip other details of the LocalFileSystem.
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 277

Figure 21: State Transitions From LogicalDisk to FileShare

Even after a LogicalDisk has been internally organized into a LocalFileSystem, it may not be usable by an
operational user. That’s because the operational user needs a durable name (for referring to the LocalFileSystem)
that is persistently supported by the implementation. There are multiple ways in which this problem has been
solved. Since the LocalFileSystem must be hosted by a ComputerSystem and the LocalFileSystem has a unique
name, a Uniform Resource Indicator (URI) can be constructed that is relative to the hosting ComputerSystem.
However, an operational user needs to use an access path relative to the ComputerSystem that serves files to
them (i.e., relative to a File Server), and this may differ from the hosting ComputerSystem.

Traditionally (i.e., before URIs), a LocalFileSystem was assigned a name in a hierarchical name space maintained
by the File Server ComputerSystem. This assignment was called “mounting to” the name and the name was called
the “mount-point” of the filesystem. For historical and other reasons, the hierarchical name space most commonly
used for the purpose was based on the “root filesystem” of the File Server. This allowed a naming convention using
“file path names” for objects in the namespace that could be extended uniformly to the meta-data and content of
the mounted filesystem (and would be represented in the SMI Specification as a property of a Capabilities
element).

If the hosting ComputerSystem and the File Server ComputerSystem are the same, or can be referenced using a
single identifier (for instance in a clustered computer system), or only one File Server can access a
LocalFileSystem, it is possible to make the Name of the LocalFileSystem be the same as the mount-point. In that
case, the act of “mounting to” the name is accomplished by default when the LocalFileSystem is created. But this
does not work for implementations that allow a LocalFileSystem hosted by one ComputerSystem to be assigned
differently named mount-points on multiple File Server ComputerSystems. The problem increases in complexity
when a File Server can have multiple network identities (through a multiplicity of IP addresses and multiple fully-
qualified domain names that map to each IP address).

LogicalDisk

Name: /dev/sd01

Create a file system

LocalAccessAvailable

FileServer: REF “FileServer1”
FileSystem: REF LFS:“/dev/fs1”
LocalAccessPoint: “/etc/mnt1”

FileShare

ASSOC(HostedShare): REF “FileServer1”
ASSOC(SharedElement): REF: “/dev/fs1”
PathName: “/users/kamesh”
Name: ”HOMEDIR”

Export a file share

LocalFileSystem

ASSOC(ResidesOnExtent): REF LD: /dev/sd01
Name: /dev/fs1
ASSOC(HostedFileSystem) REF CS: ”FileSystem Host”
LocalAccessDefinitionRequired: true|false
PathNameSeparatorString: “/”

Make file system locally accessible
If LocalAccessDefinitionRequired: true

Export a file share
If LocalAccessDefinitionRequired: false

.

278

 Annex A: (Informative) State Transitions from Storage to File Shares
Traditionally, Unix-based uni-processor systems have not made the Name of the LocalFileSystem the same as the
mount-point. But many specialized systems follow such a policy, so whether mounting is not managed explicitly
(because it is automatically specified by the name of the LocalFileSystem) or must be managed explicitly is a
feature of an implementation.

In addition to specifying a mount-point for a LocalFileSystem, a File Server would also assign system resources
needed for working with the LocalFileSystem. These include read and write buffers of appropriate capacity,
restrictions on reading or writing (needed for systems that allow multiple mounts of a LocalFileSystem), and other
implementation-dependent resources. The specification of these resources are explicitly manageable by some
implementations and defaulted by others.

The terms “mount” and “mount-point” are also traditionally used for assigning a remote element (such as a shared
file) a name in the local name space of a ComputerSystem. These terms by themselves appeared to be too generic
for use in this specification, so we will be using “make locally accessible” for “mount” and “local access point” for
“mount-point”. The resources to be allocated for mounting are specified by “local access settings”.

In SMI-S, a “locally accessible filesystem” is represented by providing an association, LocalAccessAvailable, from
the File Server to the LocalFileSystem. In addition to the key reference properties, this association provides the
LocalAccessPoint string array property that specifies the “local access point”. Referring back to Figure 21, the
"Make a Filesystem Locally Accessible" operation creates the LocalAccessAvailable association between the File
Server and the LocalFileSystem. This operation is supported in the Filesystem Manipulation Subprofile by
providing appropriate parameters to the CreateFileSystem and ModifyFileSystem extrinsic methods. The
LocalFileSystem element is not modified, but a new association is created. The LocalAccessPoint property
provides the access point (shown in the standard Unix format as “/etc/mnt1”).

Note: The intent behind implementing "Make a Filesystem Locally Accessible" with CreateFileSystem and
ModifyFileSystem methods is that it is preferable not to distinguish between implementations that
implement a separate “Make Locally Accessible” function from those that do not.

The vendor implements this operation by providing the necessary parameters to the create and modify methods;
this has the benefit that the operation does not have to be exposed separately to the management client. However
all implementations that support multiple File Servers with independent names to access filesystems must support
LocalAccessAvailable as that is the only place where a file-server-specific name for the LocalFileSystem is
specified (by the LocalAccessPoint property). A vendor that provides accessibility by default might have a
FileSystem.Name property that also functions as a path name from each file server (in one sample
implementation), so it is likely that LocalAccessAvailable.LocalAccessPoint would be the same as the
LocalFileSystem.Name property. The property LocalFileSystem.LocalAccessDefinitionRequired is required to
indicate that this feature is used and that the client must examine that property to understand how a vendor
implements this model.

The creation of a file share and its behavior are detailed in the related File Export and File Export Manipulation
subprofiles. Figure 21 shows the "Export a file share" operation that creates a FileShare and an SharedElement
association. The FileShare provides a name “HOMEDIR” and is hosted by the File Server. The SharedElement
association links to the LocalFileSystem and also provides the pathname “/users/kamesh” to the specific user’s
home directory.

Note: Once a LocalFileSystem has been made locally accessible via a File Server, the File Server can share
its contents with remote operational users. The contents of such a filesystem can be shared all the way
from the root directory at the top of the hierarchy, or the contents of sub-tree below some contained
internal directory may be shared, or a specific file contained in the filesystem may be shared. When a
directory (root or otherwise) is shared, all files and sub-directories of that directory are automatically
also shared recursively. The semantics of sharing an individual file or directory are ultimately controlled
by the implementation of the filesystem, so sharing cannot violate the access rules specified internally
to the filesystem. In addition to specifying the object (file or directory) to be shared, the File Server may
specify the protocol to use for sharing and a correlatable name by which remote users can refer to the
shared object—the protocol, the unique server id, and the share name can be used to construct a URI
for the shared object. The base URI can be extended to construct a reference URI for files or
 SMI-S 1.2.0 Revision 6 SNIA Technical Position 279

subdirectories within the shared object.

In SMI-S, there is a FileShare element created to represent the externally accessible share. This
element is associated via SharedElement to the LocalFileSystem. The FileShare element will provide
the PathName string property that specifies the shared object (the contained file or directory name).
280

	List of Tables
	List of Figures
	Foreword
	Clause 1: Scope
	Clause 2: Normative References
	2.1 General
	2.2 Approved references
	2.3 References under development
	2.4 Other references

	Clause 3: Terms and definitions
	3.1 General
	3.2 Definitions

	Clause 4: File Export Profile
	4.1 Description
	4.1.1 Synopsis
	4.1.2 Overview
	4.1.3 Implementation

	4.2 Health and Fault Management Consideration
	4.2.1 OperationalStatus for FileShares

	4.3 Cascading Considerations
	4.4 Supported Profiles, Subprofiles, and Packages
	4.5 Methods of the Profile
	4.5.1 Extrinsic Methods of the Profile
	4.5.2 Intrinsic Methods of the Profile

	4.6 Client Considerations and Recipes
	4.6.1 List Existing FileShares on the system

	4.7 Registered Name and Version
	4.8 CIM Elements
	4.8.1 CIM_ConcreteDependency
	4.8.2 CIM_ElementSettingData (FileShare)
	4.8.3 SNIA_ExportedFileShareSetting (Setting)
	4.8.4 CIM_FileShare (Exported File Share)
	4.8.5 CIM_HostedShare
	4.8.6 CIM_SAPAvailableForElement
	4.8.7 SNIA_SharedElement

	Clause 5: File Export Manipulation Subprofile
	5.1 Description
	5.1.1 Synopsis
	5.1.2 Overview
	5.1.3 Instance Diagrams

	5.2 Health and Fault Management Considerations
	5.2.1 OperationalStatus for FileExportService
	5.2.2 OperationalStatus for File Server ComputerSystem

	5.3 Cascading Considerations
	5.4 Supported Subprofiles and Packages
	5.5 Methods of the Profile
	5.5.1 Extrinsic Methods of the Profile
	5.5.2 Signature and Parameters of ModifyExportedShare
	5.5.3 Signature and Parameters of ReleaseExportedShare
	5.5.4 Intrinsic Methods of the Profile

	5.6 Client Considerations and Recipes
	5.6.1 Creation of a FileShare for Export
	5.6.2 Modification of an Exported FileShare
	5.6.3 Removal of an Exported FileShare
	5.6.4 File Export Manipulation Supported Capabilities Patterns

	5.7 Registered Name and Version
	5.8 CIM Elements
	5.8.1 SNIA_FileExportService
	5.8.2 CIM_HostedService
	5.8.3 SNIA_FileExportCapabilities (FES Configuration)
	5.8.4 CIM_ElementCapabilities (FES Configuration)
	5.8.5 SNIA_ExportedFileShareCapabilities (FES Capabilities)
	5.8.6 SNIA_ElementCapabilities (FES Capabilities)
	5.8.7 SNIA_ExportedFileShareSetting (Pre-defined)
	5.8.8 SNIA_SettingsDefineCapabilities (Pre-defined)
	5.8.9 SNIA_ExportedFileShareSetting (FileShare Setting)
	5.8.10 SNIA_FileShare (Exported File Share)
	5.8.11 SNIA_HostedShare
	5.8.12 CIM_ServiceAffectsElement
	5.8.13 CIM_ElementSettingData (FileShare Setting)
	5.8.14 CIM_LogicalFile (Subelement)
	5.8.15 SNIA_SharedElement
	5.8.16 CIM_FileStorage (Subelement)
	5.8.17 CIM_ConcreteDependency
	5.8.18 CIM_SAPAvailableForElement

	Clause 6: File Storage Profile
	6.1 Description
	6.1.1 Synopsis
	6.1.2 Overview
	6.1.3 Implementation

	6.2 Health and Fault Management Consideration
	6.3 Cascading Considerations
	6.3.1 Cascaded Resources
	6.3.2 Ownership Privileges
	6.3.3 Limitations on Cascading Subprofile

	6.4 Supported Profiles, Subprofiles, and Packages
	6.5 Methods of the Profile
	6.5.1 Extrinsic Methods of the Profile
	6.5.2 Intrinsic Methods of the Profile

	6.6 Client Considerations and Recipes
	6.7 Registered Name and Version
	6.8 CIM Elements
	6.8.1 CIM_ResidesOnExtent

	Clause 7: Filesystem Profile
	7.1 Description
	7.1.1 Synopsis
	7.1.2 Instance Diagrams

	7.2 Health and Fault Management Consideration
	7.2.1 OperationalStatus for Filesystems

	7.3 Cascading Considerations
	7.4 Supported Profiles, Subprofiles, and Packages
	7.5 Methods of the Profile
	7.5.1 Extrinsic Methods of the Profile
	7.5.2 Intrinsic Methods of the Profile

	7.6 Client Considerations: Use Cases
	7.6.1 List Existing Filesystems hosted by the Referencing Profile (parent filesystem related profile
	7.6.2 Get FileSystemSettings for a FileSystem
	7.6.3 Get the ComputerSystem that hosts a FileSystem
	7.6.4 Get all File Servers and Access Paths that have Local Access to this FileSystem
	7.6.5 Get the Access Path to this FileSystem on the specified File Server
	7.6.6 Get the Local Access Settings for this FileSystem on the specified File Server
	7.6.7 Get the FileShares and shared File path of this FileSystem on all File Servers
	7.6.8 Get the FileShares and shared File path of this FileSystem on the specified FileServer

	7.7 Registered Name and Version
	7.8 CIM Elements
	7.8.1 CIM_ElementSettingData (FileSystem)
	7.8.2 CIM_ElementSettingData (Local Access Required)
	7.8.3 CIM_FileStorage
	7.8.4 SNIA_LocalAccessAvailable
	7.8.5 CIM_HostedDependency (Local Access Required)
	7.8.6 CIM_Dependency
	7.8.7 SNIA_FileSystemSetting
	7.8.8 CIM_HostedFileSystem (LocalFileSystem)
	7.8.9 SNIA_LocalFileSystem
	7.8.10 CIM_LogicalFile
	7.8.11 SNIA_LocallyAccessibleFileSystemSetting
	7.8.12 CIM_Dependency (Uses Directory Services From)

	Clause 8: Filesystem Manipulation Subprofile
	8.1 Description
	8.1.1 Synopsis
	8.1.2 Overview
	8.1.3 Instance Diagrams

	8.2 Health and Fault Management Considerations
	8.2.1 OperationalStatus for FileSystemConfigurationService
	8.2.2 OperationalStatus for LocalFileSystem

	8.3 Cascading Considerations
	8.4 Supported Subprofiles and Packages
	8.5 Methods of the Profile
	8.5.1 Extrinsic Methods of the Profile
	8.5.2 Signature and Parameters of CreateFileSystem.
	8.5.3 Signature and Parameters of ModifyFileSystem.
	8.5.4 Signature and Parameters of DeleteFileSystem.
	8.5.5 Intrinsic Methods of the Profile

	8.6 Client Considerations and Recipes
	8.6.1 Creation of a FileSystem on a Storage Extent
	8.6.2 Increase the size of a FileSystem
	8.6.3 Modify a FileSystem’s Settings
	8.6.4 Delete a FileSystem and return underlying StorageExtent
	8.6.5 Make a FileSystem Locally Accessible from a File Server ComputerSystem
	8.6.6 Get the Local Access Setting for a FileSystem on a File Server ComputerSystem
	8.6.7 Filesystem Manipulation Supported Capabilities Patterns

	8.7 Registered Name and Version
	8.8 CIM Elements
	8.8.1 SNIA_FileSystemConfigurationService
	8.8.2 CIM_HostedService
	8.8.3 SNIA_FileSystemConfigurationCapabilities
	8.8.4 SNIA_ElementCapabilities (FS Configuration Capabilities)
	8.8.5 SNIA_FileSystemCapabilities
	8.8.6 SNIA_ElementCapabilities (At Least One)
	8.8.7 SNIA_ElementCapabilities (At Least One)
	8.8.8 SNIA_FileSystemSetting (Pre-defined FS Settings)
	8.8.9 SNIA_SettingsDefineCapabilities (Pre-defined FS Settings)
	8.8.10 SNIA_FileSystemSetting (Attached to FileSystem)
	8.8.11 CIM_ElementSettingData (Attached to Filesystem)
	8.8.12 SNIA_LocalFileSystem
	8.8.13 CIM_HostedFileSystem
	8.8.14 CIM_Directory (Root Directory)
	8.8.15 CIM_FileStorage (Root Directory)
	8.8.16 CIM_LogicalFile (Shared Files and Directories)
	8.8.17 CIM_FileStorage (Shared Files and Directories)
	8.8.18 SNIA_LocallyAccessibleFileSystemSetting
	8.8.19 CIM_Dependency (Uses Directory Services From)
	8.8.20 SNIA_SettingsDefineCapabilities (Pre-defined Local Access Settings)
	8.8.21 CIM_ElementCapabilities (Local Access Configuration Capabilities)
	8.8.22 SNIA_LocallyAccessibleFileSystemCapabilities
	8.8.23 CIM_HostedDependency (Attached to File System)
	8.8.24 CIM_HostedDependency (Pre-Defined)
	8.8.25 CIM_HostedDependency (Pre-Defined)
	8.8.26 CIM_ElementSettingData (Local Access Required)
	8.8.27 SNIA_LocalAccessAvailable

	Clause 9: Filesystem Quotas Profile
	9.1 Description
	9.1.1 Tree Quotas
	9.1.2 User Quotas
	9.1.3 Group Quotas
	9.1.4 Container Boundaries
	9.1.5 Quota types
	9.1.6 Class design considerations
	9.1.7 Instance Diagram

	9.2 Health and Fault Management Considerations
	9.3 Supported Profiles, Subprofiles, and Packages
	9.4 Methods of the Profile
	9.4.1 FindQuotaEntries
	9.4.2 DeleteQuotaEntry
	9.4.3 ModifyQuotaEntry
	9.4.4 AddQuotaEntry
	9.4.5 GetQuotaReport
	9.4.6 EnableQuotas
	9.4.7 InitializeQuotas

	9.5 Client Considerations and sample code
	9.5.1 Common subroutines
	9.5.2 Initialize quotas
	9.5.3 Enable or disable quota tracking
	9.5.4 Add a quota entry
	9.5.5 Delete a quota entry
	9.5.6 Modify a quota entry
	9.5.7 Read the quota entries
	9.5.8 Get a report on quota usage

	9.6 Registered Name and Version
	9.7 CIM Elements
	9.7.1 SNIA_FSDomainIdentity
	9.7.2 SNIA_FSQuotaCapabilities
	9.7.3 SNIA_ReportRecord
	9.7.4 SNIA_FSQuotaReportRecord
	9.7.5 SNIA_FSQuotaIndication
	9.7.6 SNIA_FSQuotaManagementService
	9.7.7 SNIA_FSQuotaConfigEntry
	9.7.8 SNIA_FSQuotaAppliesToElement
	9.7.9 SNIA_FSQuotaAppliesToPrincipal
	9.7.10 SNIA_FSQuotaAppliesToTree

	Clause 10: NAS Head Profile
	10.1 Description
	10.1.1 Synopsis
	10.1.2 Overview
	10.1.3 Implementation

	10.2 Health and Fault Management Considerations
	10.2.1 OperationalStatus for Network Ports
	10.2.2 OperationalStatus for ProtocolEndpoints

	10.3 Cascading Considerations
	10.3.1 Cascading Resources for the NAS Head Profile
	10.3.2 Ownership Privileges Asserted by NAS Heads
	10.3.3 NAS Head Limitations on use of the Cascading Subprofile

	10.4 Supported Subprofiles and Packages
	10.5 Methods of the Profile
	10.5.1 Extrinsic Methods of the Profile
	10.5.2 Intrinsic Methods of the Profile

	10.6 Client Considerations and Recipes
	10.7 Registered Name and Version
	10.8 CIM Elements
	10.8.1 CIM_BindsTo (CIFS or NFS)
	10.8.2 CIM_BindsTo (TCP)
	10.8.3 CIM_BindsToLANEndpoint
	10.8.4 CIM_ComputerSystem (Top Level)
	10.8.5 CIM_ComputerSystem (File Server)
	10.8.6 CIM_ConcreteComponent
	10.8.7 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)
	10.8.8 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)
	10.8.9 CIM_HostedAccessPoint (CIFS or NFS)
	10.8.10 CIM_HostedAccessPoint (TCP)
	10.8.11 CIM_HostedAccessPoint (IP)
	10.8.12 CIM_HostedAccessPoint (LAN)
	10.8.13 CIM_IPProtocolEndpoint
	10.8.14 CIM_LANEndpoint
	10.8.15 CIM_LogicalDisk (LD for FS)
	10.8.16 CIM_NetworkPort
	10.8.17 CIM_ProtocolEndpoint (CIFS or NFS)
	10.8.18 CIM_StorageExtent (Primordial)
	10.8.19 CIM_SystemDevice (Storage Extents)
	10.8.20 CIM_SystemDevice (Logical Disks)
	10.8.21 CIM_SystemDevice (Network Ports)
	10.8.22 CIM_TCPProtocolEndpoint

	Clause 11: Self-Contained NAS Profile
	11.1 Description
	11.1.1 Synopsis
	11.1.2 Overview
	11.1.3 Implementation

	11.2 Health and Fault Management Considerations
	11.2.1 OperationalStatus for Network Ports
	11.2.2 OperationalStatus for ProtocolEndpoints

	11.3 Cascading Considerations
	11.4 Supported Subprofiles and Packages
	11.5 Methods of the Profile
	11.5.1 Extrinsic Methods of the Profile
	11.5.2 Intrinsic Methods of the Profile

	11.6 Client Considerations and Recipes
	11.7 Registered Name and Version
	11.8 CIM Elements
	11.8.1 CIM_BindsTo (CIFS or NFS)
	11.8.2 CIM_BindsTo (TCP)
	11.8.3 CIM_BindsToLANEndpoint
	11.8.4 CIM_ComputerSystem (Top Level)
	11.8.5 CIM_ComputerSystem (File Server)
	11.8.6 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)
	11.8.7 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)
	11.8.8 CIM_HostedAccessPoint (CIFS or NFS)
	11.8.9 CIM_HostedAccessPoint (TCP)
	11.8.10 CIM_HostedAccessPoint (IP)
	11.8.11 CIM_HostedAccessPoint (LAN)
	11.8.12 CIM_IPProtocolEndpoint
	11.8.13 CIM_LANEndpoint
	11.8.14 CIM_LogicalDisk (Disk for FS)
	11.8.15 CIM_NetworkPort
	11.8.16 CIM_ProtocolEndpoint (CIFS or NFS)
	11.8.17 CIM_SystemDevice (Logical Disks)
	11.8.18 CIM_SystemDevice (Network Ports)
	11.8.19 CIM_TCPProtocolEndpoint

	Annex A: (Informative) State Transitions from Storage to File Shares

