A
SNIA

Advancing storage &
information techrology

Storage Management Technical Specification,
Part 4 File Systems

Version 1.2.0, Revision 6

"This document has been released and approved by the SNIA. The SNIA believes that the
ideas, methodologies and technologies described in this document accurately represent the
SNIA goals and are appropriate for widespread distribution. Suggestion for revision should be
directed to the Technical Council Managing Director at tcmd@snia.org.”

SNIA Technical Position

22 October, 2007

mailto:tcmd@snia.org.%E2%80%9D

20071022

No errata have been identified for 1.2.0.

SMI-S 1.2.0 Revision 6

Errata/Change Log

SNIA Technical Position

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Anytext, diagram, chart, table or definition reproduced must be reproduced in its entirety with no alteration,
and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced must acknowledge the SNIA copyright on that material, and must credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

Copyright © 2003-2007 Storage Networking Industry Association.

mailto:tcmd@snia.org

INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying, and promoting
interoperable multi-vendor SANs through the SNIA organization.

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2007 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of
their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed Management Task
Force (DMTF). The CIM classes that are documented have been developed and reviewed by both the Storage
Networking Industry Association (SNIA) and DMTF Technical Working Groups. However, the schema is still in
development and review in the DMTF Working Groups and Technical Committee, and subject to change.

CHANGES TO THE SPECIFICATION

Each publication of this specification is uniquely identified by a three-level identifier, comprised of a version
number, a release number and an update number. The current identifier for this specification is version 1.2.0.
Future publications of this specification are subject to specific constraints on the scope of change that is
permissible from one publication to the next and the degree of interoperability and backward compatibility that
should be assumed between products designed to different publications of this standard. The SNIA has defined
three levels of change to a specification:

< Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x X). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

=< Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of the
specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

< Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.X.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

This specification has been structured to convey both the formal requirements and assumptions of the SMI-S API
and its emerging implementation and deployment lifecycle. Over time, the intent is that all content in the
specification will represent a mature and stable design, be verified by extensive implementation experience, assure
consistent support for backward compatibility, and rely solely on content material that has reached a similar level of
maturity. Unless explicitly labeled with one of the subordinate maturity levels defined for this specification, content
is assumed to satisfy these requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three subordinate levels
of implementation maturity that identify important aspects of the content’s increasing maturity and stability. Each
subordinate maturity level is defined by its level of implementation experience, its stability and its reliance on other

SMI-S 1.2.0 Revision 6 SNIA Technical Position v

http://www.snia.org/feedback

emerging standards. Each subordinate maturity level is identified by a unique typographical tagging convention
that clearly distinguishes content at one maturity model from content at another level.

Experimental Maturity Level

No material is included in this specification unless its initial architecture has been completed and reviewed. This
material is referred to as “Experimental”. It is presented here as an aid to implementers who are interested in likely
future developments within the SMI specification. Some content included in this specification has complete and
reviewed design, but lacks implementation experience and the maturity gained through implementation
experience. This content is included in order to gain wider review and to gain implementation experience. The
contents of an Experimental profile may change as implementation experience is gained. There is a high likelihood
that the changed content will be included in an upcoming revision of the specification. Experimental material can
advance to a higher maturity level as soon as implementations are available. Figure 1 is a sample of the
typographical convention for Experimental content.

Figure 1: Experimental Maturity Level Tag

EXPERIMENTAL
Experimental content appears here.

EXPERIMENTAL

Implemented Maturity Level

Profiles for which initial implementations have been completed are classified as “Implemented”. This indicates that
at least two different vendors have implemented the profile, including at least one provider implementation. At this
maturity level, the underlying architecture and modeling are stable, and changes in future revisions will be limited to
the correction of deficiencies identified through additional implementation experience. Should the material become
obsolete in the future, it must be deprecated in a minor revision of the specification prior to its removal from
subsequent releases. Figure 2 is a sample of the typographical convention for Implemented content.

Figure 2: Implemented Maturity Level Tag

IMPLEMENTED
Implemented content appears here.

IMPLEMENTED

Stable Maturity Level

Once content at the Implemented maturity level has garnered additional implementation experience, it can be
tagged at the Stable maturity level. Material at this maturity level has been implemented by three different vendors,
including both a provider and a client. Should material that has reached this maturity level become obsolete, it may
only be deprecated as part of a minor revision to the specification. Material at this maturity level that has been
deprecated may only be removed from the specification as part of a major revision. A profile that has reached this
maturity level is guaranteed to preserve backward compatibility from one minor specification revision to the next.

Vi

As a result, Profiles at or above the Stable maturity level shall not rely on any content that is Experimental. Figure 3
is a sample of the typographical convention for Implemented content.

Figure 3: Stable Maturity Level Tag

STABLE
Stable content appears here.

STABLE

Finalized Maturity Level

Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying the
requirements for the Stable maturity level, content at the Finalized maturity level must solely depend upon or refine
material that has also reached the Finalized level. If specification content depends upon material that is not under
the control of the SNIA, and therefore not subject to its maturity level definitions, then the external content is
evaluated by the SNIA to assure that it has achieved a comparable level of completion, stability, and
implementation experience. Should material that has reached this maturity level become obsolete, it may only be
deprecated as part of a major revision to the specification. A profile that has reached this maturity level is
guaranteed to preserve backward compatibility from one minor specification revision to the next. Over time, it is
hoped that all specification content will attain this maturity level. Accordingly, there is no special typographical
convention, as there is with the other, subordinate maturity levels. Unless content in the specification is marked
with one of the typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material

Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections identified as
“Deprecated” contain material that is obsolete and not recommended for use in new development efforts. Existing
and new implementations may still use this material, but shall move to the newer approach as soon as possible.
The maturity level of the material being deprecated determines how long it will continue to appear in the
specification. Implemented content shall be retained at least until the next revision of the specialization, while
Stable and Finalized material shall be retained until the next major revision of the specification. Providers shall
implement the deprecated elements as long as it appears in the specification in order to achieve backward
compatibility. Clients may rely on deprecated elements, but are encouraged to use non-deprecated alternatives
when possible.

Deprecated sections are documented with a reference to the last published version to include the deprecated
section as normative material and to the section in the current specification with the replacement. Figure 4 contains
a sample of the typographical convention for deprecated content.

Figure 4: Deprecated Tag

Content that has been deprecated appears here.

SMI-S 1.2.0 Revision 6 SNIA Technical Position Vii

USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration.

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

viii

mailto:tcmd@snia.org

Contents

(S == V(O = T To 13 I o Yo [T TP PRI iii
(RS Ao) A 1= o] 1= TP TR T ORI Xi
(RS Ao) T U = TP XV
[o =1 o] o PSP T PP PPRUPRPP XVii
Y o] 0 o PP UPPPTRPPTRRPPIN 1
2. NOIMALIVE REFEIEINCES ..coiiiiiiii it eeaeeeaaaeeeeas 3
2.1 LT 0T o PP UPRRPTRI 3
2.2 F Y o] 010NV Z=To I = 1= =Y o = SRS 3
2.3 References UNder deVEIOPMENT ... e e e e e s s e e e e e e ae e e s e s sn e e rrereaeaeeeeenas 3
24 (@] 1 g [T (=] 1= = oo = PP PP UPRP PRSI 3
3. Terms and defiNitIONS ..o e e e e e e e e e e e e 5
3.1 LCT=T LT - | TP U PP PR 5
3.2 D72 11011 o] o = J TP PPPRRTTT 5
N e Lo T o T 1 A (0 1 = 7
4.1 [B=2Tod 1] o] 1 o] o FA PO PP OPPPPPRPPPP 7
4.2 Health and Fault Management CONSIAEIAtIONcoiiiiiiiieiiiiiiie ettt e s e e e snneee s 9
4.3 0= 15 ox: (o [T [o [l o] 0 E] o [=T £= 140 - J O OO PP OTP PR 9
4.4 Supported Profiles, Subprofiles, and PACKAgESc.uuiiiiiiiiiii e 9
4.5 MEthOds OF the PrOfile.........eeeeeeeee e e e e e e e e e ss s reeeeaaaeeeeeeas 9
4.6 Client Considerations and RECIPEScoiuuiiiiiiiiii et e e e eeneas 10
4.7 Registered Name @nd VEISIONuiiiiiiiiiiii ottt e e st e e s et e e e s anbbe e e e e snbneas 10
4.8 (O 11V =T 4T | £ PRSP 11
5. File Export Manipulation SUDProfile ... 17
5.1 [1= o] (o] o T SRR 17
5.2 Health and Fault Management CONSIAEIAtioONScovvvieiiiii i e e e e e e e neeeeeeas 22
5.3 0= 1SYor=To s [o [@] a1 (o [=T =1 110 1 S 24
5.4 Supported Subprofiles and PaCKagesuuuuiiiiiiiiieeiii i 24
55 Methods Of the Profil@.........ooi e 25
5.6 Client Considerations and RECIPESccccuuuiriiiiiieeieeeteeiess it e e e e e e eaeeeas s s aaarerreeaeeeasesaaaanrrenrerereees 40
5.7 Registered Name @nd VEISIONcccuuiiiiiiiiiiie e e e e s e s s e e e e e e e s e s s eeeaaaeeeeseasnnnsnnteareeeeaaaeeeaens 51
5.8 (O I 1= 41T | £ TP PP 52
6. File StOrage Profile ... 69
6.1 (DTS Tox g o] 1 o] o FU TR T OO PEPRTT 69
6.2 Health and Fault Management CONSIAEIAtIONcuiiiiiiiiiiiiie et e e e e 70
6.3 (02 TTor=To [[o W @0 a1 (o (=] =110] o 1S PP T T PPTOPP 70
6.4 Supported Profiles, Subprofiles, and PacKagesoooiuuiiiiiiiiiiee e 72
6.5 MEthOds OF the PrOfile...... ...t e e e e e e e et eeeaaaaae e as 72
6.6 Client Considerations and RECIPESooiiuueiiiiiieeieee ettt et e e e e e e e e e s bbb eeeeeeaaaaeaeeasaaannnbbebeeeeeeas 73
6.7 Registered Name @nd VEISIONooouuiiiiiiiiiiiiie ettt e ettt e e e e e e e e s e e e naab b b sbeeeaaaaaaaaaaas 73
6.8 (O 11V I =T 31T | €SP TP ST PP 73
7. FIHESYSIEM PrOfile ..t e e e e e e e e e e e e e e eeaennanne 75
7.1 (D= 2Tod 1] o] 1 o] o FOR PP PP UPPPPPTPP 75
7.2 Health and Fault Management CONSIAEIAtIONccoiiiriiieiiiiiie ettt e e 78
7.3 (0= 1 ox: To [o [o W o] g K]0 [=] =101 - F T PP P T OPPPPPOP 79
7.4 Supported Profiles, Subprofiles, and PACKAgESc.uuiiiiiiiiiiii e 80
7.5 MEthOds Of the ProOfile...... .. e e e e e e e e e s bt eeeaeaeeeeeeas 80
7.6 Client ConSIAEratioNS: USE CaSES......cciviiiiuuiiiiiieititteeeeeessaatttbeeeeeeeeaaeeeaasaaa s snttaeeeeereaaaaeesssaaansrsnreeeeeees 80
7.7 Registered Name @nd VEISIONuiiiiiiiiiie ettt e e st e e s et e e e e anbbe e e e e anneeas 20
7.8 (O 11V =T 1T | £ PRSP 91
8. Filesystem Manipulation SUDProfile ... 107
8.1 [T od 010 o S 107
8.2 Health and Fault Management CONSIAErationScccoiiiiiiiiiei e e e e e e e e e e e e e 114

SMI-S 1.2.0 Revision 6 SNIA Technical Position iX

8.3 (OF=TYor=To L1 [0 @01 0 1] T [=] = U1 o] o = SUPEPPPPPRPN 116

8.4 Supported Subprofiles and PaCKagESccoooiiiiiiieeee e e e e e e e e e e 116
8.5 Methods OF the Profile....... ... e e e e e ee e 117
8.6 Client Considerations and RECIPEScceiiiiiiiiie et e e e e e e e e e e et e e e et s s e seaaeeaaaaaaeaeeanes 139
8.7 Registered Name @nd VEISIONuuuuuiiiiiiii e e e ee ettt s e s e s e e e e e e e e et et e eeeeaeataen e annaa e e e eeaeeas 158
8.8 L0 11V I =T 41T o | £ TP P PP PPOPPPPPP 159
9. Filesystem QUOtAS Profil.......cooo s 193
9.1 (DS Tox g o] (o] o T PP PR UOPPPPPP 193
9.2 Health and Fault Management CONSIAEIAtIONScooiiiiiiiiiiiiiiie it e e 196
9.3 Supported Profiles, Subprofiles, and Packagesoocuuuiiiiiiiiie e 196
9.4 Methods Of the Profile....... ... e e e e e e e aeeeeeeas 196
9.5 Client Considerations and SAMPIE COUEuu ittt a e e eeaaeas 199
9.6 Registered Name @nd VEISIONoooiiiiiiiiiiiiie ettt e et ettt e e e e e e e e e e e e s s nbnbbeaeeeeeaeas 205
9.7 L0 11V I =T 41T o | £ U P PR PROPTPPPP 206
10. NAS HEAA Profil oot e e e e e e e e e aeeeees 215
00 R 9 =TT o T o TR 215
10.2 Health and Fault Management CONSIAEratioNScccvvviiriiiiieee e s s s ccceeee e e e e e e e s s s s arrerreeeeeeanaan 222
0 J5C T @%=T=Yor To [19T J @01 170 1] - 1 o] o SRR 223
10.4 Supported SUbProfiles aNd PACKAGESuuueiiiiiiiieeiee it e e e e e s s s s re e e e e e e e e s s s sannrraeerreeeaeesanan 223
10.5 Methods Of the Profile.......c.oiuiiiiiiiie et e e s st bee e e e e snebeas 224
10.6 Client Considerations and RECIPESuuuriiiiiiieeeiiiiiiiittiee e e e e e e e s s s s s s e e eeaeeeesesaaannsraranrrreraeaeaeesans 225
10.7 Registered Name and VEISIONcc.uuuiiiiiiiiiieeeeeiisssictteee et e e ee e e s s s as s eereeaaeaeeesanasnsrasrnrerereaaaaeesans 225
L10.8 CIM EIBMENIS ...ttt ettt e e et e e e e st bt e e e e skt bt e e e e e st b e e e e e ansbe e e e e ebbeeeeeeanbbeeeeeannbreas 226
11. Self-Contained NAS Profil@ ... 249
0 O 19 7= o o) 4 T 249
11.2 Health and Fault Management CONSIAEIrAtIONSccoeeiiiiiiiiieiieee e e e e e e e e e e e e e e e e e e aeaereeeeennnnas 254
R T O 1= Yot Vo [aTo T @0 0 1S o [=T =10) 1 255
11.4 Supported Subprofiles and PACKAgESciiiiiiiiiiiiiii st e e e e e e e e e e e e e e 255
115 Methods Of the Profile......... e et e e e e e e b e e e e e e e e e e e s 256
11.6 Client Considerations and RECIPEScvuvvuiuuiiiiiiiiiiieie i e e e e e e e e et ettt e e ee et asaaaeaeaeaaaaaeeerersanrenenrnnnnns 256
11.7 Registered Name and VEISIONcooviiiiiiiiiiiiiiiiissie et e e e e e e e e e te e et e eeeeaeaae et s e aaeaaeaaeaeaeeeterereaeresnnrnnnnns 257
L11.8 CIM EIBIMENES ..cceiiiiieiii ittt ettt e e e e e oo oo o bbb e ettt e e e e e e e e e e s s b e bbb e bt e e e e e e e e eannbbbbnsbeeeeeaaaeesaass 258
Annex A. (Informative) State Transitions from Storage to File Shares................ccvvveeee. 277

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.

List of Tables

FileShare OPEratiONAISTALUSc..iiiiii ettt et e e e e ettt e e e et bt e e e e e aatbe e e e e e aasneeeeaeaannbeeaeeaannteeeaeeannsbneeas 9
SUPPOrted Profiles fOr FIlE EXPOIT........cocuii ittt ettt et e ab et e s ene e e e sa b e e anbe e e e nr e e e neneee s 9
CIM EIEMENLS fOr FlE EXPOIT.....eeiiieiiiiiiiee ettt ettt e e e et e e e e e st et e e e s e tbaeeaaesaaeteesaasbbeeaeesassseeeeeesssseeeeeans 11
SMI Referenced Properties/Methods for CIM_ConcreteDependenCyccooiuurieieaiiiiieieee it e e eieeee e 12
SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare).........c.cccevviiiiiee s, 12
SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Setting)ccovvviiveeiiiiiiiee e 13
SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share) .
SMI Referenced Properties/Methods for CIM_HOSIEASNAIE............eiiiiiiiiie e
SMI Referenced Properties/Methods for CIM_SAPAvailableForElement
SMI Referenced Properties/Methods for SNIA_SharedElement..................

Operational Status for FIEEXPOIT SEIVICEoiiiiiiiiiiieiii ettt e e st e e e e e sanbreeeeeaan
Operational Status for File Server COMPULEISYSIEIMo..uiiiii ettt e e e e e e s eneee e e e e e anneeeaeeanes
Supported Profiles for File EXPOrt ManipUIBLIONooiiiiiiiie et
FileEXPOrtManipulation MENOASooiiiiiiiiiie ettt e e e e e st e e e e st b ae e e e e easssbaeaessasseeeeessnnens
Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettingsccccovevviieeeiniieeee e, 27
Parameters for Extrinsic Method FileExportServices.CreateEXportedShare ..o
Parameters for Extrinsic Method FileExportServices.ModifyExportedShare..................

Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare
SMI-S File Export Supported CapabilitieS PAEINSoiiiiiiiieiiiii e e e e e e e e
CIM Elements for File EXPOrt ManipUIALIONcooiueiiiieiiiiiie ettt e et e e e s ettt e e e e e nnaeeaeeeannneeeeeeaas
SMI Referenced Properties/Methods for SNIA_FIlEEXPOMSEIVICE.........ccoiiiiiiiiieiieee et
SMI Referenced Properties/Methods for CIM_HOSIEASEIVICEuuiiiiiiiiiiie it a e e ea e
SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configuration)ccccceeiviiiienennne 55
SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration)ccooiiiieiieiiiieneennne 57
SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES Capabilities)ccceeeneee. 57
SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities)
SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)
SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined)

SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Setting)........ccccccvevvveeeineenne 61
SMI Referenced Properties/Methods for SNIA_FileShare (Exported File Share)cccccceeviiieiie e 63
SMI Referenced Properties/Methods for SNIA_HOSIEASNAre..........coooiiiiiiiiiii e 64
SMI Referenced Properties/Methods for CIM_Service AffeCtSEIEMENT ..o 65
SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)...........ococevvveeeviiiinieeennnen. 65
SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement) ...66
SMI Referenced Properties/Methods for SNIA_SharedEIEMeNtcooiiiiiiiiiiiii e 66
SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)..........cc..eeiriiiiieiiiiiiiieee e 67
SMI Referenced Properties/Methods for CIM_ConcreteDependencCyccouvieiiieeeriiieiiiie e 67
SMI Referenced Properties/Methods for CIM_SAPAvailableFOrEIementc..evveeiiiiiiie e 68
(0F- LT or=To [0 IS (o] = To [SR PPPP S PPPPRPPN 72
CIM EIEMENLS fOr FIl® STOTAGE ...eeeiiiiiiiiiee ettt ettt e e ettt e e e e ettt e e e e e s be e e e s easbteeeaeaannseeeeeeanneeeeeaaann 73
SMI Referenced Properties/Methods for CIM_ReSIAESONEXIENT............eiiiiiiiiiiieiieee et 74
FileSyStem OpPEratiONalSTALUS.c.uviiee i ittt er ettt e e e e e e e et e e e e s et eeeeesastbaeeeesantbaeeaeseassssaeaesaasseeaeessnens
Supported Profiles for Filesystem

CIM Elements for FIlE@SYSIEM.......cooi it a e

SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)ccccceveeeviiveneennns 93
SMI Referenced Properties/Methods for CIM_FIl@STOrageocuveiiiiiiiiiiie et 93

SMI-S 1.2.0 Revision 6 SNIA Technical Position Xi

Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.

Xii

SMI Referenced Properties/Methods for SNIA_LocalAcceSSAVAIlabIe ... 94
SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access Required)..........ccocvvevvveeenneenne 94
SMI Referenced Properties/Methods for CIM_DEPENUENCYccuvuiieeiiiiiiiee s ceiitiee e ettt s e e e raaee e e e e siaaaea e e e 95
SMI Referenced Properties/Methods for SNIA_FileSyStemMSetting........c.uveiiiiiiiiiiiei e 95
SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)............ccoocveiiiiiiiereiiiiiieeeene 97

SMI Referenced Properties/Methods for SNIA_LocalFileSystem
SMI Referenced Properties/Methods for CIM_LogicalFilecccceveeiiiiieeeiiiiiiiiee s
SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting
SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)cccccceevicveeeenn.
LocalFileSystem OPEratiONAISTALUSc.ueiiirieiiiie ettt ettt sb e e st e e e e b e e s b b e e e abbe e e nnbeeeannee s
Supported Profiles for Filesystem ManipUIationoooiuiiiiiiiiiiie e e e stbee e e
Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modification.............cccccoovvveieeinnne
Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettingseeueeiiiiirieniiiiieee e
Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize

Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoalSettings
Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSyStemccccccoviiiieiiiniiiiincennns
Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem...........cccccoiiiiiieeiiiiiieeenns
Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem...........cccoceveveiiiiinieeennenn.
Filesystem Manipulation Supported CapabilitieS Patternscoiiiiiiiiiii e
CIM Elements for Filesystem ManipUIALIONoouuuiieiiiiiiiee ettt e e e st e e e e e sntbeeeeeaan
SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService............ccoouieieeeiiiiineeeniiieeeenne
SMI Referenced Properties/Methods for CIM_HOSIEASEIVICEcooiiiiiiiiiiiiiie e
SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilitieScccccceevviiievieiiiciieeeeenn,

SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FS Configuration Capabilities) 168
SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities ..o 168
SMI Referenced Properties/Methods for SNIA_ElementCapabilities (At Least ONe).........cccceevvvieieeeeiiieesieeenne. 169
SMI Referenced Properties/Methods for SNIA_ElementCapabilities (At Least One).......ccccoccvvvevieiiciiieiieeiiiiieneeenn 169
SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Pre-defined FS Settings)ccccceevvviveeeenn. 170
SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined FS Settings) 171

SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSystem)
SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesystem)
SMI Referenced Properties/Methods for SNIA_LOCAIFIESYSIEMcoiiiiiiiiiiiiiiee e
SMI Referenced Properties/Methods for CIM_HOStedFileSYStemc..ooiiiiiiiiiiie e
SMI Referenced Properties/Methods for CIM_FileStorage (Root Directory)
SMI Referenced Properties/Methods for CIM_LogicalFile (Shared Files and Directories).........c.ccccccvveveeeiiiiveneeenn.
SMI Referenced Properties/Methods for CIM_FileStorage (Shared Files and DireCtories)c..ccocceveeeiiiieeeennn.
SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSettingcccceeeiiiieiieeniineenne
SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)
SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined Local Access Settings). 185
SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Configuration Capabilities)186
SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilitiesccccoceeeeriiieeeenn.

SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File System)
SMI Referenced Properties/Methods for CIM_HostedDependency (Pre-Defined)cccccovvvviiieiiiiiiiiee v,
SMI Referenced Properties/Methods for CIM_HostedDependency (Pre-Defined)cccooviiiiiiiniiiiiieniiieeeen
SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)
SMI Referenced Properties/Methods for SNIA_LocalAccesSAVaAIlabIe ...
Supported Profiles for FIleSYStemM QUOTAScuuuiieiiiiiiie ettt e s e e e s st e e s e st e e e ataeeeeessntaeaeeessatbaeaeenan
CIM Elements for FileSYStem QUOLASuuiiieiiiiiiiie ettt ettt ettt e et e e e e e ab bt e e e s aabe e e e e e e snnbreeeeesanbbeeeeeaan
SMI Referenced Properties/Methods for SNIA_FSDoMaiNIAeNtitycoooiiiiiiiiieiiiiiee e

Table 97.
Table 98.
Table 99.

Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
Table 139.
Table 140.
Table 141.
Table 142.
Table 143.
Table 144.
Table 145.

SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities...........c.ocuuiiieiiiiiiiee e 207
SMI Referenced Properties/Methods for SNIA_FSQUOtaREPOIRECONTeeviiiiiiiiiie i 208
SMI Referenced Properties/Methods for SNIA_FSQUOtaINAICAtIONceveeiiiiiiiee e 209
SMI Referenced Properties/Methods for SNIA_FSQuotaManagementServViCeccuveeeiiiiirieieiniiieeeeeniieeee e 210

SMI Referenced Properties/Methods for SNIA_FSQUOtaCONfIGENTIY........cccoiiiiiiiiaiiiiiie e
SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToElement
SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToPrincipal
SMI Referenced Properties/Methods for SNIA_FSQUOtaAPPHESTOTICEccoiiiiiiiieiiiiieiee e
NEtWOrkPoOrt OpPeratiONAISTALUScii ittt e et e e e e ettt e e e e s eaeee e e e e e saeeeaaeaansbeeaeeaansbeeeaesannneeas
ProtocolENdpOoint OPEratiONAISTALUSeeeiiiiiiiiieiieie sttt e st e st s e e s b e e s abb e e e nnneeeannee s
Supported Profiles fOr NAS HEAMuiiii ittt e e e ettt e e e et e e e ata e e e e e e sntbeeeeessstaeeaeeannees
CIM EIEMENLS fOr NAS HEAMeeiiiiiiiiiiie ittt e ettt e e e et et e e e e bttt e e sbb et e e e e e aabbeeeeeeanbbeeeeesnnes
SMI Referenced Properties/Methods for CIM_BIindSTO (CIFS OF NFS)cooiiiiiiiiiiiiee e
SMI Referenced Properties/Methods for CIM_BindsTo (TCP).........cccccveenne
SMI Referenced Properties/Methods for CIM_BindSTOLANENAPOINTcoeiiiiiiiiiieiiiiiiee et

SMI Referenced Properties/Methods for CIM_ComputerSystem (TOp LeVel)........ooouiiiiiiiiie e 230
SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)oocioiee e 232
SMI Referenced Properties/Methods for CIM_ConcreteCOmMPONENTc.eeeiirieiiirierieee e 233
SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)............ 233
SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort) 234

SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)
SMI Referenced Properties/Methods for CIM_HostedAcCesSSPOINt (TCP)couvvviiiiiiiiiee e
SMI Referenced Properties/Methods for CIM_HostedACCeSSPOINE (IP)........coviiiiiieiiiiiiiie e
SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)ccceeevuees

SMI Referenced Properties/Methods for CIM_IPProtoCOIENAPOINT............coiiiiiiiiiiaiiiiiiie e
SMI Referenced Properties/Methods for CIM_LANENAPOINTc.ueiiiiiiiiieeiiiee et
SMI Referenced Properties/Methods for CIM_LogicalDisk (LD fOr FS)ccoiiiiuiiieiiiiiiiee e
SMI Referenced Properties/Methods for CIM_NEtWOIrKPOIT............coiiiiiiiiie e
SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS of NFS)coouuiiiiiiiiiiie e
SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial)ccooviieeiiiieiiiieeee e
SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extents)
SMI Referenced Properties/Methods for CIM_SystemDevice (Logical DiSKS)couiueiiiiiiiiiiiiieiiiiieiee e
SMI Referenced Properties/Methods for CIM_SystemDevice (Network POIMS)........coouueiiiiiiiiiieei e
SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint
NEtWOrKPOrt OpPeratioNalSTAtUSoeiiiiiiiiie et e e e e e e e s et e e e e e s bt e e e e e e sbteeeaesaatbeeaeeasatbaeeeesaseneeas
ProtocolENdpPoint OPEratiON@ISTALUScoiiuiiiiiiiiieie ettt e e e ettt e e e et e e e s e bbb e e e e e e aabb e e e e e s sanbneeas
Supported Profiles for Self-contained NAS SYSIEIM ..o ee e e e e e entaeeea s
CIM Elements for Self-contained NAS SYSIEIMcoiiiiiiiiieiiee ettt
SMI Referenced Properties/Methods for CIM_BindSTO (CIFS OF NFS)cviiiiiiiiiee e srer et
SMI Referenced Properties/Methods for CIM_BiNdSTO (TCP)uuiiiiiiiiiiieeiiit et
SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint
SMI Referenced Properties/Methods for CIM_ComputerSystem (TOp LeVel).......ccovorieiiiiiiiiieceee e
SMI Referenced Properties/Methods for CIM_ComputerSystem (File SErver)cccccvvveeiiiiiiee e

SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)............ 265
SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort) 265
SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS o NFS)coooiiiiiiiiiiiieeeie e 266
SMI Referenced Properties/Methods for CIM_HostedAccessPOINt (TCP)ccvviiieiiiiiiiee e 266
SMI Referenced Properties/Methods for CIM_HoStedACCESSPOINT (IP).....cccoiiiiiiiiiiiiiiiie e 266
SMI Referenced Properties/Methods for CIM_HostedAccesSPOINt (LAN)oouueiiieeiiiiee e 267

SMI-S 1.2.0 Revision 6 SNIA Technical Position Xiii

Table 146.
Table 147.
Table 148.
Table 149.
Table 150.
Table 151.
Table 152.
Table 153.

Xiv

SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint....
SMI Referenced Properties/Methods for CIM_LANEnNdpoint

SMI Referenced Properties/Methods for CIM_LogicalDisk (DiSK fOr FS)ccciiiiiiiiiiieiicciiiese et

SMI Referenced Properties/Methods for CIM_NetworkPort...............
SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

SMI Referenced Properties/Methods for CIM_SystemDevice (Logical DISKS)c.couveeiiiieiiiiiiieeeee e

SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)

SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

List of Figures

Experimental Maturity LEVEI TAQGcccoeeurriieiiieieeeeeeis s sttt ee e e e e e e e s e s ssssasbaeaeeeeeaeeeessssnnnsnnaeeeaeeeeessnannnnnnns Vi
Implemented MatUrity LEVEI TGcuueieieiiiiiiiiiiii e e e ettt s s s e s e e e e e e e aaaaeeaeaeaaeeeeenennnes Vi
Stable MatUNLY LEVEI TG ... i uueiiieeiiiiiii ettt e e s et b e e ebbb e e e e e annbr e e e e e ennees vii
(1T o = Tor= 1 =0 I 1= Vo Vil
1Ll o d oo A S 7= L o TR UURTT PR 8
File Export Manipulation SUbprofile INSTANCEccooi i 18
Capabilities and Settings for Exported File Share Creation ..o 21
File StOrage INSTANCEoooiiiiiiiie ettt e e s et e e e sabb e e e e nbb e e e e e nnres 69
(O TYor=To [T o T] (SIS (o] = Vo [71
FlESYSIEM INSEANCE.eeiieiiiiiie ettt e e s et e e e e sab et e e nb bt e e e e nnbe e e e e e nnnneas 76
LocalFileSystem Creation INStance DIagramcc.uuurereiiirieeeeiesiiiieirrieeereereeeeseessssnsnsrenerereeeeseesens 108
Capabilities and Settings for Filesystem Creationccc.ueueiiiiiiiiiiiiee e 113
Filesystem Quotas INStANCE DIAGIAIMuuuuiiiiiiieeeiiiiiiiiiieee e e e e e e e e s s s s e e e e e e e e s s snsnnnrnraaraeeeeeesenas 196
NAS Head Profiles and SUBPIOfilEScoiiiiii i e 216
N TSR o (== o [1S - g o= RSP 217
N SIS (o] = To [[1S t= U [0 PSPPSR PUPPTRTPPPNt 219
NAS Head Cascading SUPPOIt INSTANCEcciiiiiiiiiiiiite ettt e e e e e e e 221
Self-Contained NAS Profile and SUBProfiles ... 250
Self-ContaiNed NAS INSTANCE......ciiiiiiaii ittt e et e e e e e e e s e s e babbbe b e e eeaaaeaeeeesaaannranes 251
NAS SEOrAgE INSTANCEeeeiiiieeee ittt e e e e s e e ettt e e e e e s s s e e e e eaeeeeenaens 253
State Transitions From LogicalDisk t0 FIleShareouuviiiiiiiiiiiiii e 278

SMI-S 1.2.0 Revision 6 SNIA Technical Position XV

XVi

Foreword

The Filesystems Part of the Storage Management Technical Specifications contains Profiles and other clauses for
management of devices and programs that support filesystems. A filesystem is a specific formatting of storage for
storing and accessing files on external storage. This part describes how filesystems are created, modified and
deleted, as well as how they can be found and reported. This part also describe modeling for how filesystems are
exported for access from remote systems. The filesystem profiles use information from other parts of the Storage
Management Technical Specifications. Specifically, they reference profiles in the Common Profiles and the Block
Devices parts of the specification. This part describes how these profiles are used in filesystem profiles.

Parts of this Standard
This standard is subdivided in the following parts:

= Storage Management Technical Specification, Part 1 Common Architecture

= Storage Management Technical Specification, Part 2 Common Profiles

= Storage Management Technical Specification, Part 3 Block Devices

= Storage Management Technical Specification, Part 4 File Systems

= Storage Management Technical Specification, Part 5 Fabric

= Storage Management Technical Specification, Part 6 Host Elements

= Storage Management Technical Specification, Part 7 Information Lifecycle Management
= Storage Management Technical Specification, Part 8 Media Libraries

Acknowledgements

The SNIA SMI Technical Steering Group, which developed and reviewed this standard, would like to recognize the
significant contributions made by the following members:

Organization Representedcccccccceeiiiinnnnnns Name of Representative
Brocade Communications Systems.................... John Crandall
EMC Corporationccccvveeeeeeereeeeeesiessiinveeeeeens Kamesh Aiyer
... Edgar St. Pierre
Hewlett-Packard.............cccoeiiiieee, Steve Peters
Hitachi Data Systems........ccccccvvveeeeeeiiiviiiiieeeeen, Steve Quinn
IBM . Duane Baldwin
... Jack Gelb
... Mike Walker
iIStor Networks, INC.cooeiiiiviieieiieeeee e Scott Baker
Network Applianceocoevvviviiiiiiniiiee e, Alan Yoder

SuN MICrOSYSIEMS.....ccoieeicieiiiieeee e Mark Carlson
SYMANTEC ...t Steve Hand

... Paul von Behren
SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SMI-S 1.2.0 Revision 6 SNIA Technical Position XVii

http://www.snia.org

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage
Networking Industry Association, 500 Sansome Street, Suite #504, San Francisco, CA 94111, U.S.A.

Xviii

http://www.snia.org/feedback

Scope

Clause 1: Scope

The Filesystems Part of the Storage Management Technical Specification defines management profiles for
Autonomous (top level) profiles for programs and devices whose central function is providing support and access
to file data. In addition, it provides documentation of component profiles (or subprofiles) that deal with filesystems
and management interface functions that may be used by other autonomous profiles not included in this part of the
specification.

There is an informative annex that describes how storage is mapped from block storage to file shares exported by
the file system and the mechanisms involved in that establishing those mappings. This annex is recommended for
getting an overview of how the filesystem models work.

This version of the Filesystems part of the Storage Management Technical Specification includes two autonomous
profiles:

e The NAS Head Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users and gets
its storage from a SAN (array devices attached to the NAS Head device).

e The Self-Contained NAS Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users, but gets
its storage from disk drives that are internal to the NAS device (instead of externally attached arrays).

In addition to these autonomous profiles, this part of the specification defines a number of component profiles,
which are used by the autonomous NAS profiles and might also be used by other autonomous profiles that feature
filesystem elements and services. The component profiles (subprofiles) defined in this version of the specification
include:

= The File Export (component) Profile

This component profile defines the elements used to model the exporting of filesystems or directories for any
autonomous profile that exports file data to remote systems.

= The File Export Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
the file shares (the representation of exported filesystems or directories) for any autonomous profile that
provides manipulation of exported filesystems or directories.

< The File Storage (component) Profile

This component profile defines the elements used to model the storage of filesystems on logical disks. This
profile does not have services for maintaining the mapping of filesystems to logical disks. These services are
addressed in the Filesystem Manipulation Profile.

= The Filesystem (component) Profile

This component profile defines the elements used to model filesystems and its related elements, such as
logical files, directories and information on how the filesystem is addressed when mounted to a specific
system. The services for defining and maintaining the information in the Filesystem Profile are contained in the
Filesystem Manipulation Profile.

« The Filesystem Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
filesystems and their related elements.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 1

Scope

< The Filesystem Quotas (component) Profile

This component profile defines the elements used to model the elements associated with creating, maintaining
and reporting on quotas on various filesystem elements.

Normative References

Clause 2: Normative References

2.1 General

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

2.2 Approved references
ISO/IEC 14776-452, SCSI Primary Commands - 2 (SPC-2) [ANSI INCITS.351-2001]

ISO/IEC 24775 Storage Management

2.3 References under development

Storage Management Technical Specification, Part 1 Common Architecture
Storage Management Technical Specification, Part 2 Common Profiles
Storage Management Technical Specification, Part 3 Block Devices

ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]

2.4 Other references
DMTF DSP0214:2004 CIM Operations over HTTP

SMI-S 1.2.0 Revision 6 SNIA Technical Position 3

Normative References

Terms and definitions

Clause 3: Terms and definitions

3.1 General

For the purposes of this document, the terms and definitions given in Storage Management Technical
Specification, Part 1 Common Architecture and the following apply.

3.2 Definitions

321 CIFS
Common Internet File System.

3.2.2 directory
A subtree within a filesystem. A directory may contain files or other directories.

3.2.3 file
A logical file in a filesystem.

3.24 file server

A system configuration which supports the exporting of files and files systems. A file server may be a virtual
system element.

3.25 file share
Sharing protocols applied to a directory. A directory is exported to remote users through a file share.

3.2.6 filesystem
A filesystem is the way in which files are named and where they are placed logically for storage and retrieval.

3.2.7 FS quota
A quota (hard or soft limit) placed on filesystem resource usage.

3.2.8 logical disk

This refers to block storage on which filesystems are built. A logical disk would be formatted for a particular
filesystem.

3.2.9 NAS
Network Attached Storage. In the context of this specification this refers to devices that serve files to a network.

3.2.10 NAS Head
A NAS device that gets its physical storage from one or more arrays that are externally attached to the NAS device.

3.2.11 NFS
Network File System.

3.2.12 Self-Contained NAS
A NAS device that has its own internal (to the NAS device) storage.

3.2.13 quota

A hard or soft limit defined for users, user groups or resource collections on the amount of resources that may be
consumed.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 5

Terms and definitions

File Export Profile

STABLE

Clause 4: File Export Profile

4.1 Description

4.1.1 Synopsis

Profile Name: File Export

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: SNIA_FileShare
Scoping Class: CIM_ComputerSystem

4.1.2 Overview

The File Export Profile is a subprofile for autonomous profiles that support exporting of filesystems. Specifically, in
this release of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles. In some of these autonomous
profiles the File Export is required. In others it may not be. See the parent profile to see if this profile is required or
not.

EXPERIMENTAL

NOTE: The ExportedFileShareSetting is defined as SNIA_ classes. While this is defined to hold new properties,
the CIM version of this class will be supported for backward compatibility.

EXPERIMENTAL

4.1.3 Implementation

Figure 5 illustrates the classes mandatory for modeling the export of File Shares for the filesystem profiles. This
profile is supported by the Self-contained NAS and the NAS Head Profiles. Figure 1 shows the ComputerSystem
that hosts the LocalFileSystem (“Filesystem Host”) as different from the ComputerSystem hosting the FileShare
(“File server”). While they may be different ComputerSystems, they may also be the same ComputerSystem
instance.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 7

File Export Profile

Figure 5: File Export Instance

ProtocolEndPoint

ProtocollFType = 4200 | 4201
(NFS" or "CIFS")

*

p— .

File Export —SAPAvailableForElement

Profile *

FileShare . .
SNIA_ExportedFileShareSettin
NFS or CIFS —ElementSettingData—| =P g
0..* 1 1
0..*
HostedShare SNIA_SharedElement
e ConcreteDependency -
(Optional)
(For Backward Compatibility to 1.1)
LogicalFile
1 | (for Backward Compatibility to 1.1)
ComputerSystem
File server FileStorage
(For Backward Compatibility to 1.1)
ComputerSystem LocalFileSystem
HostedFileSystem

Filesystem Host 1

The referencing profile shall model any File Shares that have been exported to the network. A File Share shall be
represented as a FileShare instance with associations to the ComputerSystem that hosts the share (via
HostedShare), to the ExportedFileShareSetting (via ElementSettingData) and to the ProtocolEndpoint (via
SAPAvailableForElement) through which the Share can be accessed.

EXPERIMENTAL
The FileShare also has a SharedElement association to the LocalFileSystem on which the share is based.

EXPERIMENTAL

In addition, there may also be an association between the FileShare and the LogicalFile that the share represents
(via ConcreteDependency). This is provided for backward compatibility with SMI-S 1.1.0.

4.1.3.1 Associations to FileShare

The SAPAvailableForElement is a many to many association. That is, multiple FileShares may be exported through
the same ProtocolEndpoint and multiple ProtocolEndpoints may support the same FileShare.

The SharedElement association between the FileShare and a LocalFileSystem is many to one association. Zero or
more FileShares may be associated to one LocalFileSystem. But each FileShare shall only reference one
LocalFileSystem.

File Export Profile

The ConcreteDependency association between the FileShare and the LogicalFile is a many to one association.
Zero or more FileShares may be associated to one LogicalFile. But each FileShare shall only reference one
LogicalFile.

The ElementSettingData association between the FileShare and the ExportedFileShareSetting is a one to one
association. That is, a FileShare shall have an ExportedFileShareSetting and that ExportedFileShareSetting shall
be associated to exactly one FileShare.

4.2 Health and Fault Management Consideration
The File Export Profile supports state information (e.g., OperationalStatus) on the following element of the model:

= FileShares that are exported (See section 4.2.1)

4.2.1 OperationalStatus for FileShares

Table 1: FileShare OperationalStatus

OperationalStatus Description
OK FileShare is online
Error FileShare has a failure. This could be due to a Filesys-
tem failure.
Stopped FileShare is disabled
Unknown

4.3 Cascading Considerations

None

4.4 Supported Profiles, Subprofiles, and Packages

Table 2: Supported Profiles for File Export

Registered Profile Names Mandatory Version

Indication Yes 1.2.0

4.5 Methods of the Profile

45.1 Extrinsic Methods of the Profile

None

SMI-S 1.2.0 Revision 6 SNIA Technical Position 9

File Export Profile

4.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= Getlnstance

< Associators

< AssociatorNames

< References

< ReferenceNames

= Enumeratelnstances

e EnumeratelnstanceNames

4.6 Client Considerations and Recipes

4.6.1 List Existing FileShares on the system

A client shall be able to find FileShares attached to a system (e.g., a file server) by doing an association traversal
from the ComputerSystem that represents the system using the HostedShare association.

4.7 Registered Name and Version

File Export version 1.2.0

10

4.8 CIM Elements

File Export Profile

Table 3: CIM Elements for File Export

Element Name

Requirement

Description

WHERE Sourcelnstance ISA CIM_FileShare
AND Sourcelnstance.OperationalStatus[*] <>
Previousinstance.OperationalStatus[*]

CIM_ConcreteDependency (4.8.1) Optional Represents an association between a
FileShare element and the actual shared
LogicalFile or Directory on which it is based.
This is provided for backward compatibility.

CIM_ElementSettingData (FileShare) (4.8.2) | Mandatory Associates a FileShare and
ExportedFileShareSetting elements.

SNIA_ExportedFileShareSetting (Setting) Mandatory The configuration settings for an Exported

(4.8.3) FileShare that is a setting for a FileShare
available for exporting.

CIM_FileShare (Exported File Share) (4.8.4) | Mandatory Represents the sharing characteristics of a
particular file element.

CIM_HostedShare (4.8.5) Mandatory Represents that a shared element is hosted
by a Computer System.

CIM_SAPAvailableForElement (4.8.6) Mandatory Represents the association between a
ServiceAccessPoint to the shared element
that is being accessed through that SAP.

SNIA_SharedElement (4.8.7) Mandatory Associates a FileShare to the
LocalFileSystem on which it is based.

SELECT * FROM CIM_InstModification Optional Experimental CQL - Change of Status of a

WHERE Sourcelnstance ISA CIM_FileShare FileShare. PreviouslInstance is optional, but

AND may be supplied by an implementation of the

Sourcelnstance.CIM_FileShare::OperationalS Profile.

tatus[*] <>

Previousinstance.CIM_FileShare::Operational

Status[*]

SELECT * FROM CIM_ InstModification Mandatory Deprecated WQL - Change of Status of a

FileShare. Previouslinstance is optional, but
may be supplied by an implementation of the
Profile.

4.8.1 CIM_ConcreteDependency

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: Optional

SMI-S 1.2.0 Revision 6 SNIA Technical Position

11

File Export Profile

Table 4 describes class CIM_ConcreteDependency.

Table 4: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The LogicalFile that is being shared.

Dependent Mandatory The Share that represents the LogicalFile being shared.
4.8.2 CIM_ElementSettingData (FileShare)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: Mandatory

Table 5 describes class CIM_ElementSettingData (FileShare).

Table 5: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)

Properties Flags Requirement | Description & Notes

IsDefault N Optional Not Specified in this version of the Profile
IsCurrent N Optional Not Specified in this version of the Profile
IsNext N Optional Not Specified in this version of the Profile
IsMinimum N Optional Not Specified in this version of the Profile
IsMaximum N Optional Not Specified in this version of the Profile
ManagedElement Mandatory The FileShare.

SettingData Mandatory The settings define on creation of the FileShare.

4.8.3 SNIA_ExportedFileShareSetting (Setting)

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: Mandatory

12

File Export Profile

Table 6 describes class SNIA_ExportedFileShareSetting (Setting).

Table 6: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Setting)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory A unique ID for the setting.

ElementName Mandatory A user-friendly name for the Setting.

FileSharingProtocol Mandatory The file sharing protocol supported by this share. NFS (2)
and CIFS (3) are the supported values.

ProtocolVersions Mandatory An array of the versions of the supported file sharing
protocol. A share may support multiple versions of the
same protocol.

InitialEnabledState N Optional Valid values are '1|2|3|7|8|9' for ('Other' | 'Enabled' |
'‘Disabled’ | 'In Test' | 'Deferred' | 'Quiesce’)

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is '1'.

DefaultUserldSuppor | N Optional Valid values are '2|3|4' for (‘'No Default User Id' | 'System-

ted Specified Default User Id' | 'Share-Specified Default User
Id".

RootAccess N Optional Valid values are '2|3' for (‘No Root Access' | 'Allow Root
Access').

AccessPoints N Optional Valid values are '2|3|4|5' for (‘None' | 'Service Default' | 'All' |
‘Named Points').

Caption N Optional Not Specified in this version of the Profile

Description N Optional Not Specified in this version of the Profile

DefaultReadWrite N Optional Not Specified in this version of the Profile

DefaultExecute N Optional Not Specified in this version of the Profile

ExecuteSupport N Optional Not Specified in this version of the Profile

WritePolicy N Optional Not Specified in this version of the Profile

4.8.4 CIM_FileShare (Exported File Share)

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: Mandatory

SMI-S 1.2.0 Revision 6

SNIA Technical Position 13

File Export Profile

Table 7 describes class CIM_FileShare (Exported File Share).

Table 7: SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.

Name Mandatory This shall be an opaque string that uniquely identifies the
path to the directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is
useful when importing but less so when exporting.

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in
section 4.2.1

Description N Optional This a comment describing the file share.

Caption N Optional Not Specified in this version of the Profile

InstallDate N Optional Not Specified in this version of the Profile

StatusDescriptions N Optional Not Specified in this version of the Profile

HealthState N Optional Not Specified in this version of the Profile

EnabledState N Optional Not Specified in this version of the Profile

OtherEnabledState N Optional Not Specified in this version of the Profile

RequestedState N Optional Not Specified in this version of the Profile

EnabledDefault N Optional Not Specified in this version of the Profile

TimeOfLastStateCha | N Optional Not Specified in this version of the Profile

nge

RequestStateChange Optional Not Specified in this version of the Profile

0

4.8.5 CIM_HostedShare

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: Mandatory

14

File Export Profile

Table 8 describes class CIM_HostedShare.

Table 8: SMI Referenced Properties/Methods for CIM_HostedShare

Properties Flags Requirement | Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile
Dependent Mandatory The Share that is hosted by a Computer System
Antecedent Mandatory The Computer System that hosts the FileShare.

4.8.6 CIM_SAPAvailableForElement

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: Mandatory

Table 9 describes class CIM_SAPAvailableForElement.

Table 9: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement | Description & Notes

ManagedElement Mandatory The element that is made available through a SAP. In the
File Export subprofile, these are FileShares configured for
either export.

AvailableSAP Mandatory The Service Access Point that is available to this FileShare.

4.8.7 SNIA_SharedElement

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: Mandatory

Table 10 describes class SNIA_SharedElement.

Table 10: SMI Referenced Properties/Methods for SNIA_SharedElement

Properties Flags Requirement | Description & Notes

SystemElement Mandatory The LocalFileSystem that is exporting some contained file
or directory as a FileShare.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 15

File Export Profile

Table 10: SMI Referenced Properties/Methods for SNIA_SharedElement

Properties

Flags

Requirement

Description & Notes

SameElement

Mandatory

The FileShare that exposes a contained file or directory of
the LocalFileSystem as an exported object.

STABLE

16

File Export Manipulation Subprofile

EXPERIMENTAL

Clause 5: File Export Manipulation Subprofile

5.1 Description

5.1.1 Synopsis

Profile Name: File Export Manipulation
Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: FileExportService

Scoping Class: File server ComputerSystem element (with Dedicated property containing "16")

5.1.2 Overview

The File Export Manipulation Subprofile is a subprofile of autonomous profiles that support filesystems. It makes
use of elements of the Filesystem subprofiles and supports creation, modification and deletion of FileShares that
are exported by the File Export subprofile. A number of other profiles and subprofiles also make use of elements of
the Filesystem subprofile and will be referred to in this specification as “filesystem related profiles” -- these include
but are not limited to the Filesystem subprofile, the Filesystem Manipulation subprofile, the File Export subprofile,
the NAS Head profile, the Self-Contained NAS profile, and so on.

In this release of SMI-S, the autonomous profiles that use the File Export Manipulation Subprofile are the NAS
Head and Self-Contained NAS profiles.

Annex A:, "(Informative) State Transitions from Storage to File Shares" describes the states that a storage element,
initially an unused LogicalDisk, goes through before it can be exported as a CIFS or NFS file share. The
Filesystem Manipulation subprofile provides the methods to create the filesystem as a LocalFileSystem and make
it locally accessible at a file server ComputerSystem (associated to the file server ComputerSystem via the
LocalAccessAvailable association). This profile (the File Export Manipulation Profile) provides the methods to
"Export a file share" from the file server that allows the file server to share its contents with remote operational
users. Sharing the contents of a LocalFileSystem can be from the root directory or some contained internal
directory, or some contained internal file. When a directory (root or otherwise) is shared, all files and sub-directories
of that directory are also automatically shared (recursively). The semantics of sharing are ultimately controlled by
the Authorization profiles and by the filesystem implementation, so sharing cannot violate the access rules
specified internally to the filesystem. In addition to specifying the object (file or directory) to be shared, the
filesystem implementation shall specify the protocol to use (CIFS, NFS, or other protocol) for sharing.

In SMI-S we use a FileShare element to represent the externally accessible file share. A SharedElement
association will exist between the FileShare and the LocalFileSystem. The FileShare.Name property indicates the
shared object (it is the filesystem-specific path to the contained file or directory that is being shared). The format of
Name is specific to the filesystem type indicated by the associated FileSystemSetting.ActualFileSystemType
property; the LocalFileSystem.PathnameSeparatorString property indicates the "separator string" that may be used
to split the PathName into the components of a hierarchical path name from the root of the associated file system
(indicated by the LocalFileSystem).

Note: Some incompatibilities with SMI-S 1.1 (in which this profile was also "EXPERIMENTAL") have been
introduced in the parameters to some of the extrinsic methods.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 17

File Export Manipulation Subprofile

5.1.3 Instance Diagrams

5.1.3.1 File Export Creation classes and associations
Figure 6 illustrates the constructs involved with creating a FileShare for a File Export subprofile. This summarizes

Figure 6: File Export Manipulation Subprofile Instance

ComputerSystem
1 | Dedicated[]="File Server” 16 }
1 1
1
FileExportCapabilities
FileSharingProtocols[])
/I ProtocolVersions[] HostedService
SynchronousExportMethods[] | 1 o
AsynchronousExportMethods|] | ElementCapabilities
InitialEnabledState 1 FileExportService HostedShare
ElementCapabilities
Characteristics={"Default"} Crea_tteExportedShare()
. ModifyExportedShare()
ElementCapabilities
1 ReleaseExportedShare()
. 1
1 ServiceAffectsElement
ExportedFileShareCapabilities * *
FileSharingProtocol FileShare
/I ProtocolVersions|[] Name="path to shared - -
SupportedProperties[] 1 _elpeamen o ExportedFileShareSetting LocalAccessAvailable
CreateGoalSettings() > > ! FileSharingProtocol
1 /I ProtocolVersions[]
) InitialEnabledState
HostedAccessPoint ElementSettingData OtherEnabledState
DefaultReadWrite
SettingsDefineCapabilities DefaultExecute
. ExecuteSupport
SAPAvailableForElement 1 DefaultUserldSupported
f - ConcreteDependency ——SharedElement—, RootAccess
ExportedFileShareSetting (BC 1.1) WritePolicy
AccessPoints
1 1
* ProtocolEndPoint LogicalFile LocalFileSystem
* (or Directory) : %
ProtocollFType="Other" 17':'(';?2"??97
OtherTypeDescription='NFS" (BC11))
or "CIFS"

the mandatory classes and associations for this subprofile. Specific areas are discussed in later sections.

The FileExportService provides configuration support for exporting elements (files' and ’directories’) of a
LocalFileSystem as FileShare elements. A FileExportService is hosted by the file server ComputerSystem that
exports the directories/files (these would be the file server ComputerSystems in the Filesystem subprofile that were
given local access to the filesystem). FileShares are accessed through ServiceAccessPoint(s) hosted by the file
server ComputerSystem. FileShares are associated with the FileExportService via ServiceAffectsElement and with
the ServiceAccessPoint(s) via SAPAvailableToElement.

If a filesystem related profile supports the File Export Manipulation Subprofile, it shall have at least one
FileExportService element. This FileExportService shall be hosted on the top level ComputerSystem of the File
Export subprofile (which shall be a file server ComputerSystem element in the filesystem related profiles). The
methods offered are CreateFileShare, ModifyFileShare, and ReleaseFileShare.

Associated to the FileExportService (via ElementCapabilities) shall be one FileExportCapabilities element that
describes the capabilities of the service. It identifies the methods supported, whether the methods support Job

18

File Export Manipulation Subprofile

Control or not, the protocols that the created file share can support, and whether or not the file share shall be made
available after creation.

For each file sharing protocol that is supported, there shall be one ExportedFileShareCapabilities element that
defines the range of capabilities supported for that particular file sharing protocol. The
ExportedFileShareCapabilities elements shall be associated via ElementCapabilities to the FileExportService.
One of the ExportedFileShareCapabilities may be identified as a default (by setting the property
ElementCapabilities.IsDefault). The default ExportedFileShareCapabilities element also indicates the default file
sharing protocol to be supported. These defaults apply if any of the extrinsic methods of the FileExportService are
invoked with a NULL value for the Capabilities parameter.

Each ExportedFileShareCapabilities element is defined by a set of ExportedFileShareSettings that are associated
to it by the SettingsDefineCapabilities association. These ExportedFileShareSettings may be structured to indicate
a range of supported and unsupported property values and shall have the same value for the FileSharingProtocol
property as the ExportedFileShareCapabilities element.

For the convenience of clients the File Export Manipulation subprofile may populate a set of “pre-defined”
ExportedFileShareSettings for each of the ExportedFileShareCapabilities. These shall be associated to the
ExportedFileShareCapabilities via the SettingsDefineCapabilities association -- the association shall have its
SettingsDefineCapabilities.PropertyPolicy property set to "Correlated"” and
theSettingsDefineCapabilities.ValueRole property set to "Supported".

Note: That they are pre-defined and therefore exist at all times does not imply that these
ExportedFileShareSettings must be made persistent by the implementation.

The ExportedFileShareCapabilities instance supports the CreateGoalSettings method, described in detail in 5.5.1,
"Extrinsic Methods of the Profile". This method supports establishing one client-defined ExportedFileShareSettings
(as a goal).

CreateGoalSettings takes an array of embedded SettingData elements as the input TemplateGoalSettings and
SupportedGoalSettings parameters and may generates an array of embedded SettingData elements as the output
SupportedGoalSettings parameter. However, in this profile, we only use a single embedded
ExportedFileShareSettings element in the input parameters (both TemplateGoalSettings and
SupportedGoalSettings) and generate a single valid embedded ExportedFileShareSettings element as output
(SupportedGoalSettings). If a client supplies a NULL ExportedFileShareSettings (i.e., the empty string) as input
to this method, the returned ExportedFileShareSettings structure shall be a default setting for the parent
ExportedFileShareCapabilities. If the input (the embedded ExportedFileShareSettings) is not NULL, the method
may return a “best fit” to the requested setting. The client may iterate on the CreateGoalSettings method until it
acquires a setting that suits its needs. This embedded settings structure may then be used when the
CreateFileShare or ModifyFileShare methods are invoked. The details of how iterative negotiation can work are
discussed in 5.5.1.1, "ExportedFileShareCapabilities.CreateGoalSettings”. Note that the file sharing protocol
indicated by the FileSharingProtocol property is invariant in all of these interactions. It is an error if the client
changes the FileSharingProtocol property for a Setting and submits it as a goal to the Capabilities element that
provided the original Setting.

Note: Itis not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back
mechanism is needed. This profile does not require negotiation -- an implementation may support only
a set of pre-defined correlated point settings that a client can preload and use without modification. The
implementation could also support only settings whose properties are selectable from an arithmetic
progression or from a fixed enumeration, so that the client may construct a goal setting that is
guaranteed to be supported without negotiation.

Note: That a client has obtained a goal setting supported by the implementation does not guarantee that a
create or modify request will succeed. Such a setting only specifies a supported static configuration not
that the current dynamic environment has the resources to implement a specific request.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 19

File Export Manipulation Subprofile

Armed with the goal (the embedded ExportedFileShareSettings element), a reference to a LocalFileSystem, and a
path to a file or directory contained within that LocalFileSystem, the client can now use the CreateFileShare
method to create the file share for export. The CreateFileShare method creates a FileShare element, and a new
ExportedFileShareSettings instance as well as several necessary associations. These associations are:

= HostedFileShare association between the FileShare and the file server ComputerSystem that hosts it.

< SharedElement association between the FileShare and the LocalFileSystem. In addition, the FileShare
element specifies the pathname for the shared element (file or directory) relative to the root of the
LocalFileSystem (using the Name property).

< ElementSettingData to associate the FileShare to the ExportedFileShareSetting defined for it

= For backward compatibility with the SMI-S 1.1 File Export subprofile:
= The file or directory of the LocalFileSystem that is being shared is represented as a LogicalFile
= A FileStorage association is created between the LogicalFile and the LocalFileSystem
= A ConcreteDependency association is created between the FileShare and the LogicalFile.

= In addition, optional parameters to the method can cause other classes to be created:

= DefaultUserld could create a Privilege (see Clause 5: File Export Manipulation Subprofile of Storage
Management Technical Specification, Part 2 Common Profiles) associated to the FileShare as
AuthorizationTarget and to a Userldentity as AuthorizationSource

= RootAccessHosts array parameter could create root access Privileges from a number of remote Host
ComputerSystems to the FileShare (also using the Security Authorization subprofile)

= AccessPointPorts array parameter could create SAPAvailableForElement associations to a number of
ProtocolEndPoints representing TCP/IP ports through which access is provided to this FileShare.

The ReleaseFileShare method is straightforward -- it deletes the FileShare and the ExportedFileShareSetting, and
the associations to those elements (HostedFileShare, the ElementSettingData element, SharedElement, all the
SAPAvailableForElement associations and all Privileges that reference this FileShare as an AuthorizationTarget).
Any ComputerSystem elements created to represent remote hosts with root access to this FileShare that have no
further references may also be removed. A LogicalFile element associated to the LocalFileSystem via FileStorage
will not necessarily be deleted (the implementation may keep track of the other users of this element and be able to
delete it). For similar reasons, a ProtocolEndPoint created as a result of being specified in the AccessPointPorts
parameter may not be deleted. In both these cases, if the element has no associations other than the scoping one
(FileStorage to LocalFileSystem for LogicalFile and HostedAccessPoint to ComputerSystem for ProtocolEndPoint)
the provider may stop surfacing it at any time.

The ModifyFileShare method modifies an existing FileShare -- this requires a new ExportedFileShareSetting
element to be used as a goal. But not any ExportedFileShareSetting will do; the client shall use the
ExportedFileShareCapabilities.CreateGoalSettings method which would have been used to create the file share,
or an appropriate compatible ExportedFileShareCapabilities instance. The CreateGoalSettings method is used to
establish a new ExportedFileShareSetting goal (as with the original file share creation, it may be necessary to
iterate on the CreateGoalSettings method). Since only properties controlled by Settings can be changed by
ModifyFileShare, elements surfaced as a side-effect of creating or modifying a file share (i.e., any
ComputerSystems created to represent remote hosts with root access or an ProtocolEndPoints created to
represent access points for the share, or any user id created as a default user id) cannot be deleted, though new
ones can be created and/or added), the effect of ModifyFileShare is to change some properties of the FileShare or
of the associated ExportedFileShareSetting.

20

File Export Manipulation Subprofile

5.1.3.2 Finding File Export Services, Capabilities and Pre-defined Settings

When creating a file share the first step is to determine what can be created. Figure 7:, "Capabilities and Settings
for Exported File Share Creation" illustrates an instance diagram showing the elements that shall exist for
supporting fileshare creation.

Figure 7: Capabilities and Settings for Exported File Share Creation
ComputerSystem
Dedicated[]="File Server” 16
HostedService
ExportedFileShareCapabilities ElementCapabilities 1 FileExportService
1 Characteristics={"Default"} -
ExportedFileShareCapabilities Elementc‘apabllltles CreateExportedShare()
- - ModifyExportedShare()
FileSharingProtocol *
Il Protocol\%ersionsﬂ ReleaseExportedShare()
SupportedProperties[] . ‘
CreateGoalSettings() ElementCapabilities
Sett|ngsDeflneCapabmtles—’i FileExportCapabilities
ExportedFileShareSetting ‘ FiIeSharingProtgcoIsl]
- - /I ProtocolVersions][]
HostedAccessPoint File{ ExportedFileShareSetting SynchronousExportMethods[])
FileSharingProtocol AsynchronousExportMethods(] LocalAccessAvailable
InitialEnabledState
ServiceAffectsElement
! LogicalFile
ProtocolEndPoint ~ConcreteDependency | (or Directory) HostedShare
ProtocollFType="Other" ElementSettingData (BC1.1)
OtherTypeDescription="NFS" (BC1Y)
or "CIFS" ‘
FileStorage
(BC1.1) I
- |
SAPAvailableForElement LocalFileSystem
SharedElement
FileShare
Name="path to ‘
LogicalFile”

At least one FileExportService shall exist if the File System Profile has implemented the File Export Manipulation
Subprofile. The instance(s) of this service can be found by following the HostedService association and filtering on
the target class of FileExportService.

Note: If no service is found from the Top Level file server ComputerSystem, the client should look for other
component file server ComputerSystems that may be hosting the service. This is not recommended,
but permitted for backward compatibility with SMI-S 1.1.

An instance of the FileExportCapabilities shall be associated to the FileExportService via the ElementCapabilities
association. A client should follow this association (filtering on the result value of "CIM_FileExportCapabilities") to
inspect the configuration capabilities that are supported. The client would choose between the file sharing
protocols specified in the array property FileSharingProtocol.

For each entry in the FileSharingProtocol array, there shall be one instance of ExportedFileShareCapabilities with
the same value for the FileSharingProtocol property that shall be associated to the FileExportService using the
ElementCapabilities association (filtering on the result value of "CIM_ExportedFileShareCapabilities"). This
ExportedFileShareCapabilities element shall specify the supported capabilities for that FileSharingProtocol using a

SMI-S 1.2.0 Revision 6 SNIA Technical Position 21

collection of ExportedFileShareSetting elements.

File Export Manipulation Subprofile

ExportedFileShareCapabilities via SettingsDefineCapabilities.

An implementation may support a set of pre-defined ExportedFileShareSetting that clients could use directly if
desired. The SettingsDefineCapabilities association from the ExportedFileShareCapabilities to the pre-defined
ExportedFileShareSettings shall have the PropertyPolicy property be "Correlated", the ValueRole property be
"Supported" and the ValueRange property be "Point". Other pre-defined combinations of property values may be
specified by ExportedFileShareSetting whose SettingsDefineCapabilities association has the PropertyPolicy be
"Independent"”, ValueRole property be "Supported" and the ValueRange array property contain "Minimums",
"Maximums", or "Increment”. These settings can be used by the client to compose ExportedFileShareSetting that

are more likely to be directly usable.

5.2 Health and Fault Management Considerations

The key elements of this profile are the FileExportService and the file server ComputerSystem.

5.2.1 OperationalStatus for FileExportService

Table 11:

Operational Status for FileExport Service

Primary OperationalStatus

Description

2 “OK” The service is running with good status

3 “Degraded” The service is operating in a degraded mode. This could be due to the
health state of the underlying file server, or of the storage being
degraded or in error.

4 “Stressed” The services resources are stressed

5 “Predictive Failure”

The service might fail because some resource or component is predicted
to fail

6 “Error” An error has occurred causing the service to become unavailable. Oper-
ator intervention through SMI-S to restore the service may be possible.
6 “Error” An error has occurred causing the service to become unavailable. Auto-

mated recovery may be in progress.

7 “Non-recoverable Error”

The service is not functioning. Operator intervention through SMI-S will
not fix the problem.

8 “Starting” The service is in process of initialization and is not yet available opera-
tionally.

9 “Stopping” The service is in process of stopping, and is not available operationally.

10 “Stopped” The service cannot be accessed operationally because it is stopped -- if

this did not happened because of operator intervention or happened in
real-time, the OperationalStatus would have been “Lost Communication”
rather than “Stopped”.

11 “In Service”

The service is offline in maintenance mode, and is not available opera-
tionally.

22

These ExportedFileShareSetting shall be associated the

Table 11:

File Export Manipulation Subprofile

Operational Status for FileExport Service

Primary OperationalStatus

Description

13 “Lost Communications”

The service cannot be accessed operationally -- if this happened
because of operator intervention it would have been “Stopped” rather
than “Lost Communication”.

14 “Aborted” The service is stopped but in a manner that may have left it in an incon-
sistent state.
15 “Dormant” The service is offline; and the reason for not being accessible is

unknown.

16 “Supporting Entity in Error”

The service is in an error state, or may be OK but not accessible,
because a supporting entity is not accessible.

5.2.2 OperationalStatus for File Server ComputerSystem

Table 12: Operational Status for File Server ComputerSystem

Primary OperationalStatus Description

2 “OK” The file server is running with good status

3 “Degraded” The file server is operating in a degraded mode. This could be
due to the health state of some component of the Computer-
System, due to load by other applications, or due to the health
state of backend or front-end network interfaces.

4 “Stressed” The file server resources are stressed

5 “Predictive Failure”

The file server might fail because some resource or compo-
nent is predicted to fail

6 “Error” An error has occurred causing the ComputerSystem to
become unavailable. Operator intervention through SMI-S to
restore the service may be possible.

6 “Error” An error has occurred causing the ComputerSystem to

become unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error”

The file server ComputerSystem is not functioning. Operator
intervention through SMI-S will not fix the problem.

8 “Starting” The ComputerSystem is in process of initialization and is not
yet available operationally.
9 “Stopping” The ComputerSystem is in process of stopping, and is not

available operationally.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

23

5.3

File Export Manipulation Subprofile

Table 12: Operational Status for File Server ComputerSystem

Primary OperationalStatus

Description

10 “Stopped”

The ComputerSystem cannot be accessed operationally
because it is stopped -- if this did not happened because of
operator intervention or happened in real-time, the Operation-
alStatus would have been “Lost Communication” rather than
“Stopped”.

11 “In Service”

The ComputerSystem is offline in maintenance mode, and is
not available operationally.

13 “Lost Communications”

The ComputerSystem cannot be accessed operationally -- if
this happened because of operator intervention it would have
been “Stopped” rather than “Lost Communication”.

14 “Aborted” The ComputerSystem is stopped but in a manner that may
have left it in an inconsistent state.
15 “Dormant” The ComputerSystem is offline; and the reason for not being

accessible is unknown.

16 “Supporting Entity in Error”

The ComputerSystem is in an error state, or may be OK but
not accessible, because a supporting entity is not accessible.

Cascading Considerations

Not Applicable.

5.4

24

Supported Subprofiles and Packages

Table 13: Supported Profiles for File Export Manipulation

Registered Profile Names Mandatory Version
Job Control No 1.2.0
File Export Yes 1.2.0
Security No 1.2.0
Indication Yes 1.2.0

File Export Manipulation Subprofile

55 Methods of the Profile

5.5.1 Extrinsic Methods of the Profile

Table 14: FileExportManipulation Methods

Method Created Instances Deleted Instances Modified Instances
CreateExportedShare FileShare (Export) N/A N/A
ExportedFileShareSetting
ElementSettingData
HostedShare

SharedElement
SAPAvailableForElement
ServiceAffectsElement
LogicalFile (or Directory)
(for bcto 1.1)
ProtocolEndPoint

ModifyExportedShare ExportedFileShareSetting
FileShare (Export)
ProtocolEndPoint

ReleaseExportedShare N/A FileShare (Export) N/A
ExportedFileShareSetting
ElementSettingData
HostedShare
SharedElement
ServiceAffectsElement
ProtocolEndPoint
LogicalFile

CreateGoalSettings N/A N/A N/A

5.5.1.1 ExportedFileShareCapabilities.CreateGoalSettings

This extrinsic method of the ExportedFileShareCapabilities class validates support for a caller-proposed
ExportedFileShareSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage of this
method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
ExportedFileShareSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type ExportedFileShareSetting. As
such, these settings do not exist in the implementation but are the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to this
method. To assist the implementation in tracking the progress of the negotiation, the client may pass previously
returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation

SMI-S 1.2.0 Revision 6 SNIA Technical Position 25

File Export Manipulation Subprofile

may determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are
the same. A client may infer from the same result that the TemplateGoalSettings must be modified.

551.1.1 Client Considerations

It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges with respect to the filesystem, the filesystem host, or the file server or
the file share. During negotiation, the client will show the current state to the user -- the SupportedGoalSettings
received to date (either the latest or some subset), the TemplateGoalSettings proposed (the most recent, but
possibly more). But the administrator needs a representation of what is available, possibly the range or sets of
values that the different setting properties can take. Some decisions are assumed to have been made already,
such as the file-sharing protocol to be used or the filesystem element to be shared or the resources allocated for
providing local access to the filesystem from the file server.

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified using ExportedFileShareSettings -- these points
can be further qualified to indicate whether these are supported (or not), and even whether they represent some
ideal point in the space -- a "minimum”, or a "maximum®”, or an "optimal" point. Other settings can provide ranges
for properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can
be specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for
a property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a wuser is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
ExportedFileShareSetting elements that are associated to the ExportedFileShareCapabilities via SettingDefi-
nesCapabilities association with the following property values:

= SettingDefinesCapabilities.PropertyPolicy = "Correlated”
= SettingDefinesCapabilities.ValueRole = "Supported"
= SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the ExportedFileShareSetting elements that are
associated to the ExportedFileShareCapabilities via SettingDefinesCapabilities association with the following
property values:

= SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

< The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

26

55.1.1.2

File Export Manipulation Subprofile

Signature and Parameters of CreateGoalSettings

Table 15: Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings

Parameter
Name

Qualifier

Type

Description & Notes

TemplateGoalSe
ttings[]

string

Embeddedinstance
("SNIA_ExportedFileShareSetting")

TemplateGoalSettings is a string array containing
embedded instances of class
ExportedFileShareSetting, or a derived class. This
parameter specifies the client’s requirements and
is used to locate matching settings that the
implementation can support.

SupportedGoalS
ettings|]

INOUT

string

Embeddedinstance
("SNIA_ExportedFileShareSetting")

SupportedGoalSettings is a string array containing
embedded instances of class
ExportedFileShareSetting, or a derived class. On
input, it specifies a previously returned set of
Settings that the implementation could support. On
output, it specifies a new set of Settings that the
implementation can support. If the output set is
identical to the input set, both client and
implementation may conclude that this is the best
match for the TemplateGoalSettings that is
available.

If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method shall
return "Alternative Proposed".

If the output is NULL, the method shall return an
“Failed”.

Normal Return

Status

uint32

"Success",

"Failed"”,

"Timeout",

"Alternative Proposed"

Error Returns

Invalid Property
Value

OuT,
Indication

CIM_Error

A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OuT,
Indication

CIM_Error

An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

27

File Export Manipulation Subprofile

5.5.1.2 FileExportServices.CreateExportedShare

This extrinsic method creates a FileShare providing access to a contained sub-element of a LocalFileSystem
(either a LogicalFile or its sub-class Directory). A reference to the created FileShare is returned as the output
parameter TheShare. This FileShare element is hosted by the same file server ComputerSystem that hosts the
FileExportService. The LocalFileSystem whose element is exported shall be locally accessible to the file server
ComputerSystem (and need not be hosted by it), as represented by the LocalAccessAvailable association from the
file server ComputerSystem to the LocalFileSystem.

The LocalFileSystem whose sub-element is being exported is specified by the input parameter Root. The input
string parameter SharedElementPath specifies a pathname from the root directory of the Root to the sub-element
to be exported. If SharedElementPath is NULL or the empty string, it specifies the root directory of Root. The
format of SharedElementPath is implementation-specific -- the most common format is as a sequence of directory
names separated by a character or short string indicated by the FileSystemSetting.PathNameSeparatorString

property.

Note: The root directory of Root is the base from which a path to the LogicalFile being shared is specified. In
the simplest and possibly the most common case, the LogicalFile element is the root directory of Root
and the path is NULL or the empty string.

The desired settings for the FileShare are specified by the Goal parameter (a string-valued Embeddedinstance
object of class ExportedFileShareSetting). An ExportedFileShareSetting element shall be created that represents
the settings of the created FileShare and will be associated via ElementSettingData to the FileShare. (This
ExportedFileShareSetting may be identical to the Goal or may be its equivalent). The created element shall be
returned as the output Goal parameter.

The input Goal parameter can be NULL, in which case the ExportedFileShareSetting associated with the default
ExportedFileShareCapabilities of the FileExportService is used as the goal. In that case, the following references
to Goal are to the output value of the Goal parameter.

If Goal.DefaultUserldSupported="Share-Specified Default User Id" and the input parameter DefaultUserld is not
NULL, the FileShare will support the specified user id as the default user when the share is accessed. This access
privilege will be represented by creating instances of the Privilege class as described in the Security Authorization
subprofile. The Security Authorization subprofile shall be used for fine-grained access to, or modification of, the
default user.

Note: If the Security Authorization subprofile is not supported, this parameter may be set at creation but
cannot be accessed later. It can only be replaced with a new DefaultUserld using the
ModifyExportedShare method.

Note: The format of the user id is not specified by this sub-profile. If a Security Principal sub-profile or a
Filesystem Quota subprofile is defined, the user id format defined therein may be used.

If Goal.RootAccess="Allow Root Access" then the input parameter RootAccessHosts will be an array of URIs of
ComputerSystems from which root access will be permitted. This access privilege will be represented by creating
instances of the Privilege class as described in the Security Authorization subprofile. The Security Authorization
subprofile shall be used for fine-grained access to, or modification of, the set of hosts with root access.

Note: If the Security Authorization subprofile is not supported, this parameter may be set at creation but
cannot be accessed later. It can only be replaced by specifying a new RootAccessHosts array using
the ModifyExportedShare method.

Note: The computer systems may not be managed by this implementation, so they may not be represented
by ComputerSystem references.

If Goal.AccessPoints="Named Points", then the input parameter AccessPointPorts will be an array of references to
ProtocolEndpoints that provide access to this FileShare. This will be represented by creating instances of the
SAPAvailableForElement association between the FileShare and the specified ProtocolEndpoint. Fine-grained

28

File Export Manipulation Subprofile

access to this set of ProtocolEndpoints or modification this set can be performed using the ModifyExportedShare
method.

Note: This changes the type of the AccessPointPorts parameter from a string array in the previous version to
an array of references to ProtocolEndpoints (or more generally to ServiceAccessPoints).

SMI-S 1.2.0 Revision 6 SNIA Technical Position 29

55.1.21

30

File Export Manipulation Subprofile

Signature and Parameters of CreateExportedShare

Table 16: Parameters for Extrinsic Method FileExportServices.CreateExportedShare

Parameter
Name

Qualifier

Type

Description & Notes

ElementName

IN

string

An end user relevant name for the FileShare being
created. If NULL, then a system-supplied default
name can be used.

The value shall be stored in the 'ElementName’
property for the created element.

Comment

string

An end user relevant comment for the FileShare
being created. If NULL, then a system-supplied
default comment can be used.

The value shall be stored in the 'Description’
property for the created element.

Job

OUT, REF

CIM_Concret
eJob

Reference to the job (may be null if job completed).

Root

IN, REF

SNIA_ LocalF
ileSystem

A reference indicating a LocalFileSystem element
whose sub-element is being exported. The
LocalFileSystem shall be locally available (either
explicitly or implicitly) to the file server
ComputerSystem that hosts the FileExportService.

SharedElement
Path

IN, OUT

string

An opaque string representing a path to the shared
element from the root directory of the FileSystem
indicated by the Root parameter. The format of
this is as a sequence of directory names (from the
\"root\") separated by the
PathNameSeparatorString property.

Multiple paths could lead to the same element but
the access rights or other privileges could be
specific to the path. The client needs to specify the
path.

If SharedElementPath is NULL or is the empty
string, it indicates the \"root\” directory of the file
system indicated by Root.

The value shall be stored in the 'Name' property for
the created element.

File Export Manipulation Subprofile

Table 16: Parameters for Extrinsic Method FileExportServices.CreateExportedShare

Parameter
Name

Qualifier

Type

Description & Notes

Goal

IN, OUT, El

string

EmbeddedInstance
("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the
specified FileShare element is to be shared or
exported by the FileExportService. This is an
element of the SNIA_ExportedFileShareSetting
class, or a derived class, encoded as a string-
valued embedded object parameter. If NULL or the
empty string, the default configuration will be
specified by the FileExportService.

TheShare

OUT, REF

CIM_FileSha
re

If successful, this returns a reference to the created
file share.

DefaultUserld

IN, OUT,
REF, NULL
allowed,

CIM_identity

A reference to a concrete derived class of
CIM_Identity that indicates the user id to use for
default access to this share. A NULL value on input
indicates that no user id is requested. A NULL
value on output indicates that no user id has been
assigned, even by default. The provider is
expected to surface this access using the
Authorization subprofile.

A default user id per share is not supported by the
CIFS Protocol so this is ignored if the Goal
specifies creating a CIFSShare.

RootAccessHost

s[l

IN, OUT,
URI, NULL
allowed

string

An array of strings that specify the hosts that have
root access to this Share, if the
SNIA_ExportedFileShareSetting.RootAccess
property is set to 'Allow Root Access'. Each entry
specifies a host by a URI. All entries up to the first
empty string are allowed root access; the entries
after the first empty string are denied root access.
If this parameter is NULL, root access will be
denied to all hosts, effectively overriding the value
of the property
SNIA_ExportedFileShareSetting.RootAccess. If
the first entry is the empty string, root access will
be allowed from all hosts, and subsequent entries
will be denied root access. The provider is
expected to surface this access using the
Authorization subprofile. This property needs to be
an array of URIs because the remote host may not
be known to the provider and therefore a reference
to the host may not exist.

Root Access is not supported by the CIFS Protocol
so this is ignored if the Goal specifies creating a
CIFSShare.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

31

File Export Manipulation Subprofile

Table 16: Parameters for Extrinsic Method FileExportServices.CreateExportedShare

Parameter Qualifier Type Description & Notes
Name
AccessPointPort | IN, OUT, CIM_Service | An array of references to the ProtocolEndpoints
S REF, NULL AccessPoints | that can connect to this Share, if the
Allowed SNIA_ExportedFileShareSetting.AccessPoints

property is set to 'Named Ports'.

If the parameter is NULL, all access points will be
denied access, effectively overriding the value of
the property
ExportedFileShareSetting.AccessPoints.

If the array has multiple entries and the first entry in
the array is NULL, all access points supported by
the service will be supported, and subsequent
entries will be denied access.

The provider is expected to surface these access
rights (whether granted or denied) using the
Authorization subprofile. Any AccessPoints granted
access via this parameter will also be associated to
this share with SAPAvailableForElement. If the
AccessPoint is not already enabled it will appear in
a disabled state.

The CIFS protocol does not support multiple
ProtocolEndpoints, so this is ignored if the Goal
specifies creating a CIFSShare.

Normal Return

Status ouT uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter

Value Indication (either reference or embedded) has an invalid
value

Invalid OuT, CIM_Error An invalid combination of named properties of an

Combination of Indication instance parameter (either reference or embedded)

Values has been requested.

5.5.1.3 FileExportServices.ModifyExportedShare

This extrinsic method modifies a FileShare element that is exporting a contained sub-element of a LocalFileSystem
(either a LogicalFile or its sub-class Directory). The FileShare is specified by the reference parameter TheShare.
TheShare cannot be NULL and it shall be hosted by the same file server ComputerSystem that hosts the
FileExportService. The input parameters Root and SharedElementPath shall be NULL or shall be the same as the
corresponding parameters when the FileShare was created (i.e., these cannot be changed using this method).

The precise constraint is that the sub-element shall not be changed even if the Root and SharedElementPath are
different. For instance, this would allow a different path that leads to the same sub-element. However, in this
subprofile we do not allow this flexibility.

32

File Export Manipulation Subprofile

The new desired settings for the FileShare are specified by the input parameter Goal (a string-valued
Embeddedinstance object of class ExportedFileShareSetting). An ExportedFileShareSetting element that
represents the settings of the created FileShare (either identical to the Goal or its equivalent) will be associated via
ElementSettingData to the FileShare. The implementation shall modify the existing ExportedFileShareSetting.
The Setting that is actually established will be returned as the output parameter Goal.

The Goal parameter can be NULL on input, in which case, the settings for the FileShare are not changed. This can
happen if this method is being called to provide new values for DefaultUserld, RootAccessHosts, or
AccessPointPorts without changing any settings. In that case, the following references to Goal are to the output
value or the parameter.

If Goal.DefaultUserldSupported="Share-Specified Default User Id" and the input parameter DefaultUserld is not
NULL, the FileShare will support the specified user id as the default user when the share is accessed. Any
existing DefaultUserld specified will be overridden. This access privilege will be represented by creating instances
of the Privilege class as described in the Security subprofile. The Security subprofile shall also be used to access
or modify this privilege. If DefaultUserld is NULL, the existing specification will not be changed.

Note: If the Security subprofile is not supported, this parameter may be set but cannot be accessed later. It
can only be replaced with a new DefaultUserld using the ModifyExportedShare method.

If Goal.RootAccess="Allow Root Access" then the non-NULL input parameter RootAccessHosts will be an array of
URIs of ComputerSystems from which root access will be permitted. This access privilege will be represented by
creating instances of the Privilege class as described in the Security subprofile. Any existing specification of root
access by hosts will be overridden. If RootAccessHosts is NULL, the existing specification will not be changed.

Note: If the Security subprofile is not supported, this parameter may be set at creation but cannot be
accessed later. It can only be replaced by specifying a new RootAccessHosts array using the
ModifyExportedShare method.

If Goal.AccessPoints="Named Points", then the non-NULL input parameter AccessPointPorts will be an array of
references to ProtocolEndpoints that provide access to this FileShare. This will be represented by creating
instances of the SAPAvailableForElement association between the FileShare and the specified ProtocolEndpoint.
Any existing specification of access points to the FileShare will be overridden. If AccessPointPorts is NULL, the
existing specification will not be changed.

Note: This changes the type of the AccessPointPorts parameter from a string array to an array of references
to ProtocolEndpoints (or more generally to ServiceAccessPoints).

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this method if
the FileShare is in use and the method requires that no operations be in progress during that execution.

Note: The WaitTime and InUseOptions parameters are supported if the
ExportedFileShareCapabilities.SupportedProperties includes the "RequirelnUseOptions" option. This
requires a change to the MOF that may not show up in this document as enumerations are not
documented in the spec?.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 33

File Export Manipulation Subprofile

5.5.2 Signature and Parameters of ModifyExportedShare
Table 17: Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter Qualifier Type Description & Notes

Name

ElementName IN string A new end-user relevant name for the FileShare
being modified. If NULL or the empty string, the
existing name stored in the 'ElementName'
property for the created element not be changed.

Comment IN string A new end-user relevant comment for the
FileShare being modified. If NULL or the empty
string, the existing comment stored in the
‘Description’ property will not be changed.

Job OUT, REF CIM_Concret | Reference to the job (may be null if job completed).

eJob
Root IN, OUT, CIM_Manage | A reference indicating a LocalFileSystem element
REF dElement whose sub-element is being exported. In the

ModifyExportedShare method, this shall not
indicate a different filesystem from the one
indicated when the file share was created (even if
the reference is to a different instance of
LocalFileSystem).
If Root is NULL on input it is ignored.
As an OUT parameter, a reference to the
LocalFileSystem is returned.

SharedElement IN, OUT string A string representing a path to the shared element

Path

from the root directory of the LocalFileSystem
indicated by Root.

The ModifyExportedShare method cannot be used
to change the object indicated by the path, but the
path itself can be different as multiple paths could
lead to the same element. Such a change may
have side-effects, for instance, the access rights or
other privileges could be specific to the path.

If SharedElementPath is NULL, it indicates no
change to the current path. If SharedElementPath
consists of a single empty string, it indicates the
root directory of the FileSystem indicated by Root.

As an OUT parameter, the current path is returned.

The value shall be stored in the 'Name' property for
the created element.

34

File Export Manipulation Subprofile

Table 17: Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier

Type

Description & Notes

Goal

IN, OUT, El

string

EmbeddedInstance
("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the
specified FileShare element is to be shared or
exported by the FileExportService. This is an
element of the SNIA_ExportedFileShareSetting
class, or a derived class, encoded as a string-
valued embedded instance parameter. If NULL or
the empty string, the current setting will be re-
applied.

As an OUT parameter, the current Setting is
returned.

TheShare

IN, OUT,
REF

CIM_FileSha
re

As an IN Parameter, it specifies the share that is to
be modified or whose settings are being queried.
As an OUT Parameter, this specifies the share if
the request is successful.

DefaultUserld

IN, OUT,
REF, NULL
allowed,

CIM_identity

As an IN parameter, this is a reference to a
concrete derived class of CIM_Identity that
indicates the user id to use for default access to
this share. A NULL value indicates no change to
the existing user id, if one has been specified. The
provider is expected to surface this access using
Authorization subprofile. As an OUT Parameter,
this returns a reference to the current
DefaultUserld.

A default user per share is not supported by the
CIFS Protocaol so this is ignored if the file share is a
CIFSShare.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

35

36

File Export Manipulation Subprofile

Table 17: Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter Qualifier Type Description & Notes
Name
RootAccessHost | IN, OUT, string An array of strings that specify the hosts that have
S[] URI, NULL root access to this Share, if the
allowed SNIA_ExportedFileShareSetting.RootAccess

property is set to 'Allow Root Access'. Each entry
specifies a host by a URI. The set of hosts
specified is added to the existing set of hosts with
root access.

If this parameter is NULL, root access will be
denied to all hosts, including the ones currently
allowed root access, effectively overriding the
value of the property
SNIA_ExportedFileShareSetting.RootAccess.

Each entry specifies a host by a URI. All entries up
to the first empty string are allowed root access;
the entries after the first empty string are denied
root access.

If the first entry is the empty string, root access will
continue to be allowed from the existing hosts, and
subsequent entries in the array will be denied root
access.

The provider is expected to surface this access
using the Authorization subprofile.

This property needs to be an array of URIs
because the remote host may not be known to the
provider and therefore a reference to the host may
not exist.

Root Access is not supported by the CIFS Protocol
so this is ignored if the Goal specifies creating a
CIFSShare.

File Export Manipulation Subprofile

Table 17: Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier

Type

Description & Notes

AccessPointPort

sll

IN, OUT,
REF, NULL
Allowed

CIM_Service
AccessPoints

An array of references to the ProtocolEndpoints
that can connect to this Share, if the
SNIA_ExportedFileShareSettings.AccessPoints
property is set to 'Named Ports'. The set of access
points specified in the array is added to the existing
set of access points.

If the parameter is NULL, all access points will be
denied access, effectively overriding the value of
the property
SNIA_ExportedFileShareSetting.AccessPoints.

If the first entry in the array is NULL, existing
access points supported by the service will be
supported, and subsequent entries in the array will
be access points that are denied access.

The provider is expected to surface these access
rights (whether granted or denied) using the
Authorization subprofile. Any AccessPoints granted
access via this parameter will also be associated to
this share with SAPAvailableForElement. If the
AccessPoint is not already enabled it will appear in
a disabled state.

The CIFS protocol does not support multiple
ProtocolEndpoints, so this is ignored if the Goal
specifies creating a CIFSShare.

InUseOptions

uintl6

An enumerated integer that specifies the action
that the provider should take if the FileShare is still
in use when this request is made. The WaitTime
parameter indicates the specified time used for this
function.

This option is only relevant if the FileShare needs
to be made unavailable while the request is being
executed.

WaitTime

IN

uintl6

An integer that indicates the time (in seconds) that
the provider needs to wait before executing this
request if it cannot be done while the FileShare is
in use. If WaitTime is not zero, the method will
create a job, if supported by the provider, and
return immediately. If the provider does not support
asynchronous jobs, there is a possibility that the
client could time-out before the job is completed.

The combination of InUseOptions = '4' and
WaitTime ='0' (the default) is interpreted as 'Wait
(forever) until Quiescence, then Execute Request'
and will be performed asynchronously if possible.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

37

File Export Manipulation Subprofile

Table 17: Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter Qualifier Type Description & Notes
Name

Normal Return

Status ouT uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter

Value Indication (either reference or embedded) has an invalid
value

Invalid OuT, CIM_Error An invalid combination of named properties of an

Combination of Indication instance parameter (either reference or embedded)

Values has been requested.

5.5.2.1 FileExportServices.ReleaseExportedShare

This is an extrinsic method that will delete a FileShare specified by the parameter TheShare and delete any
associated instances and associations that are no longer needed. The deleted instances will include the Directory
(or LogicalFile) if it had been created only for the purpose of representing the shared sub-element.

Note: Deleting the Directory or LogicalFile deletes only the representation of the file or directory for
management and does not delete the underlying operational element

The deleted associations include HostedShare, ElementSettingData, and any elements and associations created
to support the DefaultUserld, RootAccessHosts, and AccessPointPorts parameters. In addition, the
ExportedFileShareSetting will be deleted if appropriate.

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this method if
the FileShare is in use and the method requires that no operations be in progress during that execution.

Note: The WaitTime and InUseOptions parameters are supported if the
ExportedFileShareCapabilities.SupportedProperties includes the "RequirelnUseOptions" option.

38

File Export Manipulation Subprofile

5.5.3 Signature and Parameters of ReleaseExportedShare

Table 18: Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare

Parameter
Name

Qualifier

Type

Description & Notes

Job

OUT, REF

CIM_Concret
eJob

Reference to the job (may be null if job completed).

TheShare

IN, OUT,
REF

CIM_FileSha
re

As an IN Parameter, it specifies the share that is to
be modified or whose settings are being queried.
As an OUT Parameter, this specifies the share if
the request is successful.

InUseOptions

uintl6

An enumerated integer that specifies the action
that the provider should take if the FileShare is still
in use when this request is made. The WaitTime
parameter indicates the specified time used for this
function.

This option is only relevant if the FileShare needs
to be made unavailable while the request is being
executed.

WaitTime

IN

uintl16

An integer that indicates the time (in seconds) that
the provider needs to wait before executing this
request if it cannot be done while the FileShare is
in use. If WaitTime is not zero, the method will
create a job, if supported by the provider, and
return immediately. If the provider does not support
asynchronous jobs, there is a possibility that the
client could time-out before the job is completed.

The combination of InUseOptions = '4' and
WaitTime ='0' (the default) is interpreted as 'Wait
(forever) until Quiescence, then Execute Request'
and will be performed asynchronously if possible.

Normal Return

Status

ouT

uint32

ValueMap{}, Values{}

"Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OuT,
Indication

CIM_Error

A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OuT,
Indication

CIM_Error

An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

554

SMI-S 1.2.0 Revision 6

Intrinsic Methods of the Profile

SNIA Technical Position

39

File Export Manipulation Subprofile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= Getlnstance

< Associators

< AssociatorNames

< References

< ReferenceNames

= Enumeratelnstances

- EnumeratelnstanceNames

5.6 Client Considerations and Recipes

EXPERIMENTAL

Conventions used in all the filesystem related profiles for recipes:

When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is used without further validation. Real code will need to be more robust.

< We use Values and Valuemap members as equivalent. In real code, client-side magic is required to convert the
integer representation into the string form given in the MOF.

= Error returns using the CIM_Error mechanism are not explicitly handled; the client shall implement handlers for
these asynchronous returns.

= These recipes do not show the details of negotiating a setting acceptable to both client and provider.
= The recipes do not show the details of managing a Job if a method returns after setting one up.

All the recipes show very simple examples of the operations that should be supported. Some recipes have been
simplified so that they would not even be minimally useful to a real client, but only show how more complete
functionality would be implemented.

5.6.1 Creation of a FileShare for Export

// DESCRIPTION
// GOAL: Create an NFS or CIFS FileShare that makes a specified

// directory or file of a filesystem available to clients
// and supports the properties specified in the array

// parameter $propertynames[].-

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. The Ffile server ComputerSystem host of the FileExportService

// will also be the host of the FileShare that will be
// made available to NFS or CIFS clients.
//

// FUNCTION CreateFileSystemShare
// This function takes a filesystem and a file server host
// ComputerSystem and creates a file share that will

40

File Export Manipulation Subprofile

// support the specified properties.

// INPUT Parameters:

// sharetype: The file sharing protocol (NFS or CIFS) that this

// share should support.

// fTs: A reference to the LocalFileSystem whose element is

// to be shared.

// server: A reference to the file server ComputerSystem that

// provides local access to the filesystem $fs.

// fTspath: A path to the sub-element that is to be shared.

// name: A name for the created file share.

// comment: A comment to be associated with the created file share.
// propnames: An array of property names that the capabilities

// element should support.

// propvals: An array of property values corresponding to the

// property names that specify values for those properties.

// OUTPUT Parameters:

// Tssh: A reference to the newly created FileShare element

// job: A reference to a ConcreteJdob that is executing a long-term job.

// RESULT:
// Success or Failure
// NOTES
// 1.
sub CreateFileSystemShare(IN String $sharetype, // CIFS, NFS, etc.
IN REF CIM_FileSystem $fs, // the filesystem
IN REF CIM_ComputerSystem $server // the File Server
IN String $fspath, // subpath in the filesystenm,
or
IN String $name,
IN String $comment,
IN String[] $propnames, // names of desired properties
IN String[] $propvals, // values of desired
properties
OUT REF CIM_FileShare $fssh,
OUT REF CIM_Job $job)
{
//
// Get the service and capabilities
//

///7/ &GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,
$efscapability);

//
// Get a FileExportService via the HostedService association to
// the file server ComputerSystem
//
$feservice = Associators($server,
“CIM_HostedService”,
“SNIA_FileExportService”,

SMI-S 1.2.0 Revision 6 SNIA Technical Position 41

42

//
//
//
//
//
//
//
//
/7/
//
//
/7/

File Export Manipulation Subprofile

“Antecedent”,
“Dependent’)->[0];

Assumption: There is only one FileExportService per File Server

Get an ExportedFileShareCapabilities from the FileExportService
via the ElementCapabilities association to the ComputerSystem
(it’s indexed by NFS/CIFS/other sharing service and possibly
other properties)

Note: NFS and CIFS are two capabilities of the same service
with different values of the FileSharingProtocol property

In this example, we look for the
ExportedFileShareCapabilities.IsDefault property to get a
default sharetype.

$efscapabilities = Associators($feservice,

if
#1

“CIM_ElementCapabilities”
“SNIA_ExportedFileShareCapabilities™,
“ManagedElement”,
“Capabilities™);
($efscapabilities->[] == NULL || $efscapabilities-[]-length == 0) {
= 0;

while (($efscapability = $efscapabilities->[#j]) '= NULL) {

//
//

//
//
//

if (($sharetype == “*) && $efscapability.IsDefault ||
($efscapabilities->[#j]-FileSharingProtocol == $sharetype)) {
$sharetype = $efscapability.FileSharingProtocol;
// Should check here that the properties named in
// $propnames-[] are supported by this capabilities
// element. If not, the method should fail as this profile
// does not support multiple capabilities with the same
// FTile sharing protocol that may have different.
break;

}
Hy++;

Handle the error if any
(#) == S$efscapabilities-[].length) {
<indicate error>

return false;

Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N*, Goal-N) to
get

the next goal for EFSSetting -- iterate until satisfied or give up
(beware of infinite loops) Note: we don’t iterate here, just give
up if we don’t get what we want.

File Export Manipulation Subprofile

//

// The function used is CreateGoal instead of CreateGoalSettings
// because the CreateGoalSettings method takes arrays

// as parameters and we only want to pass single-entry arrays

// The implementation details are left to the client.
&CreateGoal ($efscapability, NULL, $goal);

//

// Inspect Goal and modify properties as desired.
//

#i = 0;

while ($propnames->[#i] '= NULL) {
$goal .$propnames->[#i] = $propvals->[#i];
#Hit++;

}

// lterate over the goal at least once
&CreateGoal ($efscapability, $goal, $settings);

#i = 0;

while ($propnames->[#i] '= NULL) {
// funky syntax for propnames property of settings
if ($settings.$propnames->[#i] = $propvals->[#i]) {

//
// give up
//
return false;
¥
#Hit++;

}

// Verify that the FileSystem is locally accessible

// Does this fileserver have local access -- if not, there is no setting!
$laassocs->[] = ReferenceNames($server,
“SNIA_LocalAccessAvailable”,
“FileSystem”
$fs);
if ($laassocs->[] == NULL || $laassocs->[].length = 1) {
{
// 1T the filesystem is not locally accessible from the server
// there is no setting to be found
return false;

}

$laassoc = $laassocs->[0];

//

SMI-S 1.2.0 Revision 6 SNIA Technical Position

43

44

File Export Manipulation Subprofile

// Get all the LocallyAccessibleFileSystemSettings
// associated with the CIM_FileSystem (via ElementSettingData)
//
$lasettings->[] = Associators($fs,
“CIM_ElementSettingData”,
“SNIA_LocallyAccessibleFileSystemSetting”,
“ManagedElement”,
“SettingData’);
if ($lasettings->[] == NULL || $lasettings->[].length == 0) {
// This is an ERROR but for now we return with no results
return NULL;

}

#i = 0;
$lasetting = NULL;
while ($lasettings->[#i] '= NULL) {
// Get the association that points to this setting
$reference->[] = References($lasettings->[#i],
“CIM_ElementSettingData”,
“SettingData”);
// There should be exactly one association to this SettingData
if ($reference->[] == NULL || $reference->[].length = 1) {
// This is an error -- should we continue?
continue;
// return NULL;

}

// The following test assumes that we only look at a setting
// that is marked as IsCurrent. There may be many such
// settings but they will be scoped to other file servers.
if ($reference->[0].IsCurrent == “Is Current”) {
// Is this scoped to the fileserver?
$servers = Associators($settings->[#i],
“CIM_ScopedSetting”,
“CIM_ComputerSystem”,
“Dependent”,
“Antecedent”);

if ($servers->[] '= NULL && $servers->[].length = 0 && $servers->[0]
== $Ffileserver) {

$lasetting = Getlnstance($lasettings->[#i]);
break;

3
#Hi++;
3
// if not found return NULL
if ($lasetting == NULL) {
return false;

//
//

}

//
//
//
//
//
//
//
//

File Export Manipulation Subprofile

Note, this profile uses the FileSystem $fs as the Root

parameter to CreateExportedShare and does not support

other classes.
The fspath is a string

that is FileSystemType-specific

If path is NULL or empty, it
identifies the root directory of the File System.

$feservice.CreateExportedShare($name, $comment,
$job, $fs, $fspath, $settings, $fssh);
#result = $feservice.CreateExportedShare(

$name, //
$comment, //
$job, //
$fs, //
$fspath, //
$settings, //
$fssh, //
NULL, //
NULL, //
NULL //
)

share name

comment associated with share
OUTPUT parameter if needed

file system of the shared element
relative path to shared element
EmbeddedInstance of Goal

OUTPUT parameter -- reference to File Share
$defaultUserld -- not being set in this example
$RootAccessHosts[] -- not being set

$AccessPointPEs[] -- not being set

// Should handle failure and other errors here.

return true;

5.6.2 Modification of an Exported FileShare

// DESCRIPTION
GOAL: Modify the creation-time settings of a NFS or

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

SMI-S 1.2.0 Revision 6

CIFS FileShare.

PRE-EXISTING CONDITIONS AND ASSUMPTIONS
1. The file share already exists and has been surfaced through

SMI-S.

. The file share has been defined with an associated

ExportedFileShareSettings element and hosted on an
surfaced file server ComputerSystem.

. There is a FileExportService element hosted by

the same file server ComputerSystem that provides

this method.

FUNCTION ModifyFileSystemShare
This function modifies the settings and some mutable
properties of an existing file share hosted by the

SNIA Technical Position

45

46

//
//
//
//
//
//
//
//
/7/
//
//
/77
//
//
/77
//
//
//
//

File Export Manipulation Subprofile

same ComputerSystem as the host of the service.
This routine cannot be used to change
the filesystem, the sharetype, or the file server.
It can be used to change the name, the comment, and
setting property values.
INPUT Parameters:
name: A new name for the file share.
comment: A comment to be associated with the created file share.
fssh: A reference to the newly created FileShare element
propnames: An array of property names that the capabilities

element should support.
propvals: An array of property values corresponding to the
property names that specify values for those properties.
OUTPUT Parameters:
job: A reference to a Concretedob that is executing a long-term job.
RESULT:
Success or Failure
NOTES
1.

sub ModifyFileSystemShare(IN String $name,

IN String $comment,

IN CIM_FileShare $fssh,
IN String $propnames[],
IN String $propvals[],
OUT CIM_Job $job)

//
// Get a client-side copy of the ExportedFileShareSetting
// associated with the ExportedFileShare (via ElementSettingData
// association) using Getlnstance
//
$settings = Associators($fssh,
“CIM_ElementSettingData”,
“CIM_ExportedFileShareSetting”,
“ManagedElement”,
“SettingData’)->[0];
#i = 0;
while ($settings->[#i] = NULL) {
if ($settings->[#i].IsCurrent) {
$setting = Getlnstance($settings->[#i]-Name);
break;

}

//
// Get the sharetype from the FileSystemShare

//
//

File Export Manipulation Subprofile

-- this cannot be changed by this method

$sharetype = $setting.FileSharingProtocol;

//

//

//
//

//

Get the File Server

&GetFileExportServer($fs, $server);

// Get the ComputerSystem for the filesystem (via HostedFileSystem association)

//

There should be exactly one.

$server = Associators($fssh,

//

//

//
7/

//
//
//
//

“CIM_HostedFileShare™,
“CIM_ComputerSystem”,
“PartComponent”,
“GroupComponent”)->[0] ;

Get the service and capabilities

&GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,

$efscapability);

Get a FileExportService via the HostedService association to
the file server ComputerSystem

$feservice = Associators($server,

//
//
//
//
//
//
//
//
//
//
//

“CIM_HostedService”,
“SNIA_FileExportService”,
“Antecedent”,
“Dependent™)->[0];

Assumption: There is only one FileExportService per File Server

Get an ExportedFileShareCapabilities from the FileExportService
via the ElementCapabilities association to the ComputerSystem
(it’s indexed by NFS/CIFS/other sharing service and possibly
other properties)

Note: NFS and CIFS are two capabilities of the same service
with different values of the FileSharingProtocol property

The $sharetype must match the property
ExportedFileShareCapabilities.FileSharingProtocol .

$efscapabilities = Associators($feservice,

“CIM_ElementCapabilities”

“SNI1A_ExportedFileShareCapabilities™,

“ManagedElement”,
“Capabilities™);

SMI-S 1.2.0 Revision 6 SNIA Technical Position

47

48

File Export Manipulation Subprofile

if ($efscapabilities->[] == NULL || $efscapabilities-[].length == 0) {
#j = 0;
while (($efscapability = $efscapabilities->[#j]) "= NULL) {
ifT ($efscapabilities->[#]]-.FileSharingProtocol == $sharetype) {

// Should check here that the properties named in

// $propnames-[] are supported by this capabilities

// element. |If not, the method should fail as this profile

// does not support multiple capabilities with the same

// Tile sharing protocol that may have different.

break;

s
Hyt++;

// Handle the error if any

if (#)] == $efscapabilities-[]-length) {
<indicate error>
return false;

}

//
// Modify the copied ExportedFileShareSetting to the new
// desired properties
//
#i = 0;
while ($propnames->[#i] !'= NULL) {
// Note funky syntax for accessing a named property of
// the setting
$setting.$propnames->[#i] = $propvals->[#i];
}

// Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N*, Goal-N) to
get

// the next goal for EFSSetting -- iterate until satisfied or give up
// (beware of infinite loops) Note: we don’t iterate here, just give
// up if we don’t get what we want.

//

// The function used is CreateGoal instead of CreateGoalSettings

// because the CreateGoalSettings method takes arrays

// as parameters and we only want to pass single-entry arrays

// The implementation details are left to the client.

&CreateGoal ($efscapability, $setting, S$newsetting);

// Did we get a goal back?
if ($newsetting==MULL)
#1 = 0;
while ($propnames->[#i] '= NULL) {
if ($newsetting.$propnames->[#i] != $propvals->[#i]) {

File Export Manipulation Subprofile

//
// give up
//
return NULL;
3
#Hi++
¥
//
#result = feservice._ModifyExportedShare(
$name, // new name (no change if NULL)
$comment, // new comment (no change if NULL)
$job, // OUTPUT parameter if needed
NULL, // $rootfilesystem - Cannot be changed
NULL, // $Subelement -- cannot be changed
$newsetting, // Embeddedlnstance of Goal
$fssh, // reference to File Share
NULL, // $defaultUserld -- not being changed in this example
NULL, // $RootAccessHosts[] -- not being changed
NULL, // $AccessPointPEs[] -- not being changed
NULL, // $InUseOptions -- take default
NULL // BWaitTime -- take default
)

// Should handle failure and other errors here.

return TRUE;
e

5.6.3 Removal of an Exported FileShare

// DESCRIPTION

// GOAL: UnExport an exported NFS or CIFS FileShare.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The Ffile share already exists and has been surfaced through
// SMI-S.

// 2. The file share has been defined with an associated

// ExportedFileShareSettings element and hosted on an
// surfaced file server ComputerSystem.

// 3. There is a FileExportService element hosted by

// the same file server ComputerSystem that provides
// this method.

//

// FUNCTION UnExportFileSystemShare

// This function removes an NFS or CIFS file share that is
// hosted by the same ComputerSystem as the host of the
// service.

// INPUT Parameters:

SMI-S 1.2.0 Revision 6 SNIA Technical Position 49

File Export Manipulation Subprofile

// fTssh: A reference to the newly created FileShare element
// force: Whether the method should force all clients of the

// file share to be disconnected.

// waittime: The time in seconds to wait before implementing the
// specified force option (default 300 seconds).

// notification: A string used to notify clients that the file
// share is going to be unavailable. This is included in

// the alert indication sent to clients that subscribe for
// them (but... shouldn”t this go to operational clients?)

// OUTPUT Parameters:

// job: A reference to a ConcreteJdob that is executing a long-term job.
// RESULT:

// Success or Failure

// NOTES

// 1.

sub UnExportFileSystemShare(IN REF CIM_FileShare $fssh,
IN uintl6 $force,
IN uint32 $waittime,
IN String $notification,
OUT REF CIM_Job $job);

{
//
// 1T waittime > 0, set force to 2 to distinguish between
// a force with no wait and a force with wait
// -- see the specification of ReleaseExportedShare.
//
if ($force > 0 && $waittime > 0) {
$force = 2;
}
//
// clients of the share may have registered for an indication
// when a share is disconnected
//
<send indication -- see indications recipes>
// Get the File Server
//
// &GetFileExportServer ($fs, $server);
//

// Get the ComputerSystem for the filesystem (via HostedFileSystem association)
// There should be exactly one.
$server = Associators($fssh,

“CIM_HostedFileShare™,

“CIM_ComputerSystem”,

“PartComponent”,

“GroupComponent”)->[0];

//

File Export Manipulation Subprofile

// Get a FileExportService via the HostedService association to

// the file server ComputerSystem

//

$feservice = Associators($server,
“CIM_HostedService”,

//

“SNIA_FileExportService”,

“Antecedent”,
“Dependent’)->[0];

// Call ReleaseExportedShare() with the $force and $waittime values
// which tell the share to wait for the specified time

// if there are any clients still connected.

//

$feservice.ReleaseExportedShare($job, $fssh, $force, $waittime);

// Should handle failure and other errors here.

return TRUE;

+
EXPERIMENTAL

5.6.4

File Export Manipulation Supported Capabilities Patterns

Table 19 lists the capabilities patterns that are formally recognized by SMI-S 1.2.0 for determining capabilities of

various implementations:

Table 19: SMI-S File Export Supported Capabilities Patterns

FileSharingProtocols SynchronousMethods AsynchronousMethods InitialExportState
NFS, CIFS Export Creation, Export Null *
Modification, Export
Deletion
NFS, CIFS Null Export Creation, Export *
Modification, Export
Deletion
NFS, CIFS Null Null Null

Note: Asterisk (*) means any state is valid.

5.7 Registered Name and Version

File Export Manipulation version 1.2.0

SMI-S 1.2.0 Revision 6

SNIA Technical Position

51

File Export Manipulation Subprofile

5.8 CIM Elements

Table 20: CIM Elements for File Export Manipulation

Element Name

Requirement

Description

SNIA_FileExportService (5.8.1)

Mandatory

The File Export Service provides the methods
to create and export file elements as shares.

CIM_HostedService (5.8.2)

Mandatory

Associates the File Export Service to the
hosting File Server Computer System.

SNIA_FileExportCapabilities (FES
Configuration) (5.8.3)

Mandatory

This element represents the management
capabilities of the File Export Service.

CIM_ElementCapabilities (FES
Configuration) (5.8.4)

Mandatory

Associates the File Export Service to the
FileExportCapabilities element that describes
the service capabilities.

SNIA_ExportedFileShareCapabilities (FES
Capabilities) (5.8.5)

Mandatory

This element represents the Capabilities of
the File Export Service for managing
FileShares of a specific file sharing protocol
(and version). The file sharing protocol is
specified by the FileSharingProtocol and
ProtocolVersions properties.

SNIA_ElementCapabilities (FES Capabilities)
(5.8.6)

Mandatory

Associates the File Export Service to at least
one ExportedFileShareCapabilities element
that indicates that support is available for
managing an exported FileShare for at least
one of the file sharing protocols recognized by
this profile. These include: "NFS"/2, "CIFS"/3,
"DAFS"/4, "WebDAV"/5, "HTTP"/6, or "FTP"/7.

SNIA_ExportedFileShareSetting (Pre-
defined) (5.8.7)

Optional

This element represents a pre-defined
configuration settings for exported FileShares
that is used to define a Capabilities element
associated with the FileExportService.

SNIA_SettingsDefineCapabilities (Pre-
defined) (5.8.8)

Optional

Represents the association between a
ExportedFileShareCapabilities and a pre-
defined ExportedFileShareSetting element
that specifies what the Capabilities can
support.

SNIA_ExportedFileShareSetting (FileShare
Setting) (5.8.9)

Mandatory

The configuration settings for an Exported
FileShare; i.e., a setting for a FileShare
available for exporting.

This setting may have been created or
modified by the extrinsic methods of this
profile. Note that CIFS allows in-band
creation, modification, or deletion of
FileShares; also, some systems might define
pre-existent FileShares. All of these will be
surfaced.

SNIA_FileShare (Exported File Share)
(5.8.10)

Mandatory

Represents the sharing characteristics of a
particular file element.

52

File Export Manipulation Subprofile

Table 20: CIM Elements for File Export Manipulation

Element Name

Requirement

Description

SNIA_HostedShare (5.8.11)

Mandatory

Represents that a shared element is hosted
by a ComputerSystem.

CIM_ServiceAffectsElement (5.8.12)

Mandatory

Associates the File Export Service to the
elements that the service manages (such as a
FileShare configured for exporting a
LogicalFile).

CIM_ElementSettingData (FileShare Setting)
(5.8.13)

Mandatory

Associates a FileShare and
ExportedFileShareSetting elements.

CIM_LogicalFile (Subelement) (5.8.14)

Conditional

Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

A LogicalFile (or Directory subclass) that is a
sub-element of a LocalFileSystem that is
made available for export via a fileshare
hosted on a ComputerSystem. This is
included for backward compatibility with the
SMI Specification Release 1.1.

SNIA_SharedElement (5.8.15)

Mandatory

Associates a FileShare to the
LocalFileSystem on which it is based.

CIM_FileStorage (Subelement) (5.8.16)

Conditional

Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

Represents that a file or directory that is made
available for export is contained by a
LocalFileSystem specified as a dangling
reference.

CIM_ConcreteDependency (5.8.17)

Conditional

Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

Represents an association between a
FileShare element and the actual shared
LogicalFile or Directory on which it is based.
This is provided for backward compatibility
with FileExport Subprofile v1.1.

CIM_SAPAvailableForElement (5.8.18)

Mandatory

Represents the association between a
ServiceAccessPoint to the shared element
that is being accessed through that SAP.

SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA SNIA_FileShare

Mandatory

Creation of an exported file share.

This indication returns the newly created
FileShare.

SMI-S 1.2.0 Revision 6

SNIA Technical Position 53

File Export Manipulation Subprofile

Table 20: CIM Elements for File Export Manipulation

Element Name Requirement

Description

SELECT * FROM CIM_InstDeletion WHERE Mandatory
Sourcelnstance ISA SNIA_FileShare

Deletion of an exported file share.

This indication returns the model path to the
deleted file share and its unique instance id.
(Question: Should this return the pathname of
the shared directory as well?) Note that a
model path is like a CIM object path but not
exactly the same.

SELECT * FROM CIM_InstModification Optional
WHERE Sourcelnstance ISA SNIA_FileShare
AND
Sourcelnstance.SNIA_FileShare::Operational
Status[*] <>
Previousinstance.SNIA_FileShare::Operation
alStatus[*]

Experimental CQL - Change of state of a
FileShare.

Previouslnstance is optional, but may be
supplied by an implementation of the
subprofile.

SELECT * FROM CIM_InstModification Mandatory
WHERE Sourcelnstance ISA SNIA_FileShare
AND Sourcelnstance.OperationalStatus <>
Previousinstance.OperationalStatus

Deprecated WQL - Change of state of a
FileShare.

Previousinstance is optional, but may be
supplied by an implementation of the
subprofile.

5.8.1 SNIA_FileExportService

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 21 describes class SNIA_FileExportService.

Table 21: SMI Referenced Properties/Methods for SNIA_FileExportService

Properties Flags Requirement | Description & Notes

ElementName Mandatory A provider supplied user-friendly name for this Service.
SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the
sName Service.

SystemName Mandatory The name of the Computer System hosting the Service.
CreationClassName Mandatory The CIM Class name of the Service.

Name Mandatory The unique name of the Service.

CreateExportedShar Mandatory Create a FileShare element configured for exporting a file
e() or directory as a share.

54

File Export Manipulation Subprofile

Table 21: SMI Referenced Properties/Methods for SNIA_FileExportService

Properties Flags Requirement | Description & Notes

ModifyExportedShar Mandatory Modify the configuration of a FileShare element setup to
e() export a file or directory as a share.
ReleaseExportedSha Mandatory Delete the FileShare element that is exporting a file or
re() directory as a share, thus releasing that element.

5.8.2 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 22 describes class CIM_HostedService.

Table 22: SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The hosting Computer System.
Dependent Mandatory The FileExportService

5.8.3 SNIA_FileExportCapabilities (FES Configuration)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 23 describes class SNIA_FileExportCapabilities (FES Configuration).

Table 23: SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configura-

tion)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the capabilities of a File Export
Service.

ElementName Mandatory A provider supplied user-friendly name for this Capabilities
element.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 55

File Export Manipulation Subprofile

Table 23: SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configura-

tion)

Properties

Flags

Requirement

Description & Notes

FileSharingProtocol

Mandatory

An array listing all the protocols for file sharing supported
by the FileExportService represented by this
FileExportCapabilities element. Duplicate entries are
permitted because the corresponding entry in the
ProtocolVersions array property indicates the supported
version of the protocol.

Each entry must correspond to an
ExportedFileShareCapabilities element associated via
ElementCapabilities to the FileExportService -- the
FileSharingProtocol and ProtocolVersion properties of that
element must match the entry.

ProtocolVersions

Optional

An array listing all the versions of the file sharing protocol
specified in the corresponding entry of the
FileSharingProtocol array property. A NULL entry indicates
support for all versions of the protocol.

At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this property is optional in this
subprofile.

SupportedSynchrono
usMethods

Mandatory

An array listing the extrinsic methods of the
FileExportService that can be called synchronously.

Note: Every supported method shall be listed either in this
property or in the SupportedAsynchronousMethods array

property.

SupportedAsynchron
ousMethods

Mandatory

An array listing the extrinsic methods of the
FileExportService that can be called synchronously.

Note: Every supported method shall be listed either in this
property or in the SupportedSynchronousMethods array

property.

InitialEnabledState

Optional

This represents the state of initialization of a FileShare on
initial creation.

5.8.4 CIM_ElementCapabilities (FES Configuration)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

56

File Export Manipulation Subprofile

Table 24 describes class CIM_ElementCapabilities (FES Configuration).

Table 24: SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration)

Properties Flags Requirement | Description & Notes
Capabilities Mandatory The FileExportCapabilities.
ManagedElement Mandatory The FileExportService.

5.8.5 SNIA_ExportedFileShareCapabilities (FES Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 25 describes class SNIA_ExportedFileShareCapabilities (FES Capabilities).

Table 25: SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES

Capabilities)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for a capability of a File Export
Service

ElementName Mandatory A provider supplied user-Friendly Name for this Capabilities
element.

FileSharingProtocol Mandatory This identifies the single file sharing protocol (e.g., NFS or
CIFS) that this Capabilities represents.

ProtocolVersions Optional An array listing the versions of the protocol specified by the
FileSharingProtocol property. A NULL value or entry
indicates support for all versions of this protocol.

At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional. If
the property is NULL, all versions of the protocol are
supported.

SupportedProperties Mandatory This is the list of configuration properties (of

ExportedFileShareSetting) that are supported for
specification at creation time by this Capabilities element.

Properties that can appear in this array are:
"DefaultReadWrite" ("2"), "DefaultExecute” ("3"),
"DefaultUserld" ("4"), "RootAccess" ("5"), "WritePolicy"
("6"), "AccessPoints" ("7"), and "InitialEnabledState” ("8").

SMI-S 1.2.0 Revision 6

SNIA Technical Position 57

File Export Manipulation Subprofile

Table 25: SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES

Capabilities)
Properties Flags Requirement | Description & Notes
CreateGoalSettings() Mandatory This extrinsic method supports the creation of a

ExportedFileShareSetting that is a supported variant of a
ExportedFileShareSetting passed in as an embedded IN
parameter TemplateGoalSettings[0]. The method returns
the supported ExportedFileShareSetting as an embedded
OUT parameter SupportedGoalSettings|[0].

5.8.6 SNIA_ElementCapabilities (FES Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 26 describes class SNIA_ElementCapabilities (FES Capabilities).

Table 26: SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities)

Properties Flags Requirement | Description & Notes

Characteristics Mandatory If this array enum includes the value mapped to "Default",
it indicates that the ExportedFileShareCapabilities element
identified by this association is the default to be used for
any extrinsic method of the associated FileExportService

element.
Capabilities Mandatory The FileExportCapabilities.
ManagedElement Mandatory The FileExportService.

5.8.7 SNIA_ExportedFileShareSetting (Pre-defined)

Created By: Static_or_External
Modified By: External
Deleted By: External

Class Mandatory: Optional

58

File Export Manipulation Subprofile

Table 27 describes class SNIA_ExportedFileShareSetting (Pre-defined).

Table 27: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for this Setting element.

ElementName

Mandatory

A provider supplied user-friendly name for this Setting
element.

FileSharingProtocol

Mandatory

The file sharing protocol to which this Setting element
applies. The entries in the ProtocolVersions property
identify the specific versions of the protocol that are
supported. This profile only supports "NFS" (2) and "CIFS"

3).

ProtocolVersions

Optional

This array identifies the versions of the file sharing protocol
(specified by FileSharingProtocol) to which this Setting
element applies. If NULL, it indicates support for all
versions.

At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional.

InitialEnabledState

Optional

This indicates the enabled/disabled states initially set for a
created FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3"
("Disabled™), "7" ("In Test"), "8" ("Deferred") or "9"
("Quiesce")

OtherEnabledState

Optional

A vendor-specific description of the initial enabled state of a
created fileshare if InitialEnabledState=1("Other").

DefaultUserldSuppor
ted

Optional

Indicates whether a FileShare created or modified by using
this Setting element will use a default user id to control
access to the share if the id of the importing client is not
provided.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Default User Id"), "3" ("System-
Specified Default User 1d") or "4" ("Share-Specified Default
User 1d").

RootAccess

Optional

Indicates whether a FileShare created or modified by using
this Setting element will support default access privileges to
administrative users from specific hosts specified at
creation time.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root
Access").

SMI-S 1.2.0 Revision 6

SNIA Technical Position

59

File Export Manipulation Subprofile

Table 27: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties

Flags

Requirement

Description & Notes

AccessPoints

Optional

An enumerated value that specifies the service access
points that are available to a FileShare created or modified
by using this Setting element by default (to be used by
clients for connections). These default access points can
always be overridden by the privileges explicitly defined by
a supported authorization mechanism(s). Any
ServiceAccessPoints that actually connect to this share will
be associated to it by CIM_SAPAvailableForElement.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("None"), "3" ("Service Default"), "4"
("All"y or "5" ("Named Points").

Caption

Optional

Not Specified in this version of the Profile

Description

Optional

Not Specified in this version of the Profile

DefaultReadWrite

Optional

Indicates the default privileges that are supported for read
and write authorization when creating or modifying a
FileShare using this Setting element.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Not Specified in this version of the Profile

DefaultExecute

Optional

Indicates the default privileges that are supported for
execute authorization when creating or modifying a
FileShare using this Setting element.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Not Specified in this version of the Profile

ExecuteSupport

Optional

Indicates if the sharing mechanism provides specialized
support for executing a shared element when creating or
modifying a FileShare using this Setting element (for
instance, does it provide paging support for text pages).

Not Specified in this version of the Profile

WritePolicy

Optional

Indicates whether writes through a FileShare (created or
modified by using this Setting element) to the shared
element will be handled synchronously or asynchronously
by default.

This policy may be overridden or surfaced using the Policy
sub-profile.

Not Specified in this version of the Profile

60

File Export Manipulation Subprofile

5.8.8 SNIA_SettingsDefineCapabilities (Pre-defined)

Created By: Static_or_External

Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 28 describes class SNIA_SettingsDefineCapabilities (Pre-defined).

Table 28: SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined)

Properties Flags Requirement | Description & Notes

PropertyPolicy Mandatory

ValueRole Mandatory

ValueRange Mandatory

GroupComponent Mandatory An Exported FileShare Capabilities element that is defined
by a collection of ExportedFileShareSetting Settings.

PartComponent Mandatory A Exported FileShare Setting that provides a point or a

partial definition for a Exported FileShare Capabilities
element.

5.8.9 SNIA_ExportedFileShareSetting (FileShare Setting)

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 29 describes class SNIA_ExportedFileShareSetting (FileShare Setting).

Table 29: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Set-

ting)
Properties Flags Requirement | Description & Notes
InstancelD Mandatory An opaque, unique ID for the Setting.
ElementName Mandatory A client-defined user-friendly name for the Setting.
FileSharingProtocol Optional The file sharing protocol supported by this share. NFS (2)
and CIFS (3) are the supported values.
SMI-S 1.2.0 Revision 6 SNIA Technical Position 61

File Export Manipulation Subprofile

Table 29: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Set-

ting)
Properties Flags Requirement | Description & Notes
ProtocolVersions Mandatory An array of the versions of the supported file sharing

protocol. A share may support multiple versions of the
same protocol. A NULL value or a NULL entry indicates
support for all versions.

At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional.

InitialEnabledState N Optional This indicates the enabled/disabled states initially set for a
created FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3"
("Disabled™), "7" ("In Test"), "8" ("Deferred") or "9"
("Quiesce")

Note: We need to rethink the usage of this property once
the file share has been created. Maybe it should apply to
when the file share is re-activated when the share or
system is rebooted after a shutdown. With the current
definition, neither this nor OtherEnabledState make sense.

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is "1"
("Other™).

DefaultUserldSuppor | N Optional Indicates whether the associated FileShare will use a

ted default user id to control access to the share if the id of the

importing client is not provided.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Default User Id"), "3" ("System-
Specified Default User Id") or "4" ("Share-Specified Default
User Id").

RootAccess N Optional Indicates whether the associated FileShare will support
default access privileges to administrative users from
specified hosts.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root
Access").

62

File Export Manipulation Subprofile

Table 29: SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Set-

ting)

Properties

Flags

Requirement

Description & Notes

AccessPoints

N

Optional

An enumerated value that specifies the service access
points that are available to this FileShare element by
default (to be used by clients for connections). Any
ServiceAccessPoint elements that actually connect to this
FileShare element will be associated to it by a
SAPAvailableForElement association.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile. The default or built-in
access points can always be overridden by the privileges
explicitly defined through the Authorization sub-profile.

Valid values are "2" ("None"), "3" ("Service Default"), "4"
("All") or "5" ("Named Points").

Caption

Optional

Not Specified in this version of the Profile

Description

Optional

Not Specified in this version of the Profile

DefaultReadWrite

Optional

Not Specified in this version of the Profile

DefaultExecute

Optional

Not Specified in this version of the Profile

ExecuteSupport

Optional

Not Specified in this version of the Profile

WritePolicy

z|lz2|1 2|2 2|2

Optional

Not Specified in this version of the Profile

5.8.10 SNIA_FileShare (Exported File Share)

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 30 describes class SNIA_FileShare (Exported File Share).

Table 30: SMI Referenced Properties/Methods for SNIA_FileShare (Exported File Share)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.

Name Mandatory This shall be an opaque string that uniquely identifies the
path to the directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is

useful when importing but less so when exporting.

SMI-S 1.2.0 Revision 6

SNIA Technical Position 63

File Export Manipulation Subprofile

Table 30: SMI Referenced Properties/Methods for SNIA_FileShare (Exported File Share)

Properties Flags Requirement | Description & Notes
OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in the
Health and Fault Management Clause.
Description N Optional This a comment describing the file share.
Caption N Optional Not Specified in this version of the Profile
InstallDate N Optional Not Specified in this version of the Profile
StatusDescriptions N Optional Not Specified in this version of the Profile
HealthState N Optional Not Specified in this version of the Profile
EnabledState N Optional Not Specified in this version of the Profile
OtherEnabledState N Optional Not Specified in this version of the Profile
RequestedState N Optional Not Specified in this version of the Profile
EnabledDefault N Optional Not Specified in this version of the Profile
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile
nge
RequestStateChange Optional Not Specified in this version of the Profile

0

5.8.11 SNIA_HostedShare

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 31 describes class SNIA_HostedShare.

Table 31: SMI Referenced Properties/Methods for SNIA_HostedShare

Properties Flags Requirement | Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile
Dependent Mandatory The Share that is hosted by a Computer System
Antecedent Mandatory The Computer System that hosts a FileShare.

5.8.12 CIM_ServiceAffectsElement

Created By: Extrinsic: CreateExportedShare

64

File Export Manipulation Subprofile

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 32 describes class CIM_ServiceAffectsElement.

Table 32: SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement | Description & Notes

ElementEffects Mandatory In this profile, the service provides management for the
element. We allow Other to support vendor extensions.

OtherElementEffects Mandatory A description of other element effects that this association

Descriptions might be exposing.

AffectedElement Mandatory The FileShare.

AffectingElement Mandatory The FileExportService.

5.8.13 CIM_ElementSettingData (FileShare Setting)

Created By: Extrinsic: CreateExportedShare

Modified By: Extrinsic: ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 33 describes class CIM_ElementSettingData (FileShare Setting).

Table 33: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)

Properties Flags Requirement | Description & Notes

IsCurrent N Optional Is always true in this version of the sub-profile because we
only support one setting per share. However support for the
other flags, specifically, IsDefault and IsNext, could be
added in future releases.

IsDefault N Optional Not Specified in this version of the Profile

IsNext N Optional Not Specified in this version of the Profile

IsMinimum N Optional Not Specified in this version of the Profile

IsMaximum N Optional Not Specified in this version of the Profile

ManagedElement Mandatory The FileShare used for exporting an element.

SettingData Mandatory A Setting that specifies possible configurations of the
FileShare. In this version, we default this to
isCurrent="true"

SMI-S 1.2.0 Revision 6 SNIA Technical Position 65

File Export Manipulation Subprofile

5.8.14 CIM_LogicalFile (Subelement)

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: BC1.1

Table 34 describes class CIM_LogicalFile (Subelement).

Table 34: SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)

Properties Flags Requirement | Description & Notes

CSCreationClassNa Mandatory CIM Class of the Computer System that hosts the

me Filesystem of this File.

CSName Mandatory Name of the Computer System that hosts the Filesystem of
this File.

FSCreationClassNa Mandatory CIM Class of the LocalFileSystem on the Computer System

me that contains this File.

FSName Mandatory Name of the LocalFileSystem on the Computer System that
contains this File.

CreationClassName Mandatory CIM Class of this instance of LogicalFile.

Name Mandatory Name of this LogicalFile.

5.8.15 SNIA_SharedElement

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

Table 35 describes class SNIA_SharedElement.

Table 35: SMI Referenced Properties/Methods for SNIA_SharedElement

Properties Flags Requirement | Description & Notes

SystemElement Mandatory The LocalFileSystem that is sharing a directory or file
through a SNIA_FileShare alter ego.

SameElement Mandatory The FileShare that is the alter ego for a directory or file in a
LocalFileSystem.

66

File Export Manipulation Subprofile

5.8.16 CIM_FileStorage (Subelement)

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: BC1.1

Table 36 describes class CIM_FileStorage (Subelement).

Table 36: SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)

Properties Flags Requirement | Description & Notes

PartComponent Mandatory The file or directory that is made available for export.

GroupComponent Mandatory The Local File System that contains the exported File or
Directory.

5.8.17 CIM_ConcreteDependency

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: BC1.1

Table 37 describes class CIM_ConcreteDependency.

Table 37: SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The LogicalFile that is being shared.
Dependent Mandatory The Share that represents the LogicalFile being shared.

5.8.18 CIM_SAPAvailableForElement

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare

Class Mandatory: Mandatory

SMI-S 1.2.0 Revision 6 SNIA Technical Position 67

File Export Manipulation Subprofile

Table 38 describes class CIM_SAPAvailableForElement.

Table 38: SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement | Description & Notes

ManagedElement Mandatory The element that is made available through a SAP. In the
File Export subprofile, these are FileShares configured for
either export.

AvailableSAP Mandatory The Service Access Point that is available to this FileShare.

EXPERIMENTAL

68

File Storage Profile

STABLE

6.1 Description
6.1.1 Synopsis

Profile Name: File Storage
Version: 1.2.0
Organization: SNIA

CIM schema version: 2.13

Central Class: N/A

Clause 6: File Storage Profile

Scoping Class: ComputerSystem

6.1.2 Overview

The File Storage Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in this release
of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles.

6.1.3 Implementation

Figure 8 illustrates the mandatory and optional classes for the modeling of file storage for the profiles that support

filesystems. This profile is supported by the Self-contained NAS and the NAS Head Profiles.

HostedFileSystem

ComputerSystem

SystemDevice

Figure 8: File Storage Instance

LocalFileSystem

File Storage
Profile

ResidesOnExtent
(Conditional)

LogicalDisk

—_—_J

SMI-S 1.2.0 Revision 6

SN

IA Technical Position

69

File Storage Profile

The File Storage profile models the mapping of Filesystems to LogicalDisks. For the NAS Head and Self-contained
NAS profiles each Filesystem shall be established on one LogicalDisk. The relationship between the
LocalFileSystem and the LogicalDisk is represented by the ResidesOnExtent association. This association is listed
as conditional on the parent profile being either the NAS Head or the Self-contained NAS profile.The LogicalDisk
may be a LogicalDisk as defined in the Block Services Package or part of the parent profile.

The FileStorage Profile is a “read-only” profile. That is, the methods for creating, modifying or deleting a
LocalFileSystem are external to the File Storage Profile. The SMI-S prescribed way of performing these functions
are covered by the Filesystem Manipulation Profile.

6.2 Health and Fault Management Consideration

None.

EXPERIMENTAL

6.3 Cascading Considerations

In some cases, the parent profile does not implement Block Services Package. In this case, the parent profile
would implement a LogicalDisk that is “imported” from another Profile (e.g., a Volume Management Profile). This
section discusses those cascading considerations.

6.3.1 Cascaded Resources

A File Storage profile may get its storage from the operating system (HDR Profile), a volume manager, an Array or
Storage Virtualizer. As such, there is a cascading relationship between the File Storage Profile and the Profiles
(e.g., Volume Management Profiles) that provide the storage for the File Storage Profile. Figure 9 illustrates the
constructs to be used to model this cascading relationship.

70

File Storage Profile

Figure 9: Cascading File Storage

LocalFileSystem LocalFileSystem

ComputerSystem

|Fi|e Storage Profile

ResidesOnExtent

ResidesOnExtent

SystemDevice I— I

LogicalDisk Volume Composition|Subprofile

Name="Internal Name" LogicalDisk

Otherldentifyinginfo[]="0S X"

Name="Internal Name”

T
BasedOn
1

CompositeExtent

’—Basedo nJ—BasedO n—‘

LogicalDisk LogicalDisk
Name="Internal Name" Name="Internal Name”
Otherldentifyinginfo[]="0S Y” Otherldentifyinginfo[]="0S Z”

I —

Logicalldentity

Dependency — _
Logicalldentity LogicalDisk

——Logicalldentity |
Cascading Subprofile ‘ | (Virtual)
MemberOfCollection Name="0sS z"

SNIA_AllocatedResources ‘
MemberOfCollection |

| (Virtual)
SNIA_RemoteResources
Computersystem !) Name="0S Y~
(Virtual) MemberOfCollection
LogicalDisk 1
(Virtual)
SystemDevice . N

Name="0S X | MemberOfCollection

SAPAvailableForElement I LogicalDisk

(Virtual)
RemoteServiceAccessPoint I I

MemberOfCollection

LogicalDisk '

L

Figure 9 shows 2 filesystems (LocalFileSystem). Both reside on one LogicalDisk. But the LogicalDisk on the right is
a composite of lower level LogicalDisks. The storage that is imported from the remote profile are LogicalDisks at
the lowest level of the Filesystem Profile. So, in the first (left side) case, the Logicalldentity is between the
LogicalDisk on which the filesystem resides to the imported LogicalDisk (or StorageVolume). In the second case
(the right side) the Logicalldentity is between the “lowest level” LogicalDisks in Volume Composition and the
imported LogicalDisks (or StorageVolumes).

Note: Logicalldentity is an abstract class and would be subclassed by an implementation.

The ComputerSystem in the Filesystem Profile would be the computer system that hosts the filesystem. The
“Virtual” ComputerSystem is the top level ComputerSystem of the HDR, Volume Manager, Array or Storage
Virtualizer. There shall be a Dependency association between these computer systems. LogicalDisks (or
StorageVolumes) that are in use by the Filesystem Profile would have a MemberOfCollection association to the
SNIA_AllocatedResources collection. All the LogicalDisks (or StorageVolumes) that the Filesystem Profile can see
(including the ones that are allocated) would have a MemberOfCollection association to the
SNIA_RemoteResources instance.

The RemoteServiceAccessPoint associated to the virtual computer system via SAPAvailableForElement would be
information on the management interface for the HDR, Volume Manager, Array or Storage Virtualizer.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 71

File Storage Profile

Table 39 provides the specific cascading information for cascading file storage.

Table 39: Cascaded Storage

File Storage |Leaf Profile Leaf Resource Association Notes
Resource
LogicalDisk Volume Manage- LogicalDisk Logicalldentity
ment or HDR
LogicalDisk Array or Storage StorageVolume Logicalldentity
Virtualizer

6.3.2 Ownership Privileges

In support of the cascading File Storage, an implementation may assert ownership over the LogicalDisks (or
StorageVolumes) that they import. If the Volume Management implementation supports Ownership, the File
Storage implementation may assert ownership using the following Privileges:

= Activity - Execute
= ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool
< FormatQualifier - Method

Note: HDR does not support Block Storage Resource Ownership, so this cannot be supported if the
underlying profile is HDR.
6.3.3 Limitations on Cascading Subprofile

The File Storage Profile support for cascading places the following limitations and restrictions on the Cascading
Subprdfile:

< Dependency - The Dependency may exist, even when there are no resources that are imported. This signifies
that the File Storage implementation has discovered the Volume Management or HDR profile, but has no
access to any of their LogicalDisks.

EXPERIMENTAL

6.4 Supported Profiles, Subprofiles, and Packages

Not defined in this standard.

6.5 Methods of the Profile

6.5.1 Extrinsic Methods of the Profile

None

Note: The methods for defining the various mappings would be handled by the Filesystem Manipulation
subprofile.

72

File Storage Profile

6.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= Getlnstance

< Associators

= AssociatorNames

< References

< ReferenceNames

= Enumeratelnstances

e EnumeratelnstanceNames

6.6 Client Considerations and Recipes

None.

6.7 Registered Name and Version

File Storage version 1.2.0

6.8 CIM Elements

Table 40: CIM Elements for File Storage

Element Name Requirement | Description

CIM_ResidesOnExtent (6.8.1) Conditional Represents the association between a local
FileSystem and the underlying LogicalDisk
that it is built on.

6.8.1 CIM_ResidesOnExtent

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: NASHead|SCNAS

SMI-S 1.2.0 Revision 6 SNIA Technical Position 73

File Storage Profile

Table 41 describes class CIM_ResidesOnExtent.

Table 41: SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Properties Flags Requirement | Description & Notes

Dependent Mandatory The LocalFileSystem that is built on top of a LogicalDIsk.

Antecedent Mandatory The LogicalDIsk that underlies a LocalFileSystem.
STABLE

74

Filesystem Profile

STABLE

Clause 7: Filesystem Profile

7.1 Description

7.1.1 Synopsis

Profile Name: Filesystem
Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13
Central Class: LocalFileSystem
Scoping Class: ComputerSystem

The Filesystem Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in this release
of SMI-S, this includes the NAS Head and the Self-Contained NAS profiles. A number of other profiles and
subprofiles make use of elements of the Filesystem profile and will be referred to in this specification as
“Filesystem related profiles” -- these include but are not limited to the Filesystem Manipulation subprofile, File
Export subprofile, File Export Manipulation subprofile, NAS Head profile, and so on.

The state transitions involved when an appropriate storage element is transformed into a filesystem are described
in Annex A: (Informative) State Transitions from Storage to File Shares.
7.1.2 Instance Diagrams

Figure 10 illustrates the mandatory, optional, and conditional classes for the modeling of filesystems for the profiles
that support filesystems. This profile is supported by the Self-contained NAS and the NAS Head profiles. The
dashed box contains the elements that this profile supports -- the elements outside the dashed box depend on

SMI-S 1.2.0 Revision 6 SNIA Technical Position 75

Filesystem Profile

other profiles or subprofiles for their maintenance (creation, deletion, and modification). There are two

Figure 10: Filesystem Instance

SNIA_HostedShare

ComputerSystem 1 ~ SNIA_FileShare
- . ConcreteDependency
File Server 1 PathName="/users/me” [~ — (BC 1.1)
1 * *
‘ SNIA_SharedElement,

e . Dependency . .
SNIA_LocalAccessAvailable (Conditional) File System Profile
LocalAccessPoint="/etc/mnt”

(Conditional) 1
LogicalFile
1 1 FileStorage | * (BC1.1)
* SNIA_LocalFileSystem 1 (BC 1.1)
HostedDependency o -
(Optional) LocalAccessDefinitionRequired
PathnameSeparatorString="/"
1
* 1
ElementSettingData ElementSettingData
(Optional) (Optional)
* * 1
SNIA_LocallyAccessibleFileSystemSetting SNIA_FileSystemSetting
(Optional) (Optional)
HostedFileSystem
r

ResidesOnExtent
1 |

ComputerSystem Logicalpisk

FileSystem Host

ComputerSystems shown outside the box that represent different dedicated roles that could be performed by
different actual computers (or could be performed by a single computer).

A filesystem shall be represented in the model as an instance of LocalFileSystem. A LocalFileSystem instance
shall have a ResidesOnExtent association to a LogicalDisk (shown, but outside this profile). A client would
determine the size (in bytes) of a filesystem by inspecting the size of the LogicalDisk on which the LocalFileSystem
resides.

Note: The Filesystem related profiles build LocalFileSystems on a LogicalDisk(s). In the cases supported in
this release of SMI-S, one LocalFileSystem may be established on one LogicalDisk. In a future release,
more elaborate mappings may exist between FileSystems and one or more LogicalDisks.

The LocalFileSystem shall have a HostedFileSystem association to a ComputerSystem. Normally this will be the
top level ComputerSystem of the parent profile (typically one of the Filesystem related profiles such as the NAS
Head or the Self-Contained NAS Profile). However, if the Multiple Computer System Subprofile is implemented, the
HostedFileSystem may be associated to a component ComputerSystem. See Clause 32: Multiple Computer
System Subprofile in Storage Management Technical Specification, Part 2 Common Profiles.

The LocalFileSystem element may also have an ElementSettingData association to the FileSystemSetting for that
filesystem. However, the FileSystemSetting and ElementSettingData are optional in this profile.

There may be zero or more FileShare elements associated to the LocalFileSystem element via the SharedElement
association. An implementation would be required to populate only those FileShare elements representing files (or
directories) that are exported using a supported file sharing protocol (such as CIFS or NFS). The path to the file or
directory from the root of the LocalFileSystem is specified by the FileShare.PathName property.

Note: In order to support backward compatibility with the NAS Head and Self-contained NAS profiles in SMI-
S 1.1, the class LogicalFile (shown outside the dashed box in the figure) and two associations

76

Filesystem Profile

(ConcreteDependency outside the dashed box and FileStorage shown inside the dashed box) must be
supported. These duplicate the functionality provided by specifying FileShare.PathName, at the cost of
requiring that certain LogicalFiles, but not all, be surfaced.

EXPERIMENTAL

7.1.2.1 Local Access Requirement

In addition, if the property LocalFileSystem.LocalAccessDefinitionRequired is set to true, the filesystem must be
made exportable via a file server. In that case, there shall be a LocalAccessAvailable association from the
LocalFileSystem element to the file server ComputerSystem and, optionally, a
LocallyAccessibleFileSystemSettings element associated via an ElementSettingData association to the
LocalFileSystem. The LocallyAccessibleFileSystemSettings element is an instance of ScopedSettingData and is
associated to the file server ComputerSystem via a ScopedSetting association. The ScopedSetting association
indicates that this setting is constrained by the associated file server. The LocalAccessAvailable association is
required but conditional on LocalAccessDefinitionRequired being true, while the
LocallyAccessibleFileSystemSettings element and the ScopedSetting association are not required (i.e., optional).

Note: They are still conditional on LocalAccessDefinitionRequired being true, but in this version of SMI-S we
are unable to represent that in the XML file.

Since LocalAccessAvailable is an association, there can only be ONE instance per LocalFileSystem for each
FileServer. This is a common restriction . For each LocalAccessAvailable association, there should only be zero (if
optionally not implemented) or one (if optionally implemented) instances of LocallyAccessibleFileSystemSettings.

EXPERIMENTAL

EXPERIMENTAL

7.1.2.2 Directory Service Use

A filesystem needs to be supported by a directory service that resolves user and group identifiers (referred to as
UID, GID, or SID) to specific operational users and groups. The enumerated property
LocalFileSystem.DirectoryServiceUsage indicates the kind of support a filesystem requires from a directory service
-- the options include “Not Used”, “Optional”, and “Required”. If “Required”, the filesystem will be associated to a
computer system that provides infrastructure support for such identity resolution.

The directory service may be hosted by any ComputerSystem, but it must be accessible in real-time to the
ComputerSystem that makes the filesystem available to operational users -- this is either a file server
ComputerSystem (one may already be required if LocalFileSystem.LocalAccessDefinitionRequired is true, but it is
optional otherwise) or the ComputerSystem hosting the filesystem. The directory service may be “natively” hosted
on that ComputerSystem (file server or filesystem host) or may be identified by that ComputerSystem in some way.

The support relationship between a LocalFileSystem element and the ComputerSystem that identifies and uses
the directory service shall be represented by a Dependency association with the ComputerSystem element as the
Antecedent and the LocalFileSystem element as the Dependent.

In the instance diagram above, the Dependency association has been shown between the LocalFileSystem and a
file server ComputerSystem (with Dedicated[]="16"). A LocalFileSystem element shall only identify one
ComputerSystem for directory service access. In addition, the consistency of filesystem security implementation
requires that all the file server ComputerSystems that make a filesystem locally available must use the same
directory service or use mutually consistent directory services.

EXPERIMENTAL

SMI-S 1.2.0 Revision 6 SNIA Technical Position 77

Filesystem Profile

7.2 Health and Fault Management Consideration

The Filesystem Profile supports state information (e.g., OperationalStatus) on the following elements of the model:

« Local File Systems (See Table 53: SMI Referenced Properties/Methods for SNIA_LocalFileSystem)

78

7.2.1

7.3

None.

Filesystem Profile

OperationalStatus for Filesystems

Table 42: Filesystem OperationalStatus

Primary OperationalStatus

Description

2 “OK” The filesystem has good status

3 “Degraded” The filesystem is operating in a degraded mode. This could be
due to the health state of the underlying storage being
degraded or in error.

4 “Stressed” The filesystem resources are stressed

5 “Predictive Failure”

The filesystem might fail because some resource or compo-
nent is predicted to fail

6 “Error” An error has occurred causing the filesystem to become
unavailable. Operator intervention through SMI-S (managing
the LocalFileSystem) to restore the filesystem may be possi-
ble.

6 “Error” An error has occurred causing the filesystem to become

unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error”

The filesystem is not functioning. Operator intervention
through SMI-S will not fix the problem.

8 “Starting” The filesystem is in process of initialization and is not yet avail-
able operationally.

9 “Stopping” The filesystem is in process of stopping, and is not available
operationally.

10 “Stopped” The filesystem cannot be accessed operationally because it is

stopped -- if this did not happened because of operator inter-
vention or happened in real-time, the OperationalStatus would
have been “Lost Communication” rather than “Stopped”.

11 “In Service”

The filesystem is offline in maintenance mode, and is not avail-
able operationally.

13 “Lost Communications”

The filesystem cannot be accessed operationally -- if this hap-
pened because of operator intervention it would have been
“Stopped” rather than “Lost Communication”.

14 “Aborted” The filesystem is stopped but in a manner that may have left it
in an inconsistent state.
15 “Dormant” The Filesystem is offline; and the reason for not being accessi-

ble is unknown.

16 “Supporting Entity in Error”

The filesystem is in an error state, or may be OK but not
accessible, because a supporting entity is not accessible.

Cascading Considerations

SMI-S 1.2.0 Revision 6

SNIA Technical Position

79

Filesystem Profile

7.4 Supported Profiles, Subprofiles, and Packages

Table 43: Supported Profiles for Filesystem

Registered Profile Names Mandatory Version

Indication Yes 1.2.0

7.5 Methods of the Profile

7.5.1 Extrinsic Methods of the Profile

None.

7.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= (Getlnstance

= Associators

< AssociatorNames

< References

< ReferenceNames

= Enumeratelnstances

< EnumeratelnstanceNames

7.6 Client Considerations: Use Cases

The following client use cases are supported by this profile:

= List Existing Filesystems hosted by the Referencing Profile (parent Filesystem related profile).
= Get FileSystemSettings for a FileSystem

= Get the ComputerSystem that hosts a FileSystem

= Get all File Servers and Access Paths that have Local Access to this FileSystem

= Get the Access Path to this FileSystem on the specified File Server

= Get the Local Access Settings for this FileSystem on the specified File Server

= Get the FileShares and shared File path of this FileSystem on all File Servers

= Get the FileShares and shared File path of this FileSystem on the specified FileServer

80

Filesystem Profile

EXPERIMENTAL
These use cases have been elaborated as prototype recipes in the following sections.

7.6.1 List Existing Filesystems hosted by the Referencing Profile (parent filesystem related profile

// DESCRIPTION

// Goal: Locate all LocalFileSystems hosted on the top level

// ComputerSystem of the Filesystem Profile.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the top level ComputerSystem was previously
// discovered and is defined in the $System-> variable.

//

// FUNCTION ListFileSystems

// This function takes a given top level ComputerSystem and locates
// the LocalFileSystems which it hosts or are hosted by any component
// ComputerSystem.

// INPUT Parameters:

// System: A reference to the top level ComputerSystem of

// the Filesystem Profile.

// OUTPUT Parameters:

// None

// RESULT:

// Returns: An array of reference(s) to the LocalFileSystems
// hosted by the top level ComputerSystem or component
// ComputerSystems. It returns NULL if it does not find
// any hosted LocalFileSystems.

sub CIMInstance[] ListFileSystems(REF CIM_ComputerSystem $System->) {

// Step 1. Locate the LocalFileSystems hosted directly by the

// top-level ComputerSystem of the Filesystem Profile.

#FSProps[] = {“CSCreationClassName”, “CSName”, “CreationClassName”,
“Name”, ‘“OperationalStatus”, “CaseSensitive”, “CasePreserved”,
“MaxFileNameLength”, “FileSystemType™,
“MultipleDisksSupported”,

“LocalAccessDefinitionRequired”,
“PathNameSeparatorString” }
$FileSystems[] = Associators($System->,

“CIM_HostedFileSystem”,
“CIM_LocalFileSystem”,
“GroupComponent”,
“PartComponent”,

false,

false,

#FSProps[])

// Step 2. Locate all the component ComputerSystems of the top level

SMI-S 1.2.0 Revision 6 SNIA Technical Position

82

Filesystem Profile

// ComputerSystem of the Filesystem Profile implementation.
// This assumes that the top level ComputerSystem of the Filesystem
// Profile is the same as the top level ComputerSystem of the
// Multiple Computer System Subprofile. This recipe does not
// check if this assumption is correct.
try {
REF CIM_ComputerSystem $ComponentSystems->[] =
AssociatorNames($System->,

“CIM_ComponentCS,

“CIM_ComputerSystem”,

“GroupComponent™,

“PartComponent’)

// Step 3. Locate the LocalFileSystems hosted by the component
// ComputerSystem and add to the list of found LocalFileSystems.
ifT ($ComponentSystems->[] '= null &&
$ComponentSystems->[].length > 0) {
REF CIM_FileSystem $ComponentFS[]
#fsCounter = $FileSystems[].length
for (#i in $ComponentSystems->[]) {
$ComponentFS[] =
Associators($ComponentSystems->[#i],
“CIM_HostedFileSystem”,
“CIM_LocalFileSystem”,
“GroupComponent™,
“PartComponent”,
false,
false,
#FSProps[1)
iT ($ComponentFS[] !'= null && $ComponentFS[].length > 0) {
for (#j in $ComponentFS->[]1) {
$FileSystems[#fsCounter] = $ComponentFS[#j]
#fsCounter++

}
}
} catch (CIMException $Exception) {

// ComponentCS may not be included in the model implemented at all if
// the Multiple Computer System Subprofile is not supported.

ifT ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

return $FileSystems[]
}

<ERROR! An unexpected failure occured>

}

return $FileSystems[]

Filesystem Profile

// MAIN
$HostedFileSystems[] = ListFileSystems($TopLevelComputerSystem->)

7.6.2 Get FileSystemSettings for a FileSystem

// DESCRIPTION

// Goal: Get the FileSystemSettings associated with a LocalFileSystem
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.
// 2. There is only one setting for the file system
//

// FUNCTION GetFSSetting

// This function takes a given LocalFileSystem and returns the

// FileSystemSetting element that specifies its configuration.

// INPUT Parameters:

// Ts: A reference to the LocalFileSystem .

// OUTPUT Parameters:

// setting: A reference to the FileSystemSetting element is returned.

// RESULT:
// Returns: Nothing
//

sub GetFSSetting(IN REF CIM_LocalFileSystem $fs,
OUT CIM_FileSystemSetting $setting)

{
//
// Get a reference to the FileSystemSetting associated with the
// LocalFileSystem (via ElementSettingData association)
$setting = Associators($fs,
“CIM_ElementSettingData”,
“CIM_FileSystemSetting”,
“ManagedElement”,
“SettingData™)->[0];
}

7.6.3 Get the ComputerSystem that hosts a FileSystem

// DESCRIPTION

// Goal: Get the ComputerSystem that hosts a LocalFileSystem
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

//

// FUNCTION GetFileSystemHost

// This function takes a given LocalFileSystem and returns the
// ComputerSystem that hosts it.

// INPUT Parameters:

SMI-S 1.2.0 Revision 6 SNIA Technical Position 83

Filesystem Profile

// fTs: A reference to the LocalFileSystem.
// OUTPUT Parameters:
// system: A reference to the hosting ComputerSystem is returned.
// RESULT:
// Returns: Nothing
//
sub GetFileSystemHost(IN REF CIM_LocalFileSystem $fs,
OUT CIM_ComputerSystem $system)

{
$system = Associators($fs,
“CIM_HostedFileSystem”,
“CIM_ComputerSystem”,
“PartComponent”,
“GroupComponent”)->[0] ;
}

// Retained for backward compatability with SMI-S 1.1
sub GetFSServer(IN REF CIM_FileSystem $fs,
OUT CIM_ComputerSystem $system)

GetFileSystemHost($fs, $system);
}

7.6.4 Get all File Servers and Access Paths that have Local Access to this FileSystem

84

// DESCRIPTION
// Goal: Get the file server ComputerSystems that access the

// LocalFileSystem and the local access points on those
// ComputerSystems
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

//

// FUNCTION GetFileSystemServersAndPaths

// This function takes a given LocalFileSystem and returns the
// Tile server ComputerSystems that have local access to it
// and the local access points on those ComputerSystems.

// INPUT Parameters:

// Ts: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// systems: An array of references to the file server ComputerSystems.

// paths: An array of strings that are the local access points on the
// corresponding file server

// RESULT:

// Returns: Number of entries in the returned arrays.

//

sub uint32 GetFileSystemServersAndPaths(IN REF CIM_LocalFileSystem $fs,
OUT REF CIM_ComputerSystem $systems[],

Filesystem Profile

OUT string #paths[])

{
REF CIM_LocalAccessAvailable $assocs->[] = References($fs,
“SNIA_LocalAccessAvailable”,
“CIM_ComputerSystem”,
“PartComponent”,
“GroupComponent”);
#counter = O;
if ($assocs->[] = null && $assocs->[].length > 0) {
#count = $assocs->[].length;
for (#i1 in $assocs->[]) {
$systems->[#counter] = $assocs->[#i]-FileServer;
#paths->[#counter] = $assocs->[#i].LocalAccessPoints;
#counter++;
¥
¥
return #counter;
}

7.6.5 Get the Access Path to this FileSystem on the specified File Server

// DESCRIPTION

// Goal: Get the local access point to this LocalFileSystem on the
// specified file server ComputerSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously
// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemServerPath

// This function takes a given LocalFileSystem and file server

// ComputerSystem that has access to the filesystem and returns

// the local access point on that file server ComputerSystem.

// INPUT Parameters:

// Ts: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// None

// RESULT:

// Returns: A string representing the local access path to the
// filesystem on the file server

//

sub string GetFileSystemServerPath(IN REF CIM_FileSystem $fs,
IN REF CIM_ComputerSystem $server)

REF CIM_LocalAccessAvailable $assocs->[] = References($fs,
“SNIA_LocalAccessAvailable”,

SMI-S 1.2.0 Revision 6 SNIA Technical Position 85

Filesystem Profile

“CIM_ComputerSystem”,
“PartComponent”,
“GroupComponent”™);
#path = ““;
if ($assocs->[] = null && $assocs->[].length > 0) {
for (#i in $assocs->[]) {
ifT ($server == $assocs->[#i].FileServer) {
#path = $assocs->[#i].LocalAccessPoint;
break;

b
b
return #path;

}

7.6.6 Getthe Local Access Settings for this FileSystem on the specified File Server

// DESCRIPTION

// Goal: Get the LocallyAccessibleFileSystemSetting for this

// LocalFileSystem on the specified file server ComputerSystem
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously
// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemServerAccessSettings

// This function takes a given LocalFileSystem and file server

// ComputerSystem that has access to the filesystem and returns

// the LocallyAccessibleFileSystemSetting for that FileSystem

// in the context of that file server ComputerSystem

// INPUT Parameters:

// Ts: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// setting: A reference to the SNIA LocallyAccessibleFileSystemSetting

// RESULT:

// Returns: Nothing

// (Optionally) A string containing the setting as an EmbeddedlInstance
//

sub GetFileSystemServerAccessSettings(IN REF CIM_FileSystem $fs,
IN REF CIM_ComputerSystem $server,

OUT REF SNIA_LocallyAccessibleFileSystemSetting
setting)

REF SNIA_LocallyAccessibleFileSystemSetting $settings—>[] =
AssociatorNames($fs,

“CIM_ElementSettingData”,

86

$setting = NULL;
$settingEl = ““;

Filesystem Profile

“SNIA_LocallyAccessibleFileSystemSetting”,
“ManagedElement”,
“SettingData™);

ifT ($settings->[] '= null && $settings->[]-length > 0) {
for (#1 in $settings->[]) {
// Find the server that scopes this setting; assumes at least one is

returned

REF CIM_ComputerSystem scope = AssociatorNames($settings->[#i],

if ($server

“CIM_ScopedSetting”,

“CIM_ComputerSystem”,

“ScopedSettingData,

“ManagedElement”)->[0];
== $scope) {

$setting = $settings->[#i];
$settingEl = $setting->Getlnstance();

break;

}

} else {

// There is no setting => it is defaulted by the server and opaque to the

client

// 1s this an Error?
#ERROR(““Cannot find LocallyAccessibleFileSystemSetting for

b
return $settingEl;

}

LocalFileSystem.”);

7.6.7 Get the FileShares and shared File path of this FileSystem on all File Servers

// DESCRIPTION

// Goal: Get all the FileShare elements and filesystem-relative

// path to the shared file or directory of this LocalFileSystem
// on all file server ComputerSystems (that

// support local access to this LocalFileSystem)

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. A reference to the LocalFileSystem was previously

// discovered and
//

is defined in the $fs-> variable.

// FUNCTION GetFileSystemServersSharesAndSharedPaths
// This function takes a given LocalFileSystem and returns the

// FileShare elements
// of the FileSystem.

that provide access to a file or directory
For each FileShare, this also returns

// the Tile server ComputerSystems that provides local access to

// it and the path to

SMI-S 1.2.0 Revision 6

the shared file or directory relative to the

SNIA Technical Position

87

//
//
//
//
//
//
//
//
//
//
//

Filesystem Profile

filesystem.

INPUT Parameters:
fs: A reference to the LocalFileSystem.

OUTPUT Parameters:
shares: An array of references to the FileShares that provide access.
servers: An array of references to the file server ComputerSystems.
dirpaths: An array of strings that are the filesystem-relative paths

to the shared directory or file

RESULT:

Returns: Number of entries in the returned arrays.

sub uint32 GetFileSystemServersSharesAndSharedPaths(

}

IN REF CIM_FileSystem $fs,

OUT REF CIM_FileShare $shares[],

OUT string #dirpaths[],

OUT REF CIM_ComputerSystem $servers[])

REF CIM_FileShares $shares->[] = Associators($fs,
“CIM_SharedElement™,
“CIM_FileShare”,
“SystemElement”,
“SameElement’);
#counter = O;
if ($shares->[] = null && $shares->[].length > 0) {
for (#i1 in $shares->[]) {
// A share must be hosted
$servers->[#counter] = AssociatorNames($shares->[#i],
“CIM_HostedShare™,
“CIM_ComputerSystem”,
“PartComponent”,
“GroupComponent”)->[0] ;
$assoc = References($shares->[#i],
“CIM_SharedElement”,
“CIM_FileSystem”,
“SameElement”,
“SystemElement™)->[0];
$dirpaths[#counter] = $assoc.PathName;
#counter++;

}
}

return #counter;

7.6.8 Get the FileShares and shared File path of this FileSystem on the specified FileServer

88

//
//
//
/7

DESCRIPTION
Goal: Get all the FileShare elements and filesystem-relative
path to the shared file or directory of this LocalFileSystem
on this file server ComputerSystem

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Filesystem Profile

PRE-EXISTING CONDITIONS AND ASSUMPTIONS
1. A reference to the LocalFileSystem was previously
discovered and is defined in the $fs-> variable.
2. A reference to the file server ComputerSystem was previously
discovered and is defined in the $server-> variable.

FUNCTION GetFileSystemSharesAndSharedPathsOnServer
This function takes a given LocalFileSystem and returns the
FileShare elements that provide access to a file or directory
of the FileSystem. For each FileShare this also returns the
file server ComputerSystem that supports local access to it
and the filesystem-relative path to the shared file or directory.
INPUT Parameters:
fs: A reference to the LocalFileSystem.
server: A reference to the file server ComputerSystem.
OUTPUT Parameters:
shares: An array of references to the FileShares that provide access.
dirpaths: An array of strings that are the file system-relative paths
to the shared directory or file
RESULT:
Returns: Number of entries in the returned arrays.

sub uint32 GetFileSystemSharesAndSharedPathsOnServer(

IN REF CIM_FileSystem $fs,

IN REF CIM_ComputerSystem $server,
OUT REF CIM_FileShare $shares[],
OUT string #dirpaths[])

REF CIM_FileShares $allshares->[] = Associators($fs,
“CIM_SharedElement™,
“CIM_FileShare”,
“SystemElement”,
“SameElement’);
#counter = O;
it ($allshares->[] = null && $allshares->[].length > 0) {
for (#i1 in $shares->[]) {
// A share must be hosted
$host = AssociatorNames($allshares->[#i],
“CIM_HostedShare™,
“CIM_ComputerSystem”,
“PartComponent”,
“GroupComponent”)->[0] ;
// Is this share hosted by the server?
if ($host == $server) {
$assoc = References($allshares->[#i],
“CIM_SharedElement”,

SMI-S 1.2.0 Revision 6 SNIA Technical Position 89

Filesystem Profile

“CIM_FileSystem”,

“SameElement”,

“SystemElement”)->[0];
$shares[#counter] = $allshares->[#i];
$dirpaths[#counter] = $assoc.PathName;
#counter++;

3
¥
return #counter;
}
EXPERIMENTAL

7.7 Registered Name and Version

Filesystem version 1.2.0

90

Filesystem Profile

7.8 CIM Elements
Table 44: CIM Elements for Filesystem

Element Name Requirement | Description

CIM_ElementSettingData (FileSystem) Optional Associates a LocalFileSystem to its

(7.8.1) FileSystemSetting element.

CIM_ElementSettingData (Local Access Conditional Conditional requirement: Required if

Required) (7.8.2) LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a LocalFileSystem to
LocallyAccessibleFileSystemSetting
elements, one for each file server that has
local access.

CIM_FileStorage (7.8.3) Mandatory Associates a LogicalFile (or Directory) to the
LocalFileSystem that contains it. This is
provided for backward compatibility with SMI-
S11

SNIA_LocalAccessAvailable (7.8.4) Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a LocalFileSystem to a
file server ComputerSystem that can export
files or directories as shares.

CIM_HostedDependency (Local Access Conditional Conditional requirement: Required if

Required) (7.8.5) LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a file server
ComputerSystem to the
LocallyAccessibleFileSystemSetting elements
that get scoping information from that file
server.

CIM_Dependency (7.8.6) Mandatory Associates a ComputerSystem that indicates
a directory service that supports the
dependent LocalFileSystem.

SNIA_FileSystemSetting (7.8.7) Optional This element represents the configuration
settings of a filesystem represented by a
LocalFileSystem.

CIM_HostedFileSystem (LocalFileSystem) Mandatory Associates a LocalFileSystem to the

(7.8.8) ComputerSystem that hosts it.

SNIA_LocalFileSystem (7.8.9) Mandatory Represents a filesystem in a Filesystem
related profile.

CIM_LogicalFile (7.8.10) Mandatory In SMI-S 1.1. the Filesystem related profiles
made a limited set of LogicalFiles (or Directory
subclass) instances visible (these were any
file or directory that was exported as a share.
This element is required by the SMI-S 1.2
profiles to maintain backward compatibility
with clients conforming to SMI-S 1.1.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

91

Filesystem Profile

Table 44: CIM Elements for Filesystem

Element Name Requirement

Description

SNIA_LocallyAccessibleFileSystemSetting Conditional
(7.8.11)

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. This element represents the
configuration settings of a LocalFileSystem
that can be made locally accessible (i.e., can
have a file or directory made accessible to
operational users) from a file server
ComputerSystem. This Setting provides
further details on the functionality supported
and the parameters of that functionality when
locally accessible.

CIM_Dependency (Uses Directory Services Conditional
From) (7.8.12)

Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is
either "Required" or "Optional". Associates a
ComputerSystem that indicates a directory
service that supports the dependent
LocalFileSystem.

SELECT * FROM CIM_InstModification Optional
WHERE Sourcelnstance ISA
SNIA_LocalFileSystem AND
Sourcelnstance.SNIA_LocalFileSystem::Oper
ationalStatus[*] <>
Previousinstance.SNIA_LocalFileSystem::Op
erationalStatus[*]

Experimental CQL - Change of Status of a
Filesystem. Previousinstance is optional, but
may be supplied by an implementation of the
Profile.

SELECT * FROM CIM_InstModification Mandatory
WHERE Sourcelnstance ISA
SNIA_LocalFileSystem AND
Sourcelnstance.OperationalStatus <>
Previousinstance.OperationalStatus

Deprecated WQL - Change of Status of a
Filesystem. Previousinstance is optional, but
may be supplied by an implementation of the
Profile.

7.8.1 CIM_ElementSettingData (FileSystem)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: Optional

Table 45 describes class CIM_ElementSettingData (FileSystem).

Table 45: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

Properties Flags Requirement | Description & Notes

ManagedElement Mandatory The LocalFileSystem.

92

Filesystem Profile

Table 45: SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

Properties Flags Requirement | Description & Notes

SettingData Mandatory The settings established on the LocalFileSystem when first
created or as modified.

7.8.2 CIM_ElementSettingData (Local Access Required)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: LocalAccessDefinitionRequired

Table 46 describes class CIM_ElementSettingData (Local Access Required).

Table 46: SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access

Required)
Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.
SettingData Mandatory The local access settings of the LocalFileSystem, specified
when first created or established later.

7.8.3 CIM_FileStorage

Created By: External
Modified By: External
Deleted By: External

Class Mandatory: Mandatory

Table 47 describes class CIM_FileStorage.

Table 47: SMI Referenced Properties/Methods for CIM_FileStorage

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The LocalFileSystem that contains the LogicalFile.
PartComponent Mandatory The LogicalFile contained in the LocalFileSystem.

7.8.4 SNIA_LocalAccessAvailable

SMI-S 1.2.0 Revision 6 SNIA Technical Position 93

Created By: External
Modified By: Static

Deleted By: External

Filesystem Profile

Class Mandatory: LocalAccessDefinitionRequired

Table 48 describes class SNIA_LocalAccessAvailable.

Table 48: SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties

Flags

Requirement

Description & Notes

LocalAccessPoint

Optional

The name used by the file server ComputerSystem to
identify the filesystem. Sometimes referred to as a mount-
point.

For many UNIX-based systems, this will be a qualified full
pathname.

For Windows systems this could also be the drive letter
used for the LogicalDisk that the filesystem is resident on.

FileSystem

Mandatory

The LocalFileSystem that is being made available to the file
server ComputerSystem.

FileServer

Mandatory

The ComputerSystem that will be able to export shares
from this LocalFileSystem.

7.8.5 CIM_HostedDependency (Local Access Required)

Created By: External
Modified By: Static

Deleted By: External

Class Mandatory: LocalAccessDefinitionRequired

Table 49 describes class CIM_HostedDependency (Local Access Required).

Table 49: SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access

Required)
Properties Flags Requirement | Description & Notes
Antecedent Mandatory The ComputerSystem that provides the scope for the
LocallyAccessibleFileSystemSetting.
Dependent Mandatory The local access settings of the LocalFileSystem,

established when first created or as modified later, that is
dependent on some information provided by the file server
that is the scoping ComputerSystem.

94

Filesystem Profile

7.8.6 CIM_Dependency

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory:

Table 50 describes class CIM_Dependency.

Table 50: SMI Referenced Properties/Methods for CIM_Dependency

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s)
that support user, group and other security principal
identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other
security principal identities is supported by the antecedent
ComputerSystem.

7.8.7 SNIA_FileSystemSetting

Created By: External
Modified By: External
Deleted By: External

Class Mandatory: Optional

Table 51 describes class SNIA_FileSystemSetting.
Table 51: SMI Referenced Properties/Methods for SNIA_FileSystemSetting

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A user-friendly name for this FileSystemSetting element.

ActualFileSystemTyp Mandatory This identifies the type of filesystem that this

e FileSystemSetting represents.

FilenameCaseAttribu Mandatory This specifies the support provided for using upper and

tes lower case characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 95

Filesystem Profile

Table 51: SMI Referenced Properties/Methods for SNIA_FileSystemSetting

Properties Flags Requirement | Description & Notes

NumberOfObjectsMin Mandatory This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes]].

NumberOfObjectsMa Mandatory This is an array that specifies the maximum number of

X objects of the type specified by the corresponding entry in
ObjectTypes]].

NumberOfObjects Mandatory This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes]].

ObjectSize Mandatory This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes]].

ObjectSizeMin Mandatory This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes]].

ObjectSizeMax Mandatory This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes]].

FilenameReservedC Optional This string or character array specifies the characters

haracterSet reserved (i.e., not allowed) for use in filenames of a
filesystem with this setting.

DataExtentsSharing Optional This specifies whether a filesystem with this setting
supports the creation of data blocks (or storage extents)
that are shared between files.

CopyTarget Optional This specifies that, if possible, support should be provided
for using a filesystem created with this setting as a target of
a Copy operation.

FilenameStreamFor Optional This is an array that specifies the stream formats (e.g.,

mats UTF-8) supported for filenames by a filesystem with this
setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by a filesystem with this
setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported
by a filesystem with this setting.

SupportedLockingSe Optional This array specifies the set of file access/locking semantics

mantics supported by a filesystem with this setting.

SupportedAuthorizati Optional This array specifies the kind of file authorization protocols

onProtocols supported by a filesystem with this setting.

SupportedAuthentica Optional This array specifies the kind of file authentication protocols

tionProtocols

supported by a filesystem with this setting.

96

7.8.8

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: Mandatory

Filesystem Profile

CIM_HostedFileSystem (LocalFileSystem)

Table 52 describes class CIM_HostedFileSystem (LocalFileSystem).

Table 52: SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The Computer System that hosts a LocalFileSystem.
PartComponent Mandatory The LocalFileSystem that represents the hosted filesystem.

7.8.9 SNIA LocalFileSystem

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 53 describes class SNIA_LocalFileSystem.

Table 53: SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement | Description & Notes

CSCreationClassNa Mandatory The CIM class of the hosting ComputerSystem element.

me

CSName Mandatory The Name property of the hosting ComputerSystem
element.

CreationClassName Mandatory The CIM class of this LocalFileSystem element.

Name Mandatory A unique name for this LocalFileSystem element in the
context of the hosting ComputerSystem.

OperationalStatus Mandatory The current operational status of the filesystem
represented by this LocalFileSystem element.

Root Optional A path that specifies the "mount point" of the filesystem in

an unitary computer system that is both the host of the
filesystem and is the file server that makes it available.

SMI-S 1.2.0 Revision 6

SNIA Technical Position 97

Filesystem Profile

Table 53: SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement | Description & Notes

BlockSize Optional The size of a block in bytes for certain filesystem types that
require a fixed block size when creating a filesystem.

FileSystemSize Optional The total current size of the filesystem in blocks.

AvailableSpace Optional The space available currently in the filesystem in blocks.
NOTE: This value is an approximation as it can vary
continuously when the filesystem is in use.

ReadOnly Optional Indicates that this is a read-only filesystem that does not
allow modifications to contained files and directories.

EncryptionMethod Optional Indicates if files are encrypted by the filesystem
implementation and the method of encryption.

CompressionMethod Optional Indicates if files are compressed by the filesystem
implementation before being stored, and the methods of
compression.

CaseSensitive Mandatory Whether this filesystem is sensitive to the case of
characters in filenames.

CasePreserved Mandatory Whether this filesystem implementation preserves the case
of characters in filenames when saving and restoring.

CodeSet Optional The codeset used in filenames by the filesystem
implementation.

MaxFileNameLength Mandatory The length of the longest filename supported by the
filesystem implementation.

FileSystemType Mandatory This is a string that matches
FileSystemSetting.ActualFileSystemType property used to
create the filesystem.

NumberOfFiles Optional The actual current number of files in the filesystem. NOTE:
This value is an approximation as it can vary continuously
when the filesystem is in use.

LocalAccessDefinitio Mandatory This boolean property indicates whether or not this

nRequired LocalFileSystem must be made locally accessible
("mounted”) from a file server ComputerSystem before it
can be shared or otherwise made available to operational
clients.

PathNameSeparator Mandatory This indicates the string of characters used to separate

String directory components of a canonically formatted path to a

file from the root of the filesystem. This string is expected to
be specific to the ActualFileSystemType and so is vendor/
implementation dependent. However, by surfacing it we
make it possible for a client to parse a pathname into the
hierarchical sequence of directories that compose it.

98

Filesystem Profile

Table 53: SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties

Flags

Requirement

Description & Notes

DirectoryServiceUsa
ge

Optional

This enumeration indicates whether the filesystem
supports security principal information and therefore
requires support from a file server that uses one or more
directory services. If the filesystem requires such support,
there must be a concrete subclass of Dependency between
the LocalFileSystem element and the specified file server
ComputerSystem. The values supported by this property
are:

"Not Used" indicates that the filesystem will not support
security principal information and so will not require support
from a directory service.

"Optional" indicates that the filesystem may support
security principal information. If it does, it will require
support from a directory service and the Dependency
association described above must exist.

"Required" indicates that the filesystem supports security
principal information and will require support from a
directory service. The Dependency association described
above must exist.

7.8.10 CIM_LogicalFile

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 54 describes class CIM_LogicalFile.

Table 54: SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement | Description & Notes

CSCreationClassNa Mandatory Class Name of the ComputerSystem that hosts the

me filesystem containing this file.

CSName Mandatory The Name property of the ComputerSystem that hosts the
filesystem containing this file.

FSCreationClassNa Mandatory Class Name of the LocalFileSystem that represents the

me filesystem containing this file.

FSName Mandatory The Name property of the LocalFileSystem that represents
the filesystem containing this file.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 99

Filesystem Profile

Table 54: SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement | Description & Notes

CreationClassName Mandatory Class Name of this instance of LogicalFile that represents
the file.

Name Mandatory The Name property of the LogicalFile that represents the
file.

ElementName Mandatory The pathname from the root of the containing

LocalFileSystem to this LogicalFile. The root of the
LocalFileSystem is indicated if this is NULL or the empty
string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of
directories from the root, the separator string is specified by
the SNIA_LocalFileSystem.PathNameSeparatorString

property.

7.8.11 SNIA_LocallyAccessibleFileSystemSetting

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: LocalAccessDefinitionRequired

Table 55 describes class SNIA_LocallyAccessibleFileSystemSetting.

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for a
LocallyAccessibleFileSystemSetting.

ElementName Mandatory A user-friendly name for this

LocallyAccessibleFileSystemSetting element.

100

Filesystem Profile

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

InitialEnabledState

Optional

InitialEnabledState is an integer enumeration that indicates
the enabled/disabled states initially set for a locally
accessible filesystem (LAFS). The element functions by
passing commands onto the underlying filesystem, and so
cannot indicate transitions between requested states
because those states cannot be requested. The following
text briefly summarizes the various enabled/disabled initial
states:

Enabled (2) indicates that the element will execute
commands, will process any queued commands, and will
gueue new requests.

Disabled (3) indicates that the element will not execute
commands and will drop any new requests.

In Test (7) indicates that the element will be in a test state.

Deferred (8) indicates that the element will not process any
commands but will queue new requests.

Quiesce (9) indicates that the element is enabled but in a
restricted mode. The element's behavior is similar to the
Enabled state, but it only processes a restricted set of
commands. All other requests are queued.

OtherEnabledState

Optional

A string describing the element's initial enabled/disabled
state when the InitialEnabledState property is setto 1
("Other"). This property MUST be set to NULL when
InitialEnabledState is any value other than 1.

FailurePolicy

Optional

An enumerated value that specifies if the operation to
make a filesystem locally accessible to a scoping
ComputerSystem should be attempted one or more times
in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by
the corresponding RetriesMax property of the setting.

RetriesMax

Optional

An integer specifying the maximum number of attempts
that should be made by the scoping ComputerSystem to
make a LocalFileSystem locally accessible. A value of ‘0’
specifies an implementation-specific default.

RequestRetryPolicy

Optional

An enumerated value representing the policy that is
supported by the operational file server on a request to the
operational filesystem that either failed or left the file server
hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout
happens, or, to try repeatedly. If the request can be
performed in the background, the request will be tried
repeatedly until stopped.

SMI-S 1.2.0 Revision 6

SNIA Technical Position 101

Filesystem Profile

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

TransmissionRetries
Max

Optional

An integer specifying the maximum number of
retransmission attempts to be made from the operational
file server to the operational filesystem when the
transmission of a request fails or makes the file server
hang. A value of '0' specifies an implementation-specific
default. This is only relevant if there is a transmission
channel between the file server and the underlying
filesystem.

RetransmissionTime
outMin

Optional

An integer specifying the minimum number of milliseconds
that the operational file server must wait before assuming
that a request to the operational filesystem has failed. '0'
indicates an implementation-specific default. This is only
relevant if there is a transmission channel between the
operational file server and the operational filesystem.

CachingOptions

Optional

An enumerated value that specifies if a local cache is
supported by the operational file server when accessing the
underlying operational filesystem.

BuffersSupport

Optional

An array or enumerated values that specifies the buffering
mechanisms supported by the operational file server for
accessing the underlying operational filesystem." If
supported, other properties will establish the level of
support. If the property is NULL or the empty array,
buffering is not supported.

ReadBufferSizeMin

Optional

An integer specifying the minimum number of bytes that
must be allocated to each buffer used for reading. A value
of '0' specifies an implementation-specific default.

ReadBufferSizeMax

Optional

An integer specifying the maximum number of bytes that
may be allocated to each buffer used for reading. A value of
'0' specifies an implementation-specific default.

WriteBufferSizeMin

Optional

An integer specifying the minimum number of bytes that
must be allocated to each buffer used for writing. A value of
'0' specifies an implementation-specific default.

WriteBufferSizeMax

Optional

An integer specifying the maximum number of bytes that
may be allocated to each buffer used for writing. A value of
'0' specifies an implementation-specific default.

102

Filesystem Profile

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement | Description & Notes

AttributeCaching Optional An array of enumerated values that specify whether
attribute caching is (or is not) supported by the operational
file server when accessing specific types of objects from
the underlying operational filesystem. The object type and
the support parameters are specified in the corresponding
AttributeCachingObijects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

Object types contained by a filesystem that can be
accessed locally are represented by an entry in these
arrays. The entry in the AttributeCaching array can be 'On’,
'Off', or 'Unknown'. Implementation of this feature requires
support from other system components, so it is quite
possible that specifying 'On' may still not result in caching
behavior. 'Unknown' indicates that the access operation will
try to work with whatever options the operational file server
and filesystem can support. In all cases,
AttributeCachingTimeMin and AttributeCachingTimeMax
provide the minimum and maximum time for which the
attributes can be cached. When this Setting is used as a
Goal, the client may specify 'Unknown’, but the Setting in
the created object should contain the supported setting,
whether 'On' or 'Off".

AttributeCachingObje Optional An array of enumerated values that specify the attribute
cts caching support provided to various object types by the
operational file server when accessing the underlying
operational filesystem. These", types represent the types of
objects stored in a filesystem -- files and directories as well
as others that may be defined in the future. The
corresponding properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object. ‘None'
and 'All' cannot both be specified; if either one is specified,
it must be the first entry in the array and the entry is
interpreted as the default setting for all objects. If neither
‘None' or 'All' are specified, the caching settings for other
objects are defaulted by the implementation. If 'Rest’ is
specified, the entry applies to all known object types other
than the named ones. If 'Unknown' is specified it applies to
object types not known to this application (this can happen
when foreign filesystems are made locally accessible).

AttributeCachingTime Optional An array of integers specifying, in milliseconds, the

Min minimum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of '0" indicates an implementation-specific default.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 103

Filesystem Profile

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

AttributeCachingTime
Max

Optional

An array of integers specifying, in milliseconds, the
maximum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of '0" indicates an implementation-specific default.

ReadWritePolicy

Optional

An enumerated value that specifies the Read-Write policy
set on the operational filesystem and supported by the
operational file server when accessing it. 'Read Only'
specifies that the access to the operational filesystem by
the operational file server is set up solely for reading.
'Read/Write' specifies that the access to the operational
filesystem by the operational file server is set up for both
reading and writing. 'Force Read/Write' specifies that
'Read-Only' has been overridden by a client with write
access to the operational filesystem. This option is
intended for use when the associated filesystem has been
made 'Read Only' by default, as might happen if it were
created to be the target of a Synchronization or Mirror
operation.

LockPolicy

Optional

An enumerated value that specifies the Locking that will be
enforced on the operational filesystem by the operational
file server when accessing it. 'Enforce None' does not
enforce locks. 'Enforce Write' does not allow writes to
locked files. 'Enforce Read/Write' does not allow reads or
writes to locked files.

EnableOnSystemStar
t

Optional

An enumerated value that specifies if local access from the
operational file server to the operational filesystem should
be enabled when the file server is started.

ReadWritePref

Optional

An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about access to
elements contained in the operational filesystem. The
provider is expected to surface this access using the CIM
privilege model.

ExecutePref

Optional

An enumerated value that specifies if support should be
provided on the operational file server for executing
elements contained in the operational filesystem accessed
through this local access point. This may require setting up
specialized paging or execution buffers either on the
operational file server or on the operational filesystem side
(as appropriate for the implementation). Note that this does
not provide any rights to actually execute any element but
only specifies support for such execution, if permitted.

104

Filesystem Profile

Table 55: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement | Description & Notes

RootAccessPref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about privileged access
by appropriately privileged System Administrative users on
the operational file server (‘root' or 'superuser’) to the
operational filesystem and its elements. The provider is
expected to surface this access using the CIM privilege
model.

Support for the privileged access might require setup at
both the operational file server as well as the operational
filesystem, so there is no guarantee that the request can be
satisfied.

7.8.12 CIM_Dependency (Uses Directory Services From)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: DirectoryServiceUsage

Table 56 describes class CIM_Dependency (Uses Directory Services From).

Table 56: SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services

From)
Properties Flags Requirement | Description & Notes
Antecedent Mandatory The ComputerSystem that indicates the directory service(s)

that support user, group and other security principal
identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other
security principal identities is supported by the antecedent
ComputerSystem.
STABLE

SMI-S 1.2.0 Revision 6 SNIA Technical Position 105

Filesystem Profile

106

Filesystem Manipulation Subprofile

EXPERIMENTAL

Clause 8: Filesystem Manipulation Subprofile

8.1 Description

8.1.1 Synopsis

Profile Name: Filesystem Manipulation
Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: FileSystemConfigurationService

Scoping Class: ComputerSystem

8.1.2 Overview

The Filesystem Manipulation Profile is a subprofile provides support for configuring and manipulating filesystems in
the context of Filesystem Profiles (currently consisting of the NAS Head and the Self Contained NAS profiles). A
number of other profiles and subprofiles make use of elements of the Filesystem profiles and will be referred to in
this specification as “Filesystem related profiles” -- these include but are not limited to the Filesystem subprofile,
File Export subprofile, File Export Manipulation subprofile, NAS Head profile, and so on.

The state transitions involved when an appropriate storage element is transformed into a filesystem are described
in Annex A: (Informative) State Transitions from Storage to File Shares.

8.1.2.1 Backward Compatibility Note

This profile has seen some incompatible changes from SMI-S 1.1. It is still "Experimental”. Three major changes to
the methods CreateFileSystem and ModifyFileSystem are intended to accommodate requirements from a
proposed Hosted Filesystem profile (now postponed to a future release of SMI-S) and to support the local access
("mount”) related changes. First, we now allow a LocalFileSystem to be built at the same time that the
LogicalDisk(s) are built -- previously, a LogicalDisk had to be built first in an independent operation; second,
multiple LogicalDisks can be specified in the method parameters and these are combined into a single LogicalDisk
using the Volume Composition subprofile -- the old methods only supported a single LogicalDisk, which is still
supported as a special case of the new method. Third, we now support parameters that make the LocalFileSystem
immediately available locally (i.e., "mount"-ed) at a File Server-provided pathname -- the previous version
assumed that this would be done in a vendor-specific default. Both these extensions in functionality are optional on
new properties specified in the FileSystemSetting and LocalFileSystem, and the SMI-S 1.1 behavior is supported
by the default values of these properties.

8.1.3 Instance Diagrams

8.1.3.1 Filesystem Creation classes and associations

Figure 11 illustrate the constructs involved with creating a LocalFileSystem for a Filesystem Profile. This
summarizes the mandatory classes and associations for this subprofile. Specific areas are discussed in later
sections.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 107

Filesystem Manipulation Subprofile

Figure 11: LocalFileSystem Creation Instance Diagram

HostedFileSystem

ComputerSystem

Dedicated=24|25
Filesystem Host

Block Services (Read-only) J

File Export Subprofile

File Server Management (1.3)

Filesystem Manipulation Subprofile HostedService
. " FileSystemConfigurationService
FileSystemCapabilities ElementCapabilities
FileSystemCapabilities ElementCapabilities CreateFileSystem()
- Characteristics={"Default"} DeleteFileSystem()
ActualFileSystemType ModifyFileSystem()
SupportedProperties[]
SupportedObjectTypes|] I
CreateGoalSettings() ElementCapabilities
GetRequiredStorageSize() \
ElementCapabilities FileSystemConfigurationCapabilities
(optional) ActualFileSystemTypesSupported[]
SettingsDefineCapabilities . S;/ncri/ronous);\sl)ethozz%
AsynchronousMethods][]
InitialAvailability
FileSystemSetting ‘ LocallyAccessibleFileSystemCapabilities
FileSystemSetting (Optional)
CreateGoalSettings()
See below
SettingsDefineCapabilities
LocallyAccessibleFileSystemSetting HostedDependenc
(Optional) (optional)
ElementSettingData '
hEIementSettingDaraﬁ (Conditional)
‘ FileSystemSetting LocalFileSystem LocaIIyAccessibIeEiIeSystemSetting
‘ (Conditional)
HostedDependency
(Conditionall)
Dependency
(Conditional)
Filesystem Subprofile LocalAccessAvailable
I (Optional) |
. 1r - I
ResidesOnExtent | FileStorage | LogicalFile
BC1l1
. . () (BC1.1) ComputerSystem ||
File Storage Subprofile
a— SharedEl ! ‘ HostedS Dedicated=16
aredElemen ostedSjare— i
I ConcreteDependency File Server
AIIoTeedeem&efangool (BC 1.1)
LogicalDisk StoragePool FileShare
NAS Head/SC NAS (1.2)

If a Filesystem-related Profile supports the Filesystem Manipulation Subprofile, it shall have at least one instance
of the FileSystemConfigurationService. This service shall be hosted on the top level ComputerSystem of the
Filesystem-related Profile. The methods offered are CreateFileSystem, ModifyFileSystem, and DeleteFileSystem.

108

Filesystem Manipulation Subprofile

Associated to the FileSystemConfigurationService (via ElementCapabilities) shall be one instance of
FileSystemConfigurationCapabilities that describes the capabilities of the service. It identifies the methods
supported, whether the methods support Job Control or not, the types of filesystems that are supported, and
whether or not the filesystem shall be made operationally available after creation.

For each type of filesystem that can be created, there shall be one FileSystemCapabilities element that defines the
range of capabilities supported for that particular filesystem type. An ElementCapabilities association links each
FileSystemCapabilities to the FileSystemConfigurationService. One of these FileSystemCapabilities may also be
identified as a default capability (by setting “Default” as one of the entries in the array property Characteristics of its
ElementCapabilities association). This default FileSystemCapabilities element is used when the client does not
specify a goal element when requesting the CreateFileSystem method. The default FileSystemCapabilities
element implicitly indicates the default filesystem type to be used for creation.

For the convenience of clients a Filesystem Manipulation profile may populate a set of “pre-defined”
FileSystemSettings for each of the FileSystemCapabilities. These shall be associated to the
FileSystemCapabilities via the SettingsDefineCapabilities association (the association must have its
SettingsDefineCapabilities.PropertyPolicy property set to "Correlated” and the
SettingsDefineCapabilities.ValueRole property must include "Supported” as an entry) and shall be for the same
filesystem type as the associated capabilities element (same value for the ActualFileSystemType property in both
classes).

Note: That they are pre-defined and exist at all times does not imply that these FileSystemSettings must be
made persistent by the implementation -- rather it should be possible for the implementation to
regenerate them if requested, though a simple re-generating implementation may not necessarily
scale.

The FileSystemCapabilities element supports two methods: CreateGoalSettings and GetRequiredStorageSize.
These methods are described in detail in 8.5.1, "Extrinsic Methods of the Profile”, but their basic function is to
establish at least one client-approved FileSystemSettings element (as a goal) and to determine the size of the
LogicalDisk required to support the desired Filesystem.

CreateGoalSettings takes an array of embedded-instance SettingData elements as the input
TemplateGoalSettings and SupportedGoalSettings parameters and can generate an array of embedded-instance
SettingData elements as the output SupportedGoalSettings parameter. However, in this profile, we only use a
single embedded-instance FileSystemSetting element in the input parameters (both TemplateGoalSettings and
SupportedGoalSettings) and generate a single valid embedded-instance FileSystemSetting element as output
(SupportedGoalSettings). If a client supplies a NULL (or the empty string) FileSystemSetting as input to this
method, the returned FileSystemSetting embedded-instance shall be a default setting for the
ActualFileSystemType of the FileSystemCapabilities. If the input (the embedded-instance FileSystemSetting
element) is not NULL, the method may return a “best fit” to the requested setting. The client may iterate on this
method until it acquires a setting that suits its needs. This embedded-instance settings structure may be used
when the CreateFileSystem or ModifyFileSystem methods are invoked. The details of how iterative negotiation can
work are discussed in 8.5.1.1, "FileSystemCapabilities.CreateGoalSettings". Note that the FileSystemType
remains unchanged in all of these interactions. It is an error if the client or server changes the FileSystemType
unilaterally.

Note: Itis not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back
mechanism is needed. This profile does not require negotiation -- an implementation may support only
a set of pre-defined correlated point settings that a client can preload and use without modification. The
implementation could also support only settings whose properties are selectable from an arithmetic
progression or from a fixed enumeration, so that the client may construct a goal setting that is
guaranteed to be supported without negotiation.

Note: That a client has obtained a goal setting supported by the implementation does not guarantee that a
create or modify request will succeed. Such a setting only specifies a supported static configuration not
that the current dynamic environment has the resources to implement a specific request.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 109

Filesystem Manipulation Subprofile

After obtaining a goal FileSystemSetting, the next step is to determine the LogicalDisk size required to support the
FileSystemSetting. This is done by invoking the FileSystemCapabilities.GetRequiredStorageSize method of this
subprofile. The inputs are the embedded-instance FileSystemSetting structure and an embedded-instance
StorageSetting structure that describes the quality of service the client wants for the storage (e.g., data
redundancy, package redundancy, etc.). The method returns three numbers corresponding to the StorageSetting:
the expected size, the minimum size, and a maximum usable size. The client would use these numbers in
specifying or evaluating the appropriate LogicalDisk(s) on which to create the FileSystem. The method also returns
as output the actual StorageSetting used as an Embeddedinstance structure (assuming that these can be
substituted for the input StorageSetting).

Note: This profile recommends that GetRequiredStorageSize() be used only if a LocalFileSystem is to be
created on a single LogicalDisk. If the intent is to use more than one LogicalDisk for the
LocalFileSystem, this profile recommends using the CreateFileSystem method to make the
implementation create or select the LogicalDisks to use.

< Armed with the FileSystem goal (the embedded-instance FileSystemSetting structure) and one or more
LogicalDisks, the client can now use the CreateFileSystem method to create the filesystem. The
CreateFileSystem method creates a LocalFileSystem instance, and a new FileSystemSetting instance as well
as several necessary associations. These associations are:

= HostedFileSystem association between the LocalFileSystem and the ComputerSystem that hosts it
< ResidesOnExtent association between the Filesystem and one of the LogicalDisk(s) for the Filesystem data

Note: Even when multiple LogicalDisks are created or used for the LocalFileSystem, only one LogicalDisk will
have the ResidesOnExtent association.

< ElementSettingData to associate the Filesystem to the FileSystemSetting defined for it

CreateFileSystem allows LogicalDisks to be obtained from a number of StoragePools using an array of embedded-
instance StorageSettings. The CreateFileSystem implementation must use the capabilities of the StoragePools
(and the associated StorageConfigurationService) to create the necessary LogicalDisks. The LogicalDisks used for
this purpose are returned as output values for the InExtents parameter.

If the property FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that CreateFileSystem
method provides the optional parameters for establishing local access ("mounting”) from file server
ComputerSystems, the LocalFileSystem.LocalAccessDefinitionRequired will be set to true and the
LocalFileSystem will need to be made locally accessible from the specified file server ComputerSystems. The
following elements are created:

< A LocalAccessAvailable association representing local access by a file server ComputerSystem to the
LocalFileSystem from within its namespace is created wusing the provided (or defaulted)
LocallyAccessibleFileSystemSetting parameter (as an Embeddedinstance parameter). This association goes
between the File Server ComputerSystem and the LocalFileSystem; its LocalAccessPoint property specifies
the local access point (or "mount-point") in the file server ComputerSystem.

< Aninstance of LocallyAccessibleFileSystemSetting is optionally created and associated to:
= The LocalFileSystem via an optional ElementSettingData association.

« The file server ComputerSystem via an optional HostedDependency (ScopedSetting) association (this
represents that a LocalFileSystem could be mounted on many file server ComputerSystems with different
"mount” parameters, so these parameters are specific to the pair of LocalFileSystem and file server
ComputerSystem).

= For backward compatibility with the SMI-S 1.1 Filesystem subprofile:

= The root directory of the LocalFileSystem is represented as a LogicalFile

110

Filesystem Manipulation Subprofile

< A FileStorage association is created between the LogicalFile and the LocalFileSystem

The DeleteFileSystem method is straightforward -- it deletes the LocalFileSystem and the FileSystemSetting, and
the associations to those instances (HostedFileSystem, both ElementSettingData elements, ResidesOnExtent,
LocalAccessAvailable, and LocallyAccessibleFileSystemSetting). Any created LogicalFiles associated to the
LocalFileSystem via FileStorage will also be deleted as a side-effect of deleting the LocalFileSystem (so there is no
separate requirement necessary for backward compatibility to the SMI-S 1.1 Filesystem subprofile). The
implementation may delete the LogicalDisk(s), however, this is not required by this profile. If the LogicalDisk(s) are
not deleted, they become available for use in another CreateFileSystem operation.

The ModifyFileSystem method modifies an existing LocalFileSystem -- this requires a new FileSystemSetting
structure to be used as a goal. But not any FileSystemSetting structure will do -- the client must use one created
with the same FileSystemCapabilities.CreateGoalSettings method that would have been used to create the
Filesystem, or an appropriate compatible FileSystemCapabilities instance. The CreateGoalSettings method is
used to establish a new FileSystemSetting goal (as with the original Filesystem creation, it may be necessary to
iterate on the CreateGoalSettings method). Since only properties controlled by Settings can be changed by
ModifyFileSystem (i.e., the LogicalDisk(s) already created cannot be changed, though new ones can be created
and/or added), the effect of ModifyFileSystem is to change some properties of the LocalFileSystem or of the
associated FileSystemSetting.

Note: Depending on what property is being modified, it may also be necessary to invoke the
GetRequiredStorageSize method to verify that the current LogicalDisk still supports the new goals.

8.1.3.11 Dependency on support for Locally Accessible Filesystem Capabilities

Both CreateFileSystem and ModifyFileSystem need a LocallyAccessibleFileSystemSetting element for each file
server ComputerSystem. The client first obtains a LocallyAccessibleFileSystemCapabilities element by following
ElementCapabilities association from the FileSystemConfigurationService to a
LocallyAccessibleFileSystemCapabilities that is associated via ScopedCapabilities (HostedDependency) to the
File Server ComputerSystem.

Note: We expect that there will only be one LocallyAccessibleFileSystemCapabilities element per file server
ComputerSystem. All the variability can be found by following SettingsDefineCapabilities to
LocallyAccessibleFileSystemSetting elements. It is a requirement that the
LocallyAccessibleFileSystemSettings that define the LocallyAccessibleFileSystemCapabilities be
associated via HostedDependency (ScopedSetting) to the same file server ComputerSystem as the
one indicated by the HostedDependency (ScopedCapabilities).

The client calls LocallyAccessibleFileSystemCapabilities.CreateGoalSettings() with the appropriate parameters.to
obtain an appropriate LocallyAccessibleFileSystemSetting element -- CreateGoalSettings can be used to negotiate
if necessary.

8.1.3.1.2 Dependency on support for Directory Services

A filesystem may support security principal identifiers associated with filesystem objects for access (typically, read/
write/execute) as well as for tracking usage (as would be needed for supporting user and/or group quotas). If the
filesystem supports such identifiers, it would requires support from a directory service for validating these identifiers
(relating them to accounts and other user-related information). Operationally, computer systems (and not
filesystems) are associated to directory services or configured for directory services. Directory service
configurations of computer systems are much more complex than needed or appropriate for filesystems. This
makes it easier to make the filesystem depend on a computer system, usually a file servier, for providing access to
directory services for resolving security principal identifiers.

A filesystem that requires support from a directory service will have the property.DirectoryServicesUsage of its
LocalFileSystem element set to "Required”. In that case, there shall be a Dependency association between the
LocalFileSystem element and a file server ComputerSystem.element (with Dedicated="16"). The associated file
server must be configured for access to directory services that it provides for the filesystem.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 111

Filesystem Manipulation Subprofile

Note: If DirectoryServicesUsage is “Optional”, a client can look for the Dependency association to determine
if the filesystem supports security principal identifiers. This is not supported in this release of the
profile.

8.1.3.1.3 Summary of this profile
This profile consists of the following classes, associations, and methods:

1) One LocallyAccessibleFileSystemCapabilities scoped to the file server ComputerSystem
2) ElementCapabilities association to the FileSystemConfigurationService

3) SettingsDefineCapabilities association to LocallyAccessibleFileSystemSetting

4) LocallyAccessibleFileSystemSetting for defining LocallyAccessibleFileSystemCapabilities

5) HostedDependency (ScopedSetting) association from the File Server ComputerSystem to LocallyAccessi-
bleFileSystemSetting

6) A HostedDependency association from the same file server ComputerSystem to the defined LocallyAccessi-
bleFileSystemCapabilities

7) LocallyAccessibleFileSystemCapabilities.CreateGoalSettings extrinsic method to create LocallyAccessible-
FileSystemSetting elements scoped to the file server ComputerSystem to use as Goals. Note that this
method is different from the method described as part of the FileSystemCapabilities element.

8) A Dependency association from the LocalFileSystem element to a file server ComputerSystem.

112

Filesystem Manipulation Subprofile

8.1.3.2 Finding FileSystem Configuration Services, Capabilities and Pre-defined Settings

When creating a filesystem the first step is to determine what can be created. Figure 12:, "Capabilities and Settings
for Filesystem Creation" illustrates an instance diagram showing the instances that shall exist for supporting
filesystem creation.

Figure 12: Capabilities and Settings for Filesystem Creation

ComputerSystem

File System Manipulation Subprofile Capabilities/Settings Hostedservice

FileSystemCapabilities

\
FileSystemCapabilities EIementC‘apabmtles FileSystemConfigurationService
ElementCapabilities

ActualFileSystemType .
SupportedProperties[] CreateFileSystem()
SupportedObjectTypes]] DeleteFileSystem()
CreateGoalSettings() ModifyFileSystem()
GetRequiredStorageSizes()

ElementCapabilities

FileSystemConfigurationCapabilities

———SettingsDefineCapabilities

ActualFileSystemTypesSupported]]

SynchronousMethods|[]
. " . AsynchronousMethods|[]

FileSystemSetting FileSystemSetting LocalIyAcceSS|bIe_F_lIeSystemSettlng InitialAvailability

(Conditional) LocalAccessOptions
ElementSettingData
(Conditional) .
ScopedSetting
| ElementSettingData (Conditional)
ResidesOnExtent HostedDependency Elerpgg;g;git;lll;nesi
T (Optional) T T
LogicalDisk LocalFileSystem ‘ ComputerSystem LocallyAccessibleFileSystemCapabilities
(Conditional)
LocalAccessDefinitionRequired ‘ CreateGoalSettings()
[
LocalAccessAvailable
ElementSettingData AllocatedFromStoragePool (Optional) Hosted Dgpendency SettmgsDeﬂquapablImes
(Optional) (Optional)

LocallyAccessibleFileSystemSetting
(optional)

StorageSetting StoragePool

At least one FileSystemConfigurationService shall exist if the Filesystem profile has implemented the Filesystem
Manipulation Subprofile. The instance(s) of this service can be found by following the HostedService association
filtering on the target class of FileSystemConfigurationService.

Note: If no service is found from the Top Level ComputerSystem, the client should look for component
computer systems that may be hosting the service. This is not recommended, but permitted for
backward compatibility with SMI-S 1.1.

An instance of the FileSystemConfigurationCapabilities shall be associated to the FileSystemConfigurationService
via the ElementCapabilities association. A client should follow this association (filtering on the result value of
"FileSystemConfigurationCapabilities") to inspect the configuration capabilities that are supported. The client would
choose between the filesystem types specified in the array property SupportedActualFileSystemTypes.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 113

Filesystem Manipulation Subprofile

For each entry in the SupportedActualFileSystemTypes array, there shall be one instance of
FileSystemCapabilities with the same value for the ActualFileSystemType property that shall be associated to the
FileSystemConfigurationService using the ElementCapabilities association (filtering on the result value of
FileSystemCapabilities). This FileSystemCapabilities element shall specify the supported capabilities for that
ActualFileSystemType using a collection of FileSystemSettings. These FileSystemSettings shall be associated to
the FileSystemCapabilities via SettingsDefineCapabilities.

An implementation may support a set of pre-defined FileSystemSettings that clients could use directly if desired.
The SettingsDefineCapabilities association from the FileSystemCapabilities to the pre-defined FileSystemSettings
shall have the PropertyPolicy property be "Correlated", the ValueRole property be "Supported" and the
ValueRange property be "Point". Other pre-defined combinations of property values may be specified by
FileSystemSettings whose SettingsDefineCapabilities association has the PropertyPolicy be "Independent",
ValueRole property be "Supported” and the ValueRange array property contain "Minimums", "Maximums", or
"Increment"” (see 8.5.1.1.1 for further details on the interpretation of the ValueRange property). These settings can
be used by the client to compose FileSystemSettings that are more likely to be directly usable.

8.2 Health and Fault Management Considerations

The key element of this profile is the FileSystemConfigurationService and the hosting ComputerSystem. The
operational status of the hosting ComputerSystem should possibly be part of the referring autonomous profile
(NAS Head or SC NAS), the Filesystem sub-profile or in the Multiple Computer System sub-profile.

8.2.1 OperationalStatus for FileSystemConfigurationService

8.2.2 OperationalStatus for LocalFileSystem

Table 57: LocalFileSystem OperationalStatus

Secondary

Primary OperationalStatus OperationalStatus

Description

2 “OK” The filesystem has good status

2 “OK” 4 “Stressed” The filesystem resources are
stressed

2 “OK” 5 “Predictive Failure” The filesystem might fail
because some resource or com-
ponent is predicted to fail

2 "OK” 16 “Supporting Entity in Error” The filesystem may be OK, but
is not accessible because a sup-
porting entity is not accessible.

3 “Degraded” The filesystem is operating in a
degraded mode. This could be
due to the health state of the
underlying storage being
degraded or in error.

114

Filesystem Manipulation Subprofile

Table 57: LocalFileSystem OperationalStatus

Primary OperationalStatus

Secondary
OperationalStatus

Description

6 “Error”

An error has occurred causing
the filesystem to become
unavailable. Operator interven-
tion through SMI-S (managing
the LocalFileSystem) to restore
the filesystem may be possible.

6 “Error”

An error has occurred causing
the filesystem to become
unavailable. Automated recov-
ery may be in progress.

6 “Error”

7 “Non-recoverable Error”

The filesystem is not functioning.
Operator intervention through
SMI-S will not fix the problem.

6 “Error”

16 “Supporting Entity in Error”

The filesystem is in an error
state because a supporting
entity is not accessible.

8 “Starting”

The filesystem is in process of
initialization and is not yet avail-
able operationally.

9 “Stopping”

The filesystem is in process of
stopping, and is not available
operationally.

10 “Stopped”

The filesystem cannot be
accessed operationally because
it is stopped -- if this did not hap-
pened because of operator inter-
vention or happened in real-
time, the OperationalStatus
would have been “Lost Commu-
nication” rather than “Stopped”.

11 “In Service”

The filesystem is offline in main-
tenance mode, and is not avail-
able operationally.

13 “Lost Communications”

The filesystem cannot be
accessed operationally -- if this
happened because of operator
intervention it would have been
“Stopped” rather than “Lost
Communication”.

14 “Aborted”

The filesystem is stopped but in
a manner that may have left it in
an inconsistent state.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

115

Filesystem Manipulation Subprofile

Table 57: LocalFileSystem OperationalStatus

Primary OperationalStatus

Secondary
OperationalStatus

Description

15 “Dormant”

The Filesystem is offline; and
the reason for not being accessi-
ble is unknown.

8.3 Cascading Considerations

Under Consideration for a future standard.

8.4 Supported Subprofiles and Packages

Table 58: Supported Profiles for Filesystem Manipulation

Registered Profile Names Mandatory Version
Job Control No 1.2.0
Filesystem Yes 1.2.0
Indication Yes 1.2.0
Volume Composition No 1.2.0

116

Filesystem Manipulation Subprofile

8.5 Methods of the Profile

8.5.1

Extrinsic Methods of the Profile

Table 59: Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modifica-
tion

Method

Created Instances

Deleted Instances

Modified Instances

LocalFileSystem
LogicalFile
FileSystemSetting
ElementSettingData
FileStorage
ResidesOnExtent
HostedFileSystem

Service.DeleteFileSystem

FileSystemConfiguration LogicalDisk(s) s |
Service.CreateFileSyste StorageSetting(s) N/A torgg?Ppi (s)
m LocalAccessAvailable(s) LogicalDisk(s)
LocallyAccessibleFileSyst
emsSetting(s)
ElementSettingData(s)
HostedDependency
LogicalFile (BC 1.1)
FileStorage (BC 1.1)
Dependency
LocalFileSystem
LogicalFile
FileSystemSetting
ElementSettingData
FileStorage
FileSystemConfiguration I-Tgsstlggliicl)ensixsttz r:; N/A

LocalAccessAvailable(s)
LocallyAccessibleFileSyst
emSetting(s)
ElementSettingData(s)
HostedDependency
Dependency

(IF REQUESTED)
LogicalDisk(s)
StorageSetting(s)

(if Local Access is
modified)
LocalAccessAvailable

FileSystemSetting (if

etRequiredStorageSize

FileSystemConfiguration LocalAccessAvailable LocallyAccessibleFileSyst . changed) :
. g . :) ResidesOnExtent (if
Service.ModifyFileSystem | LocallyAccessibleFileSyst emSetting added)
emSetting ElementSettingData(s)
ElementSettingData(s) HostedDependency
HostedDependency
F|IeSystemCapab_lhtles.Cr N/A N/A N/A
eateGoalSettings
LocallyAccessibleFileSys
stemCapabilities.CreateG N/A N/A N/A
oalSettings
FileSystemCapabilities.G N/A N/A N/A

8.5.1.1

SMI-S 1.2.0 Revision 6

FileSystemCapabilities.CreateGoalSettings

SNIA Technical Position

117

Filesystem Manipulation Subprofile

This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed
FileSystemSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage of this method
to a single entry array for both TemplateGoalSettings and SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
FileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and SupportedGoalSettings
are string arrays containing embedded instances of type FileSystemSetting. As such, these settings do not exist in
the implementation but are the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to this
method. To assist the implementation in tracking the progress of the negotiation, the client may pass previously
returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation
may determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are
the same. A client may infer from the same result that the TemplateGoalSettings must be modified.

851.1.1 Client Considerations

It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges with respect to the filesystem or the filesystem host. During
negotiation, the client will show the current state to the user -- the SupportedGoalSettings received to date (either
the latest or some subset), the TemplateGoalSettings proposed (the most recent, but possibly more). But the
administrator needs a representation of what is available, possibly the range or sets of values that the different
setting properties can take. Some decisions are assumed to have been made already, such as the type of
Filesystem to be created and the number of LogicalDisks to use and their StorageSettings. It is possible that the
LogicalDisks for use by this Filesystem have already been designated by the user; if not, the StoragePool(s) from
which they will be created is already designated or will be selected by an independent process.

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified using FileSystemSettings -- these points can be
further qualified to indicate whether these are supported (or not), and even whether they represent some ideal
point in the space -- a "minimum”, or a "maximum®”, or an "optimal" point. Other settings can provide ranges for
properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can be
specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for a
property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a user is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client considers only the canned settings that are specified exactly. The canned settings are specified by the
FileSystemSettings that are associated to the FileSystemCapabilities via SettingDefinesCapabilities associa-
tion with the following property values:

- SettingDefinesCapabilities.PropertyPolicy = "Correlated"
- SettingDefinesCapabilities.ValueRole = "Supported"”

- SettingDefinesCapabilities.ValueRange = "Point"

118

8.5.1.1.2

Filesystem Manipulation Subprofile

Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the FileSystemSettings that are associated to

the FileSystemCapabilities via SettingDefinesCapabilities association with the following property values:

- SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

= The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

Signature and Parameters of FileSystemCapabilities.CreateGoalSettings

Table 60: Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings

Parameter
Name

Qualifier

Type

Description & Notes

TemplateGoalSe
ttings[]

string

Embeddedinstance
("SNIA_FileSystemSetting")

TemplateGoalSettings is a string array containing
embedded instances of class FileSystemSetting, or
a derived class. This parameter specifies the
client’s requirements and is used to locate
matching settings that the implementation can
support.

SupportedGoalS
ettings|]

INOUT

string

Embeddedinstance("SNIA_FileSystemSetting")

SupportedGoalSettings is a string array containing
embedded instances of class FileSystemSetting, or
a derived class. On input, it specifies a previously
returned set of Settings that the implementation
could support. On output, it specifies a new set of
Settings that the implementation can support. If the
output set is identical to the input set, both client
and implementation may conclude that this is the
best match for the TemplateGoalSettings that is
available.

If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method must
return "Alternative Proposed".

If the output is NULL, the method must return an
“Failed”.

Normal Return

Status

uint32

ValueMap{}, Values{}

"Success",

"Failed"”,

"Timeout",

"Alternative Proposed"

Error Returns

Invalid Property
Value

OuT,
Indication

CIM_Error

A single named property of an instance parameter
(either reference or embedded) has an invalid
value

SMI-S 1.2.0 Revision 6

SNIA Technical Position

119

Filesystem Manipulation Subprofile

Table 60: Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings

Invalid OuUT, CIM_Error An invalid combination of named properties of an
Combination of Indication instance parameter (either reference or embedded)
Values has been requested.

8.5.1.2 GetRequiredStorageSize

This extrinsic method returns the minimum, expected, and maximum size for a LogicalDisk that would support a
Filesystem specified by the input FileSystemGoal parameter. The caller may provide relevant settings of the
LogicalDisk via the ExtentSetting parameter. The minimum, maximum, and expected sizes are returned as output
parameters.

If the input FileSystemGoal is NULL, the implementation may return an error or use a default FileSystemSetting
associated with this FileSystemCapabilities element. The actual FileSystemSetting used is returned as an OUT
parameter.

If the input ExtentSetting parameter is NULL or is an empty array, the implementation may use a default
StorageSetting associated with the StorageConfigurationService hosted on the same ComputerSystem as the
FileSystemConfigurationService associated with this FileSystemCapabilities element. The actual StorageSetting
used is returned as an OUT parameter.

Note: The actual FileSystemSetting and StorageSetting used are being returned as OUT parameters. This is
a non-backward-compatible change from SMI-S 1.1.

8.5.1.2.1 Signature and Parameters of GetRequiredStorageSize

Table 61: Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize

Parameter Qualifier Type Description & Notes
Name
FileSystemGoal | INOUT, El string Embeddedinstance

("SNIA_FileSystemSetting™)

FileSystemGoal is an Embedded Instance element
of class CIM_FileSystemSetting, or a derived
class, that specifies the settings for the FileSystem
to be created.

If NULL on input, a default for this
FileSystemCapabilities is used.

On output, this returns the actual
FileSystemSetting that was used.

ExtentSetting INOUT, El string Embeddedinstance("CIM_StorageSetting")

ExtentSetting is an Embedded Instance element of
class CIM_StorageSetting, or a derived class, that
specifies the settings for the LogicalDisk to be used
for building this FileSystem.

If NULL on input, a default StorageSetting will be
obtained from a StorageConfigurationService
hosted on the same ComputerSystem as this
FileSystemConfigurationService.

On output, this returns the actual StorageSetting
that was used.

If the output is NULL, the method must return an
“Failed”.

120

Filesystem Manipulation Subprofile

Table 61: Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize (Con-

Parameter Qualifier Type Description & Notes
Name
ExpectedSize ouT uint64 An integer that indicates the size of the storage

extent that this FileSystem is expected to need. An
entry value of 0 indicates that there is no expected

size.
MinimumSizeAc | OUT uint64 An integer that indicates the size of the smallest
ceptable storage extent that would support the specified

FileSystem. A value of 0 indicates that there is no
minimum size.

MaximumsSizeU | OUT uint64 An integer that indicates the size of the largest
sable storage extent that would be usable for the
specified FileSystem. A value of O indicates that
there is no maximum size.

Normal Return

Status uint32 ValueMap({}, Values{}

"Success",
"Failed",
"Timeout"

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter

Value Indication (either reference or embedded) has an invalid
value

Invalid OuT, CIM_Error An invalid combination of named properties of an

Combination of Indication instance parameter (either reference or embedded)

Values has been requested.

8.5.1.3 LocallyAccessibleFileSystemCapabilities.CreateGoal Settings

This extrinsic method of the LocallyAccessibleFileSystemCapabilities class validates support for a caller-proposed
LocallyAccessibleFileSystemSetting passed as the TemplateGoalSettings parameter. This profile restricts the
usage of this method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings
parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
LocallyAccessibleFileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type
LocallyAccessibleFileSystemSetting. As such, these settings do not exist in the implementation but are the
responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation engage in a negotiation process that may require iterative calls to this method.
To assist the implementation in tracking the progress of the negotiation, the client may pass previously returned
values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation may

SMI-S 1.2.0 Revision 6 SNIA Technical Position 121

Filesystem Manipulation Subprofile

determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are the
same. A client may infer from the same result that the TemplateGoalSettings must be modified.

8.5.1.3.1 Client Considerations

It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges to the Filesystem. During negotiation, the client will show the current
state to the user -- the SupportedGoalSettings received to date (either the latest or some subset), the
TemplateGoalSettings proposed (the most recent, but possibly more). But the administrator needs a representation
of what is available, possibly the range or sets of values that the different setting properties can take. Some
decisions are assumed to have been made already, such as whether the local access is read-only or the file server
that is going to access the Filesystem.

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified supported points in the space of properties -- these
points can be further qualified to indicate whether these are supported or not, or whether they represent some ideal
point in the space -- a "minimum®”, or a "maximum”, or an "optimal" point. Other settings can provide ranges for
properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can be
specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for a
property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a wuser is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
LocallyAccessibleFileSystemSetting elements that are associated to the LocallyAccessibleFileSystemCapa-
bilities via SettingDefinesCapabilities association with the following property values:

= SettingDefinesCapabilities.PropertyPolicy = "Correlated”
= SettingDefinesCapabilities.ValueRole = "Supported"
= SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the LocallyAccessibleFileSystemSetting ele-
ments that are associated to the LocallyAccessibleFileSystemCapabilities via SettingDefinesCapabilities
association with the following property values:

= SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"
< The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

Comparing the two CreateGoalSettings extrinsic methods of this profile, the
FileSystemCapabilities.CreateGoalSettings() can be significantly more complex than
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings(). The client can choose to implement a simpler
negotiation protocol for one -- this specification does not mandate the extent to which the client must use this
protocol.

122

Filesystem Manipulation Subprofile

8.5.1.3.2 Signature and Parameters of CreateGoalSettings

Table 62: Parameters for Extrinsic Method
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings

Parameter Qualifier Type Description & Notes
Name
TemplateGoalSe | IN string Embeddedinstance
ttings[] ("SNIA_LocallyAccessibleFileSystemSetting")

TemplateGoalSettings is a string array containing
embedded instances of class
LocallyAccessibleFileSystemSetting, or a derived
class. This parameter specifies the client’s
requirements that is used to locate matching
settings that the implementation can support.

SupportedGoalS | INOUT string Embeddedinstance("SNIA_LocallyAccessibleFi
ettings|] leSystemSetting")

SupportedGoalSettings is a string array containing
embedded instances of class
LocallyAccessibleFileSystemSetting, or a derived
class. On input, it specifies a previously returned
set of Settings that the implementation could
support. On output, it specifies a new set of
Settings that the implementation can support. If
the output set is identical to the input set, both
client and implementation may conclude that this is
the best match for the TemplateGoalSettings that is
available.

If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method must
return \"Alternative Proposed\".

If the output is NULL, the method must return an

“Failed”.
Normal Return
Status uint32 ValueMap({}, Values{}
"Success",
"Failed",
"Timeout",

"Alternative Proposed"

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter
Value Indication (either reference or embedded) has an invalid
value

SMI-S 1.2.0 Revision 6 SNIA Technical Position 123

Filesystem Manipulation Subprofile

Table 62: Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoal-
Settings (Continued)

Parameter Qualifier Type Description & Notes
Name
Invalid OuT, CIM_Error An invalid combination of named properties of an
Combination of Indication instance parameter (either reference or embedded)
Values has been requested.

8.5.1.4 FileSystemConfigurationService.CreateFileSystem

This extrinsic method creates a LocalFileSystem and returns it as the value of the parameter TheElement. The
desired settings for the LocalFileSystem are specified by the Goal parameter (a string-valued Embeddedinstance
object of class FileSystemSetting).

Filesystem vendors differ in their models for creating a filesystem. Some vendors require that the storage element
already exist; others create the storage element at the same time as the filesystem. Some vendors require a local
access point ("mount-point") that supports defining a name or pathname that allows a file server to access the
filesystem; others do not require any such object (though it could be argued that they provide a default local access
mechanism). This extrinsic method supports variant mechanisms for specifying, at create time, storage element
creation as well as local access by a file server. The FileSystemConfigurationCapabilities associated with the
FileSystemConfigurationServices contains the property BlockStorageCreationSupport that specifies support for
create-time storage element creation; the property LocalAccessibilitySupport that specifies support for local access
by a file server at creation; the property DirectoryServerParameterSupported that specifies support for specifying a
file server that provides access to a Directory Service (if enabled separarely).

To support backward compatibility with the SMI-S 1.1 Filesystem subprofile, an instance of Directory (a derived
class of LogicalFile) is created representing the root directory of the newly created filesystem. This Directory
element is associated to the LocalFileSystem via FileStorage.

A FileSystemSetting element that represents the settings of the LocalFileSystem (either identical to the Goal or
equivalent) shall be associated via ElementSettingData to the LocalFileSystem. The implementation shall create a
new FileSystemSetting for this purpose.

The output parameter TheElement shall contain a reference to the newly created LocalFileSystem. Even if this
operation does not complete but creates a job, an implementation may return a valid reference in TheElement. If
the job fails subsequently, it is possible for this reference to become invalid.

8.5.14.1 Specifying Storage Underlying the Filesystem
BlockStorageCreationSupport is an array of enumerated values that specifies if:

< An enumerated value that specifies whether the extrinsic methods may use an already existing LogicalDisk --
this is either required, optional, or not allowed. If "Not Allowed", the Pools and ExtentSettings parameters must
be used to create LogicalDisk(s) for this LocalFileSystem and the InExtents parameter must be NULL. If
"Optional”, either the Pools and ExtentSettings parameters or the InExtents parameter should be specified, but
not both. If "Required", on the InExtents parameter may be specified and the Pools and ExtentSettings
parameters must be NULL.

= (optional) An integer that specifies an upper limit to the number of storage elements that can be specified,
either as InExtents parameters or as Pools and ExtentSettings.

= (optional) An integer that specifies the number of distinct storage pools that the Pools parameters can specify -
- zero, if Pools is not supported or if there is no limit, and a specific number if there is a limit. In practice we
expect that the value will be either zero or one.

124

Filesystem Manipulation Subprofile

« (optional) A truth value represented as '0’ for false and '1’ for true that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating that a default setting is to be used).

The storage used for creating the LocalFileSystem is specified by the InExtents parameter that must be an array of
LogicalDisks. If InExtents is NULL and BlockStorageCreationSupport indicates that Pools are optional or required,
the parameter Pools must specify an array of StoragePools from which storage may be allocated -- the
requirements for the LogicalDisks allocated from this Pool is specified in the ExtentSettings array parameter. The
Pools may use an associated StorageConfigurationService. The LocalFileSystem is associated to one of the
LogicalDisk(s) via the ResidesOnExtent association. The other LogicalDisks extend the distinguished LogicalDisk
(as modeled by the Volume Composition Sub-Profile).

8.5.1.4.2 Specifying Local Access to the Filesystem

LocalAccessibilitySupport is an enumeration that specifies whether the implementation requires a local access
specification, or makes it optional (thus using a vendor default), or does not require one ("local access" does not
have a meaning for the vendor).

The LocalFileSystem shall be hosted on the same ComputerSystem as the FileSystemConfigurationService.

Note: The requirement that the LocalFileSystem have the same host as the Service is too restrictive but we
can extend this method in the future with a FileSystemHost parameter (implicitly NULL in 1.2).

If LocalAccess is supported, whether optional or required, this method supports specifying one file server
ComputerSystem (the reference parameter FileServer) that is given local access to this Filesystem. If LocalAccess
is optional, the FileServer parameter may be NULL. The local access hame on the FileServer is specified in the
LocalAccessPoint string parameter -- if the implementation uses pathnames, this will be formatted as a pathname
(directory names separated by the PathNameSeparatorString). The implementation could also use a differently
formatted local access name (for instance, a simple name). The settings to be used for this are specified in the
LocalAccessSetting, an Embeddedinstance element of class LocallyAccessibleFileSystemSetting.

Note: If a second file server ComputerSystem is to be given local access, the ModifyFileSystem method
would be used.

Corresponding to the LocalAccessPoint parameter, a LocalAccessAvailable association instance and a
LocallyAccessibleFileSystemSettings element are created with the following properties and associations:

e The LocalAccessAvailable association goes between the FileServer parameter and the created
LocalFileSystem (TheElement parameter).

= The LocalAccessAvailable.LocalAccessPoints property is set to the value of the LocalAccessPoint string.

e The LocallyAccessibleFileSystemSetting element has an ElementSettingData association to the
LocalFileSystem (TheElement).

< The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

If LocalAccess is supported, the FileServer parameter should not be NULL.

Note: |If it is NULL, the implementation may leave the filesystem operationally inaccessible -- however, this
can be corrected by calling the ModifyFileSystem method. This is not an Error.

If LocalAccess is supported and the FileServer parameter is not NULL, the LocalAccessPoint string may be NULL
or the empty string. In this case, the LocalAccessSetting parameter should indicate the implementation-specific
default format. The default value that is used is returned as the OUT value of the LocalAccessPoint parameter. It is
an Error if the LocalAccessSetting parameter does not provide an appropriate default mechanism for constructing
a local access name.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 125

Filesystem Manipulation Subprofile

The LocalAccessSetting parameter will return an Embeddedinstance of the LocallyAccessibleFileSystemSetting
actually used on output.

8.5.1.4.3 Specifying access to Directory Services

DirectoryServerParameterSupported is a property that specifies whether the filesystem must have access to a file
server that provides access to directory services so that security principal information may be supported. If the
newly created filesystem must be able to resolve such information, the DirectoryServer parameter must be
specified to the CreateFileSystem method.

The DirectoryServer parameter specifies a file server ComputerSystem that is configured to access a directory
service that resolves security principal identifies (UIDs, GIDs, or SIDs) used by the filesystem. This profile does
not specify the configuration of any directory service (if there is one), any directory server, or the file server that is
specified by the DirectoryServer parameter. For operational efficiency reasons, this must be a file server since
security principal information such as usage and detection of threshold violations must happen in real-time.

If the DirectoryServer is required and is specified, an association, a concrete subclass of Dependency, shall be
surfaced between the newly created LocalFileSystem element (as Dependent) and the specified file server (as
Antecedent). The CreateFileSystem method will return a reference to this file server as the return value of the
parameter. In this case, the LocalFileSystem.DirectoryServiceUsage property shall be set to “Supported”.

Any file server that is configured with write access to a filesystem must use the same or a compatible directory
service (effectively the same) as the file server indicated by the Dependency association.

126

8.5.2

Filesystem Manipulation Subprofile

Signature and Parameters of CreateFileSystem.

Table 63: Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier

Type

Description & Notes

ElementName

string

An end user relevant name for the FileSystem
being created. The value shall be stored in the
'ElementName' property for the created element.
This parameter shall not be NULL or the empty
string.

Job

OUT, REF

CIM_Concret
eJob

Reference to the job (may be null if job completed).

Goal

IN, OUT, El

string

EmbeddedInstance
("'CIM_FileSystemSetting')

The FileSystemSetting requirements for the
FileSystem. If NULL or the empty string, a default
FileSystemSetting shall be specified by the
FileSystemCapabilties element associated to the
FileSystemConfigurationService by the
DefaultElementCapabilities association. The actual
FileSystemSetting used is returned on output.

TheElement

OUT, REF

CIM_ LocalFil
eSystem

The newly created FileSystem.

InExtents]]

IN, OUT,
REF, NULL
allowed,

CIM_Logical
Disk

The LogicalDisk(s) on which the created
FileSystem shall reside. If this is NULL, the Pools
and ExtentSettings parameters cannot be NULL
and are used to create LogicalDisk(s). The
LogicalDisk(s) actually used will be returned on
output.

Pools]]

IN, REF,
NULL
allowed

CIM_Storage
Pool

An array of concrete StoragePool elements
corresponding to the ExtentSettings parameter
from which to create LogicalDisks in case the
InExtents parameter is NULL. If InExtents is not
NULL, this must be NULL.

ExtentSettings|]

IN, El, NULL
Allowed

string

EmbeddedInstance
("'CIM_StorageSetting')

An array of embedded StorageSetting structures
that specify the settings to use for creating
LogicalDisks if the InExtents parameter is NULL
and Pools is specified. Each LogicalDisk will be
created from the corresponding entry in Pools, so
each StorageSetting entry must be supported by
the capabilities of the corresponding Pools entry.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

127

Filesystem Manipulation Subprofile

Table 63: Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
Sizes|] IN, OUT, uint64 An array of numbers that specifies the size in bytes
NULL of the LogicalDisks to be created corresponding to
Allowed the Pools and ExtentSettings parameters. The sum

of Sizes should be at least as much as (or greater
than) the FileSystem size needed.

FileServer IN, OUT, ComputerSy | A reference to a ComputerSystem element that will
REF, NULL stem access the created LocalFileSystem and is capable
Allowed of exporting the filesystem as a file share. The local

access point with respect to the file server is
specified by the LocalAccessPoint parameter. If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points are
supported but implementation-defaulted, the
corresponding entry in the LocalAccessPoint
parameter should be NULL or the empty string as
the LocalAccessPoint name is constructed as per
the vendor default algorithm. A
LocalAccessAvailable association is created
between the FileServer and the LocalFlleSystem.
The parameters for local access are specified by
the LocalAccessSetting parameter.

Since this Filesystem has just been created, the
LocalAccessSetting can support Write privileges. If
the LocalAccessSetting entry is NULL or the empty
string, the implementation uses a default
associated with the
LocallyAccessibleFileSystemCapabilities
associated to the FileServer.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that a local access point is
required and FileServer is NULL, no
LocalAccessAvailable associations are created
and the Filesystem may not be accessible. This
shall not cause an Error.

On output, this parameter contains a reference to
the actual FileServer that has access to the created
LocalFileSystem.

128

Filesystem Manipulation Subprofile

Table 63: Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
LocalAccessPoi | IN, OUT, string A string to use as a pathname in the name space of
nt REF, NULL the file server ComputerSystem. The format of the
Allowed string is vendor-dependent and it should be

considered opaque from the client’s standpoint. It
could be interpreted as a hierarchical fully-qualified
name for the local access point (say in a Unix-
based operating environment), or it could be a
drive letter (as in a Windows operating
environment). A LocalAccessAvailable association
is created going between the new LocalFileSystem
and the FileServer parameter. The
LocalAccessAvailable.LocalAccessPoint property
will be set to this parameter.

The parameters for local access are specified by
the LocalAccessSetting parameter.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points are
required, then LocalAccessPoint shall not be NULL
or an empty string.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points can
be vendor-defaulted, then LocalAccessPoint can
be NULL or an empty string and the
implementation shall create a name using a
vendor-specific algorithm.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points
cannot be vendor-defaulted, then
LocalAccessPoint shall not be NULL and the
implementation shall not create a default
pathname. This is an Error.

On output, this parameter contains the actual
LocalAccessPoint used (including any name
created by vendor-default).

SMI-S 1.2.0 Revision 6

SNIA Technical Position

129

Filesystem Manipulation Subprofile

Table 63: Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
LocalAccessSett | IN, EI, OUT, string EmbeddedlInstance
ing NULL ("'CIM_LocallyAccessibleFileSystemSett
Allowed ing™)

An embedded LocallyAccessibleFileSystemSetting
element that specifies the settings to use to
establish a local access point. This element will be
used to create a LocalAccessAvailable association
and will be cloned to create a
LocallyAccessibleFileSystemSetting element that
is scoped via HostedDependency (ScopedSetting)
to the FileServer and associated via
ElementSettingData to the LocalFileSystem.

If a LocallyAccessibleFileSystemSetting entry is
NULL or the empty string, the implementation shall
use the default provided by the
LocallyAccessibleFileSystemCapabilities element
of the FileSystemConfigurationService that is
associated to the FileServer via CIM_Dependency.
The LocalAccessSetting may specify a Write
Privilege.

The LocalAccessSetting actually used is returned
as the OUT EmbeddedInstance parameter.

130

Filesystem Manipulation Subprofile

Table 63: Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
DirectoryServer | IN, OUT, ComputerSy | A reference to a ComputerSystem element that
NULL stem has access to directory services. The newly
Allowed created filesystem can use it to support security

principal information associated with filesystem
objects, such as quotas for users and groups. This
is represented by providing a Dependency
association between the LocalFileSystem element
and the ComputerSystem indicated by this
parameter. The requirements for this parameter
are further specified by
FileSystemConfigurationCapabilities.DirectoryServ
erParameterSupported.

If DirectoryServerParameterSupported specifies
‘Not Used', or 'Supported, Defaulted to FileServer',
or 'Supported, Defaulted to FileSystem host', it is
an Error if DirectoryServer is not NULL.

Otherwise, (i.e., if
DirectoryServerParameterSupported specifies
'Supported’), and if the DirectoryServer is not
NULL, the new filesystem will use the directory
services made available by the specified
DirectoryServer. If DirectoryServer is NULL, it will
be defaulted to the FileServer parameter. If the
FileServer parameter is also NULL, the
DirectoryServer will be defaulted to the host of the
newly created filesystem.

On output, this parameter contains a reference to
the actual DirectoryServer if one was established.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter

Value Indication (either reference or embedded) has an invalid
value

Invalid OuUT, CIM_Error An invalid combination of named properties of an

Combination of Indication instance parameter (either reference or embedded)

Values has been requested.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 131

Filesystem Manipulation Subprofile

8.5.2.1 FileSystemConfigurationService.ModifyFileSystem

This extrinsic method modifies a LocalFileSystem specified by the parameter TheElement. The desired settings for
the LocalFileSystem are specified by the Goal parameter (a string-valued Embeddedinstance object of class
FileSystemSetting).

As with CreateFileSystem, the FileSystemConfigurationCapabilities associated with the
FileSystemConfigurationService specifies support for some of the optional behaviors of this method.
BlockStorageCreationSupport indicates whether this method only uses previously existing storage elements or if it
can create them at the same time as modifying or creating the filesystem. In addition this can specify if additional
LogicalDisks can be added to the existing set of LogicalDisks and whether the implementation limits the number of
LogicalDisks underlying a filesystem. LocalAccessibilitySupport indicates whether the implementation requires
support for local access points (or if they are optional or not required at all).

This element shall have a FileSystemSetting use ActualFileSystemType property is supported by the
FileSystemConfigurationService (as specified by the SupportedActualFileSystemTypes property of the associated
FileSystemConfigurationCapabilities). The existing LogicalDisks used by the LocalFileSystem cannot be released
by this method, but this method may add LogicalDisks. These LogicalDisks may be specified by the InExtents
parameter (if that is either required or optional) or, if InExtents is NULL (if Pools are optional or required), the set of
LogicalDisks is not changed. New LogicalDisks may also be added by specifying an array of StoragePools in the
Pools parameter and an array of StorageSettings that can be used to create them.

If the operation would result in a change in the size of a filesystem, the ResidesOnExtent association shall be used
to determine how to implement the change. If the existing or additional LogicalDisk(s) specified, or any additional
LogicalDisks created, cannot support the goal size, an appropriate error value shall be returned, and no action
shall be taken. If the operation succeeds, the ResidesOnExtent association shall reference the same LogicalDisk
as before (however, the LogicalDisk will be built upon a larger number of underlying LogicalDisks, as modeled by
the Volume Composition subprofile).

If the new Goal is different from the old FileSystemSetting element associated to the LocalFileSystem element,
then the implementation must change the setting properties of the LocalFileSystem. This may be accomplished by
modifying the old FileSystemSetting element directly, or by deleting it and then re-creating a new
FileSystemSetting element with the same Instanceld. Just like the old element, the new FileSystemSetting element
shall be associated to the LocalFileSystem element via an ElementSettingData association.

If local access is supported, whether optional or required, any change is specified by providing the FileServer
parameter (which shall be a reference to a ComputerSystem). If a FileServer is not being added to the set or
modified or removed from the set, the FileServer parameter may be NULL.

If the specified FileServer does not duplicate a ComputerSystem that has already been specified as having local
access, this method adds it to the set. The pathname is specified by the LocalAccessPoint string array parameter.
The settings to be used for these are specified in the LocalAccessSetting, an Embeddedinstance element of class
LocallyAccessibleFileSystemSetting.

If the specified FileServer duplicates a ComputerSystem that has already been specified as having local access,
this method either modifies the local access or removes it from the set. If the LocalAccessPoint parameter is NULL
or consists of an empty string, this call removes the FileServer from the set. If the LocalAccessPoint parameter is
not NULL but specifies the current path, then this call modifies the settings of the local access -- the new settings
are specified by the LocalAccessSetting parameter. If the LocalAccessPoint parameter is not NULL but specifies a
path other than the current path, then this call modifies the pathname as well as the settings. If this filesystem is in
operational use when such a request is made, the request may have to be suspended until the filesystem can be
put into an appropriate state for making the change.

The settings to be used for adding or modifying are specified by the LocalAccessSetting parameter, an
Embeddedinstance element of class LocallyAccessibleFileSystemSetting.

To add a local access point, a LocalAccessAvailable association and a LocallyAccessibleFileSystemSettings
element are created with the following properties and associations:

132

Filesystem Manipulation Subprofile

A LocalAccessAvailable association goes between the FileServer parameter and the LocalFileSystem
(TheElement parameter).

A LocalAccessAvailable.LocalAccessPoint property is set to the LocalAccessPoint string.

A LocallyAccessibleFileSystemSetting element with a ElementSettingData association to the LocalFileSystem
(TheElement parameter).

The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

Note: The WaitTime and InUseOptions parameters are supported if the
FileSystemCapabilities.SupportedProperties includes the "RequirelnUseOptions" option.

Note: A client can identify all local access specifications for a filesystem by looking for the
LocalAccessAvailable association from the LocalFileSystem to a file server ComputerSystem and the
LocallyAccessibleFileSystemSetting associated to the LocalFileSystem via ElementSettingData and
the same file server ComputerSystem via HostedDependency (ScopedSetting).

SMI-S 1.2.0 Revision 6 SNIA Technical Position 133

8.5.3

Filesystem Manipulation Subprofile

Signhature and Parameters of ModifyFileSystem.

Table 64: Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter Qualifi Type Description & Notes
Name er
ElementNam | IN, OUT string An end user relevant name for the filesystem being modified. If NULL,
e the existing TheElement.ElementName property is not changed. If not
NULL, this parameter will supply a new name for the Element
parameter. The actual ElementName is returned as the output value.
Job OUT, REF | CIM_Con | Reference to the job (may be null if job completed).
creteJob
Goal IN, OUT, string EmbeddedInstance ("'CIM_FileSystemSetting')
El
The FileSystemSetting requirements for the filesystem specified by the
TheElement parameter. If NULL or the empty string, the settings for
TheElement will not be changed. If not NULL, this parameter will
supply new settings that replace or are merged with the current
settings of TheElement.

TheElement IN, REF CIM_Loca | The LocalFileSystem element to modify.

IFileSyste
m

InExtents[] IN, OUT, CIM_Logi | The LogicalDisk(s) used to extend the current set of LogicalDisks used
REF, calDisk for the TheElement filesystem. If this is not NULL, the Pool and
NULL ExtentSettings must be NULL. If both this and Pool are NULL, the
allowed, current set will not be changed. The current set of LogicalDisk(s) will

be returned as the output.

Pools[] IN, REF, CIM_Stor | An array of concrete storage pools corresponding to the ExtentSettings
NULL agePool array parameter. These storage pools are used to create additional
allowed LogicalDisks to extend the TheElement filesystem. The InExtents

parameter must be NULL and the ExtentSettings parameter must not
be NULL. Otherwise, the current set of LogicalDisks is not changed.

ExtentSetting | IN, El, string EmbeddedInstance ('CIM_StorageSetting')

S NULL

! Allowed An array of embedded StorageSetting structures that specify the
settings to use for creating additional LogicalDisks for the TheElement
filesystem. The InExtents parameter must be NULL and Pools must be
specified. Each LogicalDisk will be created from the corresponding
Pool, so each StorageSetting entry must be supported by the
capabilities of the corresponding Pool entry.

Sizes][] IN,NULL uint64 An array of numbers that specifies the size in bytes of the LogicalDisks
Allowed to be created corresponding to the ExtentSettings array parameter.

134

Filesystem Manipulation Subprofile

Table 64: Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter Qualifi Type Description & Notes
Name er
FileServer IN, OUT, REF A reference to a ComputerSystem element representing a file server.
REF, Computer

If this parameter is NULL, no change is made to the local access configuration.
If it is not NULL, the change to the configuration consists of the following
cases:

NULL System
Allowed

1.) If the FileServer does not already support local access to the TheElement, it
will be added and made capable of exporting the filesystem as file shares. The
local access point is specified by the LocalAccessPoint parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that
local access points are vendor-defaulted, the corresponding entry in the
LocalAccessPoints parameter should be NULL or the empty string as the
LocalAccessPoint name is constructed by a vendor-default algorithm.

A LocalAccessAvailable association is created between the FileServer and the
TheElement. The parameters for local access are specified by the
LocalAccessSetting parameter, an Embeddedinstance element of class
LocallyAccessibleFileSystemSetting.

If the LocalAccessSetting parameter is NULL or the empty string, the
implementation uses a default associated with the
LocallyAccessibleFileSystemCapabilities of the
FileSystemConfigurationService associated to the FileServer by
HostedDependency (ScopedSetting). At most one of the
LocalAccessSettings entries for all the file server ComputerSystems that
provide local access to this filesystem shall specify an element with Write
Privileges.

2) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is NULL or a set of empty strings, this will remove
the FileServer from the configured set. If there are existing operational users of
the TheElement filesystem, they will need to be informed and the
implementation might have to wait to reach a consistent state before the
request can be completed.

3) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is the same as the current configuration, then this
is a request to change the settings but not the local access point. The
LocalAccessSetting parameter will specify the new setting. Depending on the
precise change, the filesystem may need to suspend operations. If there are
existing operational users of the filesystem, they will need to be informed and
the implementation might have to wait to reach a consistent state before the
request can be completed.

4) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is different from the current configuration, then
this is equivalent to removing local access and then restoring it with different
settings. If there are existing operational users of the filesystem, they will need
to be informed and the implementation might have to wait to reach a consistent
state before the request can be completed. Note that existing operational users
will not be able to reconnect as the share name may have changed.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 135

Filesystem Manipulation Subprofile

Table 64: Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter
Name

Qualifi
er

Type

Description & Notes

LocalAccess
Point

IN, OUT,
REF,
NULL
Allowed

string

A string to use as a pathname in the name space of the file server
ComputerSystem specified by the FileServer parameter. The format of
the string is vendor-dependent and it should be considered opaque to
the client. It could be interpreted as a hierarchical fully-qualified name
for the local access point (say in a Unix-based operating environment),
or it could be a drive letter (as in a Windows operating environment). A
LocalAccessAvailable association is created going between the
TheElement and the FileServer. The
LocalAccessAvailable.LocalAccessPoint property will be set to the
value of this parameter.

The parameters for local access are specified by the
LocalAccessSetting parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport
specifies that local access points are required, then LocalAccessPoint
shall not be NULL or an empty string if this is a new FileServer that
does not have local access to TheElement. This is an Error.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport
specifies that local access points can be vendor-defaulted, then
LocalAccessPoint can be NULL or an empty string and the
implementation shall create a name using a vendor-specific algorithm.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport
specifies that local access points cannot be vendor-defaulted, and this
is a new FileServer that does not have local access to TheElement,
then LocalAccessPoint shall not be NULL and the implementation shall
not create a default pathname. This is an Error.

On output, this parameter contains the actual LocalAccessPoint used
(including any name created by vendor-default).

LocalAccess
Setting

IN, El,
OuT,
NULL
Allowed

string

EmbeddedlInstance
("'SNIA_LocallyAccessibleFileSystemSetting™)

An embedded LocallyAccessibleFileSystemSetting element that
specifies the settings to use for establishing a local access point. Each
entry will be used to create or modify a LocalAccessAvailable
association and will be cloned to create a
LocallyAccessibleFileSystemSetting element that is scoped via
ScopedSetting (or HostedDependency) to the file server
ComputerSystem specified by the FileServer parameter. The clone will
be associated via ElementSettingData to the LocalFileSystem.

If this parameter is NULL or the empty string, and a new value is
needed, the implementation shall use the default provided by the
LocallyAccessibleFileSystemCapabilities associated to the FileServer
parameter. The LocalAccessSetting actually used is returned as the
OUT parameter.

136

Filesystem Manipulation Subprofile

Table 64: Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter Qualifi Type Description & Notes
Name er
InUseOption | IN uintl6 An enumerated integer that specifies the action to take if the filesystem
S is still in operational use when this request is made. This option is only

relevant if the FileSystem needs to be made unavailable while the
request is being executed.

WaitTime IN uint16 An integer that indicates the time in seconds to wait before performing
the request on this filesystem. The combination of InUseOptions = '4'
and WaitTime ='0' (the default) is interpreted as 'Wait (forever) until
Quiescence, then Execute Request.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid OuT, CIM_Erro | A single named property of an instance parameter (either reference or
Property Indication | r embedded) has an invalid value

Value

Invalid OuT, CIM_Erro | Aninvalid combination of named properties of an instance parameter
Combination | Indication | r (either reference or embedded) has been requested.

of Values

8.5.3.1 FileSystemConfigurationService.DeleteFileSystem

This is an extrinsic method that shall delete a LocalFileSystem specified by the parameter TheElement and delete
any associated elements and associations that are no longer needed. The deleted elements include the
LogicalFile/Directory and FileStorage, if they were surfaced; the LocalAccessAvailable association, the
LocallyAccessibleFileSystemSetting element and its associations, ElementSettingData, HostedDependency
(ScopedsSetting); HostedFileSystem, ResidesOnExtent, and any associations that might be orphaned by the
deletion of TheElement. The LogicalDisk(s) that TheElement used shall be released but an implementation is not
required to delete or re-allocate it.

Note: The WaitTime and InUseOptions parameters are supported if the
FileSystemCapabilities.SupportedProperties includes the "RequirelnUseOptions" option.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 137

Filesystem Manipulation Subprofile

8.5.4 Signature and Parameters of DeleteFileSystem.

Table 65: Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem

Parameter Qualifier Type Description & Notes
Name
Job OUT, REF CIM_Concret | Reference to the job (may be null if job completed).
eJob
TheElement IN, REF CIM_LocalFil | The filesystem element to delete.
eSystem
InUseOptions IN uint16 An enumerated integer that specifies the action to

take if TheElement is still in use when this request
is made. This option is only relevant if the
filesystem needs to be made unavailable while the
request is being executed.

WaitTime IN uintl6 An integer that indicates the time in seconds to wait
before performing the request on TheElement
filesystem. The combination of InUseOptions = '4'
and WaitTime ='0' (the default) is interpreted as
'Wait (forever) until Quiescence, then Execute

Request.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",

"Method Parameters Checked - Job Started"

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter

Value Indication (either reference or embedded) has an invalid
value

Invalid OuT, CIM_Error An invalid combination of named properties of an

Combination of Indication instance parameter (either reference or embedded)

Values has been requested.

8.5.5 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= Getlnstance

« Associators

= AssociatorNames

< References

< ReferenceNames

= Enumeratelnstances

e EnumeratelnstanceNames

138

8.6

Filesystem Manipulation Subprofile

Client Considerations and Recipes

EXPERIMENTAL

Conventions used in the NAS recipes:

When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is (often) used without further validation. Real code will need to be more robust.

We use Values and Valuemap members as equivalent. In real code, client-side magic is required to convert the
integer representation into the string form given in the MOF.

Error returns using the CIM_Error mechanism are not explicitly handled -- the client must implement handlers
for these asynchronous returns.

These recipes do not show the details of negotiating a setting acceptable to both client and provider.
The recipes do not show the details of managing a Job if a method returns after setting one up.

All the recipes show very simple examples of the operations that should be supported. Some recipes have
been simplified so that they would not even be minimally useful to a real client, but only show how more
complete functionality would be implemented.

Note: We need to add at least one recipes that supports local access from a file server.

In the Filesystem Manipulation Profile recipes, the following subroutines are used (and provided here as forward
declarations):

sub CreateGoal(

IN REF CIM_FileSystemCapabilities $fscapability,

IN String $goalSetting,

INOUT String $supportedFileSystemSetting);
// The above subroutine uses the $fscapability.CreateGoalSettings method
// to get the single $supportedFileSystemSetting used in these recipes.

sub GetRequiredStorageSize(

IN REF CIM_FileSystemCapabilities $fscapability,

IN String $fssgoal,

IN String $ldSetting,

OUT uint64 $expectedsize,

OUT uint64 $minsize,

OUT uint64 $maxsize);
// The above subroutine uses the $fscapability.GetRequiredStorageSize
// method to get the single output size used in these recipes.

8.6.1 Creation of a FileSystem on a Storage Extent

//

// DESCRIPTION

// Goal: Create a LocalFilesystem on a LogicalDisk

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService
// will also be the host of the created LocalFileSystem.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 139

140

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Filesystem Manipulation Subprofile

2. The client does not negotiate to get an acceptable setting but
fails if one is not found

3. We do not use the FSCS to create a LogicalDisk from a StoragePool

4_ We do not set up local access to a file server at this time

FUNCTION CreateFileSystem

This function takes a given ComputerSystem and LogicalDisk and
constructs a Ffilesystem that satisfies the requested property values.

INPUT Parameters:

hostsystem: A reference to the ComputerSystem.

disk: A reference to the LogicalDisk on which to build the
filesystem.

desiredsize: An integer specifying the size of filesystem to
build in bytes

fsname: The string name of the Ffilesystem

filesystemtype: An integer enumeration of the filesystem type
to construct

otherpropertyname: An array of property names with corresponding

values in the otherpropertyvalue parameter.
otherpropertyvalue: An array of property values corresponding to the
names in the otherpropertyname parameter.
OUTPUT Parameters:
fs: A reference to the LocalFileSystem that is built by this
function.
job: A reference to a job created by the implementation if this
function will take a long time to complete.
RESULT:
Failure return consists of fs=NULL and job=NULL
NOTES
1. This recipe does not show how to use the LocalAccess functionality
to “mount” the file system to a mount-point of a file server.

sub CreateFileSystem(IN REF CIM_System $hostsystem,

IN REF CIM_LogicalDisk $disk,

IN uint64 $desiredsize,

IN String $fsname,

IN String $filesystemtype,

IN String $otherpropertyname[], // array of property names

IN String $otherpropertyvalue[], // corresponding array of
values

OUT REF CIM_FileSystem $fs,
OUT REF CIM_Job $job)

//

// Get the FileSystemConfigurationService of the NAS server using
// a HostedService association

//

$Ffsconfigurators->[] = Associators($hostsystem,

Filesystem Manipulation Subprofile

“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent’);
if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

// No FileSystemConfigurationService found -- error

$fs = NULL;

$job = NULL;

return;

}

$fsconfigurator = $fsconfigurators->[0];

//

// Find FSCapabilities that supports $filesystemtype

// as the ActualFileSystemType using ElementCapabilities

// association from FSConfigurationService.

/7/

// There is only one Capability of a particular ActualFileSystemType

$capabilities->[] = Associators($fsconfigurator,
“CIM_ElementCapabilities”,
“CIM_FileSystemCapabilities”,
“ManagedElement”,
“Capabilities™);

if ($capabilities->[] == null || $capabilities->[].length == 0) {

// No Capabilities found -- error
$fs = NULL;
$job = NULL;
return;
}
#j = 0;

while($capability = $capabilities->[#j]1) {
ifT (($capability.ActualFileSystemType == $filesystemtype) ||
(($filesystemtype == NULL) && ($capability.lIsDefault))) {
iT ($otherpropertyname->[] == NULL |] $otherpropertyname->[].length ==
1113 I I
Contains(%capability.SupportedProperties, $otherpropertyname->[]))
{

// This Contains function is left to the client to implement
// found a matching capabilities element

//

break;

} else {

// Found capabilities element failed to match
$fs = NULL;
$job = NULL;

return;

}
#Hj++;

SMI-S 1.2.0 Revision 6 SNIA Technical Position 141

142

Filesystem Manipulation Subprofile

}
$capability = $capabilities->[#j];

//7 1T $filesystemtype was NULL or empty string the default was returned
if ($filesystemtype == NULL || $filesystemtype == “*)
$filesystemtype = $capability.ActualFileSystemType;

// At this point the $capability will be for $filesystemtype

//

// Call FileSystemCapabilities.CreateGoalSettings(nullTemplate, Goal) to
// get a seed goal for FileSystemSetting, or just use one of the provided
// default settings associated with the FileSystemCapabilities via

// SettingsDefineCapabilities.

//

// The function used is CreateGoal instead of CreateGoalSettings

// because the CreateGoalSettings method takes arrays

// as parameters and we only want to pass single-entry arrays

// The implementation details are left to the client.

$fssgoal = NULL;

CreateGoal ($capability, NULL, $fssgoal);

//

// Inspect Goal and modify properties as desired.

//

#i = 0O;

while ($otherpropertyname[#i]) {
// funky syntax on left-hand side -- dot-operator on an a variable
$fssgoal . $otherpropertyname[#i] = $otherpropertyvalue[#i];
Hi++;

}

//

// Call FSCSCapabilities.CreateGoalSettings(Goal-N”, Goal-N) to get
// the next goal for FSSetting -- iterate until satisfied or give up
// (beware of infinite loops) Note: we don’t iterate here, just give
// up if we don’t get what we want.

/7/

// The function used is CreateGoal instead of CreateGoalSettings

// because the CreateGoalSettings method takes arrays

// as parameters and we only want to pass single-entry arrays

// The implementation details are left to the client.

CreateGoal ($capability, $fssgoal, $fssgoal?2);

#i = 0;
while ($otherpropertyname[#i]) {
//

Filesystem Manipulation Subprofile

// Note: this pseudocode doesn’t check to see if the property named
// in $otherpropertyname[#i] is an array. This additional level
// of horsing around is left as an exercise for the reader.

//
if ($fssgoal.$otherpropertyname[#i] !'= $otherpropertyvalue[#i] {
{ return NULL; } // give up
}
}
//

// Call FileSystemCapabilities.GetRequiredStorageSize(Goal,

// DesiredUsableCapacity) to find out how large of a

// LogicalDisk is needed.

//

// GetRequiredStorageSize returns the maximum and minimum

// sizes that might be needed to satisfy the fssgoal2 request

// 1T the LogicalDisk in use for the FileSystem cannot be grown
// upon demand, then it might be worth growing to $minsize (which
// would be optimistic); if there is any reason to believe that
// the user is underestimating what they will need, then it might
// be worth growing to $maxsize (pessimistic); in the normal case,
// plan to grow to $expectedsize.

/7/

$ldsetting = NULL;

$requiredsize = $capability.GetRequiredStorageSize(

$fssgoal2,
$ldsetting, // NULL input, returns
setting

$expectedsize,
$minsize,
$maxsize);

//

// 1T a disk of the required size is already available

// Call CreateFileSystem(Goal, LogicalDisk)

// else

// Create LogicalDisk (see StorageExtent recipes)

// Call CreateFileSystem(Goal, LogicalDisk)

//

if ($requiredsize > $disk.BlockSize * $disk.NumberOfBlocks) {
<CreateDisk>($requiredsize, $newdisk);
$disk = $newdisk;

3

$diskArray->[0] = $disk;

$status = $fsconfigurator.CreateFileSystem(

$fsname,
$job, // Job returned if necessary
$fssgoal2, // Filesystem Setting

SMI-S 1.2.0 Revision 6 SNIA Technical Position 143

8.6.2

144

}

Filesystem Manipulation Subprofile

$fs, // Filesystem returned

$diskArray->[], // LogicalDisk to use

NULL // No storagepools

NULL, // No settings to create LDs

NULL, // No size parameters

NULL, // No File server specified for Local Access
NULL, // No local access points provided

NULL // No local access settings

):

//

// not shown:

// 1) Managing the $job if it’s not NULL,

// 2) Looking at the status result to figure out what to do

// 3) Managing any CIM_Errors that get returned asynchronously.
//

return $fs;

Increase the size of a FileSystem

//
//
//
/7
//
//
/7/
/7/
//
/7/
//
//
/7/
//
//
/7/
//
//
//
/7/
//
7/
//
//
//

DESCRIPTION
Goal: Increase the size of a FileSystem

PRE-EXISTING CONDITIONS AND ASSUMPTIONS
1. The ComputerSystem host of the FileSystemConfigurationService
is also the host of the LocalFileSystem being modified.
2. The client does not negotiate to get an acceptable setting but
fails if one is not found
3. Then desiredsize is greater than the current size

FUNCTION CreateFileSystem
This function takes a given LocalFileSystem and a desired
increase In size in bytes and expands the size of the
filesystem by at least the desired size.
INPUT Parameters:
fs: A reference to the LocalFileSystem.
desiredsize: The desired size of the filesystem
OUTPUT Parameters:
job: A reference to a job created by the implementation if this
function will take a long time to complete.
RESULT:
Success or Failure
NOTES
1.

sub IncreaseFileSystemSize(IN REF CIM_FileSystem $fs,

Filesystem Manipulation Subprofile

IN REF uint64 $desiredsize,
OUT CIM_Job $job)

{
//
// Get a client-side copy of the FileSystemSetting
// associated with the CIM_FileSystem (via ElementSettingData
// association) using Getlnstance
//
$settings = Associators($fs,
“CIM_ElementSettingData”,
“CIM_FileSystemSetting”,
“ManagedElement”,
“SettingData”);
if ($settings ->[] == NULL || $settings ->[1.length == 0) {
// No FileSystemSetting found -- error
$job = NULL;
return;
}
// One of the settings must be marked IsCurrent -- if not, there is an error
#i = 0;

$setting = NULL;
while ($settings->[#i] = NULL) {
if ($settings->[#i].IsCurrent) {
$setting = Getlnstance($settings->[#i]);

break;

b

Hi++;
H
if ($setting == NULL) {

$job = NULL;

return;
b

$fssnewgoal = $setting;

// Note that this syntax conflicts with earlier use of funky syntax for
// accessing properties. Also “add” method applied to an array-value
// changes the array in-place

$fssnewgoal .ObjectTypes->[]-add(“Bytes™);

$fssnewgoal .ObjectSizeMin->[].add($desiredsize);

// Get the FileSystemCapabilities element from the hosting NAS Server
//

// a) Get the ActualFileSystemType from the FileSystemSetting

//

$filesystemtype = $fssnewgoal .ActualFileSystemType;

//

SMI-S 1.2.0 Revision 6 SNIA Technical Position 145

Filesystem Manipulation Subprofile

// Get the ComputerSystem for the filesystem (via HostedFileSystem association)
// There should be exactly one.
$system = Associators($fs,

“CIM_HostedFileSystem”,

“CIM_ComputerSystem”,

“PartComponent”,

“GroupComponent”)->[0] ;

//
// Get the FileSystemConfigurationService from the ComputerSystem
// via the HostedService association. There is exactly one,
// but check that one is found.
//
$fsconfigurators->[] = Associators($systenm,
“CIM_HostedService™,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent”);
if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {
// No FileSystemConfigurationService found -- error
$job = NULL;
return;

}

$fsconfigurator = $fsconfigurators->[0];

//

// Find FSCapabilities that supports $filesystemtype

// as the ActualFileSystemType using ElementCapabilities

// association from FSConfigurationService.

//

// There is only one Capability of a particular ActualFileSystemType

$capabilities->[] = Associators($fsconfigurator,
“CIM_ElementCapabilities”,
“CIM_FileSystemCapabilities™,
“ManagedElement”,
“Capabilities™);

it ($capabilities->[] == null || $capabilities->[].length == 0) {

// No Capabilities found -- error
$job = NULL;
return;

}

#j = 0;

while($capability = $capabilities->[#j]) {
if ($capability.ActualFileSystemType == $filesystemtype)
break;
Hy++;

146

Filesystem Manipulation Subprofile

¥

if (#) == S$capabilities->[].length) {
// No Capabilities for this filesystem type was found -- error
$job = NULL;
return;

} else

$capability = $capabilities->[#j];

//

// Call FileSystemCapabilities._GetRequiredStorageSize(NewGoal,
// DesiredUsableCapacity) to find out how large of a

// LogicalDisk is needed

//

// Changed from: $requiredsize =
$capability.GetRequiredStorageSize($fssnewgoal,

$ldsetting = ““;
$requiredsize = GetRequiredStorageSize($capability,
$fssnewgoal,
$ldsetting, // Returns actual setting used
$disksize,
$diskminsize,
$diskmaxsize);

//
// Get Underlying LogicalDisk using ResidesOnExtent association
// There must be exactly one
//
$disk = Associators($fs,
“CIM_ResidesOnExtent™,
“CIM_LogicalDisk”,
“Dependent™,
“Antecedent’)->[0];

//

// 1T disk is not large enough, increase size of underlying SE
//

$job = NULL;

if ($disksize < $disk.BlockSize * $disk.NumberOfBlocks) {
<increase size of logical disk, returning a job in $job if

necessary -- see storage extent recipes>
}
//
// The filesystem itself doesn’t need modification, so we’re done
//

// This is NOT correct. The ModifyFileSystem method must be called
// with the new file system setting so that the filesystem can be
// modified as needed.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 147

Filesystem Manipulation Subprofile

// 1t isn’t clear what the call would be -- probably specify NULL for
// the InExtents parameter and the desiredsize parameter would indicate
// that the filesystem was being resized.

// Operationally, the appended storage space would need to be formatted
// as inodes and their inode numbers would need to be legitimized in

// the filesystem meta-data.

//

// The call would be

// $fsconfigurator._ModifyFileSystem(

// NULL, // Keep the old element name for the Filesystem
// $job, // return Job if created

// $fssgoal, // Goal setting

// $fs, // filesystem

// NULL, // Don’t add any logicaldisks

// NULL, // No storage pools

// NULL, // No LogicalDisk settings

// $disksize, // New LD size

// NULL, // No File server for local access
// NULL, // No Local access point name

// NULL, // No Local access setting

// NULL, // Default in use option

// NULL, // Default wait time

7/)

//

}

8.6.3 Modify a FileSystem’s Settings

//

// DESCRIPTION

// Goal: Modify the settings and other properties of a LocalFileSystem
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of the LocalFileSystem to be modified.
// 2. The client does not negotiate to get an acceptable setting but
// fails if one is not found.

// 3. This recipe only shows how the number of supported objects

// of a particular type is modified. The model can be easily

// extended to other individual properties of the LocalFileSystem.
// 4. The CreateFileSystem method uses an array of property names

// and values and can be useful to show how ModifyFileSystem

// may change many propertynames in a single call at the same time.
//

// FUNCTION ModifyFileSystemObjectLimits

// This function takes a given LocalFileSystem and a specification
// of an object type (file and/or directories) to be supported

// and modifies the Filesystem (increases its size) so that it

// satisfies the newly requested size.

148

Filesystem Manipulation Subprofile

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// objecttype: The object type whose support is being modified
// minobjects: The minimum number of objects of the specified

// type to be supported.
// maxobjects: The maximum number of objects of the specified
// type to be supported.

// expectedobjects: The client’s expectations of the number of
// objects of the specified type to be supported.

// OUTPUT Parameters:

// objecttype: The object type whose support has being modified
// minobjects: The minimum number of objects of the specified

// type that will be supported by the implementation.

// maxobjects: The maximum number of objects of the specified

// type that will be supported by the implementation.

// expectedobjects: The implementation’s expectations of the

// number of objects of the specified type to be supported.
// job: A reference to the job implementing the ModifyFileSystem
// method, if necessary.

// RESULT:

// None

// NOTES

// 1. This recipe does not show how to specify multiple object
// types at the same time.

// 2. This recipe does not show how to change the local access
// setup (add or delete local access).

sub ModifyFileSystemObjectLimits(IN REF CIM_FileSystem $fs,
IN OUT uint64 $objecttype,
IN OUT uint64 $minobjects,
IN OUT uint64 $maxobjects,
IN OUT uint64 $expectedobjects,
OUT REF CIM_Job $job)

//
// Get a client-side copy of the FileSystemSetting
// associated with the CIM_FileSystem (via ElementSettingData
// association) using Getlnstance
//
$settings = Associators($fs,
“CIM_ElementSettingData”,
“CIM_FileSystemSetting”,
“ManagedElement”,
“SettingData™);
if ($settings ->[] == NULL || $settings ->[]1.length == 0) {
// No FileSystemSetting found -- error
$job = NULL;

SMI-S 1.2.0 Revision 6 SNIA Technical Position 149

Filesystem Manipulation Subprofile

return;
3
// One of the settings must be marked IsCurrent -- if not, there is an error
#i = 0;
$setting = NULL;
while ($settings->[#i] = NULL) {
if ($settings->[#i].IsCurrent) {
$setting = Getlnstance($settings->[#i]);

break;

b

#Hit++;
}
if ($setting == NULL) {

$job = NULL;

return;
T

$fssnewgoal = $setting;

// Get the FileSystemCapabilities element from the hosting NAS Server
/7/

// a) Get the ActualFileSystemType from the FileSystemSetting

//

$Filesystemtype = $setting.ActualFileSystemType;

//
// Get the ComputerSystem for the filesystem (via HostedFileSystem association)
// There should be exactly one.
$system = Associators($fs,
“CIM_HostedFileSystem”,
“CIM_ComputerSystem”,
“PartComponent”,
“GroupComponent”)->[0] ;

//
// Get the FileSystemConfigurationService from the ComputerSystem
// via the HostedService association. There is exactly one.
//
$fsconfigurators->[] = Associators($systenm,
“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent”);
it ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {
// No FileSystemConfigurationService found -- error
$job = NULL;
return;

150

Filesystem Manipulation Subprofile

$fsconfigurator = $fsconfigurators->[0];

//
// Find FSCapabilities that supports $filesystemtype
// as the ActualFileSystemType using ElementCapabilities
// association from FSConfigurationService.
//
// There is only one Capability of a particular ActualFileSystemType
$capabilities->[] = Associators($fsconfigurator,
“CIM_ElementCapabilities”,
“CIM_FileSystemCapabilities”,
“ManagedElement”,
“Capabilities™);
if ($capabilities->[] == null || $capabilities->[].length == 0) {
// No Capabilities found -- error
$job = NULL;
return;
}
#j = 0;
while($capability = $capabilities->[#j]1) {
iT ($capability._ActualFileSystemType == $filesystemtype)

break;
#Hj++;
}
if (#) == S$capabilities->[].length) {
$job = NULL;
return;
} else
$capability = $capabilities->[#]j];
//

// Find the index in the object arrays that contains
// the object type of interest
/7/
#i = 0;
while($typ = $fssnewgoal .ObjectTypes->[#i]) {

if ($typ == $objecttype)

{ break; }

#Hi++;
}
//
// if the specified type isn’t there, add it
//
it ($typ = $objecttype) {

$Ffssnewgoal .ObjectTypes->[#i] = $objecttype;
}

SMI-S 1.2.0 Revision 6 SNIA Technical Position 151

152

//

Filesystem Manipulation Subprofile

// modify the other params associated with the object type

/7/

$Ffssnewgoal .NumberOfObjectsMin->[#i] = $minobjects;
$Ffssnewgoal .NumberOfObjectsMax->[#i] = $maxobjects;
$Ffssnewgoal .NumberOfObjects->[#i1] = $expectedobjects;

/7/
//
//
//
/7
//
/7/
//
//

Call FSCSCapabilities.CreateGoalSettings(Goal-N”, Goal-N) to get the next
goal for FSSetting -- iterate until satisfied or give up (beware

infinite loops) Note: we don’t iterate here, just give up.

The function used

is CreateGoal instead of CreateGoalSettings

because the CreateGoalSettings method takes arrays

as parameters and we only want to pass single-entry arrays

The implementation details are left to the client.

CreateGoal ($capability, $fssnewgoal, $fssgoal2);

ifT ($fssgoal2._ActualFileSystemType 1= $filesystemtype) {

}

//
//
//

//
//
//
//

$job = NULL;
return;

Since this may increase the size of the file system it is necessary to

pass In a new extent or a new logical disk or a pool that can provide

the storage.

call ModifyFilesystem (management of $job and any CIM_Error not

shown)

$fsconfigurator _ModifyFileSystem(

NULL,
$job,
$fssgoal2,
$fs,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

)

//
//
//
//
//
//
//
//
//
//
//
//
7/

Keep the old element name for the filesystem
return Job if created

Goal setting

filesystem

Don’t add any logicaldisks

No storage pools

No LogicalDisk settings

No LD sizes

No File server for local access
No Local access point name

No Local access setting

Default in use option

Default wait time

Filesystem Manipulation Subprofile

return $fs;

}

8.6.4 Delete a FileSystem and return underlying StorageExtent

//

// DESCRIPTION

// Goal: Delete a FileSystem and return underlying LogicalDisk

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService
// is also the host of the created LocalFileSystem.

// 2. The fTilesystem is built on a single LogicalDisk

// 3. The LogicalDisk is not automatically returned to a StoragePool

// but is left allocated to the NAS Server and available for use
// by a filesystem client.

// 4. No job is needed

//

// FUNCTION DeleteFileSystem

// This function deletes a given LocalFileSystem and

// returns a reference to the LogicalDisk on which it resided
// INPUT Parameters:

// Ts: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// disk: A reference to the LogicalDisk is returned.

// RESULT:

// Success or Failure

// NOTES

// 1. This recipe does not show how to clean up any local access
// or file shares that may have been set up for accessing the
// filesystem.

// 2. To “wipe” or zero out the filesystem, the client must either
// use client-level operations over a FileSystem or FileShare
// prior to deleting the filesystem, or by vendor-specific

// operations on the LogicalDisk after deleting the filesystem.
//

sub DeleteFileSystem(IN REF CIM_FileSystem $fs, OUT REF CIM_LogicalDisk $disk)
{
//
// Get underlying LogicalDisk using ResidesOnExtent association
// In SMI-S 1.2. we assume that there will be exactly one
//
$disks->[] = Associators($fs,
“CIM_ResidesOnExtent”,
“CIM_LogicalDisk”,
“Dependent”,
“Antecedent”)->[0];
it ($disks->[] == null || $disks->[].length == 0) {

SMI-S 1.2.0 Revision 6 SNIA Technical Position 153

Filesystem Manipulation Subprofile

// No LogicalDisk found -- error
$disk = NULL;
return;

}
$disk = $disks->[0];

//
// Get the NAS Server of the FileSystem using
// a HostedFileSystem association. There should be
// exactly one filesystem host.
$hosts->[] = Associators($fs,
“CIM_HostedFileSystem”,
“CIM_ComputerSystem™,
“Antecedent”,
“Dependent”™);
if ($hosts->[] == null || $hosts->[].length == 0) {
// No ComputerSystem found -- error
$disk = NULL;
return;

3
$hostsystem= $hosts->[0];

//

// Get the FileSystemConfigurationService of the NAS server using

// a HostedService association

//

$fsconfigurators->[] = Associators($hostsystem,
“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent’);

if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

// No FileSystemConfigurationService found -- error
$fs = NULL;
$job = NULL;
return;
¥
$fsconfigurator = $fsconfigurators->[0];
//
// Call DeleteFileSystem(FS) (error checking not shown)
//

$fsconfigurator.DeleteFileSystem($job, $fs);

return;

154

Filesystem Manipulation Subprofile

8.6.5 Make a FileSystem Locally Accessible from a File Server ComputerSystem

//
// DESCRIPTION
// GOAL: Get a LocallyAccessibleFileSystemCapabilities from a

// filesystem host that is dependent on a specific file server
// and supports the properties specified in the array

// parameter $propertynames[]-

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of any LocalFileSystem that will be
// made locally accessible using a capabilities element.
//

// FUNCTION GetLocallyAccessibleFileSystemCapabilities

// This function takes a filesystem host ComputerSystem and
// gets a capabilities element for making a filesystem
// locally accessible on a file server ComputerSystem.
// INPUT Parameters:

// hostsystem: A reference to the ComputerSystem that hosts

// filesystems.
// Tileserver: A reference to the file server ComputerSystem that
// provides local access to filesystems.

// propertynames: An array of property names that the capabilities
// element should support.

// OUTPUT Parameters:

// allcapabilities: An array of references to the capabilities

// for local access on the file server.
// RESULT:

// Success or Failure

// NOTES

// 1.

sub GetLocal lyAccessibleFileSystemCapabilities(
IN REF CIM_ComputerSystem $hostsystem,
IN REF CIM_ComputerSystem $fileserver,
IN String $propertynames[],
OUT REF SNIA_LocallyAccessibleFileSystemCapabilities $allcapabilities[])

//

// Get the FileSystemConfigurationService from the ComputerSystem

// $hostsystem via the HostedService association

//

$Ffsconfigurators->[] = Associators($hostsystem,
“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent™);

SMI-S 1.2.0 Revision 6 SNIA Technical Position 155

156

Filesystem Manipulation Subprofile

#i = 0;
#k = 0; // the index for $allcapabilities.
while ($fsconfigurator = $fsconfigurators->[#i]) {
#Hi++;
//
// Find LocallyAccessibleFileSystemCapabilities that supports the
// file server using ElementCapabilities association from
// FSConfigurationService.
// 1T client does not care about the file server ($fileserver = NULL),
// return all the LocallyAccessibleFileSystemCapabilities that
// are associated to the FileSystemConfigurationService
// There is one and only one LocallyAccessibleFileSystemCapabilities
// for each server+FileSystemConfigurationService pair.
// The SupportedProperties property lists the supported setting
// properties.
//
$capabilities->[] = Associators($fsconfigurator,
“CIM_ElementCapabilities”,

“SNIA_LocallyAccessibleFileSystemCapabilities™,
“ManagedElement”,
“Capabilities™);
// Skip to next if empty
if ($capabilities->[] == NULL |]]|$capabilities->[].length == 0) continue;

#j = 0;
while($capability = $capabilities->[#j]) {
Hj++;

it (propertyname == NULL |] propertyname == “*“ ||
Contains($capability.SupportedProperties, propertyname)) {
// If the server is null then skip the next step
if ($server 1= NULL) {
$capservers[] = Associators($capability,
“SNI1A_ScopedCapability”,
“CIM_ComputerSystem”,
“Dependent”,
“Antecedent”);
if ($capservers == NULL || $capservers->[].length 1= 1 |]
$server 1= $capservers->[0])

continue;
T
$allcapabilities->[#k] = $capability;
#k++;
T
H
b
return;

Filesystem Manipulation Subprofile

8.6.6 Get the Local Access Setting for a FileSystem on a File Server ComputerSystem

//
//
//
//
//
//
//
//
//
//
//
7/
//
//
//
//
//
//
//
//
//
//
//
//
//

DESCRIPTION
GOAL: Get a LocallyAccessibleFileSystemSetting from a
filesystem host that is dependent on a specific file server

PRE-EXISTING CONDITIONS AND ASSUMPTIONS
1. The ComputerSystem host of the FileSystemConfigurationService
will also be the host of any LocalFileSystem that will be
made locally accessible using a capabilities element.

FUNCTION GetLocallyAccessibleFileSystemSetting
This function takes a filesystem host ComputerSystem and
gets a capabilities element for making a filesystem
locally accessible on a file server ComputerSystem.
INPUT Parameters:
filesystem: A reference to the LocalFileSystem that is to
be made locally accessible from a file server.

fileserver: A reference to the file server ComputerSystem that
provides local access to filesystems.
OUTPUT Parameters:
setting: An embedded instance of a LocallyAccessibleFileSystemSetting
that supports making the Ffilesystem locally accessible.
RESULT:
Success or Failure
NOTES
1.

sub GetLocallyAccessibleFileSystemSetting(

IN REF CIM_FileSystem $filesystenm,
IN REF CIM_ComputerSystem $fileserver,
OUT String(“SNIA_LocallyAccessibleFileSystemSetting”) $setting)

// Does this fileserver have local access to this filesystem
// -- 1f not, there is no setting!
$localaccess->[] = ReferenceNames($filesystem,
“SNIA_LocalAccessAvailable”,
“FileSystem™);
if ($localaccess->[] == NULL |] $localaccess->[].length == 0)
return;

//
// Get all the LocallyAccessibleFileSystemSettings
// associated with the CIM_FileSystem (via ElementSettingData
//
$assoc = References($filesystem,
“CIM_ElementSettingData”,
“ManagedElement’);

SMI-S 1.2.0 Revision 6 SNIA Technical Position 157

Filesystem Manipulation Subprofile

if (Bassoc->[]1 == NULL || $assoc->[]-length == 0) {
// This is an ERROR but for now we return with no results

return;

}

#i1 = 0;
while ($assoc->[#i] != NULL) {
if ($assoc->[#i]-1sCurrent) {
// Is this scoped to the fileserver?
$servers = Associators($assoc->[#i].SettingData,
“CIM_ScopedSetting”,
“CIM_ComputerSystem”,
“Dependent”,
“Antecedent”);

iT ($servers->[] '= NULL && $servers->[].length = 0 && $servers->[0]
== $fileserver) {

$setting = Getlnstance($assoc->[#i].SettingData);

return;

b
#Hit++;
b
$setting = NULL;

EXPERIMENTAL

8.6.7 Filesystem Manipulation Supported Capabilities Patterns

Table 66, “Filesystem Manipulation Supported Capabilities Patterns” lists the patterns that are formally recognized
by SMI-S 1.1.0 for determining capabilities of various NAS implementations:

Table 66: Filesystem Manipulation Supported Capabilities Patterns

Supported Supported Supported Tnitial
ActualFileSystem Synchronous Asynchronous Availability
Types Methods Methods
Any none none none
CreateFileSystem,
DeleteFileSystem,
Any ModifyFileSystem, none Any
CreateGoalSettings,
GetRequiredStorageSizes
CreateGoalSettings, CreateF_HeSystem,
Any GetRequiredStorageSizes DeleteFileSystem, Any
ModifyFileSystem

8.7 Registered Name and Version

Filesystem Manipulation version 1.2.0

158

Filesystem Manipulation Subprofile

8.8 CIM Elements

Table 67: CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

SNIA_FileSystemConfigurationService
(8.8.1)

Mandatory

The Filesystem Configuration Service
provides the methods to manipulate file
systems.

CIM_HostedService (8.8.2)

Mandatory

In this subprofile, associates the Filesystem
Configuration Service to the hosting
ComputerSystem. This is expected to be the
top-level ComputerSystem of the parent
Filesystem Profile.

SNIA_FileSystemConfigurationCapabilities
(8.8.3)

Mandatory

This element represents the management
Capabilities of the Filesystem Configuration
Service.

SNIA_ElementCapabilities (FS Configuration
Capabilities) (8.8.4)

Mandatory

In this subprofile, associates the Filesystem
Configuration Service to the Capabilities
element that represents the capabilities that it
supports.

SNIA_FileSystemCapabilities (8.8.5)

Mandatory

This element represents the Capabilities of
the Filesystem Configuration Service for
managing Filesystems. The Service can be
associated with multiple
FileSystemCapabilities elements, one per
ActualFileSystemType property value. For
each value that is in the array property
FileSystenConfigurationCapabilities.Supporte
dActualFileSystemTypes, there will be exactly
one corresponding FileSystemCapabilities
element with the matching
ActualFileSystemType property.

SNIA_ElementCapabilities (At Least One)
(8.8.6)

Mandatory

In this subprofile, associates the Filesystem
Configuration Service to the
FileSystemCapabilities elements that
represent all the types of filesystems that it
can configure.

SNIA_ElementCapabilities (At Least One)
(8.8.7)

Mandatory

This entry represents the single default
FileSystemCapabilities element for the
Filesystem Configuration Service.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

159

Filesystem Manipulation Subprofile

Table 67: CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

SNIA_FileSystemSetting (Pre-defined FS
Settings) (8.8.8)

Optional

This element represents sample configuration
settings usable for creating or modifying a
LocalFileSystem. It represents "pre-defined"
settings supported by the
FileSystemConfigurationService and is
associated with a FileSystemCapabilities
element by a SettingsDefineCapabilities
association. The
FileSystemSetting.ActualFileSystemType
property must specify the same value as the
associated
FileSystemCapabilities.ActualFileSystemType

property.

SNIA_SettingsDefineCapabilities (Pre-
defined FS Settings) (8.8.9)

Optional

These Setting elements provide detailed
information about the FileSystemSettings
supported by the associated
FileSystemCapabilities element.

SNIA_FileSystemSetting (Attached to
FileSystem) (8.8.10)

Optional

This element represents the configuration
settings of a LocalFileSystem. One instance of
this class is created by the CreateFileSystem
extrinsic method when the LocalFileSystem
was created.

This profile does not specify how other
instances of this class might be created.

CIM_ElementSettingData (Attached to
Filesystem) (8.8.11)

Optional

Associates a FileSystemSetting element to a
LocalFileSystem. One of these association
elements is created by CreateFileSystem
when the LocalFileSystem is first created.

The profile does not specify how other
instances of this association may be surfaced
by the implementation.

SNIA_LocalFileSystem (8.8.12)

Mandatory

Represents a LocalFileSystem hosted by and
made available through a ComputerSystem
(usually the top-level ComputerSystem of a
Filesystem Profile).

CIM_HostedFileSystem (8.8.13)

Mandatory

Associates a LocalFileSystem to the
ComputerSystem that hosts it.

CIM_Directory (Root Directory) (8.8.14)

Conditional

Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

The root directory of a LocalFileSystem that is
always present when a FileSystem is created.
This is retained for backward compatibility
with SMI Specification 1.1.

160

Filesystem Manipulation Subprofile

Table 67: CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

CIM_FileStorage (Root Directory) (8.8.15)

Conditional

Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

Associates the root Directory to its parent
LocalFileSystem.

CIM_LogicalFile (Shared Files and
Directories) (8.8.16)

Conditional

Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

A LogicalFile (or Directory subclass) that is
exported as a FileShare is also visible as a
sub-element of the LocalFileSystem.

Maybe this class should be defined only in the
File Export subprofile.

CIM_FileStorage (Shared Files and
Directories) (8.8.17)

Conditional

Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

Associates an exported Logical File or
Directory to the LocalFileSystem that contains
it.

SNIA_LocallyAccessibleFileSystemSetting
(8.8.18)

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true.. This element represents the
configuration settings of a LocalFileSystem
that has a contained file or directory that has
been made locally accessible from a file
server ComputerSystem. This Setting
provides further details on the functionality
supported and the parameters of that
functionality when locally accessible.

CIM_Dependency (Uses Directory Services
From) (8.8.19)

Conditional

Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is
either
Required'or'Optional’.AssociatesaComputerS
ystemthatindicatesadirectoryservicethatsuppo
rtsthedependentLocalFileSystem.’

SNIA_SettingsDefineCapabilities (Pre-
defined Local Access Settings) (8.8.20)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
LocalAccessRequired,Defaulted'or'LocalAcce
ssRequired,NotDefaulted'. TheSettingelement
sthatareassociatedtothisCapabilitieselementar
escopedtotheFileServerComputerSystemthat
providestheoperationalcontextforlocalaccess.'

SMI-S 1.2.0 Revision 6

SNIA Technical Position 161

Filesystem Manipulation Subprofile

Table 67: CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

CIM_ElementCapabilities (Local Access
Configuration Capabilities) (8.8.21)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
LocalAccessRequired,Defaulted'or'LocalAcce
ssRequired,NotDefaulted'.Inthissubprofile,ass
ociatestheFilesystemConfigurationServicetoth
eCapabilitiesinstancethatrepresentsthecapabil
itiesforLocalAccessthatitsupports.'

SNIA_LocallyAccessibleFileSystemCapabilitie
s (8.8.22)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
LocalAccessRequired,Defaulted'or'LocalAcce
ssRequired,NotDefaulted'. Theelementreprese
ntstheLocalAccessconfigurationCapabilitiesoft
heFileSystemConfigurationService.Thisclassp
rovidesaCreateGoalSettingsmethodthatwillret
urnaSNIA_LocallyAccessibleFileSystemSettin
gelementasanEmbedddInstancethatmaybeus
edformakingafilesystemlocallyaccessibletoafil
eserverComputerSystem(bythemethodsCreat
eFileSystemandModifyFileSystem).Sincether
eturnedEmbeddedInstancesettingelementisan
instanceofaScopedSettingclass,itmustbeasso
ciatedwithaComputerSystemviaScopedSettin
gDatawhenitisinstantiated.'

CIM_HostedDependency (Attached to File
System) (8.8.23)

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true.. Associates a Local Access
configuration setting to the file server
ComputerSystem that provides the
operational scope for its functionality.

CIM_HostedDependency (Pre-Defined)
(8.8.24)

Optional

Associates a pre-defined
SNIA_LocallyAccessibleFileSystemSetting to
the file server ComputerSystem that provides
the operational scope for its functionality.

CIM_HostedDependency (Pre-Defined)
(8.8.25)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
LocalAccessRequired,Defaulted'or'LocalAcce
ssRequired,NotDefaulted'.AssociatesalLocalA
ccessCapabilitiestotheFileServerthatprovidest
heoperationalscopeforitsfunctionality.AlloftheS
ettingsassociatedtothereferencedCapabilities
elementmustbescopedbythesameFileServerC
omputerSystem.ThisscopingallowstheCreate
GoalSettingmethodoftheCapabilitieselementto
knowwhichFileServerprovidesthescopeforany
Goalelementthatitcreates.'

162

Filesystem Manipulation Subprofile

Table 67: CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

CIM_ElementSettingData (Local Access Conditional Conditional requirement: Required if

Required) (8.8.26) FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
LocalAccessRequired,Defaulted'or'LocalAcce
ssRequired,NotDefaulted'.Associatesal ocalFi
leSystemandtheLocallyAccessibleFileSystem
Settingelements.’

SNIA_LocalAccessAvailable (8.8.27) Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true.. Associates a LocalFileSystem to a
File Server Computer System that can export
files or directories as shares.

SELECT * FROM CIM_InstCreation WHERE | Optional Experimental CQL - Creation of a

Sourcelnstance ISA SNIA_LocalFileSystem LocalFileSystem element.

SELECT OBJECTPATH(Sourcelnstance)AS Optional Experimental CQL - Deletion of a

FSPath, Sourcelnstance.Name FROM LocalFileSystem element.

CIM_InstDeletion WHERE Sourcelnstance

ISA SNIA_LocalFileSystem

SELECT * FROM CIM_InstModification Optional Experimental CQL - Modification of a

WHERE Sourcelnstance ISA
SNIA_LocalFileSystem

LocalFileSystem element.

8.8.1

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 68 describes class SNIA_FileSystemConfigurationService.

SNIA_FileSystemConfigurationService

Table 68: SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService

Properties Flags Requirement | Description & Notes

ElementName Mandatory A user-friendly name for this Service.

SystemCreationClas Mandatory The CIM Class name of the ComputerSystem hosting the

sName Service.

SystemName Mandatory The Name property of the ComputerSystem hosting the
Service.

CreationClassName Mandatory The CIM Class name of the Service.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

163

Filesystem Manipulation Subprofile

Table 68: SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService

Properties Flags Requirement | Description & Notes

Name Mandatory The unique name of the Service.

CreateFileSystem() Mandatory Creates a LocalFileSystem as specified by parameters and
Capabilities of the service and returns a reference to it. If
appropriate and supported, a Job may be created and a
reference to the Job will be returned.

ModifyFileSystem() Optional Modifies a LocalFileSystem indicated by a reference and
as specified by referenceparameters and Capabilities of the
service. If appropriate and supported, a Job may be
created and a reference to the Job will be returned.

DeleteFileSystem() Mandatory Deletes a LocalFileSystem indicated by reference. If

appropriate and supported, a Job may be created and a
reference to the Job will be returned.

8.8.2 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 69 describes class CIM_HostedService.

Table 69: SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement | Description & Notes
Dependent Mandatory The Filesystem Configuration Service.
Antecedent Mandatory The hosting ComputerSystem.

8.8.3 SNIA_FileSystemConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

164

Filesystem Manipulation Subprofile

Table 70 describes class SNIA_FileSystemConfigurationCapabilities.

Table 70: SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for this element representing the
capabilities of a Filesystem Configuration Service.

ElementName

Mandatory

A user-friendly name for this Capabilities element.

SupportedActualFile
SystemTypes

Mandatory

The Service can be associated with multiple Capabilities
elements, one per ActualFileSystemType property value.
This property lists all of the supported
ActualFileSystemTypes. Each entry in this array must have
exactly one corresponding FileSystemCapabilties element
with that entry as the value of the ActualFileSystemType

property.

SupportedSynchrono
usMethods

Mandatory

The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called
synchronously. Note: A supported method shall be listed in
this property or in the SupportedAsynchronousMethods
property or both.

SupportedAsynchron
ousMethods

Mandatory

The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called
asynchronously. Note: A supported method shall be listed
in this property or in the SupportedSynchronousMethods
property or both.

InitialAvailability

Mandatory

This property represents the state of availability of a
LocalFileSystem on initial creation using the
FileSystemConfigurationService associated with this
Capabilities element.

LocalAccessibilitySu
pport

Optional

This specifies whether a LocalFileSystem created or
modified by this FileSystemConfigurationService needs to
be made locally accessible at a local access point before a
file server ComputerSystem can make it available to
operational clients or for export as a share. This is typical of
some NAS and filesystem implementations. If not specified,
the default is "Local Access Not Required"”.

SMI-S 1.2.0 Revision 6

SNIA Technical Position 165

Filesystem Manipulation Subprofile

Table 70: SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties

Flags

Requirement

Description & Notes

BlockStorageCreatio
nSupport

Optional

BlockStorageCreationSupport is an ordered array of
enumerated values that place a number of restrictions on
the use of parameters for CreateFileSystem and
ModifyFileSystem.

1. The first entry is an enumerated value that specifies if an
already existing LogicalDIsk may be used -- this is either
required, optional, or not allowed. "Not Allowed" indicates
that the Pools and ExtentSettings parameters must be used
to create LogicalDisk(s) for this file system and the
InExtents parameter must be NULL. "Optional” indicates
that either the Pools and ExtentSettings parameters or the
InExtents parameter should be specified, but not both.
"Required" indicates that the InExtents parameter may be
specified and the Pools and ExtentSettings parameters
must be NULL.

2. (optional) An integer that specifies an upper limit to the
number of StorageElements that can be specified, either as
InExtents parameters or as Pools and ExtentSettings.

3. (optional) An integer that specifies the number of distinct
pools that the Pools parameters can specify -- zero, if Pools
is not supported or if there is no limit, and a specific number
if there is a limit. In practice we expect that the value will be
either zero or one.

4. (optional) A boolean value, represented by '0' for false
and '1' for true, that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating
that a default setting is to be used).

166

Filesystem Manipulation Subprofile

Table 70: SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties

Flags

Requirement

Description & Notes

DirectoryServerPara
meterSupported

Optional

This enumeration indicates support for the DirectoryServer
parameter to the extrinsic method
FileSystemConfigurationService.CreateFileSystem(). The
options are:

'‘Not Used' indicates that the filesystem does not support
security principal information associated with filesystem
objects. The LocalFileSystem will not be associated to a
DirectoryServer.

'Supported' indicates that the filesystem supports security
principal information associated with filesystem objects.
The LocalFileSystem will be associated to a directory
server ComputerSystem. And the DirectoryServer
parameter of CreateFileSystem is required. If it is not
specified, it will be defaulted to the FileServer parameter in
the same call. If the FileServer parameter is also not
specified, the DirectoryServer parameter will be defaulted
to the host of the FileSystemConfigurationService.

'‘Supported, Defaulted to FileServer' indicates that the
filesystem supports security principal information
associated with filesystem objects. The LocalFileSystem
will be associated to a directory server ComputerSystem.
The DirectoryServer parameter of CreateFileSystem is
NOT supported, but is automatically defaulted to the
FileServer parameter of the same call. If the FileServer
parameter is not specified, the DirectoryServer parameter
will be defaulted to the host of the
FileSystemConfigurationService.

'‘Supported, Defaulted to FileSystem host' indicates that
the filesystem supports security principal information
associated with filesystem objects. The LocalFileSystem
will be associated to a directory server ComputerSystem.
The DirectoryServer parameter of CreateFileSystem is
NOT supported, but is automatically defaulted to the host of
the FileSystem created by CreateFileSystem().

8.8.4 SNIA_ElementCapabilities (FS Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

SMI-S 1.2.0 Revision 6

SNIA Technical Position 167

Filesystem Manipulation Subprofile

Table 71 describes class SNIA_ElementCapabilities (FS Configuration Capabilities).

Table 71: SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FS Configuration

Capabilities)
Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The Filesystem Configuration Service
Capabilities Mandatory The Filesystem Configuration Capabilties element

8.8.5 SNIA_FileSystemCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 72 describes class SNIA_FileSystemCapabilities.

Table 72: SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the FileSystemCapabilities
element of a Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

ActualFileSystemTyp Mandatory This identifies the type of filesystem that this

e FileSystemCapabilities represents.

SupportedProperties Mandatory This is the list of configuration properties (of

FileSystemSetting) that are supported for specification at
creation time by this FileSystemCapabilities element.

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a set of
FileSystemSettings that is a supported variant of an array
of FileSystemSettings passed in as an embedded IN
parameter. The method returns the supported
FileSystemSetting in an array of embedded OUT
parameters. This profile only supports arrays with a single

entry.
GetRequiredStorage Optional This extrinsic method supports determining the storage
Size() space requirements for a filesystem specified by the

combination of a FileSystemSetting and a StorageSetting.
The StorageSetting specifies the required redundancy,
multiple Logical Disk usage, and other storage mapping
considerations, while the FileSystemSetting transforms
client quality-of-service specifications to storage resource
requirements.

168

Filesystem Manipulation Subprofile

8.8.6 SNIA_ElementCapabilities (At Least One)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 73 describes class SNIA_ElementCapabilities (At Least One).

Table 73: SMI Referenced Properties/Methods for SNIA_ElementCapabilities (At Least One)

Properties Flags Requirement | Description & Notes
Capabilities Mandatory
ManagedElement Mandatory

8.8.7 SNIA_ElementCapabilities (At Least One)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 74 describes class SNIA_ElementCapabilities (At Least One).

Table 74: SMI Referenced Properties/Methods for SNIA_ElementCapabilities (At Least One)

Properties Flags Requirement | Description & Notes
Characteristics Optional

Capabilities Mandatory

ManagedElement Mandatory

8.8.8 SNIA_FileSystemSetting (Pre-defined FS Settings)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Optional

SMI-S 1.2.0 Revision 6 SNIA Technical Position 169

Filesystem Manipulation Subprofile

Table 75 describes class SNIA_FileSystemSetting (Pre-defined FS Settings).

Table 75: SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Pre-defined FS Set-

tings)

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for this FileSystemSetting element.

ElementName

Mandatory

A provider supplied user-friendly name for this
FileSystemSetting element.

ActualFileSystemTyp
e

Mandatory

This identifies the type of filesystem that this
FileSystemSetting represents. It shall match the
corresponding property of FileSystemCapabilities.

DataExtentsSharing

Optional

This allows the creation of data blocks (or storage extents)
that are shared between files.

CopyTarget

Optional

This specifies if support should be provided for using the
created filesystem as a target of a Copy operation.

FilenameCaseAttribu
tes

Mandatory

This specifies the support provided for using upper and
lower case characters in a filename.

ObjectTypes

Mandatory

This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin

Optional

This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes]] that will be supportable by a
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMa
X

Optional

This is an array that specifies the maximum number of
objects of the type specified by the corresponding entry in
ObjectTypes]] that can be supported by a LocalFileSystem
configured by this FileSystemSetting element.

NumberOfObjects

Optional

This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes]].

ObjectSize

Optional

This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes]].

ObjectSizeMin

Optional

This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes]] that will be supportable by a
LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax

Optional

This is an array that specifies the maximum size of an
object of the type specified by the corresponding entry in
ObjectTypes][] that can be supported by a LocalFileSystem
configured by this FileSystemSetting element.

170

Filesystem Manipulation Subprofile

Table 75: SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Pre-defined FS Set-

tings)

Properties Flags Requirement | Description & Notes

FilenameStreamFor Optional This is an array that specifies the stream formats (e.g.,

mats UTF-8) supported for filenames by a filesystem with this
setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by a filesystem with this
setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported
by a filesystem with this setting.

FilenameReservedC Optional This string or character array specifies the characters

haracterSet reserved (i.e., not allowed) for use in filenames that will be
required by a filesystem with this setting.

SupportedLockingSe Optional This array specifies the set of file access/locking semantics

mantics supported by a filesystem with this setting.

SupportedAuthorizati Optional This array specifies the kind of file authorization protocols

onProtocols supported by a filesystem with this setting.

SupportedAuthentica Optional This array specifies the kind of file authentication protocols

tionProtocols

supported by a filesystem with this setting.

8.8.9 SNIA_SettingsDefineCapabilities (Pre-defined FS Settings)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Optional

Table 76 describes class SNIA_SettingsDefineCapabilities (Pre-defined FS Settings).

Table 76: SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined
FS Settings)

Properties

Flags

Requirement

Description & Notes

PropertyPolicy

Mandatory

PropertyPolicy defines whether or not the non-null, non-
key properties of the associated FileSystemSetting element
are treated independently or as a correlated set.

ValueRole

Mandatory

ValueRole is an array that further specifies the semantics
of the non-null, non-key properties of the associated
FileSystemSetting element, such as whether they are
supported or unsupported, and if supported, whether they
are a default and/or an optimal value or an average of
some kind.

SMI-S 1.2.0 Revision 6

SNIA Technical Position 171

Filesystem Manipulation Subprofile

Table 76: SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined
FS Settings)

Properties

Flags

Requirement

Description & Notes

ValueRange

Mandatory

ValueRange is an array that further specifies the semantics
of the non-null, non-key properties of the associated
FileSystemSetting element, such as whether they are point
properties, or whether they represent maximum or
minimum values for the properties. If some properties
already have maximums and/or minimums specified by
another FileSystemSetting instance, this could specify
increments of the property value that are supported.

GroupComponent

Mandatory

A Filesystem Capabilities element that is defined by a
collection of Filesystem Settings.

PartComponent

Mandatory

A Filesystem Setting that provides a point or a partial
definition for a Filesystem Capabilities element.

8.8.10 SNIA_FileSystemSetting (Attached to FileSystem)

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: Optional

Table 77 describes class SNIA_FileSystemSetting (Attached to FileSystem).

Table 77: SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSys-

tem)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for a FileSystemSetting element.

ElementName Mandatory A client defined user-friendly name for this
FileSystemSetting element.

ActualFileSystemTyp Mandatory This identifies the type of filesystem that this

e FileSystemSetting represents.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents)
that are shared between files.

CopyTarget Optional This specifies if support should be provided for using the
created filesystem as a target of a Copy operation.

FilenameCaseAttribu Mandatory This specifies the support provided for using upper and

tes

lower case characters in a filename.

172

Filesystem Manipulation Subprofile

Table 77: SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSys-

tem)

Properties

Flags

Requirement

Description & Notes

ObjectTypes

Mandatory

This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin

Optional

This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes]] that will be supportable by the
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMa
X

Optional

This is an array that specifies the maximum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjects

Optional

This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes]].

ObjectSize

Optional

This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes]].

ObjectSizeMin

Optional

This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes][] that will be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax

Optional

This is an array that specifies the maximum size of an
object of the type specified by the corresponding entry in
ObjectTypes]] that can be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

FilenameStreamFor
mats

Optional

This is an array that specifies the stream formats (e.g.,
UTF-8) supported for filenames by the LocalFileSystem
configured by this FileSystemSetting element.

FilenameFormats

Optional

This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by the LocalFileSystem
configured by this FileSystemSetting element.

FilenameLengthMax

Optional

This specifies the maximum length of a filename that will
be supported by the FileSystem configured by this
FileSystemSetting element.

FilenameReservedC
haracterSet

Optional

This string or character array specifies the characters
reserved (i.e., not allowed) for use in filenames that will be
required by the FileSystem configured by this
FileSystemSetting element.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

173

Filesystem Manipulation Subprofile

Table 77: SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSys-

tem)
Properties Flags Requirement | Description & Notes
SupportedLockingSe Optional This array specifies the set of file access/locking semantics
mantics supported by the FileSystem configured by this
FileSystemSetting element.
SupportedAuthorizati Optional This array specifies the kind of file authorization protocols
onProtocols supported by the FileSystem configured by this
FileSystemSetting element.
SupportedAuthentica Optional This array specifies the set of file authentication protocols
tionProtocols that can be supported by the FileSystem configured by this

FileSystemSetting element.

8.8.11 CIM_ElementSettingData (Attached to Filesystem)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: Optional

Table 78 describes class CIM_ElementSettingData (Attached to Filesystem).

Table 78: SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesys-

tem)
Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The LocalFileSystem element representing a filesystem.
SettingData Mandatory The configuration of the LocalFileSystem.

8.8.12 SNIA_LocalFileSystem

The following properties of LocalFileSystem are defined by the MOF, but the way we model LocalFileSystem has
changed significantly. The setting/configuration properties are not supported using these properties, and so all of
these are "Not Supported". The run-time properties will be supported by a statistics/performance profile and that
has yet to be defined.

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: Mandatory

174

Filesystem Manipulation Subprofile

Table 79 describes class SNIA_LocalFileSystem.

Table 79: SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties

Flags

Requirement

Description & Notes

LocalAccessDefinitio
nRequired

Mandatory

This boolean property indicates whether or not a
LocalFileSystem with this FileSystemSetting must be made
locally accessible ("mounted") from a file server
ComputerSystem before it can be shared or otherwise
made available to operational clients.

PathNameSeparator
String

Mandatory

This indicates the string of characters used to separate
directory components of a canonically formatted path to a
file from the root of the filesystem. This string is expected to
be specific to the ActualFileSystemType and so is vendor/
implementation dependent. However, by surfacing it we
make it possible for a client to parse a pathname into the
hierarchical sequence of directories that compose it.

DirectoryServiceUsa
ge

Optional

This enumeration indicates whether the filesystem
supports security principal information and therefore
requires support from a file server that uses one or more
directory services. If the filesystem requires such support,
there must be a concrete subclass of Dependency between
the LocalFileSystem element and the specified file server
ComputerSystem. The values supported by this property
are:

‘Not Used' indicates that the filesystem will not support
security principal information and so will not require support
from a directory service.

'‘Optional’ indicates that the filesystem may support
security principal information. If it does, it will require
support from a directory service and the Dependency
association described above must exist.

'Required' indicates that the filesystem supports security
principal information and will require support from a
directory service. The Dependency association described
above must exist.

CSCreationClassNa
me

Mandatory

The CIM class name of the hosting ComputerSystem.

CSName

Mandatory

The Name property of the hosting ComputerSystem.

CreationClassName

Mandatory

The CIM class name of the this element.

Name

Mandatory

A unique name for this LocalFileSystem in the context of
the hosting ComputerSystem.

EnabledState

Optional

Current state of enablement of the LocalFileSystem.

OtherEnabledState

Optional

Vendor-specific state of the LocalFileSystem indicated by
EnabledState = 1("Other").

SMI-S 1.2.0 Revision 6

SNIA Technical Position 175

Filesystem Manipulation Subprofile

Table 79: SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement | Description & Notes

TimeOfLastStateCha Optional A timestamp indicating when the state was last changed.

nge

RequestedState Optional Not supported.

OperationalStatus Mandatory The current operational status of the LocalFileSystem.

Root Optional A path that specifies the "mount point" of the filesystem in
an unitary computer system that is both the host of the file
system and is the file server that makes it available.

BlockSize Mandatory The size of a block in bytes that the implementation used
as a fixed block size when creating this filesystem.

FileSystemSize Mandatory The total current size of the filesystem in blocks.

AvailableSpace Mandatory The space available currently in the filesystem in blocks.

ReadOnly Optional Indicates that this is a read-only filesystem that does not
allow modifications.

EncryptionMethod Optional Indicates if files are encrypted and the method of
encryption.

CompressionMethod Optional Indicates if files are compressed before being stored, and
the methods of compression..

CaseSensitive Optional Whether this filesystem is sensitive to the case of
characters in filenames.

CasePreserved Optional Whether this filesystem preserves the case of characters
in flenames when saving and restoring.

CodeSet Optional The codeset used in filenames.

MaxFileNameLength Optional The length of the longest filename supported by the
implementation.

ClusterSize Optional Not supported.

FileSystemType Optional This is a string that matches
FileSystemSetting.ActualFileSystemType property used to
create the filesystem.

Pragmatically, this property should be ignored.

NumberOfFiles Optional The actual current number of files in the filesystem. NOTE:
This value is an approximation as it can vary continuously
when the filesystem is in use.

IsFixedSize Optional Indicates that the filesystem cannot be expanded or shrunk.

Resizelncrement Optional The size by which to increase the size of the filesystem
when requested.

RequestStateChange Optional Not supported.

0

176

Filesystem Manipulation Subprofile

8.8.13 CIM_HostedFileSystem

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: Mandatory

Table 80 describes class CIM_HostedFileSystem.

Table 80: SMI Referenced Properties/Methods for CIM_HostedFileSystem

Properties Flags Requirement | Description & Notes

GroupComponent Mandatory The ComputerSystem that hosts a LocalFileSystem. The
Dedicated property must be one of 24 (NAS Head), 25 (SC
NAS), 16 (File Server).

PartComponent Mandatory The hosted filesystem.

8.8.14 CIM_Directory (Root Directory)

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem or ModifyFileSystem

Class Mandatory: BC1.1

8.8.15 CIM_FileStorage (Root Directory)

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem or ModifyFileSystem

Class Mandatory: BC1.1

Table 81 describes class CIM_FileStorage (Root Directory).

Table 81: SMI Referenced Properties/Methods for CIM_FileStorage (Root Directory)

Properties Flags Requirement

Description & Notes

GroupComponent Mandatory

The LocalFileSystem that contains the associated root
Directory.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 177

Filesystem Manipulation Subprofile

Table 81: SMI Referenced Properties/Methods for CIM_FileStorage (Root Directory)

Properties Flags Requirement | Description & Notes

PartComponent Mandatory The Root Directory of the LocalFileSystem.

8.8.16 CIM_LogicalFile (Shared Files and Directories)

Created By: Extrinsic: CreateExportedShare or ModifyExportedShare
Modified By: Extrinsic: CreateExportedShare or ModifyExportedShare
Deleted By: Extrinsic: DeleteExportedShare or ModifyExportedShare

Class Mandatory: BC1.1

Table 82 describes class CIM_LogicalFile (Shared Files and Directories).

Table 82: SMI Referenced Properties/Methods for CIM_LogicalFile (Shared Files and Directories)

Properties Flags Requirement | Description & Notes

CSCreationClassNa Mandatory CIM Class Name of the ComputerSystem that hosts the

me Filesystem containing this file.

CSName Mandatory Name property of the ComputerSystem that hosts the
Filesystem of this file.

FSCreationClassNa Mandatory CIM Class Name of the LocalFileSystem on the

me ComputerSystem that contains this file.

FSName Mandatory Name of the LocalFileSystem that contains this file.

CreationClassName Mandatory CIM Class of this instance of LogicalFile.

Name Mandatory The unigue Name of this LogicalFile, weak with respect to a

containing Directory.

ElementName Mandatory The pathname from the root of the containing
LocalFileSystem to this LogicalFile. The root of the
LocalFileSystem is indicated if this is NULL or the empty
string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of
directories from the root, the separator string is specified by
the SNIA_LocalFileSystem.PathNameSeparatorString

property.
FileSize Optional The size of the file, in bytes.
CreationDate Optional A timestamp indicating when the file was created.
LastModified Optional A timestamp indicating when the file was last modified.

8.8.17 CIM_FileStorage (Shared Files and Directories)

178

Filesystem Manipulation Subprofile

Created By: Extrinsic: CreateExportedShare or ModifyExportedShare

Modified By: Static

Deleted By: Extrinsic: DeleteExportedShare or ModifyExportedShare

Class Mandatory: BC1.1

Table 83 describes class CIM_FileStorage (Shared Files and Directories).

Table 83: SMI Referenced Properties/Methods for CIM_FileStorage (Shared Files and Directories)

Properties Flags Requirement | Description & Notes

GroupComponent Mandatory The LocalFileSystem that contains the LogicalFile or
Directory.

PartComponent Mandatory An exported File or Directory of the LocalFileSystem.

8.8.18 SNIA_LocallyAccessibleFileSystemSetting

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem or ModifyFileSystem

Class Mandatory: LocalAccessDefinitionRequired

Table 84 describes class SNIA_LocallyAccessibleFileSystemSetting.

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for a
LocallyAccessibleFileSystemSetting.

ElementName Mandatory A user-friendly name for this
LocallyAccessibleFileSystemSetting element.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 179

Filesystem Manipulation Subprofile

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

InitialEnabledState

Optional

InitialEnabledState is an integer enumeration that indicates
the enabled/disabled states initially set for a locally
accessible file system (LAFS). The element functions by
passing commands onto the underlying filesystem, and so
cannot indicate transitions between requested states
because those states cannot be requested. The following
text briefly summarizes the various enabled/disabled initial
states:

'‘Enabled’ (2) indicates that the element will execute
commands, will process any queued commands, and will
gueue new requests.

'Disabled’ (3) indicates that the element will not execute
commands and will drop any new requests.

'In Test' (7) indicates that the element will be in a test state.

'‘Deferred’ (8) indicates that the element will not process
any commands but will queue new requests.

'‘Quiesce’ (9) indicates that the element is enabled but in a
restricted mode. The element's behavior is similar to the
Enabled state, but it only processes a restricted set of
commands. All other requests are queued.

OtherEnabledState

Optional

A string describing the element's initial enabled/disabled
state when the InitialEnabledState property is setto 1
("Other"). This property MUST be set to NULL when
InitialEnabledState is any value other than 1.

FailurePolicy

Optional

An enumerated value that specifies if the operation to
make a FileSystem locally accessible to a scoping
ComputerSystem should be attempted one or more times
in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by
the corresponding RetriesMax property of the setting.

RetriesMax

Optional

An integer specifying the maximum number of attempts
that should be made by the scoping ComputerSystem to
make a Filesystem locally accessible. A value of "0"
specifies an implementation-specific default.

RequestRetryPolicy

Optional

An enumerated value representing the policy that is
supported by the operational file server on a request to the
operational file system that either failed or left the file server
hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout
happens, or, to try repeatedly. If the request can be
performed in the background, the request will be tried
repeatedly until stopped.

180

Filesystem Manipulation Subprofile

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

TransmissionRetries
Max

Optional

An integer specifying the maximum number of
retransmission attempts to be made from the operational
file server to the operational file system when the
transmission of a request fails or makes the file server
hang. A value of "0" specifies an implementation-specific
default. This is only relevant if there is a transmission
channel between the file server and the underlying file
system.

RetransmissionTime
outMin

Optional

An integer specifying the minimum number of milliseconds
that the operational file server must wait before assuming
that a request to the operational file system has failed. "0"
indicates an implementation-specific default. This is only
relevant if there is a transmission channel between the
operational file server and the operational file system.

CachingOptions

Optional

An enumerated value that specifies if a local cache is
supported by the operational file server when accessing the
underlying operational file system.

BuffersSupport

Optional

An array or enumerated values that specifies the buffering
mechanisms supported by the operational file server for
accessing the underlying operational file system." If
supported, other properties will establish the level of
support. If the property is NULL or the empty array,
buffering is not supported.

ReadBufferSizeMin

Optional

An integer specifying the minimum number of bytes that
must be allocated to each buffer used for reading. A value
of "0" specifies an implementation-specific default.

ReadBufferSizeMax

Optional

An integer specifying the maximum number of bytes that
may be allocated to each buffer used for reading. A value of
"0" specifies an implementation-specific default.

WriteBufferSizeMin

Optional

An integer specifying the minimum number of bytes that
must be allocated to each buffer used for writing. A value of
"0" specifies an implementation-specific default.

WriteBufferSizeMax

Optional

An integer specifying the maximum number of bytes that
may be allocated to each buffer used for writing. A value of
"0" specifies an implementation-specific default.

SMI-S 1.2.0 Revision 6

SNIA Technical Position 181

Filesystem Manipulation Subprofile

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

AttributeCaching

Optional

An array of enumerated values that specify whether
attribute caching is (or is not) supported by the operational
file server when accessing specific types of objects from
the underlying operational file system. The object type and
the support parameters are specified in the corresponding
AttributeCachingObijects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

Filesystem object types that can be accessed locally are
represented by an entry in these arrays. The entry in the
AttributeCaching array can be "On", "Off", or "Unknown".
Implementation of this feature requires support from other
system components, so it is quite possible that specifying
"On" may still not result in caching behavior. "Unknown"
indicates that the access operation will try to work with
whatever options the operational file server and file system
can support. In all cases, AttributeCachingTimeMin and
AttributeCachingTimeMax provide the minimum and
maximum time for which the attributes can be cached.
When this Setting is used as a Goal, the client may specify
"Unknown", but the Setting in the created object should
contain the supported setting, whether "On" or "Off".

AttributeCachingObje
cts

Optional

An array of enumerated values that specify the attribute
caching support provided to various object types by the
operational file server when accessing the underlying
operational file system. These", types represent the types
of objects stored in a FileSystem -- files and directories as
well as others that may be defined in the future. The
corresponding properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object.
"None" and "All" cannot both be specified; if either one is
specified, it must be the first entry in the array and the entry
is interpreted as the default setting for all objects. If neither
"None" or "All" are specified, the caching settings for other
objects are defaulted by the implementation. If "Rest" is
specified, the entry applies to all known object types other
than the named ones. If "Unknown" is specified it applies to
object types not known to this application (this can happen
when foreign file systems are mounted.

AttributeCachingTime
Min

Optional

An array of integers specifying, in milliseconds, the
minimum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of "0" indicates an implementation-specific default.

AttributeCachingTime
Max

Optional

An array of integers specifying, in milliseconds, the
maximum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of "0" indicates an implementation-specific default.

182

Filesystem Manipulation Subprofile

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

ReadWritePolicy

Optional

An enumerated value that specifies the Read-Write policy
set on the operational file system and supported by the
operational file server when accessing it. '‘Read Only'
specifies that the access to the operational file system by
the operational file server is set up solely for reading.
'Read/Write' specifies that the access to the operational file
system by the operational file server is set up for both
reading and writing. 'Force Read/Write' specifies that
'Read-Only' has been overridden by a client with write
access to the operational file system. This option is
intended for use when the associated FileSystem has been
made 'Read Only' by default, as might happen if it were
created to be the target of a Synchronization or Mirror
operation.

LockPolicy

Optional

An enumerated value that specifies the Locking that will be
enforced on the operational file system by the operational
file server when accessing it. 'Enforce None' does not
enforce locks. 'Enforce Write' does not allow writes to
locked files. 'Enforce Read/Write' does not allow reads or
writes to locked files.

EnableOnSystemStar
t

Optional

An enumerated value that specifies if local access from the
operational file server to the operational file system should
be enabled when the file server is started.

ReadWritePref

Optional

An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about access to
elements contained in the operational file system. The
provider is expected to surface this access using the CIM
privilege model.

ExecutePref

Optional

An enumerated value that specifies if support should be
provided on the operational file server for executing
elements contained in the operational file system accessed
through this local access point. This may require setting up
specialized paging or execution buffers either on the
operational file server or on the operational file system side
(as appropriate for the implementation). Note that this does
not provide any rights to actually execute any element but
only specifies support for such execution, if permitted.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

183

Filesystem Manipulation Subprofile

Table 84: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

RootAccessPref

Optional

An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about privileged access
by appropriately privileged System Administrative users on
the operational file server ("root" or "superuser") to the
operational file system and its elements. The provider is
expected to surface this access using the CIM privilege
model.

Support for the privileged access might require setup at
both the operational file server as well as the operational
file system, so there is no guarantee that the request can
be satisfied.

8.8.19 CIM_Dependency (Uses Directory Services From)

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: DirectoryServiceUsage

Table 85 describes class CIM_Dependency (Uses Directory Services From).

Table 85: SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services

From)

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s)
that support user, group and other security principal
identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other

security principal identities is supported by the antecedent
ComputerSystem.

8.8.20 SNIA_SettingsDefineCapabilities (Pre-defined Local Access Settings)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: LocalAccessSupported

184

Filesystem Manipulation Subprofile

Table 86 describes class SNIA_SettingsDefineCapabilities (Pre-defined Local Access Settings).

Table 86: SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined
Local Access Settings)

Properties

Flags

Requirement

Description & Notes

PropertyPolicy

Mandatory

PropertyPolicy defines whether or not the non-null, non-
key properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance are
treated independently or as a correlated set.

ValueRole

Mandatory

ValueRole is an array that further specifies the semantics
of the non-null, non-key properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are supported or unsupported, and if
supported, whether they are a default and/or an optimal
value or an average of some kind.

ValueRange

Mandatory

ValueRange is an array that further specifies the semantics
of the non-null, non-key properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are point properties, or whether they
represent maximum or minimum values for the properties.
If some properties already have maximums and/or
minimums specified by another
SNIA_LocallyAccessibleFileSystemSetting instance, this
could specify increments of the property value that are
supported.

GroupComponent

Mandatory

A Capabilities element of the filesystem that is defined by a
collection of SNIA_LocallyAccessibleFileSystemSetting
elements, each being scoped to the File Server
ComputerSystem with which it can be used.

PartComponent

Mandatory

A SNIA_LocallyAccessibleFileSystemSetting that provides
a point or a partial definition for a
SNIA_LocallyAccessibleFileSystemCapabilities element.

8.8.21 CIM_ElementCapabilities (Local Access Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: LocalAccessSupported

SMI-S 1.2.0 Revision 6

SNIA Technical Position 185

Filesystem Manipulation Subprofile

Table 87 describes class CIM_ElementCapabilities (Local Access Configuration Capabilities).

Table 87: SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Con-
figuration Capabilities)

Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The Filesystem Configuration Service
Capabilities Mandatory The Filesystem Configuration Capabilties element

8.8.22 SNIA_LocallyAccessibleFileSystemCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: LocalAccessSupported

Table 88 describes class SNIA _LocallyAccessibleFileSystemCapabilities.

Table 88: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the
SNIA_LocallyAccessibleFileSystemCapabilities associated
to a Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this

SNIA_LocallyAccessibleFileSystemCapabilities element.

186

Filesystem Manipulation Subprofile

Table 88: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement | Description & Notes

SupportedProperties Mandatory An array of property names of the
LocallyAccessibleFileSystemSetting that this
SNIA_LocallyAccessibleFileSystemCapabilities element
supports.

2 'FailurePolicy'

3 'RetriesMax’

4 'InitialEnabledState’

5 'RequestRetryPolicy’

6 ‘TransmissionRetriesMax'
7 'RetransmissionTimeout'
8 'CachingOptions'

9 'ReadBufferSize'

10 'WriteBufferSize'

11 'AttributeCaching’

12 'ReadWritePolicy'

13 'LockPolicy'

14 'EnableOnSystemStart'
15 'ReadWritePref'

16 'ExecutePref'

17 'RootAccessPref'

SMI-S 1.2.0 Revision 6 SNIA Technical Position 187

Filesystem Manipulation Subprofile

Table 88: SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement | Description & Notes
SupportedObjectsFor Optional If AttributeCaching is supported, this specifies the array of
AttributeCaching objects that can be set up for caching. A subset of these

entries will become the entries of the
AttributeCachingObjects property in the Setting.

These classes represent types of objects stored in a
filesystem implementation -- files and directories as well as
others that may be defined in the future. The corresponding
Setting properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object. 'None'
and 'All' cannot both be specified; if either one is specified,
it must be the first entry in the array and the entry is
interpreted as the default setting for all objects. If neither
'None' or 'All' are specified, the caching settings for other
objects are defaulted by the implementation. If 'Rest' is
specified, the entry applies to all known object types other
than the named ones. If 'Unknown' is specified it applies to
object types not known to this application (this can happen
when foreign file systems are mounted.

0 'Unknown’
1 'None'

2 All

3 'Rest’

4 'File'

5 'Directory"'

8.8.23 CIM_HostedDependency (Attached to File System)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: LocalAccessDefinitionRequired

Table 89 describes class CIM_HostedDependency (Attached to File System).

Table 89: SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File Sys-

tem)
Properties Flags Requirement | Description & Notes
Antecedent Mandatory The Scoping File Server ComputerSystem.

188

Filesystem Manipulation Subprofile

Table 89: SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File Sys-

tem)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

8.8.24 CIM_HostedDependency (Pre-Defined)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Optional

Table 90 describes class CIM_HostedDependency (Pre-Defined).

Table 90: SMI Referenced Properties/Methods for CIM_HostedDependency (Pre-Defined)

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

8.8.25 CIM_HostedDependency (Pre-Defined)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: LocalAccessSupported

Table 91 describes class CIM_HostedDependency (Pre-Defined).

Table 91: SMI Referenced Properties/Methods for CIM_HostedDependency (Pre-Defined)

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The SNIA_LocallyAccessibleFileSystemCapabilities that is
scoped by the file server ComputerSystem.

8.8.26 CIM_ElementSettingData (Local Access Required)

SMI-S 1.2.0 Revision 6 SNIA Technical Position 189

Filesystem Manipulation Subprofile

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: LocalAccessSupported

Table 92 describes class CIM_ElementSettingData (Local Access Required).

Table 92: SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access

Required)
Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.
SettingData Mandatory The local access settings of the LocalFileSystem, specified

on creation or modification.

8.8.27 SNIA LocalAccessAvailable

Created By: Extrinsic: CreateFileSystem

Modified By: Extrinsic: ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Class Mandatory: LocalAccessDefinitionRequired

Table 93 describes class SNIA _LocalAccessAvailable.

Table 93: SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties

Flags

Requirement

Description & Notes

LocalAccessPoint

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true..
The name used by the file server to identify the file system.
Sometimes referred to as a mount-point. For many UNIX-
based systems, this will be a qualified full pathname. For
Windows systems this could also be the drive letter used
for the LogicalDisk that the filesystem is resident on.

FileSystem

Mandatory

The LocalFileSystem that is being made available to the file
server ComputerSystem.

FileServer

Mandatory

The file server ComputerSystem that will be able to export
shares from this LocalFileSystem.

190

Filesystem Manipulation Subprofile

EXPERIMENTAL

SMI-S 1.2.0 Revision 6 SNIA Technical Position 191

Filesystem Manipulation Subprofile

192

Filesystem Quotas Profile

EXPERIMENTAL

Clause 9: Filesystem Quotas Profile

Profile Name: Filesystem

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: LocalFileSystem

Scoping Class: ComputerSystem

9.1 Description

The Filesystem Quotas Profile is intended to provide management of quotas on the use of filesystem resources--
raw space and inodes especially--by the common filesystem principals. User, group and tree quotas are modeled.
Trees means directories (rooted directory hierarchy structures) within filesystems. Some systems allow quotas only
on directories that have some special distinguishing feature, others allow them on arbitrary directories.

Quota systems work by keeping statistics-in real time-on the space used by each monitored principal/container pair
e.g. a user and her home share. They then trigger events when filesystem writes cause the space used by the
principal to exceed some threshold. There are four common varieties of quota thresholds:

1. Hard. Hitting a hard quota threshold causes subsequent writes by the principal to the affected container to
fail. In POSIX, the error returned to the client is ENOSPC (no space). An indication is also thrown.

2. Soft. A soft threshold causes the system to issue a warning. Systems variously issue warnings via CLI,
SNMP traps, pop-up windows at the user station, audit log entries, email and other proprietary methods. This
profile provides required indications for this purpose.

3. Soft, with grace period. This type of quota is really a refinement of soft quotas. It functions like a soft quota
until the grace period expires, at which point it begins behaving like a hard quota.

4. Monitoring. When a monitoring quota is in effect, there are no thresholds, and no warnings are issued. This
type of quota is useful because the underlying system keeps track of the relevant usage statistics in real time
for all quotas. A monitoring quota permits an administrator to simply issue a command to print a quota report
instead of having to do a complete filesystem scan to get the usage information of interest.

In general, it is not possible to have a quota system that meets the above semantics without some level of access
to the data path. More loosely coupled systems may need to relax the semantics of the hard limit, for example, and
may not actually trigger an event until a file is closed, for example. This profile allows these semantic variations.

Some systems allow "default" quotas for users, groups and/or trees. A default user quota, by way of example, is
used for every user of the system who does not have a quota entry specific to them.

9.1.1 Tree Quotas

Tree quotas are quotas on directory trees with an identifiable root. Mounts and symlinks are not followed. In other
words, a directory which contains nothing but mount points and symbolic links may satisfy a very small quota, even
though the amount of data addressable by entries in the container is large.

Hard links are another matter. The policy is system-dependent, but a common behavior is that if a file or directory is
hard-linked in two separate trees with separate tree quotas, the space used is charged against both quotas.

Pure tree quotas apply no matter which principal does the writing. There are some caveats however.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 193

Filesystem Quotas Profile

* Root on some systems is not constrained by quotas.

 An entity with sufficient privilege may not be constrained by quotas on some systems (e.g. a Windows user
with BackupOperator privilege).

Some systems may support tree quotas only on directories with certain special characteristics. Directories may be
constrained to being top-level, for example. This profile does not specify a means for determining whether a given
directory may have a tree quota set on it.

9.1.2 User Quotas

User quotas are limits on how much space a principal with a given User ID can use. They may be either global or
restricted by namespace tree, as well as by filesystem.

9.1.3 Group Quotas

Group quotas set limits on how much all the members of a group with a given Group ID can use in the aggregate.
They are not, therefore, quotas which apply to each member of a group. This follows Unix usage. Group quotas
only work on systems which have the concept of a primary group id (PGID), as the system needs to know which
group to charge writes against. As NTFS does not have the concept of a primary group, it does not do group
guotas. (Note: There is a primary group field that can be discovered on a file in NTFS. This is for POSIX support,
however, and does not always contain anything meaningful)

Group quotas may be global or applicable to a given namespace tree and/or filesystem.

9.1.4 Container Boundaries

Quotas may be system-wide, or scoped to an individual filesystem. Not all systems support both of these, however,
so provision is made for both. The SupportedPrincipalTypes array in the FSQuotaCapabilities class distinguishes
between User, Group, Tree, User-Tree and Group-Tree quotas as follows:

» User Quotas and Group quotas are described in 9.1.2 and 9.1.3.

» A Tree Quota is a limit on the storage (or other limit such as number of inodes) used by a directory tree. This
guota is not specific to a user or a group but applies to all users and groups creating files and directories
within the tree.

» A User-Tree quota is a limit on the storage used by a user within a directory tree and is applied in parallel with
the Tree Quota (both must be satisfied).

» A Group-Tree quota is a limit on the aggregate storage used by a group of users within a directory tree and is
applied in parallel with the Tree Quota (both must be satisfied).

If a Tree is configured with a Tree Quota as well as User-Tree and Group-Tree quotas, they must all be satisfied.

9.1.5 Quotatypes

Quotas are usually limits on disk space. Some systems, however, also support limits on the number of files and/or
directories.

9.1.6 Class design considerations

9.1.6.1 New Classes

This profile uses several new classes—FSDomainldentity, FSQuotaCapabilities, FSQuotaReportRecord,
FSQuotaConfigEntry, FSQuotaManagementService, and FSQuotalndication

9.16.1.1 FSDomainldentity

Due to the in-band nature of quota tracking, the identifier of the principal being managed needs to be small and
easily optimized. Traditional systems use Unix UIDs and GIDs, which are 32-bit quantities, or SIDs which are short
strings. To tie these into CIM, this new class is specified. Each instance contains a string with the UID, GID or SID,
respectively, in it, and enums for the type of domain and principal.

194

Filesystem Quotas Profile

9.1.6.1.2 FSQuotaCapabilities

This Capabilities subclass lists the properties in a FSQuotaConfigEntry that are supported by the underlying
system. The client shall not attempt to set any properties which are not listed as supported in the instance of this
class associated to the service. It shall instead always populate unsupported properties with null.

There shall exist exactly one instance of this class per FSQuotaManagementService instance.

9.1.6.1.3 FSQuotaReportRecord

When running a quota report, the underlying system generally issues a text file, each line or group of lines
representing the status of a filesystem principal with respect to one quota configuration entry. There may be
hundreds of thousands of these records, and they are not keyed, meaning that there is no way to go back and fetch
any given one of them. Therefore FSQuotaReportRecord is derived from a new proposed abstract root class called
ReportRecord, which carries the Indication qualifier. Note that this qualifier does not mean that these classes are
subclasses of CIM_Indication. It's used because it's the only way, currently, to construct a class in CIM which does
not require a key.

9.16.14 FSQuotaConfigEntry

An FSQuotaConfigEntry instance represents a single quota entry supported by the system. For example, one
FSFQuotaConfigEntry instance may specify that on filesystem “foo,” in directory “/bar,” the user “joe” is restricted to
1GB of space, and should receive a warning at 0.97GB.

A quota entry has been defined as a complex of several classes and associations. If implementation experience
turns up performance considerations related to this, this design may need to be revisited.

Many systems do not support any method of identifying individual FSQuotaConfigEntry instances, as they simply
represent lines in a text file, and the underlying system may not care about duplicates or conflicts. However,
FSQuotaConfigEntry instances need to be modified; this corresponds to editing the corresponding line in the file.
Therefore, if the underlying system does not expose a key, one may be created by composing the PrincipallD
property, a unigue reference to the FileSystem or ComputerSystem to which the entry applies (from the association
FSQuotaAppliesToElement), the TreeName property (if a tree quota), the measured quantity type (the
ResourceType property), the quota type (QuotaType property), and its default status (the Default property). An
implementation may expose the algorithm used to compose the key so that the client may decompose it, but this is
not required by this version of the profile. Upon creation of a new quota instance, clients shall verify that no quota
with the same key already exists. Upon modification of an instance, clients shall modify all instances whose keys
match that instance key.

= PrincipallD: This indicates a user by the user’s UID or SID, or a group by the group’s GID or SID, or it can be
the empty string. It is interpreted in the context of a directory service specified for the file server
ComputerSystem that is associated to the FileSystem by a Dependency association.

< InstancelD. This property is a unique identifier for this FSQuotaConfigEntry. This property shall be unique in
the presence of multiple instances of ComputerSystem and FileSystem, and multiple properties of QuotaType,
Default, ResourceType and PrincipallD. It may be constructible by the client, but this profile does not specify
this format.

9.1.6.1.5 FSQuotaManagementService

The FSQuotaManagementService provides the interface to the underlying system for most operations which are
overtly related to quotas. There shall be at most one instance of a FSQuotaManagementService for each
underlying ComputerSystem.

9.1.6.1.6 FSQuotalndication

The FSQuotalndication class provides information about threshold crossing events, meaning that a quota has just
been exceeded.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 195

Filesystem Quotas Profile

9.1.7 Instance Diagram

Figure 13 shows the Filesystem Quotas instance diagram.

Figure 13: Filesystem Quotas Instance Diagram

System ManagedElement .
IdentityContext
HostedService FSQuotaAppliesToElement
FSQuotaManagementService FSQuotaDomainldentity

FSQuotaAppliesToPrincipal

FSQuotaReportRecord w

FSQuotaConfigEntry -‘

T T

|

ElementCapabilities FSQuotaAppliesToTree
FSQuotaCapabilities LogicalFile
-(directory)

9.2 Health and Fault Management Considerations

None currently applicable.

9.3 Supported Profiles, Subprofiles, and Packages

The Filesystem and Indications Profiles are required by this profile.

Table 94: Supported Profiles for FileSystem Quotas

Registered Profile Names Mandatory Version
Filesystem Yes 1.2.0
Indication Yes 1.2.0
Job No 1.2.0

94 Methods of the Profile

All profile methods are contained in the FSQuotaManagementService.

196

Filesystem Quotas Profile

9.4.1 FindQuotaEntries

uint32 FindQuotaEntries(
IN string ldentityld,
IN ManagedElement REF Element,
IN string Tree,
IN uintl6é QuotaType,
OUT EmbeddedlInstance("*SNIA_FSQuotaConfigEntry')string QuotaEntries[],

Given a combination of inputs, FindQuotaEntries() searches the quota entry database on the managed device for
guota entries that match, and returns a list. On systems that support it, long-running queries may return a job.
Possible quota entries are:

1) Identityld

Identityld is an optional string that can specify the UID, GID, or SID or can specify a pattern. The following rules
apply to Identityld:

a) If Identityld is NULL or the empty string, no identity-based quotas should be returned.
b) If IdentitylD is NULL, default quotas will be returned.
c) If Identityld is “*", this matches all identity-based quotas entries.

d) Identityld may also be a specific ID, or the prefix of an ID followed by "*". Standard prefix string matching
is used to determine which entries match in this case.

2) Element

Element is an optional reference to a ManagedElement (declared as CIM_ManagedElement REF Element). The
following rules apply to Element:

a) When a ComputerSystem is passed for Element, the returned entries may be default or other entries for
both the ComputerSystem and its contained FileSystems.

b) When a FileSystem is passed in for Element, only entries pertaining to that FileSystem shall be returned.
This may include default entries applicable to that FileSystem.

c) If NULL is passed in for Element, the FSQuotaManagementService assumes that the ComputerSystem it
is hosted on is the Element.

Element is an optional reference to a ComputerSystem or a LocalFileSystem, but is declared as a reference to a
ManagedElement, which is the only common parent class.

3) Tree

Tree is an optional string that identifies a tree (or trees) contained within a filesystem. The following rules apply to
Tree:

a) A null or empty string indicates that no tree quota entries should be returned.

b) A “*"tree parameter matches all tree quota entries defined within the filesystem(s) indicated by Element,
if any.

c) If Tree contains a path, it matches that path only. On some systems, this may result in multiple matches,
one for the same-named tree in each of several filesystems.

d) Prefix string matching may be used for the Tree parameter. E.g. the path "/x/y/*" will match tree quotas on
both "/x/y/m" and "/x/ly/p".

SMI-S 1.2.0 Revision 6 SNIA Technical Position 197

Filesystem Quotas Profile

4) QuotaType

QuotaType is an enumerated optional parameter that describes what type of quota entries should be returned. The
following rules apply to QuotaType:

a) NULL or Unknown matches any entry (i.e., it is a wildcard).
b) If Tree is specified, then entries which are pure tree quotas (not user-tree or group-tree) match.

c) If User-Tree or Group-Tree is specified, then only user-tree or group-tree quotas match.

9.4.2 DeleteQuotaEntry
uint32 DeleteQuotaEntry(IN string EntrylD);

This routine deletes a given quota entry from the managed device’s quota entry database. Recall that the
ManagedElement’'s name is specified as part of a QuotaEntry’s InstancelD, above. A CIMOM managing multiple
devices may use that to find which device to address when deleting the actual entry.

9.4.3 ModifyQuotaEntry

uint32 ModifyQuotaEntry(
IN string Entryld,
IN EmbeddedlInstance("'SNIA_FSQuotaConfigEntry') string QuotaEntry,
OUT CIM_Job REF Job;

):

Given the InstancelD of an existing quota entry, ModifyQuotaEntry() replaces it with a new entry specified as an
Embeddedinstance.

9.4.4 AddQuotaEntry

uint32 AddQuotaEntry(
IN EmbeddedInstance(""'SNIA_FSQuotaConfigEntry') string QuotaEntry,
OUT CIM_Job REF Job;
);
This routine adds a new quota entry to the quota entry database on the appropriate managed element.

The ConflictingEntriesUsage property in FSQuotaCapabilities (see 9.7) will govern what happens if an entry
already exists with the same combination of PrincipallD, ManagedElement, TreeName, ResourceType,
QuotaType, and Default.

9.4.5 GetQuotaReport

uint32 GetQuotaReport(
IN CIM_ManagedElement REF Element,
IN string Tree,
IN string User,
IN EmbeddedInstance("'FSQuotaDomainldentity') string Group,
IN, OUT string Cursor,
IN, OUT uint64 NQuotas,
OUT CIM_Job REF Job,
OUT EmbeddedlInstance("'SNIA_FSQuotaReportRecord') string ReportRecs[];:

198

Filesystem Quotas Profile

This routine gets a quota report from a managed element. As there may be millions of records in this report, a
chunking mechanism is provided so that the client does not become overwhelmed by the quantity of data furnished
by the server.

The initial call to GetQuotaReport shall pass in NULL as a Cursor. Subsequent calls shall pass back the cursor
exactly as received from the server, without modification, as an indication of where to continue the report from.

Clients which do not wish to use the chunking mechanism may pass a number such as 253 - 1 in NQuotas.

On many systems, the initial phase of preparing a quota report may take some time. A job is returned in this case.

9.4.6 EnableQuotas

uint32 EnableQuotas(
IN Boolean OnOff,
IN CIM_ManagedElement element,
OUT CIM_Job REF Job
)
This routine turns quota management on or off on a given managed element. This routine shall always be
supported when the element is a CIM_ComputerSystem. On systems that support it, the ManagedElement may

alternatively be a filesystem. If an attempt is made to change the state on an unsupported ManagedElement, the
routine shall return an appropriate error (“Operation unsupported for individual MEs of this type”).

9.4.7 InitializeQuotas

uint32 InitializeQuotas(
IN CIM_ComputerSystem REF Server,
OUT CIM_Job REF Job);

Some systems require an explicit initialization step before quotas may be used. If this step takes some time, a job
shall be returned. Systems which do not require this step shall return “Success”.

9.5 Client Considerations and sample code

Because quota management capabilities vary so widely from device to device, clients must be prepared to receive
"unsupported" errors. These can be kept to a minimum by inspecting the QuotaCapabilities of the managed device.
See the QuotaGetCapabilities routine in 9.5.1.

There are five fundamental operations on quotas:

1. Initialize the quota management system

2. Turn quota tracking on or off

3. Add or modify a quota table entry

4. Read the quota table

5. Get a report on quota usage for one or all entries in the quota table
The QuotaManagementService class contains extrinsics for all of these things, so each task reduces to getting the
service instance and invoking the desired method.

The following example code is advisory, not normative.

EXPERIMENTAL

9.5.1 Common subroutines

In the Filesystem Quotas sample routines, the following subroutines are used (and declared inline here):

SMI-S 1.2.0 Revision 6 SNIA Technical Position 199

Filesystem Quotas Profile

sub CIM_QuotaManagementService QuotaGetQMService(
IN REF CIM_System system);

services = Associators(system,
"CIM_HostedService",
"CIM_QuotaManagementService",
"Antecedent",
"'Dependent™,
false, false, NULL);

return services[0];

sub CIM_QuotaCapabilities QuotaGetCapabilities(
IN REF CIM_System system)

service = QuotaGetQMService(system);

caps = Associators(service,
"CIM_ElementCapabilities”,
"CIM_QuotaCapabilities",
"CIM_ManagedElement",
“"ManagedElement',
"Capabilities",
false, false, NULL);

return caps[0]:

sub boolean QuotaSupportsPrincipalType(

IN REF CIM_System system,
IN uintl6é type)

{
capabilities = QuotaGetCapabilities(system);
for(i = 0; capabilities.SupportedPrincipalTypes[i] '= NULL; ++)
ifT (capabilities.SupportedPrincipalTypes[i] == type) {
return TRUE;
}
}
return FALSE;
}

200

Filesystem Quotas Profile

All of the following routines may return errors indicating that the supplied managed element is not supported. In
most cases this will be because the operation (e.g. initializing quotas) is a system-wide operation, and cannot be
done on a per-filesystem basis.

EXPERIMENTAL

EXPERIMENTAL

9.5.2 Initialize quotas

sub uint_16 InitializeQuotas(
IN REF CIM_System system)

{
gms = QuotaGetQMService(system);
result = gms->InitializeQuotas(system, job);
//
// See the Job Control profile for information on
// handling the job if one is returned.
//
return result;
}

EXPERIMENTAL

EXPERIMENTAL

9.5.3 Enable or disable quota tracking

//
// enable or disable quotas
//
// See the mof for the EnableQuotas extrinsic for possible
// return values
//
sub uintl6 EnableQuotas(IN REF CIM_System system,
IN REF CIM_ManagedElement me,
IN boolean onoff)

gms = QuotaGetQMService(system);
result = gms->EnableQuotas(onoff, me, job);

//

// See the Job Control profile for information on
// handling the job if one is returned.

//

return result;

SMI-S 1.2.0 Revision 6 SNIA Technical Position 201

Filesystem Quotas Profile

}
EXPERIMENTAL

EXPERIMENTAL

9.5.4 Add a quota entry

sub uintl6 AddQuotakEntry(IN REF CIM_System system,
IN REF CIM_ManagedElement me,
IN String tree,
IN REF CIM_Domainldentity principal,
IN uint64 hardlimit,
IN uint64 softlimit,
IN uint64 graceperiod,
IN boolean active,
IN string restype,
IN uintl6 quotatype,
IN REF logicalfile,
IN REF me,
IN boolean default)

service = QuotaGetQMService(system);
entry = Createlnstance(“*SNIA_FSQuotaConfigEntry’);
entry->HardLimit = hardlimit;
entry->SoftLimit = softlimit;
entry->SoftLimitGracePeriod = graceperiod;
entry->Active = active;
switch (restype) {

case “Bytes”: entry->ResourceType = 2;
3;
case “Directories”: entry->ResourceType = 4;

case “Files”: entry->ResourceType

case “Files+Directories”: entry->ResourceType = 5;
case “Inodes”: entry->ResourceType = 6;
default: entry->ResourceType = 0;
}
switch (quotatype) {
case “User”: entry->QuotaType = 2;
case “Group”: entry->QuotaType = 3;
case “Tree”: entry->QuotaType = 4;
default: entry->QuotaType = O;
}
if (principal = NULL) {
entry->PrincipalID = principal->PrincipallD;
else
entry->PrincipalID = NULL;
if (logicalfile = NULL) {
entry->TreeName = logicalfile->Name;

202

Filesystem Quotas Profile

else

entry->TreeName = NULL;
entry->ManagedElement = me;
entry->Default = default;
entry->InstancelD = NULL;

result = service->AddQuotaEntry(entry, job);

//

// analyse error, if there is one: the above code
// cannot return “1” or “37, so only “2” is left.

// And that means there’s already an identical
// entry, so declare victory and move on.
//

return result; // could return 0, if you prefer

EXPERIMENTAL

EXPERIMENTAL

9.5.5

Delete a quota entry

//

// See the mof for the DeleteQuotaEntry extrinsic for possible

// return values

//

sub uintl6 DeleteQuotaEntry(IN REF CIM_System system,
IN string entryid,
OUT REF CIM_Job job)

{
service = QuotaGetQMService(system);
result = service->DeleteQuotaEntry(entryid);
return result;

}

EXPERIMENTAL

EXPERIMENTAL

9.5.6

Modify a quota entry

/77

// There are many ways to modify a quota entry. Here are

// a couple examples
//

SMI-S 1.2.0 Revision 6 SNIA Technical Position

203

Filesystem Quotas Profile

sub uintl6 ModifyQuotaHardLimit(IN REF CIM_System system,
IN string entryid,
IN uint64 newlimit)

service = QuotaGetQMService(system);

entry = Getlnstance(entryid);

entry->HardLimit = newlimit;

result = service->ModifyQuotaEntry(entryid, entry, job);
//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return result;

sub uintl6 SpecificUserToDefault(IN REF CIM_System system,
IN string uid)

//

// change Alice’s quota to be the default for
// all users

//

service = QuotaGetQMService(system);

//
// Need to search through all the quota entry instances
// for the given uid.
//
ges[] = Enumeratelnstances(“SNIA_FSQuotaConfigEntry”,
true, false, false, false, “PrincipallD”);
foreach ge (ges[]) {
if (ge->PrincipallD == uid) {

ge->PrincipallD = NULL);

ge->Default = true;

return O;

¥
return 1; // not found
}
EXPERIMENTAL

EXPERIMENTAL

9.5.7 Read the quota entries

//
// Warning: on some systems, this may return 10°s of

204

Filesystem Quotas Profile

// thousands of entries

//
sub FSQuotaConfigEntry[] ReadQuotaEntries(IN REF CIM_System system)
{
service = QuotaGetQMService(system);
service->FindQuotaEntries(NULL, system, NULL, NULL, NULL,
ges[]. job);
//
// See the Job Control profile for information on
// handling the job if one is returned.
//
return qges[];
3

EXPERIMENTAL

EXPERIMENTAL

9.5.8 Get areport on quota usage

sub FSQuotaReportRecord[] GetQuotaReport(IN REF CIM_System system)

{
cursor = NULL;
service = QuotaGetQMService(system);
nrecs = 1000;
r = service->GetQuotaReport(system, NULL, NULL, NULL,
cursor, nrecs, job, recs[]);
<manage job>;
<do something with recs>;
while (r = “No more data™) {
r = service->GetQuotaReport(system, NULL, NULL, NULL,
cursor, nrecs, job, recs[]);
<manage job>;
<do something with recs>;
}
}
3

EXPERIMENTAL

9.6 Registered Name and Version

FileSystem Quotas version 1.2.0

SMI-S 1.2.0 Revision 6 SNIA Technical Position

205

Filesystem Quotas Profile

9.7 CIM Elements
Table 95: CIM Elements for FileSystem Quotas

Element Name Requirement | Description

SNIA_FSDomainldentity (9.7.1) Mandatory A small class containing the unique ID of a
user or group in a Unix or Windows domain

SNIA_FSQuotaCapabilities (9.7.2) Mandatory The supported targets, quota types, resource
types and behaviors of the
FSQuotaManagementService associated to
this class instance.

SNIA_ReportRecord (9.7.3) Mandatory An abstract keyless class proposed as the
root of a tree of report record classes

SNIA_FSQuotaReportRecord (9.7.4) Mandatory A class representing a single line in a quota
report generated by a call to the
QuotaReport() extrinsic of the
FSQuotaManagementService

SNIA_FSQuotalndication (9.7.5) Optional An indication specially referring to quota
events. Note that the threshold and current
value are passed in the parent class, in
ThresholdValue and ObservedValue

SNIA_FSQuotaManagementService (9.7.6) Mandatory Quota Management Service class.

SNIA_FSQuotaConfigEntry (9.7.7) Mandatory A single quota entry in the configuration
database.

SNIA_FSQuotaAppliesToElement (9.7.8) Mandatory An association between a quota config entry
and a managed element

SNIA_FSQuotaAppliesToPrincipal (9.7.9) Mandatory An association between a quota config entry
and a Filesystem principal entity

SNIA_FSQuotaAppliesToTree (9.7.10) Mandatory An association between a quota config entry
and a directory

SELECT * FROM SNIA_FSQuotalndication Mandatory Hard quota threshold crossed

WHERE WhichLimit = 2

SELECT * FROM SNIA_FSQuotalndication Mandatory Soft quota threshold crossed

WHERE WhichLimit = 3

9.7.1 SNIA_FSDomainldentity

Created By: Createlnstance_or_Static_or_External

Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

206

Filesystem Quotas Profile

Table 96 describes class SNIA_FSDomainldentity.

Table 96: SMI Referenced Properties/Methods for SNIA_FSDomainldentity

Properties Flags Requirement | Description & Notes

PrincipallD Mandatory The unique ID of a principal. This may be a UID, GID or a
SID.

DomainType Mandatory The type of domain the Principal belongs to. Possible
values are "Unknown", "Other", "Unix", and "Active
Directory".

PrincipalType Mandatory The type of Principal represented by this identity instance.
Possible values are "Unknown", "Other", "User" and
"Group"

9.7.2 SNIA_FSQuotaCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 97 describes class SNIA_FSQuotaCapabilities.

Table 97: SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities

Properties Flags Requirement | Description & Notes

InstancelD Mandatory A unique ID for the capabilities instance.

ElementName Mandatory A user-friendly name for the instance in the format
SystemName:ManagedElementName:Capabilities.

SupportedTargetType Mandatory The target types supported by the Service. Possible values

S are "ComputerSystem" and "FileSystem"

SupportedPrincipal Ty Mandatory An array of the types of Principal supported by the Service.

pes Possible values are "User", "Group", "User-tree", "Group-
tree” and "Tree".

ConflictingEntriesUsa Mandatory The behavior of the system when it encounters quota

ge entries with duplicate keys

SupportedResourceT Mandatory An array of resource types that may have quotas placed on

ypes them by this Service. Possible values are"Unknown",
"Other", "Bytes", "Files", "Directories", "Files+Directories",
"Inodes" and "Blocks"

DefaultSupported Mandatory An array that indicates which resource types may have

default quotas set upon them by this Service. Possible
values are the same as for SupportedResourceTypes

SMI-S 1.2.0 Revision 6

SNIA Technical Position

207

Filesystem Quotas Profile

Table 97: SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities

Properties Flags Requirement | Description & Notes

IsActiveSettingPerEn Mandatory Indicates whether quotas may be made active or inactive
trySupported per entry

IsMonitoredSettingPe Mandatory Indicates whether quota monitoring may be turned on or off
rEntrySupported per entry

IsGracePeriodSuppo Mandatory Indicates whether a grace period may be set on a quota. If

rted

it can, then crossing over a soft threshold for more then the
period of time specified in the grace period effectively
converts the soft threshold to a hard limit, cutting off further
allocation of the resource.

9.7.3

Created By: Static
Modified By: Static
Deleted By: Static

SNIA_ReportRecord

Class Mandatory: Mandatory

9.7.4 SNIA_FSQuotaReportRecord

Created By: Extrinsic
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 98 describes class SNIA_FSQuotaReportRecord.

Table 98: SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord

Properties Flags Requirement | Description & Notes

HardLimit Optional The hard threshold associated with this quota report record,
if any

SoftLimit Optional The soft threshold associated with this quota report record,
if any

SoftLimitGracePeriod Optional The grace period associated with the soft limit associated
with this report record, if any

Active Optional Whether the quota associated with this report record is

being actively enforced. If not, this indicates the quota is
being used for tracking purposes only.

208

Filesystem Quotas Profile

Table 98: SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord

Properties

Flags

Requirement

Description & Notes

Monitored

Optional

Whether or not thresholds on this quota are being
monitored. If a system reports quotas that aren't being
monitored, this value may be false.

ResourceType

Mandatory

The type of resource whose use is counted in this quota
report record

QuotaType

Mandatory

The type of Principal to which this quota applies. Possible

values are "Unknown", "Other", "User", "Group" and "Tree".

AmountUsed

Mandatory

The amount of resource used by the combination of
Principal, Resource type, Tree, and ManagedElement
specified in the quota configuration entry that generated
this quota report record (and reported in other fields in the
record).

TreeName

Optional

The URI of the filesystem tree upon which the quota was
set, if any

PrincipallD

Optional

The FSDomainldentity for the Principal associated with this
guota report record, if any

FileSystem

Optional

The name of the filesystem over which the quota entry that
generated the report record was placed, if any

9.7.5 SNIA_FSQuotalndication

Created By: External
Modified By: Static
Deleted By: Static

Class Mandatory: Optional

Table 99 describes class SNIA_FSQuotalndication.

Table 99: SMI Referenced Properties/Methods for SNIA_FSQuotalndication

Properties Flags Requirement | Description & Notes

IdentitylD Mandatory The InstancelD of the FSDomainldentity involved in
causing the event. If there is none, NULL shall be passed in
this property.

EntrylD Mandatory The InstancelD of the FSQuotaConfigEntry involved in
causing the event..

Path Mandatory The complete path of the tree involved in causing the event.
If there is none, NULL shall be passed in this property.

WhichLimit Mandatory Either "hard" or "soft"

SMI-S 1.2.0 Revision 6 SNIA Technical Position 209

Filesystem Quotas Profile

Table 99: SMI Referenced Properties/Methods for SNIA_FSQuotalndication

Properties Flags Requirement | Description & Notes

ResourceType Mandatory "Bytes", "Files", "Directories","Files+Directories" or "Inodes"

QuotaType Mandatory Either "user", "group" or "tree".

Limit Mandatory The limit set by the quota entry

AmountUsed Optional Amount of resource actually used at the time the indication

was generated.

FileSystem Mandatory The Name of the FileSystem in which the event occurred.

9.7.6 SNIA_FSQuotaManagementService

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 100 describes class SNIA_FSQuotaManagementService.

Table 100: SMI Referenced Properties/Methods for SNIA_FSQuotaManagementService

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory

sName

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

FindQuotaEntries() Mandatory Retrieve one or more quota entries based on a set of input
criteria.

DeleteQuotaEntry() Mandatory Delete a specified quota entry

ModifyQuotaEntry() Mandatory Modify a specified quota entry

AddQuotaEntry() Mandatory Add a new gquota entry.

GetQuotaReport() Mandatory Obtain a report on usage against the quota entries on a
system.

EnableQuotas() Mandatory Turn quota monitoring on or off.

InitializeQuotas() Mandatory Initialize the quota reporting system.

210

Filesystem Quotas Profile

9.7.7 SNIA_FSQuotaConfigEntry

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

Table 101 describes class SNIA_FSQuotaConfigEntry.

Table 101: SMI Referenced Properties/Methods for SNIA_FSQuotaConfigEntry

Properties Flags Requirement | Description & Notes

InstancelD Mandatory A unique ID for the entry.

HardLimit Mandatory The hard limit for this quota

SoftLimit Mandatory The soft limit for this quota

SoftLimitGracePeriod Optional Length of the grace period, if any exists.

Active Optional Whether or not this quota is to be actively monitored. If
NULL, the system does not support activation of individual
guotas.

Monitor Mandatory Whether or not this is a monitor-only quota. If this is TRUE,
no enforcement of any kind is done.

ResourceType Mandatory The type of resource being managed

QuotaType Mandatory The type of quota to create (user, group, etc.)

TreeName Mandatory Path of the tree over which this quota is applicable, if any.

PrincipallD Mandatory The user or group being constrained by this quota, if any.

FileSystem Mandatory A The name of the FileSystem, if any, over which this quota
is monitored.

Default Mandatory Whether or not this is a default quota.

9.7.8 SNIA_FSQuotaAppliesToElement

Created By: Createlnstance
Modified By: Extrinsic_or_External
Deleted By: Deletelnstance

Class Mandatory: Mandatory

SMI-S 1.2.0 Revision 6 SNIA Technical Position 211

Filesystem Quotas Profile

Table 102 describes class SNIA_FSQuotaAppliesToElement.

Table 102: SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToElement

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The managed element
Dependent Mandatory The quota config entry

9.7.9 SNIA_FSQuotaAppliesToPrincipal

Created By: Createlnstance
Modified By: Extrinsic_or_External
Deleted By: Deletelnstance

Class Mandatory: Mandatory

Table 103 describes class SNIA_FSQuotaAppliesToPrincipal.

Table 103: SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToPrincipal

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The filesystem principal
Dependent Mandatory The quota config entry

9.7.10 SNIA_FSQuotaAppliesToTree

Created By: Createlnstance
Modified By: Extrinsic_or_External
Deleted By: Deletelnstance

Class Mandatory: Mandatory

Table 104 describes class SNIA_FSQuotaAppliesToTree.

Table 104: SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToTree

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The filesystem directory tree
Dependent Mandatory The quota config entry

212

Filesystem Quotas Profile

EXPERIMENTAL

SMI-S 1.2.0 Revision 6 SNIA Technical Position 213

Filesystem Quotas Profile

214

NAS Head Profile

STABLE
Clause 10: NAS Head Profile

10.1 Description

10.1.1 Synopsis

Profile Name: NAS Head
Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13
Central Class: ComputerSystem
Scoping Class: ComputerSystem

10.1.2 Overview

The NAS Head Profile exports File elements (contained in a FileSystem) as FileShares. The storage for the
FileSystem is obtained from external SAN storage, for example, a Storage Array that exports Storage Volumes as
LUNSs. The storage array may also provide storage to other hosts or devices (or other NAS Heads), and the storage
on the array might be visible to other external management tools, and may be actively managed independently.

This profile models the necessary Filesystem and NAS concepts and defines how the connections to the
underlying storage is managed. The details of how a Storage Array exports storage to the NAS Head is not
covered in this profile but is covered by the Array profile.

The NAS Head Profile reuses a significant portion of Clause 23: Storage Virtualizer Profile in Storage Management
Technical Specification, Part 3 Block Devices.

The NAS Head Profile and its subprofiles and packages are illustrated in Figure 14.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 215

NAS Head Profile

Figure 14: NAS Head Profiles and Subprofiles

SystemDevice Indications —|
Device Credentials
HostedService
InstalledSoftwareldentity | NAS Head
FileExport
HostedShare Manipulation
File Export HostedService
JomputerSystemPackage
Software
Concreteldentity _|
File Storage
ComponentCS Block
. Services
PhysicalPackage Package — Package
HostedFileSystem
) — Filesystem A
Ph IEI 1
ysicalElement UC'EmPn Manipulation
FileSystem
Location OwningJobElement
S i FSQuota —
Multiple HostedAccessPoint Job Control
ComputerSystem CascadingDependency
ConcreteComponent
Access Points
Extent
Composition
Cascading

Initiator Ports

10.1.3 Implementation

10.1.3.1 Summary Instance Diagram

Figure 15 illustrates the mandatory classes for the NAS Head Profile. This figure shows all the classes that are
mandatory for the NAS Head Profile. Later diagrams will review specific sections of this diagram.

216

NAS Head Profile

Figure 15: NAS Head Instance

ProtocolEndPoint

ProtocollFType = 4200 | 4201
(NFS" or "CIFS")

SAPAvailableForElement

NetworkPort ‘

DeviceSAPImplementation

File Export

Profile

(For Backward

FileShare
NFS or CIFS

ConcreteDependency
Compatibility)

ElementSettingData

SNIA_SharedElement

‘ SNIA_ExportedFileShareSetting

I
I
I
I
-1

S — e B B r—ay— Sy — Ty — Sy
I- HostedDependency
(Conditional) |
I FiIsSystem SNIA_LocallyAccessibleFileSystemSetting
: L LogicalFile (Conditional)
I Profile (Directory)
SystemDevice

FileStorage
(For Backward Compatibility)

SNIA_LocalAccessAvailable

HostedShale

SystemDevice
(Optional)

File Storage

Profile

(Conditional)
SNIA_LocalFileSystem

ResidesOnExtent
(Conditional)

ElementSettingData I

SystemDevice]

ostedStor
[=

I AllocatedFromStoragePool
H

AllocatedFromStoragePool

StoragePool ‘

(Conditional)

i FileSystemSetting
ElementSettingData__| (Optional)

(Optional)

HostedFileSystem
IT3Ioc Services Packag LogicalDisk _ StorageSetting
ElementSettingData
ComputerSystem - ‘

StorageCapabilities

ElementCapabiliti

agePool

(Optional)

Ilnitiator Ports Subprofile (Optional)

Target
ProtocolEndpoint

SCSIProtocolController

Initiator
ProtocolEndpoint

ProtocolControllerForEndpoint

— — —
ConcreteComponent

LDeviceSAPImplementationJ

StorageExtent
(Optional) StorageExtent
(Optional)

InitiatorTarget
LogicalUnitPath

FCPort

UsageRestriction =
‘Back-end only’

SMI-S 1.2.0 Revision 6

SNIA Technical Position

2

17

NAS Head Profile

The NAS Head Profile closely parallels the Storage Virtualizer Profile in how it models storage. Storage is assigned
to StoragePools and LogicalDisks are allocated from those storage pools for the purpose of holding local
filesystems of the NAS.

As with the Storage Virtualizer Profile, the NAS Head StoragePools have StorageCapabilities associated to the
StoragePools via ElementCapabilities. Similarly, LogicalDisks that are allocated from those StoragePools have
StorageSettings, which are associated to the LogicalDisk via ElementSettingData. StoragePools are hosted by a
ComputerSystem that represents the NAS “top level” system, and the StorageExtents have a SystemDevice
association to the “top level” ComputerSystem.

Note: As with Self-Contained NAS, the StoragePools may be hosted by a component ComputerSystem if the
Profile has implemented the Multiple Computer System Subprofile.

As with the Storage Virtualizer Profile, the “top level” ComputerSystem of the NAS Head does not (and typically
isn't) a real ComputerSystem. It is merely the ManagedElement upon which all aspects of the NAS offering are
scoped.

As with Storage Virtualizer Profile, the NAS Head draws its storage from an open SAN. That is, the actual disk
storage is addressable independent of the NAS Head. As a result, the NAS head shall model the Initiator ports and
the StorageExtents that it acquires from the SAN. The NAS Head supports at least one of the Initiator Ports
Subprofiles (the dashed box at the bottom of Figure 15) to effect the support for backend ports. The NAS Head
includes the Block Services Package to effect the logical storage management (the dashed box just above the
Initiator Ports dashed box in Figure 15).

Everything above the LogicalDisk is specific to NAS (and does not appear in the Storage Virtualizer Profile).
LocalFileSystems are created on the LogicalDisks, LogicalFiles within those LocalFileSystems are shared
(FileShare) through ProtocolEndpoints associated with NetworkPorts.

Note: The classes and associations in the dashed boxes are from the required packages and subprofiles (as
indicated by the labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with SMI-S 1.1.0. It represents a
relationship between a FileShare and a Directory.

The ResidesOnExtent is conditional on the use by NAS Profiles (NAS Head and Self-contained NAS) in the File
Storage Profile. In the NAS Head a LocalFileSystem shall map to a LogicalDisk.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are only
shown here to illustrate where they would show up in the model should they be implemented.

In the base NAS Head profile, the classes and associations shown in Figure 15 are automatically populated based
on how the NAS Head is configured. Client modification of the configuration (including configuring storage, creating
extents, local filesystems and file shares) are functions found in subprofiles of the NAS Head Profile.

218

NAS Head Profile

10.1.3.2 NAS Storage Model
Figure 16 illustrates the classes mandatory for modeling of storage for the NAS Head Profile.

Figure 16: NAS Storage Instance

ComputerSystem

SystemDevice Block Services Package I

. LogicalDisk | SettingD StorageSetting ‘
HostedStoragePool ElementSettingDat. ‘ ‘

SystemDevice

AllocatedFromStoragePool

StoragePool StorageCapabilities
ElementCapabilities

ConcreteComponent

(Optional)
‘ StorageExtent
StorageExtent ptional)
(Optional)

The NAS Head Profile uses most of the classes and associations used by the Storage Virtualizer Profile (including
those in the Block Services Package). In doing this, it leverages many of the subprofiles that are available for
Storage Virtualizer Profiles. The classes and associations shown in Figure 16 are the minimum mandatory for read
only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled, including the
HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the StoragePool. In addition,
for NAS Heads, which get their storage from a SAN, the StorageExtents that compose the primordial StoragePools
shall also be modeled with ConcreteComponent associations to the StoragePool to which they belong and they will
be primordial.

In addition, in order for storage to be used it shall be allocated to one or more LogicalDisks. A LogicalDisk shall
have an AllocatedFromStoragePool association to the StoragePool from which it is allocated. The LogicalDisk shall
have an ElementSettingData association to the settings that were used when the LogicalDisk was created.

For manipulation of Storage, see Clause 5: Block Services Package of Storage Management Technical
Specification, Part 3 Block Devices. LogicalDisks are the ElementType that is supported for storage allocation
functions (e.g., CreateOrModifyElementFromStoragePool and ReturnToStoragePool), but the Block Services
methods for managing LogicalDisks are optional for the NAS Head Profile. The NAS Head Profile also supports
(optionally) the Pool manipulation functions (e.g., CreateOrModifyStoragePool and DeleteStoragePool) of the
Block Services Package.

10.1.3.3 NAS Head Use of Filesystem Profile (Mandatory)

The NAS Head Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the NAS Head, the
Filesystem Profile shall be supported. See Clause 7: Filesystem Profile for details on this modeling.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 219

NAS Head Profile

10.1.3.4 NAS Head Use of File Storage Profile (Mandatory)

The NAS Head Profile uses the File Storage Profile for modeling of its file storage constructs. For the NAS Head,
the Filesystem Profile shall be supported. See Clause 6: File Storage Profile for details on the file storage
modeling.

10.1.3.5 NAS Head Use of File Export Profile (Mandatory)

The NAS Head Profile uses the File Export Profile for modeling of its file export constructs. For the NAS Head, the
File Export Profile shall be supported. See Clause 4: File Export Profile for details on this modeling.

220

NAS Head Profile

EXPERIMENTAL

10.1.3.6 NAS Head Support of Cascading

Figure 17 illustrates the NAS Head support for cascading. Support for the Cascading Subprofile is optional (and
the Cascading Subprofile is experimental). It is provided here to illustrate stitching between the NAS Head and

Array or Storage Virtualizer Profiles.

ComputerSystem

Figure 17: NAS Head Cascading Support Instance

[]
HostedStoragePool

SystemDevice

LogicalDisk

Block Services Package

AllocatedFromStoragePool

ElementSettingDat

StorageSetting

ComputerSystem !

(Virtual) I

SAPAuvailableForElement

L

MemberOfCollection

SystemDevice

RemoteServiceAccessPoint

StorageVolume

(Virtual) I

StoragePool StorageCapabilities
ElementCapabilities
Dependency
. ConcreteComponent
SystemDevice
StorageExtent
StorageExtent
Cascading Subprofile
AllocatedResources Logicalldentity
’ . RemoteResources
Logicalldentity

—_—

MemberOfCollection

| StorageVolume !

(Virtual) I

J

The lower dashed box in the figure illustrates the classes and associations of the Cascading Subprofile. The
dashed classes are virtual instances (copies cached from the Array or Storage Virtualizer Profile). The other
classes of the Cascading Subprofile represent NAS Head usage of those classes. For example, the collection

SMI-S 1

.2.0 Revision 6

SNIA Technical Position

221

NAS Head Profile

AllocatedResources collects all the Array volumes that are used in StoragePools of the NAS Head. The
RemoteResources collection collects all volumes that the NAS Head has discovered (whether used or not).

The RemoteServiceAccessPoint is the URL of the management interface that the NAS Head uses for managing
the Array or Storage Virtualizer Profiles. This may or may not be an SMI-S Server URL.

EXPERIMENTAL

10.2 Health and Fault Management Considerations

The NAS Head supports state information (e.g., OperationalStatus) on the following elements of the model:

< Network Ports (See 10.2.1)

< Back-end Ports (See 17.3.1 Health and Fault Management Considerations in Storage Management Technical
Specification, Part 2 Common Profiles)

< ComputerSystems (See 28.1.5 Computer System Operational Status in Storage Management Technical
Specification, Part 2 Common Profiles)

= FileShares that are exported (See 4.2.1)

= LocalFileSystems (See 7.2.1)

= ProtocolEndpoints (See 10.2.2)

10.2.1 OperationalStatus for Network Ports

Table 105: NetworkPort OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown

10.2.2 OperationalStatus for ProtocolEndpoints

Table 106: ProtocolEndpoint OperationalStatus

OperationalStatus Description
OK ProtocolEndpoint is online
Error ProtocolEndpoint has a failure
Stopped ProtocolEndpoint is disabled
Unknown

222

NAS Head Profile

EXPERIMENTAL

10.3 Cascading Considerations

The NAS Head is a cascading Profile, but the Cascading Subprofile is Experimental in this release of SMI-S; see
Clause 26: Cascading Subprofile in Storage Management Technical Specification, Part 2 Common Profiles. As
such, the Cascading Subprofile is defined as an optional subprofile. A NAS Head may cascade storage. The
cascading considerations for this are discussed in the following sections.

10.3.1 Cascading Resources for the NAS Head Profile

By definition, a NAS Head gets its storage from the network. As such, there is a cascading relationship between
the NAS Head Profile and the Profiles (e.g., Array Profiles) that provide the storage for the NAS Head. Figure 17
illustrates the constructs to be used to model this cascading relationship.

e The NAS Head Cascaded Resources are Primordial StorageExtents (used to populate Primordial
StoragePools)

= The NAS Head obtains the storage for these from Array or Storage Virtualizer Profiles

< Each Primordial StorageExtent maps (via Concreteldentity) to a StorageVolume (from the Array or Storage
Virtualizer Profile).

10.3.2 Ownership Privileges Asserted by NAS Heads

In support of the Cascading NAS Heads may assert ownership over the StorageVolumes that they import. If the
Array or Storage Virtualizer implementation supports Ownership, NAS Heads would assert ownership using the
following Privilege:

= Activity - Execute

= ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool

« FormatQualifier - Method

10.3.3 NAS Head Limitations on use of the Cascading Subprofile

The NAS Head support for Cascading places the following limitations and restrictions on the Cascading Subprofile:

< The AllocationService is not supported. - Allocation is done as a side effect of assigning the extents to the
Primordial pool.

= CascadingDependency - The CascadingDependency may exist, even when there are no resources that are
imported. This signifies that the NAS Head has discovered the Array or Virtualizer, but has no access to any of
their volumes.

EXPERIMENTAL

10.4 Supported Subprofiles and Packages

Table 107: Supported Profiles for NAS Head

Registered Profile Names Mandatory Version

Indication Yes 1.2.0

SMI-S 1.2.0 Revision 6 SNIA Technical Position 223

NAS Head Profile

Table 107: Supported Profiles for NAS Head

Registered Profile Names Mandatory Version
Filesystem Yes 1.2.0
File Storage Yes 1.2.0
File Export Yes 1.2.0
Cascading No 1.2.0
Access Points No 1.2.0
Multiple Computer System No 1.2.0
Software No 1.2.0
Location No 1.2.0
Extent Composition No 1.2.0
Filesystem Manipulation No 1.2.0
File Export Manipulation No 1.2.0
Job Control No 1.2.0
SPI Initiator Ports No 1.2.0
FC Initiator Ports No 1.2.0
Device Credentials No 1.2.0
Physical Package Yes 1.2.0
Block Services Yes 1.2.0
Health Yes 1.2.0

10.5 Methods of the Profile

10.5.1 Extrinsic Methods of the Profile

None.

10.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

e Getlnstance
e Associators
= AssociatorNames

« References

224

NAS Head Profile

e ReferenceNames
e Enumeratelnstances
< EnumeratelnstanceNames

Manipulation functions are supported in subprofiles of the profile.

10.6 Client Considerations and Recipes

Not defined in this version of the specification.

10.7 Registered Name and Version
NAS Head version 1.2.0

SMI-S 1.2.0 Revision 6 SNIA Technical Position 225

10.8 CIM Elements

NAS Head Profile

Table 108: CIM Elements for NAS Head

Element Name

Requirement

Description

CIM_BindsTo (CIFS or NFS) (10.8.1)

Conditional

Conditional requirement: This is required if a
TCPProtocolEndpoint exists. Associates a
CIFS or NFS ProtocolEndpoint to an
underlying TCPProtocolEndpoint. This is used
in the NAS Head to support the TCP/IP
Network protocol stack.

CIM_BindsTo (TCP) (10.8.2)

Conditional

Conditional requirement: This is required if an
IPProtocolEndpoint exists. Associates a
TCPProtocolEndpoint to an underlying
IPProtocolEndpoint. This is used in the NAS
Head to support the TCP/IP Network protocol
stack.

CIM_BindsToLANEnNdpoint (10.8.3)

Conditional

Conditional requirement: This is required if a
LANENdpoint exists. Associates an
IPProtocolEndpoint to an underlying
LANENdpoint in the NAS Head (to support the
TCP/IP Network protocol stack).

CIM_ComputerSystem (Top Level) (10.8.4)

Mandatory

This declares that at least one computer
system entry will pre-exist. The Name
property should be the Unique identifier for the
NAS Head.

CIM_ComputerSystem (File Server) (10.8.5)

Mandatory

This declares that at least one computer
system that provides File Server capabilities
will pre-exist. This could be the same as the
top-level ComputerSystem but this would not
be true in a cluster, so this has a separate
entry that is not tagged as a top level system.
The File Server(s) must be manageable as a
computer system and so could be exposed
through other profiles and so there must be a
way to correlate it with other management
clients.

CIM_ConcreteComponent (10.8.6)

Optional

Represents the association between a
Primordial StoragePool and the underlying
StorageExtents that compose it.

CIM_DeviceSAPImplementation (CIFS or
NFS to NetworkPort) (10.8.7)

Mandatory

(CIFS or NFS to NetworkPort) Represents the
association between a CIFS or NFS
ProtocolEndpoint and the NetworkPort that it
supports.

CIM_DeviceSAPImplementation
(LANEnNdpoint to NetworkPort) (10.8.8)

Conditional

Conditional requirement: This is required if a
LANEnNdpoint exists. (LANEndpoint to
NetworkPort) Associates a logical front end
Port (a NetworkPort) to the LANEndpoint that
uses that device to connect to a LAN.

226

NAS Head Profile

Table 108: CIM Elements for NAS Head

Element Name

Requirement

Description

CIM_HostedAccessPoint (CIFS or NFS)
(10.8.9)

Mandatory

(CIFS or NFS) Represents the association
between a CIFS or NFS front end
ProtocolEndpoint and the Computer System
that hosts it.

CIM_HostedAccessPoint (TCP) (10.8.10)

Conditional

Conditional requirement: This is required if a
TCPProtocolEndpoint exists. Represents the
association between a front end
TCPProtocolEndpoint and the Computer
System that hosts it.

CIM_HostedAccessPoint (IP) (10.8.11)

Conditional

Conditional requirement: This is required if an
IPProtocolEndpoint exists. Represents the
association between a front end
IPProtocolEndpoint and the Computer System
that hosts it.

CIM_HostedAccessPoint (LAN) (10.8.12)

Conditional

Conditional requirement: This is required if a
LANEnNdpoint exists. Represents the
association between a front end LANEndpoint
and the Computer System that hosts it.

CIM_IPProtocolEndpoint (10.8.13)

Optional

Represents the front-end ProtocolEndpoint
used to support the IP protocol services.

CIM_LANEnNdpoint (10.8.14)

Optional

Represents the front-end ProtocolEndpoint
used to support a Local Area Network and its
services.

CIM_LogicalDisk (LD for FS) (10.8.15)

Mandatory

Represents the single Storage Extent on
which the NAS Head will build a
LocalFileSystem.

CIM_NetworkPort (10.8.16)

Mandatory

Represents the front end logical port that
supports access to a local area network.

CIM_ProtocolEndpoint (CIFS or NFS)
(10.8.17)

Mandatory

(CIFS or NFS) Represents the front-end
ProtocolEndpoint used to support NFS and
CIFS services.

CIM_StorageExtent (Primordial) (10.8.18)

Optional

This StorageExtent represents the LUNs
(StorageVolumes) imported from a storage
device to the NAS Head.

CIM_SystemDevice (Storage Extents)
(10.8.19)

Conditional

Conditional requirement: This is required if
primordial StorageExtents exist. This
association links all StorageExtents to the
scoping system.

CIM_SystemDevice (Logical Disks) (10.8.20)

Mandatory

This association links all LogicalDisks to the
scoping system.

CIM_SystemDevice (Network Ports)
(10.8.21)

Mandatory

This association links all NetworkPorts to the
scoping system. This is used to represent
both front end and back end ports.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

227

NAS Head Profile

Table 108: CIM Elements for NAS Head

Element Name

Requirement

Description

CIM_TCPProtocolEndpoint (10.8.22) Optional Represents the front-end ProtocolEndpoint
used to support TCP services.

SELECT * FROM CIM_InstModification Optional Experimental CQL - Change of Status of a

WHERE Sourcelnstance ISA NAS ComputerSystem (controller).

CIM_ComputerSystem AND .) .

Sourcelnstance.CIM_ComputerSystem::Oper PreviouslInstance is optional, but may be

ationalStatus <> supplied by an implementation of the Profile.

Previousinstance.CIM_ComputerSystem::Op

erationalStatus

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL - Change of Status of a NAS

WHERE Sourcelnstance ISA ComputerSystem (controller).

CIM_ComputerSystem AND)))

Sourcelnstance.OperationalStatus <> Previouslnstance is optional, but may be

Previousinstance.OperationalStatus supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification Optional Experimental CQL - Change of Status of a

WHERE Sourcelnstance ISA Port.

CIM_NetworkPort AND)) .

Sourcelnstance.CIM_NetworkPort::Operation PreviousInstance is optional, but may be

alStatus <> supplied by an implementation of the Profile.

Previousinstance.CIM_NetworkPort::Operatio

nalStatus

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL - Change of Status of a Port.

WHERE Sourcelnstance ISA . . .

CIM NetworkPort AND Previousinstance is optional, but may be

Sour_ceInstance.OperationaIStatus <> supplied by an implementation of the Profile.

Previouslnstance.OperationalStatus

SELECT * FROM CIM_InstModification Optional Experimental CQL - Change of Status of a

WHERE Sourcelnstance ISA ProtocolEndpoint

CIM_ProtocolEndpoint AND)))

Sourcelnstance.CIM_ProtocolEndpoint::Oper Previousinstance is optional, but may be

ationalStatus <> supplied by an implementation of the Profile.

Previousinstance.CIM_ProtocolEndpoint::Ope

rationalStatus

SELECT * FROM CIM_InstModification Optional Experimental CQL - Change of Status of a

WHERE Sourcelnstance ISA ProtocolEndpoint

CIM_ProtocolEndpoint AND)) .

Sourcelnstance.OperationalStatus <> PreviousInstance is optional, but may be

PreviousInstance.OperationalStatus supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification Optional Experimental CQL - Change of status of a

WHERE Sourcelnstance ISA
CIM_LogicalDisk AND
Sourcelnstance.CIM_LogicalDisk::Operationa
[Status <>
Previousinstance.CIM_LogicalDisk::Operation
alStatus

LogicalDisk.

Previouslnstance is optional, but may be
supplied by an implementation of the Profile.

228

NAS Head Profile

Table 108: CIM Elements for NAS Head

Element Name Requirement | Description
SELECT * FROM CIM_InstModification Mandatory Deprecated WQL - Change of status of a
WHERE Sourcelnstance ISA LogicalDisk.

CIM_LogicalDisk AND
Sourcelnstance.OperationalStatus <>
Previousinstance.OperationalStatus

Previousinstance is optional, but may be
supplied by an implementation of the Profile.

10.8.1 CIM_BindsTo (CIFS or NFS)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: TCPProtocolEndpoint

Table 109 describes class CIM_BindsTo (CIFS or NFS).

Table 109: SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The ProtocolEndpoint that uses a lower level
ProtocolEndpoint for connectivity.

Antecedent Mandatory The TCPProtocolEndpoint that supports a CIFS or NFS
ProtocolEndpoint.

10.8.2 CIM_BindsTo (TCP)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: IPProtocolEndpoint

Table 110 describes class CIM_BindsTo (TCP).

Table 110: SMI Referenced Properties/Methods for CIM_BindsTo (TCP)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The TCPProtocolEndpoint that uses an IPProtocolEndpoint
for connectivity.

Antecedent Mandatory The IPProtocolEndpoint that supports a
TCPProtocolEndpoint.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 229

10.8.3 CIM_BindsToLANENdpoint

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: LANEndpoint

Table 111 describes class CIM_BindsToLANEnNdpoint.

NAS Head Profile

Table 111: SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Properties Flags Requirement | Description & Notes

FrameType Mandatory Only supports 1="Ethernet" at this point.
Dependent Mandatory An IPProtocolEndpoint.

Antecedent Mandatory A LANEnNdpoint.

10.8.4 CIM_ComputerSystem (Top Level)

Created By: Static
Modified By: External
Deleted By: Static

Class Mandatory: Mandatory

Table 112 describes class CIM_ComputerSystem (Top Level).

Table 112: SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Properties Flags Requirement | Description & Notes

CreationClassName Mandatory The actual class of this object, e.g.,
Vendor_NASComputerSystem.

ElementName Mandatory User friendly name

Name Mandatory Unique identifier for the NAS Head in a format specified by
NameFormat. For example, IP address or Vendor/Model/
SerialNo.

OperationalStatus Mandatory Overall status of the NAS Head

NameFormat Mandatory Format for Name property.

PrimaryOwnerContac | M Optional Owner of the NAS Head

t

PrimaryOwnerName M Optional Contact details for owner

230

Table 112: SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

NAS Head Profile

Properties Flags Requirement | Description & Notes

Dedicated Mandatory This shall be a NAS Head (24).

Otherldentifyinginfo Mandatory An array of know identifiers for the NAS Head.

IdentifyingDescription | C Mandatory An array of descriptions of the OtherldentifyingInfo. Some

S of the descriptions would be "Ipv4 Address"”, "Ipv6 Address"
or "Fully Qualified Domain Name".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.

nge

Roles Optional Not Specified in this version of the Profile.

OtherDedicatedDesc Optional Not Specified in this version of the Profile.

riptions

ResetCapability N Optional Not Specified in this version of the Profile.

RequestStateChange Optional Not Specified in this version of the Profile.

0

10.8.5 CIM_ComputerSystem (File Server)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

SMI-S 1.2.0 Revision 6

SNIA Technical Position

231

NAS Head Profile

Table 113 describes class CIM_ComputerSystem (File Server).

Table 113: SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)

Properties Flags Requirement | Description & Notes

Dedicated Mandatory This is a File Server (Dedicated=16). It could also support
other capabilities, so we do not restrict the values that can
be in the Dedicated array.

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the NAS Head's File Servers, e.g.,
Vendor/Model/SerialNo+FS+Number. The Fileserver can
have any number of IP addresses, so an IP address does
not constitute a single unique id. Also, under various load-
balancing or redundancy regimens, the IP address could
move around, so it may not even be correlatable. For that
reason, the vendor must support a format that will provide a
unique ID for the file server.

OperationalStatus Mandatory Overall status of the File Server.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.

nge

Roles Optional Not Specified in this version of the Profile.

OtherDedicatedDesc Optional Not Specified in this version of the Profile.

riptions

ResetCapability N Optional Not Specified in this version of the Profile.

PrimaryOwnerContac | N Optional Not Specified in this version of the Profile.

t

PrimaryOwnerName | N Optional Not Specified in this version of the Profile.

Otherldentifyinginfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription | N Optional Not Specified in this version of the Profile.

S

232

NAS Head Profile

Table 113: SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)

Properties Flags Requirement | Description & Notes

RequestStateChange Optional Not Specified in this version of the Profile.
0

10.8.6 CIM_ConcreteComponent

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: Optional

Table 114 describes class CIM_ConcreteComponent.

Table 114: SMI Referenced Properties/Methods for CIM_ConcreteComponent

Properties Flags Requirement | Description & Notes

GroupComponent Mandatory The Primordial StoragePool that is built from the
StorageExtent.

PartComponent Mandatory A StorageExtent that is part of a Primordial StoragePool.

10.8.7 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: Mandatory

Table 115 describes class CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort).

Table 115: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS

to NetworkPort)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The ProtocolEndpont that supports on the NetworkPort.
These include ProtocolEndpoints for NFS and CIFS.

Antecedent Mandatory The NetworkPort supported by the Access Point.

10.8.8 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)

SMI-S 1.2.0 Revision 6 SNIA Technical Position

233

NAS Head Profile

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: LANEndpoint

Table 116 describes class CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort).

Table 116: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint
to NetworkPort)

Properties Flags Requirement | Description & Notes

Dependent Mandatory A LANEnNdpoint that depends on a NetworkPort for
connecting to its LAN segment.

Antecedent Mandatory The Logical network adapter device that connects to a
LAN.

10.8.9 CIM_HostedAccessPoint (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: Mandatory

Table 117 describes class CIM_HostedAccessPoint (CIFS or NFS).

Table 117: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The ServiceAccessPoint hosted on the file server. These
include ProtocolEndpoints for NFS or CIFS.

Antecedent Mandatory The Computer System hosting this Access Point. In the
context of the NAS Head, these are always file servers
(Dedicated=16).

10.8.10 CIM_HostedAccessPoint (TCP)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: TCPProtocolEndpoint

234

NAS Head Profile

Table 118 describes class CIM_HostedAccessPoint (TCP).

Table 118: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)

Properties Flags Requirement | Description & Notes
Dependent Mandatory The TCPProtocolEndpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

10.8.11 CIM_HostedAccessPoint (IP)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: IPProtocolEndpoint

Table 119 describes class CIM_HostedAccessPoint (IP).

Table 119: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)

Properties Flags Requirement | Description & Notes
Dependent Mandatory The IPProtocolEndpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

10.8.12 CIM_HostedAccessPoint (LAN)

Created By: External

Modified By: Static

Deleted By: External

Class Mandatory: LANEndpoint

Table 120 describes class CIM_HostedAccessPoint (LAN).

Table 120: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)

Properties Flags Requirement | Description & Notes
Dependent Mandatory The LANEndpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

SMI-S 1.2.0 Revision 6 SNIA Technical Position

235

10.8.13 CIM_IPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External

Class Mandatory: Optional

Table 121 describes class CIM_IPProtocolEndpoint.

NAS Head Profile

Table 121: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha Optional

nge

Description Mandatory This shall be the IP protocol endpoints supported by the
NAS Head.

ProtocollFType Mandatory 4096="1P v4", 4097="IP v6", and 4098 is both. (Note that
1="Other" is not supported)

IPv4Address Mandatory An IP v4 address in the format "A.B.C.D".

IPv6Address Mandatory

SubnetMask Mandatory An IP v4 subnet mask in the format "A.B.C.D".

PrefixLength Mandatory For an IPv6 address.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

236

NAS Head Profile

Table 121: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement | Description & Notes

HealthState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
OtherTypeDescriptio | N Optional Not Specified in this version of the Profile.
n

BroadcastResetSupp | N Optional Not Specified in this version of the Profile.
orted

AddressOrigin N Optional Not Specified in this version of the Profile.
RequestStateChange Optional Not Specified in this version of the Profile.
0

BroadcastReset() Optional Not Specified in this version of the Profile.

10.8.14 CIM_LANEnNdpoint

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 122 describes class CIM_LANEnNdpoint.

Table 122: SMI Referenced Properties/Methods for CIM_LANEnNdpoint

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha Optional

nge

SMI-S 1.2.0 Revision 6 SNIA Technical Position 237

NAS Head Profile

Table 122: SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement | Description & Notes

Description Mandatory This shall be the LAN protocol endpoints supported by the
NAS Head.

ProtocollFType Mandatory LAN endpoints supported are: 1="Other",6="Ethernet
CSMA/CD", 9="ISO 802.5 Token Ring", 15="FDDI".

OtherTypeDescriptio Optional If the LAN endpoint is a vendor-extension specified by

n "Other" and a description.

LANID N Optional A unique id for the LAN segment to which this device is
connected. The value will be NULL if the LAN is not
connected.

MACAddress Mandatory Primary Unicast address for this LAN device.

AliasAddresses Mandatory Other unicast addresses supported by this device.

GroupAddresses Mandatory Multicast addresses supported by this device.

MaxDataSize Mandatory The max size of packet supported by this LAN device.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

BroadcastResetSupp | N Optional Not Specified in this version of the Profile.

orted

RequestStateChange Optional Not Specified in this version of the Profile.

0

BroadcastReset() Optional Not Specified in this version of the Profile.

10.8.15 CIM_LogicalDisk (LD for FS)

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

238

NAS Head Profile

Table 123 describes class CIM_LogicalDisk (LD for FS).

Table 123: SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory CIM Class of the NAS Head Computer System that is the

sName host of this LogicalDisk.

SystemName Mandatory Name of the NAS Head Computer System that hosts this
LogicalDisk.

CreationClassName Mandatory CIM Class of this instance of LogicalDisk.

DevicelD Mandatory Opaque identifier for the LogicalDisk.

OperationalStatus Mandatory A subset of operational status that is applicable for
LogicalDisks in a NAS Head.

ExtentStatus Mandatory This LogicalDisk is neither imported (16) nor exported (17).

Primordial Mandatory This represents a Concrete Logical Disk that is not
primordial.

Name Mandatory Identifier for a local LogicalDisk that will be used for a
filesystem; since this logical disk will be referenced by a
client, it must have a unigue name. We cannot constrain
the format here, but the OS-specific format described in the
Block Services specification is not appropriate, so "Other"
is used.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the
NAS Head. This shall be coded as "1" ("other").

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.

nge

Otherldentifyinginfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription Optional Not Specified in this version of the Profile.

S

AdditionalAvailability | N Optional Not Specified in this version of the Profile.

Locationindicator N Optional Not Specified in this version of the Profile.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 239

NAS Head Profile

Table 123: SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Properties Flags Requirement | Description & Notes

DataOrganization N Optional Not Specified in this version of the Profile.
Purpose N Optional Not Specified in this version of the Profile.
Access N Optional Not Specified in this version of the Profile.
ErrorMethodology N Optional Not Specified in this version of the Profile.
SequentialAccess N Optional Not Specified in this version of the Profile.
NameNamespace N Optional Not Specified in this version of the Profile.
OtherNameNamespa | N Optional Not Specified in this version of the Profile.
ce

OtherNameFormat N Optional Not Specified in this version of the Profile.
RequestStateChange Optional Not Specified in this version of the Profile.
0

Reset() Optional Not Specified in this version of the Profile.

10.8.16 CIM_NetworkPort

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 124 describes class CIM_NetworkPort.

Table 124: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement | Description & Notes

ElementName Mandatory A user-friendly name for this Network adapter that provides
a network port.

OperationalStatus Mandatory The operational status of the adapter.

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName Network Port.

SystemName Mandatory The name of the Computer System hosting the Network
Port.

CreationClassName Mandatory The CIM Class name of the Network Port.

DevicelD Mandatory A unique ID for the device (in the context of the hosting
System).

Speed Optional

240

NAS Head Profile

Table 124: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement | Description & Notes

MaxSpeed Optional

RequestedSpeed Optional

UsageRestriction Optional

PortType Optional

PortNumber Optional A unique number for the adapter in the context of the
hosting System.

PermanentAddress C Mandatory The hard-coded address of this port.

NetworkAddresses Mandatory An array of network addresses for this port.

LinkTechnology Optional 1="Other", 2="Ethernet", 3="IB", 4="FC", 5="FDDI",
6="ATM", 7="Token Ring", 8="Frame Relay", 9="Infrared",
10="BlueTooth", 11="Wireless LAN. The link technology
supported by this adapter.

OtherLinkTechnology Optional The vendor-specific "Other" link technology supported by
this adapter.

FullDuplex Optional

AutoSense Optional

SupportedMaximumT Optional

ransmissionUnit

ActiveMaximumTrans Optional

missionUnit

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

Name N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.

nge

Otherldentifyinginfo Optional Not Specified in this version of the Profile.

IdentifyingDescription Optional Not Specified in this version of the Profile.

s

SMI-S 1.2.0 Revision 6

SNIA Technical Position

241

NAS Head Profile

Table 124: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement | Description & Notes

AdditionalAvailability | N Optional Not Specified in this version of the Profile.
LocationIndicator N Optional Not Specified in this version of the Profile.
OtherPortType N Optional Not Specified in this version of the Profile.
RequestStateChange Optional Not Specified in this version of the Profile.
0

Reset() Optional Not Specified in this version of the Profile.

10.8.17 CIM_ProtocolEndpoint (CIFS or NFS)

Created By: External
Modified By: External
Deleted By: External

Class Mandatory: Mandatory

Table 125 describes class CIM_ProtocolEndpoint (CIFS or NFS).

Table 125: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha Optional

nge

Description Mandatory This shall be one of the NFS or CIFS protocol endpoints
supported by the NAS Head.

242

Table 125: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

NAS Head Profile

Properties Flags Requirement | Description & Notes

ProtocollFType Mandatory This represents either NFS=4200 or CIFS=4201. Other
protocol types are specified in subclasses of
ProtocolEndpoint.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio | N Optional Not Specified in this version of the Profile.

n

BroadcastResetSupp | N Optional Not Specified in this version of the Profile.

orted

RequestStateChange Optional Not Specified in this version of the Profile.

0

BroadcastReset() Optional Not Specified in this version of the Profile.

10.8.18 CIM_StorageExtent (Primordial)

Created By: Static_or_External

Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 126 describes class CIM_StorageExtent (Primordial).

Table 126: SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial)

Properties Flags Requirement | Description & Notes
SystemCreationClas Mandatory

sName

SystemName Mandatory

CreationClassName Mandatory

DevicelD Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

SMI-S 1.2.0 Revision 6

SNIA Technical Position

243

NAS Head Profile

Table 126: SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial)

Properties Flags Requirement | Description & Notes

ExtentStatus Mandatory

OperationalStatus Mandatory

Name Mandatory Identifier for a remote LUN on a storage array; possibly, the
array ID plus LUN Node WWN. This LUN is imported from
a remote storage device, so the NameFormat identifies the
remote LUN by identifying the remote array and the unique
LUN ID at that array. As an example below, we have
specified a 16-character hex format for the Name taken
from the Node WWN format.

Primordial Mandatory The StorageExtent imported from an Array is considered
primordial in the NAS Head.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.

nge

Otherldentifyinginfo Optional Not Specified in this version of the Profile.

IdentifyingDescription | N Optional Not Specified in this version of the Profile.

S

AdditionalAvailability | N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

DataOrganization N Optional Not Specified in this version of the Profile.

Purpose N Optional Not Specified in this version of the Profile.

Access N Optional Not Specified in this version of the Profile.

ErrorMethodology N Optional Not Specified in this version of the Profile.

ConsumableBlocks N Optional Not Specified in this version of the Profile.

IsBasedOnUnderlyin | N Optional Not Specified in this version of the Profile.

gRedundancy

244

NAS Head Profile

Table 126: SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial)

Properties Flags Requirement | Description & Notes

SequentialAccess N Optional Not Specified in this version of the Profile.
NoSinglePointOfFailu | N Optional Not Specified in this version of the Profile.
re

DataRedundancy N Optional Not Specified in this version of the Profile.
PackageRedundancy | N Optional Not Specified in this version of the Profile.
DeltaReservation N Optional Not Specified in this version of the Profile.
NameNamespace N Optional Not Specified in this version of the Profile.
OtherNameNamespa | N Optional Not Specified in this version of the Profile.
ce

OtherNameFormat N Optional Not Specified in this version of the Profile.
RequestStateChange Optional Not Specified in this version of the Profile.
0

Reset() Optional Not Specified in this version of the Profile.

10.8.19 CIM_SystemDevice (Storage Extents)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External

Class Mandatory: StorageExtents

Table 127 describes class CIM_SystemDevice (Storage Extents).

Table 127: SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extents)

Properties Flags Requirement | Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The primordial StorageExtent that is imported to a
computer system in the NAS Head.

10.8.20 CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static

Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External

SMI-S 1.2.0 Revision 6 SNIA Technical Position

245

NAS Head Profile

Class Mandatory: Mandatory

Table 128 describes class CIM_SystemDevice (Logical Disks).

Table 128: SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The Computer System that contains this device.
PartComponent Mandatory The LogicalDisk that is a part of a computer system.

10.8.21 CIM_SystemDevice (Network Ports)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

Table 129 describes class CIM_SystemDevice (Network Ports).

Table 129: SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The Computer System that contains this device.
PartComponent Mandatory The NetworkPort that is a part of a computer system.

10.8.22 CIM_TCPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External

Class Mandatory: Optional

Table 130 describes class CIM_TCPProtocolEndpoint.

Table 130: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement | Description & Notes
SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the
sName Protocol Endpoint.

246

NAS Head Profile

Table 130: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement | Description & Notes

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha Optional

nge

Description Mandatory This shall be the TCP protocol endpoints supported by the
NAS Head.

ProtocollFType Mandatory 4111="TCP". Note that no other protocol type is supported
by this endpoint.

PortNumber Mandatory The number of the TCP Port that this element represents.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio | N Optional Not Specified in this version of the Profile.

n

BroadcastResetSupp | N Optional Not Specified in this version of the Profile.

orted

RequestStateChange Optional Not Specified in this version of the Profile.

0

BroadcastReset() Optional Not Specified in this version of the Profile.

STABLE

SMI-S 1.2.0 Revision 6

SNIA Technical Position

247

NAS Head Profile

248

Self-Contained NAS Profile

STABLE
Clause 11: Self-Contained NAS Profile

11.1 Description

11.1.1 Synopsis

Profile Name: Self-Contained NAS
Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: ComputerSystem
Scoping Class: ComputerSystem

11.1.2 Overview

The Self-contained NAS (SC NAS) profile exports File elements (contained in a filesystem) as FileShares. The
storage for the filesystem is obtained from captive storage. In the simplest case, this could be a set of directly
connected disks, but it could also be a captive storage array that is not shared with any other hosts or devices
(though it could be visible to external management tools and even actively managed independently).

This profile models the necessary filesystem and NAS concepts and defines how the connections to the underlying
storage is managed. The details of how a directly attached set of disks is used by the SC NAS profile is covered
as part of the Disk Drive or Disk Drive Lite subprofile. The details of how an underlying Storage Array might export
storage to the SC NAS is not covered in this profile but is covered by Clause 4: Array Profile in Storage
Management Technical Specification, Part 3 Block Devices.

The Self-contained NAS profile reuses a significant portion of Clause 4: Array Profile in Storage Management
Technical Specification, Part 3 Block Devices.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 249

The Self-Contained NAS Profile and its subprofiles and packages are illustrated in Figure 18.

Self-Contained NAS Profile

Figure 18: Self-Contained NAS Profile and Subprofiles

SystemDevice

[1

—

Indications

Concreteldentity

ComponentCS

[1

InstalledSoftwareldentity

Software

ComputerSystem

Self-Contained NAS

HostedService

[1

1

PhysicalPackage Package

Multiple
Computer System

PhysicalElen

—

—

Location

Initiator Ports

nentLocation

Package

—

File Export

HostedShare;

—

File Storage

HostedFileSystem

—

FileSystem | |

HostedAccessPoint

ConcreteComponent

Device Credentials

FileExportManipulation

HostedService

1

Block Services
Package

—

Filesystem
Manipulation

OwninngobElerrer\

OwningJobElement

—

Container

—

Extent
Composition

BasedOn

—

1

Access Points

—

Disk Drive
Lite

FS Quota

Job Control

11.1.3

250

Implementation

Self-Contained NAS Profile

11.1.3.1 Summary Instance Diagram

Figure 19 illustrates the mandatory classes of the Self-Contained NAS Profile. This figure shows all the classes
that are mandatory for the Self-contained NAS Profile. Later diagrams will review specific sections of this diagram.

Figure 19: Self-Contained NAS Instance

ProtocolEndPoint

NetworkPort
ProtocollFType= 4200|4201 | DeviceSAPImplementation
('NFS" or "CIFS")
I File Export SAPAuvailableForElement I
Profile
I FileShare
NFS or CIFS — I
I I Elements‘ettlngData SNIA_ExportedFileShareSetting I
ConcreteDependency SNIA_SharedElement
I (For Backward Compatibility) |
[i HostedDependency I
FileSystem (Conditional)
| Profile |
- - SNIA_LocallyAccessibleFileSystemSetting
LogicalFile (Conditional)
I (Directory) I
SystemDevice I I
I FileStorage Elemgntii_ttinngata I
(For Backward Compatibility) (Conditional) I
HostedShare .
SNIA_LocalAccessAvailable
(Conditional) I
\
I ‘ SNIA_LocalFileSystem ElementSettingData F|IeSéstfmS<lett|ng I
‘ (Optional) (Optional)
HostedFileSystem I File Storage I
Profile ResidesOnExtent
I (Conditional) I

ComputerSystem - .
Block Services Package
LogicalDisk
1
ElementSettingData StorageSetting
|
SystemDevice
AllocatedFromStoragePool
AllocatedFromStoragePool StoragePool ‘
|
‘ Elementc‘apabilities StorageCapabilities

HostedStoragePool

SMI-S 1.2.0 Revision 6 SNIA Technical Position 251

Self-Contained NAS Profile

The Self-Contained NAS Profile closely parallels the Array Profile in how it models storage. Storage is assigned to
StoragePools and LogicalDisks are allocated from those storage pools for the purpose of holding local filesystems
of the NAS.

As with the Array profile, the Self-contained NAS StoragePools have StorageCapabilities associated to the
StoragePools via ElementCapabilities. Similarly, LogicalDisks have StorageSettings, which are associated to the
LogicalDisk via ElementSettingData. StoragePools are hosted by a ComputerSystem that represents the NAS “top
level” system, and the LogicalDisks have a SystemDevice association to the “top level” ComputerSystem.

Note: As with Arrays, the StoragePools may be hosted by a component ComputerSystem if the profile has
implemented the Multiple Computer System Subprofile.

As with Arrays, the “top level” ComputerSystem of the Self-Contained NAS does not (and typically isn't) a real
ComputerSystem. It is merely the ManagedElement upon which all aspects of the NAS offering are scoped.

Everything above the LogicalDisk is specific to NAS (and does not appear in the Array Profile). LocalFileSystems
are created on the LogicalDisks, LogicialFiles within those LocalFileSystems are shared (FileShare) through
ProtocolEndpoints associated with NetworkPorts.

Note: The classes and associations in the dashed boxes are from the required packages and subprofiles (as
indicated by the labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with SMI-S 1.1.0. It represents a
relationship between a FileShare and a Directory.

The ResidesOnExtent is conditional on the use by NAS Profiles (NAS Head and Self-contained NAS) in the File
Storage Profile. In the Self-contained NAS a LocalFileSystem shall map to a LogicalDisk.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are only
shown here to illustrate where they would show up in the model should they be implemented.

In the base Self-Contained NAS profile, the classes and associations shown in Figure 19 are automatically
populated based on how the Self-Contained NAS is configured. Client modification of the configuration (including
configuring storage, creating extents, local filesystems and file shares) are functions found in subprofiles of the
profile.

EXPERIMENTAL

11.1.3.2 Combination Profile Considerations

Some devices combine the function of an array with the function of a Self-contained NAS. There are a number of
approaches that may be used to model such a device. One way is to present two seemly independent profiles in
the SAN (e.g., Array and SC NAS). In this case, there may be duplication of instances. These duplicates would be
recognized by clients via correlated ids.

Another approach would be to use one, shared top level ComputerSystem that reflects both the SC NAS and the
Array in its ComputerSystem.Dedicated property. In this case, care must be taken to ensure the sharing of
instances between the profiles do not conflict with their respective profile definitions.

For more information on the rules for combination profiles, see section B.5 of Annex B: (Normative) Compliance
with the SNIA SMI Specification in Storage Management Technical Specification, Part 1 Common Architecture.

EXPERIMENTAL

252

Self-Contained NAS Profile

11.1.3.3 NAS Storage Model
Figure 20 illustrates the classes mandatory for modeling of storage for the Self-Contained NAS Profile.

Figure 20: NAS Storage Instance

ComputerSystem

Block Services Package

StorageSetting

LogicalDisk ElementSettingData

SystemDevice ‘

AllocatedFromStoragePool

StoragePool StorageCapabilities

ElementCapabilities

HostedStoragePool

_

The Self-Contained NAS Profile uses most of the classes and associations defined in the Array Profile (including
those in the Block Services Package). In doing this, it leverages many of the subprofiles that are available for Array
Profiles. The classes and associations shown in Figure 20 are the minimum mandatory classes and associations
of the Block Services Package for read only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled, including the
HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the StoragePool. In addition,
in order for storage to be used it shall be allocated to one or more LogicalDisks. A LogicalDisk shall have an
AllocatedFromStoragePool association to the StoragePool from which it is allocated. And the LogicalDisk shall
have an ElementSettingData association to the settings that were used when the LogicalDisk was created.

Note: At this level, the model for storage is the same for both the Self-contained NAS Profile and the NAS
Head Profile. In the case of the Self-contained NAS, storage for the StoragePools is drawn from Disk
Drives. Modeling of Disk Drives is Optional (See Clause 11: Disk Drive Lite Subprofile of Storage
Management Technical Specification, Part 3 Block Devices).

For manipulation of Storage, see Clause 5: Block Services Package in the Block Devices Book. For Self-Contained
NAS, LogicalDisks are the ElementType that is supported for storage allocation functions (e.g.,
CreateOrModifyElementFromStoragePool and ReturnToStoragePool), but the Block Services methods for
managing LogicalDisks are optional for the Self-Contained NAS Profile. The Self-Contained NAS Profile also
supports (optionally) the Pool manipulation functions (e.g., CreateOrModifyStoragePool and DeleteStoragePool) of
the Block Services Package.

11.1.3.4 Self-Contained NAS Use of Filesystem Profile (Mandatory)

The Self-Contained NAS Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the Self-
Contained NAS, the Filesystem Profile shall be supported. See Clause 7: Filesystem Profile for details on this
modeling.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 253

Self-Contained NAS Profile

11.1.3.5 Self-Contained NAS Use of File Storage Profile (Mandatory)

The Self-Contained NAS Profile uses the File Storage Profile for modeling of its file storage constructs. For the
Self-Contained NAS, the Filesystem Profile shall be supported. See Clause 6: File Storage Profile for details on the
file storage modeling.

11.1.3.6 Self-Contained NAS Use of File Export Profile (Mandatory)

The Self-Contained NAS Profile uses the File Export Profile for modeling of its file export constructs. For the Self-
Contained NAS, the File Export Profile shall be supported. See Clause 4: File Export Profile for details on this
modeling.

11.2 Health and Fault Management Considerations

Self-Contained NAS supports state information (e.g., OperationalStatus) on the following elements of the model:
< Network Ports (See 11.2.1 OperationalStatus for Network Ports)

= Back-end Ports (See 17.3.1 Health and Fault Management Considerations ofStorage Management Technical
Specification, Part 2 Common Profiles)

e ComputerSystems (See 28.1.5 Computer System Operational Status of Storage Management Technical
Specification, Part 2 Common Profiles)

= FileShares that are exported (See 4.2.1 OperationalStatus for FileShares)
= LocalFileSystems (See 7.2.1 OperationalStatus for Filesystems)
= ProtocolEndpoints (See 11.2.2 OperationalStatus for ProtocolEndpoints)

e DiskDrive (See 11.2 Health and Fault Management Considerations of Storage Management Technical
Specification, Part 3 Block Devices)

254

Self-Contained NAS Profile

11.2.1 OperationalStatus for Network Ports

Table 131: NetworkPort OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown

11.2.2 OperationalStatus for ProtocolEndpoints

Table 132: ProtocolEndpoint OperationalStatus

OperationalStatus Description
OK ProtocolEndpoint is online
Error ProtocolEndpoint has a failure
Stopped ProtocolEndpoint is disabled
Unknown

11.3 Cascading Considerations
Not Applicable.

11.4 Supported Subprofiles and Packages

Table 133: Supported Profiles for Self-contained NAS System

Registered Profile Names Mandatory Version
Indication Yes 1.2.0
Filesystem Yes 1.2.0
File Storage Yes 1.2.0
File Export Yes 1.2.0
Access Points No 1.2.0
Multiple Computer System No 1.2.0
Software No 1.2.0
Location No 1.2.0
Extent Composition No 1.2.0

SMI-S 1.2.0 Revision 6 SNIA Technical Position 255

Self-Contained NAS Profile

Table 133: Supported Profiles for Self-contained NAS System

Registered Profile Names Mandatory Version
Filesystem Manipulation No 1.2.0
File Export Manipulation No 1.2.0
Job Control No 1.2.0
Disk Drive Lite No 1.2.0
SPI Initiator Ports No 1.2.0
FC Initiator Ports No 1.2.0
iISCSI Initiator Ports No 1.2.0
Device Credentials No 1.2.0
Physical Package Yes 1.2.0
Block Services Yes 1.2.0
Health Yes 1.2.0

11.5 Methods of the Profile

11.5.1 Extrinsic Methods of the Profile

None.

11.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= (Getlnstance

= Associators

< AssociatorNames

< References

< ReferenceNames

< Enumeratelnstances

= EnumeratelnstanceNames

Manipulation functions are supported in subprofiles of the profile.

11.6 Client Considerations and Recipes

Not defined in this version of the specification

256

Self-Contained NAS Profile

11.7 Registered Name and Version
Self-contained NAS System version 1.2.0

SMI-S 1.2.0 Revision 6 SNIA Technical Position 257

Self-Contained NAS Profile

11.8 CIM Elements

Table 134: CIM Elements for Self-contained NAS System

Element Name

Requirement

Description

CIM_BindsTo (CIFS or NFS) (11.8.1)

Conditional

Conditional requirement: This is required if a
TCPProtocolEndpoint exists. Associates a
CIFS or NFS ProtocolEndpoint to an
underlying TCPProtocolEndpoint. This is used
in the Self-contained NAS System to support
the TCP/IP Network protocol stack.

CIM_BindsTo (TCP) (11.8.2)

Conditional

Conditional requirement: This is required if an
IPProtocolEndpoint exists. Associates a
TCPProtocolEndpoint to an underlying
IPProtocolEndpoint. This is used in the Self-
contained NAS System to support the TCP/IP
Network protocol stack.

CIM_BindsToLANEnNdpoint (11.8.3)

Conditional

Conditional requirement: This is required if a
LANENdpoint exists. Associates an
IPProtocolEndpoint to an underlying
LANENdpoint in the Self-contained NAS
System (to support the TCP/IP Network
protocol stack).

CIM_ComputerSystem (Top Level) (11.8.4)

Mandatory

This declares that at least one computer
system entry will pre-exist. The Name
property should be the Unigque identifier for the
Self-contained NAS System.

CIM_ComputerSystem (File Server) (11.8.5)

Mandatory

This declares that at least one computer
system that provides File Server capabilities
will pre-exist. This could be the same as the
top-level ComputerSystem but this would not
be true in a cluster, so this has a separate
entry that is not tagged as a top-level system.
The File Server(s) shall be manageable as a
computer system and so could be exposed
through other profiles and so there shall be a
way to correlate it with other management
clients.

CIM_DeviceSAPImplementation (CIFS or
NFS to NetworkPort) (11.8.6)

Mandatory

(CIFS or NFS to NetworkPort) Represents the
association between a CIFS or NFS
ProtocolEndpoint and the NetworkPort that it
supports.

CIM_DeviceSAPImplementation
(LANEnNndpoint to NetworkPort) (11.8.7)

Conditional

Conditional requirement: This is required if a
LANEnNdpoint exists. (LANEndpoint to
NetworkPort) Associates a logical front end
Port (a NetworkPort) to the LANEndpoint that
uses that device to connect to a LAN.

CIM_HostedAccessPoint (CIFS or NFS)
(11.8.8)

Mandatory

(CIFS or NFS) Represents the association
between a front end ProtocolEndpoint and the
Computer System that hosts it.

258

Self-Contained NAS Profile

Table 134: CIM Elements for Self-contained NAS System

Element Name

Requirement

Description

CIM_HostedAccessPoint (TCP) (11.8.9)

Conditional

Conditional requirement: This is required if a
TCPProtocolEndpoint exists. Represents the
association between a front end
TCPProtocolEndpoint and the Computer
System that hosts it.

CIM_HostedAccessPoint (IP) (11.8.10)

Conditional

Conditional requirement: This is required if an
IPProtocolEndpoint exists. Represents the
association between a front end
IPProtocolEndpoint and the Computer System
that hosts it.

CIM_HostedAccessPoint (LAN) (11.8.11)

Conditional

Conditional requirement: This is required if a
LANENdpoint exists. Represents the
association between a front end LANEndpoint
and the Computer System that hosts it.

CIM_IPProtocolEndpoint (11.8.12)

Optional

Represents the front-end ProtocolEndpoint
used to support the IP protocol services.

CIM_LANEnNdpoint (11.8.13)

Optional

Represents the front-end ProtocolEndpoint
used to support a Local Area Network and its
services.

CIM_LogicalDisk (Disk for FS) (11.8.14)

Mandatory

Represents LogicalDisks used for building
LocalFileSystems.

CIM_NetworkPort (11.8.15)

Mandatory

Represents the front end logical port that
supports access to a local area network.

CIM_ProtocolEndpoint (CIFS or NFS)
(11.8.16)

Mandatory

(CIFS or NFS) Represents the front-end
ProtocolEndpoint used to support NFS and
CIFS services.

CIM_SystemDevice (Logical Disks) (11.8.17)

Mandatory

This association links all LogicalDisks to the
scoping system.

CIM_SystemDevice (Network Ports) (11.8.18)

Mandatory

This association links all NetworkPorts to the
scoping system.

CIM_TCPProtocolEndpoint (11.8.19)

Optional

Represents the front-end ProtocolEndpoint
used to support TCP services.

SELECT * FROM CIM_InstModification
WHERE Sourcelnstance ISA
CIM_ComputerSystem AND
Sourcelnstance.CIM_ComputerSystem::Oper
ationalStatus[*] <>
Previousinstance.CIM_ComputerSystem::Op
erationalStatus|[*]

Optional

Experimental CQL - Change of Status of a
NAS ComputerSystem (controller).

Previousinstance is optional, but may be
supplied by an implementation of the Profile.

SMI-S 1.2.0 Revision 6

SNIA Technical Position

259

Self-Contained NAS Profile

Table 134: CIM Elements for Self-contained NAS System

Element Name

Requirement

Description

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL - Change of Status of a NAS
WHERE Sourcelnstance ISA ComputerSystem (controller).
CIM_ComputerSystem AND . . .
Sourcelnstance.OperationalStatus <> Previousinstance is optional, but may be
PreviousInstance.OperationalStatus supplied by an implementation of the Profile.
SELECT * FROM CIM_InstModification Optional Experimental CQL - Change of Status of a
WHERE Sourcelnstance ISA Port.

CIM_NetworkPort AND . . .
Sourcelnstance.CIM_NetworkPort::Operation PreviousInstance is optional, but may be
alStatus[*] <> supplied by an implementation of the Profile.
Previousinstance.CIM_NetworkPort::Operatio

nalStatus[*]

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL - Change of Status of a Port.
WHERE Sourcelnstance ISA)))

CIM NetworkPort AND Previousinstance is optional, but may be
Sour_ceInstance.OperationaIStatus <> supplied by an implementation of the Profile.
Previouslnstance.OperationalStatus

SELECT * FROM CIM_InstModification Optional Experimental CQL - Change of Status of a
WHERE Sourcelnstance ISA ProtocolEndpoint

CIM_ProtocolEndpoint AND)) .
Sourcelnstance.CIM_ProtocolEndpoint::Oper PreviousInstance is optional, but may be
ationalStatus[*] <> supplied by an implementation of the Profile.
Previousinstance.CIM_ProtocolEndpoint::Ope

rationalStatus[*]

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL - Change of status of a

WHERE Sourcelnstance ISA
CIM_LogicalDisk AND
Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus

LogicalDisk.

Previouslnstance is optional, but may be
supplied by an implementation of the Profile.

11.8.1 CIM_BindsTo (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: TCPProtocolEndpoint

260

Self-Contained NAS Profile

Table 135 describes class CIM_BindsTo (CIFS or NFS).

Table 135: SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The ProtocolEndpoint that uses a lower level
ProtocolEndpoint for connectivity.

Antecedent Mandatory The TCPProtocolEndpoint that supports a CIFS or NFS

ProtocolEndpoint.

11.8.2 CIM_BindsTo (TCP)

Created By: External
Modified By: Static

Deleted By: External

Class Mandatory: IPProtocolEndpoint

Table 136 describes class CIM_BindsTo (TCP).

Table 136: SMI Referenced Properties/Methods for CIM_BindsTo (TCP)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The TCPProtocolEndpoint that uses an IPProtocolEndpoint
for connectivity.

Antecedent Mandatory The IPProtocolEndpoint that supports a
TCPProtocolEndpoint.

11.8.3 CIM_BindsToLANENdpoint

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: LANEndpoint

Table 137 describes class CIM_BindsToLANEnNdpoint.

Table 137: SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Properties Flags Requirement | Description & Notes

FrameType Mandatory Only supports 1="Ethernet" at this point.

Dependent Mandatory A IPProtocolEndpoint.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 261

Self-Contained NAS Profile

Table 137: SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Properties

Flags

Requirement

Description & Notes

Antecedent

Mandatory

A LANEnNdpoint.

11.8.4 CIM_ComputerSystem (Top Level)

Created By: Static
Modified By: External
Deleted By: Static

Class Mandatory: Mandatory

Table 138 describes class CIM_ComputerSystem (Top Level).

Table 138: SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Properties Flags Requirement | Description & Notes

CreationClassName Mandatory The actual class of this object, e.g.,
Vendor_NASComputerSystem.

ElementName Mandatory User-friendly name

Name Mandatory Unique identifier for the Self-contained NAS System in a
format specified by NameFormat. For example, IP address
or Vendor/Model/SerialNo.

OperationalStatus Mandatory Overall status of the Self-contained NAS System

NameFormat Mandatory Format for Name property.

PrimaryOwnerContac | M Optional Owner of the Self-contained NAS System

t

PrimaryOwnerName | M Optional Contact details for owner

Dedicated Mandatory This shall indicate that this computer system is dedicated to
operation as a Self-contained NAS (25).

Otherldentifyinginfo Mandatory An array of know identifiers for the Self-contained NAS.

IdentifyingDescription Mandatory An array of descriptions of the Otherldentifyinginfo. Some

S of the descriptions would be "Ipv4 Address"”, "Ipv6 Address"
or "Fully Qualified Domain Name".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

262

Self-Contained NAS Profile

Table 138: SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Properties Flags Requirement | Description & Notes

EnabledState N Optional Not Specified in this version of the Profile.
OtherEnabledState N Optional Not Specified in this version of the Profile.
RequestedState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.
nge

Roles N Optional Not Specified in this version of the Profile.
OtherDedicatedDesc | N Optional Not Specified in this version of the Profile.
riptions

ResetCapability N Optional Not Specified in this version of the Profile.
RequestStateChange Optional Not Specified in this version of the Profile.
0

11.8.5 CIM_ComputerSystem (File Server)

Created By: Static
Modified By: Static
Deleted By: Static

Class Mandatory: Mandatory

Table 139 describes class CIM_ComputerSystem (File Server).

Table 139: SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)

Properties Flags Requirement | Description & Notes

Dedicated Mandatory This is a File Server (16).

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the Self-contained NAS System's File

Servers. Eg Vendor/Model/SerialNo+FS+Number. The
Fileserver can have any number of IP addresses, so an IP
address does not constitute a single unique id. Also, under
various load-balancing or redundancy regimens, the IP
address could move around, so it may not even be
correlatable. For that reason, the vendor shall support a
format that will provide a unique id for the file server.

OperationalStatus Mandatory Overall status of the File Server.

Caption N Optional Not Specified in this version of the Profile.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 263

Self-Contained NAS Profile

Table 139: SMI Referenced Properties/Methods for CIM_ComputerSystem (File Server)

Properties Flags Requirement | Description & Notes

Description N Optional Not Specified in this version of the Profile.
ElementName Optional Not Specified in this version of the Profile.
InstallDate N Optional Not Specified in this version of the Profile.
StatusDescriptions N Optional Not Specified in this version of the Profile.
HealthState N Optional Not Specified in this version of the Profile.
EnabledState N Optional Not Specified in this version of the Profile.
OtherEnabledState N Optional Not Specified in this version of the Profile.
RequestedState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.
nge

Roles N Optional Not Specified in this version of the Profile.
OtherDedicatedDesc | N Optional Not Specified in this version of the Profile.
riptions

ResetCapability N Optional Not Specified in this version of the Profile.
PrimaryOwnerContac | N Optional Not Specified in this version of the Profile.
t

PrimaryOwnerName | N Optional Not Specified in this version of the Profile.
Otherldentifyinginfo N Optional Not Specified in this version of the Profile.
IdentifyingDescription | N Optional Not Specified in this version of the Profile.
s

RequestStateChange Optional Not Specified in this version of the Profile.
0

11.8.6 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: Mandatory

264

Self-Contained NAS Profile

Table 140 describes class CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort).

Table 140: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS
to NetworkPort)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The ProtocolEndpoint that supports on the NetworkPort.
These include ProtocolEndpoints for NFS and CIFS.

Antecedent Mandatory The NetworkPort supported by the Access Point.

11.8.7 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: LANEndpoint

Table 141 describes class CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort).

Table 141: SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEnd-
point to NetworkPort)

Properties Flags Requirement | Description & Notes

Dependent Mandatory A LANEnNdpoint that depends on a NetworkPort for
connecting to its LAN segment.

Antecedent Mandatory The Logical network adapter device that connects to a
LAN.

11.8.8 CIM_HostedAccessPoint (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: Mandatory

SMI-S 1.2.0 Revision 6

SNIA Technical Position 265

Self-Contained NAS Profile

Table 142 describes class CIM_HostedAccessPoint (CIFS or NFS).

Table 142: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The ServiceAccessPoint hosted on the FileServer. These
include ProtocolEndpoints for NFS and CIFS.

Antecedent Mandatory The Computer System hosting this Access Point. In the
context of the Self-contained NAS System, these are alway
FileServers (Dedicated=16).

11.8.9 CIM_HostedAccessPoint (TCP)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: TCPProtocolEndpoint

Table 143 describes class CIM_HostedAccessPoint (TCP).

Table 143: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)

Properties Flags Requirement | Description & Notes
Dependent Mandatory The TCPProtocolEndpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

11.8.10 CIM_HostedAccessPoint (IP)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: IPProtocolEndpoint

Table 144 describes class CIM_HostedAccessPoint (IP).

Table 144: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)

Properties Flags Requirement | Description & Notes
Dependent Mandatory The IPProtocolEndpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

266

Self-Contained NAS Profile

11.8.11 CIM_HostedAccessPoint (LAN)

Created By: External
Modified By: Static
Deleted By: External

Class Mandatory: LANEndpoint

Table 145 describes class CIM_HostedAccessPoint (LAN).

Table 145: SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)

Properties Flags Requirement | Description & Notes
Dependent Mandatory The LANEnNdpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

11.8.12 CIM_IPProtocolEndpoint

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 146 describes class CIM_IPProtocolEndpoint.

Table 146: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName IP Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the IP Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the IP Protocol Endpoint.

Name Mandatory The unique name of the IP Protocol Endpoint.

NameFormat Mandatory The Format of the Name of the IP Protocol Endpoint.

ProtocollFType Mandatory 4096="1P v4", 4097="IP v6", and 4098 is both. (Note that
1="Other" is not supported.)

IPv4Address Mandatory An IP v4 address in the format "A.B.C.D".

IPv6Address Mandatory

SMI-S 1.2.0 Revision 6 SNIA Technical Position 267

Self-Contained NAS Profile

Table 146: SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement | Description & Notes

SubnetMask Mandatory An IP v4 subnet mask in the format "A.B.C.D".
PrefixLength Mandatory For an IPv6 address.

Caption N Optional Not Specified in this version of the Profile.
ElementName N Optional Not Specified in this version of the Profile.
InstallDate N Optional Not Specified in this version of the Profile.
StatusDescriptions N Optional Not Specified in this version of the Profile.
HealthState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
OtherTypeDescriptio | N Optional Not Specified in this version of the Profile.
n

BroadcastResetSupp | N Optional Not Specified in this version of the Profile.
orted

AddressOrigin N Optional Not Specified in this version of the Profile.
RequestStateChange Optional Not Specified in this version of the Profile.
0

BroadcastReset() Optional Not Specified in this version of the Profile.

11.8.13 CIM_LANEnNdpoint

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: Optional

Table 147 describes class CIM_LANEndpoint.

Table 147: SMI Referenced Properties/Methods for CIM_LANEnNdpoint

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName LAN Endpoint.

SystemName Mandatory The name of the Computer System hosting the LAN
Endpoint.

CreationClassName Mandatory The CIM Class name of the LAN Endpoint.

Name Mandatory The unigue name of the LAN Endpoint.

268

Self-Contained NAS Profile

Table 147: SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement | Description & Notes
NameFormat Mandatory The Format of the Name for the LAN Endpoint.
ProtocollFType Mandatory LAN endpoints supported are: 1="Other",6="Ethernet
CSMA/CD", 9="ISO 802.5 Token Ring", 15="FDDI".
OtherTypeDescriptio Optional If the LAN endpoint is a vendor-extension specified by
n "Other" and a description.
LANID Optional A unique id for the LAN segment that this device is
connected to. Will be NULL if the LAN is not connected.
MACAddress Mandatory Primary Unicast address for this LAN device.
AliasAddresses Mandatory Other unicast addresses supported by this device.
GroupAddresses Mandatory Multicast addresses supported by this device.
MaxDataSize Mandatory The max size of packet supported by this LAN device. (If

there were a Network subprofile, this would not be exposed
in a Self-contained NAS System Profile).

Caption N Optional Not Specified in this version of the Profile.
ElementName N Optional Not Specified in this version of the Profile.
InstallDate N Optional Not Specified in this version of the Profile.
StatusDescriptions N Optional Not Specified in this version of the Profile.
HealthState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
BroadcastResetSupp | N Optional Not Specified in this version of the Profile.
orted

RequestStateChange Optional Not Specified in this version of the Profile.
0

BroadcastReset() Optional Not Specified in this version of the Profile.

11.8.14 CIM_LogicalDisk (Disk for FS)

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

SMI-S 1.2.0 Revision 6 SNIA Technical Position 269

Self-Contained NAS Profile

Table 148 describes class CIM_LogicalDisk (Disk for FS).

Table 148: SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory CIM Class of the Self-contained NAS System Computer
sName System that is the host of this LogicalDisk.

SystemName Mandatory Name of the Self-contained NAS System Computer System

that hosts this LogicalDisk.

CreationClassName Mandatory CIM Class of this instance of LogicalDisk.
DevicelD Mandatory Opaque identifier for the LogicalDisk.
OperationalStatus Mandatory A subset of operational status that is applicable for

LogicalDisks in a Self-contained NAS System.

ExtentStatus Mandatory This LogicalDisk is neither imported (16) nor exported (17).

Primordial Mandatory This represents a Concrete Logical Disk that is not
primordial.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the
Self-contained NAS System. This should be coded as "1"
("other").

Name Mandatory Identifier for a local LogicalDisk that will be used for a

filesystem; since this storage extent will be referenced by a
client, it needs to have a unique name. We cannot
constrain the format here, but the OS-specific format
described in the Block Services specification is not
appropriate, so "Other" is used.

Caption N Optional Not Specified in this version of the Profile.
Description N Optional Not Specified in this version of the Profile.
InstallDate N Optional Not Specified in this version of the Profile.
StatusDescriptions N Optional Not Specified in this version of the Profile.
HealthState N Optional Not Specified in this version of the Profile.
EnabledState N Optional Not Specified in this version of the Profile.
OtherEnabledState N Optional Not Specified in this version of the Profile.
RequestedState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.
nge

Otherldentifyinginfo N Optional Not Specified in this version of the Profile.
IdentifyingDescription | N Optional Not Specified in this version of the Profile.
s

AdditionalAvailability | N Optional Not Specified in this version of the Profile.

270

Self-Contained NAS Profile

Table 148: SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement | Description & Notes

Locationindicator N Optional Not Specified in this version of the Profile.
DataOrganization N Optional Not Specified in this version of the Profile.
Purpose N Optional Not Specified in this version of the Profile.
Access N Optional Not Specified in this version of the Profile.
ErrorMethodology N Optional Not Specified in this version of the Profile.
SequentialAccess N Optional Not Specified in this version of the Profile.
NameNamespace N Optional Not Specified in this version of the Profile.
OtherNameNamespa | N Optional Not Specified in this version of the Profile.
ce

OtherNameFormat N Optional Not Specified in this version of the Profile.
RequestStateChange Optional Not Specified in this version of the Profile.
0

Reset() Optional Not Specified in this version of the Profile.

11.8.15 CIM_NetworkPort

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 149 describes class CIM_NetworkPort.

Table 149: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement | Description & Notes

ElementName Mandatory A user-friendly name for this Network adapter that provides
a network port.

OperationalStatus Mandatory The operational status of the adapter.

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName Network Port.

SystemName Mandatory The name of the Computer System hosting the Network
Port.

CreationClassName Mandatory The CIM Class name of the Network Port.

DevicelD Mandatory A unique ID for the device (in the context of the hosting
System).

SMI-S 1.2.0 Revision 6 SNIA Technical Position 271

Self-Contained NAS Profile

Table 149: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement | Description & Notes

Speed Optional

MaxSpeed Optional

RequestedSpeed Optional

UsageRestriction Optional

PortType Optional

PortNumber Optional A unique number for the adapter in the context of the
hosting System).

PermanentAddress Mandatory The hard-coded address of this port.

NetworkAddresses Optional An array of network addresses for this port.

LinkTechnology Optional 1="Other", 2="Ethernet", 3="IB", 4="FC", 5="FDDI",

6="ATM", 7="Token Ring", 8="Frame Relay", 9="Infrared",
10="BlueTooth", 11="Wireless LAN. The link technology
supported by this adapter.

OtherLinkTechnology Optional The vendor-specific "Other" link technology supported by
this adapter.

FullDuplex Optional

AutoSense Optional

SupportedMaximumT Optional

ransmissionUnit

ActiveMaximumTrans Optional

missionUnit

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

Name N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.

nge

Otherldentifyinginfo N Optional Not Specified in this version of the Profile.

272

Self-Contained NAS Profile

Table 149: SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement | Description & Notes
IdentifyingDescription | N Optional Not Specified in this version of the Profile.
s

AdditionalAvailability | N Optional Not Specified in this version of the Profile.
LocationIndicator N Optional Not Specified in this version of the Profile.
OtherPortType N Optional Not Specified in this version of the Profile.
RequestStateChange Optional Not Specified in this version of the Profile.
0

Reset() Optional Not Specified in this version of the Profile.

11.8.16 CIM_ProtocolEndpoint (CIFS or NFS)

Created By: External
Modified By: External

Deleted By: External

Class Mandatory: Mandatory

Table 150 describes class CIM_ProtocolEndpoint (CIFS or NFS).

Table 150: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha Optional

nge

Description Mandatory This shall be one of the NFS or CIFS protocol endpoints
supported by the Self-contained NAS System.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 273

Self-Contained NAS Profile

Table 150: SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement | Description & Notes

ProtocollFType Mandatory This represents either NFS=4200 or CIFS=4201. Other
protocol types are specified in subclasses of
ProtocolEndpoint.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio | N Optional Not Specified in this version of the Profile.

n

BroadcastResetSupp | N Optional Not Specified in this version of the Profile.

orted

RequestStateChange Optional Not Specified in this version of the Profile.

0

BroadcastReset() Optional Not Specified in this version of the Profile.

11.8.17 CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static

Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

Table 151 describes class CIM_SystemDevice (Logical Disks).

Table 151: SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The Computer System that contains this device.
PartComponent Mandatory The LogicalDisk that is a part of a computer system. These

include NetworkPorts.

11.8.18 CIM_SystemDevice (Network Ports)

Created By: Extrinsic_or_External_or_Static

274

Self-Contained NAS Profile

Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External

Class Mandatory: Mandatory

Table 152 describes class CIM_SystemDevice (Network Ports).

Table 152: SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The Computer System that contains this device.
PartComponent Mandatory The NetworkPort that is a part of a computer system.

11.8.19 CIM_TCPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External
Class Mandatory: Optional

Table 153 describes class CIM_TCPProtocolEndpoint.

Table 153: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName TCP Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the TCP
Protocol Endpoint.

CreationClassName Mandatory The CIM Class name of the TCP Protocol Endpoint.

Name Mandatory The unique name of the TCP Protocol Endpoint.

NameFormat Mandatory The Format of the Name of the TCP Protocol Endpoint.

ProtocollFType Mandatory 4111="TCP". (Note that no other protocol type is supported
by this endpoint.)

PortNumber Mandatory The number of the TCP Port that this element represents.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 275

Self-Contained NAS Profile

Table 153: SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement | Description & Notes

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio | N Optional Not Specified in this version of the Profile.

n

BroadcastResetSupp | N Optional Not Specified in this version of the Profile.

orted

RequestStateChange Optional Not Specified in this version of the Profile.

0

BroadcastReset() Optional Not Specified in this version of the Profile.
STABLE

276

Annex A: (Informative) State Transitions from Storage to File Shares

Annex A: (Informative) State Transitions from Storage to File Shares

A filesystem is an abstract class that abstractly describes a hierarchical structuring of data into “files” contained
within a tree of “directories” with a single “root” directory. A LocalFileSystem is a concrete class derived from
FileSystem that implements it using one or more storage elements in which the storage element(s) has been
structured to contain information about multiple files organized into directories as well as the content of these files.
This internal organization of a LocalFileSystem, viz., what parts represent the components of files, what parts
constitute directories, what the names of these files and directories are, how they are organized into a hierarchy,
even the representation of the path to a file from the root directory through a sequence of sub-directories etc., is
called “metadata” and is stored persistently inside the storage element(s). In addition to metadata, the internal
organization contains information about ownership of files and directories, rights of users or other entities to access
files and directories, and other attributes of files and directories. This information is sometimes included in
metadata, but sometimes referred to independently as “attribute” information and is also stored persistently within
the storage element(s). Finally, the contents of files are also stored persistently in the storage element(s).

In filesystem-related profiles, the collection of storage elements used by a LocalFileSystem is called a
LogicalDisk(s). There are multiple formats (both open and proprietary) for structuring a LogicalDisk into a
LocalFileSystem—how the metadata, attributes, and content are stored and so on—that are referred to as the
“type” of the LocalFileSystem. The information about the type of the LocalFileSystem (and possibly variant
versions of the type) is also persistently stored in the LogicalDisk. We represent the type of the LocalFileSystem in
this and related profiles as the “FileSystemType”.

Note: The Volume Composition SubProfile describes how multiple LogicalDisks can be merged into a single
one. It is assumed that if more than one storage element is used, they are composed into a single
LogicalDisk using the Volume Composition profile (see Clause 24: Volume Composition Profile) or
other profile that similarly merges multiple storage elements into a single LogicalDisk.

A LocalFileSystem is not an autonomous entity but is a hosted component of a larger system, usually a
ComputerSystem. We represent this using the HostedFileSystem association between a ComputerSystem and the
LocalFileSystem. Since the LogicalDisk is a SystemDevice of a ComputerSystem, it is frequently the case that the
LocalFileSystem will be hosted by the same ComputerSystem, but this is not required. It is generally the case that
a LocalFileSystem will have an independent internal name that may be used to refer to it but it is not necessary that
the name be constructed independently of the name of the LogicalDisk or the name of the hosting
ComputerSystem. Some systems require that this internal name be globally unique, but others rely on the
uniqueness of the LogicalDisk's name or on other identifiers. In SMI-S we require that a LocalFileSystem have a
unique Name property relative to the hosting ComputerSystem (Name being one of the key properties of the
FileSystem class).

The process by which an element of storage is finally made available as a FileShare is represented by Figure 21.
We begin with an unused LogicalDisk that is owned by, or has been allocated to, the ComputerSystem for this
purpose. The operation "Create a Filesystem", converts an unused LogicalDisk to a LocalFileSystem—in Figure 21
we show the name and the ComputerSystem that has a HostedFileSystem association to the LocalFileSystem. We
skip other details of the LocalFileSystem.

SMI-S 1.2.0 Revision 6 SNIA Technical Position 277

Figure 21: State Transitions From LogicalDisk to FileShare

LogicalDisk

Name: /dev/sd01

Create afile system

LocalFileSystem

ASSOC(ResidesOnExtent): REF LD: /dev/sd01

Name: /dev/fs1

ASSOC(HostedFileSystem) REF CS: "FileSystem Host”
LocalAccessDefinitionRequired: truelfalse
PathNameSeparatorString: /"

Make file system locally accessible
If Local AccessDefinitionReguired: true

LocalAccessAvailable

FileServer: REF “FileServerl” Export a file share
FileSystem: REF LFS:“/devifs1” If Local AccessDefinitionRequired: false
LocalAccessPoaint: “/etc/mntl”

Export a file share

FleShare

ASSOC(HostedShare): REF “FileServerl”
ASSOC(SharedElement): REF: “/dev/fs1”
PathName: “/users/kamesh”

Name: "HOMEDIR”

Even after a LogicalDisk has been internally organized into a LocalFileSystem, it may not be usable by an
operational user. That's because the operational user needs a durable name (for referring to the LocalFileSystem)
that is persistently supported by the implementation. There are multiple ways in which this problem has been
solved. Since the LocalFileSystem must be hosted by a ComputerSystem and the LocalFileSystem has a unique
name, a Uniform Resource Indicator (URI) can be constructed that is relative to the hosting ComputerSystem.
However, an operational user needs to use an access path relative to the ComputerSystem that serves files to
them (i.e., relative to a File Server), and this may differ from the hosting ComputerSystem.

Traditionally (i.e., before URIs), a LocalFileSystem was assigned a name in a hierarchical name space maintained
by the File Server ComputerSystem. This assignment was called “mounting to” the name and the name was called
the “mount-point” of the filesystem. For historical and other reasons, the hierarchical name space most commonly
used for the purpose was based on the “root filesystem” of the File Server. This allowed a naming convention using
“file path names” for objects in the namespace that could be extended uniformly to the meta-data and content of
the mounted filesystem (and would be represented in the SMI Specification as a property of a Capabilities
element).

If the hosting ComputerSystem and the File Server ComputerSystem are the same, or can be referenced using a
single identifier (for instance in a clustered computer system), or only one File Server can access a
LocalFileSystem, it is possible to make the Name of the LocalFileSystem be the same as the mount-point. In that
case, the act of “mounting to” the name is accomplished by default when the LocalFileSystem is created. But this
does not work for implementations that allow a LocalFileSystem hosted by one ComputerSystem to be assigned
differently named mount-points on multiple File Server ComputerSystems. The problem increases in complexity
when a File Server can have multiple network identities (through a multiplicity of IP addresses and multiple fully-
qualified domain names that map to each IP address).

278

Annex A: (Informative) State Transitions from Storage to File Shares

Traditionally, Unix-based uni-processor systems have not made the Name of the LocalFileSystem the same as the
mount-point. But many specialized systems follow such a policy, so whether mounting is not managed explicitly
(because it is automatically specified by the name of the LocalFileSystem) or must be managed explicitly is a
feature of an implementation.

In addition to specifying a mount-point for a LocalFileSystem, a File Server would also assign system resources
needed for working with the LocalFileSystem. These include read and write buffers of appropriate capacity,
restrictions on reading or writing (needed for systems that allow multiple mounts of a LocalFileSystem), and other
implementation-dependent resources. The specification of these resources are explicity manageable by some
implementations and defaulted by others.

The terms “mount” and “mount-point” are also traditionally used for assigning a remote element (such as a shared
file) a name in the local name space of a ComputerSystem. These terms by themselves appeared to be too generic
for use in this specification, so we will be using “make locally accessible” for “mount” and “local access point” for
“mount-point”. The resources to be allocated for mounting are specified by “local access settings”.

In SMI-S, a “locally accessible filesystem” is represented by providing an association, LocalAccessAvailable, from
the File Server to the LocalFileSystem. In addition to the key reference properties, this association provides the
LocalAccessPoint string array property that specifies the “local access point”. Referring back to Figure 21, the
"Make a Filesystem Locally Accessible" operation creates the LocalAccessAvailable association between the File
Server and the LocalFileSystem. This operation is supported in the Filesystem Manipulation Subprofile by
providing appropriate parameters to the CreateFileSystem and ModifyFileSystem extrinsic methods. The
LocalFileSystem element is not modified, but a new association is created. The LocalAccessPoint property
provides the access point (shown in the standard Unix format as “/etc/mnt1”).

Note: The intent behind implementing "Make a Filesystem Locally Accessible" with CreateFileSystem and
ModifyFileSystem methods is that it is preferable not to distinguish between implementations that
implement a separate “Make Locally Accessible” function from those that do not.

The vendor implements this operation by providing the necessary parameters to the create and modify methods;
this has the benefit that the operation does not have to be exposed separately to the management client. However
all implementations that support multiple File Servers with independent names to access filesystems must support
LocalAccessAvailable as that is the only place where a file-server-specific name for the LocalFileSystem is
specified (by the LocalAccessPoint property). A vendor that provides accessibility by default might have a
FileSystem.Name property that also functions as a path name from each file server (in one sample
implementation), so it is likely that LocalAccessAvailable.LocalAccessPoint would be the same as the
LocalFileSystem.Name property. The property LocalFileSystem.LocalAccessDefinitionRequired is required to
indicate that this feature is used and that the client must examine that property to understand how a vendor
implements this model.

The creation of a file share and its behavior are detailed in the related File Export and File Export Manipulation
subprofiles. Figure 21 shows the "Export a file share" operation that creates a FileShare and an SharedElement
association. The FileShare provides a name “HOMEDIR” and is hosted by the File Server. The SharedElement
association links to the LocalFileSystem and also provides the pathname “/users/kamesh” to the specific user’s
home directory.

Note: Once a LocalFileSystem has been made locally accessible via a File Server, the File Server can share
its contents with remote operational users. The contents of such a filesystem can be shared all the way
from the root directory at the top of the hierarchy, or the contents of sub-tree below some contained
internal directory may be shared, or a specific file contained in the filesystem may be shared. When a
directory (root or otherwise) is shared, all files and sub-directories of that directory are automatically
also shared recursively. The semantics of sharing an individual file or directory are ultimately controlled
by the implementation of the filesystem, so sharing cannot violate the access rules specified internally
to the filesystem. In addition to specifying the object (file or directory) to be shared, the File Server may
specify the protocol to use for sharing and a correlatable name by which remote users can refer to the
shared object—the protocol, the unique server id, and the share name can be used to construct a URI
for the shared object. The base URI can be extended to construct a reference URI for files or

SMI-S 1.2.0 Revision 6 SNIA Technical Position 279

subdirectories within the shared object.
In SMI-S, there is a FileShare element created to represent the externally accessible share. This

element is associated via SharedElement to the LocalFileSystem. The FileShare element will provide
the PathName string property that specifies the shared object (the contained file or directory name).

280

	List of Tables
	List of Figures
	Foreword
	Clause 1: Scope
	Clause 2: Normative References
	2.1 General
	2.2 Approved references
	2.3 References under development
	2.4 Other references

	Clause 3: Terms and definitions
	3.1 General
	3.2 Definitions

	Clause 4: File Export Profile
	4.1 Description
	4.1.1 Synopsis
	4.1.2 Overview
	4.1.3 Implementation

	4.2 Health and Fault Management Consideration
	4.2.1 OperationalStatus for FileShares

	4.3 Cascading Considerations
	4.4 Supported Profiles, Subprofiles, and Packages
	4.5 Methods of the Profile
	4.5.1 Extrinsic Methods of the Profile
	4.5.2 Intrinsic Methods of the Profile

	4.6 Client Considerations and Recipes
	4.6.1 List Existing FileShares on the system

	4.7 Registered Name and Version
	4.8 CIM Elements
	4.8.1 CIM_ConcreteDependency
	4.8.2 CIM_ElementSettingData (FileShare)
	4.8.3 SNIA_ExportedFileShareSetting (Setting)
	4.8.4 CIM_FileShare (Exported File Share)
	4.8.5 CIM_HostedShare
	4.8.6 CIM_SAPAvailableForElement
	4.8.7 SNIA_SharedElement

	Clause 5: File Export Manipulation Subprofile
	5.1 Description
	5.1.1 Synopsis
	5.1.2 Overview
	5.1.3 Instance Diagrams

	5.2 Health and Fault Management Considerations
	5.2.1 OperationalStatus for FileExportService
	5.2.2 OperationalStatus for File Server ComputerSystem

	5.3 Cascading Considerations
	5.4 Supported Subprofiles and Packages
	5.5 Methods of the Profile
	5.5.1 Extrinsic Methods of the Profile
	5.5.2 Signature and Parameters of ModifyExportedShare
	5.5.3 Signature and Parameters of ReleaseExportedShare
	5.5.4 Intrinsic Methods of the Profile

	5.6 Client Considerations and Recipes
	5.6.1 Creation of a FileShare for Export
	5.6.2 Modification of an Exported FileShare
	5.6.3 Removal of an Exported FileShare
	5.6.4 File Export Manipulation Supported Capabilities Patterns

	5.7 Registered Name and Version
	5.8 CIM Elements
	5.8.1 SNIA_FileExportService
	5.8.2 CIM_HostedService
	5.8.3 SNIA_FileExportCapabilities (FES Configuration)
	5.8.4 CIM_ElementCapabilities (FES Configuration)
	5.8.5 SNIA_ExportedFileShareCapabilities (FES Capabilities)
	5.8.6 SNIA_ElementCapabilities (FES Capabilities)
	5.8.7 SNIA_ExportedFileShareSetting (Pre-defined)
	5.8.8 SNIA_SettingsDefineCapabilities (Pre-defined)
	5.8.9 SNIA_ExportedFileShareSetting (FileShare Setting)
	5.8.10 SNIA_FileShare (Exported File Share)
	5.8.11 SNIA_HostedShare
	5.8.12 CIM_ServiceAffectsElement
	5.8.13 CIM_ElementSettingData (FileShare Setting)
	5.8.14 CIM_LogicalFile (Subelement)
	5.8.15 SNIA_SharedElement
	5.8.16 CIM_FileStorage (Subelement)
	5.8.17 CIM_ConcreteDependency
	5.8.18 CIM_SAPAvailableForElement

	Clause 6: File Storage Profile
	6.1 Description
	6.1.1 Synopsis
	6.1.2 Overview
	6.1.3 Implementation

	6.2 Health and Fault Management Consideration
	6.3 Cascading Considerations
	6.3.1 Cascaded Resources
	6.3.2 Ownership Privileges
	6.3.3 Limitations on Cascading Subprofile

	6.4 Supported Profiles, Subprofiles, and Packages
	6.5 Methods of the Profile
	6.5.1 Extrinsic Methods of the Profile
	6.5.2 Intrinsic Methods of the Profile

	6.6 Client Considerations and Recipes
	6.7 Registered Name and Version
	6.8 CIM Elements
	6.8.1 CIM_ResidesOnExtent

	Clause 7: Filesystem Profile
	7.1 Description
	7.1.1 Synopsis
	7.1.2 Instance Diagrams

	7.2 Health and Fault Management Consideration
	7.2.1 OperationalStatus for Filesystems

	7.3 Cascading Considerations
	7.4 Supported Profiles, Subprofiles, and Packages
	7.5 Methods of the Profile
	7.5.1 Extrinsic Methods of the Profile
	7.5.2 Intrinsic Methods of the Profile

	7.6 Client Considerations: Use Cases
	7.6.1 List Existing Filesystems hosted by the Referencing Profile (parent filesystem related profile
	7.6.2 Get FileSystemSettings for a FileSystem
	7.6.3 Get the ComputerSystem that hosts a FileSystem
	7.6.4 Get all File Servers and Access Paths that have Local Access to this FileSystem
	7.6.5 Get the Access Path to this FileSystem on the specified File Server
	7.6.6 Get the Local Access Settings for this FileSystem on the specified File Server
	7.6.7 Get the FileShares and shared File path of this FileSystem on all File Servers
	7.6.8 Get the FileShares and shared File path of this FileSystem on the specified FileServer

	7.7 Registered Name and Version
	7.8 CIM Elements
	7.8.1 CIM_ElementSettingData (FileSystem)
	7.8.2 CIM_ElementSettingData (Local Access Required)
	7.8.3 CIM_FileStorage
	7.8.4 SNIA_LocalAccessAvailable
	7.8.5 CIM_HostedDependency (Local Access Required)
	7.8.6 CIM_Dependency
	7.8.7 SNIA_FileSystemSetting
	7.8.8 CIM_HostedFileSystem (LocalFileSystem)
	7.8.9 SNIA_LocalFileSystem
	7.8.10 CIM_LogicalFile
	7.8.11 SNIA_LocallyAccessibleFileSystemSetting
	7.8.12 CIM_Dependency (Uses Directory Services From)

	Clause 8: Filesystem Manipulation Subprofile
	8.1 Description
	8.1.1 Synopsis
	8.1.2 Overview
	8.1.3 Instance Diagrams

	8.2 Health and Fault Management Considerations
	8.2.1 OperationalStatus for FileSystemConfigurationService
	8.2.2 OperationalStatus for LocalFileSystem

	8.3 Cascading Considerations
	8.4 Supported Subprofiles and Packages
	8.5 Methods of the Profile
	8.5.1 Extrinsic Methods of the Profile
	8.5.2 Signature and Parameters of CreateFileSystem.
	8.5.3 Signature and Parameters of ModifyFileSystem.
	8.5.4 Signature and Parameters of DeleteFileSystem.
	8.5.5 Intrinsic Methods of the Profile

	8.6 Client Considerations and Recipes
	8.6.1 Creation of a FileSystem on a Storage Extent
	8.6.2 Increase the size of a FileSystem
	8.6.3 Modify a FileSystem’s Settings
	8.6.4 Delete a FileSystem and return underlying StorageExtent
	8.6.5 Make a FileSystem Locally Accessible from a File Server ComputerSystem
	8.6.6 Get the Local Access Setting for a FileSystem on a File Server ComputerSystem
	8.6.7 Filesystem Manipulation Supported Capabilities Patterns

	8.7 Registered Name and Version
	8.8 CIM Elements
	8.8.1 SNIA_FileSystemConfigurationService
	8.8.2 CIM_HostedService
	8.8.3 SNIA_FileSystemConfigurationCapabilities
	8.8.4 SNIA_ElementCapabilities (FS Configuration Capabilities)
	8.8.5 SNIA_FileSystemCapabilities
	8.8.6 SNIA_ElementCapabilities (At Least One)
	8.8.7 SNIA_ElementCapabilities (At Least One)
	8.8.8 SNIA_FileSystemSetting (Pre-defined FS Settings)
	8.8.9 SNIA_SettingsDefineCapabilities (Pre-defined FS Settings)
	8.8.10 SNIA_FileSystemSetting (Attached to FileSystem)
	8.8.11 CIM_ElementSettingData (Attached to Filesystem)
	8.8.12 SNIA_LocalFileSystem
	8.8.13 CIM_HostedFileSystem
	8.8.14 CIM_Directory (Root Directory)
	8.8.15 CIM_FileStorage (Root Directory)
	8.8.16 CIM_LogicalFile (Shared Files and Directories)
	8.8.17 CIM_FileStorage (Shared Files and Directories)
	8.8.18 SNIA_LocallyAccessibleFileSystemSetting
	8.8.19 CIM_Dependency (Uses Directory Services From)
	8.8.20 SNIA_SettingsDefineCapabilities (Pre-defined Local Access Settings)
	8.8.21 CIM_ElementCapabilities (Local Access Configuration Capabilities)
	8.8.22 SNIA_LocallyAccessibleFileSystemCapabilities
	8.8.23 CIM_HostedDependency (Attached to File System)
	8.8.24 CIM_HostedDependency (Pre-Defined)
	8.8.25 CIM_HostedDependency (Pre-Defined)
	8.8.26 CIM_ElementSettingData (Local Access Required)
	8.8.27 SNIA_LocalAccessAvailable

	Clause 9: Filesystem Quotas Profile
	9.1 Description
	9.1.1 Tree Quotas
	9.1.2 User Quotas
	9.1.3 Group Quotas
	9.1.4 Container Boundaries
	9.1.5 Quota types
	9.1.6 Class design considerations
	9.1.7 Instance Diagram

	9.2 Health and Fault Management Considerations
	9.3 Supported Profiles, Subprofiles, and Packages
	9.4 Methods of the Profile
	9.4.1 FindQuotaEntries
	9.4.2 DeleteQuotaEntry
	9.4.3 ModifyQuotaEntry
	9.4.4 AddQuotaEntry
	9.4.5 GetQuotaReport
	9.4.6 EnableQuotas
	9.4.7 InitializeQuotas

	9.5 Client Considerations and sample code
	9.5.1 Common subroutines
	9.5.2 Initialize quotas
	9.5.3 Enable or disable quota tracking
	9.5.4 Add a quota entry
	9.5.5 Delete a quota entry
	9.5.6 Modify a quota entry
	9.5.7 Read the quota entries
	9.5.8 Get a report on quota usage

	9.6 Registered Name and Version
	9.7 CIM Elements
	9.7.1 SNIA_FSDomainIdentity
	9.7.2 SNIA_FSQuotaCapabilities
	9.7.3 SNIA_ReportRecord
	9.7.4 SNIA_FSQuotaReportRecord
	9.7.5 SNIA_FSQuotaIndication
	9.7.6 SNIA_FSQuotaManagementService
	9.7.7 SNIA_FSQuotaConfigEntry
	9.7.8 SNIA_FSQuotaAppliesToElement
	9.7.9 SNIA_FSQuotaAppliesToPrincipal
	9.7.10 SNIA_FSQuotaAppliesToTree

	Clause 10: NAS Head Profile
	10.1 Description
	10.1.1 Synopsis
	10.1.2 Overview
	10.1.3 Implementation

	10.2 Health and Fault Management Considerations
	10.2.1 OperationalStatus for Network Ports
	10.2.2 OperationalStatus for ProtocolEndpoints

	10.3 Cascading Considerations
	10.3.1 Cascading Resources for the NAS Head Profile
	10.3.2 Ownership Privileges Asserted by NAS Heads
	10.3.3 NAS Head Limitations on use of the Cascading Subprofile

	10.4 Supported Subprofiles and Packages
	10.5 Methods of the Profile
	10.5.1 Extrinsic Methods of the Profile
	10.5.2 Intrinsic Methods of the Profile

	10.6 Client Considerations and Recipes
	10.7 Registered Name and Version
	10.8 CIM Elements
	10.8.1 CIM_BindsTo (CIFS or NFS)
	10.8.2 CIM_BindsTo (TCP)
	10.8.3 CIM_BindsToLANEndpoint
	10.8.4 CIM_ComputerSystem (Top Level)
	10.8.5 CIM_ComputerSystem (File Server)
	10.8.6 CIM_ConcreteComponent
	10.8.7 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)
	10.8.8 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)
	10.8.9 CIM_HostedAccessPoint (CIFS or NFS)
	10.8.10 CIM_HostedAccessPoint (TCP)
	10.8.11 CIM_HostedAccessPoint (IP)
	10.8.12 CIM_HostedAccessPoint (LAN)
	10.8.13 CIM_IPProtocolEndpoint
	10.8.14 CIM_LANEndpoint
	10.8.15 CIM_LogicalDisk (LD for FS)
	10.8.16 CIM_NetworkPort
	10.8.17 CIM_ProtocolEndpoint (CIFS or NFS)
	10.8.18 CIM_StorageExtent (Primordial)
	10.8.19 CIM_SystemDevice (Storage Extents)
	10.8.20 CIM_SystemDevice (Logical Disks)
	10.8.21 CIM_SystemDevice (Network Ports)
	10.8.22 CIM_TCPProtocolEndpoint

	Clause 11: Self-Contained NAS Profile
	11.1 Description
	11.1.1 Synopsis
	11.1.2 Overview
	11.1.3 Implementation

	11.2 Health and Fault Management Considerations
	11.2.1 OperationalStatus for Network Ports
	11.2.2 OperationalStatus for ProtocolEndpoints

	11.3 Cascading Considerations
	11.4 Supported Subprofiles and Packages
	11.5 Methods of the Profile
	11.5.1 Extrinsic Methods of the Profile
	11.5.2 Intrinsic Methods of the Profile

	11.6 Client Considerations and Recipes
	11.7 Registered Name and Version
	11.8 CIM Elements
	11.8.1 CIM_BindsTo (CIFS or NFS)
	11.8.2 CIM_BindsTo (TCP)
	11.8.3 CIM_BindsToLANEndpoint
	11.8.4 CIM_ComputerSystem (Top Level)
	11.8.5 CIM_ComputerSystem (File Server)
	11.8.6 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)
	11.8.7 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)
	11.8.8 CIM_HostedAccessPoint (CIFS or NFS)
	11.8.9 CIM_HostedAccessPoint (TCP)
	11.8.10 CIM_HostedAccessPoint (IP)
	11.8.11 CIM_HostedAccessPoint (LAN)
	11.8.12 CIM_IPProtocolEndpoint
	11.8.13 CIM_LANEndpoint
	11.8.14 CIM_LogicalDisk (Disk for FS)
	11.8.15 CIM_NetworkPort
	11.8.16 CIM_ProtocolEndpoint (CIFS or NFS)
	11.8.17 CIM_SystemDevice (Logical Disks)
	11.8.18 CIM_SystemDevice (Network Ports)
	11.8.19 CIM_TCPProtocolEndpoint

	Annex A: (Informative) State Transitions from Storage to File Shares

